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CHAPTER

1
Introduction

Preamble

The face of surgery has greatly changed through the centuries. A significant break-
through happened during the industrial revolution largely extending previously lim-
ited surgical practices. People learnt to overcome three main obstacles: pain, bleeding
and infection. The invention of anaesthesia and antiseptics encouraged more surg-
eries provoking a further progress. Notable advances made in 20th century brought
new technologies. Minimalist environments with basic instruments were replaced by
much more complex operating suites putting into practice new imaging devices, la-
paroscopic, robotic and computer-assisted surgery. Today, surgical field evolves with
an unprecedented speed offering a tremendous amount of modern technologies and
operative techniques that open doors to a totally new epoch.
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1.4.4 Training and assessment . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.5 Task automation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Computer-assisted interventions

Computer-assisted surgery (CAS), otherwise called computer-aided surgery, emerged
in 20th century, represents a concept in which computer technology is used to guide
and assist surgeons during the entire surgical process. Computers contribute to the
surgical process since the earliest stages of learning and training. Rapid development
of surgical skills and their practice are enabled via various simulators and trainers
[Satava 2001, Gallagher 2005]. Computers are also involved in automatic evaluation of
gained skills [Reiley 2011]. In the pre-operative period, decision-making support and plan-
ning tools are provided [Garg 2005]. Intra-operative computer assistance includes but is
not limited to robotic surgical systems [Lanfranco 2004], image guidance and navigation
[Peters 2006], augmented reality and visualization [Shuhaiber 2004, Kersten-Oertel 2013].
Post-operative assistance offers tools for analysis of performed procedures and outcomes
[Schumann 2015], as well as for their improvement and optimization [Hübler 2014].

A successful integration and cooperative functioning of multiple systems and devices
are essential for enhancement of surgical procedures. Unfortunately, despite all the ad-
vances and valuable assistance, a seamless integration of computer aids into the operating
room (OR) and surgical process has not yet been achieved. Existent ORs contain a stack of
unrelated independent systems and devices mostly present in an isolated form disabling
proper communication and interaction. Present computer-aids facilitate some individ-
ual surgical tasks but the absence of their synchronization with with surgical process im-
pedes the work of the surgical team and the process of resource management. It results
in higher levels of stress [Arora 2010], in frequent misunderstandings between the surgical
staff members causing risks and delays, as well as in low efficiency of surgical suites that
generates excessive expenses for the hospital [Macario 2010].

1.2 Operating room of the future

At the beginning of the new millennium, a concept of intelligent OR called oper-
ating room of the future, was proposed to overcome the problems mentioned above
[Cleary 2005, Feussner 2003, Satava 2003]. In this vision of ultra-modern OR, surgery is
motivated by safety and efficiency [Bharathan 2013]. New technologies deeply integrated
in the operating theatre and synergistically working together are synchronized with the
surgical procedure. Concordance in functioning of all systems simplifies surgical pro-
cess; procedures take less time making them safer for the patient and less expensive
for the hospital. Through thorough organization, the surgical non-technical skills as
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Figure 1.1: Operating room of the future
Source: http://neurocirugiaferrer.com

team work and communication are also improved, which contributes to a better tech-
nical performance [Hull 2012]. Computer assistance becomes surgeon-, patient- and
procedure-specific. Yet, realization of such an OR of the future requires a shift of existing
paradigms, design of new infrastructures, information processing models and standards
[Lemke 2006, Maier-Hein 2017]. Multiple research projects of advanced ORs were initiated
in several countries, for example OR.NET, SCOT, and CONDOR described in following sec-
tions.

1.2.1 OR.NET

The OR.NET (Secure Dynamic Networking in the Operating Room and Clinic) is
a project (2012-2016) of Heidelberg University Hospital and RWTH Aachen University
funded by the German Federal Ministry of Education and Research. The project was de-
veloped in tight connection with providers of integrated operating rooms, manufacturers
of medical devices, IT service providers, and software vendors. The goal of the project was
the development of certifiable, dynamic, multi-vendor networking opportunities for ex-
isting and future devices and software solutions in the medical environment. The project
also resulted in creation of a non-profit organization OR.NET eV evaluating concepts of se-
cure dynamic networking of OR components and transforming them into standardization
activities.

1.2.2 SCOT

The SCOT (Smart Cyber Operating Theater) project started in 2011 by the initiative of
the Institute of Advanced Biomedical Engineering & Science (Tokyo Women’s Medical Uni-
versity). The project was funded by the state-backed Japan Agency for Medical Research
and Development (AMED). The SCOT was conceived as advanced medical information
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analyser for guidance of surgical procedures, brain tumour surgeries in particular, to im-
prove treatment safety and efficiency using high performance computing and networking.
The information from all medical devices is consolidated and shared in real-time. The ba-
sic version of SCOT (Figure 1.2), essentially displaying patient’s information in real-time,
was lunched at Hiroshima University hospital in May 2016. The “hyper” version with ad-
ditional functions such as decision making, navigation system, and robot remote control
will start functioning at Tokyo Woman’s Medical University by summer 2019.

Figure 1.2: Smart Cyber Operating Theater
Source: http://www.g-mark.org

1.2.3 CONDOR

The french 14 million euros project CONDOR, which name stands for Connected Op-
timized Network & Data in Operating Rooms, started in 2016. It is funded with the In-
vestissement d’Avenir program and managed by the Institute of Research and Technology
b<>com in association with private institutes as IHU of Strasbourg and IRCAD, public lab-
oratories LTSI-Inserm and ICube, and industrial partners Thomson Video Networks and
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Medtronic IHS. The project, inspired by aeronautics, seeks to develop a “black box” record-
ing all the parameters of a surgical intervention, as well as a “control center” enabling the
optimization of patient’s care, in ambulatory surgery in particular. The results of the CON-
DOR project will be integrated in the innovative platforms of the Strasbourg’s IHU.

1.3 Surgical Data Science

Multiple devices and treatment techniques introduced in the surgical process generate
large amounts of complex versatile data which are the main focus of a recently emerged
research direction called Surgical Data Science (SDS). The term SDS was first introduced in
[Maier-Hein 2017] - a collaborative paper written by the members of the namesake work-
shop held in Heidelberg in 2016. 1 The term originates from the notion of Data science
interested in extraction of knowledge from data. SDS has the following definition in the
paper: “Surgical Data Science is an emerging scientific field with the objective of improv-
ing the quality of interventional healthcare and its value through capturing, organization,
analysis, and modelling of data. (...) Data may pertain to any part of the patient care
process (from initial presentation to long-term outcomes), may concern the patient, care-
givers, and/or technology used to deliver care, and is analysed in the context of generic
domain-specific knowledge derived from existing evidence, clinical guidelines, current
practice patterns, caregiver experience, and patient preferences”. This field is tightly re-
lated to the concept of the OR of the future, as it seeks to improve interventional medicine
trough data analysis leading to objective decision-making and personalized care. Colossal
progress in computing solutions and machine-learning enables information processing
beyond human capacities. Figure 1.3 demonstrates how SDS progressively interconnects
a multitude of data sources for enhanced computer assistance.

1.4 Situation-awareness

As it was said before, one of the characteristics distinguishing the OR of the future from
the present one is a flawless connection of all systems and their cooperation with the sur-
gical team. A control center playing a role of a kapellmeister directing the work of all units
is then necessary. This center has to possess a powerful artificial intelligence understand-
ing situation in the OR and sensing clinicians’ needs. By keeping track of the procedure
and by constantly observing the surgical scene with its actors, it should always be aware of
happening events, performed actions and the current state. In the literature, this is called
situation- or context-aware computer-assisted surgery (CA-CAS). The relevance and appli-
cations of context-aware systems are exposed in following sections.

1. http://www.surgical-data-science.org/
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Figure 1.3: Surgical Data Science
Source: [Maier-Hein 2017]

1.4.1 Optimization and management

Hospital expenses are tightly connected to the efficiency of operating suites. Even for
highly standardized procedures, the operating time can vary greatly depending on pa-
tient’s particularities, stage of the disease and unexpected complications occurring during
surgery. In most hospitals, the OR schedule is based on average durations of planned surg-
eries. It is not rare to have long delays or holes in the schedule when OR time is simply
wasted. In this context, real-time automatic awareness of situation has several applica-
tions.

— Optimization of surgical process. Reducing operating time through optimization of
surgical process is highly desired to decrease the cost of treatment and take care of
more patients.
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— Scheduling. Predicting remaining time is useful to adapt the OR schedule, start
preparing the next patient at the right moment, and thus enable quick transitions
between operations [Franke 2013, Guédon 2016]. Moreover, displaying real-time in-
formation about the OR state outside the room can be useful for nurses as it takes
away the necessity of manual check [Bhatia 2007].

— Resource anticipation and management. Operating suites share expensive equip-
ment which is constantly relocated according to the needs of every procedure. In-
time detection or anticipation of these needs can improve the organization of equip-
ment use [Maktabi 2017].

1.4.2 Assistance and ergonomics

One of the purposes of the context-aware system is providing the right assistance at the
right moment. In addition, it can improve interactions between clinicians and machines
providing the assistance and make the surgical process more efficient.

— Intra-operative assistance. Different kinds of assistance (e.g., robotic, visual, haptic)
can support the surgeon in the technical aspect of the procedure. A shared control of
surgical instruments between the surgeon and a context-aware robot enables effort-
less automatic execution of certain difficult tasks [Nessi 2015, Fard 2016]. Miyawaki
et al. [Miyawaki 2005] created a robotic scrub nurse to fill the lack of qualified sur-
gical personnel. Katić et al. [Katić 2010] offered visual assistance in a form of aug-
mented reality to automatically display planned positions of the implants during
dental surgery.

— Human-Machine Interface. Analysis of interactions with new devices can reveal in-
tegration and usability problems, as well as improve the interface [Hübler 2014].

1.4.3 Decision support

Every patient and every surgery are unique. Although technical skills, conceptual and
procedural knowledge are very important, the outcome of the surgery also depends on the
surgeon’s ability of making correct intra-operative decisions. Decision-making is one of the
non-technical skills that a surgeon must have [Flin 2013]. Automatic awareness of surgical
situation enables different types of decision support.

— Information display. The surgery-related information (e.g., treatment plan, patient’s
history, vital signs, data coming from countless devices) is much more useful if rele-
vant to the surgical task performed at the moment.

— Decision-making. The context-aware system can also support the decision making
process by advising a set of actions to undertake in a given state of the procedure
to achieve the best results. This support would be especially valuable in emergency
situations when the surgeon has no time for consideration.
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— Adverse events detection. The on-going surgery can also be analysed to detect devia-
tions from the usual surgical process in order to prevent adverse events and compli-
cations [Bouarfa 2012, Huaulmé 2017a].

1.4.4 Training and assessment

— Analysis. Observation and analysis of surgical process is essential for understanding
surgical practice, defining the right educational standards, and improving teaching
and learning.

— Training. Training of junior surgeons is a time-consuming process requiring super-
vision by a senior surgeon. Automatic real-time workflow recognition can help to
provide a feedback and indicate precisely committed workflow errors just after or
even during the surgery.

— Assessment. Traditional approaches for evaluation of surgeons are qualitative and
subjective since based on human observations and questionnaires. Automatic
recognition enables quantitative objective assessment of surgical skills.

1.4.5 Task automation

— Device control. The surgical equipment and devices can be automatically
(dis)activated, moved or prepared for use depending on the moment of surgery
and the surgeon’s needs [Franke 2015b].

— Event triggering. Rodas et al. in [Rodas 2017] tracked body positions to automati-
cally inform clinicians when they get too much effected by the radiation during X-ray
guided minimally invasive procedures.

— Documentation. The context-aware system can automatically create pre-filled
surgical records and edit post-operative reports to economize surgeon’s time
[Agarwal 2006].

— Procedure annotation. Manually annotated clinical data was used for the appli-
cations as remaining time estimation [Franke 2013], next surgical task prediction
[Forestier 2017]) and analysis of surgical behaviours [Greenhalgh 2001]. Automatic
annotation can replace tedious manual process.

The research on this topic started about a decade ago. Despite great advancements,
it remains a relatively recent field inspiring minds of scientists and clinicians. The next
chapter presents a a review of the research on recognition of surgical workflow for situation
awareness.



CHAPTER

2
Related work in recognition of

surgical workflow

Preamble

This chapter presents a review of published in the literature methods for recognition
of surgical workflow. After describing the context, it defines the scope of interest and
determines the criteria for selection of publications for the review. It then explains the
methodology of the current reviewing process providing a detailed diagram containing
the main examined aspects. The review of each aspect is presented in a text form as
well as in a structured table. Finally, we discuss the problems blocking the domain
addressed in this thesis.
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2.1 Context

As introduced in the previous chapter, operating room has significantly evolved be-
coming a high-tech complex environment. Computer assistance rapidly took an impor-
tant place in modern surgery inciting further methodological and technological advances.
Researches from all over the world started working towards a new generation of intelli-
gent ORs setting ambitious goals and taking arduous challenges. One of these challenges
is a design of an integrated situation-aware system understanding and following the pro-
cedure. Although, situation awareness in terms of happening events or other patient or
device related factors is important, automatic recognition of surgical workflow is perhaps
the most clinically useful feature in CA-CAS. It is thus the main focus of this chapter.

Mackenzie et al. were among the first who proposed to create a procedural model.
In [MacKenzie 2001] it was based on a structured multi-level decomposition describing
surgical actions performed during surgery. The same year, Jannin et al. [Jannin 2001]
also proposed to model a neurological procedure using a decomposition based on Uni-
fied Mark-up Language. Later, a notion of surgical workflow was introduced. Neumuth
et al. in [Neumuth 2006b] presented it as “general methodological concept of the acquisi-
tion of process descriptions from surgical interventions, the clinical and technical analysis
of them, and the automated processing into workflow schemes that are able to drive a
workflow management system as a meta process control for the operating room of the fu-
ture”. Meanwhile, Jannin and Morandi in [Jannin 2007] defined surgical workflow as “the
automation of a business process in the surgical management of patients, in whole or part,
during which documents, information, images or tasks are passed from one participant to
another for action, according to a set of procedural rules”. In this thesis, we employ the
notion of surgical workflow to describe a sequence of surgical tasks that are accomplished
to perform a procedure following a repetitive schema. This definition is close to the one
that was given in [Padoy 2010].

The workflow of every surgical procedure is unique due patient- and surgeon-specific
features (e.g., anatomy, disease stage, patient’s reaction to drugs, surgeon’s experience and
habits). Despite this uniqueness, it is possible to create an abstracted model representing
a set of surgeries called Surgical Process Model (SPM). Two types of SPM models are dis-
tinguished: individual and generic [Neumuth 2011]. The individual SPM (iSPM) describes
the workflow of one particular intervention which is obtained by data acquisition. The
generic SPM (gSPM) represents the set of theoretically possible ways to perform the proce-
dure. Unlike iSPM, the gSPM does not represent a real intervention. To build a gSPM,
first an iSPM for each intervention has to be created from raw data (i.e., video or sen-
sor signals). These iSPMs are then aggregated together to form the gSPM as in Figure 2.1
[Huaulmé 2017b]. The SPM is often used in the process of workflow recognition.
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Figure 2.1: Process of gSPM construction. Here the gSPM is represented as a graph where
several paths are possible from each state. Source: [Huaulmé 2017b]

2.2 Scope of interest

The current review gathered scientific papers proposing approaches and algorithms for
off-line or on-line recognition of surgical workflow at different granularity levels (see Sec-
tion 2.5.3) to be one day applied within the situation awareness context. Here, the term
recognition is employed in a broad sense, it includes discovering the workflow from raw
signals (e.g., videos, data from sensors), predicting the following surgical tasks(s) from the
previous ones, and inferring the tasks of higher granularity level from the lower. The fol-
lowing inclusion/exclusion criteria define the scope of interest more accurately:

+ Only the methods designed for scheduled surgeries conducted in real sterile surgical
conditions were considered.

- The works placed in the context of anaesthesia [Houliston 2011], trauma
[Chakraborty 2013], emergency [Parlak 2011] or intensive care [Lea 2012] were not
taken into account. At the exception of using some sensing devices not portable into
sterile conditions, methodologically the recognition problem is close to the surgical
context. However, a major difference in workflow, clinical needs and applications
exists.

- The papers as [Béjar Haro 2012, DiPietro 2016, Gao 2016a, Nakawala 2017] placing
the work in the pre-operative training context were excluded. Training environments
presuming execution of separate tasks in simplified conditions are much more con-
strained than actual surgeries.

+ The papers targeting training and assessment applications for real surgeries were,
however, included.

+ The review encircled only the methods dealing with surgical workflow as a sequence
of tasks to realize a surgical objective.

- Therefore, the methods recognizing occasional or incidental events were excluded.
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- The papers as [Glaser 2015, Neumuth 2012] proposing stand-alone methods for
recognition of surgical objects related to situation understanding were excluded un-
less the recognized objects were explicitly correlated with the workflow.

- The papers proposing pure modelling approaches without any recognition com-
pound were not taken into account.

2.3 Search methodology

The search of literature for the present review was done by means of Google Scholar.
Three categories of key words were used for the search: 1) “surgery”, “surgical”, “operation”,
and “operating”, 2) “recognition”, “classification”, “segmentation”, “analysis” and “moni-
toring”, and 3) “process”, “workflow”, “procedure”, “state”, “task”, “phase”, “step”, “activity”,
“gesture”. Queried references had to contain at least one word from each category in their
title and be published from 2007 to June 2017. In the next step, we only selected the queried
references with titles relevant to the subject, which then formed a subset of publications for
a closer consideration. In the same step, only the articles and papers from peer-reviewed
international journals, conferences and workshops published in English were kept. Addi-
tionally, relevant citations found in the selected papers were also added to the list. They
were then browsed to select only those corresponding to the scope of interest. Finally,
only major publications were chosen. When a work on the subject was published multiple
times in incremental manner, either more recent or impacting journal was kept. A total of
34 publications were finally chosen for a full-text review. The flow chart from Figure 2.2
shows the process of selection with the number of references at each step.

Relevant references
73

References from publications 
9

References corresponding to the key words
1382

Total examined 
82

In the scope of interest 
46

Major publications = Reviewed 
34

Figure 2.2: Process of selection of publications for a full-text review
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2.4 Review methodology

Figure 2.3 displays the diagram according to which the selected publications were re-
viewed. Every category and its corresponding subcategories addresses a major aspect of
context-aware system conception: application, data, modelling, recognition and valida-
tion. The application indicates the targeted surgery and clinical purposes of the system.
The data describes the nature, form and acquisition process of the data used to train and
test the system. The modelling describes the formalization of surgical process model or
knowledge representing the chosen procedure. The recognition explains the process of
“teaching” the system to recognize the surgical workflow from the acquired data. The vali-
dation defines the methodology used to assess the created recognition system. The results
of the review are exposed in Table 2.1 and in Section 2.5. The references in brackets in the
text refer to the entries of the table. The current review was motivated by the analysis of
the methodology applied to recognition problem solving. It sought to reveal and exhibit
issues blocking further development of the field.

2.5 Analysis

2.5.1 Application

Speciality. This subcategory indicates the surgical speciality of the procedure targeted
for recognition. Every speciality is characterized by its own surgical objectives, opera-
tive techniques, OR settings (e.g., tools, devices, conditions) and required surgical skills.
But more importantly, each of them has its own specific needs for computer assistance.
Situation-awareness in minimally-invasive laparoscopic surgery seems to attract the great-
est part of researchers’ attention [1, 2, 4, 5, 6, 12, 13, 14, 22, 23, 28, 29, 31, 33], fol-

44%
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19%

6%
6% 3%

laparoscopic surgery

neurosurgery

ophthalmology

otolaryngology

robot-assisted surgery

dental surgery

Figure 2.4: Repartition of studies by surgical speciality
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lowed by neurosurgery [1, 8, 9, 10, 15, 20, 30] and ophthalmology [7, 16, 17, 24, 25,
26]. Other impacted specialities were dental surgery [11], otolaryngology [19, 32] and
robot-assisted surgeries (RAS) [18, 34]. In fact, a large number of publications in RAS do-
main exist: numerous contributions were made by the team of John Hopkins University
[Béjar Haro 2012, DiPietro 2016, Gao 2016b, Gao 2016a, Tao 2013]. However, they mostly
place recognition in the training context and thus were excluded from the review as ex-
plained in Section 2.2.

Procedure. This subcategory determines the type of surgery the workflow of which has
to be recognized. The most targeted procedures were cholecystectomy [1, 4, 5, 6, 12, 14, 22,
23, 28, 29, 31] and cataract surgery [7, 16, 17, 24, 25, 26]. A particular choice of procedure
may be explained by simpler conditions or facility to leverage informative input signals
without installing too much of new sensors. For example, during laparoscopic surgery the
whole procedure is performed through endoscopic video with a limited number of instru-
ments and field of view. Cholecystectomy and cataract are highly standardized procedures
with few deviations. Such procedures are also conducted frequently which facilitates data
collection. Other targeted procedures were vertebroplasty [1, 30], sinus surgery [19, 32],
epiretinal membrane surgery [7, 24], pancreas resection [12, 13], adrenalectomy [12, 13],
appendectomy [2], hysterectomy [18], sigma resection [33], cervical discectomy [9], lum-
bar disc herniation [9], pituitary surgery [15], craniotomy [20], brain tumour removal [10]
and dental implant surgery [11].

Clinical application. Clinical application defines the purpose of the recognition system.
Authors often give an insight on clinical use of the proposed methods, though most of the
time multiple possible applications are cited. The final application is mostly constrained
by the origin of the sensors and the working mode of the method (e.g., on-line or off-line)
that will be discussed later in this chapter. Decision support was the most targeted appli-
cation [2, 6, 7, 9, 12, 13, 14, 17, 21, 23, 24, 25, 26, 31], followed by training & assessment [1, 4,

decision support

training & assessment

optimization & management

assistance & ergonomics

task automation

Figure 2.5: Targeted clinical applications
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8, 9, 14, 18, 21, 28, 34, 18] and optimization & management [3, 15, 16, 19, 30, 31, 32, 33, 34].
The applications as assistance & ergonomics [11, 15, 16, 17, 27, 32] and task automation [2,
6, 10, 22, 30, 33] were targeted slightly less.

2.5.2 Data

Type. This subcategory defines the nature of the acquired data. Many medical re-
searchers get inspired by recognition approaches from other domains. Unfortunately,
some of them are hard to translate into the surgical context mostly due to sensor-related
issues. Some sensors do not respect sterile conditions, disturb the surgeon or they are sim-
ply too burdensome or expensive to install in the OR (e.g., installation works, approval,
certification). These constraints can be gotten around over time. However, researchers
often prefer to make preliminary tests of the adopted approaches to see if they suit their
objectives. That is why some published work was made in simulated conditions [2, 21, 27,
29, 32], using animal models [28, 34] or phantoms [1, 11, 19]. In some cases additional ar-
tificial data was generated to support the learning process [11, 33]. Luckily, certain devices
already present in the OR or some other easily integratable sensors allowed to assess the
methods on real clinical data.

64%
14%

8%

8%
6%

clinical
simulated
phantom
animal model
artificial data

Figure 2.6: Types of data used in the analysed studies

Number of recordings. This subcategory indicates how many interventions (i.e., surgi-
cal cases) were recorded or simulated for each study. Some works trained and assessed
their methods on several procedures; in this case, the table provides a separate number
for each procedure. Three publications [3, 11, 30] did not indicate the number of observed
interventions, but two of them cited the amount of recorded hours or days [3, 30].
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Figure 2.7: Number of recorded interventions per study

Sensors. This subcategory designates the types of devices acquiring the data. Numer-
ous sensors were used to record information about the surgical worflow: a robot providing
versatile information about the instruments and system events [18, 34], a location track-
ing system detecting people positions inside the room and tracing their trajectories [2, 20],
accelerometers placed on surgeon’s body parts [1, 19], eye [28] and tool [11, 27, 28, 33]
tracking systems recording trajectories, radio frequency identification (RFID) technology
[2, 19], RBG/RGBD [21, 27, 29, 30] and infra-red [32] cameras, a sound recorder [33], as
well as standard devices already present in the OR as endoscope [4, 6, 14, 23, 31, 33], mi-
croscope [7, 15, 16, 17, 24, 25, 26] and rgb surveillance camera [3, 20]. In some cases of

microscope
endoscope
RGB camera
RGBD camera
infra-red camera
location tracking system
eye tracking system
tool tracking system
RFID
robot
accelerometers
sound recorder
human observer

Figure 2.8: Used sensors
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real surgeries, human observers manually annotated procedural workflow by following the
surgery in real-time or watching its video recordings later on [4, 5, 6, 8, 9, 10, 12, 13, 22].
This approach supposes that the necessary sensors will be placed in the OR sometime in
the future.

Signals. This subcategory indicates the nature and form of the acquired data. The signals
from the sensors used in the reviewed publications were divided into following groups:
videos, motion data, tool usage signals, audio [Weede 2012] and other specific signals as
robotic system events [18, 32]. The videos recorded in RBG, RGBD or infra-red format cap-
tured the operating field [4, 6, 7, 14, 15, 16, 17, 23, 24, 25, 26, 31, 33] or external views [3 , 20,
21, 27, 29, 30, 32]. The motion data characterized instrument [11, 27, 28, 33, 34] or human
motions (body [2, 20], hands [19], eyes [28], wrists and waist [1]) in terms of position (i.e.
trajectory) [2, 11, 20, 27, 28, 33, 24] and/or acceleration [1, 19, 34]. The tool usage signals
indicating surgical instruments currently in use were recorded automatically [2, 18, 19] or
manually [4, 5, 6, 22]. The low-level surgical activities (see Section 2.5.3) performed by the
surgeon were recorded manually in all cases [8, 9, 10, 12, 13].

motion data (humain)

tool usage signals

video (external)

video (operating field)

low-level activities

motion data (tools)

system events

audio

Figure 2.9: Acquired signals

Actors. Actors define persons and manipulators (i.e., instruments or body parts) execut-
ing the actions that were recorded by the sensors. The sensors can perceive the procedure
from various angles and follow different key actors. In the reviewed publications, most of
the time the surgeon (in whole [8, 9, 10, 12, 17, 29], hands [19, 32], wrists [1], waist [1], head
[18] or eyes [28]) and/or manipulated surgical tools [2, 4, 5, 6, 7, 11, 14, 15, 16, 17, 22, 23, 24,
25, 26, 27, 28, 31, 33, 34] were observed. An effort in recording actions and movements of
the surgical staff including anaesthesist, scrub, and assistant nurses was also made [2, 20,
21, 27, 30].
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Figure 2.10: Observed actors and manipulators

2.5.3 Modelling

Granularity. Granularity is defined as a level of abstraction for describing the surgical
process; it determines in which details the surgical procedure is modelled. Unfortunately,
no universal taxonomy or vocabulary defining the difference between the granularity lev-
els exist. Researchers often use the same term when speaking about different notions, or
use some other uncommon terms to describe some of the concepts presented here. The
taxonomy presented here was inspired from [Lalys 2014] that presented a complete review
on surgical process modelling. It was further enriched by [Despinoy 2016, Huaulmé 2017a]
who added more precision for low granularity levels concerning surgical gestures. The sur-
gical workflow can be modelled at different levels: dexemes, surgemes, activities, steps,
phases, procedure and state. The most detailed level of workflow observation is dexemes.
They describe short gestures performed by one hand of the surgeon devoid of medical
sense, e.g. “turn left”. A sequence of dexemes allows to accomplish a surgeme, which rep-
resents a surgical gesture made with a precise purpose and having an explicit semantic
meaning, e.g. “make a knot”. An activity is a physical action described by the anatomi-
cal structure operated by the surgeon at the moment, the used surgical tool and the per-
formed action. A step is defined as a set of activities towards a surgical objective. A phase
represents a longer interval of time including several steps and may involve interactions
with other members of the surgical team. A procedure corresponds to the entire surgery,
which starts with the first incision and ends with the last stitch closing the patient. In
[Lalys 2014, Despinoy 2016, Huaulmé 2017a], phase was the highest granularity level. Af-
ter reviewing the publications, we, however, felt the urge to add a higher modelling level
- state. A state represents an extensive period of the surgical process standing out of the
surgery itself and representing the state of the operating room, e.g. patient arrival, prepa-
ration, surgery, cleaning. In this thesis, an instance of any granularity level will be called
a surgical task. Table 2.1 indicates a granularity level for each examined study. If several
levels were modelled, the value inside parentheses indicates the one used for recognition.
The border between steps and phases still remains fuzzy. Here, the separation was essen-
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tially made based on the number of modelled tasks and their descriptions. The dexemes
and surgemes were not studied in the reviewed publications, as they are mostly considered
in the context of pre-operative dexterity training. The procedure level was not covered in
the reviewed publications neither, as it is mostly relevant for modelling purposes. It rep-
resents no particular interest for recognition except automatically distinguishing between
different types of surgery.

surgemes activities steps phases state

low-level high-level

dexemes procedure

Figure 2.11: Granularity levels
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Figure 2.12: Repartition of methods by granularity levels

Number of tasks. This subcategory defines the number of distinct surgical tasks that
were modelled and recognized. This number is correlated with the complexity of the recog-
nition problem. A higher number is typically connected to a lower granularity level, hence,
a greater challenge. The workflows of the same procedure varied in different studies result-
ing in different number of tasks. In a large measure, this depends on the surgical style or
taxonomy accepted at each particular hospital. In some cases, certain tasks that actually
took place during surgery got excluded from the study. This came from inability to record
the data in certain moments of surgery, or was caused by a short duration of tasks or even
their irrelevance to the situation understanding.
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Figure 2.13: Number of distinct surgical tasks modelled per study

Approach. This subcategory defines the formalization approach used to model the sur-
gical process of the chosen procedure. Two main approaches for SPM formalization exist:
bottom-up and top-down. A bottom-up approach means inference of an SPM (up) de-
scribing the process through analysis of observed procedures (bottom). Despite the fact
that such a model suits (but not necessarily explains) all the observations the best, it is not
complete. It is possible to observe later on something that will not suit the constructed
model any more. This approach is generally easier and takes less time, though the recogni-
tion of a procedure with a workflow deviating from the observed ones can be difficult. The
top-down approach, on the other hand, assumes a collection of fundamental knowledge
(top) about the domain first. That way, the knowledge contained in the model should ex-
plain the observations (down). Most of the time, it implies an advanced analysis of medical
literature, detailed interviews with surgeons and an appropriate structure for knowledge
representation. These two approaches can also be combined. Please refer to Table 2.1 to
see which approach was used in every reviewed publication.

Formalization. Formalization determines the type of knowledge representation used to
model the surgical process. According to [Lalys 2014], different modelling approaches im-
plicate different formats of knowledge representation. The best example of a top-down
approach implementation is ontology [11, 12, 13] defining concepts and entities existing
in the domain, as well as relations between them. Other formats generally more suitable
for bottom-up and mixed approaches are hierarchical decompositions, state-transition di-
agrams, sequential and unsequential lists. A hierarchical decomposition model is a repre-
sentation where hierarchical relations between different granularity levels are strictly de-
fined [2, 8, 10, 17, 28]. State-transition diagrams are 2D graphs determining the transitions
between the surgical tasks. These transitions can be defined explicitly as in gSPM [6, 10]
or implicitly as in finite-state machines like Markov models [3, 4, 5, 15, 16, 19, 22, 29, 31].
Sequential lists are appropriate for modelling linear surgical workflows [7, 14, 18, 20, 23,
24, 25, 26, 27, 33]. Some works also used unsequential lists with no fixed temporal order
between the surgical tasks [1, 30, 32, 34].
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Figure 2.14: Modelling formalizations

2.5.4 Recognition

Features. Features are the relevant characteristics of the data extracted to describe the
surgical tasks and enable their distinction. In classical approaches, extracted features are
hand-crafted; it means that they should be defined by human in a supervised way. Let us
first speak about low-level features that can be directly extracted from the acquired data
by means of standard image analysis or signal processing. The video, one of the most used
signals, can be described using visual features. Static features characterize one frame only
in terms of color [3, 4, 6, 14, 15, 16, 17, 23, 24, 32], shape [6, 14, 15, 16] and texture [6, 14, 15,
16, 24] in a global or local manner. More sophisticated detectors [16, 17, 23, 26, 33] describe
objects and forms. Spatio-temporal features capture the difference between frames caused
by object or background motion [7, 20, 21, 24, 25, 26, 29, 30]. The motion data from tracking
and locating devices may be used in its raw [1], derived [28, 33, 34] or transformed forms
[19, 20, 28, 33]. Deep-learning approaches, unlike classical ones, automatically extract
low-level features in an unsupervised manner without human involvement [31].

