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Résumé substantiel

1 Introduction

La modélisation conjointe de données longitudinales et de données de survie est de plus
en plus utilisée dans les essais cliniques en cancer. Elle permet de modéliser simultanément
un processus longitudinal et un processus de survie tout en prenant en compte le lien entre
ces deux processus.

En cancer de la prostate, la modélisation conjointe est très utile. L’antigène spécifique
de la prostate (PSA), qui est une protéine sécrétée par la prostate, se trouve être sur-
exprimé en présence du cancer. Ce marqueur tumoral longitudinal est couramment utilisé
par les cliniciens afin de surveiller les patients atteints de cancer de la prostate localisé
après un traitement (radiothérapie ou chirurgie) et de détecter la présence du cancer. Di-
vers auteurs ont montré, à travers différents types de modèles mixtes, que la dynamique
de ce marqueur biologique ainsi que le niveau pré-traitement de PSA et d’autres facteurs
mesurant l’agressivité des cellules cancéreuses et l’étendue de la tumeur, étaient des fac-
teurs de risque de progression et permettaient de prédire le risque de rechute clinique de
façon dynamique (par exemple en utilisant les PSA collectés successivement pour adap-
ter la prédiction au cours du temps) . En pratique, un patient peut avoir une succession
d’événements de progressions cliniques avec par exemple une récidive locale, suivie par
une récidive métastatique à distance puis le décès. Ainsi, au lieu d’un événement clinique
unique, la progression du cancer de la prostate devrait être définie comme un processus
multi-états avec un accent sur les transitions entre les états cliniques et l’impact de la
dynamique du biomarqueur sur celles-ci. Ceci est essentiel pour comprendre et prédire
avec précision l’évolution de la maladie, et c’est d’une importance particulière pour les
cliniciens qui ont besoin de distinguer les différents types d’événements afin d’adapter
correctement le traitement.

Un autre aspect clé dans la modélisation conjointe est la nature du marqueur lon-
gitudinal. Dans la littérature, ont principalement été proposés des développements pour
un marqueur longitudinal Gaussien, ce qui est satisfaisant pour nombre de biomarqueurs
issus de dosages sanguins tels que le PSA. Cependant, on recueille aussi fréquemment
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RÉSUMÉ SUBSTANTIEL

des marqueurs non Gaussiens, et il n’est pas toujours possible de les transformer afin de
satisfaire les hypothèses de normalité. C’est notamment le cas des échelles de qualité de
vie contenant peu de modalités. Bien que ces marqueurs soient de plus en plus présents
dans la recherche en cancer, leur analyse conjointe est limitée du fait en particulier de
l’absence de logiciels s’adaptant à la nature ordinale du marqueur.

2 Modélisation conjointe d’un processus longitudinal
et d’un processus multi-états

Dans ce contexte, nous avons premièrement proposé un modèle conjoint avec effets
aléatoires partagés pour un processus longitudinal Gaussien et un processus multi-états
corrélés qui est divisé en deux sous-modèles : un sous-modèle linéaire mixte pour les don-
nées longitudinales, et un sous-modèle multi-états avec intensités proportionnelles pour
chaque covariable pour le(s) temps de transition individuel(s), tous deux liés par des
effets aléatoires partagés. Les paramètres de ce modèle sont estimés dans le cadre du
maximum de vraisemblance via un algorithme EM couplé à un algorithme quasi-Newton
en cas de convergence lente. Le modèle multi-états conjoint a été implémenté sous R,
via la combinaison et l’extension de deux packages de référence (mstate pour modèles
multi-états et JM pour modèles conjoints). L’implémentation est donc facile et efficace.
Le programme d’estimation a été validé par une étude de simulation, soulignant les très
bonnes performances du programme. Néanmoins, l’inférence statistique implique un cal-
cul d’intégrale sur les effets aléatoires individuels qui induit des complexités numériques.
L’étude de simulation a ainsi révélé la nécessité d’utiliser des quadratures Gaussiennes
précises, en particulier lorsque la dimension des effets aléatoires augmente, afin d’obtenir
des estimations précises. Nous avons ensuite appliqué le modèle multi-états conjoint à
deux cohortes d’hommes traités par radiothérapie pour un cancer de la prostate localisé
aux Etats-Unis et au Canada. L’application a confirmé que la dynamique des PSA via son
niveau et sa pente courantes impactait fortement le risque instantané d’avoir une rechute
clinique après la fin de la radiothérapie, mais n’était pas nécessairement associée à une
évolution clinique de la maladie après un stade avancé. Par exemple, après une rechute à
métastases, la dynamique de PSA n’impactait plus le risque de décéder. Ceci illustre que
dans ces cancers avancés, d’autres marqueurs biologiques sont sans doute à privilégier. Ce
travail a été publié dans Statistics in Medicine en 2016.
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3 Score test pour une corrélation résiduelle entre
temps de transition individuels

Lorsque l’on s’intéresse à un ensemble de progressions cliniques en santé, il peut arriver
que que certains individus soient plus à risque que d’autres d’avoir une succession d’évé-
nements, sans que ceci soit expliqué par les variables explicatives et marqueurs d’intérêt.
En cancer de la prostate par exemple, pour deux patients avec les mêmes caractéristiques
mesurées, l’un d’entre eux peut expérimenter plusieurs rechutes de la maladie, et l’autre
aucune. Ce phénomène peut se traduire par la nécessité d’inclure un effet aléatoire indi-
viduel dans le modèle multi-états - on parle alors de terme de fragilité - qui capte cette
hétérogénéité non expliquée par les variables explicatives incluses dans le modèle. Nous
avons donc proposé un score test qui permet de tester l’inclusion d’un tel terme de fra-
gilité Gaussien. Le score test a l’avantage de ne nécessiter que l’estimation du modèle
multi-états conjoint "standard", c’est à dire qui n’inclut pas le terme de fragilité.

Une expression analytique de la statistique de score a été trouvée. Pour la variance,
aucune expression n’a pu être obtenue et nous avons donc utilisé une approximation de
la variance asymptotique corrigée par rapport aux paramètres de nuisance du modèle
obtenue à l’aide d’une méthode de différence finie.

Une étude de simulation a été menée pour s’assurer des bonnes performances du score
test. Les simulations réalisées ont révélé une estimation correcte de l’erreur de type-I
et une bonne puissance sous couvert de collecter une information suffisante qui garantit
d’atteindre la distribution asymptotique de la statitistique de score. En particulier, le test
ne peut pas être appliqué en présence d’un faible nombre d’individus ou de transitions
par individu.

Le score test pour un terme de fragilité dans un modèle multi-états conjoint a été
implémenté sous R, avec une fonction simple d’utilisation proposée aux utilisateurs qui
utilise les fonctionnalités de JM. Une application a ensuite été menée à partir des don-
nées déjà étudiées avec des patients traités par radiothérapie pour un cancer prostate
localisé. Celle-ci a confirmé l’utilité du score test afin de vérifier l’hypothèse Markovienne
du processus multi-états, qui suppose notamment une indépendence entre les temps de
transition individuels.

Le score test que nous avons proposé peut également être utilisé comme outil de qualité
d’ajustement de modèle. Dans l’application il a notamment révélé la présence de sujets
avec des caractéristiques extrêmes par rapport à la population générale. Il nous a ainsi
permis d’obtenir un modèle plus performant et s’ajustant mieux aux données étudiées.
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Le modèle final a confirmé que la dynamique des PSA avait un fort impact sur le risque
de rechute clinique post-radiothérapie, mais n’était pas nécessairement associée à une
évolution de la maladie après une première rechute. Ce travail a donné lieu à un article
actuellement soumis pour publication dans un journal de biostatistique.

4 Pouvoir prédictif des modèles conjoints et modèles
landmarks

Un autre pan de cette thèse concerne l’aspect prédictif de modèles prenant en compte
des caractéristiques individuelles dynamiques. En effet, prédire précisément pour les sujets
traités leur probabilité individuelle de progression telle qu’une rechute clinique dans les x
prochaines années à partir des informations individuelles collectées jusqu’au temps de la
prédiction, est devenu une question centrale dans le monitoring des patients traités pour
un cancer. Des stratégies personnalisées de traitement peuvent ensuite être proposées
selon les probabilités individuelles actualisées de chaque type de progression, ou le temps
de la prochaine visite de suivi peut être optimisé.

Ces prédictions dynamiques individuelles peuvent être calculées à partir de deux prin-
cipales approches de modélisation statistique : la modélisation conjointe et la modélisation
par landmark. La modélisation conjointe analyse simultanément les mesures répétées du
biomarqueur et les données de temps d’événement pour un ensemble de patients en les
reliant par une fonction des effets aléatoires partagés. Cette approche a l’avantage de mo-
déliser la progression de la maladie dans son ensemble, ce qui la rend très populaire chez
les statisticiens. Mais elle repose souvent sur des hypothèses statistiques simplificatrices
(e.g., proportionnalité des risques) et reste très complexe à estimer, si bien qu’elle est
difficile à mettre en oeuvre pour réaliser de la prédiction dynamique. La modélisation par
landmark consiste à ajuster des modèles de survie standards tenant compte de la dyna-
mique du biomarqueur, en ne considérant que le sous-échantillon des patients à risque
d’événement au temps de prédiction, et leur histoire des covariables jusqu’au temps de
prédiction. Ces modèles induisent nettement moins de problèmes numériques et réduisent
le possible biais d’estimation lié à l’hypothèse de proportionnalité des risques d’événement.
Cependant, comme ils n’explorent pas complètement la corrélation entre le marqueur et
le temps d’événement, ils peuvent donner des estimateurs peu précis. Ces deux approches
diffèrent donc dans l’information utilisée, les hypothèses du modèle et la complexité des
procédures computationnelles.

Motivés par la prédiction de progressions concurrentes du cancer de la prostate (re-
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chute clinique ; décès non dû au cancer) à partir de l’histoire des PSA, nous avons comparé
ces approches statistiques pour évaluer lesquelles sont les plus pertinentes en pratique pour
développer et fournir des prédictions dynamiques de progression de cancer. Le coeur de
ce travail a consisté en une étude de simulation approfondie car cela permet de confron-
ter les résultats des différentes approches à la vérité simulée. Divers scénarios ont été
considérés pour explorer les performances des modèles, notamment lorsque l’hypothèse
de proportionnalité des risques était violée, le sous-modèle longitudinal était mal spécifié
ou la structure d’association entre le processus longitudinal et le processus de survie était
mal spécifiée. Les prédictions dynamiques individuelles dérivées de ces modèles ont été
spécifiquement comparées en termes d’erreur de prédiction et de capacité discriminante.

En parallèle de cette étude comparative, nous avons aussi proposé une méthode per-
mettant d’évaluer l’incertitude autour des prédictions dynamiques individuelles d’évé-
nement, alors que ce n’était pas encore possible avec l’approche landmark et que des
techniques concurrentes avaient été proposées avec la modélisation conjointe. Les défini-
tions des estimateurs proposés et du calcul de leur variabilité ont été formellement validés
via l’étude de simulation. Les différents estimateurs ont globalement montré de bonnes
performances en termes de biais et de taux de couverture mais il a été souligné que seul
l’estimateur du modèle conjoint obtenu par intégration numérique autour des effets aléa-
toires était sans biais en cas d’information répétée faible. Les estimateurs des modèles
landmark et l’estimateur du modèle conjoint basé sur une approximation de Laplace de
l’intégrale nécessitent une information longitudinale individuelle collectée jusqu’au temps
de prédiction suffisante pour être précis. Comme attendu, les estimateurs issus des modèles
conjoints étaient bien plus efficients que ceux issus des modèles landmarks, en particulier
lorsque peu de sujets expérimentaient l’événement d’intérêt dans la fenêtre de prédiction.

La comparaison des modèles de prédiction sous divers scénarios a ensuite confirmé que
le modèle conjoint était plus performant que les modèles landmarks en cas de bonne spé-
cification. Lorsque la fonction d’association entre les deux processus était mal spécifiée,
le modèle conjoint restait le plus performant mais les précisions des prédictions issues des
deux approches étaient bien moindres. Cela souligne l’importance de bien définir la nature
de la dépendance entre les processus lorsque l’on souhaite réaliser des prédictions indivi-
duelles. Dans le cas d’une forte violation de l’hypothèse de proportionalité des risques, les
estimateurs issus des modèles conjoints et landmarks avaient des performances compa-
rables, supposant que la violation de cette hypothèse devait être extrême pour impacter
significativement les prédictions issues du modèle conjoint. Enfin, les résultats ont révélé
une sensibilité bien plus importante du modèle conjoint que les modèles landmarks à une
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mauvaise spécification de la trajectoire du marqueur longitudinal. Ce résultat majeur met
en évidence qu’il est impératif de spécifier avec soin la trajectoire temporelle du mar-
queur longitudinal lorsque l’on souhaite définir des prédictions dynamiques, sous peine de
fournir des prédictions individuelles très imprécises.

Ce travail, mené en collaboration avec Hein Putter (LUMC, Leiden) lors de 3 mobilités
a donné lieu à un manuscript qui est soumis dans un journal international de biostatistique.
Les différentes techniques ont été implémentées sous R en modifiant et étendant des
packages déjà existants, afin d’assurer une certaine praticité.

5 Modélisation conjointe de données longitudinales
ordinales et de données de survie via une vraisem-
blance exacte

Un dernier travail de thèse a été initié sur la modélisation conjointe de données lon-
gitudinales ordinales et de données de survie via une vraisemblance exacte. Ce travail a
été motivé par consultance faite en 2015 pour MAPI, une CRO Lyonnaise sur l’analyse
de données de qualité de vie en essais cliniques sur le cancer.

La modélisation conjointe a principalement été proposée pour des données longitudi-
nales Gaussiennes et des données de survie, et des programmes conviviaux sont aujourd’hui
disponibles pour réaliser ces analyses. Dès lors que le marqueur est ordinal, comme lors-
qu’on s’intéresse à l’évolution de la qualité de vie tronquée par la rechute de la maladie,
bien que des modèles conjoints aient été proposés, aucun logiciel n’est disponible.

Pour pallier à ce manque, nous avons proposé une approche originale basée sur une
vraisemblance exacte. Une étape cruciale dans l’estimation des modèles conjoints à effets
aléatoires partagés est en effet la résolution d’une intégrale sur les effets aléatoires dans la
vraisemblance. Celle-ci complique grandement les calculs et empêche l’inclusion de pro-
cessus de lien plus complexes, tels que des processus auto-régressifs ou des mouvements
browniens. Cette intégrale peut être évitée par l’utilisation de distributions Gaussiennes
tronquées et de modèles de survie moins standards, des modèles probit séquentiels. Nous
avons appliqué cette technique pour développer un modèle conjoint permettant de modé-
liser simultanément des données longitudinales ordinales et des données de survie via une
vraisemblance exacte.

Le modèle et sa vraisemblance ont été écrits, et le programme d’estimation a été
implémenté sous R de la manière la plus accessible et modulable possible, avec la pers-

22



RÉSUMÉ SUBSTANTIEL

pective d’en faire un package disponible sur le CRAN. Ce travail, qui n’est pas finalisé,
a principalement été réalisé au cours d’un stage de Master II que j’ai coencadré avec
Cécile Proust-Lima. L’étude de simulation visant à s’assurer des bonnes performances
d’estimation du modèle est encore en cours de réalisation.

6 Discussion générale

Cette thèse a proposé plusieurs développements statistiques pour analyser deux types
de données corrélées fréquemment observées dans la pratique clinique : des données répé-
tées d’un marqueur longitudinal et des données d’histoire d’événements.

J’ai d’abord étendu le principe de la modélisation conjointe à l’analyse d’un mar-
queur longitudinal Gaussien et de données de temps de transition entre états caractérisées
par un processus multi-états. Cela a été réalisé en étendant et combinant la modélisation
multi-états, basée sur la théorie des processus de comptage, et la modélisation conjointe
standard, qui s’applique pour un unique type d’événement. La modélisation multi-états
conjointe non seulement distingue le type d’événement survenu chez l’individu, mais elle
permet également de dépeindre les caractéristiques individuelles après la survenue de ce
premier événement en s’intéresant à des intensités de transition entre états distincts.

Une limite de cette approche est qu’elle repose sur l’hypothèse de Markov. Or il peut
subsister en pratique une corrélation entre temps de transition individuels non expliquée
par les covariables du modèle. Pour capturer cette corrélation intra-individuelle résiduelle,
nous avons proposé un test du score qui teste l’inclusion d’un terme de fragilité Gaussien
dans un modèle multi-états conjoint. Ce test, qui a l’avantage de n’estimer le modèle que
sous l’hypothèse nulle, a montré de bonnes performances dès lors que le nombre de sujets
(et de transitions) est suffisant. Il fournit en pratique un outil de diagnostic pertinent dans
les modèles conjoints multi-états et plus généralement dans les modèles multi-états, car
au delà de l’hypothèse de fragilité, il teste plus généralement l’ajustement aux données.

Ces travaux, appliqués aux données de deux cohortes d’hommes traités par radiothéra-
pie pour un cancer de la prostate localisé ont permis de quantifier l’effet de chaque facteur
pronostique classique et de la dynamique des PSA sur chaque intensité de transition entre
états cliniques. L’application a révélé que la dynamique des PSA était fortement associée
au risque de rechute clinique suite à la radiothérapie, mais n’était plus forcément liée à
l’évolution de la maladie dans des stades plus avancés. Par ailleurs, les autres facteurs
pronostiques classiques, mesurant à la fin de la radiothérapie l’étendue de la tumeur,
l’agressivité des cellules cancéreuses, et le niveau initial des PSA, n’étaient pas toujours
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liés au risque de transition entre deux états cliniques, après ajustement sur la dynamique
courante des PSA.

Dans une deuxième partie, je me suis centré sur le problème de prédiction individuelle
dynamique d’incidences cumulées d’événements compétitifs à partir d’une information in-
cluant des données répétées de biomarqueur. En effet, malgré de nombreuses contributions
statistiques sur le sujet dans les dernières années, aucune n’avait formellement défini la
quantité d’intérêt, validé ses estimateurs et comparé plusieurs approches de modélisation
en simulations. J’ai comblé ce vide en approfondissant deux approches : la modélisation
conjointe, qui définit correctement la corrélation entre les données répétées du marqueur
longitudinal et la survenue d’événement, et la modélisation landmark, qui approche cette
corrélation mais limite les biais liés aux hypothèses des modèles et propose des solutions
inférentielles plus simples. Ce travail a notamment confirmé que les estimateurs issus de la
modélisation conjointe étaient plus efficaces que ceux issus de l’approche landmark même
si ces derniers fournissaient des estimations non biaisées. Il a aussi démontré la supériorité
des capacités prédictives de l’approche par modélisation conjointe, sous couvert de spé-
cifier avec grand soin la trajectoire temporelle du marqueur longitudinal et la structure
de dépendance. Or ce sont deux aspects de la modélisation conjointe qui restent très peu
discutés en pratique, les contributions se limitant le plus souvent à une évolution linéaire
et une dépendance sur le niveau courant. Les recommendations issues de ce travail sont
donc essentielles pour assurer des outils de prédiction dynamique les plus précis possibles.

Enfin, un dernier travail a concerné la modélisation conjointe de données répétées
ordinales et de données de survie. En effet, peu de développements se sont focalisés sur ce
type de données alors qu’il est de plus en plus présent en recherche en santé. Un modèle
innovant a été proposé, qui permet en plus d’éviter les coûts computationnels fastidieux
de la modélisation conjointe classique et assure l’inclusion de structures d’association
plus sophistiquées entre les deux processus corrélés. Dans le cadre de la thèse, seuls le
modèle et sa vraisemblance ont été écrits. Une étude de simulation a été initiée afin de
valider les performances d’estimation du modèle conjoint développé mais elle n’a pas pu
encore être finalisée. Une fois validée, la méthodologie trouvera des applications dans
l’analyse de données de qualité de vie en cancer mais aussi bien au delà avec l’essor des
données subjectives notamment de qualité de vie ou de psychométrie dans la recherche
en épidémiologie.
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En conclusion, ce travail fournit des développements statistiques pour analyser données
longitudinales et données d’histoire d’événements lorsque toutes deux sont corrélées. Ces
travaux ont été implémentés dans des logiciels classiques, et des recommendantions ont
été associées pour leur utilisation par la communauté large : clinique et statistique. Enfin,
des applications on été menées en cancérologie pour illustrer leur utilisation en pratique.
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1 Introduction

1.1 Cancer

1.1.1 Definition and brief epidemiological context

Cancer is a term which indicates a collection of diseases characterised by an abnormal
regulation of the cell cycle leading to a continual unregulated proliferation of cancer cells,
with the possibility that these cells spread into any part of the human body [Cooper,
2000]. A cancer may start anywhere, invading normal tissues and forming tumors, which
may threat the survival of the infected tissues. When the tumor is benign, it does not
spread to the other parts of the body and thus is not considered as cancerous. But when
the tumor is malignant (and thus cancerous), some cells may invade surrounding tissues
or even spread to distant tissues, the later process being referred to as metastasising.
Finally, when vital organs are affected, the survival of the patient is threatened.

Cancer is the second leading cause of morbidity and mortality worldwide, with nearly
1 in 6 deaths in 2015, that is 8.8 million deaths [Ferlay et al., 2015]. In 2012 alone, 14.1
million new cases occurred, and the incidence rates projected an increase about 70% over
the next two decades, that is 23.6 million new cases each year by 2030. A cancer may
be of different type (defined from its location), with the lung, female breast, colorectal
and prostate cancers in the ordered top 4 of the more common worldwide. Depending on
the type of cancer, the vital status of the patient, and more generally his Health-Related
Quality of Life (HRQoL), may be more or less threatened or impacted. Furthermore, the
same disease may progress with several clinically identified evolutions, called stages, each
stage inducing a very different prognosis for the patient.

1.1.2 Stages of the disease

The most basic way to distinguish the stages of the disease and define how it spreads
over time is to distinguish them in four categories [Young Jr et al., 2001]:

- stage 0: in situ; the malignant cells are still in the place where they started and
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have not spread to nearby tissues;
- stage I: localised cancer; the tumor has not grown deeply into nearby tissues and
remains limited to the organ of origin. It is often called early-stage cancer;

- stage II–III: regional spread; the tumor extends beyond the limits of the organ of
origin;

- stage IV: distant spread; the cancer has spread to other areas of the body, and the
tumor cells begun to grow at their new location(s). One also talks about remote,
metastatic or advanced cancer.

Depending on the stage of the disease, the patient’s prognosis may widely vary. For
example, in subjects with a prostate cancer diagnosed between 2005 and 2009 in England,
the 5-year relative survival after diagnosis was about 96% for those diagnosed with stages
I, II, III (loco-regional cancer) whereas it dropped to 69% for those with stage IV (distant
cancer) at diagnosis [National Collaborating Centre for Cancer (UK), 2014]. Thus, ac-
cording to the nature of the clinical state that the patients experience, their management
may vary widely with adapted treatment strategies.

1.1.3 Disease markers

Whether to identify the presence of the disease, assess its stage, understand the disease
evolution or predict it, a common solution is to use disease markers. The latter are
substances or measurable parameters that allow to characterize the disease in a quantified
way.

Several kinds of disease markers are used in the clinical practice. The biological mark-
ers (or biomarkers) are the most common because they consist in substances directly
associated with the clinical state (or stage) of the disease. For example, the tumor mark-
ers, which are found in blood, urine, or body tissues, are widely used. The quantified
expression of an antigen specific to a host organism, which may be over-expressed in pres-
ence of cancer, is a potential interesting tumor marker. One of the most famous of them
is the prostate-specific antigen (PSA), which is secreted directly by the prostate and is
found as over-expressed in the presence of the prostate cancer [Barry, 2001].

Other disease markers may be defined, as the tumor size, which directly measures the
surface of the tumor or in a more accurate way its volume [Eisenhauer et al., 2009]. Other
useful indicators are Health-Related Quality of Life (HRQoL) markers, which characterize
latent domains associated to the disease such as the subject’s perception of his physical
and mental health [Aaronson et al., 1993]. In current research, researchers try to identify
new markers for specific or unspecific cancer which would be powerfully prognostic of the
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disease evolution. Recent researches notably targeted promising biomarkers from liquid
biopsy of cancer, such as for example the detection and molecular characterisation of
circulating tumor cells (CTC), potential powerful prognostic factor in metastatic breast,
colon or prostate cancer [Allard et al., 2004].

1.1.4 Treatment strategies

To limit or annihilate the impact of the cancer on the patient’s survival or his quality
of life, several management strategies may be organised, according to the kind of disease
and its stage.

First, the frequency of the monitoring is adapted. Clearly, after a recurrence, a patient
with a very poor prognosis (high risk of distant recurrence for example) will be more
actively monitored than if his prognosis was very good.

Then, adequate and effective treatments may be proposed according to the type of
cancer and its stage, using specific treatment regimen. When the cancer is solid and
isolated, a primary method of treatment is surgery. It may be used for example in localised
prostate cancer, with the ablation of the prostate. To complete the treatment, or when
the surgery is impossible because of the cancer location, as well as when the disease is in a
more advanced stage, chemotherapy and/or radiotherapy can be proposed. Combinations
of multiple treatment regimen are also possible, according to the disease’s ability to resist
to treatment, and/or for limiting the toxicity that it diffuses in the body. Nowadays,
palliative care and psychosocial support are also proposed to patients, to improve their
quality of life and even prolong their life [Temel et al., 2010].

1.2 Clinical objectives of the thesis

1.2.1 Transitions between disease stages

We earlier discussed that there are various possible managements in cancer, according
to the kind of disease, its specific stage and its evolution process.

To give a basic example, let us focus on prostate cancer, major cancer with 1.1 million
men worldwide diagnosed in 2012. A recent study of Hamdy et al. [2016] argued that in
the treated subjects for a localised prostate cancer, the 10-year prostate-cancer-specific
survival probability was very good (about 99%) whatever the used treatment strategy
among active monitoring, surgery or radiotherapy. However, by investigating more in
detail, authors showed that 12.4% of the subjects had a disease progression over the period,
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including metastases. Actually, the incidence of disease progression was significantly
higher in the active-monitoring group than in the radiotherapy and surgery groups, and
the same conclusion was made when the focus was on the presence of metastases. Thus,
authors finally concluded that a longer-term study would be crucial to evaluate the full
evolution process of the disease.

Actually, these results confirm that in subjects treated for a localised prostate cancer,
there is a distinction between the risks of loco-regional clinical relapse, remote clinical
relapse or death due to cancer. In this example, grouping local and regional disease
makes sense, leaving distant stage as a separate event. Indeed, the latter is the worse
clinical consequence before death, and is clearly different from the other two. Note that
in other cancers, one often groups local and regional diseases, since both have potential
to be controlled by specific interventions such as radiotherapy, whereas distant metastasis
is not impacted directly by radiotherapy. Figure 1.1 depicts the clinical progressions that
we would like to focus on. Based on it, management in clinical practice would be very
different depending on the type of relapse that the patient is likely to experience.

Treatment

Loco-regional
recurrence

Distant
recurrence

Death

Figure 1.1 – Graphical representation of the possible first clinical recurrence in subjects
treated for a localised prostate cancer.

In addition, the complete evolution process of the disease is not only depicted by one
unique disease progression, but rather by multiple progressions that may occur succes-
sively. If we continue the example, it would be more appropriate to study the disease
evolution process in its whole, by focusing on all the possible transitions that may ex-
perience the patient, as depicted in Figure 1.2. Here, after treatment, a patient may
experience either a loco-regional recurrence, a distant recurrence or death. After a loco-
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regional recurrence, he may experience either a distant recurrence or directly die. Finally,
after a distant recurrence, a patient may only die. In all, 4 clinical states and 6 direct
transitions are already considered in this basic example.

Treatment

Loco-regional
recurrence

Distant
recurrence

Death

Figure 1.2 – Graphical representation of the possible transitions between clinical recur-
rences in subjects treated for a localised prostate cancer.

To understand the impact of the measured prognostic factors (such as disease marker
data) on each stage of the disease, it is thus essential not only to distinguish the several
natures of clinical progressions but also to focus on the identified transitions between
them.

1.2.2 Dynamic personalized medicine

Another primordial aspect in clinical practice is the use of individualized predictions
of each type of progression which can be updated at each follow-up visit of the subject
or more generally at each new individual information. These individualized predictions
are called dynamic because the considered information is dynamic: it could include for
example a new measurement of a longitudinal marker or only the confirmation that the
subject is still at risk of event [Proust-Lima and Blanche, 2015].

Figure 1.3 is an illustrative example of the principle of individual dynamic predictions
in subjects with localised prostate cancer treated by radiotherapy (RT), from repeated
measurements of a longitudinal biomarker and in the context of competing events. At the
end of RT (baseline time), individual covariates are measured (in orange). Afterwards
the subject is followed repeatedly by measuring the prostate specific antigen (PSA, green
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crosses), famous prognostic factor of the risk of recurrence post-RT, where, without loss
of generality, high PSA values induce a high risk of recurrence, and vice-versa. In these
subjects, there is usually a drop in the PSA expression after the end of RT (due to the
treatment effect), until reaching a certain nadir, and finally a more or less important PSA
increase according to the disease evolution of the patient [Proust-Lima et al., 2008].

The predictions are computed from a landmark time s - time from which the prediction
is made, and for a given horizon time w - window of prediction. At the top of the figure, the
landmark time is s = 1 and we are interested in the cumulative incidences of recurrence (in
blue) and death (in brown) in the next w years, from the individual information collected
until s = 1. This information includes the one measured at baseline, four repeated PSA
measures, and the fact that the subject is still free of clinical progression at s = 1. In
the middle, the predictions are updated two years later (s = 3). Three supplementary
PSA measures have been collected and we know that the subject did not experience
any competing event in between. The same quantities of interest are updated at a later
landmark time s = 5. In the figure, the variability around the estimated predictions is also
depicted using intervals around the estimated landmark-specific cumulative incidences of
each cause of event.

Such individualized dynamic predictions may notably be used to develop dynamic
strategies in personalized medicine, for example either for adapting the treatment of each
patient over time [Sène et al., 2016] or for planning the optimal time of his next screen-
ing visit [Rizopoulos et al., 2015]. These solutions might be expected to have manifest
benefits. Of course, individualized treatment strategies might substantially improve the
patients prognosis or/and their quality of life, but such individualized predictions might
also be used in an economic perspective, for example by planning the optimal time of the
next screening visit which not only minimises the probability of clinical event but also
maximises the information gain brought by a new measure of the marker at this time
point.

1.2.3 Various natures of longitudinal markers

In longitudinal health studies, one often observes continuous biomarkers such as the
PSA data in prostate cancer or creatinine in acute kidney injury. However there are
also more and more qualitative markers. For example, in HIV, one interesting marker
is the detectability of the HIV viral load (binary: detectable/undetectable). In cancer,
ordinal markers with only few modalities are also defined, such as the circulating tumor
cell (CTC) biomarkers, or most of the summary scores built from Health-Related Quality
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Figure 1.3 – Illustrative example in prostate cancer of individual cumulative incidences of
two causes of event computed from three landmark times s = 1, s = 3 and s = 5 for two
horizons w = 1.5 and w = 3.
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of Life (HRQoL) questionnaires.

As for more standard continuous markers, one can be interested in modelling their tra-
jectory over time or predicting their evolution while taking into account their association
with the disease progression (characterised by the occurrence of clinical events).

1.3 Statistical issues

Multiple statistical methods have been developed in the literature to analyse either
repeated measurements of a longitudinal marker or event history data. Nevertheless,
the commonly used techniques to manage such data are no more valid when the two
concomitant processes are correlated.

The mixed-effects models allow to model the repeated measurements of a longitudi-
nal marker. These models are robust in the presence of missing data which are non-
informative (or ignorable). This assumes that the missing data can be predicted from
the individual covariates or the observations of the marker. When the missing data are
informative (or non-ignorable), the model assumptions do not hold and the model may
provide estimates off the mark [Little and Rubin, 2014; Rouanet et al., 2017]. These
missing data mechanisms in longitudinal data analysis are detailed in Section 2.1.3.

Similarly, the event history models commonly used by statisticians, such as the Cox
model with proportional hazards in survival data analysis [Cox, 1972], can only include
time-dependent covariates assumed to be exogenous [Andersen and Gill, 1982; Fisher and
Lin, 1999]. This assumption implies that the distribution of these covariates are not
affected by the occurrence of the event of interest [Kalbfleisch and Prentice, 2011]. In
case of violation of this assumption, that is in the presence of an endogenous covariate,
the usual survival models may also provide non-accurate estimates. The endogenous and
exogenous natures of the time-dependent covariates in event history models are introduced
in Section 2.3.

These essential assumptions on both the missing data mechanisms of the longitudinal
marker and the time-dependent covariates in event history models may be violated in
many applications. For example, when we collect individual repeated biomarker data until
the occurrence of a clinical event, clearly the missing data post-event may be informative
and the repeated measurements of the biomarker may be endogenous.
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1.3.1 Joint modelling introduction

To overcome the restrictive assumptions on the missing data mechanisms in usual
mixed models for longitudinal data, and on the features of the time-dependent covariates
in usual survival models for time-to-event data, the joint modelling approach has been
introduced [Faucett and Thomas, 1996; Wulfsohn and Tsiatis, 1997]. The idea is to
simultaneously model the longitudinal and survival processes, by linking them using a
shared latent structure.

Joint models with shared random effects are the most common [Tsiatis and Davidian,
2004]. They take into account the correlation between the longitudinal and event history
processes using a function of subject-specific random effects. However, the most classical
joint model is limited to the joint analysis of a Gaussian longitudinal marker and survival
data. More details are given in Section 2.3.

1.3.2 Extension to a multi-state process

Some authors extended the classical joint modelling framework to multiple time-to-
event data, with more or less complex joint models [Elashoff et al., 2008; Dantan et al.,
2011; Król et al., 2016]. But none of them developed a joint model for a longitudinal
Gaussian marker and multi-state process, that would partition the disease states and the
respective transitions between states.

We previously motivated that in many applications like cancer, the focus should be on
transitions between clinical stages of the disease. Furthermore, other clinical events such
as clinical interventions unplanned at baseline (new treatment for example) might be also
included. With such a model, it would be possible to properly characterize the longitudinal
marker evolution and quantify its impact on each transition intensity between the multiple
clinical health states, while considering other non-endogenous prognostic factors.

1.3.3 Individual dynamic prediction tools

We previously argued that for each patient, management and treatment strategies
differ widely according to his specific risk of each type of progression. However, the
current prognostic tools provide an overall quantification of the risk of clinical event
without distinction of the different types of progression [Maziarz et al., 2017; Goldstein
et al., 2017]. Another crucial aspect is the longitudinal nature of many health studies,
which allows to compute the individual predictions in a dynamic way, that is updated at
each new subject’s information [Proust-Lima and Blanche, 2015].
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Several proposals have been proposed in the literature to compute the individual dy-
namic prediction of cumulative incidences of competing events from information including
repeated biomarker data [Maziarz et al., 2017; Sène et al., 2016; Nicolaie et al., 2013b;
Rizopoulos, 2011; van Houwelingen, 2007]. However, none formally defined the true prob-
ability of event to predict, validated its estimators and compared the different approaches
of prediction using simulation studies. It is essential to fill the gap. The recommendations
resulting from this work would be essential to ensure the most precise dynamic prediction
tools possible in clinical practice.

1.3.4 Extension to ordinal longitudinal markers

Finally, we also discussed that in many applications the disease markers are discontin-
uous, and even ordinal with only few modalities. It was the case for example with most
of HRQoL data in clinical cancer trials.

However, in the literature no software currently manages such data, and the solu-
tions proposed in the literature rely on inference techniques that often lead to strong
computational complexities [Li et al., 2010; Proust-Lima et al., 2016].

Thus, whether for providing correct estimates of the longitudinal evolution of the
ordinal marker, or for properly characterizing the impact of its dynamics on the disease
progression, it is necessary to have a model which takes into account the features of these
data, while reducing the computational cost of the standard inference procedures.

1.4 Studied data

To deal with these clinical and statistical challenges, this thesis is based on data from
two datasets comprising men treated for a clinically localised prostate cancer:

- data from the multi-center clinical trial RTOG 9406 (Radiation Therapy Oncology
Group, USA) [Michalski et al., 2005], in which the data collection was conducted
from 1994 to 2013;

- data from the cohort of the British Columbia Cancer Agency (BCCA) in Van-
couver, Canada [Pickles et al., 2003], with subjects followed-up between 1994 and
2012.

In these two datasets, treatment was external beam radiotherapy and subjects were
followed-up repeatedly since the end of treatment by measuring the prostate-specific anti-
gen (PSA). They could experience several clinical events, such as loco-regional recurrence,
distant recurrence or death (due or not to the prostate cancer). Additional therapy was
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also possible with salvage hormonal therapy administration, which was unplanned at
baseline but decided by clinicians according to physician observed signs in PSA or clinical
signs, to prevent growth of potentially present sub-clinical cancer.

These data were essential to illustrate the purposes of the thesis. Thus, I thank warmly
the data providers of these two datasets, and especially James Dignam and Tom Pickles.

1.5 Thesis structure

In biostatistics, the development of statistical models may have two main objectives:
either for studying aetiology of a disease or for predicting a given quantity of medical
interest. This thesis introduces statistical tools and software implementations for dealing
with these two purposes in longitudinal cancer studies, based on two kinds of correlated
data currently encountered: repeated measurements of a longitudinal marker and event
history data.

Chapter 2 depicts a succinct state of the art of the statistical developments proposed
in the literature for handling these two types of data.

Chapter 3 introduces a new joint model allowing to simultaneously study repeated
measurements of a Gaussian longitudinal marker and individual times of transitions char-
acterized by a multi-state process. The model is decomposed into a linear mixed model
and a multi-state model with proportional intensities according to each covariate effect;
it is estimated in the maximum likelihood framework.

Chapter 4 offers a complementary development for validating the estimates from the
joint multi-state model: a score test for residual correlation between transition times in
this joint multi-state model. The test statistic distribution is defined, with an analytic
expression of the score statistic and an asymptotic expression of the variance corrected
for the nuisance parameters which require numerical approximations.

These two developments are implemented in R, with easy-to-use functions for statis-
ticians or clinicians. Simulation studies are performed to investigate the performances of
both the estimation procedure of the joint multi-state model, and the type-I error and
power of the score test. A detailed application is then carried out in subjects treated for
a localised prostate cancer, by focusing on transitions between clinical progressions from
PSA repeated measurements.

Chapter 5 focuses on the computation of individual dynamic predictions. It defines
a true probability of event to predict and its estimators from two leading approaches:
joint modelling and landmarking. Extensive simulation studies allow to validate these
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definitions and compare the estimators in terms of bias, efficiency, prediction error and
discriminatory power under several scenarii of well- or mis-specification of the models.
Software developments are also provided for practical use.

Chapter 6 introduces preliminary results of an initiated work about joint modelling
with shared random effects for an ordinal longitudinal marker and time-to-event data. An
elegant inference solution is proposed with the use of exact likelihood.

Finally, Chapter 7 ends the manuscript with an overall conclusion which opens up
both clinical and statistical prospects in cancer research.
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2 State of the art

This chapter details the statistical methods on which the developments in this thesis
rely. We first introduce mixed-effects models to deal with standard longitudinal data
analysis in Section 2.1. Section 2.2 depicts methods for handling standard event his-
tory data, and Section 2.3 introduces the standard joint modelling which groups the two
methodologies to analyse simultaneously the two kinds of data when they are correlated.

2.1 Mixed-effects models for longitudinal data anal-
ysis

For each subject i ∈ {1, . . . , N}, let us consider a marker Yi = (Yi1, . . . , Yini
)> which

is observed at times {tij; j = 1, . . . , ni} with values {Yij = Yi(tij); j = 1, . . . , ni}, where ni
is the number of observed measures for subject i.

The central methodology to deal with this kind of data is the mixed-effects modelling.
The main idea is that the expectation of the outcome is not only explained using popula-
tion effects, but also using individual effects that captures both intra-subject correlation
and heterogeneity over subjects which are unexplained by the covariates considered in the
model.

2.1.1 Linear mixed-effects model

Let assume that marker Y is continuous and Gaussian. At each time point tij, marker
value Yij is observed as a noisy measure of the true level Y ∗ij which remains unobserved.
This latent marker value Y ∗ij is explained according to covariates at the population level
with fixed effects β, and at the individual level with random effects bi which depict
the subject’s deviation to his expected mean value, and at the same time capture the
correlation between his repeated measurements:

Yij = Y ∗ij + εij

= X>ijβ + Z>ij bi + εij, (2.1)
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where β is the p-vector of fixed effects associated with the design vector Xij, bi is the
q-vector of random effects associated with the design vector Zij, εij is the error term. The
random effects bi and the error terms εi = (εi1, . . . , εini

)> are Gaussian, such that bi ∼
N (0, D) and εi ∼ N (0, σ2Ini

), with I the identity matrix; bi and εi are independent. This
implies that two different observations Yij and Yij′ are assumed independent conditionally
to bi.

With its matrix formulation, the model becomes:

Yi = Xiβ + Zibi + εi, (2.2)

where Xi and Zi are matrices with row vectors X>ij and Z>ij , respectively.

Covariance structure for repeated measures

Model (2.2) was limited to the inclusion of random effects bi which depict some in-
dividual deviations, classically associated with time functions, and an independent mea-
surement error εi. With the general formulation of the linear mixed model (2.3), one can
also include a residual correlation between serial measurements using ωi [Laird and Ware,
1982; Jones and Boadi-Boateng, 1991]:

Yi = Xiβ + Zibi + ωi + ei, (2.3)

where the residual error component is ωi ∼ N (0, Ri) and the independent measurement
error component is ei ∼ N (0, σ2Ini

). The three stochastic components bi, ωi and ei,
which represent random effects, serial correlation and measurement error respectively,
are independent. To specify ωi, standard choices are the use of autoregressive Gaussian
process, also called AR(1) process, or Brownian motion, where both capture a residual
temporal correlation between the individual repeated measurements [Diggle et al., 2002].

To simplify the formulations, the following is based on model (2.3) which does not con-
sider any serial correlation term ωi. But the same methodology applies when considering
also stochastic deviations.

Estimation

The linear mixed model can be estimated using the maximum likelihood (ML) ap-
proach or the restricted maximum likelihood (REML) approach [Verbeke and Molen-
berghs, 2000].
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Marker Yi has a Gaussian distribution such that Yi ∼ N
(
Xiβ, Vi = ZiDZ

>
i + σ2Ini

)
.

The log-likelihood can be deduced:

l(θ) =
N∑
i=1

log fY (Yi)

= −1
2

N∑
i=1
{ni log(2π) + log(|Vi|) + (Yi −Xiβ)>V −1

i (Yi −Xiβ)}, (2.4)

where θ = (β>, D>, σ2 >)> is the vector of model parameters, |Vi| is the determinant of
the matrix Vi.

In ML approach, a practical solution is to use the score equation for the fixed effects
β:

∂l(θ)
∂β

=
N∑
i=1

X>i V
−1
i (Yi −Xiβ) = 0.

For known parameters D and σ2, the estimate of β can be deduced:

β̂ =
(

N∑
i=1

X>i V
−1
i Xi

)−1 ( N∑
i=1

X>i V
−1
i Yi

)
.

In practice, parameters D and σ2 are unknown. Thus one maximizes the log-likelihood
on (D, σ2) using numerical optimisation algorithms (as the Newton-Raphson algorithm
for example), by replacing the fixed effects by their estimates from the score equation.

Based on the maximum likelihood theory, we can easily deduce the variance of the
estimates β̂:

var(β̂) =
{
−E

(
∂2l(θ)
∂β∂β>

)}−1

=
(

N∑
i=1

X>i V
−1
i Xi

)−1

and the estimate v̂ar(β̂) substitutes Vi for V̂i = ZD̂Z>i + σ̂2Ini
, with D̂ and σ̂2 the ML or

REML estimates of D and σ2, respectively.
A draw back of the ML approach is that it does not take into account the loss in the

degrees of freedom resulting from estimating fixed effects, and thus estimates D̂ and σ̂2

are biased. To obtain correct estimates D̂ and σ̂2, one can use the REML approach. Let
us define vectors Y =

(
Y >1 , . . . , Y

>
N

)>
, b =

(
b>1 , . . . , b

>
N

)>
and ε =

(
ε>1 , . . . , ε

>
N

)>
, each of

length n = ∑
i ni. One also denotes the (n, p) matrix X = (X1, . . . , XN)> and the (n, q)

matrix Z = diag (Z1, . . . , ZN). Thus we can combine all the subject-specific regression
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models (2.1) to one model: Y = Xβ + Zb + ε. The REML idea is to take into account
the dimension of the orthogonal vectorial space of X by considering the likelihood of the
transformed data L>Y , with L a (n, n− p) full-rank matrix such as L>X = 0. Thus one
has L>Y ∼ N

(
L>Xβ = 0, L>var(Y )L

)
and the associated likelihood does not depend

on β. Up to a constant, the restricted likelihood is [Harville, 1974]

lREML(D, σ2) = l(β̂, D, σ2)− 1
2 log |

N∑
i=1

X>i V
−1
i Xi|. (2.5)

The variance of the parameter estimates is obtained in the same way as in ML ap-
proach, by replacing the ML estimates of D and σ2 by the REML estimates.

When the focus is on the variance parameters and the number of fixed effects is large
or/and the sample size is small, one prefers to use the REML approach. However, the
REML technique does not allow to compare models with different fixed effects, and ML
and REML techniques give similar estimates when the sample size is large so that ML
approach is often adopted.

Note that another possible solution, less common in software because computationally
more costly, is to directly optimise the likelihood (2.4) according to the complete vector
of parameters θ. The variance of θ̂ is then deduced using numerical computation of
the Fisher information matrix according to the whole vector of parameters θ, i.e. using

var(θ̂) =
{
−E

(
∂2l(θ)
∂θ∂θ>

)}−1

.

Predictions

Predictions represent here future observed or unobserved values of Y for a (possi-
bly new) subject, or fitted values at observation times for a subject used in the model
estimation. From linear mixed-effects models, two kinds of predictions are studied: pre-
dictions marginal or conditional to the random effects (and more generally to the random
deviation).

Let us denote θ̂ the complete vector of coefficients estimated from the linear mixed
model. The marginal predictions Ŷ M

i = Xiβ̂ depict the average predictions of Yi for sub-
jects with the same covariates as subject i, whereas the individual predictions conditional
to the random effects represent the specific predictions for a given subject i, including his
individual deviations to the mean trajectory in the population with the same character-
istics:

Ŷ SS
i = Xiβ̂ + Zib̂i
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with β̂ the estimated fixed effects and b̂i the predicted individual random effects or em-
pirical Bayesian estimates which are deduced as follows.

