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Abstract

Many biological systems are inherently polydisperse, presenting multiple coexisting
species differing in size, shape or conformation (i.e. oligomeric mixtures, weakly bound
complexes, and species appearing along amyloidogenic processes). The study of such com-
plex systems is challenging due to the instability of the species involved, their low and
interdependent relative concentrations, and the difficulties to isolate the pure components.
In this thesis, I have developed methodological approaches to apply Small-Angle X-ray
Scattering (SAXS), a low-resolution structural biology technique, to the study of polydis-
perse systems. As an additive technique, the SAXS pattern measured for a polydisperse
sample corresponds to the concentration-weighted sum of the contributions from each of
the individual components. However, decomposition of SAXS data into species-specific
spectra and relative concentrations is laborious and burdened by ambiguity.

In this thesis, I present an approach to decompose SAXS datasets into the individual
components. This approach adapts the chemometrics Multivariate Curve Resolution Alter-
nating Least Squares (MCR-ALS) method to the specificities of SAXS data. Our method en-
ables the rigorous and robust decomposition of SAXS data by simultaneously introducing
different representations of these data and, consequently, emphasizing molecular changes
at different time and structural resolution ranges. We have applied this approach, which
we name COSMiCS (Complex Objective Structural analysis of Multi-Component Systems),
to study two polydisperse systems: amyloid fibrillation by analysing time-dependent SAXS
data, and conformational fluctuations through the analysis of data obtained using on-line
size-exclusion chromatography coupled to SAXS (SEC-SAXS).

The importance of studying fibrillation processes lies in their implication in amy-
loidogenic pathologies such as Parkinson’s or Alzheimer’s diseases. There exist strong in-
dications that soluble oligomeric species, and not mature fibrils, are the main cause of cyto-
toxicity and neuronal damage emphasizing the importance of characterizing early stages
of fibrillation. The first application of our COSMiCS approach has allowed the study of
the amyloidogenic mechanisms of insulin and the familial mutant E46K of α-synuclein, a
Parkinson’s disease related protein. The analysis enables the structural characterization of
all the species present as well as their kinetic transformations.

The second part of the thesis is dedicated to the use of COSMiCS to analyze on-line
SEC-SAXS experiments. Using synthetic data, I demonstrate the capacity of chemometric
approaches to decompose complex chromatographic profiles. Using this approach, I have
studied the conformational fluctuations in prolyl oligopeptidase (POP), a protein related
to synaptic functions and neuronal development.

In summary, this thesis presents a novel chemometrics approach that can be gener-
ally applied to any macromolecular mixture with a tuneable equilibrium that is amenable
to SAXS. Transient biomolecular complexes, folding processes, or ligand-dependent struc-
tural rearrangements can be probed structurally using COSMiCS.





Résumé

De nombreux systèmes biologiques sont intrinsèquement polydispersés, présentant
de multiples espèces coexistantes, de taille, de forme ou de conformation différentes (c’est-
à-dire, mélanges oligomèriques, des complexes faiblement liés se dissociant en composantes
individuelles ou des espèces apparaissant lors de processus amyloïdogéniques). L’étude
de tels systèmes complexes est une tâche difficile en raison de l’instabilité des espèces
concernées, de leurs concentrations relatives faibles et interdépendantes et des difficultés
rencontrées pour l’isolation des composantes pures. Dans cette thèse, j’ai développé des
approches méthodologiques pour appliquer la diffusion des rayons X aux petits angles
(SAXS), une technique de biologie structurale, à l’étude de systèmes polydispersés. SAXS
est une technique additive et par conséquent, le diagramme de diffusion mesuré pour un
échantillon polydispersé correspond à la somme pondérée en concentration des contribu-
tions de chacune des composantes individuelles du mélange. Cependant, la décomposition
des données de SAXS en des spectres spécifiques des espèces et de leurs concentrations rel-
atives est extrêmement laborieuse et ambigue.

Dans cette thèse, je présente d’abord une approche objective pour solidement décom-
poser les jeux de données de SAXS en composantes individuelles. Cette approche adapte
la méthode chimiométrique « Multivariable Curve Resolution Alternate Least Squares »
(MCR-ALS) aux spécificités des données de SAXS. Notre méthode permet une décomposi-
tion rigoureuse et robuste des données de SAXS en introduisant simultanément différentes
représentations de ces données et par conséquent, en mettant l’accent sur des changements
moléculaires à différentes plages de temps et de résolution structurale. Nous avons ap-
pliqué cette approche, que nous appelons COSMiCS (Analyse structurelle objective com-
plexe des systèmes multi-composants) pour étudier deux systèmes polydispersés: la fib-
rillation des protéines, et les fluctuations conformationnelles de protéines grâce à l’analyse
de données obtenues à l’aide d’une technique de couplage de chromatographie d’exclusion
de taille (SEC) avec le ligne de SAXS (SEC-SAXS).

L’importance d’étudier les processus de fibrillation réside dans leur implication dans
des pathologies amyloïdogéniques telles que les maladies de Parkinson ou d’Alzheimer.
Il existe de fortes indications que les espèces oligomériques solubles, et non les fibrilles
matures, sont la cause principale de la cytotoxicité et des dommages neuronaux. Cette
observation souligne l’importance de caractériser les premiers stades des processus de fib-
rillation. Notre approche COSMiCS a permis d’étudier les processus amyloïdogéniques de
l’insuline et du mutant familial E46K de l’α-synucléine, une protéine associée à la maladie
de Parkinson. Cette analyse permet la caractérisation structurale des espèces présentes (y
compris les espèces oligomériques) et la caractérisation cinétique de leurs transformations.
La deuxième partie de la thèse est consacrée à l’utilisation de COSMiCS pour analyser
des données de SEC-SAXS. Le SEC-SAXS est extrêmement populaire et a été implémenté
sur plusieurs lignes de SAXS à travers le monde. En utilisant des données synthétiques,



vi

je démontre la capacité des approches chimiométriques à décomposer des profils chro-
matographiques complexes. À l’aide de cette approche, j’ai décomposé l’ensemble des
données SEC-SAXS mesurés pour la Prolyl OligoPeptidase (POP).

En résumé, cette thèse présente une nouvelle approche chimiométrique qui peut être
généralement appliquée à tout mélange macromoléculaire pouvant subir une modifacation
de son équilibre et pouvant être abordé par SAXS. Les complexes biomoleculaires transi-
toires, les processus de repliement, les réarrangements structuraux dépendants d’un lig-
and ou la formation de grands ensembles supramoleculaires peuvent être sondés de façon
structurale en utilisant l’approche COSMiCS.
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Chapter 1

Small-Angle X-ray Scattering

Small-angle scattering (SAS) of X-rays (SAXS) or neutrons (SANS) is a biophysical
method used in many areas of science and technology. In biology, is widely applied for the
analysis of macromolecules in solution. SAXS is able to study the overall shape and struc-
tural transitions of biological macromolecules in solution. SAXS provides low resolution
information on the shape, conformation and assembly state of proteins, nucleic acids and
all kinds of macromolecular complexes. In this thesis I will talk about SAXS, which is the
method used along this work, but the theory and analysis would be equivalent for SANS.

1.1 Small angle X-ray scattering for proteins

The study of the molecular mechanisms underlying the function of complex biologi-
cal systems is often the focus of structural biology [1, 2]. The three dimensional structure of
a biomolecule determines its functionality in vivo and knowing the 3D structure becomes
important when studying the structural bases of biological mechanisms. Small angle X-
ray scattering (SAXS) is a powerful method for analyzing the structure and the structural
changes of biological macromolecules in solution.

The main advantage of SAXS is that, unlike NMR or X-ray crystallography, does not
requires any special sample processing like crystallization, cryo-cooling or isotopic label-
ing. The sample is measured in solution, providing structural information in nearly native
conditions. This characteristic allows its use not only for static structural modelling but
also for the analysis of the response to changes in the experimental conditions (pH, tem-
perature, pressure, ionic strength, binding. . . ). It is also possible to follow the time course
of processes such as folding/unfolding and assembly/dissociation over several orders of
magnitude in time. The capacity of SAXS for studying a protein without need of crystalliza-
tion allows characterization of proteins that are impossible to crystallize, like intrinsically
disordered proteins (IDPs).

Another important advantage of the technique is that it can be applied to particles in
a wide range of molecular sizes, from small proteins or peptides to large macromolecular
machines [1, 2]. Biophysical parameters such as the radius of gyration (Rg), the maximum
intra-particle distance (Dmax) and the molecular weight (MW) can be estimated in an auto-
mated way while the data are collected, which makes SAXS also interesting from a practical
point of view. The scattering data are also able to provide structural information that can
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FIGURE 1.1. Schematic representation of a SAXS experiment

be exploited to derive low-resolution 3D structures. However, SAXS becomes more infor-
mative in combination with other structural, hydrodynamic, computational or biochemical
methods. In the following sections I will describe the method and its applications.

1.2 General SAXS theory

In a typical SAXS experiment, a monochromatic (with a well-defined wavelength,
λ) and collimated (parallel) X-ray beam is directed orthogonally onto a flow cell or static
flat sample holder containing the biological sample in solution and a detector is placed
on the opposite site of the sample in line with the beam (Figure 1.1). The 2D detector is
placed at a longer distance between the sample and the detector compared with that used
for crystallography in order to detect the scattering from the small angle range.

When the sample is illuminated by the monochromatic plane wave, with a modulus
|k| = 2µ/λ, the electrons within the object interact with the incident radiation becoming a
source of spherical waves. For elastic scattering, where the energy and wavelength of the
incident and scattered radiation are identical, the modulus of the scattered wave is |k’| =
|k|. Along this thesis I will consider only the case of elastic scattering, which is the most
relevant for structural studies and depends on the momentum transfer, s = k’ – k.

The scattering process involves a transformation from the ‘real’ space coordinates, r,
where the structure of the scattering is defined, to the ‘reciprocal’ space of scattering vec-
tors, s, in which the scattered radiation is measured. This process is described by a Fourier
transformation, which involves a reciprocity between dimensions in real and reciprocal
space implying that the smaller the ‘real’ size, the larger the corresponding ‘reciprocal’
size. In solution, the scattering is isotropic and the scattered intensity, Itotal(s), depends
only on the momentum transfer |s| = (4µ sinθ)/λ, where 2 is the scattering angle between
the incident beam and the direction of observation.
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The scattered waves from each electron have the same frequency and amplitude and
can be summed. The intensity measured represents a summation of all the back scattered
waves and is proportional to the square of the amplitude A(s), I(s) = |A(s)|2 [3]. To describe
the scattering of proteins in solution it is convenient to introduce the scattering length
density distribution ((r)), that is equal to the total scattering length of the atoms per unit of
solution volume [3]. The scattering amplitude is related to ρ(r) by a Fourier transform:

A(s) =

∫

V
ρ(r)e−isrdr (Eq. 1.1)

where the integration is performed over the particle volume (V), r is the vector from an
arbitrary origin to another point within the sample and s is the scattering length vector.
The observed intensity is the product of the amplitude and its complex conjugate:

I(s) = |A(s)|2 = A(s) ·A∗(s) =

∫ ∫

V
ρ(r)ρ(r∗)e−is(r−r∗)drdr∗ (Eq. 1.2)

Proteins in the solution and the bulk solvent have different average electron densi-
ties (ρs(r) 0.33 e-1Å-3 for water and ρs(r) 0.44 e-1Å-3 for proteins). Therefore, the particles
are embedded in a homogeneous matrix with a constant scattering density, ρs. As a con-
sequence, Eq. 1.1 and Eq. 1.2 should be replaced by the difference between the electron
density of the single particle and the solvent, ∆ρ(r) = ρ(r) − ρs(r). The autocorrelation
function expresses the correlation between the densities measured at two random points
separated by the distance r averaged over the illuminated volume V. The autocorrelation
function of the particle γ(r) [4] is defined by:

γ(s) ≡ ∆ρ 2(r) =

∫

V
∆ρ(r′)∆ρ(r′ − r)dr′ (Eq. 1.3)

Using Eq. 1.3, Eq. 1.2 can be written as

I(s) = |A(s)|2 =

∫

V
∆ρ∼2(r)e−isrdr (Eq. 1.4)

We assume here that the solution is dilute enough so that inter-particle interference is
negligible, and consequently, a spatial average can be made. This means that the intensity
depends only on the magnitude and not on the azimuthal dependence of the s vector, r =
|r| and s = |s|. In these conditions, Eq. 1.4 can be spatially averaged and results in:

I(s) = 〈|A(s)|2〉 = 〈

∫

V
∆ρ∼2(r)e−isrdr〉 (Eq. 1.5)

The scattering intensity recorded in the detector, as an isotropic image, can be ra-
dially averaged giving the 1D data by applying the Debye formula [5], 〈e−isr〉 = sin(sr)

sr ,
expressing Eq. 1.5 as:

I(s) = 4π

∫

∞

0
γ(r)r2

sin(sr)

sr
dr (Eq. 1.6)
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where r is the distance between two scattering elements within the sample.
In practice the generic scheme of a solution SAXS experiment series is starting with

the measurement of the empty cell. Subsequently, collecting the scatter of pure water is use-
ful for assessing the background level of the camera and for using it for absolute calibration
and determination of the molecular weight of the solute. Alternatively, a standard protein
can be measure at the beginning of the data collection for the molecular weight (MW); one
broadly used standard is bovine serum albumin (BSA) or lysozyme. The use of a standard
protein for MW determination will be explained in more detail in section 1.2.6. It is very
important that the X-ray measurements on solutions of biological macromolecules, both on
laboratory instruments and on synchrotron radiation (SR) sources, alternate experiments
for the samples and matching solvents, for a correct subtraction of the background. These
measurements of the buffer must be done for each sample and in the same cell and close
in time to the sample measurements in order to keep identical conditions in both and get
a correct background subtraction. The solvent curve is subtracted from the sample data to
eliminate the solvent scattering and the instrumental background scattering and obtain the
net scattering from the particles (see Figure 1.1) [2].

1.2.1 Structure and form factors

The net SAXS intensity after solvent subtraction may be expressed as a product of
two terms, Itotal(s) = I(s) · S(s). The form factor, I(s), arises from the scattering from individ-
ual particles in solution and contains the information about their structure. The structure
factor, S(s), is due to interference of scattered waves emitted by different particles, and con-
tains the information about interparticle interactions (about the structure of the solution),
which can be either attractive or repulsive. The ideal sample is a monodisperse sample
at low concentration to avoid interparticle interference effects and approaches the limit of
infinite dilution. This conditions allow analyzing Itotal(s), assuming that S(s) = 1. SAXS is,
however, also useful, and actively used, to study interactions between macromolecules in
solution based on the analysis of the structure factor S(s) [6].

1.2.2 Goodness-of-fit for SAXS data

The statistical similarity between experimentally obtained intensities, Iexp(s) and those
computed from a model Icalc(s) is evaluated using the reduced χ2 statistics.

χ2 =
1

n− 1

n
∑

i=1

[

Iexp(si)− Icalc(si)

σ(si)

]2

(Eq. 1.7)

where n is the number of experimental data points. The resulting χ2 for a perfect model
should be in the range 0.9 ≤ χ2 ≥ 1.1. The experimental error, σ(si) must be correctly
estimated in order to have a statistically valid test. This estimation is used in most of the
SAXS-based modeling applications and the method chosen along this thesis.

However, a new promising approach for evaluating differences between one-dimensional
spectra, has been developed by Svergun and co-workers, called Correlation Map (CorMap)
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FIGURE 1.2. Guinier plot for a protein showing good data (left) and aggregation (right)

[7]. This approach, which uses data point correlation, maintains the power of the reduced
χ2 but has the advantage of being independent of error estimates.

1.2.3 Radius of gyration and forward scattering

The initial slope of the background-corrected scattering curve from a particle can be
approximated by a Gaussian function [8] (“Guinier’s law”):

I(s) ≈ I(0)e
−s2R2

g

3 (Eq. 1.8)

where Rg is the radius of gyration and I(0) is the forward scattering. The Rg can be derived
by plotting the scattering data in a Guinier plot (log(I(s)) against s2) (Figure 1.2). The Rg is
then given as the slope of a straight line going through the data points at the low angles.
Equation 8 holds in a range of about smax < 1.3, commonly known as the ‘Guinier zone’ or
‘Guinier range’. Depending on the shape of the particles the higher limit can sometimes
be larger. Whenever the Guinier plot at low s is not linear, the sample has either aggrega-
tion or attractive (upswing) or intermolecular repulsions (downswing), at least in the case
of homogeneous particles. Molecules composed of a mixture of different molecules with
different scattering length densities also can display an anomalous Guinier behavior.

In the Guinier representation, the intercept of the straight line with the y-axis gives
the forward scattering intensity (I(0)). I(0) is proportional to the number N of particles
times the square of the product of the particle volume. Since N is inversely proportional to
the molecular mass of the particles for a given particle weight concentration, I(0) is propor-
tional to the molecular mass, which can be calculated (see more details in section 1.2.6).
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1.2.4 Pair-distance distribution

The scattering intensity of non-interacting particles in dilute solution can be de-
scribed by an integral that is limited to the maximal dimension (Dmax) in the particles:

I(s)4π

∫ Dmax

0
p(r)

sin(sr)

sr
dr (Eq. 1.9)

where r is the distance between two point scatterers within the sample. p(r) is the so-called
wise-distance distribution function of the particles. The p(r) can be obtained from Eq. 1.9
via Fourier transform.

p(r) =
r2

2µ2

∫

∞

0
s2I(s)

sin sr

sr
ds (Eq. 1.10)

Experimental I(s) covers a limited momentum transfer range, and direct Fourier
transformation of the scattering curve from this finite number of points is not possible. A
solution of this problem is the use of the indirect Fourier transformation [9] that represents
p(r) as a linear combination of K orthogonal functions ϕk in the range [0, Dmax]:

p(r) =

K
∑

k=1

ckϕk(r) (Eq. 1.11)

The optimal coefficients ck are calculated through minimization of

Φ = χ2 + αP (p) (Eq. 1.12)

Where χ2 is the goodness of fit between the experimental data and that calculated by
the direct transform of the p(r) function (Eq. 1.7), and the second term, P(p) ensures the
smoothness of the p(r) function (Eq. 1.13)

P (p) =

∫ Dmax

0
[p′]2dr (Eq. 1.13)

The regularizing multiplier α balances between the fit to the data and the smoothness
of the p(r).

Since the distance distribution is a function in real space, it is often easier to recog-
nize features of the particles in the p(r) function than in the scattering curve (Figure 1.3).
Another important parameter that can be derived from the p(r) is Dmax, the maximum intra-
molecular distance, however polydispersity, flexibility and aggregation may influence this
parameter. This often results in a Dmax estimate different than the actual dimension of the
scattering particle [10, 11].

By definition, p(r) starts with a value of zero at p(0), and it should terminate smoothly
at a maximal dimension Dmax. A deviation of p(0) from zero indicates an incorrect back-
ground subtraction, which can be used to estimate the background. A long tail or a shoul-
der at the high-r end of the p(r) should induce caution as it may be a sign of aggregation.
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FIGURE 1.3. Scattering intensities and pair-wise distance distribution functions, p(r), of geometrical
bodies. Inspired from [12].

Rg can also be derived from the p(r) through the equation:

R2
g =

∫ Dmax

0 r2p(r)dr

2
∫ Dmax

0 p(r)dr
(Eq. 1.14)

The Rg derived from the p(r) is based on the scattering measured across the entire
s range and it is therefore always a good practice to compare Rg derived from a Guinier
estimate with the Rg derived from the p(r).

1.2.5 SAXS data representations and their usage

Besides the usual representation of the scattering curve in a semi-logarithmic scale,
different representations of the SAXS data have been developed in order to extract addi-
tional information. Each representation enhances different features of the particle and it
provides useful information 1.4.

1.2.5.1 Porod representation

The Porod-Debye law describes a fourth power law approximation to the relation-
ship between s and the intensity, I(s) [13, 14]. This approximation holds within a limited
range of scattering angles and suggests that the scattering of a folded particle decays pro-
portionally to s-4,

I(s) ≈ s−df (Eq. 1.15)

where df describes a fractal degree of freedom, which is shape dependent. For spheres df

= 4. The Porod plot I(s)·s4 plotted against s display a curve asymptotically approaching a
constant value as s approaches infinity. Because Porod’s law assumes uniform density and
well-defined borders of contrast for the scattering objects and the solvent, the relationship
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FIGURE 1.4. Different representations for a folded protein (BSA), curve blue and from an intrinsically
disorder protein (α-synuclein), red curve. A) Semi-logarithmic scale. B) Holtzer representation. C) Kratky
plot. D) Porod plot.

is not fulfilled at high angles where the scattering signal is dominated by higher resolution
information.

An estimate of the object volume can also be determined from I(0) and Porod invari-
ant Q, irrespective of the nature of the scattering sample:

Q =

∫

∞

0
I(s)s2ds = 2π2

∫

V
∆ρ(r)dr (Eq. 1.16)

Q is directly related to the excluded particle volume, and, using that I(0) = (∆ρ)2Vp
2,

one obtains

Q = 2π2(∆ρ)2Vp (Eq. 1.17)

The volume of the particle, Porod volume (Vp) [15], is calculated as

Vp = 2π2 I(0)

Q
(Eq. 1.18)

The Porod representation has a practical use in the case of biological systems. In these
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situations, it is often difficult to measure the exact contribution from the solvent. Even a
small difference can lead to a different incoherent scattering level. In a plot of I(s)·s4 versus
s4 a residual background appears as a slope and 2π(∆ρ)2S/V as the zero intercept. This
allows estimate a flat background.

Additionally, Porod plot gives also information on the flexibility of the protein [16].
Porod-Debye law predicts a plateau within the low resolution region of the SAXS data
when transformed by s4. This plateau can be observed in globular proteins but is not
present in unfolded proteins (1.4D).

1.2.5.2 Kratky representation

The Kratky plot [17], where I(s)·s2 is plotted against s, is able to qualitatively dis-
tinguish between globular particles and disordered states, and therefore reports on com-
pactness. The Kratky plot is routinely used in SAXS data analysis and provides the first
estimate of the folded state of the macromolecule. When plotted for globular proteins,
where the intensity decays as s-4, Kratky plot yields bell-shaped curve with a well-defined
maximum at the smaller angles that fall in the region of higher angles, see Figure 1.4. Un-
folded proteins show a much slower intensity decay: for example, an ideal random chain
decays as s-2 [18]. The Kratky plot for unfolded proteins therefore presents a plateau over
a specific range of s, which is followed by a monotonic increase, instead of the peak that
presents folded proteins [19]. Partial unfolding or flexibility of the macromolecule lead
to an increase of the scattering at higher angles and display an intermediate behavior be-
tween that of the folded protein and of the random chain. This graphical representation
enhances the relevant features at higher angles and is a very good tool to qualitatively
assess compactness, for example, in folding experiments.

1.2.5.3 Holtzer representation

In the Holtzer representation [20] the total scattered intensity is the integrated area of
the SAXS data transformed as I(s)·s versus s. This approximation has been recently visited
by Rambo and Tainer [21].

SAXS is capable of providing structural information on all particle types, including
flexible systems. However, the analysis of the data using the Porod invariant presents lim-
itations in the study of these flexible systems. As described above, the Porod invariant
is an empirical SAXS value defined for compact folded particles. Q is unique to a scat-
tering experiment and requires convergence of the SAS data at high s values in a Kratky
plot. Convergence defines an enclosed area where the degree of convergence reflects the
compacted (bounded area), flexible or unfolded (unbounded area) solution states. Conse-
quently, Q (and therefore, Vp) is undefined for flexible particles. This observation leaves
Rg as the only structural parameter that can be reliably derived from SAS data on flexible
systems. Unlike the Kratky plot, the integral of I(s)·s versus s converges for both folded-
compact and unfolded-flexible particles. Holtzer plot allows deriving a SAXS invariant,
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the Vc. Vc is defined as the ratio of the particle’s zero angle scattering intensity, I(0), to its
total scattered intensity:

Vc =
I(0)

∫

sI(s)ds
(Eq. 1.19)

Vc, like Rg, can be calculated from a single scattering curve and is concentration
independent. This value can be used to derive the molecular weight of the particle (see
next section).

1.2.6 Calibration to absolute scale and molecular weight

The aim of a scattering experiment is to obtain structural information about the sam-
ple. In the case of biological macromolecules this includes the knowledge of the molecular
weight (MW) and, therefore, the determination of the oligomeric state. This can be per-
formed in several ways.

1.2.6.1 Forward scattering of standard proteins

Standard proteins of known MWs (such as cytochrome C, lysozyme or bovine serum
albumin) are often employed to determine the experimental MW of the given protein from
the forward scattering, I(0). The standard protein is measured in similar conditions to the
protein and the MW can be calculated using the ratio:

MWp = MWst ·
I(0)p/cp
I(0)st/cst

(Eq. 1.20)

where I(0)p, I(0)st are the scattering intensities at zero angle of the studied and the
standard protein, respectively, MWp, MWst are the corresponding molecular weight and
cp, cst are the concentrations.

1.2.6.2 Forward scattering of water

Alternatively, scattering from water can be used to obtain the scattering from the
solute in the absolute scale [22, 23] and then to calculate the MW. The water sample is
measured in the same cell as the protein samples, and the scattering from the empty holder
is subtracted.

1.2.6.3 Porod volume

It is possible to derive the MW from the Porod volume described above. The exact re-
lationship between MW and Vp varies for different proteins depending on a combination of
several factors, e.g. particle anisometry, flexibility etc. Using an empirical approach, Sver-
gun’s group [15] found that the scattering data range up to about smax = 8/Rg is optimal for
a reliable computation of Vp. This upper limit in most cases approximately corresponds to
the second minimum in the Porod plot. Using this interval, the average ratio between MW
and Vp is 0.625, therefore, the volume in nm3 is typically 1.6-2.0 times the MW in kDa.
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1.2.6.4 Ab initio modeling

A similar approach to the Porod volume method is using the particle volume ob-
tained from the volume of the low resolution structure of the molecule, which is 2 times
the MW in kDa. The low resolution structure can be derived from several programs and it
will be explained in more detail in next section.

1.2.6.5 Apparent volume

Fischer described a method to determine the molecular weight of proteins in dilute
solution by using the experimental data of a single small-angle X-ray scattering (SAXS)
curve measured on a relative scale [24]. This procedure does not require the measurement
of SAXS intensity on an absolute scale and does not involve a comparison with another
SAXS curve determined from a known standard protein. However, it is necessary an ac-
curate determination of the protein concentration. The method is able to derive the MW
from the value of the apparent volume V’ derived from truncated experimental SAXS data,
using an empirical ratio. A program was developed to implement this technique, making
it easily available to the scientific community. The web tool ‘SAXS MoW’ is available at
http://www.if.sc.usp.br/ saxs/.

1.2.6.6 Volume of correlation

The above described methods to determine MWs require the knowledge of the pro-
tein concentration, the assumption of a compact near-spherical shape, or SAXS measure-
ments on an absolute scale. Recently a new approach was developed to estimate MW of
biomolecules without these restrictions. The new method was developed by Rambo &
Tainer [21] and is based in the Holtzer representation. The approach determines that a pa-
rameter, QR, defined as the ratio of the square of Vc to Rg with units of Å-3 is linear versus
molecular mass in a log–log. The linear relationship is a power-law relationship given by

mass = (
QR

ec
)1/k (Eq. 1.21)

that yields the empirical mass of the scattering biological particle allowing for the direct
assessment of oligomeric state and sample quality. Parameters k and c were empirically de-
termined and are specific for different classes of macromolecular particles. Vc and Rg are
both contrast and concentration independent, thus the determination of molecular mass
using QR can be made from SAXS data collected under diverse buffer conditions and con-
centrations. Vc can be calculated with the software ScÅtter, developed by Robert Rambo
[21].

1.2.7 Radiation damage

One fraction of the X-rays that interact with the sample is absorbed by the particles
damaging their structure. This radiation damage can be neglected in laboratory sources
but has become a real program in SR sources due to their high brilliance [25]. The major
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effect of radiation damage in SAXS is radiation-induced aggregation. The aggregates are
readily seen in the low-s region of the scattering patterns and can produce erroneous data
that are impossible to analyze. Therefore, it is important reduce the radiation damage.

One way to reduce radiation damage is to use a flow cell where the solute is con-
stantly flowing through the irradiated volume. A disadvantage of this approach is the
need for larger amounts of material.

Another option is the use of additives, such as DTT or TCEP, but is not always pos-
sible, as they can reduce disulfide bonds in proteins. A universal approach, employed at
nearly all modern SR stations, is to slice the data collection into individual successive time
frames (for example, ten or twenty). The recorded patterns are then processed separately
and compared to each other (essentially to the first frame), and these frames showing sys-
tematic changes are not included in the subsequent averaging and further data processing.
This analysis is normally done automatically using standard statistical criteria.

1.2.8 Resolution of SAXS data

Most of the intensity scattered by an object of linear size d is concentrated in the
range of momentum transfer up to s = 2µ/d. It is therefore assumed that if the scatter-
ing pattern is measured in reciprocal space up to smax it provides information about the
real space object with a resolution ∆ = 2π/s. For spherically averaged scattering patterns
from solutions, I(s) usually decays rapidly as a function of momentum transfer, and only
low-resolution patterns (d » λ) can be obtained. It is thus clear that solution scattering can-
not provide information about the atomic position but only about the overall structure of
macromolecules in solution.

The s range used for a SAXS experiment determines the molecular dimensions that
can be observed. At a typical beamline the s range is 0.006 Å-1 – 0.5 Å-1 and the real di-
mensions accessible are then 160 Å – 13 Å. Although in theory would be possible to record
scattering from macromolecular solutions up to 0.2 nm, the weak SAXS signal that results
from scattering events at the high-s range is not much higher than the level of the noise
associated with the technique.

The maximum observable dimension is set by the incoming beam, the beam stop size
and the collimation of the beam to avoid divergence of the beam around the beamstop area
and the area for small angle detection. When the data are recorded, the Rg estimate dictates
the upper limit of the small angle resolution point.

A method very similar to SAXS, Wide-angle X-ray scattering (WAXS), allows access
to higher resolution structural information [1, 26]. In this technique, the detector is moved
closer to the sample to capture X-rays scattered to higher angles. It is even possible to si-
multaneously acquire SAXS and WAXS data by placing a detection window near the sam-
ple [27]. Although WAXS is easy to implement experimentally, the computational tools
required to extract all the information are still under development, and usually it is nec-
essary high resolution models are necessary for interpretation of the data. The strength of
WAXS lies in its high sensitivity to small changes, and this can, therefore, be applied to
identify structural similarities and characterize structural fluctuations. Currently, WAXS is
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employed to study structural fluctuations and ligand binding in proteins [28]. WAXS has
been also used to study nucleic acids using molecular dynamics (MD) simulations [29].

1.3 Structural interpretation of SAXS data

Besides providing information on the biophysical parameters such as Rg, Dmax and
MW, SAXS analysis of a protein system can provide information about 3D structure, the
oligomeric distribution and the flexibility. SAXS data can also be combined with high-
resolution structural information, to obtain structures of multi-subunit systems and is rou-
tinely used for the validation of structural models obtained by others methods, such as X-
ray crystallography, Nuclear Magnetic Resonance (NMR) or Electronic Microscopy (EM).
The measured intensity from an ideal monodisperse system is directly related to the single-
particle scattering and provides low-resolution structural information of the molecule.
However, some of the biological systems present polydispersity, where particles of differ-
ent size, shape and/or conformation coexist. To characterize such systems, different data
analysis methods are required. These methods will be described in the following sections.

1.3.1 Structural analysis of monodisperse biological systems

In monodisperse systems one considers that an individual species in a single con-
formation is present in solution. Although biomolecules experience dynamic phenomena
at multiple levels, when these motions do not perturb the overall size and shape of the
particle, they are not probed by SAXS and the system can be considered as monodisperse.
Several approaches to structurally characterize monodisperse systems have been reported
depending on the additional information integrated in the analysis.

1.3.1.1 Ab initio modeling

The aim of ab initio analysis of SAXS data is to recover the three-dimensional structure
of the molecules in solution from the one-dimensional scattering pattern. The reconstruc-
tion of a 3D model of a molecule from its one-dimensional scattering pattern is a challeng-
ing task and different approaches have been developed.

The first ab initio shape determination method was proposed in 1970 by Stuhrmann
[30]. The particle shape was represented by an angular envelope function describing the
particle boundary in spherical coordinates. The method was implemented much later in
the program SASHA [31], which was the first available shape determination program for
SAXS. The spherical harmonics formalism proved to be very useful for analysis of SAXS
data and it has been employed in many other approaches. The use of the angular envelope
function is limited to relatively simple shapes without internal cavities. More detailed ab
initio reconstructions became possible with the development of bead-modeling approaches
[32]. A spherical volume with diameter Dmax, which is obtained from the scattering pat-
tern through p(r), is filled with M densely packed beads (spheres of much smaller radius
r0). Each of the beads may belong either to the particle (index = 1) or to the solvent (index
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= 0), and the shape is thus described by a binary string X of length M. Starting from a ran-
dom distribution of 1s and 0s, the model is randomly modified using a Monte Carlo-like
search to find a string X fitting the experimental data. The original bead method, program
DALAI_GA ([32], uses a genetic algorithm and does not impose explicit constrains. The
program DAMMIN (Dummy Atom Model Minimisation) [33] is the most popular ab initio
bead-modeling program. The program uses a random initial approximation by simulated
annealing (SA) procedure [34]. The discrepancy (χ2) is evaluated between the experimen-
tal and calculated scattering intensities. At each step in the SA procedure the assignment of
a single bead is randomly changed leading to a new model X’. The solution is constrained
to ensure compactness and connectivity of the resulting shape. A new optimized version
of the program was implemented in the software DAMMIF [35], which perform this opti-
mization in a faster manner.

One inherent problem of the shape determination methods is the uncertainty. In
other words, different starting points yield different structural models with essentially the
same fit to the data. To achieve a good solution is a recommendable approach to run shape
determination programs several times to produce a diverse set of models corresponding
to nearly identical scattering curves and inspect how different these models are as an in-
dicator of the stability of the reconstruction. The uniqueness of the reconstruction is then
assessed by a posteriori comparison and averaging of the different models. A new a priori
ambiguity measure has been recently developed, based on the number of distinct shape
categories compatible with a given dataset [36]. The models obtained in independent runs
can be superimposed and averaged to obtain a most probable model, which is automated
in the program package DAMAVER [37]. The ATSAS package employs the program SUP-
COMP [38], which aligns two (low or high resolution), structural models represented by
ensembles of points and yields a measure of their similarity. All pairs of independent
models are aligned with SUPCOMP, and the model giving the smallest average discrep-
ancy with the rest is taken as a reference model. Then, a density map of beads is computed
and cut at a threshold corresponding to the excluded particle volume.

The reliability of ab initio models can be further improved if additional information
about the particle is available. In particular, symmetry restrictions permit to significantly
speed up the computations and reduce the discrepancy among models.

It is also important establish the resolution of ab initio shape modelling. A resolution
based on analysis of the average Fourier shell correlation (FSC) functions within an ensem-
ble of constructions has been developed recently by Svergun and co-workers [39]. This
method has been implemented in the ATSAS suite in a program called SASRES [40] and it
is able to determine resolution of ab initio models obtained using alternative procedures.

1.3.1.2 Computation of scattering patterns from atomic models

SAXS is often used for validation of 3D models obtained by high resolution methods,
such as X-ray crystallography, NMR or homology models. Different methods have been
developed to compute intensity profiles from a particular macromolecular structure. These
methods are based on the Debye equation described above or on spherical harmonics.
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Probably the most popular approach to compute SAXS intensity profiles from atomic
coordinates is CRYSOL [41], and is the method used in this thesis. In CRYSOL, the scat-
tering body is expanded in terms of an infinite series of spherical harmonics. One of the
features of this method is the consideration of a homogeneous hydration shell surrounding
the target.

Water modeling is critical to the correct interpretation of SAXS profiles and the more
advanced approaches include the explicit modeling of the solvation shell. Programs such
as the package PHAISTOS [42], AXES [43], SAXSTER [44], SASTBX [45] or AquaSAXS [46]
implement different methods to compute the scatter profile and the solvent shell. The web
server FoXs [47] is a tool for several SAXS-based modeling applications, including the com-
putation of a SAXS profile of a given structure. The software also models the first solvation
layer based on the atomic solvent accessible areas and provides an optimization of the hy-
dration layer density as well as the excluded volume of the protein, to maximize the fit
of the computed profile to the experimental profile. A new web server, called WAXSIS
[48], was released recently. This approach computes SAXS (and WAXS) curves based on
explicit-solvent all-atom molecular dynamics (MD) simulations. The MD simulations pro-
vide a realistic model for both the hydration layer and the excluded solvent. More detailed
information about the different methods can be found in [49].

1.3.1.3 Rigid-body modeling

The strength of SAXS is further revealed in hybrid approaches in which this tech-
nique is used in combination with other structural information. Rigid body modeling ap-
proaches utilize atomic models of individual subunits or domains obtained by high reso-
lution methods to analyze the structure of a complex or multidomain protein in solution.
The scattering amplitude of the subunits can be precomputed with the methods described
in the previous section and they are moved and rotated with respect to each other to find
the configuration that fits better with SAXS data. A number of automated approaches have
been developed using SAXS to determine the positions and orientations of subunits within
macromolecular complexes.

One of the most used programs is SASREF [40, 50], which, starting from an arbitrary
positioning of subunits, conducts random rigid-body movements and rotations, using SA
to search for the best fit of the computed complex scattering to the experimental data. SAS-
REF add penalties to avoid solutions without physical sense and allows the simultaneous
fitting of multiple scattering curves. Moreover, it is possible improve its results by using in-
formation from other techniques, such as symmetry, orientational constrains, inter-residue
contacts and inter-subunit distances. SASREF performs an automated global optimization
of multi-subunit complexes, but the ATSAS suite includes other programs that comple-
ments SASREF, like BUNCH [40], used for multi-domain assembly; and the combination
of both, CORAL [50].

There are also other available programs for rigid-body modelling, like the web server
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FoXS [47, 51] that, besides being able to calculate the SAXS profile from a molecular struc-
ture as described in the previous section, can model the quaternary structures of multido-
main proteins with defined rigid domains. The method uses the SAXS profiles, the com-
ponent structures and information derived from other techniques, like stereochemical re-
straints. The scoring function is optimized by a biased Monte Carlo protocol and the final
prediction corresponds to the best scoring solution in the largest cluster of many indepen-
dently calculated solutions.

Another software for refining atomic models of multidomain proteins against SAXS
is DADIMODO [52]. This program keeps rigid the domain structures and conformational
changes are applied cyclically with a genetic algorithm that performs a search in the protein
conformation space. The evaluation of the new generated conformation is done through
the scoring function S and the goodness-of-fit to the SAXS data is computed by the program
CRYSOL. The algorithm guarantees a physically acceptable atomic model of the structure
and information from other techniques can be included in the optimization process, such
as interdomain distances and orientational restraints.

1.3.2 Structural analysis of polydisperse biological systems

The ideal scenario for a SAXS experiment is a monodisperse sample, where all par-
ticles are identical. However, many biological samples display polydispersity. There are
multiple sources of polydispersity, (i) where the particles in solution have the same chemi-
cal composition but differ in size and/or shape, or (ii) mixtures, where they may differ also
in chemical composition.

For polydisperse systems or mixtures consisting of k different components, the mea-
sured scattering pattern can be written as a linear combination of the scattering intensity of
the k types of particles (Ik(s)), where the coefficients νk > 0 represent their molar fractions:

I(s) =

K
∑

k=1

νkIk(s) (Eq. 1.22)

In this case, the overall parameters reflect the average values over the ensemble, but,
of course, shapes of individual components cannot be reconstructed given only the exper-
imental scattering from the mixture. To characterize such systems, additional information
is required to partially overcome the limitations in the information content and the large
number of degrees of freedom. These methods are the aim of this thesis and will be ex-
plained with more detail in the following sections.

1.3.2.1 Oligomer distribution

If prior structural knowledge of the components of a heterogeneous system is avail-
able, it is possible to derive their molar fractions in the sample. The program OLIGOMER
from the ATSAS suite implements a non-negative linear least square algorithm to derive
the volume fractions of the included components by minimizing the discrepancy, χ2, be-
tween the experimental scattering profile of the sample and the components considered
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[50, 53]. OLIGOMER has been successfully used to characterize oligomeric equilibria and
complex formation [54–56].

1.3.2.2 Analysis of flexible systems

The high complexity of biological processes requires flexible systems, which allow
to economize genome and protein resources by joining functional domains with flexible
linkers, or by facilitating posttranslational modifications [57]. Intrinsically Disordered Pro-
teins (IDPs) have emerged as fundamental molecules in crucial biological tasks. Due to
their lack of a permanent secondary and tertiary structure, IDPs can adapt to the structural
and chemical features of their partners and perform a broad range of crucial biological
functions, complementary to those of ordered proteins [58, 59]. Such relevance makes im-
portant the development of methods to characterize their structure and to connect it with
their function. Ensemble methods use the experimental data to derive accurate ensem-
ble models to structurally characterize flexible proteins. These ensemble methods have
been used with several techniques, including NMR [60] and SAXS. In SAXS, ensemble
approaches have become popular in the last decade and several strategies have been de-
veloped: Ensemble Optimization Method (EOM) [50, 61], Minimal Ensemble Search (MES)
[62]; Basis-Set Supported SAXS (BSS-SAXS) [63]; Maximum Occurrence (MAX-Occ) [64];
Ensemble Refinement of SAXS (EROS) [65]; Broad Ensemble Generator with Re-weighting
(BERG) [66]; and Bayesian Ensemble SAXS (BE-SAXS) [67]. These methods share a com-
mon strategy but have distinct features. See [68] for details.

The program used in this thesis was the Ensemble Optimization Method (EOM). The
program assumes the coexistence of a range of conformations whose average scattering
intensity fits the experimental SAXS data. A subensemble of conformations is selected by
a genetic algorithm (GA) from the scattering patterns computed from a large pool repre-
senting the maximum flexibility allowed by the protein topology. In this sense, the final
result is considered a data-driven ensemble optimization strategy. In the EOM algorithm
(Figure 1.5), a potential solution is represented by an ensemble containing N different con-
formers of the same molecule. The appropriate ensemble is selected from a pool containing
M » N conformers, which should cover the conformational space available to the molecule.
Normally, 10,000 possible conformations of the biomolecule expected in the solution are
generated. The GA is then used to select the subset of configurations that collectively fit
the experimental data. We can assume that the subsets are uniformly populated, so the
intensity of a subset I(s) containing N conformers is

I(s) =
1

N

N
∑

n=1

In(s) (Eq. 1.23)

where In(s) is the scattering from the n-th conformer. To speed up the calculations, EOM
uses the previously computed scattering curves from all structures in the pool, instead of
using the structures directly (see section 1.3.1.2).
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FIGURE 1.5. Schematic representation of the EOM strategy for the analysis of SAXS data in terms of Rg
distributions. The M conformations/curves of the pool (random distribution), left part of the figure, are used
to generate the initial C chromosomes and to feed the genetic operators (mutations, crossing and elitism)
along the GA process that runs for G generations. The complete process is repeated R independent times,
and each run provides N selected structures/curves that fit the experimental profile. The structural analysis
of the resulting conformations is displayed on the right part of the scheme, the Rg distribution of the selected
(N x R) conformations is compared with that derived from the pool that is considered as a complete
conformational freedom scenario. From this comparison it is possible to derive a quantitative structural
estimation of the protein conformations coexisting in solution. Figure extracted from [58]

Following typical GA nomenclature, each subset is called chromosome and it contains
N scattering profiles, called genes, which correspond to N distinct conformers (typically
between 20 and 50). In the first generation, C = 50 chromosomes are created by randomly
selecting N conformations from the pool. In each generation G, these C chromosomes are
submitted to two genetic operators: mutation and crossing (see details in [61]). In muta-
tion, a random number of genes of each chromosome are exchanged for others, either from
the pool or from the chromosomes belonging to the same generation. In crossing, genes
of two randomly selected chromosomes are exchanged, thereby maintaining the size of
the chromosome N. After the two genetic operations the populations is composed of 3C
chromosomes. For each chromosome, the average of its individual SAXS profiles is com-
pared with the experimental scattering to yield the fitness parameter χ2 (see section 1.2.2).
The C chromosomes yielding the lowest χ2 discrepancy with the experimental profile are
selected for further evolution in an elitism fashion. This mutation, crossing, and elitism
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process is typically repeated G = 500 – 1000 generations. After completion of the optimiza-
tion, the chromosome that best fits the experimental data is collected for further analysis.
The genetic algorithm is often repeated 100 times. The structural examination of the final
ensemble composed by the best chromosome of each independent EOM run is performed
by analyzing the distribution of low-resolution parameters, Rg and Dmax of the selected
conformations in all GA runs. The selected pool of structures does not describe the actual
combination of specific structures that is found in the solution, but rather a collection of
structures representing the size and shape of the flexible protein in solution.

EOM provides a new source of structural information for disordered and also for
flexible multidomain proteins. For unstructured proteins, the pools of possible chain con-
formations can be generated by the program Flexible-Meccano [69], which builds con-
secutively a polypeptide chain assuming that peptide planes are rigid entities connected
through Cα atoms. For a system composed by multidomain proteins, it is possible to use
a pool of structures generated by Monte-Carlo or molecular dynamic simulations (see an
example in section 6.3).

1.3.2.3 Size-exclusion chromatography coupled to SAXS

Size-exclusion chromatography (SEC) is a technique for separating proteins and other
biological macromolecules on the basis of molecular size (1.6). SEC has been used for
many purposes, including buffer exchange (desalting), removal of non-protein contami-
nants, protein aggregation separation [70], the study of biological interactions, and protein
folding [71]. It also has the important advantage of being compatible with physiological
conditions. Protein molecules eluted from the SEC column are most often monitored by
absorbance in the ultraviolet range, either at 280 nm or at 260 nm. Other detections, such
as refractive index, radiochemical, electrochemical, and light scattering [70, 71], are also
available.

SEC on-line with SAXS (SEC-SAXS) was originally implemented at the Advanced
Photon Source (APS) BioCAT beamline [72] and is increasingly used in more beamlimes
as a standard set-up [70, 73–75]. This combination is only possible at 3rd generation syn-
chrotrons, where data over a large s-range (0.005-0.5 Å-1) can be recorded in less than a
second for concentrations below 1 mg/ml. The sample elutes from the SEC column and
is routed directly and continuously into a BioSAXS flow cell for subsequent acquisition
of SAXS data. SAXS sampling of the SEC elution peak can then be performed, therefore
reducing the polydispersity of the initial sample.

The use of the SEC-SAXS set-up is preferable in samples with tendency to form ag-
gregates, mixtures and low affinity complexes. Their use has also the advantage of re-
ducing the inter-molecular (inter-particle interactions) at the same concentration and an
accurate background subtraction. The disadvantages of the method are the accumulation
of radiation damaged sample on the capillary (sample cell) (see section 1.2.7), thus, the
need of exhaustive cleaning of the capillary after the data collection and the large sample
consumption.
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FIGURE 1.6. Schematic drawing of SEC-SAXS measurement system. In the inset, photo of the SEC-SAXS
set-up in P12 Beamline (Petra III, DESY).

Estimation of the scaling constant for the buffer and/or extrapolation to zero concen-
tration is nontrivial, since determination of the protein concentration requires alignment
with a high-quality UV chromatogram. There exist software tools developed to analyze
the data from SEC-SAXS experiments, like the program CHROMIXS, released in the ver-
sion 2.8 of the ATSAS suite [53] or the program ScÅtter (http://www.bioisis.net/). Some
beamlines provide their own software to process the data during of the acquisition.