The second category is high-level features that are obtained using some specific rea-
soning. For instance, the data from tracking or locating systems can be processed to se-
mantically describe spatial relations between objects (e.g., near or far) [11, 33] or uniquely
identify the position of someone or something in space (e.g., zone in the OR) [2, 27]. The
instrument-related data can be described in form of binary vectors [4, 5, 22] indicating for
each instrument its state (1 - in use, 0 - not) or with some other semantic [2, 16, 19] or
quantitative representations [18, 27, 33] containing various useful information about the
surgical tools. The high-level category also includes features as duration, count or occur-
rence of certain events (e.g., time that the surgeon passed looking into the console, number
of robotic clutches, number of coagulations, etc.) [18, 33, 34]. Finally, manually annotated
activities in turn can be transformed in semantic descriptions [8, 9, 10, 12, 13] that is a
sequence of tuples containing words for actions, instruments and anatomical structures.
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Figure 2.15: Features used to extract relevant information from the signal

Approach. This subcategory describes the methodological approaches and algorithms
used to “teach” the system to recognize the surgical workflow from the provided data.
This part is probably the most intricate and difficult aspect of CA-CAS creation. Most of
researchers’ attention is devoted to the process of development and adaptation of new
recognition algorithms. All machine learning approaches are typically divided in three
categories: supervised requiring full annotation of input data (i.e., each training sample
should have a label), unsupervised finding relevant information in the input by its own
(i.e., no labelling required) and semi-supervised when only a part of input data is labelled.
The overall approach may be simple, meaning that only one machine learning algorithm
is used to learn from the provided features, and complex consisting of several learning lev-

non-probabilistic
probabilistic
temporal
sequence alignment
decision trees
boosting
clustering
genetic
rule-based
mathemarical
deep learning

Figure 2.16: Distribution of methods used for recognition
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els. In complex approaches output from one level is often used as input for the next one.
A Random Forest performing task classification directly from the extracted features [27] is
an example of a simple approach. The approach in [15] may be considered as complex:
it first uses an SVM classifier to automatically derive semantic information from low-level
features (e.g., presence-absence of certain objects, type of view, etc.), and then constructs a
HMM to learn temporal relations between surgical tasks. Most of the reviewed works used
much more complex multi-level approaches.

All presented approaches were divided into the following groups: probabilistic models,
non-probabilistic classifiers, temporal models, sequence alignment algorithms, deci-
sional trees, rule-based approaches, neural networks (including deep learning), clustering
methods, boosting approaches, genetic algorithms and others. Probabilistic models (e.g.,
Naive Bayes, Bayesian network, Conditional Random Fields, etc.) apply Bayes’ Theorem
to expresses the conditional dependences between a set of random variables [8, 11, 18,
25, 28, 29, 32, 33]. Non-probabilistic classifiers include classical classifiers (e.g., Support
Vector Machine and K-Nearest Neighbors) that do not involve probability theory and do
not belong to any other group [1, 3, 14, 15, 16, 17, 18, 20, 23, 30, 31]. Temporal models
(e.g., Hidden Markov Models and its derivatives) are used to model time-series repre-
senting stochastic processes [1, 3, 4, 5, 6, 10, 15, 16, 19, 21, 22, 31]. Most of the temporal
models are technically probabilistic as well, but they were put in a separate category in
order to highlight the difference between static and dynamic systems. Sequence alignment
algorithms (e.g. Dynamic Time Warping) measure the similarity between two temporal
sequences varying in length and calculate an optimal match between them [4, 7, 9, 16,
17, 22]. Decision trees (e.g. Random Forest, Decision Stamp, etc.) is a family of methods
that use tree-like structures to create a model of decisions based on actual values of the
features [2, 13, 18, 24, 27]. A rule-based approach is a general term for methods that iden-
tify, learn and apply rules that explain the observed relationships between the labels and
the signal [11, 12]. Neural networks are the methods inspired by the structure and func-
tioning of human brain. They include classic artificial neural networks and deep learning
approaches (e.g., Convolutional Neural Networks and Recurrent Neural Networks) [18,
31]. Clustering methods (e.g. k-means, Aligned Cluster Analysis, etc.) divide input data
on subsets called clusters in a way that the samples inside one cluster are similar and the
samples from distinct clusters are dissimilar [20, 30, 34]. A boosting approach uses a great
number of weak learners assembled into a cascade to form one strong classifier [6, 16, 17].
Genetic algorithms (e.g., cultural optimization and evolutionary reinforcement learning)
represent search heuristics that mimic the process of natural selection, and use methods
such as mutation and crossover to generate new genotypes in order to find good solutions
for solving the problem [13, 14, 32]. Other algorithms mostly operate with mathematical
concepts (e.g., polynomials) [24, 26].
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Running mode. This subcategory defines the system’s period of functioning and recog-
nition speed. Depending on the mode and targeted application, the presented methods
can be divided into on-line and off-line ones. The on-line methods have a potential to be
used in the OR during surgery. Their recognition process is based on the information about
the present moment and (optionally) the moments from the past but not from the future.
The off-line methods, on the other hand, require to have a complete data sequence from
the start till the the end of the surgery or at least the entire task to perform their analysis. Of
course, the on-line methods have an advantage to be used for any application (e.g., assis-
tance, decision support, device control and documentation), whereas the off-line methods
suit post-treatment applications only (e.g., documentation, video indexing, etc.). However,
generally, the off-line approaches perform better. Nevertheless, if a method is theoretically
on-line, technically it does not mean that its implementation runs in real time. Some com-
plex methods without optimization take too much time to process, and can not be applied
in the OR as they are. There were also papers that proposed implementations working in
near real time. This means that a small but often tolerable delay in delivering recognition
decision still exists. Table 2.1 indicates a running mode for the publications that reported
it. The methods [7, 24, 25, 26], marked as semi on-line enabled a recognition compatible
with real-time computing but the decisions were provided only at the end of each task. It
worth noticing that a real-time implementation is an important trump. The papers that did
not make an appropriate statement have “n/a” in this field but should rather be considered
as non real-time or off-line methods.

18%
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18% 5%
11%

34% off-line near real time
on-line real time
semi on-line n/a

Figure 2.17: Repartition of methods by running mode

2.5.5 Validation

Protocol. Protocol defines the organization of the validation study performed after the
training process. Two main validation protocols are train-test and cross-validation. A train-
test is a protocol in which all available data is divided into two distinct groups and any
given intervention belongs to one group only: a training set - the sequences that are used
to train the system, and a testing set - the sequences used to assess the recognition ability
of the system. The testing set allows to evaluate the generalization ability of the method
and to see how well it performs on new data which has not been seen during training. This
protocol is substantially applied for validation when the overall dataset is quite large.
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A cross-validation is a protocol in which a complete dataset is first split on n equal
parts, called folds. Then, the interventions from all folds except one are used for training
and one fold left for validation. At the next round, the fold earlier used for validation is
now used for training along with the others, and an another fold is chosen for validation.
This process is then repeated n times in a way that every fold is selected for validation only
once. In almost all the publications n equalled the number of interventions in the dataset;
this is called a full cross or leave-one-out validation. This protocol is more often applied to
small datasets since a train-test partitioning would leave the method with few data to learn
from, and not enough to objectively test its performance.

Both of these protocols, at least in the way they were used in the publications, have
hidden bias. Almost every method has parameters that have be tuned to provide better
results. Unfortunately, all the data, including the sequences used for validation, in one
way or another, were involved in the process of tuning. It means that the provided results
probably overestimated the real performance. If the method, in its final form, was tested
on some completely new data (not involved in the overall process of system creation at all),
it would show lower results. The most objective protocol is train-validation-test: a train set
is for training, a validation set for finding the best model or the best parameters, and a
test set for making the final evaluation. However, none of the published methods used it,
presumably, due to small dataset sizes. This is one of the validation biases.

62%
24%

14%
full cross

n-fold cross

train-test

Figure 2.18: Validation protocols

Metrics. Metrics define the measurements used to assess the performance of the recog-
nition system during validation. The most commonly used metrics were overall accuracy
and per-class/average recall and precision. Accuracy, also called recognition rate or cor-
rect classification rate, is the percentage of correctly recognized samples in a sequence or a
dataset. Recall, otherwise known as sensitivity, correct positives or true positive rate (TPR),
is computed as the number of true positives divided by the total number of actual positives.
Precision is the number of true positives divided by the sum of true and false positives. F-
score representing a harmonic mean of precision and recall was also used in some papers
[8, 9, 33].
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Another frequent way to validate recognition methods was using a ROC curve and com-
puting its AUC (area under the curve) [5, 24, 25, 26]. The ROC curve is a plot of true positive
rate (TPR) against false positive rate (FPR) at various thresholds. FPR, also known as fall-
out, is the number of false positives divided by the sum of false positives and true negatives,
or 1 - specificity [1, 26]. Specificity or true negative rate (TNR) is the number of true nega-
tives divided by the sum of true negatives and false positives [1]. False negative rate (FNR)
or miss rate, computed as 1 - sensitivity, was also used [1].

Some more rare yet standard measures include failure rate (i.e., 1 - accuracy [22, 33]),
negative predictive value (i.e., the number of true negatives by the total number of actual
negatives) [22], variance of recognition rate [13] and Levenshtein distance [18]. Two pa-
pers [4, 26] performed statistical tests and computed p-values. The paper [1], performing
pattern mining used some interesting metrics as motif seed diversity (MSD), motif seed hit
rate (MSHR) and motif seed purity (MSP). MSD indicates how many of the surgical tasks
were recognized. MSHR shows how many of the relevant tasks (i.e., important for CA-CAS)
were recognized. Finally, MSP measures how much each learned motif is based on the data
from one single task rather then their mixture.

Among uncommon metrics were the number of correctly identified tasks within a tem-
poral window [31], the number of detected transitions between tasks [23], and the average
transitional delay (i.e., a temporal delay between the moment when a transition is detected
and actually occurred) [6, 23]. Forestier et al. in [9] also measured a prediction confidence
of their method and counted the occasions when no conclusive decision has been made.
The paper [6] recomputed accuracy, precision and recall allowing a small tolerant delay in
recognition.

A confusion matrix, which is not an actual metric, was often used to display the distri-
butions of correct and false recognitions between the surgical tasks [2, 4, 6, 8, 27, 30, 32].
Some publications also proposed a visual comparison of recognized sequences and the
ground truth [6, 9, 31, 34].
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Tests on public datasets. This subcategory indicates whether the recognition method
was also tested on other types or sources of data that has not been initially considered as
targeted. The comparison of the results is a very biased procedure if the methods were
designed and validated on distinct datasets having different levels of complexity. The re-
sults may only be compared when they were obtained on common data. Unfortunately,
only few authors validated their approaches on publicly available datasets. Droueche et
al. [7] and Quellec et al. [24] tested their methods initially designed for eye surgeries on
HOLLYWOOD2 human action dataset [Marszałek 2009] in order to demonstrate the gen-
eralization ability of the proposed approaches. This shows that the same method is able
to suit other contexts, possibly different surgeries. Only three surgical datasets used in the
reviewed publications were publicly released: set of cataract surgeries CATARACTS used
in [7, 24, 25, 26] and two datasets containing laparoscopic cholecystectomies Cholec80
[Twinanda 2017] used in [31] and EndoVis2015 [Stauder 2016, Twinanda 2017] in [6, 31].

Evaluation. Evaluation is assessing the acceptance of the system by the end-users and its
value [Jannin 2006a]. It is the last stage when the developed system is finally applied and
assessed in real conditions. This helps to receive clinicians’ feedback after its use and to
measure its impact on the surgical process. The integration and tests require a significant
effort and may take time. That is why, only Katić et al. in [11] actually got to this stage
by making preliminary tests with clinicians yet still in simulated conditions. They evalu-
ated the medical usability of the developed tool for augmented reality visualization and
guidance by proposing questionnaires to the surgeons.

2.6 Discussion, conclusion and thesis positioning

The performed analysis of the works published in the domain allowed to shed light on
some serious issues slowing down appearance and integration of context-aware systems.

First of all, it is obvious that despite all the advancements made through the years,
there is still too few research on surgical activities (see Section 2.5.3). Less than 10% of
the reviewed studies focused on low-level clinical information. Yet, this detailed level of
workflow observation allows things that others do not (e.g. in-depth understanding of sur-
gical process and adverse events detection). On the other hand, a delay in development
of this direction may be explained by the fact that among other granularity levels the ac-
tivities represent the biggest challenge for the recognition. Unlike states, phases or steps,
they generally have much shorter durations, higher diversity resulting in hundreds of dis-
tinct activities to recognize, and more complex workflows represented by a multitude of
possible ways to order and perform the activities. It is also harder for a machine to make
a difference between activities based on a raw signal only. An abstraction from the physi-
cal signal should be made in favour of a semantic description of the scene that would give
sense to the situation (e.g., the name of action that the surgeon is performing at the mo-
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ment, the operated anatomical structure or the instrument used to accomplish the action).
However, no study has yet been done to analyse the relevance of different semantic infor-
mation to the activity recognition process. Yet, a good choice of description would help to
improve and facilitate the recognition. This knowledge would also provide an insight on
sensing devices that should be installed in the OR, as well as guidelines for researchers.

The second problem that has to be resolved is a lack of training data. Today, deep learn-
ing greatly overcomes classical machine learning methods in many domains. Although
only two reviewed papers applied it in their research, it rapidly conquers medical field. It
is now widely used for brain segmentation [Havaei 2017, Zhang 2015] and cancer detec-
tion [Cruz-Roa 2013, Wang 2016]. Almost all the participants of the MICCAI 2016 M2CAI
challenge on workflow recognition presented deep learning approaches. For a success-
ful functioning, however, deep learning requires enormous amounts of training data. Yet,
on average for the reviewed studies on activity recognition, the training dataset contained
17 recorded interventions only. Generally, the following solutions can be applied for get-
ting more data: using data available on the internet, acquisition of new data, data genera-
tion or using alternative methods. Several datasets for phase (e.g., Cholec80, EndoVis2015,
CATARACTS) and gesture (e.g., JIGSAWS, MISTIC) recognition exist. Yet, no dataset con-
taining surgical activities is freely available. The acquisition of clinical data is an intricate
process requiring an ethical approval, patient consent, sensors installation and time. One
third of publications was made using simulated interventions (e.g., mock-up OR, phantom
or artificial generation). This simulated data, however, can be used for testing new recog-
nition methods only but is not enough to realistically assess the method’s performance
in real clinical conditions. Thus, exploring alternative techniques, knowledge transfer for
example, is highly relevant.

Finally, the third issue relates to the validation process. Currently, there is no common
validation standard in the domain. Many studies neglected this process by applying not-
suitable metrics and paying poor attention to exploration of strengths and weaknesses
of their methods. Standard machine learning metrics as accuracy, recall and precision,
most frequently used by the authors, are not sufficient to give an exhaustive in-depth
prospect of the obtained results. These scores conform to problems as data retrieval or
image classification but not to surgical workflow recognition. To begin with, they were
designed for non-sequential data to report the amount and type of occurred errors but
not to tell much about how the errors are distributed in the sequence or why they occur.
Yet, this is a highly important information for a CA-CAS application. The consistency of
detection and robustness of the method, rarely measured in the papers, are also essential.
Another problem with the current validation process is its disconnection from the actual
application. The requirements of performance vary depending on clinical use. For certain
applications, a correct recognition of only a portion of tasks is necessary. Some applica-
tions may easily tolerate a delay in detection. This ignorance of the clinical objective leads
to insufficient validation process and slows down the integration and use of the system.
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In conclusion, this chapter presented a review of existing methods for surgical workflow
recognition and provided an analysis of the obstacles creating a blockage in the field. As
a result, three main problems were emphasized: 1) difficulties in recognition of semantic
surgical activities, 2) deficiency of clinical data for training, and 3) inappropriate validation
process. The purpose of this thesis was to propose solutions to these problems. Therefore,

— Chapter 3 presents the clinical data used in this work.

— Chapter 4 presents an approach for analysis of semantic components of the activity.
It also discusses pertinent results of the performed analysis suggesting essential ele-
ments necessary for a high-quality recognition and provides recommendations for a
wise choice of sensors for the OR.

— Chapter 5 examines methods of knowledge transfer to enlarge learning dataset and
proposes techniques allowing to improve recognition results.

— Chapter 6 offers a fresh vision on the validation process along with strategies and
new metrics adapted for surgical workflow recognition.

— Chapter 7 concludes the work and discusses its perspectives.
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CHAPTER

3
Data presentation

Preamble

In this chapter, we present a detailed description and analysis of clinical data used in
the studies conducted within this work. First, we explain the purpose and main steps
of four available surgical procedures. Then, we describe datasets composed of these
procedures giving a description and examples of surgical phases, activities and activity
elements (i.e., verbs, instruments, and structures). Finally, we discuss the variability,
particular features and interconnections of the data.
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Various types of data (e.g., simulated or artificially generated) can be used for solving
problems of workflow recognition. Clinical data from real surgical procedures performed
in the OR is, however, eventually required for a more realistic assessment of the recogni-
tion method. The present work was based on the previously recorded surgeries of ante-
rior cervical discectomy and fusion (ACDF) [Forestier 2013], lumbar disc herniation (LDH)
[Riffaud 2010], pituitary adenoma (PA) [Lalys 2010] and cataract surgery (CS) [Lalys 2013].
This data represents workflow diversity, variety of practices and expertise levels. Its use
contributes to a better understanding and generalization of the approaches and discov-
eries from this work. A description of the procedures and detailed information about the
composed datasets are presented below.

3.1 Surgical procedures

3.1.1 Anterior Cervical Discectomy and Fusion

Anterior cervical discectomy and fusion (ACDF), also called anterior cervical decom-
pression, is a neck surgery during which a damaged intervertebral disc pinched between
two backbones is removed to relive the pain caused by an excessive pressure on the spinal
cord or nerve root. ACDF may be done for one or several discs of the cervical spine at once.
The procedure is conducted as follows. First, during the first phase - approach to the spine,
a three to five centimetres skin incision is made on one side of the neck. The incision is
usually horizontal unless a multilevel operation is performed. Muscles between the skin
and the pre-vertebral fascia are then split to get access to the spine. The fascia, fibrous
tissue covering the spine, is then dissected away from the disc space. Next, a discectomy
(i.e., disc removal) is performed by cutting a fibrous ring around the disc and extracting
its soft inner core. The posterior longitudinal ligament and portions of the lower vertebral

Figure 3.1: Anterior cervical discectomy and fusion
Source: http://www.alamy.com Author: Nucleus Medical Art Inc.
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bone are also typically partially removed to evacuate any leftovers of the disc material and
to relieve the spinal cord or nerve root compression. A cervical fusion, called arthrodesis,
is done after the discectomy. A bone graft is inserted into the liberated disc space in order
to prevent its collapse and to allow two vertebrae to grow together into a single unit. This
helps to maintain the decompression by giving enough room for the nerve roots and spinal
cord. To provide additional stability across the disc space, a small metallic plate is attached
with screws to each vertebra. Finally, the surgical incision is closed.

3.1.2 Lumbar Disc Herniation

Posterior lumbar discectomy is the most common surgery used to remove a herniated
portion of a disc in the lumbar region of the spine pressing on the nerve root and the spinal
cord. It helps to relieve the back and leg pain, called sciatica, caused by pinched spinal
nerves by giving more space to the nerve root. A small incision is made posterior down the
middle of the back over the affected vertebrae to start the procedure. Then, back muscles
are lifted off the bony arch of the spine and moved to one side in order to expose the lamina
- a bone at the back side of the spinal canal. During surgery, the back muscles are held
to the side with retractors with no need to be cut. Next, a small opening of the affected
lamina, above and below the spinal nerve, is made with a drill or bone-biting tools to access
the herniated disc. This is called laminectomy or laminotomy. It is performed on one
or both sides, or on multiple vertebrae levels. Then, a protective sac of the nerve root is
gently retracted and moved to the side. Using small instruments, the surgeon goes under
the nerve root and removes a ruptured portion of the disc to decompress the spinal cord.
Finally, the muscles are moved back into place by removing retractors, and the muscle and
skin incisions are sewn together.

Figure 3.2: Lumbar disc herniation
Source: http://www.alamy.com Author: Nucleus Medical Art Inc.
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3.1.3 Pituitary Adenoma

Pituitary adenoma is a benign tumour which arises from the pituitary gland and
can cause vision loss and hormone problems. Pituitary tumours are typically removed
transsphenoidally. A transsphenoidal surgery is a type of surgery in which an endoscope
and long surgical instruments are inserted into the sphenoidal sinus cavity (i.e., air space
behind the nose) by going through the nose and the sphenoid bone in order to remove tu-
mours from the pituitary gland and the skull base. To begin with, the surgeon passes an
endoscopic camera through the nostril. A small portion of the nasal septum is removed,
and the front wall of the spheniod sinus is opened using bone-biting instruments. After
that, the bone of the sella (i.e., a bony cavity in the skull base where the pituitary gland is
located) is removed to expose the dura - a thin lining of the skull. The opening of the dura
enables access to the tumour and the gland. The tumour is usually cut into small pieces
and removed with special surgical instruments called curettes. When the visible tumour
is extracted, the surgeon advances the endoscope into the sella to control that no hidden
tumour is left. The surgeon may also use an x-ray to control the position and removed
amount of the tumour. If needed, a fat graft (from the abdomen) is used to fill the empty
space left by the tumour. At the end of the surgery, the holes in the sella and sphenoid si-
nus are sealed with biologic glue and bone grafts from the septum. The glue prevents the
cerebrospinal fluid from leaking into the sinus and nasal cavity.

Figure 3.3: Pituitary Adenoma
Source: Terese Winslow LLC http://www.teresewinslow.com
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3.1.4 Cataract surgery

Cataract surgery serves to replace a cloudy natural lens inside the eye with an artifi-
cial lens to improve blurry vision. During the procedure, a tiny incision is made to access
the lens. A high-frequency ultrasound device is then used to fraction the lens into small
pieces, which are then gently removed from the eye with suction. This procedure is called
phacoemulsification. After all residues of the natural lens have been removed, the surgeon
inserts in the eye a folded clear intra-ocular lens (IOL). It is then securely positioned and
adjusted behind the iris and pupil, occupying the location of the natural lens. The cataract
removal and IOL implantation is finally completed by closing the incision. A protective
shield is placed over the eye to keep it safe in the early stages of recovery.

Figure 3.4: Cataract surgery
Source: http://www.ranelle.com/cataract-surgery

3.2 Datasets

All the data used in this thesis was organized in seven datasets by procedure and hos-
pital. The data from neurosurgeries (i.e., ACDF, LDH and PA) was collected at two univer-
sity hospitals: Rennes (France) and Leipzig (Germany). The ophthalmological surgery of
cataract was recorded at the University hospital of Munich (Germany). A total of 154 in-
terventions were acquired. Table 3.1 presents information about the number and average
duration of conducted procedures, as well as the number of involved leading surgeons.
All the procedures were performed by both senior and junior surgeons. The senior neu-
rosurgeons were considered those who had performed more than 100 interventions of the
given type. The juniors were residents who had completed more than two years of their
residence program. All surgeons were right-handed.

For all studies presented in this thesis, only manual annotations of workflow were used,
i.e. surgical phases and surgical activities. Sections 3.2.1, 3.2.2 and 3.2.3 describe exist-
ing phases, activities and activity elements (i.e., verbs, instruments and structures) respec-
tively. The data was annotated using ICCAS Surgical Workflow Editor software developed
in Leipzig [Neumuth 2006a, Neumuth 2007]. The program enables recording of individual
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Figure 3.5: ICCAS Surgical Workflow Editor
Source: [Riffaud 2010]

Figure 3.6: Real-time recording of surgical procedures
Source: [Riffaud 2010]
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Table 3.1: General information about the datasets

Surgery ACDF LDH PA CS

Site Leipzig Rennes Leipzig Rennes Leipzig Rennes Munich

Nb. of procedures 16 48 25 20 15 11 19
Nb. of surgeons 4 5 6 5 2 1 2
Duration (min) 156±61 85±26 80±26 38±14 78±21 58±22 12±3

surgical process models containing several operating actors and manipulators (see Figure
3.5). The software was validated on neurosurgeries, ophthalmology, hear, ear, noise and
throat surgeries performed in Leipzig. It also offers instant statistics about the surgical pro-
cess such as number and duration of use of each instrument, number of repeated gestures
and others. The neurosurgeries were annotated by the same senior surgeon in real time as
shown in Figure 3.6. The cataract surgeries were annotated by one PhD student from video
recordings. Both annotators were carefully trained on the annotation software beforehand.
Five first annotations of each procedure were considered as tests and were not taken into
account. All the annotations were carefully reviewed with the same software afterwards.

3.2.1 Phases

As defined in 2.5.3, a surgical phase is a period of time during which several associ-
ated surgical objectives are attained by the surgeon and other members of the team. Each
procedure has its own set of m possible phases P = {p1,p2, ...,pm}. Each intervention is
annotated as a sequence of n phases Seq= (a1,a2, ...,an), where a phase annotation ai =
< p,tstart, tend > is 3-tuple containing its name p ∈ P, start time tstart ∈ N and end time
tend ∈ N in seconds, e.g. (discectomy, 1525, 2576). The phase annotations also satisfy the
following conditions: tstarti < tendi , tendi < tstarti+1

, tstart1 = 0, and tendn equals the
duration of a given intervention.

The phases of every surgery are listed in Table 3.2. Their average duration, number
and order vary from one intervention to another. Cataract surgery, for example, consists
of more but much shorter phases that occur in a linear order. Neurosurgical procedures,
on the other hand, may have come-backs and repetitions in the phase order. This is often
the case for multi-level ACDF and LDH surgeries. The hemostasis may also happen several
times between other phases if necessary, or can be skipped when the patient has poor
bleeding. The neurosurgical phases are common for both operating sites (i.e., Leipzig and
Rennes), except the PA phase “fat graft" that took place at the hospital of Rennes only.
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Table 3.2: Surgical phases

ACDF LDH PA CS

1. Approach to the spine 1. Approach to the disc 1. Nose preparation 1. Betaisodona injection
2. Discectomy 2. Discectomy 2. Approach to the dura 2. Corneal incision
3. Arthrodesis 3. Hemostasis 3. Tumour removal 3. Visco-elastic injection
4. Hemostasis 4. Closure 4. Fat graft and capsulorhexis
5. Closure 5. Hemostasis 4. Phaco-emulsification

6. Reconstruction 5. Cortical aspiration
and closure 6. IOL implantation

7. IOL adjustment

3.2.2 Activities

A surgical activity is defined as a physical activity performed by the surgeon expressed
in an action verb, a surgical instrument and an anatomical structure. Each intervention is
annotated as a sequence of l activities Seq = (a1,a2, ...,al), where an activity annotation
ai = < acr,bp,V,I,S,tstart, tend > is a 7-tuple consisting of an actor act (here “surgeon”,
“assistant” or “nurse”), a body part bp (here “left hand” or “right hand”), a verb V , an in-
strument I, a structure S, start time tstart ∈ N and end time tend ∈ N, e.g. (surgeon, left
hand, hold, classic forceps, muscle, 1020, 1041). The activity annotations also satisfy the
conditions: tstarti < tendi and tstarti � tstarti+1

, as well as tendi < tstartj for ∀ i < j if si = sj
and hi = hj.

In this thesis, the workflow was studied in terms of surgeon’s activities only. Know-
ing the information about both surgeon’s hands simultaneously was also important for a
more complete understanding of the situation. Thus, for the purposes of this thesis, the
definition of a surgical activity was changed to a tuple composed of six items: a verb, an
instrument and a structure distinctly defined for both left and right hands of the surgeon at
the same time. Such wise ai = < L(V,I,S),R(V,I,S) >, where L and R correspond to the left
and right hands respectively, e.g. (hold, classic forceps, muscle, dissect, scissors, fascia, 1025,
1034). Using the start and end timestamps, each annotated intervention was transformed
to a temporally ordered sequence of n 6-tuple activities Seq = (a1,a2, ...,an). Finally, a
set α = {A1,A2, ...,Am} of all possible activities was constructed for each surgery from its
annotations.

Table 3.3 displays the number of unique activity tuples for each dataset. The SPMs
of given datasets differ greatly in terms of activities. Cataract, being the shortest and the
most standardized surgery, has the smallest number of activities that occur in the same
order each time. The number and sequencing of neurosurgical activities, contrariwise,
notably vary between the procedures, sites and patients. As displaying here a synthesis of
all surgical scenarios is infeasible due to their great variability, table 3.4 gives examples of
activities for each procedure.
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Table 3.3: Number of unique activity tuples for each dataset

Surgery ACDF LDH PA CS

Site Leipzig Rennes Leipzig Rennes Leipzig Rennes Munich

Both hands 377 379 413 243 282 255 45
Left hand 49 33 47 20 16 31 17
Right hand 93 111 116 74 103 92 16

Table 3.4: Examples of activities

left hand right hand

verb instrument structure verb instrument structure

A
C

D
F

suck blood suction tube disc drill high-speed drill disc
remove rongeurs disc suck blood suction tube disc

hold classic forceps muscle sew needle-holders muscle
hold retractors muscle dissect dissectors fascia

suck blood suction tube ligament install arthrodesis disc

LD
H

suck blood suction tube ligament dissect hooks nerve root
suck blood suction tube muscle coagulate bipolar forceps muscle

hold retractors nerve root remove cup-forceps disc
hold classic forceps skin sew needle-holders skin

suck blood suction tube disc cut hammer vertebra

PA

suck blood suction tube tumour remove curettes tumour
hold retractors mucosa dissect dissectors nasal septum

suck blood suction tube sphenoid remove rongeurs sphenoid
suck blood suction tube sphenoid cut scissors dura mater

hold retractors mucosa install cottonoids nose

C
S

hold micro spatula bulbus oculi aspirate aspiration cannula lens
none none none inject methocel anterior chamber
incise 1.4mm knife cornea hold colibri tweezers bulbus oculi
place reposition hooklet lens none none none
none none none phaco chopper lens

3.2.3 Activity elements

Activity elements are the main compounds of the surgical activity: the verb, the instru-
ment and the structure. A particular value of an element, for example “cut" for the verb,
is called an instance. Table 3.5 indicates the number of unique instances of each activity
element for every dataset. The verb is generally represented by a single physical action of
one hand. Although the instrument and the structure can be instantiated as a union of
two physical objects simultaneously manipulated by one hand, e.g. classic forceps + cot-
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Figure 3.7: Instances of ACDF activity elements
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tonoids as instrument, or cornea + conjunctiva as anatomical structure. The union of two
objects, counted as a unique instance, helps more clearly describe the activity and its sur-
gical meaning (e.g., additional use of cottonoids indicates a higher blood loss). One or sev-
eral elements may also be absent from the tuple, for example, if only one hand is involved
in the activity or an action is performed with a bare hand using no particular instrument.
In this case, the absent element is instantiated with the word “none". Figures 3.7, 3.8, 3.9
and 3.10 display all possible instances of each element (except the “none" word) for ACDF,
LDH, PA and CS respectively.

Table 3.5: Number of unique element instances in each dataset

Surgery ACDF LDH PA CS

Site Leipzig Rennes Leipzig Rennes Leipzig Rennes Munich

Verbs 11 11 11 10 14 14 11
Instruments 24 31 26 22 30 29 14
Structures 10 6 9 7 6 8 6

3.3 Analysis of data variability

The previous section gave formal definitions of phases, activities, and activity elements,
the number of unique items in each category and their examples. This section will present
the analysis of data variability, as well as intra- and inter-procedural relationships. Sec-
tion 3.3.1 discusses the phases and the relationships between the surgical sites in terms of
phase workflow in the context of each procedure. Section 3.3.2 dedicated to the activities
first analyses their frequency within the entire dataset, then analyses them within an inter-
vention, and finally discusses the relationships between the sites and procedures. Section
3.3.3 discusses the activity elements: first in terms of hands, then frequency and finally
intra- and inter-procedural similarities.

3.3.1 Phases

In the ACDF procedure, 5 different phase workflows (i.e., different sequencing of
phases) were observed in Leipzig, and 8 in Rennes. Four of these workflows, occurring
in 90.1% of all operating cases, were observed in both sites. Table 3.6 shows other statis-
tics about the ACDF procedure, such as the number of cases in which the hemostasis
or arthrodesis phases were skipped, and multiple discectomies or arthrodesis were per-
formed. The table also shows the number of cases in which the hemostasis phase fol-
lowed the discectomy and arthrodesis phases. According to these statistics, the patients in
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Table 3.6: Statistics on ACDF phases

Leipzig Rennes

No hemostasis phase 6 cases 37.5% 17 cases 35.4%
No arthrodesis phase 1 case 2.1% -
Multiple discectomies 2 cases 12.5% 1 case 2.1%
Multiple arthrodesis 2 cases 12.5% 2 cases 4.2%
Discectomy -> Hemostasis 4 cases 25.0% 21 case 43.8%
Arthrodesis -> Hemostasis 7 cases 43.8% 12 cases 25.0%

Leipzig and Rennes had similar levels of bleeding, but the hemostatis phase was performed
in different moments: mostly after the arthrodesis in Leipzig, and after the discectomy in
Rennes. These numbers also make ACDF the most heterogeneous procedure in terms of
phase workflow. This heterogeneity, however, can partially be explained by a higher num-
ber of cases in the dataset.