As the joint distribution (Yi, bi) is such that
bi
Yi

 ∼ N
0

0

 ,
 D DZ>i

ZiD Vi

 ,
the conditional expectation of the random effects given the observations is E(bi|Yi) =
DZ>i V

−1
i (Yi −Xiβ) and we denote b̂i the Best Linear Unbiased Predictor (BLUP) of bi:

b̂i = E(bi|Yi; θ̂) = D̂Z>i V̂
−1
i (Yi −Xiβ̂).

2.1.2 Generalized linear mixed-effects model

The linear mixed model allows to study the longitudinal evolution only of a Gaus-
sian marker. The generalized linear mixed-effects model combines the generalized linear
model and the linear mixed model to generalize the type of marker’s distribution to any
distribution of the exponential family [Fitzmaurice et al., 2012], that is with a conditional
density of the form

fY (Yij|bi;ψij, φ) = exp
[
Yijψij(bi)− c{ψij(bi)}

a(φ) − d(Yij, φ)
]
, (2.6)

where c(.), d(.) and a(.) are known functions, ψij(bi) and φ denote the natural (also called
canonical) and dispersion parameters in the exponential family, respectively.

In the generalized linear mixed-effects model, one directly models the expectation of
the observed measures (and thus the error term disappears), and this quantity is related
to the covariate effects using a link function g:

g{E(Yij|bi)} = X>ijβ + Z>ij bi, (2.7)

where β is the vector of fixed effects and bi is the vector of random effects for subject i
which is usually Gaussian with bi ∼ N (0, D). Note however, that in some cases, the Gaus-
sian distribution can be replaced by another distribution that simplifies computational
aspects [Molenberghs et al., 2007; Verbeke et al., 2014].

The model is estimated using the maximum likelihood approach. The observations Yij
are independent conditionally to the random effects bi, i.e. fY (Yi|bi; θ) = ∏ni

j=1 fY (Yij|bi; θ)
and the observed likelihood is obtained by integrating over the individual random effects
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distribution:

L(θ) =
N∏
i=1

fY (Yi; θ)

=
N∏
i=1

∫
Rq
fY (Yi|bi; θ)fb(bi; θ) dbi

=
N∏
i=1

∫
Rq

ni∏
j=1

fY (Yij|bi; θ)fb(bi; θ) dbi, (2.8)

where fb(bi; θ) is the density of the random effects.
In most cases, the integral over the random effects does not have a close form and has

to be achieved using numerical integration (with Gaussian quadratures or Monte-Carlo
techniques for example). The log-likelihood is maximised using optimisation algorithms
such as, for example, the EM algorithm, the Newton-Raphson algorithm (or derivatives)
or the Marquardt algorithm. The estimated variance of the parameter estimates can be
obtained by solving the observed Fisher information matrix at θ̂.

Among all the kinds of data from the exponential family that can manage the gen-
eralized linear mixed-effects models, we only focus in the following on two: binary data
(e.g. detectability/undetectability of the HIV viral load) and ordinal data (e.g. summary
score from HRQoL questionnaire) which are useful for the thesis developments.

Model for repeated binary observations

For binary repeated data (Y ∈ {0, 1}), one models the probability that each obser-
vation equals 1: E(Yij|bi) = Pr(Yij = 1|bi). A common solution is to consider that the
link function g is a logistic function (g(x) = logit(x)) [Stiratelli et al., 1984]. The logistic
mixed model is written as

logit{Pr(Yij = 1|bi)} = X>ijβ + Z>ij bi

and then
Pr(Yij = 1|bi) =

exp(X>ijβ + Z>ij bi)
1 + exp(X>ijβ + Z>ij bi)

.

Another solution developed in the literature is to assume that there is a latent Gaussian
variable Y ∗ij such that Yij = 1{Y ∗ij ≥ 0}. Then we can model Y ∗ using a linear mixed
model: Y ∗ij = X>ijβ+Z>ij bi+εij with bi ∼ N (0, D) and εij ∼ N (0, σ2). The model becomes

Pr(Yij = 1|bi) = Pr(Y ∗ij ≥ 0|bi)

= Pr(εij ≤ X>ijβ + Z>ij bi)

= Φ(X>ijβ + Z>ij bi),
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and thus the link function g is a probit function (g(x) = Φ−1(x), where Φ(.) is a probability
density function of a standard Gaussian distribution). This model is called a probit mixed
model.

In practice, these two models are very close since the normal and logistic distributions
are very similar except for extreme values [Hahn and Soyer, 2005]. The choice of one or
another usually depends on the application domain.

Model for repeated ordinal observations

Let us now consider that Y takes ordinal values in the finite space {0, 1, . . . ,M}.
The same technique as for the probit mixed model for binary observations applies to the
ordinal case. Henceforth we consider that there is a latent Gaussian variable Y ∗ such that
observing the marker at a certain value is equivalent to have its associated latent variable
in a given interval:

Yij = m ⇔ αm < Y ∗ij ≤ αm+1

for m ∈ {0, . . . ,M}, where coefficients {αm;m = 1, . . . ,M} are unknown thresholds,
α0 = −∞ and αM+1 = +∞.

One thus models the probability to have the marker’s observation under a certain
threshold using a probit function,

Pr (Yij ≤ m|bi) = Φ
(
αm+1 −X>ijβ − Z>ij bi

)
for m ∈ {0, . . . ,M − 1}. This model is called cumulative probit mixed model.

To ensure identifiability of the model, two constraints have to be applied. In addition
to the variance of the error term σ2 which is here fixed to 1, one can choose for example
to consider that the fixed intercept β0 is null or to fix a threshold, for instance α1 = 0.

The model is classically estimated in the maximum likelihood framework. The like-
lihood is the same as in equation (2.8), with the conditional density of the longitudinal
outcome:

fY (Yij|bi; θ) = Pr(Yij = m|bi; θ)

= Pr(αm < Y ∗ij ≤ αm+1|bi; θ)

= Φ(αm −X>ijβ − Z>ij bi, αm+1 −X>ijβ − Z>ij bi)

where Φ(a, b) is the cumulative distribution function of a standard Gaussian variable
truncated at a and computed at b.
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Note that by using a logistic link function and by considering that the error terms
follow a logistic distribution, the same technique can be used to define the cumulative
logistic mixed model.

2.1.3 Hypotheses on missing data

In longitudinal data analysis, two types of missing data can arise: intermittent missing
data, that is when a subject misses a visit but comes back at the next one, or missing
data due to drop-out, that is when a subject leaves the study. Little and Rubin [2014]
proposed to classify the missing data mechanisms in 3 types:

- MCAR (Missing Completely At Random): the individual probability to have a
missing data is conditional to the individual covariates but is independent from
the observations and missing observations of the marker; for example if the subject
no longer comes at visits because he moved to the other side of the planet;

- MAR (Missing At Random): the individual probability to have a missing data is
conditional to the individual covariates as well as the observed marker values, but
is independent of the unobserved measures; for example when the subject has a
major deterioration of its marker values between two consequent visits and decides
to stop coming at the next follow-up visits;

- MNAR (Missing Not At Random): the individual probability to have a missing
data is conditional to the individual covariates as well as the observed and unob-
served marker values; for example when the subject no longer comes because he
experienced a major deterioration since his last visit which was not predictable
from the past observations.

The estimates obtained using ML (or REML) are unbiased in presence of MCAR
or MAR data, since the missing data can be predicted by the model’s information; one
talks about ignorable missing data. However, these inferences techniques can lead to
biased estimates in case of MNAR data, and one talks about non-ignorable missing data
[Fitzmaurice et al., 1995; Molenberghs and Verbeke, 2001; Kurland and Heagerty, 2005;
Rouanet et al., 2017].

In that case, other techniques have to be considered [Little, 1993; Michiels et al.,
2002; Diggle and Kenward, 1994; Henderson et al., 2000]. Among them, joint models that
will be detailed in Section 2.3, simultaneously model the marker and the missing data
mechanism.
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2.2 Models for event history data analysis

This thesis also focuses on methods for the analysis of event history data. The analysis
of event history data consists in studying time(s) of individual transition(s) between states.
The specificity of such data is that the quantity of interest is not always observable because
of truncation and censoring which can prevent the observation of the event time. Methods
to analyse these kinds of data have been characterized through the counting process theory
developed by Andersen et al. [1993].

The censoring mechanisms are traditionally classified into three categories: right cen-
soring, left censoring and interval censoring. In this thesis we only focus on the former,
right censoring, that occurs when the subject experiences the event after its last follow-up
time, for example because he is lost to follow-up before the end of the study without
this explained by his condition or because he is still alive when the study ends. As in
mixed-effects models, censoring can be distinguished into two types: informative censor-
ing (similar to MNAR missing data), which assumes that the censoring mechanism is
related to the prognosis of the patient unexplained by the covariates in the model, and
non-informative censoring (similar to MCAR missing data), which stipulates that the
censoring mechanism is conditional to the individual covariates but independent of the
unexplained prognosis of the subject. In this thesis we make the task easier by focusing
on non-informative right censored data only.

Truncation constitutes another cause of unobservation. It assumes that the event is
observed conditionally to another event. This work only considers left truncation, which
is the most common in practice: the subject is observable only if he is at risk at the
inclusion in the study.

In time-to-event analyses, several choices of time origin can be chosen, such as the
subject’s birth (the time is then the age of the subject) or the study entry (the considered
time is the time spent since the inclusion). These imply different interpretations of the
results [Andersen, 2017; Joly et al., 2013]. In this thesis, the time is considered as the
time since the inclusion in the study. This is common in clinical studies where the focus
is on the subject’s prognosis after the administration of a treatment. In the presence of
multiple events, the calendar time will be considered, that assumes that the baseline time
is always the study entry time, contrary to the gap time which defines the time as the

47



STATE OF THE ART

time spent in the current state [Putter et al., 2007; Duchateau et al., 2003].
In the following, we first introduce models for handling survival data in Section 2.2.1

and generalize them to the multi-state data framework in Section 2.2.2. We finally end
with an introduction to landmark approach and frailty models in Sections 2.2.3 and 2.2.4,
respectively.

2.2.1 Survival data analysis

State 0 State 1

Figure 2.1 – Representation of the allowed transition between states in the survival setting.

The simplest case of time-to-event analysis is the survival analysis: the subject is
in a initial state and we are interested in his transition time leading to another state.
This example is illustrated in Figure 2.1. In clinical studies, typically state 0 is defined
as healthy and state 1 is defined as death or recurrence of the disease. We observe
T ∗i = min(Ti, Ci) with Ti the true event time and Ci the right censoring time. The
indicator of event is denoted δi with δi = 1{Ti ≤ Ci} which equals either 1 if the subject
had the event of interest or 0 if he was censored.

The distribution of survival data can be depicted with several interesting functions
depending on the objective, as for example the cumulative distribution function, the
survival function or the hazard function. First, we introduce the probability density
function

fi(t) = lim
dt→0

Pr(t ≤ Ti < t+ dt)
dt .

The cumulative distribution function can be derived:

Fi(t) = Pr(Ti ≤ t) =
∫ t

0
fi(u) du

and the survival function, which is the probability that the event does not occur until
time t, can be expressed as

Si(t) = Pr(Ti > t) = 1− Fi(t).

The hazard function is defined as the instantaneous probability of event given that the
subject is still at risk:

λi(t) = lim
dt→0

Pr(t ≤ Ti < t+ dt|Ti ≥ t)
dt = fi(t)

Si(t)
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and we can deduce the cumulative hazard function

Λi(t) =
∫ t

0
λi(u) du.

Finally, the relationship between survival and hazard functions is such as:

Si(t) = exp(−Λi(t)) = exp
(
−
∫ t

0
λi(u) du

)
.

To estimate these quantities on data, two approaches can be used. The non-parametric
estimators describe these quantities of interest in a crude way while the regression mod-
els (notably the proportional hazards models) describe these quantities as functions of
explanatory variables.

Non-parametric estimators

Let us denote Y (t) the number of subjects at risk at time t and N(t) the number of
observed survival times until t. In the following, the introduced non-parametric estimators
omit the subscript i because they are not subject-specific, but rather depict the quantity
of interest in the whole population.

A famous non-parametric estimator of the survival function is the Kaplan-Meier esti-
mator [Kaplan and Meier, 1958]:

ŜKM(t) =
∏
u≤t

(
1− dN(u)

Y (u)

)
(2.9)

where dN(t) is the number of events at time t. The variance of ŜKM(t) can be estimated
using the Greenwood formula [Greenwood, 1926]:

v̂ar{ŜKM(t)} = {ŜKM(t)}2 ∑
u≤t

dN(u)
Y (u)(Y (u)− dN(u))

and using the asymptotic normal distribution of ŜKM(t), the 95% confidence interval can
be deduced as [

ŜKM(t)± q0.025

√
v̂ar{ŜKM(t)}

]
where q0.025 is the 2.5th percentile of a standard normal distribution. This interval
can however include values outside the interval [0, 1], notably when the sample size is
small. A solution is to use a log-transformation to define log(ŜKM(t)) and its variance

v̂ar{log ŜKM(t)} = ∑
u≤t

dN(u)
Y (u)(Y (u)− dN(u)) . To be absolutely assured that the esti-

mated confidence interval remains in [0, 1], another solution is to apply a log-log trans-
formation log(− log(S(t))) and define the associated variance using the delta-method to
deduce a correct confidence interval.
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An alternative to the Kaplan-Meier estimator is the Nelson-Aalen estimator [Nelson,
1969; Aalen, 1978] which defines the estimator of the cumulative hazard function and its
variance as

Λ̂NA(t) =
∑
u≤t

dN(u)
Y (u) and v̂ar{Λ̂NA(t)} =

∑
u≤t

dN(u)
Y (u)2 . (2.10)

The estimator of the survival function can then be deduced as ŜNA(t) = exp
(
−Λ̂NA(t)

)
.

The latter is a particular case of the Aalen-Johansen estimator (2.18) which will be further
introduced to deal with multi-state data.

The Kaplan-Meier and Nelson-Aalen methods are asymptotically equivalent to esti-
mate the survival function. Many authors discussed about their differences but it is not
the goal here [Colosimo et al., 2002].

Proportional hazards model

In health studies, a major objective is to understand the occurrence of an event of
interest, such as a clinical event, from given explanatory covariates. To reach this goal, a
widely used method is the proportional hazards (PH) models.

The proportional hazards model is based on the individual instantaneous hazard of
event which is explained according to covariates through a linear predictor:

λi(t) = lim
dt→0

Pr(t < Ti ≤ t+ dt|Ti > t)
dt

= λ0(t) exp{X>i γ} (2.11)

where Xi is a vector of covariates measured at baseline, γ the associated vector of regres-
sion parameters and λ0(t) is the baseline hazard.

The main assumption of this model is the proportionality of hazards according to the
levels of each covariate. The proportional hazards assumption facilitates interpretation.
With only one covariate, the hazard ratio can be defined as λi(t|Xi = x+ 1)

λi(t|Xi = x) = exp(γ),

and the relation λi(t|Xi = x+ 1) = exp(γ)×λi(t|Xi = x) can be defined. It links the two
hazards only using the coefficient of proportionality exp(γ) which is invariant over time.
When the model includes p > 1 covariates, the hazard ratio is defined conditionally to
the other covariates: λi(t|Xi,p = x+ 1, Xi,−p = y)

λi(t|Xi,p = x,Xi,−p = y) = exp(γp).

In parametric proportional hazards models, λ0(t) has a parametric expression. Com-
mon choices of distribution include exponential, Weibull, Gompertz, Gamma, piecewise
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constant functions or spline functions. For example, with the exponential distribution,
the baseline hazard is constant over time: λ0(t) = λ0. With the Weibull function, the
baseline hazard progresses over time, although monotonous: λ0(t) = ρνρtρ−1, where ρ and
ν are unknown parameters.

As the subjects are independent, the likelihood L(θ) is the product of the individual
contributions to the likelihood Li(θ), θ the vector of unknown parameters to estimate. If
subject i is censored at T ∗i , Li(θ) equals the survival probability at the observed time. If
subject i has the event at T ∗i , Li(θ) equals the survival probability at the observed time
multiplied by the hazard at this time λi(T ∗i ):

L(θ) =
N∏
i=1

Li(θ)

=
N∏
i=1

λi(T ∗i ; θ)δiS(T ∗i ; θ)

Usually, the log-likelihood l(θ) = logL(θ) is maximized using iterative optimization
algorithms.

However, the specification of the parametric baseline hazard is not always obvious
in practice, and a misspecification of λ0(t) may lead to biased estimates [Struthers and
Kalbfleisch, 1986]. To deal with this, a semi-parametric proportional hazards model,
which avoids the specification of the baseline hazard, has been proposed in the literature
[Cox, 1972]. Over the years, this model, called the Cox proportional hazards model, has
become the standard regression model in survival analysis. It explains the individual
instantaneous hazard of event according to a baseline hazard and individual covariates,
as previously:

λi(t) = lim
dt→0

Pr(t < Ti ≤ t+ dt|Ti > t)
dt

= λ0(t) exp{X>i γ}.

However, the baseline hazard λ0(t) is now kept unspecified.
The Cox PH model can be estimated using the partial likelihood [Breslow, 1972]:

pL(γ) =
N∏
i=1

pLi(γ)

=
N∏
i=1

∫ ∞
0

exp(X>i γ)∑
j Yj(t) exp(X>j γ) dJi(t)
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where Yj(t) = 1{T ∗j ≥ t} and Ji(t) = 1{T ∗i ≤ t, δi = 1}. The estimator of the cumulative
baseline hazard (called Breslow’s estimator) can be deduced:

Λ̂0(t) =
∫ t

0
Π̂(0)(γ̂, u)−1 dJ(u) (2.12)

where Π̂(0)(γ̂, u) = 1
N

N∑
i=1
1{T ∗i ≥ u} exp{X>i γ̂} and J(u) = 1

N

N∑
i=1
1{T ∗i ≤ u, δi = 1}.

Pseudo-value approach

The models previously introduced are built on the specification of hazard functions
which relate individual instantaneous hazard and individual covariates. It makes them
particularly relevant for aetiology purposes.

However, consider now that we are interested for each subject i in another quantity
of interest, such as his individual probability of event πi(t) = Pr(Ti ≤ t). With the aim
to model or predict πi(t), some authors introduced models based on the direct modelling
of a cumulative probability of event, with for example the Fine-Gray model [Fine and
Gray, 1999] or the binomial regression models [Scheike et al., 2008] (both in the presence
of competing events), or the pseudo-value approach [Andersen and Pohar Perme, 2010].
Only the latter is developed here.

The idea of the pseudo-value (also called pseudo-observation) approach is that the
probability of event is the expectation of an indicator of event: πi(t) = E{1(Ti ≤ t)}.
However this indicator of event is not always observed in practice because of censoring.
So it can be replaced by the pseudo-observation µ̂i(t) of 1(Ti ≤ t) which is defined as the
jackknife estimator of the non-parametric estimator F̂ (t) of the quantity of interest πi(t):

µ̂i(t) = NF̂ (t)− (N − 1)F̂(−i)(t) (2.13)

where F̂ (t) = 1− Ŝ(t) with Ŝ(t) the Kaplan-Meier estimator of the survival function on
the whole sample (2.9), and F̂(−i)(t) is the same quantity estimated when the subject i is
eliminated from the sample.

Each individual pseudo-observation µ̂i(t) is then related to individual covariates Xi

using a generalized linear model with a link function g:

g [E{µ̂i(t)}] = X>i γ (2.14)

where the link function g may be chosen for interpretation purpose or inference facilities.
In practice the identity, log or clolog functions are the most commonly used.
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The model is then estimated using generalized estimating equations (GEE) [Liang and
Zeger, 1986].

The pseudo-observation approach allows to quantify direct effects of covariates on
probabilities of event and has the advantage to avoid the computation of integrals over
time when interested in probabilities of event, which is frequently encountered in predic-
tion setting.

2.2.2 Multi-state formalism

Survival analysis allows the study of a first event time. When this event has possibly
multiple distinct causes (e.g., a treatment failure defined as disease recurrence or death),
one talks about survival analysis with competing risks [Prentice et al., 1978]. But time-
to-event data analysis usually comprises a set of times of interest, not only one. Examples
include recurrent events (e.g., when we focus on a treatment for repeated asthma crisis in
asthmatic patients) or more generally multi-state data (e.g., when we focus on a disease
evolution process depicted through multiple possible transitions between disease stages).
The theory of multi-state processes unifies the time-to-event data analysis [Meira-Machado
et al., 2009; Andersen and Keiding, 2002; Hougaard, 1999]. In the following, I detail this
theory by relying on the book of Andersen et al. [1993], which introduced the counting
process theory for dealing with event history processes.

For each subject i ∈ {1, . . . , N}, let us consider multi-state process Ei = {Ei(t), Ti0 ≤
t ≤ Ci} which is observed between the left truncation time Ti0 and the right censoring
time Ci, with values in the finite space S = {0, 1, . . . ,M}, where Ei(t) denotes the state
occupied by subject i at time t.

The survival process is the simplest case of multi-state processes (see Figure 2.1):
one considers M = 1, subjects are at risk in the transient state 0, which assumes that
Pr(Ei(t) = 0|Ei(s) = 0) 6= 1 for s < t, and they can transit to the absorbing state 1,
which satisfies Pr(Ei(t) = 1|Ei(s) = 1) = 1. Note that when the state is not absorbing,
it is transient.

When we distinguish several types of event, as depicted in Figure 2.2 with M = 2
causes of event, we obtain the competing risks setting, where state 0 is the transient
state and states 1, . . . ,M are absorbing states. The multi-state theory can also handle
subsequent events that occur after a first one. In that case, the focus is on time(s) of
transition, as illustrated in Figure 2.3 which represents the possible transitions in an
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unidirectional illness-death process (state 0: healthy, state 1: illness, state 2: death). In
this case, a subject can experience several transient states before the absorbing state.

State 0

State 1

State 2

Figure 2.2 – Illustrative example of a competing risks setting with one transient state and
two absorbing states.

State 0

State 1

State 2

Figure 2.3 – Illustrative example of a multi-state process with two transient states and
an absorbing state, model also known as illness-death model.

In the following we assume that process Ei is Markovian and non-homogeneous. The
Markovian assumption ensures that the future of the process depends only of the current
state and not of the past state(s) (i.e. Pr(Ei(t + u) = k|Ei(t) = h,Ei(s), s < t) =
Pr(Ei(t+u) = k|Ei(t) = h),∀(h, k) ∈ S2,∀u ≥ 0) while the non-homogeneous assumption
means that the evolution of the process varies with time.

As in survival analysis, the multi-state data analysis is mainly based on several func-
tions which represent key quantities of interest, such as the transition intensities or the
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transition probabilities.
The intensity of transition from state h ∈ S to state k ∈ S at time t is defined as

λihk(t) = lim
dt→0

Pr(Ei(t+ dt) = k|Ei(t) = h)
dt (2.15)

with λi(t) = {λihk(t)} the (M + 1)× (M + 1) matrix of individual transition intensities.
The matrix of individual cumulative transition intensities, noted Λi(t), is composed of

non-diagonal elements
Λi
hk(t) =

∫ t

0
λihk(u) du,∀h 6= k,

and diagonal elements Λi
hh(t) = −∑k 6=h Λi

hk(t).
The transition probability defines the probability that a subject in state h at time s

occupies state k at a later time t:

P i
hk(s, t) = Pr(Ei(t) = k|Ei(s) = h), with s ≤ t. (2.16)

We then call P i(s, t) = {P i
hk(s, t)} the matrix of transition probabilities, which satisfies

the Chapman-Kolmogorov equation:

P i(s, t) = P i(s, u)P i(u, t), with 0 ≤ s ≤ u ≤ t.

P i(s, t) is the unique solution of the Kolmogorov forward differential equations:

P i(s, s) = I,
∂

∂t
P i(s, t) = P i(s, t)λi(t).

This result is based on the system of differential equations for all the possible states
(h, k, l) ∈ S3: ∂P

i
hl(s, t)
∂t

= ∑
k P

i
hk(s, t)λihk(t);Phk(s, s) = δhk, with δhk = 1 if h = k and 0

otherwise.

Like in survival analysis, both non-parametric estimators of these quantities of interest
and regression models have been proposed.

Non-parametric estimators

Let Nhk(t) be the number of direct observed transitions from state h to state k up
to time t, and Yh(t) the number of individuals in state h just before time t. The non-
parametric estimator of the cumulative intensities, called Λ∗(t) has elements Λ∗hk(t) esti-
mated through the Nelson-Aalen estimator:

Λ̂∗hk(t) =
∫ t

0

dNhk(u)
Yh(u) , h 6= k, (2.17)
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and Λ∗hh(t) = −∑k 6=h Λ∗hk(t). The solution to the Kolmogorov equations (2.17) permits
to express the non-parametric estimate of the transition probabilities P̂ ∗(s, t) using the
product-integral:

P̂ ∗(s, t) = R
(s,t]

(
I + dΛ̂∗(u)

)
. (2.18)

where Λ̂∗(u) is the non-parametric estimate of the cumulative transition intensities at
time u with dΛ̂∗hh(u) ≥ −1 for all u, and I is the (M + 1)× (M + 1) identity matrix. This
estimated matrix of transition probabilities is called Aalen-Johansen estimator.

Let now s < T ∗1 < . . . < T ∗m∗ ≤ t be the ordered times of observed direct transitions
between s and t for all the individuals. It can be deduced from (2.18):

P̂ ∗(s, t) =
m∗∏
l=1

(
I + ∆Λ̂∗(T ∗l )

)
, (2.19)

where ∆Λ̂∗(T ∗l ) = Λ̂∗(T ∗l )− Λ̂∗(T ∗l−1) and ∆Λ̂∗hh(T ∗l ) ≥ −1 for all T ∗l .
For example, using an unidirectional illness-death process (with possible transitions

depicted in Figure 2.3),

I + ∆Λ̂∗(T ∗l ) =


1− ∆N0.(T ∗l )

Y0(T ∗l )
∆N01(T ∗l )
Y0(T ∗l )

0 1− ∆N1.(T ∗l )
Y1(T ∗l )

0 1

 ,

with Nh.(T ∗l ) = ∑
k 6=hNhk(T ∗l ) and ∆Nhk(T ∗l ) = Nhk(T ∗l )−Nhk(T ∗l−1).

Estimation of the non-parametric estimator covariance

The covariance matrix of the Aalen-Johansen estimator of transition probabilities can
be estimated by the Greenwood-type estimator:

ĉov(P̂ ∗(s, t)) =
∫ t

s
P̂ ∗(u, t)> ⊗ P̂ ∗(s, u−)ĉov(dΛ̂∗(u))P̂ ∗(u, t))⊗ P̂ ∗(s, u−)>

where ⊗ denotes the Kronecker product.
Andersen et al. [1993] simplified the computations in (2.20) using the recursion for-

mula:

ĉov(P̂ ∗(s, t)) = {(I + ∆Λ̂∗(t))> ⊗ I}ĉov(P̂ ∗(s, t−)){(I + ∆Λ̂∗(t))⊗ I}+

{I⊗ P̂ ∗(s, t−)}ĉov(∆Λ̂∗(t)){I⊗ P̂ ∗(s, t−)},
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where

ĉov(∆Λ̂∗hk(t),∆Λ̂∗h′k′(t)) =



(Yh(t)−∆Nh.(t))∆Nh.(t)
Yh(t)3 , for h = k = h′ = k′,

−(Yh(t)−∆Nh.(t))∆Nhk′(t)
Yh(t)3 , for h = k = h′ 6= k′,

−(δkk′Yh(t)−∆Nhk(t))∆Nhk′(t)
Yh(t)3 , for h = h′, h 6= k, h 6= k′,

0, for h 6= h′,

with δkk′ the Kronecker delta. Note that ĉov(P̂ ∗(s, t)) and ĉov(∆Λ̂∗(t)) are two (M +
1)2 × (M + 1)2 covariance matrices.

These results may be used to construct the 95% pointwise confidence intervals for the
elements of the Aalen-Johansen estimator:

exp
log P̂ ∗hk(s, t)± 1.96

√
v̂ar(P̂ ∗hk(s, t))
P̂ ∗hk(s, t))

 .
(Semi-) Parametric estimator

In the multi-state framework, one can also model individual transition intensities of
event λihk(t) according to covariates, using for instance proportional intensity models:

λihk(t) = λ0,hk(t) exp{X>hk,iγhk}, (2.20)

with (h, k) ∈ S2 and Xhk,i the vector of covariates measured at baseline associated with
the intensity of transition h→ k through the vector of parameters γhk. The baseline tran-
sition intensity λ0,hk(t) can be parametric or non-parametric, by extending the formulas
developed in the survival context and by stratifying on each transition h→ k [De Wreede
et al., 2010]. Other authors proposed to approximate the baseline transitions by splines
and use a penalised likelihood which penalises the second derivative of λihk(t) using a
loess parameter [Joly and Commenges, 1999] to avoid local variations and discontinuity
in λ0,hk(t).

In the parametric setting, the parameters are then estimated in the maximum likeli-
hood framework, while the semi-parametric setting generalises the Cox model estimation
by stratifying on the transitions. Once the vector of estimated parameters θ̂ obtained, we
are able to estimate for each subject his individual transition probability P̂ i(s, t|θ̂):

P̂ i
hh(s, t|θ̂) = exp

{
Λ̂i
hh(t|θ̂)− Λ̂i

hh(s|θ̂)
}
,

P̂ i
hk(s, t|θ̂) =

∫ t

s
P̂ i
hh(s, u|θ̂)λ̂ihk(u|θ̂)P̂ i

kk(u, t|θ̂)du, h 6= k.
(2.21)
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In practice, when the state space S is large, these integrals become too complex
numerically, and one can approximate P i(s, t|θ̂) through the product-integral:

P̂ i(s, t|θ̂) = R
(s,t]

(
I + dΛ̂i(u)

)
, (2.22)

with dΛ̂i
hh(u) ≥ −1 for all u.

Pseudo-value approach

Although most works in multi-state models rely on proportional intensity models,
other types of models can also be used similarly as in survival analysis. For instance,
the pseudo-value approach can be used to directly model transition probabilities. This
is achieved by generalizing the survival analysis setting (see Section 2.2.1) which only
focused on the modelling of cumulative probability functions for one type of event.

As an example, when interested in the transition probability P i
hk(s, t) = Pr(Ei(t) =

k|Ei(s) = h), the non-parametric estimator defined in the pseudo-value formulation (2.13)
is obtained from the Aalen-Johansen estimator (2.18).

2.2.3 Landmark approach

We claimed earlier that the (parametric or semi-parametric) proportional hazards
models assumed invariant effects over time, which is called the proportional hazards (PH)
assumption. van Houwelingen [2014] argued that these models are not robust to the
violation of the PH assumption, that is in presence of time-varying effects of covariates.
To avoid biases and complex inclusion of time-varying effects, he proposed to use a simple
solution: landmarking. The idea is to consider landmark times, that is a series of times
after inclusion from which analyses are to be done, and fit a separate model at each
landmark time point by selecting only the individuals still at risk at the landmark point.
These models also assume PH but only after a certain landmark time. In addition, when
the interest is in a short time frame as in prediction for instance, an administrative
censoring may also be used to further reduce the possible bias due to the PH assumption.
Finally, each landmark-specific effects can be combined to define time-dependent effects.

In the non-parametric estimators and the (semi-)parametric models we defined, an-
other phenomenon well-discussed in the literature can arise and seriously trouble the
results of the study: the immortal time bias [Sylvestre et al., 2006; Suissa, 2007; Giobbie-
Hurder et al., 2013]. It occurs when, because of exposure definition, the outcome under
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study could not occur. A famous example is the paper of Anderson et al. [1983], which
debates on the effect of response to chemotherapy on survival. The naive way to run
the analysis would be to consider two groups, a "responder" group and a "non-responder"
group, and compare survival between the two groups. However, a potential responder
cannot belong to the responder group if he dies before his time of response. Thus, the
individuals in the responder group are considered as immortal for some time: immortal
time bias. Actually, this example illustrates that one cannot make the analysis using
groups based on their future composition, because the latter is unknown. Still, a possible
alternative is to perform the analysis by only considering the present responses in subjects
at risk at the landmark point within the so called landmark approach.

van Houwelingen [2007] explained that the same remark can be made in the presence
of time-dependent covariates, when the clinical interest is on the prediction of survival
given the covariate history (which may vary over time) up to a dynamic landmark point.
A solution would be to adjust the survival model on predicted marker values at the pre-
diction time from a separate mixed model [Tsiatis et al., 1995]. However, death stops the
collection of the marker measurements and the further marker values certainly correspond
to healthiest subjects so that immortal time bias is transposable to the case of longitu-
dinal data. Since the linear mixed model based on ML (or REML) estimation does not
take into account such informative missing data, a solution is to define a joint probability
model for the covariate process and the survival process [Wulfsohn and Tsiatis, 1997], as
further detailed in Section 2.3. However, such a modelling may lead to complex inference.
An alternative [Albert and Chib, 2001] is to perform a sequential analysis at each event
time (considered as a landmark time), by considering only the subjects still at risk and
only their information available up to the landmark point.

2.2.4 Frailty

In presence of independent or clustered time-to-event data, the inclusion of frailty
may be essential. The frailty is a random term which has a multiplicative effect on the
hazard. It usually follows an exponential distribution such as a log-normal distribution
or a Gamma distribution. When the frailty is included, one talks about frailty model. It
may be included for several reasons [Hougaard, 1995; Nielsen et al., 1992].

When time-to-event data are clustered, as for example in the presence of members
of a same family who share the same genetic background, or in the presence of groups
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of patients treated in different hospitals, the inclusion of a frailty term may be essential
[Liquet et al., 2012]. Indeed time-to-event data may remain dependent given the model’s
covariates. In that case, the frailty captures this residual correlation. One then talks
about shared frailty model, because the elements of a same cluster share the same frailty.
In this model, the event times are assumed independent conditionally to the frailty.

Clustered data also occur when we are interested in recurrent events in a same subject
(here the cluster is the subject). In that case, the frailty captures the residual within-
subject correlation, that is the correlation between the multiple event times of the same
subject which is unexplained by the model’s covariates. Such a model has been also
extended to joint frailty models which take into account both recurrent event data and
a terminal event [Liu et al., 2004; Rondeau et al., 2007]. In these models the frailty acts
simultaneously as a multiplicative effect on both the hazard to experience the recurrent
event and the hazard to experience the terminal event, and thus takes into account the
residual correlation between the two processes.

Clustered data may also be considered in more general multi-state data, such as indi-
vidual transition times. Putter and van Houwelingen [2011] argued that the inclusion of
frailties in such models allows to capture both lack of fit of the model, heterogeneity in
the data, and residual correlation in the transition times data. Thus, they claimed that
the interpretation of the frailty effect is not always obvious. Finally, the authors stipu-
lated that identifiability problems could occur in such models due to the small number of
transitions.

Frailties have also been proposed in the extreme case of one unique (independent)
event time [Hougaard, 1986], but in that case the identifiability is theoretically impossible
without strong assumptions [Putter and van Houwelingen, 2011].

2.3 Standard joint modelling

The parametric and semi-parametric models developed in Section 2.2 have been in-
troduced with covariates that did not vary with time. One could consider in addition
the inclusion of time-dependent covariates. However, in these models the time varying
covariates are assumed to be exogenous (or external).

The notion of external or exogenous versus internal or endogenous variable can be
explained as follows [Kalbfleisch and Prentice, 2011]. Let us introduce times s and t such
that 0 < s ≤ t, Y (t) a time-dependent covariate observed at t, Y(s) = {Y (u); 0 < u ≤ s}
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the history of the covariate until s and T the event time. A time-dependent covariate is
exogenous when its distribution is not affected by the occurrence of the event, which can
be expressed as

fY (Y (t)|Y(s), T ≥ s) = fY (Y (t)|Y(s), T = s) or λ(s|Y(s)) = λ(s|Y(t)).

Exogenous time-dependent covariates are typically covariates not related with the subject,
such as the season of the year, the air pollution, etc.

In contrast, endogenous time-dependent covariates are covariates that are related to
the individual process, typically such as individual repeated measurements of a biomarker.

In addition to the issue of endogeneity, covariates included in standard event history
models are assumed to be measured at each event time and without error, which is
unrealistic for most measures.

For longitudinal marker analyses, we earlier mentioned that informative dropout may
lead to incorrect estimates in mixed-effects models. To deal with MNAR, multiple ap-
proaches have been proposed in the literature such as pattern mixture models [Little,
1993], selection models [Diggle and Kenward, 1994] or joint models [Wulfsohn and Tsi-
atis, 1997]. Nowadays, pattern mixture models and selection models are used in practice
for sensibility analysis. In this thesis, only the joint modelling approach, which considers
the joint distribution of the longitudinal repeated measurements of the marker and the
time-to-event data, is considered.

Whether for event history data analysis including time-dependent endogenous covari-
ates, or for longitudinal data analysis with informative dropout, the joint modelling has
considerably developed over the past years [Tsiatis and Davidian, 2004; Rizopoulos, 2010;
Lawrence Gould et al., 2015]. Nowadays, it has become a key method for the analysis of
longitudinal and event history correlated processes.

2.3.1 General structure of the joint modelling

The main idea of a joint model is to link two processes: a longitudinal process
(biomarker measurements for example) and an event process (time-to-event data for ex-
ample) using a shared latent structure, as illustrated in Figure 2.4.

In the literature, two kinds of joint models have been developed: joint models with
shared latent classes and joint models with shared random effects. In the former the
population is assumed to be heterogeneous and divided into homogeneous latent classes
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Latent structure

Longitudinal process Event process

Latent space

Observed space

Figure 2.4 – Graphical general representation of a joint model for a longitudinal process
and an event process. Ovales represent latent variables while squares represent observed
variables

which are characterized by a specific mean trajectory of the longitudinal process and a
specific risk of event [Proust-Lima et al., 2014]. In the latter the population is assumed to
be homogeneous, and the link between the longitudinal and event processes is captured
by a function of the individual random effects that also explain the variability in the
longitudinal trajectories over subjects [Tsiatis and Davidian, 2004]. The latter is by far
the most famous one in the statistical community, and we mainly focus on it in this thesis.

2.3.2 Standard joint model with shared random effects

The joint modelling was initially proposed in a two-stage estimation, which allowed
to take into account the fact that the observations were intermittently observed and with
error [Tsiatis et al., 1995]. However such a technique did not properly take into account
the correlation between the two processes. To eliminate this bias, the joint model has
been primarily developed by focusing on full joint likelihood approaches [Wulfsohn and
Tsiatis, 1997].

Formulation

Let us consider the standard setting where the longitudinal marker follows a Gaussian
distribution and the event history process is a survival process.

The classical joint model with shared random effects is decomposed into two sub-
models: a linear mixed model for the repeated measurements of the biomarker Yi and
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a proportional hazards model for the individual hazard of event λi(.), both linked by a
function of shared random effects bi:

Yi(t) = Y ∗i (t) + εi(t)
= XL

i (t)>β + Zi(t)>bi + εi(t)
λi(t) = λ0(t) exp{XE >

i γ +Wi(t|bi)>η}
(2.23)

where XL
i (t) and Zi(t) are vectors of possibly time-dependent covariates associated with

the p-vector of fixed effects β and the q-vector of individual random effects bi, bi ∼
N (0, D). The error terms are such that εi = (εi1, . . . , εini

)> ∼ N (0, σ2Ini
), where I is the

identity matrix; εi and bi are independent.
In the survival sub-part, λ0(t) is the baseline hazard. Most of the time, the baseline

hazard is parametric (e.g., Weibull, piecewise constant or a small number of B-splines).
It is rarely kept unspecified; indeed, the partial likelihood (like in the Cox model) cannot
be employed and the full likelihood has to be defined. As a solution, one might consider
a piecewise constant function with jumps at each event time but this would induce too
many parameters and lead to computational problems [van der Vaart, 1998; Hsieh et al.,
2006].

The vector of prognostic factors XE
i is associated with the vector of coefficients γ

while the multivariate function of marker dynamics Wi(t|bi) is associated with the vector
of coefficients η. Usual specifications for Wi(t|bi) are the true current level of the marker
Wi(t|bi) = Y ∗i (t) or the true current slope of the marker Wi(t|bi) = ∂Y ∗i (t)/∂t or both
Wi(t|bi) = (Y ∗i (t), ∂Y ∗i (t)/∂t)> [Ye et al., 2008; Yu et al., 2008; Rizopoulos, 2012b]. But
any function could be considered. For instance, authors introduced the area under the
longitudinal trajectory up to time t, Wi(t|bi) =

∫ t
0 Y
∗
i (u) du [Abrahamowicz et al., 2006;

Brown, 2009; Rizopoulos, 2012b] while others considered directly the vector of random
effects Wi(t|bi) = bi [Follmann and Wu, 1995; Henderson et al., 2000; Vonesh et al., 2006].

Interpretation

This joint model formulation has the advantage to keep the same type of interpretation
of the linear mixed-effects model for the longitudinal sub-part and of the proportional
hazard model for the event sub-part as the separate models except that parameters γ
are henceforth also adjusted on Wi(t|bi). Parameters η also use the proportional hazards
assumption. For example, if we consider the more common case where the association
function is on the true current level of the marker (i.e. Wi(bi, t) = Y ∗i (t)), then exp(η)
gives the hazard ratio for a 1-unit increase in the predictor Y ∗i (t) at the current time,
given covariates XE

i .
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Estimation

There exist different software to fit joint models with shared random effects [Rizopou-
los, 2010; Philipson et al., 2012; Rizopoulos, 2016; Crowther et al., 2013; Zhang et al.,
2016]. More and more are based on bayesian inference, mainly to avoid the possible com-
plex inference in joint models that use maximum likelihood approach. We rely in this
thesis on the R package JM [Rizopoulos, 2010] where estimation is done in the maximum
likelihood framework.

In a joint model, the individual contribution to the likelihood exploits the indepen-
dence between the time-to-event data (Ti, δi) and the longitudinal data Yi, and the joint
observed likelihood is

L(θ) =
N∏
i=1

∫
Rq
fY (Yi|bi; θ)fE(Ti, δi|bi; θ)fb(bi; θ) dbi (2.24)

with

fY (Yi|bi; θ) = 1
(2πσ2)ni/2 exp

−‖Yi −XL
i β − Zibi‖

2

2σ2


where ‖x‖ denotes the Euclidean norm of vector x, XL

i and Zi are the matrices of covari-
ates with row vectors XL

i (tij)> and Zi(tij)>, j = 1, . . . , ni, respectively;

fE(Ti, δi|bi; θ) = λi(t|bi; θ)δi exp
(
−
∫ Ti

0
λi(u|bi; θ)

)
du

and

fb(bi; θ) = 1
(2π)q/2|D|1/2 exp

(
−b
>
i D

−1bi
2

)
.

JM package maximizes the log-likelihood

l(θ) =
N∑
i=1

∫
Rq
{log fY (Yi|bi; θ) + log fE(Ti, δi|bi; θ) + log fb(bi; θ)} dbi,

and the optimization is performed using the expectation-maximization (EM) algorithm
coupled with a quasi-Newton algorithm in case of slow convergence.

The log-likelihood of classical joint models with shared random effects involves inte-
grals over time and random effects that can be achieved using numeric integration algo-
rithms (Monte-Carlo or Gaussian quadratures for example). In JM, the integral over time
is approximated using a Gauss-Kronrod quadrature and the computation of the integral
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over the individual random effects is achieved using a Gauss-Hermite quadrature called
pseudo-adaptive Gauss-Hermite quadrature.

The quadrature approximates the integral using a weighted sum of function values,
at specified points within the domain of integration; the Gaussian quadrature is based
on the use of polynomial functions. The idea of the adaptive quadrature is to recentre
and rescale the integrand in the integral in order to obtain a better approximation of the
integral [Lesaffre and Spiessens, 2001]. By using the same notations and explanations as
the book of Rizopoulos [2012b], we call A(.) a function of the random effects, and define
the adaptive Gauss-Hermite rule as:

E{A(θ, bi)|Ti, δi, Yi; θ} ≈ 2q/2|B̂i|−1
K∑
t1=1

. . .
K∑
tq=1

πtA(θ, r̂t)f(r̂t|Ti, δi, Yi, θ) exp(‖bt‖2),

where K is the number of quadrature points and r̂t = b̂i +
√

2B̂−1
i bt uses the prespecified

abscissas bt = (bt1 , . . . , btq)> with corresponding prespecified weights πt. The empirical
Bayes estimate b̂i is deduced from the joint model with θ̂ the corresponding estimated
vector of parameters, using:

b̂i = arg max
b
{logL(θ̂)} = arg max

b
{log f(Ti, δi, Yi; θ̂)},

and their covariance matrix Ĥ−1
i is such as:

Ĥi = −∂
2 log f(Ti, δi, Yi, b; θ̂)

∂b∂b>

∣∣∣∣
b=b̂i

.

We can then deduce B̂i the Choleski factor of Ĥi.
However the location of the quadrature points using this adaptive Gauss-Hermite rule

requires the computation of the mode and the variance of the posterior distribution of the
random effects at each step of the optimisation algorithm. To avoid the computational
cost of rescaling quadrature points at each iteration, Rizopoulos [2012b] proposed to
use the pseudo-adaptive Gauss-Hermite rule which uses the estimates of the previously
fitted linear mixed sub-model of the joint model (in the independence setting) to roughly
recentre and rescale the subject-specific integrands. The formula is the same as previously,
except that B̃i, r̃t and b̃i replace B̂i, r̂t and b̂i, respectively. Henceforth, one has r̃t =
b̃i +
√

2B̃−1
i bt, and the empirical Bayes estimates b̃i are deduced from a first fitted linear

mixed model with θ̃y the corresponding estimated vector of parameters, using:

b̃i = arg max
b
{log f(Yi, b; θ̃y)},
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and their covariance matrix H̃−1
i is such as:

H̃i = −∂
2 log f(Yi, b; θ̃y)

∂b∂b>

∣∣∣∣
b=b̃i

= Z>i Zi
σ̃2 + D̃−1.

We can then deduce B̃i the Choleski factor of H̃i.

2.3.3 Joint model with discrete time-to-event data and exact
likelihood inference

As mentioned earlier, the main difficulty in joint models using shared random effects
comes from the computation of the likelihood that involves an integral over time and
the aforementioned random effects. In practice, this complexity considerably restricts
the possible choices of the association structure between the longitudinal and survival
processes.