Despite the decrease of polydispersity by using SEC-SAXS, some systems can still
present regions with overlapped peaks that are composed by more than one species. For
these cases, it is necessary to decompose the data in order to obtain scattering curves of
the pure species before proceed to analyze them. One of the tools that has been developed
for this task is US-SOMO [76][77] (http://somo.uthscsa.edu), which has a HPLC-SAXS
module [78, 79] that is able to analyze such data and it is able to resolve several species
co-eluting from a column. The software performs a single value decomposition (SVD)
analysis of the dataset to choose the minimal number of components necessary to account
for the data. It also includes the correction of baseline drift due to the accumulation of
material on the SAXS capillary walls, and the symmetrical and non-symmetrical Gaussian
decomposition of non-baseline-resolved HPLC-SAXS elution peaks. We have developed
a different approach to analyze and decompose overlapped peaks from SEC-SAXS data
using chemometric tools, which will be described in detail in chapter 6.
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Chapter 2

Polydispersity in biological systems

Many biological systems are inherently polydisperse, that is, their samples present
particles that differ in size, shape or conformation. There exist different kinds, (i) species
polydispersity and (ii) conformational polydispersity. In species polydispersity, the sam-
ple consists in a mixture of chemically different particles. Typical systems of this type are
oligomeric mixtures or weakly bound complexes dissociating into individual components.
Conformational polydispersity appears when the system contains particles of identical
molecular mass and sequence though these particles may adopt different conformations
in solution. The number of conformations may be small such as coexistence of open and
closed forms for an enzyme, or enormous such as for multidomains proteins with flexible
linkers or intrinsically disordered proteins (IDPs). More complex systems including both
kind of polydispersity can also exists [68].

Protein amyloid fibril formation is an example of a very complex biological system
with high polydispersity associated with protein misfolding and formation of multiple
oligomeric states. This process is going to be explained in detail in chapter 2.3 because its
characterization is one of the main goals of this thesis.

2.1 Species polydispersity

In this scenario the solution contains small number of particles with distinctly differ-
ent shapes and sizes; for example, a monomer-dimer equilibrium. Usually, SAXS data is
used in combination with structural methods like Nuclear Magnetic Resonance (NMR) or
X-ray to characterize the system in term of the fractions of the components in the mixture
(see section 1.3.2).

An example of this kind of analysis is the analysis of the selecase [80] that combines
high resolution models from X-ray crystallography with SAXS in order to determine the
composition of system in solution. SAXS revealed that the protein does not aggregate at
concentrations up to 65 mg/ml, and that the relative population of the oligomeric species
in solution was concentration dependent (Figure 2.1). In addition, single value decomposi-
tion analysis of the SAXS dataset indicated that four species (monomers, dimers, tetramers,
and octamers) were present. More detailed information can be found in the original publi-
cation (Paper III).
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FIGURE 2.1. A) Structure of the monomeric (blue, PDB entry 4qhf) and dimeric (green, PDB entry 4qhg)
selecase. B) SAXS intensity profiles measured for wild-type selecase at 11 concentrations (bottom to top):
0.15 (yellow), 0.30, 0.63, 1.2, 1.9, 4.5, 8.5, 15, 22, 46, and 65mg/ml (black). Profiles have been displaced
along the I(s) axis for comparison. The experimental scattering curves at the three lowest concentrations
studied indicate a mixed population of monomers and dimers based on the crystallographic structures of slc1
and slc2 (black curves). Variation of the primary SAXS data parameters with concentration: (C) Rg, (D)
I(0)/concentration, and (E) Dmax.

.

2.2 Conformational poldydispersity

2.2.1 Large amplitude conformational fluctuations in globular proteins

Proteins under native conditions exhibit a wide range of motions enabling the per-
formance of their biological function. Functional modifications, control of synthesis and
degradation are mechanisms requiring the formation of dynamic interfaces and confor-
mational states that regulate and control the function. That control can be either direct,
through activation or inactivation of the macromolecule, or indirect through pathways
that affect the macromolecule. Each of these levels of control can be manifested through
changes in the shapes of the specific macromolecule (Figure 2.2) [81]. Fast protein mo-
tions (pico-nanosecond timescale) are local and involve conformational fluctuations of a
few angstroms, including side chain rotation and small backbone movements. By contrast,
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FIGURE 2.2. Example of the conformational change of oxidized and reduced Rv2466c. Low resolution
models, characterized by SAXS, of Rv2466cRED (A) and Rv2466cOX (B) in solution with the high
resolution crystal structure of Rv2466cRED (Protein Data Bank code 4NXI) fitted by rigid body docking.
Figure extracted from reference [81]

.

at slow timescales (micro-milliseconds and beyond), large collective motions of protein
domains and entire subunits in oligomeric assemblies allow changes in conformation of
tenths of angstroms that are typically associated to active site opening/closing in ligand
binding and vast structural rearrangements in allosteric events. It is the balanced interplay
of this hierarchy of motions that allows proteins to adopt conformations complementary
to their binding partners. The larger the amplitude of the motion and the shape change,
more sensitive SAXS will be to monitor the perturbation.

2.2.2 Intrinsically disordered proteins

An extreme case of polydispersity can be found in Intrinsically Disordered Proteins
(IDPs), which shows an enormous number of conformations. In the last two decades, IDPs
have emerged as fundamental molecules for a large variety of biological process [82, 83].
IDPs are proteins that lack for a permanent secondary or tertiary structure and, conse-
quently they are highly plastic and have the capacity of perform specialized functions. It
has been predicted that more than 35% of human proteins have significant regions of dis-
order (intrinsically disordered regions, IDRs) and about 25% are likely to be completely
disordered [84]. These IDRs are very well suited for protein-protein interactions. Under
physiological conditions these proteins constantly fluctuate between different structural
states, resulting in a dynamic mixture of conformations in a polydisperse solution.
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The relatively recent discovery that proteins without globular architecture could also
have biological activity has revolutionized this classical interpretation of the structure/
function paradigm, one of the bases of biology [85] and has raised intense research efforts
that seek to unravel the structural bases of their function. Importantly, functions performed
by well-folded globular proteins and IDPs are different and complementary.

There are multiple studies addressing the distinct function that natively unstructured
protein can perform facilitated by its inherent plasticity [86–88]. Two are the main biophys-
ical features explaining the biological roles of IDPs: (i) high accessibility, and (ii) conforma-
tional adaptability. Moreover, multiple advantages can be envisioned in the context of
IDRs connecting two or more folded domains forming the multi-domain or modular pro-
teins. This architecture enables the simultaneous interaction to multiple sites; for example,
localizing consecutive catalytic steps in close proximity.

A large amount of disordered regions are functional when they interact with their
biological partners to modify their activity. These partners can be proteins, nucleic acids,
lipids or small molecules. The disordered nature of IDPs enables them to finely adapt their
conformation to the structural and chemical nature of the partner to provide highly specific
complexes. In some cases, however, the same disordered region can interact with multiple
different partners even adopting different conformations.

Multiple IDPs have been associated with human diseases [89]. The first examples
reported of disorder-induced diseases are related to neurodegenerative pathologies such
as Alzheimer’s, Parkinson’s or Huntington’s diseases. The hallmark of these pathologies
is the presence of large fibrillar aggregates in patients’ brains that are formed by the ac-
cumulation of non-functional proteins that fully or partially disordered such as amiloyd-β
and Tau in Alzheimer’s, α-synuclein in Parkinson’s (see next chapter), and huntingtin in
Huntington’s disease. IDPs are also involved in cancer [90] and cardiovascular diseases
[89].

2.3 Amyloids

Many human diseases are associated with the formation of extracellular amyloid fib-
rils (AF) or intracellular inclusions with amyloid-like characteristics. These diseases in-
clude the most common neurodegenerative pathologies, such as Alzheimer’s, Parkinson’s,
and Huntington’s diseases [91, 92], but also other non-neuropathic localized amyloidosis,
like Type II diabetes. These diseases are among the most prevalent, debilitating, and eco-
nomically and socially impacting disorders in the first-world. Consequently, a big effort
has been made from a broad range of disciplines toward understanding the details of the
mechanism of aggregation to find pharmaceutical treatments. Amyloids have been one of
the focuses of this thesis. In the following sections I will describe the amyloid formation
process and the species involved, especially for the proteins used during my work, insulin
and α-synuclein (αSN).
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2.3.1 Amyloid formation

The formation of amyloids is linked to the failure of a specific peptide or protein to
adopt, or remain in, its native functional conformational state. This process is generically
known as misfolding [93], and the originated pathologies are referred to as protein mis-
folding diseases. The largest group of misfolding diseases, however, is associated with the
conversion of specific peptides or proteins from their soluble functional states into highly
organized fibrillar aggregates. These structures are generally described as amyloid fibrils
(AF) or plaques, when they accumulate extracellularly.

There are now approximately 50 disorders, with different symptoms, which are as-
sociated with the misfolding of functional peptides and proteins, and their subsequent
conversion into aggregates. Interestingly, the ability of polypeptide chains to form amy-
loid structures is not restricted to that relatively small number of proteins associated with
recognized clinical disorders, but it seems to be a generic feature of polypeptide chains
[94–97]. A large and increasing number of peptides and proteins have been shown to be
able to self-assemble in vitro into insoluble fibrillar aggregates, adopting the distinctive
cross-β configuration [91, 93, 98, 99]. Even though the ability to form amyloids fibrils seem
to be generic, the propensity to do so under given circumstances can vary markedly be-
tween different sequences. The relative aggregation rates for a wide range of peptides
and proteins correlates with the physicochemical features of the molecules such as charge,
secondary-structure propensities and hydrophobicity [100].

The term AF describes structurally comparable filamentous protein aggregates of
only few nanometers of diameter but several micrometers in length. Studied at higher
resolution, amyloids consist in multiple protofilaments that are twisted around each other
to form mature fibrils. The core of each protofilament has a common ‘cross-β’ structure
(Figure 2.3), which gives rise to repeating distances of 4.8 Å between peptide chains along
the fibril axis [101, 102]. Whereas the 4.8 Å distance due to its origin is rather fixed due to
the hydrogen bonds constrains [103, 104], the spacing between the β-sheets in the direction
perpendicular to the fibril axis (lateral packaging) is highly dependent on the amino acid
sequences of the component proteins, and it has hence been reported to span a range from
5-12 Å [98, 103, 105–107]. A more detailed description of the structure of amyloid fibrils
and the intermediates of the process can be found in further sections and it will be focused
in the proteins used during this work, αSN and insulin.

The transition of a protein from its functional soluble state to the amyloid state is a
highly complex process that depends on both the intrinsic characteristics of the protein and
the environmental conditions. However, there are similarities in the aggregation behavior
of different peptides and proteins [108, 109]. This mechanism is not fully understood al-
though the generic main steps are known (Figure 2.4).

Since the protein is synthetized by the ribosome it can evolve towards different states
following different pathways. In the case of globular proteins, the functional state is nor-
mally achieved after a complex process of folding that can be assisted by chaperones. How-
ever, along this process can exist partially folded states (for example at low pH or as conse-
quence of dynamical fluctuations) that expose the hydrophobic side chains, and the protein
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FIGURE 2.3. Simplified model of the characteristic cross-β spacings from amyloid fibrils. The X-ray fibre
diffraction patterns (not shown) reveal a strong 4.8 Å reflection on the meridian that corresponds to the
hydrogen bonding distance between β-strands (strong interactions); and a more diffuse reflection on the
equator that shows the inter-sheet distance of about 5 - 12 Å, depending on the protein (weaker interactions).
A spacing of 9.6 Å would correspond to the repeat distance for an anti-parallel arrangement of β-strands.

will be particularly vulnerable to misfolding and aggregation. Some of the peptides and
proteins that are involved in the most common misfolding diseases are intrinsically disor-
dered in their free soluble forms, such as the Tau protein in Alzheimer’s disease [110] or
αSN in Parkinson’s disease [111, 112].

The overall process follows a nucleation–polymerization model [113] where, in the
initial stages of the aggregation process, the soluble species undergo a nucleation step that
results in the formation of a heterogeneous array of oligomeric species. These oligomeric
species are able to grow through further monomer addition generating early prefibrillar
aggregates that transform into species with more distinctive morphologies, often called
‘protofilaments’ or ‘protofibrils’. These structures are commonly short, thin, sometimes
curly, fibrillar species that are thought to assemble into mature fibrils, perhaps by lateral
association accompanied by some degree of structural reorganization. The growth profile
shows a typical sigmoidal reaction time course, which is a feature of nucleated polymer-
ization [114, 115]. The process is usually experimentally monitored by the fluorescent dye
Thioflavin T (ThT), that binds to the crossed β-sheet of amyloid fibrils with high selec-
tivity [103, 116, 117]. In this profile we can observe a lag phase, where new oligomers
are formed directly from monomers; and a rapid growth phase that reflect the addition of
monomers onto existing aggregates. In cases in which the total quantity of protein is lim-
ited, the growth phase is followed by a plateau phase in which the reaction rate declines
as a result of the depletion of the soluble species that is being monitored as it converts into
fibrils. More recently, it has become evident that processes other than primary nucleation
and elongation are important, including fibril fragmentation and surface-catalyzed nucle-
ation. These secondary processes can dominate the kinetics of fibril growth under many
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FIGURE 2.4. Schematic representation of the different states of a protein since it is synthesized by the
ribosome. From the unfolded state the protein can evolve towards different states as a function of the
thermodynamic stability, the kinetic barriers, and external elements such as chaperones or post-translational
modifications. In the pathway towards the amyloids, oligomers of different nature can be formed. Figure
extracted from reference [99]

circumstances, increasing the multiplicity of steps in the formation process [118, 119].

2.3.2 Amyloid oligomers and cytotoxicity

The healthy state of a cell depends on the appropriate population of all the species
present in the system. The unbalance of this equilibrium can lead to deleterious effects and
disease. Living systems have developed multitude of mechanisms to guarantee this home-
ostasis including chaperones, proteolysis, autophagy... [99]. One of the causes of the disor-
der is the loss of function induced by the presence of aggregates that reduce the available
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concentration of the functional protein inducing a deficiency in a metabolic pathway. This
is the case of systemic amyloidosis, a family of disorders are associated with the presence
of large quantities of amyloid deposits in vital organs, including the liver, spleen and kid-
ney [91]. In neurodegenerative disorders, by contrast, there are many cases no detectable
correlations between the overall quantity of fibrillar aggregates and the stage of disease
advancement [120–123]. It seems likely that the main cause of these type of pathologies
is due to misfolding events that induce cellular damage and the gain of toxic function in-
duced by the deleterious interaction of species formed along the fibrillation process with
other proteins perturbing the regular signalling or metabolic pathways [124].

A view has emerged over the past 15 years that pre-fibrillar species, rather than ma-
ture amyloid fibrils, are likely to represent the primary pathogenic agents in non-systemic
conditions, notably neurodegenerative diseases and other organ-specific conditions such
as type II diabetes [91, 98, 108, 120, 121, 124–133]. Experimental evidence suggests that the
oligomeric assemblies that are almost universally observed as intermediates during the ag-
gregation process are inherently more damaging than the fibrils [108, 121, 126–133]. The
origin of the toxicity of the oligomers is still a subject of intense debate [134–137]. One of
the possible mechanism of toxicity may arise from their inherently misfolded nature, as
they display on their surfaces chemical groups that under normal physiological conditions
would not be accessible within the cellular environment [128, 138, 139]. These exposed
groups can interact inappropriately with many functional cellular components, ranging
from other proteins to nucleic acids and lipid membranes [140, 141].

Considering that the toxicity associated with oligomeric amyloid species appears to
be related with their unique features characteristic of these species; the characterization of
the structure and the formation process of these early aggregates becomes the key to un-
derstand pathologies and to design strategies to fight diseases. However, these studies are
inherently challenging due to the often rapid elongation rates of the transient intermediate
species and their highly heterogeneous nature.

In order to overcome these difficulties, a number of techniques have been developed,
including methods that enable the direct observation and characterization of individual
molecular species populated during the aggregation reaction [129, 142–146].

In chapter 4 I will describe a new approach based on SAXS that allows the structural
study of the species implicated in the fibrillation process, including the toxic oligomers,
without their isolation (therefore, without the potential perturbation of the equilibrium
and structure).

2.3.3 α-synuclein

α-synuclein (αSN) is a 140-amino acid protein (14.5 kDa, pI=4.7), which is encoded
by a single gene consisting of seven exons located in chromosome 4 and is expressed abun-
dantly in the brain, being 1% of the total protein in soluble cytosolic brain fractions [147].
This protein was first described by Maroteaux in 1988 [148] as a neuron-specific protein
localized in the presynaptic nerve termini and nucleus [147], and hence was referred to
as synuclein.
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FIGURE 2.5. The primary structure of WT α-synuclein. The imperfect KTKEGV repeats are highlighted
and underlined. The position of the A30P, A53T and E46K early PD onset point mutations are indicated
with arrows. The position of the four tyrosine residues in positions 39, 125, 133 and 136 are marked in red.

The sequence of αSN (Figure 2.5) has neither tryptophan nor cysteine and it is char-
acterized by the presence of 7 imperfect repeats of the amino acid sequence KTKEGV. It
is commonly divided into three regions: 1) An amphipathic lysine-rich N-terminal region
covering residue 1-60 containing 4 of the imperfect repeats. The N-terminal is playing
an important role in modulating membrane interactions of αSN. 2) The hydrophobic and
fibrillation-prone Non-Amyloid-β Component (NAC) region from residue 61-95 contain-
ing 3 imperfect repeats and 3) the disordered acidic and proline rich C-terminal with 14
negative residues, residue 96-140 [149–153]. The NAC region is named so because a pep-
tide with this sequence was originally isolated from amyloid plaques in Alzheimer’s dis-
ease [154] and it is very central to the aggregation process (amyloid fibrillation).

There are strong evidences that suggest that the native state of αSN in solution is
a natively unfolded monomer, that is, an intrinsically disorder protein (IDP) [151, 155–
159]. However, it presents an average hydrodynamic volume significantly smaller than the
predicted for an extended random coil conformation [160–164].

Intriguingly, αSN is characterized by a remarkable conformational plasticity, adopt-
ing a series of different conformations depending on the environment. The natively un-
folded nature of αSN is determined by its relatively low hydrophobicity and high net
charge. It is expected that alterations in the protein environment leading to an increase
in its hydrophobicity and/or decrease in net charge can induce partial folding [157]. In
fact, these two structural parameters can be modulated via changes in the environment.
For example, αSN became more ordered at pH 3.0 or at high temperature [157]. Com-
parable folding/compaction was observed for the protein at high temperatures, and an
increase in temperature was sufficient to induce the reversible formation of some ordered
secondary structure in αSN [157]. More details about different conformations of the native
αSN depending the environmental conditions can be found in [165].

A broad range of studies shows that the function of αSN is somehow related to
synaptic vesicle plasticity and neurotransmitter release [157, 159, 166–168] as reviewed by
e.g. Lashuel et al. [151] and Stefanis [169]. Although the in vivo function of αSN is not
understood in depth, the recent trend has been pointing towards αSN as being involved in
different processes, such as membrane binding, modulating the affinity of the protein for
the bilayer and acting as an anchor [170], or membrane remodeling [171]. Another possible
role of αSN is regulating synaptic trafficking, homeostasis, and neutrotransmitter release
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[94, 167, 172–174]. In addition, αSN has been proposed so be involved in other cellular pro-
cesses including signal transduction, the functioning of mitochondria, and the regulation
of oxidative stress [175].

2.3.3.1 Association of α-synuclein with PD and other diseases

αSN has been implicated in Parkinson’s disease (PD) as well as in other neurode-
generative disorders including dementia with Lewy bodies (DLB) and multiple system
atrophy (MSA), collectively referred to as synucleinopathies [176].

PD is the second most abundant neurodegenerative disease worldwide only sur-
passed by Alzheimer’s disease. PD is expressed clinically by resting tremor, muscular
rigidity, postural instability and bradykinesia as well as a number of non-motor deficien-
cies such as depression, olfactory dysfunction, loss of memory, psychosis and sleep distur-
bances. Treatment paradigms are all symptomatic as there is no cure available [177, 178].

All synucleinopathies display the accumulation of fibrillar αSN, with the distinctive
cross-beta sheet structure of amyloid, in intracellular inclusions called Lewy bodies (LBs);
and inside neurons, called Lewy neurites [112, 179, 180]. In MSA, αSN accumulates into
the cytoplasm of glial cells in more diffuse inclusions of poorly organized bundles of αSN
fibrils [112, 180–182]. Additionally, αSN has also been identified as a component of amyloid
inclusions from brain tissue of Alzheimer’s disease patients [183].

Several rare single-point mutations in the gene encoding αSN (SNCA) have been
identified in familial cases of PD (A53T, A30P, E46K, and more recently H50Q and G51D
[111, 152, 184]; with an early age of onset of the disease [185, 186].

The accumulation of αSN in tissues is the hallmark for all patients with PD, along
with the genetic evidence, αSN appears to have a central role in the pathogenesis of PD.
The contribution of αNS to PD and other synucleinopathies could in principle result from
a loss or perturbation of the normal function of αSN, from a toxic gain of function caused
by its aggregation, or from a combination of both.

Recently, misfolded forms of αSN, and other proteins associated with neurodegen-
erative disorders, have been shown to self-propagate and spread, sometimes described as
in a “prion-like” manner, between interconnected regions of the central nervous system
[187–189]. Indeed, cell-to-cell transmission of αSN aggregates has been experimentally ob-
served [190, 191], pointing to a key role for αSN in the stepwise spreading of LB pathology
and the progressive nature of PD and other synucleinopathies. Interestingly, like prions,
different types of strains or fibril polymorphs of αSN have been identified. These poly-
morphs have been proposed to present different degrees of infectivity and induce variable
neuronal vulnerability and pathology [135–137], providing some insights into why fibril-
lar αSN inclusions are associated with distinct types of neurodegenerative disorders. Such
“prion-like” behavior is indeed an intrinsic characteristic of the self-assembly process of
amyloid fibrils. Indeed, secondary nucleation mechanisms and seeding processes have
been shown to be important catalytic processes in the aggregation of both αSN in PD and
Aβ42 in Alzheimer’s disease [99, 192, 193].
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2.3.3.2 Genetic features of the structure of α-synuclein fibrils

αSN fibrils generated in vitro are morphologically and indistinguishable from those
extracted from patients [194], showing the typical characteristics of the amyloid cross-β
structure [195]. Although the structure of αSN fibrils has not been unambiguously deter-
mined at atomic resolution, most experimental data are consistent with the standard model
of amyloid fibril, in which αSN monomers adopt antiparallel β-strands with monomeric
units stacked in a parallel arrangement forming the fibril protofilament, as described in
the model proposed by Riek and collaborators [196]. A recent model shows that αSN
fibrils are composed of three filaments, each of them in turn formed by pairs of cross-β
protofilaments. The protofilaments are composed of pairs of β-sheets that interact with
other protofilaments through specific water-mediated interactions established between the
side chains of the residues of the protein that form the core of the fibril [105, 197].

2.3.3.3 Conversion from the monomeric to the fibrillar state

Evidence is accumulating that monomeric αSN is an IDP [161–163]. There is also
direct evidence that a similar dynamic structure is present within living cells [151, 198, 199].
By contrast, as explained above, the fibrillar form of αSN adopts mainly a highly stable
and compact cross-β structure [196, 200–204]. The transition from the natively unfolded
monomeric state to the fibrillar state is therefore a process of acquiring persistent structure
within the polypeptide sequence.

Two types of model for the acquisition of the amyloid structure by αSN have been
proposed, each of them supported by a range of theoretical and experimental evidence.
One is the nucleation–polymerization model, where the structural conversion from ran-
dom coil to β-sheet structure is assumed to take place at the monomeric level. In this
model, the monomeric protein is assumed to adopt fully β-sheet structure, forming small
oligomers (dimers or trimers) before the formation of larger ones, which will compose the
final fibril. As αSN is an IDP, it is more likely that the monomer forms a β-sheet structure
only partially, and this form can then trigger self-assembly such that the aggregated species
would adopt the fully formed amyloid structure at a later stage [205–208].

The second model proposed is the nucleation–conversion–polymerization model. In
this model, the structural conversion occurs at the oligomeric level through a unimolecular
reaction from disordered to β-sheet oligomers. Such β-sheet oligomers, in an extreme case,
could have fully formed amyloid-like structure, or partially formed structure that later
converts into the fully formed β-sheet structure in a subsequent step. In this model, the
two structurally distinct types of oligomers would coexist at the early stages of the self-
assembly process. This theory is strongly supported by a number of experimental studies
[114, 129, 209–212], and direct experimental evidence [114, 129, 209].

2.3.3.4 Generic features of the structure of α-synuclein oligomers

A detailed understanding of the oligomeric species generated during protein amy-
loid aggregation is very important for designing new strategies to treat diseases in early
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stages. For that, many studies have been focused in its characterization. Highly struc-
turally diverse oligomers of αSN have been found. This structural diversity is translated
to variability in cytotoxicity and biological activity. In this section I will review some of the
different oligomeric forms that have so far been report. More details can be founded in a
recent review [213].

Oligomers identified during in vitro fibril formation

As I described before, one of the main challenges in the study of oligomeric species
is that they are found in low concentration in a heterogeneous system, and in a transient
state that advance into formation of the fibrils (more stable species) in an often rapid elon-
gation rate. Despite this low stability, there are reports of early species during in vitro
fibril formation, and αSN oligomeric species with spherical and annular appearance have
been observed by atomic force microscopy (AFM) [214–216] and transmission electron mi-
croscopy (TEM) [217, 218]. Incubation of these αSN in the presence of excess monomeric
αSN has been found to result in the conversion of oligomers into fibrils [217]. However, the
easiest way to study these transient species is by isolating them using different physical or
chemical methods.

Stabilization by lyophilization

The main method for isolating the intermediate species is through lyophilisation, that
produce remarkably stable oligomers. The isolated oligomers have been found to exist as a
heterogeneous population of species with an average size of approximately 30 monomers
[219–221], although a wide range of sizes (from 10 mer to 90 mer) have been observed
coexisting in samples of this type of oligomers [219]. In general, oligomers formed by
lyophilisation appear unable to elongate and form fibrils, or to seed their formation at a
significant rate [219, 220, 222].

Apetri et al. found soluble oligomeric intermediates, characterized occasionally as
protofibrils, which disappear upon fibril formation; the earliest formed αSN non-fibrillar
aggregates appear to be spheroidal with heights between 2 nm and 6 nm. These spheroids
have a significant amount of α-helix and transition to β-structure occur during the forma-
tion of the oligomers (and further fibrils) are formed [223].

A recent study [219] describes a detailed structural characterization of stable toxic
oligomers of αSN; two major size subgroups, designated 10S and 15S, with molecular
masses of approximately 260 and 420 kDa on average, with variable β-sheet content and
the rest of the protein being largely disordered.

In addition, it was possible to use cryo-EM image reconstruction techniques to obtain
three-dimensional structural models. The cryoEM and TEM image analyses reveal essen-
tially two major groups of structural orientations that are independent of the sizes of the
oligomers, one with a “doughnut” shape (Figure 2.6) and the other one with a cylindrical
appearance, consistent with some previous observations of αSN oligomers [218, 219, 224].

Stabilization by chemical compounds
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FIGURE 2.6. Three-dimensional reconstructions of the two main size subgroups of oligomers of purified
oligomeric samples of α-synuclein. (A) Example of cryoEM image of an oligomeric sample. Typical side
view (Top) and end-on view (Bottom) of the small oligomeric subgroup (corresponding to the 10S oligomer
subgroup) according to cryoEM. (B) Two orthogonal views, side (Left) and end-on (Right), of the 3D
reconstruction of the average structure for the 10S oligomer subgroup. (C) The same views for the large
structural group (corresponding to the 15S oligomer subgroup) from cryoEM and from the 3D
reconstruction (D). Figure extracted from reference [219]

The stabilization of oligomers of αSN is also possible adding chemical compounds.
Many polyphenolic molecules, like baicalein [225–227] and Epigallocatechin gallate (EGCG)
[228, 229] inhibit the fibril formation by αSN and also destabilize preformed αSN fibrils.

A small-molecule compound denoted FN075 has been reported to trigger the forma-
tion of αSN oligomers. The oligomers formed in the presence of FN075 have a radius of 7
nm, with the C-terminal 40 residues remaining highly disordered [230] and they are able
to disrupt lipid vesicles [231] and their core structure and overall dimensions are similar
to those previously reported for isolated oligomers generated upon agitation and lyophili-
sation [232], and the fibrils formed with and without FN075 are reported to be similar. An
extensive AFM study of the effect of the addition of a wide range of metal ions to αSN
indicated that annular and spherical oligomeric αSN species where formed prior to the fib-
rillar species [233]. Aggregation of αSN in presence of Fe3+ and DTT also resulted in the
formation of oligomers, ranging from dimers to larger oligomers with annular worm-like
structure [234]. While these oligomers possess β-sheet structure, they inhibit the formation
of fibrils.

The selective loss of dopamine-containing neurons in the substantia nigra is a key
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feature of PD, and as a result, extensive studies have been performed on αSN in the pres-
ence of dopamine and its analogues. Several studies show that dopamine and/or ana-
logues of this compound promote the formation of αSN oligomers, inhibiting fibril forma-
tion, and disaggregates preformed fibrils to give disordered oligomeric aggregates [235–
238].

Oligomers generated upon fibril dissaggregation

The presence of spherical and annular oligomeric species has been observed follow-
ing cold denaturation of αSN fibrils using supercooling conditions (-15 C) [239, 240]. These
oligomers were found to have structures intermediate between that of monomers and fib-
ril, that are able to disrupt lipid membranes. Interestingly, these oligomers were able to
elongate and form fibrils efficiently,

2.3.4 Insulin

Insulin is a 51-residue protein hormone, composed of two A and B polypeptide
chains which are linked by two disulfide bonds [241], with a largely α-helical structure.
It exists in solution as a mixture of different states (hexamer, dimer, monomer), depending
on the environmental conditions [242]. In the secretary vesicles of pancreas, the predom-
inant form of insulin is a three-dimers hexamer containing 2–4 zinc ions, but in order to
become biologically active, insulin has to take a monomeric form [243, 244].

2.3.4.1 Association of insulin with diseases and pharmacological implications

Insulin fibrillation [242, 245–247] is an interesting process from the pharmacological
point of view because amyloid deposits have been observed in patients after subcutaneous
insulin infusion [248–252] . These deposits results into poor absorption of subsequently in-
jected insulin, leading to impaired control of hyperglycemia, and a need to increase insulin
dosage [253].

In vitro, at low pH and high temperature, insulin is very prone to form amyloid
fibrils, causing problems during production, storage, and delivery of insulin-based drugs
[242, 254, 255]. Protein aggregation is the most common and troubling manifestation of
protein instability, encountered in almost all stages of protein drug development [256].
Protein aggregation, along with other physical and/or chemical instabilities of proteins,
remains to be one of the major barriers for the development of protein drugs. For example,
insulin can undergo both physical aggregation process, leading to formation of either sol-
uble hexamers or insoluble fibrils and chemical aggregation process, leading to formation
of either soluble dimers via cyclic anhydride intermediate or insoluble disulfide-bonded
aggregates [257–259]. For that reason, it is important have a clear understanding of the
protein aggregation process.
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2.3.4.2 Generic features of insulin fibrils

The insulin fibrils share several common structural properties with other amyloid
aggregates. Mature fibrils are suggested to be composed of intertwined protofibrils built
from two to three protofilaments, each with a typical diameter of 15–50 Å [260, 261] with
presence of repeating cross-β-sheets perpendicular to the fibril axis with the typical inter-
strand spacing of 4.8 Å found in other amyloid fibrils [102, 182, 262].

At pH 2, mass spectrometry and hydrogen exchange measurements reveal that in-
sulin forms soluble assemblies of up to 12 molecules in equilibrium with monomers and
smaller oligomers [263, 264]. At elevated temperatures, these species further assemble into
larger, irreversible aggregates and ultimately fibrils. Studies using Fourier transform in-
frared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy indicate that the ini-
tial aggregates retain their predominantly helical structure, but that there is a subsequent
conversion to beta-sheet structure [254]. EM and atomic force microscopy studies of other
amyloid proteins have indicated similar assembly pathways [265–268].

A cryo-EM reported the 3D reconstructions of insulin fibrils with different morpholo-
gies. One of the fibrils was formed by two protofilaments twisting around each other, re-
sulting in a thin type of fibril. A more compact filament was found at higher concentration,
formed by a left-handed double helix with four protofilaments. A six protofilament fibril
and a twisted ribbon were present also in the sample. The average size of the protofila-
ments was about 30 x 40 Å [260].

2.3.4.3 Insulin fibrillation process

The kinetics of the fibrillation process is affected by different factors, such as protein
concentration, agitation, pH, ionic strength, anions, seeding and addition of chemical com-
pounds [269, 270]. An increase in insulin concentration resulted in shorter lag times and
faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH
versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and
slower growth of fibrils. There was no clear correlation between the rate of fibril elonga-
tion and ionic strength. Agitation during fibril formation attenuated the effects of insulin
concentration and ionic strength on both lag times and fibril growth [242, 261].

Insulin fibrillation is proposed to be a nucleation-dependent process [246, 271–274]
and exhibits a strong time dependence, with a pronounced lag phase, followed by a very
fast growth of fibrils. In a similar model than the fibrillation process for other amyloid
aggregation, monomeric insulin shows a conversion of the α-helical monomer to a β-sheet
intermediate in the process to form an oligomeric nucleus [245, 263, 275, 276] prior to elon-
gation of protofilaments (by addition of these non-native monomeric intermediate).

Like in the case of αSN, oligomeric precursors of amyloid fibrils seems to be the cyto-
toxic species, which emphasizes the importance of characterizing such oligomeric species.
The structural characterization of the fibrillation nucleus is difficult, because they are present
in low concentrations and they have an inherent instability, because is the thermodynami-
cally least favourable species [277].
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To study the structure and kinetics of the species involved in the insulin fibrillation,
a time-resolved synchrotron SAXS experiment was performed to study the process in solu-
tion, starting from monomeric insulin [275]. The scattering pattern from different stages in
the fibrillation process was recorded and the spectra and volume fraction of the individual
species was decomposed. A low-resolution shape of the oligomer reveals a helical struc-
ture with length of 200 Å with a molecular weight of 32 kDa, or 5.6 insulin monomers. The
repeating unit has a length of about 700 Å and a cross-section of about 300 Å. The kinetic
model proposed was an elongation via structural nucleus, where the oligomer is both the
structural nucleus and the elongating building block of insulin amyloid fibrils.

In chapter 4, I will describe a method to perform the decomposition based in the
same principle that the proposed in this study but in an automated way.
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Chapter 3

Chemometrics

Chemometrics can be briefly described as the interaction of mathematical and sta-
tistical methods in chemical measurement analyses [278]. The breakthrough in chemo-
metrics came with the development of new analytical techniques and powerful comput-
ers. Chemometric (also called multivariate data analysis) tools involve the analysis of data
consisting of numerous variables measured from a number of samples. The aim of multi-
variate data analysis is to determine all the variations in a data matrix in order to find the
relationships between the sample properties and its variables. There exist several differ-
ent chemometric tools and they can be applied to a great variety of research fields, such
as analytical chemistry, pharmaceutical sciences or environmental control. Chemometrics
can be used to analyze data from different techniques such as all kind of spectroscopies.
This chapter will focus on the chemometric tools used to analyze SAXS data along this the-
sis: Single Value Decomposition (SVD), Principal Component Analysis (PCA), Multivariate
Curve Resolution using Alternating Least Squares (MCR-ALS), and Evolving Factor Anal-
ysis (EFA).

3.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is the decomposition of a complex matrix X,
which denote an m x n matrix of real values and rank ra. In X m ≥ n, and therefore r ≤ n.
The equation for the singular value decomposition of X is the following:

X = USVT (Eq. 3.1)

where U is an m x n matrix with orthonormal columns (UTU = I), S is a n x n diagonal
matrix, and VT is also an n x n orthonormal matrix (VTV = I). The elements of S are
only nonzero on the diagonal, and are called singular values. The columns of U are called
the left singular vectors, {uk}. The rows of VT contain the elements of the right singular
vectors, {vk}.This decomposition is graphically described in the Figure 3.1. By convention,
the ordering of the singular vectors is determined by the high-to-low sorting of singular
values, with the highest singular value in the upper left index of the S matrix.

aRank of a matrix is the number of linearly independent rows and columns
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FIGURE 3.1. Graphical description of SVD of a matrix X

One way to calculate the SVD is to first calculate VT and S by diagonalizing X. This
is done by multiplying both sides by XT to construct two positive-definite symmetric ma-
trices, XXT and XTX

(1) Multiplying on the left:

XTX = (USVT)T USVT = UTSV USVT, (UTU = I), XTX = VS2VT

(2) Multiplying on the right:

XXT = USVT (USVT)T = USVT UTSV, (VTV = I), XXT= US2UT

Any real symmetric matrix has a spectral decomposition (also called eigenvector de-
composition or eigendecomposition), which is the factorization of a matrix into a canonical
form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Us-
ing that decomposition is possible identify the eigenvectors for XTX as the columns of V

and the eigenvalues as the squared diagonal elements of S:

XTXv = λ2v (Eq. 3.2)

where v is the eigenvector and λ the diagonal element.
If we multiply both sides with X:

(XXT)Xv = λ2Xv (Eq. 3.3)

Which means that there is an eigenvector u = Xv (column of matrix U) and eigenvalue
λ2 for XXT. XXT is m x m and XTX which is n x n. These two matrices share n eigenvalues
and the remaining m – n eigenvalues of XXT are zero. The singular values in S are square
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roots of eigenvalues from XTX and XXT.

3.2 Principal Components Analysis (PCA)

The central idea of Principal Component Analysis (PCA) is to reduce the dimension-
ality of a dataset consisting of a large number of interrelated variables, while retaining as
much as possible of the variation present in the dataset. This is achieved by transforming to
a new set of variables, which are uncorrelated and ordered so that the first few components
retain most of the variation in all the original variables [279].

3.2.1 PCA by SVD

If we denote the matrix of eigenvectors sorted according to eigenvalue by Ũ, we
can then do a PCA transformation of the data as Y = ŨTX. The eigenvectors are called
the principal components. By selecting only the first d rows of Y, we have projected the
data from n down to d dimensions where d « m. The way to find the directions in the
data with the largest variation is performing an eigenvector decomposition of the variance
matrix and to project the data onto these directions. The first step of PCA is to calculate the
covariance matrix, C. For a data matrix X with m rows (samples) and n columns (variables),
the covariance matrix of X is defined as

C(X) =
1

m− 1
(XTX) (Eq. 3.4)

It is possible decompose the matrix X with SVD to obtain

C(X) =
1

m− 1
(US2UT ) (Eq. 3.5)

Because SVD routine order the singular values in descending order and n ≤ m, the
first columns in U correspond to the sorted eigenvalues of C. Finding the eigenvalues and
eigenvectors of C is the same as finding the eigenvalues and eigenvectors of XXT.

The transformed data can thus be written as

Y = ŨTX = ŨTUSV T (Eq. 3.6)

where ŨTU is a simple n x m matrix with a value one in the diagonal and zero everywhere
else.

3.2.2 PCA by SVD in Matlab®

The covariance matrix is very large and difficult to work with; however, using the
Eq. 3.2 and Eq. 3.3 it is possible decompose the smaller n x n matrix

D ≡
1

n
XTX (Eq. 3.7)
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FIGURE 3.2. A) Scree plot of eigenvalues and B) eigenvectors from a PCA of a system composed by three
main components

Given a decomposition of D we can find the interesting non-zero principal directions
and components for C, U = XVS-1. It is possible to derive the smallest matrix by using
the command ‘[u s v] = svd(X,0)’. PCA performed during this thesis has been done
using this approach.

3.2.3 Interpretation of PCA results

The results of PCA are shown usually in a Scree plot (Figure 3.2). This graphical
approach was proposed in [280]. This approach involves plotting the variance accounted
for by each principal component (eigenvalue) sorted from largest to smallest. We then look
for an ‘elbow’ in the curve, that is, a point after which the remaining eigenvalues decline in
approximately linear fashion; and retain only those components that are above the elbow.
Thus, the Scree test calls for a relative judgment of the amount of variance accounted for by
the retained components. Another way to determine the number of variables is plotting the
eigenvectors, also in order, and counting the number of them that are above the noise level.
Given that PCA is based on accounting for variation in the data, it is highly susceptible to
the presence of outliers and influential observations.

3.3 Multivariate Curve Resolution using Alternating Least Squares

(MCR-ALS)

Multivariate Curve Resolution (MCR) is a powerful chemometric tool for advanced
multivariate data analysis. It may be used in the decomposition of any kind of experi-
mental data, organized as a single data matrix or in multiple data matrices when multiple
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experiments are analyzed simultaneously. The basic assumption of MCR is that measured
data variance may be decomposed as the weighted sum of individual contributions (mix-
ture) coming from the different coexistent components, each one of them defined by a set
of profiles corresponding to each technique applied, and weighted according to their com-
position in the analyzed mixture.

Among multivariate curve resolution methods, the one based on Alternating Least
Squares (MCR-ALS,) has become very popular [281–285].

The bilinear model of MCR is described by the matrix Equation:

D = CST + E (Eq. 3.8)

where the dimensions of the matrices are: D(I,J), C(I,N), ST (N,J) and R(I,J); being I the
number of rows in data matrix D (e,g. the number of spectra measured for instance at dif-
ferent times); J the number of columns in data matrix D (e.g. the number of wavelengths or
momentum transfer points); and N the number of components (chemical species contribut-
ing to the spectroscopic signal). C matrix describes the composition contributions of the N
components (concentration profiles of the different components at the different reaction
times). ST is the matrix describing the instrumental responses (spectra) of these N com-
ponents (pure spectra profiles). Due to unavoidable experimental (noise, etc.) and model-
ing uncertainties this matrix decomposition is not perfect, and the differences between the
measured data and their decomposition are collected in a matrix E of experimental errors
and uncertainties. Therefore, the problem to solve in multivariate curve resolution may
be mathematically stated in the following way: given the data matrix D find: 1) N, the
number of chemical components or species causing the observed data variance, D; 2) find
the concentration profiles of these components in matrix C; and 3) find the pure response
or spectra profiles of these components in matrix ST. Stated in this way, and without any
further constraint, there is not a unique set of matrices C and ST that solve Eq. 3.8.

The MCR-ALS strategy consists of the following steps (Figure 3.3):

I. Determination of the number of significant components (N) present in the
matrix D using Singular Value Decomposition (SVD) or Principal Component Analysis
(PCA).

II. Generation of initial estimates of concentration or spectra profiles. Once
the number of components, N, has been determined, an initial estimate of their concen-
tration or spectra profiles can be selected from the experimental data matrix D. The initial
estimation can be obtained based on methods of finding the purest variables, either using
evolving factor analysis (EFA) [286] or SIMPLISMA [287].

Steps I and II can also be done using previous knowledge of the chemical problem
under investigation to propose directly the number of components and the initial estimates.

III. Resolution of Equation 3.8 by the alternating least squares (ALS) algorithm.
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FIGURE 3.3. Graphical description of the MCR-ALS approach.

In the unconstrained case, this involves two steps, one that derives the concentration pro-
files (C) and another that resolves the spectra (ST):

C = DS(STS)-1 (Eq. 3.9)

ST = (CTC)-1CTD (Eq. 3.10)

The percentage of variance explained (Eq. 3.11 and standard deviation of residuals
respect experimental data (Eq. 3.12) are calculated according to the following expressions
where dij designs an element of the input data matrix D and eij is the related residual
obtained from the difference between the input element and the MCR-ALS reproduction.
nrows and ncolumns are the number of rows and columns in the D matrix.

R2 =

∑

i,j d
2
ij −

∑

i,j e
2
ij

∑

i,j d
2
ij

(Eq. 3.11)

σ =

√

∑

i,j e
2
ij

nrows ncolumns
(Eq. 3.12)

Convergence is achieved when in two consecutive iterative cycles, relative differ-
ences in standard deviations of the residuals between experimental and ALS calculated
data values are less than the convergence criterion value previously selected.

The lack of fit is defined as the difference among the input data D and the data re-
produced from the CST product obtained by MCR-ALS. This value is calculated according
to the expression:

lack of fit (%) = 100

√

∑

i,j e
2
ij

∑

i,j d
2
ij

(Eq. 3.13)

where dij and eij are the same as above. Two different values of lack of fit are calculated,
differing on the definition of the input data matrix D (either the raw experimental data
matrix or the PCA reproduced data matrix using the same number of components as in the
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MCR-ALS model). These values are useful to understand whether experimental data were
well fitted.

3.3.1 Ambiguity

In general, the bilinear decomposition is ambiguous if no additional information is
provided. In other words, there is a rotational and a scale freedom in the solutions of Eq.
3.8. This freedom has as a result that it is possible to find an infinite number of mathemat-
ically equivalent solutions, since there are an infinite number of matrices C and ST that,
when they are multiplied, will produce the same result, the data matrix D = CST. This
phenomenon is called ambiguity [288].

This indeterminacy is described mathematically by the following equation:

D* = ColdST
old = (ColdT-1)(TST

old) = CnewST
new (Eq. 3.14)

According with Eq. 3.14, any invertible matrix T(N,N) gives a new set of equivalent
solutions of the MCR-ALS model. Or said in other words, any linear combinations of C

and ST solutions will also produce new solutions of the bilinear model.
Fortunately, it is usually possible to reduce considerably the number of possible so-

lutions (and consequently the range of solutions for C and ST matrices) by introducing
constraints (described in detail in the next section) derived from the physical nature of the
system and/or from prior knowledge of the problem under study.

3.3.2 Constraints

Constraints can be incorporated into the optimization process in order to render the
solution chemically meaningful. A constraint is defined as a particular characteristic of
chemical or mathematical nature that the spectra of the pure components or the concentra-
tion profiles must obey. The most classical constraints are the following.

3.3.2.1 Non-negativity

Non-negativity (Figure 3.4) implies that the decomposed matrix cannot have a nega-
tive value. It can always be applied to the concentration profiles and also to multiple types
of spectra (not for derivative and difference spectra or for Circular Dichroism). The appli-
cation of the non-negativity constraint can be carried out according to different least squares
approaches, the classical non-negative least squares (nnls) [289] and the more recent fast
non-negative least squares (fnnls) [290]. An additional option is replacing negative values
by zeros. This option is useful when the other algorithms fail for some reason or take too
long.

3.3.2.2 Closure

Closure constraint (Figure 3.5) is related with mass balance in closed systems, and it
can be introduced for the concentration C matrix. The total concentration of the system
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FIGURE 3.4. Graphical description of non-negativity constraint applied to concentration profiles

FIGURE 3.5. Graphical description of closure constraint. A constant closure value, equal to the total
concentration of the components, is applied to the concentration profiles.

can be fixed to a single value (usually equal to 1) or a variable value if the variation of the
closure constant along the experiment is known (e.g. titration experiments with known
dilutions).

3.3.2.3 Unimodality

Unimodality constraint (Figure 3.6) forces the presence of a single maximum per pro-
file, which in some cases can be applied to concentrations profiles (e.g reaction and chro-
matographic systems). There exist two different options to apply this constraint: ‘vertical’
and ‘horizontal’, which mean that the secondary maxima are cut vertically or horizontally
respectively [291]. A third implementation, ‘average’, applies the constraint in a smoother
way, taking averages similarly as in unimodal least squares algorithms [292].

3.3.2.4 Equality

Equality constraint (Figure 3.7) refers to the possibility to fix known values in the con-
centration profiles or in the spectra during the optimization, e.g. pure spectra of known
compounds or selectivity/local rank information. Selectivity/local rank information can
be defined as an equality constraint when one or several species are known not to be present
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FIGURE 3.6. Graphical description of unimodality constraint applied to concentration profiles. This
example shows the ‘average’ implementation.