In the LDH procedure, 3 unique phase workflows were found in Leipzig dataset, and
only 2 in Rennes dataset, which were also shared with Leipzig in 95.6% of cases. The
hemostasis phase was absent in only 4 cases (16%) in Leipzig but in 16 cases (80%) in
Rennes. The frequent absence of this phase in Rennes can explain a big difference in aver-
age duration of the procedure, which was twice shorter in Rennes. It also indicates, that the
patients operated in Rennes tended to bleed less during this procedure. As for the discec-
tomy phase, it was performed twice only in 2 cases (8%) in Leipzig, and never in Rennes.

In the PA procedure, all the interventions in Leipzig except one were performed within
the same phase workflow, while 3 different workflows were observed in Rennes. The sites
shared only one common workflow which was followed in 80.8% of all cases. The hemosta-
sis phase was skipped in only one case (6.7%) in Leipzig and one (9.1%) in Rennes. In
Leipzig the fat graft was never placed, whereas in Rennes this was done in 4 cases (36.4%).

In fact, the cataract surgery performed in Munich always followed the same workflow.
Its recordings, however, had different workflows due to the fact that the interventions were
annotated from videos afterwards. The actual first phase “preparation” was never recorded
as no microscope had been used when performing it. The next phase “betaisodona injec-
tion” was also entirely recorded and annotated in 5 cases only (26.3%).

3.3.2 Activities

Table 3.3 displays the total number of unique activity tuples within each dataset. The
frequency of occurrence, however, varies greatly for different tuples. This table thus does
not reflect their frequency distribution. To have an idea of how much different activity
tuples were actually observed most of the time, we computed the number of unique tu-
ples covering 50% of all performed activities. To calculate this number, we first counted
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all the activities performed within a dataset, and then multiplied their amount by 0.5 to
obtain a rate r. Then, using a greedy algorithm, we sorted the tuples by their frequency
and progressively counted them starting from the most frequent one until the sum of their
frequencies attained r. The results of the computation are exposed in Table 3.7. It shows
that in neurosurgeries, only 7 to 14% of all unique 6-tuples composed 50% of all performed
activities. For the ACDF procedure, in percentage terms, this number was twice bigger in
Leipzig than in Rennes. For the LDH and PA procedures, conversely, it was 1.3 times bigger
in Rennes than in Leipzig. The activity tuples of cataract surgery had a distribution close
to uniform since they all had similar frequencies (approximately 45-50% of unique tuples
covered 50% of all performed activities).

Tables 3.3 and 3.7 show the statistics computed within the entire dataset mixing the
activities from all interventions. Table 3.8, on the other hand, displays the statistics com-
puted with an intervention. It shows the average number of performed activities per in-
tervention, average number of unique tuples and the average number of repetitions of one
tuple. For the neurosurgical procedures, the number of two-hand activities performed

Table 3.7: Number of unique activities that compose 50% of all occurrences

Surgery ACDF LDH PA CS

Site Leipzig Rennes Leipzig Rennes Leipzig Rennes Munich

Both hands 55 (14.6%) 27 (7.1%) 48 (11.6%) 36 (14.8%) 31 (11.0%) 36 (14.1%) 20 (44.4%)
Left hand 9 (18.4%) 5 (15.2%) 9 (19.1%) 8 (40.0%) 5 (31.3%) 10 (32.3%) 8 (47.1%)
Right hand 18 (19.4%) 21 (18.9%) 21 (18.1%) 20 (27.0%) 23 (22.3%) 25 (27.2%) 8 (50.0%)

Table 3.8: Average number of activities occurring during one intervention

Surgery ACDF LDH PA CS

Site Leipzig Rennes Leipzig Rennes Leipzig Rennes Munich

B
o

th

In total 367±149 244±76 242±72 148±49 266±77 213±46 29±5
Unique 79±17 63±8 62±9 52±10 56±8 66±9 19±2
Repeats 5±10 4±9 4±9 3±6 5±12 3±6 1±1

Le
ft

In total 38±25 23±9 21±8 15±6 13±4 19±5 13±3
Unique 13±5 8±2 10±2 9±2 5±2 10±2 9±3
Repeats 3±4 3±3 2±2 2±1 2±2 2±1 1±1

R
ig

h
t In total 162±63 106±32 105±31 62±22 121±37 94±21 14±3

Unique 36±5 38±4 36±5 29±5 38±4 38±5 9±3
Repeats 4±6 3±3 3±4 2±2 3±4 2±2 1±1
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within one intervention was bigger in Leipzig than in Rennes (1.5 times bigger for ACDF, 1.6
for LDH and 1.3 for PA). The number of unique 6-tuples was however 3 to 5 times smaller
for neurosurgeries and twice smaller for CS. One 6-tuple repeated on average 2 to 5 times
per intervention during neurosurgeries, whereas only one time during cataract surgery. It
means that the CS activity workflow had almost no loops.

We also computed the number of shared 6-tuples for the neurosurgical datasets. The
left part of Table 3.9, describing intra-procedural relationships, shows the number of tuples
common for both sites of one procedure. Its right part, related to inter-procedural similar-
ity, shows the number of shared tuples for three pairs of procedures (both sites mixed).
Leipzig and Rennes shared the biggest number of activities within the LDH procedure (al-
most 38%), while the least within ACDF (31.5%). For the inter-procedural part, the inter-
ventions from both sites were first put together to compute the number of shared tuples
between the procedures. There were tuples that were shared between the procedures from
one site, but not between the sites within one procedure. This explains the number of com-
mon tuples for the ACDF x LDH pair which was bigger than the intra-procedural numbers
(177 vs. 119 and 124). The PA procedure, being different from ACDF and LDH, shared with
them only about 2% of tuples.

Table 3.9: Number of activity 6-tuples common for surgical procedures and sites

intra-procedural inter-procedural

ACDF LDH PA ACDF x LDH ACDF x PA LDH x PA

119 (31.5%) 124 (37.8%) 94 (35.0%) 177 (30.3%) 8 (1.5%) 13 (2.7%)

3.3.3 Activity elements

Table 3.5 shows the number of unique instances per element together for the left and
right hands. For the neurosurgeries, however, the right hand could make 1.5 times more
actions (i.e., verbs) than the left hand, it could also manipulate 2.6 times more instruments.
As for the anatomical structures, both hands could operate the same ones except two dif-
ferent structures in RCVA Leipzig dataset, and one in PA Leipzig. In CS, at the exception of
one verb and one instrument, the left hand elements can have the same instances as the
right hand.

For each element we computed the number of instances covering 50% of all occur-
rences as well. For the neurosurgeries, the half of the verbs and instruments of the left
hand were represented by only one or two instances (see Table 3.10). The two most fre-
quent verbs for the left hand were “suck blood” and “hold”. The most frequent instru-
ment was thus “suction tube”, and the second position was shared between “retractors” (for
PA Leipzig, PA Rennes and LDH Rennes datasets) and “classic forceps” (for RCVA Leipzig,
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Table 3.10: Number of unique element instances that compose 50% of all element occur-
rences. V, I and S correspond to the verb, instrument and structure respectively, whereas L
and R to the left and right hands

Surgery ACDF LDH PA CS

Site Leipzig Rennes Leipzig Rennes Leipzig Rennes Munich

V (L) 2 (22.2%) 2 (28.6%) 1 (11.1%) 2 (40.0%) 1 (25.5%) 2 (33.3%) 5 (50.0%)
V (R) 4 (36.4%) 4 (36.4%) 5 (45.5%) 4 (40.0%) 4 (28.6%) 5 (35.7%) 5 (45.5%)

I (L) 2 (13.3%) 2 (18.2%) 1 (7.1%) 2 (33.3%) 1 (14.3%) 2 (18.2%) 6 (46.2%)
I (R) 8 (53.3%) 10 (32.3%) 8 (30.8%) 8 (36.4%) 9 (30.0%) 9 (32.1%) 6 (42.9%)

S (L) 3 (37.5%) 2 (33.3%) 3 (33.3%) 3 (42.9%) 2 (40.0%) 3 (37.5%) 3 (50.0%)
S (R) 4 (50.0%) 4 (66.7%) 4 (44.4%) 4 (57.1%) 3 (50.0%) 3 (37.5%) 3 (50.0%)

RCVA Rennes and LDH Leipzig datasets). Only 2 to 3 structures were operated by the left
hand in 50% of time. Meanwhile, the right hand verbs had 4 to 5 instances on average,
instruments 8 to 10, and structures 3 to 4. In CS, as with the activity tuples, each element
instance occurred similar number of times for both hands, thus a half of instances covered
50% of time.

Figures 3.7, 3.8, 3.9 exhibit the intra-procedural relationships between the element in-
stances, meaning the difference between two sites within one neurosurgical procedure.
Shared and site-specific instances have distinct colours. Higher font size of the font signi-
fies higher frequency of occurrence. The figures show that the sites shared the most part of
the instances, especially the most frequent ones. Both sites shared all verbs, except “drill”
present in LDH Leipzig but not in LDH Rennes. Within the ACDF procedure 68.8% of in-
strument instances were shared between the sites, 65.1% within LDH, and 73.5% within
PA. The relatively frequent not shared instrument instances included “monopolar forceps”
(present in ACDF Rennes but never used in Leipzig), “curettes” (used only in LDH Rennes)
and “high-speed drill” (used in LDH Leipzig but not in LDH Rennes). As for the structures,
the ACDF surgeries from Leipzig and Rennes shared 60%, LDH 77.8%, and PA all of them.
Among the frequent ones could be found “dura mater” which was operated only in Leipzig
during LDH.

The inter-procedural similarities and differences in terms of element instances are dis-
played via a colourful word cloud in Figure 3.11 (for neurosurgeries only). As before, the
frequency of occurrence manifests through the font size. The procedures shared mostly the
verb instances: all of them were common to ACDF and LDH, and 78.6% are were shared
with PA. The PA verbs that did not exist in ACDF and LDH (i.e., disinfect, inject and x-ray)
had much lower frequency than others. In terms of instrument instances, ACDF and LDH
shared 65.7%, ACDF and PA 60.5%, and LDH and PA 57.9%. As well as with the verbs, all
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the most frequent instrument instances were shared. As for the structure instances, ACDF
and LDH share almost a half of the instances (which also happened to be the most fre-
quent ones) but both had only “skin” in common with PA (which did not exceed 15% of all
instances).

3.4 Conclusion

The surgeries described in this chapter are clinical procedures belonging to two differ-
ent domains: neurosurgery and ophthalmology. They all vary in terms of duration, sur-
gical workflow and hospital-specific practices. Despite their differences, the procedures
from the same domain still have similarities in phases, activities and activity elements.
Some surgeries resemble more than others (e.g., anterior cervical discectomy and fusion is
much closer to lumbar disc herniation than to pituitary adenoma surgery). As part of this
work, the presented data has three main advantages. First of all, representing real surg-
eries with complex worflows, it actually suits the goal of a context-aware system creation
for the OR of the future. Secondly, the diversity of data (different domains and procedures)
allows performing a more objective analysis of importance of the OR sensors to the activity
recognition and providing generalizable results. Finally, the shared properties of the pro-
cedures enable transfer of knowledge that can help to resolve the problem of training data
deficiency.



CHAPTER

4
Sensors for automatic surgical

activity recognition

Preamble

In this chapter, we introduce the studies performed to discover which signals and sen-
sors could facilitate automatic recognition of low-level surgical activities. We made
the following hypothesis: the activity recognition does not require sensors for all three
activity elements. A large multi-scale study on four different surgeries confirmed the
hypothesis and revealed relevant sensors to place in the OR. A deeper analysis exam-
ining the influence of noise in data on the recognition was also conducted. Finally,
several relevant observations about surgical practices were also made. These observa-
tions, discussed at the end of the chapter, help better understand the surgical process.
The findings of this work provide cues for designing a new generation of operating
rooms.
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4.1 Introduction

Today, an overwhelming flow of new technologies and equipment threatens to over-
run operating rooms, adding even more complexity to the surgical process. A large
amount of research is focused on smart and situation-aware intra-operative assistance
to help alleviate the surgeon’s stress and facilitate procedures. Automatic recognition
of surgical workflow represents a substantial part of it. As it was shown in 2.5.3, most
research groups studied the recognition of surgical phases [Forestier 2015, Katić 2016,
Twinanda 2017, Bodenstedt 2017] and steps [Bardram 2011, Twinanda 2015]. A large
amount of research has also been devoted to recognition of surgical gestures [Haro 2012,
Gao 2016a, DiPietro 2016] from pre-operating training sessions (e.g., on JIGSAWS or
MISTIC datasets), which offer much lower granularity. Yet, few works exist studying
the automatic recognition of low-level activities from true complex clinical procedures
[Lalys 2013, Meißner 2014]. Their automatic recognition is not only useful for in-depth sit-
uation awareness, analysing semantic activities also enables better understanding, learn-
ing and teaching of surgical procedures [Forestier 2012]. Surgical skills can be objectively
evaluated based on a sequence of performed actions [Riffaud 2010, Forestier 2013]. Sev-
eral other applications include detection of deviations from a standard procedure flow
[Bouarfa 2012, Huaulmé 2017b], accurate estimation of remaining time and resource man-
agement [Maktabi 2017].

Due to the lack of automatic recognition, most applications use manually annotated
surgical activities, which is a terribly tedious and time-consuming process. However, the
automatic recognition of surgical activities is an extremely challenging task. Unlike phases
and steps, activities are of shorter duration (minutes vs. seconds) and higher diversity in
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terms of number (dozen vs. hundreds of distinct items), execution order (simple sequenc-
ing vs. great multitude of possible paths) and surgeon/practice-specific characteristics.

To facilitate the recognition process, the approaches proposed in the literature break
down the activity into its meaningful elements (e.g., verb, instrument, and structure) then
proceed with one-by-one detection. The activity is then deduced from one or a combi-
nation of elements. The elements to be detected are chosen depending solely on avail-
able signals, without any analysis of their relevance. The instrument is often considered a
good indicator of the on-going task [Kranzfelder 2011, Bouarfa 2012, Maktabi 2017], even
though it has been shown to have multiple functions that vary depending on the situa-
tion and surgeon [Mehta 2002]. The verb, which provides pertinent information about
the activity context, is difficult to recognize due to a high variability of action execution
[Meißner 2014], and often requires additional sensors. The anatomical structure, on the
other hand, can be recognized from usually available image-based signals [Lalys 2013],
without extra sensors needing to be brought to the operating room. However, no study
as yet exists justifying the choice of elements to detect.

In this work, we propose to approach the problem from the opposite direction, using
the data from Chapter 3. Assuming information on all three elements is available, we assess
their impact on the performance of low-level activity recognition with the aim of defining
a minimum set of required sensors and signals. This is the first large-scale multi-site study
of elements’ importance to activity recognition conducted on complex clinical data. This
work’s unique contribution consists in its original approach to information analysis for the
optimization of operating room sensors, as well as its study results.

4.2 Problem statement

We made the following hypothesis at the beginning of this study: surgical activity recog-
nition does not require sensors for all three activity elements. In order to prove the hypoth-
esis and assess the impact of each semantic element on the overall recognition process we
have used the following scheme. If we want to know how well a whole activity can be rec-
ognized solely knowing the used instruments, we can apply a “010010” mask to the activity
tuple, which gives us (unknown, forceps, unknown, unknown, scalpel, unknown) for the
example above. The element is considered known for both left and right hands, as in prac-
tice the same type of sensor is needed to recognize both. We also take into consideration a
temporal context, meaning N activities having taken place before. The same mask is also
applied to the N previous activities, ensuring that only available information is involved in
the analysis. The problem then consists in mapping a sequence of partially hidden tuples
to a full tuple (i.e., masked with “111111”) of a current activity. This problem was resolved
using a deep neural network, described in the next section. This was performed for all
other configurations, meaning the solely known elements, as well as their combinations.
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Finally, the neural network model of each configuration was tested on the activity recogni-
tion task, and their performances were compared, as described in Section 4.4.

The relevance of the temporal context has previously been discussed in [Forestier 2015,
Maktabi 2017]. We found out that working with deep learning and a fairly small dataset re-
quires a careful choice of parameters, N in our case, in order to enable an effective learning
process. We will talk about our choice of this parameter, defined as a function of factors
like dataset size, number of unique activities, average number of activities per interven-
tion, and complexity level, in Section 4.5.

4.3 Deep neural network for analysis

Today, deep learning methods are successfully applied to many different problems,
starting from image labelling to natural language modelling and text generation. In the
majority of cases, they outperform classical machine learning methods in terms of per-
formance. Long Short-Time Memory (LSTM) recurrent neural networks enable analysis
of long sequences with complex temporal dependences. We used LSTM in this study, hy-
pothesizing that any hidden elements of an activity depend on currently known elements,
as well as on the temporal context.

Long Short Term Memory networks were first introduced by Hochreiter and Schmid-
huber in 1997 [Hochreiter 1997] and have undergone multiple modifications ever since. A
complete recurrent neural network (RNN), as shown in Figure 4.1, starts with an input layer
of neurons that take input values, which is then connected to a series of recurrent layers.
A simple network may contain only one recurrent layer. The last recurrent layer, in turn,
is connected to a dense or otherwise called fully connected layer, which outputs the final
values.
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Figure 4.1: Recurrent neural network

Each recurrent layer has the form of a chain of repeating modules, one module per time
step (i.e., item in a sequence). The unrolled recurrent layer is depicted in Figure 4.2. The
RNN is actually called deep because of its depth in time.
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Figure 4.2: Unrolled recurrent layer. The letters x and h correspond to the input and output
of a time step

The recurrent module of the LSTM network has the following structure and functioning
(see Figure 4.3). A cell state Ct, represented by a horizontal line running through the top,
is the core part of the module, and contains information about the sequence in form of a
vector of real values. The module uses mechanisms called gates to control the content of
the cell state and the output. They are composed of a sigmoid function and a point-wise
multiplicator. The sigmoid function outputting numbers between zero and one defines
the amount of information to pass through the gate (0 - none, 1 - all).
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Figure 4.3: Recurrent module of an LSTM model

To process the data at the current time step t, its input xt is first concatenated with the
output of the t−1 module ht−1. Then, the first forget gate decides what information has to
be erased (i.e., forgotten) from the cell state.

ft = σ(Wf · [ht−1,xt]+bf) (4.1)
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The second sigmoid input gate defines the information to add and store in the cell state,
and the tanh function prepares the actual input values by putting them in the range [-1;1].

it = σ(Wi · [ht−1,xt]+bi) (4.2)

C̃t = tanh(WC · [ht−1,xt]+bC) (4.3)

A pointwise product of the outputs of these two functions is than added to the cell state.

Ct = ft ◦ C̃t−1+ it ◦ C̃t (4.4)

The third output gate decides what part of the information contained in the cell state has
to be outputted at this time step. As with the previous gate, the actual values from the cell
state pass through the tanh function, and they are then multiplied by the output of the last
sigmoid function.

ot = σ(Wo · [ht−1,xt]+bo) (4.5)

ht = ot ◦ tanh(Ct) (4.6)

The obtained output vector ht is also passed to the module t+ 1 along with the modified
cell state Ct. As in classical neural networks, W and b correspond to weight matrices and
biases learnt by training which are called internal learnable parameters. Back propagation
trough time is used for that [Werbos 1990].

The LSTM network has several important hyperparameters that have to be set: number
of recurrent layers, number of hidden neurons, loss function, number of training epochs,
batch size, learning rate, optimizer and dropout rate. The number of recurrent layers is
usually selected according to the learning task and data representation. Every subsequent
recurrent layer summarises shorter temporal dependences extracted by the previous layer
to analyse longer dependences. For example, in our data, shorter dependences would be
the connections between the elements within one activity, and longer the connections be-
tween the activities in the sequence. The number of hidden neurons represents the size of
the LSTM module’s cell and defines the quantity of stocked information. The loss function
calculates the difference between the actual network output and its expected output. Its
gradient is computed during back propagation to gradually correct the network’s error. A
training epoch is one forward and one backward pass through all training samples dur-
ing which the internal parameters of the network are updated. The batch size defines the
number of training samples that are going to be propagated through the network in one
forward/backward pass. The learning rate defines the portion of the adjustment applied
to the old neurons’ parameters. The optimizer is the algorithm that defines how the inter-
nal parameters are updated (e.g., using first order or second order derivatives to minimize
the loss function). The dropout is a regularization technique for reducing overfitting. Its
rate determines the portion of neurons that are “disactivated” during back propagation.
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While many LSTM models exist (e.g., GRU [Cho 2014]), all produce similar state-
of-the-art results [Jozefowicz 2015, Greff 2017]. In this study, a variant of classic LSTM
[Graves 2012] including three gates (i.e., input, forget, output), an output activation func-
tion, no peephole connections, dropouts and a full gradient training was used. We also
tested different sets of aforementioned LSTM hyperparameters. All of the tested networks
generated similar results with less than 5% difference. In order to recreate the same analy-
sis conditions for all activity elements, the same LSTM model (that which provided the best
results on preliminary tests) was used for all configurations and experiments, described as
follows. The model had two stacked recurrent layers with dropouts of 0.2, each contain-
ing 256 hidden neurons. It was trained during 50 epochs with a learning rate of 0.001 by
128-size batches. Categorical cross entropy was used as the loss propagation function, to-
gether with Adam optimizer. The input data was transformed to a two dimensional matrix
of size NxM, where N (see Section 4.2) subsequent activities within the temporal context
corresponded to rows, and a one-hot vector of size M uniquely identifying each activity
(i.e., an array where all values are set to “0” except one that set to “1”, which defines the
activity by its index in the vocabulary of all possible activities) to columns. The number M
correponds to the number of unique activity tuples in a dataset. The neurons of the last
dense layer output a probability distribution vector of size M.

4.4 Study design

In order to confirm our hypothesis and determine the essential sensors and signals
that are necessary for activity recognition, we conducted a series of several experiments
assessing the impact of each element and their combinations on recognition performance,
as described below. The analysis was done on the seven datasets from Chapter 3 which
were examined separately but using the same protocol. Three configuration types were
considered: one-element configurations (V - only the verb information was available, I -
only the instrument, and S - only the structure), two-element configurations (VI - both
the verb and the instrument were known, VS - the verb and the structure, and IS - the
instrument and the structure), and three-element configuration that played a role of a base
line (VIS - all the elements were known).

All the experiments assumed the presence of element information used as input at
each moment of surgery. This information was assumed to originate from underlying dis-
tinct processing and recognition algorithms, each taking care of its own element. The
performances were compared based on an accuracy score. An activity was considered
well recognized when all tuple items were correctly discovered. Given the relatively small
amount of data we had available for deep learning, we performed a full-cross validation
for each dataset in a leave-one-intervention-out manner. Moreover, since LSTM uses non-
deterministic algorithms for training, we performed three runs for each fold, calculating
an average recognition score for three models. The following values of N were tested in
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each experiment: 5, 10, 20, 30, 40, 50, 75, 100. In several experiments, statistical tests were
performed to estimate the significance of the results. All the tests were performed com-
paring average recognition accuracies of each intervention in a dataset provided by two
different configurations. The order of interventions for both compared configurations was
the same.

4.4.1 Experiment1: One-element configuration

The first experiment was designed to compare the activity recognition performances
achieved with using each individual element as the only input. We also examined one-to-
one relationships between the elements to assess how well one element can be recognized
when another another is known. This experiment focused on the sequential aspect only,
omitting timestamps and duration of activities. The model thus had only to predict the
correct activity tuples in the correct order, without indicating moments of transition. Each
recognized activity is supposed to start when all three elements appear in the operating
scene (in theory, they have to be recognized at the same time), and end when they disap-
pear, which then implicitly provides the activity duration.

4.4.2 Experiment 2: Two-element configuration

The second experiment compared combinations of elements, meaning that a pair of
known elements was used to infer a complete activity. The same “no-time” condition was
used, requiring a sequence of activities as output only.

4.4.3 Experiment 3: Left hand vs. right hand

As it was said earlier in Section 3.2.2, recognition of activities executed by both sur-
geon’s hands is highly relevant to the situation understanding. In this study, any config-
uration was assumed to contain information about both hands at once. The present ex-
periment, however, was designed to assess the individual contribution of each hand to the
recognition performance. Thus, during the tests, the information of the left hand and the
right hand was alternately masked for all three configuration types. A complete both-hand
activity had to be discovered as output. Only the order of activities was considered.

4.4.4 Experiment 4: Activity duration

Contrary to three previous experiments where the workflow was considered as a se-
quence of activities only, in this experiment we added the duration of the activity (in sec-
onds) at the end of its input tuple. We then analysed how knowledge of activity duration
impacts inference process. However, the model was still required to predict a 6-tuple only,
and no timing was taken into account when computing final accuracy. The constraint of
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providing duration for input restricts the recognition process, as you have to wait for the
on-going activity to finish. This could negatively reflect on on-line applications, yet it is
still well adapted to cases where no immediate reaction is needed during the activity, or
when only the order of activities is relevant.

4.4.5 Experiment 5: Noise in input data

The previous experiments were conducted with the assumption that all the input infor-
mation was correct. In reality, raw signals coming from sensors may have a certain amount
of noise, or some elements may be mislabelled by corresponding recognition algorithms.
In this experiment, some element instances in activity tuples were randomly corrupted in
order to simulate noise and create more realistic conditions for the analysis. For example,
in one input tuple, the value of the right verb “cut” could be replaced by another exist-
ing verb “coagulate”, the left instrument “needle-holders” by “classic forceps” or the right
structure “ligament” by “fascia”. In the simulation, the elements, as well as their left and
right counterparts, were independently corrupted, meaning that noise occurred at differ-
ent moments in time for all six items of the tuple. Four types noise were simulated:

— Uniform distribution noise.Using this kind of noise, a corrupted element instance is
replaced by another instance of the same element group chosen randomly from a
uniform distribution.

— Frequency distribution noise. Often, recognition algorithms tend to assign the labels
of the most prevalent classes to incorrectly recognized samples. In our case, if an
underlying recognition algorithm was trained over the entire procedure, the most
commonly represented element instances (in terms of number of samples) would be
those that appear in the operational scene for longer than the others. To simulate the
behaviour of this type of noise, each instance has a chance to be randomly selected
proportional to the frequency of its appearance in the dataset computed by duration.

— Pairwise noise. Another potential occurrence is when the samples of two major
classes are mutually mislabelled (i.e., their labels are switched), this is known as pair-
wise noise.

— No signal. Sometimes recognition algorithms fail to identify a performed action or an
object present in the scene, providing no label at all. In this experiment, a temporal
absence of the sensor signal or the algorithm’s disability to recognize an element is
simulated by simply replacing the corrupted instance with the word “none”.

Configurations of all three types were compared in this experiment. For the first two
configurations (one and two known elements), the LSTM models from experiments #1 and
#2 trained on noise-free data were tested on corrupted data. For the third configuration
where all three elements were available with no need of an LSTM model, the activity was
simply defined as their composition.
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For all configurations, the noise was simulated at different rates: 5, 10, 15, 20, 25, 50
and 75% of the corrupted data in the procedure. For instance, for an algorithm recognizing
instruments that provides a correct label 95% of time, 5% of all instrument instances in the
intervention will have a wrong label. The same is applicable to other elements. Given that
a correct activity is one where all tuple items are correctly recognized, with 5% noise for
each element, a total amount of corrupted activity tuples may vary from 5 to 10% for one-
element configurations, to 20% for two-element configurations and up to 30% for the base
line. In the best case scenario, all items in all corrupted tuples have wrong labels, and in the
worst case, no more than one item is wrongly labelled in each corrupted tuple. Giving this
great variation, noise at each rate was simulated five times, and an average was calculated.
No time aspect was involved in the analysis.

4.4.6 Experiment 6: Temporal delay

For the previous experiments, we mostly worked with only the sequencing aspect (with
the exception of experiment #4). No time was taken into account when computing accu-
racy, which was strictly based on the order and correctness of activities, not on their dura-
tions. The elements were supposed to be recognized at the same time as they appeared in
the scene. However, the underlying recognition algorithm may experience a certain delay
before providing a label. In this experiment, we simulated such a temporal delay.

As in the fourth experiment, we first added the duration of each activity to its tuple,
and then simulated delay for all available elements. The delay caused a change in activ-
ity duration, and, in some occasions, a shift in activities order by creating new tuples and
deleting or altering existing ones. The last one changes the workflow of the intervention
in terms of sequencing and number of activities. The goal of the LSTM model was to dis-
cover a sequence of activity tuples without giving their correct durations. However, they
were accounted for when calculating final accuracy, which was computed as the sum of
durations of all correctly discovered tuples divided by the total duration of all activities in
the intervention. Delays of 1, 5, 10, 15, 20, 25 and 30 seconds were simulated. As in the
previous experiment, we did not retrain the LSTM models on delayed data, and VIS base
line was defined as combination of ground truth activity elements with no LSTM model.

4.4.7 Experiment 7: Phase recognition

Until now, the whole study was devoted to the recognition of low-level semantic activi-
ties only. One can also wonder how the choice of sensors may influence the phase recogni-
tion. In this last experiment, the surgical phase was recognized from the activity elements.
All three configurations were tested as input. The same LSTM models as for experiments
#1 and #2 were used, but the output labels contained the names of phases only. The accu-
racy was computed as the number of correctly recognized phase labels to the total number
of labels.
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4.5 Results

4.5.1 Experiment 1: One-element configuration

The accuracy of the activity recognition using each individual element is indicated in
the upper part of Table 4.1. The experiment demonstrated that one element is not enough
to confidently recognize activity. The instrument provided the best results for four out of
seven datasets, yet no element is exclusively preferable for all procedures. The instrument
and verb are tightly connected (Figure 4.4) and have a statistically significant (p-value �
0.05) correlation, according to Spearman’s Rho two-tailed test. While both elements pro-
vide a lot of information about each other, they contribute little regarding the structure,
and vice versa. Cataract surgery, however, happens to be an exception, it is a short, highly
standardized procedure with minimum of deviations and a small number of unique activi-
ties. Here, one element almost explicitly defined others, which explains exceptionally high
scores.

During the experiment, different values of number N, defining the size of the temporal
context, were tested. We observed that as the temporal context increased, the recognition
scores tended to grow quickly until reaching a plateau. With a further augmentation of
the number N, the recognition performances began to decrease. This behaviour is due
to the working mechanism of LSTM. In order to obtain a clear picture of the relationship
between the elements and activities, the network needs to consider the larger portion of
the context. However, in order to clarify these connections, a larger set of training examples
is necessary. Its size should increase in correlation with problem’s complexity. Without
sufficient amount of examples, the learning process becomes much less effective. That is
why, calculating the optimal size of the temporal context depends on many aspects and
differs for each presented dataset. The best results presented here correspond to N = 50

for ACDF procedures, N= 20 for LDH and PA, and N= 5 for CS.

Table 4.1: Average activity recognition accuracy (in %) achieved in experiments 1 and 2.
Values in bold indicate the element(s) giving the best score for each dataset

ACDF.L ACDF.R LDH.L LDH.R PA.L PA.R CS

V 49.72 66.29 52.64 62.32 48.63 68.23 92.79
I 59.08 79.06 59.69 74.89 58.17 80.25 90.40
S 54.50 63.27 64.91 68.29 60.52 60.08 90.18

VI 64.56 81.73 63.47 75.62 60.23 82.79 96.96
VS 84.99 83.33 91.12 90.11 85.16 87.73 97.06
IS 94.18 96.54 97.30 97.40 97.10 96.81 99.82
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Figure 4.4: Average recognition accuracy (in %) for one element knowing another

Figure 4.5: Activity recognition accuracy scores (in %) for element combinations. Cen-
ter lines of the box plot show the medians, limits indicate the 25th and 75th percentiles,
whiskers extend to minimum and maximum values. For each dataset, VI is on the left, VS
in the middle, and IS on the right
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4.5.2 Experiment 2: Two-element configuration

The recognition accuracy provided by combinations of activity elements can be found
in the lower part of Table 4.1. As expected, the VI combination, providing redundant in-
formation with less clues about the structure, generated low performance results, proven
insufficient for correct stable recognition. A VS combination produced relatively good re-
sults of approximately 85%, that would probably be acceptable for some purposes. For all
procedures and sites, the IS combination was satisfactory to confidently recognize activ-
ities, producing a score of approximately 95% and higher. As in the previous experiment,
these results were obtained withN= 50 for ACDF procedures, N= 20 for LDH and PA, and
N = 5 for CS. We also performed a Wilcoxon signed-rank statistical test. For all datasets,
the scores given by these three combinations significantly differed, with a medium to large
effect size (p-value � 0.01 for a two-tailed test, except p-value � 0.05 for VI versus VS from
PA.R and CS, and VI versus IS from CS; no significant difference between VI and VS from
ACDF.R). A noticeable difference in scores can be also observed in Figure 4.5. This demon-
strates that only two types of sensors are necessary for low-level activity recognition. In
addition, the anatomical structure, present in two leading combinations, is an essential
piece of information.