Barrett et al. [2015] proposed an elegant calculation trick which avoids to approximate
the multidimensional integral with numeric methods such as Gaussian quadratures. Based
on the results on truncated Gaussian distributions developed in Arnold [2009], the idea
is to obtain a closed-form of the integral over the random effects, using the relation∫

Φ(n)(ν1 + Ωz, ν2 + Ωz; 0, V )φ(q)(z; 0, Iq)) dz = Φ(n)(ν1, ν2; 0, V + ΩΩ>) (2.25)

where Φ(n)(a, b; 0,Σ) is a n-multivariate normal distribution function, expressed at vector
b and truncated at vector a (a ≤ b), with mean zero and variance Σ, and φ(q)(b; 0, Iq) is
a q-dimensional standard normal density function expressed at q-vector b; ν1, ν2 are two
vectors of size n; Ω and V are matrices with dimensions (n, q) and (n, n), respectively.
Please note that in the initial paper of Arnold [2009], there is a small mistake since the
relation Φ(n)(a, b; 0,Σ) = Φ(n)(−∞, b; 0,Σ) − Φ(n)(−∞, a; 0,Σ) for any vectors a, b and
matrix Σ is no more valid when n > 1.

To enter the Gaussian space and apply this formula, Barrett et al. [2015] use a dis-
cretization of the timescale for the time-to-event data. They replace the hazard function
by the probability to have the event of interest in the time interval given that the subject
was free of the event in the previous interval and model this probability by a sequential
probit model. The integrand of the likelihood (2.24) thus becomes a product of Gaus-
sian distribution function and density function, and formula (2.25) provides a close form
likelihood.
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2.3.4 Extensions of joint models

The joint models we introduced apply for repeated measurements of a Gaussian lon-
gitudinal marker and survival data, both correlated.

In the literature, many developments and applications exist concerning the extension
of the classical joint model to multiple markers and multiple time-to-event data. For
example, Chi and Ibrahim [2006] introduced joint models for multivariate longitudinal
and multivariate survival data. Elashoff et al. [2008] proposed a joint model to deal
with competing risks data, while Andrinopoulou et al. [2014] considered the competing
risks setting in presence of two correlated longitudinal markers. Król et al. [2016] even
introduced a complex trivariate joint model for left-censored longitudinal data, recurrent
events and a terminal event. Finally, Dantan et al. [2011] introduced a joint model with
latent state for longitudinal data and illness-death data.

However, none proposed a joint model for a longitudinal process and a multi-state
process, although potentially essential in the full modelling of a disease process evolution.
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3 Joint modelling of longitudinal and
multi-state processes: application
to clinical progressions in prostate
cancer

Motivated by the (possibly successive) clinical transitions in prostate cancer with
repeated measurements of PSA, we first developed a new joint model with shared random
effects for a longitudinal process and a multi-state process.

This model allows to simultaneously analyse repeated measures of a Gaussian lon-
gitudinal marker and times of transitions between states characterized by a multi-state
process. This is achieved by combining two modelling approaches: the multi-state mod-
elling, based on the counting process theory [Andersen et al., 1993], and the standard
joint modelling [Rizopoulos, 2010], which applies for a single event. The joint multi-state
model is decomposed into two submodels: a linear mixed model for the Gaussian repeated
measurements of the longitudinal marker and a multi-state model with proportional in-
tensities (between each covariate level) for the individual transition times, both linked by
a function of the individual shared random effects. The model thus allows not only to
distinguish the type of event occurring for the subject, but also to depict the individual
characteristics after the occurrence of the first event, by focusing on transition intensities
between distinct states.

The observed likelihood is maximised to provide the estimates of the model param-
eters. This likelihood involves integrals over time and individual random effects which
are approximated with numerical integration algorithms. Extensions of the previous so-
lutions based on the use of pseudo-adaptive Gaussian quadratures [Rizopoulos, 2012a]
are proposed to accurately and efficiently compute such quantities. The optimization is
performed using an EM algorithm coupled to a quasi-Newton algorithm in case of slow
convergence. The model estimation is implemented in R by combining and extending
two packages of reference in the statistical community: mstate [De Wreede et al., 2010]
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for preparing data in a multi-state setting, and JM [Rizopoulos, 2010] for estimating joint
models with shared random effects for a Gaussian longitudinal marker and time-to-event
data. The implementation is thus easy and effective, because it keeps the syntax and the
features of JM while adapting to the multi-state framework.

A simulation study is carried out to check the performances of the estimation program
over several scenarii of dimensions of the random effects and number of transitions.

The model is then applied on the two cohorts introduced in Chapter 1 and including
men with a localised prostate cancer and treated by radiotherapy .

This work has been published in Statistics in Medicine [Ferrer et al., 2016].

3.1 Main article
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Joint modelling of longitudinal and survival data is increasingly used in clinical trials on cancer. In prostate
cancer for example, these models permit to account for the link between longitudinal measures of prostate-specific
antigen (PSA) and time of clinical recurrence when studying the risk of relapse. In practice, multiple types of
relapse may occur successively. Distinguishing these transitions between health states would allow to evaluate,
for example, how PSA trajectory and classical covariates impact the risk of dying after a distant recurrence post-
radiotherapy, or to predict the risk of one specific type of clinical recurrence post-radiotherapy, from the PSA
history. In this context, we present a joint model for a longitudinal process and a multi-state process, which is
divided into two sub-models: a linear mixed sub-model for longitudinal data and a multi-state sub-model with
proportional hazards for transition times, both linked by a function of shared random effects. Parameters of
this joint multi-state model are estimated within the maximum likelihood framework using an EM algorithm
coupled with a quasi-Newton algorithm in case of slow convergence. It is implemented under R, by combining
and extending mstate and JM packages. The estimation program is validated by simulations and applied on
pooled data from two cohorts of men with localized prostate cancer. Thanks to the classical covariates available
at baseline and the repeated PSA measurements, we are able to assess the biomarker’s trajectory, define the risks
of transitions between health states and quantify the impact of the PSA dynamics on each transition intensity.
Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: joint modelling; longitudinal process; multi-state process; prostate cancer; R; shared random effects

1. Introduction

In longitudinal health studies, marker data are usually collected at repeated measurement times until the
occurrence of an event such as disease relapse or death, with the objective to study the link between these
two correlated processes or use the information brought by the marker’s dynamics to explain or predict
the time to event. In such analyses, the repeated measurements of the marker should not be considered as
a standard time-dependent covariate in a survival model [1,2] because the marker is an internal outcome
measured with error and at discrete times whereas the Cox model assumes that the exact values of the
explanatory variables are known for all the individuals at risk at each event time. To counteract these
weaknesses, the two processes can be modelled jointly [3, 4]. The principle is to define two sub-models
(one mixed sub-model for the longitudinal data and one survival sub-model for the time-to-event data)
and use a common latent structure to link them. The shared random effect models, notably developed by
Tsiatis and Davidian [5], are the most popular joint models. They usually assume that a function of the
random effects from the linear mixed model is included as covariate in the survival model. This function
can be any underlying features of the marker dynamics.
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The joint modelling method is very useful in prostate cancer. The prostate-specific antigen (PSA),
which is a protein secreted by the prostate, is found to be over-expressed in the presence of prostate
cancer. This blood-based longitudinal tumour marker is commonly used by clinicians to monitor patients
with localized prostate cancer following treatment (radiation therapy or surgery) in order to detect sub-
clinical presence of disease. Proust-Lima et al. [6], Taylor et al. [7] and Yu et al. [8] showed, through
various types of joint models, that the dynamics of this biomarker, along with the pre-treatment PSA
level and other factors measuring the aggressiveness of cancer cells and the extent of the tumour, were
risk factors for progression and permitted one to dynamically predict (i.e. using PSA to adapt prediction
over time) the risk of clinical relapse.

In practice, a patient may experience a succession of clinical progression events with, for example, a
local recurrence, followed by a distant metastatic recurrence and then death. So instead of the occurrence
of a single clinical event, the progression of prostate cancer should be defined as a multi-state process
with a focus on the transitions between clinical states and the impact of the biomarker dynamics on it.
This is essential to understand and predict accurately the course of the disease, and it is of particular
relevance for the clinicians that need to distinguish the different types of events in order to properly adapt
the treatment.

Some authors already extended the classical joint modelling framework to multiple time-to-event data.
Chi and Ibrahim [9] proposed a joint model for multivariate longitudinal data and multivariate survival
data. Liu and Huang [10] and Kim et al. [11] looked into the simultaneous study of three correlated out-
comes: longitudinal data, times of recurrent events and time of terminal event. Elashoff et al. [12] and
Rizopoulos [13] extended the joint model to competing risks data, which allows to characterize the cause
of survival event. Dantan et al. [14] developed a joint model with latent state for longitudinal data and
illness-death data. Tom and Farewell [15] proposed a complex multi-state model that combined an inter-
mittently observed longitudinal categorical process and a multi-state process. Recently, Andrinopoulou
et al. [16] studied simultaneously two longitudinal markers and competing events. However, the joint
study of Gaussian longitudinal data and multi-state data has never been proposed and implemented.
Thus, we introduce a joint model with shared random effects for repeated measurements of a longitu-
dinal marker and times of transitions between multiple states. It consists in a linear mixed model and a
multi-state model with transition-specific proportional intensities, both linked by shared random effects.

The computational aspect is the main obstacle in the development of joint models with shared ran-
dom effects. As explained by Gould et al. [17], the R package JM, developed by Rizopoulos [18], has
enabled many advances in the use of joint modelling, particularly through efficient numerical integrations.
On the other hand, the R package mstate, developed by De Wreede et al. [19], provides estimation
of multi-state models. In the present work, we combine and adapt these two packages in order to esti-
mate joint multi-state models. Thus, the implementation is easy and effective. Through the adaptation
of jointModel() function of JM package, our approach uses the maximum likelihood approach,
which is performed using the expectation-maximization (EM) algorithm coupled with a quasi-Newton
algorithm in case of slow convergence. The software advantage is that it keeps the features, syntax and
outputs of JM.

The paper is organized as follows. Section 2 presents the joint model for longitudinal and multi-state
processes. Estimation and implementation procedures are detailed in Section 3 and validated by simula-
tions in Section 4. The model is applied to two cohorts of men with prostate cancer in Section 5, and a
brief discussion is finally given in Section 6.

2. Joint multi-state model

2.1. Notations

For each individual i, a longitudinal process and a multi-state process are observed. Let {Ei(t), t ⩾ 0}
be the multi-state process where Ei(t) denotes the occupied state by subject i at time t and takes val-
ues in the finite state space S = {0, 1,… ,M}. It is assumed that the multi-state process is continuous
and observed between the left truncation time (time of entry in the study) Ti0 and the right censoring
time Ci, so that the observed process is Ei = {Ei(t),Ti0 ⩽ t ⩽ Ci}. We further consider that Ei is a
non-homogeneous Markov process. The Markov property ensures that the future of the process depends
only on the present state and not on the past state, that is, Pr

(
Ei(t + u) = k|Ei(t) = h, {Ei(s), s < t}

)
=

Pr
(
Ei(t + u) = k|Ei(t) = h

)
,∀h, k ∈ S,∀u ⩾ 0 [19], and the non-homogeneous property guarantees that

the time since Ti0 impacts the future evolution of the process. Let us consider Ti =
(
Ti1,Ti2,… ,Timi

)⊤
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the vector of the mi ⩾ 1 observed time(s) for individual i, with Tir < Ti(r+1),∀r ∈ {0,… ,mi − 1}, and
where ⊤ denotes the transpose operator. If the last observed state for subject i

(
Ei

(
Timi

))
is absorbing,

that is, it is impossible to leave it once entered (typically death), we observe mi direct transition(s). Oth-
erwise, Timi

equals Ci the right censoring time, and we observe mi − 1 direct transition(s). We define by

𝛿i =
(
𝛿i1,… , 𝛿imi

)⊤
the vector of observed transition indicator(s), with 𝛿i(r+1) equals 1 if a direct tran-

sition is observed at time Ti(r+1)
(
i.e. Ei

(
Tir

) ≠ Ei

(
Ti(r+1)

))
and 0 otherwise, ∀r ∈ {0,… ,mi − 1}. For

each subject i, we also observe Yi =
(
Yi1,… ,Yini

)⊤
the vector of ni measures of the marker collected at

times ti1,… , tini
, with tini

⩽ Timi
.

2.2. Joint multi-state model formulation

The joint multi-state model is decomposed into two sub-models: a linear mixed sub-model for the longi-
tudinal data (repeated measurements of the biomarker) and a multi-state model with transition-specific
proportional intensities for the event history data (transition and censoring times), both linked by a
function of the shared random effects.

2.2.1. Longitudinal sub-model. To model the trajectory of the longitudinal marker, we use a linear mixed
model. Under Gaussian assumptions, we assume that Yij the observed measure of the marker at time point
tij is a noisy measure of the true level Y∗

i

(
tij
)
. This non-observed level Y∗

i

(
tij
)

is explained according
to time and covariates with fixed effects 𝛽 at the population level, and random effects bi that take into
account the correlation between repeated measures of the same individual:

Yij = Y∗
i

(
tij
)
+ 𝜖ij

= XL
i

(
tij
)⊤ 𝛽 + Zi

(
tij
)⊤

bi + 𝜖ij,
(1)

with XL
i

(
tij
)

and Zi

(
tij
)

the vectors of possibly time-dependent covariates associated with the p-vector
of fixed effects 𝛽 and the q-vector of random effects bi, bi ∼ N(0,D), respectively. Note that 𝜖i =(
𝜖i1,… , 𝜖ini

)⊤ ∼ N
(
0, 𝜎2Ini

)
where I is the identity matrix; 𝜖i and bi are independent.

2.2.2. Multi-state sub-model. To model the transition times, we use a Markov multi-state model with
proportional hazards that takes into account the marker’s dynamics through the shared random effects
bi. Thus, for the transition from state h ∈ S to state k ∈ S, the transition intensity at time t takes the
following form:

𝜆i
hk(t|bi) = lim

dt→0

Pr(Ei(t + dt) = k|Ei(t) = h; bi)
dt

= 𝜆hk,0(t) exp
{

XS ⊤
hk,i 𝛾hk + Whk,i(bi, t)⊤𝜂hk

}
,

(2)

with 𝜆hk,0(.) the parametric baseline intensity (Weibull, piecewise constant or B-splines for example) and
XS

hk,i the vector of prognostic factors associated with the r-vector of coefficients 𝛾hk. The multivariate
function Whk,i(bi, t) defines the dependence structure between the longitudinal and multi-state processes.
We can choose Whk,i(bi, t) = Y∗

i (t) (the true current level of the marker), or Whk,i(bi, t) = 𝜕Y∗
i (t)∕𝜕t (the

true current slope), Whk,i(bi, t) =
(
Y∗

i (t), 𝜕Y∗
i (t)∕𝜕t

)⊤
(both), or any other function of the random effects

in the context under study. Thus, the s-vector of coefficients 𝜂hk quantifies the impact of the longitudinal
marker’s dynamics on the transition intensity between the states h and k.

3. Estimation

3.1. Likelihood

The parameters of this joint model are estimated in the maximum likelihood framework. Because the
longitudinal and multi-state processes are independent conditionally on the random effects, the complete
observed likelihood is obtained through the product of the individual contributions to the likelihood for
the N individuals as follows:
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L(𝜃) =
N∏

i=1
∫Rq

fY (Yi|bi; 𝜃)fE(Ei|bi; 𝜃)fb(bi; 𝜃) dbi, (3)

where 𝜃 is the vector of all the parameters contained in (1) and (2), and f (.) is a probability density
function.

In the longitudinal part, described by the linear mixed model (1), the conditional longitudinal outcomes
are such that

fY (Yi|bi; 𝜃) =
1(

2𝜋𝜎2
)ni∕2

exp

(
−
‖Yi − XL

i 𝛽 − Zibi‖2

2𝜎2

)
, (4)

where ‖x‖ denotes the Euclidean norm of vector x, XL
i is the matrix of covariates with row vectors

XL
i

(
tij
)⊤

, j = 1,… , ni, and likewise Zi = {Zi

(
tij
)
}.

For the multi-state part, let Pi
hk(s, t) be the transition probability from state h to state k between times

s and t for individual i, that is, Pi
hk(s, t) = Pr(Ei(t) = k|Ei(s) = h). For each r ∈ {0,… ,mi − 1},

the continuity and Markov assumptions imply that individual i remains in state Ei(Tir) between times
Tir and Ti(r+1) with probability Pi

Ei(Tir),Ei(Tir)
(
Tir, Ti(r+1)|bi

)
, and transits to state Ei

(
Ti(r+1)

)
with intensity

𝜆i
Ei(Tir),Ei(Ti(r+1))

(
Ti(r+1)|bi

)
when Ti(r+1) is an observed transition time. By conditioning on Ei(Ti0), this

translates in the individual contribution to the likelihood:

fE(Ei|bi; 𝜃) =
mi−1∏
r=0

{
Pi

Ei(Tir),Ei(Tir)
(
Tir,Ti(r+1)|bi

)
𝜆i

Ei(Tir),Ei(Ti(r+1))
(
Ti(r+1)|bi

)𝛿i(r+1)
}

=
mi−1∏
r=0

{
exp

(
∫

Ti(r+1)

Tir

𝜆i
Ei(Tir),Ei(Tir)

(u|bi) du

)
𝜆i

Ei(Tir),Ei(Ti(r+1))
(
Ti(r+1)|bi

)𝛿i(r+1)

} (5)

with 𝜆i
hh(t) = −

∑
k,k≠h 𝜆

i
hk(t). The possible delayed entry is accounted for by conditioning on Ei(Ti0).

Finally, the random effects bi follow a multivariate Gaussian distribution such that

fb(bi; 𝜃) =
1

(2𝜋)q∕2det(D)1∕2
exp

(
−

b⊤i D−1bi

2

)
. (6)

3.2. Implementation

The joint multi-state model has been implemented under R, via the combination of two well-known
packages: mstate for multi-state models and JM for joint models with shared random effects. To fit
semi-parametric Markov multi-state models, mstate prepares the database for multi-state analysis,
more specifically by defining each patient’s history as a series of rows, one for each transition at risk for
each individual (in contrast with only one data record (row) per individual in a classical survival analy-
sis). By stratifying on the transition type, the standard coxph() function of the R package survival
can then be used to fit transition-specific Cox models. With standard longitudinal and time-to-event data,
JM package initializes the values of the parameters with function lme() (nlme package) for the lon-
gitudinal sub-model and coxph() (survival package) for the survival sub-model. Then, function
jointModel() carries out the estimation procedure.

So by replacing the standard call to coxph() by the call to coxph() on the data prepated with
mstate, an extended jointModel() function, called JMstateModel(), can carry out the estima-
tion procedure of the joint model for longitudinal and multi-state data. The implementation procedure
thus includes four steps:

• lme() function (nlme package) to initialize the parameters of the longitudinal sub-model;
• msprep() and expand.covs() functions (mstate package) to prepare the multi-state data;
• coxph() function (survival package) applied to the prepared data to initialize the parameters

of the multi-state sub-model; and
• JMstateModel() function to estimate all the parameters of the joint multi-state model.

A detailed example is given in Web Appendix A, and full detailed examples are available on
https://github.com/LoicFerrer/JMstateModel/.
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3.3. Algorithm

JMstateModel() function computes and maximizes the joint log-likelihood extended to handle multi-
state data using integration and optimization algorithms available in JM package. Thus, the procedure
combines an EM algorithm coupled with a quasi-Newton algorithm if the convergence is not achieved.
Furthermore, the integral with respect to time in (5) and the integral with respect to the random effects
in (3) do not have an analytical solution. These integrals are approached by numerical integration. The
integrals over time are approximated using Gauss–Kronrod quadratures, and the integral over the random
effects using pseudo-adaptive Gauss–Hermite quadratures. Inference is provided by asymptotic proper-
ties for maximum likelihood estimators. The variance–covariance matrix of the parameter estimates is
based on the inverse of the Hessian matrix. Details on the optimization procedure, the EM algorithm and
the numerical integrations can be found in Rizopoulos [13].

The main difficulty with the inference comes from the numerical approximation of the integral over
the random effects, especially when the dimension of the random effects increases. The pseudo-adaptive
Gauss–Hermite quadrature proposed by Rizopoulos [20] centers the integral using the posterior distribu-
tion of the random effects, derived from the initial linear mixed model. This reduces the required number
of quadrature points compared with the standard Gaussian quadrature and avoids the intensive computa-
tions of the adaptive quadrature. We went one step further by repeating this procedure: the joint model can
be estimated once using the pseudo-adaptive technique, and it can then be reestimated by starting from
the previously estimated parameters and centering the integral on the predicted random effects derived
from the joint model rather than on the linear mixed model. We expect the integral to be more accurate
while using a relatively small number of quadrature points. In the remainder, the technique is referred to
as the multi-step pseudo-adaptive Gauss–Hermite rule. More details are in Web Appendix B.

4. Simulation study

The estimation procedure was validated in a simulation study.

4.1. Data generation

In one specific replicate, the longitudinal and multi-state data were generated for each subject i =
1,… , 500, according to the joint multi-state model defined as follows:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Yij = Y∗
i

(
tij
)
+ 𝜖ij

=
(
𝛽0 + 𝛽0,XXi + bi0

)
+(

𝛽1 + 𝛽1,XXi + bi1) × ((1 + tij)−1.2 − 1
)
+(

𝛽2 + 𝛽2,XXi + bi2

)
× tij + 𝜖ij,

𝜆i
hk(t|bi) = 𝜆hk,0(t) exp

{
𝛾hkXi + 𝜂hk,levelY∗

i (t) + 𝜂hk,slope𝜕Y∗
i (t)∕𝜕t

}
,

(7)

where the multi-state process that included three states (h, k ∈ {0, 1, 2}) and three transitions is described
in Figure 1.

The same shape of trajectory as in the application was assumed with
(
(1 + t)−1.2 − 1

)
for a short-term

drop and t for a long-term linear trend. First, Xi and bi =
(
bi0, bi1, bi2

)⊤
were generated according to nor-

mal distributions with mean 2.04 and variance 0.5, and mean vector
⎛⎜⎜⎝

0
0
0

⎞⎟⎟⎠
and variance-covariance matrix

⎛⎜⎜⎝

0.363 0.345 0.011
0.345 1.742 0.310
0.011 0.310 0.173

⎞⎟⎟⎠
, respectively. The times of measurements were tij = 0, 0.33, 0.67,… , 16.33, and

𝜖ij was generated from a normal distribution with mean zero and variance 0.074. The log baseline inten-
sities were linear combinations of cubic B-splines with the same knot vector (0.004, 7.458, 18.201)⊤ for
the three transitions, and the vectors of spline coefficients (−5.537,−4.373,−4.541,−7.524,−5.205)⊤
for transition 0 → 1, (−5.231,−4.122,−3.815,−1.495,−0.887)⊤ for transition 0 → 2 and
(−2.157,−2.491,−2.175,−0.975,−0.472)⊤ for transition 1 → 2. Parameters values and knot locations
were chosen according to the application data described in Section 5.
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Figure 1. Simulated multi-state process. Arrows indicate the directions of the possible transitions. 𝜆hk(t) charac-
terizes the intensity of transition between states h and k at time t. The matrix 𝜓 sim has size (3, 3) and is composed
of elements 𝜓 sim,(h+1)(k+1), h, k ∈ {0, 1, 2}, where 𝜓 sim,(h+1)(k+1) is the average number of observed direct transi-
tions h → k over the 500 replicates. The diagonal elements 𝜓 sim,(h+1)(h+1) denote the average number of patients
who were censored in state h. Note that the sum of elements of a row (h + 1) of 𝜓 sim corresponds to the average

number of patients who experienced the state h.

The procedure described in Beyersmann et al. [21] and Crowther and Lambert [22] was used to
generate the vector of observed times Ti =

(
Ti1,… ,Timi

)⊤
. For each individual i, the censoring time

Ci was generated from a uniform distribution on [1, 25], and the vector of true transition times T∗
i =(

T∗
i,01, T

∗
i,02,T

∗
i,12

)⊤
was generated according to the following procedure: (i) three random numbers ui,01,

ui,02 and ui,12 were generated from three independent standard uniform distributions; (ii) T∗
i,01 and T∗

i,02

were generated by solving ∫ T∗
i,0k

0 𝜆i
0k(𝜈0k|bi) d𝜈0k + log(ui,0k) = 0, for k = 1, 2, through the Brent’s

univariate root-finding method [23]; (iii) then, the true transition time T∗
i,12 was generated by solving

∫ T∗
i,12

T∗
i,01
𝜆i

12(𝜈12|bi) d𝜈12 + log(ui,12) = 0. Finally, by comparing T∗
i and Ci, the vector Ti, which characterizes

the multi-state process, was deduced.
The longitudinal measurements, generated from the linear mixed sub-model, were truncated at Ti1 the

first observed time of the multi-state process.

4.2. Estimated model

The model defined in (7) was used for the estimation with bi ∼ N
⎛
⎜⎜⎝

⎛
⎜⎜⎝

0
0
0

⎞
⎟⎟⎠
,
⎛
⎜⎜⎝

D11 D12 D13
D12 D22 D23
D13 D23 D33

⎞
⎟⎟⎠

⎞
⎟⎟⎠

and 𝜖ij ∼

N(0, 𝜎2). The log baseline intensities were approximated by a linear combination of cubic-splines with
one internal knot placed at the median of the observed transition times.

4.3. Simulation results

The simulations results were obtained through 500 replicates of 500 individuals. Each joint multi-state
model was estimated using 3 and 9 pseudo-adaptive Gauss–Hermite quadrature points and a two-step
pseudo-adaptive Gauss–Hermite quadrature using 9 quadrature points at each step. The simulation results
are presented in Table I.

These results were very satisfying with unbiased estimates and correct 95% coverage rates. They
showed, however, the need to use a certain number of Gauss–Hermite quadrature points to approximate
the integral over the random effects. Indeed, the use of 3 Gauss–Hermite quadrature points using the
pseudo-adaptive Gauss–Hermite rule induced poor coverage rates of the parameters associated with the
long time effect in the longitudinal sub-part. The underestimation of the variance parameters was almost

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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corrected using 9 quadrature points in the pseudo-adaptive Gauss–Hermite rule, and finally, the estimated
Hessian was good with 9 and 9 quadrature points using the two-step pseudo-adaptive Gauss–Hermite
rule. Overall, these results confirmed the good performances of the implemented procedure. To further
investigate whether the technique could be applied to more complex multi-state data, we ran another
simulation study with five states and 10 transitions as in the application. In this second simulation, the
longitudinal part was simplified by assuming a linear trajectory over time. Although some direct transi-
tions did not have a lot of information, the coverage rates of the multi-state model parameters were good.
Results are detailed in Web Appendix C.

5. Application

We analysed data from patients with a localized prostate cancer treated by external beam radiotherapy.
The analysis aimed to explore the link between PSA dynamics and transition intensities between clinical
states, as well as to describe PSA repeated measurements and times of transitions between health states.

5.1. Data description

Our study focuses on 1474 men with a clinically localized prostate cancer and treated by external beam
radiotherapy (EBRT): 629 patients come from the multi-center clinical trial RTOG 9406 (Radiation Ther-
apy Oncology Group, USA) in which data collection has been conducted from 1994 to 2013 [24], and 845
patients come from the cohort of the British Columbia Cancer Agency (BCCA) in Vancouver, Canada
[25] with examinations between 1994 and 2012 (Table II). During his follow-up, a patient can possibly go
through several states defined as local recurrence, distant recurrence, initiation of hormonal therapy (HT)
and death, due or not to prostate cancer. The initiation of salvage HT, which is an additional treatment
prompted by physician observed signs in PSA or clinical signs, is designed to prevent growth of poten-
tially present sub-clinical cancer. This intervention is not planned at diagnosis or initiated by any precise
rule but is rather based on a mutual agreement between the clinician and his patient. Thus, it is treated as
a disease state transition representing failure of the initial treatment to satisfactorily control the disease.
Furthermore, as recommended in Proust-Lima et al. [6], we only considered the local relapses that took
place 3 years or later after radiation, or within 3 years of EBRT when the last PSA value was >2 ng/mL.
PSA data were collected at regular visits, for a median number of 10 PSA measurements per patient.
Note that PSA data were collected between the end of EBRT and the occurrence of the first event (first

Table II. Description of the two cohorts.

Cohort RTOG 9406 BCCA Pooled

Study period 1994–2013 1994–2012
Number of patients 629 845 1474
Number of PSA measures per patient 13 (4, 23) 9 (3, 15) 10 (3, 21)
iPSA∗ 2.0 (1.0, 3.0) 2.1 (0.6, 3.3) 2.1 (0.8, 3.1)
Clinical T-stage
1 355 (56.4%) 184 (21.8%) 539 (36.6%)
2 261 (41.5%) 514 (60.8%) 775 (52.6%)
3–4 13 (2.1%) 147 (17.4%) 160 (10.9%)
Gleason score
2–6 424 (67.4%) 605 (71.6%) 1029 (69.8%)
7 167 (26.6%) 189 (22.4%) 356 (24.2%)
8–10 38 (6.0%) 51 (6.0%) 89 (6.0%)
Mean time of first event† 9.8 (2.3, 15.9) 7.7 (1.9, 14.1) 8.2 (2.0, 15.0)
Mean time of last contact‡ 11.6 (2.9, 16.7) 9.0 (3.4, 14.8) 9.7 (3.1, 15.9)

Continuous data: Median (5th and 95th percentiles).
Categorical data: Amount (percentage).
Times are in years since the end of external beam radiotherapy.
∗ Pre-therapy PSA value (ng/ml) in the log(. + 0.1) scale.
† Minimum between the time of first transition and the time of censoring.
‡ Minimum between the time of death and the time of censoring.
BCCA, British Columbia Cancer Agency; PSA, prostate-specific antigen; RTOG, Radiation Therapy
Oncology Group.
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Figure 2. Individual trajectories of log (PSA + 0.1) after the end of EBRT and according to the type of first relapse
in the two cohorts (N = 1474). 𝜓0k is detailed in Figure 3.

clinical recurrence, HT, death or censorship). Subjects with only one PSA measure were excluded, and
subjects who had an event in the first year after EBRT were excluded to prevent the inclusion of patients
with substantial residual initial tumors. As shown in Table II, three baseline factors were considered: the
pre-therapy level of PSA in the log scale (iPSA), the T-stage category, which characterizes the tumour
size (three categories were considered: 2; 3–4 versus 1 in reference), and the Gleason score category,
which measures the aggressiveness of cancer cells (three categories: 7; 8–10 versus 2–6 in reference). In
the models, a cohort covariate was also considered coded as 1 for RTOG 9406 and −1 for BCCA.

The PSA individual trajectories collected between the end of EBRT and the occurrence of the first
event are depicted in Figure 2. Overall, this longitudinal process is biphasic, with a decrease in the level of
PSA in the first years following the end of EBRT, and a subsequent stabilization or linear rise thereafter.
According to the type of first relapse, the biomarker’s long-term increase may have different intensities
(see ‘Hormonal Therapy’ and ‘Censorship’ for example).

The multi-state data are depicted through the transitions between the five states and the corresponding
amount of observed direct transitions in Figure 3.

From the end of EBRT (state 0), a patient can experience either a transition to a localized recurrence
(state 1), an HT (state 2), a distant recurrence (state 3) or death (absorbing state 4). After a localized
recurrence (state 1), a patient may initiate an HT (state 2) or experience either a distant recurrence (state
3) or die (state 4). After initiation of HT, a patient may only experience a distant recurrence or die, and
finally, after a distant recurrence, a patient may only die. In total, 144 subjects had a local recurrence;
317 men initiated an HT including 90 after a local recurrence; 90 men had a distant recurrence including
10 directly after a local recurrence and 33 after an HT initiation. In total, 802 patients died including
523 who did not have another recorded progression of the cancer before. Among the 672 men who were
censored during the follow-up, 533 were censored before experiencing any clinical progression.

5.2. Specification of the joint model

The joint multi-state model being a complex model, a step-by-step procedure was carried out to specify
the joint model. The specifications of the longitudinal and multi-state sub-models were based on two
separate analyses, that is assuming independence between the two processes. Covariate selection was
made using univariate or multivariate Wald tests.

5.2.1. Longitudinal sub-model specification. The biphasic shape of log-PSA was described in a linear
mixed model with two functions of time according to previous works [6]: f1(t) = (1 + t)𝛼 − 1 and f2(t) =
(t)1+𝜈∕(1 + t)𝜈 , where 𝛼 and 𝜈 were estimated by profile likelihood (𝛼 = −1.2, 𝜈 = 0). Thus, these
two functions depicted the short-term drop in the level of log-PSA after EBRT and the long-term linear
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Figure 3. Multi-state representation of the clinical progressions in prostate cancer. Arrows indicate the directions
of the possible transitions (N = 1474). 𝜆hk(t) characterizes the intensity of transition between states h and k at
time t. Matrix 𝜓 has size (5, 5) and is composed of elements 𝜓(h+1)(k+1), h, k ∈ {0, 1, 2, 3, 4}, where 𝜓(h+1)(k+1) is
the number of observed direct transitions h → k. Diagonal elements 𝜓(h+1)(h+1) denote the number of patients who
were censored in state h. Note that the sum of elements of one row (h + 1) of 𝜓 corresponds to the number of

patients who entered state h.

increase of log-PSA, respectively. By denoting Yij = log
(
PSAi

(
tij
)
+ 0.1

)
the log-measure of PSA for

the individual i at time tij – the natural logarithm transformation is performed to obtain a Gaussian shape
for the longitudinal response – the linear mixed sub-model took the following form:

Yij = Y∗
i

(
tij
)
+ 𝜖ij

=
(
𝛽0 + XL0 ⊤

i 𝛽0,cov + bi0

)
+(

𝛽1 + XL1 ⊤
i 𝛽1,cov + bi1

)
× f1

(
tij
)
+(

𝛽2 + XL2 ⊤
i 𝛽2,cov + bi2

)
× f2

(
tij
)
+ 𝜖ij,

with bi = (bi0, bi1, bi2)⊤ ∼ N (0,D), D unstructured, and 𝜖i =
(
𝜖i1,… , 𝜖ini

)⊤ ∼ N
(
0, 𝜎2Ini

)
. The covari-

ates XL0
i , XL1

i and XL2
i were sub-vectors of the baseline prognostic factors obtained using a backward

stepwise procedure. For the sake of brevity, we will speak about PSA dynamics and biomarker’s current
level/slope when referring actually to the dynamics of log(PSA+0.1) and the current level/slope of Y∗

i (t),
respectively.

5.2.2. Multi-state sub-model specification. In the multi-state sub-part, the determination of prognostic
factors and proportionality between baseline intensities was also made by considering no link between the
two processes (𝜂 = 0) and unspecified baseline intensities (i.e. using a standard semi-parametric multi-
state model). The full sub-model considered transition-specific baseline intensities and transition-specific
effects of baseline prognostic factors. To reduce the excessive number of parameters to be estimated,
proportional baseline intensities were first assumed for some transitions. Clinically, it made sense to
consider proportional baseline intensities for transitions leading to local recurrence or HT: 𝜆01,0(t) =
exp(−𝜁02)𝜆02,0(t) = exp(−𝜁12)𝜆12,0(t); and for the transitions leading to distant recurrence: 𝜆03,0(t) =
exp(−𝜁13)𝜆13,0(t) = exp(−𝜁23)𝜆23,0(t). These assumptions were confirmed by the data. We could not make
the same assumption for all transitions leading to death because the proportional hazards assumption
was not verified. Instead, we chose 𝜆14,0(t) = exp(−𝜁24)𝜆24,0(t), and 𝜆04,0(t) was stratified on the cohort.
This procedure reduced the number of baseline intensities to six. A second step consisted in selecting
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the prognostic factors. Factors with an associated p-value > 0.5 were removed, and common covariate
effects on several transitions were considered using multivariate Wald tests. For example, the baseline T-
stage category had the same effect on transition intensities 0 → 1, 0 → 3 and 2 → 3. Finally, prognostic
factors and the log-coefficients of proportionality between baseline intensities with p-value < 0.1 were
selected by using a backward stepwise procedure.

5.2.3. Joint multi-state model specification. In the joint model, log baseline intensities approximated by
linear combinations of cubic B-splines with three internal knots replaced the unspecified ones. Note that
the first knot was placed at 1 year to take into account the null risk of recurrence before 1 year in these
data. The dependence function Whk,i(bi, t) was the same for all the transitions h → k and was determined
using Wald tests. It resulted that the combination of the true current level and the true current slope of
the biomarker fitted at best the relationship between PSA dynamics and the instantaneous risk to transit
between health states. Thus, the multi-state sub-model was as follows:

𝜆i
hk(t|bi) = 𝜆hk,0(t) exp

{
XS ⊤

hk,i 𝛾hk +
(

Y∗
i (t)

𝜕Y∗
i (t)∕𝜕t

)⊤( 𝜂hk,level
𝜂hk,slope

)}
,

The relations between 𝜆hk,0(t) and the final XS
hk,i, for h, k ∈ {0,… , 4} are indicated in Section 5.2.2

and in Table III. Note that the covariates that were removed of the joint model specification are not
in Table III.

5.3. Results

The parameter estimates of the joint multi-state model are presented in Table III. These parameters were
those selected according to the procedure described previously. The inference was performed using 9 and
9 quadrature points with the two-step Gauss–Hermite quadrature rule. The parameters of the baseline
intensities are not shown here for clarity.

The estimated regression parameters in the longitudinal sub-part confirmed that pre-treatment PSA
level was associated with the initial PSA level and the biphasic PSA trajectory; T-stage value was associ-
ated both with the short-term and the long-term dynamics, while Gleason score was only associated with
the long-term trajectory. Higher values of these covariates measured at baseline corresponded to higher
long-term PSA levels. The cohort effect indicated a significant difference between the two cohorts only
for the long-term PSA evolution, with a greater long term increase of PSA in Vancouver.

For the multi-state process, the model showed that an advanced initial stage was not always associ-
ated with the intensities of transitions between health states after adjustment for the PSA dynamics. In
particular, the Gleason score had significant effects on two transition intensities only. Moreover, having
a high PSA value at baseline was significantly associated with a higher instantaneous risk to directly
experience HT initiation or death after EBRT, but reduced the intensities of transitions leading to distant
recurrence or death after a previous event. A poor (i.e. higher) T-stage category at baseline had globally
a deleterious effect on the clinical endpoints. For the transitions from end of EBRT or HT initiation to
distant recurrence, a patient with a Gleason score of 7 at baseline had a 2.60 = exp(0.954) (95% CI =
1.60–4.20) higher hazard to transit than a patient with a Gleason score < 7. The cohort was significantly
associated with the intensities of transitions leading to death after clinical recurrence or HT initiation –
and the direct transition leading to local recurrence after end of BRT. The instantaneous risk to experi-
ence these transitions was higher in BCCA. The cohort effect was also significant, with higher intensities
in RTOG 9406, for the direct transitions from local recurrence or HT initiation to distant recurrence.

Regarding the association parameters between PSA dynamics (current level and current slope) and
clinical progressions, remind that PSA data were collected until the occurrence of the first event. This
has an impact on the interpretation of these association parameters. Indeed, because of the focus on
the biomarker trajectory before the first event, posterior marker values were extrapolated according to
this basal PSA trajectory. We found highly significant deleterious effects of the PSA dynamics on the
intensities of transitions from the initial state to all the types of progression (local recurrence, HT or
distant recurrence). For example, after adjustment for covariates and for the true slope of the biomarker,
an increase of one unit of the true biomarker’s level (log PSA without error measurement) induced a
1.43 = exp(0.358) (95% CI = 1.45–1.89) higher risk to experience a local recurrence. These results were
expected: in patients with localized prostate cancer and treated by radiotherapy, a persistently high PSA
level or/and a strong increase of PSA leads to higher hazard to experience a clinical recurrence or an
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Table III. Parameter estimates, standard errors and p-values in the joint multi-state model
on the pooled data (N = 1474).

Longitudinal process Multi-state process

Value StdErr p-value Value StdErr p-value

𝛽0 −0.26 0.06 < 0.001 𝛾02,iPSA 0.35 0.08 < 0.001
𝛽0,iPSA 0.80 0.03 < 0.001 𝛾04,iPSA 0.25 0.08 0.001
𝛽0,cohort −0.01 0.02 0.541 𝛾(13,14,23,24,34),iPSA −0.25 0.08 0.001
𝛽1 0.70 0.14 < 0.001 𝛾(01,03,23),tstage2 0.92 0.18 < 0.001
𝛽1,iPSA 0.89 0.06 < 0.001 𝛾(01,03,23),tstage3-4 0.76 0.23 0.001
𝛽1,tstage2 0.38 0.08 < 0.001 𝛾(12,14,34),tstage2 −0.11 0.25 0.659
𝛽1,tstage3-4 0.47 0.13 < 0.001 𝛾(12,14,34),tstage3-4 0.33 0.30 0.271
𝛽1,cohort −0.04 0.04 0.346 𝛾(03,23)gleason7 0.95 0.25 < 0.001
𝛽2 −0.19 0.04 < 0.001 𝛾(03,23)gleason8-10 0.07 0.43 0.873
𝛽2,iPSA 0.19 0.02 < 0.001 𝛾(01,14,24,34),cohort −0.42 0.06 < 0.001
𝛽2,tstage2 0.14 0.02 < 0.001 𝛾(13,23),cohort 0.88 0.17 < 0.001
𝛽2,tstage3-4 0.26 0.04 < 0.001 𝜁(12,13) 4.19 0.38 < 0.001
𝛽2,gleason7 0.07 0.02 < 0.001 𝜁23 3.08 0.53 < 0.001
𝛽2,gleason8-10 0.22 0.04 < 0.001 𝜂01,level 0.36 0.09 < 0.001
𝛽2,cohort −0.06 0.01 < 0.001 𝜂02,level 0.50 0.07 < 0.001
log(𝜎) −1.30 0.01 𝜂03,level 0.42 0.12 < 0.001

𝜂04,level −0.15 0.05 0.005
D11 0.37 0.02 𝜂12,level −0.17 0.10 0.095
D12 0.01 0.01 𝜂13,level −0.43 0.20 0.033
D13 0.35 0.03 𝜂14,level 0.10 0.14 0.456
D22 0.14 0.01 𝜂23,level −0.17 0.10 0.081
D23 0.25 0.02 𝜂24,level 0.05 0.05 0.346
D33 1.70 0.09 𝜂34,level 0.02 0.08 0.813

𝜂01,slope 2.63 0.31 < 0.001
𝜂02,slope 3.11 0.25 < 0.001
𝜂03,slope 2.68 0.55 < 0.001
𝜂04,slope 0.92 0.34 0.007
𝜂12,slope 2.16 0.63 0.001
𝜂13,slope 3.44 0.83 < 0.001
𝜂14,slope −0.22 1.27 0.864
𝜂23,slope 1.13 0.68 0.099
𝜂24,slope 0.21 0.52 0.692
𝜂34,slope −0.56 0.78 0.472

Dij denotes the ij-element of the random effect covariance matrix. 𝛾(hk,h′k′),X denotes the common
effect of covariate X on the intensities of transitions h → k and h′ → k′, i.e.𝛾(hk,h′k′),X = 𝛾hk,X = 𝛾h′k′ ,X.
Similarly, 𝜁(12,13) = 𝜁12 = 𝜁13.

additional therapy. In contrast, for the direct transition leading to death after radiotherapy, we found a
deleterious effect of the current slope and a protective effect of the current level of the biomarker: at a
given moment in the initial state, for two patients with the same baseline characteristics and the same slope
of log PSA, the one with higher PSA value will be less likely to directly die. In this studied population,
an important cause of direct death is induced by comorbidities, because most of death from prostate
cancer experienced a documented disease progression before. From the local recurrence, there was a large
deleterious effect of the current slope of the biomarker for the intensities of transitions leading to the HT
or the distant recurrence, and there was a borderline significant protective effect of the current level for
the intensity of transition leading to the distant recurrence. From the HT or the distant recurrence, there
was no significant effect of the PSA dynamics on the hazard to change state. This was also clinically
sensible, as it reflects that progression in these advanced stages is not linked anymore to PSA increase. In
practice, criteria other than PSA are considered in this phase of the disease, such as the PCWG2 criteria
[26]. Moreover, deaths in patients with HT might be explained by cardiac toxicity because of HT.
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Figure 4. Goodness-of-fit plots for the longitudinal process (a,b) and the multi-state process (c).

5.4. Diagnostics

The parameter estimates of the joint multi-state model were validated by several graphical tools pre-
sented in Figure 4. For the longitudinal sub-model, the plotted standardized conditional residuals versus
fitted values of the biomarker confirmed the homoscedasticity of the conditional errors. Subject-specific
predictions were also compared with observations by plotting the average values by time intervals based
on the deciles of the observation times. Ninety-five percent confidence intervals of the observed values
were added and confirmed the very good fit of the model to the longitudinal data. For the multi-state sub-
model, we focused on 𝐏(0, t) = {Phk(0, t)}, the matrix of transition probabilities between times 0 and
t. We compared our parametric estimator (obtained with the average of the predicted individual transi-
tion probabilities from the joint multi-state model) with the Aalen–Johansen estimator (non-parametric
estimator of the transition probabilities), both using product integrals. This comparison is fully discussed
and detailed in Web Appendix D. These comparisons showed the overall good performances of the joint
multi-state model in terms of fit for the transition probabilities, with the exception for transition 1 → 2
for which the immediate pike after EBRT could not be correctly captured by splines.

6. Discussion

The joint model for the longitudinal biomarker PSA and multi-state clinical progression data provides
a complete model of prostate cancer progression, which takes into account both classical prognostic
factors and PSA dynamics, in order to study factors that influence the transition intensities between clin-
ical health states. The implementation is easy as it relies on mstate and JM packages. The multi-state
data are prepared with mstate package, and a slightly modified jointModel() function carries out
the estimation procedure. The estimation program has been validated by simulations, with very good
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performances. Even when the number of subjects experiencing some direct transitions was low, cover-
age rates remained satisfactory. The simulations underlined, however, some bias in the estimates when
the dimension of the random effects increased (⩾ 3 random effects) and/or too few quadrature points (3
points in particular) were used. To address this problem, we proposed a two-step procedure that updates
the location of the quadrature points and improves the quality of the approximation of the integral over
the random effects while keeping a small number of quadrature points. This also reduces substantially the
computation time compared with a pseudo-adaptive Gauss–Hermite rule with a much larger number of
quadrature points. With this new rule, models with three random effects can be correctly estimated using
9 and 9 quadrature points. Diagnostic graphical tools were also proposed to assess the goodness-of-fit of
the model (methodology detailed in Web Supplementary Material D).