FIGURE 3.7. Graphical description of the equality constraint. In this case local rank information was used
to impose the presence of two species instead of three in a determined region of the concentration profile.

in a particular region or window of the dataset (in both the concentration or in the spec-
tral directions). The most restrictive use of the selectivity constraint is when only a single
species is present in a region of the dataset or for set of experiments, since this constraint
significantly reduces (or even suppresses) the ambiguity of results. A method for determi-
nation of local rank information regions will be described in the section 3.4.

3.4 Evolving Factor Analysis (EFA)

The use of local rank information (see previous section) is crucial in the resolution
of dynamic multicomponent systems. Actually, some decomposition methods, such as
MCR-ALS, take advantage of the local rank information to build initial estimates or to
set equality constraints, which are important for obtaining a good quality solution during
the decomposition of complex systems [284, 285, 293]. Sometimes, the possibility to get
unique solutions in resolution depends mainly on the accurate determination of the local
rank [294]. Methods based on PCA, such as Evolving Factor Analysis (EFA) [286, 295], are
designed to detect zones with a number of compounds smaller than the total rank. In these
methods, the interest is not limited to the determination of the total number of components,
but to the location and evolution of each of these contributions.

EFA was designed as a chemometric tool to monitor chemical processes [286, 295].
The evolution of a chemical system is gradually known by recording a new response vector
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FIGURE 3.8. Graphical information derived from Evolving Factor Analysis (EFA): (a) forward EFA plot,
(b) backward EFA plot, (c) combined forward (lines) and backward (dashed lines) EFA plot and derived
initial estimates of concentration profiles (bold lines). The example represents a three-component reaction
system. Figure extracted from [296].

at each stage of the process under study. EFA performs subsequent PCA on gradually in-
creasing submatrices in the process direction, enlarged by adding one new row (response)
at a time. This procedure is performed from top to bottom of the dataset (forward EFA) and
from bottom to top (backward EFA). Figure 3.8 displays the way to plot and interpret the
information provided by EFA [296]. The forward and backward EFA plots are built by rep-
resenting the singular values (or the log(eigenvalues)) of each PCA analysis vs. the process
variable related to the last row included in the window analyzed. The lines connecting all
the analogous singular values (s.v.), i.e., all the 1st s.v., the 2nd s.v., the ith s.v., . . . indicate
the evolution of the singular values along the process, as a consequence, the variation of
the process contributions. A new singular value line above the noise level defined by the
pool of non-significant singular values indicates the emergence (forward EFA, 3.8A) or de-
cay (backward EFA, Figure 3.8B) of a process contribution. Figure 3.8C shows how to build
initial concentration profiles from the overlapped forward and backward EFA plots in se-
quential processes. In general, each element in the derived concentration profile is selected
as the smallest value between the forward and backward s.v. lines to be combined.
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Chapter 4

Amyloids, SAXS and chemometrics

As described in the chapter 8, some of the most important challenges in structural
biology today concern the study of processes involving highly dynamic large macromolec-
ular complexes, the presence of concerted conformational fluctuations, and unstable, de-
veloping systems. The common feature of all these systems is their heterogeneity with
multiple species or conformations coexisting in equilibrium, the so-called polydispersity.

Protein amyloid fibril formation is an example of such challenging systems (section
2.3). Protein fibrils are the hallmark of a number of severe diseases, notably the most com-
mon neurodegenerative pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s
diseases [91, 92]. Protein fibrils are the final stage of the amyloid formation, while several
soluble and transient oligomeric states are formed along the process. Increasing evidence
places a central role on these transient species in the advancement of the disease, pinpoint-
ing the importance of their structural characterization [91, 127, 133, 297]. This is, how-
ever, inherently difficult as the oligomers only exist in the context of other amyloidogenic
species, and their physical isolation can perturb the equilibrium and potentially modify
their structure.

The application of traditional structural biology methods, such as macromolecular
crystallography and high-resolution nuclear magnetic resonance (NMR), is not straight-
forward for the structural analysis of changes associated with such highly complex sys-
tems like amyloids. Small Angle X-ray Scattering (SAXS) is an ideal method for such
investigations [231, 232, 275, 298, 299] due to its two main advantages (detailed descrip-
tion in section 1.1. One is that SAXS allows the study of a wide range of molecular sizes,
which is important because amyloid systems contain a mixture of particles with very dif-
ferent sizes, from small monomers to big fibrils. The other important advantage results
from the additive properties of SAXS data, thus measurements performed on a mixture
correspond to a population-weighted average of the signal originating from all coexisting
species. As a consequence, a dataset consisting of multiple curves obtained from develop-
ing mixtures with different relative populations of the same species is inherently very rich
in information. In principle, it is possible to decompose such data series into the scattering
profiles of the individual constituents (structures) as well as their relative populations (ki-
netics/thermodynamics) without physically isolating the coexisting species. The isolation
of data originating from intermediately occurring species has been previously performed
by different laborious and non-automated approaches for several amyloidogenic proteins
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[232, 275, 298–300]. Unfortunately, such strategies can only be applied to systems of limited
complexity [300], i.e., with a low number of coexisting species, and the imposition of initial
and final data curves as species pure. Therefore, it is clear that more robust and objective
approaches are needed.

Objective decomposition of large datasets using chemometric approaches is routinely
used in many research fields including analytical and organic chemistry and metabolomics
[282, 301, 302]. One of the most popular chemometric routines is multivariate curve res-
olution using alternate least squares (MCR-ALS) [281, 284] (see section 3.3. It has been
previously shown that chemometrics in general and MCR-ALS in particular are powerful
tools when combined with SAXS, allowing the study of transient biomolecular complexes
[303, 304] and folding processes [305–308] by SAXS or wide-angle X-ray scattering [309].
These systems were, however, significantly less complex than amyloidogenesis.

To analyze such complex systems as fibrillation, we have developed a chemometric
tool, which we name COSMiCS (Complex Objective Structural analysis of Multi-Component
Systems) [310] (Paper I) , to analyze SAXS data measured along the amyloid formation.
Using COSMiCS we have investigated two proteins with high biomedical interest: insulin
and a familial mutant of α-synuclein (αSNE46K). Details of COSMiCS will be described in
section 4.4.2.3.

4.1 Insulin

Time-resolved synchrotron SAXS data were collected along 11 hours from twenty-
eight fibrillating insulin samples, under experimental conditions comparable to those ap-
plied in a previous study [275] while simultaneously monitoring the fibrillation kinetics
with ThT fluorescence. Details of the collection of the data and primary data analysis can
be found in next section.

4.1.1 Primary insulin data analysis

The resulting profiles exhibit drastically increasing intensities in the small angle re-
gion of the scattering patterns (Figure 4.1) signifying a notable evolution from monomeric
to fibril state. Using Guinier’s approach, this evolution can be followed from the extrap-
olated forward scattering (I(0)) and the calculated radii of gyration (Rg) (Figure 4.2). It is
possible to see how the increasing in the ThT signal intensity is coherent with the increas-
ing of Rg and I(0), presenting the same lag-phase, with a growth phase that start at the
same point. However, the development of I(0) does not relate directly to the molecular
weight of a fibrillating species, as it represents an average of all the species in the solu-
tion. The quality of the Guinier approximation is strongly declining as the fibrillation takes
place, and the amount of data points included in the Guinier approximation is shrinking
during fibrillation, as the fibrils grow larger than the resolution limit of the data. However,
although the uncertainty of the Rg value is increasing, it still provides a general idea of the
progress of the fibrillation.
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FIGURE 4.1. SAXS profiles recorded during the evolution of fibrillation of insulin. Scattering intensity
profiles (black dots) in logarithmic scale as a function of the momentum transfer (s = 4πsin(θ)/ λ [ 2θ,
scattering angle; λ = 1.5 Å, X-ray wavelength ]) measured from t = 0 (bottom curve) to t = 11 h (top curve).
COSMiCS fitted model combining Absolute and Holtzer (AH) data representations with three species are
displayed as solid red lines. Curves are translated arbitrarily along the y-axis for clarity. Semi-logarithmic
representation (left) and log-log representation (right).

The setup of the experiment consists in multiple wells in a platereader and each of
them runs an individual fibrillation process (see details in the Material and methods sec-
tion, 4.4.1). Although all the samples come from the same batch of protein and have the
same experimental conditions, the stochasticity of the fibrillation process produces differ-
ent kinetics among the wells (an example of how different can be these kinetics is showed
for αSNE46K in the Figure 4.27). For this reason, the content of the measured sample de-
pends on the status of the fibrillation process in the moment of the collection. This low
reproducibility generates a SAXS dataset that follows the trend of a fibrillation process,
with increasing I(0) and Rg values, but with individual values scattered around the main
profile.

A Principal component analysis (PCA) was performed on the complete dataset and
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FIGURE 4.2. Primary SAXS data analysis for insulin. Average radii of gyration, Rg, (hollow red circles),
and forward scattering, I(0) (blue triangles) as estimated by Guinier’s approximation are displayed as a
function of time. ThT fluorescence values are displayed in green on arbitrary scale.

FIGURE 4.3. Principal Component Analysis (PCA) of the complete insulin datasets. The analysis of the ten
first eigenvalues (A) and the five first eigenvectors (B) suggests that three major species are present along the
fibrillation process Validation of the presence of three main species contributing to the SAXS datasets is
performed using MCR-ALS.

analyzed according to section 3.2. The results indicated that three individual species sig-
nificantly contributed to the time-evolution of the SAXS data of insulin (Figure 4.3).

4.1.2 Decomposition of insulin data with MCR-ALS

The decomposition of the insulin SAXS intensities was performed using the MCR-
ALS chemometric approach. The principles behind MCR-ALS have been described in the
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TABLE 4.1. Fitting of the insulin SAXS datasets with COSMiCS using different combinations of data
matrices.

a- Analysis performed using three species.
b- Optimal solutions used for the structural analysis.

section 3.3. However, due to the ambiguity mentioned before, MCR-ALS did not provide a
good description of the data, as evidenced by the large average χi

2 of the fit to the 28 data
curves, 〈χi

2〉 = 4.38 (Table 4.1). In addition, MCR-ALS-derived SAXS curves had noticeable
artifacts and large uncertainties, especially in the low-s region; and the decomposed curve
for the fibril is truncated from s = 0.15 Å-1 (Figure 4.4A). These curves yielded non-physical
pairwise distance distribution functions, p(r), with large error bars (Figure 4.4). Concentra-
tion profiles also displayed non-coherent behavior with a higher initial concentration for
the intermediate species compared with that of the native state, and large error bars (Figure
4.4C).

A possible explanation of the poor description of the data using the MCR-ALS method
could be the need of another species to be able to explain the data. For that, another MCR-
ALS analysis was performed with an additional fourth species. This approach did not
improve neither the quality of the fit (〈χi

2〉 = 5.08) nor the intelligibility of the results (Fig-
ure 4.5). The derived curves using 4 species showed anomalies at the low-s range and
no-coherent populations. The p(r) derived from the curves present big uncertainties and
even negative values (non-physical sense), which is a clear evidence of a wrong solution.
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FIGURE 4.4. Optimized results from the decomposition of the insulin data with MCRALS using only the
Absolute scale data representation, and imposing the presence of three species in the mixture. (A) Spectra
profiles for each species: native-like species (blue), intermediate oligomer (green) and fibril (red). (B)
Pair-wise distance distribution functions, p(r), for the three estimated scattering species computed from the
derived curves using GNOM [311]. (C) Concentration profiles (same color code). Error bars computed
using our Monte Carlo approach are displayed in both SAXS spectra and concentration profiles.

FIGURE 4.5. (A) SAXS profiles in semi-logarithmic scale from the decomposition of the insulin dataset
using MCR-ALS using 4 species. (B) Time-dependent concentration profiles derived from MCR-ALS for
each species with the same color code. (C) Pairwise distribution functions derived from the individual curves



4.1. Insulin 57

FIGURE 4.6. Optimized SAXS curves for insulin dataset obtained using MCR-ALS 2.0. MCR-ALS 2.0,
which uses the experimental errors along the optimization process, has been applied to the absolute value
representation of the SAXS dataset. Severe artifacts are observed for the curves which demonstrates that
weighting the experimental intensity values by their associated errors along the optimization is not enough
to allow the correct decomposition of the pure species.

4.1.3 Decomposition with MCR-ALS using weighted data

SAXS data have different level of experimental error depending on the momentum
transfer. The classic MCR-ALS does not include errors in the decomposition, but just the in-
tensity values. A new version of MCR-ALS has been developed recently, where a weighted
least-squares analysis is implemented. However, the use of experimental errors to weight
the agreement to the scattering intensities along the optimization process did not improve
the quality of the resulting species-pure curves, which presented strong artifacts at low
angles (Figure 4.6).

4.1.4 COSMiCS analysis of insulin data

Degeneracy of mathematical solutions poses an intrinsic limitation to chemomet-
ric methods [285, 312, 313]. This ambiguity problem is the origin of a non-optimal so-
lution when a large SAXS dataset is analyzed. Besides the use of constraints, the most
efficient way to reduce ambiguity in MCR-ALS is the simultaneous analysis of multiple
datasets measured under different experimental conditions and/or including additional
data simultaneously measured using complementary techniques. However, in present
SAXS beamlines the simultaneous measurement of complementary spectroscopic data is
not straightforward. We overcome this limitation by introducing different SAXS repre-
sentations in the analysis. We call this new approach COSMiCS, which simultaneously
fits multiple representations of the same SAXS dataset, including, in addition to the abso-
lute values (I(s)), the commonly used data representations introduced by Kratky (I(s)·s2)
[17], Porod (I(s)·s4) [14], and Holtzer (I(s)·s) [20]; the latter has been recently visited by
Rambo and Tainer [314]. Although this does not enrich the information content in our
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FIGURE 4.7. Representations of the SAXS data measured along the fibrillation of insulin. (A) Absolute
values, I(s). (B) Holtzer, I(s)·s. (C) Kratky, I(s)·s2. (D) Porod, I(s)·s4. Different features are observed in the
momentum transfer range displayed along the fibrillation process represented with a blue color scale, from
light blue (t=0) to dark blue (t=11 h).

input dataset, it emphasizes the structural changes at different time points along the fib-
rillation pathway. Species appearing along the fibrillation process present distinct struc-
tural features that emerge at specific momentum transfer ranges (resolution) and are cap-
tured differently by SAXS data representations (Figure 4.7). The consequent enhancement
of data variability along the fibrillation process increases the discrimination power of the
MCR-ALS optimization by reducing the ambiguity of the mathematical solutions. The si-
multaneous use of multiple SAXS data representations was tested first on simulated data
(see section 5.7 for details).

We used all combinations of dataset representations for COSMiCS analyses (Table
4.1). With the exception of Porod’s representation, the inclusion of a second SAXS data
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representation yielded a systematic improvement in the quality of the fit to the 28 experi-
mental profiles, while no improvement in the overall fit to the dataset was observed when
increasing the number of data matrix representations to three. The best agreement to the
dataset was obtained by combining the absolute value representation with the Holtzer rep-
resentation (AH; 〈χi

2〉 = 3.15). The fitting to the 28 curves (Figure 4.1) demonstrates that
the linear combination of three species and the population profile properly describes the
complete experimental dataset with no systematic deviations along the time evolution.

Choosing the right number of species to describe the system is very important. COSMiCS
is a more powerful method to discriminate between different solutions than PCA, which
is better to be used to obtain an estimation of the number of species. For this, is a good
practice to repeat the COSMiCS analysis with one species less and one species more than
the estimated by PCA to confirm the minimum number of species necessary to explain
the data. We repeated the complete COSMiCS analysis using two and four species (Figure
4.8A and 4.8B). When fitting with two species, 〈χi

2〉 significantly increased to 〈χi
2〉 = 7.66,

and the optimized spectra from the analysis with four yield a not physically meaningful
solution (Figure 4.8C and 4.8D).

4.1.5 Structural analysis of the components of insulin

The pure SAXS curves of the insulin species obtained from the COSMiCS analysis
are shown in Figure 4.8. The capacity to derive species-specific information enables their
detailed structural investigation. An important piece of information that can be derived
is the oligomeric state through the molecular weight (MW) estimation. We have applied
several available strategies to derive these two parameters (Table 4.2) [24, 50, 314, 315] pro-
viding coherent MW estimations despite their distinct approaches and inherent limitations
(see section 1.2.6). The use of an external standard depends on correct estimation of pro-
tein concentration and is very sensitive to the presence of small quantities of non-properly
decomposed species, such as unspecific aggregates, while SAXS invariant volume of cor-
relation, Vc, has not been calibrated for very large species [314]. Consequently, we have
chosen Vc for small species, and the external standard for large aggregates.

The p(r) functions derived from the profiles indicate that the three species are a small
particle, an intermediate oligomer, and a large aggregate (Figure 4.9B). This result is in
very good agreement with previous manual decomposition applied to a similar fibrillation
series of insulin [275]. The smallest species corresponds to a slightly elongated particle
(Figure 4.10) with a Rg of 23.2 ± 0.2 Å, in full agreement with the need for a monomeric
partially unfolded species to trigger insulin fibrillation [271]. The partially unfolded nature
of this species is also evident when plotting the isolated curve in the Kratky presentation
and the low agreement with the crystallographic structure of the monomeric insulin (Fig-
ure 4.11). The oligomer, which has an estimated mass of 4–8 protomers (Table 4.2), features
an elongated shape with a Rg of 48.5 ± 0.1 Å and a Dmax =196 ± 10 Å according to the
derived p(r) (Figure 4.9B). The p(r) function was used to derive a low-resolution structure
of this elusive intermediate species. The resulting structure, which perfectly describes the
experimental curve, shows that the oligomer is an elongated particle, with a bent/helical
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FIGURE 4.8. Use of different number of components for the insulin data optimization, resulting in
non-physical or poorly fitted results. Optimized results from the decomposition of the insulin data with 2
species using the combination AKP, with 〈χi

2〉 = 7.66, (A) Spectra profiles and (B) concentration profiles for
each species. Optimized results from the decomposition of the data with 4 species using the combination of
matrices AHK, with 〈χi

2〉 = 2.87. (C) Spectra profiles and (D) concentration profiles for each species. Two of
the resulting spectra are not SAXS-like curves (blue and green).

TABLE 4.2. Structural information from the pure species of insulin derived with COSMiCS.
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FIGURE 4.9. (A) SAXS profiles in logarithmic scale from the decomposition of the insulin dataset using
COSMiCS using the combination AH, displaying the monomer (blue), oligomer (green), and fibril (red)
curves. Fits of the Ab initio reconstructions are displayed as solid lines. (B) Pairwise distribution functions
derived from the individual curves for each species computed with the program GNOM [311]. The same
color code as in (A) is used.

form (Figure 4.10) in excellent agreement with the structure previously derived from a
more concentrated fibrillation series [275]. The third species, which represents the repeat-
ing unit of insulin fibrils, is composed by 1730 insulin monomers with a Rg = 225.1 ± 0.7 Å
and a Dmax of 760 ± 10 Å. The low-resolution structure indicates that this fibril unit consists
of several intertwining protofibrils, resulting in the relatively globular and flat appearance,
in accordance with previous studies [275].

4.1.6 Kinetics of the insulin fibrillation process

Figure 4.12 displays the time-dependent concentration profiles of the three species.
The derived concentration profiles clearly identify the population behavior of the three
species, but display spikes along the fibrillation due to the stochasticity of the fibrilla-
tion process in the individual sample wells, as discussed before. This deleterious effect
could be overcome using SAXS laboratory sources whereby a single sample could be mea-
sured along the whole fibrillation process. Monomeric insulin, which is the most popu-
lated species at the beginning of the reaction, was not present in significant amounts after
3 hours of incubation. The intermediate oligomer is present during almost the complete
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FIGURE 4.10. Ab initio reconstructions of the three components obtained from the COSMiCS analysis of
the SAXS data measured along the insulin fibrillation. Structures of the monomer (blue), oligomer (green),
and the repeating unit of the fibril (red) are displayed in their relative sizes. The monomer is displayed in two
orientations, one rotated 90◦. The oligomer is displayed in more detail in the inset.

observation time and becomes the major species around 4 hours, indicating that it is a
relatively stable species. This species can hence not be considered as a thermodynamic nu-
cleus, which per definition is the least stable species along the reaction coordinate. Rather,
the species must be described as a structural nucleus [316], and most likely is a building
block of protofibirils [275]. We have superimposed the ThT fluorescence profile from the
same samples, which is sensitive to the fibrillar forms of the protein, and serves as an
independent measure of the presence of the amyloidogenic fibrils. The SAXS-derived vol-
ume fractions of the large fibrillar species follows a sigmoidal growth after the lag phase
that is in excellent agreement with the ThT fluorescence profile (Figures 4.12 and 4.13) and
substantiates the results derived from the chemometric SAXS decomposition. Our anal-
ysis indicates that all samples measured, with the exception of the last point, contain at
least two coexisting species. This observation highlights the importance of chemometric
approaches whereby no a priori assumptions on the composition of the individual SAXS
curves are made.
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FIGURE 4.11. Structural analysis of some of the monomeric species of insulin derived from the COSMiCS
analysis (A) Kratky representation of the monomeric insulin derived from COSMiCS indicating that the
isolated monomeric species is partially unfolded. (B) Fitting with CRYSOL of the folded monomeric insulin
extracted from pdb 1EV6 to the curve isolated using COSMiCS for the monomeric species

FIGURE 4.12. Time-dependent concentration profiles derived from COSMiCS for each species: monomer
(blue), oligomer (green) and fibril (red). Smoothing of the data in solid lines. The ThT fluorescence signal
(black) is included to highlight its excellent correlation with the population of fibrils derived from the
COSMiCS analysis.

4.2 α-synuclein

A similar strategy than the performed for insulin was subsequently applied to data
from the fibrillation of the αSNE46K, associated with early-onset Parkinson’s [317]. Al-
though this mutant has been widely investigated, its fibrillation process has never been
studied at structural level by SAXS. Time-resolved SAXS data were obtained following the
protocols previously described [300] and detailed in section 4.4.2.
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FIGURE 4.13. Correlation between ThT signal and concentration of fibril species derived with COSMiCS
for insulin.

4.2.1 Primary α-synuclein E46K SAXS data analysis

A total of 51 SAXS curves were measured during 25 h, starting from the monomeric
protein at 12 mg/ml. Two of these curves presented severe radiation damage and were dis-
carded. The remaining curves displayed a distinct evolution in scattering intensity along
the fibrillation process (Figure 4.14). The initial analysis of the raw data revealed, as ex-
pected, the formation of very large species during the fibrillation process. The average Rg

and I(0) of the individual curves were estimated using Guinier’s approximation (Figure
4.15). Interestingly, the steep increase in molecular mass occurs significantly later than the
increase in average radii and the initiation of the elongation phase as indicated by ThT
fluorescence. A PCA of the complete αSNE46K SAXS dataset indicates that it can be safely
described with three coexisting species (Figure 4.16).

4.2.2 Decomposition of α-synuclein E46K SAXS data with MCR-ALS

A MCR-ALS analysis was performed to the data in absolute scale, imposing the pres-
ence of three species in the system. The fitting with MCR-ALS yield a 〈χi

2〉 of 2.38, which
is not a very bad adjustment, especially considering the number of curves used. However,
after a closer inspection of the results it is clear that the solution is not correct, both in the
spectra (Figure 4.17A) and its calculated p(r) (Figure 4.17B), as well as in the populations
(Figure 4.17C). The pure spectrum of the smaller species (blue curve) is a non SAXS-like
curve that leads to a non-physical solution in the p(r) with negative values. The second
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FIGURE 4.14. SAXS profiles showing the evolution of fibrillation of αSNE46K (black dots) in logarithmic
scale as a function of the momentum transfer (s = 4πsin(θ)/λ [2θ, scattering angle; λ = 1.5 Å, X-ray
wavelength]). Bottom curve corresponds to the first curve (time = 0 h) and top curve corresponds to t = 25.6
h. Red lines are the COSMiCS fits obtained from the three-component mixture using Absolute and Holtzer
and Kratky representations (AHK) of the SAXS data. The curve corresponding to t = 25.33 h has been
identified as an outlier and is not used for the global fitting (and hence no COSMiCS fit is superposed).
Curves are translated arbitrarily along the y-axis for visualization purposes. Semi-logarithmic scale (left)
and log-log (right) representations of the data.

species (green) is a big species with large uncertainties and generates a p(r) with an anoma-
lous shape. Moreover, the populations are not coherent, with a very low contribution of
the fibril species (red) during the whole fibrillation. This low contribution of one of the
species can be an indication that a larger number of species than needed were used to ex-
plain the data during the optimization, leading to redundant solutions that could cause
artifacts in the shape of the pure spectra. For this reason, we performed the analysis of
the data imposing two species to describe the system. The high 〈χi

2〉, 7.69, indicates that
two species is not enough to describe the data. PCA is just an estimation of the number
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FIGURE 4.15. Primary SAXS data analysis for αSNE46K. Average radii of gyration, Rg, (hollow red
circles), and forward scattering, I(0) (blue triangles) as estimated by Guinier’s approximation are displayed
as a function of time. ThT fluorescence values are displayed in green on arbitrary scale.

FIGURE 4.16. Principal Component Analysis (PCA) of the complete αSNE46K datasets. The analysis of the
ten first eigenvalues (A) and the five first eigenvectors (B) suggests that three major species are present along
the fibrillation process. Validation of the presence of three main species contributing to the SAXS datasets is
performed using MCR-ALS.

of species and is possible that the system is better explained with one species more. A
MCR-ALS analysis with four species decreases the 〈χi

2〉 to 1.90, but the SAXS curves of the
pure components were not SAXS-like, and yielded a p(r) without physical meaning (Fig-
ure 4.18A and 4.18C). Moreover three out of the four components showed a very similar
volume fraction, and even negative values.
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FIGURE 4.17. Optimized results from the decomposition of the αSNE46K data with MCR-ALS using only
the absolute scale data representation. (A) Pure spectra. (B) p(r) from these pure spectra. (C) Populations
derived from MCR-ALS.

FIGURE 4.18. (A) SAXS profiles in semi-logarithmic scale from the decomposition of the αSNE46K dataset
using MCR-ALS using 4 species. (B) Time-dependent concentration profiles derived from MCR-ALS for
each species with the same color code. (C) Pairwise distribution functions derived from the individual curves
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FIGURE 4.19. Results of the optimized SAXS curves for aSNE46K obtained using MCR-ALS 2.0.

4.2.3 Decomposition with MCR-ALS using weighted data

In a similar way we did with the insulin, we have performed a decomposition using
weighted data using the new version of MCR-ALS. The results are showed in the Fig-
ure 4.19. Like in the case of insulin, severe artifacts were observed for the curves, which
demonstrate that weighting the experimental intensity values by their associated errors
along the optimization is not enough to allow the correct decomposition of the data.

4.2.4 COSMiCS analysis of α-synuclein E46K SAXS data

The αSNE46K dataset was subsequently successfully decomposed with COSMiCS us-
ing the combinations of SAXS data representations (Table 4.3 and Figure 4.20). As occurred
for the case of insulin, a systematic improvement in the quality of the fit was observed
when multiple data representations were introduced, with 〈χi

2〉 decreasing from 2.62 to a
range of 1.16-1.33. This systematic amelioration of the data description was also observed
in the range of individual χi

2 obtained among the 49 curves (Table 4.3). However, not all
data combinations guided the decomposition equivalently. Again, the inclusion of Porod’s
representation (P) only modestly decreased the 〈χi

2〉 compared with inclusion of Holtzer’s
or Kratky’s representations (AH or AK). Four of the solutions presented very similar 〈χi

2〉,
between 1.16 and 1.18. Although quantitatively equivalent, a closer inspection of the de-
composed curves showed that representations AHK and AHKP provideed solutions yield-
ing non-physical p(r) functions with negative values. Therefore, the AKP solution, with a
〈χi

2〉 = 1.16, was used for the subsequent analyses.
To confirm the PCA analysis we repeated the complete COSMiCS analysis using two

and four species (Figure 4.21A and 4.21B). When fitting with two species the 〈χi
2〉 signif-

icantly increased to 〈χi
2〉 = 7.66, and the optimized spectra from the analysis with four

species were not physically meaningful (4.21C and 4.21D).
The inspection of the level of agreement of the individual curves indicated that the

vast majority of 〈χi
2〉 values were around 1.0 (Figure 4.21A), indicating that our optimiza-

tion protocol was not overfitting the data. However, curve 45 (measurement at 25.33 h)
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TABLE 4.3. Fitting of the αSNE46K SAXS datasets with COSMiCS using different combinations of data
matrices.
a- Analysis performed using three species.
b- COSMiCS analysis after extraction of the curve corresponding to t = 25.22 h.
b- Optimal solutions used for the structural analysis.

was not properly described by the model and presented a relatively large χi
2 (3.98). In fact,

this curve presented the largest 〈χi
2〉 in all data combinations. After removing this curve

the complete COSMiCS decomposition was repeated, yielding a smaller 〈χi
2〉 (1.03-1.08)

for various data combinations (Table 4.3). Importantly, the improvement observed after
discarding a single curve did not simply originate from the elimination of an outlier but
corresponded to a systematic improvement of the individual 〈χi

2〉 for the vast majority of
the curves of the dataset (Figure 4.21B). A further refinement by removing an additional
potential outlier curve was tested but no systematic improvement in the fit was observed
(Figure 4.21C). These observations underline the robustness of the final solution and the
ability of COSMiCS to detect outlier SAXS curves. The final fits from the COSMiCS analy-
sis using the AHK combination (〈χi

2〉 =1.04) are displayed in Figure 4.14, and the solution
was subsequently analyzed in terms of structures and kinetics.

4.2.5 Structural analysis of the components of α-synuclein

As it can be seen from the COSMiCS-derived scattering curves and their p(r) func-
tions (Figure 4.22), two of the species are very large while the first species is a low MW
particle. We estimated a MW of the first species of 13 kDa, in agreement with a monomeric
state of the protein (14.6 kDa). Additionally the Kratky representation (not shown) of this
species, along with the skewed p(r) function and the relatively large values for Rg (47.1
± 0.72 Å) and Dmax (209 ± 5 Å), indicates the disordered nature of αSNE46K [58]. The
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FIGURE 4.20. Representations of the αSNE46K SAXS data measured along the fibrillation. (A) Absolute
values, I(s). (B) Holtzer, I(s)·s. (C) Kratky, I(s)·s2. (D) Porod, I(s)·s4. Different features are observed in the
momentum transfer range displayed along the fibrillation process represented with a blue color scale, from
light blue (t=0) to dark blue (t=25.6 h). A significant change can be observed in the Kratky plot, where it is
possible to see how the curve change from a typical shape of an IDP curve to a curve of a more compacted
protein (the fibril), with the characteristic bell-shape form.

disordered nature of the monomeric species was substantiated by the ensemble optimiza-
tion method (EOM) analysis of the SAXS profile [61] (see section 1.3.2.2 for details). The
subensemble of conformations that collectively describe the SAXS curve displayed a broad
range of Rg values indicating the large degree of flexibility of the protein in solution (Figure
4.23).

The second oligomeric species is large (≈40 protomers) with an Rg of 282.4 ± 4.3 Å
and a Dmax of 960±10 Å (i.e. at the resolution limit of our measurements), approaching
values obtained for the final fibril species (Dmax = 920 ± 10 Å and Rg = 256.8 ± 1.9 Å ).
However, when comparing the mass and overall dimensions of these two species (Table
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FIGURE 4.21. Assessment of Outlier Curves in the αSNE46K SAXS Dataset. (A) Individual χ2 values
obtained from the COSMiCS analysis of the αSNE46K complete dataset using the AKP combination of
matrices. One single value appears as a potential outlier (curve 45, marked in red). (B) The variation in the
χ2 values of the individual curves when extracting curve 45 (corresponding to a time of 25.33 h) from the
analysis using the AHK combination. A systematic improvement for the vast majority of curves of the
dataset is observed upon extraction of the curve from the global fitting, and it is hence concluded that curve
45 is an outlier. (C) Difference in individual χ2 values derived from the COSMiCS analysis with the AHK
combination using 48 curves of the αSNE46K dataset and the AKP combination using 47 curves in the
dataset after removing the SAXS curve corresponding to t = 25.6 h from the analysis. Either no effect or an
increase in the χ2 values is observed. It can be concluded that the extraction of this second curve does not
improve the derived model and it is therefore not justifiable.

4.4) the mass density of the intermediate species is much lower than that of the fibrils.
This is in agreement with the observation that the average Rg of the mixture increases sig-
nificantly earlier than the average mass (Figure 4.15), and suggests that the intermediate
species is a large and disordered oligomer. It is evident also from the p(r) functions (Figure
4.22C) that the two species present distinct overall shapes. While the intermediate species
is represented as an overall globular shape, the final species presents the typical elongated
fibrillar shape [232, 298]. The COSMiCS curves for the large oligomer and the fibril were
used to derive low-resolution structures. Whereas the fibril repetitive unit is a large and
elongated particle (Figure 4.24), attempts to derive a structure for the oligomer were un-
successful. Indeed, this observation is in line with the disordered nature of this species that
precludes the determination of its ab initio structure.
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FIGURE 4.22. COSMiCS Analysis of αSNE46K Fibrillation with COSMiCS using AHK combination of
matrices. (A) Decomposed SAXS profiles for the monomer (blue), oligomer (green), and fibril (red) species.
(B) p(r) functions of the three species computed from the SAXS profiles of (A) using GNOM [311]

FIGURE 4.23. A) EOM fitting (red curve) of the αSNE46K curve isolated with COSMiCS (black dots), with
χ2 = 1.12. (B) The distributions of radii of gyrations for the pool of αSNE46K conformations (black)) and the
EOM selected ones (red).
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TABLE 4.4. Structural information from the pure species of αSNE46K derived from COSMiCS.

FIGURE 4.24. Three orientations of the ab initio structure of the fibril repeating unit of αSNE46K
determined from the decomposed curve with COSMiCS. Average from 20 refined models computed with the
program DAMMIN [33].

4.2.6 Kinetics of the α-synuclein fibrillation process

The distinct structural characteristics of both forms are corroborated when observ-
ing their time-dependent evolution, which is plotted together with the ThT fluorescence
curves in Figures 4.25 and 4.26. Clearly, the evolution of the ThT signal coincides with the
occurrence of the fibril-shaped species, whereas the second large species is not ThT-active.
Both large species coexist after the lag phase, but the decrease of the second species at the
final steps of the aggregation suggests a transformation, through an unknown mechanism
(see discussion, section 4.3), from the large disordered aggregates to amyloidogenic fibrils.
Interestingly, the monomeric form is present throughout the whole experiment, suggesting
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FIGURE 4.25. Concentration profiles for the monomer (blue), oligomer (green), and fibril (red) species of
αSNE46K derived from COSMiCS using AHK combination. ThT fluorescence signal superimposed (solid
black line). The ThT profile is in excellent agreement with the population of fibrils.

FIGURE 4.26. Correlation between ThT signal and concentration of fibril species derived with COSMiCS
for αSNE46K. The excellent correlation observed substantiates the COSMiCS decompositions.

that the disordered aggregate has to disassemble into monomers before forming amyloido-
genic fibrils.

Figure 4.27 shows the single ThT curves of all the wells where the experiment was
performed. As we mentioned before, the setup of the experiment produces a high variabil-
ity between the samples due to the low reproducibility of the fibrillation process. This high
stochasticity is very prominent in the case of αSN.
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FIGURE 4.27. ThT curves of the individual wells from which the samples were withdrawn. Each fibrillation
shows different kinetics, with a different long phase, elongation phase and maximum intensity at the plateau.
All wells start in the same conditions (12 mg/ml).

4.3 Discussion

The interest in structural studies of molecular conversions, functional and structural
heterogeneity, and time-evolving processes is significant but highly challenging. SAXS is
an extremely well-suited technique to address the characterization of such complex mixed
systems, but robust approaches are necessary to address the data decomposition process.
Here, we present a method for the chemometric decomposition of multiple SAXS curves
measured along a structurally developing process. This strategy, implemented as an exten-
sion of the popular MCR-ALS method [281, 284], has been applied to fibrillating proteins
but could be extended to other macromolecular systems with tuneable equilibrium phe-
nomena such as the study of protein folding, transient interactions, intermediate structural
states, viral capsid formation, and supramolecular assemblies.

Initial attempts to analyze SAXS data measured along insulin and αSNE46K fibrilla-
tion with MCR-ALS were unsuccessful, likely because the algorithm is trapped in a local
minimum, yielding acceptable fits but non-physical solutions. The classical approach to
resolve this ambiguity-related problem is to include orthogonal datasets [283, 318]. How-
ever, the simultaneous measurement of complementary data is not available in present
SAXS beamlines. To overcome the ambiguity problem, we simultaneously analyze multi-
ple representations of the same SAXS data. The empowerment of the decomposition when
using multiple data representations reflects one of the central aspects of solution scattering
data. The scattering curve arises from pairwise distances at both short and longer scales,
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thereby probing the shape of solutes, covering several orders of magnitude, from nanome-
ter to micrometer sizes. In the case of fibril development this phenomenon is fully exploited
as starting particles are of nanometer size, while fibrils are several micrometers in length.
During the fibrillation process the structural features, which are coded in the scattering
curves, dramatically change in a time-dependent manner. However, at different time pe-
riods of the fibrillation reaction these changes occur in different parts of the momentum
transfer range measured, and can be highlighted depending on the representation of the
data used.

The different sensitivity of SAXS data representations to structural features can be
understood when considering their mathematical nature. Absolute scale curves have a
large dynamic range and the most important intensity variations occur at the smallest an-
gles, linked to the lowest-resolution structural information. In the other representations the
intensity is multiplied by momentum transfer with increasing power functions: 1, 2, and
4 for Holtzer, Kratky, and Porod, respectively. This successively decreases the emphasis
on intensities at low scattering angles (low-resolution) and increases the emphasis at high
scattering angles (high-resolution). Therefore, the combination of the absolute scale, which
enhances the low-resolution part of the SAXS curve, with the other representations, which
enhance the high-resolution part of the SAXS profile, facilitates decomposition. Surpris-
ingly, Porod’s representation, in the examples tested, does not increase (or even decrease)
the decomposition power of COSMiCS. Porod’s law is valid for smooth interfaces between
solutes and solvent. In the case of fibrillation, it is known that the fibril interface is dis-
ordered and poorly defined [201], and presents high-entropy solvent around the interface
[319, 320]. This observation does not exclude, however, that Porod’s representation could
be an important one for the decomposition of other types of data.

A few examples from the present analysis are included here for clarity (Figure 4.28).
The first example is the conversion of the intrinsically disordered protein, αSNE46K, into
a large and more ordered intermediate that finally evolves toward elongated fibrils. The
Kratky fingerprint of an intrinsically disordered protein is very characteristic with a lack of
low-angle features, and a steadily rising profile at high angles [58]. These features contrast
with those found in ordered systems where a pronounced peak is found at intermediate
momentum transfer ranges. Therefore, the Kratky representation is extremely sensitive to
the initial conversion from a disordered to a more ordered species. In contrast, the Holtzer
representation is highly sensitive to overall changes in mass, which is very significant at
later time points in the fibrillation process. Insulin, in contrast to αSNE46K, fibrillates from
a (partially) folded-like species. Here, however, the subsequently formed species is elon-
gated with a very distinct scattering curve that is easily discriminated from the starting
species. The oligomeric intermediate is subsequently transformed into a much larger ma-
ture fibril. In this second transition, the difference in size, which induces a strong differ-
entiation in the initial part of the SAXS curve and in the peak position in Kratky repre-
sentation, facilitates their discrimination. Hence, simultaneous fitting of multiple data rep-
resentations used in COSMiCS exploits complementary features that appear at different
time points, enhancing the capacity of the chemometric approach to discriminate within
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FIGURE 4.28. Holtzer and Kratky representations of the decomposed species from COSMiCS for insulin
(blue) and αSNE46K (green)

the vast space of potential solutions.
It is worth noting that no specific shapes for the resolved scattering profiles were

imposed as a constraint throughout the optimization procedure. We have observed that
when multiple SAXS data representations were considered in the same analysis, the over-
all fit to the data is better and the possibility to obtain physically meaningful solutions
increases. The presence of these local minima solutions with unreasonable SAXS profiles
highlights the importance of identifying and discarding them. Here, all wrong solutions
present strong artifacts and large uncertainties that identify them as unphysical. This ob-
servation points toward the need to find a proper mathematical description of SAXS curves
to allow for the introduction of a new constraint to further decrease solution ambiguity.
Some attempts to elucidate these problems are explained in the discussion section.

Our approach represents a great advantage compared with other techniques that
probe a single species. This is exemplified for the case of αSNE46K. In the decomposition
of the SAXS data of this familial mutant, we reveal that two very large aggregated species
coexist for a long period of time. One of these species is ThT-inactive and would remain in-
visible when using traditional fluorescence experiments, thereby dramatically biasing the
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interpretation of a protein fibrillation study solely based on ThT fluorescence [321]. Im-
portantly, by applying our approach we uncover the existence of an intermediate species
of a structural nature that has hitherto not been described in the context of fibrillation ki-
netics. This oligomer has a low density of mass, is predominantly disordered, and is of a
reversible nature.

4.4 Materials and Methods

4.4.1 Insulin

4.4.1.1 Insulin sample preparation and fluorescence measurements

Human zinc insulin was obtained from Novo Nordisk. Zinc content was 0.37%
(w/w) corresponding to approximately two Zn2+ ions per insulin hexamer. ThT was pur-
chased as the chloride salt from Sigma-Aldrich. ThT was recrystallized three times in dem-
ineralized water before use. All other chemicals were of analytical grade. For ThT fluo-
rescence assays, a Polarstar Optima platereader from BMG Labtechnologies was used with
96-well, black, polystyrene, nonsterile plates with optical bottom from Nalge Nunc Inter-
national. The wells were covered with Polyolefin non-sterile sealing tape from Nalge Nunc
International, and bottom/bottom measurements were performed. ThT fluorescence mea-
surements were performed with λex = 440 nm (10 nm bandpass) and λem = 480 nm (12 nm
bandpass). A pellet of insulin was dissolved at 2.5 mg/ml insulin in 20% acetic acid (pH
2.0) with 0.1 M NaCl and 20 mM ThT. Afterwards 100 ml of the solution was transferred
to each well. The plate was placed in the platereader and ThT fluorescence measurements
were conducted at 45 C without shaking. The measurement of the fluorescence intensity
was performed every 300 s. The platereader was paused at appropriate time intervals and
a sample of 80 ml was withdrawn from a well.

4.4.1.2 COSMiCS analysis of insulin dataset

All SAXS representations used for the MCR-ALS optimization were used in a mo-
mentum transfer range of 0.0074 < s < 0.3 Å-1. Scattering curves numbers 3 (28 min), 4 (1
h 11 min), and 28 (10 h 56 min) were selected as starting points for the optimization. The
number of maximum iterations was set to 50 and the convergence criteria were set to 0.1.
ALS optimization is performed under the standard constraints for fibrillating system, non-
negativity (both for spectra and concentration profiles) and closure [282] for concentration
profiles.

4.4.1.3 Ab initio modeling of insulin components

Ab Initio structures of the oligomer and fibril of insulin were obtained using the pro-
gram DAMMIN [33]. The program employs a simulated annealing protocol to search for
a complex bead model minimizing the discrepancy between the experimental and calcu-
lated curves at low resolution (up to s of about 0.15 Å-1). The search volume, evaluated
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with the program BODIES [50], for the fibril repeat was an ellipsoid with half-axes of 800,
500, and 150 Å using 31,985 spheres. Individual jobs were loaded, and 20 independent
models were averaged using the program DAMAVER [15] and filtered with DAMFILT
[50]. The oligomer was calculated inside a sphere with a diameter of 98 Å, obtaining a final
averaged and filtered structure from 18 individual models. The structure of the monomer
was obtained using DAMMIF [35], starting from 20 arbitrary initial models to obtain the
final model.

4.4.2 α-synuclein E46K

4.4.2.1 α-synuclein E46K sample preparation

αSNE46K was produced in Escherichia coli BL21 using a pET-11a vector, and expressed
and purified as described previously. Lyophilized αSNE46K was dissolved in 20 mM PBS
buffer with 150 mM NaCl (pH 7.4). After filtration through 0.22-µm spin filters (Milli-
pore) the concentration was determined by A280 nm using a Nanodrop UV-vis spectropho-
tometer (Thermo Scientific) with an extinction coefficient of 5,120 M-1cm-1. Solutions were
prepared containing 12 mg/ml αSNE46K and 20 mM ThT. Fibrillation of 150-ml aliquots
was induced in 96-well optical bottom plates (Thermo Scientific) using a Fluostar Op-
tima Platereader (BMG Labtech) under heating (37 C) and orbital shaking with 3-mm glass
beads [232].

4.4.2.2 SAXS data collection and primary data evaluation

Three aliquots of protein were extracted from each well and SAXS data were recorded
immediately after extracting the sample. Scattering data of αSNE46K were recorded at the
P12 beamline at European Molecular Biology Laboratory (EMBL) on the Petra III storage
ring (Deutsches Electronen Synchrotron [DESY]) using the automated loading system [322].
The data were collected on a PILATUS detector with a momentum transfer range of 0.0049
< s < 0.35 Å-1 by 20 individual exposures of 45 ms each. The data reduction and buffer
subtraction was performed by the beamline automated procedure [323] followed by a sub-
sequent manual control. After close inspection of the multiple frames recorded at each time
point, two curves were discarded, which exhibited unsystematic features. The insulin sam-
ples were collected on the X33 beamline at the EMBL on DORIS III (DESY) at a wavelength
of 1.5 Å, using a MAR345 Image Plate Detector, in the momentum transfer range 0.006 <
s < 0.51 Å-1 with 2-min exposure time. No radiation damage was detected when perform-
ing repeated exposures. Zinc acetate was added to the background buffers corresponding
to two Zn2+ ions per insulin hexamer in the protein sample, and buffer measurements
were performed immediately before and after each protein sample measurement. An aver-
aged buffer measurement used for background subtraction. When the previously reported
buffer effect, typical for fibril scattering data, was observed, background correction was
applied as previously reported [320].

Data analysis was performed using the software suite ATSAS [50], and molecular
masses were estimated relative to that of a standard reference solution of BSA. Guinier’s
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approximation was applied to provide rough estimates of the extrapolated forward scat-
tering (I(0)) and radii of gyration (Rg) for the evolving samples. The p(r) functions were
evaluated by the program GNOM [311], providing the maximal dimension (Dmax) within
the particle, and a second estimate of I(0) and Rg values.

The EOM was applied to structurally describe the COSMiCS-derived curve of monomeric
αSNE46K [61]. A pool of 4,000 conformations of αSNE46K was built with Flexible-Meccano
[69]. After addition of side chains with SCWRL4.0 [324], the individual theoretical SAXS
profiles were computed with CRYSOL [41], and were used to select a subensemble of con-
formations that collectively described the experimental curve.

4.4.2.3 COSMiCS analysis of α-synuclein E46K SAXS dataset

The momentum transfer ranges used for the MCR-ALS analysis were 0.0074 < s <
0.3 Å-1 for the absolute values, 0.0074 < s < 0.16 Å-1 for Holtzer and Kratky representa-
tions, and 0.0074 < s < 0.07 Å-1 for Porod’s representation. The scattering curves selected
as initial estimations were the curves 2 (37 min), 17 (6 h 46 min), and 47 (16 h 1 min). The
maximum number of iterations, the convergence criteria, and the constraints were equiv-
alent to those used in the insulin case. A Monte Carlo approach similar to the previously
used by [325] was applied to estimate the standard deviations of the scattering intensities
and the populations of the final solutions of the COSMiCS analyses of insulin and αSNE46K

datasets.