4.5.3 Experiment 3: Left hand vs. right hand

The results of this experiment can be found in Table 4.2. The R-VIS configuration,
provided the highest accuracy of approximately 66%, was still insufficient for an accurate
recognition. The R-IS configuration generated results comparable to R-VIS. The experi-
ment revealed a 15-20% gap in performance between the left and right-hand elements.
These results from Table 4.2 were generated using with N = 20 for ACDF and LDH pro-
cedures, N = 10 for PA, and N = 5 for CS. It was noticed as well that the L-VIS config-
uration helped to discover the right anatomical structure the best, and the R-VIS the left
verb. The experiment showed that neither the left nor the right hand solely can accurately
indicate the overall activity, even if all three elements of the same hand are known. This
demonstrates the joint importance of hands in the recognition process, and suggests that
the sensors have to capture information about both surgeon’s hands.

Table 4.2: Activity recognition accuracy (in %) achieved by one-hand (left L and right R)
configurations and averaged for all datasets

V I S VI VS IS VIS

L 32.6±22.2 34.7±20.9 31.2±17.5 37.8±14.3 42.5±13.1 43.6±12.3 48.4±9.0
R 41.5±12.4 48.6±8.9 46.5±9.1 55.7±7.4 60.2±6.1 64.7±5.7 65.96±5.3
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4.5.4 Experiment 4: Activity duration

The experiment examining the importance of activity duration showed that using it as
additional input information only slightly improved results of activity recognition, having
bigger effect on configurations with one known element than those with two. In average
for all datasets, V configuration had a gain in accuracy of 3.7%, I - 4.3%, S - 4.1%, VI -
2.8%, VS - 1.3% and IS - 1.5%. Nevertheless, it allowed the IS combination to achieve a
recognition accuracy close to 98-99%, which corresponds to our hypothesis. These results
were obtained using the same N values as in the first and second experiments.

4.5.5 Experiment 5: Noise in input data

The results of the activity recognition from noisy data can be viewed in Figure 4.6 on
the example of frequency distribution noise. We chose to present the results for the exam-
ple of frequency distribution noise as this is the most common type of noise related to data
recognition and classification. As expected, all the configurations had reduced ability to
predict on-going activity when subjected to noise. Generally, those which previously pro-
viding higher recognition scores (i.e., having more useful information in them) were the
most significantly affected (see Figure 4.7). While a ranking of one-element configurations
was slightly altered for some datasets, the two-element combinations kept their order: IS
was still the most informative combination, followed by VS then finally VI. The highest ac-
tivity recognition accuracy for IS combination ranged from 79% to 84.4% with 5% noise,
and decreased to an average of 6.6% with 75% noise. However, using an LSTM model en-
coding procedure history enables the effect of noise to be attenuated as well as “correcting”
input tuples, especially for smaller amounts of noise.

It is interesting to see that the base line VIS combination always concedes to IS, and
that it yields to all two-element combinations event with relatively small amounts of noise
(starting from 10-15% noise). It quickly decreases reaching almost zero accuracy at 75%
noise, and exhibits the most significant accuracy loss (see Figure 4.7), assuming that a per-
fect VIS combination would attain 100% recognition. VIS represents a naive approach of
simply putting three elements together with no temporal model, and is thus unable to cor-
rect itself. Unlike other configurations, in the presence of noise it is automatically incor-
rectly recognized. The rapid drop in its performance quality can also be explained by the
fact that an additional element in an activity tuple leads to a higher risk of its corruption,
especially with greater noise. Thus, having less information is better than having lots with
noise.

Continuing in our analysis of different types of noise, we found that at lower levels (up
to 20%), the results for all noise types were similar with just a minor difference in accuracy
(see Figure 4.8). This difference grows noticeable at higher noise rates, resulting in steeper
or flatter curves. However, no statistically significant correlation between configurations
and noise types suitable for all datasets was found at higher noise levels. The curve of the



Figure 4.6: Impact of frequency distribution noise on activity recognition accuracy
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Figure 4.7: Relations between amount of frequency distribution noise and loss in accuracy

Figure 4.8: Influence of different types of noise on the activity recognition performance.
Present diagrams correspond to LDH.L dataset. The uniform distribution noise is on the
figures (a) and (e), frequency distribution on (b) and (f), pairwise noise on (c) and (g), no-
signal noise on (d) and (h). The top shows the results for one-element configurations, while
the bottom for two and three-element configurations
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VIS base line is nearly the same for all noise types and datasets. In the case of VIS config-
uration, the quality of activity recognition on noisy data depends neither on the semantic
content of the surgery nor on the type of noise, but rather only on the randomness of cor-
ruption. This is evident as an altered tuple item is wrong anyway, no matter its initial or
received value.

Previous experiments have demonstrated that within certain limits, a wider temporal
window is better for perfectly correct data. This experiment, however, showed that for
noisy data, a small N value generates better results, as as chances to make a prediction
based on false data are higher with a larger temporal context. In the exception of one-
element configurations of ACDF.L and LDH.L datasets containing uniform noise, N = 5

was the best option for all other cases. Nevertheless, most of the time, the difference in
accuracy scores given by N equaled 5, 10 and 20 was not statistically significant. The per-
formance, however, significantly degraded starting from N= 30.

4.5.6 Experiment 6: Temporal delay

The results of the activity recognition from data with temporal delay can be viewed
in Figure 4.9. As in the previous experiment, we found here that a delay caused all the
configurations to progressively lose their recognition ability. Nevertheless, as before, the
relationship between configurations remained the same with the IS combination achieving
the best results. This combination keeps very high scores for a 1s delay, ranging from 91%
to 97.9%, with an average of 94.1%. Even if some divergence is observable between IS and
VIS curves for several datasets, as seen in Figure 4.9, the average IS and VIS curves are very
similar with less than 1% difference at each delay point, with the exception of the 30s point
where the IS configuration surpasses VIS by 1.8%.

As was the case with noise, the performance of VIS configuration is progressively im-
paired as the delay increases, as there is no temporal context of the procedure and no op-
portunity to correct tuple values. Two-element combinations, on the other hand, we found
still able to discover on-going activity due to the history of the procedure represented by
the LSTM. They nevertheless suffer from altered activity sequencing, making it difficult
for LSTM to follow. We can observe that the biggest deficiencies for two-element combi-
nations occurred in intervals from 1 to 10 seconds (a loss of approximately 15-20% each
time). This can be explained by the fact that during these intervals, the most significant
changes in workflows are made (i.e., creation and deletion of activities).

Similar to the experiment #5 with noise, smaller values of N were also preferable for
recognition from data containing some temporal delay. The best performances exposed
here were obtained with N= 30 for ACDF.L, N= 20 for ACDF.R and LDH procedures, N=
10 for PA and N= 5 for CS. Even so, their were mostly no statistically significant difference
between N values from 5 to 30.



Figure 4.9: Impact of temporal delay on activity recognition accuracy
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4.5.7 Experiment 7: Phase recognition

All the configurations provided similar results on average varying from 87.9% (the
V configuration) to 92.3% (the VIS configuration) for all the datasets. According to the
Wilcoxon signed-rank two-tailed test, there were no statistically important difference be-
tween the I, IS and VIS configurations at a p-value threshold of 0.01. This suggests that only
one element (probably the instrument) should be used for phase recognition. Although,
other signals (e.g., raw video) may be necessary to make a more accurate recognition.

In this experiment, a large temporal context was important for one-element configu-
rations. Their best results were obtained using N = 100 for ACDF.L, N = 70 for ACDF.R,
LDH.L and PA.L, N = 50 for LDH.R and PA.R, and N = 10 for CS. For neurosurgical
datasets, there was no statistically significant difference between aforementioned values.
They however provided significant improvement compared to values smaller than 50. For
two-element configurations, the best results were obtained with N = 50 for ACDF, LDH
and PA procedures, and N= 5 for CS.

4.6 Discussion

4.6.1 Experiments

This study proved our hypothesis that for accurate recognition of low-level surgical ac-
tivity, not all of the activity elements need sensors to track. Though that sort of analysis
should also be conducted for other surgical domains, the best choice for neurosurgery is
the use of a combination of sensors recognizing the instrument and the anatomical struc-
ture. In the case of standardized simple procedures, such as cataract operations where one
element is necessarily tightly bounded to two others, searching for the most informative
elements is not worthwhile. However, two sensors are sufficient for activity recognition
for these procedures as well. The experiments with noise and temporal delay also demon-
strated the advantage of the instrument-structure combination over other configurations,
including those uniting all three elements, suggesting that the VIS combination can be
safely replaced by IS with no significant impairment.

In order to verify the aforementioned conclusions, further analysis in certain directions
must still be undertaken. First of all, during our fifth experiment, for the sake of simplic-
ity we assumed that all the elements had the same amount of noise in them, which is, of
course, not necessarily the case in real-life procedures. The amount and type of noise in
each element depends on the underlying algorithm for its recognition. The best way to get
realistic estimations of scores is to use confusion matrices from these algorithms to sim-
ulate noise in data. We also proceed under the assumption that the perturbation in data
was uniform in time, making each time-point equally available for corruption. This as-
pect should be explored more carefully, as it may not be valid in real surgeries. The same
applies to the delay. It may also vary from one element to another in real-life situations,
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as well as between different element instances. The combinations of different noises and
delays must also be evaluated.

Secondly, in the last two experiments, the conditions under which the studied one-
element and two-element configurations were compared to the VIS base line differed. An
LSTM model was used for one and two-element configurations but not for VIS. Knowing
that noise and delay were introduced in the test data only (i.e. the training data was per-
fectly correct), it would be impossible to use a deep neural network of this type for learning
the mapping from correct complete activities to themselves in case of VIS configuration,
because such learning would result in simple copying of the input activity without under-
standing temporal relationships between the elements. Suchwise, in these experiments,
only the configurations with one and two known elements benefited from the temporal
context of the procedure and correction of input tuples enabled by the use of an LSTM
model.

4.6.2 Model

We demonstrated that in terms of recognition scores, the IS combination is capable of
providing very accurate results. Nevertheless, a considerable drop in performance was ob-
served in the presence of noise and delay (about 80% accuracy on average at 5% noise vs.
97% with no noise). This work sought to generate neither a high recognition performance
nor a suggestion of an original efficient LSTM architecture. Nevertheless, in order to truly
prove that two types of sensor are enough for surgical activity recognition, the overall per-
formance should be enhanced. First, our main focus was on discovering relationships be-
tween activity elements using simple LTSM models. There are always subtle connections
between the elements that influence the recognition process, however, regardless of which
method is used. Thus, the conclusions drawn from the analysis would not considerably
change using any other method or LSTM model. However, it should still be possible to
find other more suitable deep models that could provide greater accuracy and maintain a
strong performance even in the presence of noise. In our experiments, the chosen LSTM
model was trained on no-noise data only. One can therefore imagine that retraining the
network on simulated noisy data or using some preprocessing methods, as well as noise
reduction techniques, could be beneficial. Secondly, the problem with delay can also be
avoided. The procedural workflows used in our study were annotated manually in real
time. Most of the very short activities are due to an annotator’s late reaction or a surgeon’s
complex hand coordination. For most applications, such an extremely detailed annotation
is unnecessary. Eliminating these very brief activities, causing a major change in activity
sequencing in the experiment with delay, will make the recognition scores increase again.
A larger amount of available data would also provide better results and make the network
more robust. In addition, it should be noticed that not all clinical applications require ab-
solute recognition accuracy. Certain errors or delay cause no harm and can be tolerated,
consequently reducing the gap between developing activity recognition techniques and
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their actual realization and use in operating theaters. Application-dependent metrics sim-
ilar to [Dergachyova 2016] may be used to re-estimate this gap. Finally, one thing remains
clear: placing more sensors in the operating theater is not a solution. The way forward
is enhancing underlying algorithms recognizing verbs, instruments and anatomical struc-
tures.

4.6.3 Surgical practice

In addition to confirming our hypothesis about sensors, this study led to some inter-
esting observations about surgical practices. During the experiments, we noticed that the
elements of the right hand of the surgeon were obviously contributing more to the correct
identification of the activity. However, despite the correlation between the surgeon’s hand
movements, neither the information about the right nor that of the left hand alone was
enough to attain acceptable recognition results. This demonstrates how important both
hands are in activity execution. The first two experiments also revealed a difference be-
tween practices in the Leipzig and Rennes hospitals. Using one-element configurations to
discover the activity, the results for the procedures performed in Rennes were always sig-
nificantly better than for those performed in Leipzig. At the same time, the instrument was
clearly a better choice over other individual elements for Rennes, yet the same was not true
for Leipzig. Moreover, in all of the procedures conducted in Rennes, we found there was
a stronger bound between the instrument and structure, as well as between the verb and
structure. Our resulting hypothesis is that, unlike in Rennes, the surgical instruments in
Leipzig are more often used for new functions rather than their initially-intended applica-
tion. This indicates that the procedures performed in Rennes are more standardized and
have less variability in surgical workflow. Such observations are important for the analysis
and understanding of surgical processes.

4.7 Conclusion

In this work we analysed the relationships between the essential elements of low-level
surgical activity and their impact on recognition process. By performing a semantic anal-
ysis using deep learning, we demonstrated that two out of three elements are enough to
confidently recognize an activity. The operated anatomical structure is a crucial element.
The combined structure-instrument pair enables very confident activity recognition, fol-
lowed by a structure-verb combination that provides slightly worse yet still acceptable re-
sults. This knowledge should facilitate the choice of right sensors to install in the operating
room of the future for situation awareness. We also made some interesting observations
about surgical practices that improve understanding of the surgical process.
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Main findings

— Having sensors for two activity elements instead of three is enough

— A sensor for recognizing the anatomical structure is essential

— The instrument and the verb contain similar information
⇒ Only one needs to be recognized

— The combination of the structure and instrument is the most informative

— Recognizing the actions of both surgeon’s hands is necessary

— For phase recognition, knowing one activity element is as good as know-
ing two or three ⇒ Only one needs to be recognized (preferably the in-
strument)

— The anatomical structure relates more to the instrument and verb in
Rennes than in Leipzig

— Hypothesis 1: The surgeries in Rennes are more standardized than in
Leipzig

— Hypothesis 2: In Leipzig the instruments are more frequently used for new
not initially-intended functions



CHAPTER

5
Knowledge transfer for prediction of

surgical activities

Preamble

In this chapter, we describe our work on knowledge transfer that helps to improve
performance of deep architectures and compensate for data deficit. We first explain
the importance of knowledge transfer and related problems. Then, we introduce the
first transfer method - word embedding, and next the second one - transfer learning.
We also present advanced studies conducted to find what works the best for these two
methods and to demonstrate their efficiency. Finally, we discuss both methods and
conclude with interesting observations about the transfer and surgical practices in
general.
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5.1 Introduction

Comprehensive and correct training data always played an important role in machine
learning. Now, in a new era of deep learning, the quantity of data becomes a major factor
along with its quality. The sizes of massive datasets used as training basis for deep learn-
ing approaches, such as famous ImageNet, Microsoft COCO, recently released Google’s
Open Images and YouTube-8M, speak for themselves (Table 5.1). They contain millions
of samples representing thousands of categories. A data-greedy tendency can also be
observed thorough text-based corpora broadly used for natural language processing, such
as Amazon reviews, Stanford’s SNAP Social Circles: Twitter Database [Leskovec 2014] and
DBpedia dataset [Auer 2007] raised from Wikipedia. They propose millions and billions
of words to learn from. These datasets constantly continue to grow and new ones keep
appearing regularly. The success of deep models is recognized to be a product of their
ability to learn multi-level hierarchical representations, which simulates the processing
pipeline of the human brain. But their real power comes from extensive amounts of data
provided for training.
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Table 5.1: Massive datasets for deep learning

Dataset Reference Content

Im
ag

es

ImageNet [Deng 2009] 14M images, 22K classes
Microsoft COCO [Lin 2014] 300K images, 2M x 80 objects
Google’s Open Images [Krasin 2017] 9M images, >6K classes
YouTube-8M [Abu-El-Haija 2016] 7M videos, 4.7K classes

Te
xt

Amazon reviews [McAuley 2013] 35M reviews, 3B words
SNAP Social Circles [Leskovec 2014] >1.7M tweets
DBpedia dataset [Auer 2007] 3.4M concepts

Unfortunately, sometimes, it happens that a learning task has to be performed on a
domain of interest represented by a small set of data. In these cases, knowledge transfer
may come into play. In a large sense, knowledge transfer involves methods that use re-
sources from other domains of interest, where the data may have different distribution
and be in a different feature space, to improve learning of a targeted task. As Pan et Yang
say in their survey [Pan 2010], "The study of transfer learning is motivated by the fact that
people can intelligently apply knowledge learned previously to solve new problems faster
or with better solutions". With deep models, the learnt knowledge of one network can eas-
ily be transferred to another. Transfer learning, a technique of knowledge transfer, is now
widely used together with Convolutional Neural Networks (CNN) for tasks related to visual
content (e.g., image/video recognition, captioning, segmentation and detection) benefit-
ing from freely available massive datasets [Oquab 2014, Karpathy 2014]. It is also broadly
applied to tasks of sequence analysis as speech and language processing [Huang 2013],
document classification [Dai 2007] and sentiment analysis [Glorot 2011].

Surgical domain also starts opening the doors to deep learning methods yet the amount
of available data is still a hot discussion topic. Multiple constrains stand in the way of
a proper data acquisition: ethical approvals, patient’s and medical staff’s consents, lim-
ited amount of cases, expensive installation of data acquisition equipment and time-
consuming manual annotations requiring medical experience. As with other domains of
interest, knowledge transfer is an option. For example, Shin et al. [Shin 2016] used trans-
fer learning within CNN for computer-aided detection of thoraco-abdominal lymph nodes
and classification of lung diseases. Twinanda et al. [Twinanda 2017] used transferring ap-
proach to classify images of laparoscopic surgery into surgical phases.

The problem of data deficiency for surgical activity recognition was emphasized in
Chapter 2 by pointing out the small amount of interventions per study. We propose to
use knowledge transfer to solve this problem. A transfer of surgical process knowledge,
however, has not been done before. It has several difficulties compared to classic visual
or text-based transfer. First of all, the transfer of knowledge from other non-related do-
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mains is complicated by a particular data representation. Meanwhile, for tasks related to
visual content, any image from another domain can easily be brought to a needed for-
mat (size, color channels, etc.) with very small information loss. The text for any natural
language related task can be represented as a sequence of individual words. Secondly, a
domain with a similar underlying logic has be found to make the transfer work. Despite
the differences in contexts, scenes, objects and viewpoints, CNN capture information of
any image in a hierarchical manner from basic visual features to shapes, objects, their
collections and scenes. The hidden layers farther away from the output encode funda-
mental visual information and low-level characteristics shared with other visual domains
[LeCun 1999, Yosinski 2014]. Text-related domains share semantic, syntactic and gram-
matical features. Surgical processes can also share some knowledge with other complex
processes. Yet, the absence of comprehensive processual datasets limits transfer options.

In the previous chapter, we used deep learning to find relevant sensors facilitating sur-
gical activity recognition. In this chapter, complementing the previous one, we use deep
learning and knowledge transfer to bypass the lack of activity workflow data and improve
the recognition performance. For this purpose, the task of next surgical activity predic-
tion for neurosurgical procedures from Chapter 3 was chosen. This chapter introduces
two methods of knowledge transfer. The first method of word embedding serves to extract
semantic knowledge about surgical terms from medical texts. The second represents trans-
fer learning that enables capturing important information about the surgical process and
transferring it from one surgery to another. Thus, the presented work consists of two parts
separately described in Sections 5.3 and 5.4. These two parts are, however, connected since
the second method is based on the first one and integrates word embedding results. For
both methods we conducted studies on different sources and types of transfer described in
corresponding sections. The results of these studies also include interesting observations
concerning surgical practices. Finally, we conclude the chapter with a discussion and find-
ings that can also serve as a guidance for dataset enlargement for multiple recognition and
analysis tasks involving surgical workflow.

5.2 Predicting next surgical activity

The learning task of predicting next surgical activity can be formalized as follows. Let
P = {α,S} be the domain describing a surgical process consisting of two components.
The first component is a set of m possible surgical activities α = {A1,A2, ...,Am}, where,
according to the definition given in Section 3.2.2, each activity Ai is represented by a 6-
tuple < L(V,I,S),R(V,I,S) > containing a verb, instrument and structure for both left and
right surgeon’s hands. The second component of the surgical process is a set S contain-
ing recorded surgical interventions represented as an ordered sequence of activity tuples
Seq= (a1,a2, ...,al) ∈ S, where ai ∈ α, and the sequence length l is different for each in-
tervention. Let Seq∗

t = (at−n+1,at−n, ...,at) be a partial sequence defining the workflow of
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an on-going intervention within a temporal context of size n < l during the current activity
t < l. The learning task τ = {α, f(·)} consists in learning from training data an objective
predictive function f(Seq∗

t) = P(at+1 =Aj|Seq
∗
t) which predicts the next surgical activity

for a sequence of already known performed activities.

5.3 Word embedding

The goal of the first part of the work was to extract and encode the knowledge about
the surgical domain and the meaning of surgical terms from medical literature, as well as
to create a common basis for data representations enabling further transfer learning. Ac-
cording to our hypothesis, different surgeries share certain procedural knowledge that can
be transferred from one to another in order to enlarge training database. Nevertheless, ev-
ery surgery also expresses general surgical knowledge characterized by specific concepts
and relations. The surgical process is described by a vocabulary. The words of this vo-
cabulary serve to define activities but they in fact contain semantic knowledge about the
surgical domain. In a classic deep model (i.e., method used in the last chapter), the activity
elements get transformed into unique keys representing their position in the vocabulary.
This enables unique identification of activities but makes elements lose their semantics.
Moreover, every surgery has its own activity vocabulary with a particular size. The vocabu-
lary size in turn determines the number and dimensions of the network’s internal param-
eters. This size constraint hinders further transfer of knowledge from one surgery to an-
other. In this chapter, we propose to treat each activity description as a sequence of words
for which we find appropriate unified semantic representations. These representations are
made using word embedding technique explained in this section. The word embeddings
help to reintegrate the semantic knowledge about the surgical domain and to bring activity
descriptions of any surgery to a common size.

5.3.1 Main concept

Word embeddings are a family of methods originating from natural language process-
ing (NLP) domain that seek to map semantic meaning of words into a geometric space.
This is done by associating a vector of real numbers to every word in the dictionary so that
the distance between the vectors forming a so-called embedding space captures seman-
tic relationships between the corresponding words. The vector values are found based
on the words’ co-occurrence information, meaning the frequency of their mutual appear-
ance in a large text corpus. For instance, a famous example of “king” - “man” + “woman”
= “queen” explains that simple arithmetic operations on the embedding vectors of “king”,
“man” and “woman” can (approximately) give a word embedding for “queen”, if correctly
defined. Word embeddings are also capable of incorporating syntactic information (e.g.,
“cat” to “cats” relates as “dog” to “dogs”, or “clear” to “clearer” as “strong” to “stronger”). The
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size of the vector is an important parameter that defines how the relationships between the
words are presented and how much of information is stocked in the vector. Generally, the
size of the embedding vector grows with the size of the text corpus and the number of dis-
tinct words.

The term word embedding was originally introduced by [Bengio 2003] as a part of an
NLP model. The power of pre-trained word embeddings was then demonstrated by Col-
lobert and Weston in [Collobert 2008]. In 2013 Mikolov et al. proposed word2vec toolkit for
training word embeddings via neural networks [Mikolov 2013]. Their model learnt embed-
ding vectors in order to improve the ability of predicting a target word from context words.
They also proposed the way to reduce computational complexity for learning high dimen-
sional vector representations on a large amount of data. A year later, a GloVe model was
proposed by Pennington et al. [Pennington 2014], which learnt embeddings by perform-
ing dimensionality reduction on the words co-occurrence matrix. These two models, de-
scribed in Sections 5.3.3.1 and 5.3.3.2, replaced classical Latent Dirichlet Allocation (LDA)
and Latent Semantic Analysis (LSA) methods, and are now widely used for many NLP and
other problems. Not requiring any annotation effort, they are also tightly connected to
unsupervised learning.

5.3.2 Word corpora

Word corpus is a collection of texts on a subject brought to the form of a plain sequence
of words separated by single spaces. It is widely used in NLP for production of an em-
bedding space encoding semantic relationships between the words describing the subject.
Various large corpora (e.g., Amazon reviews, SNAP, DBpedia, etc.) are available on the in-
ternet, as well as their pre-trained embeddings. Despite the abundance of corpora on gen-
eral subjects, in the current moment there are very few corpora from medical or surgical
fields. Besides using already available corpora for training, a new corpus on a specific sub-
ject can be created from scratch using two following methods. The first way is to automat-
ically download web pages on the subject using crawler tools. The second method con-
sists in obtaining materials from special search engines having access to large databases
trough dedicated interfaces. The second one is often used in biomedicine-related research
[Huang 2016, Muneeb 2015]. In this work, we collected three corpora, jointly containing
708K unique words and 175M in total, using some available datasets and by requesting the
data trough scientific search engines. The process of their collection and transformation is
presented below.

5.3.2.1 Medical Transcriptions

Our first corpus contained Medical Transcriptions (MT) - voice-recorded re-
ports dictated by healthcare professionals converted into text format. The web site
www.medicaltranscriptionsamples.com proposes samples of transcribed medical reports
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from many specialities that can be used by learners or working medical transcriptionists
for reference purposes. The site proposes 103 samples from neurosurgery that represent
post-operative reports recorded by the surgeon to describe the performed procedure and
the patient’s state. The neurosurgical samples include all three procedures from the clini-
cal data used in this study (i.e., ACDF, LDH and PA). We downloaded these samples from
the iDASH repository 1 which offers the same transcriptions in a form of a collection of text
files. First, we concatenated the neurosurgical samples in a single file. Then, we formatted
the file to eliminate all digits, punctuation marks, special symbols, and carriage returns.
The obtained MT corpus consisted of 58975 words in total and contained 4469 unique
words. Nevertheless, the common vocabulary of all clinical procedures studied in this
work contains 79 unique words and only 66 of them can be found in the MT corpus.

5.3.2.2 PubMed abstracts

We composed the second corpus by collecting all abstracts referenced by PubMed rel-
evant to the query “neurosurgery OR anterior cervical discectomy OR lumbar disk herni-
ation OR pituitary adenoma” (searched in all fields). PubMed is a free search engine that
provides references and abstracts of publications in life science and biomedical field kept
in MEDLINE database. American National Library of Medicine maintains the database as
part of the Entrez Global Query Cross-Database Search System for information retrieval
purposes. The Entrez system can be accessed trough different interfaces available in
many programming languages. We downloaded the abstracts in bulk through Entrez using
Biopython library. The 62489 downloaded abstracts formed the PubMed corpus contained
>57M words in total, 188K of which are unique. It also contains all 79 words from the clini-
cal data vocabulary.

5.3.2.3 PubMed Central full-text articles

We created the last corpus by collecting full-text articles from PubMed Central (PMC)
corresponding to the query “neurosurgery OR anterior cervical discectomy OR lumbar disk
herniation OR pituitary adenoma AND free+full+text[filter]”. PMC is a free digital reposi-
tory developed by the National Center for Biotechnology Information (NCBI) that contains
publicly accessible full-text scientific articles published within biomedical and life sciences
journals. This time, we also used Entrez to retrieve the data from the repository. PMC ref-
erenced 97611 articles corresponding to the query. However, only 32271 of them were ac-
tually present in the PMC repository itself and directly available for downloading in a form
of xml files. The PMC corpus created from these articles contained 638K unique words,
including 118M words in total and all the words from the clinical data vocabulary.

1. iDASH repository https://idash-data.ucsd.edu) is supported by the National Institutes of Health
through the NIH Roadmap for Medical Research, Grant U54HL108460.
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5.3.3 Embedding methods

In this chapter, we propose to use two methods to create word embeddings: word2vec
and GloVe that are described below. We also integrate word embeddings into a deep model
to enable on-the-fly transformation of activity descriptions into meaningful representa-
tions. Their integration is explained in Section 5.3.4.

5.3.3.1 Word2vec

Word2vec is an unsupervised embedding method published by Google’s researchers in
2013 [Mikolov 2013]. The method used neural networks with three layers (an input layer, a
single linear projection layer and an output layer) to learn vector representations of words
in a corpus. Two architectures with their efficient implementations were proposed: con-
tinuous bag-of-words (CBOW) learning a word from a context, and skip-gram learning a
context from a word (Figure 5.1). For example, for the phrase “the method proposes effi-
cient architectures for learning vector representations”, the CBOW model outputs the word
“architectures” for the set of words “the”, “method”, “proposes”, “efficient”, “for”, “learn-
ing”, “vector” and “representations” provided as input. The skip-gram does the opposite -
outputs a set of surrounding words from one current word. Before training the model, a
vocabulary containing all unique words from the corpus has to be created. Let V be the
size of this vocabulary. Each word in the corpus is then represented as a V-dimensional
one-hot vector - an array where all values are set to zero except one cell, which defines the
index of the word in the vocabulary, set to 1.

In the continuous bag-of-words model model, the input layer is formed by theC context
words, and the output layer by a V-dimensional probability vector. The model has two
weight matrices to learn that are shared for all words: W1 between the input and projection
layers, and W2 between the projection and output layers. The matrices are of size VxS,
where S is the size of embedding vectors. The activation function of the projection layer
is linear: the value passed from the projection to output layer is a sum of the W1 rows,
corresponding to the input words, divided by C. The second weight matrix W2 serves to
compute a probability score for every word in the vocabulary. In output layer, a softmax is
used to obtain a posterior distribution of words. The training objective of the model is to
maximize the conditional probability of observing the actual output word given the input
context words.

For the skip-gram model, learning to “predict words in a certain rank before and after
current word” [Mikolov 2013], the current word makes a single input vector, and the output
layer is now formed of C V-dimensional distributions instead of one. It has also two VxS

weight matrices. However, the projected vector is now simply the W1 row corresponding
to the input word. The training objective is to minimize the summed prediction error
across all context words in the output layer.
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Figure 5.1: Continuous bag-of-words and skip-gram architectures of word2vec embedding
method. Source: [Mikolov 2013]

In both models, all the words are projected and outputted into the same position mean-
ing that their order in the phrase does not influence the projection. The training thus con-
sists in giving pairs of words to the model that learns the statistics from the number of times
each pair appears in training samples. Two words in the corpus laying “nearby” may form
a pair. The notion of closeness is actually defined by the size of a context window, usually
5 neighbouring words at both sides. The intuition behind the method is that if two words
are situated nearby, they are semantically or syntactically related. The network will learn
similar embeddings for the words appearing nearby, and dissimilar embedding vectors for
the words appearing far-away from each other in the text.

The word2vec models have been substantially inspired from [Bengio 2003], but their
main advantage comes from the tweaks proposed by the authors to optimize the training
process. A successful learning requires a large corpus which leads to a great number of
words in the vocabulary. As a result, a vanilla model has a very high number of internal
parameters to train O(VxS). Running gradient descent on such a structure is very slow.
The authors proposed two efficient optimizations. First is to subsample frequent words to
decrease the amount of meaningless training samples. For each word the probability of
its keeping in the vocabulary is computed based on the frequency of its appearance in the
corpus:
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P(wi) = (

�
z(wi)

s
+1) · s

z(wi)
), (5.1)

where z(wi) is the fraction of the word wi in the corpus, and s is a subsampling rate usu-
ally set to 0.001. In this way, too frequent words (e.g., “the”, “a”, etc.) that are mostly irrele-
vant for capturing semantic information are eliminated from the vocabulary. The second
optimization is so-called negative sampling consisting in using each training sample to
update only a small percentage of weights, which is also shown to improve the final repre-
sentations. Normally, during training, given a pair of words, (“blue”, “ink”) for example, the
weights has to be adjusted so that the output neuron corresponding to “ink” outputs 1, and
all others output 0. In negative sampling, instead of adjusting the weights of all neurons
only a small number of randomly selected neurons is updated. According to the authors,
selecting 5-20 words works well for smaller corpora and 2-5 for large ones. In that way,
only a small part of all internal parameters has to be computed at one pass which greatly
reduces computational complexity.