The application confirmed that the PSA dynamics strongly impacted the instantaneous risk to experi-
ence a clinical recurrence or HT initiation after the end of radiotherapy. The current slope of the biomarker
had also a highly significant deleterious effect on the hazard to transit from local recurrence to HT or
distant recurrence. Conversely, extrapolating the biomarker’s dynamics did not impact anymore the tran-
sition intensities from the HT initiation state or the distant recurrence state. This highlights that in the
advanced cancers, the PSA – and especially the collected measures prior to the first event – is not of
importance anymore. In these situations, other criteria have to be monitored. Note that data posterior to
the first clinical recurrence or the HT were not available in our application. When available, it would be of
great interest to include them in order to capture the effect of the actual marker dynamics rather than the
basal trajectory. However, it would also usually imply a much more complex model for the longitudinal
marker as the dynamics might change.

Previous works in prostate cancer had found a strong association between slope of log-PSA and any
clinical recurrence (see Sène et al. [27]; Taylor et al. [28]), by considering all the recurrences in a com-
posite event and the HT as a time-dependent covariate. The limit of these approaches was that in practice
considering the type of progression is of major importance as the care greatly depends on the type of risk
the patient has. The joint multi-state model formalizes this need. In the same way as it was done with a
single event (see Proust- Lima and Taylor [29]; Rizopoulos [30]), individualized dynamic predictions of
each type of progression could be derived from this model in order to precisely quantify the risk of each
type of progression according to the PSA history. For example, the cumulative probability for subject i to
reach state k between times s and t, s ⩽ t, given he was in state h at time s, could be expressed as follows:
𝜋i

hk(s, t) = ∫ t
s Pr

(
Ei(u) = k|Ei(s) = h,Y (s)

i ,X
L (s)
i ,XS

i

)
du, with Y (s)

i the history (i.e. collected measures)

of the marker up to time s, XL (s)
i the history of the longitudinal sub-model covariates until time s, and

XS
i =

{
XS

hk,i

}
the matrix containing the prognostic factors for all the state transitions.

In this article, we made several assumptions. First, we assumed a continuous and Markov multi-state
process as it was clinically relevant for the progression of prostate cancer after treatment. However, in
other contexts, a semi-Markov process, which considers the time spent in the current state, could be
defined as well. In dementia for example, the multi-state process might include three states (healthy,
demented and dead) and consider the time spent in the demented state before death (see Commenges
et al. [31]). The joint multi-state model we proposed and its associated implemented function han-
dle for semi-Markov. Second, through the (semi-)Markov assumption, we assume that the dependency
between the transition times for a given subject is entirely explained by the prognostic factors and the
marker dynamics. This assumption could be relaxed by including some frailty term in the multi-state
model. However, Putter and van Houwelingen [32] pointed out that identifiability of multi-state mod-
els with frailties is weak, and the interpretation becomes not obvious. Third, we chose the nature of the
dependence function using goodness-of-fit measures in the application, but other strategies could be used.
For example, this choice might rely on predictive accuracy measures when focusing on prediction (see
Sène et al. [33]). Finally, there was no delayed entry in the prostate cancer application. However, the
method implicitly handles delayed entry by conditioning the log-likelihood on the state at entry in the
study, as it was carried out by Commenges [34].

In summary, we introduce here a first joint model for longitudinal and multi-state clinical progression
data. We showed that this model can easily be implemented under R and can be applied in practice through
an example, the prostate cancer progression, which is one of many biomedical areas in which such data
are collected. This model that captures the complete information about the progression opens to much
more precise knowledge of diseases and specific dynamic predictions.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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JOINT MODELLING OF LONGITUDINAL AND MULTI-STATE PROCESSES

3.2 Supplementary material

This article was published with a supplementary material available at the publisher’s
website. This supplementary material is introduced hereinafter. It starts in Section A
with examples of R scripts to estimate joint multi-state models. In Section B, it de-
tails the multi-step pseudo-adaptive Gauss-Hermite rule which was used in the simulation
study and the application of the main manuscript. Results of a supplementary simulation
study, which considered 5 states and 10 transitions, are given in Section C. Finally, the
supplementary material ends in Section D by detailing the statistical methodology used
in the main manuscript to compare parametric and non-parametric transition probabili-
ties.
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Notations are introduced in the main manuscript.

A. Example of R code

JMstateModel() function and several detailed examples are available on

https://github.com/LoicFerrer/JMstateModel/.

We give here the script to estimate the joint multi-state model described in the main simulation

study (see Section 4 in the main article), with a non-homogeneous Markov multi-state model which

included three states and three transitions. The same covariate, called X in the code below, impacted

the longitudinal and multi-state processes. The longitudinal sub-model had a random intercept and

two random effects associated to the short term drop and the long term linear trend of the marker.

The log baseline intensities were approximated using B-splines and the dependency between the two

processes was explained through the true current level and the true current slope of the biomarker.

# Load the packages and the function to estimate joint multi-state models:
library(mstate) # Please use the version 0.2.7
library(JM)
source("JMstateModel.R")

# Import two databases which contain longitudinal and multi-state data:
load("data.RData")

∗loic.ferrer@inserm.fr
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###############################
#### Longitudinal sub-part ####
###############################

# Fit the longitudinal responses using a linear mixed model:
lmeFit <- lme(fixed = Y ~ (times + I((1 + times)^(-1.2) - 1)) * X,

data = data_long,
random = ~ (times + I((1 + times)^(-1.2) - 1)) | id,
method = "REML",
control = list(opt = "optim"))

##############################
#### Multi-state sub-part ####
##############################

# Construct the 3*3 matrix of transitions:
tmat <- matrix(NA, 3, 3)
tmat[1, 2:3] <- 1:2
tmat[2, 3] <- 3
dimnames(tmat) <- list(from = c("State_0", "State_1", "State_2"),

to = c("State_0", "State_1", "State_2"))
tmat
# The transition ’0 -> 1’ is called ’1’,’0 -> 2’ is called ’2’ and
# ’1 -> 2’ is called ’3’.

# Define the covariate in the multi-state sub-part:
covs <- "X"

# The ’msprep()’ function divides the multi-state database in order to have
# one line per transition at risk for each subject, with ’Tstart’ the
# entry time in the current state, and ’Tstop’ the time of transition or
# censorship; ’status’ denotes if the transition has been performed:
data_mstate <- msprep(time = c(NA, "time_of_State_1", "time_of_State_2"),

status = c(NA, "State_1", "State_2"),
data = data_surv,
trans = tmat,
keep = covs,
id = "id")

# ’expand.covs()’ permits to define the set of covariates which impacts
# each transition:
data_mstate <- expand.covs(data_mstate, covs,

append = TRUE, longnames = FALSE)

# Multi-state model with transition-specific proportional intensities:
coxFit <- coxph(Surv(Tstart, Tstop, status) ~

X.1 + X.2 + X.3 + strata(trans),
data = data_mstate,
method = "breslow",
x = TRUE,
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model = TRUE)

################################
#### Joint multi-state part ####
################################

# To define the dependency on the slope of the marker, it is necessary
# to specify the derivative of the fixed and random parts in the mixed model,
# and indicate which covariates are kept, :
dForm <- list(fixed = ~ 1 + I((-1.2) * ((1 + times)^(-2.2))) +

X + I((-1.2) * ((1 + times)^(-2.2))):X,
indFixed = c(2:3, 5:6),
random = ~ 1 + I((-1.2) * ((1 + times)^(-2.2))),
indRandom = 2:3)

# Joint multi-state model with:
# - true current level and true current slope of the marker as dependence function,
# - cubic B-splines with 1 internal knot for each log-baseline intensity,
# - 15 Gauss-Kronrod quadrature points to approximate the integral over time
# (by default),
# - 3 Gauss-Hermite quadrature points in the pseudo-adaptive numerical
# integration to approximate the integral over random effects.
jointFit_1step_GHk3 <-

JMstateModel(lmeObject = lmeFit,
survObject = coxFit,
timeVar = "times",
parameterization = "both",
method = "spline-PH-aGH",
interFact = list(value = ~strata(trans) - 1,

slope = ~strata(trans) - 1,
data = data_mstate),

derivForm = dForm,
Mstate = TRUE,
data.Mstate = data_mstate,
ID.Mstate = "id",
control = list(GHk = 3, lng.in.kn = 1))

summary(jointFit_1step_GHk3)

# Same joint multi-state model with:
# - 9 Gauss-Hermite quadrature points in the pseudo-adaptive numerical
# integration to approximate the integral over random effects.
jointFit_1step_GHk9 <-

JMstateModel(lmeObject = lmeFit,
survObject = coxFit,
timeVar = "times",
parameterization = "both",
method = "spline-PH-aGH",
interFact = list(value = ~strata(trans) - 1,

slope = ~strata(trans) - 1,
data = data_mstate),

derivForm = dForm,
Mstate = TRUE,
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data.Mstate = data_mstate,
ID.Mstate = "id",
control = list(GHk = 9, lng.in.kn = 1))

summary(jointFit_1step_GHk9)

# To use the multi-step pseudo-adaptive Gauss-Hermite rule, we have to source
# two functions inspired by JM:
source("modified.log.posterior.b2.R")
source("modified.ranef.jointModel.R")

# Same joint multi-state model with:
# - 9 and 9 Gauss-Hermite quadrature points in the two-step pseudo-adaptive
# numerical integration to approximate the integral over random effects.
# We can choose the posterior mode (true definition) or the posterior mean
# (faster) of the random effects of the fitted joint model (defined in ’init’)
# to update the quadrature points. Here the mode is used.
jointFit_2step_GHk9_9 <-

JMstateModel(lmeObject = lmeFit,
survObject = coxFit,
timeVar = "times",
parameterization = "both",
method = "spline-PH-aGH",
interFact = list(value = ~strata(trans) - 1,

slope = ~strata(trans) - 1,
data = data_mstate),

derivForm = dForm,
Mstate = TRUE,
data.Mstate = data_mstate,
ID.Mstate = "id",
control = list(GHk = 9, lng.in.kn = 1),
init = jointFit_1step_GHk9,
init.type.ranef = "mode")

summary(jointFit_2step_GHk9_9)
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B. Multi-step pseudo-adaptive Gauss-Hermite rule

The main difficulty in the inference is due to the numerical approximation of the integral over the

random effects in the likelihood function. To deal with this challenge, Rizopoulos [1] proposed to use

the pseudo-adaptive Gauss-Hermite rule. The idea is to first fit the linear mixed sub-model of the

joint model, and to use the estimated parameters and the posterior distribution of the random effects

to correctly rescale the subject-specific integrands. This part, and notably the following notations,

are derived from his book.

We call A(.) a function of the random effects. The pseudo-adaptive Gauss-Hermite rule is defined

as:

E{A(θ, bi)|Ei, Yi; θ} ≈ 2q/2|B̃i|−1
K∑

t1=1

. . .

K∑

tq=1

πtA(θ, r̃t)f(r̃t|Ei, Yi; θ) exp(‖bt‖2), (1)

where K is the number of quadrature points and r̃t = b̃i +
√
2B̃−1

i bt uses the prespecified abscissas

bt = (bt1 , . . . , btq )
⊤ with corresponding prespecified weights πt. The empirical Bayes estimates b̃i are

obtained from the linear mixed sub-model with θ̃Y the corresponding estimated vector of parameters,

using:

b̃i = argmax
b

{log f(Yi, b; θ̃Y )}.

B̃i is the Choleski factor of H̃i, where H̃−1
i is the covariance matrix of b̃i:

H̃i = −∂
2 log f(Yi, b; θ̃Y )

∂b∂b⊤

∣∣∣
b=b̃i

=
Z⊤
i Zi

σ̃2
+ D̃−1,

where σ̃ and D̃ are the estimates of σ and D respectively (σ̃, D̃ ∈ θ̃Y ).

When the dimension of the random effects increases, it is necessary to use a large number of

quadrature points to obtain good estimates. However, it can become difficult to handle big matrices

with acceptable computation time. To avoid this problem, we propose a n-step procedure that aims

to relocate the quadrature points n times according to the joint models estimates. In the following,

for clarity and notations, we only detail the procedure when n = 2.

This rule called “two-step pseudo-adaptive Gauss-Hermite rule” is in fact decomposed into three

steps: first, the linear mixed sub-model and the survival sub-model are fitted separately to initialize

the parameters in the inference algorithm of the joint model as done by default in JM (see Section

3.2 in the main article). b̃i and H̃i are computed to apply the pseudo-adaptive Gauss-Hermite rule

(1). An acceptable number of quadrature points is used and the joint model is estimated. The
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corresponding estimated parameter vector
⋆

θ is obtained, and the location of the quadrature points

is updated using the adaptive Gauss-Hermite rule:

E{A(θ, bi)|Ei, Yi; θ} ≈ 2q/2|
⋆

Bi|−1

⋆
K∑

t1=1

. . .

⋆
K∑

tq=1

⋆
πtA(θ,

⋆
rt)f(

⋆
rt|Ei, Yi, θ) exp(‖

⋆

bt‖2), (2)

where
⋆

K is the selected number of quadrature points and ⋆
rt =

⋆

bi+
√
2

⋆

B−1
i

⋆

bt uses prespecified abscissas
⋆

bt = (
⋆

bt1, . . . ,
⋆

btq)
⊤ with corresponding prespecified weights ⋆

πt. The empirical Bayes estimates
⋆

bi are

extracted from the fitted joint model:

⋆

bi = argmax
b

{log f(Ei, Yi, b;
⋆

θ)}.

⋆

Bi is the Choleski factor of
⋆

Hi, where
⋆

H−1
i is the covariance matrix of the random effects:

⋆

Hi = −∂
2 log f(Ei, Yi, b;

⋆

θ)

∂b∂b⊤

∣∣∣
b=

⋆
bi

=
Z⊤
i Zi
⋆
σ2

+
⋆

D−1 −
mi−1∑

r=0

δi(r+1)

∂2WEi(Tir),Ei(Ti(r+1))(
⋆

bi, Ti(r+1);
⋆

θ)⊤ ⋆
ηEi(Tir),Ei(Ti(r+1))

∂
⋆

bi∂
⋆

b⊤i
+

mi−1∑

r=0

∑

k,k 6=Ei(Tir)

Ti(r+1)∫

Tir

λiEi(Tir),k
(s|

⋆

bi;
⋆

θ) ×





[
∂WEi(Tir),k(

⋆

bi, s;
⋆

θ)⊤ ⋆
ηEi(Tir),k

]2

∂
⋆

bi∂
⋆

b⊤i
+
∂2WEi(Tir),k(

⋆

bi, s;
⋆

θ)⊤ ⋆
ηEi(Tir),k

∂
⋆

bi∂
⋆

b⊤i





ds,

where ⋆
σ,

⋆

D and ⋆
ηhk are the estimates of σ, D and ηhk respectively ( ⋆

σ,
⋆

D,
⋆
ηhk ∈

⋆

θ). Note that the

convention ⋆
ηhk = 0 is used for the direct transitions h → k which are not observed.
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C. Supplementary simulation study

The main simulations, described in Section 4 of the manuscript, considered a multi-state process

including three states and three transitions and a longitudinal model including a nonlinear trajectory

captured by three random effects. Using samples of 500 subjects, we showed that correct inference

was obtained when using a two-step pseudo-adaptive Gauss-Hermite rule with 9 quadrature points

at each step. This was not the case with a one-step pseudo-adaptive Gauss-Hermite rule with 3 or

9 quadrature points.

In these supplementary simulations, we investigate whether the inference remains correct when

the model includes more states, when some transitions are experienced only by a few subjects, and

when the model has much more parameters to be estimated. These supplementary simulations are

performed on samples of 1500 subjects with generation parameters chosen from the application data.

Data generation

For each subject i = 1, . . . , 1500 of the 500 replicates, the longitudinal and multi-state data were

generated according to the joint multi-state model defined as:




Yij = Y ∗
i (tij) + ǫij

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1) × tij + ǫij,

λihk(t|bi) = λhk,0(t) exp
{
γhkXi + ηhk,levelY

∗
i (t) + ηhk,slope∂Y

∗
i (t)/∂t

}
,

(3)

where the multi-state process that included five states (h, k ∈ {0, 1, 2, 3, 4}) and ten transitions is

described in Web Figure 1.

As in the application, we considered that some baseline intensities were proportional: λ01,0(t) =

exp(−ζ02)λ02,0(t) = exp(−ζ12)λ12,0(t), λ03,0(t) = exp(−ζ13)λ13,0(t) = exp(−ζ23)λ23,0(t), λ04,0(t) =

exp(−ζ14)λ14,0(t) = exp(−ζ24)λ24,0(t) = exp(−ζ34)λ34,0(t). Thus, the baseline intensities were only

estimated for the transitions 0 → 1, 0 → 3 and 0 → 4.

A linear trajectory of the biomarker was assumed. The times of measurements were

tij = 0, 0.33, 0.67, . . . , 16.33. Xi and bi = (bi0, bi1)
⊤ were generated according to nor-

mal distributions with mean 2.04 and variance 0.5, and mean vector



0

0


 and variance-

covariance matrix




0.337 −0.036

−0.036 0.063


 respectively. The error term ǫij was generated from

a normal distribution with mean zero and variance 0.230. The log baseline intensities

were linear combinations of cubic B-splines with the same knot vector (0.026, 7.127, 18.201)⊤ .
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State 0
0

State 1
1

State 2
2

State 3
3

State 4
4

λ02(t) λ12(t) λ23(t) λ24(t)

λ03(t) λ13(t) λ34(t)

λ01(t) λ14(t)

λ04(t)

ψsim =




618 139 211 44 488
0 22 85 9 23
0 0 120 28 148
0 0 0 13 68
0 0 0 0 727




Figure 1: Simulated multi-state process. Arrows indicate the directions of the possible transitions.
λhk(t) characterizes the intensity of transition between states h and k at time t. The matrix ψsim
has size (5, 5) and is composed of elements ψsim,(h+1)(k+1), h, k ∈ {0, 1, 2, 3, 4}, where ψsim,(h+1)(k+1)

is the average number of observed direct transitions h → k over the 500 replicates. The diagonal
elements ψsim,(h+1)(h+1) denote the average number of patients who were censored in state h. Note
that the sum of elements of a row (h+1) of ψsim corresponds to the average number of patients who
experienced the state h.

The vectors of spline coefficients were (−6.990,−3.428,−5.578,−6.847,−6.067)⊤ for the tran-

sition 0 → 1, (−7.537,−5.525,−7.191,−4.692,−6.420)⊤ for the transition 0 → 3, and

(−7.322,−4.345,−3.770,−1.496,−1.261)⊤ for the transition 0 → 4. Parameters values and knot

locations were chosen according to the application data described in the main article.

The procedure to generate the vector of observed times Ti = (Ti1, . . . , Timi)
⊤ was the same as in

the main article, with the censoring time generated from an uniform distribution on [1, 25]. In this

second simulation study, the longitudinal measurements were truncated at Timi the last observed

time of the multi-state process.
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Estimated model

The estimation model was the same as the one used to generate the data (3) with bi ∼

N






0

0


 ,



D11 D12

D12 D22





 and ǫij ∼ N (0, σ2). The log baseline intensities were approximated

by a linear combination of cubic-splines with one internal knot placed at the median of the observed

transition times.

Simulation results

The simulation results were obtained through 500 replicates of 1500 individuals. Each joint multi-

state model was estimated with 3 quadrature points using the pseudo-adaptive Gauss-Hermite rule

(called one-step procedure), and 5–5 quadrature points using the two-step pseudo-adaptive Gauss-

Hermite rule (called two-step procedure). The one-step and two-step procedures are detailed in Web

Appendix B. The simulation results are presented in Web Table 1.

Overall, these results confirmed the good performances of the implemented function and the

necessity to use a certain number of Gauss-Hermite quadrature points. The coverage rates were

close to 95% and the relative bias were low, except for some parameters such as γ24,X or η14,slope,

due to the required accuracy. Note that the model performed well even when the number of observed

transitions was low, as for the transitions 1 → 3 (9 observed transitions in average) and 1 → 4 (23

observed transitions in average).
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Table 1: Simulation results when using a pseudo-adaptive Gauss-Hermite rule with 3 quadrature
points, and a two-step pseudo-adaptive Gauss-Hermite rule using 5–5 quadrature points. For each
scenario, the statistics depicted are, from left to right: mean, mean standard error, standard devia-
tion, relative bias (in %) and coverage rate (%).

3 Gauss-Hermite quadrature points (one-step) 5–5 Gauss-Hermite quadrature points (two-step)

True Mean StdErr StdDev Rel. Cov. Mean StdErr StdDev Rel. Cov.
value bias rate bias rate

Longitudinal process
β0 −0.775 −0.782 0.047 0.047 0.9 95.8 −0.779 0.048 0.050 0.5 95.4
β0,X 0.531 0.533 0.022 0.023 0.4 94.8 0.532 0.022 0.023 0.3 94.6
β1 −0.110 −0.107 0.012 0.020 −2.5 77.0 −0.109 0.021 0.020 −0.5 95.6
β1,X 0.037 0.037 0.006 0.009 0.3 81.8 0.037 0.010 0.010 −0.6 95.4
log(σ) −0.734 −0.734 0.004 0.004 0.0 95.2 −0.734 0.004 0.004 0.0 95.4

Multi-state process
γ01,X 0.047 0.034 0.133 0.137 −27.3 93.6 0.028 0.134 0.138 −41.6 93.8
γ02,X 0.489 0.513 0.109 0.114 5.0 96.2 0.492 0.109 0.109 0.8 95.2
γ03,X 0.048 0.012 0.234 0.235 −74.3 95.2 0.040 0.236 0.233 −17.5 96.2
γ04,X 0.058 0.057 0.071 0.066 −2.6 99.2 0.052 0.072 0.068 −10.7 96.4
γ12,X 0.916 0.928 0.192 0.179 1.3 98.2 0.936 0.193 0.195 2.2 94.4
γ13,X 0.351 0.256 0.580 0.666 −27.1 95.4 0.288 0.575 0.630 −18.0 95.4
γ14,X −0.385 −0.376 0.379 0.449 −2.2 89.6 −0.390 0.381 0.408 1.5 92.2
γ23,X −0.210 −0.213 0.297 0.274 1.2 99.0 −0.204 0.297 0.293 −2.9 96.4
γ24,X 0.007 −0.024 0.130 0.127 −470.3 94.6 −0.006 0.129 0.138 −187.9 93.8
γ34,X 0.262 0.286 0.195 0.187 8.8 95.0 0.274 0.197 0.204 4.6 94.2
ζ02 −0.959 −1.063 0.396 0.430 10.8 90.8 −1.006 0.398 0.403 4.9 94.2
ζ12 1.496 1.420 0.546 0.503 −5.0 98.4 1.404 0.551 0.549 −6.1 94.8
ζ13 1.384 1.153 1.457 1.493 −16.7 95.4 1.260 1.448 1.488 −8.9 96.0
ζ14 1.469 1.420 0.735 0.824 −3.3 91.6 1.466 0.735 0.780 −0.2 93.0
ζ23 2.563 2.480 0.877 0.932 −3.2 95.6 2.519 0.886 0.858 −1.7 95.8
ζ24 0.511 0.571 0.364 0.330 11.7 97.2 0.520 0.364 0.381 1.8 94.2
ζ34 1.721 1.652 0.476 0.428 −4.0 96.4 1.687 0.483 0.499 −2.0 94.6
η01,level 0.823 0.814 0.119 0.120 −1.1 94.4 0.834 0.119 0.127 1.4 92.4
η02,level 0.910 0.907 0.099 0.090 −0.3 96.0 0.917 0.100 0.099 0.8 95.6
η03,level 0.527 0.560 0.187 0.177 6.3 96.6 0.535 0.189 0.202 1.6 93.2
η04,level 0.229 0.232 0.051 0.046 1.3 97.2 0.233 0.052 0.050 1.8 94.8
η12,level −0.522 −0.529 0.160 0.151 1.2 98.4 −0.522 0.163 0.176 −0.0 93.4
η13,level −0.563 −0.429 0.388 0.462 −23.8 90.6 −0.539 0.394 0.450 −4.4 93.0
η14,level −0.104 −0.099 0.285 0.280 −4.7 96.4 −0.133 0.288 0.292 27.9 94.2
η23,level −0.444 −0.450 0.201 0.197 1.3 97.2 −0.438 0.200 0.201 −1.4 95.6
η24,level 0.067 0.077 0.087 0.088 15.8 93.0 0.071 0.087 0.092 6.1 93.4
η34,level −0.591 −0.590 0.119 0.133 −0.0 94.6 −0.585 0.121 0.128 −1.0 93.6
η01,slope 0.097 0.099 0.057 0.054 2.3 96.4 0.097 0.057 0.059 −0.4 94.4
η02,slope 0.252 0.255 0.047 0.050 1.5 93.4 0.250 0.047 0.047 −0.5 93.2
η03,slope 0.357 0.329 0.110 0.102 −7.7 96.6 0.357 0.111 0.111 0.2 95.4
η04,slope −0.572 −0.572 0.047 0.047 0.1 94.4 −0.577 0.048 0.049 0.8 94.4
η12,slope 0.922 0.927 0.093 0.089 0.5 96.2 0.933 0.095 0.099 1.2 93.6
η13,slope 1.112 1.064 0.283 0.325 −4.4 91.0 1.110 0.283 0.322 −0.2 93.6
η14,slope 0.023 0.007 0.299 0.276 −68.5 95.6 0.043 0.299 0.292 87.1 94.2
η23,slope 0.397 0.392 0.154 0.166 −1.4 93.2 0.391 0.153 0.159 −1.6 94.8
η24,slope 0.039 0.028 0.094 0.089 −26.2 95.4 0.036 0.094 0.099 −5.9 93.0
η34,slope 0.596 0.610 0.102 0.118 2.3 93.4 0.600 0.102 0.109 0.5 95.4

Random effects
D11 0.337 0.335 0.014 0.014 −0.7 93.8 0.336 0.014 0.013 −0.5 95.8
D12 −0.036 −0.035 0.004 0.005 −2.2 91.6 −0.036 0.004 0.004 0.3 95.8
D22 0.063 0.062 0.003 0.003 −1.5 89.0 0.063 0.003 0.003 −0.1 94.4
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D. Parametric versus non-parametric transition probabilities

To assess the goodness-of-fit of the model to the data, we compared in Section 5 of the main

manuscript the parametric estimator of the transition probabilities to a non-parametric estimator.

Note that we detail here the methodology which was used. The following results are based on the

book of Andersen et al. [2].

Preliminaries

Consider the multi-state process E = {E(t), t ≥ 0} with values in the finite space S = {0, 1, . . . ,M},

where E(t) denotes the state occupied by an individual at time t. We assume that E is a

non-homogeneous Markov process, with left truncation and right censoring. In the following,

we will consider that all the introduced multi-state processes guarantee the above properties.

The intensity of transition from state h ∈ S to state k ∈ S at time t is defined as λhk(t) =

limdt→0
Pr(E(t+ dt) = k|E(t) = h)

dt
and we write λ(t) = {λhk(t)} the (M +1)× (M +1) matrix of

transition intensities. The matrix of cumulative transition intensities is noted Λ(t), composed of non-

diagonal elements Λhk(t) =
∫ t
0 λhk(u) du,∀h 6= k, and diagonal elements Λhh(t) = −∑

k 6=h Λhk(t).

Let us consider the transition probability Phk(s, t) = Pr(E(t) = k|E(s) = h), with s ≤ t, which is

the probability that a subject in state h at time s occupies the state k at a later time t. We call

P(s, t) = {Phk(s, t)} the matrix of transition probabilities, which satisfies the Chapman-Kolmogorov

equation:

P(s, t) = P(s, u)P(u, t), with 0 ≤ s ≤ u ≤ t. (4)

P(s, t) is the unique solution of the Kolmogorov forward differential equations:

P(s, s) = I,

∂

∂t
P(s, t) = P(s, t)λ(t).

(5)

Non-parametric estimator

Let Nhk(t) be the number of direct observed transitions from state h to state k up to time t, and

Yh(t) the number of individuals in state h just before time t. The non-parametric estimator of

the cumulative intensities, called Λ∗(t) has elements Λ∗
hk(t) estimated through the Nelson-Aalen

estimator:

Λ∗
hk(t) =

∫ t

0

dNhk(u)

Yh(u)
, h 6= k, (6)
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and Λ∗
hh(t) = −∑

k 6=hΛ
∗
hk(t). The solution to the Kolmogorov equations (5) permits to express the

non-parametric estimate of the transition probabilities P̂∗(s, t) using the product-integral:

P̂∗(s, t) = R
(s,t]

(
I+ dΛ̂∗(u)

)
. (7)

where Λ̂∗(u) is the non-parametric estimate of the cumulative transition intensities at time u with

dΛ̂∗
hh(u) ≥ −1 for all u, and I is the (M + 1) × (M + 1) identity matrix. This estimated matrix of

transition probabilities is called Aalen-Johansen estimator.

Let s < T ∗
1 < . . . < T ∗

m∗ ≤ t be the ordered times of observed direct transitions between s and t

for all individuals. It can be deduced from (7):

P̂∗(s, t) =
m∗∏

l=1

(
I+∆Λ̂∗(T ∗

l )
)
. (8)

where ∆Λ̂∗(T ∗
l ) = Λ̂∗(T ∗

l ) − Λ̂∗(T ∗
l−1) and ∆Λ̂∗

hh(T
∗
l ) ≥ −1 for all T ∗

l .

In our application, we applied:

I+∆Λ̂∗(T ∗
l ) =




1 − ∆N0.(T
∗
l )

Y0(T ∗
l )

∆N01(T
∗
l )

Y0(T ∗
l )

∆N02(T
∗
l )

Y0(T ∗
l )

∆N03(T
∗
l )

Y0(T ∗
l )

∆N04(T
∗
l )

Y0(T ∗
l )

0 1 − ∆N1.(T
∗
l )

Y1(T ∗
l )

∆N12(T
∗
l )

Y1(T ∗
l )

∆N13(T
∗
l )

Y1(T ∗
l )

∆N14(T
∗
l )

Y1(T ∗
l )

0 0 1 − ∆N2.(T
∗
l )

Y2(T ∗
l )

∆N23(T
∗
l )

Y2(T ∗
l )

∆N24(T
∗
l )

Y2(T ∗
l )

0 0 0 1 − ∆N3.(T
∗
l )

Y3(T ∗
l )

∆N34(T
∗
l )

Y3(T ∗
l )

0 0 0 0 1




,

where Nh.(T
∗
l ) =

∑
k 6=hNhk(T

∗
l ) and ∆Nhk(T

∗
l ) = Nhk(T

∗
l ) −Nhk(T

∗
l−1).

Parametric estimator

For each subject i ∈ {1, . . . , N}, let us consider that the observed multi-state process is {Ei(t), t ≥ 0},

where Ei(t) denotes the state occupied by subject i at time t and takes values in the finite space

S = {0, 1, . . . ,M}. In our joint multi-state model, we were interested in the transitions intensities:

λihk(t|bi) = lim
dt→0

Pr(Ei(t+ dt) = k|Ei(t) = h; bi)

dt
, (9)

which share the random effects bi with the longitudinal sub-model. Based on the Preliminaries

paragraph, let Λi(t|bi) = {Λi
hk(t|bi)} be the parametric matrix of cumulative intensities for subject

i, and Pi
hk(s, t|bi) = {P i

hk(s, t|bi)} be the parametric matrix of transition probabilities. From the in-

dividual covariates measured at baseline XS
hk,i and the parameters estimated by maximum likelihood

θ̂, we computed for each subject i the individual predictions of the transition intensities λ̂ihk(t|θ̂) and
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deduced the individual predictions of the cumulative intensities Λ̂i
hk(t|θ̂). To obtain the parametric

estimator of the individual transition probabilities P̂i(s, t|θ̂), we used that:

P̂ i
hh(s, t|θ̂) = exp

{
Λ̂i
hh(t|θ̂) − Λ̂i

hh(s|θ̂)
}
,

P̂ i
hk(s, t|θ̂) =

∫ t

s
P̂ i
hh(s, u|θ̂)λ̂ihk(u|θ̂)P̂ i

kk(u, t|θ̂)du, h 6= k.
(10)

In practice, when the state space S is large, these integrals become too complex numerically. In the

application we therefore preferred to calculate P̂i(s, t|θ̂) through the product-integral:

P̂i(s, t|θ̂) = R
(s,t]

(
I+ dΛ̂i(u)

)
, (11)

with dΛ̂i
hh(u) ≥ −1 for all u. The matrix of transition probabilities P̂(s, t) was then deduced by

averaging over the N individual predictions:

P̂(s, t|θ̂) = 1

N

N∑

i=1

P̂i(s, t|θ̂). (12)

Covariance estimation of the non-parametric estimator

The covariance matrix of the Aalen-Johansen estimator of transition probabilities can be estimated

by the Greenwood-type estimator:

ĉov(P̂∗(s, t)) =
∫ t

s
P̂∗(u, t)⊤ ⊗ P̂∗(s, u−)ĉov(dΛ̂∗(u))P̂∗(u, t)) ⊗ P̂∗(s, u−)⊤, (13)

where ⊗ denotes the Kronecker product and ⊤ denotes the vector transpose.

Andersen et al. [2] simplified the computations in (13) using the recursion formula:

ĉov(P̂∗(s, t)) = {(I +∆Λ̂∗(t))⊤ ⊗ I}ĉov(P̂∗(s, t−)){(I +∆Λ̂∗(t)) ⊗ I} +

{I ⊗ P̂∗(s, t−)}ĉov(∆Λ̂∗(t)){I ⊗ P̂∗(s, t−)}, (14)

where

ĉov(∆Λ̂∗
hk(t),∆Λ̂∗

h′k′(t)) =





(Yh(t) − ∆Nh.(t))∆Nh.(t)

Yh(t)3
, for h = k = h′ = k′,

−(Yh(t) − ∆Nh.(t))∆Nhk′(t)

Yh(t)3
, for h = k = h′ 6= k′,

−(δkk′Yh(t) − ∆Nhk(t))∆Nhk′(t)

Yh(t)3
, for h = h′, h 6= k, h 6= k′,

0, for h 6= h′,

with δkk′ the Kronecker delta. Note that ĉov(P̂∗(s, t)) and ĉov(∆Λ̂∗(t)) are two (M+1)2×(M +1)2

covariance matrices.

These results may be used to construct the 95% pointwise confidence intervals for the elements
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of the Aalen-Johansen estimator:

exp



log P̂ ∗

hk(s, t) ± 1.96

√
v̂ar(P̂ ∗

hk(s, t))

P̂ ∗
hk(s, t))



 .
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4 Score test for residual dependence
between transition times in a joint
model for a longitudinal marker and
a multi-state process

A limitation of the joint multi-state model we proposed is that it relies on the Markov
assumption, which assumes that the future of the multi-state process depends only of
its current history (i.e. its current state) and not of its past history (i.e. past state(s)).
However, in practice there may still subsist a correlation between individual transition
times which is not explained by the model’s covariates. For example, some subjects may
be more at risk than others to experience many transitions, without this explained by
their measured prognostic factors.

To capture this residual intra-subject correlation, an individual frailty term could be
included in the multi-state submodel of the joint model. An individual frailty term is a
random effect specific to the subject which depicts his propensity to be more likely to
transit to another state than others subjects with the same characteristics. However, a
joint multi-state model with additional frailty term would be very complex to estimate
in practice because its likelihood would involve integrals over time, random effects and
frailty term. Moreover, interpretation and identifiability problems could arise [Putter and
van Houwelingen, 2011].

We thus propose a score test for the inclusion of a Gaussian frailty term in the multi-
state submodel of the joint model, which has the advantage to only require the estimation
of the model under the null hypothesis, that is when the frailty term is missing. This score
test provides a relevant diagnostic tool in joint multi-state models and, more generally, in
multi-state models, because beyond the assumption of frailty, it more generally tests the
adjustment to the data.

An analytic expression of the score statistic is given, while the asymptotic variance
corrected for the nuisance parameters of the model has to be approximated using finite
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difference method. The distribution of the test statistic is then defined in an asymp-
totic way, that is when the sample size is infinite or the number of observed individual
transitions is infinite.

The score test for the inclusion of a Gaussian frailty term in a joint multi-state model
is implemented in R, using an easy-to-use function which takes as argument the joint
multi-state model estimated when the frailty is omitted.

A simulation study is performed to investigate the performances of such a test, notably
by varying the number of subjects and / or the number of observed individual transitions.

This work is then applied on the data from the two cohorts of men treated by radio-
therapy for localised prostate cancer. From the use of the score test, we define a reliable
model which properly quantifies the effect of each classical prognostic factor and the PSA
dynamics on each transition intensity between clinical states.

This paper is currently submitted for publication in a statistical journal.
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SUMMARY. New joint models have recently been proposed to deal with both a longitudinal
process and a multi-state process. These models permit to estimate jointly change over time of
a longitudinal marker and transition intensities between multiple states. However, they do not
consider any individual frailty in the multi-state model although a frailty could capture a residual
correlation between individual transition times or reflect a lack of model fit. Since estimation
and interpretation of joint models with an individual frailty are not obvious, we propose instead
a score test for the need of a Gaussian frailty term in a joint model for a longitudinal process
and a multi-state process. This score test requires only the estimation of the model without
frailty. We provide an analytic expression of the score statistic and an approximation of its
variance corrected for the nuisance parameters by considering joint models with either shared
latent classes or shared random effects. The proposed score test, implemented in R, is validated
in a simulation study. A detailed application is carried out on a dataset comprising repeated
measurements of the prostate specific antigen and transition times between multiple clinical
health states for patients with prostate cancer treated by radiotherapy. The score test is used
to validate the assumptions of the model and check its goodness-of-fit.

KEYWORDS. Frailty term; Joint model; Longitudinal process; Multi-state process; Prostate
cancer.

4.1 Introduction

Joint modelling was initially introduced to simultaneously model two correlated pro-
cesses: one longitudinal (e.g. a longitudinal Gaussian marker) and one survival (e.g.
time-to-event data), by linking them using a shared latent structure. In the literature, two
main types of joint models have been developed: joint models with shared latent classes
(JLCM) and joint models with shared random effects (SREM). The former assumes that
the population is heterogeneous and that the association between the marker’s evolution
and the risk of event is depicted through latent classes [Proust-Lima et al., 2014], while
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the latter considers that the population is homogeneous and that the intensity of the event
process depends on the marker process through a function of the shared individual-specific
random effects [Tsiatis and Davidian, 2004]. In both joint modelling approaches, many
advances have been proposed recently through varied applications in health studies when
focusing on event history data. For instance, Elashoff et al. [2008] and Proust-Lima et al.
[2016] extended the standard joint modelling to competing events in SREM and JLCM
respectively, Dantan et al. [2011] developed a joint multi-state model with a latent state,
Król et al. [2016] proposed a joint model to deal with a longitudinal Gaussian marker,
recurrent events and a terminal event. Recently, Rouanet et al. [2016] and Ferrer et al.
[2016] introduced new joint models to deal with a longitudinal process and a multi-state
process. These models permit to analyse multiple transitions between states, with ad-
justment on marker dynamics. Indeed, in many clinical applications, the focus is not on
a unique type of event, but rather on multiple transitions between clinical health states
characterized by a multi-state process. Rouanet et al. [2016] studied simultaneously a
longitudinal Gaussian marker and an illness-death model handling interval censoring, by
introducing a joint multi-state model with latent classes. The application was performed
in elderly subjects to study jointly cognitive decline, interval-censored diagnosis of de-
mentia and death. Ferrer et al. [2016] developed a joint multi-state model with shared
random effects and applied it on prostate cancer data by considering the correlation be-
tween individual repeated measurements of prostate specific antigen and transition times
between clinical health states (local recurrence, initiation of hormonal therapy, metastatic
recurrence and death).

In both developments, the multi-state process was assumed to be Markovian which
means that, after adjusting on the longitudinal marker trajectory (through shared latent
classes or random effects), the future of the multi-state process depends only on the
present state, not on the past state(s). This strong assumption is questionable and an
alternative way to bypass it would be to consider an individual frailty. The frailty is an
individual random effect that captures a residual correlation between transition times,
that is a correlation between the multiple transition times of a same subject that is not
captured by the covariates included in the model nor by the shared random variables in
the joint framework.

However, in practice a joint multi-state model with an additional frailty term would
be very difficult to estimate. In the maximum likelihood framework, the likelihood would
involve a supplementary integral on the distribution of the frailty. Yet, in shared ran-
dom effects models, the likelihood already requires several numerically intensive approx-
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imations of integrals over the individual random effects from the mixed model, and the
estimation of latent class models is also complex due the multi-modality of the likeli-
hood. Putter and van Houwelingen [2015] broached the inclusion of individual frailties in
standard multi-state models and specifically discussed model identifiability problems and
interpretation of the estimated parameters in the presence of a frailty term.

In this context, the aim of this work is to propose and validate a score test to assess
the necessity of a Gaussian frailty term in the multi-state sub-model of a joint multi-state
model. The score test has the advantage to only require the estimation of the model
under the null hypothesis, i.e. without frailty using joint multi-state models previously
proposed [Rouanet et al., 2016; Ferrer et al., 2016]. We specifically defined the score test
for the variance of a centered Gaussian frailty term in joint multi-state models considering
either shared random effects or latent classes approaches.

The outline of the paper is as follows. Section 4.2 introduces the joint multi-state
model with a Gaussian frailty. We provide an analytic expression of the score statistic
for testing the need for a frailty, and an approximation of its variance corrected for the
nuisance parameters, in Section 4.3. Section 4.4 details a simulation study performed to
check the performances of the score test in terms of type-I error rate and statistical power
under several scenarii. The score test is then applied on prostate cancer data in Section
4.5 with the objective to validate a model to jointly analyse repeated measures of prostate
specific antigen and times of transitions between clinical health states. The paper ends
with a discussion in Section 4.6.

4.2 The joint multi-state frailty model

For each subject i ∈ {1, . . . , N}, we observe the continuous non-homogeneous process
Ei(t) = {Ei(t), Ti0 ≤ t ≤ Ci} with values Ei(t) in the finite state space S = {0, . . . ,M}.
The multi-state process is observed between Ti0 the left truncation time and Ci the right
censoring time. The vector of observed transition time(s) is Ti = (Ti1, . . . , Timi

)> with
Tir < Ti(r+1) for r ∈ {0, . . . ,mi − 1} and mi ≥ 1, and the associated vector of observed
transition indicator(s) is δi = (δi1, . . . , δimi

)>, with δi(r+1) equals 1 if a direct transition is
observed at Ti(r+1) (i.e. Ei(Tir) 6= Ei(Ti(r+1))) and 0 otherwise. Finally, Timi

= Ci if δimi
=

0. For each subject i, we also collect the vector of longitudinal Gaussian observations
Yi = (Yi(ti1), . . . , Yi(tini

))>, with the observation times {tij; j = 1, . . . , ni} such that
tini
≤ Timi

.
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4.2.1 Formulation

The joint multi-state model has been previously developed with shared latent classes or
shared random effects. For the sake of clarity, we only detail in the main text the score test
for a Gaussian frailty term in a joint model with shared random effects. The formulations
in the context of a joint model with shared latent classes are given in Supplementary
Material, Section 4.9.1.

The joint multi-state frailty model links two sub-models using a function of the shared
random effects bi. The longitudinal evolution of the Gaussian marker is modelled using a
linear mixed model while the transition times between states are modelled using propor-
tional intensity models that include functions of the random effects from the mixed model
as covariates. An additional Gaussian frailty vi is added in the multi-state sub-model to
capture the residual correlation between individual transition times which is not explained
by the covariates:


Yi(t) = Y ∗i (t) + εi(t)

= XL
i (t)>β + Zi(t)>bi + εi(t)

λihk(t) = λhk,0(t) exp(XE >
hk,i γhk +Whk,i(t|bi)>ηhk + vi)

(4.1)

where XL
i (t) and Zi(t) are vectors of possibly time-dependent covariates respectively

associated with the vector of fixed effects β and the vector of random effects bi, where
bi ∼ Nq(0, D). The error terms are independent and identically distributed (iid) such
that εi(t) ∼ N (0, σ2

e); bi and εi(t) are independent. The transition intensity λihk(t) is
defined for any (h, k) ∈ S2; λhk,0(t) is a parametric baseline intensity; XE

hk,i is the vector of
prognostic factors associated with the vector of coefficients γhk,Whk,i(t|bi) is a multivariate
function of random effects and time that depicts the dependence between the longitudinal
marker and each transition intensity between states h and k. In practice, the current
marker dynamics are usually chosen, for example Whk,i(t|bi) = Y ∗i (t) the true current
level of the marker, or Whk,i(t|bi) = ∂Y ∗i (t)/∂t the true current slope of the marker,
or both Whk,i(t|bi) = (Y ∗i (t), ∂Y ∗i (t)/∂t)>. The frailty term vi, which aims to capture
some heterogeneity unexplained by the prognostic factors and the longitudinal marker, is
assumed to be Gaussian with mean zero and unknown variance σ2

v . Conditionally to the
frailty and the marker dynamics, the multi-state process is Markovian.
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4.2.2 Estimation

The model (4.1) can be estimated by maximizing the likelihood function L(σ2
v , θ) where

the set of parameters {σ2
v , θ} is to estimate, with θ all the parameters contained in (4.1)

except σ2
v . Using the independence assumption between the individual longitudinal and

multi-state processes conditionally to the individual random effects bi, and the indepen-
dence between the individual transition times given the individual frailty vi, the likelihood
can be written as follows:

L(σ2
v , θ) =

N∏
i=1

∫
Rq
fY (Yi|bi; θ)fb(bi; θ)

∫
R
fE(Ei|vi, bi;σ2

v , θ)fv(vi;σ2
v) dvi dbi (4.2)

where f(.) is a probability density function.
The conditional density of the longitudinal outcome is such that

fY (Yi|bi; θ) = 1
(2πσ2

e)
ni/2 exp

(
−‖Yi −X

L
i β − Zibi‖2

2σ2
e

)

where XL
i and Zi are the design matrices with row vectors XL

i (tij) and Zi(tij) (j =
1, ..., ni), respectively, and ‖x‖ denotes the Euclidean norm of vector x.
The random effects bi follow a multivariate Gaussian distribution such that

fb(bi; θ) = 1
(2π)q/2|D|1/2 exp

(
−b
>
i D

−1bi
2

)

with |D| the determinant of matrix D.
The conditional density of the observations of the multi-state process is

fE(Ei|vi, bi;σ2
v , θ) =

mi−1∏
r=0

[
P i
Ei(Tir),Ei(Tir)(Tir, Ti(r+1)|vi, bi)×

λiEi(Tir),Ei(Ti(r+1))(Ti(r+1)|vi, bi)
δi(r+1)

]

with Phh(s, t) = exp
(∫ t
s λhh(u) du

)
= exp

(
− ∑

k,k 6=h

∫ t
s λhk(u) du

)
.