4.4.2.4 Ab initio modeling of α-synuclein

The structure of the repeating unit of αSNE46K fibril was calculated with DAMMIN
4.24 using as starting point an ellipsoid of 200, 500, and 100 Å in 20 individual runs that
were averaged and filtered. The structures were rendered with the program CHIMERA
[326].
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Chapter 5

COSMiCS

In this section I am going to describe in more detail the software used in the previous
chapter, COSMiCS (Complex Objective Structural analysis of Multi-Component Systems).
In addition of studying amyloids, COSMiCS can be used for decomposition of SAXS data
from other polydisperse systems, such as transient interactions, oligomerization or con-
formational changes. In order to decompose the signal of the pure species coexisting in a
polydisperse system, their population must change along the dataset. Therefore, a rational
modification of some factor that produces this change has to be applied during the data
collection; e.g. changes in pH or addition of a denaturant agent in folding studies, fibrillat-
ing conditions and time for amyloid studies, or increasing concentration in concentration-
dependent oligomerizations.

I will explain the different parts composing the software, and how to perform the
analysis, using the α-synuclein E46K (αSNE46K) dataset described in the section 4.4.2 as ex-
ample. In that case, the total protein concentration remains constant along the experiment.
Finally, I will describe the results for the COSMiCS decomposition of two synthetic systems
for which the concentration changes.

5.1 Implementation of COSMiCS

COSMiCS software is divided in different subroutines that are executed in a linear
way using a command line procedure. All the steps will be described in this chapter in the
same sequential order than in the program. The display of the program will be shown, with
examples in answers and results in blue; the default choice is between [ ]. She selection
of the options is not case-sensitive. An overview of the process is shown in Figure 5.1.
The software has been implemented under MATLAB® 8.5 (Release 2015a) and does not
need any toolbox apart from the MATLAB® standard core program. The software has been
tested in computers under Linux Ubuntu 12 and Mac OS 10.10 “Yosemite” and 10.12.3
“Sierra” with no need of any particular additional resources.

5.2 Importing the data

The program loads the data from the files to the MATLAB® workspace and is orga-
nized in a data matrix of SAXS intensities.



82 Chapter 5. COSMiCS

FIGURE 5.1. COSMiCS flowchart

5.2.1 Selection of folders

Selection of the folder containing the experimental data

A directory dialogue box will appear containing the data

» Select the folder containing the data

Selection of the folder to save the output

The user has to select the main output folder. The program will create additional
folders inside with the different solutions of the optimization (see section 5.4.1)

» Where do you want to save the output?

Important: It is recommendable to name all the folders in the pathway without
spaces because depending the operative system the program could crash.

5.2.2 Format of the experimental files

Name of the SAXS files

All the experimental SAXS files have to be in the same directory and they must have
the same root and be sequentially named. COSMiCS will import only the files that fit
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FIGURE 5.2. Example of the order in which COSMiCS loads the files. A) Different digits for the
numbering will produce an array of disordered files. B) Same number of digits will keep the same order in
the loaded files than in the folder.

the pattern, in alphabetical order, and it will give a correlative index to each curve. For
this reason, it is important that the files have the same number of digits in the name. An
example of the order how COSMiCS charge the files in the workspace is illustrated in the
Figure 5.2.

For choosing the pattern of the files the user has to write the name of the files and an
asterisk in the place of the numbers. COSMiCS will show the first and last files inside the
input folder to help the user to choose the pattern of the data files.

» What is the pattern of the files (e.g. curveExp_.dat ) ??

Number of header lines

Usually, SAXS files have certain number of header lines with text. All curves from
the dataset must have the same number of header lines in order to only import the numeric
values of each curve. COSMiCS do not remove the header lines from the original data. The
first 10 lines of the first file will be shown to help the user select the number of header lines.
Press Intro to keep the default value (3 lines).

» Number of header lines [3]:

Number of columns

Most of SAXS data formats have three columns: momentum transfer (s), intensity
(I(s)), and experimental error (σ(s)). If the data have more than three columns you must to
specify this information. COSMiCS will ignore the extra columns.
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Important: columns must be in that order [s I(s) σ(s)]. If your data has only two
columns [s I(s)], COSMiCS will work but it will not be able to calculate the χ2. Press intro
for keep the default value (3)

» Number of columns [3]:

5.2.3 Displaying curves

COSMiCS plots all the loaded dataset in semi-logarithmic scale and displays the
number of curves in the command window, so the user can check that all the curves from
the dataset have been included correctly.

» You added 25 files

» Curves (semi-logarithmic scale)... Press any key to continue

5.2.4 Units of the experimental data

Select data units

The user has to specify the units of the original dataset: Angstroms or nanometers

» Units of your curves: 1/Angstrom (A) or 1/nanometers [n]:

Change data units

The user has the option to change the data units of the data. All the data that
COSMiCS will generate will be in these chosen units.

» Do you want to change the units?? Y/[N]:

5.2.5 Removing initial points of the curves

It is usual that SAXS curves present artifacts at low momentum transfer values due
to interparticle interactions or the proximity to the incident beam. It is possible for the user
to remove these points from the analysis. The user selects the number of data points to be
deleted, not the momentum transfer range. The program will show a plot with the dataset
without these points for helping the user to decide the number of points.

Important: if applied, these points will be removed from all curves of the dataset as
COSMiCS requires that all the curves have the same size.

» Do you want eliminate some data points at the beginning?? Y/[N]:

» Number of data points [0]:
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FIGURE 5.3. PCA results for the αSNE46K dataset. Ten first eigenvalues (left) and five first eigenvectors
(right). In this case the PCA analysis suggests the presence of 3 species, although performing the COSMiCS
analysis of 2 and 4 species would be useful for confirmation.

5.3 Optimization parameters

Principal Component Analysis (PCA)

PCA has been described in the section 3.2. The main goal of this step in COSMiCS is
to determine the minimum number of species needed to describe the experimental data.

PCA analyzes the experimental data without using any external information, in or-
der to do an objective estimation of the number of species present. The program shows
the results of the PCA plotting both the eigenvalues, in a Scree plot, and the eigenvec-
tors (Figure 5.3). It is important to check both plots before deciding the number of species
present. That information helps the user to decide the number of species of the system.
However, prior information about the system can be used to determine this number. The
COSMiCS optimization itself can be used also to confirm the optimal number of species
by performing analysis using one species more or one species less, and deciding the best
solution using statistical tools.

» Do you want see results of PCA?? Y/N [Y]:

Selection of the number of species

Independently of whether the user inspects the PCA results or not, it is necessary to
introduce the number of species that the program will use to perform the optimization.

» Number of species [3]:

5.3.1 Number of species

Independently of whether the user inspects the PCA results or not, it is necessary to
introduce the number of species that the program will use to perform the optimization.
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FIGURE 5.4. SAXS dataset of αSN plotted in the four representations that will be used by COSMiCS.

» Number of species [3]:

5.3.2 Selection of the momentum transfer range

During the optimization, COSMiCS will combine the Absolute values of the SAXS
profiles with different representations of the dataset: Holtzer, Kratky and Porod. These rep-
resentations present an increasing amount of noise at the wide-angle momentum transfer
range, especially in Porod’s representation. The user can select an individual momentum
transfer range for each representation to be analyzed with COSMiCS. The use of a specific
momentum transfer range for each data representation is recommended. COSMiCS will
plot the different representations of the data (Figure 5.4) to help the user choose the best
one depending the type of data.

» Do you want to cut the matrices?? Y/N [Y]:

If the user wants to select different momentum transfer for the different representa-
tions the program will plot the different representations with suggested ranges for each
one. The user can use the suggested values or insert manually the momentum transfer for
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each of the representations. COSMiCS will show a plot with the selection and will ask for
confirmation before proceeding with the next step.

5.3.3 Initial estimations

Search for the initial estimations of the SAXS curves

Initial estimations of the pure scattering curves best describing the complete set of
SAXS curves are obtained by searching the ’purest’ curves among all the experimental
ones these are subsequently used as the starting point for the MCR-ALS optimization (see
section 3.3). This process is performed with the program PURE [327].

»Calculating initial estimations

»

» Curve 1 - curveExp_01.dat

» Curve 2 - curveExp_02.dat

...

» Curve 20 - curveExp_20.dat

first purest variable: 17

next purest variable: 4

next purest variable: 3

Selection of initial estimations

The user can use the initial estimations selected by PURE or to introduce manually
other experimental curves of the dataset as starting points for the optimization process.
The user must introduce one by one the estimations using the index of loaded curve, not
the number in the file name. COSMiCS shows a list with the number of curve and the name
of the original file to help the user to know the index of the curve. COSMiCS will plot the
selected initial estimations (Figure 5.5).

» Do you want use the initial estimations selected by pure?? [17

4 3] [Y]/N: n

If the user decides introduce the estimations manually:

» Curve 1 - curveExp_01.dat

» Curve 2 - curveExp_02.dat

...

» Curve 20 - curveExp_20.dat

» Introduce the curves that you want as initial estimations: »

Initial estimation: 1

» Initial estimation: 10

» Initial estimation: 20
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FIGURE 5.5. Selected initial estimations for the MCR-ALS optimization after the sorting.

Sorting the initial estimations

When COSMiCS does the search for the initial estimations, their index can appear
disorganized (As in the previous example [17 4 3]). In some cases, especially fibrillation
experiments, it can be interesting to sort the initial estimations, so the first species corre-
sponds to the species that appears before in time during the fibrillation. In the example the
curves will be [3 4 17] after the sorting. This sorting helps the user to visualize the results,
but has no effect in the optimization.

» Do you want sort the curves?? [Y]/N:

5.3.4 Selection of constraints

Type of experiment

The use of constraints is key for the successful application of COSMiCS (see section
3.3.2 for more details). In the present version of COSMiCS, two types of experiments are
proposed. Importantly, the type of experiment determines the constraints that will be ap-
plied.
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» Type of experiment

» (1) Fibrillation or folding

» (2) Titration

» Select type of experiment:

(1) Fibrillation or folding (default). Constrains used in this type of experi-
ments are non-negativity (ffnls) for both concentrations and spectra, and closure for concen-
trations. This constraint scheme is applicable to datasets measured for systems in which the
sample concentration is maintained and the species evolve in a time-dependent manner or
by changing the experimental conditions (temperature, pH, ionic strength, denaturants. . . ).

» Standard options for fibrillation or folding:

» - Non-negativity (fnnls) for concentrations and spectra

» - Closure for concentrations (equal to 1.0)

» Press any key to continue

(2) Titration. Constraints used in this type of experiments are Non-negativity
(fnnls) for both concentrations and spectra, and Unimodality for concentrations. No mass
conservation (closure) is applied. This constraint scheme is applicable to systems in which
the total concentration is changed such as titration experiments to study protein oligomer-
ization, or low-affinity protein-protein interactions.

» Standard options for titration:

» - Non-negativity (fnnls) for concentrations and spectra

» - Unimodality for concentrations

» - No closure.

Equality constraint

In case of a system where the curve of a pure species is already available, it is possible
to fix it during the optimization. This is called equality constraint. It is possible to use this
constrain in both types of experiments.

Important: This fixed curve must be one of the initial estimations (see above). In
case that the algorithm does not detect it as one of the purest curves, it is necessary to do
it manually. COSMiCS will ask to the user if fixing one or more initial estimation curves is
desired.

» Do you want to fix any species? Y/[N]

» Initial estimation #1 - curve 1 (curveExp_01.dat)

» Do you want to fix this species? Y/[N] y

»
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» Initial estimation #2 - curve 10 (curveExp_10.dat)

» Do you want to fix this species? Y/[N] n

»

» Initial estimation #3 - curve 20 (curveExp_20.dat)

» Do you want to fix this species? Y/[N] n

5.3.5 Convergence criterion

In two consecutive iteration cycles the relative standard deviation difference of the
residuals between experimental and ALS calculated data values are compared. If this dif-
ference is less than the convergence criterion value, convergence is achieved and the opti-
mization finishes. This value is 0.1% by default, but it can be modified by the user depend-
ing on the stage of the optimization. Usually at the beginning of the study a higher value
is used (i.e. 1%) for exploratory purposes. In contrast, once a good model has been found,
lower values are attempted to see whether there is an improvement in the solution.

» Convergence criterion (0.1% by default)

5.3.6 Maximum number of iterations

The user can decide a maximum number of iterations allowed in the optimization
process. If the process does not achieve convergence before this number, the optimization
will stop in a divergence situation. In case of divergence, this information will appear in
the results (see below).

» Maximum number of iterations (50 by default)

5.3.7 Graphical output

A graphical display of the optimization process is possible (Figure 5.6). This possibil-
ity enables the visualization of the optimization process but it will make the total running
time longer.

Note: Only spectra corresponding to the Absolute scale optimization are displayed
in a semi-logarithmic scale.

» Do you want a graphical output during the ALS optimization [Y]/N)?
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FIGURE 5.6. If the graphical output is selected, this window will be shown and updated with the current
combination during the optimization. The combination showed (Absolute + Holtzer) is plotted in
semi-logaritmic scale for better inspection.

5.4 Optimization process

5.4.1 MCR-ALS with different representations

The program performs the optimization for all possible combinations of SAXS data
representations. In an initial step, COSMiCS generates for each combination the data ma-
trix, which is scaled by dividing all the intensity values of each representation by the first
eigenvalue of its individual PCA. This scaling step is necessary to not overweight a certain
representation. The final dataset is a row-wise augmented matrix of spectra that is used as
input. Then COSMiCS performs the MCR-ALS optimization in the following order:
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1. Absolute [A]

2. Absolute + Holtzer [AH]

3. Absolute + Kratky [AK]

4. Absolute + Porod [AP]

5. Absolute + Holtzer + Kratky [AHK]

6. Absolute + Holtzer + Porod [AHP]

7. Absolute + Kratky + Porod [AKP]

8. Absolute + Holtzer + Kratky + Porod [AHKP]

Optimization results

After each optimization, the COSMiCS procedure back-calculates the solution curves
and compares them with the experimental dataset to derive individual χ2 values for each
curve and the average χ2 for each combination. The graphical interface of COSMiCS dis-
plays all the optimized curves for each combination (Figure 5.7).

The program will show a message when the optimization for each combination is
finished, showing if convergence has been achieved and the different statistical parameters
used to measure the quality of the fitting (see section 3.3). This message will appear for
each combination, but the next combination will start immediately. This information will
be saved in a file for each combination (see section 5.5).

Example of the information displayed at the end of the optimization:

» CONVERGENCE IS ACHIEVED !!!!

» Fitting error (lack of fit, lof) in % at the optimum = 3.984(PCA)

5.0693(exp)

» Percent of variance explained (r2) at the optimum is 99.743

» Relative species conc. areas respect matrix (sample) at the

optimum

» Plots are at optimum in the iteration 6

When the program performs the optimization with all the combinations it shows a
list with the averaged χ2 for each of them:

» Test 1: xi2 (A) = 2.62

» Test 2: xi2 (A+H) = 1.22

» Test 3: xi2 (A+K) = 1.18 DIVERGENCE!

» Test 4: xi2 (A+P) = 1.33

» Test 5: xi2 (A+H+K) = 1.16

» Test 6: xi2 (A+H+P) = 1.24

» Test 7: xi2 (A+K+P) = 1.16

» Test 8: xi2 (A+H+K+P) = 1.16 » Press any key to continue
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FIGURE 5.7. Example of the final solution corresponding to the AK combination. The other 7 solutions will
be displayed. In addition of the average 〈χ2〉, the inspection of the solutions helps to decide the best
combination. For example, in this case we obtain a non SAXS-like curve for one of the species (bottom plot),
The population profile can be used also as a criteria to select the best solution (e.g. presence of negative
values).

5.4.2 Remove outliers

It is possible that the dataset has one or several curves that are outliers and cannot
be well described with the model. In this case, it is possible to identify and remove these
curves. First, the user can choose the best solution. The program suggests the best combi-
nation according the χ2 among the combinations that converged; the user can accept this
solution as the best or choose a different one. It is recommendable to inspect the graphical
output of the solutions for choosing the best solution instead using only the χ2 as the only
criteria. After the selection of the best solution, the program will provide a sorted list with
the curves with the largest individual χ2. The user has the option of removing the curve
with worst χ2 from the analysis.

Note: COSMiCS will not erase the previous solution with the complete dataset.
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» The best combination is Absolute + Holtzer + Kratky + Porod (xi2

= 1.1602)

» Do you want use this combination? Y/N [Y]:

» Now we going to detect outliers...

» Average xi2: 1.16

» The 10 worst xi2 are:

» 3.8519

» 2.0559

...

» 1.4034

» The curve with worst xi2 (45) - xi2 = 3.8519

» Do you want remove this curve? Y/N [Y]: y

In case that the curve is removed and the analysis is performed again. COSMiCS will
start again the optimization for the eight combinations of matrices. COSMiCS will provide
a ∆χ2 between both optimizations (the best solution previously selected and the new so-
lution for each combination) for each individual curve to confirm the improvement of the
results and the overall benefit of removing the experimental curve (bottom plot Figure 5.8).

» Now we going to repeat the different combinations without this

curve

» Press any key to continue

5.5 Output

COSMiCS will create different files and folders inside the output folder selected by
the user (Figure 5.9).

5.5.1 Output files

• Eigenvalues.txt. All the PCA eigenvalues in one column

• Eigenvectors.txt. Ten first PCA eigenvectors in different columns.

• Info.txt. It contains general information about the optimization:

– Folder containing the experimental data

– List of files: index and corresponding file names

– Number of species used

– Used constrains

– Species fixed (if any)

– Convergence criterion
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FIGURE 5.8. Example of the resulting optimization after removing an outlier. The bottom plot shows the
difference of χ2 (∆χ2) for the individual curves between the previous best solution and the actual solution
without the outlier. Negative values of ∆χ2 indicate a better description of the individual curve after
removing the outlier.

– Maximum number of iterations

• A different folder is created for each combination of representations. The folder name
consists in a correlative number and the combination of representations used in cap-
ital letters (e.g. Test05_AHK). This folder contains:

– Spectra in individual species (species*.dat).

– Concentrations of the individual species along the dataset (concentrations.txt).

– χ2 of each curve against the experimental curve. One column format.

– Other information about the optimization results (infoTest#.txt).

* Combination of representations used

* Initial estimations

* s range selected for each representation

* Results of the optimization

· Lack of fit (exp)
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FIGURE 5.9. Screenshot of the output folders and files created by COSMiCS

· Lack of fit (PCA)

· Percent of variance explained

* Average χ2

5.5.2 Reconstruction of the curves

The user has the option of reconstruct the dataset using the solutions obtained with
COSMiCS. Reconstructed curves are written as individual files (curveMCRALS_*.dat) in
the folder named ‘Reconstruction’ and placed in the output folder. In addition, the ex-
perimental dataset (curveExp_*.dat) is copied in the folder to facilitate the visualization of
the results with external programs. It is possible to do the reconstruction only for some
combinations to save space in the disk.

» Do you want reconstruct the curves?? [Y]/N:

» Which combination do you want the reconstruction?? (i.e. [1

5 7]) - 0 for all: [3 4]

5.5.3 Report

A report with all the selected options and solutions will be created with the name
report.html in a folder named ‘Report’ inside the output folder (Figure 5.10 to 5.14). In
addition of the report, the folder contains the images used in the report in a png format.
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FIGURE 5.10. Screenshot of the report html file (1 of 5)

5.6 Monte Carlo error analysis (optional)

5.6.1 Monte Carlo approach

SAXS-based structural modeling procedures require proper estimations of the uncer-
tainty for each of the SAXS intensity values. The uncertainties on both SAXS curves and
concentration profiles are derived using a Monte Carlo error analysis similar to what was
previously used by Svergun and Pedersen [325]. To perform this analysis, random noise
based on the experimental error bars is added to each of the reconstructed (back-calculated)
curves. This new synthetic dataset is then submitted to the MCR-ALS optimization. This
process is repeated a minimum of one hundred times using different values of random
noise. The optimized SAXS curves and the concentration profiles in each Monte Carlo cy-
cle that converge are stored and the standard deviations for the intensities, I(s), and for the
concentration profiles are calculated.

The number of Monte-Carlo simulations is selected by the user (100 by default). This
process is time consuming, so it exists the option of performing the analysis just for one
combination. New files with the pure species and the errors from the Monte Carlo error
analysis will be created in the corresponding folders of the solutions. The old files are kept
and the new ones will be named species*MC.dat.

» Do you want to compute the uncertainty of the solution using

the Monte Carlo method?? [Y]/N: y

» How many runs do you want for the Monte Carlo?? (default 100)

100
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FIGURE 5.11. Screenshot of the report html file (2 of 5)

FIGURE 5.12. Screenshot of the report html file (3 of 5)

» For which tests do you want to perform the error analysis?? (i.e.

[1 5 7]) - 0 for all: 3

5.7 Examples of the use of COSMiCS using synthetic data

5.7.1 Example of a system in equilibrium with mass conservation

This first example with synthetic data is a system with constant concentration along
the dataset, conceptually equivalent to the one presented in the chapter 4 for amyloids.
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FIGURE 5.13. Screenshot of the report html file (4 of 5)

FIGURE 5.14. Screenshot of the report html file (5 of 5)
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FIGURE 5.15. Crystallographic structures of the monomer (4QHF, blue), dimer (4QHG, green) and
tetramer (4QHH, orange) of the selecase, determined in [80]

5.7.1.1 Generation of synthetic data

We have generated a synthetic SAXS dataset based on the selecase oligomerization
[80]. Concretely, we designed a monomer-dimer-tetramer model corresponding to pdb
codes 4QHF, 4QHG and 4QHH, respectively (Figure 5.15). The theoretical scattering pro-
files for the three structures were computed with CRYSOL [41] using the maximum number
of spherical harmonics and maximum order for the Fibonacci’s grid representations. All
other parameters were in default setting. These three curves were scaled in order to have
a monomeric species curve with a forward scattering, I(0), equivalent to the curve at 8.5
mg/ml selecase concentration from the experimental dataset [80]. A concentration model
that included a Gaussian population for the dimeric species was generated making sure
that the sum of molar fractions at each time-point was 1.0. The final dataset of curves was
calculated for 50 time-points using the synthetic profiles for the three species and the molar
fractions of the kinetic model.

Synthetic noise was added to these curves based on the experimental error estima-
tions of the experimental SAXS curve of selecase at 8.5 mg/ml. The relative noise from
the experimental dataset was calculated by dividing the experimental noise [σ(sexp] by the
intensity [I(s)exp] observed:

k(s)exp =
σ(s)exp

I(s)exp
(Eq. 5.1)

The resulting factor, k(s)exp, was related to the I(0)sim through its ratio with I(0)exp

and multiplied by the intensity of the simulated scattering curve [I(0)sim] giving the noise
σ(s)sim:

σ(s)sim = k(s)exp
√

I(0)sim/I(0)simI(s)sim (Eq. 5.2)
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FIGURE 5.16. Complete synthetic dataset (50 curves) of the selecase example in semi-logarithmic scale. A
noise level of 2·σ(s)sim was used in this example.

For the inclusion of noise in the simulated scattering curve, values from a Gaussian
distribution with a standard deviation, σ(s)sim, centred around zero were added to the
curve. Two independent datasets were generated: one using the standard deviation σ(s)sim,
and a second one multiplying σ(s)sim by 2.0 in order to increase the level of noise of the
curves (Figure 5.16). Both datasets yielded very similar results with the COSMiCS analysis,
only results of second dataset are presented here.

5.7.1.2 COSMiCS analysis

COSMiCS was applied to the synthetic dataset, using the standard options for a fib-
rillation experiment (see section 5.3.4).

The resulting χ2 resulting from the different data representations are displayed in
the Table 5.1. A very good agreement to the complete dataset is observed for the majority
of combinations. Some combinations including Porod’s representation present larger χ2.
Importantly, all combinations with χ2 smaller than 1.0 present almost equivalent results.
The results of the AH combination are presented in Figure 5.17. The resulting decomposed
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TABLE 5.1. Results of the COSMiCS analysis of the synthetic dataset for the selecase test that has mass
conservation

curve profiles for the three species and their relative populations are in excellent agreement
with the theoretical values used to simulate the data.

5.7.1.3 Results

The three optimized curves are in excellent agreement with the curves used to cal-
culate the dataset. The one displaying the lowest level of uncertainty is the tetramer due
to the fact that it is the largest one, and its curve presents more features. Despite the fact
that the dimer and monomer curve are more similar between them, the monomer has a
better agreement (χ2=1.46) than the dimer because it is virtually alone in the first part of
the dataset (Figure 5.17B). The dimer displays the worst agreement (χ2 = 1.67) because
it is always present simultaneously with the other species. The inspection of the popu-
lations (Figure 5.17B) shows that the parts of the dataset where the three species are to-
gether presents larger error bars from the Monte Carlo analysis, especially for monomer
and dimer.

5.7.2 Example of a synthetic SAXS dataset along a titration experiment

In this example I present a system where one of the species concentration is constant
and a second species is added stepwise. Both species bind to form a complex with a known
dissociation constant, kd. The total concentration is not constant along the system, so the
constraints applied are different than in the previous example.
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FIGURE 5.17. COSMiCS analysis of the selecase dataset. (A) SAXS profiles for the isolated species using
the AH combination: monomer (blue), dimer (green) and tetramer (orange) and the original CRYSOL
curves superimposed in darker colors. (B) Kinetic model used to create the dataset (solid lines) and the
concentration profiles derived from COSMiCS (dots), with the same color code as the spectra profiles.

FIGURE 5.18. Crystallographic structure of the complex formed by the cytochrome c peroxidase (2PCC,
chain A, in red) and the iso-1-cytochrome c (2PCC, chain B, in blue) [328] used to generate the synthetic
titration SAXS dataset.

5.7.2.1 Generation of synthetic data

We have generated a synthetic SAXS dataset following a typical biomolecular equi-
librium reaction, A + B ⇀↽ AB. A population (thermodynamic) model was generated in-
creasing the amount of the reactant [A] with a fixed amount of the reactant [B]. The equilib-
rium concentration of the product [AB] was determined using an equilibrium dissociation
constant (Kd) equal to 0.1 µM.

The partners used for the model are extracted from the pdb 2PCC, which corresponds
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to the complex between yeast cytochrome c peroxidase and yeast iso-1 cytochrome c [328].
In the original pdb, subunits A and C correspond to two units of cytochrome c peroxi-
dase and the subunits B and D correspond to two units of iso-1-cytochrome c. To simplify
the model, I have used just one unit of each partner; that is reactant [A] corresponds to
cytochrome c peroxidase and reactant [B] corresponds to cytochrome c (Figure 5.18).

In the same way than the previous synthetic data, the theoretical scattering profiles
of the individual partners and the complex were computed with CRYSOL [41] using the
maximum number of spherical harmonics and maximum order for the Fibonacci’s grid
representation. All other parameters were in default setting.

The final dataset of curves was calculated for 50 concentration points using the syn-
thetic profiles for the three species and the molar fractions of the thermodinamic model.

The noise was added to the final curves using the same experimental curves than in
the previous case. The three synthetic curves were scaled in order to have the minor species
curve (compound B, cythocrome c) with a forward scattering, I(0), equivalent to the curve
of 8.5 mg/ml selecase concentration from the experimental dataset [80]. The noise, σ(s)sim,
was calculated using Eq. 5.2, like in the previous synthetic dataset. For the inclusion of
noise in the simulated scattering curve, values from a Gaussian distribution with a stan-
dard deviation, σ(s)sim, centred around zero were added to the curve. In order to generate
a dataset with a more realistic noise level, the σ(s)sim value was increased multiplying by
10 (Figure 5.19).

5.7.2.2 COSMiCS analysis

COSMiCS was applied to the synthetic dataset, using the standard options for a titra-
tion experiment (see section 5.3.4). In the case of a titration experiment the pure curves of
the compounds A and B can be measured individually, therefore they are available to use
as additional information, fixing the curves during the optimization process. Obviously,
the optimization must be done using as much information as is available to obtain the best
solution. In order to illustrate how the use of supplementary information improves the
solution, two analyses were performed, one fixing the pure curve of both compounds A
and B (equality constraint, see section 3.3.2.4) and another without fixing any curve.

5.7.2.2.1 COSMiCS analysis fixing curves from known species

The resulting χ2 from the different data representations are displayed in the Table
5.2. The agreement of the reconstructed and experimental curves is good, although the
combinations including Porod’s representation present larger χ2. When we compare the
original curve of the AB complex generated by CRYSOL and the second species obtained
by COSMiCS, we can see that the fitting is perfect, χ2 = 0.53 (Figure 5.20A, green curve).
To achieve this fitting, it was necessary to scale the intensity axis. The same scaling factor
was applied to the population profile of this species computed by COSMiCS, showing a
perfect match (5.20B, green hollow spheres). The need for scaling comes from the inherent
rotational ambiguity of the system that appears where closure cannot be applied, as it is
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FIGURE 5.19. Complete synthetic dataset (50 curves) in semi-logarithmic scale for the transient interaction
(Kd = 0.1 µM) between yeast cytochrome c peroxidase and yeast iso-1 cytochrome c.

the case for all titration systems. The first and third species do not require scaling because
their curves were fixed during the optimization.

5.7.2.2.2 COSMiCS analysis without fixing curves

In order to evaluate the restriction power of fixing individual curves, another COSMiCS
analysis was performed to the same dataset, with the same constraints than the previous
one but without fixing any pure spectra. The resulting χ2 from the different data represen-
tations are displayed in the Table 5.2. In contrast with the previous case, a better agreement
to the complete dataset is observed when no additional information is added to the opti-
mization. The reason for this is the larger number of degrees of freedom, so the program
is able to find a solution that explains better the experimental data. All combinations with
χ2 smaller than 1.0 present almost equivalent results. The results of the Absolute data are
presented in Figure 5.21A, fitted with their corresponding original curve used to generate
the dataset. The pure curve of the AB complex has perfect agreement with the original, χ2

= 0.43 (Figure 5.21A, green curve). However, the fitting of the decomposed curve for the
subunits A and B shows large discrepancies. The Monte Carlo analysis shows a big error
bars for the subunit B curve and its associated population profile. For that reason, the χ2
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TABLE 5.2. Results of the COSMiCS analysis of the synthetic dataset for titration case representing a
transient biomolecular interaction.

of the fitting with the original curve is very low, χ2 = 0.13, even when is possible to see
from the inspection of the fitting that the agreement is not good (Figure 5.21A, blue curve).
The subunit A also presents a bad agreement with the theoretical curve, and it is reflected
in the high χ2 = 7.26, mainly due to the smaller error bar associated (Figure 5.21A, orange
curve). The bad agreement of the AB complex and the smaller species is also reflected in
the population (Figure 5.21B), which shows also a bad agreement and large uncertainties.

These results highlight the importance of introducing additional information, such as
kinetic/thermodynamic model or pure spectra curves. Importantly, this latest information
is available in titration experiments and it is implemented in COSMiCS.
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FIGURE 5.20. Results of the COSMiCS analysis of the system A + B ⇀↽ AB for the AK combination, fixing
the curves from known species (subunit A and B). A) Pure spectra of the subunit A (orange), subunit B
(blue) and complex AB (light green), the latter one is fitted with the original curve computed by CRYSOL
used to generate the dataset (dark green). The curves are in different plots for a better inspection. B) In the
same color code, the original populations used to create the dataset in solid lines. The concentration profile
decomposed by COSMiCS is shown in solid circles with the error bars from the Monte Carlo analysis. The
green hollow circles represent the population of the complex AB using the same scale factor applied to fit the
spectra. This uncertainty in the scale arises from the rotational ambiguity.
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FIGURE 5.21. Results of the COSMiCS analysis of the system A + B ⇀↽ AB using just the Absolute values,
without fixing curves. A) Pure spectra of the subunit A (orange), subunit B (blue) and complex AB (light
green), fitted with their corresponding original curves computed by CRYSOL used to generate the dataset
(solid lines). The curves are in different plots for a better inspection. B) In the same color code, the original
populations used to create the dataset in solid lines. The concentration profile decomposed by COSMiCS is
shown in solid circles with the error bars from the Monte Carlo analysis.
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Chapter 6

Chemometrics analysis of SEC-SAXS

data from mixtures

6.1 Introduction

Structural analysis of SAXS data requires scattering profiles corresponding to a single
species or to a well-defined mixture of species. In the previous sections I have explained
how to decompose data from polydisperse samples using COSMiCS. However, this ap-
proach is not common and, in some circumstances, the experiments can be difficult to per-
form from a practical point of view. As the scattering from a particle is related to the square
of its excess scattering length density, aggregates contribute disproportionately to the sig-
nal and in most cases render the data non-interpretable. In practice, samples should be at
least 95% monodisperse in order to obtain useful information. A great effort has been done
in the recent years to implement online size exclusion chromatography coupled to SAXS
(SEC-SAXS) in BioSAXS beamlines to achieve this required monodispersity.

Recently, several beamlines have combined SAXS with online SEC purification as a
standard set-up [70, 73, 74] (see section 1.3.2.3). This combination is only possible at 3rd

generation synchrotrons, where statistically significant data over a broad s-range (0.005 –
0.5 Å-1) can be recorded in less than a second for concentrations below 1 mg/ml. Exten-
sive SAXS sampling of the HPLC elution peaks can then be performed, similarly to the
popular SEC-MALLS combination. Therefore, these experiments provide information for
individual species. SEC is the most common chromatography coupled to SAXS due to the
homogeneity of the buffer. Recently, efforts to use affinity or ionic columns, where compo-
nents are eluted using buffers with variable composition, have been performed [329].

In some cases, the chromatographic peaks can be still overlapped after elution from
the column, yielding polydisperse SAXS data. In these cases, decomposition of the data is
necessary in order to structurally analyze the species present in the system. One strategy
to decompose this data has been implemented in the software US-SOMO [78, 79], which
has been briefly described in the section 1.3.2.3.

In this chapter we explore the use of COSMiCS (chapter 5) to decompose data from
SEC-SAXS experiments composed by a mixture of species. In order to be able to analyze the
power of COSMiCS in decomposing these data, as well as to test the limits of the method,
we created synthetic datasets that simulate SEC-SAXS experiments with overlapped peaks.
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Finally, real experimental data from a SEC-SAXS experiment will be presented as an exam-
ple of the application of this strategy.

6.2 Results

6.2.1 Generation of synthetic data

We have generated a synthetic SAXS dataset that emulates a SEC-SAXS experiment
of a protein that forms dimers that are in equilibrium with the monomeric species. A
population model was created using as original concentration profiles two overlapped
Gaussians corresponding to the monomer and the dimer (Figure 6.1B). The Gaussian cor-
responding to the dimer starts at frame 100 and finishes at frame 700, with a maximum in
frame 400, and the monomer population starts at frame 400 and finish at frame 1000, with
a maximum at frame 700. The structures used to create the synthetic data are the same
than these used in section 5.6, corresponding to the pdb codes 4QHF for the monomer
and 4QHG for the dimer [80]. Their theoretical scattering profiles were computed with
CRYSOL [41] using the maximum number of spherical harmonics and maximum order of
the Fibonacci’s grid representations. All other parameters were in default setting (Figure
6.1A). The primary analysis of the two species was performed using the program PRIMUS
[15], obtaining a Rg(dim) = 21.10 Å and Rg(mon) = 15.47 Å, and a ratio I(0)dim / I(0)mon =
3.6.

The dataset of scattering curves was generated as the concentration weighted sum
of the species present in each frame of the experiment. A total of 1200 curves were cre-
ated (Figure 6.1C). Noise was added to the dataset using the experimental error values,
σ(s)exp, from a SEC-SAXS study of protein POP [331] (see section 6.3) in the following way.
Synthetic curves were scaled such that the maximum I(0) among all the theoretical curves
corresponds to the maximum I(0) among all the experimental curves. Importantly, the
concentration along the dataset is changing, therefore the curves have a different level of
noise depending on their concentration. In order to add a concentration-dependent level
of noise, the I(0) of each synthetic curve was calculated (Figure 6.1D) and the error of the
experimental curve with the closest I(0) was assigned. For the inclusion of noise in the
simulated scattering curve, values from a Gaussian distribution with a standard devia-
tion, σ(s)exp, centred around I(s) were added to the curve (Figure 6.1C). The resulting level
of noise is high due to the low concentration of the experimental data used. In order to
test the effect of the level of noise in the decomposition using COSMiCS, two additional
datasets were generated with reduced levels of noise. These datasets were calculated mul-
tiplying σ(s)exp by 0.2 (σ0.2) to obtain a dataset with high signal-to-noise level, and by 0.5
(σ0.5) to obtain a medium signal-to-noise level.
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FIGURE 6.1. Synthetic datasets. A) Synthetic curves computed with CRYSOL for the monomer (blue) and
dimer (green). B) Gaussians corresponding to the individual populations of each species simulating a
SEC-SAXS experiment with the same colour code than panel A. C) Final dataset with noise (σ0.2) in
semi-logarithmic scale (only frames from 350 to 450 are showed for clarity). D) I(0) of the complete synthetic
dataset displayed in panel C and computed with autorg from ATSAS package [330].

6.2.2 COSMiCS analysis of synthetic data

COSMiCS was used to analyze the three synthetic datasets, using only Non-negativity
as constraint. The first step, like in every decomposition approach, was performing a Prin-
cipal Component Analysis (PCA) to the complete dataset to determine the total number
of species present. PCA analysis identified two species for the three datasets. Although
the inspection of the eigenvalues and eigenvectors indicates the presence of two species
in the datasets with the lowest noise level (Figure 6.2A), the dataset with lowest signal-to-
noise level (Figure 6.2B and 6.2C) presents a large value for the third eigenvalue, which
originates from the more important amount of noise.

The second step, previous to the ALS optimization, is the selection of initial esti-
mations. We have used the approach based in SIMPLISMA [287], like in the COSMiCS
analysis (section 3.3). In the case of the datasets with lower noise (σ0.2), the software selects
as initial estimation for the decomposition frames 396 and 724. These frames are very close
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FIGURE 6.2. Results from PCA for the three synthetic datasets with increasing amount of noise. First ten
eigenvalues and four first eigenvectors for A) low level of noise (σ0.2), B) medium level of noise (σ0.5) and C)
high level of noise (σ1.0). The inspection of eigenvalues and eigenvectors allows the estimation of the number
of coexisting species.

to the center of each of the Gaussians (400 and 700). However, when the noise is higher
(σ0.5), the program selects frames 385 and 1057 as initial estimations for the decomposi-
tion. Frame 1057 corresponds to a zone of buffer and it is not a good initial estimation.
For unifying all the analyses, we have selected the same frames as initial estimations for
every dataset: frames 400 and 700, which correspond to the frames with the highest protein
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TABLE 6.1. Analysis of the COSMiCS decomposed scattering curves and concentration profiles from
datasets with increasing levels of noise compared with the theoretical values used to generate the data.

concentration for the monomer and the dimer, respectively (Figure 6.1D).
After the COSMiCS decomposition, a Monte Carlo analysis (see section 5.6.1) was

performed to obtain the error bars of the curves. Notice that these error bars cannot be
used to compare with the theoretical ones using the traditional goodness of fit analysis, χ2,
because this statistical value depends on the size of the error bars, which will be different
for the different analyses. However, the error bars are useful to monitor the uncertainties of
the solution. The parameter that we used to check the validity of the solution is the C-value,
obtained with the software CorMap [7] (See section 1.2.2), which is the highest number of
consecutive points where the fit is systematically higher (or lower) than the experimental
data. However, the best approach to check the accuracy of the solution is the visualiza-
tion of the ratio between the theoretical curve and the decomposed curve by COSMiCS
(I(s)COSMiCS/I(s)theoretical). To monitor the accuracy of the populations derived from the
analyses, besides the overall inspection, the ratio between the maximum concentration of
both species, situated in frames 400 and 700 for the dimer and monomer respectively, was
performed and compared with the theoretical one. Finally, an analysis of the decomposed
SAXS curves was performed in order to compare Rgs and the ratio I(0)dim/I(0)mon with the
theoretical values. A comparison table with these parameters from the decomposition of
the three datasets, and the theoretical one, are shown in Table 6.1.

COSMiCS decomposition for the σ1.0 dataset was performed for all the combinations
of SAXS data representations. The decomposed solutions for the spectra and the popula-
tions were very similar for all the combinations. The ratios between the original and de-
composed curves (I(s)COSMiCS/I(s)theoretical) for each combination are shown in Figure 6.3,
and they reveal that the decomposed curves do not agree with the theoretical ones. The
decomposed curves show a bad agreement with the original curves (Figure 6.4A), with
Rg(dim) = 21.30 Å and Rg(mon) = 13.47 Å, which is notably lower than the Rg of the orig-
inal monomer, 15.30 Å. However, the relative ratio I(0)dim/I(0)mon = 3.6 is the same than
in the original curves. The decomposed peaks are shown in Figure 6.5. All the combina-
tions have similar concentration profiles and they present an additional contribution of the
second species (monomer) in the first 400 frames of the dataset that was not present in the
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FIGURE 6.3. COSMiCS analysis for the monomer-dimer synthetic dataset with low signal-to-noise (σ1.0).
Ratios I(s)COSMiCS/I(s)theoretical for the dimer (blue) and monomer (green) for each of the combinations of
representations. All the solutions are equivalent and do not agree with the theoretical curves.

theoretical population. The decomposed concentration (Figure 6.4B) is also wrong, espe-
cially in the monomer concentration, which is smaller than the original one. It is noticeable
that the decomposed concentration using only the absolute scale shows more noise than
the concentrations from the decomposition using one or more representations simultane-
ously.

In order to compare the effect of the level of noise in data decomposition, we per-
formed a COSMiCS analysis of the other two datasets: σ0.2 and σ0.5. Figure 6.6 shows
the results of the analysis for the σ0.2 dataset, using only Absolute values to simplify the
examination of the results. The agreement with the original SAXS curves (Figure 6.6A) is
perfect, which is obvious after the visual inspection of the ratio I(s)COSMiCS/I(s)theo. The
analysis of the decomposed spectra gives Rg(dim) = 21.04 Å, Rg(mon) = 15.31 Å and the
ratio I(0)dim/I(0)mon = 3.5, all values very close to the original ones. The concentration pro-
files of the COSMiCS solution (Figure 6.6B) show also a good agreement with the original
populations. A larger uncertainty (error bars) was observed in the overlapped part of the
populations, especially for the monomer due to its smaller size.
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FIGURE 6.4. Results from the COSMiCS analysis of the synthetic SEC-SAXS dataset using the final noise
(σ1.0). A) Pure spectra of the monomer (green) and dimer (blue) and their fitting with the original curves
computed with CRYSOL. At the bottom, the ratios I(s)COSMiCS/I(s)theoretical for both species are shown. B)
Concentration profiles of the two species (same color code) and the original populations used for generate the
synthetic data

When we performed the same analysis with data with medium signal-to-noise (σ0.5)
using Absolute values, the solution obtained with COSMiCS was still in good agreement
with the original curves (Figure 6.7A), although slightly worse compared with the σ0.2 case.
Rg(dim) = 21.05 Å, Rg(mon) = 14.97 Å, and the ratio I(0)dim/I(0)mon = 3.5, all values still
close to the original curves. The concentrations (Figure 6.7B) also worsen, with a smaller
monomer concentration compared with the theoretical one used to generate the data. In
the same way than the previous analysis, the decomposed data have an increase of the
ambiguity in the overlapped part, which also presents an enhanced contribution of the
monomer that was not present in the theoretical population.

6.2.3 Adding more information to the system: Equality constraint

We have seen in the previous section that, if the noise is high, we cannot decom-
pose correctly neither the pure species nor the concentration profiles. This is due to the
inherent ambiguity of the method (see section 3.3.1). In order to decrease the ambiguity,
it is necessary to add more information to the decomposition process. We performed the
COSMiCS analysis adding information about the part of the dataset composed by a single
species (monodisperse zone). This information can be introduced in COSMiCS as Equality
constraint for concentrations (section 3.3.2.4).
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FIGURE 6.5. COSMiCS population profiles for the monomer-dimer synthetic dataset with low
signal-to-noise (σ1.0). Decomposed population of dimer in blue and monomer in green for each of the
combinations of representations. All the solutions are equivalent, except for the Absolute scale, which
presents a more important level of noise. None of the combinations agree with the theoretical population
profiles.

6.2.3.1 COSMiCS analysis adding theoretical Equality constraint

To assess the ambiguity reduction capacity, the Equality constraint was applied into
the COSMiCS analysis for the decomposition of the dataset with low signal-to-noise (σ1.0).
For that, we introduced in the program the information about which species are present in
each of the frames. According to the original populations, we defined that the first species
start in frame 1 and ends in frame 700, and the second species start in the frame 400 until
the last frame (1200).

The results of this analysis showed an important improvement of the decomposition
(Figure 6.8A), with a better agreement with the original curves than in the previous analysis
without constraints (Figure 6.7A), with a ratio of intensities centred in 1. Rg(dim) = 20.98 Å
and Rg(mon) = 15.58 Å, which are also better than the previous unconstrained analysis. The
description of the population (Figure 6.8B) also improves respect the previous analysis as it
does not present artifacts in the concentration profiles. However, the population profiles do
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FIGURE 6.6. Results from the COSMiCS analysis of the synthetic SEC-SAXS data using a scale of 0.2 of
the final noise (σ0.2). A) Pure spectra of the monomer (green) and dimer (blue) and their fitting with the
original curves computed with CRYSOL. At the bottom, the ratios I(s)COSMiCS/I(s)theoretical of both species are
shown. B) Concentration profiles of the two species (same color code) and the original populations used for
generate the synthetic data

FIGURE 6.7. Results from the COSMiCS analysis of the synthetic SEC-SAXS data using a scale of 0.5 of
the final noise (σ0.5). A) Pure spectra of the monomer (green) and dimer (blue) and their fitting with the
original curves computed with CRYSOL. At the bottom, the ratios I(s)COSMiCS/I(s)theoretical of both species are
shown for a better inspection. B) Concentration profiles of the two species (same color code) and the original
populations used for generate the synthetic data
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FIGURE 6.8. Results from the COSMiCS analysis of the synthetic SEC-SAXS dataset using the final noise
(σ1.0), adding an equality constraint that indicates that the dimer ends at frame 700 and monomer starts at
frame 400. A) Pure decomposed curves for the dimer (blue) and monomer (green). In solid line is shown the
original SAXS curves of the two species (same color code). At the bottom, the ratios I(s)COSMiCS/I(s)theoretical
of both species are shown B) Concentration decomposed profile of the two species.

not match with the original populations, especially for the monomer profile. In this case,
the rotational ambiguity gives still a bad determination of the I(0), giving a ratio between
the I(0) of two species of 2.4 instead 3.6 of the original curves, although better than in the
analysis without Equality constraint.

6.2.3.2 Determining monodisperse zones

Considering the results obtained, it seems important to identify the monodisperse
zones along a chromatography elution in SEC-SAXS experiments to be able to precisely
add this information to the system, in order to obtain better solutions. Different approaches
have been proposed to obtain the zones of monodispersity. The methods that we tested
with our synthetic dataset were Rg, which is the most commonly used, and the Evolving
Factor Analysis (EFA) (section 3.4), that has been recently proposed to analyze monodis-
persity in SEC-SAXS data.

6.2.3.2.1 Determining monodisperse zones using Rg

The most common strategy to determine the monodisperse regions in SAC-SAXS is
calculating the Rg for each frame of the dataset and monitoring its changes. These zones
with a constant Rg are considered to be monodisperse. Figure 6.9 shows the Rg from the
three synthetic datasets used in previous sections. The Rg calculation presents higher un-
certainty when the signal-to-noise of the data decreases. However, the general shape re-
mains constant independently of the level of noise of the dataset.
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FIGURE 6.9. Integration of first 50 I(s) points of the SAXS data (solid line) and original Gaussian
populations used to generate the synthetic data (dashed lines). Rg (bottom) along the frames of the dataset
computed with autorg from the ATSAS package [ref] for the three datasets with different noise levels. The
green and yellow areas display the monodisperse regions for the dimer and monomer, respectively, according
to the Rg analysis.

According to the Rg profile, it is possible to determine a monodisperse zone, where
the Rg is stable, in the range of frames from 250 to 500 corresponding to the dimer. Impor-
tantly, the contribution from the second peak (monomer) in the frames 400 to 500 does not
cause a noticeable reduction of the Rg. This is because the concentration of the monomer
is relatively low with respect to the concentration of dimer in this region and the contri-
bution of monomer (smaller species) is not detectable. The Rg profile has a second stable
zone from frames 700 to 900, which corresponds to the presence of a single monomeric
species. Interestingly, this second stable Rg zone appears just when dimer population dis-
appears. This behavior is expected due to the larger size of the dimer, which provokes a
more important contribution to the mixed curves at smaller concentrations.