5.3.3.2 GloVe

GloVe is an another unsupervised learning algorithm for obtaining vector representa-
tions of words proposed by Stanford’s researchers [Pennington 2014]. The authors argued
that the scanning approach used in word2vec was suboptimal since it did not fully exploit
statistical information about the word co-occurrences. The GloVe model is based on the
statistics extracted from the word co-occurrence matrix. “The main intuition underlying
the model is the simple observation that ratios of word-word co-occurrence probabilities
have the potential for encoding some form of meaning”. Glove is trained to learn embed-
dings so that the dot product of word vectors equals the logarithm of word’s probability
of co-occurrence. As a logarithm of a ration equals a difference of logarithms, the ratio of
probabilities is associated to the difference between two vectors.

The GloVe method consists in the following. A large co-occurrence matrix of VxV size,
where V is the number of words in the vocabulary, is constructed from the corpus. The
matrix is filled within a single pass trough the corpus by counting for each word how many
times it has been seen in the context of other words. For a large corpus, this may be com-
putationally expensive, but it is a one-time cost. Then, the matrix is recursively factorized
to a lower-dimensional one until it attains the desired dimensions of VxS, where S is the
size of embedding vectors. The goal is to find a lower-dimensional representation con-
serving most of the variance of the high-dimensional data. The factorization is done by
minimizing reconstruction loss. These training iterations are done much faster because
the number of non-zero matrix entries is typically much smaller than the number of words
in the corpus.
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5.3.4 Integration into LSTM model

In this study, we performed the prediction of next surgical activity using LSTM. A re-
current model with the same set of hyperparameters as in the last chapter (except some
changes explained in the following) was used. The changes include a different data repre-
sentation and one additional embedding layer placed before the recurrent layers (Figure
5.2). In the initial model, the input data was transformed to a two dimensional matrix of
sizeNxM, where theN subsequent activities within the temporal context corresponded to
rows, and the one-hot vectors of size M uniquely identifying activities were columns. This
time, each input activity tuple was first decomposed into a sequence of separate words
(each instance of one element was broken down into composing it tokens). The sequence
was then normalized (padded or truncated if needed) to have a common size of 15 words.
Finally, the network input consisted of a concatenation of the word sequences of all the
activities within the temporal context. The added embedding layer serves to transform the
sequence of words into a matrix 15NxS, where S is the desired size of embedding vectors.
The transformation is encoded in the layer’s weight matrix, and can be obtained in three
ways: 1) train - the weight matrix is obtained by training the layer from scratch along with
all other layers, 2) set - the weights are set from pre-trained word2vec or GloVe embed-
dings, and the layer is frozen during training, and 3) set & train - the weights are initialized
with pre-trained embeddings but still updated in the training process.
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Figure 5.2: Initial LSTM model and the changes integrating word embeddings
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5.3.5 Study design

We used the neurosurgical procedures from Chapter 3 to demonstrate that the seman-
tic meaning encoded in word embeddings can improve prediction results. The main fac-
tor observed trough the entire study (both in the word embedding and transfer learning
parts) was Δ - the amount of prediction improvement between different configurations
(i.e. training without and with embeddings) that is the difference in prediction accuracy.
Prediction accuracy score was computed as the total amount of correctly predicted activi-
ties to the number of test samples. An activity was assumed to be correctly predicted if all
its elements of both hands were correctly predicted. A 10-fold cross validation within every
dataset was performed each time, averaging the results of three training runs for one fold.

First of all, a base line was defined as the prediction accuracy of the initial model with
one-hot vector like representations and no embedding layer. The only varying parameter
was the size of the temporal context N indicating how many of previously performed ac-
tivities were observed in order to predict the next one. The values of N equal to 5, 25, 50,
75 and 100 were tested.

Secondly, the model that trains word embeddings from scratch was assessed. The
embedding layer of the model was trained at the same time as the others on the clinical
datasets only, involving no collected corpus. That is why, in this case, the obtained embed-
dings represented a modified format of data yet did not contain any particular semantic
relationships between the words. The model had two varying parameters: the size of the
temporal contextN and the size of embedding vectors S. The same values of N were tested
as for the base line. The values of S equal to 25, 50, 100 and 200 were tested.

Finally, the impact of the pre-trained embeddings containing semantic information
was estimated. Series of experiments were conducted varying the following parameters
of the model: configuration (set or set + train), embedding method (word2vec CBOW or
GloVe), word corpus (MT, PubMed, PMC or all combined), and embedding vector size (S
equalled 100, 300 or 500). TheN values provided the best results within the previous model
were used. The weight matrix of the embedding layer was populated with the embeddings
of the words found in the clinical datasets only. The embeddings of the words from the
datasets not existing in the corpus (e.g., MT) were set by zero vectors. The results were
compared to the base line and their statistical significance was measured using two-tailed
Wilcoxon rank-sum test.

5.3.6 Results

The best results achieved by the initial model are given in Table 5.3. These scores estab-
lished the base line to which the other configurations were compared. The average for all
datasets accuracy reached 67.4% with average standard deviation of 12.5%. These results
were obtained by setting N to 75 for ACDF.L and LDH.L, and to 50 for all other datasets.
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The best accuracy scores reached by the model training the word embeddings from
scratch are presented in Table 5.3. The change of representation and addition of an em-
bedding layer provided only a minor not significant increase in accuracy of 0.8%. The new
average accuracy attained 68.2% with 12.2% of standard deviation. The presented results
were obtained with N= 50 for ACDF.L, ACDF.R and LDH.L, and N= 25 for others, as well
as S= 25 (giving results significantly different from other S values). A modest embedding
space seems to suit more small vocabularies.

Table 5.2: Prediction activity scores (in %) for the initial model and the model training
embeddings from scratch. The values in bold indicate the datasets that had minimum and
maximum scores. The difference in accuracy Δ between these two configurations is in red

Configuration ACDF.L ACDF.R LDH.L LDH.R PA.L PA.R Avg Δ

A
vg

No embedding 66.28 67.71 62.83 64.18 70.34 73.15 67.42 -
Embedding (train) 66.39 68.21 64.15 65.07 71.08 74.23 68.19 0.77

St
d No embedding 12.54 12.15 14.53 13.70 11.24 11.02 12.53 -

Embedding (train) 12.55 11.91 13.22 13.52 10.93 10.87 12.17 -0.36

Table 5.3: Prediction accuracy scores (in %) for different sets of parameters. The values in
bold indicate maximum accuracies obtained by “set” and “set + train” configurations. The
stars indicate statistical significance as regards to the base line: * p<0.05, ** p<0.01

Word2Vec GloVe

Corpus S set set + train max Δ set set + train max Δ

MT 100 65.8 ± 13.1 68.2 ± 11.8 0.8 63.4 ± 14.4 67.1 ± 12.4 -0.3
MT 300 63.5 ± 14.5 67.6 ± 11.3 0.2 62.1 ± 14.9 65.2 ± 13.3 -2.2
MT 500 61.0 ± 15.8 67.4 ± 11.3 -0.1 62.7 ± 14.7 65.2 ± 13.5 -2.3

PubMed 100 69.6 ± 10.5 74.4 ± 9.4∗ 7.0 68.0 ± 11.2 72.1 ± 10.2 4.6
PubMed 300 70.1 ± 10.5 75.3 ± 9.3∗ 7.9 69.5 ± 11.3 74.5 ± 10.0 7.1
PubMed 500 70.9 ± 10.7 75.0 ± 8.5∗ 7.6 70.7 ± 10.1 74.7 ± 9.5∗ 7.3

PMC 100 72.4 ± 10.2 77.0 ± 7.2∗ 9.6 72.2 ± 11.3 77.5 ± 8.9∗ 10.1
PMC 300 73.7 ± 9.8 77.4 ± 8.2∗ 10.0 73.8 ± 10.1 77.9 ± 8.5∗ 10.6
PMC 500 73.8 ± 9.5 77.9 ± 7.5∗ 10.5 74.7 ± 9.6∗ 78.5 ± 7.8∗∗ 11.1

ALL 100 73.5 ± 9.7 77.3 ± 8.3∗ 9.9 74.8 ± 9.3∗ 78.3 ± 7.9∗∗ 10.9
ALL 300 75.1 ± 8.6∗ 78.8 ± 7.5∗∗ 11.4 75.2 ± 8.7∗ 78.9 ± 7.4∗∗ 11.5
ALL 500 75.7 ± 9.1∗ 78.8 ± 7.4∗∗ 11.4 75.4 ± 9.1∗ 79.1 ± 7.5∗∗ 11.7
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Figure 5.3: Prediction accuracy scores (in %) for different datasets with the best embed-
ding configuration. The blue color indicates the scores of the base line, and the red color
indicates the improvement

The Table 5.3 displays the average for all datasets prediction accuracy obtained with
pre-trained embeddings and different sets of parameters, as well as the Δ (maximum be-
tween “set” and “set + train” configurations) comparing each set to the base line. The
highest results (average accuracy = 79.1%, average standard deviation = 7.5% and aver-
age delta = 11.7%) were achieved using GloVe method on a combined corpus (ALL) with
500-dimensional embedding vector additionally trained for the learning objective. For this
set of parameters, the ACDF.L dataset had the smallest Δ of 8.7% and PA.L the highest of
13.8% (Figure 5.3). It was observed that the accuracy went up with the growth of the corpus
size. The same happened with the increase of the embedding vector size S, except for the
MT corpus (it seems to be too small for higher values of S). The word2vec method per-
formed better than GloVe with smaller corpora, but both provided similar results for larger
corpora. The additional training of the embedding layer fairly improved the results. The
pre-trained embeddings were made for a learning objective quite different form activity
prediction. The additional training for the current objective adjusted the embeddings to
reflect more the semantics of the surgical process. By these experiments, word embedding
was shown to be a great tool for unification of data representations and introduction of
higher semantic meaning that improves prediction results.
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5.4 Transfer learning

5.4.1 Why and How

This whole section describes the second part of the work on knowledge transfer be-
tween surgeries. The work was motivated by the following hypothesis. Sequences of ac-
tivities representing a surgical process encode some form of abstract knowledge about a
given procedure, surgical practice and the process in general. This knowledge can be ex-
tracted and exploited to improve all sorts of operations on surgical process data, includ-
ing analysis, recognition and prediction. It was particularly assumed that the knowledge
obtained from one procedure might improve prediction of surgical activities for another
procedures. The knowledge in question may include dependences between activities in a
sequence, relationships between the elements inside an activity, and connections between
individual elements of different activities spaced in time. In view of the implicit nature of
the knowledge that can hardly be formalized, deep recurrent neural networks were chosen
as a method able to extract and transfer it.

The deep neural networks have an interesting property that enables the network to
store extracted information in a distributed hierarchical way. It means that more funda-
mental information common for many domains is stored separately from the features de-
scribing particularities of a specific domain of interest. It implies that this information can
be shared with another learning objectives meaning an another training task or domain.
The information encoding in recurrent neural networks is less studied compared to con-
volutional networks. However, the layers closer to the input are considered to learn shorter
dependences between the items situated nearby in the sequence, while the layers closer to
the output tend to learn long-term dependences between the items (or groups of items)
situated far away from each other. In deep models, the knowledge learned from the data
is encoded in the weight matrices representing the layers’ internal parameters. In order
to establish the values for the internal parameters, the model is first trained on a domain
containing a large amount of training samples. Then, depending on the amount and qual-
ity of the data in the actually targeted domain, three transfer options exist. First, the same
trained model can be directly used on new data if it is close enough to the one used for
training, and if the task has not changed. The second option is to use the weights (all or
only a part) from the trained model as initialization for the new model. This is suitable for
cases where a reasonable amount of new data is available for training. The third option is
called fine-tuning and often used when the new domain contains only a small number of
samples. It consists in importing the trained weight matrices to the new model, but “freez-
ing” some layers during training, usually those that contain more fundamental features.
Setting the weights pre-trained on another data is often more optimized that a random
initialization. The network can benefit from the already learned knowledge so that it con-
centrates its “attention” on specific features of the new data. The next section will describe
how the transfer of surgical process knowledge was done in this work.
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5.4.2 LSTM models

In this work, the transfer learning was based on the word embeddings presented ear-
lier. They served not only to encode semantics of surgical terms but also to unify the data
representations which enables learning from another procedures. Thus, the LSTM models
used for transfer learning were the modified versions of the model from Section 5.3.4 that
integrated word embeddings. Let us introduce some notions and designations helping to
explain the structure and the functioning of the new LSTM models. We call the dataset con-
taining the knowledge extracted for transfer source dataset Dsrc, and the model extracting
the knowledge by training of the network on source dataset source model Msrc. Analogi-
cally, the dataset that benefits from the transferred knowledge is called destination dataset
Ddist, and the model that gets initialized with the weights of the source model is called
destination model Mdist. Let M be the number of unique activities in a dataset, and V the
number of unique words in the dataset vocabulary. Let subscript src∪dist define the ac-
tivities and words belonging to both source and destination datasets. Let N be the size of
the temporal context, and S the size of the embedding vector.

In this study, we used two LSTM models for transfer learning (Figure 5.4 and Figure
5.5). The first model M1 has the following structure. It takes a sequence of words of length
15N as input (as described in Section 5.3.4) that defines the content of the temporal con-
text. The input layer is then connected to an embedding layer with a weight matrix of size
Vsrc∪distxS. The embedding layer is followed by two stocked recurrent LSTM layers, where
the last one passes a single vector to the final dense layer. The neurons of the last dense
layer output a probability distribution vector of size M of the targeted dataset, it means
that the number of neurons in the dense layer may be different for the source and desti-
nation models. The next predicted activity is the activity corresponding to the cell of the
output vector with the highest probability value. The transfer between the source and des-
tination models of this type is made as follows. For the source modelMsrc, the embedding
layer is set from 500-dimensional embeddings pre-trained on ALL corpus using GloVe al-
gorithm (the configuration that showed the best results in the experiments in Section 5.3).
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* *Input
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softmax

Embedding
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R R
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(w1, w2, w3,...) 
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Figure 5.4: First type of model for transfer. The weights of the layers marked with a star can
be transferred.
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Only the Vsrc∪dist words are imported. The recurrent and dense layers are initialized ran-
domly. Then, the model is trained on the source dataset Dsrc. The weight matrices from
the embedding and both recurrent layers are exported and saved for further transfer. For
the destination modelMdist, the embedding and both recurrent layers are first set with the
weights from corresponding source layers. The dense layer is randomly initialized. The
Mdist model is then trained on the destination dataset Ddist updating the weights of all
layers.

The second model M2 has the following structure. It also takes a 15N-dimensional se-
quence of words as input, which is then passed to an embedding layer of the same size
Vsrc∪distxS. The embedding layer is connected to two subsequent recurrent layers. The
last recurrent layer passes a time-distributed sequence of vectors encoding temporal de-
pendences to a dense layer. Thereby, the dense layer outputs 15 Vsrc∪dist-dimensional
probability vectors that have to be additionally processed outside the network to actually
predict the next activity. The output vectors are transformed to a sequence of 15 corre-
sponding words according to maximum probabilities. The obtained sequence is compared
to all M (Msrc or Mdist) activities in the targeted dataset, which were transformed into
word sequences beforehand, to find the closest one. The closest found activity is taken as
a prediction. The distance between two word sequences is the sum of the distances be-
tween the words respecting the order of their appearance in the sequence. The distance
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Figure 5.5: Second type of model for transfer. The weights of the layers marked with a star
can be transferred.
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between two words, in turn, is computed as a cosine distance between the corresponding
embedding vectors. The embedding vectors used for search of the closest activity are the
initial GloVe embeddings that have not been retrained neither on Dsrc nor on Ddist. The
transfer process is analogical to M1, except that the weights of the source dense layer are
also exported and used to initialize the destination dense layer.

Our use of two different models may be explained by their properties that suit differ-
ent purposes. The weights from the source model of the first type can only be partially
transferred to the destination model since the dense layer is tied up with the number and
content of activities in the source dataset. As shown in Chapter 3, despite a large fraction
of common element instances, different procedures may still have a small number of com-
mon activities. That is why, making a dense layer consisting of Msrc∪dist activities would
be suboptimal. Withal, the main processual knowledge is supposed to be encoded in the
recurrent layers, while the dense layer only serves to connect observations to the activities.
The second model type, on the other hand, enables application of Msrc to Ddist as it is.
This property can be used to demonstrate the potential of transfer learning and to give an
idea of how much of knowledge two procedures may have in common. However, it is less
effective for the prediction, as the network can actually output a non existent activity.

5.4.3 Study design

The current study was designed to estimate how much knowledge can be transferred
within a domain of neurosurgery (i.e., between neurosurgical datasets from the third chap-
ter) and to find the best source-destination pairs of datasets in order to improve the pre-
diction capacity of the model. Effective extraction and transfer of knowledge, however,
require an analysis of surgical processes. That is why we conducted several experiments
exploring the similarities and differences between the datasets in terms of surgical work-
flow and practices. Every experiment, detailed in the corresponding paragraph of Section
5.4.3.1, had its own purpose and examined a particular aspect of the surgical process. We
also tested three types of transfer described in Section 5.4.3.2. All statistical comparisons
of the results were performed using two-tailed Wilcoxon rank-sum test, where the results
were considered significant for p-values � 0.05.

5.4.3.1 Experiments

Base line. This experiment let us establish a base line for the following experiments in
order to be able to measure the improvements in prediction obtained by transfer learning.
The M1 and M2 models were trained and tested separately on all six initial datasets (one
at a time). Both models had the same parameters for all the datasets, except the number
of neurons in the dense layer. In the M1 this number was equal to the number of unique
activities M in the dataset, and in M2 to the number of unique words V . The number of
activities N in the temporal context was set to 25 for all the datasets in this and all the
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following experiments. The model provided the highest results (i.e., prediction accuracy
average for all datasets) was chosen as the standard to which the results of the subsequent
experiments were compared.

Mix. This experiment was performed to find out how putting different data together
changes the prediction accuracy. It is different from transfer learning, as the model train-
ing is made on all the data at once. On one hand, the advantage of joining the data from
different datasets is having more samples to learn from. On the other hand, each dataset
has its own feature domain often quite different from all the others. This greatly rises the
complexity of the learning problem. In this experiment, the data was mixed in four differ-
ent ways. First, all interventions from both sites within one procedure were put together
(i.e., L + R in ACDF, LDH and PA). This helps to understand, how similar every procedure in
two sites is. Secondly, all interventions from one site including all three procedures were
mixed together (i.e., ACDF + LDH + PA in L and R). This shows how similar the general
practice in two sites is. Next, different pairs of procedures including interventions from
both sites were tested as input (i.e., ACDF (L+R) + LDH (L+R), ACDF (L+R) + PA (L+R) and
LDH (L+R) + PA (L+R)). This demonstrates general similarity/difference between two pro-
cedures. Finally, all the data was joined to form one input dataset (i.e., ACDF.L + ACDF.R +
LDH.L + LDH.R + PA.L + PA.R) in order to see how close all the neurosurgical procedures
are. The modelsM1 andM2 were trained and tested separately on each type of data union.
The vocabularies of unique activities and words at each time included the activities and the
words found in the mixed datasets only. For each type of mix, the model provided the high-
est results was compared to the base line standard by computing the difference Δ between
their average values. The third mix type was also compared to the first one to measure the
actual increase in accuracy.

Split. The initial datasets contained the operations performed by both senior and junior
surgeons. This experiment, splitting the data by surgeon’s expertise level, was performed
to see if the prediction can be improved by separating seniors from juniors. Splitting the
data may seem counter-intuitive, as it reduces the number of training samples in each set.
However, separating interventions from surgeons having different expertise can actually
also reduce the variability in workflow, thus, the complexity of the learning problem. In
this experiment, three different splits were made. The first split divided the data on inter-
ventions performed by juniors and seniors within each procedure (i.e., ACDF (J), ACDF (S),
LDH (J), LDH (S), PA (J) and PA (S)). The second split was made within each surgical site
(i.e. L (J), L (S), R (J) and R (S). The third split divided all the initial data (i.e., D (J) and
D (S)). These splits let us perceive the difference between the expertise levels in different
contexts: procedure-related, hospital-related and in general. The modelsM1 andM2 were
trained and tested separately on each type of data split. The vocabularies of unique activ-
ities and words were kept identical for both levels, as their difference was minor. For each
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type of split, the model provided the highest results was compared to the base line stan-
dard. The first, second and third splits were also compared to the first, second and fourth
mixes respectively.

Raw use. This experiment served to estimate the amount of knowledge shared between
the datasets that could be used without any additional training. For this, the entire model
was first randomly initialized and tested on the destination dataset Ddist. This was needed
to measure how many predictions could be correctly made without any knowledge at all.
Then, the model was trained on the source dataset Dsrc and tested on the destination
dataset Ddist again without being retrained on it. This shows how much knowledge learnt
on one dataset is useful to predict the activities from another dataset. The pairs of tested
source and destination datasets were the same as in the next experiment on actual trans-
fer learning, and are described in details in Section 5.4.3.2. Only theM2 model was used in
this experiment, since only its architecture enabled direct model use on an another dataset
with a different feature space. However, the word vocabulary used in the embedding and
dense layers included the words from both source and destination datasets.

Transfer. We conducted this experiment to measure the improvement in prediction ac-
curacy provided by the actual transfer learning. For this, the source model Msrc was first
trained on the source dataset Dsrc. Its weights were extracted and saved apart. They were
then used as initialization for the destination model Mdist, which was then trained and
tested on the destination dataset Ddist. This shows how the knowledge from one dataset
can improve the training process and prediction results for another dataset. We performed
three types of transfer using different combinations of source and destination datasets:
inter-site, inter-procedure and inter-expertise transfers. Section 5.4.3.2 defines each type
of transfer. Only the M1 model was used, as it proved to provide better results within one
feature space. That is why, only the weights from the embedding and recurrent layers were
transferred, and each activity vocabulary was restricted to the activities from one input
dataset only. For each type of transfer, the results were compared to the base line standard
and to the corresponding mixes and splits as well.

5.4.3.2 Types of transfer

In this study, we examined three different types of transfer: inter-site, inter-procedure
and inter-practice transfers (Table 5.4). The inter-site transfer, which can also be consid-
ered as intra-procedure transfer, was performed to estimate the efficiency of transfer be-
tween the interventions performed in different hospitals belonging to the same procedure.
This type of transfer involved the following dataset pairs: L → R and R → L for ACDF, LDH
and PA. In these pairs, the source dataset is on the left of the arrow sign, and the destination
dataset is on its right. The inter-procedure transfer was performed to estimate the efficiency
of transfer between different procedures belonging to the same surgical domain. This type
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Table 5.4: Source and destination datasets for different types of transfer. Plus sign indicates
a mix of datasets

Inter-site transfer Inter-procedure transfer

Dsrc Ddist Dsrc Ddist

ACDF.L ACDF.R ACDF.L + ACDF.R LDH.L + LDH.R
ACDF.R ACDF.L LDH.L + LDH.R ACDF.L + ACDF.R
LDH.L LDH.R ACDF.L + ACDF.R PA.L + PA.R
LDH.R LDH.L PA.L + PA.R ACDF.L + ACDF.R

PA.L PA.R LDH.L + LDH.R PA.L + PA.R
PA.R PA.L PA.L + PA.R LDH.L + LDH.R

Inter-expertise transfer

Within Dsrc Ddist

p
ro

ce
d

u
re

ACDF.L(J) + ACDF.R(J) ACDF.L(S) + ACDF.R(S)
ACDF.L(S) + ACDF.R(S) ACDF.L(J) + ACDF.R(J)
LDH.L(J) + LDH.R(J) LDH.L(S) + LDH.R(S)
LDH.L(S) + LDH.R(S) LDH.L(J) + LDH.R(J)

PA.L(J) + PA.R(J) PA.L(S) + PA.R(S)
PA.L(S) + PA.R(S) PA.L(J) + PA.R(J)

si
te

ACDF.L(J) + LDH.L(J) + PA.L(J) ACDF.L(S) + LDH.L(S) + PA.L(S)
ACDF.L(S) + LDH.L(S) + PA.L(S) ACDF.L(J) + LDH.L(J) + PA.L(J)
ACDF.R(J) + LDH.R(J) + PA.R(J) ACDF.R(S) + LDH.R(S) + PA.R(S)
ACDF.R(S) + LDH.R(S) + PA.R(S) ACDF.R(J) + LDH.R(J) + PA.R(J)

D
1 D(J) D(S)

D(S) D(J)

of transfer involved the pairs as ACDF ↔ LDH, ACDF ↔ PA, LDH ↔ PA. The double-side
arrow means that the transfer was made from the left (source) dataset to the right (desti-
nation), and the other way around. The inter-expertise transfer was performed to estimate
the efficiency of transfer between the interventions performed by the surgeons having dif-
ferent levels of expertise (i.e., seniors and juniors). For this transfer type, the tests were
performed separately for the procedures (i.e. pairs J ↔ S for ACDF, LDH and PA), sites (i.e.
pairs J ↔ S for L and R) and composition of all initial datasets (i.e. pair J ↔ S for D).

1. D represents composition of all initial datasets that is ACDF.L + ACDF.R + LDH.L + LDH.R + PA.L + PA.R
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5.4.4 Results

5.4.4.1 Base line

The experiment, putting all the initial datasets in the same conditions, showed that at
best the next activity could be predicted with accuracy of 78.91±7.53% on average for all
datasets (see Table 5.5). This result was provided by the M1 model and was taken as the
standard to which all the following advances were compared. As expected, the model M2

was less accurate (76.78±8.41%). The PA activities were predicted the best and those be-
longing to LDH the worst. Better predictions were also made for the procedures performed
in Rennes than Leipzig. Lower results may indicate a higher complexity of the learning
problem (including factors as the number of unique words, elements and activities, proce-
dure length, number of possible workflows, etc.), but also a higher variability in the data.
This variability is partially inter-personal, meaning that it comes from the number of dif-
ferent surgeons performed the interventions.

Table 5.5: Base line prediction accuracy (in %) for six initial datasets

ACDF.L ACDF.R LDH.L LDH.R PA.L PA.R Avg

A
vg

M1 74.35 78.73 74.46 75.23 84.12 86.57 78.91
M2 71.17 77.95 73.13 73.00 82.04 83.36 76.78

St
d M1 9.77 8.32 9.10 8.12 5.37 4.76 7.53

M2 10.14 8.27 9.25 9.87 6.39 6.55 8.41

5.4.4.2 Mix

Mixing the interventions belonging to the same procedure but performed at different
surgical sites provided at best 81.42% of accuracy, generating a 2.51% boost compared to
the base line standard (Figure 5.6). This score was obtain using M1 model. The M2 model
provided a comparable but a slightly lower score of 81.27% (Δ = 2.36%). The increase of
the learning problem complexity due to a mix of different future spaces was bigger forM1

and smallerM2 because of their differences in architecture and data handling. That is why,
in this case, M2 was able to catch up the M1. LDH had the biggest increase in accuracy,
while ACDF the lowest. The higher increase in accuracy may indicate the bigger similarity
between two sites within a particular procedure. The Δ of all three procedures were statis-
tically significantly different from each other. All new resulting accuracies, except for ACDF
using theM2 model, were also statistically significantly different from the base line.

Mixing all procedures within one site only decreased the prediction accuracy (Figure
5.7). TheM1 model showed an accuracy of 75.89% loosing 3.02% compared to the base line
standard. The M2 generated 76.19% loosing 2.72% compared to the base line. This time,
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M2 provided better results than M1 due to even bigger dissimilarity between the mixed
datasets in terms of unique activities but less in terms of words. Comparing to the base
line scores, the datasets from Leipzig lost in accuracy more than those from Rennes (3.67%
vs. 2.37% forM1 and 1.97% vs. 1.49% forM2). The statistical significance of this difference
let us presume that these three procedures are more alike in Rennes than in Leipzig. This
time, all new resulting accuracies for both mixes and both models were also statistically
significantly different from the base line.

Mixing different procedures from both sites provided at best 79.96% of average accu-
racy with Δ = 1.05% compared to the base line standard (Figure 5.8). This result was pro-
vided by the model M2 yet it had no statistically significant difference with the M1 that
gave 79.32% with 0.41% Δ. The combination ACDF + LDH had 4.98% gain over the base
line (statistically significant), while the ACDF + PA lost 2.16% (significant), and LDH + PA
gained 0.30% only (not significant). As the sites were mixed together with the procedures,
it would be fair to compare the results to those from Figure 5.6, by taking an average score
of two procedures each time, in order to determine the actual Δ. Such wise, the mix of
procedures actually lost in accuracy with average Δ = -1.46%, and only the ACDF + LDH
combination improved prediction performance of 3.62%. These results allow us to believe
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that the ACDF and LDH procedures have much in common, but ACDF and PA, as well as
LDH and PA are too different to be mixed together.

Mixing all initial datasets together also only deteriorated the prediction ability of both
models, M1 more than M2. The model M1 showed 75.73% accuracy with Δ = -3.18%, and
M2 77.54% accuracy with Δ = -1.37%. This mix had the highest data variability in terms of
unique activities which was too hard to handle forM1 , that is whyM2 provided statistically
significant higher accuracy and lower decrease compared to the base line.

5.4.4.3 Split

Splitting interventions within one procedure by expertise level provided the average
accuracy of 80.16% and a 1.15% improvement compared to the base line (Figure 5.11). This
results were provided by the M1 model. The model M2 had slightly lower but comparable
results of 79.94% (Δ = 1.03). For all procedures, the results for senior surgeons were higher
than for juniors, but only for PA this difference was statistically significant. However, no
junior surgeon performed PA in Rennes. That is why, in this case, a low score was probably
caused by a drastic decrease of the amount of training samples for the junior group. It also
make sense to compare the results with those from Figure 5.6 since the interventions from
different sites were mixed within a procedure. Hereby, splitting by expertise levels actually
deteriorated the results compared to the mix of sites (Δ = -1.26% on average). This can
be explained by the fact that for the same complexity of the learning problem (identical
vocabularies of unique activities and words), reduction of training samples only causes
degradation of the prediction performance of the model. Yet, thanks to the split, each
group had less variability in it which prevented the accuracy from falling to much.
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Splitting by expertise level within a surgical site decreased the accuracy of both models
compared to the base line (Figure 5.11). The modelM2 allowed the least impairment giving
76.72% accuracy and Δ = -2.19%, while M1 75.39% with Δ = -3.52%. Comparing to results
to the mix of all procedures from one site (Figure 5.6), the model M2 actually had a gain
of 0.53% (not significant). However, this gain was caused by a spike in M2 results for R
(J) group. In this group, the PA procedure was not represented at all (no junior surgeon
operated), that is why the complexity of the problem was much lower than in other cases.

Splitting all the data by expertise level only worsened the situation (Figure 5.11). The
modelM2 had the smallest decrease in accuracy compared to the base line (76.54% in av-
erage with Δ = -2.37%), while M1 had 73.19% accuracy and Δ = -5.72%. The prediction
performance also dropped compared to the mix of all data (Δ = 1.00%). In this experiment,
the difference between the expertise levels became statistically significant due to a very
high complexity of the learning problem (three procedures from both sites put together).
In the view of this result, it is also possible to assume that not only juniors are different
from seniors, but the dissimilarity inside a group is higher for juniors than seniors.

5.4.4.4 Raw use

In the raw inter-site use, the model trained on one site was used (without any addi-
tional training) to predict the activities of the same procedure from the second site. The
results can be found in Table 5.6. On average for all procedures and source-destination
pairs, raw use provided predictions with 36.12% of accuracy, while a random initialization
of the model only 5.77%. It shows that roughly 30% of knowledge is shared between the
sites, although not all of it may be useful for improving prediction accuracy of the model.
As in the experiment with the mix of sites, a raw model use within the LDH procedure pro-
vided the best results, and within ACDF the worst. This confirms our observation that the
surgical practises in Leipzig and Rennes are closer for LDH procedure, then, for PA and,
finally, for ACDF.

Table 5.6: Prediction accuracy (in %) for raw inter-site use

ACDF LDH PA Avg

L -> R 30.14 38.82 36.23
36.12

R -> L 33.18 43.97 34.49

In the raw inter-procedure use, the model trained on one procedure including both
sites was used (without any additional training) to predict the activities of an another pro-
cedure. The results of the experiment are exposed in Table 5.7. On average for all source-
destination pairs, the raw inter-procedure use demonstrated 26.08% accuracy, while a ran-
dom initialization of the weights provided only 5.02%. However, the learnt knowledge was
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Table 5.7: Prediction accuracy (in %) for raw inter-procedure use

Destination

ACDF LDH PA Avg

So
u

rc
e ACDF - 42.30 17.25

26.08LDH 40.12 - 20.46
PA 16.77 19.55 -

Table 5.8: Prediction accuracy (in %) for raw inter-expertise use

ACDF LDH PA Avg L R Avg D Avg

J -> S 60.72 58.14 65.61
62.81

56.75 40.33
51.66

54.19
55.01

S -> J 63.12 60.49 68.78 56.40 53.14 55.83

much more useful in the case of the ACDF ↔ LDH combinations than ACDF ↔ PA or LDH
↔ PA. This demonstrates again, that ACDF and LDH are the most similar procedures, and
ACDF and PA are the most dissimilar.