The frailty term vi follows a Gaussian distribution with expectation 0 and variance σ2
v :

fv(vi;σ2
v) = 1

(2πσ2
v)

1/2 exp
(
− v2

i

2σ2
v

)

The likelihood in (4.2) involves three sets of integrals (over time, over the individual
multivariate random effects, and over the frailty term) which can be numerically approx-
imated using Gaussian quadratures while making sure the number of quadrature points
is large enough to ensure correct inference [Ferrer et al., 2016]. The logarithm of the
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likelihood can then be optimized using for instance an EM algorithm coupled with a
quasi-Newton after a fixed number of iterations as proposed in standard joint models
with shared random effects [Rizopoulos, 2012b]. It should be noted however that such
estimation would be very complex to achieve in practice.

4.3 Score test for residual dependence between indi-
vidual transition times

The nullity of the variance of the frailty term can be tested from the model defined in
(4.1) using a one-sided score test. Under the null hypothesis, the variance of the Gaussian
frailty is null and the frailty equals 0, whereas under the alternative hypothesis, the
variance of the frailty is strictly positive and the frailty has an impact on each transition
intensity:

H0 : σ2
v = 0 vs H1 : σ2

v > 0 (4.3)

We thus propose a score test to assess this assumption, the score test having the advantage
to only require the estimation of the model under the null hypothesis, that is when the
frailty term is missing.

4.3.1 Score statistic

The score statistic U(0, θ) = U(σ2
v = 0, θ) is the gradient of the log-likelihood with

respect to σ2
v , computed under the null hypothesis: U(0, θ) = ∂ logL(σ2

v , θ)
∂σ2

v

∣∣∣∣∣
σ2

v=0
=

N∑
i=1

∂ logLi(σ2
v , θ)

∂σ2
v

∣∣∣∣∣
σ2

v=0
. The following analytic expression can be derived in the context

of a joint model with shared random effects:

U(0, θ) =
N∑
i=1

1
2Li(σ2

v = 0, θ)×∫
Rq
fY (Yi|bi; θ)fE(Ei|bi;σ2

v = 0, θ)fb(bi; θ)×
[
mi−1∑
r=0

(
δi(r+1) + Λi

Ei(Tir),Ei(Tir)

(
Tir, Ti(r+1)|bi;σ2

v = 0, θ
))]2

+

mi−1∑
r=0

Λi
Ei(Tir),Ei(Tir)

(
Tir, Ti(r+1)|bi;σ2

v = 0, θ
)}

dbi (4.4)

where Λi
hk(t) =

∫ t
0 λ

i
hk(u) du. The detailed calculations leading to this expression are given

in Section 4.9.1 of the Supplementary Material. The same calculations for a joint latent
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class model are given in Section 4.9.1 of the Supplementary Material.
Asymptotically, the score statistic follows a normal distribution: U(0, θ) ∼ N

(
0,

Var {U(0, θ)}
)
.

4.3.2 Variance of the score statistic

The asymptotic variance of the score statistic is approximated from the observed Fisher

information matrix of model (4.1) defined as I(σ2
v , θ) =

Iσ2
vσ

2
v
Iσ2

vθ

Iθσ2
v

Iθθ

.
The variance of the score statistic corrected for the estimation of the nuisance param-

eters θ, is given by

Var {U(0, θ)} =
(
Iσ2

vσ
2
v
− Iσ2

vθ
I−1
θθ Iθσ2

v

) ∣∣∣∣∣
σ2

v=0
(4.5)

where Iθθ for σ2
v = 0 is estimated from the null model, while Iθσ2

v
and Iσ2

vσ
2
v
given σ2

v = 0
are computed by the forward finite difference method because no analytic expression was
found.

4.3.3 Test statistic

Once the score statistic and the associated variance are computed by replacing θ by
θ̂0, its maximum likelihood estimate under the null hypothesis H0, the test statistic can
be deduced:

T =

{
U(0, θ̂0)

}2

Var
{
U(0, θ̂0)

} − inf


{
U(0, θ̂0)− δ

}2

Var
{
U(0, θ̂0)

} : δ > 0

 (4.6)

and T follows asymptotically a mixture of chi-square distributions: T ∼ 1
2χ

2
0 + 1

2χ
2
1.

This expression of the test statistic T was discussed in Verbeke and Molenberghs [2003].
The authors argued that when the null hypothesis of a score test is on the boundary of the
parameter space, the test statistic has to consider a correction at the boundary. Thus,
the test statistic is null when the score statistic is negative whereas it has the same
expression as in the two-sided case (the infimum equals 0) when the score statistic is
positive. The score statistic being asymptotically centred, the nullity of the test statistic
is asymptotically obtained with probability 1/2, and T follows asymptotically a mixture
of chi-square distributions with probabilities 1/2.
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4.4 Simulation study

We evaluated the performances of this score test in terms of type-I error rate and
statistical power in a simulation study. We considered two scenarii in order to investigate
the behaviour of the score test according to different settings of population study with
varying numbers of observed transitions:

— in scenario 1, depicted in Figure 4.1, the model considered 3 states (h, k ∈ S =
{0, 1, 2}) and 3 transitions, as in a unidirectional illness-death model [Andersen
and Keiding, 2002];

— in scenario 2, depicted in Figure 4.2, the model considered 5 states (h, k ∈ S =
{0, 1, 2, 3, 4}) and 10 transitions.

These scenarii notably differed by their average number of observed direct transitions per
subject, denoted M in the remainder of the paper.

State 0

State 1

State 2

Figure 4.1 – Multi-state representation of scenario 1. Arrows indicate the directions of
the possible transitions.

In each scenario, the type-I error rate was investigated under the null hypothesis σ2
v = 0

and the statistical power was investigated under two alternative hypotheses: σ2
v = 0.5 and

σ2
v = 1. Each time, 500 replicates of 500, 1000 or 1500 subjects were drawn.

4.4.1 Model for data generation

Data were generated from a joint multi-state frailty model with shared random effects,
using the procedures previously described in Crowther and Lambert [2013] and Ferrer et al.
[2016] which were extended by including a Gaussian frailty term in the multi-state sub-
model. For each subject i ∈ 1, . . . , N , we assumed a linear evolution of the longitudinal
marker over time depending on the level of a continuous covariate Xi ∼ N (2.04, 0.50).
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State 0 State 1

State 2

State 3

State 4

Figure 4.2 – Multi-state representation of scenario 2. Arrows indicate the directions of
the possible transitions.

The same covariate Xi was included in the transition intensity along with an effect of
both the current level and the current slope of the marker:

Yi(t) = Y ∗i (t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1)× t+ εi(t)

λihk(t) = λhk,0(t) exp(γhkXi + ηhk,levelY
∗
i (t) + ηhk,slope∂Y

∗
i (t)/∂t + vi)

In scenario 1, we assumed baseline transition-specific intensities λhk,0(t) generated as linear
combinations of cubic B-splines with the same vector of knots (0.01, 4.14, 7.46, 10.91, 18.20)>

for all transitions. In scenario 2, the baseline transition intensities were proportional from
one state to another: λhk,0(t) = λ0(t) exp(ζhk) with λ0(t) generated as a linear combina-
tion of cubic B-splines with knot vector (0.03, 7.13, 18.20)>. The longitudinal observations
Yi = (Yi(ti1), . . . , Yi(tini

))> were generated at observation times tij = 0, 0.33, 0.66, . . .
and the vector of independent error terms εi = (εi(ti1), . . . , εi(tini

))> was such that
εij ∼ N (0, σ2

e). The vector of random effects bi = (bi0, bi1)> was drawn from a Gaus-
sian distribution with mean (0, 0)> and variance D. The frailty term was generated from
a Gaussian distribution with mean zero and variance σ2

v , with σ2
v ∈ {0, 0.5, 1} depending

on the studied case. The censoring time was systematically drawn from a uniform distri-
bution on [1, 22]. The generating parameters of each scenario are given in Section 4.9.2
of the Supplementary Material.
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4.4.2 Model estimation

All the models were estimated while ignoring the frailty, i.e. by using a joint multi-state
model with shared random effects [Ferrer et al., 2016]. To achieve accurate point estimates
and correct estimation of the corresponding variances, the estimation of shared random
effects models requires careful attention to the technique of approximation of the integral
over the random effects bi. In this work, we systematically considered a two-step pseudo
adaptive Gauss-Hermite quadrature, proposed in Ferrer et al. [2016], which was shown
to provide more accurate estimations than the one-step pseudo adaptive Gauss-Hermite
quadrature. In scenario 1 with three states and three transitions, we considered two
successive pseudo adaptive Gauss-Hermite quadratures with 5 and 5 points of quadrature.
In scenario 2 with five states and ten transitions, we considered successively 9 and 9 points
of quadrature as estimations were not accurate enough with a lower number of points.

4.4.3 Type-I error

We evaluated the empirical type-I error rate of the score test for a nominal level of
5% over the 500 replicates of the simulation study. Results are depicted in Table 4.1
for scenarii 1 and 2 and three different population sizes. The type-I error rates were too
low when the population was small (500 subjects) or when the number of transitions was
small (0.70 transition per subject on average). With an average of 2.84 transitions by
subject and at least 1000 subjects in the sample, the type-I error rates were correct.

Table 4.1 – Empirical type-I error of the score test for the inclusion of a frailty in a joint
multi-state model under both scenarii. M denotes the average number of observed direct
transitions per subject.

Scenario 1 Scenario 2
σ2
v = 0 σ2

v = 0
(M = 0.70) (M = 2.84)

N = 500 0.008 0.028
N = 1000 0.010 0.054
N = 1500 0.020 0.060
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4.4.4 Power

We computed the empirical statistical power of the score test with a nominal level of
5% over the 500 replicates of the simulation study, considering either σ2

v = 0.5 and σ2
v = 1.

Results are depicted in Table 4.2 for scenarii 1 and 2 and the three population sizes. In
scenario 2, in which subjects had on average about 2.7 transitions, the statistical power
was almost perfect for the three population sizes (500, 1000 or 1500 subjects) and the
two considered values for the variance. In contrast, in scenario 1, where subjects had a
mean of only approximately 0.75 transitions, statistical power was above 85% only when
considering a population of 1500 subjects or a population of 1000 subjects with a variance
of the frailty equal to 1.

Table 4.2 – Empirical statistical power of the score test for the inclusion of a frailty in a
joint multi-state model under both scenarii. M denotes the average number of observed
direct transitions per subject.

Scenario 1 Scenario 2
σ2
v = 0.5 σ2

v = 1 σ2
v = 0.5 σ2

v = 1
(M = 0.74) (M = 0.75) (M = 2.73) (M = 2.65)

N = 500 0.278 0.438 0.884 0.990
N = 1000 0.568 0.850 0.998 1.000
N = 1500 0.846 0.970 1.000 1.000

4.5 Application on prostate cancer data

We analyzed data from 1474 men with a localized prostate cancer treated by external
beam radiotherapy (EBRT): 629 patients were from the multi-center RTOG 9406 (Ra-
diation Therapy Oncology Group, USA), and 845 patients were from the cohort of the
British Columbia Cancer Agency (BCCA) in Vancouver, with examinations performed
from 1994 to 2013, and from 1994 to 2012, respectively. After EBRT, subjects were fol-
lowed up and the prostate-specific antigen (PSA), which is a well-known biomarker in
localized prostate cancer, was repeatedly measured. Several authors have already shown
that the PSA dynamics are substantially associated with the risk of post-treatment re-
currence [Proust-Lima et al., 2008; Taylor et al., 2013]. Ferrer et al. [2016] extended the
analysis on the same data by distinguishing several types of recurrence and death, and by
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focusing on the intensities of transitions between the multiple clinical health states. We
used the same approach here. The considered states and direct transitions correspond to
those depicted in Figure 4.2, with 0, 1, 2, 3 and 4 corresponding to end of EBRT, local
recurrence, initiation of a hormonal therapy (additional treatment unplanned at base-
line), distant recurrence and death, respectively. The average number of observed direct
transitions per subject was 0.92 (with standard deviation 0.88). Further details on the
cohorts and data structure are given in Ferrer et al. [2016].

The PSA measurements were collected until the occurrence of the first event. In
the joint model, they were log-transformed in order to satisfy the normality assumption
of the longitudinal responses. The considered baseline prognostic factors were the pre-
radiotherapy PSA level in the log-scale, T-stage which characterizes tumour size (three
categories were considered: 2; 3–4 versus 1 as reference) and Gleason score which measures
the aggressiveness of cancer cells (three categories: 7, 8–10 versus 2–6 as reference). A
cohort-specific covariate was also considered, coded 1 for RTOG 9406 and −1 for BCCA.

4.5.1 Initial model

We first applied the score test for the inclusion of a Gaussian frailty term in the model
proposed in Ferrer et al. [2016]. In this model, three functions of time were considered to fit
the biphasic shape of post-therapy PSA trajectory. The baseline intensities of transitions
were approximated by cubic B-splines (three internal knots were placed at the quantiles
of the observed transition times, and the first external knot was placed at 1 year to take
into account the null risk of recurrence before 1 year). The effects of the true current level
and the true current slope of PSA were considered on each transition intensity. Finally,
covariates were selected in a backward selection procedure both in the longitudinal and
multi-state sub-models considered independently. Based on univariate or multivariate
Wald tests, covariates with p-value < 0.1 were selected. Based on the model estimates,
the null hypothesis for the null variance of a Gaussian frailty term in the joint multi-
state model was strongly rejected with p-value equal to 0.007. This result could reflect
either a lack of goodness-of-fit or an actual residual correlation between times-to-events,
given the random effects. To confirm one of these two options, we tried to improve the
goodness-of-fit of the model in a second step.
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4.5.2 Improved model

We improved the joint multi-state model by including the age at baseline as covariate
and replacing the true PSA level in the multi-state model by a transformation of it so that
the considered association function became Whk,i(t|bi) = (g(Y ∗i (t)), ∂Y ∗i (t)/∂t)> where
Y ∗i (t) is the true current level of PSA and g(Y ∗i (t)) = logit−1((Y ∗i (t) − 0.71)/0.44). This
function had been previously found to better capture the effect of current PSA on the
risk of recurrence [Proust-Lima et al., 2008], and to satisfy the log-linearity assumption
by avoiding very high levels of PSA extrapolated from the longitudinal model in the
event history model [Sène et al., 2014]. The covariates selection was done using the
same procedure used for the previous model. The quality of the model was significantly
improved with an Akaike information criterion (AIC) decreasing from 25574.2 to 25325.3
points. However the score test still rejected the null hypothesis of no frailty with p-value =
0.015.

By examining the individual contributions to the estimated score statistic (Figure
4.3), we identified four subjects that could be considered as outliers (with an arbitrary
cut-off at 5 points). Although these particular subjects had a bad prognosis according
to T-stage, Gleason and initial PSA, they died very late (15.7, 16.2, 17.2 and 18.2 years
after the end of EBRT) without experiencing any type of clinical progression. For the
last three subjects, the last time of PSA measurement was 3.1, 1.5 and 1.5 years after the
end of EBRT. For the first one, the last PSA measurement occurred 11.0 years after the
end of EBRT but his PSA values were extremely high.

4.5.3 Final model

We removed these four subjects and re-ran the strategy of covariate selection. The
final selected joint multi-state model was

Yi(t) = Y ∗i (t) + εi(t)

=
(
β0 +XL0 >

i β0,cov + bi0
)

+(
β1 +XL1 >

i β1,cov + bi1
)
× f1(t)+(

β2 +XL2 >
i β2,cov + bi2

)
× f2(t) + εi(t)

λihk(t) = λhk,0(t) exp
XE >

hk,i γhk +
 g(Y ∗i (t))
∂Y ∗i (t)/∂t

ηhk,level

ηhk,slope


where the random effects are bi = (bi0, bi1, bi2)> ∼ N3(0, D), D unstructured, and the
error terms are iid such that εi(t) ∼ N (0, σ2); bi and εi(t) are independent. The three
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Figure 4.3 – Individual contributions to the score statistic from the improved joint model
with N = 1474 patients.

functions of time (intercept, f1(t) = (1 + t)−1.2 − 1 and f2(t) = t) depicted the bipha-
sic trajectory of the PSA post-EBRT. In the multi-state part, some baseline transition
intensities were considered as proportional, as done in the previous applications, with
λ01,0(t) = exp (−ζ02)λ02,0(t) = exp (−ζ12)λ12,0(t) and λ03,0(t) = exp (−ζ13)λ13,0(t) =
exp (−ζ23)λ23,0(t), where {ζhk}hk are unknown proportionality parameters; λ04,0(t) was
stratified on the cohort. Each considered log baseline intensity was approximated by a
linear combination of cubic B-splines with three internal knots placed at the quantiles of
the observed times for the considered transition. The selected covariates XL0

i , XL1
i , XL2

i

and {XE
hk,i}h,k are given in Table 4.4 of the Supplementary Material.

The score test for the inclusion of an additional Gaussian frailty term provided a
p-value equals to 0.046, leading us to consider that the results of the model were almost
acceptable. Figure 4.4 displays the individual contributions to the score statistic from
this final joint model. Contrary to Figure 4.3, Figure 4.4 does not highlight clear outlier.

4.5.4 Interpretation of the final model

The estimates of the association parameters {ηhk}h,k in the final joint multi-state
model are given in Table 4.3. For the sake of readability, only the association parameters
with the PSA dynamics (current level and current slope) are shown. Other estimates are
given in Table 4.4 of the Supplementary Material.
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Figure 4.4 – Individual contributions to the score statistic from the final joint model with
N = 1470 patients.

The results confirmed the strong deleterious impact of PSA increase on the hazard of
any type of first recurrence from the end of radiotherapy. However, the PSA level and slope
were not significantly associated with the risk of death without recurrence after EBRT.
Indeed the corresponding patients did not die from prostate cancer, otherwise they would
have experienced a relapse before. This last point was not in agreement with the results
from the initial model [Ferrer et al., 2016] which highlighted an unexpected protective
effect of the true current PSA level on the direct hazard of death after EBRT. It was
clearly due to the outlier subjects identified by the score test. These outlier subjects died
very late in the follow-up, certainly due to comorbidities, and with a very short follow-up
in the PSA measurements which prevented a correct modelling of their prognosis. For the
transition intensity from local recurrence to hormonotherapy states, we found a significant
deleterious effect of the true current marker level. Finally, the true current slope of PSA
had also a significant deleterious impact on the hazard to transit from local recurrence to
distant recurrence states, or from hormonal therapy to distant recurrence states. Overall,
these results confirmed that increasing PSA level or slope had a strong deleterious impact
on the risk of recurrence post-radiotherapy, but were not necessarily associated with a
negative evolution of the disease in advanced stages.
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Table 4.3 – Estimates, standard errors and p-values of the association parameters between
PSA dynamics and each transition intensity in the joint multi-state model, based on the
pooled data after removal of four outliers (N = 1470).

Value StdErr p-value
η01,level 3.32 0.41 < 0.001
η02,level 4.89 0.39 < 0.001
η03,level 2.94 0.68 < 0.001
η04,level −0.41 0.23 0.071
η12,level 1.90 0.83 0.023
η13,level −2.30 1.32 0.081
η14,level −0.07 0.88 0.939
η23,level −0.29 1.04 0.778
η24,level −0.48 0.62 0.440
η34,level −0.02 0.57 0.974
η01,slope 1.33 0.33 < 0.001
η02,slope 1.60 0.24 < 0.001
η03,slope 1.74 0.54 0.001
η04,slope 0.59 0.35 0.088
η12,slope 0.46 0.58 0.336
η13,slope 3.82 1.07 < 0.001
η14,slope 0.70 1.02 0.495
η23,slope 0.23 0.51 0.651
η24,slope 0.64 0.23 0.005
η34,slope −0.56 0.42 0.186
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4.6 Discussion

In many biometrical applications, the focus should not be on the occurrence of the first
event of clinical interest, but rather on transitions between clinical health states which
can be characterized by a multi-state process. Similarly, in the presence of longitudinal
markers, a joint model including a multi-state sub-model should generally be preferred
to standard joint models for a unique right censored time to event or several competing
causes.

However, when handling multi-state data, one could wonder whether the Markov
assumption holds or whether a frailty term should be included in order to capture the
residual correlation between individual transition times. In this contribution, we proposed
a score test to assess the need to consider a Gaussian frailty term in a joint multi-state
model. As pointed out by Putter and van Houwelingen [2015] in the context of multi-
state models (without a longitudinal marker), we do not know in practice if such a frailty
explains the correlation between individual transition times conditional on covariates or
if it is a sort of error term that reflects a lack of fit in the model, possibly due to the
violation of the proportional hazards assumption. Thus the score test we propose does
not only check the Markov assumption of multi-state models without frailties, but also
provides an overall goodness-of-fit tool, as illustrated in the application with the detection
of four outliers.

We provided an analytic expression of the score statistic, but we had to numerically
derive the variance of the score statistic. The empirical variance, as developed in Jacqmin-
Gadda and others [2010] and recommended by Freedman [2007], could not be used because
the observed transition times were not independent and identically distributed. We thus
approximated the asymptotic variance corrected for the nuisance parameters of the model
using a forward finite difference method.

The score test was validated using an extensive simulation study. It highlighted the
need to have large samples (i.e. a substantial number of subjects and a substantial average
number of transitions per subject) to obtain good performances of the score test, in
particular a correct type-I error. These results confirmed the previous works carried out
on the score test for a frailty term in the context of recurrent events [Sinha, 2013] or
on the likelihood ratio test for variance components in mixed models [Crainiceanu and
Ruppert, 2004]. However, one could argue that for a diagnostic test, a low type-I error
rate (around 2% for instance) is not necessarily unacceptable as the main objective is
to detect a lack of fit. The low type-I error rates found in cases where the number of
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subjects and/or the number of transitions by individual are small are due to a point mass
at zero more important than expected [Crainiceanu and Ruppert, 2004]. To correct for
this, some authors proposed permutation techniques [Sinha, 2013]. However, they were
not applicable in our context since transition times are not independently distributed.

Although the score test development was detailed in the main manuscript for a joint
model with shared random effects, the methodology also applies to a joint model with
shared latent classes. Calculations are given in Section 4.9.1 of the Supplementary Mate-
rial: the structure of the score U(0, θ) remains the same, but the integral over the random
effects is replaced by a weighted sum over the classes. Indeed, the joint model with la-
tent classes can be seen as a joint model with shared random effects that are discrete.
Furthermore the methodology also applies to a standard multi-state model that does not
consider any longitudinal marker: in that case, the integral over the random effects in
equation (4.4) disappears.

We showed that the score test we proposed allows not only to capture a residual
correlation between individual transition times, but also reflects a lack of fit of the model.
In practice, this score test should be used in addition to other analyses of goodness-of-
fit, for example using simple residuals diagnostic plots [Dobson and Henderson, 2003;
Rizopoulos et al., 2010] or by comparing observations and model’s predictions [Ferrer
et al., 2016].

4.7 Software

The joint multi-state model with shared random effects and the associated score test for
the inclusion of a frailty are implemented in R. Extensions to deal with a transformation of
the current marker’s level as prognostic factor are also included. The R functions with ex-
amples of application can be found at https://github.com/LoicFerrer/JMstateModel/

for practical use.
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4.9 Supplementary material

4.9.1 Formulation of the score statistic for a Gaussian frailty
term in a joint model for a longitudinal process and a
multi-state process

This section details the formulations of the score statistic for a Gaussian frailty term
in a joint multi-state model with either shared random effects or shared latent classes.

Formulation of the score statistic for a Gaussian frailty term in a joint multi-
state model with shared random effects

In this part, we use the notations given in Section 4.2 of the main manuscript.

The joint model can be written as


Yi(t) = Y ∗i (t) + εi(t)

= XL
i (t)>β + Zi(t)>bi + εi(t)

λihk(t) = λhk,0(t) exp(XE >
hk,i γhk +Whk,i(t|bi)>ηhk + σvv

∗
i )

(4.7)

where v∗i follows a standard Gaussian distribution.

The associated likelihood function is then

L(σ2
v , θ) =

N∏
i=1

∫
Rq
fY (Yi|bi; θ)fb(bi; θ)

∫
R
fE(Ei|v∗i , bi;σ2

v , θ)fv∗(v∗i ) dv∗i dbi (4.8)

where fY (Yi|bi; θ) and fb(bi; θ) are defined in the same way as in the manuscript, and

fE(Ei|v∗i , bi;σ2
v , θ) =

mi−1∏
r=0

[
P i
Ei(Tir),Ei(Tir)(Tir, Ti(r+1)|v∗i , bi)×

λiEi(Tir),Ei(Ti(r+1))(Ti(r+1)|v∗i , bi)
δi(r+1)

]

The density of the standardised random effect is

fv∗(v∗i ) = 1
(2π)1/2 exp

(
−v
∗ 2
i

2

)
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The score test is then applied to test the absence of the frailty:

H0 : σ2
v = 0 vs H1 : σ2

v > 0 (4.9)

The score statistic is defined as the gradient of the log-likelihood (4.8) with respect to

σ2
v , computed under the null hypothesis: U(σ2

v = 0, θ) = U(0, θ) = ∂ logL(σ2
v , θ)

∂σ2
v

∣∣∣∣∣
σ2

v=0
=

N∑
i=1

∂ logLi(σ2
v , θ)

∂σ2
v

∣∣∣∣∣
σ2

v=0
. One can rewrite the score statistic:

U(0, θ) =
N∑
i=1
Ui(0, θ)

=
N∑
i=1

∂ logLi(σ2
v , θ)

∂σ2
v

∣∣∣∣∣
σ2

v=0

=
N∑
i=1

1
Li(σ2

v , θ)
× ∂Li(σ2

v , θ)
∂σ2

v

∣∣∣∣∣
σ2

v=0
(4.10)

where Ui(0, θ) is the contribution of subject i to the score statistic.
The first derivative of the likelihood with respect to σ2

v can be expressed as

∂Li(σ2
v , θ)

∂σ2
v

=
∫
Rq
fY (Yi|bi; θ) fb(bi; θ)

∫
R

∂fE(Ei|v∗i , bi;σ2
v , θ)

∂σ2
v

fv∗(v∗i ) dv∗i dbi

with

∂fE(Ei|v∗i , bi;σ2
v , θ)

∂σ2
v

= fE(Ei|v∗i , bi;σ2
v , θ)

∂ log fE(Ei|v∗i , bi;σ2
v , θ)

∂σ2
v

= v∗i
2σv
× ψ(Ei|v∗i , bi;σ2

v , θ)

where ψ(Ei|v∗i , bi;σ2
v , θ) = fE(Ei|v∗i , bi;σ2

v , θ)×
mi−1∑
r=0

(
δi(r+1) + ΛEi(Tir),Ei(Tir)(Tir, Ti(r+1)|v∗i , bi;σ2

v , θ)
)
.

One deduces

∂Li(σ2
v , θ)

∂σ2
v

=

∫
Rq
fY (Yi|bi; θ) fb(bi; θ)

∫
R
ψ(Ei|v∗i , bi;σ2

v , θ) v∗i fv∗(v∗i ) dv∗i dbi
2σvLi(σ2

v , θ)

Expressed under the null hypothesis σ2
v = 0, this expression unfortunately becomes unus-

able:

∂Li(σ2
v , θ)

∂σ2
v

∣∣∣∣∣
σ2

v=0
= 0

0
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One bypasses the problem using the L’Hôpital’s rule:

∂Li(σ2
v , θ)

∂σ2
v

∣∣∣∣∣
σ2

v=0
=

∫
Rq
fY (Yi|bi; θ) fb(bi; θ)

∫
R

∂ψ(Ei|v∗i , bi;σ2
v , θ)

∂σ2
v

v∗i fv∗(v∗i ) dv∗i dbi

2 ∂σvLi(σ2
v , θ)

∂σ2
v

∣∣∣∣∣∣
σ2

v=0

with ∂ [σvLi(σ2
v , θ)]

∂σ2
v

= Li(σ2
v , θ)

2σv
+ σv

∂Li(σ2
v , θ)

∂σ2
v

and ∂ψ(Ei|v∗i , bi;σ2
v , θ)

∂σ2
v

= v∗i
2σv

φ(Ei|v∗i , bi;σ2
v , θ),

where φ(Ei|v∗i , bi;σ2
v , θ) = fE(Ei|v∗i , bi;σ2

v , θ)×
[
mi−1∑
r=0

(
δi(r+1) + ΛEi(Tir),Ei(Tir)(Tir, Ti(r+1)|v∗i , bi;σ2

v , θ)
)]2

+

mi−1∑
r=0

ΛEi(Tir),Ei(Tir)(Tir, Ti(r+1)|v∗i , bi;σ2
v , θ)

}
.

Then the gradient of the likelihood w.r.t. σ2
v under the null hypothesis can be computed

as

∂Li(σ2
v , θ)

∂σ2
v

∣∣∣∣∣∣
σ2

v=0

=

∫
Rq
fY (Yi|bi; θ) fb(bi; θ)

∫
R
φ(Ei|v∗i , bi;σ2

v , θ) v∗i
2 fv∗(v∗i ) dv∗i dbi

2 Li(σ2
v , θ) + 4 σ2

v

∂Li(σ2
v , θ)

∂σ2
v

∣∣∣∣∣∣
σ2

v=0

Since
∫
R
v∗ 2
i fv∗(v∗i )dv∗i = E(v∗ 2

i ) = 1 and
[
σ2
v

∂Li(σ2
v , θ)

∂σ2
v

] ∣∣∣∣∣
σ2

v=0
= 0, we deduce

∂Li(σ2
v , θ)

∂σ2
v

∣∣∣∣∣
σ2

v=0
=

∫
Rq
fY (Yi|bi; θ) fb(bi; θ) φ(Ei|v∗i , bi;σ2

v = 0, θ) dbi
2 Li(σ2

v = 0, θ)

Finally the following formulation of the score statistic is obtained:

U(0, θ) =
N∑
i=1

1
2Li(σ2

v = 0, θ)×∫
Rq
fY (Yi|bi; θ)fE(Ei|bi;σ2

v = 0, θ)fb(bi; θ)×
[
mi−1∑
r=0

(
δi(r+1) + Λi

Ei(Tir),Ei(Tir)

(
Tir, Ti(r+1)|bi;σ2

v = 0, θ
))]2

+

mi−1∑
r=0

(
Λi
Ei(Tir),Ei(Tir)

(
Tir, Ti(r+1)|bi;σ2

v = 0, θ
))}

dbi (4.11)
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Formulation of the score statistic for a Gaussian frailty term in a joint multi-
state model with shared latent classes

The joint latent class multi-state model relies on the assumption that the population
is heterogeneous and can be divided into G homogeneous sub-groups, with specific marker
evolutions and transition intensities. First, the latent variable ci denotes the latent class
membership and its probability is defined by a multinomial logistic model, adjusted on
time-independent covariates XP

i . Given the latent class g (g = 1, ..., G), the longitudinal
marker is described by a mixed model with class-specific parameters βg and the transition
intensity from any state h to state l involves class-specific baseline intensities λhkg,0(·)
and parameters γhkg. In order to test a residual correlation between times-to-events,
conditional on the latent classes, we consider an individual Gaussian frailty term v∗i ∼
N (0, 1) impacting all the transition intensities. The model is thus fully defined for any
latent class g by:



P (ci = g|XP
i ) = eζ0g+XP>

i ζ1g∑G
m eζ0m+XP>

i ζm

Yi(t) = Y ∗i (t) + εi(t)

= XL
i (t)>βg + Zi(t)>bi + εi(t)

λihkg(t) = λhkg,0(t) exp(XE >
hk,i γhkg + σvv

∗
i )

(4.12)

with bi ∼ N (0, σ2
gD), εi iid∼ N (0, σ2

e). Note that to ensure identifiability, we fix ζ0G =
ζ1G = 0 and σ2

G = 1, considering the Gth class as the reference one.

The associated likelihood is written as follows:

L(σ2
v , θ) =

N∏
i=1

Li(σ2
v , θ)

=
N∏
i=1

G∑
g=1

P (ci = g) fY (Yi|ci = g; θ)
∫
R
fE(Ei|v∗i , ci = g;σ2

v , θ)fv∗(v∗i ) dv∗i (4.13)

where fY (Yi|ci = g; θ) is the density of a multivariate Gaussian distribution with mean
XL
i βg and variance σ2

gZiDZ
>
i + σ2

eIni
, and

fE(Ei|v∗i , ci = g;σ2
v , θ) =

mi−1∏
r=0

[
P i
Ei(Tir),Ei(Tir)(Tir, Ti(r+1)|v∗i , ci = g)×

λiEi(Tir),Ei(Ti(r+1))(Ti(r+1)|v∗i , ci = g)δi(r+1)

]
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Following the exact same calculation steps as described in the previous section for a
joint model with shared random effects, we obtain the following formulation of the score
statistic in the joint latent class framework:

U(0, θ) =
N∑
i=1

1
2Li(σ2

v = 0, θ)×

G∑
g=1

P (ci = g) fY (Yi|ci = g; θ) fE(Ei|ci = g;σ2
v = 0, θ)×


[
mi−1∑
r=0

(
δi(r+1) + Λi

Ei(Tir),Ei(Tir)

(
Tir, Ti(r+1)|ci = g;σ2

v = 0, θ
))]2

+

mi−1∑
r=0

(
Λi
Ei(Tir),Ei(Tir)

(
Tir, Ti(r+1)|ci = g;σ2

v = 0, θ
))}

(4.14)

4.9.2 Simulation data generation

The simulation study carried out in Section 3 of the main manuscript considered two
scenarii with different settings of population study. We refer here to the notations in the
main manuscript. Data were generated in both scenarii using a joint multi-state frailty
model:

Yi(t) = Y ∗i (t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1)× t+ εi(t)

λihk(t) = λhk,0(t) exp(γhkXi + ηhk,levelY
∗
i (t) + ηhk,slope∂Y

∗
i (t)/∂t + vi)

In scenario 1, the fixed-effects of the longitudinal sub-model were β0 = −0.79, β0,X =
0.54, β1 = −0.10 and β1,X = 0.03. The random effects were such that bi = (bi0, bi1)> ∼

N

0
0

 ,
 0.35 −0.04
−0.04 0.06

 and the variance of the centered normal error term was

σ2
e = 0.23. For the multi-state sub-model, each log baseline intensity was generated using

cubic B-splines with the vector of spline coefficients (−9.20,−3.50,−5.00,−3.90,−3.50,
−2.50,−2.00)> for transition 0→ 1, (−11.67,−5.82,−6.41,−4.71,−3.37,−2.01,−1.70)>

for transition 0→ 2 and (−3.44,−4.18,−4.30,−3.99,−2.63,−2.44,−1.32)> for transition
1→ 2. The effects of the baseline prognostic factors were γ01 = 0.27, γ02 = 0.75, γ12 = 0.78
and the effects of the PSA dynamics were η01,level = 1.02, η02,level = 0.36, η12,level =
−0.03, η01,slope = 1.04, η02,slope = −1.23, η12,slope = 0.99.

In scenario 2, the longitudinal sub-model considered the fixed-effects β0 = −0.78, β0,X =
0.53, β1 = −0.11 and β1,X = 0.04 and the variance of the error term σ2

e = 0.23. The co-

variance matrix of the random effects was D =
 0.34 −0.04
−0.04 0.06

. In the multi-state sub-
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model, the baseline transition intensities were proportional from one state to the other:
λhk,0(t) = λ0(t) exp(ζhk) with ζ02 = −1.50, ζ03 = −1.00, ζ04 = −2.25, ζ12 = 0.60, ζ13 =
0.10, ζ14 = 0.25, ζ23 = 0.50, ζ34 = 0.50. ζ01 and ζ24 were null and not specified in the model
estimation step. The reference baseline intensity λ0(t) was generated as a linear combi-
nation of cubic B-splines with vector of coefficients (−1.80,−1.30,−1.30,−1.30,−1.00)>.
The effects of the baseline prognostic factors were γ01 = 0.05, γ02 = 0.49, γ03 = 0.05, γ04 =
0.06, γ12 = 0.92, γ13 = 0.35, γ14 = −0.38, γ23 = −0.21, γ24 = 0.01, γ34 = 0.26. Finally,
the effects of the marker dynamics were η01,level = 0.82, η02,level = 0.91, η03,level =
0.53, η04,level = 0.23, η12,level = −0.52, η13,level = −0.56, η14,level = −0.10, η23,level =
−0.44, η24,level = 0.07, η34,level = −0.59, η01,slope = 0.10, η02,slope = 0.25, η03,slope =
0.36, η04,slope = −0.57, η12,slope = 0.92, η13,slope = 1.11, η14,slope = 0.02, η23,slope = 0.40,
η24,slope = 0.04, η34,slope = 0.60.

4.9.3 Complementary results for the application

We introduce here the complementary results for the application developed in the main
manuscript. Table 4.4 depicts the parameter estimates (except the association parameter
estimates which are depicted in Table 4.3 of the main manuscript), in the final joint
multi-state model applied on prostate cancer data.

Overall the longitudinal and multi-state parameters were in agreement with the pre-
vious results obtained and discussed in Ferrer et al. [2016]. For the multi-state sub-part,
they notably confirmed that having a poor prognostic at baseline was not always asso-
ciated with higher hazards to experience clinical events, after adjustment for the true
current PSA dynamics.

The adjustment on age at baseline, which was not done in Ferrer et al. [2016], logically
indicated that older subjects had higher risk of directly dying after either EBRT or local
recurrence or hormonal therapy. The same result was found for the transition intensity
between the local recurrence and distant recurrence states. These interpretations were
made given the other prognostic factors in the model.
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Table 4.4 – Parameter estimates, standard errors and p-values in the joint multi-state
model, based on the pooled data after removal of four outliers (N = 1470).
Estimates of the association parameters {ηhk}h,k are given in Table 4.3 of the main
manuscript.

Longitudinal Process Multi-state Process
Value StdErr p-value Value StdErr p-value

β0 −0.25 0.06 < 0.001 γ(01,03,12),iPSA −0.06 0.10 0.505
β0,iPSA 0.80 0.03 < 0.001 γ02,iPSA 0.01 0.10 0.933
β0,cohort −0.01 0.02 0.580 γ04,iPSA 0.22 0.08 0.004
β1 0.73 0.14 < 0.001 γ(13,14),iPSA −0.50 0.24 0.034
β1,iPSA 0.87 0.06 < 0.001 γ(23,24,34),iPSA −0.20 0.09 0.020
β1,tstage2 0.38 0.08 < 0.001 γ(04,13,14,24),age 0.07 0.01 < 0.001
β1,tstage3-4 0.44 0.13 0.001 γ23,age −0.01 0.02 0.379
β1,cohort −0.04 0.04 0.414 γ01,tstage2 1.01 0.26 < 0.001
β2 −0.18 0.04 < 0.001 γ01,tstage3-4 0.95 0.32 0.003
β2,iPSA 0.18 0.02 < 0.001 γ02,tstage2 −0.05 0.16 0.774
β2,tstage2 0.14 0.02 < 0.001 γ02,tstage3-4 0.24 0.20 0.234
β2,tstage3-4 0.25 0.04 < 0.001 γ03,tstage2 0.84 0.40 0.034
β2,gleason7 0.07 0.02 < 0.001 γ23,tstage3-4 0.33 0.55 0.549
β2,gleason8-10 0.21 0.04 < 0.001 γ23,tstage2 1.04 0.51 0.041
β2,cohort −0.05 0.01 < 0.001 γ23,tstage3-4 0.93 0.68 0.171
log(σ) −1.30 0.01 γ(01,02),gleason7 0.10 0.13 0.417

γ(01,02),gleason8-10 0.08 0.19 0.652
D11 0.37 0.03 γ03,gleason7 0.76 0.31 0.015
D12 0.35 0.03 γ03,gleason8-10 −0.13 0.64 0.837
D13 0.00 0.01 γ13,gleason7 1.09 0.81 0.175
D22 0.14 0.02 γ13,gleason8-10 1.20 1.08 0.265
D23 0.26 0.04 γ23,gleason7 1.21 0.39 0.002
D33 1.74 0.05 γ23,gleason8-10 0.36 0.58 0.540

γ(01,34),cohort −0.27 0.09 0.002
γ(13,23),cohort 0.95 0.18 < 0.001
γ14,cohort −0.78 0.35 0.024
γ24,cohort −0.47 0.10 < 0.001
ζ(12,23) 4.47 0.70 < 0.001

Dij denotes the ij-element of the covariance matrix for the random effects. γ(hk,h′k′),X
denotes the effect of covariate X on the intensities of transitions h → k and h′ → k′,
i.e.γ(hk,h′k′),X = γhk,X = γh′k′,X. Similarly, ζ(12,13) is indicated since ζ12 = ζ13.
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5 Individual dynamic predictions us-
ing landmarking and joint modelling:
validation of estimators and robust-
ness assessment

Joint modelling is the most natural approach when we are confronted to a longitudinal
biomarker and time-to-event data with competing risks, which are both correlated. Stan-
dard joint models with shared random effects specify a mixed sub-model for the repeated
measurements of the longitudinal marker, a cause-specific proportional hazard model for
the occurrence time of the competing event, and links these two sub-models using a func-
tion of the shared random effects such as the current dynamics of the marker. These
two sub-models are then estimated simultaneously for correctly taking into account the
correlation between the longitudinal process and the survival process. In the prediction
setting, as supported in Suresh et al. [2017] the joint models also satisfies the consistency
condition introduced by Jewell and Nielsen [1993] which stipulates that the hazard func-
tion and the marker dynamics must be linked at all time points to give consistent dynamic
predictions.

However, inference may be complex in such models: model estimation and prediction
steps may be difficult to achieve to provide accurate predictions. Moreover the joint
model with shared random effects requires restrictive assumptions, such as proportional
hazards according to each covariate effect, or parametric specifications of both the whole
longitudinal marker trajectory and the association structure between the marker dynamics
and each cause-specific hazard of event.

To reduce the possible bias due to these assumptions and avoid hard computational
procedures, the landmarking approach has been introduced [van Houwelingen, 2014]. The
main idea is to consider at each time point, called landmark time, only the subjects at risk
and their covariates history collected until this time. Classical landmark models are cause-
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specific proportional hazard (CS PH) models applied from the landmark time point, and,
to reduce the possible bias due to the proportional hazard assumption, an administrative
censoring is also applied at the end of the prediction window. Some authors [Fine and
Gray, 1999; Scheike et al., 2008; Andersen and Pohar Perme, 2010] also focused on a
direct estimation of the quantity of interest, which is a probability while CS PH models
are built on hazard functions and may be not adapted to the predictive setting. These
landmark models do not provide consistent dynamic predictions as joint models, and are
adjusted on the marker dynamics predicted at the landmark time point.

In this work we are interested in the prediction of individual cumulative incidences of
event, computed from a landmark time point and based on individual covariates history
including biomarker data. Using the landmarking or joint modelling approaches, several
proposals have been published in the literature to compute such quantity [Maziarz et al.,
2017; Sène et al., 2016; Rizopoulos, 2011]. However none formally defined the quantity
of interest, validated its estimators, and compared them according to several scenarii of
misspecification. Moreover no concept of uncertainty around the predictions was intro-
duced in the landmark approach [Proust-Lima and Taylor, 2009; Sweeting et al., 2016;
Rizopoulos and others, 2017].

We fill the gap through an extensive simulation study which properly defines the quan-
tity of interest, and validates the estimators from the joint modelling and landmarking
approaches. The predictive abilities of these estimators are then compared in terms of
accuracy of prediction, discriminatory power, and robustness to the model hypotheses
though several cases of well- and mis-specification such as the violation of the PH as-
sumption, the misspecification of the association function between the longitudinal and
survival processes, and the misspecification of the longitudinal trajectory of the marker.
The models and estimators are implemented in R.

This paper is currently submitted for publication in a statistical journal.
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SUMMARY. After the diagnosis of a disease, one major objective is to predict cumulative
probabilities of events such as clinical relapse or death from the individual information collected
up to a prediction time, including usually biomarker repeated measurements. Several competing
estimators have been proposed to calculate these individual dynamic predictions, mainly from
two approaches: joint modelling and landmarking. These approaches differ by the informa-
tion used, the model assumptions and the complexity of the computational procedures. It is
essential to properly validate the estimators derived from joint models and landmark models,
quantify their variability and compare them in order to provide key elements for the develop-
ment and use of individual dynamic predictions in clinical follow-up of patients. Motivated by
the prediction of two competing causes of progression of prostate cancer from the history of
prostate-specific antigen, we conducted an in-depth simulation study to validate and compare
the dynamic predictions derived from these two methods. Specifically, we formally defined the
quantity to estimate and its estimators, proposed techniques to assess the uncertainty around
predictions and validated them. We also compared the individual dynamic predictions derived
from joint models and landmark models in terms of prediction error, discriminatory power, ef-
ficiency and robustness to model assumptions. We show that these prediction tools should be
handled with care, in particular by properly specifying models and estimators.

KEYWORDS. Competing risks; Dynamic Prediction; Landmarking; Joint modelling; Pre-
diction accuracy; Robustness.

5.1 Introduction

After diagnosis and subsequent treatment of cancer, patients are typically monitored
via repeated measurements of biomarkers. For example, in patients with prostate cancer
treated by radiotherapy, the Prostate Specific Antigen (PSA) is measured routinely. Pre-
cisely predicting the individualized probabilities of events such as clinical relapse for these
patients from their individual information collected until the prediction time has become
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a central issue [Proust-Lima and Taylor, 2009; Goldstein et al., 2017]. Personalized treat-
ment strategies can indeed be proposed according to the updated individual probabilities
[Sène et al., 2016], or the planning of the next biomarker measurement can be optimized
[Rizopoulos et al., 2015].

Two main approaches have been proposed to compute individual dynamic predictions:
joint modelling and landmarking. These differ in the used information, the model as-
sumptions and the complexity of computational procedures.

The joint modelling (JM) approach simultaneously models the repeated measurements
of the biomarker (e.g., using a linear mixed model in standard JM) and the time-to-event
data (e.g., using a proportional hazards model in standard JM) by linking them using a
function of shared random effects [Tsiatis and Davidian, 2004]. This approach has the
advantage of taking into account the endogenous nature of biomarkers [Kalbfleisch and
Prentice, 2011], of only requiring one model estimation for any prediction time, and of
modelling the progression of the disease as a whole, which makes it very popular. But it
is often based on simplifying assumptions (e.g., proportional hazards, number of random
effects) and may be complex to estimate, so that it should be handled carefully and can
remain difficult to apply in practice.