6.2.3.2.2 Determining monodisperse zones using EFA

Another method used to determine the monodisperse regions is EFA (see section
3.4), a chemometric method that applies PCA to estimate the number of species present in
different regions of the dataset. To this aim, the eigenvalues of the PCA are monitored upon
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sequentially increasing the size of the dataset. The inspection of the eigenvalue profiles
enables to detect the appearance of new species along the column elution.

First, we need to understand how EFA works for SEC-SAXS data, and how to in-
terpret the information that we obtain from it. For that, we created a simplified synthetic
dataset without noise, in order to see the results without any noise-related artifact. Figure
6.10 shows the results of this EFA analysis, the first (blue) and second (green) eigenvalues
in the forward and backward directions. The size of the eigenvalues increases when signal
appears, indicating the presence of the first species in the case of the first eigenvalue, and
the presence of the second species for the second eigenvalue. In forward direction the first
species is the dimer and the second is the monomer, and vice versa for the backward di-
rection. It is very clear in Figure 6.10, where the first eigenvector in the forward direction
starts growing exactly in the frame than the dimer peak starts and in backward direction
the eigenvalue increases when the monomer appears. Interestingly, the first eigenvalue in
backward direction (blue dotted line) is affected by the presence of the dimer, which has
larger size. Conversely, the first eigenvalue in the forward direction is not affected by the
presence of the smaller monomer. Importantly, the second eigenvalue follows perfectly the
increase of the theoretical populations in both directions when the second species appears,
and it is therefore the profile that must be followed to identify the monodisperse zones in
a SEC-SAXS experiment.

The analysis of datasets without noise is useful to illustrate the behavior of the EFA
profiles along a SEC-SAXS dataset; however, that is not the real situation that we can find in
experimental data. We have performed the EFA analysis in the three datasets with different
levels of noise to see how this method behaves in the presence of increasing amounts of
noise. Figure 6.11 shows the EFA for the first eigenvalue (forward and backward) for the
different datasets, which corresponds to the appearance of signal. The method detects the
signal when it rises above the noise level, and for that it requires the inclusion of more
frames in the analysis when the signal-to-noise is lower. In other words, the change in the
slope in the eigenvalue appears systematically later as we increase the noise in the dataset
for both the forward and the backward directions. According to this analysis, it is clear that
the level of noise affects the capacity of the method to detect the presence of signal.

An equivalent analysis was done with the second eigenvector profile, which is more
informative because it indicates the appearance of a second species in the dataset, and al-
lows the identification of monodisperse zones. Figure 6.12 shows the EFA for the second
eigenvalue in the forward and the backward directions. The change in the slope of the
second eigenvalue profile indicates the appearance of a second species, and it is indicated
by a circle in the forward direction and by a square in the backward direction. The second
species corresponds to the monomer or the dimer for the forward and the backward direc-
tions, respectively. As in the case of the first eigenvalue, these changes in the EFA profiles
appear later on in the datasets as the level of noise increases. When the signal-to-noise is
low, the method is less sensitive to the presence of a new species and it is necessary add
more frames of the second peak to be able to detect the appearance of the new species. In
the case of high signal-to-noise dataset (σ0.2) the monomer peak appears in the frame 440,



6.2. Results 121

FIGURE 6.10. EFA of synthetic data (monomer-dimer system) without noise, in the forward (solid line) and
backward (dashed line) directions. First eigenvalue (blue) shows when the first peak appears, dimer peak in
the forward analysis and monomer peak in the backward analysis. The second eigenvalue (green) increases
when the second species appears, monomer in the forward analysis and dimer in the backward analysis. The
chromatogram (black solid line) and the original populations (dotted black line) are represented on the top
panel.

very close to the theoretical value of 400. When the noise increases (σ0.5), it is necessary
add more frames to the analysis to detect the appearance of the monomer, which occur at
the frame 470. Finally, for the low signal-to-noise dataset (σ1.0) the change appears even
further, at the frame 500. In the backward direction, the change of the slope for the σ0.2,
the σ0.5, and the σ1.0 datasets happens at the frame 690, 660, and 630, respectively. Thus,
the EFA indicates that for low levels of noise the detection of the populations is very close
to the theoretical value, 700. Therefore, the behavior of the second eigenvalue EFA profile
with respect to noise level is the same than that of the first eigenvalue, as more frames
are needed to detect a new species when increasing the noise level. Importantly, in the
backward direction, less frames are necessary to detect the appearance of the dimer (70
frames for the σ1.0 dataset) than the detection of the monomer in the forward direction
(100 frames). The explanation of this difference arises from the difference in size between
the two species.

In summary, the EFA is a good method to determine monodisperse zones, obtaining
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FIGURE 6.11. EFA from synthetic data (monomer-dimer system). Only the first eigenvalue is plotted along
the dataset in the forward (solid line) and the backward direction (dashed line). Different levels of noise are
plotted (0.2, 0.5 and 1). First eigenvalue profiles, which indicates the detection of signal over the noise level,
for the three datasets tested are overlapped for the vast majority of the chromatogram. The capacity to
identify the appereance of the first species is virtually the same for all levels of noise.

the same results than Rg for the σ1.0 dataset (see previous section). However, the EFA is
more sensitive to the level of noise, and its application is advantageous in high signal-to-
noise datasets, and in scenarios where the Rg value of the mixed species is similar.

6.2.3.2.3 COSMiCS analysis using Equality constraint from Rg or EFA

In section 6.2.3.1, we used the information from the theoretical populations to create
an Equality constraint in order to use it in the COSMiCS decomposition. That constraint
decreased the ambiguity of the analysis and the results from the decomposition improved
notably. Obviously, this information is not available in a real experiment, so it is necessary
to use the information obtained by Rg and/or EFA to create the Equality constraint and
use it in a COSMiCS analysis. The information from Rg and EFA is slightly different than
the theoretical one, previously used to test the Equality constraint (see section 6.2.3.1). We
want to test if the addition of monodisperse zones derived from Rg/EFA analyses is able
to improve the decomposition in the same way. Concretely, the Equality constraint based
on the Rg was introduced limiting the first species from the frames 1 to 700, and the second
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FIGURE 6.12. EFA from synthetic data (monomer-dimer system) for the different noise levels tested (σ0.2,
σ0.5 and σ1.0). The second eigenvalue is plotted along the dataset in the forward (solid line) and the
backward directions (dashed lines). The second eigenvalue indicates the appereance of a second species.
Abrupt slope changes are highlighted with circles (forward) and squares (backward). Increasing noise levels
leads to a progressive delay of the slope change point (abrupt change in the singular value). The ranges
corresponding to monodisperse regions (light color) and overlapped regions (darker color) are shown on top
of the chromatogram for each of the datasets, in the same color code.

species from the frame 500 until the last frame (1200). Note that these limits are very similar
to these obtained for the EFA analysis.

When we compare the results from the analysis using theoretical limits (Figure 6.8)
with these derived using the Rg limits (Figure 6.13) we can see that both solutions are very
similar. This means that the small contribution of the monomer peak that Rg or EFA does
not detect, does not affect to the decomposition. The description of the populations is
not optimal in either case, and the concentration profiles do not match with the original
ones, especially for the monomer. In Table 6.2 we can see that the Rgs, ratio between I(0)
of the species, and the difference between the maximum of the populations are similar
in both analyses. However, with the Rg/EFA information the solution presents artifacts in
the concentration profiles, with truncated populations. These truncated population profiles
observed come from the need of additional frames and depends on the noise of the dataset.
That error can be corrected by selecting an earlier frame corresponding to the appearance
of the monomer in the Equality constraint in a new COSMiCS analysis, which will give
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FIGURE 6.13. Results from the COSMiCS analysis of the synthetic SEC-SAX data using the final noise
without scaling, adding an equality constraint obtained using the Rg analysis. A) Pure decomposed curves
for the dimer (blue) and monomer (green). In solid line is shown the original SAXS curves of the two species
(same color code). At the bottom, the ratios I(s)COSMiCS/I(s)theoretical of both species are shown. B)
Decomposed Concentration profiles of the two species (same color code) and the original populations used to
generate the synthetic data

same results that would be closer to these obtained using theoretical information (Figure
6.8).

In summary, the use of monodisperse zones derived, which can be determined from
the Rg or EFA analyses, is an excellent strategy to improve the decomposition with COSMiCS
to derive precise SAXS profiles from overlapped SEC-SAXS chromatograms. However, the
rotational ambiguity, which is inherent to chemometric analyses, produces wrong pop-
ulations. Therefore, it is necessary to add more information to decompose correctly the
populations too.

6.2.4 Adding more information to the system: UV-Vis data

In the previous analysis using Equality constraint, COSMiCS was able to decom-
pose SEC-SAXS dataset in SAXS curves with very good agreement with the original ones.
However, the concentration profiles were not correct due to the rotational ambiguity. To
improve the solutions, more information has to be introduced in the analysis. UV-Vis ab-
sorbance is extra information that is normally measured in chromatography and reports
on the populations of the species. UV-Vis absorbance can be measured in parallel to the
collection of SAXS data or measured off-line, depending the set-up of the beamline.

We have tested whether the UV absorbance can be used to further restraint the so-
lutions. In order to test the UV absorbance data we have calculated a theoretical Ab-
sorbance profile of the chromatogram. Extinction coefficients (ε) of the monomer and
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TABLE 6.2. Analysis of the COSMiCS decomposed species from datasets with high level of noise (σ1.0)
using different constraints.

dimer were calculated using ProtParam http://web.expasy.org/protparam/, determining
a εmon = 5960 M-1cm-1 and εdim = 11920 M-1cm-1. Using these extinction coefficients and the
original populations, a theoretical UV absorbance profile for the SEC synthetic experiment
was computed (Figure 6.14), using the expression:

A = cmon · εmon + cdim · εdim (Eq. 6.1)

The implementation as a constraint of the Absorbance was done using the same strat-
egy used in the Closure. In each iteration of the classic version of Closure, MCR-ALS does an
estimation of the concentrations using least squares, and then it forces their concentrations
to sum a given value provided as input. In our modified version of Closure, we forced the
estimated concentrations for each iteration to match the synthetic UV absorbance values
using Eq. 6.1.

6.2.4.1 COSMiCS analysis using UV-vis absorbance data in Closure and Equality con-

straint

COSMiCS analysis was performed to the dataset with low signal-to-noise, applying
Equality constraint and Closure of Absorbance data during the analysis. Using the infor-
mation from Rg (Figure 6.9) and EFA (Figure 6.12), the monodisperse zones were defined
as the first species from the frames 1 to 700, and the second species from the frame 500 until
the last frame (1200).
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FIGURE 6.14. Theoretical (blue) and COSMiCS back-calculated (black) Uv-vis absorbance when using the
Absorbance data as a closure constraint in the COSMiCS analysis. Both profiles are perfectly overlapped.

This analysis showed a good agreement of the curves (Figure 6.15A), similar to the
analysis with only Equality constraint; Rg(dim) = 20.91 Å and Rg(mon) = 15.65 Å. Impor-
tantly, in this case, the concentration profiles (Figure 6.15B) dramatically improved, and
they agree perfectly with the original populations. The relative ratio of I(0) is also simi-
lar to the original ratio (I(0)dim / I(0)mon = 3.5). Therefore, under these application of the
monodispersity and the UV-vis COSMiCS provides an excellent decomposition of the SEC-
SAXS dataset.

6.2.4.2 COSMiCS analysis using UV-vis absorbance data in Closure

We performed also a COSMiCS analysis using the data with low signal-to-noise and
just the Absorbance data to test if this constraint can compensate the absence of Equality.
The resulting SAXS profiles for both species were bad (Figure 6.16A). They were not in
agreement with the theoretical ones, and similar to these obtained from the analysis with-
out any constraint, with Rg(dim) = 21.24 Å and Rg(mon) = 12.77 Å and the ratio I(0)dim /
I(0)mon = 4.6. Moreover, the application of the absorbance constraint only slightly improved
populations (Figure 6.16B), especially for the monomer species, with a ratio between the
two maxima was 1.3. This observation shows that Equality constraint is a better strategy to
decrease ambiguity and decompose correctly the pure spectra.
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FIGURE 6.15. Results from the COSMiCS analysis of the synthetic low signal-to-noise SEC-SAXS dataset
(σ1.0) including an equality constraint that indicates that the dimer ends at frame 700 and monomer starts
at frame 500, and a closure using the UV-vis Absorbance information of Figure 6.14. A) Pure decomposed
curves for the dimer (blue) and monomer (green). In solid line is shown the original SAXS curves of the two
species (same color code). In the bottom, the ratios I(s)COSMiCS/I(s)theoretical of both species are shown. B)
Concentration profiles for the two species (same color code) and the original populations used to generate the
synthetic data.

FIGURE 6.16. Results from the COSMiCS analysis of the synthetic low signal-to-noise SEC-SAXS dataset
(σ1.0) including a closure using the UV-vis Absorbance information. A) Pure decomposed curves for the
dimer (blue) and monomer (green). In solid lines are shown the original SAXS curves of the two species
(same color code). At the bottom, the ratios I(s)COSMiCS/I(s)theoretical for both species are shown. B)
Concentration profiles for the two species (same color code) and the original populations used to generate the
synthetic data
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6.3 Real-case study: POP

6.3.1 Prolyl Oligopeptidase (POP) system

Prolyl Oligopeptidase (POP; EC 3.4.21.26) is a monomeric 81-KDa cytosolic serine
endopeptidase that hydrolyses peptides under 30 residues at the carboxyl side of proline
[332]. POP is ubiquitous in mammals, but a relatively high concentration of this protein
is found in the central nervous system (CNS). The first X-ray structure was obtained by
Fulop et al. (PDB entries 1QFS and 1QFM) from porcine muscle POP [333]. The crystal-
lographic structure showed that this enzyme has an overall cylindrical shape, constituted
by two domains: the α/β-hydrolase and the β-propeller that are linked by a pair of hinge
polypeptide chains (Figure 6.17). The X-ray structure of the mammalian enzyme shows the
α/β-hydrolase and β-propeller domains packed together in a closed conformation (Figure
6.17A) [333]. However, the crystal structures of two bacterial POPs show a large hinge
separation between domains [334, 335] (Figure 6.17B), thus suggesting that the enzyme un-
dergoes interdomain motions [336]. Two studies, one based on 15N line broadening NMR
experiments [337] and the other on X-ray crystallography combined with MD simulations
[338], strongly support that POP is a highly flexible enzyme, but several fundamental as-
pects concerning the conformational landscape of POP in solution and the effects on this
flexibility exerted by inhibitors are largely unknown.

The in vivo role of POP is related to synaptic functions and neuronal development. It
has been discovered that POP interacts with the intrinsically disordered proteins such as α-
synuclein and GAP-43 [339]. Recent studies have demonstrated that the direct interaction
between POP and α-synuclein accelerates the aggregation of α-synuclein in vitro and in
cells [340].

Nevertheless, the lack of knowledge on the conformational dynamics of POP and
the effects of inhibitors represents a major drawback for exploring the mechanisms un-
derlying POP-mediated aggregation of α-synuclein. Here, we analyzed in detail the con-
formational equilibrium of POP in solution and how this is affected by the binding of
active-site-directed inhibitors. We analyzed SEC-SAXS experiments complemented with
MD simulations to probe large-scale structural fluctuations in solution [341, 342]. More-
over, the effects of binding of covalent active-site-directed inhibitor benzyloxycarbonyl-
prolyl-prolinal (ZPP, Figure 6.17C) [343] on POP conformational dynamics were examined
using the same combined approach (See chapter 6.3.2).

During the production of POP some aggregates are formed. Although, gel filtra-
tion successfully removes POP aggregates, spontaneous aggregation slowly takes place in
solution, especially in concentrated samples (SEC chromatogram of POP is shown in Fig-
ure 6.18). Note that a significant amount of irreversible aggregates would strongly inter-
fere in direct SAXS measurements of concentrated POP samples (i.e. batch measurement).
Hence, an online SEC-SAXS measurement was the best solution to overcome this problem.
The separation between POP aggregates and monomers was excellent by conventional Su-
perdex 200 gel filtration columns, and moreover, the facility of P12 beamline allowed the
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FIGURE 6.17. A) Porcine POP (PDB ID: 1QFS) [333] in the closed conformation covalently bound to the
active-site-directed inhibitor ZPP (orange). The a/b-hydrolase domain is shown in green and the b-propeller
is in blue. B) Aeromonas punctata POP in the open conformation (PDB ID: 3IUJ) [334]. C) Inhibitor ZPP.
Figure extracted from [331]

option of connecting a Malvern FPLC instrument to the SAXS capillary. Free and ZPP-
bound POP samples were analyzed by this technique. Our objective here was to extract
free and inhibitor-bound POP SAXS scattering profiles, and compare them with the theo-
retical profiles obtained from X-ray structures, homology models, and MD simulations.

This study was carried out in collaboration with Ernest Giralt and Abraham López

(Chemistry and Molecular Pharmacology Program, IRB - Barcelona), and Víctor Guallar

(BSC-Barcelona).

6.3.2 ZPP-bound POP (closed form)

6.3.2.1 Primary analysis

The SEC-SAXS experiment of ZPP-bound POP generated a dataset of 4500 scattering
curves (Figure 6.19). The first step consisted in the visual inspection of all SAXS frames.
This procedure introduces a time-consuming intervention of the user into the data analysis
as SAXS frames randomly present artifacts derived from large particles in suspension (e.g.
dust). These artifacts were easily identified by visual inspection due to their uncommon
scattering profiles, and were eliminated by removing the corresponding frame.
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FIGURE 6.18. Size exclusion chromatography coupled to SAXS. Representative SEC chromatogram of free
POP at room temperature, using a Superdex 200 column and standard POP buffer (50 mM Tris-HCl pH=8,
20 mM NaCl). The first eluting peak corresponds to an aggregate whereas the second corresponds to the
monomeric species.

FIGURE 6.19. SEC-SAXS integration chromatograms of ZPP-bound POP. Blue regions indicate the
intervals used to derive the averaged buffer curve. Inset box shows the region of the scattering profiles which
was integrated to obtain the integration chromatograms (green area)

For the detection of buffer frames, the whole SEC-SAXS chromatogram was repre-
sented by plotting the integration of each SAXS curve from 50 to 100 data points (Figure
6.18) as a function of frame number (an absolute time scale was not possible due to the
manual injection of the sample and other experimental limitations).

According to integration chromatograms, the following buffer regions were selected:
from frame 0 to 1250 and from 3100 to 4500 and from 3100 to 4500 (Figure 6.19) and aver-
aged with datsub program from the ATSAS data analysis software [330]. The buffer profile
was subsequently subtracted from all frames of chromatogram. This operation was carried
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FIGURE 6.20. SEC-SAXS I(0) chromatogram for the monomer frames of ZPP-bound POP. The blue area
corresponds to the monomer area, as localized by PCA (see below). Rg plot is shown at the bottom; Rg

derived from the averaged SAXS curve is marked in black dotted lines, 27.4 Å

out with MATLAB®. The monomer region of ZPP-bound POP was found between frames
2200 and 2850.

Afterwards, I(0) and Rg for the subtracted frames were calculated from the Guinier
approximation (see chapter 1.2.3). Guinier plots were calculated with autorg program [ref
atsas]. Finally, I(0) and Rg were plotted against SAXS frame number (Figure 6.20), which
can be assigned to an arbitrary elution time; these representations are known as I(0) and Rg

chromatograms, respectively. The I(0) and the Rg chromatograms reflect the concentration
and the size and of the eluting species, respectively. For this reason, the inspection of these
plots is highly useful to monitor SEC-SAXS experiments.

6.3.2.2 PCA of monomer region of SEC-SAXS I(0) chromatograms

In the case of ZPP-bound POP, the chromatogram shows two isolated peaks corre-
sponding to the aggregate and the monomeric species a single peak. In this case, it is not
necessary to perform a decomposition of the data, and it is enough to perform an aver-
aging of the frames to obtain a high-quality curve. However, it is important ensure that
the frames correspond a monodisperse sample before averaging them. For that purpose,
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the chromatogram was subjected to PCA in increasing intervals centred at the monomeric
peak (frame 2488) (Figure 6.20). The peak presents only one significant eigenvector and
eigenvalue when 101 frames were subjected to PCA (Figure 6.21). Increasing the number
of frames to 401 in the PCA analysis shows that the second eigenvalue presents shape,
although noisy. When the PCA was performed with the whole dataset, third eigenvector
presents also shape, which probably is caused by the high level of noise of the data. Con-
sequently, we used the 101 central frames to be certain that the data correspond to a single
species. This central region of 101 frames also presents a stable Rg (Figure 6.20), which is
another indication of monodispersity. Therefore, the 101 central frames of the peak were
averaged to produce a high-quality SAXS curve corresponding to the pure species (Fig-
ure 6.22), which has a Rg = 27.40 Å. A complete structural analysis of this curve will be
described in next section.

6.3.2.3 Ensemble optimization fitting and theoretical SAXS-scattering profiles

Once we have obtained the high-quality SAXS curve of the ZPP-bounded POP, struc-
tural information can be extracted directly. This information is limited only to I(0), Rg, and
qualitative information from Porod’s and Kratky’s representation. In order to obtain more
information, we performed the fitting of the theoretical SAXS profile with structures from
MD simulations using the Ensemble Optimization Method (EOM [61], section 1.3.2.2).

The calculation of theoretical SAXS profiles from structures was carried out with
CRYSOL [41], implemented in ATSAS data analysis software. The scattering profiles where
calculated up to s = 0.5 Å-1, with a total of 201 data points. The parameters of CRYSOL pro-
gram were a maximum order of 30 harmonics and of 20 Fibonacci grids.

The pool of ZPP-bound POP profiles consisted in those calculated from the 1019
structures from the MD5 simulation described in section 6.3.4.2 (Figure 6.23). The curves
obtained from the simulation were used to perform the EOM analysis of the experimen-
tal curve of ZPP-bound POP. The size of conformers in a chromosome, N, depends on the
flexibility of the system and it is normally N = 50 for unfolded systems. However, the
conformational fluctuations expected for POP are restricted to interdomain separation and
local loop flexibility. For this reason, N was set at 20. Indeed, the use of N = 50 was dis-
carded as it did not improve the quality of the result. The number of chromosomes was the
typical value C = 50. Each EOM run consisted in 1500 generations, and 100 independent
EOM runs were performed.

Given the high quality of the experimental scattering profiles, this analysis was per-
formed for data points with s < 0.3 Å-1. An excellent fitting was obtained between the
experimental and the averaged theoretical curve selected by the EOM (χ2 = 0.054, Fig-
ure 6.22). Note that the low χ2 value arises from the large error bars derived from the
average of the SEC-SAXS frames. Importantly, all the 20 theoretical curves selected by the
EOM closely resembled the initial 1QFS X-ray structure of inhibited POP (maximum RMSD
value of 1.226 Å, Figure 6.23). Therefore, this result shows that ZPP-bound POP exists in
solution in a highly stabilized closed conformation.
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FIGURE 6.21. Singular Value Decomposition (SVD) of the monomer region of SEC-SAXS I(0)
chromatograms at different intervals; eigenvalues are displayed in the insets. SVD calculations of peak III of
ZPP-bound POP showed only one predominant eigenvector and eigenvalue, independently of the interval
used in the algorithm. In the case of the SVD analysis for the complete peak, a third eigenvector is shown for
clarity.

6.3.3 Free POP

6.3.3.1 Primary analysis

An equivalent SEC-SAXS experiment was performed for free POP obtaining a com-
plete dataset of 4500 SAXS curves (Figure 6.24). A visual inspection of all SAXS frames
was performed in order to remove artifacts, in the same way than in the previous dataset.
According to integration chromatogram, the following buffer regions were selected: from
frame 810 to 1260 and from 4220 to 4500 (Figure 6.23). All buffer frames comprised in these
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FIGURE 6.22. A) EOM fitting of the scattering profile of ZPP-bound POP (blue dots). The theoretical
curve is shown as black solid line. B) Guinier plot and Rg value.

FIGURE 6.23. MD simulations of inhibited POP. A) MD4 simulation of X-ray structure 1QFS with the
hemiacetal bond between Ser 554 and ZPP removed. B) MD5 simulation of 1QFS structure with ZPP
inhibitor covalently bound. RMSD (in Å) is shown in black, and interdomain angle is shown in gray. Blue
sections in MD5 simulation correspond to the intervals of conformations selected by EOM when fitting the
SAXS curve. 1QFS structure is shown in blue; ZPP inhibitor is depicted in black. Figure extracted from
[344]

regions were averaged in order to obtain the final buffer profile. The buffer profile was
subsequently subtracted to all frames of the chromatogram. This operation was carried
out with MATLAB® program.

The monomer region of free POP was found approximately between frames 2350 and
3000. Interestingly, the SEC-SAXS I(0) chromatogram of free POP disclosed two coexisting
peaks at room temperature, referred as peaks I and II (Figure 6.25).
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FIGURE 6.24. SEC-SAXS integration chromatogram of free POP. Red regions define the intervals used for
the averaging of the buffer curve. Inset box shows the region of the scattering profiles which was integrated
to obtain the integration chromatogram (green area)

FIGURE 6.25. SEC-SAXS I(0) chromatogram displaying peaks I and II of free POP.
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6.3.3.2 Peak composition in the free-POP SEC-SAXS dataset: Rg and EFA analysis

Due to the presence of two overlapped peaks, it was not possible to perform the
analysis of the free POP simply averaging the central part of the peaks, like in the case
of ZPP-bound POP. In this case, it is necessary to decompose the data to obtain scattering
curves for both species. We have used COSMiCS for this purpose. As we established in the
previous section, it is very important to determine the monodisperse zones on the dataset
in order to obtain an accurate solution. For that, the first step is to inspect the Rg along the
dataset and performing an EFA.

Figure 6.26 shows the Rg profile (top, blue) and the second eigenvalue calculated
from EFA (forward and backward direction), from frame 2450 to frame 3000. It is possible
see how the Rg is stable along the initial part of the I(0) chromatogram to subsequently
start decreasing. The change in the Rg profile corresponds to the frame where the second
EFA eigenvalue starts increasing (in forward direction), and it indicates the appearance of
the second species, which corresponds to the peak II. The eigenvalue in backward direction
has the contribution of the species from peak I but does not shows a change of slope, which
suggests that the species from peak I is present along the complete dataset.

6.3.3.3 COSMiCS analysis

In order to extract the pure SAXS curve corresponding to peak I and II, all the frames
were decomposed with COSMiCS, in the same way than the previous analysis with syn-
thetic data. In this case, our data consisted in a collection of scattering profiles (i.e. the
SEC-SAXS chromatogram) of a two-component mixture, in which each SAXS frame is a
mixture of the scattering profiles of species corresponding to peaks I and II at variable con-
centrations (Figure 6.25). We removed frames from 2450 to 2500 and from 2900 to 3000
because according to Rg (Figure 6.26) these scattering curves corresponded to buffer.

COSMiCS analysis was performed using Non-negativity and Equality as constraints.
Concretely, the Equality constraint was based on the EFA analysis, which indicates that the
first species is present in the whole dataset, but limiting the second species from the frame
2640 to the end of the dataset (frame 2900). COSMiCS results are shown in Figure 6.27. The
decomposed scattering curve from the first peak has a Rg = 28.86 Å and the one for the
second peak is smaller, with Rg = 23.35 Å (Figure 6.27A). The Guinier plot of the interval
with s·Rg < 1.3 of the curve corresponding to peak I was linear, indicating high quality
of the data (Figure 6.22B). Concentration profiles of the species (Figure 6.27B) present a
truncated curve for the second species. This can be due to inherent uncertainty of EFA in
detecting the appearance of the second species due to the high level of noise in peak tails.
Using the I(0) and a standard BSA we estimated to be 0.18 mg/ml the concentration in the
maximum of peak II.

6.3.3.4 Structural analysis of peak I

We have performed a COSMiCS analysis of the free POP SEC-SAXS dataset and we
obtained a decomposed scattering curve from the first peak (see section above). Previously
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FIGURE 6.26. g (blue) and EFA (green) along the SEC-SAXS chromatogram of free POP. The second
eigenvalue is plotted along the dataset in the forward (solid line) and the backward directions (dashed lines).
The second eigenvalue indicates the appereance of a second species. The slope change of the eigenvalue profile
in forward direction is highlighted with a circle and it indicates the appearance of a second species. Rg shows
a slow decrease from that point. The ranges corresponding to the monodisperse region (light green) and
overlapped region (darker green) are shown on top of the chromatogram. The final range of the
chromatogram selected for the COSMiCS analysis is limited by the black lines (frames 2500 to 2900)

[see analysis described in the published article – (Paper II)], a curve of peak I was derived
by simply averaging the part of the dataset corresponding to a single species (see below).
The curves obtained using these two methods are very similar. The structural analysis that
I describe in this section corresponds to that performed for the averaged curve. Figure
6.28 shows the PCA analysis of the free POP dataset using the 101, 401 central frames of
the peak and the whole dataset. The PCA analysis of 401 frames and the whole dataset
present a second eigenvector with shape, which could be produced by the increasing level
of noise due to the inclusion of low protein concentration curves, or the presence of a
second species, which was confirmed by EFA a posteriori. The curve used for the structural
analysis was obtained by averaging 101 frames, which we are sure that corresponds to a
single species.

To perform the structural analysis of the free POP SAXS curve we compared the ex-
perimental curve with theoretical ones from different structural models of the protein. The
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FIGURE 6.27. Results from the COSMiCS analysis of the SEC-SAXS dataset for free POP. A) Pure spectra
of the peak I (red) and peak II (green). B) Concentration profiles of the two species (same color code).

χ2 was monitored to quantify the degree of similarity between both curves. This fitting
was performed separately with the averaged SAXS curves corresponding to each MD tra-
jectory, in order to estimate the predominant conformation present at peak I. Fittings of
the averaged SAXS curves suffered from poor quality, and the derived χ2 values were not
acceptable (0.282, 0.396 and 0.131 for MD1, MD2 and MD3 simulations, respectively). Note
that the low χ2 values are related to the large error bars, and not to the good agreement
to the experimental curve. These results indicated that the structure or the ensemble of
coexisting conformations of POP in solution do not correspond to the trajectories derived
from MD simulations.

For this reason, a more flexible methodology was used in order to extract the ensem-
ble of conformations that collectively described the SAXS experimental data. Specifically,
we performed an EOM analysis that has the capacity to bias the population of the coex-
isting conformers based on SAXS data [61] (See section 1.3.2.2). In the same way that we
analyzed the data from the ZPP-bounded POP, we described the free POP experimental
curve with the theoretical SAXS profiles obtained from the conformations derived from
multiple MD simulations.

The calculation of theoretical SAXS profiles from computational structures was car-
ried out with CRYSOL program [41], implemented in ATSAS data analysis software. The
scattering profiles where calculated up to s = 0.5 Å-1, with a total of 201 data points. The pa-
rameters of CRYSOL program were a maximum order of 30 harmonics and of 20 Fibonacci
grids. Given the large number of structures generated along MD1, MD2, MD3 simulations
(see methods section 6.3.4.2 for the description of these trajectories), only certain structures
were periodically collected from the trajectories to compute the theoretical profile with
CRYSOL (Table 6.3 and Figure 6.29). The pool of free POP conformations was generated
by joining snapshots from MD1, MD2 and MD3 simulations as described in Table 6.3. The
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FIGURE 6.28. Singular Value Decomposition (SVD) of the monomer region of SEC-SAXS I(0)
chromatogram of free POP at different intervals; eigenvalues are displayed in the insets. SVD calculations
both from the whole region and the case of 401 central frames, show a significant contribution of a second
eigenvector. Only in the case of 101 frames an unique eigenvector is present.

pool was composed by 13766 conformations.
The fitting of the curve was carried out for data points with s < 0.15 Å-1. An excellent

fitting was obtained with the EOM (χ2 = 0.021, Figure 6.30A), indicating the suitability of
this method to describe the flexibility of POP. The EOM selected 45% of the frames from
MD1 and 55% from MD2 (Figure 6.29A and 6.29B). The selected frames corresponded ei-
ther to completely open or completely closed forms, with averaged separation angles of
86◦ and 62◦ and theoretical Rg values of 29.17 Å and 26.03 Å for the open and closed forms,
respectively. These results are coherent with the Rg extracted directly from the experimen-
tal curve (Rg = 28.50 ± 0.06 Å), and shows that free POP in solution exists in a dynamic
equilibrium between a fully open and a closed conformation.

The low intensity of the scattering profile obtained using COSMiCS for peak II of free
POP was a serious limitation for the success of the EOM. For that reason I do not present
these results. Nevertheless, given the low Rg value associated to this peak ≤ 25 Å, it is
unlikely that open structures are present.
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TABLE 6.3. Intervals and structures from MD simulations taken for the EOM analysis

FIGURE 6.29. MD simulations of free POP. A) 1.8-µs trajectory of MD1 simulation of the closed form of
free POP. B) MD2 simulation of the homology model of free POP without constraints. Dashed line show the
interval which has been selected for further data analyses (0-50 ns). C) MD3 simulation of the homology
model of free POP with α-carbon constraints during the first 90 ns of the trajectory (dashed line, excluded
from data analyses). RMSD (in Å) with respect to the initial structure is shown in black, and interdomain
angle between residues 582, 71 and 177 is shown in gray. The sections in red and green correspond to the
intervals selected by EOM of curves corresponding to peaks I and II, respectively (see chapter 2). D) The
starting X-ray structure of POP in a closed conformation with the inhibitor removed is shown in blue (PDB
entry 1QFS); the porcine POP homology model of Aeromonus punctata POP in an open conformation (PDB
entry 3IUJ) is shown in red. The residues used for the determination of interdomain angle are displayed as
green spheres. Figure extracted from [344]
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FIGURE 6.30. EOM fitting (black) of peak I.

6.3.4 Material and Methods

6.3.4.1 Online gel filtration coupled to SAXS

HisTag-cleaved samples of free and ZPP-bound POP were subjected to an online Su-
perdex 200 10/300 SEC column coupled to EMBL beamline P12 of PETRA III (DESY, Ham-
burg, Germany) with a PILATUS2M pixel detector (DECTRIS, Baden-Daettwil, Switzer-
land). The column was run at 0.35 ml·min-1 to record 1 frame per second (X-ray wave-
length 1.24; momentum transfer covered 0.007–0.444 Å-1). The scattering profiles of all
frames were inspected, and strangely behaving profiles were discarded. The scattering
profiles corresponding to the pure buffer frames of free and ZPP-bound POP datasets were
averaged and subtracted from all profiles with MATLAB®. The same program was used
to average the subtracted scattering profiles of monomer species of free and inhibited POP,
and to derive forward scattering (I(0)) and Rg from the Guinier approximation. P(r) distri-
bution functions were obtained with the GNOM program [311].

6.3.4.2 Molecular Dynamic simulations

MD simulations were carried out by Martin Kotev (Joint BSV-CRG-IRB Research

Program in Computational Biology, Barcelona), under the supervision of Dr. Victor

Guallar.

All free-POP MD simulations were performed with AMBER12 software [345]. The
ff99SB force field [346] for proteins was used, and explicit water molecules were incorpo-
rated as the TIP3P water model [347]. Protein structures were neutralized, and additional
sodium and chloride ions were added to simulate physiological saline solution. Protein
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plus ions were then solvated in pre-equilibrated water molecules in a truncated octahe-
dron box with a 15 layer. After energy minimization, the temperature was progressively
raised to 300 K with constant pressure dynamics. All production runs were performed with
2.0 fs steps in NPT ensemble (1 bar, 298 K). The shorter MD simulation for ZPP-bound POP
was computed with the Desmond molecular dynamics program [348]. The OPLS-AA force
field and TIP3P water model were used [347]. The default relaxation protocol in Desmond
was used, followed by the production run in the NPT ensemble.

MD1 The long trajectory of MD1 simulation showed the evolution of the closed con-
former of POP (Figure 6.29A). A global view of the structures displaying maximal inter-
domain angles showed that they corresponded to a general, yet slight, interdomain sep-
aration. Moreover, the highly flexible loops A and B were displaced from their original
position; this favoured the existence of a significant cavity in the interdomain loop region
that exposed the catalytic centre. At the same time, a second small cavity appeared near
His 680 loop and the first polypeptide hinge. The exposure of buried areas has a significant
impact in the global SASA of POP: the solvent exposure also reached maximal values si-
multaneously to interdomain separation. The maximum SASA were of 30100 Å2 and 29100
Å2 for the peaks at 422 and 651 ns, respectively. Taken together, these results highlight the
high solvent exposition of the semi-open POP conformers. The reiteration of two consec-
utive interdomain angle maximums during the same MD simulation trajectory indicates
that this breathing of POP structure might occur periodically.

MD2 The first MD simulation starting from the homology model of free POP is shown
in Figure 6.29B. The initial part of the trajectory (50 ns) displayed a significant RMSD and
interdomain angle fluctuations, but the overall value of the interdomain angle indicated
that the open structure of free POP was maintained during this interval (Figure 6.29B).
However, the RMSD and intedomain angle values drop after this first interval of 50 ns,
probably as a result of a spontaneous closing of the structure. From 160 ns to the end of the
trajectory (510 ns) only the closed conformation was exclusively present. The interdomain
angle of the closed conformer generated in the second part of the trajectory was found to be
higher compared to that of MD1 simulation (67 ± 6° vs 61 ± 2°, respectively); nevertheless,
this difference was attributed to the differences in the starting structures.

MD3 The second MD simulation starting from POP homology model was carried out
including α-carbon restraints during the first 90 ns of the trajectory in order to allow side
chain relaxation (Figure 6.29C). Obviously, RMSD and interdomain angle during this re-
laxation interval remained fixed and were not considered in further analyses. After the
elimination of the α-carbon restraints, RMSD and interdomain angle underwent marked
fluctuations, which reflected the high degree of flexibility of the open structure. Of interest,
the interdomain angle and the global SASA (32200 Å2, compared to 28900 Å2 averaged for
MD1 simulation) were coherent with a long-range interdomain separation. Together, these
results indicated that the homology model of the relaxed open conformation was relatively
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stable. The initial side chain relaxation of the homology model structure was found to be a
critical factor for the stability of the open conformer of free POP in MD simulations.

MD4 and MD5 Two MD simulations of inhibited POP, with shared closely similar fea-
tures, were generated. By comparing the RMSD and interdomain plots, both trajectories
reflected high structural stability and poor flexibility (Figure 6.23). During the initial equi-
libration period, the RMSD slightly of MD4 and MD5 simulations increased to a plateau
approximately at 1.6 Å and 1.5 Å, respectively. At this point, only small amplitude ther-
mal motions occurred during the rest of the production run. Interdomain angles remained
constant during the whole trajectory, indicating the absence of interdomain separations.
In spite of the high degree of similarity between the two MD simulations, only MD5 sim-
ulation was chosen for further studies due to the presence of the covalent bond between
the inhibitor and Ser 554 of the active site. Although this characteristic did not affect the
general evolution of the structure during the MD simulation, it might influence the local
configuration of the active site environment. This would lead to wrong conclusions when
analysing the active site configuration at atomic detail.

6.3.5 Discussion

COSMiCS analysis of SEC-SAXS data

SEC-SAXS data are becoming popular during the last years due to the necessity of
obtain SAXS data from monodisperse samples for subsequent structural analysis. (see sec-
tion 1.3.2.3). It is therefore not surprising that all modern BioSAXS beamlines have incor-
porated on-line SEC-SAXS as sample environment. Moreover, this method presents the
big advantage of the possibility of measuring data from other techniques simultaneously
such as UV-visible absorbance, light scattering or refractive index, which provide infor-
mation about the concentration and the molecular weight of the protein for each frame.
However, there are still cases where the separation of the species is not complete, and the
chromatogram presents overlapped areas that are populated by more than one species. For
these situations, it is necessary to decompose the data to the individual scattering and con-
centration profiles. Only after this decomposition, it is possible to analyze the SAXS curves
from the pure components and to derive relevant structural information.

As we have seen along this chapter, COSMiCS has the capacity to decompose these
SEC-SAXS datasets from overlapped peaks into the pure scattering and concentration pro-
files. However, according to our results using synthetic data, there are several factors that
affect the capacity of decomposition. One of these factors is the level of noise. High signal-
to-noise datasets contain enough information to perform an accurate decomposition of the
pure components. Nevertheless, low signal-to-noise datasets present difficulties in the de-
composition with COSMiCS, and the accuracy of both the spectra and concentrations are
not correct. In the presence of noise, the information content of the data does not per-
mit resolve the high rotational ambiguity of the data. This can be in theory improved by
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using chromatographic columns with a reduced dilution effect, and/or high-brilliance syn-
chrotron radiation sources as both improvements allow the acquisition of curves of higher
quality.

Our results demonstrate that there are ways to decrease the degrees of freedom of
the system by adding more information in order to be able to analyze low signal-to-noise
datasets. Nowadays, the most common approach to decompose overlapped peaks uses
Gaussians as concentration constraint, which decreases the ambiguity and, therefore, al-
lows an accurate decomposition. This approach is the one used in the software US-SOMO
[78, 79] (see section 1.3.2.3), and it has the advantage of obtaining good decomposed curves
even in extremely complex systems with very overlapped populations. This approach,
however, can lead to overfitting in some cases. The approach that we have used, with the
aim of decreasing the ambiguity, is the use of local-rank information as a constraint for
COSMiCS (see section 6.2.3). The local-rank information gives us the number of species
that are present in different regions of the chromatogram and, used as a COSMiCS con-
straint, simplifies the decomposition enough to obtain correct decomposed spectra pro-
files (Figure 6.13A). This local-rank information can be obtained by analysing the chro-
matogram with the Rg profile or the EFA. Our results with synthetic data indicate that the
sensibility of one or the other is defined by the nature of the system. The Rg analysis is
more sensitive than EFA for systems composed by species with very different Rg, even if
the molecular weight is similar. Moreover, Rg seems less affected by noise than the EFA.
Conversely, EFA, which accounts by changes in the complete momentum transfer range,
seems more sensitive to identify different species of a similar size [349]. For this, it is rec-
ommendable the use of the combined information from the both methods to obtain the
maximum information about the peak composition. Our approach has limitations of in
very complex systems, i.e. a system with an important degree of overlapped region and
minimal monodispersity. In this case, the detection of the species along the chromatogram
becomes difficult, and the ambiguous regions would be too large for the program being
able to decompose.

Both decomposition approaches, US-SOMO and COSMiCS are able to derive the
pure scattering profiles of the species involved in the system. However, they present lim-
itations in the correct decomposition of the concentration profiles, even after using con-
straints. The wrong determination of the concentrations leads to a wrong determination
of the original relative I(0) between the species and, consequently the relative molecular
weight. The reason of this is that the shape of the chromatogram obtained by SAXS de-
pends on the molecular weight of the species involved, generating chromatograms that do
not reflect the real concentration of the species. To overcome this limitation, it is necessary
introduce additional information to the software. For that, we implement in COSMiCS the
use of UV-visible absorbance data (see section 6.2.4), which is commonly obtained dur-
ing the acquisition of the SEC-SAXS data. The addition of UV-visible information allows
COSMiCS to decompose the correct spectra profile, as well as the pure concentrations (Fig-
ure 6.15). However, we demonstrate that the use of absorbance data is not useful unless is
used together with local-rank information (see Figure 6.16).
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SEC-SAXS study of the conformational fluctuations in POP

The tandem SEC-SAXS experiment allowed the isolation of the monomeric species
of free POP and ZPP-bound POP, and the concomitant measurement of the monomer scat-
tering profiles without any oligomer contamination. In order to monitor the elution of POP
conformers through the gel filtration column, SEC-SAXS I(0) chromatograms were gener-
ated: in the case of free POP, two different enzyme forms were partially resolved by the
tandem SEC-SAXS. This was confirmed by mass spectrometry experiments that showed
the purity of the preparation and the absence of proteolytic products. However, the slow
exchange regime between the two free POP species observed here might not reflect the real
situation. It should be stressed that species eluting in the gel filtration matrix are in an
altered environment, with high local crowding and strong interactions with the stationary
matrix [350].

The PCA and EFA delimited the monodispersity region for peak I of free POP, and
indicated the purity of ZPP-bound peak. By COSMiCS analysis or by averaging the SAXS
curves of these pure regions, high quality scattering profiles for both peaks were obtained.
Rgs extracted corresponding to peaks I free POP and ZPP-bound POP using Guinier’s ap-
proximation were 28.50 ± 0.06 Å and 27.40 ± 0.06 Å, respectively. The difference in Rg val-
ues between these two species indicates that they exist in different conformational states.
In this regard, the Rg of free POP is much higher compared to that calculated for the X-
ray closed structure 1QFS (25.82 Å), suggesting that large conformational rearrangements
are occurring in this species. In order to have a more detailed estimation of the spatial
arrangement of atoms in both species, the pair-distance distribution function p(r) was cal-
culated for the pure SAXS curves of the two species with GNOM program [311] (ATSAS
data analysis software, Figure 6.31. This distribution is sensitive to small changes in the
protein structure, which alter the distribution of atoms, and lead to changes in the P(r) dis-
tribution (see Paper II). In the case of free POP, the pure curve corresponding to free POP
yielded a multimodal distribution, pointing that the tertiary structure of this species fea-
tures an irregular global shape. In contrast, for the pure curve of ZPP-bound a bell-shaped
distribution was obtained. Hence, ZPP-bound POP seems to adopt a more globular shape.

These SAXS curves in combination with conformations derived from multiple MD
simulations were used to study the structural features of POP in these two conditions.
NMR (see section 6.3.2.3, 6.3.3.4 and Paper II) and SAXS experimental data complemented
by MD simulations of different POP structures showed that free POP exists in a µs-ms equi-
librium between completely open and closed conformers. According to our experimental
data, this long-range opening and closing transition consists in a composition of several
motions of different amplitudes rather than a single hinge motion. In contrast, inhibitor-
bound POP appears exclusively in a closed conformation.

Overall, the analysis of MD simulations correlated with experimental data stresses
the highly dynamic nature of free POP at different time scales. MD simulations also showed
that interdomain opening have important effects in POP structure, exposing the active site
and other buried areas to the solvent. MD simulations indicated faster events involving
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FIGURE 6.31. P(r) function of species corresponding to peaks I (red) and III (blue).

loops surrounding the active site. The detailed analysis of these unstructured regions dis-
closes the mechanistic role of residues Asp 149 – Lys 172 and Asp 642 – Arg 643 in the active
configuration of the catalytic center of POP. Of interest, the active configuration of the ac-
tive site only occurred in the closed conformation, pointing that interdomain fluctuations
switch between active/inactive conformations.

In the case of the scattering profile of peak II extracted by COSMiCS, the correspond-
ing radius of gyration was between 24 and 25 Å depending on the method used for de-
riving the curve. This result is consistent with the order of elution observed in the online
SEC-SAXS, and also discloses significant structural changes between the two species. Un-
fortunately, the low intensity of the scattering profile of peak II precluded the fitting of
theoretical data. The Rg value of this peak is slightly smaller than the POP crystallographic
structure 1QFS. We speculate that this secondary POP conformer arises from a tight ar-
rangement of β-propeller blades [333]; the collapse of the internal tunnel of this domain
would result in smaller Rg. However, further work is required to elucidate the structure
this minor form.