The results of the raw inter-expertise use, when the model was trained on one expertise
level to be applied on another, are in Table 5.8. The experiment showed, that learnt knowl-
edge was more useful when applied within a procedure (62.81% on average), than within a
site (51.66%) or with all the data (55.01%). A random initialization provided an accuracy of
4.51% on average. The results for J → S use inside Rennes were much lower than the others
because that source model did not have any PA samples (no junior surgeon operated) to
learn from, thus, was unable to correctly predict its activities from the destination dataset.
Giving generally high accuracy values (higher than in other types of raw use), the following
assumption can be made. The knowledge encoding the difference between the expertise
levels is less important for a correct activity prediction, or, in another words, this type of
knowledge is less captured by LSTM models.

5.4.4.5 Transfer

The results of the inter-site transfer with additional training on the destination dataset
are shown in Figure 5.12. On average for all procedures and source-destination combi-
nations, the prediction performance of the model achieved 85.97% having a statistically
significant increase of 7.06% compared to the base line, and 4.55% compared to a simple
mix of sites (significant as well). As expected, LDH benefited from the knowledge transfer
the most. However, ACDF had a more important increase that PA. It shows that even if two
sets of data are less similar, one can still have some form of knowledge (common or not)
that enhances the learning process of the second one.
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Figure 5.12: Inter-site transfer within a procedure

The results of the inter-procedure transfer are exposed in Figure 5.13. On average for all
tested combinations of source and destination datasets, the prediction accuracy reached
86.49% with a statistically significant boost of 7.58% compared to the base line, and 6.53%
compared to a simple mix of procedures (significant). However, 2.51% of this boost came
from the mix of both sites in the source and destination datasets. Thus, the actual increase
in accuracy equalled 5.07%. On the other hand, if we choose only the most appropriate
procedures for transfer (e.g., ACDF for LDH, LDH for ACDF and ACDF for PA), the average
accuracy can be recomputed to 89.09% with the Δ of 10.18% for the base line and 7.67%
for the sites mix. The highest improvement was made for LDH when transferring knowl-
edge from ACDF, and the lowest for ACDF when transferring from PA. This experiment also
demonstrates, that even if the source and destination procedures are quite different from
each other, both still encode some fundamental knowledge about the surgical process in
general that can help in training.

The results of the inter-expertise transfer can be found in Figure 5.14, 5.15 and 5.16.
The experiment showed that the transfer within a procedure provided 80.34% accuracy on
average and made an improvement of 1.43% (not statistically significant) compared to the
base line but only 0.28% (not significant) in comparison with a simple split. The transfer
within a site actually impaired the results providing 76.09% which is 2.82% smaller than
the base line (significant) and 0.63% smaller than the split (not significant). The transfer
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from one expertise level to another using all data also led to an impairment of prediction:
76.23% accuracy with Δ = -2.68% for the base line (significant) and Δ = -0.31% for the split
(not significant). The transfer causing a decrease in accuracy is a good example of negative
transfer, a well-known phenomenon [Pan 2010]. This demonstrates that some knowledge
(related to the expertise level in this case) should not be transferred as it may hurt the
learning process. In all cases, the difference between J → S and S → J transfers was not
statistically significant.

5.5 Discussion

In this chapter, we proposed two methods of knowledge transfer to overcome the prob-
lem of data deficit. Thanks to both of these methods and extensive experiments conducted
on clinical data, the performance of a basic LSTM model was increased by almost 22%. On
average for all used datasets, the accuracy of prediction reached 89%. Forestier et al. in
their work on activity prediction for the LDH and ACDF procedures [Forestier 2017] were
able to attain 95% accuracy. The authors, however, were interested in prediction of right
hand activities only, which represents a simpler problem. Yet, knowing the activities of
both hands is important for a complete understanding of the situation. For instance, too
frequent use of suction may indicate an excessive blood loss. On the other hand, the im-
provement of prediction by means of knowledge transfer but not a high performance was
the main objective of our work. Similarly to the work on sensors and signals presented in
the last chapter, only a very basic LSTM architecture was used. A more elaborated architec-
ture would probably provide better results. Moreover, the used approaches of knowledge
transfer may easily be applied to any surgical workflow related problem (e.g., recognition,
analysis, etc.). Another contribution of this work consists of multiple observations made
during the experiments that allowed a better understanding of surgical practices. These
observations are discussed in Section 5.5.3.

5.5.1 Word embeddings

We demonstrated that the word embeddings trained on corpora constructed from
medical and scientific texts indeed contained certain semantic meaning that enabled a
boost of the learning process and played an important role in knowledge transfer. Un-
fortunately, the embeddings encode information in a human-unreadable way. Another
drawback is their inability to solely encode only chosen parts of the information. It means
that some useless knowledge gets probably encoded along the way as well. Since the initial
embeddings were trained for a different learning objective (word context discovery), their
representation still needed to be retrained within the LSTM model for the activity predic-
tion task. Despite that, the initially encoded information contained in them guided the
training process in the right direction.
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Generally, the word corpora used for embedding training in NLP are much bigger than
those that were used in this study (billions vs. millions of words). The relatively small
corpora created in this study were an attempt to test their impact on the prediction of
activities. The experiments showed that the success of training grew along with the corpus
size. That allows us to assume that the results can be further improved with bigger corpora.
The created corpora were based on post-operative transcriptions and scientific articles on
a related subject. It would also be interesting to create a word corpus specifically dedicated
to describe the surgical process. For instance, on-line commenting of an actual process
would take less effort than annotation of the same amount of interventions.

The best results were obtained with bigger sizes of embedding vectors. However, in
this study, the size did not exceed 500. In the literature, the bigger size is normally consid-
ered when the corpus contains several billions of words [Mikolov 2013]. The importance
of vector’s size regarding the number of learning words was also demonstrated: a small MT
corpus provided much lower results with vectors of size 300 and 500. Moreover, the vec-
tors are encoded differently (have quite different values) by word2vec and glove methods.
It shows that different information gets encoded, but in practice, the overall relationships
between the words are preserved.

5.5.2 Transfer learning

The method of transfer learning was used in this work to increase the prediction capac-
ity of a deep neural network by transferring processual knowledge. The studies exploring
different ways to operate the data (i.e., mix, split, raw use and transfer) revealed both posi-
tive and negative manipulations discussed below.

Positive experience. The manipulation “mix of sites + inter-procedure transfer”, consist-
ing of two steps enabled the best enhancement. First, the interventions from different sur-
gical sites but belonging to the same procedure were mixed together in one input dataset
used for pre-training. In the second step, the internal parameters of the model trained on
the mixed data (i.e., weight matrices containing the learnt knowledge) were transferred to
the model which was trained on another procedure. The most effective transfer happened,
of course, between the procedures that resemble the most - ACDF and LDH. However, the
transfer between less related procedures, as ACDF and PA or LDH and PA, was still effective.
This showed that even if two procedures have very few activities in common, they still can
contain certain fundamental knowledge or common information about the surgical pro-
cess which can turn out to be very helpful. Another manipulation that gave slightly lower
but still good results was the inter-site transfer. There were four possible reasons why it
conceded to the inter-procedure transfer. First the the inter-procedure transfer prior bene-
fited from the mix of the surgical sites that also boosted the performance. Secondly, thanks
to the mix of data, the models involved in the inter-procedure transfer had more training
data than the models in the experiments with the inter-site transfer. In third place, other
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procedures may contain some useful knowledge not present in the same procedure from
another site. Finally, the 10% boost of the inter-procedure transfer was computed using
only the best source-destination combinations. Whereas, in inter-site transfer only one
source option existed for each destination dataset.

Negative experience. The negative manipulations included the split of data by expertise
level and inter-expertise transfer. Splitting the data in current conditions negatively re-
flected on the prediction performance, probably because it brutally reduced the number
of training samples each time. Yet, given a sufficient amount of data, it potentially could
provide positive results by reducing the variation in the way the surgery is performed, mak-
ing two clusters of data more homogeneous. Nevertheless, one should be careful with
such a split. The interventions performed by junior surgeons seem to be less consistent
that those from the senior group. It is possible that when used together in one dataset,
the senior group helps to balance out the variation inside the junior group. It would be
interesting to see what happens when the data is split by expertise level within the most
homogeneous data - only one procedure and one site (i.e., within initial datasets). This
has not been done because no junior surgeon operated pituitary tumour in Rennes. The
split within a procedure made only a not significant improvement of the results. Whereas,
the expertise split of the data mixing different procedures together made the performance
degrade. Such composition of data turned out to be too confusing for the network. It
is, however, interesting to see that a raw inter-expertise use gave good results but the the
transfer did not work. It means that both for juniors and seniors the models learns very
similar information, and the expertise-related knowledge from one group is not helpful to
another. This particular knowledge from another group may even hurt the training process
and cause the phenomenon of negative learning. Yet, this problem should be researched
more to have a clearer understanding of its influence.

Learning process. Deep neural network is an intricate mechanism, where a balance be-
tween all the parameters has to be found. The quantity of training data is well known to
be a great factor influencing the results of training. However, the requirement of an im-
portant amount of data is not the only condition for a successful training. Its success also
depends on the complexity of the learning problem including factors as number of output
classes (number of unique activities in our case), complexity of temporal dependences to
discover, as well as inter and intra class variability. That is why the complexity of the prob-
lem grows when putting too much different data together. For instance, mixing dissimilar
procedures increases the amount of possible activities, which increases the risk of a bad
choice. Different procedures have different sequencing of activities leading to higher vari-
ability in workflow. It means that the model basically has to learn two different types of
temporal dependences at once. That is why, learning separately on a more uniform set of
data describing only one type of dependences is better. In such conditions, the network
learns more efficiently and extracts more of useful information. Using that information,
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another network pays more attention to the particularities of its own dataset resulting in
a stronger performance. This explains better results for the inter-procedure transfer than
the mix of procedures.

Knowledge. We demonstrated that LSTM network is capable of learning and transferring
surgical process knowledge. This knowledge probably contains both procedure dependent
and independent features. The procedure dependent features characterize the terms and
concepts specific to a given surgery. The procedure independent features, conversely, rep-
resent the information about the temporal sequentiality inherent to any surgical process.
Unfortunately, for now, a neural network, especially a recurrent, is a black box. It is difficult
to see what happens inside and to know how, why and what exactly it learns. Inability to
explain network’s functioning has been a major critique of deep learning methods. Un-
derstanding of the learning process is a hot research topic nowadays. However, current re-
search is mainly interested in visualization of the process for image-based data, and much
less in sequential or other types of data. In consequence, the conclusions made about the
transfer strategies and surgical practices can only be made by observing the correlation
between the input and the output. The encoding of knowledge in a form not readable by
human is another drawback of the method. The encoded knowledge is not formalized,
and for now can only be used within deep net architectures. Hopefully, one day, it will be
possible to combine it with formal representation of knowledge (e.g., ontology).

Perspectives. The results obtained in this work are encouraging but leave a room for
further exploration. In the future, a multi-level transfer has to be tested. It consists in
training on one dataset, using the weights as initialization for training on a second dataset,
and transferring the weights again for training on a third dataset. Such wise, the inter-site
transfer can be done first, and then followed by the inter-procedure transfer. Another
option is subsequently training on all three procedures, or a mix of procedures as a source.
In any case, a good order and combination has to be found first. In addition, it is also
possible to try importing the weights of different recurrent layers separately. The study
results also allow us to think that the surgeries from other specialities can also be used
for transfer. Furthermore, there is also a hope that the information about the process in
general, as a sequence of actions towards an objective, gets encoded as well. In that case,
pre-training on annotations of different sorts of processes (not necessarily related) would
also help. This opens the doors to many opportunities, as the acquisition of such process
models is less constrained than in the surgical field, and may be used to create massive
datasets to learn from.
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5.5.3 Surgical practice

Along with the analysis of different types of transfer, we also made interesting obser-
vations about surgical practices. The results obtained during the conducted experiments
suggested that the workflows of interventions performed by the surgeons having different
levels of expertise are closer to each other than two interventions of the same type per-
formed in different hospitals. Withal, the interventions from different hospitals are more
alike than the interventions from different procedures. It means that the difference be-
tween the expertise levels is lower than the difference between the surgical sites, which
in turn, is lower than the difference between the surgical procedures. Indeed, Forestier et
al. arrived to analogical conclusions concerning the expertise-hospital difference in their
multi-site study of surgical practices made on the ACDF procedure [Forestier 2013]. During
hierarchical clustering performed in that study, the outer clusters were represented by the
surgical sites and the inner clusters by the expertise levels. However, in our study (Section
5.4.4.2) it was also shown that the difference between two sites depends on the procedure.
For example, the LDH procedure is performed more similarly in Rennes and Leipzig than
PA or ACDF.

Another discovery demonstrates that the procedures in Rennes resemble more to each
other than those in Leipzig. The base line scores from Section 5.4.4.1 were better for pro-
cedures performed in Rennes. However, this might be caused by a greater complexity of
Leipzig’s surgical process in general. This complexity can be observed in the description of
the data through a longer duration, greater length (number of activities per intervention)
and bigger number of unique activities. Yet, strong evidences of the difference in question
were found during the experiments on mixing and transfer (Sections 5.4.4.2 and 5.4.4.5).
The intra-site differences between Rennes and Leipzig may be explained by several things.
The procedures in Rennes could be more standardized than in Leipzig. This assumption
would also suit the hypothesis from the last chapter about the more frequent use of surgi-
cal instruments not according to their initial functions in Leipzig. However, another expla-
nation would correlate the complexity of the surgical process to the patients’ conditions.
With a relatively small dataset like this, it is statistically possible that surgeons in Leipzig
more often operated patients with difficult cases (e.g., multi-level discectomies, later stage
of the disease, abundant bleeding, etc.).

Unlike with sites and procedures, the experiments on expertise level were less conclu-
sive. Forestier et al. performing classification of surgical workflows revealed that “seniors
can have different operating techniques and preferably sequences of activities that differ
from one senior to another” [Forestier 2012]. The results of our study suggested that juniors
were different from seniors, but each group, especially juniors, also had a high variability
inside the group. That could explain lower prediction results of junior datasets. This is
coherent with [Riffaud 2010] stating that with practice, the number of gestures is reduced
and coordination of hands is optimized which leads to a more standardized process in the
senior group. However, lack of evidence may also be caused by a blurry frontier between
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juniors and seniors. In the data used in this study, the seniority (i.e., level of expertise) was
defined by the number of performed operations but not as the result of an objective evalu-
ation of surgical skills. Knowing that each surgeon has its own operating style, it would be
interesting to split the procedures by individuals. Yet, such an experiment would require
considerably larger amounts of data.

The described conclusions on surgical practice were made observing the relationships
between the input and output (i.e., prediction results) of the conducted experiments. Nev-
ertheless, the nature of deep learning discussed in Section 5.5.2 does not allow to see the
true dependences inside the network. Thus, these conclusions remain hypothesises to be
proven.

5.6 Conclusion

In this chapter, we focused on the problem of data deficiency and proposed to use
knowledge transfer methods in order to compensate a small amounts of training data. To
demonstrate the power of knowledge transfer the task of next surgical activity prediction
was chosen as an example. Two transfer methods were proposed in this work augmenting
the prediction accuracy by almost 22% in total. The first method was the word embedding
technique vastly applied in natural language processing. The word embedding was used to
extract semantic knowledge describing the relationships between surgical terms from spe-
cially created medical word corpora. Its was shown that using even a relatively small corpus
can significantly improve the results of the prediction. The word embeddings also helped
to uniform the data from different datasets to enable transfer learning within deep neural
networks. The second method transferred the knowledge from one dataset of annotated
interventions to another. It used the internal parameters of the neural network to encode
the information about the surgical process. Such transfer learning was also very effective
in improving the prediction. Positive results were obtained when transferring information
from one procedure to another, and between the surgical sites. Several observations about
surgical practices were made along with the experiments conducted to evaluate the trans-
fer methods. We observed that the difference between the expertise levels is smaller than
the difference between the surgical sites which is smaller than the difference between the
surgical procedures. The procedures conducted in Rennes seem also to be more alike than
those performed in Leipzig. This work is the first study in the literature applying knowledge
transfer on surgical processes.
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Main findings

— Bigger word corpus and bigger embedding vector size lead to higher per-
formance

— About 30% of knowledge is shared between the sites, although not all of it
is useful for transfer

— The best results in transfer learning were achieved by transfer between
procedures

— The transfer between the surgical sites was also effective

— The transfer between the expertise levels was not effective

— The knowledge about the expertise level is less important for activity pre-
diction

— Two dissimilar sets of surgical workflows can still have some knowledge
that enhances the learning process of each other

— Deep recurrent network learns and transfers not only a procedure-
specific knowledge but the knowledge about the surgical process in gen-
eral as well

— The workflows of junior surgeons are different from the seniors, and the
heterogeneity inside the junior group is bigger than in the senior group

— The difference in workflow between the expertise levels is smaller than
between the surgical sites which in turn is smaller than between the pro-
cedures

— The surgical workflow in Leipzig is more complex than in Rennes

— The neurosurgical procedures are more alike in Rennes than in Leipzig

— ACDF and LDH have more in common than LDH and PA which in turn
have more in common than ACDF and PA

— The workflows from Leipzig and Rennes resemble the most for LDH, less
for PA and much less for ACDF
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6
Application-dependent validation

metrics

Preamble

In this chapter, we address validation-related issues of the surgical workflow do-
main. We propose new metrics and performance estimation approaches particularly
adapted for assessing workflow recognition and prediction methods. We propose sepa-
rate metrics for methods dealing with surgical phases and activities, and demonstrate
their use on concrete examples. The suggested metrics help to measure important pa-
rameters of the performance and to value it as regards to the actual clinical applica-
tion.
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6.1 Introduction

The surgical workflow and its recognition have been in the center of attention of many
research projects for at least fifteen years. A great amount of innovative approaches were
presented during this period. Today, in an era of rapid technological progress, the need
for such systems becomes vital. Many researchers working in this field participate in a
never ending race for performance. Each year more and more methods are proposed over-
coming previous state-of-the-art results. However, one important aspect remains often
neglected - proper validation and advanced analysis of errors. In most publications on
the topic, inner parameters of the system and their influence on the performance are
well studied, though the actual validation is reduced to a measurement of a few stan-
dard performance scores. This attitude limits objective comparison of approaches since
multiple aspects of their performance stay veiled from the reader. As shown in the lit-
erature review from Chapter 2, most of the time, only global scores as accuracy, preci-
sion and recall are exposed in the result section. First of all, this provides only a gen-
eral and vague picture of the method’s capacities and flaws. Secondly, these scores are
highly disconnected from practical clinical applications. They are too strict and not in-
formative enough to capture the readiness of the method for its use inside the OR and
its utility for the surgical process. In order to be able to proceed with a system’s integra-
tion inside the OR, its performance should satisfy the requirements of the concrete ap-
plication for which it was designed. The standard performance scores, commonly used
in the domain of machine-learning, are not enough to express these requirements. That
is why, it becomes highly difficult to estimate how close the method actually is to its ap-
plication. It explains why many published methods get stuck in the validation stage and
do not proceed with real-case system evaluation. Among all the publications reviewed
in Chapter 2 (except [Dergachyova 2016] featuring the contribution of this chapter), only
[Forestier 2017, Lalys 2011, Malpani 2016, Primus 2016, Twinanda 2017] proposed original
metrics destined to express their method’s behaviour in a truly relevant way. None of these
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publications, however, evaluated such important parameters as recognition delay (except
[Primus 2016] which separately measured it for each surgical phase, but proposed no met-
ric to estimate the overall delay) and consistency, or connected the method’s results to the
targeted application.

The challenges the surgical workflow recognition annually organized by community
members enable comparison of the methods on a common data basis. Yet, the compar-
ison criteria can not be fairly called objective, as only standard performance scores are
usually used for the assessment. It is obviously hard to find a perfect criterion for all ap-
proaches, as they have been initially designed for different purposes. Despite that, the
need for new more objective validation strategies and meaningful metrics is apparent. Our
work is an attempt to give a deeper insight of the clinical needs and to emphasize the rel-
evance of this topic. In this chapter, we propose a set of application-dependent metrics
and approaches for performance estimation for two workflow granularity levels: phases
and activities. We also demonstrate the use of these metrics on several existing recognition
methods, discussing the obtained results and their utility.

6.2 For surgical phase recognition

In the first part of this chapter, we introduce four metrics destined for the assess-
ment of methods performing surgical phase recognition. First, in Section 6.2.1 we pose
the problem by formally describing concepts that are used for definition of the metrics
proposed in Section 6.2.2. The example of metrics application and the obtained results
are presented in Section 6.2.3. The recognition methods used here as example are the
methods submitted to the MICCAI M2CAI 2016 challenge on workflow recognition from
endoscopic videos 1 organized by the research group CAMMA from the University of Stras-
bourg (France) and Technical University of Munich (Germany). The dataset provided for
the challenge [Twinanda 2017, Stauder 2016] consisted of 27 cholecystectomy videos avail-
able for training, containing 8 surgical phases, and 14 test videos. Test videos contained
both complete and incomplete surgeries. The submitted methods required to perform an
on-line recognition (based on the information from the past but not from the future). Dice
coefficient was used to assess the methods and determine the final rating. The organizers
of the challenge kindly provided us the access to the ground truth annotations and the
automatically recognized sequences submitted by the participants, which were used here
for computation of the proposed metrics.

1. http://camma.u-strasbg.fr/m2cai2016/index.php
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6.2.1 Problem formalization

1. Let P= {p1,p2, ...,pm} be the set of m possible phases.

2. Let SeqGT = (aGT
1 ,aGT

2 , ...aGT
n ) and SeqR = (aR

1 ,a
R
2 , ...aR

n) be the ground truth (i.e.,
observer’s manual annotation of the data) and recognized sequences respectively,
where each item in the sequence ai(t ∈ N,p ∈ P) represents a moment in time,
uniquely defined by a timestamp t and having a label of phasep, andn is the number
of analysed time moments in a given intervention.

3. Let τ = {tr1,tr2, ..., trk} be the set of k possible transitions between phases, where
tri is defined by a pprev → pnext transition; pprev ∈ P is the current phase before the
transition, and pnext ∈ P after.

4. Let us call transitional moment (TM) a moment in time when a transition between
two phases takes place.

5. Let TMGT = (tmGT
1 ,tmGT

2 , ..., tmGT
s ) and TMR = (tmR

1 ,tm
R
2 , ..., tmR

s �) be the se-
quences of transitional moments for the ground truth and recognition respectively,
where tmi(t ∈ N, tr ∈ τ) is composed of a timestamp t indicating the moment in
time when the transition takes place, and a transition tr respecting the condition
tmGT

i (tr) �= tmR
i+1(tr). The values of s representing the number of transitions in

TMGT and s � in TMR may differ from each other.

6. Let TM∗ = {µ1,µ2, ...,µl} be the set of l pairs µi = < tmGT
x ,tmR

y > indicating the clos-

est matching transition moments, where tmGT
x (tr) = tmR

y(tr), and abs(tmGT
x (t)−

tmR
y(t)) is less than for all other candidate pairs having the same tr. The values x

and y may or may not be equal but always unique within TM∗.

7. Let us call transitional interval (TI) a period in time between two matching transi-
tional moments.

8. Let TI∗ = {ρ1,ρ2, ...,ρl}be a set of transitional intervals constructed from TM∗, where
a pair ρi = < tstart, tend > indicates the start and end time of the i-th transitional
interval.

6.2.2 Definition of metrics

6.2.2.1 Average transitional delay

Automatic recognition of current surgical phase enables providing the right computer
assistance at the right time. For a continuous process as surgery, it is also important to
accurately detect transitional moments between two phases. This allows to switch be-
tween different types of assistance at the right time. Generally, sequence-based recog-
nition methods, that keep track of the procedure, do a better job of detecting TMs than
frame-wise approaches. However, whatever the approach, the detected TMs may differ
from the real ones determined by the ground truth annotation, resulting in a transitional
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Negative TD Positive TD

Transitional Moments

Ground truth

Recognition

No match

Figure 6.1: Examples of negative and positive transitional delays

interval formally defined above. We call a transitional delay (TD) the distance it time be-
tween the real and the detected TMs. This delay may be negative and positive (Figure 6.1).
A negative delay indicates that the transition between the phases is detected with a late-
ness with regards to the ground truth (i.e., the detected TM has a bigger timestamp). A
positive delay, conversely, means that the system decides to switch the phase too early,
before the actual transition (i.e., the detected TM has a smaller timestamp). From the ap-
plicative point of view, knowing transitional delays is important to have an estimation that
helps to decide whether the method is suitable for the targeted application.

We define the average transitional delay (ATD) metric to measure the delays produced
during all transitions in all available interventions in order to have an average estimate of
the delay. Negatives and positives delays are measured separately and used to define an
interval of values for the average transitional delay. First, the sign of each delay (positive
or negative) is determined with the function sign(i) as in equation 6.1. Then, the negative
ATD is computed as in equation 6.2 and positive as in 6.3. The final ATD interval is defined
as in 6.4.

sign(i) =

�
1 if ρi(tstart) = µi(tm

R(t)) and ρi(tend) = µi(tm
GT (t))

−1 otherwise
(6.1)

ATD− =

�l
i=1 pi(tstart)−pi(tend) | sign(i) =−1

�l
i=1 sign(i) =−1

(6.2)

ATD+ =

�l
i=1 pi(tend)−pi(tstart) | sign(i) = 1

�l
i=1 sign(i) = 1

(6.3)

ATD= [ATD−;ATD+] (6.4)
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It may happen that some ground truth TMs are completely missed in the recognized
sequence, or that a certain existing transition is detected several times in the recognition
sequence. The missed or false positive TMs are mostly due to an actual failure of recogni-
tion and do not relate to delay. The ATD metric, on the other hand, measures the reaction
time of the system only. The problem of recognition failure is addressed using the metric
from Section 6.2.2.3. Meanwhile, the above formulas consider only transitional moments
that can be uniquely matched. Following the same logic, the metric supposes that the
correct detected TM is the closest to the ground truth TM. However, one can measure the
delay between the first occurrences of the TM having the same transition tr.

6.2.2.2 Detected-to-real transition ratio

Stability and consistency of recognition is another important factor of a successful sur-
gical computer assistance. Let us take an example of context-aware system automatically
controlling devices and adjusting the brightness of the lights in the OR. A frequent incor-
rect detection of phase transition may highly disturb the surgeon and even cause com-
plications. Now, imagine two recognitions as shown in Figure 6.2 made by two different
systems giving the same accuracy. The first recognition has some transitional delays but
a completely correct order of phases, being an example of a stable system. The second,
contrariwise, has almost no delay, but a great amount of short lasting false positive tran-
sitions. This demonstrates the importance of measuring the number of transitions in the
recognized sequence since the standard scores as accuracy do not represent this informa-
tion. We propose to compute a detected-to-real transition ratio (TRR) between the number
of detected transitional moments and the number of real ones (equation 6.5). It serves as
indicator of system stability and reflects its robustness, as a system with a high TRR is prob-
ably less tolerant to intrinsic changes in input data. This ratio also gives a simple intuitive
idea of how many of incorrect TM were detected as regards to their actual number.

TRR=
s �

s
(6.5)

GT

R

GT

R

Figure 6.2: Examples of two systems providing different phase recognitions but having the
same accuracy
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Delay related errors

Recognition failures

Ground truth

Recognition

Figure 6.3: Examples of two types of error

6.2.2.3 Actual failure rate

The errors in the recognized sequence can be divided into two categories: delay re-
lated and actual errors cause by recognition failure (Figure 6.3). The time delay problem
is, generally, very hard to solve but less harmful. A time delay means a belated but a cor-
rect recognition. Whereas, recognition failure, oppositely, indicates that the system fails to
interpret and understand the on-going situation. That is why, it is important to know the
actual amount of error (i.e., moments of recognition failure) that has to be worked through
in the first place. We propose to measure this with a failure rate computed as a ratio of
the number of mislabelled time moments not caused by any transitional delay to the total
length of the sequence (see equation 6.6). The algorithm 6.1 explains the computation of
the error() function used in the equation. In this algorithm, the label of a time moment
inside a transitional interval is still checked to ensure that it actually makes part of the
delay.

AFR=

�n
i=1 error(i)

n
(6.6)

6.2.2.4 Application-dependent scores

Standard performance scores are too strict and meaningless for system assessment
within the applicative context. They do not allow to objectively estimate the readiness
and appropriateness of the system to a specific use. Some applications do not require a
frame-by-frame phase identification. They may tolerate a certain time delay in detection
with no essential impact on the provided assistance. We propose to re-estimate standard
scores for concrete clinical applications. For this, we introduce a notion of transitional
window - an interval of time centred on a real transitional moment and, at both ends, au-
thorizing a delay d acceptable for the chosen application (Figure 6.4). We also redefine the
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notion of “true positive” TP replacing it by “application-dependent true positive” TP �. In
this case, if the examined time moment is inside the transitional window and happens due
to a delay, it is counted as true positive : ai ∈ TP � if ∃tm : abs(tmGT (t)−ai(t)) � d and
error(i) = false. Any standard score including accuracy, recall and precision can be re-
estimated using the notion of application-dependent true positive. This approach helps to
see the actual progress that has to be done before integrating the system in the OR.

Algorithm 6.1 Computation of error(i) function determining if the i-th item in the se-
quence represents an actual recognition failure

function ERROR(i)
e← true
if aGT

i (p) = aR
i (p) then e← false

else
for 1� j� l do

if ρj(tstart)� aR
i (t)� ρj(tend) then

if sign(j) = 1 and aR
i (p) = µj(tm

GT (tr(pnext))) then e← false
else if sign(j) =−1 and aR

i (p) = µj(tm
GT (tr(pprev))) then e← false

end if
end if

end for
end if
return e

end function

Ground truth

Recognition

Transitional Delay

Transitional Window Acceptable delay d

Figure 6.4: Transitional window
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6.2.3 Metrics application

We applied the proposed metrics to three different phase recognition approaches sub-
mitted to the M2CAI 2016 challenge. These approaches are briefly described below; their
detailed information can be found in the technical reports referenced for every method.
Section 6.2.3.2 presents the results obtained with the metrics, discusses the differences be-
tween the methods and appropriate applications.

6.2.3.1 Recognition methods

1. Cadene et al. The approach proposed in [Cadene 2016] is a deep learning based ap-
proach. It used a convolutional neural network with time smoothing and a classical hidden
Markov model to perform the phase recognition task. The network presented for the chal-
lenge was based on a Residual Network-200 pre-trained on ImageNet, last layer of which
was replaced by a new fully connected output layer corresponding to 8 possible surgical
phases. It was then fine-tuned on the M2CAI dataset using on-line data augmentation. A
temporal smoothing was performed on the log-probability output vectors of the network.
The smoothed vectors were then passed to the HMM to correct possible classification er-
rors as regards to the previously recognized frames.

2. Twinanda et al. The authors of [Twinanda 2016] also proposed a method based on
deep learning. They took the pre-trained AlexNet as a base, replacing the output layer,
and fine-tuned it with the M2CAI training dataset. The fine-tuned network was called
PhaseNet. The image features extracted by the CNN found in the second last layer of the
PhaseNet were used as input for a one-vs-all linear SVM. A hierarchical HMM was also put
on top of the SVM classifier to reinforce the temporal constraint.

3. Dergachyova et al. The method proposed in [Dergachyova 2016] represented a clas-
sical machine-leaning approach consisting of several steps. The first step consisted in de-
scribing input images by extracting visual features characterizing color, form and texture
of the image. At the next step, an intermediate classification was done using several Ad-
aBoost cascades. Finally, a hidden semi-Markov Model was used to provide a definitive
phase label.

6.2.3.2 Results

The results of ATD, TRR, and AFR metrics are presented in Table 6.1. For ATD and AFR,
their part in the total error was also computed. The application-dependent (AD) scores
were re-estimated for two possible applications. The first was information display and
device triggering that required a relatively fast reaction. For this application the acceptable
thresholdd for the delay was set to 15 seconds, meaning that all incorrect labellings caused
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by a transitional delay of 15 seconds or less were counted as good recognitions. The second
application was estimation of remaining surgical time. The d value was fixed to 1 minute
with no essential impact on the estimation of time left. The results of standard and AD
scores (accuracy, recall and precision) for both cases can be found in Table 6.2.