The landmarking approach consists of adjusting standard survival models considering
only the subsample of subjects still at risk at the prediction time and the longitudinal
information collected up to the prediction time [van Houwelingen, 2007]. These mod-
els induce significantly less numerical problems and reduce the possible estimation bias
related to the proportional hazards assumption. However, as they do not fully explore
the collected information during the follow-up and the correlation between the marker
and the time of event, they can produce sub-efficient estimators [Huang and others, 2016]
and are only an approximation of the (correct) joint estimator. Indeed, as supported in
Suresh et al. [2017] they do not satisfy the consistency condition introduced by Jewell
and Nielsen [1993] which stipulates that the hazard function and the marker dynamics
must be linked at all time points to give consistent dynamic predictions. In the presence
of longitudinal biomarkers, the landmark approach can result in several models. Most
of the time a survival model (cause-specific proportional hazards) is adjusted on the last
observed value of the biomarker. In addition to truncation at the prediction time, cen-
soring is administered at the end of the prediction window to reduce possible bias related
to the proportionality of hazards. But this approach does not take into account fluctu-
ations of the biomarker, its observation at discrete times and measurement errors. To
circumvent this problem, the last observed value of the biomarker may be replaced by its
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predicted value at the prediction time (obtained from a linear mixed model) [Sweeting
et al., 2016; Rizopoulos and others, 2017]. This two-step model considers the same method
of truncation and administrative censoring. It takes into account all the collected infor-
mation of the biomarker until the prediction time for the subjects at risk. But the event
probabilities must be deduced by approximation and the model is not completely freed
of the proportional hazards assumption. In the context of competing risks, rather than
using a cause-specific proportional hazards model, the conditional probabilities of event
can be directly estimated by a dynamic pseudo-observations approach [Nicolaie et al.,
2013b]. This approach directly models the conditional probabilities of event and is freed
from the proportionality hazards assumption. By considering the predicted value of the
biomarker at the prediction time as a covariate, it also takes into account the trajectory
of the biomarker. But this approach requires the specification of a link function and can
still provide less efficient estimators than the joint model. Note that, in these landmark
models as well as in joint models, any function of the biomarker trajectory parameters
can be used instead of the biomarker predicted value at the prediction time.

In addition, although of central interest in many recent works, estimators of dynamic
predictions and of their uncertainty were never formally validated while there exist several
competing proposals in the joint modelling framework [Maziarz et al., 2017; Sène et al.,
2016; Rizopoulos, 2011]. In the landmarking approach with longitudinal biomarkers,
some estimators were also proposed but not validated, and no concept of uncertainty was
introduced [Proust-Lima and Taylor, 2009; Sweeting et al., 2016; Rizopoulos and others,
2017].

Motivated by the prediction of competing progressions of prostate cancer from the
PSA history, we first proposed estimators of individual dynamic predictions and of their
uncertainty with 95% confidence intervals for the joint and the landmark approaches, and
we validated them in a simulation study. We then compared the predictive accuracy of
the models under several scenarios to explore their robustness to misspecification.

The rest of the paper is organized as follows. Section 5.2 introduces the prediction
models and the derived estimators of dynamic predictions and of their uncertainty. Sec-
tion 5.3 briefly describes the motivating data. The simulation studies are carried out
in Section 5.4 for validating the proposed estimators and comparing them in terms of
prediction accuracy. The paper ends with a discussion in Section 5.5.
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5.2 Prediction models

Let us consider the competing risks setting where the subjects are at risk to experience
K competing events. For each subject i (i = 1, ..., N), we denote Ti the earliest time-to-
event and δi = k the cause of event, with k ∈ 1, . . . , K. In the presence of censoring, we
observe the event time T †

i = min(Ti, Ci) with Ci the censoring time, and the indicator of
event becomes ∆i = δi .1{Ti ≤ Ci} with 1 the indicator function. We also observe Xi the
(possibly exogenous time-dependent) covariates collected until the event time, and Yi an
endogenous longitudinal marker measured repeatedly with Yi(tij) the observed measure
at time tij for j = 1, ..., ni and tini

≤ T †
i . In the following, Xi(s) denotes the history of

Xi until time s, Yi(s) = {Yi(tij) : 0 ≤ tij ≤ s, j = 1, . . . , ni(s)} denotes the history of the
marker until s, and the model formulations assume a longitudinal marker with Gaussian
distribution.

5.2.1 Definition of individual dynamic prediction

In this paper we are interested in the individual cumulative probability of the event
of cause k between times s and s + w for a new subject ?, with s the landmark time
(or prediction time) and w the horizon. This probability, also called landmark specific
cumulative incidence of cause k is defined as

πk?(s, w) = Pr(s < T? ≤ s+ w, δ? = k|T? > s,Y?(s),X?(s)). (5.1)

We focus on several parametric models that express this quantity of interest as a
function of a vector of parameters θ:

πk?(s, w; θ) = Pr(s < T? ≤ s+ w, δ? = k|T? > s,Y?(s),X?(s); θ). (5.2)

In practice, θ is unknown and is replaced by θ̂I , its estimate from the considered
observed data in the learning sample I. In the remainder of the manuscript, this subscript
is omitted for the sake of simplicity, and the estimated quantity of interest is denoted
π̂k?(s, w; θ̂).

Two kinds of variability of π̂k?(s, w; θ̂) can be defined to quantify the uncertainty of
this estimator. The first one consists in considering the variance of πk?(s, w; θ) conditional
to T? > s, Y?(s) and X?(s), with respect to the estimated parameters θ̂ [Proust-Lima and
Taylor, 2009; Taylor et al., 2013; Król et al., 2016; Maziarz et al., 2017]. The second one
consists in considering the variance as only conditional to T? > s and X?(s) by taking into
account both the variability of the estimated parameters θ̂ and the variability of Y?(s) due
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to measurement errors in the marker’s observations [Yu et al., 2008; Rizopoulos, 2011]. In
this contribution, we propose techniques to quantify both sources of uncertainty although
simulations focus only on the former.

5.2.2 Joint model

Model formulation

The joint model considers the full collected information I = {(T †
i ,∆i,Yi(T †

i ),Xi(T †
i ));

i = 1, . . . , N}. It is decomposed into two sub-models linked by a function of a shared
latent structure. The most popular joint model [Rizopoulos, 2012b] links a linear mixed
model for the repeated measurements of the marker and a cause-specific proportional
hazards model for the specific hazard of each cause of event k using a function of shared
random effects:

Yi(t) = mi(t) + εi(t)

= XL
i (t)>β + Zi(t)>bi + εi(t),

λki (t) = λk,0(t) exp
{
XE >
k,i γk +Wk,i(t|bi; β)>ηk

}
,

where t > 0 and λki (t) denotes the hazard function of cause k at time t, with k =
1, . . . , K. In the longitudinal sub-part, XL

i (t) and Zi(t) denote vectors of covariates
(possibly time-dependent) associated respectively with the vector of fixed effects β and
the vector of random effects bi, bi ∼ Nq(0, D). The error term is εi(t) ∼ N (0, σ2) ; the
random effects and error terms are independent. In the survival sub-part, λk,0(t) denotes
the parametric baseline hazard of cause k at time t. The vector of covariates XE

k,i is
associated with the vector of coefficients γk. Note that for simplicity, we do not consider
any exogenous time-dependent prognostic variable although this is not a requirement. The
(possibly multivariate) function Wk,i(t|bi; β) denotes the function of dependence between
the longitudinal process and the hazard of event of cause k, such as for example the
unbiased current level of the marker mi(t), the unbiased current slope ∂mi(t)/∂t, or both
(mi(t), ∂mi(t)/∂t)>.

The joint model assumes proportional hazards (PH) between levels of covariates.
It can be estimated in the maximum likelihood framework by using the independence

between the longitudinal process Yi(T †
i ) and the survival process (T †

i ,∆i) conditionally
on the random effects bi. The likelihood involves integrals over the random effects and
time that have to be numerically solved, usually using Gaussian quadratures. Note that
the number of quadrature points has to be chosen carefully to provide correct inference
[Ferrer et al., 2016].
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Cumulative incidence estimator

Once the model is estimated, the vector of parameters θ̂ and its variance matrix V̂ (θ̂)
are obtained and we are able to compute for each new subject ? the predicted conditional
cumulative incidence of cause k for all the possible horizons w and landmark times s:

π̂k?(s, w; θ̂) =∫
Rq

Pr(s < T? ≤ s+ w, δ? = k|T? > s,X?(s), b?; θ̂) f(b?|T? > s,Y?(s),X?(s); θ̂) db?.

(5.3)

Another estimator of (5.2) (faster but less accurate) can be obtained by approximating the
integral over the random effect distribution by the integrand computed at the modal point.
This Laplace approximation of (5.3) will be called conditional estimator. The complete
formulas of the marginal and conditional estimators are detailed in Section 5.7.1 of the
Supplementary Material.

To validate our estimator in the simulation study, we mainly considered its variance as
conditional to T? > s and Y?(s). The corresponding 95% confidence interval of (5.3) can
be obtained using parametric bootstrap techniques. The procedure is realized as follows:
Consider a large L; for each l = 1, . . . , L,

1. generate θ̃(l) ∼ N (θ̂, V̂ (θ̂));

2. compute π̃
k,(l)
? (s, w; θ̃(l)) =

∫
Rq

Pr(s < T? ≤ s + w, δ? = k|T? >

s,X?(s), b?; θ̃(l)) f(b?|T? > s,Y?(s),X?(s); θ̃(l)) db?.

Compute the 95% confidence interval from the 2.5th and 97.5th percentiles of

{π̃k,(l)? (s, w; θ̃(l)); l = 1, . . . , L}.

The same procedure can be used with the conditional estimator of the probability by re-
placing the expression in step 2.

The additional variability due to measurement errors in the observations Y?(s) can be
easily taken into account by adding a step to this algorithm which draws marker mea-
surements from their estimated distribution:

1bis. generate Y(l)
? (s) = {Y (l)

? (t?j) : 0 ≤ t?j ≤ s, j = 1, . . . , n?(s)}

with Y (l)
? (t?j) ∼ N (XL

? (t?j)>β̂ + Z?(t?j)>b̂?, σ̂2) ; b̂? = E(b?|Y?(s),X?(s); θ̂), β̂ and

σ̂ subsets of θ̂.

The l-th bootstrapped estimator is then obtained by replacing Y?(s) by Y(l)
? (s) in step 2.
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5.2.3 Landmark cause-specific proportional hazards model

An alternative to joint models is landmark models which only consider subjects at
risk at a landmark time s and the longitudinal information {Y(s),X (s)} collected until s.
When considering PH landmark models, administrative censoring is applied at the end of
the prediction window s+w in order to reduce the possible bias entailed by a violation of
the PH assumption. The considered information becomes I = {(ξi(s, w),Ψi(s, w),Yi(s),
Xi(s)); i = 1, . . . , N †(s)}, with ξi(s, w) = min(T †

i , s+w), Ψi(s, w) = ∆i .1{s < Ti ≤ s+w}
and N †(s) = ∑N

i=1 1{T
†
i > s}.

Model formulation

The landmark cause-specific (CS) proportional hazards (PH) model is defined by

λki (t) = λk,0(t) exp
{
XE >
k,i γk +Wk,i(s)>ηk

}
,

where t > s, λk,0(.) is an unspecified cause-specific baseline hazard function and Wk,i(s)
is a multivariate function that depicts the dynamics of the marker extrapolated at time
s. The model is estimated by maximizing the Cox partial likelihood [Cox, 1972] for each
considered pair of landmark and horizon times. Note that for the sake of clarity, we did
not use a subscript s, w for the model parameters although they are different for each
(s, w).

To take into account the information of the marker before the landmark time s, one can
consider the last observed value only, i.e. Wk,i(s) = Yi(tini(s)). However, this technique,
called "naive landmark model" assumes that the marker is measured without error and
considers neither the whole trajectory of the marker until s nor the subject-specific gap
between tini(s) and s.

A better alternative is to deduce the value of Wk,i(s) at time s from a linear mixed
model estimated on the marker measurements collected until s in subjects at risk at s. This
technique, called the "two-stage landmark model" considers Wk,i(s) = Ŵk,i(s|b̂i; β̂), where
β̂ is the vector of estimated fixed effects and b̂i = E(bi|Yi(s),Xi(s); θ̂) = D̂Z>i V̂

−1
i (Yi −

XL
i β̂) is the vector of empirical Bayes estimates of the individual random effects, with

V̂i = ZiD̂Z
>
i + σ̂2Ini(s). Here XL

i and Zi are the matrices of covariates with respectively
the row vectors XL

i (tij)> and Zi(tij)>, and the column vector Yi is with elements Yij, for
j = 1, . . . , ni(s). I is the identity matrix.
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Cumulative incidence estimator

With the two-stage approach, the predicted conditional cumulative incidence of cause
k for subject ? is

π̂k?(s, w; θ̂) = Pr (s < T? ≤ s+ w, δ? = k|T? > s,X?(s), b̂?; θ̂), (5.4)

where θ̂ is the vector of estimated parameters (with associated estimated variance V̂ (θ̂)),
and b̂? = E(b?|Y?(s),X?(s); θ̂).

To estimate valid 95% confidence intervals, it is necessary to take into account the
variability due to the parameter and baseline hazard estimates. The same paramet-
ric bootstrap technique as described for the joint model can be used for the parameter
estimates but it can’t be applied for the baseline hazard estimates. The unspecified cu-
mulative baseline hazard Λk,0(t) =

t∫
s
λk,0(u) du is estimated using the Breslow’s estimator

[Breslow, 1972], Λ̂k,0(t) =
t∫
s

Π̂(0)
k (θ̂, u)−1 dJ̄k(u) where Π̂(0)

k (θ̂, u) = 1
N †(s)

N†(s)∑
i=1

1{ξi(s, w) ≥

u} exp
{
XE >
k,i γ̂k + Ŵk,i(s|b̂i; β̂)>η̂k

}
and J̄k(u) = 1

N †(s)
N†(s)∑
i=1

1{ξi(s, w) ≤ u,Ψi(s, w) =

k}. We propose a procedure that combines parametric bootstrap to take into account the
variability associated to θ̂ and perturbation-resampling methods, inspired by Sinnott and
Cai [2016], to take into account the variability associated to Λ̂k,0(.).

This technique, which also avoids hard computational cost, is validated in the simu-
lation study in Section 5.4.1. The full procedure is realized as follows:
For each bootstrap sample l = 1, . . . , L, where L is large enough;

1. generate θ̃(l) ∼ N (θ̂, V̂ (θ̂)) and deduce b̂(l)
. = E(b.|Y.(s),X.(s); θ̃(l));

2. for each subject i ∈ 1, . . . , N †(s) of the learning sample, generate ν
(l)
i ∼ 4 ·

Beta(1/2, 3/2);

3. compute Λ̃(l)
k,0(t) =

t∫
s

Π̂(0),(l)
k (θ̃(l), u)−1 dJ̄ (l)

k (u) with Π̂(0),(l)
k (θ̃(l), u) =

1
N †(s)

N†(s)∑
i=1

ν
(l)
i 1{ξi(s, w) ≥ u} exp

{
XE >
k,i γ̃

(l)
k + Ŵk,i(s|b̂(l)

i ; β̃(l))>η̃(l)
k

}
and

J̄
(l)
k (u) = 1

N †(s)
N†(s)∑
i=1

ν
(l)
i 1{ξi(s, w) ≤ u,Ψi(s, w) = k};

4. for each subject ? of the validation sample, deduce π̃
k,(l)
? (s, w; θ̃(l)) =

f({(Λ̃(l)
k,0(u), s < u ≤ s + w); k = 1, . . . , K}, θ̃(l), b̂

(l)
? ), where f(.) is a function

specified in Section 5.7.1 of the Supplementary Material.
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Compute the 95% confidence interval from the 2.5th and 97.5th percentiles of

{π̃k,(l)? (s, w; θ̃(l)); l = 1, . . . , L}.

Similarly as in joint models, additional uncertainty on the individual marker mea-
surements can be considered by adding a step 1.bis to perturb the individual marker’s
observations.

Using a naive approach, the predicted conditional cumulative incidence of cause k for
subject ? is

π̂k?(s, w; θ̂) = Pr (s < T? ≤ s+w, δ? = k|T? > s, {XE
k,?; k = 1, . . . , K}, Y?(t?n?(s)); θ̂), (5.5)

and the same technique combining parametric bootstrap and perturbation-resampling can
be used to obtain 95% confidence intervals. Note however that using the naive approach,
the variance of π̂k?(s, w; θ̂) necessarily neglects the variability due to the measurement
errors in the marker measurements.

5.2.4 Landmark model based on pseudo-observations

Cause-specific hazard models rely on the PH assumption and require the computation
of integrals over time in the individual cumulative incidences. To avoid these issues, some
authors have focused on the direct modelling of the individual cumulative incidences
with for example the Fine-Gray model [Fine and Gray, 1999], the binomial regression
models [Scheike et al., 2008] or the pseudo-value approach [Andersen and Pohar Perme,
2010]. The latter is developed here. The pseudo-observation approach does not require
the PH assumption, hence the considered information is I = {(T †

i ,∆i,Yi(s),Xi(s)); i =
1, . . . , N †(s)}.

Model formulation

For subjects at risk at time s, we are interested in the expectation of µki (s, w) = 1(Ti ≤
s+ w, δi = k). In presence of censoring, this quantity is not always observable. Thus the
idea is to define the dynamic jackknife pseudo-observation [Nicolaie et al., 2013b] of the
non-parametric estimator of πk(s, w): µ̂ki (s, w) = N †(s)F̂ k(s, w)− (N †(s)− 1)F̂ k

(−i)(s, w),
where N †(s) is the number of subjects at risk at s and F̂ k(s, w) is the Aalen-Johansen
estimate of πk(s, w) [Andersen et al., 1993].

To include the dynamic information on the marker until s, the same two-stage ap-
proach as defined in Section 5.2.3 can be used to deduce Ŵk,i(s|b̂i; β̂) in those still at
risk in s. The pseudo-observation and the prognostic factors are then linked through a
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generalized linear model with link function g:

g
[
E{µ̂ki (s, w)|T †

i > s}
]

= γ0,k +XE >
k,i γ1,k + Ŵk,i(s|b̂i; β̂)>ηk.

The model is thus estimated using generalized estimating equations (GEE) [Andersen and
Pohar Perme, 2010].

Cumulative incidence estimator

The predicted conditional cumulative incidence can directly be expressed as

π̂k?(s, w; θ̂) = Pr (s < T? ≤ s+ w, δ? = k|T? > s,X?(s), b̂?; θ̂), (5.6)

with b̂? = E(b?|Y?(s),X?(s); θ̂), where θ̂ is the vector of estimated parameters (with
associated estimated variance matrix V̂ (θ̂)). For example with the cloglog link function g
(g(x) = cloglog(x) = log{− log(1− x)}), it can be expressed as: π̂k?(s, w; θ̂) = 1− exp

[
−

exp{γ̂0,k+ XE >
k,i γ̂1,k + Ŵk,i(s|b̂i; β̂)>η̂k}

]
.

The 95% confidence intervals of (5.6) may be calculated using parametric bootstrap:

Consider a large L; for each l = 1, . . . , L,

1. generate θ̃(l) ∼ N (θ̂, V̂ (θ̂)) and deduce b̂(l)
? = E(b?|Y?(s),X?(s); θ̃(l));

2. compute π̃k,(l)? (s, w; θ̃(l)) = π̃
k,(l)
? (s, w|b̂(l)

? ; θ̃(l)).

Compute the 95% confidence interval from the 2.5th and 97.5th percentiles of

{π̃k,(l)? (s, w; θ̃(l)); l = 1, . . . , L}.

Uncertainty from Y?(s) in the variance of π̂k?(s, w; θ̂) can again be accounted for by
perturbing the observations Y?(s) in an additional 1.bis step, as described in Section 5.2.3.

5.2.5 Implementation

The estimation of the prediction models and the computation of the derived estimators
were performed in R using standard packages and extensions coded by the authors, with
the JM package for the joint model, the survival package for the landmark cause-specific
proportional hazards models and the pseudo and geepack packages for the landmark
model based on pseudo-values. Examples of codes used for the manuscript writing can
be found in Section 5.7.5 of the Supplementary Material, and detailed examples can be
found at https://github.com/LoicFerrer/ for practical use.
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5.3 Motivating data

The paper relies on simulation studies inspired by the data analyzed in Ferrer et al.
[2016]. In this study, patients (N = 1474) had a clinically localized prostate cancer and
were treated by external beam radiotherapy. After the end of the radiotherapy, repeated
measurements of the Prostate Specific Antigen (PSA) were collected until the occurrence
of a clinical event defined as the recurrence of the disease (local/distant recurrence, ini-
tiation of hormonal therapy or death due to the prostate cancer) or death due to an
other cause. Post-treatment PSA trajectory was mostly biphasic with a short term drop
followed by a stable or slight increase [Proust-Lima et al., 2008]. Several authors [Proust-
Lima and Taylor, 2009; Taylor et al., 2013] showed that including these post-treatment
PSA dynamics in dynamic prediction tools of disease recurrence highly reduced the pre-
diction error.

5.4 Simulation studies

Two simulation studies were performed, one for the validation of the estimators (Sec-
tion 5.4.1), and a second for their comparison and the assessment of their robustness
to misspecification (Section 5.4.2). Both simulation studies relied on the same following
design.

R = 500 learning samples of N = 1000 subjects as well as a validation sample of
Nnew(0) = 500 subjects were generated from a joint model with parameter values θ0

[Crowther and Lambert, 2013; Ferrer et al., 2016]. The models detailed in section 5.2
were estimated on each learning sample r (r = 1, ..., R) and the derived estimators of
cumulative incidence were computed for a given horizon w on the Nnew(s) subjects (? =
1, . . . , Nnew(s)) of the validation sample who did not experience any event before landmark
time s. The simulation design was built to validate the estimator defined in (5.2) and its
associated variance conditional to the full set of individual observations for prediction, so
that we did not resample the observed markers in the prediction sample.

For each replicate r, we then compared the true generated cumulative incidence
πk?(s, w; θ0) =

∫
Rq

πk?(s, w|b?; θ0) f(b?|T? > s,Y?(s),X?(s); θ0) db? with the estimators

π̂k?,r(s, w; θ̂).
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5.4.1 Simulation study I: Validation of the estimators π̂k?(s, w; θ̂)

To validate the proposed estimators, we checked the distributions over the individuals
of the estimated relative bias and the estimated coverage rates for πk?(s, w; θ0). We also
investigated the efficiency of the estimators with the mean relative change in the confidence
interval widths.

Model specification

For each subject i (learning or validation sample), data were generated according to
the joint model:



Yi(t) = mi(t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1) t+ εi(t),

λki (t) = λk,0(t) exp
{
γkXi + η1,kmi(t) + η2,k

δmi(t)
δt

}
,

where log(λk,0(t)) is a combination of cubic B-splines with one internal knot, k is the
cause of event (Recurrence ; Death); Xi is a continuous variable. The coefficients and the
distribution of the covariates used for the generation data correspond to those obtained
on the motivating data with Xi the PSA level before treatment initiation. They are given
in Section 5.7.3 of the Supplementary Material.

Results

Due to the duration of the procedures, the simulations were run for two landmark
times s = 1, 5, one horizon time w = 3 and 200 subjects randomly selected from the
validation sample. R = 499 and R = 486 replicates were considered for s = 1 and s = 5
respectively, due to convergence problems in the landmark model estimation.

Figures 5.1a and 5.1b depict respectively the distribution over the subjects of the
relative bias of the estimator and the coverage rates of its 95% confidence interval both
for the joint and two-stage landmark CS PH models for landmark times s = 1 and s = 5
and one horizon time w = 3. The box plots highlight the correct estimation of πk?(s, w; θ0),
except for the conditional expression from the joint model in the earlier landmark times
(s = 1). This confirms that considering the modes of the distributions a posteriori of the
random effects (defined in Section 5.7.1 of the Supplementary Material) in the conditional
estimator is valid only when there is enough longitudinal information. The coverage rates
which are very close to 0.95 validate the proposed 95% confidence interval computations
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for both approaches. Finally the comparison of the widths of the 95% confidence intervals
according to the joint and two-stage landmark CS PH models (Figure 5.1c) confirms that
the joint model estimator is much more efficient than the landmark CS PH estimator.
This result was expected because the included information in the landmark models is
lower than the one in the joint model.

5.4.2 Simulation study II: Robustness to models hypotheses

The second simulation study aimed to compare the performances of the different ap-
proaches to provide individual dynamic predictions. We relied for that on predictive
accuracy and explored their robustness to the models hypotheses.

Predictive accuracy was assessed through both the Mean Squared Error of Prediction
(MSEP) popularized through the Brier Score (BS) [Gerds and Schumacher, 2006] and the
Area Under the ROC curve (AUC) [Heagerty and others, 2000]. The former assesses both
calibration and discrimination abilities of the methods while the latter only focuses on
discrimination ability and as such, neglects an important aspect of predictive accuracy
[Blanche and others, 2015]. As in a simulation setting, we directly used the true individ-
ual prediction rather than the event indicator for the BS and did not have to deal with
censoring. This lead to the computation of a standard MSEP on the validation sample

: MSEPkr(s, w) = 1
Nnew(s) ×

Nnew(s)∑
?=1

(
πk?(s, w; θ0)− π̂k?,r(s, w; θ̂)

)2
. For the AUC, we ap-

plied the definition adapted to the competing risks setting [Blanche and others, 2015]:
AUCk

r(s, w) = Pr (π̂ki,r(s, w; θ̂) > π̂kj,r(s, w; θ̂) |∆k
i (s, w) = 1, Ti > s,∆k

j (s, w) = 0, Tj > s),
where ∆k

i (s, w) = 1{s < Ti ≤ s + w, δi = k} with δi = k the cause of event ; i and
j are here two subjects for prediction (see Section 5.7.2 of the Supplementary Material
for details on the AUC formulation). Note that both AUC and MSEP estimators were
intrinsically model free as we did not have to deal with censoring.

We considered four scenarios: correct specification of the joint model, misspecifica-
tion of the dependence function, violation of the proportional hazards assumption, and
misspecification of the longitudinal trajectory of the marker. The distribution of the co-
variates and the coefficients used for the generation data in the four cases can be found
in Section 5.7.3 of the Supplementary Material. Under each scenario, prediction models
were compared two by two using boxplots of the differences in the predictive accuracy
measures over the R replicates.

In the main manuscript, we present the results on MSEP and refer to the results on
AUC which are detailed in Supplementary Material. For a given replicate r and a given
landmark time s, only models that converged were considered.
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Figure 5.1 – Evaluation of the estimators in terms of relative bias (a), coverage rates (b)
and mean relative changes of the confidence intervals widths (c). Considered are the marginal
estimator and the conditional estimator from the joint model (denoted JM-marg and JM-cond,
respectively) and the estimator based on the two-stage cause-specific landmark model (denoted
2s-LM-PH).
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Case 1: Correct specification of the joint model

For the well-specified case, data generation and specification of the joint and landmark
models in the estimation and prediction steps were the same as in Section 5.4.1.

Figure 5.2 shows differences of MSEP for 8 pairs of landmark and horizon times (s =
1, 3, 5, 8 and w = 1.5, 3). As expected, the joint model performed better than the landmark
models for all the pairs (s, w). Once again, the conditional estimator of the predicted
probability in the joint model was much worse than its marginal alternative in the earliest
landmark times, but gave similar performances from s = 5.

When considering discriminatory power only with AUC (Figure 5.9 in Supplementary
Material), the joint model still performed better than landmark models, especially the
naive landmark model. However, no difference was highlighted between the conditional
and marginal estimators suggesting a problem of calibration rather than discrimination
for the conditional estimator in the earliest times. It can be noted that the convergence
problems in the model estimations usually arose from insufficient considered information
in landmarking.

Case 2: Misspecification of the dependence function

To investigate a misspecification of the dependence structure, we used the same gen-
erated data as in case 1 but the prediction models neglected the slope of the marker in
the estimation and prediction steps. Yet the latter had a strong impact on the risk of
recurrence.

The distributions over the replicates of the differences of MSEP for all the selected
pairs of landmark and horizon times are depicted in Figure 5.3. Relative to the marginal
estimator from the joint model, the other estimators behave similarly as in case 1. Mainly,
the joint model remained better than the landmark models. However, neglecting the slope
in the dependence structure induced a large increase in the MSEP of the marginal esti-
mator from the joint model which is provided in each graph in Figure 5.3 and Figure 5.2;
for instance, for (s, w) = (1, 3), the MSEP increases from 0.323 to 1.114 when neglecting
the slope in the dependence structure. This underlines the great importance of correctly
specifying the dependence function in these models. The examination of AUC differences
(Figure 5.11 in Supplementary Material) led to the same conclusions, except that the
AUC under case 1 was not systematically better then the one under case 2.

149



150 INDIVIDUAL DYNAMIC PREDICTIONS

w=1.5 w=3

s=
1

−7.5

−5.0

−2.5

0.0

s=
3

−7.5

−5.0

−2.5

0.0

s=
5

−6

−4

−2

0

s=
8

−4

−2

0

MSEP(JM−marg) − 
  MSEP(JM−cond)       

MSEP(JM−marg) − 
  MSEP(Naive−LM−PH)      

MSEP(JM−marg) − 
  MSEP(2s−LM−PH)      

MSEP(JM−marg) − 
  MSEP(2s−LM−PV)

N
†
(0) = 1000

DRec(0,∞) = 249

N
†
(1) = 947

DRec(1, 1.5) = 66

DRec(1, 3) = 123

DRec(1,∞) = 206

N
†
(3) = 699

DRec(3, 1.5) = 52

DRec(3, 3) = 86

DRec(3,∞) = 120

N
†
(5) = 482

DRec(5, 1.5) = 29

DRec(5, 3) = 43

DRec(5,∞) = 54

N
†
(8) = 253

DRec(8, 1.5) = 6

DRec(8, 3) = 9

DRec(8,∞) = 11

ref = 0.142

ref = 0.204

ref = 0.167

ref = 0.126

ref = 0.323

ref = 0.410

ref = 0.332

ref = 0.363

Figure 5.2 – Boxplots of the differences (×1000) of Mean Square Error of Prediction (MSEP)
between the marginal estimator from the joint model (denoted JM-marg) and alternatives in
the case of correct specification of the joint model (case 1). Considered are the conditional
estimator from the joint model (JM-cond), the estimators from cause-specific landmark models
using a two-stage or naive approach (2s-LM-PH and Naive-LM-PH, respectively) and the two-
stage pseudo value model (2s-LM-PV). The distributions are depicted over R = 499, 494, 486, 389
replicates for 4 landmark times s = 1, 3, 5, 8 respectively, with 2 considered horizons w = 1.5
and w = 3. ref denotes the mean MSEP (×1000) using the marginal estimator from the joint
model for each (s, w). N †(s) is the mean number of subjects at risk at s and DRec(s, w) is the
mean number of recurrences occurred between s and s+ w.
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Figure 5.3 – Boxplots of the differences (×1000) of Mean Square Error of Prediction (MSEP)
between the marginal estimator from the joint model (denoted JM-marg) and alternatives in
the case of misspecification of the dependence function (case 2). Considered are the conditional
estimator from the joint model (JM-cond), the estimators from cause-specific landmark models
using a two-stage or naive approach (2s-LM-PH and Naive-LM-PH, respectively) and the two-
stage pseudo value model (2s-LM-PV). The distributions are depicted over R = 499, 498, 497, 428
replicates for 4 landmark times s = 1, 3, 5, 8 respectively, with 2 considered horizons w = 1.5
and w = 3. ref denotes the mean MSEP (×1000) using the marginal estimator from the joint
model for each (s, w). N †(s) is the mean number of subjects at risk at s and DRec(s, w) is the
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INDIVIDUAL DYNAMIC PREDICTIONS

Case 3: Violation of the proportional hazards assumption

The robustness of the models to a violation of the proportional hazard assumption
was checked by considering an interaction with log(1 + t) for the parameters associated
with the marker dynamics in the generation model:

Yi(t) = mi(t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1) t+ εi(t),

λki (t) = λk,0(t) exp
{
γkXi + η1,k log(1 + t)mi(t) + η2,k log(1 + t)δmi(t)

δt

}
.

For all the prediction models, the estimation and prediction steps did not consider this
interaction with log(1 + t).

Boxplots of the differences of MSEP over the replicates are depicted in Figure 5.4.
Even under this strong violation of the PH assumption, the performances of the two-
stage landmark and joint models remained comparable. Furthermore one can note that
the pseudo-value approach was not better than the models based on proportional hazards.
Again, the same conclusions can be drawn from the differences in AUC (Figure 5.12 in
Supplementary Material).

To illustrate the behavior of each model to this misspecification, Figure 5.5a depicts
the time-varying coefficient η1,k ∗ log(1 + t) used in the data generation and the time-
invariant parameters estimated in the joint and two-stage landmark CS PH models for
one random replicate. The landmark model permitted to obtain estimated parameters
closer to the generated one (except for s = 8 because only 8 and 13 subjects experienced
the event between 8 and 8 + w for w = 1.5 and w = 3, respectively) but these estimates
had also large variances because of the considered information which might explain the
non superiority of landmark approaches to this misspecification.

Case 4: Misspecification of the longitudinal trajectory of the marker

The last case explored the performances of the prediction models when the longitudinal
trend of the marker was misspecified. Data were generated using a joint model with a
biphasic shape of the marker:

Yi(t) = mi(t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1) ((1 + t)−1.2 − 1)+

(β2 + β2,XXi + bi2) t+ εi(t),

λki (t) = λk,0(t) exp
{
γkXi + η1,kmi(t) + η2,k

δmi(t)
δt

}
.
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Figure 5.4 – Boxplots of the differences (×1000) of Mean Square Error of Prediction (MSEP)
between the marginal estimator from the joint model (denoted JM-marg) and alternatives in
the case of substantial violation of the PH assumption (case 3). Considered are the conditional
estimator from the joint model (JM-cond), the estimators from cause-specific landmark models
using a two-stage or naive approach (2s-LM-PH and Naive-LM-PH, respectively) and the two-
stage pseudo value model (2s-LM-PV). The distributions are depicted over R = 485, 326, 294, 188
replicates for 4 landmark times s = 1, 3, 5, 8 respectively, with 2 considered horizons w = 1.5
and w = 3. ref denotes the mean MSEP (×1000) using the marginal estimator from the joint
model for each (s, w). N †(s) is the mean number of subjects at risk at s and DRec(s, w) is the
mean number of recurrences occurred between s and s+ w.
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For the estimation of the predicted probabilities of event using joint and two-stage land-
mark models, we considered a linear trajectory over time for the marker. As shown in
Figure 5.5b, the degree of misspecification of the longitudinal marker trend was severe
but it was made on purpose to clearly show the impact of such misspecification.

Figure 5.6 displays the boxplots of differences in MSEP for the 8 pairs (s, w). The land-
mark models performed much better than the joint models for landmark times s = 1, 3, 5;
at landmark time s = 8, performances of joint and landmark models became roughly sim-
ilar. Such result was expected. The joint model incorrectly assumed a linear trajectory
for the marker on the whole follow-up while the landmark model, by considering only the
longitudinal information collected until s, assumed a linear trajectory only until s which
was more realistic at earliest landmark times even if still far from being well specified.
The same conclusions can be drawn from the examination of the AUC differences (Figure
5.10 in Supplementary Material), except that even at the latest landmark time (8 years),
the landmark models remained much more discriminatory than the joint model.

Figure 5.5b illustrates the differences in the predicted current values of the marker used
in the estimated models to predict the risk of recurrence for a an hypothetical subject ?
with b? = 0 and X? = 2.04 in a randomly selected replication. The difference between the
predicted levels of the marker are very different at the earliest landmark times between
the joint and landmark models while they get closer at s = 8. Moreover the joint model
actually uses the predicted current level of the marker rather than the predicted marker
value in s which does not necessarily follows the generated path.

To explore whether such differences were due to the severe misspecification of our
example, we considered a second longitudinal marker trend in Section 5.7.2 of the Supple-
mentary Material. This supplementary case considered a small degree of misspecification
of the longitudinal marker by considering some slight fluctuations with splines in the gen-
eration model compared to the wellspecified case 1. Although slightly misspecified, the
superiority of joint model over landmark approaches previously found in case 1 almost
completely disappeared. This confirmed the high sensitivity to any kind of misspecifica-
tion of the marker trajectory in the joint model.

5.5 Discussion

With the development of personalized medicine, it is important to provide valid and
powerful tools to clinicians for the computation of individual probabilities of specific events
such as landmark conditional cumulative incidences. These predictions are expected to
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Figure 5.6 – Boxplots of the differences (×1000) of Mean Square Error of Prediction (MSEP)
between the marginal estimator from the joint model (denoted JM-marg) and alternatives in the
case of substantial misspecification of the longitudinal marker trajectory (case 4). Considered
are the conditional estimator from the joint model (JM-cond), the estimators from cause-specific
landmark models using a two-stage or naive approach (2s-LM-PH and Naive-LM-PH, respec-
tively) and the two-stage pseudo value model (2s-LM-PV). The distributions are depicted over
R = 500, 496, 476, 357 replicates for 4 landmark times s = 1, 3, 5, 8 respectively, with 2 consid-
ered horizons w = 1.5 and w = 3. ref denotes the mean MSEP (×1000) using the marginal
estimator from the joint model for each (s, w). N †(s) is the mean number of subjects at risk at
s and DRec(s, w) is the mean number of recurrences occurred between s and s+ w.
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be used in clinical practice, notably to adapt individual strategies of treatment or to plan
the patient-specific optimal screening time in clinical trials.

Several authors [Rizopoulos, 2011; Maziarz et al., 2017] already proposed estimators
of the individual landmark conditional cumulative incidence πk?(s, w), but surprisingly
none was formally validated using simulation studies. Our first objective was thus to
formally define the quantity of interest πk?(s, w) and provide estimators (along with 95%
confidence interval) both for the landmarking and the joint modelling approaches and
properly validate them by comparing generated and estimated expressions of πk?(s, w).
The computation of the generated quantity of interest was not obvious because it involved
an integral over the latent structure shared by the longitudinal process and the survival
process, the data being generated from a joint model. Note that in some papers, such
quantity of interest is not correctly defined [Barrett and Su, 2017; Rizopoulos and others,
2017; Sweeting et al., 2016]. The marginal estimator from the joint model obtained very
good performance in general whereas it was showed that the conditional estimator from
the joint model necessitates sufficient individual longitudinal information collected until
the prediction time.

Quantification of the uncertainty around individual predictions is essential for the
decision making in clinical practice. In the landmark approach no solution was ever pro-
posed, and a vagueness prevailed in the joint modelling literature with some definitions
conditional on the observations [Proust-Lima and Taylor, 2009; Taylor et al., 2013; Król
et al., 2016; Maziarz et al., 2017], others taking into account the measurement error of
observations either along with the population parameter uncertainty [Yu et al., 2008;
Rizopoulos, 2011] or without [Desmée and others, 2017], and finally many skipping the
uncertainty issue as in landmarking [Proust-Lima and Taylor, 2009; Sweeting et al., 2016;
Rizopoulos and others, 2017]. We thus introduced two definitions of uncertainty (con-
ditioned or not on the observations) and proposed corresponding Monte Carlo methods
to compute them in a unified manner for joint and landmark models. Compared to the
joint model, the estimator based on the two-stage landmark cause-specific proportional
hazards model confirmed its expected poor efficiency, with wide confidence intervals when
only a few subjects experienced the event in the prediction window. Note that, although
we chose to validate the estimators based on the confidence interval conditioned on the
observations (using the corresponding adequate simulation setting), it would appear more
natural to also account for the error of measurement of the biomarker history when pro-
viding confidence bands for individual follow-up.

157



INDIVIDUAL DYNAMIC PREDICTIONS

Our second objective was to properly compare the landmark models and the joint
model through several cases of well- and mis-specification. Indeed, a series of papers
showed comparisons of prediction models in dynamic predictions [Goldstein et al., 2017;
Huang and others, 2016; Sweeting et al., 2016] but none of them evaluated their robustness
to misspecifications although most proposed methods were parametric. To our knowledge,
only one contribution explored the problem of misspecification of prediction models (only
longitudinal trajectory and functional dependency) very recently in a small simulation
study and concluded to the superiority of joint models approach over landmark models
[Rizopoulos and others, 2017].

In our extensive simulation study, we found that in the case of correctly specified
model, the joint model performed better than the landmark models, as expected. In the
case of misspecification of the dependence structure between the longitudinal process and
the survival process, the difference of performances between approaches did not change as
also concluded by Rizopoulos and others [2017]. But more importantly, the performance
of misspecified models was much worse in terms of prediction error. Regarding the PH
assumption, the two landmark models we proposed better dealt with this assumption
than the joint model: dynamic pseudo-values did not require the PH assumption at
all, and our cause-specific hazards landmark models limited the PH assumption to the
prediction window with an administrative censoring at the end of it. Yet, the impact
of PH assumption violation on the estimators derived from the joint model remained
limited, suggesting that the violation of the PH assumption should be extreme to entail
a tangible impact on the estimated cumulative incidences in the joint model. Finally, we
showed that the correct specification of the marker trajectory was essential to provide
good predictions with joint models (and with landmark models to a much lesser extent).
We demonstrated the major loss of performance of the joint model in a severe case of
misspecification to illustrate the limit but we also found in Supplementary Material that
even a slight misspecification of the trajectory (usually considered as acceptable) impacted
the prediction error of the models mainly, and eliminated for example the gain of using
the joint model over the landmark model at shorter landmark times or when the horizon
time increased. The previous simulation study also suggested this lack of robustness
[Rizopoulos and others, 2017] although not emphasized.

As usual in prediction model development, comparisons were made in terms of both
Mean Square Error of Prediction which measures a trade-off between calibration and dis-
crimination, and Area Under the ROC Curve which only targets discriminatory power.
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With the perspective in mind of providing quantified individual predictions, we mostly
relied on the prediction error to assess both calibration and discrimination even though
most conclusions were also drawn from AUC examinations, yet sometimes to a lesser ex-
tent probably explained by the lesser sensitivity of AUC [Pencina and others, 2008] and
the possibly preserved discriminatory power in the presence of worse calibration.

To conclude with recommendations, we emphasize the need to carefully define the
quantity of interest, its estimator and the type of associated uncertainty. The several cases
of misspecification warned us on the necessity to precisely specify the dependence structure
between the longitudinal marker dynamics and the risk of event. Finally, the specification
of the longitudinal marker trend should be studied with extreme care, especially when
using joint modelling. Researchers should be warned that the use of sophisticated methods
such as the joint models may allow obtaining accurate and efficient estimators only when
they are correctly specified. Otherwise, estimators might be off the mark. Landmark
models seem less sensitive to the misspecification of the longitudinal marker trajectory
but are as sensitive as joint models regarding the dependence structure. In addition,
they provide considerably less efficient estimators and may induce convergence problems,
notably when the landmark time increases and thus the considered information is too
poor.
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5.7 Supplementary material

5.7.1 Complete formulas of the estimators

This section details the formulations of the estimators defined in the main manuscript
from the landmark cause-specific proportional hazards models (Section 5.2.3) and the
joint model (Section 5.2.2). Refer to the main manuscript for the notations. Please
note that all these estimators involve the computation of integrals over time that can be
avoided using product-integrals. Detailed information on this operation can be found in
the supplementary material of Ferrer et al. [2016].

Joint model: marginal estimator

π̂k?(s, w; θ̂) =

∫
Rq

Pr (s < T? ≤ s+ w, δ? = k|X?(s), b?; θ̂)×

f(Y?(s)|X?(s), b?; θ̂) f(b?|s < T? ≤ s+ w, δ? = k,Y?(s),X?(s); θ̂) db?∫
Rq

Pr (T? > s|X?(s), b?; θ̂) f(Y?(s)|X?(s), b?; θ̂) f(b?|T? > s,Y?(s),X?(s); θ̂) db?

=

∫
Rq

[∫ s+w

s
exp

(
−
∑
k

∫ u

0
λ̂ki (ν|X?(ν), b?; θ̂) dν

)
λ̂ki (u|X?(u), b?; θ̂) du

]
×

f(Y?(s)|X?(s), b?; θ̂) f(b?|s < T? ≤ s+ w, δ? = k,Y?(s),X?(s); θ̂) db?

∫
Rq

exp
(
−
∑
k

∫ s

0
λ̂ki (u|X?(u), b?; θ̂) du

)
f(Y?(s)|X?(s), b?; θ̂) f(b?|T? > s,Y?(s),X?(s); θ̂) db?

Joint model: conditional estimator

π̂k?(s, w; θ̂) =
Pr (s < T? ≤ s+ w, δ? = k|X?(s), b̂k?; θ̂) f(Y?(s)|X?(s), b̂k?; θ̂)

Pr (T? > s|X?(s), b̂?; θ̂) f(Y?(s)|X?(s), b̂?; θ̂)

=

[∫ s+w

s
exp

(
−
∑
k

∫ u

0
λ̂k?(ν|X?(ν), b̂k?; θ̂) dν

)
λ̂k?(u|X?(u), b̂k?; θ̂) du

]
f(Y?(s)|X?(s), b̂k?; θ̂)

exp
(
−
∑
k

∫ s

0
λ̂k?(u|X?(u), b̂?; θ̂) du

)
f(Y?(s)|X?(s), b̂?; θ̂)

where b̂? = arg max
b
{log f(T? > s,Y?(s), b|X?(s); θ̂)} and b̂k? = arg max

b
{log f(s < T? ≤

s+ w, δ? = k,Y?(s), b|X?(s); θ̂)}.
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Naive landmark cause-specific proportional hazards model: estimator

π̂k?(s, w; θ̂) = Pr (s < T? ≤ s+ w, δ? = k|T? > s, {XE
k,?; k = 1, . . . , K}, Y?(t?n?(s)); θ̂)

=
∫ s+w

s
exp

(
−
∑
k

∫ u

s
λ̂k?(ν|XE

k,?, Y?(t?n?(s)); θ̂) dν
)
λ̂k?(u|XE

k,?, Y?(t?n?(s)); θ̂) du

Two-stage landmark cause-specific proportional hazards model: estimator

π̂k?(s, w; θ̂) = Pr (s < T? ≤ s+ w, δ? = k|T? > s,X?(s), b̂?; θ̂)

=
∫ s+w

s
exp

(
−
∑
k

∫ u

s
λ̂k?(ν|X?(s), b̂?; θ̂) dν

)
λ̂k?(u|X?(u), b̂?; θ̂) du

where b̂? = E(b?|Y?(s),X?(s); θ̂).