Taken together, our results yielded unprecedented evidences of the conformational
equilibrium of POP in solution, and the effects of inhibitors in this process. The prelim-
inary analysis of SEC-SAXS I(0) chromatograms, Rg values and p(r) functions confirmed
that POP undergo important conformational changes in the presence of inhibitors. Our
SEC-SAXS analysis could provide an efficient tool to systematically characterize the con-
formational perturbations exerted by pharmaceutical molecules to POP. These studies, in
combination with activity assays could represent an invaluable tool to study the structural
bases of the enzymatic function of POP and the development of efficient inhibitors.
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Chapter 7

Simultaneous use of COSMiCS with

multiple techniques

7.1 Introduction

In previous chapters, we have use COSMiCS to decompose data from polydisperse
samples in order to perform a structural analysis of individual coexisting species (i.e. amy-
loids or conformational fluctuations). Chemometrics is a powerful method and its appli-
cation for the analysis of SAXS data, as we have seen along this thesis, allows the study of
these complex polydisperse samples that are difficult to study otherwise. However, due
to the inherent ambiguity of the decomposition method, it is necessary provide additional
information in order to achieve accurate solutions. We have seen previously that it is possi-
ble to decrease the ambiguity by adding more information using different constraints, such
as Non-negativity, Closure or Equality. These constraints change depending on the system
of interest and the information available. For the study of amyloids, for instance, we have
used the combination of different representations of the SAXS data in order to add more in-
formation, and we have demonstrated to be an excellent strategy to improve the solutions
(see chapter 4). Another strategy broadly used for reducing ambiguities in decomposition
methods is to enrich the dataset with additional experimental information, simultaneously
measured, from complementary techniques [351–355]. This strategy is very powerful be-
cause not only allows to reduce ambiguity to achieve more accurate solutions, but it also
yields additional information that is not available with the use of a single technique. For
instance, in the systems studied we have seen that SAXS is a powerful technique that al-
lows study biomolecular systems in terms of structure, dynamics and transformation ki-
netics. However, other techniques can provide complementary information that cannot be
captured by SAXS, such that secondary structure or hydrogen bond formation that, in the
context of complex polydisperse systems, can be extremely valuable.

The most challenging system that we have addressed during this thesis is the amy-
loid fibrillation and therefore it is the system that can benefit most from the combined use
of multiple techniques. The selected technique to simultaneously measure with SAXS was
fluorescence in the presence of probes sensitive to different oligomeric or fibrillar species.
We have performed a series of experiments measuring fluorescence in parallel with SAXS
along several fibrillation processes. Time did not permit the analysis of these datasets or the
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implementation in COSMiCS but it will be the subject of future work. In this chapter I will
describe the measured datasets, as well as the potential applications, and the experimental
limitations.

7.2 Flourescence as additional source of information

One of the amyloid formation process that we have studied along this this thesis is
the fibrillation of α-synuclein (see section 2.3.3), which has been monitored by thioflavin T
(ThT), which detects the presence of amyloid fibrils. However, the understanding of the ag-
gregation process requires the identification of all the conformational states and oligomeric
structures adopted by the polypeptide chain during this process. We were able to decom-
pose the pure signal of the main species present in the system using COSMiCS. However,
one of the limitations of ThT is that this dye is only sensitive to the presence of fibrils,
but not any of the other coexisting species. The identification and characterization of pre-
fibrillar states preceding the formation of well-defined fibrils are of particular interest both
because of their likely role in the mechanism of fibril formation, and their critical role in the
pathogenesis of amyloidogenic diseases [121, 131, 356–360]. Recently, novel chemically de-
fined pentameric thiophene derivatives, denoted luminescent conjugated oligothiophenes
(LCOs), have been described as useful probes to monitor fibrillation processes [361, 362]. In
contrast with the traditional small hydrophobic fluorescent amyloid ligands, LCOs contain
highly flexible conjugated thiophene backbones. When these dyes bind to protein aggre-
gates, the rotational freedom of this flexible thiophene backbone is restricted and the emis-
sion properties of the probes are affected in a conformation-dependent manner. Hence, an
optical fingerprint is obtained, unique to the structure of the protein. This phenomenon has
been used to distinguish prion strains and for discrimination of heterogeneous Aβ plaques
[361, 363]. These oligothiophenes have been also tested in insulin, lysozyme and prion
protein amyloid fibrils [364–367]. These evidences indicate that LCOs might be superior to
conventional amyloid ligands such as ThT and ThS in identifying prefibrillar states during
the fibrillation process. In addition, LCOs have high multiphoton excitation capabilities,
allowing real-time imaging of protein aggregates in vivo in animal disease models [361].

We have used for our experiments the p-FTAA, q-FTAA and h-FTAA LCO probes. A
preliminary test with each probe was performed in Nilsson’s group (University of Linköping,
Sweden) to test their behavior with α-synuclein (αSN). The fibrillation process using p-
FTAA was performed at 8.0 mg/ml of αSN in 20 mM Na3PO4 buffer with 150 mM NaCl
with a final concentration of p-FTAA of 300 nM. The excitation wavelength used was 430
nm. Figure 7.1A shows the chemical structure of the probe p-FTAA and the complete flu-
orescence spectra for the free probe and with αSN, measured in different times during the
fibrillation process. The spectra of the probe change completely along the fibrillation, both
in intensity and in shape, displaying distinct and specific spectroscopic changes for early
and late formed species. Two peaks appear at 510 and 540 nm for early species, being the
peak at 510 nm smaller than the peak at 540. As the fibrillation advance, the intensity of
the signal increases and the shape changes again, with a small shift of the peak at 505 nm
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FIGURE 7.1. A) Chemical structure (right) and emission spectra (left) of p-FTAA with α-synuclein in 20
mM Na3PO4 buffer with 150 mM NaCl at different times along the fibrillation process. B) Normalized
fluorescence along the fibrillation process for p-FTAA at 510-545 nm (averaged) and ThT signal at 480 nm.
The two graphs correspond to two different experiments to test reproducibility. Analysis performed by Per
Hammarström.

to 510 nm, which become more intense than the peak at 540 nm. The intensity of p-FTAA
at 510-545 nm (averaged intensity) was monitored during the αSN fibrillation in parallel
with the ThT fluorescence (Figure 7.1B). The Lag phase, monitored by ThT, lasted 8h and,
at that point, the p-FTAA fluorescence reached the maximum intensity and the shape of
the profile changed completely. Two samples were measured with very similar results,
showing an acceptable reproducibility (Figure 7.1B). These results indicate that p-FTAA is
sensitive to the appereance of prefibrillar oligomeric species.

The same test was performed with q-FTAA in the same conditions than the previous
experiment. The concentration of the probe was in this case 600 nM and the excitation
wavelength was kept at 430 nm. Figure 7.2A shows the fluorescence spectra measured at
the same time points than the previous experiment. The spectra of this probe also changes
along the fibrillation, with a major peak appearing at 500 nm in the last part of the lag
phase of ThT. The increase in intensity and the change of shape occurs early in the lag
phase (Figure 7.2B). Both samples tested gave very similar kinetics.

Finally, the h-FTAA probe was tested under the same conditions and a final concen-
tration of 300 nM. The probe is sensitive also to species that appears at very early stages
of fibrillation, with an increase of intensity and a change of shape, with a maximum at 545
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FIGURE 7.2. A) Chemical structure (right) and emission spectra (left) of q-FTAA with α-synuclein in 20
mM Na3PO4 buffer with 150 mM NaCl at different times along the fibrillation process. B) Normalized
fluorescence along the fibrillation process for q-FTAA at 500 nm and ThT signal at 480 nm. The two graphs
correspond to two different samples to test reproducibility. Analysis performed by Per Hammarström.

nm. As the fibrillation advances but still during lag phase, a change in shape occurs, ap-
pearing two peaks at 550 and 590 nm in the spectra (Figure 7.3A). Unlike the other probes,
h-FTAA shows fluorescence intensity response from the beginning of the fibrillation pro-
cess, with a steep decrease at early stages that slowly grows along the lag and exponential
phases (Figure 7.3B).

This study was carried out in collaboration with Profs. Per Hammarström and

Peter R. Nilsson (Department of Chemistry, IFM, Linköping University, Sweden), who

provided the LCO probes and performed the fibrillation tests with αSN.

7.3 Experimental set-up

BioSAXS beamlines are sensitive to the need of additional information from other
techniques and, therefore, this possibility is being implemented as an option for the user,
for example the measurement of UV-vis absorbance, refractive index or DLS during the
SEC-SAXS experiments [70, 73, 368]. Monitoring a complex phenomenon such as amyloid
fibrillation by SAXS is difficult (see section 4.4), and performing the experiment in paral-
lel with another technique is an extremely challenging task. The main issue that must be
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FIGURE 7.3. A) Chemical structure (right) and emission spectra (left) of h-FTAA with α-synuclein in 20
mM Na3PO4 buffer with 150 mM NaCl at different times along the fibrillation process. B) Normalized
fluorescence along the fibrillation process for h-FTAA at 550-590 nm (averaged) and ThT signal at 480 nm.
The two graphs correspond to two different samples to test reproducibility. Analysis performed by Per
Hammarström.

solved is the need to record fluorescence data corresponding to the same time-point mea-
sured by SAXS. This is mandatory in order to subsequently use the previously described
decomposition method (see section 4.3). In the previous studies (chapter 4), fibrillation pro-
cesses were performed in a plate-reader for which every individual well was considered
as an individual sample (see section 4.4). The distinct samples/wells evolved at slightly
different rates and the collected data do not follow a perfect sequential fibrillation model.
This lack of reproducibility caused the scattered profile of the decomposed concentrations
(see sections 4.1.6 and 4.2.6). However, this problem could be treated due to the general
trend observed in the data that followed realistic fibrillation kinetics.

To allow the simultaneous fluorescence measurements, we have used a different
methodology. The complete fluorescence spectrum for each probe was measured with
ProbeDrum (Figure 7.4, http://probedrum.se), a titrating spectrometer created by Dr. Thom
Leiding and Dr. Sindra Petersson. ProbeDrum is able to measure UV-visible absorbance
over the whole detection range (from 220 to 790 nm), static light scattering (SLS) (650 or
635 nm laser), and fluorescence from 260 to 650 nm. The optical lines monitoring the sam-
ple comprise a CCD-based detector and a total of 16 different light sources in two spatial
orientations. The sample cell is a standard optical cuvette, base 12.5x12.5 mm, with an
internal volume of 1 ml or 3 ml with a Z Dimension (Z) of 8 mm, which is large enough
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FIGURE 7.4. Photo of the ProbeDrum set-up.

to allow multiple extractions for SAXS measurements. The use of a single cuvette is an
advantage of this new fibrillation protocol because it avoids different stochastic onsets of
the kinetics, and it makes the handling of both the samples and the data easier, in addition
of reducing the amount of protein required. ProbeDrum allows the agitation of the sample
through a small spin magnet that is introduced in the cuvette that is located in one of the
internal sides during the experiment.

The first step is the optimization of the set-up to find the best conditions of the ex-
periment before performing the measurements in parallel with SAXS in a synchrotron. For
that, we need to transfer the fibrillation conditions of αSN from the classical protocol used
in a plate-reader, with beads and agitation, to the stirring set-up of the ProbeDrum.

7.3.1 Optimization of the experiment

In order to find the best conditions for the fibrillation of αSN in the ProbeDrum, we
performed a series of experiments changing different parameters of the protocol. Table 7.1
shows the different conditions tested for the fluorescence experiments. All experiments
were performed at 37 C, and αSN was dissolved and filtered in a PBS buffer at pH 7.4. The
optimized parameters were:

Concentration of α-synuclein
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TABLE 7.1. Optimization experiments performed with the ProbeDrum. Bold lines correspond to the
optimized parameters for ThT and p-FTAA. The optimal parameters for q-FTAA and h-FTAA can be used
for p-FTAA, just changing the concentration of the probe (1.2 µM for p-FTAA and h-FTAA and 2.4 µM for
q-FTAA)

The concentration used for fibrillation rangeed from 3 mg/ml to 12 mg/ml. The
required time to form the final fibrils is inversely proportional to the concentration of the
protein. Due to the limited beam-time available at the beamline, the concentration must be
optimized in order to keep the total fibrillation experiment within 12 hours.

Concentration of the LCO probes

Previous experiments made with the LCO probes used a concentration of 300 nM
(for p-FTAA and h-FTAA) and 600 nM (q-FTAA). With our set up that quantity was not
enough to get a clear signal above the noise level. For this reason, we had to optimize these
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concentrations in order to measure the spectroscopic details for each probe.

Excitation wavelengths

Each probe has an optimal excitation wavelength. However, this signal also causes
direct scattering from the sample, which is recorded by the detector together with the emis-
sion signal of the probes. When the excitation and emission wavelengths are relatively
close, perturbations in the emission signal are observed. To obtain the best results I had to
choose a non-optimal excitation wavelength to be different enough of the emission signal.

Integration time

The integration time is the time of exposure for each experiment. Increasing it yields
higher signal relative to the dark noise. However, it requires more time to perform the
measurement, therefore it is necessary reach a compromise between acquisition time and
quality of the data.

Number of scans

The increase in the Number of scans improves the quality of the spectra. However,
in the same way than the integration time, a larger number of scans also increases the time
required to record the data.

From the results of the experiments performed using the ProbeDrum we have defined
the optimum parameters to be used during the experiments in the P12 Bio-SAXS beamline
at PETRAIII in Hamburg (Table 7.2). The optimal results were obtaining using 8 mg/ml
of αSN, that allows to perform the complete fibrillation process within 12 hours. The usual
concentration of ThT, 20 µM, was enough to follow the fibrillation. However, larger con-
centrations of the LCOs probes were necessary to be able to visualize the details of the
emission signal. We selected a final concentration of 1.2 µM for p-FTAA and h-FTAA, and
2.4 µM for q-FTAA. The spectra profile of ThT does not present changes in the shape, just
a systematic increase in intensity (Figure 7.5) with a regular spectra shape that starts at 450
nm. However, LCO probes, for instance p-FTAA, show extended emission fluorescence
spectra, starting at 400 nm, which is affected by the scatter of the signal at the excitation
wavelength (Figure 7.6). For this reason, the optimal excitation wavelength was set to
375 nm for the LCO probes (far from the emission signal) and 392 nm for ThT. The total
measurement time depends on both the integration time and averaged values, so it was
necessary adjust the values to find an optimal compromise. ThT has a strong signal, so
20 scans were enough; however, LCO probes required 70 scans. Integration time of 15 ms
gives enough signal-to-noise for ThT and the LCOs.

Finally, it is very important to test if the final fibrils obtained using the ProbeDrum
were equivalent to the fibrils obtained with the classic protocol in the plate-reader. For
that, we performed Transmission Electron Microscopy (TEM) experiments of the final fib-
rils. From the different experimental conditions, six samples were imaged with TEM. In
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FIGURE 7.5. ThT fluorescence spectra of the fibrillation experiment for 8.13 mg/ml αSN and 20 µM ThT,
corresponding to the experiment 3 in Table 7.1. Total time of 12 hours.

FIGURE 7.6. p-FTAA fluorescence spectra of the fibrillation experiment for 8.80 mg/ml αSN and 1.2 µM
p-FTAA for the first 4 hours of the fibrillation process. Changes in the shape are observed, such as the
appearance of a peak at 510 nm. After this period, both the shape and the intensity remain stable. These
spectra correspond to the experiment 3 in Table 7.1.

all cases the resulting fibrils were similar to these obtained with the traditional protocol.
Figure 7.7 shows a TEM image for one of the samples, corresponding to αSN with ThT.
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FIGURE 7.7. TEM image from the ProbeDrum fibrillation from a sample of 8.1 mg/ml of αSN and 20 µM
of ThT after 24 hours of fibrillation.

7.4 Recorded datasets in parallel with SAXS

Fibrillation of α-synuclein and p-FTAA

A fibrillation experiment was performed in the ProbeDrum with αSN at 8.3 mg/ml
and 1.2 µM p-FTAA along 10.3 hours, with the parameters selected previously (Table 7.2).
The complete fluorescence and static light scattering (SLS) spectra were recorded each 6
minutes. During this time, samples were extracted from the spectrometer and brought to
the beamline to measure the SAXS profile. A total of 46 scattering curves were obtained
(Figure 7.8A) that, in general, displayed the expected behavior of a fibrillation process with
a systematic increase in intensity and profile changes. However, it was possible to observe
that some curves appear before or after were expected, which can be due to the polydis-
persity present in the system. Even if the whole process is performed in the same cuvette,
fibrillation increases the viscosity of the sample, and some fibrils remain attached to the
inner walls of the cuvette. In these conditions, it becomes difficult to extract a homoge-
neous sample. Figure 7.8B shows the intensity of SLS at 636 nm, which presents a decrease
after 6 hours probably due to the decrease of fibrillated αSN in the cuvette. Figure 7.8C
shows all the fluorescence spectra measured the first 8.2 hours. The spectra behave in the
same way than the test performed previously (Figure 7.6), with two peaks appearing at
505 nm and 540 nm, with a decrease in intensity due to the scattering of the excitation sig-
nal. However, during this experiment there were some artifacts due to the sample volume
of the cuvette after systematically withdrawing volume for SAXS measurements. For this
reason, the spectra have been plotted separately to facilitate the visualization. The spectra
corresponding to the final part of the fibrillation (from 8.2 to 10.3 hours) present artifacts,
so they were removed from the figure. SLS data from that point were also removed due to
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TABLE 7.2. Optimal selected conditions of the fibrillation experiment for αSN in the ProbeDrum

FIGURE 7.8. p-FTAA series. A) SAXS curves of the fibrillation process of αSN at 8.3 mg/ml and 1.2 µM
p-FTAA during 10.3 hours (46 curves). B) SLS intensity at 636 nm. C) Fluorescence spectra from 450 –
720 nm for the first 1.5 hours (14 spectra) and from 1.5 to 8.2 hours (67 curves).

their lack of reliability.
After the fibrillation, a final sample was extracted to measure TEM. Figure 7.9 shows

how the fibrils present the same features than the fibrils formed in the classic protocol and
the fibrils obtained during the optimization without withdrawing samples and using ThT
(Figure 7.7). Importantly, these results show that p-FTAA does not change the fibrillation
process, generating the same fibrils than with ThT.
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FIGURE 7.9. TEM image of α-synuclein fibrils in the presence of pFTAA after 10 hours of fibrillation. The
fibrils display the same features than these obtained using standard conditions with the plate-reader.

Fibrillation of α-synuclein and q-FTAA

In the same way than the p-FTAA probe, a fibrillation experiment was performed
with αSN at 8.6 mg/ml and 2.4 µM p-FTAA along 8.5 hours, with the previously selected
parameters (Table 7.2). The complete fluorescence and SLS spectra were measured every
6 minutes. During this time, samples were extracted to record a SAXS curve. A total of
38 scattering curves were obtained (Figure 7.8A). Unlike in the previous experiment with
p-FTAA, the fibrillation evolved very fast, reaching a stable point where the size of the
species was not changing, although is possible to see that the shape of the SAXS curves
slightly change. That fast fibrillation was probably caused by the fact than the starting
point of the fibrillation already contained some aggregated αSN. The preparation of the
experiment was done in the same way than the previous one, therefore, we speculate that
the there was some problem during one of the purification steps and the starting point was
not purely monomeric. The fast fibrillation was also evident in the SLS data (Figure 7.10B),
which presented a fast increase in intensity at the beginning. Figure 7.10C shows all the
fluorescence spectra measured along the fibrillation (8.5 hours). The spectra behave in the
same way than the test performed previously (Figure 7.2), with a peak at 500 nm. The in-
tensity decreases due to the scattering of the excitation signal, which should be subtracted
for a correct analysis of the spectra.

After the fibrillation, a final sample was extracted to measure TEM. Figure 7.11 shows
how the fibrils present the same features than the fibrils formed in the classic protocol and
the fibrils obtained during the optimization without withdrawing samples and using ThT
(Figure 7.7). Therefore, q-FTAA does not change the fibrillation process and generates the
same fibrils than these in the presence of ThT.
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FIGURE 7.10. q-FTAA series. A) SAXS curves of the fibrillation process of αSN at 8.6 mg/ml and 2.4 µM
q-FTAA during 8.5 hours (38 curves). B) SLS intensity at 636 nm. C) Fluorescence spectra from 450 – 720
nm for the 8.5 hours (88 spectra).

FIGURE 7.11. TEM image that shows the fibrils of α-synuclein in the presence of qFTAA probe after 8.5
hours of fibrillation. Fibrils display the same features than the fibrils formed using standard conditions.
Length of the scale bar, 1 µm
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FIGURE 7.12. h-FTAA series. A) SAXS curves of the fibrillation process of alphaSN at 7.3 mg/ml and 1.2
µM h-FTAA during 4.7 hours (25 curves). B) SLS intensity at 636 nm. C) Fluorescence spectra from 450 –
720 nm for the first 2.6 hours (26 curves) and from 2.6 to 3.5 hours (9 spectra).

Fibrillation of α-synuclein and h-FTAA

Finally, a third fibrillation experiment was performed with αSN at 7.3 mg/ml and 1.2
µM h-FTAA, with the parameters selected previously (Table 7.2). Due to lack of time, the
experiment was shorter (4.8 hours). A total of 25 scattering curves were measured (Figure
7.12A). The time was not enough to achieve full formation of fibrils but it was possible
observe the evolution from the native species to more aggregated ones. This fibrillation
started with a smaller species than the previous one, and consequently the development
to fibrils was slower presenting a long-lag phase according to the SLS data (Figure 7.12B).
Figure 7.12C shows all the spectra measured during 3.5 hours, divided in two plots for
an easier inspection. The fluorescence spectra behaved in the same way than the test per-
formed previously (Figure 7.3), appearing a peak at at 540 nm at the beginning of the fibril-
lation. It is not possible to see the two peaks that appeared in the test experiments because,
as observed in the tests, these peaks appear at 8.3 hours (Figure 7.3).

We confirmed by TEM (not shown) that the final species were not fibrils.

7.5 Discussion

We were able to measure fluorescence spectra simultaneously with SAXS data and
SLS during a fibrillation process, using probes that bind oligomeric species different than
the fibrils. These probes can provide more information than the classical ThT due to the
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specific shape of the fluorescence spectra that changes along the fibrillation process. In
addition of reporting on the specificities of these oligomeric species, the simultaneous use
of two techniques can improve the decomposition with COSMiCS by decreasing the ambi-
guity and, therefore, achieving more accurate results for complex systems. However, the
measurement of the two datasets simultaneously still has experimental limitations. The
use of a single cuvette to perform the fibrillation reduces, in theory, the problem that we
had with the traditional protocol, i.e. the stochasticity of the fibrillation process. Neverthe-
less, the new set-up present other problems that are necessary to solve in order to combine
the two techniques to obtain useful data to improve the decomposition. One of the prob-
lems that we face is the decrease in homogeneity within the cuvette as a consequence of
the formation of fibrils. This problem becomes evident when we withdraw sample to per-
form SAXS measurements. As the volume decreases, some fibrils remain attached to the
walls of the cuvette. The main consequence of this phenomenon is that the total concentra-
tion of fibrils in the remaining volume decreases, creating artifacts in the data and, more
important, is no longer possible to apply the Closure constraint in the subsequent decompo-
sition because the total concentration of protein is not constant along the dataset. Another
problem that the new set-up presents is the scattering of the emission signal that produces
disturbances in the emission spectra of the LCO probes. This signal should be subtracted
from the emission signal before the decomposition analysis to avoid its contribution.

Another conclusion from these experiments is that the initial state of the αSN is very
important for be able to record a good fibrillation dataset allowing the decomposition and
detection of the main species present in the system. To achieve this aim a purely monomeric
form of the protein must be used. Efforts are performed in the laboratory in Copenhagen
to derive a robust protocol to obtain large quantities of highly pure monomeric αSN.

Due to the limit of time and the lack of precise data, I was not able to address the
issues previously described, but they will be the goal of future work. As a perspective of
these experiments, we have to define a clear and robust protocol to simultaneously mea-
sure fluorescence spectra and SAXS data without the problems of sample homogeneity
while reducing the kinetic stochasticity. In that context, it seems that a plate-reader with
the capacity to measure the full emission spectra can be the optimal set-up to derive the
desired data. Then, the application of our COSMiCS program to the combined dataset of
spectroscopic and SAXS spectra will allow us to define the spectroscopic fingerprints of
both the soluble oligomeric species and the final amyloid fibrils. As a long-term appli-
cation we envision the possibility of searching for these fingerprints in a cellular context
using tissue samples. In this way, we can indirectly pinpoint the presence of particular
non-fibrillar species in cellular assays.
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Chapter 8

Discussion and perspectives

SAXS and chemometrics for the study of complex systems

Along this thesis I have studied complex biological systems that are polydisperse,
presenting multiple co-existing species differing in size, shape or conformation. This is a
challenging task due to the instability of the species involved, their low and interdependent
relative concentrations, and the difficulties to isolate the pure components. Usually, a sin-
gle isolated component of these processes is monitored, due to the complexity of studying
all the components simultaneously. Our strategy, however, is based in the study of such
processes as a whole, decomposing the data of the mixture to obtain information of the
pure components, instead isolating them. For that, we have chosen SAXS as technique due
to its ability to monitor molecules of very different sizes in biologically relevant conditions,
without the need for crystallization or freezing. Furthermore, another interesting property
of SAXS, which I have exploited to study all the components of a mixture simultaneously,
is that SAXS is an additive technique. This means that the scattered curve corresponds to
the weighted average of the curves of the individual components. Therefore, SAXS data
from a complex process is also complex, and we need tools adapted to this complexity in
order to be able to disentangle and to interpret the data in terms of 3D structures and the
kinetics/thermodynamics of these processes. The method that we have used during this
thesis to analyze these complex systems is MCR-ALS (section 3.3.1), a chemometric tool
that has been broadly used for analysis of mixtures monitored by diverse techniques such
as NMR [369, 370] or fluorescence [371, 372]; and that has also been used to decompose
SAXS data [303, 306, 373]. Multivariate resolution models are able to recover the pure re-
sponse profiles of the species of an unresolved mixture that can be explained by a bilinear
model using a limited number of components. This is the case for SAXS data recorded
for systems in which variations of an experimental condition change the resulting scatter-
ing. However, one of the inherent limitations of decomposition methods is the ambiguity,
which produces solutions that fit the experimental data but that are not correct. To address
this limitation and improving the solutions obtained, it is necessary the use of constraints
by the addition of more information about the system along the optimization. The use of
constraints helps to improve the results, adapting the general method to the specificities of
the system while avoiding non-physical solutions.
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We have adapted MCR-ALS to the specificities of SAXS and implemented in a soft-
ware package called COSMiCS (Complex Objective Structural analysis of Multi-Component
Systems). The main development of COSMiCS is the simultaneous use of multiple repre-
sentations of SAXS data in order to increase the discrimination capacity of the method. This
feature is based on the different sensitivity of these representations to structural phenom-
ena happening at different resolutions. COSMiCS performs the optimization process in a
semi-automatic way as an attempt to facilitate the interpretation of datasets from complex
systems while allowing the user to decide in several critical points. COSMiCS also includes
the use of χ2, which is a statistical metrics typically used in SAXS analysis for the compar-
ison of the final results of the optimization with the experimental data. A Monte Carlo
analysis was implemented to obtain error bars of the decomposed spectra for their further
use with other software to derive structural models from experimental data. Despite these
changes, COSMiCS conserves the flexibility of the original MCR-ALS to include several
constraints along the optimization. In COSMiCS I have adapted these constraints to the
specific features of SAXS experiments. During this thesis I have applied COSMiCS to two
types of biological systems monitored by SAXS in different manners: amyloid fibrillation
using time-dependent data, and SEC-SAXS data.

Amyloid fibrillation processes

We have performed time-dependent measurements of two proteins that forms fibrils:
insulin and the familial mutant E46K of αSN. Insulin has a great pharmacological interest
(section 2.3.4), and αSN is directly related with Parkinson’s disease (section 2.3.3).

From the COSMiCS analysis, I was able to detect three main species in both sys-
tems: native state, intermediate oligomer and mature fibrils. It seems reasonable that these
complex systems are formed for more than three species, but these are the species that we
are able to identify under these experimental conditions. We have to take in account the
limitations of the method, which is not able to detect species that are present at very low
concentration. Moreover, species that present parallel kinetics are detected by COSMiCS as
a single component. Despite these limitations, the description of the system with a reduced
number of components provides an overall picture of such complex processes. In the case
of insulin fibrillation is possible that three represents a realistic number of species along
fibrillation, although we cannot discard small amounts of other oligomers. However, in
the case of αSN there are indications of the presence of more species that we are not able
to detect with our method. These indications are (i) the impossibility of performing a ab-
initio modelling of the oligomer, (ii) a Dmax similar to that of the final fibril, and (iii) a p(r)
that suggests that the detected oligomer is polydisperse including species of very distinct
size (Figure 4.22).

I was able to derive an overview of the kinetics for both fibrillation processes. In-
sulin seems to evolve as an on-pathway process (see section 4.1.6) because the population
of the native state decreases due the formation of the oligomers, whose concentration also
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decreases when that of the fibrils starts to grow. Interestingly, αSN displays a different ki-
netics (see section 4.2.6) that probably evolves as an off-pathway process [219]. In αSN, our
results suggest that the large oligomer disassembles again in smaller species, which can re-
structure in the nuclei that forms the fibrils. This is indicated by the presence of the native
form along the whole fibrillation process, and also the delay observed between the increase
of the fibril population and the decay of the oligomer population. The lack of ThT signal
during the lag phase while the oligomeric species is growing indicates that protein form
does not have an organized β-sheet structure. Interestingly, the same observation was done
for insulin. A very important evidence for the accuracy of our COSMiCS decomposition
is that ThT signal measured along the process and not included in the COSMiCS analysis,
is in very good agreement with the decomposed population of the final fibril (Figures 4.12
and 4.25).

Unfortunately, our structural analysis does not provide insights into the cytotoxic-
ity of the derived species. It is possible that these mixtures formed along the fibrillation
contain one or some species that are able to break vesicles or interfere with other biologi-
cal mechanisms leading to a cytotoxic effect. However, it would be necessary to perform
additional experiments [232, 374, 375].

Importantly, the detailed structural and kinetic knowledge derived from COSMICS
provides novel insights into these fibrillation processes. Moreover, it opens the possibility
to perform and interpret new experiments, such as evaluating inhibitors of the formation
of cytotoxic species during early stages of fibrillation processes.

Data collection from fibrillation processes

It is important to note the difficulty of monitoring fibrillation experiments by SAXS.
In the experiments presented in chapter 4, they have been performed in different wells in
a platereader [275]. The low reproducibility of the fibrillation process yields scattered so-
lutions of the populations. Despite this problem, we have been able to obtain information
about the general behaviour of the species along the process. However, the precision of the
populations derived is low making impossible to fit the results with a kinetic model. In
the future, these problems in the set-up have to be improved, but with certain considera-
tions imposed by the use of SAXS: (i) the fibrillation protocol has to be performed in a time
frame compatible with the normally available beamtime in synchrotrons (≈24h); (ii) it has
to allow withdrawing samples to be brought to the beam; and (ii) the concentration has to
be suitable for SAXS measurements (few mg/mls). Our results demonstrate that it is very
important to have a total control of the starting point of the fibrillation as it decreases the
stochasticity of the process. One of the attempts that we did for improving the set-up was
the use of the spectrometer ProbeDrum (see chapter 7), which allows performing the whole
fibrillation in a single experiment and, consequently reducing the reproducibility problems
observed in the plate-reader. However, this set-up brings other difficulties, like the system-
atic loss of protein, probably in the form of fibrils, which attaches to the glass of the cell
along the experiment. Importantly, this continuous concentration decrease prevents the
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use of closure constraint in COSMiCS, and has precluded its application for the analysis of
data described in section 7.4. The improvement of these limiting factors could provide a
more precise description of the population of the different species present along the fibrilla-
tion. Under these circumstances, our data could be used to test or validate complex kinetic
models that have been proposed to describe the formation of amyloids [99, 118, 193]. It
is worth noting that COSMiCS provides a holistic picture of the fibrillation, and therefore
its results could be used to have a better understanding of the kinetics of amyloidogene-
sis. From the chemoetrics point of view, the use of kinetic models along the optimization
process would severely constrain the potential solution and increase the accuracy of the
results.

COSMiCS as a tool to analyse SEC-SAXS experiments

As we described in chapter 6, COSMiCS allows analyzing data from SEC-SAXS ex-
periments in cases where there is peak overlap. Our results demonstrate that in the vast
majority of cases additional information is needed to decompose the data. Again, the def-
inition of appropriate constraints is key to disentangle complex data. Our results demon-
strate the need to define local-rank regions to accurately decompose overlapped chromato-
graphic peaks. When defining these local ranks, regardless of the noise level, the derived
curves are correct. The definition of the local rank has been attempted by the analysis of the
Rg profile and the EFA. According to our results, the combination of both approaches seems
the most appropriate strategy to define the peak composition. Our results also show that
additional information is required to derive precise populations (chromatographic peaks).
The inclusion of absorbance data, if the extinction coefficient of the species involved are
known or can be computed, can be used to obtain these populations accurately. This piece
of information is very important as it is related with the rotational ambiguity, and with the
possibility to estimate the molecular weight of the species involved.

Using SEC-SAXS data, we have studied the conformational fluctuations in prolyl
oligopeptidase (POP), a protein related to synaptic functions and neuronal development.
POP presents a conformational equilibrium between an open and closed form that is dis-
placed towards the closed, inactive conformation in the presence of an inhibitor.

There are still several tests that we need to perform with data from SEC-SAXS exper-
iments to check the limits of the usage of COSMiCS for their analysis. Some of the tests
to be performed would be the design and analyse more complex chromatographic profiles
with more peak overlap, more species, and different concentrations. It is worth to test the
two methods to derive local ranks in scenarios with species that have similar molecular
weight but different Rg and vice versa. All these test will enable to evaluate the power and
the limits of COSMiCS in the analysis of SEC-SAXS data, and compare it with US-SOMO,
which is the reference program for this kind of analyses.

Further improvements in COSMiCS
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From the conclusions of the analysis done for amyloids and SEC-SAXS data, it is
clear the necessity of the method for additional information to improve the accuracy of
the solutions. We have seen that the simultaneous use of multiple representations and the
inclusion of different constraints (e.g. closure, chromatogram composition) improve the
derived solutions and decrease the ambiguity of the system. Moreover, we have seen how
powerful can be the addition of complementary data to the system in the analysis of SEC-
SAXS data using UV-visible absorbance data (see section 6.2.4). We have also explored the
use of other techniques introducing fluorescence signal to the dataset using LCO probes to
monitor species that are not detected by a classical dyes such as ThT (chapter 7). This later
implementation is promising, but it will depend on the optimization of the experimental
set-up, as described above. These efforts in combining SAXS with complementary tech-
niques are in accordance with the general tendency in the field to complement SAXS data
with other information for the system of interest. This is evident in the new set-ups of the
beamlines all over the world that make possible, simultaneously to SAXS, other data from
UV-visible or fluorescence spectroscopy, refractive index or light scattering.

Other improvement that is possible to do in COSMiCS is the implementation of non-
experimental information, such as kinetic models that can be used for amyloids and folding
experiments, as well as thermodynamic models that can be used in titration experiments.
The inclusion of kinetic or thermodynamic models will assure the physical validity of the
solution obtained by COSMiCS. Moreover, as these models will severely constrain the pop-
ulation profiles, the number of degrees of freedom to be optimized will be reduced and
overall the amount of data required to decompose a mixture will decrease.

As I have explained above, we have used constraints such as closure or non-negativity
to provide physical meaning to the solutions from COSMiCS. However, there are still sit-
uations where COSMiCS finds solutions that are unphysical. The most notorious example
found along this thesis is the obtention of non SAXS-like curves. This phenomenon arises
because the method analyses the data from a mathematical perspective, and all the ex-
perimental points are treated independently. This is different to the usual way to manage
SAXS data, where individual intensities are highly correlated, and the density of points
describing a profile depends on the detector used. It would be desirable that COSMiCS
could identify SAXS-like solutions along the optimization, and add a penalty for solutions
that do not fulfill this requirement as an additional constraint. We have done a preliminary
analysis (not shown) for different SAXS-like datasets of curves (from fibrillation processes
and globular proteins), and non SAXS-like solutions obtained with COSMiCS. We have
tried to describe both families of datasets using Fourier series, and this analysis suggests
that the number of Fourier series necessary to fit the non SAXS-like curves is larger than
these needed for a real curve. We will perform further analyses in that direction to be able
to validate this preliminary observation. I believe that this differential behavior between
physical and non-physical SAXS curves can be coded into a numerical restraint to drive
COSMiCS optimization. This term accounting for the number of Fourier series needed
to describe a SAXS curve can be added as a penalty to a general pseudoenergy function
that will be minimized along the optimization. This approach would be similar to the
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traditional NMR approaches to determine protein structure, which integrate multiple dis-
tinct experimental observables. In addition to penalties, these pseudoenergy functions are
based on the capacity of the solution to describe the experimental dataset. In that context,
the present version of COSMiCS could be improved by using the traditional χ2 to evaluate
the accuracy of intermediate solutions in addition or substitution of the lack of fit. In this
manner, our optimization process would account for the experimentally determined errors
for each of the intensity values.

We believe that COSMiCS has a broad range of applications in complex biological
systems amenable to SAXS and that can be rationally perturbed by modifying the ex-
perimental conditions: Transient bimolecular interactions, protein and RNA folding, and
the formation of large supramolecular assemblies could be now studied at structural level
by overcoming their inherent polydispersity. Coupling this analysis strategy to microflu-
idics or stop-flow devices could ensure rapid and economic access to hundreds of curves
reporting on complex equilibria and time-evolving systems. Moreover, the implementa-
tion of additional constrains either experimental (complementary data) or theoretical (ki-
netic/thermodynamic models and definition of SAXS-like profiles) could make COSMiCS
a general tool to decompose complex biological systems in a very accurate manner.
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SUMMARY

Formation of amyloids is the hallmark of several

neurodegenerative pathologies. Structural investi-

gation of these complex transformation processes

poses significant experimental challenges due to

the co-existence of multiple species. The additive

nature of small-angle X-ray scattering (SAXS) data

allows for probing the evolution of these mixtures

of oligomeric states, but the decomposition of

SAXS data into species-specific spectra and relative

concentrations is burdened by ambiguity. We

present an objective SAXS data decomposition

method by adapting the multivariate curve resolu-

tion alternating least squares (MCR-ALS) chemo-

metric method. The approach enables rigorous

and robust decomposition of synchrotron SAXS

data by simultaneously introducing these data in

different representations that emphasize molecular

changes at different time and structural resolution

ranges. The approach has allowed the study of fibril-

logenic forms of insulin and the familial mutant E46K

of a-synuclein, and is generally applicable to any

macromolecular mixture that can be probed by

SAXS.

INTRODUCTION

Some of the most important challenges in structural biology

today concern processes involving highly dynamic large macro-

molecular complexes, the presence of concerted conforma-

tional fluctuations, and unstable, developing systems. The com-

mon feature of all these systems is their heterogeneity with

multiple species or conformations co-existing in equilibrium.

The application of traditional structural methods, such asmacro-

molecular crystallography and high-resolution nuclear magnetic

resonance is not straightforward for the structural analysis of

changes associated with such highly complex systems.

Protein amyloid fibril formation is an example of such a chal-

lenging system. Protein fibrils are the hallmark of a number of

severe diseases, notably the most common neurodegenera-

tive pathologies Alzheimer’s, Parkinson’s, and Huntington’s dis-

eases (Chiti and Dobson, 2006; Moreno-Gonzalez and Soto,

2011). Protein fibrils are the final stage of the amyloid formation,

while several soluble and transient oligomeric states are formed

along the process. Increasing evidence places a central role on

these transient species in the advancement of the disease, pin-

pointing the importance of their structural characterization (Buc-

ciantini et al., 2002; Chiti and Dobson, 2006; Winner et al., 2011;

Sebollela et al., 2014). This is, however, inherently difficult as the

oligomers only exist in the context of other amyloidogenic spe-

cies, and their physical isolation will perturb the equilibrium

and potentially modify their structure.

Our group and others have shown that solution small-angle

X-ray scattering (SAXS) is an ideal method for such investiga-

tions (Vestergaard et al., 2007; Oliveira et al., 2009; Giehm

et al., 2011b; Pratt et al., 2014; Nors Pedersen et al., 2015).

SAXS data are additive, thus measurements performed on a

mixture correspond to a population-weighted average of the

signal originating from all co-existing species. As a conse-

quence, a dataset consisting of multiple curves obtained from

developing mixtures with different relative populations of the

same species is inherently very rich in information. In principle,

it is possible to decompose such data series into the scattering

profiles of the individual constituents (structures) as well as their

relative populations (kinetics/thermodynamics) without physi-

cally isolating the co-existing species. The isolation of data

originating from intermediately occurring species has previously

been performed by different laborious and non-automated

approaches for several amyloidogenic proteins (Vestergaard

et al., 2007; Oliveira et al., 2009; Giehm et al., 2011b; Langkilde

and Vestergaard, 2012; Pratt et al., 2014). Unfortunately, such

strategies can only be applied to systems of limited complexity

(Langkilde and Vestergaard, 2012), i.e., with a low number of

co-existing species, and the imposition of initial and final data

Structure 25, 5–15, January 3, 2017 ª 2016 Elsevier Ltd. 5



curves as species pure. Therefore, it is clear that more robust

and objective approaches are needed.

Objective decomposition of large datasets using chemometric

approaches is routinely used in many research fields including

analytical and organic chemistry and metabolomics (de Juan

and Tauler, 2003; Trygg et al., 2007; Tresset et al., 2013). One

of the most popular chemometric routines is multivariate curve

resolution using alternate least squares (MCR-ALS) (Tauler,

1995; Jaumot et al., 2005).We and others have previously shown

that chemometrics in general and MCR-ALS in particular are

powerful tools in structural biology, allowing the study of tran-

sient biomolecular complexes (Williamson et al., 2008; Blobel

et al., 2009) and folding processes (Chen et al., 1996; Segel

et al., 1998; Akiyama et al., 2002; Ayuso-Tejedor et al., 2011)

by SAXS or wide-angle X-ray scattering (Minh and Makowski,

2013). These systems were, however, significantly less complex

than amyloidogenesis.

Degeneracy of mathematical solutions poses an intrinsic lim-

itation of chemometric methods (Tauler et al., 1995; Tauler,

2001; Rajkó, 2010). Besides the use of constraints, the most

efficient way to reduce ambiguity in MCR-ALS is the simulta-

neous analysis of multiple datasets measured under different

experimental conditions and/or including additional data simul-

taneously measured using complementary techniques. How-

ever, in present SAXS beamlines the simultaneous measure-

ment of complementary spectroscopic data is not possible.

We have developed a new chemometric approach based

on MCR-ALS with the capacity to decompose large SAXS

datasets. A crucial aspect is that additional data from comple-

mentary sources are not required to solve potential solution

degeneracies. In contrast, we show that zooming in on struc-

tural fingerprints at multiple length scales, by introducing

SAXS data in different representations, guides the program to

robust solutions. We have applied this approach, which we

name COSMiCS (Complex Objective Structural analysis of

Multi-Component Systems), to analyze SAXS data measured

along the amyloid formation from two proteins with high

biomedical interest: insulin and a familial mutant of a-synuclein

(a-SNE46K). The former case corroborates previously published

results, and hence serves as proof of principle, while in the case

of a-SNE46Kwe reveal the presence of large transient oligomeric

species of a significantly different nature than previously found

for wild-type a-SN.

Our study describes a completely novel chemometrics-

inspired strategy to derive structural and kinetic information of

amyloidogenic processes that significantly complements the ex-

isting large toolbox of methods to address this biologically and

medically relevant issue. In addition, it has a very broad range

of applications in chemistry and biology to analyze complex

data recorded along different reaction coordinates.

RESULTS

SAXS Data Collection and Primary Analysis on

Fibrillating Insulin

Time-resolved synchrotron SAXS data were collected along a

timeline of 11 hr from 28 fibrillating insulin samples, under exper-

imental conditions comparable with those applied in a previous

study (Vestergaard et al., 2007) while simultaneously monitoring

the fibrillation kinetics with thioflavin T (ThT) fluorescence. The

resulting profiles exhibit drastically increasing intensities in the

small-angle region of the scattering patterns (Figures 1 and

S1A) signifying a notable evolution frommonomeric to fibril state.

Using Guinier’s approach, this evolution can be followed from

the extrapolated forward scattering (I(0)) and the calculated radii

of gyration (Rg) (Figure S2A). Principal component analysis (PCA)

of the complete dataset indicated that three individual species

significantly contributed to the time evolution of the data (Figures

S3A and S3C).

COSMiCS Solves the Problem of Ambiguity When

Decomposing the Insulin Fibrillation SAXS Dataset

The decomposition of the insulin SAXS intensities was per-

formed using the MCR-ALS chemometric approach. As the

principles behind MCR-ALS have been described elsewhere

(Tauler, 1995), only a short description is included here. After

estimating the number of components of the mixture using

PCA, MCR-ALS uses the most significantly differing curves of

the dataset as initial representatives of the co-existing species,

and calculates the initial concentration profiles for the time

points measured. Using an alternating least squares (ALS) algo-

rithm, the solution of the species-pure profiles and relative pop-

ulations is iteratively optimized.Multiplemathematical solutions

can provide equivalent descriptions of the experimental data

(ambiguity). Constraints based on either the physical nature of

the investigated system or on prior knowledge can be applied

to reduce the level of ambiguity of the solution. Here, mass con-

servation along the experiment (closure) and non-negativity

values for both the resulting SAXS profiles and the time-depen-

dent concentrations were introduced as constraints in the opti-

mization procedure. Details on the implementation of these

constraints can be found in Supplemental Experimental Pro-

cedures. However, MCR-ALS did not provide a good descrip-

tion of the data, as evidenced by an average ci
2 of the fit to

the 28 data curves, <ci
2> = 4.38 (Table 1). In addition, MCR-

ALS-derived SAXS curves had noticeable artifacts and large

uncertainties that yielded non-physical pairwise distance distri-

bution functions, p(r) (Figures S4A and S4B). Concentration

profiles also display non-coherent behavior with a higher initial

concentration for the intermediate species compared with the

native state (Figure S4C). The addition of a fourth species in

the MCR-ALS analysis did not improve the quality of the fit

(<ci
2> = 5.08) or the intelligibility of the results. The use of exper-

imental errors to weight the agreement to the scattering inten-

sities along the optimization process did not improve the quality

of the resulting species-pure curves, which presented strong

artifacts at low angles (Figure S7).

Most likely, the non-optimal solution is due to an ambiguity

problem. To overcome this intrinsic limitation we have developed

COSMiCS, which adaptsMCR-ALS to the analysis of large SAXS

datasets. COSMiCS simultaneously fits multiple representations

of the same SAXS dataset, including, in addition to the absolute

values (I(s)), the commonly used data representations introduced

by Kratky (I(s)*s2) (Glatter and Kratky, 1982), Porod (I(s)*s4) (Po-

rod, 1951), and Holtzer (I(s)*s) (Holtzer, 1955); the latter has

been recently visited by Rambo and Tainer (2013). Although

this does not enrich the information content in our input dataset,

it emphasizes the structural changes at different time points

6 Structure 25, 5–15, January 3, 2017



along the fibrillation pathway. Species appearing along the fibril-

lation process present distinct structural features that emerge

at specific momentum transfer ranges (resolution) and are

captured differently by SAXS data representations (Figure S5).

The consequent enhancement of data variability along the fibril-

lation process increases the discrimination power of the MCR-

ALS optimization by reducing the ambiguity of the mathematical

solutions. The simultaneous use of multiple SAXS data represen-

tations was tested first on simulated data (see Supplemental

Experimental Procedures for details).

We used all combinations of dataset representations for

COSMiCS analyses (Table 1). With the exception of Porod’s rep-

resentation, the inclusion of a second SAXS data representation

yielded a systematic improvement in the quality of the fit to the 28

experimental profiles, while no improvement in the overall fit to

the dataset was observed when increasing the number of data

matrix representations to three. The best agreement to the data-

set was obtained by combining the absolute value data repre-

sentation with the Holtzer representation (AH; <ci
2> = 3.15).