Table 6.1: ATD, TRR and AFR metrics for phase recognition

ATD TRR AFR
interval of total time of total error of total time of total error

1. Cadene et al. [-30s ; 1min 8s] [1.6% ; 3.5%] 44.2% 1.8 7.3% 55.8%
2. Twinanda et al. [-23s ; 54s] [1.2% ; 2.8%] 34.1% 8.6 12.6% 65.9%
3. Dergachyova et al. [-45s ; 1min 10s] [2.3% ; 3.6%] 25.2% 2.7 22.7% 74.8%

Table 6.2: Standard and AD scores (%) for phase recognition

Standard scores AD scores (d = 15s) AD scores (d = 1min)

Acc. Rec. Pres. Acc. Rec. Pres. Acc. Rec. Pres.

A
vg

. 1. Cadene et al. 84.2 69.2 74.2 88.6 75.8 80.9 92.4 80.9 86.5
2. Twinanda et al. 79.2 67.6 74.0 81.5 72.6 78.8 85.9 79.9 84.5
3. Dergachyova et al. 68.6 61.9 62.1 73.1 67.3 66.2 78.6 73.4 71.1

St
d

. 1. Cadene et al. 10.9 19.0 13.3 11.2 17.1 12.7 11.2 17.2 12.2
2. Twinanda et al. 11.6 19.4 11.6 11.5 18.2 10.6 12.8 16.6 10.8
3. Dergachyova et al. 5.8 16.8 20.8 6.5 16.2 19.0 7.3 15.1 17.1

From the results presented in Table 6.1, it is clear that the method #2 has the short-
est transitional delays. That is why, its accuracy was improved less than others using AD
metrics. This method is more suitable for applications requiring a fast system reaction.
However, it makes too many incorrect transitions between phases (8.6 times more than
should be). The method #1, on the other hand, provides recognitions with larger delays,
but much less spikes of incorrect phase transitions (TRR = 1.8). However, the periods of
incorrect recognitions last longer. Its recognitions are much more consistent compared to
the method #2. Thus, the method #1 suits more the applications requiring high stability.
The method #3 has also a low TRR. However, most errors come from the actual failures
of recognition (74.8%), which last for longer periods of time. Short spikes of recognition
failure, like high-frequency noise, are simpler to filter in real-time applications compared
to longer periods of recognition failure. However, longer periods with less incorrect transi-
tions have more chances to be successfully corrected in off-line applications, taking benefit
from a complete sequence. This shows that the methods #2 is better for on-line use and



6.3. FOR SURGICAL ACTIVITY RECOGNITION AND PREDICTION 127

#1 and #3 for off-line. The results of Table 6.2 show how the performance scores can grow
using appropriate AD transitional windows. This helps more clearly estimate how close the
methods actually are to the clinical use within a concrete application.

It is also important to mention, that these three works can not be discriminated or, in
this case, objectively compared with the proposed metrics. The methods were designed
and trained to maximized accuracy but not the proposed scores. It is possible, that other
sets of methods’ parameters would result in better ATD, TRR, AFR and AD scores. Yet, using
such metrics for the challenge assessment could change the ranking.

6.3 For surgical activity recognition and prediction

The second part of this chapter is devoted to application-dependent approaches of
performance re-estimation for methods providing recognition and prediction of surgical
activities. Section 6.3.1 provides a formal explanation of a usual performance assessment.
Section 6.3.2 introduces new approaches of error estimation, and Section 6.3.3 demon-
strates their use. We tested the proposed error estimation approaches on the method of
next activity prediction from the previous chapter. The best transfer configuration “mix of
sites + inter-procedure transfer” (transfers ACDF → LDH, LDH → ACDF, ACDF → PA) was
used, and the scores averaged for all three procedures were exposed. The task of prediction
was taken because a corresponding method was already available within the current work.
However, the formalisation and metrics can be applied to the activity recognition task as
well.

6.3.1 Problem formalization

Let SeqGT = (aGT
1 ,aGT

2 , ...aGT
n ) and SeqP = (aP

1 ,a
P
2 , ...aP

n) be the ground truth and pre-
dicted sequences respectively, where each activity ai < L(V,I,S),R(V,I,S) > is composed
of an action verb V , surgical instrument I and anatomical structure S for both left L and
right R hands. The activity is usually considered correctly predicted only if all 6 elements
are correctly predicted. For instance, for one sequence prediction accuracy is computed as
follows:

Accuracy =

�n−1
i=1 f(i)

n−1
, (6.7)

where the function f(i) evaluates correctness of the prediction for one activity as :
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f(i) =





1 if (VP
Li
= VGT

Li
) and (IPLi = IGT

Li
) and (SPLi = SGT

Li
) and

(VP
Ri

= VGT
Ri

) and (IPRi = IGT
Ri

) and (SPRi = SGT
Ri

)

0 otherwise

(6.8)

6.3.2 Definition of metrics

6.3.2.1 Rational accuracy

The usual definition of the f() function constrains the output to a binary value without
counting the number of correctly predicted elements. Imagine two predicted sequences as
in Figure 6.5. In the first sequence, all incorrect predictions have errors in five or six activity
elements at once, while in all incorrectly predicted activities of the second sequence only
one or two elements are wrongly labelled. Accordingly to the accuracy computed with f()
from equation 6.7, both systems that produce these predicted sequences have the same
score but, in fact, quite different performances. For a more precise estimation of the sys-
tem performance, it is important to know the number of correctly predicted elements. The
present metric redefines the f() function so that it returns a rational value for each pre-
dicted activity, based on the number of correctly predicted elements as in equation 6.9.
However, one should keep in mind, that a system with a high rational accuracy of 83.3%
(when in all activities only 5 from 6 elements are predicted) may still provide no truly cor-
rect prediction.

Activity tuple Activity tuple
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q

u
e
n

ce

S
e
q

u
e
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ce

Correctly predicted activity

Correctly predicted element Uncorrectly predicted element

Figure 6.5: Examples of two systems providing different predictions of activity elements
but having the same accuracy



6.3. FOR SURGICAL ACTIVITY RECOGNITION AND PREDICTION 129

f(i) := 1
6(V

P
Li
= VGT

Li
) + 1

6(I
P
Li
= IGT

Li
) + 1

6(S
P
Li
= SGT

Li
) +

1
6(V

P
Ri

= VGT
Ri

) + 1
6(I

P
Ri

= IGT
Ri

) + 1
6(S

P
Ri

= SGT
Ri

),
(6.9)

where the sign := means assignment, and the sign = is a boolean operator testing if the
instance on the left is the same as on the right, returning 1 if yes, and 0 if not.

6.3.2.2 Inverted hands

It may happen that the labels given for the elements of a two-hand activity are actu-
ally inverted (i.e., right elements get predicted as left and vice-versa). This may occur if
the surgeon changes hands on purpose, which creates a rare activity in the dataset, or if a
computer-vision recognizer is confused by an unusual position of hands. Regarding the f()
function from equation 6.7, this condition will be treated as incorrect prediction. Yet, for
some context-aware applications, such inversion would not hurt the overall understanding
of the situation. For these cases, we redefine the function f() as f �() allowing the inversion.

f �(i) =
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0 otherwise

(6.10)

6.3.2.3 Unordered elements

There are applications, such as context video or database retrieval, where the search
can be executed by a set of unordered key words. For these applications, the order of ele-
ments in the activity has poor importance while all correct element instances can be found
in the prediction. Thus, the f() function can be redefined as in equation 6.11.

f(i) =

�
1 if |{aP

i }∩ {aGT
i }|= 6

0 otherwise
(6.11)

6.3.2.4 Significant element

For some applications, certain activity elements may have higher significance than oth-
ers. As example, the automatic prediction of next surgical activities can be used to assists
novice scrub nurses in anticipation process. Displaying next activity on the screen would
help them to stay tuned and to prepare necessary instruments in advance. In this case, pre-
diction of a whole activity is desirable yet only an accurate prediction of the instruments
is vital. Equation 6.12 shows the definition of f() function adapted to the prediction of
instruments. It can be analogically defined for two other elements as well.



130 CHAPTER 6. APPLICATION-DEPENDENT VALIDATION METRICS

f(i) =

�
1 if (IPLi = IGT

Li
and IPRi = IGT

Ri
)

0 otherwise
(6.12)

6.3.3 Metrics application

The results of the proposed metrics applied to the task of next activity prediction can be
found in Table 6.3. The rational accuracy was higher than the standard accuracy by almost
5%. On average, 3 to 4 elements of incorrectly predicted activities were still correctly dis-
covered. Only 2.3% of activities got inverted in the prediction. It mostly happened when
only one hand was involved in the activity. When the actions of the left hand are per-
formed with the right hand (e.g. blood suction), it may indicate that a particular event (e.g.
bleeding) is taking place. The authors of [Huaulmé 2017b] argue that deviations from the
standard procedure are manifested by certain precursor patterns and are possible to pre-
dict. Yet, our system would apparently fail to correctly predict such precursor activities. On
the other hand, the system predicted the elements in an appropriate order - its output was
constrained to that. However, in some rare cases (0.8%) the prediction of one element of
the left hand got inverted with the same element of the right hand. The verb was predicted
better than other elements. It probably comes from the fact that the procedures involved
in transfer shared more verbs than instruments or structures. That is why this information
was learnt and transferred easier. With the new error estimation metrics, the system got
6% closer to the application of situation anticipation for scrub nurses.

Table 6.3: Results of activity prediction with application-dependent accuracies

Standard accuracy 89.1% ± 5.1% Significant element

Rational accuracy 94.7% ± 3.8% Verb 96.3% ± 3.0%

Inverted hands 91.4% ± 4.9% Instrument 95.3% ± 4.1%

Unordered elements 92.2% ± 4.6% Structure 93.2% ± 6.3%

6.4 Discussion

6.4.1 Other metrics and strategies of error analysis

This chapter demonstrated the importance of meaningful validation. The proposed
metrics and error-estimation techniques are the examples of how a recognition method
can be bound to a targeted clinical application in order to approach its integration in the
OR. Other methods of error analysis can nevertheless be applied. As an example, sys-
tems providing assistance during particular phases require high recognition recall for these
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phases only. In addition, the acceptable threshold for the transitional window may vary
for different phases. Other relevant information would be the order of phases in the rec-
ognized sequence. Levenshtein distance used in [Malpani 2016] and frequently applied
in sequence alignment algorithms as DTW measures how much two sequences resem-
ble. Another important requirement for medical systems that has be addressed in the val-
idation process is robustness. “The robustness of a system refers to its performance in
the presence of disruptive factors such as intrinsic data variability, data artefacts, pathol-
ogy, or inter-individual anatomic or physiologic variability“[Jannin08]. Simulating noise
in input data and measuring its impact on the recognition, as done in Chapter 4, is one
of the options to estimate the robustness. Unfortunately, among all the reviewed meth-
ods only [Bouarfa 2011, Forestier 2015, Franke 2015a] actually did that. Finally, an in-
tuitive way of understanding the errors is visualization of recognized sequences against
the ground truth. This enables qualitative analysis. Such visualizations were displayed
in [Dergachyova 2016, Forestier 2015, Forestier 2017, Franke 2015a, Lalys 2011, Lalys 2012,
Tran 2017, Twinanda 2017, Zia 2017].

Similar strategies are conceivable for surgical activities. Particular attention should also
be paid to the sequencing of activities. Although being highly appropriate, sequence dis-
tances as Levenshtein’s leave a room for consideration. Such distances would treat all ac-
tivities equally distant from each other. Nevertheless, the activity tuples are formalized
representations of semantic knowledge about the surgical process. Some sort of seman-
tic distance between the activities would be highly pertinent in this situation. An effort in
[Huaulmé 2017b] was done to adjust the Levenshtein distance so that it takes the elements
of the activity into account in its computation as well. However, the proposed distance still
made no difference between the activity elements. Word embeddings, encoding semantic
distance between activity words in form of vectors, would be a good option. Though an-
other questions arise. How one should interpret the distance? Is a threshold separating the
activities on similar or dissimilar has to be fixed, and how? How to validate a threshold if
there is one? Making an actual mistake or interpreting the situation in different terms is
not the same thing. Semantic distance has the potential to make this distinction yet the
arose questions have to be answered first. In addition, the distance can also be computed
as a factor of activity significance, which also leaves us with the following question. How
to certainly define if an activity is important regarding the entire process? All this provides
a lot of matter for discussion.

Finally, since the effectiveness of learning and performance of recognition methods
also depend on the quality of input data annotation, its correctness should be examined
and the amount of uncertainties and errors in annotation has to be taken into account
when estimating method’s performance as well.
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6.4.2 Validation standards

Introducing the problematic of this chapter, we implicitly divided existing validation
metrics into standard machine-learning scores and performance estimation approaches
relevant to surgical workflow. In our understanding, relevant metrics should better de-
scribe the behaviour of the system (e.g., nature and sources of errors, recognition pro-
gression in time) and express its performance as regards to the requirements of targeted
clinical applications. The concept of relevance, however, has to be explicitly defined. A
standard referencing all crucial parameters to measure for surgical workflow recognition
system has to be established. Another important question is “When can we say that the
method is ready to be used?”. Our application-dependent metrics, loosening up the recog-
nition constraints, assume that the method is ready when its reaches perfect accuracy (i.e.,
the score equals to 100%) for a chosen acceptable delay or output permutation. Equivalent
performance targets have to be defined for all relevant metrics.

During validation process, the recognized and predicted sequences are compared
against manual workflow annotations, called ground truth. One should remember that
this ground truth has several bias. The first bias originates from the definition of the sur-
gical phase or activity itself. For instance, in reality, the transition between phases rather
represents a period of their overlap than a sharp frontier between the two. Even the experts
do not completely agree about the moment on the time line when the transition should be
marked. The second bias comes from the person annotating the data. First, the transitional
point is marked according to observer’s perception. Secondly, particularly for short activ-
ities, a lag may occur between the time of the real transition and the time marked in the
annotation. That is why, there is less sense in trying perfectly match ground truth transi-
tional moments than in providing a sustainable recognition in between. Besides adequate
metrics assessing the performance, a great attention should also be paid to a deeper anal-
ysis of errors and discovery of their sources. The main questions would be: When and why
do the errors happen? Of course, the methodology of error exploration greatly depends
on the recognition algorithm itself. However, general heuristics have to be proposed to
facilitate the process and motivate the community.

Despite the progress in the field of surgical workflow, the appropriate concept of vali-
dation has not been fully developed. A careful and rigorous process of validation is often
neglected. In the domain of medical image processing, a considerable effort in standard-
ization of the validation process was done by [Yoo 2000, Jannin 2006b, Jannin 2008]. The
assessment of the actual advantage in clinical use occupied one of the central places in
these works. Similar ideas can be adapted for surgical workflow since, for now, no substan-
tial common standard exist. There is also a need for standardization of concepts and termi-
nology. Greater attention should be paid to ontologies structuring data. Their widespread
use would establish common basis needed for objective comparison and validation.
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6.5 Conclusion

The performance metrics usually used for validation of approaches recognizing or pre-
dicting surgical workflow are often too strict, not informative enough and disconnected
from clinical applications. In this chapter, we proposed new adapted metrics that help
to extract more of relevant information from the method’s results and to re-estimate the
standard performance scores as regards to a particular targeted application. Metrics such
as average transitional delay, detected-to-real transitions ratio, actual failure rate and
application-dependent scores were proposed for phase recognition. They were tested on
the methods submitted to the MICCAI M2CAI 2016 challenge on workflow recognition for
endoscopic surgeries. For activities, we proposed the following new error estimation ap-
proaches: rational accuracy, inverted hands, unordered and significant elements. These
approaches were tested on the method of next activity prediction from the last chapter.
The results revealed some interesting properties and demonstrated how the methods can
be bound with the clinical application.
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CHAPTER

7
Conclusion and perspectives

Preamble

This last chapter draws a line under the work exposed in this dissertation. Section 7.1
recalls important issues of the domain of surgical workflow discovered during the re-
view of scientific literature and addressed in this thesis. Section 7.2 briefly reminds the
main stages of the conducted research and summarises our contributions. Section 7.3
exposes the limits of this work and suggests several improvements for its enhancement.
Section 7.4 presents perspectives and proposes ideas that could take the research on the
subject to the next level.
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7.1 Motivation and objectives

Through couple of decades, incredible advances have been made in making computers
understand the situation inside the OR automatically recognize surgical workflow. Numer-
ous applications of situation and workflow awareness have been proposed . Nevertheless,
up to this moment, a considerable gap between automatic recognition systems and their
application can be observed through the content of publications in the field. A certain
apartness of computer scientists and engineers from clinicians can also be felt. Another
tangible blank is a lack of exploration and analysis before to the recognition stage. In our
literature review, three considerable obstacles to evolution of surgical workflow recogni-
tion were emphasized.

1. The publications proposing automatic recognition methods for semantic surgical
activities are much more rare than those for surgical phases or gestures. The deficit
is explained by an extreme difficulty of the task, especially for complex surgeries.
Semantic information about activity elements as action verb, surgical instrument
and operated anatomical structure plays an important role in the recognition. Yet,
no study analysing their impact on the recognition process exists. We decided to
perform such an analysis to find input signals and sensors that could facilitate the
recognition and provide better results.

2. Lack of clinical data in the domain is a well-known problem. This creates obstacles
for recognition and analysis of surgical workflow - tasks requiring extensive amounts
of data. We chose to explore techniques of knowledge transfer to enrich available
data and compensate for its deficiency.

3. Insufficient validation, poor analysis of errors and use of inappropriate metrics to as-
sess the performance of recognition methods notably slow down integration of sys-
tems in the OR and hinders objective estimation of progress. We decided to demon-
strate why the current validation methods were not effective and to give a sense of
how the validation process should be approached.

The prevalent concentration of researchers on purely recognition challenges often ob-
structs global vision of the situation awareness in the OR. That is why this work was carried
out to address the problems “around” the recognition in order to overcome barriers block-
ing its progress and to reconnect it with the operating room. For this purpose, we asked
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ourselves several important questions. How to make the recognition of surgical activities
easier and more effective? How to deal with existing quantity constraints of surgical data?
How to assess recognition methods in a meaningful and objective way? Besides finding an-
swers to these questions, we also wanted to propose a new perspective to the recognition
problem and validation process.

7.2 Summary of contributions

7.2.1 Analysis of activity elements

We conducted a study examining the importance of each semantic element (e.g. verb,
instrument and structure) regarding activity recognition to facilitate the recognition pro-
cess. The work was based on a common approach of one-by-one recognition of activity
elements and their posterior concatenation. We had the following hypothesis. Not all of
the input elements have to be recognized in order to make an accurate recognition of the
entire activity; it is sufficient to find and use the most informative elements only. This
would help to minimize the number of OR sensors and to guide their choice. We proposed
an original approach for analysis to prove our hypothesis. We first assumed that all nec-
essary elements can be confidently recognized. Then, we modelled the surgical workflow
using Long-Short Term Memory recurrent neural network. We performed multiple exper-
iments to estimate the importance of semantic elements. In the experiments, different ac-
tivity elements and their combinations were evaluated one after another by masking their
information while measuring the recognition performance of the network. Additional ex-
periments were also conducted to see how noise and temporal delay in certain elements
impact the recognition.

During the experiments, several observations and conclusions were made. We, indeed,
proved our initial hypothesis: two elements of three were enough to accurately recognize
an activity. The best choice was the combination of the anatomical structure and instru-
ment. Thus, the sensors recognizing these two elements would be the most effective. The
experiments with noise also confirmed advantage of this combination on others which
were shown to be insufficient for a correct recognition. In addition, some interesting ob-
servations about surgical practice were made as, for example, the difference between the
hospitals of Leipzig and Rennes in terms of instruments use. We also observed that de-
spite the coordination of the hands, one hand (neither right nor left) is not enough for an
accurate recognition.

7.2.2 Knowledge transfer

In this work, the problem of lack of data for training was transformed into the problem
of lack of knowledge. We decided to address this problem by proposing methods of knowl-
edge transfer that aimed to improve the recognition performance. We took a task of next
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activity prediction as an example for demonstrating different approaches of knowledge
transfer within a deep learning architecture. The deep architectures were chosen because
of their potential to improve themselves along with the growth of data amount and easiness
of transfer. We used two complementary types of transfer. The first consisted in using word
embedding, a very popular technique in natural language processing [Collobert 2011], to
extract and encode the knowledge about the surgical domain in general from scientific and
medical texts. We created several word corpora, using freely available on-line services and
research engines, on which the embeddings were trained with two different algorithms. We
then integrated the embeddings into the deep neural network and estimated their impact
on the activity prediction. The second type was the transfer learning technique passing
the knowledge about the surgical process between the surgeries of the same speciality. The
knowledge from one surgery encoded in internal parameters of the neural network was ex-
tracted and used as a training base for other surgeries. We tested different combinations
and splits of data, as well as various transfer configurations to find what worked the best.

Thanks to both methods of transfer, the prediction accuracy of the network increased
by almost 22% in total (11.7% for word embeddings and 10.2% for transfer learning). We
demonstrated that even relatively small medical texts were good enough to extract helpful
information about surgical terms without enlarging the actual dataset. The best trans-
fer learning was made transmitting the knowledge between different procedures. That
demonstrated that the extracted process knowledge can be independent of the procedure
itself and encode some general information common for all procedures. This gives a hope
that surgeries from other specialities are also able to contribute in the training process and
help to to overcome the problem of data deficiency. We also made multiple observations
about surgical practice. The most important concerned the difference between the exper-
tise levels, surgical sites and procedures in terms of workflow.

7.2.3 Validation metrics and approaches

By addressing the problem of insufficient validation, we made a first step towards im-
provement explaining why standard machine-learning metrics miss important aspects of
performance and why they are not appropriate for surgical workflow. We also showed their
disconnection from real clinical applications. Then, we suggested more adapted informa-
tive metrics for both phase and activity recognition, as well as new application-dependent
approaches for error estimation. We demonstrated their use on concrete phase recognition
methods from the MICCAI M2CAI 2016 challenge and on our method of activity predic-
tion. Withal, we discussed interesting properties of each method that have come into view
thanks to the proposed metrics. We finally shared our vision of advancement directions.
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7.3 Limitations of the work and ways of improvement

7.3.1 Data

One of the major limitations of the current work is absence of any raw data. The work-
flows of all neurosurgical datasets were annotated on-line without recording any physical
signal. That is why, only semantic descriptions of activities were used as input for deep
neural networks. Yet, activities with the same semantic discription may be different from
a quantitative point of view or actually have different meaning depending on the global
context meaning that the chosen descriptions possibly miss some important activity indi-
cators. Adding numerical values of physical signals to the descriptions (e.g., videos, sound,
motion data) would provide more of contextual information for learning.

7.3.2 Experiments

Multiple experiments designed to study diverse relationships between data compo-
nents were conducted in this work. However, some types of experiments were not covered
due to small sizes of the datasets. The experiments could have include studying surgeon-
specific behaviours, analysing procedures from a multi-actor perspective, splitting the data
by level of surgical complexity (e.g., patient’s age, medical antecedents, disease stage or
patient-specific plan of surgery) and treating activities separately for each hand. These
experiments would create more homogeneous clusters of data and better explain some
observations. Similarly, if available dataset contained more procedures or surgical sites,
the conclusions about the surgical practice would be more solid.

7.3.3 Method

The LSTM model, easily capturing distant temporal dependences, was chosen as a well
appropriate method for sequential problems as surgical workflow. This method also en-
ables an on-line analysis and a straightforward knowledge transfer. Despite that, one could
argue that deep learning does not suit the problems with limited quantities of training data.
We demonstrated the ways to overcome this obstacle. However, to confirm that our con-
clusions are independent from the method, other sequential approaches should also be
tested.

7.3.4 Model complexity and performance

In this work, quite simple LSTM models were used. We have chosen basic architec-
tures to be able to concentrate more effort on auxiliary aspects of training as preliminary
data analysis and knowledge transfer that also contribute in high performance. However,
an advanced research on deep architectures (i.e., type, number and order of layers, etc.)
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and network parameters (i.e., number of neurons on each layer, optimizer, loss and acti-
vation functions, learning rate, etc.) is needed for two reasons. The first is to improve the
performance even more. For input signals analysis, it will lead to further minimization of
the number of sensors necessary for an accurate activity recognition. In case of transfer,
it will minimize the needed amount of knowledge. The second reason is to eliminate un-
certainties. In this works, multiple conclusions were made by observing the dependences
between the input and output of the network relying on causality principle. However, some
uncertainties may hide biases and distort true causal relationships. It means that in some
cases a particular output can be caused by randomness of choice and not by an actual
change in the input. Thus, to confidently prove our observations, recognition or predic-
tion errors must be minimized.

7.3.5 Online vs. Offline

This thesis was focused on methods enabling on-line processing and analysis where the
system makes its decision based on the past and present information only. The validation
metrics and targeted applications were also mainly placed in the on-line context. Yet, the
off-line methods and applications could have been considered. For example, LSTM could
have bidirectional connections improving the performance. The separate metrics for on-
line and off-line use would also be relevant as the requirements for recognition are often
not the same.

7.4 Perspectives

7.4.1 Semantic distance

In the previous chapter, we mentioned the idea of using semantic distance as a valida-
tion metric to better assess activity recognition and get a deeper understanding of method’s
capacities. This distance can also be explicitly integrated in the method itself to give a bet-
ter idea of how the activities and their elements should be interpreted. The distance can be
provided as part of the input, or be integrated in the reasoning process. The semantic sim-
ilarity can be defined as a value computed as cosine distance between word embeddings,
or defined with ontology as a class in a hierarchical system of objects and concepts. Sure
enough, the idea of semantic distance has to be discussed with medical experts in the first
place.

7.4.2 Surgical practice analysis

In our opinion, the future of computer assistance is tightly connected to exploration
and understanding of surgical processes and practices, since new intelligent ORs will be
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centred on the surgeon and process. It is thus necessary to go further in their analysis. The
observations about surgical practices made in this thesis have still to be confirmed in a
rigorous study similar to [Riffaud 2012]. Yet, they provide a good base for further research.
An analytical approach analogical to ours can also be tested in the context of other tasks as,
for example, prediction of remaining operating time or surgical skill evaluation. This will
help to discover aspects of the surgical process imperceptible during activity recognition
and prediction. Nevertheless, other approaches of knowledge extraction and analysis must
to be explored as well.

7.4.3 Knowledge extraction

In this thesis, the extracted knowledge about the surgical process, which got encoded in
the network’s internal parameters, was only a consequence of learning tasks and not their
objective. It is thus possible the extracted information to be incomplete and inaccurate
representation of the process. Making the knowledge extraction the main task could result
in a more accurate and comprehensive representation. There is a class of deep learning
approaches called auto-encoders specifically designed for optimal extraction of relevant
and representative information [Bengio 2013, Kočiskỳ 2016]. They are often used in unsu-
pervised learning when no labels for input data provided. The auto-encoders are trained
to accurately reconstruct input signal after a certain distortion which forces them to ex-
tract and encode the most important information about the data in a very efficient way.
The auto-encoders could be used to capture essential knowledge of the surgical process.
Further, of course, an effort should be done to transform the output of the auto-encoder
into a human-readable representation.

7.4.4 Knowledge validation

Before using extracted knowledge for analysis or any other manipulation on surgical
workflow, it has to be validated first. It means that one has to ensure that the representa-
tion about the domain that the network learnt is valid. For instance, a network predicting
next activities can also be used to generate new possible activity sequences using its own
predictions about the past as input. The validity of these generated sequences can be veri-
fied with ontologies or gSPMs. Passing this knowledge validation step proves the ability of
the network to accurately capture connections between different components of surgical
process and correctly understand its idea.

7.4.5 Visualization and understanding

Transparency is a very important property for a medical system. Clinicians tend to
be more willing to accept a new system if they can understand it functioning and follow
its decision making process. Deep learning, however, has been criticized for the nature
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of its learning process that is poorly understood. In spite that the neural networks were
inspired by the functioning of the human brain, their decisions are hardly understandable
by humans as they follow no specific set of rules that could explain them. This may create
mistrust on behalf of the surgeons. An effort was done to visualize the learning process of
deep networks in order to understand what exactly they learn [Yosinski 2015]. Although,
the answer to the question “why exactly do they learn what they learn?” for now remains
a mystery. In addition, the research on understanding and visualization of the learning
process was mostly done for an image-based signal. The same is much more harder to
achieve for non-visual sequential data. Thus, looking inside LSTM, understanding and
visualizing its learning process would be a great step forward. Clear explanation of output
values would give more information about the system reasoning, ensure its stability and
provide convincing evidences of its efficiency to clinicians. All this would help to painlessly
integrate the system in the OR and introduce it in an every-day clinical routine.

7.4.6 Community

This thesis represented a small step towards a well-rounded process of surgical work-
flow recognition and understanding. Nevertheless, the discussed problems can be truly
resolved with a join effort of the entire research community only. Their solution requires
a highly cohesive collaboration between clinicians and computer scientists, as well as be-
tween research centres. For a more productive work, the community needs to create a
common platform for data sharing, which also proposes a complete and versatile process-
ing pipeline handling tasks related to surgical workflow starting from data acquisition to
tools for final evaluation of clinical effect. The creation of this platform implies conception
of multiple solid standards, e.g. for data format and validation process. Several collabora-
tive initiatives were already launched for computer assisted medical interventions (CAMI).
In France, for example, CamiTK framework [Fouard 2012] “helps researchers and clini-
cians to easily and rapidly collaborate in order to prototype CAMI applications that fea-
ture medical images, surgical navigation and biomechanical simulations”. A french work
group M2CAMI also decided to create a platform for sharing data and code implementa-
tions for modelling and monitoring of CAMI. Only working all together on these important
problems will make the domain truly evolve.
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A
Résumé étendu de la thèse

Contexte de la thèse

La chirurgie assistée par ordinateur est un domaine de recherche dans lequel la tech-
nologie informatique sert à guider et aider les chirurgiens pendant tout le processus chirur-
gical. Cette assistance chirurgicale peut intervenir durant la formation, ainsi que durant
les périodes pré, per- et post-opératoires sous la forme de simulateurs [Gallagher 2005],
planification et aide à la décision [Garg 2005], assistance robotique [Lanfranco 2004],
navigation et guidage par image [Peters 2006] et analyse et optimisation des procédures
[Schumann 2015].

Au début des années 2000, le concept de bloc opératoire intelligent, plus communé-
ment appelé « OR of the future », a été développé par la communauté scientifique et
est aujourd’hui l’axe central de recherche dans le domaine [Cleary 2005, Feussner 2003,
Satava 2003]. La principale innovation d’un tel type de salle opératoire réside dans
l’assistance chirurgicale de manière contextuelle. Dans ce cadre, le system contextuel doit
intervenir en prenant en compte le déroulement actuel de la procédure, en observant
constamment la scène chirurgicale avec ses différents acteurs, ainsi qu’être au courant
d’événements importants, d’actions réalisées et du besoin des cliniciens.

La reconnaissance automatique du flux de travail chirurgical est probablement la fonc-
tionnalité la plus utile du système contextuel d’un point de vue clinique. Dans ce con-
texte, le flux de travail décrit une séquence de tâches chirurgicales accomplies afin de
réaliser une procédure suivant un schéma répétitif. Le flux de travail de chaque interven-
tion est unique en raison des spécificités liées au patient et au chirurgien. Cependant,
il est possible à partir de ces modèles spécifiques de créer un modèle abstrait représen-
tant l’ensemble des chirurgies appelé Modèle de Processus Chirurgical [Lalys 2014], utile
et nécessaire pour la reconnaissance du flux de travail.

145
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Etat de l’art

Spécialité chirurgicale

Chaque spécialité est caractérisée par ses propres objectifs médicaux, ses techniques
interventionnelles, configuration du bloc opératoire (ce qui implique les intruments et dis-
positifs chirurgicaux ainsi que les conditions de travail) et ses besoins en assistance in-
formatique. Actuellement, la reconnaissance automatique flux de travail est principale-
ment étudiée dans le contexte de la coelioscopie manuelle [Bouarfa 2011, Padoy 2012,
Twinanda 2017] et également assistée par robot [Malpani 2016, Zia 2017]. Certines études
sont également menées en neurochirurgie [Forestier 2015, Lalys 2011], enophtalmolo-
gie [Lalys 2012], oto-rhino-laryngologie [Meißner 2014, Unger 2014] et chirurgie dentaire
[Katić 2010].

Données

Afin de créer un système capable de reconnaître le processus chirurgical, un en-
semble de données est nécessaire pour la création du modèle. Pour se faire, plusieurs
types de données cliniques sont utilisés dans la littérature : mise à part les don-
nées cliniques liées à une intervention sur patient, des données issues de simulation
[Bardram 2011, Padoy 2009, Tran 2017], de modèles animaux [Thiemjarus 2012], de fan-
tômes anatomiques [Ahmadi 2009, Meißner 2014] et des données générées de manière ar-
tificielles [Katić 2010, Weede 2012] sont également employées lors de l’entraînement de ces
modèles.