5.7.2 Complementary results for Simulation II: robustness as-
sessment

Supplementary case: Weak misspecification of the longitudinal trajectory of
the marker

This supplementary case aimed to check the performances of our proposed estimators
when the longitudinal trend of the marker was misspecified. In contrast with the extreme
case (case 4) in the main manuscript, we considered here a very slight misspecification of
the longitudinal trajectory.

Data were generated using a joint model with a longitudinal marker evolution charac-
terized by a combination of cubic B-splines functions:

Yi(t) = mi(t) + εi(t)

= (β0 + β0,XXi + bi0) +∑3
l=1 (βl + βl,XXi + bil)Bl(t, 3) + εi(t),

λki (t) = λk,0(t) exp
{
γkXi + η1,kmi(t) + η2,k

δmi(t)
δt

}
.

As shown in the example of individual trajectory depicted in Figure 5.7, this longitudinal
trend slightly differed from the linear evolution assumed in the estimation and prediction
steps. The distribution of the covariates and the coefficients used for the data generation
are detailed in Section 5.7.3 of this Supplementary Material.

Figure 5.8 shows differences of MSEP for 8 pairs of landmark and horizon times
(s = 1, 3, 5, 8 and w = 1.5, 3). The joint marginal and landmark two-stage estimators
were comparable with no significant differences for all the pairs of landmark and horizon
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times, except slightly when w = 1.5 and s = 3 or s = 5. Indeed, considering a linear
evolution in these times of prediction window does not seem to be incorrect, as illustrated
in Figure 5.7. The results confirmed the poor accuracy of the conditional estimator from
the joint model in the earlier landmark times, but this estimator became equivalent to
the marginal estimator when the landmark time increased. Compared to the superiority
of the joint model found in the well-specified case 1, these results confirm the high sensi-
tivity of the estimators from the joint modelling approach to the correct specification of
the longitudinal marker trend.

Assessment of model discrimination: computation of AUCs

When we are interested in the predictive accuracy of a model, a popular measure to
check its performances in terms of discrimination is the area under the ROC curve, called
AUC. We considered the AUC definition adapted to the competing risks setting [Blanche
and others, 2015]:

AUCk
r(s, w) = Pr (π̂ki,r(s, w; θ̂) > π̂kj,r(s, w; θ̂) |∆k

i (s, w) = 1, Ti > s,∆k
j (s, w) = 0, Tj > s)

where ∆k
i (s, w) = 1{s < Ti ≤ s + w, δi = k} with δi = k the cause of event ; i and j two

subjects for prediction. Thus, for any subject i at risk at s, ∆k
i (s, w) = 1 when subject

i experiences the event of cause k within the time interval (s, s + w], and ∆k
i (s, w) = 0

when either he experiences the competing event between s and s + w or is event-free at
s+ w.

Because this was a simulation study, the indicator of event ∆k
i (s, w) was known and

the estimator could directly be expressed as

ÂUC
k

r(s, w) =

Nnew(0)∑
i=1

Nnew(0)∑
j=1

1{Ti > s}1{Tj > s}1{π̂ki,r(s, w; θ̂) > π̂kj,r(s, w; θ̂)}∆k
i (s, w)(1−∆k

j (s, w))
N∑
i=1

N∑
j=1

1{Ti > s}1{Tj > s}∆k
i (s, w)(1−∆k

j (s, w))
.

Figures 5.9, 5.10, 5.11, 5.12 and 5.13 depict respectively the AUCs for the cases where
the joint model is correctly specified (case 1), the dependence function is misspecified (case
2), the proportional hazards assumption is violated (case 3), the longitudinal trend of the
marker is severely misspecified (case 4) or slightly misspecified (case 4.bis). Overall, these
results were comparable to those obtained in terms of mean squared errors. The joint
model discriminated lightly better than the two-stage landmark models when the joint
model was well specified (Figure 5.9) or when the dependence function was misspecified
(Figure 5.10), whereas in the case of strong violation of the PH assumption, these models
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Figure 5.7 – Illustrative example of the model behavior on a randomly selected replicate for
misspecified case 4.bis, with a slight nonlinear marker trajectory considered in the generation
data for a mean subject ? with b? = 0 and X? = 2.04. Are also represented the current
values of the marker actually predicted in the estimation models (denoted m̂∗(JM) for the joint
model and m̂∗(LM) for the two-stage landmark models) which are based for the joint model on
b̂?,(JM) = arg max

b
f(b|T? > s,Y?(s),X?(s); θ̂) in the denominator of the conditional estimator

definition and b̂Rec.
?,(JM) = arg max

b
f(b|T? > s, δ? = Rec.,Y?(s),X?(s); θ̂) in the numerator (see

formula in Section 1.2 of the Supplementary Material), and for the two-stage landmark models
on b̂?,(LM) = E(b?|Y?(s),X?(s); θ̂).
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Figure 5.8 – Boxplots of the differences (×1000) of Mean Square Error of Prediction (MSEP)
between the marginal estimator from the joint model (denoted JM-marg) and alternatives in the
case of weak misspecification of the longitudinal marker trajectory (case 4.bis). Considered are
the conditional estimator from the joint model (JM-cond), the estimators from cause-specific
landmark models using a two-stage or naive approach (2s-LM-PH and Naive-LM-PH, respec-
tively) and the two-stage pseudo value model (2s-LM-PV). The distributions are depicted over
R = 499, 497, 479, 439 replicates for 4 landmark times s = 1, 3, 5, 8 respectively, with 2 consid-
ered horizons w = 1.5 and w = 3. ref denotes the mean MSEP (×1000) using the marginal
estimator from the joint model for each (s, w). N †(s) is the mean number of subjects at risk at
s and DRec(s, w) is the mean number of recurrences occurred between s and s+ w.
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were comparable (Figure 5.11). In the case of a misspecification of the longitudinal marker
trajectory, the two-stage landmark models discriminated noticeably better than the joint
model when this misspecification was strong (Figure 5.12), but the discrimination abilities
of the models were comparable in case of weak misspecification (Figure 5.13).

5.7.3 Simulation data generation

Model of data generation in the Cases 1 and 2

Data were generated according to the joint model:

Yi(t) = mi(t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1) t+ εi(t),

λki (t) = λk,0(t) exp
{
γkXi + η1,kmi(t) + η2,k

δmi(t)
δt

}
,

where k is the cause of event (Recurrence ; Death), bi = (bi0, bi1)> ∼ N (0, D) with D =0.582 0.032
0.032 0.061

 and εi(t) ∼ N (0, σ2) with σ = 0.268. The other coefficients were β0 =

−1.087, β0,X = 0.465, β1 = −0.066, β1,X = 0.110, γRec = 0.064, γDeath = 0.208, η1,Rec =
0.707, η1,Death = 0.023, η2,Rec = 2.140, η2,Death = −0.462, and log(λk,0(t)) was a combina-
tion of cubic B-splines with the same knot vector (3 × 10−5, 6.579, 15.874)> for all the
events and the vector of spline coefficients (−4.003,−4.107,−4.031,−8.806,−3.643)> for
the recurrence and (−5.401,−3.484, −3.810,−1.171,−1.263)> for the death. The times
of measurements were tij =

j∑
l=0

ail with ai0 = 0, ail = 0.4 + uil with uil ∼ U(−0.15, 0.15)
for l ∈ {1, 2, 3}, ail = 0.6 + uil with uil ∼ U(−0.2, 0.2) for l ∈ {4, 5, 6, 7}, ail = 1 + uil

with uil ∼ U(−0.35, 0.35) for l ∈ {8, 9, 10}, ail = 2 + uil with uil ∼ U(−0.6, 0.6) for
l ∈ {11, 12}, and ail = 3.5 + uil with uil ∼ U(−1, 1) for l ∈ {13, 14, 15, 16}. The covariate
Xi corresponded to the PSA level before treatment initiation in the motivating data, and
was thus generated following a normal distribution with mean 2.041 and variance 0.503.
The censoring time was generated from a uniform distribution on [1, 15].

Model of data generation in the Case 3

Data were generated according to the joint model:

Yi(t) = mi(t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1) t+ εi(t),

λki (t) = λk,0(t) exp
{
γkXi + η1,k ∗ log(1 + t)mi(t) + η2,k ∗ log(1 + t)δmi(t)

δt

}
,
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Figure 5.9 – Boxplots of the differences of Area Under ROC Curve (AUC) between the marginal
estimator from the joint model (denoted JM-marg) and alternatives in the case of correct spec-
ification of the joint model (case 1). Considered are the conditional estimator from the joint
model (JM-cond), the estimators from cause-specific landmark models using a two-stage or naive
approach (2s-LM-PH and Naive-LM-PH, respectively) and the two-stage pseudo value model
(2s-LM-PV). The distributions are depicted over R = 499, 494, 486, 389 replicates for 4 land-
mark times s = 1, 3, 5, 8 respectively, with 2 considered horizons w = 1.5 and w = 3. ref denotes
the mean AUC using the marginal estimator from the joint model for each (s, w). N †(s) is the
mean number of subjects at risk at s and DRec(s, w) is the mean number of recurrences occurred
between s and s+ w.
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Figure 5.10 – Boxplots of the differences of Area Under ROC Curve (AUC) between the marginal
estimator from the joint model (denoted JM-marg) and alternatives in the case of misspecifi-
cation of the dependence function (case 2). Considered are the conditional estimator from the
joint model (JM-cond), the estimators from cause-specific landmark models using a two-stage
or naive approach (2s-LM-PH and Naive-LM-PH, respectively) and the two-stage pseudo value
model (2s-LM-PV). The distributions are depicted over R = 499, 498, 497, 428 replicates for 4
landmark times s = 1, 3, 5, 8 respectively, with 2 considered horizons w = 1.5 and w = 3. ref
denotes the mean AUC using the marginal estimator from the joint model for each (s, w). N †(s)
is the mean number of subjects at risk at s and DRec(s, w) is the mean number of recurrences
occurred between s and s+ w.



5.7. SUPPLEMENTARY MATERIAL 171

w=1.5 w=3

s=
1

−0.02

−0.01

0.00

0.01

0.02

0.03

s=
3

−0.02

0.00

0.02

0.04

s=
5

−0.02

0.00

0.02

0.04

s=
8

−0.02

0.00

0.02

0.04

AUC(JM−marg) −       
  AUC(JM−cond)      

AUC(JM−marg) −       
  AUC(Naive−LM−PH)      

AUC(JM−marg) −       
  AUC(2s−LM−PH)      

AUC(JM−marg) − 
  AUC(2s−LM−PV)

N
†
(0) = 1000

DRec(0,∞) = 352

N
†
(1) = 965

DRec(1, 1.5) = 76

DRec(1, 3) = 183

DRec(1,∞) = 327

N
†
(3) = 689

DRec(3, 1.5) = 101

DRec(3, 3) = 162

DRec(3,∞) = 215

N
†
(5) = 422

DRec(5, 1.5) = 48

DRec(5, 3) = 71

DRec(5,∞) = 86

N
†
(8) = 199

DRec(8, 1.5) = 9

DRec(8, 3) = 14

DRec(8,∞) = 17

ref = 0.769

ref = 0.892

ref = 0.879

ref = 0.940

ref = 0.730

ref = 0.881

ref = 0.870

ref = 0.919

Figure 5.11 – Boxplots of the differences of Area Under ROC Curve (AUC) between the marginal
estimator from the joint model (denoted JM-marg) and alternatives in the case of substantial
violation of the PH assumption (case 3). Considered are the conditional estimator from the
joint model (JM-cond), the estimators from cause-specific landmark models using a two-stage
or naive approach (2s-LM-PH and Naive-LM-PH, respectively) and the two-stage pseudo value
model (2s-LM-PV). The distributions are depicted over R = 485, 326, 294, 188 replicates for 4
landmark times s = 1, 3, 5, 8 respectively, with 2 considered horizons w = 1.5 and w = 3. ref
denotes the mean AUC using the marginal estimator from the joint model for each (s, w). N †(s)
is the mean number of subjects at risk at s and DRec(s, w) is the mean number of recurrences
occurred between s and s+ w.
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Figure 5.12 – Boxplots of the differences of Area Under ROC Curve (AUC) between the marginal
estimator from the joint model (denoted JM-marg) and alternatives in the case of substantial
misspecification of the longitudinal marker trajectory (case 4). Considered are the conditional
estimator from the joint model (JM-cond), the estimators from cause-specific landmark models
using a two-stage or naive approach (2s-LM-PH and Naive-LM-PH, respectively) and the two-
stage pseudo value model (2s-LM-PV). The distributions are depicted over R = 500, 496, 476, 357
replicates for 4 landmark times s = 1, 3, 5, 8 respectively, with 2 considered horizons w = 1.5 and
w = 3. ref denotes the mean AUC using the marginal estimator from the joint model for each
(s, w). N †(s) is the mean number of subjects at risk at s and DRec(s, w) is the mean number of
recurrences occurred between s and s+ w.
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Figure 5.13 – Boxplots of the differences of Area Under ROC Curve (AUC) between the marginal
estimator from the joint model (denoted JM-marg) and alternatives in the case of weak mis-
specification of the longitudinal marker trajectory (case 4.bis). Considered are the conditional
estimator from the joint model (JM-cond), the estimators from cause-specific landmark models
using a two-stage or naive approach (2s-LM-PH and Naive-LM-PH, respectively) and the two-
stage pseudo value model (2s-LM-PV). The distributions are depicted over R = 499, 497, 479, 439
replicates for 4 landmark times s = 1, 3, 5, 8 respectively, with 2 considered horizons w = 1.5 and
w = 3. ref denotes the mean AUC using the marginal estimator from the joint model for each
(s, w). N †(s) is the mean number of subjects at risk at s and DRec(s, w) is the mean number of
recurrences occurred between s and s+ w.
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with the same covariates, random effects and parameters than in the Cases 1 and 2.

Model of data generation in the Case 4

Data were generated according to the joint model:


Yi(t) = mi(t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1) ((1 + t)−1.2 − 1)+

(β2 + β2,XXi + bi2) t+ εi(t),

λki (t) = λk,0(t) exp
{
γkXi + η1,kmi(t) + η2,k

δmi(t)
δt

}
,

where k is the cause of event (Recurrence ; Death), bi = (bi0, bi1, bi2)> ∼ N (0, D) withD =
0.363 0.011 0.345
0.011 0.172 0.310
0.345 0.310 1.746

 and εi(t) ∼ N (0, σ2) with σ = 0.273. The other coefficients were

β0 = −0.255, β0,X = 0.799, β1 = 0.949, β1,X = 0.904, β2 = −0.088, β2,X = 0.207, γRec =
0.064, γDeath = 0.208, η1,Rec = 0.707, η1,Death = 0.023, η2,Rec = 2.140, η2,Death = −0.462,
and log(λk,0(t)) was a combination of cubic B-splines with the same knot vector (3 ×
10−5, 6.579, 15.874)> for all the events and the vector of spline coefficients (−4.003,−4.107,
−4.031,−8.806,−3.643)> for the recurrence and (−5.401,−3.484,−3.810,−1.171,−1.263)>

for the death. The times of measurements were tij =
j∑
l=0

ail with ai0 = 0, ail = 0.4 + uil

with uil ∼ U(−0.15, 0.15) for l ∈ {1, 2, 3}, ail = 0.6 + uil with uil ∼ U(−0.2, 0.2) for
l ∈ {4, 5, 6, 7}, ail = 1 + uil with uil ∼ U(−0.35, 0.35) for l ∈ {8, 9, 10}, ail = 2 + uil

with uil ∼ U(−0.6, 0.6) for l ∈ {11, 12}, and ail = 3.5 + uil with uil ∼ U(−1, 1) for
l ∈ {13, 14, 15, 16}. The covariate Xi was generated following a normal distribution with
mean 2.041 and variance 0.503. The censoring time was generated from a uniform distri-
bution on [1, 15].

Model of data generation in the Case 4.bis

Data were generated according to the joint model:


Yi(t) = mi(t) + εi(t)

= (β0 + β0,XXi + bi0) +∑3
l=1 (βl + βl,XXi + bil)Bl(t, 3) + εi(t),

λki (t) = λk,0(t) exp
{
γkXi + η1,kmi(t) + η2,k

δmi(t)
δt

}
,
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where k is the cause of event (Recurrence ; Death), bi = (bi0, bi1, bi2, bi3)> ∼ N (0, D) with

D =


0.536 0.084 0.012 −0.275
0.084 4.487 4.186 2.005
0.012 4.186 6.442 3.966
−0.275 2.005 3.966 3.968

 and εi(t) ∼ N (0, σ2) with σ = 0.223. Bl(t, 3) is

the lth row of the cubic B-spline basis matrix defined with two internal knots placed at
t = 2 and t = 7 and boundary knots at t = 0 and t = 15. The other coefficients were
β0 = −1.003, β0,X = 0.452, β1 = −0.337, β1,X = 0.790, β2 = −0.687, β2,X = 1.201, β3 =
−0.033, β3,X = 0.692, γRec = 0.500, γDeath = 0.150, η1,Rec = 0.918, η1,Death = 0.068, η2,Rec =
1.566, η2,Death = −0.761 and, log(λk,0(t)) was a combination of cubic B-splines with the
same knot vector (3×10−5, 15.874)> for all the events and the vector of spline coefficients
(−3.931,−3.827,−7.564,−4.569)> for the recurrence and (−4.549,−2.386,−2.585,−0.209)>

for the death. The times of measurements were tij =
j∑
l=0

ail with ai0 = 0, ail = 0.4 + uil

with uil ∼ U(−0.15, 0.15) for l ∈ {1, 2, 3}, ail = 0.6 + uil with uil ∼ U(−0.2, 0.2) for
l ∈ {4, 5, 6, 7}, ail = 1 + uil with uil ∼ U(−0.35, 0.35) for l ∈ {8, 9, 10}, ail = 2 + uil

with uil ∼ U(−0.6, 0.6) for l ∈ {11, 12}, and ail = 3.5 + uil with uil ∼ U(−1, 1) for
l ∈ {13, 14, 15, 16}. The covariate Xi was generated following a normal distribution with
mean 2.041 and variance 0.503. The censoring time was generated from a uniform distri-
bution on [1, 15].

5.7.4 Computational time of the procedures

The several prediction models presented in this manuscript notably differ by the con-
sidered observed information and the complexity of the computational procedures. Table
5.1 compares the computational times of these procedures to compute individual dynamic
predictions for a randomly chosen subject, based on a randomly selected replication. This
example was taken from the case 1 of the manuscript, which notably considered two com-
peting events (Recurrence, Death), a linear evolution of the marker with two individual
random effects, and 1000 subjects included in the learning sample at baseline. For the joint
model, 9 quadrature points were used according to the pseudo-adaptive Gauss-Hermite
(GH) technique in the learning step, whereas 9 quadrature points using the adaptive
GH technique were used in the validation step. Based on the techniques defined in the
manuscript, L = 1000 samples of parameters were used to compute the confidence inter-
vals using each approaches. The computing times were obtained on a single CPU of a PC
with an Intel i7 processor, 3.40 GHz and 32Go of RAM memory. The R code used for
this example can be found at https://github.com/LoicFerrer/.
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Table 5.1 – Computation time (in seconds) for each step of the procedures to compute
individual cumulative incidences of two competing events in the case of correct specifi-
cation of the joint model (case 1). Considered are the marginal and conditional estima-
tors from the joint model (denoted JM-marg and JM-cond, respectively), the estimators
from cause-specific landmark models using a two-stage or naive approach (2s-LM-PH and
Naive-LM-PH, respectively) and the two-stage pseudo-value model (2s-LM-PV). Based
on a randomly selected replication, the predictions were computed for a randomly chosen
subject ? for 2 landmark times s = 1 and s = 5 and one considered horizon w = 3.

Estimation of the Computation of Computation of the
model {π̂k

?(s, w; θ̂)}k confidence intervals

(s, w) = (1, 3) (5, 3) (1, 3) (5, 3) (1, 3) (5, 3)
JM-marg 461.329 1.308 1.293 1253.320 1271.876
JM-cond 461.329 0.541 0.525 497.445 523.508
Naive-LM-PH 0.009 0.007 0.018 0.014 172.033 54.724
2s-LM-PH 0.873 0.118 0.022 0.018 538.849 261.779
2s-LM-PV 1.275 0.187 0.004 0.004 1.397 1.428

As expected, the estimation of the joint model was considerably longer than the esti-
mation of the landmark models, notably because the joint likelihood involved an integral
over the two individual random effects. Nevertheless the joint model required only one
model estimation to predict the individual cumulative incidences at any pair of landmark
and horizon times (s, w), whereas the landmark model based on pseudo-values needed one
estimation for each s, and one estimation for each (s, w) was required for the landmark
cause-specific proportional hazards model. For the same reasons, the number of sub-
jects at risk and then the computation times of the estimation of the landmark models
decreased when the landmark time s increased. Note that the estimation of the naive
landmark CS PH model was very fast because the model was only adjusted using the last
observation carried forward (LOCF) method.

The computation of the individual cumulative incidences of events and their associated
confidence intervals was much longer using the marginal estimator from the joint model
than others due to the integral over the individual random effects which was involved
in the estimator’s definition. Indeed, the conditional estimator from the joint model
that approximates the integral by considering the modes of the posterior conditional
distributions of the random effects was 2.5 times faster to compute than the marginal
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estimator. For the landmark approaches, the computation of the estimator from the
landmark pseudo-value model was faster than the computation of the estimator from
the cause-specific landmark model because the former directly modelled the quantity
of interest and then its expression did not include integral over time. The confidence
intervals were substantially faster to compute using the landmark pseudo-value model
than others because in addition to the direct modelling, the technique of the former only
involved bootstrapped parameters whereas in the landmark CS PH models a perturbation
resampling technique was also applied.

5.7.5 Example of R code

The individual dynamic predictions can be computed in clinical practice using R codes.
Please see the detailed examples available at https://github.com/LoicFerrer/. The
functions which implement the estimators defined in the manuscript (the marginal and
conditional estimators from the joint model, the naive and two-stage estimators from the
cause-specific proportional hazards landmark model and the naive and two-stage estima-
tors from the landmark model based on pseudo-values) and their associated confidence
intervals are also included. Simulated data are provided.

Here is given the script used in Section 5.4.1 of the main manuscript to compute the
individual cumulative incidences of event for two landmark times s = 1, s = 5 and a given
horizon w = 3, in subjects at risk at s. Data were retrieved from a randomly selected
replication. Two types of event were considered (Recurrence, Death), the longitudinal
evolution of the marker was linear, the same covariate, called X in the code below,
impacted the longitudinal and survival processes, and the dependency between these two
processes was explained through the true current level and the true current slope of the
marker.

# Import two lists which contain the learning data and the validation data,
# at https://github.com/LoicFerrer/
load("data.RData")
ls()
# [1] "data_learn" "data_valid"

str(data_learn)
# List of 2
# $ surv:’data.frame’: 1000 obs. of 6 variables:
# (...)
# $ long:’data.frame’: 8319 obs. of 4 variables:
# (...)
str(data_valid)
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# List of 3
# $ surv :’data.frame’: 500 obs. of 6 variables:
# (...)
# $ long :’data.frame’: 4886 obs. of 4 variables:
# (...)
# $ trueT: num [1:500] 11.04 7.67 12.82 ..

head(data_learn$surv, 3)
# id X time_of_Death Death time_of_Rec Rec
# 1 1 2.227805 2.106636 0 2.106636 0
# 2 2 1.452869 3.501039 0 3.501039 0
# 3 3 1.004715 2.991233 0 2.991233 1

head(data_learn$long, 3)
# id Y times X
# 1 1 0.6411969 0.0000000 2.227805
# 2 1 0.8455285 0.3296526 2.227805
# 3 1 1.2596015 0.6912898 2.227805

###############################
#### Using the joint model ####
###############################

# Load the ’JM’ package to fit joint models with shared random effects
library(JM)
# Source the required functions to compute individual cumulative incidences of event.
# The file notably includes the functions ’JMCR.crLong’ and ’survfitJMCR’
source("survfitJMCR.R")

# Adaptation of the learning survival database to the competing risks framework
data_learn$surv$Event <- "Alive"
data_learn$surv$Event[data_learn$surv$Death == 1] <- "Death"
data_learn$surv$Event[data_learn$surv$Rec == 1] <- "Rec"
data_learn$surv$time_of_Event <- pmin(data_learn$surv$time_of_Rec,

data_learn$surv$time_of_Death)
data_learn$CR <- JMCR.crLong(data = data_learn$surv,

statusVar = "Event",
censLevel = "Alive")

head(data_learn$CR, 6)
# id X time_of_Death Death time_of_Rec Rec Event time_of_Event strata status2
# 1 1 2.227805 2.106636 0 2.106636 0 Alive 2.106636 Rec 0
# 1.1 1 2.227805 2.106636 0 2.106636 0 Alive 2.106636 Death 0
# 2 2 1.452869 3.501039 0 3.501039 0 Alive 3.501039 Rec 0
# 2.1 2 1.452869 3.501039 0 3.501039 0 Alive 3.501039 Death 0
# 3 3 1.004715 2.991233 0 2.991233 1 Rec 2.991233 Rec 1
# 3.1 3 1.004715 2.991233 0 2.991233 1 Rec 2.991233 Death 0

# Adaptation of the validation survival database to the competing risks framework
data_valid$surv$Event <- "Alive"
data_valid$surv$Event[data_valid$surv$Death == 1] <- "Death"
data_valid$surv$Event[data_valid$surv$Rec == 1] <- "Rec"
data_valid$surv$time_of_Event <- pmin(data_valid$surv$time_of_Rec,

data_valid$surv$time_of_Death)
# WARNING: use the JMCR.crLong function by specifying the ’levels’ argument as follows.
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# The ’strata’ argument in the survival validation database has imperatively
# to be organized in the same order as its levels.
data_valid$CR <- JMCR.crLong(data = data_valid$surv,

statusVar = "Event",
censLevel = "Alive",
levels = levels(data_learn$CR$strata)) ## Warning

head(data_valid$CR, 6)
# id X time_of_Death Death time_of_Rec Rec Event time_of_Event strata status2
# 1 1 1.476506 5.714061 0 5.714061 0 Alive 5.714061 Death 0
# 1.1 1 1.476506 5.714061 0 5.714061 0 Alive 5.714061 Rec 0
# 2 2 1.797706 7.673092 0 7.673092 1 Rec 7.673092 Death 0
# 2.1 2 1.797706 7.673092 0 7.673092 1 Rec 7.673092 Rec 1
# 3 3 3.262949 9.419707 0 9.419707 0 Alive 9.419707 Death 0
# 3.1 3 3.262949 9.419707 0 9.419707 0 Alive 9.419707 Rec 0

## Learning step

# Estimation of the longitudinal sub-model (independent of the survival sub-model)
lmeFit <- lme(fixed = Y ~ times * X,

data = data_learn$long,
random = ~ times | id)

# Estimation of the survival sub-model (independent of the longitudinal sub-model)
coxFit <- coxph(formula = Surv(time_of_Event, status2) ~ X:strata(strata) + strata(strata),

data = data_learn$CR,
model = TRUE, x = TRUE)

# Definition of the marker’s slope included in the joint model
dForm <- list(fixed = ~ 1 + X,

indFixed = c(2, 4),
random = ~ 1,
indRandom = 2)

# Estimation of the joint model
jointFit <- jointModel(lmeFit,

coxFit,
timeVar = "times",
parameterization = "both",
method = "spline-PH-aGH",
interFact = list(value = ~ strata(strata) - 1,

slope = ~ strata(strata) - 1,
data = data_learn$CR),

derivForm = dForm,
control = list(GHk = 9, lng.in.kn = 1),
CompRisk = TRUE,
verbose = TRUE)

## Computation of the predicted individual cumulative incidences of events
## with 95% confidence intervals based on 1000 Monte Carlo samples

# ID at risk at the landmark times s=1 and s=5
Ri1 <- data_valid$surv$id[which(data_valid$trueT > 1)]
Ri5 <- data_valid$surv$id[which(data_valid$trueT > 5)]

# Longitudinal database and survival database with subjects at risk at s=1
data_valid.s1 <- NULL
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data_valid.s1$long <- data_valid$long[data_valid$long$times <= 1 &
data_valid$long$id %in% Ri1, ]

data_valid.s1$CR <- data_valid$CR[data_valid$CR$id %in% Ri1, ]
# Longitudinal database and survival database with subjects at risk at s=5
data_valid.s5 <- NULL
data_valid.s5$long <- data_valid$long[data_valid$long$times <= 5 &

data_valid$long$id %in% Ri5, ]
data_valid.s5$CR <- data_valid$CR[data_valid$CR$id %in% Ri5, ]

## Marginal estimator

# s=1, w=3
P1_3.JMmarg <- survfitJMCR(object = jointFit,

newData.long = data_valid.s1$long,
newData.surv = data_valid.s1$CR,
idVar = "id",
formT = ~ X:strata(strata),
tLM = rep(1, length(Ri1)),
thor = 3,
estimator = "marg",
simulate = T,
M = 1000,
CI.levels = c(0.025, 0.975))

P1_3.JMmarg
# Estimator definition: marginal to the individual random effects
#
#
# Predicted individual cumulative incidences of events
#
# $Death
# tLM thor Value
# ID 1 1 3 0.07514737
# ID 2 1 3 0.07108905
# ID 3 1 3 0.07597429
# (...)
#
# $Rec
# tLM thor Value
# ID 1 1 3 0.1301004
# ID 2 1 3 0.1050290
# ID 3 1 3 0.1726383
# (...)
#
#
# Predicted individual cumulative incidences of events
# based on 1000 Monte Carlo samples
#
# $Death
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 1 3 0.07655855 0.07595813 0.05954908 0.09866198
# ID 2 1 3 0.07224854 0.07149081 0.05704207 0.09044535
# ID 3 1 3 0.07769421 0.07656262 0.05441197 0.10801782
# (...)
#
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# $Rec
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 1 3 0.1313873 0.1307075 0.10596253 0.1623071
# ID 2 1 3 0.1062217 0.1054323 0.08620265 0.1299271
# ID 3 1 3 0.1741073 0.1724545 0.12964078 0.2298147
# (...)

# s=5, w=3
P5_3.JMmarg <- survfitJMCR(object = jointFit,

newData.long = data_valid.s5$long,
newData.surv = data_valid.s5$CR,
idVar = "id",
formT = ~ X:strata(strata),
tLM = rep(5, length(Ri5)),
thor = 3,
estimator = "marg",
simulate = T,
M = 1000,
CI.levels = c(0.025, 0.975))

P5_3.JMmarg
# Estimator definition: marginal to the individual random effects
#
#
# Predicted individual cumulative incidences of events
#
# $Death
# tLM thor Value
# ID 1 5 3 0.1721675
# ID 2 5 3 0.1259304
# ID 3 5 3 0.1871697
# (...)
#
# $Rec
# tLM thor Value
# ID 1 5 3 0.01770684
# ID 2 5 3 0.24186527
# ID 3 5 3 0.03426441
# (...)
#
#
# Predicted individual cumulative incidences of events
# based on 1000 Monte Carlo samples
#
# $Death
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 5 3 0.1729590 0.1724336 0.13513284 0.2145668
# ID 2 5 3 0.1266225 0.1250114 0.09317579 0.1667234
# ID 3 5 3 0.1885321 0.1861479 0.13515246 0.2491214
# (...)
#
# $Rec
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 5 3 0.01817897 0.01785144 0.01166856 0.02671285
# ID 2 5 3 0.24515436 0.24351905 0.19302590 0.30336436
# ID 3 5 3 0.03545071 0.03463930 0.02166277 0.05431355

181



INDIVIDUAL DYNAMIC PREDICTIONS

# (...)

## Conditional estimator

# s=1, w=3
P1_3.JMcond <- survfitJMCR(object = jointFit,

newData.long = data_valid.s1$long,
newData.surv = data_valid.s1$CR,
idVar = "id",
formT = ~ X:strata(strata),
tLM = rep(1, length(Ri1)),
thor = 3,
estimator = "cond",
simulate = T,
M = 1000,
CI.levels = c(0.025, 0.975))

P1_3.JMcond
# Estimator definition: conditional to the MAP of the individual random effects
#
#
# Predicted individual cumulative incidences of events
#
# $Death
# tLM thor Value
# ID 1 1 3 0.07798428
# ID 2 1 3 0.07307276
# ID 3 1 3 0.07953390
# (...)
#
# $Rec
# tLM thor Value
# ID 1 1 3 0.1828431
# ID 2 1 3 0.1413761
# ID 3 1 3 0.2416013
# (...)
#
#
# Predicted individual cumulative incidences of events
# based on 1000 Monte Carlo samples
#
# $Death
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 1 3 0.07932089 0.07874783 0.06098413 0.10237902
# ID 2 1 3 0.07400522 0.07340157 0.05831713 0.09174712
# ID 3 1 3 0.08134418 0.07953099 0.05647367 0.11628135
# (...)
#
# $Rec
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 1 3 0.1845178 0.1838128 0.1477782 0.2278376
# ID 2 1 3 0.1424508 0.1410770 0.1094119 0.1815720
# ID 3 1 3 0.2432991 0.2410676 0.1678992 0.3242795
# (...)
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# s=5, w=3
P5_3.JMcond <- survfitJMCR(object = jointFit,

newData.long = data_valid.s5$long,
newData.surv = data_valid.s5$CR,
idVar = "id",
formT = ~ X:strata(strata),
tLM = rep(5, length(Ri5)),
thor = 3,
estimator = "cond",
simulate = T,
M = 1000,
CI.levels = c(0.025, 0.975))

P5_3.JMcond
# Estimator definition: conditional to the MAP of the individual random effects
#
#
# Predicted individual cumulative incidences of events
#
# $Death
# tLM thor Value
# ID 1 5 3 0.1723353
# ID 2 5 3 0.1273586
# ID 3 5 3 0.1875795
# (...)
#
# $Rec
# tLM thor Value
# ID 1 5 3 0.01851501
# ID 2 5 3 0.24754646
# ID 3 5 3 0.03640618
# (...)
#
#
# Predicted individual cumulative incidences of events
# based on 1000 Monte Carlo samples
#
# $Death
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 5 3 0.1735219 0.1719451 0.13600771 0.2207591
# ID 2 5 3 0.1280152 0.1269849 0.09377241 0.1677724
# ID 3 5 3 0.1883834 0.1868395 0.13490875 0.2547082
# (...)
#
# $Rec
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 5 3 0.01902124 0.01876318 0.01242588 0.02763914
# ID 2 5 3 0.24939821 0.24869838 0.19645549 0.31078529
# ID 3 5 3 0.03744895 0.03642236 0.02331171 0.05648034
# (...)
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###################################################
#### Using the two-stage landmark CS PH model ####
###################################################

# Load the ’nlme’ and ’mstate’ packages to fit the model
library(nlme)
library(mstate)
# Source the required functions to compute individual cumulative incidences of event
# The file notably includes the function ’CumInc’
source("survfitLMCR.R")

survfitLMCR <- function(tLM, thor, simulate = T, M = 1000, CI.levels = c(0.025, 0.975)) {
# tLM: landmark time
# thor: horizon window
tpred <- tLM + thor

## Learning step ##

# ID at risk at the landmark time
Ri <- data_learn$surv[which(data_learn$surv$time_of_Rec > tLM), "id"]
nLM <- length(Ri)
# One considers all data collected before the landmark time point for subjects still at risk
LMlong <- data_learn$long[data_learn$long$times < tLM & data_learn$long$id %in% Ri, ]
LMsurv <- data_learn$surv[data_learn$surv$id %in% Ri, ]

# Estimation of the linear mixed model
lmeFit <- lme(fixed = Y ~ times*X,

data = LMlong,
random = ~ times| id)

# BLUPs and parameters
b <- ranef(lmeFit)
sigma <- lmeFit$sigma
D <- lapply(pdMatrix(lmeFit$modelStruct$reStruct), "*", sigma^2)[[1]]
betas <- fixef(lmeFit)

# Predicted level and slope of the marker at the landmark time
Data.s <- data.frame(id = unique(LMlong$id),

times = tLM,
X = LMlong[!duplicated(LMlong$id), "X"])

Xlong.s <- model.matrix( ~ times*X, Data.s)
Z.s <- model.matrix( ~ times, Data.s)
LMsurv$level <- as.vector(c(Xlong.s %*% betas) + rowSums(Z.s * b))
Xlong_deriv.s <- model.matrix( ~ X, Data.s)
Zderiv.s <- model.matrix( ~ 1, Data.s)
LMsurv$slope <- as.vector(c(Xlong_deriv.s %*% betas[c(2, 4)]) +

rowSums(Zderiv.s * b[ , 2, drop = FALSE]))

# Administrative censoring at the end of the prediction window
LMsurv$tRecAC <- pmin(LMsurv$time_of_Rec, tpred)
LMsurv$RecAC <- LMsurv$Rec
LMsurv$RecAC[LMsurv$time_of_Rec > tpred] <- 0
LMsurv$tDeathAC <- pmin(LMsurv$time_of_Death, tpred)
LMsurv$DeathAC <- LMsurv$Death
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LMsurv$DeathAC[LMsurv$time_of_Death > tpred] <- 0

# Estimation of the Cox model (Recurrence)
coxFit1 <- coxph(Surv(tRecAC, RecAC) ~ X + level + slope, data = LMsurv)
# Estimation of the Cox model (Death)
coxFit2 <- coxph(Surv(tDeathAC, DeathAC) ~ X + level + slope, data = LMsurv)

## Computation of the predicted individual cumulative incidences of events

# Subjects at risk at tLM
Ri_pred <- data_valid$surv$id[which(data_valid$trueT > tLM)]
nLM_pred <- length(Ri_pred)

# Computation of the predicted individual risk scores
LMsurv_pred <- data_valid$surv[Ri_pred, ]
LMlong_pred <- data_valid$long[data_valid$long$times < tLM & data_valid$long$id %in% Ri_pred, ]
Xlong_pred <- split(data.frame(model.matrix( ~ times*X, LMlong_pred)),

LMlong_pred$id)
Z_pred <- split(data.frame(model.matrix( ~ times, LMlong_pred)),

LMlong_pred$id)
Y_pred <- split(LMlong_pred$Y, LMlong_pred$id)
V_pred <- lapply(Z_pred, function(x){

as.matrix(x) %*% D %*% t(as.matrix(x)) + diag(sigma^2, nrow(as.matrix(x)))})
b_pred <- lapply(seq_len(length(Xlong_pred)),

function(i, x, y, z, v) {
D %*% t(as.matrix(z[[i]])) %*%

solve(v[[i]]) %*% (y[[i]] - as.matrix(x[[i]]) %*% fixef(lmeFit))},
x = Xlong_pred, y = Y_pred, z = Z_pred, v = V_pred)

b_pred <- matrix(unlist(b_pred), ncol = 2, , byrow = T)
Data_pred.s <- data.frame(id = unique(LMlong_pred$id),

times = tLM,
X = LMlong_pred[!duplicated(LMlong_pred$id), "X"])

Xlong_pred.s <- model.matrix( ~ times*X, Data_pred.s)
Z_pred.s <- model.matrix( ~ times, Data_pred.s)
LMsurv_pred$level <- as.vector(c(Xlong_pred.s %*% betas) + rowSums(Z_pred.s * b_pred))
Xlong_deriv_pred.s <- model.matrix( ~ X, Data_pred.s)
Zderiv_pred.s <- model.matrix( ~ 1, Data_pred.s)
LMsurv_pred$slope <- as.vector(c(Xlong_deriv_pred.s %*% betas[c(2, 4)]) +

rowSums(Zderiv_pred.s * b_pred[ , 2, drop = FALSE]))
Xsurv_pred <- model.matrix( ~ 0 + X + level + slope, LMsurv_pred)
HR1 <- as.numeric(exp(Xsurv_pred %*% coxFit1$coef))
HR2 <- as.numeric(exp(Xsurv_pred %*% coxFit2$coef))

# Baseline hazards estimates
bh1 <- basehaz(coxFit1, centered = FALSE)
bh2 <- basehaz(coxFit2, centered = FALSE)

# Reasonably quick function that converts cause-specific hazards to cumulative
# incidence functions and extracts value at horizon
toci <- function(bh1, bh2, HR1, HR2, tpred)
{

h1 <- bh1
names(h1)[1] <- "Haz"
h1$Haz <- h1$Haz * HR1
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h1$cause <- 1
h2 <- bh2
names(h2)[1] <- "Haz"
h2$Haz <- h2$Haz * HR2
h2$cause <- 2
Haz <- rbind(h1, h2)
CI <- CumInc(Haz)
idx <- sum(CI$time <= tpred)
return(CI[idx, ])

}

# Individual cumulative incidences
ci <- matrix(NA, nLM_pred, 2)
for (i in 1:nLM_pred) {

ci[i, ] <- as.numeric(toci(bh1, bh2, HR1[i], HR2[i], tpred))[2:3]
}

if (simulate){
## Computation of the predicted 95% confidence intervals based on M Monte Carlo samples
ci.MC <- replicate(M, matrix( , nrow = nLM_pred, ncol = 2), simplify = FALSE)

# Time-to-event data
t <- matrix(coxFit1$y, ncol = 2)[,1]
Delta1 <- matrix(coxFit1$y, ncol = 2)[,2]
Delta2 <- matrix(coxFit2$y, ncol = 2)[,2]

# Parametric boostrap
aV <- lmeFit$apVar
Pars <- attr(aV, "Pars")
varFix <- lmeFit$varFix
nbetas <- length(betas)
nP <- length(Pars)
mat <- matrix(0, nbetas + nP, nbetas + nP)
mat[seq_len(nbetas), seq_len(nbetas)] <- varFix
mat[nbetas + seq_len(nP), nbetas + seq_len(nP)] <- aV
coef_coxFit1.MC <- mvrnorm(M,

mu = coxFit1$coef,
Sigma = coxFit1$var)

coef_coxFit2.MC <- mvrnorm(M,
mu = coxFit2$coef,
Sigma = coxFit2$var)

coef_long.MC <- mvrnorm(M, c(betas, Pars), Sigma = mat)

for(l in seq_len(M)){
betas.MC <- coef_long.MC[l, seq_len(nbetas)]
sigma.MC <- exp(coef_long.MC[l, nbetas + nP])
lmeSt <- lmeFit$modelStruct
lmeSt$reStruct[[1]] <- pdNatural(lmeSt$reStruct[[1]])
coef(lmeSt) <- coef_long.MC[l, -c(seq_len(nbetas), nbetas + nP)]
Pars_D.MC <- coef(lmeSt, unconstrained = FALSE)
D.MC <- matrix(c(Pars_D.MC[1], rep(Pars_D.MC[3], 2), Pars_D.MC[2]), 2, 2)
diag(D.MC) <- diag(D.MC)^2
D.MC[upper.tri(D.MC, diag = FALSE)] <-

D.MC[lower.tri(D.MC, diag = FALSE)] <-
Reduce(’*’, Pars_D.MC)
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# Computation of the actualized marker’s dynamics in the learning sample
Xlong <- split(data.frame(model.matrix( ~ times*X, LMlong)), LMlong$id)
Z <- split(data.frame(model.matrix( ~ times, LMlong)), LMlong$id)
Y <- split(LMlong$Y, LMlong$id)
V.MC <- lapply(Z, function(x){

as.matrix(x) %*% D.MC %*% t(as.matrix(x)) + diag(sigma.MC^2, nrow(as.matrix(x)))})
b.MC <- lapply(seq_len(length(Xlong)),

function(i, x, y, z, v) {
D.MC %*% t(as.matrix(z[[i]])) %*%

solve(v[[i]]) %*% (y[[i]] - as.matrix(x[[i]]) %*% betas.MC)},
x = Xlong, y = Y, z = Z, v = V.MC)

b.MC <- matrix(unlist(b.MC), ncol = 2, , byrow = T)
LMsurv.MC <- LMsurv
LMsurv.MC$level.MC <- as.vector(c(Xlong.s %*% betas.MC) + rowSums(Z.s * b.MC))
LMsurv.MC$slope.MC <- as.vector(c(Xlong_deriv.s %*% betas.MC[c(2, 4)]) +

rowSums(Zderiv.s * b.MC[ , 2, drop = FALSE]))
Xsurv.MC <- model.matrix( ~ 0 + X + level + slope, LMsurv.MC)

# Computation of the actualized individual risk scores in the validation sample
V_pred.MC <- lapply(Z_pred, function(x){

as.matrix(x) %*% D.MC %*% t(as.matrix(x)) + diag(sigma.MC^2, nrow(as.matrix(x)))})
b_pred.MC <- lapply(seq_len(length(Xlong_pred)),

function(i, x, y, z, v) {
D.MC %*% t(as.matrix(z[[i]])) %*%

solve(v[[i]]) %*% (y[[i]] - as.matrix(x[[i]]) %*% betas.MC)},
x = Xlong_pred, y = Y_pred, z = Z_pred, v = V_pred.MC)

b_pred.MC <- matrix(unlist(b_pred.MC), ncol = 2, , byrow = T)
LMsurv_pred.MC <- LMsurv_pred
LMsurv_pred.MC$level_pred.MC <-

as.vector(c(Xlong_pred.s %*% betas.MC) +
rowSums(Z_pred.s * b_pred.MC))

LMsurv_pred.MC$slope_pred.MC <-
as.vector(c(Xlong_deriv_pred.s %*% betas.MC[c(2, 4)]) +

rowSums(Zderiv_pred.s * b_pred.MC[ , 2, drop = FALSE]))
Xsurv_pred.MC <- model.matrix( ~ 0 + X + level + slope, LMsurv_pred.MC)
HR1.MC <- as.numeric(exp(Xsurv_pred.MC %*% coef_coxFit1.MC[l,]))
HR2.MC <- as.numeric(exp(Xsurv_pred.MC %*% coef_coxFit2.MC[l,]))

# Perturbation-resampling
set.seed(l)
nu_event <- 4 * rbeta(nLM, 1/2, 3/2)
haz1.MCPR <- haz2.MCPR <- N1.PR <- N2.PR <- NULL
for(i in 1:nLM){

haz1.MCPR[i] <- mean(nu_event * as.numeric(t >= t[i]) *
exp(c(Xsurv.MC %*% coef_coxFit1.MC[l,])))

haz2.MCPR[i] <- mean(nu_event * as.numeric(t >= t[i]) *
exp(c(Xsurv.MC %*% coef_coxFit2.MC[l,])))

N1.PR[i] <- mean(nu_event * as.numeric(t <= t[i]) * Delta1)
N2.PR[i] <- mean(nu_event * as.numeric(t <= t[i]) * Delta2)

}
Haz1.MCPR <- data.frame(hazard = cumsum(diff(c(0,N1.PR[order(t)])) /

haz1.MCPR[order(t)]),
time = t[order(t)])

Haz2.MCPR <- data.frame(hazard = cumsum(diff(c(0,N2.PR[order(t)])) /
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haz2.MCPR[order(t)]),
time = t[order(t)])

# Cumulative incidences after parametric bootstrap and perturbation-resampling
for(i in 1:nLM_pred){

ci.MC[[l]][i,] <- as.numeric(toci(Haz1.MCPR, Haz2.MCPR, HR1.MC[i], HR2.MC[i], tpred))[2:3]
}

cat(paste("Monte Carlo sample: ", l, "/", M, sep = ""), "\n")
}
res.MC <- replicate(2, matrix( , nrow = nLM_pred, ncol = 6), simplify = F)
for(k in 1:2) {

for (i in seq_len(nLM_pred)) {
res.MC[[k]][i,] <- c(tLM,

thor,
mean(sapply(ci.MC, function(x) x[,k])[i,]),
median(sapply(ci.MC, function(x) x[,k])[i,]),
quantile(sapply(ci.MC, function(x) x[,k])[i,], probs = CI.levels[1]),
quantile(sapply(ci.MC, function(x) x[,k])[i,], probs = CI.levels[2]))

}
colnames(res.MC[[k]]) <- c("tLM", "thor", "Mean", "Median",

paste("Lower", " (", CI.levels[1] * 100, "%)", sep = ""),
paste("Upper", " (", CI.levels[2] * 100, "%)", sep = ""))

rownames(res.MC[[k]]) <- sapply(Ri_pred, function(x) paste("ID", x))
}
res <- replicate(2, matrix( , nrow = nLM_pred, ncol = 3), simplify = F)
for(k in 1:2) {

for (i in seq_len(nLM_pred)) {
res[[k]][i,] <- c(tLM, thor, ci[i,k])

}
colnames(res[[k]]) <- c("tLM", "thor", "Value")
rownames(res[[k]]) <- sapply(Ri_pred, function(x) paste("ID", x))

}
names(res) <- names(res.MC) <- c("Rec", "Death")

}
result <- {

if (simulate)
list(res = res, res.MC = res.MC, simulate = simulate, M = M)

else list(res = res, simulate = simulate, M = M)
}
rm(list = ".Random.seed", envir = globalenv())
class(result) <- "survfitLMCR"
return(result)

}

# s=1, w=3
P1_3.2sLMPH <- survfitLMCR(tLM = 1,

thor = 3,
simulate = T,
M = 1000,
CI.levels = c(0.025, 0.975))

P1_3.2sLMPH
# Predicted individual cumulative incidences of events
#
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# $Rec
# tLM thor Value
# ID 1 1 3 0.11472941
# ID 2 1 3 0.09965338
# ID 3 1 3 0.16704735
# (...)
#
# $Death
# tLM thor Value
# ID 1 1 3 0.07755851
# ID 2 1 3 0.08732394
# ID 3 1 3 0.08023811
# (...)
#
#
# Predicted individual cumulative incidences of events
# based on 1000 Monte Carlo samples
#
# $Rec
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 1 3 0.11332436 0.1118789 0.08164853 0.1488563
# ID 2 1 3 0.09858466 0.0980073 0.07424215 0.1257947
# ID 3 1 3 0.16982380 0.1674375 0.10726483 0.2540990
# (...)
#
# $Death
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 1 3 0.07734816 0.07608985 0.04895068 0.1098262
# ID 2 1 3 0.08598385 0.08609996 0.06279178 0.1119255
# ID 3 1 3 0.08069485 0.07685824 0.04198228 0.1380541
# (...)