The fitting to the 28 curves (Figures 1A and S1A) demonstrates

that the linear combination of three species and the population

profile properly describes the complete experimental dataset

with no systematic deviations along the time evolution. To

confirm the PCA analysis we repeated the complete COSMiCS

analysis using two and four species (Figures S4D–S4G). When

fitting with two species the <ci
2> is significantly increased to

<ci
2> = 7.66, and the optimized spectra from the analysis with

four species are not physically meaningful.

Structural Characterization of the Insulin Species and

Their Kinetics

The pure SAXS curves of the insulin species and their relative

population along the fibrillation process obtained from the

COSMiCS analysis are shown in Figures 1B–1D. The capacity

to derive species-specific information enables their detailed

structural investigation (Table 2). An important piece of informa-

tion that can be derived is the oligomeric state through the mo-

lecular weight (MW) estimation. We have applied several avail-

able strategies to derive these two parameters (Tables 2 and

S1) (Mylonas and Svergun, 2007; Fischer et al., 2009; Petoukhov

et al., 2012; Rambo and Tainer, 2013) providing coherent MW

estimations despite their distinct approaches and inherent limi-

tations. The use of an external standard depends on correct esti-

mation of protein concentration and is very sensitive to the pres-

ence of small quantities of non-properly decomposed species,

such as unspecific aggregates, while SAXS invariant volume of

correlation, Vc, has not been calibrated for very large species

(Rambo and Tainer, 2013). Consequently, we have chosen Vc

for small species, and the external standard for large aggregates.

The p(r) functions derived from the profiles indicate that the

three species are a small particle, an intermediate oligomer,

and a large aggregate (Figure 1C). This result is in very good

agreement with previous manual decomposition applied to a

similar fibrillation series of insulin (Vestergaard et al., 2007).

The smallest species corresponds to a slightly elongated particle

(Figure 2) with an Rg of 23.2 ± 0.2 Å, in full agreement with the

need for a monomeric partially unfolded species to trigger insulin

Figure 1. Analysis of the Fibrillation of

Insulin

(A) SAXS profiles recorded during the evolution of

fibrillation of insulin. Scattering intensity profiles

(black dots) in logarithmic scale as a function of the

momentum transfer (s = 4p sin(q)/l [2q, scattering

angle; l = 1.5 Å, X-ray wavelength]) measured

from t = 0 (bottom curve) to t = 11 hr (top curve).

COSMiCS fitted model combining Absolute

and Holtzer (AH) data representations with three

species are displayed as solid red lines.

Curves are translated arbitrarily along the y axis for

clarity.

(B) SAXS profiles in logarithmic scale from

the decomposition of the insulin dataset using

COSMiCS, displaying the monomer (blue), olig-

omer (green), and fibril (red) curves. Fits of the ab

initio reconstructions are displayed as solid lines.

(C) Pairwise distribution functions derived from the

individual curves for each species computed with

the program GNOM (Svergun, 1992). The same

color code as in (B) is used.

(D) Time-dependent concentration profiles derived

from COSMiCS for each species with the same

color code as in (B) (smoothing of the data in solid

lines). The ThT fluorescence signal (black) is

included to highlight its excellent correlation with

the population of fibrils derived from the COSMiCS

analysis.
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fibrillation (Ahmad et al., 2003). The partially unfolded nature

of this species is also evident when plotting the isolated curve

in the Kratky presentation and the low agreement with the

crystallographic structure of the monomeric insulin (Figures

S6A and S6B). The oligomer, which has an estimated mass of

4–8 protomers (Table 2), features an elongated shape with an

Rg of 48.5 ± 0.1 Å and a Dmax = 196 ± 10 Å according to the

derived p(r) (Figure 1C). The p(r) function was used to derive a

low-resolution structure of this elusive intermediate species.

The resulting structure, which perfectly describes the experi-

mental curve, shows that the oligomer is an elongated particle,

with a bent/helical form (Figure 2) in excellent agreement with

the structure derived by our group from a more concentrated

fibrillation series (Vestergaard et al., 2007). The third species,

which represents the repeating unit of insulin fibrils, is composed

by z1730 insulin monomers with an Rg = 225.1 ± 0.7 Å and a

Dmax of 760 ± 10 Å. The low-resolution structure indicates that

this fibril unit consists of several intertwining protofibrils, result-

ing in the relatively globular and flat appearance, in accordance

with previous studies (Vestergaard et al., 2007).

Figure 1D displays the time-dependent concentration profiles

of the three species. The derived concentration profiles clearly

identify the population behavior of the three species, but display

spikes along the fibrillation due to the stochasticity of the fibrilla-

tion process in the individual sample wells. This deleterious

effect could be overcome using SAXS laboratory sources

whereby a single sample could be measured along the whole

fibrillation process. Monomeric insulin, which is the most popu-

lated species at the beginning of the reaction, was not present in

significant amounts after 3 hr of incubation. The intermediate

oligomer is present during almost the complete observation

time and becomes the major species around 4 hr, indicating

that it is a relatively stable species. This species can hence not

be considered as a thermodynamic nucleus, which per definition

is the least stable species along the reaction coordinate. Rather,

the species must be described as a structural nucleus (Powers

and Powers, 2008), and most likely is a building block of proto-

fibirils (Vestergaard et al., 2007). We have superimposed the

ThT fluorescence profile from the same samples, which is sensi-

tive to the fibrillar forms of the protein, and serves as an indepen-

dent measure of the presence of the amyloidogenic fibrils. The

SAXS-derived volume fractions of the large fibrillar species fol-

lows a sigmoidal growth after the lag phase that is in excellent

agreement with the ThT fluorescence profile (Figures 1D and

S2B) and substantiates the results derived from the chemomet-

ric SAXS decomposition. Our analysis indicates that all samples

measured, with the exception of the last point, contain at least

two co-existing species. This observation highlights the impor-

tance of chemometric approaches whereby no a priori assump-

tions on the composition of the individual SAXS curves aremade.

SAXS Measurements during the Fibrillation Process of

a-SynucleinE46K

The COSMiCS strategy was subsequently applied to data from

the fibrillation of the a-SNE46K, associated with early-onset Par-

kinson’s (Fredenburg et al., 2007). Although this mutant has

been widely investigated, its fibrillation process has never been

studied at structural level by SAXS. Time-resolved SAXS data

were obtained following the protocols previously described

(Langkilde and Vestergaard, 2012). A total of 51 SAXS curves

were measured during 25 hr, starting from the monomeric

protein at 12 mg/mL. Two of these curves presented severe ra-

diation damage and were discarded. The remaining curves

display a distinct evolution in scattering intensity along the fibril-

lation process (Figures 3 and S1). The initial analysis of the raw

data revealed, as expected, the formation of very large species

during the fibrillation process. Average Rg and the I(0) of the indi-

vidual curves were estimated using Guinier’s approximation

(Figure S2C). Interestingly, the steep increase in molecular

mass occurs significantly later than the increase in average radii

and the initiation of the elongation phase as indicated by ThT

fluorescence.

A PCA of the complete a-SNE46KSAXS dataset indicates that it

can be safely described with three co-existing species (Figures

S3B and S3D). The a-SNE46K dataset was subsequently suc-

cessfully decomposed with COSMiCS using the combinations

of SAXS data representations (Table 1). As occurred for the

case of insulin, a systematic improvement in the quality of the

fit is observed when multiple data representations are intro-

duced, with <ci
2> decreasing from 2.62 to a range of 1.16–

1.33. This systematic amelioration of the data description is

also observed in the range of individual ci
2 obtained among the

Table 1. Fitting of the Insulin and a-SNE46K SAXS Datasets with COSMiCS Using Different Combinations of Data Matrices

Representations Included

Insulina a-SNE46K
a

Complete Dataset Complete Dataset Without Outlierb

Code Absolute I(s) Holtzer I(s)*s Kratky I(s)*s2 Porod I(s)*s4 <ci
2> ci

2 Range <ci
2> ci

2 Range <ci
2> ci

2 Range

A + 4.38 1.57–11.85 2.62 9.46–0.54 2.38 8.96–0.73

AH + + 3.15c 1.37–12.90 1.22 3.42–0.54 1.08 2.32–0.55

AK + + 3.75 1.37–10.33 1.18 3.69–0.53 1.05 2.24–0.53

AP + + 5.61 1.49–17.02 1.33 4.82–0.57 1.18 3.05–0.58

AHK + + + 3.72 1.37–13.07 1.16 3.55–0.56 1.04c 2.18–0.53

AHP + + + 5.45 1.38–16.92 1.24 4.31–0.54 1.09 2.71–0.54

AKP + + + 4.75 1.48–15.80 1.16c 3.98–0.53 1.05 2.08–0.53

AHKP + + + + 4.54 1.39–15.21 1.16 3.85–0.53 1.03 2.11–0.52
aAnalysis performed using three species.
bCOSMiCS analysis after extraction of the curve corresponding to t = 25.33 hr.
cOptimal solutions used for the structural analysis.

8 Structure 25, 5–15, January 3, 2017



49 curves (Table 1). However, not all data combinations guide

the decomposition equivalently. Again, the inclusion of Porod’s

representation (P) only modestly decreases the <ci
2> compared

with inclusion of Holtzer’s or Kratky’s representations (AH or AK).

Four of the solutions present very similar <ci
2>, between 1.16

and 1.18. Although quantitatively equivalent, a closer inspection

of the decomposed curves shows that representations AHK and

AHKP provide solutions yielding non-physical p(r) functions with

negative values. Therefore, the AKP solution, with a <ci
2> = 1.16,

was used for the subsequent analyses.

The inspection of the level of agreement of the individual curves

indicates that the vast majority of ci
2 values are around 1.0 (Fig-

ure 4A), indicating that our optimization protocol is not overfitting

the data. However, curve 45 (measurement at 25.33 hr) is not

properly described by the model and presents a relatively large

ci
2 (3.98). In fact, this curve presents the largestci

2 in all data com-

binations. After removing this curve the complete COSMiCS

decomposition was repeated, yielding reduced <ci
2> (1.03–

1.08) for various data combinations (Table 1). Importantly, the

improvement observed after discarding a single curve does not

simply originate from the elimination of an outlier but corresponds

to a systematic improvement of the individual ci
2 for the vast ma-

jority of the curves of the dataset (Figure 4B). A further refinement

by removing an additional potential outlier curve was tested but

no systematic improvement in the fit was observed (Figure 4C).

These observations underline the robustness of the final solution

and the ability of COSMiCS to detect outlier SAXS curves. The

final fits from the COSMiCS analysis using the AHK combination

(<ci
2> =1.04) are displayed in Figure 3, and the solution was sub-

sequently analyzed in terms of structures and kinetics.

Structure and Transformation Kinetics of the Species

Involved in the Fibrillation of a-Synuclein E46K Mutant

As can be seen from the COSMiCS-derived scattering curves

and the p(r) functions (Figure 5), two of the species are very large

while the first species is a low MW particle. We estimate an MW

of the first species of 13 kDa, in agreement with a monomeric

state of the protein (14.6 kDa). Additionally the Kratky represen-

tation (not shown) of this species, along with the skewed p(r)

function and the relatively large values for Rg (47.1 ± 0.72 Å)

and Dmax (209 ± 5 Å), show the disordered nature of a-SNE46K

(Bernadó and Svergun, 2012). The disordered nature of the

monomeric species was substantiated by the ensemble optimi-

zationmethod (EOM) analysis of the SAXS profile (Bernadó et al.,

2007) (see Experimental Procedures for details). The subensem-

ble of conformations that collectively describe the SAXS curve

display a broad range of Rg values indicating the large degree

of flexibility of the protein in solution (Figures S6C and S6D).

The second oligomeric species is large (z40 protomers) with

an Rg of 282.4 ± 4.3 Å and a Dmax of 960 ± 10 Å (i.e., at the reso-

lution limit of our measurements), approaching values obtained

for the final fibril species (Dmax = 920 ± 10 Å and Rg = 256.8 ±

1.9 Å). However, when comparing the mass and overall dimen-

sions of these two species (Tables 2 and S1) the mass density

of the intermediate species is much lower than that of the fibrils.

This is in agreement with the observation that the average Rg of

the mixture increases significantly earlier than the average mass

(Figure S2C), and suggests that the intermediate species is a large

and disordered oligomer. It is evident also from the p(r) functions

(Figure 5) that the two species present distinct overall shapes.

While the intermediate species is represented as an overall glob-

ular shape, the final species presents the typical elongated fibrillar

shape (Oliveira et al., 2009; Giehm et al., 2011b). The COSMiCS

curves for the large oligomer and the fibril were used to derive

low-resolution structures. Whereas the fibril repetitive unit is a

large and elongated particle (Figure S6E), attempts to derive a

structure for the oligomer were unsuccessful. Indeed this is in

agreement with the disordered nature of this species that pre-

cludes the determination of its ab initio structure. The distinct

structural characteristics of both forms are corroborated when

observing their time-dependent evolution, which is plotted

together with the ThT fluorescence curves in Figures 5C and

S2D. Clearly the evolution of the ThT signal coincides with the

occurrence of the fibril-shaped species, whereas the second

large species is not ThT active. Both large species co-exist after

the lag phase, but the decrease of the second species at the final

steps of the aggregation suggests a transformation from the large

disordered aggregates to amyloidogenic fibrils. Interestingly the

monomeric form is present throughout the whole experiment,

suggesting that the disordered aggregate has to disassemble

into monomers before forming amyloidogenic fibrils.

DISCUSSION

The interest in structural studies of molecular conversions, func-

tional and structural heterogeneity, and time-evolving processes

Table 2. Structural Information on the Pure Species Derived from COSMiCS Analysis of Insulin and a-SNE46K SAXS Datasets

Species

SAXS Curve-Derived Parametersa MW, kDa (Oligomeric State)b

Rg, Å Dmax, Å I(0), a.u. BSAc Scatterd

Insulin 1 23.2 103.4 0.11 21.8 (3.8) 8 (1.4)

2 48.5 196.0 0.22 45.7 (7.9) 23 (4.0)

3 225.1 760.0 62.24 10,036 (1,730.3) 30,600 (5,275.9)

a-SNE46K 1 47.1 209.5 2.56 47.6 (3.3) 13 (0.9)

2 281.8 960.0 52.72 594.3 (41.0) 630 (43.4)

3 251.7 920.0 111.22 2,565.5 (176.9) 1,470 (101.4)
aParameters derived with GNOM (Svergun, 1992).
bComputed from molecular weight (MW) of the monomers of insulin (5.8 kDa) and a-SNE46K (14.5 kDa).
cMW estimation using BSA as external standard.
dUsing Vc with the program Scatter under standard parameters (Rambo and Tainer, 2013).
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is significant but highly challenging. SAXS is an extremely well-

suited technique to address the characterization of such com-

plex mixed systems, but robust approaches are necessary to

address the data decomposition process. Here, we present a

method for the chemometric decomposition of multiple SAXS

curves measured along a structurally developing process. This

strategy, implemented as an extension of the popular MCR-

ALS method (Tauler, 1995; Jaumot et al., 2005), has been

applied to fibrillating proteins but could be extended to other

macromolecular systems with tunable equilibrium phenomena

such as the study of protein folding, transient interactions, inter-

mediate structural states, viral capsid formation, and supramo-

lecular assemblies.

Initial attempts to analyze SAXS data measured along insulin

and a-SNE46K fibrillation with MCR-ALS were unsuccessful,

likely because the algorithm is trapped in a local minimum,

yielding acceptable fits but non-physical solutions. The classical

approach to resolve this ambiguity-related problem is to include

orthogonal datasets (Navea et al., 2002, 2006). However, the

simultaneous measurement of complementary data is not avail-

able in present SAXS beamlines. To overcome the ambiguity

problem, we simultaneously analyze multiple representations of

the same SAXS data. The empowerment of the decomposition

when usingmultiple data representations reflects one of the cen-

tral aspects of solution scattering data. The scattering curve

arises from pairwise distances at both short and longer scales,

thereby probing the shape of solutes, covering several orders

of magnitude, from nanometer to micrometer sizes. In the case

of fibril development this phenomenon is fully exploited as start-

ing particles are of nanometer size, while fibrils are severalmicro-

meters in length. During the fibrillation process the structural fea-

tures, which are coded in the scattering curves, dramatically

change in a time-dependent manner. However, at different time

periods of the fibrillation reaction these changesoccur in different

parts of the momentum transfer range measured, and can be

highlighted depending on the representation of the data used.

The different sensitivity of SAXS data representations to

structural features can be understood when considering their

mathematical nature. Absolute scale curves have a large dy-

namic range and the most important intensity variations occur

at the smallest angles, linked to the lowest-resolution structural

information. In the other representations the intensity is multi-

plied by momentum transfer with increasing power functions:

1, 2, and 4 for Holtzer, Kratky, and Porod, respectively. This

Figure 2. Structural Models of Insulin Fibrillar Species

Ab initio reconstructions of the three components obtained from the COSMiCS analysis of the SAXS data measured along the insulin fibrillation. Structures of the

monomer (blue), oligomer (green), and the repeating unit of the fibril (red) are displayed in their relative sizes. The monomer is displayed in two orientations, one

rotated 90!. The oligomer is displayed in more detail in the inset.
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successively decreases the emphasis on intensities at low scat-

tering angles (low resolution) and increases the emphasis at high

scattering angles (high resolution). Therefore, the combination of

the absolute scale, which enhances the low-resolution part of

the SAXS curve, with the other representations, which enhance

the high-resolution part of the SAXS profile, facilitates decompo-

sition. Surprisingly, Porod’s representation, in the examples

tested, does not increase (or even decrease) the decomposition

power of COSMiCS. Porod’s law is valid for smooth interfaces

between solutes and solvent. In the case of fibrillation, it is known

that the fibril interface is disordered and poorly defined (Comel-

las et al., 2011), and presents high-entropy solvent around the

interface (Nielsen et al., 2013; Fichou et al., 2015). This observa-

tion does not exclude, however, that Porod’s representation

could be an important one for the decomposition of other types

of data.

A few examples from the present analysis are included here for

clarity. The first example is the conversion of the intrinsically

disorderedprotein,a-SNE46K, into a largeandmoreordered inter-

mediate that finally evolves toward elongated fibrils. The Kratky

fingerprint of an intrinsically disordered protein is very character-

istic with a lack of low-angle features, and a steadily rising profile

at high angles (Bernadó and Svergun, 2012). These features

contrast with those found in ordered systems where a pro-

nounced peak is found at intermediate momentum transfer

ranges. Therefore, the Kratky representation is extremely sensi-

tive to the initial conversion from a disordered to a more ordered

species. In contrast, the Holtzer representation is highly sensitive

to overall changes in mass, which is very significant at later time

points in the fibrillation process. Insulin, in contrast to a-SNE46K,

fibrillates from a (partially) folded-like species. Here, however,

the subsequently formed species is elongatedwith a very distinct

scattering curve that is easily discriminated from the starting spe-

cies. The oligomeric intermediate is subsequently transformed

into a much larger mature fibril. In this second transition, the dif-

ference in size, which induces a strong differentiation in the initial

part of the SAXS curve and in the peak position in Kratky repre-

sentation, facilitates their discrimination. Hence, simultaneous

fitting ofmultiple data representations used in COSMiCS exploits

complementary features that appear at different time points,

enhancing the capacity of the chemometric approach to discrim-

inate within the vast space of potential solutions.

It is worth noting that no specific shapes for the resolved scat-

tering profiles were imposed as a constraint throughout the opti-

mization procedure. We have observed that whenmultiple SAXS

data representations were considered in the same analysis, the

overall fit to the data is better and the possibility to obtain phys-

ically meaningful solutions increases. The presence of these

local minima solutions with unreasonable SAXS profiles high-

lights the importance of identifying and discarding them. Here,

all wrong solutions present strong artifacts and large uncer-

tainties that identify them as unphysical. This observation points

toward the need to find a proper mathematical description of

SAXS curves to allow for the introduction of a new constraint

to further decrease solution ambiguity.

Our approach represents a great advantage compared with

other techniques that probe a single species. This is exemplified

for the case of a-SNE46K. In the decomposition of the SAXS data

of this familial mutant, we reveal that two very large aggregated

species co-exist for a long period of time. One of these species is

ThT inactive and would remain invisible when using traditional

fluorescence experiments, thereby dramatically biasing the

Figure 3. a-SNE46K SAXS Data

SAXS profiles showing the evolution of fibrillation of a-SNE46K (black dots) in

logarithmic scale as a function of the momentum transfer (s = 4p sin(q)/l [2q,

scattering angle; l = 1.24 Å, X-ray wavelength]). Bottom curve corresponds to

the first curve (time = 0 hr) and top curve corresponds to t = 25.6 hr. Red lines

are the COSMiCS fits obtained from the three-component mixture using

Absolute and Holtzer and Kratky representations (AHK) of the SAXS data. The

curve corresponding to t = 25.33 hr has been identified as an outlier and is not

used for the global fitting (and hence no COSMiCS fit is superposed). Curves

are translated arbitrarily along the y axis for visualization purposes.
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interpretation of a protein fibrillation study solely based on ThT

fluorescence monitoring (Cohen et al., 2012). Importantly, by

applying our approach we uncover the existence of an interme-

diate species of a structural nature that has hitherto not been

described in the context of fibrillation kinetics. This oligomer

has a low density of mass, is predominantly disordered, and is

of a reversible nature.

Here, we have demonstrated the power of SAXS data analysis

to understand the nature of a very complex biological process

such as protein amyloid formation. The general application of

COSMiCS, however, spans much wider, to principally any

phenomenon where multiple species or conformers co-exist in

equilibrium and whose relative population can be changed by

rationally perturbing experimental conditions such as tempera-

ture, pressure, pH, ionic strength, and presence of ligands or

chemical denaturants. Protein and RNA folding processes, enzy-

matic reactions, transient biomolecular interactions, or the for-

mation of large supramolecular assemblies are relevant exam-

ples of such complex equilibria. Many of these systems can be

monitored by SAXS; therefore, the demonstrated decomposition

power of the COSMiCS approach can be applied to resolve

their intrinsic heterogeneity to characterize their structure and

kinetics/thermodynamics.

EXPERIMENTAL PROCEDURES

Insulin Sample Preparation and Fluorescence Measurements

Human zinc insulin was obtained from Novo Nordisk. Zinc content was 0.37%

(w/w) corresponding to approximately two Zn2+ ions per insulin hexamer. ThT

was purchased as the chloride salt from Sigma-Aldrich. ThT was recrystallized

three times in demineralized water before use. All other chemicals were of

analytical grade. For ThT fluorescence assays, a Polarstar Optima platereader

from BMG Labtechnologies was used with 96-well, black, polystyrene, non-

sterile plates with optical bottom from Nalge Nunc International. The wells

were covered with Polyolefin non-sterile sealing tape from Nalge Nunc

International, and bottom/bottom measurements were performed. ThT fluo-

rescence measurements were performed with lex = 440 nm (10 nm bandpass)

and lem = 480 nm (12 nm bandpass). A pellet of insulin was dissolved at

2.5 mg/mL insulin in 20% acetic acid (pH 2.0) with 0.1 M NaCl and 20 mM

ThT. Afterward 100 mL of the solution was transferred to each well. The plate

was placed in the platereader and ThT fluorescence measurements were con-

ducted at 45!C without shaking. The measurement of the fluorescence inten-

sity was performed every 300 s. The platereader was paused at appropriate

time intervals and a sample of 80 mL was withdrawn from a well.

a-SNE46K Sample Preparation

a-SNE46K was produced in Escherichia coli BL21 using a pET-11a vector, and

expressed and purified as described previously. Lyophilized a-SN was dis-

solved in 20 mMPBS buffer with 150 mMNaCl (pH 7.4). After filtration through

0.22-mm spin filters (Millipore) the concentration was determined by A280 nm

using a Nanodrop UV-Vis spectrophotometer (Thermo Scientific) with an

extinction coefficient of 5,120 M"1 cm"1. Solutions were prepared containing

12 mg/mL a-SNE46K and 20 mM ThT. Fibrillation of 150-mL aliquots was

induced in 96-well optical bottom plates (Thermo Scientific) using a Fluostar

Optima Platereader (BMG Labtech) under heating (37!C) and orbital shaking

with 3-mm glass beads (Giehm et al., 2011a).

SAXS Data Collection and Primary Data Evaluation

Three aliquots of protein were extracted from each well and SAXS data were

recorded immediately after extracting the sample. Scattering data of

a-SNE46K were recorded at the P12 beamline at European Molecular Biology

Laboratory (EMBL) on the Petra III storage ring (Deutsches Electronen Syn-

chrotron [DESY]) using the automated loading system (Round et al., 2008).

The data were collected on a PILATUS detector with a momentum transfer

range of 0.0049 < s < 0.35 Å"1 by 20 individual exposures of 45 ms each.

The data reduction and buffer subtraction was performed by the beamline

automated procedure (Franke et al., 2012) followed by a subsequent manual

control. After close inspection of the multiple frames recorded at each time

point, two curves were discarded, which exhibited unsystematic features.

The insulin samples were collected on the X33 beamline at the EMBL on

DORIS III (DESY) at a wavelength of 1.5 Å, using aMAR345 Image Plate Detec-

tor, in the momentum transfer range 0.006 < s < 0.51 Å"1 with 2-min exposure

time. No radiation damage was detected when performing repeated expo-

sures. Zinc acetate was added to the background buffers corresponding to

two Zn2+ ions per insulin hexamer in the protein sample, and buffer measure-

ments were performed immediately before and after each protein sample

measurement. An averaged buffer measurement used for background sub-

traction. When the previously reported buffer effect, typical for fibril scattering

data, was observed, background correction was applied as previously re-

ported (Nielsen et al., 2013).

Figure 4. Assessment of Outlier Curves in the

a-SNE46K SAXS Dataset

(A) Individual ci
2 values obtained from the COSMiCS

analysis of the a-SNE46K complete dataset using the

AKP combination of matrices. One single value ap-

pears as a potential outlier (curve 45, marked in red).

(B) The variation in the ci
2 values of the individual

curves when extracting curve 45 (corresponding to a

time of 25.33 hr) from the analysis using the AHK

combination. A systematic improvement for the vast

majority of curves of the dataset is observed upon

extraction of the curve from the global fitting, and it is

hence concluded that curve 45 is an outlier.

(C) Difference in individual ci
2 values derived from

the COSMiCS analysis with the AHK combination

using 48 curves of the a-SNE46K dataset and the AKP

combination using 47 curves in the dataset after

removing the SAXS curve corresponding to t =

25.6 hr from the analysis. Either no effect or an in-

crease in the ci
2 values is observed. It can be

concluded that the extraction of this second curve

does not improve the derived model and it is there-

fore not justifiable.
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Data analysis was performed using the software suite ATSAS (Petoukhov

et al., 2012), and molecular masses were estimated relative to that of a

standard reference solution of BSA. Guinier’s approximation was applied

to provide rough estimates of the extrapolated forward scattering (I(0))

and radii of gyration (Rg) for the evolving samples. The p(r) functions were

evaluated by the program GNOM (Svergun, 1992), providing the maximal

dimension (Dmax) within the particle, and a second estimate of I(0) and Rg

values.

The EOM was applied to structurally describe the COSMiCS-derived curve

of monomeric a-SNE46K (Bernadó et al., 2007). A pool of 4,000 conformations

of a-SNE46Kwas built with Flexible-Meccano (Bernadó et al., 2005). After addi-

tion of side chains with SCWRL4.0 (Krivov et al., 2009), the individual theoret-

ical SAXS profiles were computed with CRYSOL (Svergun et al., 1995), and

were used to select a subensemble of conformations that collectively

described the experimental curve.

COSMiCS Analysis of Insulin Dataset

All SAXS representations used for the MCR-ALS optimization were used in a

momentum transfer range of 0.0074 < s < 0.3 Å"1. Scattering curves numbers

3 (28min), 4 (1 hr 11min), and 28 (10 hr 56min) were selected as starting points

for the optimization. The number of maximum iterations was set to 50 and the

convergence criteria were set to 0.1. ALS optimization is performed under the

standard constraints for fibrillating system, non-negativity (both for spectra

and concentration profiles) and closure (de Juan and Tauler, 2003) for concen-

tration profiles.

COSMiCS Analysis of a-SynucleinE46K Dataset

The momentum transfer ranges used for the MCR-ALS analysis were 0.0074 <

s < 0.3 Å"1 for the absolute values, 0.0074 < s < 0.16 Å"1 for Holtzer and Kratky

representations, and 0.0074 < s < 0.07 Å"1 for Porod’s representation. The

scattering curves selected as initial estimations were the curves 2 (37 min),

17 (6 hr 46 min), and 47 (16 hr 1 min). The maximum number of iterations,

the convergence criteria, and the constraints were equivalent to those used

in the insulin case. A Monte Carlo approach similar to the previously used by

Svergun and Pedersen, (1994) was applied to estimate the standard deviations

of the scattering intensities and the populations of the final solutions of the

COSMiCS analyses of insulin and a-SNE46K datasets (see Supplemental

Experimental Procedures).

Ab Initio Modeling

Ab Initio structures of the oligomer and fibril of insulin were obtained using the

program DAMMIN (Svergun, 1999). The program employs a simulated anneal-

ing protocol to search for a complex bead model minimizing the discrepancy

between the experimental and calculated curves at low resolution (up to s of

about 0.15 Å"1). The search volume, evaluated with the program BODIES (Pe-

toukhov et al., 2012), for the fibril repeat was an ellipsoid with half-axes of 800,

500, and 150 Å using 31,985 spheres. Individual jobs were loaded, and 20 in-

dependent models were averaged using the program DAMAVER (Volkov and

Svergun, 2003) and filtered with DAMFILT (Petoukhov et al., 2012). The olig-

omer was calculated inside a sphere with a diameter of 98 Å, obtaining a final

averaged and filtered structure from 18 individual models. The structure of the

monomer was obtained using DAMMIF (Franke and Svergun, 2009), starting

from 20 arbitrary initial models to obtain the final model. Likewise, the structure

of the repeating unit of a-SNE46K fibril was calculated with DAMMIN using as

starting point an ellipsoid of 200, 500, and 100 Å in 20 individual runs that

were averaged and filtered. The structures were rendered with the program

CHIMERA (Pettersen et al., 2004).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and one table and can be found with this article online at

http://dx.doi.org/10.1016/j.str.2016.10.013.

Figure 5. COSMiCS Analysis of a-SNE46K Fibrillation

Results from the decomposition of the a-SNE46K data with COSMiCS using the AHK combination of matrices.

(A) Decomposed SAXS profiles for the monomer (blue), oligomer (green), and fibril (red) species.

(B) p(r) functions of the three species computed from the SAXS profiles of (A) using GNOM (Svergun, 1992).

(C) Concentration profiles with the same color code as before and with the ThT fluorescence signal superimposed (solid black line). The ThT profile is in excellent

agreement with the population of fibrils.
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Active-Site-Directed Inhibitors of Prolyl Oligopeptidase
Abolish Its Conformational Dynamics

Abraham L pez,[a, b] F!tima Herranz-Trillo,[c] Martin Kotev,[d] Margarida Gair",[e]

V"ctor Guallar,[d, f] Pau Bernad ,[c] Oscar Millet,[g] Teresa Tarrag ,[a, h] and Ernest Giralt*[a, b]

Deciphering conformational dynamics is crucial for understand-

ing the biological functions of proteins and for designing com-

pounds targeting them. In particular, providing an accurate

description of microsecond–millisecond motions opens the op-

portunity for regulating protein–protein interactions (PPIs) by

modulating the dynamics of one interacting partner. Here we

analyzed the conformational dynamics of prolyl oligopeptidase

(POP) and the effects of active-site-directed inhibitors on the

dynamics. We used an integrated structural biology approach

based on NMR spectroscopy and SAXS experiments comple-

mented by MD simulations. We found that POP is in a slow

equilibrium in solution between open and closed conforma-

tions, and that inhibitors effectively abolished this equilibrium

by stabilizing the enzyme in the closed conformation.

Dynamics is essential for the biological functions of proteins.[1]

Therefore, characterization of protein motions is fundamental

for developing therapeutic compounds to modulate the con-

formational dynamics of their targets. Given the emerging

therapeutic focus on protein–protein interactions (PPIs),[2] mod-

ulating microsecond–millisecond dynamics provides a valuable

approach for regulating the affinity and specificity of recogni-

tion between flexible proteins.[3] Hence, the design of com-

pounds that modify conformational dynamics stands as a

promising strategy for controlling PPI networks involved in

pathogenic mechanisms.

Prolyl oligopeptidase (POP) is an 81-kDa monomeric serine

peptidase that hydrolyzes short peptides at the carboxyl side

of proline.[4] POP has two domains, the a/b-hydrolase and the

b-propeller, that are linked by a pair of hinge polypeptide

chains. The X-ray structure of the mammalian enzyme shows

the a/b-hydrolase and b-propeller domains packed together in

a closed conformation (Figure 1A).[5] However, the crystal struc-

tures of two bacterial POPs show a large hinge separation be-

tween domains[6] (Figure 1B), thus suggesting that the enzyme

undergoes interdomain flexibility.[7] Two studies, one based on
15N line broadening NMR experiments[8] and the other on X-ray

crystallography combined with MD simulations,[9] strongly sup-

port that POP is a highly flexible enzyme, but several funda-

mental aspects concerning the conformational landscape of

POP in solution and the effects of inhibitors are largely un-

known.

The in vivo role of POP is related to synaptic functions and

neuronal development. It has been discovered that POP inter-

acts with the intrinsically disordered proteins a-synuclein and

GAP-43.[10] Recent studies have demonstrated that the direct

Figure 1. A) Porcine POP (PDB ID: 1QFS)[5] in the closed conformation cova-

lently bound to the active-site-directed inhibitor ZPP (orange). The a/b-hy-

drolase domain is shown in green and the b-propeller is in blue. B) Aeromo-

nas punctata POP in the open conformation (PDB ID: 3IUJ).[6a] C) Inhibitors

KYP-2047 and ZPP.
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interaction between POP and a-synuclein, the protein implicat-

ed in the development of Parkinson’s disease, accelerates the

aggregation of a-synuclein in vitro and in cells.[11] Interestingly,

KYP-2047,[12] a covalent active-site-directed inhibitor of POP

(Figure 1C) effectively reduced aggregation in vitro and in

vivo.[11a,13] Further experiments have shown that this reduction

is a consequence of increased clearance in vivo of aggregated

forms of a-synuclein as a consequence of POP inhibition.[13b]

Nevertheless, the lack of knowledge on the conformational

dynamics of POP and the effects of inhibitors represents

a major impediment for exploring the mechanisms underlying

POP-mediated aggregation of a-synuclein. Here, we analysed

in detail the conformational equilibrium of POP in solution and

how this is affected by the binding of active-site-directed in-

hibitors. We combined NMR spectroscopy to describe dynamic

events at atomic resolution[14] with SAXS experiments comple-

mented with MD simulations to probe large-scale structural

fluctuations in solution.[15]

The conformational dynamics of POP in the microsecond–

millisecond timescale was analyzed with methyl-TROSY 13C,1H

multiple quantum relaxation dispersion (RD) experiments,[16] by

using selective methyl labeling of methionine residues.[17] Me-

thionine methyl groups are excellent reporters of structure and

dynamics because of the simple spectra and the high sensitivi-

ty and resolution of TROSY.[18] In order to assign the methyl-

TROSY spectrum, we used a site-directed mutagenesis ap-

proach (Supporting Information). In order to eliminate the con-

tribution of dipolar relaxation from surrounding protons in the

effective transverse relaxation rates (R2,eff),
[16,18] we produced a

highly deuterated [methyl-13C]methionine-labeled POP. Methio-

nine auxotrophic Escherichia coli cells were supplemented with

[methyl-13C,2,3,3,4,4-D5]-l-methionine in a highly deuterated

expression medium. This methionine isotopomer was chemi-

cally synthesized in order to achieve high deuterium content

at unlabeled positions, especially at the b and g positions (Sup-

porting Information). Interestingly, RD experiments of free POP

showed pronounced decay curves for most methionine signals

(Figure 2, red), thus reflecting the intense microsecond–milli-

second dynamics of the free enzyme. Estimated values of the

exchange parameters were extracted by fitting the RD data to

a two-state model.[16] kex values obtained from fitting of RD

data were between 38 and 167 s 1, with a population between

exchanging states around 50% (Table 1). The highest-ampli-

tude motions were in the a/b-hydrolase domain (Figure 3A).

Next, the effects of binding of covalent active-site-directed

inhibitors benzyloxycarbonyl-prolyl-prolinal (ZPP, Figure 1C)[19]

and KYP-2047 on POP conformational dynamics were exam-

ined. Extensive changes in the methyl-TROSY spectra of inhibit-

ed POP indicated large-scale conformational rearrangement

upon inhibitor binding, which predominantly affected the a/b-

hydrolase domain (Figures 3B and S3). Remarkably, RD experi-

ments of inhibited POP revealed that inhibition caused dramat-

ic effects on the microsecond–millisecond dynamics. The decay

in the RD profiles of methionine residues was effectively abol-

ished (Figure 2, blue), thus indicating that the binding of inhib-

itors completely prevented the conformational dynamics of

POP.

In order to unravel the structural aspects of the conforma-

tional dynamics of POP and the effects of inhibitor binding, we

used SAXS, a highly versatile technique that probes molecular

structure at low resolution in solution.[15] Free and ZPP-bound

POP samples were analyzed by online gel filtration chromatog-

Figure 2. Multiple quantum RD experiments of highly deuterated [methyl-13C]methionine-labeled POP. RD profiles of methionine residues of free POP and

ZPP-bound POP are shown, with solid lines for the best fits of the data to a two-state model.
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raphy coupled to SAXS, in order to eliminate the interference

of protein aggregates (Figure S4 in the Supporting Informa-

tion). In both cases, scattering profiles of eluted monomer spe-

cies presented high spectral homogeneity, as determined by

singular value decomposition (Supporting Information). These

profiles were averaged to obtain the corresponding high-quali-

ty scattering profiles, which showed no signatures of interparti-

cle interaction or radiation damage (Figures 4A and S5). The

overall sizes of particles in solution were evaluated by extract-

ing the radius of gyration (Rg). Comparison of Rg of free and in-

hibited POP revealed significant structural differences between

the two forms (Rg 28.50!0.06 and 27.40!0.06 $, respectively).

In turn, the pair-distance distribution functions (P(r) ; Figure 4B)

of free and inhibited POP revealed significant differences in

the global shape. The P(r) function of free POP yielded a multi-

modal distribution with a maximum dimension (Dmax) of 86!

3 $, whereas ZPP-bound POP showed a Gaussian-like distribu-

tion with a smaller Dmax (81!3 $).

In order to assess the conformational equilibrium of POP

and the structural consequences of inhibitor binding, we used

the ensemble optimization method (EOM),[20] a procedure that

optimizes a sub-ensemble of structures from a large pool of

model structures, by using the experimental scattering profile

as a driving force. We obtained a large pool of models sam-

pling a broad conformational space by performing MD simula-

tions starting from the crystal structure of POP in the closed

conformation and the porcine homology model of Aeromonas

punctata POP in the open conformation (Supporting Informa-

tion). The EOM of free and ZPP-bound POP provided sub-en-

sembles of conformations that collectively described the ex-

perimental scattering profiles with excellent fit (Figures 4A and

S6). The EOM-selected structures of free POP consisted of 55%

fully open and 45% closed conformation (Figure 4C, red).

These conformational populations are in agreement with those

extracted from the fitting of RD data, thus providing cross-vali-

dation between the two approaches. The theoretical averaged

Rg of the selected open structures was 30.50!0.08 $, whereas

for closed structures it was 27.35!0.07 $, fully compatible

with the experimental Rg of free POP (28.50!0.06 $). In con-

trast, the selected structures of ZPP-bound POP consisted ex-

clusively of closed conformations (Figure 4C, blue), as for the

Table 1. Summary of exchange parameters of free POP extracted from

the fitting of multiple quantum RD data.

Methionine kex [s
 1] pB [%] Methionine kex [s

 1] pB [%]

156 45!7 49 581 52!18 46

176 50!9 49 633 50!13 50

452 38!11 51 696 112!14 47

495 167!21 45

Figure 3. A) Structure distribution of DRex values obtained by multiple quan-

tum RD experiments of free POP. B) Assigned methyl-TROSY spectrum of

free POP (red) overlaid with the spectra of POP bound to ZPP (blue) and of

POP bound to KYP-2047 (green). Enlarged view (boxed region) shows that

the signal of Met235 (*) is strongly sensitive to the binding of active-site-di-

rected inhibitors.

Figure 4. SAXS experiments of free and inhibited POP. A) Averaged scatter-

ing profiles of free POP (red) and ZPP-bound POP (blue). Nested Guinier

plots and Rg values confirm the absence of interparticle interactions and ra-

diation damage. The theoretical scattering profile obtained by the EOM is

shown in black. B) P(r) distribution of free POP (red) and ZPP-bound POP

(blue). Dotted lines show the corresponding maximum dimensions (Dmax),

which reflects the bigger size of free POP. C) Structures of POP selected by

the EOM. Representative open and closed structures of free POP are shown

in red; representative closed conformation of POP covalently bound to ZPP

is shown in blue; the inhibitor is marked by a black circle.
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X-ray structure of POP covalently bound to ZPP. The theoretical

average Rg of selected inhibited POP structures also was in

good agreement with the experimental value (27.23!0.01 and

27.40!0.06 $, respectively).

In summary, our integrated approach combining NMR spec-

trometry and SAXS experiments complemented by MD simula-

tions demonstrated that POP is a highly dynamic enzyme on

the millisecond timescale, with equilibrium between open and

closed conformations. We have shown that the binding of

active-site-directed inhibitors effectively impedes the confor-

mational exchange by stabilizing POP in a closed conforma-

tion. Therefore, it can be proposed that the microsecond–milli-

second conformational dynamics of POP causes significant

fluctuations in the configuration of the surface(s) involved in

molecular recognition events. Hence, stabilizing POP in a

closed conformation by inhibitors would cause substantial al-

terations to the affinity and specificity of the native PPIs of the

enzyme. We speculate that this mechanism could represent

a central feature for the reversibility of POP-mediated aggrega-

tion of a-synuclein induced by active-site-directed POP inhibi-

tors, as has been reported.[11,13] Overall, the results open the

way for designing novel POP inhibitors conceived as conforma-

tional modulators to regulate the native interactions of the

enzyme.

Experimental Section

Cells were purchased from Novagen (Merck Millipore), chemicals

were from Sigma–Aldrich, and deuterated chemicals were from

Cambridge Isotope Laboratories (Tewksbury, MA). Affinity and size-

exclusion chromatography columns were from GE Healthcare Life

Sciences.

Expression of POP and [methyl-13C]methionine-labeled POP:

POP was expressed in E. coli BL21(DE3) cells by using pET-11 plas-

mid containing the human POP gene, His tag and TEV cleavage

site, by following a standard protocol.[21] After Ni2+ affinity chroma-

tography, the His tag was removed by digestion with TEV protease,

and POP was purified in a Superdex 200 HiLoad column. For

[methyl-13C]methionine-labeled POP, auxotrophic E. coli B834 (DE3)

cells were grown in minimal medium containing [methyl-13C]-l-me-

thionine (80 mgL 1). Purification was performed as above. In the

case of highly deuterated [methyl-13C]methionine-labeled POP, aux-

otrophic E. coli B834(DE3) cells were transformed with pETM-10

plasmid (EMBL, Heidelberg, Germany) containing the human POP

gene.[21] Cells were grown in deuterated minimal medium supple-

mented with [1,2,3,4,5,6,6-D7]-d-glucose (2 gL 1) and [methyl-
13C,2,3,3,4,4-D5]-l-methionine (50 mgL 1), synthesized as described

in the Supporting Information. His tag cleavage was not performed

in this case. The binding of ZPP and KYP-2047 inhibitors was car-

ried out by drying an aliquot (10 equiv.) of inhibitor dissolved in

1,4-dioxane with a soft stream of N2 in a small glass tube. After-

wards, POP sample in the buffer suitable for the experiment was

added to the tubes containing the dried inhibitor and incubated

for 20 min at room temperature.

NMR experiments and fitting of RD data: All NMR experiments

were performed at 25 8C in an 800 MHz Avance III spectrometer

(Bruker) equipped with a cryoprobe. POP samples were 200–

250 mm in Tris[D11]·HCl (50 mm, pH 8) containing NaCl (20 mm),

[D6]-DTT (1 mm), NaN3 (0.03%), in D2O.
1H,13C methyl-TROSY HMQC

experiments used the pulse sequence described by Tugarinov

et al.[18] Spectra comprised 128, 512 data points (F1, F2), with 240

scans per FID (interscan delay 1.5 s). 1H,13C methyl-TROSY HMQC

RD experiments[16] used a CPMG element of 40 ms, with 0, 2, 4, 6,

8, 10, 12, 16, 20, 24, 28, 32, 36, and 40 randomly ordered inversion

pulses. Spectra were recorded with 100, 512 data points (F1, F2),

accumulating 24 scans (interval 1.5 s). Effective decay rates (R2,eff)

were extracted from the major resonances by using the following

formula[22] [Eq. (1)]:

R2,effðnCPMGÞ ¼
 1

T
ln

 

IðnCPMGÞ

I0

!

ð1Þ

where T is total transversal relaxation time (40 ms), and I0 and

I(nCPMG) are the peak intensities from spectra recorded without or

with the CPMG element, respectively. The spectra of RD experi-

ments were converted to NMRpipe format and processed with

NMRpipe software.[23] This equation was used in the fitting of RD

data to obtain the individual exchange contribution (kex) and the

product Dw·pB that accounts for the population and the chemical

shift of the second state (B), which is ultimately related to the am-

plitude of the motion. The fitting was performed by considering

each i methyl probe separately:

DwHi, DwCi, kexi, pBi, R2MQ1i ðc
2
i Þ

Here Dw is the frequency difference between the 1H or 13C reso-

nances of exchanging signals, pB is the population of the second

state, and R2MQ1 is the effective transverse relaxation at the fast

pulsing limit. The global fitting, which considered the same kex and

pB for all methyl groups, was performed by adjusting the spectral

density of RD data by least squares. The global fitting did not im-

prove the results obtained by the independent one, as revealed by

F-test statistical analysis.

The deconvolution of the product Dw·pB from a dataset obtained

in a single static field was not statistically reliable. For this reason,

several replicate fittings were performed in order to evaluate the

reliability of the independent fitting. All replicates yielded highly

reproducible results, thus allowing extraction of estimated values

for Dw(13C) and pB separately. DRex values in Figure 3A were ob-

tained as the difference between theoretical R2,eff at the low and

the fast-pulsing limit (R21). Given the absence of measurable ex-

change in the RD profiles of POP bound to ZPP and to KYP-2047,

fitting was not performed in the case of inhibitor-bound POP.