Niveaux de granularité

Le niveau de granularité détermine la précision avec laquelle la procédure chirurgicale
est modélisée et reconnue. De manière hiérarchique ascendante, les niveaux de granular-
ités sont définis de la manière suivante : dexemes, surgemes, activités, étapes, phases et
états. Les dexemes décrivent des gestes courts effectués d’une main et qui sont dépourvus
d’objectif sémantique. Une séquence de dexemes permet alors d’accomplir un surgeme,
décrit comme un geste chirurgical réalisé avec un but précis et ayant une sémantique ex-
plicite [DiPietro 2016]. Une activité est une action physique décrite principalement par le
triplet structure anatomique opérée, outil chirurgical utilisé et action réalisée (autrement
appelée un verbe) [Forestier 2017, Lalys 2013]. Une étape est définie comme un ensemble
d’activités permettant d’accomplir un objectif chirurgical [Franke 2015a, Twinanda 2015].
Une phase représente un intervalle de temps plus long, comprenant plusieurs étapes
et pouvant impliquer des interactions avec d’autres membres de l’équipe chirurgicale
[Bouarfa 2011, Droueche 2014, Klank 2008, Nara 2017, Twinanda 2017]. Pour finir, un état
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représente une période hors de la chirurgie elle-même, décrivant l’état du bloc opératoire
[Bardram 2011, Padoy 2009].

Approches de modélisation

Les connaissances sur le processus chirurgical utilisées pour l’entraînement du sys-
tème de reconnaissance peuvent être formalisées de différentes manières : en utilisant
une ontologie dédiée [Katić 2015], une décomposition hiérarchique [Franke 2015a], un
diagramme de transition d’état [Blum 2010], une liste séquentielle [Klank 2008] et non
séquentielle [Ahmadi 2009] de tâches chirurgicales.

Approches de reconnaissance

Les approches d’apprentissage automatique sont généralement divisées en trois caté-
gories : supervisée nécessitant une annotation complète des données d’entrée, non su-
pervisée recherchant une structure pertinentes par ses propres moyens dans les don-
nées d’entrée, et semi-supervisée utilisée notamment lorsqu’une partie des données en
entrée est étiquetée. Les approaches d’apprentissage utilisées pour la reconnaissance
du flux de travail chirurgical peuvent être divisées en plusieurs groupes: les classi-
fieurs probabilistes [Forestier 2015, Quellec 2014b, Thiemjarus 2012] et non probabilistes
[Bhatia 2007, Lalys 2011], les modèles temporels [Blum 2010, Padoy 2009] et les algo-
rithmes d’alignement de séquence [Droueche 2014, Forestier 2017], les arbres de déci-
sion [Quellec 2014a, Schreiter 2016], les approches basées règles [Katić 2010], les réseaux
de neurones y compris l’apprentissage profond [Malpani 2016, Twinanda 2017], les ap-
proches par regroupement [Nara 2017, Zia 2017] et par renforcement [Dergachyova 2016],
ainsi que les algorithmes génétiques [Katić 2016, Klank 2008].

Applications

La reconnaissance automatique du contexte chirurgical permet plusieurs appli-
cations cliniques telles que l’automatisation des tâches [Bardram 2011, Weede 2012],
l’optimisation et la gestion du processus chirurgical [Bhatia 2007], l’entraînement
et l’évaluation du praticien [Forestier 2017, Malpani 2016], l’assistance chirurgicale
[Katić 2010, Lalys 2011] et l’aide à la décision [Quellec 2015].

Positionnement de la thèse

L’analyse de la littérature nous a permis de mettre en avant trois problématiques impor-
tantes qui ralentissent l’apparence et l’intégration des systèmes d’assistance contextuels.
Tout d’abord, il y a très peu de recherches sur les activités chirurgicales. Pourtant, ces
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dernières permettent une compréhension profonde de la situation et participent égale-
ment à la détection des événements indésirables intervenant au bloc opératoire. Les ac-
tivités sont toutefois difficiles à reconnaître uniquement à partir d’un signal brut. Une
abstraction du signal physique en faveur d’une description sémantique de la scène four-
nit plus de sens à la situation. Un bon choix de description permet alors de faciliter et
améliorer la reconnaissance. Cependant, aucune étude n’a encore été proposée pour anal-
yser la pertinence des différentes informations sémantiques dans le contexte de reconnais-
sance d’activités chirurgicales. Dans ces travaux, nous proposons une nouvelle approche
pour l’analyse des composantes sémantiques de l’activité afin de caractériser les éléments
essentiels et nécessaires pour une reconnaissance de haute qualité, ainsi que des recom-
mandations pour un choix de capteurs judicieux au bloc opératoire.

La seconde problématique s’oriente vers le manque de données d’entraînement. Au-
jourd’hui, l’apprentissage profond dépasse fortement les méthodes d’apprentissage clas-
siques dans de nombreux domaines. Cependant, pour un fonctionnement réussi, il né-
cessite d’avoir d’énormes quantités de données. Pourtant, toutes les études sur la re-
connaissance d’activité que nous avons examinées contiennent en moyenne seulement
17 interventions enregistrées. Dans cette thèse, nous explorons des techniques alterna-
tives d’augmentation de la base de données d’entrainement, appelées transfert de con-
naissances, qui aident à améliorer les résultats de la reconnaissance.

Enfin, la troisième problématique concerne le processus de validation. Les métriques
standards fréquemment utilisées dans la littérature ne sont pas assez informatives, pas
adaptées aux problèmes séquentiels et sont déconnectées des applications cliniques. Un
processus de validation inadéquat ralentit l’intégration et l’utilisation de systèmes con-
textuels. Nous proposons donc une nouvelle vision sur le processus de validation ainsi que
des stratégies et des métriques adaptées à la reconnaissance du flux de travail chirurgical.

Données

Ce travail repose sur l’utilisation de données acquises durant des chirurgies du
rachis cervical par voie antérieure, (ACDF) [Forestier 2013], des hernies discale lombaire
(LDH) [Riffaud 2010], des adénomes d’hypophyse (PA) [Lalys 2010] et des chirurgies de
la cataracte (CS) [Lalys 2013] précédemment enregistrées (Figure A.1). Les données neu-
rochirurgicales (c’est-à-dire ACDF, LDH et PA) ont été recueillies dans deux hôpitaux uni-
versitaires : Rennes (France) et Leipzig (Allemagne). La chirurgie de la cataracte a été en-
registrée à l’hôpital universitaire de Munich (Allemagne). Au total, 154 interventions ont
été acquises. Toutes les données ont été organisées par procédure et par hôpital dans
7 ensembles de données. Pour toutes les études de cette thèse, seules les annotations
manuelles du flux de travail ont été utilisées, à savoir les phases et les activités chirurgi-
cales.
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Figure A.1: Données

Analyse des signaux pour la reconnaissance d’activités

Contexte

Tenant compte de la complexité de la tâche pour la reconnaissance d’activités, les
approches proposées dans la littérature décomposent l’activité en ses éléments princi-
paux (c’est-à-dire le verbe, l’instrument et la structure anatomique) et procèdent à leur
détection individuelle. L’activité est ensuite déduite à partir d’un élément ou de leur
combinaison. Les éléments à détecter sont généralement choisis en fonction des sig-
naux disponibles uniquement, sans aucune analyse de leur pertinence. L’instrument
est souvent considéré comme un indicateur fiable de la tâche en cours [Bouarfa 2012,
Kranzfelder 2011, Maktabi 2017], même s’il a été démontré qu’il est possible d’avoir
plusieurs fonctions par instrument, qui varient en fonction de la situation et du chirurgien
[Mehta 2002]. Le verbe quant à lui qui fournit des informations pertinentes sur le contexte
de l’activité. Il est difficile à reconnaître en raison d’une forte variabilité de l’exécution
d’une action [Meißner 2014] et nécessite souvent des capteurs supplémentaires. En-
fin, la structure anatomiquepeut être reconnue à partir des signaux visuels générale-
ment disponibles [Lalys 2013], sans avoir besoin d’installer de capteurs supplémentaires.



150 APPENDIX A. RÉSUMÉ ÉTENDU DE LA THÈSE

Cependant, aucune étude n’a permis de justifier le choix des éléments à détecter. Nous
avons réalisé ce travail pour découvrir quels capteurs et signaux permettent de faciliter
la reconnaissance automatique des activités chirurgicales, en nous basant sur l’hypothèse
suivante : la reconnaissance de l’activité ne nécessite pas obligatoirement de capteurs pour
la détection de chaque élément composant l’activité.

Méthodologie d’analyse

Afin de valider notre hypothèse et d’évaluer l’impact de chaque élément sémantique
sur le processus de reconnaissance, nous proposons l’analyse suivante. Imaginons qu’à
chaque instant, nous avons l’information sur les éléments et nous devons donc inférer
l’activité en cours. Pour cela, nous pouvons également regarder les activités précédem-
ment réalisées et prendre en compte leur information. Le problème consiste à faire corre-
spondre une séquence d’activités partiellement cachées à une activité complète. Pour ré-
soudre ce problème, nous utilisons les réseaux neuronaux profonds. Pour chaque élément,
ou une combinaison d’éléments examinés, nous suggérons de masquer ses informations
dans les données d’entrée et de réaliser la reconnaissance sans cette modalité pour évaluer
son importance.

Dans cette étude, nous utilisons des réseaux de neurones récurrents, à savoir LSTM
(Long Short-Term Memory), en supposant que les éléments cachés d’une activité dépen-
dent non seulement des éléments actuellement connus mais aussi du contexte temporel.
LSTM permet d’analyser de longues séquences avec des dépendances temporelles com-
plexes. Dans ces travaux, nous employons une variante de LSTM classique [Graves 2012]
comprenant trois portails (input, forget, output), une fonction d’activation en sortie et une
technique d’abandon (Figure A.2). Afin de recréer les mêmes conditions d’analyse pour
tous les éléments d’activités, le même modèle décrit ci-dessous est utilisé pour toutes
les configurations et les expériences. Le modèle possède deux couches temporelles em-
pilées avec un taux d’abandon de 0,2, chacune contenant 256 neurones cachés. Il a été
entraîné pendant 50 époques avec un taux d’apprentissage de 0,001 par paquet de taille
128. L’entropie croisée est utilisée en tant que fonction de propagation de perte avec
l’optimisateur Adam.
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Expériences

Nous avons testé trois types de configuration : configurations à un élément (V - unique-
ment l’information sur le verbe était disponible, I - uniquement l’instrument, et S - unique-
ment la structure), configurations à deux éléments (VI - le verbe et l’instrument étaient
connus, VS - le verbe et la structure, et IS - l’instrument et la structure), et la configuration
à trois éléments qui a joué le rôle d’une référence (VIS - tous les éléments étaient connus).

Selon la définition utilisée dans cette thèse, l’activité est représentée par trois éléments
principaux séparément définis pour les deux mains du chirurgien, ce qui donne un 6-uplet.
Nous avons donc également réalisé une expérience pour estimer l’influence de chacune
des mains. En outre, nous avons également évalué l’importance de connaître la durée
de l’activité. Enfin, des expériences complémentaires estimant l’influence du bruit et du
retard temporel dans les données ont été réalisées.

Résultats

Les expériences ont démontré qu’un seul élément n’était pas suffisant pour reconnaître
l’activité avec confiance. La combinaison VI a généré des résultats faibles, insuffisants pour
une reconnaissance stable et correcte (Table A.1). La combinaison VS a produit des résul-
tats relativement bons d’environ 85% de précision, ce qui serait probablement acceptable
pour certaines applications. Pour tous les procédures et les sites, la combinaison IS suff-
isait pour reconnaître les activités avec confiance et produisait un score supérieur à 95%
(Figure A.3).

Table A.1: Précision moyenne de reconnaissance (en %) pour chaque élément de l’activité

ACDF.L ACDF.R LDH.L LDH.R PA.L PA.R CS

V 49.72 66.29 52.64 62.32 48.63 68.23 92.79
I 59.08 79.06 59.69 74.89 58.17 80.25 90.40
S 54.50 63.27 64.91 68.29 60.52 60.08 90.18

La configuration VIS de la main droite a donné une précision d’environ 66% - le maxi-
mum parmi d’autres configurations d’une main mais toujours insuffisant pour une recon-
naissance précise. La configuration IS de la main droite a généré des résultats compara-
bles. L’expérience a aussi révélé un écart de 15 à 20% entre les performances des éléments
de la main gauche et droite. L’expérience examinant l’importance de la durée de l’activité
a montré que son usage en tant qu’information complémentaire d’entrée n’a que légère-
ment amélioré les résultats de la reconnaissance (une augmentation de 1,3 à 4,3%). Néan-
moins, cette expérience a permis d’attendre une précision de reconnaissance de 98,5%
pour la combinaison IS.
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Figure A.3: Boîtes à moustaches décrivant la précision de reconnaissance pour les combi-
naisons d’éléments (en %)

Les expériences menées avec le bruit et le retard temporel ont montré que toutes les
configurations avaient une capacité réduite à prédire l’activité en cours. Cependant, la
combinaison IS est restée la plus informative. Sa précision de reconnaissance variait de
79 à 84,4% avec 5% de bruit, et a diminué à une moyenne de 6,6% avec 75% de bruit. La
même combinaison a retenu des scores très élevés pour un retard d’une seconde, allant de
91 à 97,9%, avec une moyenne de 94,1%.

Conclusion

Nous avons validé notre hypothèse en démontrant que la combinaison de la structure
anatomique et de l’instrument (avec les capteurs correspondants) est suffisante pour une
reconnaissance précise d’une activité chirurgicale. Toutefois, le suivi des deux mains est
nécessaire. La structure anatomique est un élément crucial. L’instrument et le verbe,
au contraire, contiennent des informations similaires. Cette connaissance facilitera le
choix des capteurs appropriés à installer dans les futurs blocs opératoires. En outre, nous
avons également fait des observations intéressantes sur la pratique chirurgicale. Par ex-
emple, dans toutes les procédures réalisées à Rennes, il existait une liaison plus forte entre
l’instrument et la structure, ainsi qu’entre le verbe et la structure. Notre hypothèse est que,
contrairement à Rennes, les instruments chirurgicaux à Leipzig sont plus souvent utilisés
pour de nouvelles fonctions plutôt que pour leur application initialement prévue. De telles
observations améliorent la compréhension du processus chirurgical.
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Transfert de connaissance pour la prédiction d’activités

Contexte

Aujourd’hui, dans une nouvelle ère d’apprentissage profond, la quantité de don-
nées devient un facteur prépondérant. Malheureusement, il arrive parfois qu’une tâche
d’apprentissage soit effectuée sur un petit jeu de données, comme, par exemple, la recon-
naissance ou la prédiction d’activités chirurgicales avec un déficit de données cliniques.
Afin de résoudre ce problème, nous proposons d’utiliser le transfert de connaissances. Ce
transfert comprend toutes les méthodes qui utilisent des ressources provenant d’autres
domaines d’intérêt pour améliorer l’apprentissage d’une tâche ciblée. Toutefois, le trans-
fert de connaissance du processus chirurgical n’a jamais été réalisé auparavant. Pour
l’appliquer, nous avons choisi d’étudier la tâche de prédiction de la prochaine l’activité.

Méthodologie

Nous proposons deux méthodes de transfert de connaissances. La première méthode
dite de « word embedding » (plongement de mots en français) sert à extraire de la con-
naissance sémantique des termes chirurgicaux à partir de textes médicaux. La seconde
méthode représente l’apprentissage par transfert qui permet de capturer des informations
importantes sur le processus chirurgical et de les transférer d’une chirurgie à l’autre. Ainsi,
notre travail se compose de deux parties interconnectées, car la deuxième méthode est
basée sur la première et utilisent ses résultats (Figure A.4).
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Figure A.4: Le modèle utilisé pour le transfer

Word embedding

Le « word embedding » est une famille de méthodes provenant du traitement du lan-
gage naturel qui cherchent à exprimer la signification sémantique des mots dans un espace
géométrique. Pour cela, il est nécessaire de réaliser l’association d’un vecteur de nombres
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réels à chaque mot dans le dictionnaire afin que la distance entre les vecteurs capture les
relations sémantiques entre les mots correspondants. Les valeurs des vecteurs sont trou-
vées en fonction de l’information sur la co-occurrence des mots, c’est-à-dire la fréquence
de leur apparition mutuelle dans un grand corpus de texte. Le corpus de texte est une col-
lection de textes sur un sujet donné, à la forme d’une simple séquence de mots séparés
par des espaces uniques. Pour cette étude, nous avons créé trois corpus de texte à l’aide
des jeux de données disponibles sur internet et en obtenant des données à l’aide des mo-
teurs de recherche scientifiques. Nous avons également utilisé deux méthodes de « word
embedding » word2vec et GloVe que nous avons intégrés dans l’architecture LSTM utilisée
pour prédire la prochaine activité.

Apprentissage par transfert

Nous émettons l’hypothèse que les séquences d’activités représentant un processus
chirurgical encodent une certaine forme de connaissance abstraite sur la procédure don-
née, la pratique chirurgicale et le processus en général. Ces connaissances peuvent être
extraites et exploitées pour améliorer toutes sortes d’opérations sur les données de pro-
cessus chirurgicaux, y compris l’analyse, la reconnaissance et la prédiction. On a partic-
ulièrement supposé que les connaissances obtenues d’une procédure peuvent améliorer
la prédiction des activités pour une autre procédure. L’apprentissage par transfert consiste
à entraîner un modèle sur un jeu de données, dit « source », pour extraire ses connaissances
sous la forme de paramètres internes du réseau (c’est-à-dire les poids des couches cachées)
et les appliquer pendant le processus d’entraînement sur un autre ensemble de données,
dit « destination »(c’est-à-dire initialiser le nouveau modèle avec des poids extraits).

Expériences

Nous avons utilisé les procédures neurochirurgicales pour démontrer l’effet du trans-
fert de connaissances. Le facteur principal observé à travers l’étude entière est Δ - la
quantité d’amélioration de la prédiction entre différentes configurations (c’est-à-dire en-
tre l’entraînement sans et avec « embeddings », sans apprentissage par transfert et avec
différents types de transfert).

Pour les « word embeddings », nous avons établi la référence en utilisant le modèle
initial sans « embedding ». Ensuite, nous avons évalué le modèle qui entraîne des « em-
beddings » à partir de zéro en se basant sur les procédures neurochirurgicales. Enfin, nous
avons estimé l’impact des « embeddings » pré-entraînés contenant des informations sé-
mantiques extraites des textes médicaux.

Pour l’apprentissage par transfert, nous avons cherché à estimer la quantité de con-
naissances pouvant être transférées à l’intérieur du domaine de neurochirurgie et à trouver
les meilleures paires d’ensembles de données source-destination afin d’améliorer la ca-
pacité de prédiction du modèle. D’abord nous avons effectué une expérience pour établir
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la référence. Nous avons ensuite effectué une deuxième expérience pour découvrir com-
ment un mélange de différentes données dans un seul jeu de données d’entrée sans trans-
fert modifie la précision de la prédiction. Dans la troisième expérience, les données ini-
tiales ont été divisées par le niveau d’expertise du chirurgien pour tenter d’améliorer la
prédiction en séparant les chirurgiens novices des experts. La dernière expérience a per-
mis de mesurer l’amélioration apportée par le vrai apprentissage par transfert. Pour cela,
le modèle source a été entraîné en amont sur l’ensemble des données source. Ses poids in-
ternes ont été extraits et sauvegardés à part. Ils ont ensuite été utilisés comme initialisation
pour le modèle destinataire, qui a ensuite été entraîné et testé sur l’ensemble des données
de destination. Nous avons effectué trois types de transfert en utilisant différentes com-
binaisons d’ensembles de données source et de destination: inter-site, inter-procédure et
inter-expertise.

Résultats

Dans les expériences avec les « word embeddings », le modèle de base a atteint 67,4 ±
12,5% de précision. L’entraînement des « embeddings » à partir de zéro sur les procédures
neurochirurgicales a permis une augmentation de précision de 0,8%. Les résultats les plus
élevés pour les « embeddings » pré-entraînés ont atteint 79,1 ± 7,5% avec une augmen-
tation moyenne de 11,7% (Figure A.5). Ces derniers résultats ont été obtenus en utilisant
la technique GloVe sur un corpus représentant une combinaison de tous les corpus créés
(vecteurs à 500 dimensions) avec un entraînement supplémentaire sur les procédures neu-
rochirurgicales.
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Figure A.5: L’amélioration de performance apportée par « word embedding ». Les scores
de référence sont en bleu et les scores des « embeddings » pré-entraînés sont en rouge
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Dans les expériences d’apprentissage par transfert, le modèle de base a obtenu un score
de 78,91 ± 7,53% de précision. Le mélange des interventions des deux sites appartenant à
une procédure a donné 81,42% (Δ = 2,51%), de toutes les procédures dans un site 75,89%
(Δ = 2,72%), de différentes procédures entre elles 79,96% (Δ = 1,05% par rapport au modèle
de base et Δ = -1,46% par rapport au mélange des sites). Le mélange de tous les ensembles
de données initiaux a produit 77,54% (Δ = -1,37%) de précision.

La division des interventions par niveau d’expertise au sein d’une procédure a généré
80,16% (Δ = 1,15% du modèle de base et Δ = -1,26% du mélange des sites), au sein d’un site
chirurgical 76,72% (Δ = -2,19%). La division de toutes les données a produit le résultat de
76,54% (Δ = -2,37%).

Dans le transfert inter-site (Figure A.6), en moyenne pour toutes les combinaisons
source-destination, la précision a atteint 85,97% (Δ = 7,06%). Dans le transfert inter-
procédure (Figure A.7) elle a atteint 86,49% (Δ = 7,58% du modèle de base et Δ = 5,07% du
mélange des sites). En revanche, si nous choisissons uniquement les procédures les plus
appropriées pour le transfert, la moyenne de la précision peut être recalculée à 89,09% (Δ
= 10,18% du au modèle de base et Δ = 7,67% du mélange des sites). Le transfert inter-
expertise à l’intérieur d’une procédure a montré une précision de 80,34% (Δ = 1,43% du
modèle de base et Δ = 0,28% du modèle de division), d’un site 76,09% (Δ = -2,82% du au
modèle de base et Δ = -0,63% du modèle de division), de toutes les donnée 76,23% (Δ =
-2,68% du modèle de base et Δ = -0,31% du modèle de division).

Conclusion

Deux méthodes de transfert de connaissance utilisées dans ce travail ont permis
d’augmenter la précision de la prédiction de près de 22% au total. Pour les « word embed-
dings », nous avons montré que même l’utilisation d’un corpus relativement restreint peut
considérablement améliorer les résultats de la prédiction, et qu’une plus grande taille du
vecteur offre de meilleurs résultats. Pour l’apprentissage par transfert, des résultats positifs
ont été obtenus lors du transfert d’une procédure à l’autre, et entre les sites chirurgicaux.
Plusieurs observations concernant la pratique chirurgicale ont été faites en même temps
que les expériences. Nous avons observé que la différence entre les niveaux d’expertise
est inférieure à la différence entre les sites chirurgicaux, et que cette dernière est plus pe-
tite que la différence entre les procédures. Entre outre, les procédures menées à Rennes
semblent être plus similaire en termes de flux de travail que celles effectuées à Leipzig.
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Métriques de validation

Contexte

Dans la plupart des publications sur la reconnaissance du flux de travail chirurgical, le
processus de validation est réduit à une mesure de quelques scores de performance stan-
dards qui ne fournissent que des résultats généraux et une vague appréciation des capac-
ités et des défauts de la méthode. Cela limite la comparaison objective des approches car
plusieurs aspects de leur performance restent voilés du lecteur. Ces scores sont également
très déconnectés des applications cliniques. Ils restent trop stricts et pas assez informat-
ifs pour capturer la préparation de la méthode à son utilisation au bloc opératoire, ni son
utilité pour le processus chirurgical.

Liste des métriques et des approches d’estimation proposées

Pour la reconnaissance de phase

1. Délai moyen de transition - pour mesurer le délai de reconnaissance entre les transi-
tions de phases réelles et détectées,

2. Taux de transition - pour mesurer le nombre de transitions détectées reflétant la con-
sistance de la reconnaissance,

3. Taux d’échec réel - pour mesurer la quantité de vraies défaillances de reconnaissance
hors délai,

4. Les scores spécifiques à l’application - approche pour la ré-estimer les scores stan-
dards afin de relier la performance à l’application clinique, en prenant en compte le
délai de reconnaissance acceptable.

Pour la reconnaissance et la prédiction d’activité

1. Précision rationnelle - pour mesurer la précision par élément pour une compréhen-
sion plus complète de la performance,

2. Mains inversées - métrique ré-estimant la précision pour les applications où
l’inversion de mains dans la reconnaissance est acceptable,

3. Eléments non ordonnés - pour les applications où l’ordre des éléments reconnus est
peu important, seule leur présence est essentielle,

4. Eléments significatifs - pour les applications où la reconnaissance de différents élé-
ments a une importance différente pour l’assistance fournie.
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Conclusion

Nous avons proposé de nouvelles métriques adaptées qui aident à extraire plus
d’informations pertinentes sur la méthode et ré-évaluer les scores de performance stan-
dard pour une application ciblée. Les métriques pour la reconnaissance de phase ont été
testées sur les méthodes soumises au défi MICCAI M2CAI 2016 sur la reconnaissance du
flux de travail pour la chirurgie endoscopique 1. Les métriques pour les activités ont été
testées sur notre méthode de prédiction de prochaine(s) activité(s). Les résultats ont révélé
des propriétés intéressantes et démontré comment les méthodes pourraient être liées à
une application clinique.

Conclusion générale

Dans ce travail, nous avons abordé trois problématiques importantes de reconnais-
sance du flux de travail chirurgical: 1) la difficulté de reconnaissance des activités chirur-
gicales, 2) le manque de données cliniques pour l’entraînement, et 3) le processus de val-
idation inadéquat. Pour résoudre le premier problème, nous avons mené une étude por-
tant sur l’importance de chaque élément sémantique de l’activité (c’est-à-dire le verbe,
l’instrument et la structure) pour faciliter et améliorer sa reconnaissance ainsi que guider
le choix des capteurs appropriés à installer au bloc opératoire. Pour le deuxième prob-
lème, nous avons appliqué le transfert des connaissances en utilisant deux techniques
différentes d’extraction et de transfert afin de compenser le manque de données et
d’améliorer les performances d’un réseau de neurones profond. Enfin, dans le troisième
problème, nous avons démontré l’insuffisance de la méthodologie de validation utilisée
couramment et proposé de nouvelles métriques et approches d’estimation de perfor-
mance adaptées à la reconnaissance du flux de travail chirurgical. Tout au long de ce
travail, nous avons également partagé des observations pertinentes sur la pratique chirur-
gicale qui permettent de mieux comprendre le processus chirurgical et le comportement
des chirurgiens.

Perspectives

A notre avis, outre la reconnaissance elle-même, l’attention des chercheurs doit être
également portée aux problèmes « autour » de ce processus qui bloquent l’émergence
de systèmes contextuels. Ce travail, par exemple, a représenté un effort de résolution
des problèmes importants tels que le choix des signaux et des capteurs, la quantité
de données d’entraînement et la validation. Néanmoins, d’autres aspects importants
doivent également être abordés. Tout d’abord, dans nos études, nous avons appliqué

1. http://camma.u-strasbg.fr/m2cai2016/index.php
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l’apprentissage profond à la résolution de plusieurs problèmes. Actuellement, les mod-
èles profonds représentent une « boîte noire » dont le fonctionnement n’a pas encore été
complètement expliqué. La visualisation et la meilleure compréhension de leur proces-
sus d’apprentissage seront très pertinentes pour les systèmes médicaux. Deuxièmement,
le processus chirurgical lui-même doit être mieux étudié pour améliorer sa propre mod-
élisation. Enfin, un standard de validation commun doit être établi pour l’évaluation et la
comparaison objective des méthodes de reconnaissance développées.
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Résumé

L’assistance informatique est devenue une partie indispensable pour la réalisation de
procédures chirurgicales modernes. Le désir de créer une nouvelle génération de blocs
opératoires intelligents a incité les chercheurs à explorer les problèmes de perception et
de compréhension automatique de la situation chirurgicale. Dans ce contexte de prise de
conscience de la situation, un domaine de recherche en plein essor adresse la reconnais-
sance automatique du flux chirurgical. De grands progrès ont été réalisés pour la recon-
naissance des phases et des gestes chirurgicaux. Pourtant, il existe encore un vide entre
ces deux niveaux de granularité dans la hiérarchie du processus chirurgical. Très peu de re-
cherche se concentre sur les activités chirurgicales portant des informations sémantiques
vitales pour la compréhension de la situation. Deux facteurs importants entravent la pro-
gression. Tout d’abord, la reconnaissance et la prédiction automatique des activités chi-
rurgicales sont des tâches très difficiles en raison de la courte durée d’une activité, de leur
grand nombre et d’un flux de travail très complexe et une large variabilité. Deuxièmement,
une quantité très limitée de données cliniques ne fournit pas suffisamment d’informations
pour un apprentissage réussi et une reconnaissance précise. À notre avis, avant de recon-
naître les activités chirurgicales, une analyse soigneuse des éléments qui composent l’ac-
tivité est nécessaire pour choisir les bons signaux et les capteurs qui faciliteront la recon-
naissance. Nous avons utilisé une approche d’apprentissage profond pour évaluer l’im-
pact de différents éléments sémantiques de l’activité sur sa reconnaissance. Grâce à une
étude approfondie, nous avons déterminé un ensemble minimum d’éléments suffisants
pour une reconnaissance précise. Les informations sur la structure anatomique et l’instru-
ment chirurgical sont de première importance. Nous avons également abordé le problème
de la carence en matière de données en proposant des méthodes de transfert de connais-
sances à partir d’autres domaines ou chirurgies. Les méthodes de « word embedding » et
d’apprentissage par transfert ont été proposées. Ils ont démontré leur efficacité sur la tâche
de prédiction d’activité suivante offrant une augmentation de précision de 22%. De plus,
des observations pertinentes concernant la pratique chirurgicale ont été faites au cours de
l’étude. Dans ce travail, nous avons également abordé le problème de la validation insuf-
fisante et incorrecte des méthodes de reconnaissance. Nous avons proposé de nouvelles
métriques et méthodes de validation pour évaluer les performances, afin de mieux relier
les méthodes aux applications ciblées et de mieux caractériser leurs capacités. Le travail
décrit dans cette thèse vise à éliminer les obstacles entravant l’avancement du domaine et
à proposer une nouvelle perspective sur le problème de la reconnaissance du flux chirur-
gical.

Mots clefs : Activités chirurgicales de bas niveau, Reconnaissance d’activités chirurgicales,
Analyse sémantique, Word embedding, Apprentissage par transfert, Métriques de validation



Abstract

Computer assistance became indispensable part of modern surgical procedures. De-
sire of creating new generation of intelligent operating rooms incited researchers to ex-
plore problems of automatic perception and understanding of surgical situations. Situa-
tion awareness includes automatic recognition of surgical workflow. A great progress was
achieved in recognition of surgical phases and gestures. Yet, there is still a blank between
these two granularity levels in the hierarchy of surgical process. Very few research is fo-
cused on surgical activities carrying important semantic information vital for situation un-
derstanding. Two important factors impede the progress. First, automatic recognition and
prediction of surgical activities is a highly challenging task due to short duration of activi-
ties, their great number and a very complex workflow with multitude of possible execution
and sequencing ways. Secondly, very limited amount of clinical data provides not enough
information for successful learning and accurate recognition. In our opinion, before rec-
ognizing surgical activities a careful analysis of elements that compose activity is necessary
in order to chose right signals and sensors that will facilitate recognition. We used a deep
learning approach to assess the impact of different semantic elements of activity on its
recognition. Through an in-depth study we determined a minimal set of elements suffi-
cient for an accurate recognition. Information about operated anatomical structure and
surgical instrument was shown to be the most important. We also addressed the prob-
lem of data deficiency proposing methods for transfer of knowledge from other domains
or surgeries. The methods of word embedding and transfer learning were proposed. They
demonstrated their effectiveness on the task of next activity prediction offering 22% in-
crease in accuracy. In addition, pertinent observations about the surgical practice were
made during the study. In this work, we also addressed the problem of insufficient and
improper validation of recognition methods. We proposed new validation metrics and
approaches for assessing the performance that connect methods to targeted applications
and better characterize capacities of the method. The work described in this these aims at
clearing obstacles blocking the progress of the domain and proposes a new perspective on
the problem of surgical workflow recognition.

Keywords: Low-level surgical activities, Surgical activity recognition, Semantic analysis,
Word embedding, Transfer learning, Validation metrics