# s=5, w=3
P5_3.2sLMPH <- survfitLMCR(tLM = 5,

thor = 3,
simulate = T,
M = 1000,
CI.levels = c(0.025, 0.975))

P5_3.2sLMPH
# Predicted individual cumulative incidences of events
#
# $Rec
# tLM thor Value
# ID 1 5 3 0.01891257
# ID 2 5 3 0.27924131
# ID 3 5 3 0.03760378
# (...)
#
# $Death
# tLM thor Value
# ID 1 5 3 0.2004973
# ID 2 5 3 0.1405373
# ID 3 5 3 0.1595905
# (...)
#
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#
# Predicted individual cumulative incidences of events
# based on 1000 Monte Carlo samples
#
# $Rec
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 5 3 0.02050010 0.01884418 0.007745837 0.04296857
# ID 2 5 3 0.27184453 0.26945235 0.175979514 0.36897579
# ID 3 5 3 0.03948784 0.03655589 0.015824254 0.08138946
# (...)
#
# $Death
# tLM thor Mean Median Lower (2.5%) Upper (97.5%)
# ID 1 5 3 0.1997381 0.1993476 0.13303412 0.2732692
# ID 2 5 3 0.1409608 0.1388352 0.08532541 0.2102408
# ID 3 5 3 0.1598849 0.1558159 0.08413382 0.2657962
# (...)
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6 Reflection on the joint modelling
of ordinal longitudinal data and time-
to-event data

In the literature, joint models have been mainly developed to study a Gaussian longi-
tudinal marker and event history data. Yet many clinical applications concern the use of
non-continuous ordinal marker with informative drop-out, such as the repeated measure-
ments of Health Related Quality of Life questionnaires until the occurrence of a clinical
event in cancer trials. Some joint models for ordinal outcomes and event history data
have been proposed. However, no associated software has been developed so far to anal-
yse this kind of data. In this chapter, we introduce a new joint model with shared random
effects for a longitudinal marker with ordinal values and time-to-event data. The model is
estimated in the maximum likelihood framework. Based on the developments of Arnold
[2009] and Barrett et al. [2015], the event timescale is discretised and a closed-form of the
integral over the random effects in the likelihood is found, contrary to the classic inference
in joint models with shared random effects which requires numerical approximations of
this integral. This work extends the spectrum of the analysis of longitudinal and time-
to-event correlated data while proposing a new inference technique which should allow
reliable, fast and efficient results. The present chapter introduces only the context and the
methodology as this work is still in progress. A simulation study is planned to investigate
the performances of the estimation program, and a R package will be probably developed
with nice functionalities for a large dissemination.
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6.1 Introduction

During my PhD thesis, I carried out a consultancy mission at MAPI Lyon (statistical
consulting company for health applications) which aimed to check a secondary endpoint
in a phase III clinical trial. The focus was on the post-treatment evolution of quality of
life in subjects treated for a specific cancer. To answer to this question, clinicians collected
repeated measurements of Health-Related Quality of Life (HRQoL) data over patient’s
follow-up from the end of treatment until the disease progression or death from any cause
(or lost of follow-up). HRQoL data were collected using standard questionnaires such
as the EORTC QLQ-C30 questionnaire, which evaluates quality of life in patients with
cancer of any type [Aaronson et al., 1993; Osoba et al., 1994], or other questionnaires
more specific to the studied disease.

In these questionnaires, subjects respond to several close-ended questions/items, scores
are then built from these responses to quantify non-measurable concepts of quality of life
such as the subject’s perception of its treatment. In practice, these scores are built with a
linear interpretation of their possible values, but they are discrete and most of them only
consider a few modalities. Thus these discontinuous scores should be treated as ordinal
markers measured longitudinally, with possibly informative drop-out.

Based on this experience, we decided to explore another key point in the joint modelling
which concerns the distribution of the studied longitudinal marker [Henderson et al.,
2000; Tsiatis and Davidian, 2004]. Indeed, the choice of the longitudinal submodel must
imperatively be guided by the marker’s nature.

In the recent years, joint models implementation has been well addressed with the
emergence of multiple software [Rizopoulos, 2010; Philipson et al., 2012; Crowther et al.,
2013] which greatly helped the dissemination of the technique to the applied research
community and its usage in practice. But most of these software focus on a longitudinal
Gaussian marker. More recently, Rizopoulos [2016] developed a R package for fitting
joint models for longitudinal and survival data using Markov chain Monte Carlo (MCMC)
techniques, which enhances various choices of distributions for the longitudinal marker.
But the software still does not manage any ordinal longitudinal markers. Yet, joint
models for a longitudinal ordinal response variable have been introduced in the literature
[Li et al., 2010; Proust-Lima et al., 2016]. But to our knowledge, no software was ever
made available to estimate them.

We thus decided to fill this gap and propose a new joint model with shared random
effects for the repeated measurements of an ordinal longitudinal marker and time-to-event
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data, and its associated software. However, a well-known complexity in joint models
with shared random effects is the hard computational inference. Indeed the likelihood
involves an integral over the individual random effects which has no closed form, and
thus requires numerical integration algorithms such as Gaussian quadratures. Although
powerful developments have been proposed in other software, as for example the use of
pseudo-adaptive Gauss-Hermite quadratures [Rizopoulos, 2012a], an accurate estimation
of the model parameters may remain costly demanding in practice, and the choices in
both the correlation structures of the longitudinal data, and the association structures
between longitudinal and survival data, are then restricted.

To circumvent the problem, Barrett et al. [2015] proposed an ingenious trick which
consists to discretise the timescale of the event process and replace the commonly used
proportional hazards model by a sequential probit model [Albert and Chib, 2001]. Using
the results of Arnold [2009] on skew-normal distributions, a likelihood expression was
found as freed of any integral over the random effects. Thus, the model allowed the
inclusion of complex variance-covariance structure for the data, such as Gaussian auto-
regressive processes or Brownian motions. The use of complex structure of association
between the longitudinal and survival processes was also possible.

We chose to extend this technique for studying a longitudinal marker which is ordinal.
Using a cumulative probit mixed model for the marker data and a sequential probit model
for the discretised version of the time-to-event data, an exact expression of the likelihood
is found.

The rest of the Chapter is as follows. We first introduce the joint model for an ordinal
longitudinal marker and time-to-event data in Section 6.2. Details on the formulation of
the likelihood, which is freed of any integral over the individual random effects, are also
given. As mentioned earlier, the work is still in progress and for instance, the simulation
study is not finalized. So the Chapter ends with a discussion on the expected results and
the provision for the statistical and clinical communities of such a model, in Section 6.3.

6.2 Methods

6.2.1 Notations

For each subject i ∈ {1, . . . , N}, we observe repeated measurements of an ordinal
longitudinal marker until the occurrence of an event.

In classical survival analysis, the event timescale is assumed to be continuous: we
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observe the event time T ∗i = min(Ti, Ci) with Ti the true event time and Ci the right
censoring time. The indicator of event is denoted δi = 1{T ∗i ≤ Ci}, and equals 1 if the
subject experienced the event, 0 if he was censored. In this work we consider instead a
discrete time variable Si which denotes the time interval in which T ∗i occurred. The dis-
crete event timescale decomposes the continuous event timescale into S+1 time intervals.
Let us denote ls and us the lower and upper bounds, respectively, of each time interval
s ∈ {1, . . . , S+1}, with ls = us−1 for s > 2. The Sth first intervals are finite and discretise
the observed event timescale, with the lower bound of the first time interval such that
l1 = 0, and the upper bound of the Sth time interval greater than the last observed time
in all subjects, i.e. uS > maxi(T ∗i ). Finally the (S + 1)th interval does not contain any
observed event time, and uS+1 = +∞. In the following, the discrete timescale for the ob-
served events is denoted S = {1, . . . , S}, i.e. ∀i ∈ {1, . . . , N}, Si ∈ S. We also introduce
t̃(s) = (ls + us)/2 as the midpoint of the time interval s, s ∈ S.

By contrast, the timescale for the longitudinal marker measurements is considered as
continuous. We denote Yi = (Yi(ti1), . . . , Yi(tini

))> the vector of the ni collected mea-
surements for subject i, with Yi(tij) the marker’s observation at time tij and tini

≤ T ∗i .
Without loss of generality, we consider that the longitudinal ordinal marker Yi is with pos-
sible values in the finite state space K = {0, 1, . . . , K}, where K denotes the maximum
possible value for Yi.

6.2.2 Joint model

We propose a joint model with shared random effects which is decomposed into two
submodels: a cumulative probit mixed model for the repeated measurements of the ordinal
longitudinal marker, and a sequential probit model for the discretised time-to-event data;
both linked using a function of the individual shared random effects.

Cumulative probit mixed submodel

For the ordinal longitudinal data, we define a cumulative probit mixed submodel which
explains the probability that the marker observation be lower or equal to a given value
according to covariates at any time t (see Chapter 2 for more details):

Pr(Yi(t) ≤ k|bi) = Φ
(
αk+1 −XL

i (t)>β − Zi(t)>bi
)

(6.1)

for k ∈ {K−{K}}, where XL
i (t) and Zi(t) denote p-vector and q-vector of (possibly time-

dependent) covariates, respectively associated with the fixed effects β and the individual
random effects bi, bi ∼ N (0, G) with G a general covariance structure. The ordered
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thresholds (αk)k∈{K,K+1} are unknown parameters, except α0 = −∞ et αK+1 = +∞.
Finally, the function Φ(.) is the cumulative distribution function (CDF) of the standard
normal distribution.

To ensure model’s identifiability, two parameter constraints are required. The formu-
lation (6.1) implies that the measurement error terms of the underlying Gaussian marker
are independent and with unit variance. Another location constraint can be added by
considering for instance that the fixed intercept is null, or by constraining a threshold
parameter such as α1 = 0.

Sequential probit submodel

For the survival part, after discretisation of the event time, we are interested in the
probability that the subject had the event in time interval r ∈ S given that he did not
experience the event in previous intervals.

Here the idea is to consider S Gaussian latent variables {ξi,r; r = 1, . . . , S} which are
associated to the observed event time Si such that [Albert and Chib, 2001]:

Si =



1 if ξi,1 ≤ 0
2 if ξi,1 > 0, ξi2 ≤ 0
... ...
S if ξi,1 > 0, . . . , ξi,(S−1) > 0, ξi,S ≤ 0
S + 1 if ξi,1 > 0, . . . , ξi,S > 0.

For identifiability purpose, we fix the variance of ξi,r as equal to 1. By considering that
the expectation of ξi,r is explained by covariates and random effects such that E(ξi,r) =
XE >
i,r γr + η>r Wi,rbi, we obtain the following sequential probit model:

Pr(Si = r|Si ≥ r, bi) = 1− Φ
(
XE >
i,r γr + η>r Wi,rbi

)
(6.2)

for r ∈ S and Pr(Si = S + 1|Si ≥ S) = 1. XE
i,r is a p̃-vector of (possibly time-varying)

covariates associated with the vector of (possibly time varying) parameters γr. For ease
of calculations, we define Wi,rbi rather than Wi(bi, r) as in the previous chapters, where
Wi,rbi is a (possibly time varying) q̃-vector which depicts the nature of the dependency
between the dynamics of the longitudinal marker and the conditional probability of event.
It is associated with the vector of (possibly time varying) parameters ηr.

Examples of model specification

As widely developed in Barrett et al. [2015], the model’s specification allows various
types of random effects structures and association functions. This part is inspired from
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this article.

For example, a simple specification considers a linear trajectory of the marker over
time with random intercept and slope, i.e. Zi(t) = (1, t)>, and the random deviations

bi = (bi,0, bi,1)> are with variance-covariance matrix GIS =
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

, where ρ, σ1

and σ2 are unknown parameters. In that case, several choices of association structure
may be chosen, such as simply the individual deviations (Wi,rbi = (bi,0, bi,1)>) or their
interaction with time functions (Wi,rbi = (bi,0, bi,1t∗(r))>).

In their proposal as in Henderson et al. [2000], Barrett et al. [2015] also considered
Gaussian processes which take into account a temporal correlation in the data, such as
the continuous auto-regressive process (AR1) or the Brownian motion (BM). In that case,
a discretised version of the Gaussian process is considered so that bi = (bi1, . . . , biS)> with
variance matrix GGP which includes the elements GGP

l,m = σ2
w exp(−ρ|t̃(l) − t̃(m)|) in the

case of AR1, or GGP
l,m = σ2

w min(t̃(l), t̃(m)) in the case of BM, both for l,m ∈ S; with
σ2
w and ρ two unknown parameters to estimate. All the measures collected into the time

interval r share the same bir. Then, at time r ∈ S, the dependence function can take the
form Wi,rbi = bi,r.

One may also choose more complex specifications for the random effects, such as
combinations of the ones defined above, with for example inclusion of both the individual
deviations and stochastic deviations for a Gaussian centred process. The random effects

bi are now a vector of size S + 2 with variance matrix GIS,GP =
GIS 0

0 GGP

, and the

dependence function can be chosen as Wi,rbi = (bi,0, bi,1, bi,r)>.

In all these examples, note that the associated coefficients ηr may be considered as
specific to each time interval r or constant over time intervals.

6.2.3 Estimation

The model is estimated by maximizing the likelihood L(θ) where θ is the complete set
of unknown parameters.

Initial expression of the likelihood

The longitudinal and survival processes are independent conditionally to the random
effects. The likelihood is expressed as the product of the individual contributions over the
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subjects:

L(θ) =
N∏
i=1

Li(Yi, Si, δi; θ)

=
N∏
i=1

∫
Rq
fY (Yi|bi; θ) fE(Si, δi|bi; θ) fb(bi; θ)dbi (6.3)

where f(.) denotes a probability density function.
The conditional density of the longitudinal ordinal outcome is

fY (Yi|bi; θ) = Φ(ni)(ζ1,i −XL
i β − Zibi, ζ2,i −XL

i β − Zibi; 0, σ2Ini
) (6.4)

where XL
i is a (ni, p) matrix with row vectors XL

i (tij)> for j = 1, . . . , ni and Zi is a (ni, q)
matrix with row vectors Zi(tij)> for j = 1, . . . , ni. ζ1,i and ζ2,i are ni-vectors, both with
elements in {αm;m = 0, . . . ,M}. Finally, Φ(d)(a, b; 0,Σ) is the cumulative distribution
function of a multivariate Gaussian distribution of dimension d, truncated at a, computed
at b, with null mean and variance Σ.
The conditional density of the discretised time-to-event outcome is

fE(Si, δi|bi; θ) =
Si−1∏
r=1

Φ
(
XE >
i,r γr + η>r Wi,rbi

)
×

[
Φ
(
XE >
i,Si

γSi
+ η>Si

Wi,Si
bi
)]1−δi ×

[
1− Φ

(
XE >
i,Si

γSi
+ η>Si

Wi,Si
bi
)]δi

. (6.5)

Finally, the density of the Gaussian random effects is the probability density function of
a Gaussian distribution with dimension q, null mean, and variance G, denoted:

fb(bi; θ) = φ(q)(bi; 0, G). (6.6)

Arnold’s formula

The likelihood (6.3) involves a q-integral over the individual random effects bi. To
avoid the use of numerical integration techniques, the trick is to use a relation about the
skew-normal distributions which is defined in Arnold [2009]:

∫
Φ(m)(ν1 + Ωb∗, ν2 + Ωb∗; 0, V )φ(q)(b∗; 0, Iq)db∗ = Φ(m)(ν1, ν2; 0, V + ΩΩ>) (6.7)

where ν1 and ν2 are m-vectors, b∗ is a q-vector, Ω is a (m, q) matrix, and V is a (m,m)
matrix.
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Final expression of the likelihood

To use the Arnold’s formula, we first rescale the random effects as b∗i = G−1/2bi ∼
N (0, Iq). Then the density of the random effects becomes

fb(b∗i ; θ) = φ(q)(b∗i ; 0, Iq)

and the conditional density of the longitudinal outcomes (6.4) is now expressed as

fY (Yi|b∗i ; θ) = Φ(ni)(νL1,i + ΩL
i b
∗
i , ν

L
2,i + ΩL

i b
∗
i ; 0, σ2Ini

)

with νL1,i = ζ1,i −XL
i β, νL2,i = ζ2,i −XL

i β and ΩL
i = −ZiG1/2.

Afterwards we rewrite the conditional density of the survival outcomes (6.5) as

fE(Si, δi|b∗i ; θ) =

δi × Φ(Si−1)
(
ν1,i,{1:(Si−1)} + Ωi,{1:(Si−1)}b

∗
i , ν2,i,{1:(Si−1)} + Ωi,{1:(Si−1)}b

∗
i ; 0, ISi−1

)
+

(−1)δi × Φ(Si)
(
ν1,i,{1:Si} + Ωi,{1:Si}b

∗
i , ν2,i,{1:Si} + Ωi,{1:Si}b

∗
i ; 0, ISi

)
with νE1,i,{1:Si} the column vector of size Si whose elements are all equal to negative infinity,
and ΩE

i,{1:Si} the (Si, q̃) matrix which stacks the row vectors ΩE
i,r = η>r Wi,rG

1/2 for r =
1, . . . , Si. Finally, νE2,i,{1:Si} denotes a Si-vector with stacked elements νE2,i,r = XE >

i,r γr, for
r = 1, . . . , Si.

By combining the two conditional densities, we obtain a unique Gaussian CDF:

fY (Yi|b∗i ; θ)fE(Si, δi|b∗i ; θ) =

δi × Φ(ni+Si−1)


 νL1,i + ΩL

i b
∗
i

νE1,i,{1:(Si−1)} + ΩE
i,{1:(Si−1)}b

∗
i

 ,
 νL2,i + ΩL

i b
∗
i

νE2,i,{1:(Si−1)} + ΩE
i,{1:(Si−1)}b

∗
i

 ;

0,
σ2Ini

0
0 ISi−1

 +

(−1)δi × Φ(ni+Si)


 νL1,i + ΩL

i b
∗
i

νE1,i,{1:Si} + ΩE
i,{1:Si}b

∗
i

 ,
 νL2,i + ΩL

i b
∗
i

νE2,i,{1:Si} + ΩE
i,{1:Si}b

∗
i

 ;

0,
σ2Ini

0
0 ISi

 .
Finally, by applying Arnold’s formula, the likelihood can be expressed as

L(θ) =
N∏
i=1

[
δi × Φ(ni+Si−1)

{
ν∗1,i,{1:(ni+Si−1)}, ν

∗
2,i,{1:(ni+Si−1)}; 0, V ∗i,{1:(ni+Si−1)}

}
+

(−1)δi × Φ(ni+Si)
{
ν∗1,i,{1:(ni+Si)}, ν

∗
2,i,{1:(ni+Si)}; 0, V ∗i,{1:(ni+Si)}

}]
(6.8)
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where ν∗1,i,{1:(ni+Si)} =
(
νL >1,i , νE >1,i,{1:Si}

)>
is a vector of size (ni + Si),

ν∗2,i,{1:(ni+Si)} =
(
νL >2,i , νE >2,i,{1:Si}

)>
, is a vector of size (ni + Si), and finally V ∗i,{1:(ni+Si)} =σ2Ini

0
0 ISi

+
 ΩL

i

ΩE
i,{1:Si}

 ΩL
i

ΩE
i,{1:Si}

> is a matrix of size (ni + Si, ni + Si).

Thus the likelihood is finally found as free of any integral over the individual random
effects. However, it involves the computation of two cumulative density functions of trun-
cated Gaussian distributions which is not straightforward neither but for which accurate
approximations based on numerical integration algorithms exist as explained below.

6.2.4 Implementation

The estimation program of the joint model has been implemented in R but is still not
formally validated. Model parameters θ are estimated by maximizing the log term of the
likelihood (6.8) using a Marquardt optimisation algorithm [Marquardt, 1963] implemented
in the R package marqLevAlg.

The likelihood requires the computation of cumulative distribution functions of trun-
cated multivariate Gaussian distributions. In practice, such quantities must be approxi-
mated using numerical integration algorithms whose accuracy degree increases with com-
putational time. After investigations, we used the R package mnormt when the dimension
of the Gaussian CDF was less than 20 and the R package mvtnorm otherwise.

To initialize the optimisation algorithm, both submodels are estimated separately. The
cumulative probit mixed model is estimated with the same exact likelihood inference which
ignores the time-to-event information, while the estimation of the sequential probit model
is estimated by ignoring the dependence structure (the vector of association parameters
is fixed as null: ηr = 0, ∀r ∈ S).

The perspective is to include this estimation program into a R package. Nice func-
tionalities are already allowed, with notably the inclusion of complex association struc-
tures between the longitudinal and survival processes, such as auto-regressive processes
or Brownian motions.

6.3 Discussion

Because of the absence of adapted and efficient software, clinicians and statisticians
often rely on inappropriate methods to analyse ordinal longitudinal data and time-to-
event data, when both are correlated. For example, Ediebah et al. [2015] proposed a joint
model for longitudinal HRQoL data and survival data, by focusing on appetite loss score
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which involved four possible ordered modalities. But authors did not take into account
the ordinal nature of this marker, and only used a joint model adapted for a Gaussian
longitudinal marker.

In this sense, we developed and implemented a new joint model with shared random
effects for repeated measurements of an ordinal longitudinal marker and time-to-event
data which are both correlated. We circumvented the usual inference problems in such
models using the results of Arnold [2009] on skew-normal distributions. Based on the
papers of Barrett et al. [2015] and Barrett and Su [2017], we defined the event process
in discrete time. An exact likelihood -freed of any integral over the individual random
effects- was finally found. The model thus allows more complex correlation structures
between longitudinal data and association structure between longitudinal and survival
data, than the ones usually used. Indeed, it enables for example the inclusion of auto-
regressive processes while the classical inference technique (which involves an integral over
individual random effects in the likelihood) usually restricts the number of random effects
to 2 or 3 in practice.

The likelihood involves however the computation of cumulative probability distribu-
tions of multivariate skew normal distributions, which may be accurately approximated by
much more efficient algorithms [Genz, 1992] than for the usual integral over the random
effects. However, such algorithms usually handle the computation of cumulative proba-
bility distributions with dimensions less than 20. Above, accuracy might be altered. We
initiated a simulation study to investigate the performances of our estimation program
with different scenarii of study design. But it was too preliminary to show the results in
the present chapter.

Once validated, this methodology will probably find many applications in the analysis
of quality of life data in cancer, but also beyond with the rise of subjective data including
quality of life or psychometrics in epidemiological research. This is the reason why we
want to provide a user-friendly R package.
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7 Discussion

This thesis introduced statistical developments concerning two kinds of data currently
encountered in longitudinal health studies: repeated marker data and event history data.
Many techniques exist in the literature to handle these types of data when they are consid-
ered separately, with effective and famous software for most of them. When longitudinal
and time-to-event data are correlated, which is frequent in health studies, statistical meth-
ods based on joint modelling techniques also exist and some software routines start to
be deployed. However, some open issues still arise from the complexity of some disease
studies. I addressed some of them in this thesis in the case of cancer progression study.

7.1 Joint multi-state modelling

In the thesis, I was particularly interested in the progression of subjects with a local-
ized prostate cancer who were monitored from the end of their treatment using repeated
measures of the prostate specific antigen (PSA). These patients can experience -possibly
successively- several types of clinical recurrences (loco-regional or distant) and death.
They can also receive an additional treatment which was unplanned at baseline, but asso-
ciated with the disease evolution. In the data I had access to, the patients were initially
treated by radiation therapy and might initiate an hormonal therapy at any time.

In order to model the disease in its whole, a proper solution was to not only distinguish
the several clinical stages that may experience the patient, but also characterize the
transitions between them, using a multi-state process. To account for the trajectory
of PSA which is central in prostate cancer follow-up, I also had to model the repeated
measures of PSA jointly. However, no solution existed in the literature to perform such an
analysis when the longitudinal process and the multi-state process were correlated. Joint
models had been extended to competing risks setting [Elashoff et al., 2008; Rizopoulos,
2012b; Andrinopoulou et al., 2014] but not multi-state data.

In Chapter 3, I thus proposed a joint model with shared random effects for a Gaussian
longitudinal process and a Markov non-homogeneous multi-state process, which properly
takes into account the correlation between the longitudinal process and the multi-state
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process. The model provides a quantification of the impact of the PSA dynamics and
other prognostic factors measured at the end of treatment on each transition intensity
between clinical health states.

When developing sophisticated models, one recurrent question regards the underlying
assumptions and the goodness of fit evaluation. In particular, in this joint multi-state
model, one could wonder whether, after adjustment on the individual covariates, there
subsisted a correlation between the individual transition times which would violate the
Markov assumption of the multi-state process. Such a residual correlation could be mod-
elled by an additional individual random effect in the survival model, called frailty term.
But the inference in a joint multi-state frailty model would be very complex, and inter-
pretation of the model parameters would be not effortless. Instead, I proposed in Chapter
4 a score test for the inclusion of a log-normal frailty term in the multi-state part of a
joint multi-state model, which avoids the estimation of the model when including the
frailty. Interestingly, I showed that such a test not only tested the Markovian assumption
of the multi-state process, but also constituted a useful goodness-of-fit tool, for example
to detect outlier subjects or more generally a lack of fit of the model. In the application
on the prostate cancer data, the score test allowed us to improve the model specification
and define a relevant and efficient joint multi-state model. The main results confirmed
the significant deleterious impact of PSA increase on the hazard to experience a disease
recurrence (loco-regional recurrence, distant recurrence, hormonal therapy administra-
tion) from the end of the radiotherapy. However the PSA dynamics were not significantly
associated to the risk of death without recurrence after radiotherapy. Finally, after a
first disease recurrence higher PSA dynamic features were not necessarily associated to a
negative evolution of the disease. It supported that in the advances stages of the disease,
other criteria than the PSA dynamics should be considered.

An essential aspect of statistical research consists of supplying portable statistical
software associated with statistical developments for the community. I provided a R
function for the estimation of the joint multi-state model which pre-processes the data
with mstate package and then exploits all the facilities of JM package for the estimation
of shared random effect models. I also programmed the score test into a function which
can be used on an estimated joint multistate model object. I included in these functions
additional functionalities, such as the inclusion of non-linear marker dynamics in the asso-
ciation structure between the longitudinal and the multi-state processes, and techniques
for accuracy enhancement in the model estimates.
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Indeed, most of the time, the trajectory of the biomarker is included in the event
history model through a couple of features, mostly its current level or slope, without
further exploration of the log-linearity assumption. Yet, in prostate cancer, it has been
shown the current level of PSA did not have a loglinear relationship with any type of
cancer recurrence and that mostly PSA levels between 0 and 4 ng/mL were associated
with loglinear increase in the risk of recurrence [Sène et al., 2014]. In the joint multi-state
model estimation function, any transformation of the current level can now be considered.
In addition, we showed in the application of the score test, that such departure from the
loglinearity assumption could translate in a higher rejection of the Markov assumption.

Regarding estimation accuracy, we found out when developing the joint multi-state
model that the type of numerical integration over the random effects considered for the
likelihood computation could substantially impact the estimation quality. In JM package, a
pseudo-adaptive quadrature was used [Rizopoulos, 2012a]. It exploits the idea of adaptive
Gaussian quadrature [Lesaffre and Spiessens, 2001] with a recentering and standardization
of the integral around the random effects without recalculating this standardisation at
each iteration but using a pseudo recentering and standardization around the predicted
random effects in the linear mixed model. I extended this technique to a multi-step
pseudo-adaptive Gauss–Hermite rule. The procedure is then repeated: the joint model
is estimated once using the pseudo-adaptive technique, and then it can be reestimated
several times by starting from the previously estimated parameters and centering the
integral on the predicted random effects derived from the joint model rather than on the
linear mixed model. With this technique, estimates were found as more accurate while
using a relatively small number of quadrature points and thus reducing computational
time.

I applied this work in the specific context of progression of cancer in men with a
localized prostate cancer treated by external beam radiotherapy only. However, men with
a localized prostate cancer are more and more treated by other therapies, the use of
radiotherapy alone becoming somewhat obsolete in such a population [Laverdière et al.,
1997; Mottet et al., 2017]. Thus, expansions of this work could be to focus on subjects
with localized disease treated by:

- combined radiotherapy and hormonotherapy. However, PSA trajectories after such
treatment may be heterogeneous and a joint model considering latent classes would
possibly be more adapted to this population. Such a development was done is a
very recent paper of Rouanet et al. [2016], who considered jointly a Gaussian
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longitudinal marker and a three-states multi-state process;
- surgery (ablation of the prostate). However, PSA are supposed to be close to
zero after such intervention with possibly an increase when eventually the disease
evolves again. The linear mixed model as considered for now may not apply in
that context with many zeros, and a joint model with a tobit mixed sub-model for
the observed PSA might be required [Pike and Weissfeld, 2013].

As in the context of radiotherapy alone, it would be interesting in these population
to:

- describe the disease evolution in its whole (by considering several kinds of clinical
recurrence and additional treatments unplanned at baseline, such as hormonother-
apy) from the PSA dynamics and other prognostic factors;

- provide individual dynamic predictions of a given quantity of interest such as cu-
mulative incidences of clinical recurrence.

The joint model including a multi-state submodel applies far beyond localized prostate
cancer. In cancer research, it could also be used at more advanced stages, and in different
locations. For instance, it could be used to jointly model clinical progressions and tumor
size. I already contributed to such an analysis in Król et al. [2016], which modelled
simultaneously tumor size, (possibly repeated) disease progressions and death, in subjects
with metastatic colorectal cancer. However this paper did not distinguish the type of
clinical progressions that could experience the subject. The joint multi-state model we
proposed would be thus particularly relevant in this kind of application. Finally, the
model could also be applied to other chronic diseases where multiple clinical progressions
are of interest.

7.2 Joint modelling of ordinal longitudinal data and
survival data

In observational cohorts or clinical studies, whether for describing the marker evolu-
tion, quantifying its impact on the disease evolution, or predicting a clinical quantity of
interest from the marker data, a crucial point is to take care of the nature of the marker.
A consultancy for a pharmaceutical laboratory during my thesis confronted me with the
modelling of Health-Related Quality of Life (HRQoL) data in cancer clinical trials. These
data were: 1) ordinal, because they are built from summary scores with few levels which
characterize latent domains such as fatigue, nausea, pain, or others; 2) collected until the
disease progression which stopped the collection of the HRQoL measurements.

In practice, no software was available to analyse such data, and the classical inference
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proposed in the literature involved hard computational procedures with the computation
of integrals over each individual random effects performed through costly numerical in-
tegration algorithms. We thus proposed in Chapter 6 a new joint model for an ordinal
longitudinal marker and survival data which is decomposed into two sub-models: a cu-
mulative probit mixed model for the ordinal measures of the longitudinal marker and a
sequential probit model for the time-to-event data after discretisation of their time-scale.
The asset of this technique, which was initially proposed for a joint model with a longitu-
dinal Gaussian marker [Barrett et al., 2015] is that the likelihood is freed of any integral
over the individual random effects from the mixed model. Indeed, the simplifications in
the likelihood come from the combination of Gaussian density functions and Gaussian
probability functions in the integrand, which is also the case with ordinal longitudinal
markers.

At the end of the thesis, this work was only initiated with the writing of the model
and the complete implementation of its estimation procedure. This work needs to be
continued and finalized after the thesis with in particular the validation of the estimation
program in a simulation study.

A first application is planned with data from the EORTC (European Organisation for
Research and Treatment of Cancer) with the objective to illustrate the usefulness of the
model to study HRQoL repeated measures in cancer clinical trials. It will allow both to
properly specify the HRQoL evolution over time and quantify its impact on the clinical
event occurrence, while properly taking into account the correlation between these two
processes.

Overall, more and more subjective measures are included in health studies, and many
are ordinal. As a result, this work may be useful in many areas. For example, in clin-
ical trials that deal with repeated subjective data, and for which the evolution may be
interrupted by an event. But also in epidemiological cohorts which include data from
health measurement scales and which are interested in the link with a health incident.
An example is disability in neurodegenerative diseases (e.g., Alzheimer’s disease, multiple
system atrophy.)

7.3 Individual dynamic predictions

Two main objectives are identified in epidemilogical studies: studying the aetiology
of the disease or predicting a clinical event of interest at the individual level. In fact,
prediction becomes more and more central in many clinical applications. To compute
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these predictions in a dynamic and individualized way, a natural wish is to take into
account the complete history of the subject until the prediction time or, more realistically
the complete history about specific information collected on the subject. Based on it, we
would expect to accurately predict the future evolution of a patient.

Various contributions were published in biostatistics about individual dynamic predic-
tion. In this work we were interested in cumulative incidences of event, computed from a
prediction time and in the context of competing risks. Such a quantity could be computed
from several approaches, notably using joint models [Rizopoulos, 2011], partly conditional
models [Maziarz et al., 2017] or landmark models [van Houwelingen, 2007; Nicolaie et al.,
2013b]. However, I felt that in this setting, there remained some vagueness on the correct
definition of the quantity of interest, the validation of its proposed estimators, and the
definition and their variability. In addition, there was a lack of comparison in terms of
predictive abilities between developed estimators. Theoretical limits of each method were
put forward but they were not supported by realistic or fair comparisons.

I filled this gap in Chapter 5 by introducing, validating and comparing dynamic tools
for predicting cancer progression from biomarker data. The quantity of interest was
the cumulative incidence of a competing event, computed according to the individual
longitudinal information (including biomarker data) collected until a prediction time, and
I compared the joint modelling approach and the landmarking approach with different
specifications of models. Two definitions of the variability in the predictions are proposed,
one which only takes into account the variability due to the learning sample, and another
which adds the variability due to the marker’s observations of the subject to predict.
Finally the estimators detailed in this chapter are individualized, powerful and adapted
to meet the needs of patients and their clinicians. They are also implemented in R, with
guidelines provided for a correct practical use by clinicians and statisticians.

In summary, the extensive simulation study we carried out confirmed that the joint
model is usually a more efficient method than the landmarking approach to compute
individual predictions. However, the simulations also warned us on the necessity to:

- accurately specify the structure of dependency that links the longitudinal marker
with the event model, whatever the approach;

- accurately specify the longitudinal trajectory of the marker, especially in joint
models, in order to obtain accurate predictions.

Before deriving a predictive tool from the joint model, it is thus essential to use diag-
nostic tools for the goodness-of-fit of the longitudinal outcomes. Dobson and Henderson
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[2003] and Rizopoulos et al. [2010] proposed diagnostic tools based on conditional resid-
uals and multiple imputation residuals, respectively, both based on informal graphical
procedures. But it would be useful to develop goodness-of-fit tests, such as done in stan-
dard linear mixed models [Claeskens and Hart, 2009], to correctly evaluate the fit of the
longitudinal sub-model in the joint models.

The misspecification problem of the longitudinal marker trend in the usual joint mod-
els leads us to envisage other ways to model the longitudinal marker trajectory. In system
biology, mechanistic models are used to directly translate an hypothesized biological mech-
anism into a system of differential equations that are then linked with the observation of
biomarkers [Antia et al., 2005]. By integrating biomarkers measurements into biological
insights, such models are expected to better fit the longitudinal data. Mostly developed
in HIV [Perelson et al., 1993; Prague et al., 2013] or in infectious diseases [Lee et al.,
2009], some first examples exist in prostate cancer [Desmée et al., 2017] and might be a
direction of improvement.

In prostate cancer prediction of clinical relapse as in other diseases, there is a gap
between biostatistical developments and clinical practice. Indeed, in treated subjects with
a localized prostate cancer, clinicians usually use naive methods to account for the PSA
dynamics and guide their clinical decision. For instance, predictions of clinical relapse are
done according to the last observed PSA value, the observed PSA doubling time (expected
duration to double the observed PSA value) or the observed PSA velocity (slope of the
observed PSA over time) [Ng et al., 2009]. Yet, these dynamics do not consider that the
marker is measured with error, at discrete times, may be subject to informative censoring,
and they do not make use of information from an entire population. The purpose of joint
models in that context is to take into account all these aspects to provide a validated
quantification of individual predictions.

The simulations already demonstrated the superiority of the joint approach and two-
stage landmark approach over the naïve approach that only considers the last PSA mea-
sure available. However, it would be of particular interest to expand our comparison
of predictive tools to compare predictive performances of the tools used in practice by
the clinicians, and the tools derived from the joint modelling or two-stage landmarking
approaches not in simulations but on real data with both training data to develop the
prediction tools and validation data to assess their performances.

Once the best prediction model selected, a software solution might be developed to
propose a reliable and efficient risk-calculator to clinicians, incorporating variability of
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the predictions, and with a user-friendly interface. The objective of such a tool would not
obviously be to replace the clinician but rather to help him during its decision making.

Our work considered only one longitudinal marker. However, it would certainly be
relevant when developing individual dynamic predictions to account for multiple mark-
ers, possibly correlated and with various natures, such as the tumor size, blood-based
biomarkers or HRQoL markers for example [Andrinopoulou et al., 2014]. With multiple
longitudinal markers, estimation of joint models might become infeasible since considera-
tion of multiple markers induces a large increase in the number of random effects, and thus
in the dimension of the numerical integrals. In that context, two-stage landmark models
constitute a serious alternative. These landmark models could be estimated at predefined
landmark times or their supermodel version might be explored [Nicolaie et al., 2013a].
Such a model would allow obtaining predictions at any prediction time, by combining
different landmark models in one and thus smoothing the predictions over the prediction
times.

Individual predictions derived from the joint multi-state model would also be reliable,
allowing new quantities of interest to be predicted. This could include the time spent in a
specific clinical state or the number of years gained with an additional treatment. This was
explored in standard multi-state models in dementia context [Wanneveich et al., 2016] and
might be expanded in the presence of a biomarker with the joint model extension. From
the joint modelling perspective, other structures than the one we developed in Chapter 3
with transition-specific proportional intensity model could be relevant for prediction. For
example, considering a sequential probit sub-model for the survival sub-part (as considered
in Chapter 6 for the joint ordinal model) would directly model the probability of having
the event in a given time interval. The pseudo-value approach in its joint version might
properly account for the longitudinal information brought by the marker and directly
model various quantities of interest depending on the link function considered.

Finally, we argued in Chapter 5 that the use of individual dynamic predictions in
clinical practice could lead to a dynamic personalized medicine, whether for adapting the
treatment strategies according to the updated individual probabilities [Sène et al., 2016],
or optimizing the monitoring for each patient [Rizopoulos et al., 2015]. The later might
be useful for the planning of clinical trials, notably with the computation of the required
number of subjects in the trial, while integrating the individual and dynamic aspects of
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the screening planning.

7.4 General conclusion

In longitudinal cancer studies, biomarker data of various natures may be used to either
detect the disease, describe its evolution over time, or predict the subject’s future. Based
on prostate cancer research, we generally argued in this thesis that a disease evolution
should be considered in its entirety, by characterizing the set of clinical events of interest,
focusing on the (possibly multiple) transition(s) between them instead of only considering
the first occurrence of a unique type of clinical event, and properly account for longitudinal
biomarker data.

To conclude, this thesis opens up both clinical and statistical prospects, with the
challenge to answer new questions asked by the clinicians, while including new longitudinal
data such as HRQoL data or genomic data, for example. Novel statistical models will
have to meet these needs while adapting to the features of the data and providing valid
estimates with reliable and efficient inference methods as well as user-friendly interfaces
to guarantee a certain practical use.
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Modélisation conjointe et prédiction
des différents risques de progression de cancer
à partir des mesures répétées de biomarqueurs

Dans les études longitudinales en cancer, une problématique majeure est la description de
l’évolution de la maladie d’un patient ou la prédiction de son état futur, à partir de me-
sures répétées d’un marqueur biologique. La modélisation conjointe permet de répondre
à ces objectifs, mais elle a principalement été développée pour l’étude simultanée d’un
marqueur longitudinal Gaussien et d’un unique temps d’événement. Afin de caractériser
les transitions entre événements successifs qu’un patient peut connaître, nous étendons la
méthodologie classique en introduisant un modèle conjoint pour un processus longitudi-
nal Gaussien et un processus multi-états Markovien non homogène. Le modèle suppose
que les temps de transition individuels sont indépendants conditionnellement aux cova-
riables incluses. Nous proposons aussi un score test afin de tester cette hypothèse. Ces
développements sont appliqués à deux cohortes d’hommes avec un cancer de la prostate
localisé traité par radiothérapie. Le modèle permet de quantifier l’impact des dynamiques
de l’antigène spécifique de la prostate, et d’autres facteurs pronostiques mesurés à la fin
du traitement, sur chaque intensité de transition entre états cliniques prédéfinis. Cette
thèse fournit ensuite des outils statistiques et des lignes directrices pour le calcul de pré-
dictions dynamiques individuelles d’événements cliniques, dans le cadre de risques com-
pétitifs. Enfin, un dernier travail amène une réflexion sur la modélisation conjointe de
données longitudinales ordinales et de données de survie, avec une technique d’inférence
innovante. Ainsi, ce travail introduit des méthodes statistiques adaptées à divers types de
données longitudinales et d’histoire d’événements, qui permettent de répondre aux besoins
des cliniciens. Des recommandations méthodologiques et des outils logiciels sont associés
à chaque développement, pour une utilisation pratique par les communautés clinique et
statistique.
Mots clés : Biomarqueurs ; Cancer de la prostate ; Données de marqueurs longitudinaux ; Don-
nées d’histoire d’événements ; Effets aléatoires partagés ; Modèle conjoint ; Modèle landmark ;
Prédiction dynamique individuelle ; Terme de fragilité.

Joint modelling and prediction
of several risks of cancer progression

from repeated measurements of biomarkers

In longitudinal studies in cancer, a major problem is the description of the patient’s dis-
ease evolution or the prediction of his future state, based on repeated measurements of
a biological marker. Joint modelling enables to meet these objectives but it has mainly
been developed for the simultaneous study of a Gaussian longitudinal marker and a single
event time. In order to characterize the transitions between successive events that a pa-
tient may experience, we extend the classical methodology by introducing a joint model
for a Gaussian longitudinal process and a non-homogeneous Markovian multi-state pro-
cess. The model assumes that individual transition times are independent conditionally
to included covariates. We also propose a score test to assess this assumption. These
developments are applied on two cohorts of men with localized prostate cancer treated
with radiotherapy. The model quantifies the impact of prostate specific antigen dynam-
ics, and other prognostic factors measured at the end of treatment, on each transition
intensity between predefined clinical states. This thesis then provides statistical tools and
guidelines for the computation of individual dynamic predictions of clinical events in the
context of competitive risks. Finally, a last work leads to a reflection on joint modelling
of longitudinal ordinal data and survival data with an innovative inference technique. To
conclude, this work introduces statistical methods adapted to various types of longitu-
dinal data and event history data, which meet the needs of clinicians. Methodological
recommendations and software tools are associated with each development, for practical
use by the clinical and statistical communities.
Key words: Biomarkers; Event history data; Frailty term; Individual dynamic prediction; Joint
model; Landmark model; Longitudinal marker data; Prostate cancer; Shared random effects.
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