Online gel filtration coupled to SAXS: HisTag-cleaved samples of

free and ZPP-bound POP were subjected to an online Superdex

200 10/300 SEC column coupled to EMBL beamline P12 of PETRA

III (DESY, Hamburg, Germany) with a PILATUS2M pixel detector

(DECTRIS, Baden-Daettwil, Switzerland). The column was run at

0.35 mLmin 1 to acquiring 1 frame per second (X-ray wavelength

1.24 $; momentum transfer covered 0.007–0.444 $ 1). The scatter-

ing profiles of all frames were inspected, and anomalous profiles

were discarded. The scattering profiles corresponding to the pure

buffer frames of free and ZPP-bound POP datasets were averaged

and subtracted from all profiles in PRIMUS[24] (ATSAS data analysis

software; EMBL, Hamburg, Germany). The same program was used

to average the subtracted scattering profiles of monomer species

of free and inhibited POP, and to derive forward scattering (I(0))

and Rg from the Guinier approximation. P(r) distribution functions

were obtained with the GNOM program.[25]
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Computational methods and ensemble optimization method

(EOM): All free-POP MD simulations were performed with

AMBER12 software.[26] The ff99SB force field[27] for proteins was

used, and explicit water molecules were incorporated as the TIP3P

water model.[28] Protein structures were neutralized, and additional

sodium and chloride ions were added to simulate physiological

saline solution. Protein plus ions were then solvated in pre-equili-

brated water molecules in a truncated octahedron box with a 15 $

layer. After energy minimization, the temperature was progressive-

ly raised to 300 K with constant pressure dynamics. All production

runs were performed with 2.0 fs steps in NPT ensemble (1 bar,

298 K). The shorter MD simulation for ZPP-bound POP was com-

puted with the Desmond molecular dynamics program.[29] The

OPLS-AA force field and TIP3P water model were used.[28] The de-

fault relaxation protocol in Desmond was used, followed by the

production run in the NPT ensemble. Prior to the EOM, theoretical

scattering curves were calculated from the simulated PDB files in

CRYSOL (ATSAS data analysis software).[30]

The EOM was performed over a sub-ensemble of N structures from

a large pool of M model structures (M@N) by minimizing c
2 be-

tween the experimental (Iexp) and theoretical (Itheor) profiles [Eq. (2)]:

c
2 ¼

1

K  1

X

K

j¼1

mItheor sj
" #

 Iexp sj
" #

s sj
" #

" #

2

ð2Þ

where K is the number of data points, s(s) is standard deviation,

and m is a scaling factor. Itheor,n(s) is defined from the individual n

profiles as follows [Eq. (3)]:

ItheorðsÞ ¼
1

N

X

N

n¼1

Itheor,nðsÞ ð3Þ

Experimental curves used in the EOM comprised data points from

s<0.15 $ 1 for POP, and from s<0.3 $ 1 for POP bound to ZPP.

Constant subtraction was applied in all cases. The EOM was carried

out with 50 random initial sub-ensembles of N=20 structures, as

the use of more structures in this method (N=50) did not improve

the result.[20] A total of 1500 generations were performed. One

hundred independent EOM runs were performed, and the most

frequent result was taken as the solution with best fit (Figure 4A).
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In general, the native fold of a protein in a given environment

is unique and at a global free-energy minimum.[1] However,

some proteins spontaneously undergo substantial fold switch-

ing and reversibly transit between several conformers:

“metamorphic” proteins.[2] Identifying and examining such

proteins is a challenge because they are highly dynamic and

impossible to identify a priori.[3] In contrast, minor rearrange-

ment often occurs in single-domain enzymes upon binding of

substrates, as shown for proteolytic enzymes of the metal-

lopeptidase (MP) class.[4] As to enzymatic activity, an increase

in enzyme concentration usually increases activity, as more

substrate can be bound and turned over.[5] Here we describe

a metamorphic minimal selective and specific caseinolytic

metallopeptidase, selecase, which shows a reversible and

concentration-dependent equilibrium between different dis-

crete states and an associated loss of enzymatic activity due to

autoinhibition.

We recently discovered a family of soluble minimal MPs

named minigluzincins and characterized two of them, proa-

bylysin and projannalysin, but we only isolated them as

inactive zymogens, each in a single conformation.[6] In the

present study, we introduce selecase from Methanocaldococ-

cus jannaschii as a novel family member. We recombinantly

produced and purified selecase (see the Experimental Proce-

dures [EP] and Supplemental Results and Discussion [SRD]

in the Supporting Information for details). In contrast to the

other minigluzincins, the 110-residue full-length selecase

corresponded to a mature, fully active MP with narrow and

selective—hitherto unreported—substrate specificity that

cleaved bovine milk casein at a single site on its as1 chain

(Suppl. Figure 1 and Suppl. Tables 1 and 2).

Selecase was extremely soluble in aqueous buffer and did

not precipitate at 130 mgmLÿ1. Thus, we studied the concen-

tration-dependent enzymatic activity of selecase on a peptide

that mimics the casein cleavage site (peptide CCS). Normally,

peptide-bond hydrolysis byMPs is an ordered single-displace-

ment reaction that follows simple Michaelis–Menten kinet-

ics.[7] This entails that higher enzyme concentrations enhance

the initial rate of reaction in the pre-steady state following

a hyperbolic curve until a plateau is reached upon satura-

tion.[5] This is found for example, with tobacco-etch virus

proteinase, which is widely used in biotechnology (Figure 1a).

Surprisingly, although selecase activity did indeed

increase with concentration between 0.025–0.25 mgmLÿ1, it

fell sharply thereafter to become only residual at 50 mgmLÿ1.

Most interestingly, this inactive concentrated selecase

regained maximal activity following simple dilution with

buffer. Accordingly, selecase showed reversible enzymatic

autoinhibition due to changes in concentration—and not to

inhibition by the substrate or any other reagent. This, to our

knowledge, is novel for peptidases.

Subsequently, we explored the oligomerization of selecase

in solution in the concentration range 0.15–65 mgmLÿ1 using

several biophysical techniques (see EP and SRD for full

details). Briefly, calibrated size-exclusion chromatography

(SEC) revealed monomers, dimers, tetramers, and octamers

in variable amounts depending on the concentration (Suppl.

Figure 2a). SEC-MALLS, which combines SEC with multi-

angle laser light scattering (MALLS), revealed two average

populations with molecular weights of 25 KDa and 80 KDa,

possibly corresponding to dimeric and octameric selecase,

respectively, along with additional species such as monomers

and tetramers (Figure 1b and Suppl. Figure 2b). Sedimenta-

tion velocity analytical ultracentrifugation revealed the con-

centration-dependent presence of four oligomeric species,

which would be consistent with monomers, dimers, tetramers,

and octamers. This was backed by equilibrium velocity

experiments showing concentration-dependent average

masses ranging between monomers+ dimers and octamers

(Figure 1c and Suppl. Table 3). Chemical crosslinking experi-

ments followed by SDS-PAGE, in turn, showed monomers,

dimers, monomer–dimer complexes, and tetramers. Higher

oligomerization species were not detected due to intrinsic

experimental limitations (Suppl. Figure 2c). The circular

dichroism spectra of selecase, with either zinc or nickel in

the catalytic site, displayed the typical shape of well-folded

mostly a-helical proteins (Suppl. Figure 2d). Finally, SAXS

revealed that the protein did not aggregate at concentrations

of up to 65 mgmLÿ1 (Suppl. Table 4, Figure 1d, Suppl.

Figures 3 and 4). These results further showed that the

relative population of the oligomeric species in solution was

concentration dependent. In addition, single-value decom-

position analysis of the SAXS dataset indicated that four
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species (monomers, dimers, tetramers, and octamers) were

present.

Summarizing, biophysical analyses in solution indicated

the presence of mixtures of monomers, dimers, tetramers, and

octamers, with higher concentrations leading to greater

oligomerization but not indiscriminate aggregation or pre-

cipitation. The concentrations at which monomeric selecase

was predominant coincided with those of maximal enzymatic

activity (0.2–0.3 mgmLÿ1; Figure 1a), thus indicating that the

monomer is the active species and that oligomers correspond

to self-inhibiting species in all cases (see below). This would

explain why higher enzyme concentrations yielded lower

activity (Figure 1a) and is reminiscent of previous reports on

oligomerization inhibiting the activity of phospholipase A2.[9]

Notably, simple dilution with buffer reversed oligomerization

to yield monomers and restore activity.

To identify the molecular determinants of this behavior,

we crystallized and solved the structure of wild-type selecase

(see EP, SRD, and Suppl. Table 5). We obtained

three crystal forms—orthorhombic, tetragonal,

and hexagonal—which serendipitously corre-

sponded to monomeric (slc1), dimeric (slc2), and

tetrameric (slc4) forms of selecase, respectively.

This indicated that at least three of the oligome-

rization states found in solution had a counterpart

in the form of a stable, isolatable species, each one

favored by particular crystallization conditions.

The crystal structure of monomeric slc1 reveals—

by comparison with several functional but other-

wise unrelated MPs—that the overall architecture,

the metal-binding site, and the active-site environ-

ment are consistent with a competent and func-

tional mature enzyme (see Refs. [7b,10]). This

conclusion is supported by the enzymatic activity

found for selecase in solution associated with

a monomeric species (see above). It is also

reinforced by SAXS for which the experimental

scattering curves at the three lowest concentra-

tions—covering the activity maximum of the

enzyme—clearly indicated mixed populations of

monomers and dimers based on the crystallo-

graphic coordinates of slc1 and slc2 (see below),

with the monomeric fraction at the two lowest

concentrations reaching 70% (see Figure 1d,

SRD, and Suppl. Figures 3 and 4).

At 13.1 KDa, slc1 is the smallest active pepti-

dase structurally characterized to date and it has

a compact globular shape 35–40� in diameter

(Figure 2a). It consists of an upper N-terminal

subdomain (NTS; residues M1–Y76) and a lower C-

terminal subdomain (CTS; G77–K109), which are

connected by a mostly hydrophobic interface

(Suppl. Table 6) and separated by a horizontal

central active-site cleft (Figure 2b). The NTS is an

a/b-sandwich, with a three-stranded mixed b-sheet

(b1–b3; Suppl. Table 7) that forms the roof of the

selecase moiety (Figure 2a). Two roughly parallel

a-helices (“backing helix” a1 and “active-site

helix” a2) are attached to the convex surface of

the sheet, which faces the central core of the protein. A short

helical segment (“linking helix” aB) is inserted in the loop

connecting strand b3 with helix a2 (Lb3a2). Helix a2 roughly

parallels the active-site cleft and ends with the last residue of

the NTS at Y76. It encompasses a metal-binding motif, H69-

E70-X-X-H73, which is characteristic of MPs and includes two

metal-binding histidines and a general base/acid glutamate

essential for catalysis.[11] Residue H80, imbedded within La2a3

of the CTS, is the third metal ligand. The CTS mainly consists

of two helices (“glutamate helix” a3 and “C-terminal helix”

a4), whose axes intersect at roughly 908. Helix a3 contains F84

at the center of the “Ser/Gly-turn”,[6, 11a] which creates

a hydrophobic base for the metal-binding site and contributes

to its stabilization. The active-site cleft of selecase is framed

by helix a2; the “upper-rim” strand b2 of the NTS sheet and

the preceding “bulge-edge segment” (L34–I38); helices a3 and

a4; and La2a3, in particular through the side chains of K78

and Y79. The catalytic metal ion resides at the bottom left of

Figure 1. A polyoligomeric metallocaseinase with abnormal activity. A) Proteolytic

activity of wild-type selecase on peptide CCS (green curve). Tobacco-etch virus

proteinase mutant S219V, which shows comparable catalytic efficiency to selecase

but normal concentration-dependent activity, is shown for comparison (purple

curve). B) SEC-MALLS of selecase at selected initial concentrations (0.15–

65 mgmLÿ1; see also Suppl. Figure 2b). The peak pattern moves towards smaller

elution volumes with increasing protein concentration, thus suggesting protein

oligomerization. Curves are colored according to the inset in panel (D). dRI=differ-

ential refracting index. C) Analytical ultracentrifugation curves at six selected concen-

trations depicting the concentration-dependent oligomeric populations. Essentially,

monomers are predominantly found at 0–0.3 mgmLÿ1; dimers at 0.3–2 mgmLÿ1;

tetramers at 2–6 mgmLÿ1; and octamers at >6 mgmLÿ1. S=sedimentation coef-

ficient, c(S)=continuous sedimentation coefficient discribution. D) SAXS intensity

profiles, I(s), as a function of the momentum transfer, s, measured for wild-type

selecase at selected concentrations (see Suppl. Figure 3 for all curves). Profiles have

been displaced along the I(s) axis for comparison. The experimental scattering

curves at the three lowest concentrations studied indicate a mixed population of

monomers and dimers based on the crystallographic structures of slc1 and slc2
(black curves).

.Angewandte
Communications

10626 www.angewandte.org � 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2014, 53, 10624 –10630



the cleft (Figure 2a,b). At its right, a deep hydrophobic S1’

pocket is shaped by I38, A39, F65, I66, L102, and the solvent-

accessible ring surface of H69. This pocket optimally accom-

modates a phenylalanine in the P1’ position of substrates as

found at the casein cleavage site. The slc1 moiety is held

together by a central hydrophobic core, which traverses the

entire molecule, and several of the contributing residues also

shape the NTS–CTS interface (Figure 2a and Suppl. Table 6).

The crystal structure of slc2 shows a dimer (Suppl.

Table 8), and superposition of slc1 and slc2 monomers reveals

good overall fit, with only minor differences within the NTS

(see Figure 2c). However, major metamorphic rearrange-

ment is observed around the metal-binding site (see Figure 2c

and Suppl. Movie 1). In slc2, at the beginning of CTS, La2a3

folds outward between G77 and I81, with a maximal displace-

ment of 7�. This causes the third metal-binding protein

residue in slc1, H80, to swing out and protrude from the

molecular surface. This, in turn, leads to an upward shift of the

catalytic metal towards the general base/acid E70 (Figure 2c).

Two selecase monomers associate through C2 symmetry

under occlusion of a large surface (2130�2 ; see Suppl.

Table 8 and Figure 2d) and so the third metal-binding site is

taken over by H107 from helix a4 of the symmetric molecule.

Accordingly, this H80/H107 ligand swap is an intermolecular

event that yields a catalytically incompetent metal-binding

site and a blocked active-site cleft in slc2. This is consistent

with oligomerization coinciding with inactive species in

solution (see above).

As in slc2, the protomer of tetrameric slc4 shows good

overall fit with slc1 within the NTS, including the position and

conformation of most side chains at the NTS–CTS interface.

However, both major displacement and drastic conforma-

tional rearrangement are observed in the CTS (see Figure 3a

and Suppl. Movie 2). The segment of the active-site helix with

the first two metal ligands undergoes slight displacement

(Figure 3a). Downstream loop La2a3 and glutamate helix

a3—which is virtually unchanged in both slc1 and slc2—unfold

and give rise to strands b4 and b5, which adopt a canonical b-

ribbon structure (Figure 3a and Suppl. Table 7). Such long

stretches of a protein only rarely undergo such dramatic

transitions.[12] The b-ribbon protrudes away from the molec-

ular moiety (Figure 3a,b), as a result of which metal-ligand

H80 shifts roughly 16� from its position in slc1 and no longer

binds the metal. In contrast with a3, the C-terminal helix a4

keeps its helical structure but is displaced about 30 � apart on

average in slc4 (Figure 3a). Overall, this metamorphic struc-

tural transition of selecase is stabilized by the association of

four monomers in the crystal (Figure 3b–d, Suppl. Table 8,

and Suppl. Movie 2), which would explain tetrameric oligo-

merization in solution (see above). The oligomer is a compact,

almost spherical self-inhibitory particle 60–75� in diameter

Figure 2. Competent monomer versus incompetent dimers. A) Ribbon

representation of slc1 in standard orientation.[8] Helices (a1, aB, and

a2–a4) are shown in pink, b-strands (b1–b3) in magenta, and loops/

coils in purple. For extent and nomenclature of regular secondary

structure elements, see Suppl. Table 7. Selected residues are shown for

their side chains, as is the catalytic metal ion (magenta sphere). The

NTS and the CTS are shown over light green and light purple

background, respectively. B) Surface representation of slc1 colored

according to Kyte–Doolittle hydrophobicity (blue=hydrophilic over

white to orange=hydrophobic) in the same orientation as in (A)

showing the active-site cleft with the hydrophobic S1’ specificity pocket.

C) Superposition of slc1 (in pink) and the slc2 monomer (in cyan).

Depicted are the respective metal ions, which are shifted relative to

each other (purple arrow). Horizontal black arrows pinpoint the

anchor points around which the conformational rearrangement occurs.

D) Overall structure of symmetric dimeric slc2 (chains in cyan and

gold) depicted so that the crystallographic dyad (black horizontal

ellipses joined by a line) is in the plane of the picture. E) Superposition

of slc1 (in pink) and molecule B of the R36W selecase dimeric mutant

(slc2’; in light green). Magenta arrows pinpoint the side-chain move-

ment at position 36 owing to the mutation and the 508 rotation of C-

terminal helix a4. F) Structure of the asymmetric dimer of slc2’
consisting of helix-rotated molecule B (green) and close-to-native

molecule A (orange). Both active-site clefts are blocked but following

different mechanisms. Note the two W36 side chains at the interface.

G) Superposition of slc1 (in pink) and one of the two equivalent close-

to-native monomers of selecase I100F+ H107F dimeric mutant (slc2’’; in

purple). H) Inactive dimer of slc2’’(in purple and red).
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(Figure 3c,d). One monomer (chain A) interacts through D2

symmetry—by hiding a total interface of 9850�2—with two

neighboring molecules (chains B and D) through mixed

hydrophobic/hydrophilic contacts, and with one opposite

monomer (chain C) through hydrophobic contacts (Suppl.

Table 8). Two large elliptical openings (minor axis � 16�,

major axis� 21�; Figure 3d and Suppl. Movie 2) on opposite

faces of the particle are framed by upper-rim strands b2 and

Lb5a4 of two vicinal monomers (AB and CD). Access to the

particle lumen through these entrances is limited by the

respective b-ribbons, which protrude away from the particle

surface and do not contact each other. The central lumen of

the particle features a channel 50 � in length and 15 � in

diameter and allocates two internal dimetallic zinc-binding

sites. Each of them results from the fusion of two neighboring

metal sites as originally found in slc1 (chains AD and BC,

respectively), with the two metal ions of each site roughly 3�

apart (Figure 3b,d). Overall, this new conformation radically

alters the structural segments that shape the S1’ pocket and

the active-site cleft in competent slc1 and, thus, indicates that,

like slc2, the tetrameric slc4 structure corresponds to an

inactive species. This, again, is consistent with tetramers

coinciding with inactive species in solution.

Given the importance of the C-terminal helix a4 and loop

Lb1b2 in oligomerization, we selected residues R36, I100, I103,

and H107, which had been observed to participate in dimeri-

zation in slc2 and tetramerization in slc4 (Suppl. Table 8), and

generated a total of seven single, double, and triple point

mutants in an attempt to ablate the interactions responsible

for oligomerization and thus obtain monomeric forms. In

addition, we constructed two deletion mutants targeting a4,

lacking four (slcDC4) and eight (slcDC8) C-terminal residues.

Moreover, we cloned two close orthologues from Methano-

torris igneus and Methanocaldococcus fervens, which can be

envisaged as natural fivefold and 19-fold point mutants of

selecase (see EP and SRD for full details). All protein

variants were produced, purified, and concentrated similarly

to the wild-type except for slcDC4, which was obtained with

lower yields and could only be maximally concentrated to

5.0 mgmLÿ1, and slcDC8, which was insoluble and was

discarded. This finding pointed to a stabilizing effect of

helix a4 on the whole protein despite its overall flexibility in

the various structures analyzed. Despite differences in the

oligomer populations, all mutants displayed a concentration-

dependent equilibrium between monomers, dimers, tetram-

ers, and octamers and a reduction in activity as concentration

increased, similar to the wild-type (Suppl. Figure 5). These

results indicate that selecase is highly plastic, which allows it

to adapt to potentially deleterious point mutations and retain

its capacity to oligomerize.

This plasticity is backed by further structural studies. Out

of all the aforementioned mutants and orthologues, we

managed to crystallize variants R36W (hereafter slc2’) and

I100F+H107F (hereafter slc2’’) and solved their crystal struc-

tures (see Figures 2e–h and Suppl. Movie 3). Most interest-

ingly, slc2� showed a novel dimeric quaternary structure,

distinct from slc2, which displayed each protomer in a different

conformation despite the chemical identity of the molecules.

One molecule (A) essentially displays the conformation of

functional monomeric slc1, including the metal site and the

active-site cleft. It only differs significantly from the latter at

Lb1b2, which, owing to the side-chain replacement at

position 36, causes the entire loop and thus the latter side

chain to undergo major rearrangement towards the molecular

moiety. The other molecule (B) also essentially coincides with

slc1 but only until the glutamate helix. Thereafter, a 908

rotation around bond N–Ca of K95 results in C-terminal helix

a4 being rotated as a rigid body by 508 so as to approach and

thus sterically block its own active-site cleft on its primed side.

This further causes H107 to bind the catalytic metal, as

observed in slc2, except that here this is an intramolecular

rather than an intermolecular event (compare Figure 2d–f).

This novel conformation of a selecase variant in molecule B is

stabilized by an asymmetric interaction between C-terminal

helices with molecule A triggered by an edge-to-face inter-

action of theW36 side chains (Figure 2 f). This arrangement, in

turn, causes the active-site cleft of molecule A to be blocked

for substrate access by helix aB of molecule B, with Y57 of the

latter interacting with the S1’ pocket of molecule A. The

metal-binding site of the latter, in contrast, is unaffected.

Accordingly, slc2’ corresponds—like slc2—to an inhibited

conformation.

Figure 3. A compact autoinhibitory tetrameric particle. A) Superposi-

tion of slc1 and slc4 monomers in pink (magenta metal ion) and

turquoise (blue metal ion), respectively, in the view of Figure 2a. Only

the distinct secondary structure elements of slc4 are labeled (see also

Suppl. Table 7). Relevant residues undergoing major rearrangement

are displayed for both structures and labeled. The metal is shifted

downwards (red arrow). B) Within the slc4 tetramer, two neighbor

monomers as in (A), in turquoise (chain A; metal in blue) and light

green (chain D; metal in yellow), bind over a crystallographic dyad

perpendicular to the plane of the picture. This gives rise to a nonfunc-

tional dimetallic zinc site bound by H69 and H73 of either monomer.

C) Two dimers as in (B), in turquoise/light green (chains A and D) and

white/dark gray (chains B and C), associate face to face under a relative

908 rotation to yield the overall tetrameric particle, with two dimetallic

zinc sites in the particle lumen. D) Surface representation of (C) after

clipping off the frontal part to delineate the central particle channel.

Only the dimetallic site depicted in (B) is shown for clarity.
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As to slc2’’ , superposition of the two essentially identical

monomers in the asymmetric unit onto slc1 revealed a con-

formation that was close to that of the functional wild-type

monomer, except that the end of the C-terminal helix was

slightly unwound and more flexible owing to the two point

mutations (Figure 2g). However, the two phenylalanine

residues at positions 100 and 107 make two slc2’’ monomers

symmetrically bind mainly through their respective C-termi-

nal helices, which run roughly parallel to each other. As

a result the nonprimed sides of the active-site clefts are

occluded and the phenylalanine rings at position 100 pene-

trate the S1’ specificity pocket of the symmetric partner, as this

residue matches the specificity of the enzyme. Further

symmetric contacts are observed between the F107 side chain

of one molecule and loop Lb1b2 of the other, which enhance

the overall flexibility of these regions. Accordingly, the

structure of slc2’’ provides yet another mechanism of inhibition

of selecase, in this case merely by the shielding of the cleft

(Figure 2h). Thus, the two crystal structures of slc2’ and slc2’’
may represent genuine dimeric conformations of the mutants

triggered by the respective side-chain replacements, as none

of the corresponding structures was trapped in crystals of the

wild-type protein. This implies that replacement of just one

and two residues leads to two new structures of selecase (thus

totaling five), supporting the metamorphic character of this

protein.

Summarizing, we have succeeded in identifying and

probing for the first time the structural transitions of a natural

metamorphic protein with a multifunnel folding energy

landscape. Although metamorphic proteins may be encoded

by a relevant fraction of all genomes, the lack of bioinfor-

matics and structural approaches to identify them from the

sequence restricts their discovery to serendipity. Consistently,

to our knowledge 3D structural evidence for their existence

has only been published for two natural proteins,[2, 13] which

just flip between two folds: ubiquitin protein ligase inhibitor

Mad2[14] and the chemokine lymphotactin.[15] In selecase, the

energy basins are occupied by distinct fully structured and

stable states and not by unfolded species or molten globules

(Figure 4 and Suppl. Movies 1–3). One conformer is catalyti-

cally competent and the others are incompetent but they

coexist in equilibrium. These transitions between species are

triggered by major rearrangement after residue G77 at the

NTS–CTS interface, and they mainly affect the CTS. This is

consistent with each subdomain corresponding to a distinct

folding unit or foldon[16] and the subdomain interface acting as

a reversible zipper. The high flexibility of CTS was further

verified by computational analysis of local conformational

frustration and assessment of interdomain flexibility based on

the elastic network model (see SRD and Suppl. Figure 7). In

addition, the thermodynamic consistency of interconversion

was further backed by the calculated geometric and thermo-

dynamic parameters of the solvation free energy of folding

and of dissociation, as well as compactness, for wild-type

selecase structures (see SRD and Suppl. Table 8). Owing to

inherent flexibility of the CTS, it avoids kinetic trapping in an

irreversible misfolded state during conversion between alter-

nate conformers through the protein–protein interactions of

oligomeric species as previously suggested for metamorphic

proteins.[13] In our view, it is a striking observation that simple

dilution/concentration of a sample at room temperature

triggers fold switches that cause the repacking of a hydro-

phobic core and exposure of new binding surfaces, which in

turn generate the spontaneous conversion between active

monomers and inactive oligomers. This finding indicates that

the energy barriers separating the minima are surmountable

and that interconversion may proceed without passing

through fully unfolded states,[2] as suggested by the finding

of largely conserved NTS foldons. Finally, our results also

provide the first evidence for a peptidase with a reversible,

strictly concentration-dependent reduction of activity at

higher concentrations, which is triggered by the sequestering

of the competent conformation in incompetent but structured

oligomers. This system affords a switch that provides a unique

and reversible mechanism of control of catalytic activity in

nature.
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Intrinsically Disordered Proteins (IDPs) perform a broad range

of biological functions. Their relevance has motivated intense

research activity seeking to characterize their sequence/

structure/function relationships. However, the conformational

plasticity of these molecules hampers the application of

traditional structural approaches, and new tools and concepts

are being developed to address the challenges they pose.

Small-Angle Scattering (SAS) is a structural biology technique

that probes the size and shape of disordered proteins and their

complexes with other biomolecules. The low-resolution nature

of SAS can be compensated with specially designed

computational tools and its combined interpretation with

complementary structural information. In this review, we

describe recent advances in the application of SAS to

disordered proteins and highly flexible complexes and discuss

current challenges.
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Introduction
In the last two decades, Intrinsically Disordered Proteins

or Regions (IDPs/IDRs) have emerged as fundamental

molecules in a broad range of crucial biological functions

such as cell signaling, regulation, and homeostasis

[1,2,3��]. Due to their lack of a permanent secondary

and tertiary structure, IDPs and IDRs are highly plastic

and have the capacity to perform specialized functions

that complement those of their globular (folded) counter-

parts [4]. Disordered regions, which can finely adapt to

the structural and chemical features of their partners, are

very well suited for protein–protein interactions and are

thus abundant in hub positions of interactomes [5–7].

The importance of disordered proteins in a multitude of

biological processes has fostered intense research efforts

that seek to unravel the structural bases of their function.

Nuclear Magnetic Resonance (NMR) has been the main

structural biology technique used to characterize the

conformational preferences at residue level, and, there-

fore, to localize partially structured elements [8,9]. How-

ever, a number of structural features related to the overall

size and shape of IDPs or their complexes remain elusive

to NMR. To study these properties, thereby comple-

menting NMR residue-specific information, Small-Angle

Scattering (SAS) of X-rays (SAXS) or Neutrons (SANS) is

the most appropriate technique [10–12]. Although SAS is

a low-resolution technique, the data obtained is sensitive

to large-scale protein fluctuations and the presence of

multiple species and/or conformations in solution [13–15].

However, the conversion of SAS properties into structural

restraints is challenging due to the enormous conforma-

tional variability of IDPs and the ensemble-averaged

nature of the experimental data [16]. The quantitative

analysis of these data in terms of structure has prompted

the development of computational approaches to both

model disordered proteins and to use ensembles of con-

formations to describe the experimental data. Here we

highlight the most relevant developments and applica-

tions of SAS to IDPs and IDRs, with a special emphasis on

the computational strategies required to fully exploit the

data in order to achieve biologically insightful informa-

tion.

Structural models of IDPs and their
experimental validation
For disordered proteins, the structural insights gained

from overall SAS parameters, such as the radius of gyra-

tion, Rg, the pairwise intramolecular distance distribution,

p(r), and the maximum intramolecular distance, Dmax, are

limited. Neither these parameters nor the traditional

Kratky representation, I(s)s2 versus s where I(s) represents

the scattering intensity and s the momentum transfer,

which qualitatively report on the compactness of biomo-

lecules in solution, directly account for the ensemble
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nature of disordered proteins. In order to fully exploit the

structural and dynamic information encoded in SAS data,

it is necessary to use realistic three-dimensional (3D)

models. However, the generation of conformational

ensembles of disordered proteins is extremely challeng-

ing, mainly because of the flat energy landscape and the

large number of local minima separated by low-energy

barriers [17]. The most popular methods to generate 3D

models of IDPs are based on residue-specific conforma-

tional landscapes derived from large databases of crystal-

lographic structures [18,19,20�]. However, the main

limitation of these approaches is the absence of sequence

context information, thereby precluding the prediction of

transiently formed secondary structure elements or the

presence of long-range interactions between distant

regions of the protein. Accurate energy models (force-

fields) accounting for the interactions within the chain

and with the solvent are required to describe these

features. The development of specific force-fields to

study conformational fluctuations in disordered proteins

is a very active field of research [21–24]. Molecular

Dynamics (MD) or Monte-Carlo (MC) simulations, when

an appropriate energy description is provided, are suitable

methods to correctly sample the conformational space of

IDPs. However, the high-dimensionality and the breadth

of the energy landscape hamper exhaustive exploration of

this space. Replica Exchange MD (REMD) [25,26],

which exchanges conformations between parallel simula-

tions running at multiple temperatures, or Multiscale

Enhanced Sampling (MSES) [27], which couples tem-

perature and Hamiltonian replica exchange, have been

proposed to enhance the conformational exploration of

MD methods. The performance of MD-based methods

can also be improved by the inclusion of experimental

data to delimit the exploration to the most relevant

regions of the conformational space [28–30].

The quality of computational models of disordered pro-

teins is normally validated using experimental data. The

Rg derived from the low-angle region of SAXS curves or

from the p(r) function is an excellent probe of the overall

size of a particle in solution. Rg compilations have been

extensively used to validate models of denatured and

natively disordered proteins through Flory’s relationship,

which correlates the Rg observed with the number resi-

dues of the chain [31,14]. The compilation of the Rgs from

76 IDPs (Figure 1) reveals that these proteins are more

compact than chemically denatured ones. It has been

shown that denatured proteins present an enhanced

sampling of extended conformations, probably due to

the interaction of the protein with chemical agents

[32]. Importantly, deviations from the expected Rg values

for canonical random-coil behavior, which is represented

by the green line in Figure 1, indicate the presence of

structural features that modify the overall size of the

particle in solution towards more extended or more com-

pact (Figure 1). The extendedness detected using this

analysis for several Tau protein constructs has been

linked to the presence of secondary structural elements

probed by NMR [29]. These structural properties can be

more thoroughly examined when the complete SAXS

curve is used to validate the ensemble models of peptides

[33] or proteins [19,34,35].

Ensemble approaches
In the last decade, ensemble methods have become

highly popular to structurally characterize disordered

proteins. Guided by experimental data, these methods

aim to derive accurate ensemble models of flexible pro-

teins. Several strategies that apply these methods to SAS

data have been reported: Ensemble Optimization Meth-

od (EOM) [36,37]; Minimal Ensemble Search (MES)

[38]; Basis-Set Supported SAXS (BSS-SAXS) [39];

Maximum Occurrence (MAX-Occ) [40]; Ensemble Re-

finement of SAXS (EROS) [41]; Broad Ensemble Gener-

ator with Re-weighting (BEGR) [42]; and Bayesian

Ensemble SAXS (BE-SAXS) [43]. These methods share

a common strategy that consists of the following three

consecutive steps: (i) computational generation of a large

ensemble that describes the conformational landscape of
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Rg values from 76 IDPs as a function of the number of residues of the

protein are plotted in Log–Log scale. Only proteins lacking a

permanent secondary or tertiary structure were considered for the

compilation. Proteins with ordered domains, molten globules, or

denatured proteins were not considered. Straight lines correspond to

Flory’s relationships parametrized for denatured proteins using

experimental data (purple-dashed) [31] and IDPs using computational

ensembles calculated with Flexible-Meccano (green-solid) [32].

Colored bands correspond to uncertainty of the parametrization for

both models. Some IDPs contain local structural features and

consequently they are globally more extended or more compact than

expected for a random coil. These structural features, even if

transient, can be manifested in the experimental Rg.
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the protein; (ii) calculation of the theoretical SAXS curves

from the individual conformations; and (iii) use of a

multiparametric optimization method to select a sub-

ensemble of conformations that collectively describe

the experimental profile. Despite the common strategy,

these approaches present distinct features in the three

steps. Readers are referred to the original articles for

detailed descriptions. The availability of ensemble meth-

ods has transformed the study of flexible proteins by SAS.

Ensemble methods provide a description in terms of the

statistical distributions of structural parameters or con-

formations that is revolutionary with respect to traditional

analyses based on averaged parameters extracted from

raw data. Using this power, structural perturbations

exerted by temperature [44�,45], buffer composition

[46], or mutations [47] have been monitored in terms

of ensembles of conformations.

Despite the popularity of ensemble methods, several

aspects are still under debate. The most relevant ones

are the use of discrete descriptions for entities that probe

an astronomical number of conformations, and the sta-

tistical significance of ensembles derived from data

containing a very limited amount of information. The

strategies described use distinct philosophies to address

these issues, including the search for the minimum

number of conformations to describe the data [37,38],

the representation of the optimal solution as a distribu-

tion of low-resolution structural parameters such as Rg or

Dmax [36], and the application of Bayesian statistics

[39,43] or maximum entropy approaches [41]. Regard-

less of the strategy used to derive an ensemble of

conformations compatible with the experimental data,

one must be careful on the structural interpretation of

the final solution. The optimized ensemble is a repre-

sentation of the behavior of the protein in solution and

not the exact enumeration of the conformations adopted

by the protein. Consequently, the final ensemble can

only be used to derive structural features that describe

the protein. Importantly, the nature of these features

depends on the experimental data used to derive the

model. If only SAS data have been used, then an assess-

ment of the degree of flexibility, and the size and shape

distributions sampled by the protein can be obtained

from the ensemble. Conversely, conformational prefer-

ences at residue level can be extracted if NMR informa-

tion probing structure in a residue-specific manner is

used along the refinement.

Enriching the definition of conformational
ensembles of IDPs with complementary
information
The definition of protein ensembles derived from SAS

data using ensemble methods is limited to the overall

structure and the space sampled by the protein in solu-

tion. Although this is an important improvement with

respect to classical approaches, several crucial features,

such as the localization of secondary structural elements

or compact regions, remain elusive using this approach.

Considerable research efforts have been channeled into

enriching the resolution of the resulting ensemble with

complementary information.

NMR is the only technique that can provide atomic-

resolution information on IDPs and, consequently, it is

the most common method applied in combination with

SAS [48]. NMR is highly versatile and can measure

multiple observables reporting on protein structure and

dynamics [49]. Concretely, information reporting on the

backbone conformational preferences at residue level can

be probed by means of time-averaged and ensemble-

averaged chemical-shifts (CSs), J-couplings and Residual-

Dipolar Couplings (RDCs). NMR can also probe long-

range interactions within a protein chain or in protein

complexes through Paramagnetic Relaxation Enhance-

ment (PRE) experiments. In these experiments, a stable

radical or a paramagnetic metal is introduced in a specific

position of the chain, and the spatially close atoms can be

identified by a decrease in their signal intensity that is

proportional to the distance.

The best manner to exploit the complementarity be-

tween NMR and SAS is to integrate the experimental

data into the same refinement protocol. The programs

ENSEMBLE [50,51] and ASTEROIDS [52] derive

ensembles of disordered proteins by collectively describ-

ing SAXS curves, in addition to several NMR observables.

These powerful approaches seek to find the appropriate

way to combine data with very different information

content while avoiding overfitting. In a pioneering study,

ensembles of Tau and a-synuclein were determined by

combining SAXS with multiple backbone CS, RDC, and

PRE datasets [53��]. Those authors addressed the optimal

combination of experimental data and the overfitting

problem with extensive cross-validation tests that sub-

stantiated conformational bias in the aggregation-nucle-

ation regions for both proteins.

Other structural techniques such as single molecule

Fluorescence Resonance Energy Transfer (smFRET)

[54] and Electron Paramagnetic Resonance (EPR)

[55,56��] have been combined with SAXS to study large

and flexible complexes. Recent developments in Mass

Spectrometry (MS) offer novel sources of structural in-

formation [57]. Ion Mobility Spectrometry (IMS) can

capture, in a similar way to SAS, the overall properties

of conformational ensembles of disordered proteins.

However, a recent study comparing IMS and SAXS data

for some IDPs suggests that the conformations sampled in

solution and in gas-phase are not equivalent [58]. Hydro-

gen/Deuterium Exchange MS (HDX/MS) probes struc-

tural elements in proteins by identifying regions that are

protected from the exchange with solvent protons [57].

The availability of fast HDX/MS methods enables the
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exploration of secondary structural elements in IDPs and

localizing their interaction sites with globular partners

[59]. In a recent study HDX/MS information was com-

bined with SAXS to study the calcium-induced structure

formation in RD, a protein hosting repeated regions able

to bind this cation [60].

The structural definition of a SAXS derived ensemble

model can also be enriched by the simultaneous analysis

of curves measured for multiple deletion mutants of the

same IDP [36]. When applied to two different isoforms of

Tau protein, this approach identified the repeat region of

the protein as the origin of distinct global rearrangements

of its flanking regions [61].

The large toolbox of structural techniques that can probe

distinct structural features of IDPs will result in a better

understanding on their structure–function relationship.

In this regard, the future development of robust and

reliable ways to integrate biophysical measurements in

ensemble approaches is imperative when addressing

complex biomolecular entities such as IDPs and their

complexes.

Disordered proteins in complexes
The biological function of many IDPs is manifested when

they recognize their biological folded partners [5]. This

recognition frequently involves linear motifs of the dis-

ordered chain, which, upon binding, adopt relatively fixed

conformations while the rest of the IDP remains flexible

[62].

The relevance of protein–protein complexes involving

disordered partners has promoted growing interest in

unraveling their structural characterization, with the

aim to understand the bases of their biological activity.

This structural characterization is complex and poses

multiple challenges to traditional structural biology

methods. SAXS has emerged as a valuable alternative.

However, overall structural parameters or ab initio recon-

structions derived from SAXS curves cannot capture the

inherent plasticity of these complexes [63,64�,65]. Hybrid

(or integrative) methods that combine information from

multiple techniques, thus exploiting their individual

strengths, are the most appropriate approaches to study

highly flexible complexes [66]. In this context, it is

important to describe how different structural biology

18 Proteins: bridging theory and experiment
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Cartoons representing the structural sensitivity of NMR, X-ray crystallography, and SAS for a complex involving a disordered protein (central

cartoon). NMR normally probes the flexible regions of these complexes while the globular partner and the interacting region remain invisible.

Crystallography provides detailed information of the interacting region of the complex but not for the flexible parts. SAXS probes the complete

ensemble, although the details cannot be assessed due to its inherent low-resolution. SANS, through contrast variation experiments, can probe

independently both partners in the context of the complex depending on the deuteration level of the partners and the D2O/H2O of the buffer. SAS

is an ideal tool to integrate NMR and crystallographic information to build complete structural and dynamic models of disordered biomolecular

complexes.
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techniques probe complexes involving IDPs (Figure 2).

Due to the dynamic nature of the interaction and the

distinct hydrodynamic properties of the globular and

disordered parts of the complex, NMR generally detects

only those regions that remain flexible upon binding.

Although not general, it is sometimes possible to crystal-

lize the globular partner in the presence of a small peptide

corresponding to the interacting region of the IDP.

Therefore, X-ray crystallography provides an atomic

resolution picture of the interacting regions that is com-

plementary to NMR since the two techniques probe non-

overlapping parts of the same entity [67]. Conversely,

SAXS probes the complete assembly and can be used to

integrate the information from both NMR and X-ray

crystallography. If one of the partners is deuterated,

contrast variation SANS experiments can be performed

and the individual components of the assembly can be

alternatively highlighted depending on the D2O/H2O

ratio of the buffer. The power of combining multiple

techniques is exemplified in the study of the interaction

of the Vesicular Stomatitis Virus (VSV) nucleoprotein

(N0) and the dimeric phosphoprotein (P), a high-affinity

complex that precludes the oligomerization of N0 in vivo

[68��]. Using EOM, the authors simultaneously fitted one

SAXS curve and four SANS curves measured at different

contrast levels for the complex of N0 with deuterated P
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Examples of polydisperse scenarios that can occur in low-affinity complexes involving an IDP and a globular partner. (a) Both proteins have a

single binding site. The complex is in equilibrium with the free forms of both proteins. (b) The globular partner is a dimer and has two identical

binding sites. The free forms are in equilibrium with three possible complexes recognizing one or two binding sites of the globular partner. Due to

the symmetry of the dimer, the two singly bound complexes are however indistinguishable by SAS. (c) The IDP presents two similar binding sites

(pink and green). The free forms are in equilibrium with two 1:1 complexes using a distinct IDP interacting site to bind the globular partner, and a

complex where the IDP simultaneously interacts with two globular partners. On the right part of the figure, three panels are displayed representing

the molar fraction of each species along a simulated titration experiment for each scenario. These populations were computed assuming a fixed

concentration of the globular partner, [globular] = 100 mM, and increasing concentrations of IDP, [IDP], from 1 mM to 400 mM. A common

dissociation constant Kd = 20 mM was used for scenarios A and B, in panel C the two IDP binding sites, pink and green, display a Kd = 20 mM and

40 mM, respectively. These panels exemplify the inherent polydispersity of moderate affinity complexes, and how multiple titration experiments will

probe differently the species present and their relative populations.
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protein. The additional information provided by the

distinct contribution of the two proteins in the SANS

experiments notably improved the description of the

conformational properties of the complex.

In many cases, the conformational mobility of the inter-

acting region of the IDP is reduced (or frozen) upon

binding to the biological partner. There is an entropic

cost associated with this rigidification that often leads to

low-affinity to moderate-affinity complexes (Kd > 1 mM)

[62]. The structural modulation of the affinity is key to

achieving tunable responses to external signals, thereby

explaining the prevalent role of disordered proteins in

signaling processes [2,3]. In the concentration range nor-

mally used in SAXS experiments, the complex is in

equilibrium with the free forms of the two partners,

thereby giving rise to population-weighted averaged

SAXS curves (Figure 3a). This scenario can be even more

complex if one or both of the partners have multiple

equivalent or similar binding sites (Figure 3b,c). In this

case, the polydispersity of the mixture increases as a result

of the presence of several complexes with distinct stoi-

chiometries.

The interpretation of SAS data from polydisperse sam-

ples is challenging [69]. Although the coupling of SAXS

to Size-Exclusion Chromatography (SEC-SAXS) can, in

some instances, separate the components of the mixture,

there are multiple examples where the coexistence of

multiple species is unavoidable. In these circumstances

and with the aim to isolate the contribution of the

individual species within complex mixtures, analytical

approaches have been developed to decompose large

SAXS titration datasets [70,71]. This decomposition is

easier when prior structural knowledge of the species is

used for the analysis [69]. However, to apply this strat-

egy to low-affinity flexible complexes, accurate confor-

mational descriptions of all species in the free and

bound forms are mandatory. The analysis of SAS data

measured in samples with different relative concentra-

tions of both partners seems the most appropriate strat-

egy to enrich the information content in order to

structurally characterize these extremely challenging

scenarios (Figure 3).

Conclusions and outlook
During the last decade, SAS has been added to the

toolbox of techniques used to study conformational fluc-

tuations in proteins. This dynamic revolution of SAS is

linked to the development of computational tools able to

describe the conformational landscape of biomolecules

and ensemble approaches with the capacity to interpret

SAS data in terms of structural variability. These compu-

tational tools, which use chemical and structural knowl-

edge of biomolecules, partially compensate for the

limited amount of information coded in a SAS curve.

Therefore, the capacity to fully exploit the structural

information held in SAS data will necessarily be linked

to the development of more advanced and precise compu-

tational approaches with specially developed force-fields.

This notion is especially applicable to IDPs and IDRs,

which populate a huge number of conformational states.

For these proteins, SAS can be enriched with comple-

mentary information obtained by NMR, smFRET, EPR,

or MS, and integrated into a common ensemble model

embedding structure and dynamics. A particularly chal-

lenging subclass of IDPs is that containing Low-Com-

plexity Regions (LCRs), which are involved in multitude

of biological processes and are related to severe patholo-

gies. LCRs are unusually simple protein sequences with a

strong amino acid composition bias. The resulting simi-

larity of chemical environments within their sequence

hampers their structural characterization by NMR. SAS

can be a valuable alternative through which to study this

important but structurally neglected family of proteins

[72–74].

The function of multitude of IDPs is determined by their

interaction with biomolecular partners to form assem-

blies, which, in many cases, are of low to moderate

affinity. The capacity of SAS to probe the size and shape

of particles in solution places this technique in a unique

position to address these polydisperse scenarios. A case in

point is the fibrillation process that several IDPs undergo

to form amyloids, which are linked to severe diseases.

The decomposition of time-dependent SAXS datasets

has been successfully used to characterize intermediate

oligomeric forms [75�,76], thereby validating SAXS as a

practical tool for this purpose.

The need to understand the mechanisms underlying

complex cellular processes and recent technical and

conceptual advances in structural biology techniques

across the board have prompted researchers to tackle

challenging systems that were inaccessible some years

ago. Many of these systems are inherently dynamic and/

or polydisperse and can be exquisitely probed by SAS. As

a consequence, we anticipate that SAS will take on

greater relevance in hybrid approaches where its unique

information will be synergistically integrated with data

from multiple sources to deliver accurate structural and

dynamic models of disordered proteins and their com-

plexes.
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32. Bernadó P, Blackledge M: A self-consistent description of the
conformational behavior of chemically denatured proteins
from NMR and small angle scattering. Biophys J 2009,
97:2839-2845.

33. Zagrovic B, Lipfert J, Sorin EJ, Millett IS, van Gunsteren WF,
Doniach S, Pande VS: Unusual compactness of a polyproline
type II structure. Proc Natl Acad Sci USA 2005, 102:11698-11703.

34. Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR,
Mylonas E, Svergun DI, Blackledge M, Fersht AR: Structure of
tumor suppressor p53 and its intrinsically disordered N-
terminal transactivation domain. Proc Natl Acad Sci USA 2008,
105:5762-5767.
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73. Boze H, Marlin T, Durand D, Pérez J, Vernhet A, Canon F, Sarni-
Manchado P, Cheynier V, Cabane B: Proline-rich salivary proteins
have extended conformations. Biophys J 2010, 99:656-665.

74. Owens GE, New DM, West AP, Bjorkman PJ: Anti-PolyQ
antibodies recognize a short PolyQ stretch in both normal and
mutant huntingtin exon 1. J Mol Biol 2015, 427:2507-2519.

75.
�

Vestergaard B, Groenning M, Roessle M, Kastrup JS, van de
Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI: A helical
structural nucleus is the primary elongating unit of insulin
amyloid fibrils. PLoS Biol 2007, 5:1089-1097.

Pioneering study on the characterization of fibrillating proteins using
SAXS. The fibrillation of insulin is monitored by SAXS in a time-dependent
manner. The resulting curves are the population-weigted averages of all
species co-existing in solution. In an arduous procedure, the species-
pure curves for the three main components of the mixtures were decom-
posed allowing their structural characterization including their molecular
weight, oligomerization state, and 3D arrangement.

76. Giehm L, Svergun DI, Otzen DE, Vestergaard B: Low-resolution
structure of a vesicle disrupting alpha-synuclein oligomer that
accumulates during fibrillation. Proc Natl Acad Sci USA 2011,
108:3246-3251.

Small-angle scattering on disordered proteins Cordeiro et al. 23

www.sciencedirect.com Current Opinion in Structural Biology 2017, 42:15–23


