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Recent applications such as forestry datasets involve the observations of spatial point pattern data combined with the observation of many spatial covariates.

We consider in this thesis the problem of estimating a parametric form of the intensity function in such a context. This thesis develops feature selection procedures and gives some guarantees on their validity. In particular, we propose two different feature selection approaches: the lasso-type methods and the Dantzig selector-type procedures.

For the methods considering lasso-type techniques, we derive asymptotic properties of the estimates obtained from estimating functions derived from Poisson and logistic regression likelihoods penalized by a large class of penalties. We prove that the estimates obtained from such procedures satisfy consistency, sparsity, and asymptotic normality. For the Dantzig selector part, we develop a modified version of the Dantzig selector, which we call by the adaptive linearized Dantzig selector (ALDS), to obtain the intensity estimates. More precisely, the ALDS estimates are defined as the solution to an optimization problem which minimizes the sum of coefficients of the estimates subject to a linear approximation of the score vector as a constraint. We find that the estimates obtained from such methods have asymptotic properties similar to the ones proposed under lasso-type techniques using an adaptive lasso regularization term. We investigate the computational aspects of the methods developed using either lasso-type procedures or the Dantzig selector-type approaches. We make links between spatial point processes intensity estimation and generalized linear models (GLMs), so we only have to deal with feature selection procedures for GLMs. Thus, easier computational procedures are implemented and computationally fast algorithm are proposed. Simulation experiments are conducted to highlight the finite sample performances of the 3 6.2 Future extensions . . . . . . . . . . . . . .

estimates from each of two proposed approaches. Finally, our methods are applied to model the spatial locations a species of tree in the forest observed with a large number of environmental factors.

Keywords: Campbell theorem, Dantzig selector, lasso, logistic regression likelihood, Poisson likelihood Résumé. Les applications récentes telles que les bases de données forestières impliquent des observations de données spatiales associées à l'observation de nombreuses covariables spatiales. Nous considérons dans cette thèse le problème de l'estimation d'une forme paramétrique de la fonction d'intensité dans un tel contexte. Cette thèse développe les procédures de sélection des variables et donne des garanties quant à leur validité. En particulier, nous proposons deux approches différentes pour la sélection de variables: les méthodes de type lasso et les procédures de type sélecteur de Dantzig.

Pour les méthodes envisageant les techniques de type lasso, nous dérivons les propriétés asymptotiques des estimations obtenues par les équations estimantes dérivées des vraisemblances de Poisson et de la régression logistique pénalisées par une grande classe de pénalités. Nous prouvons que les estimations obtenues par de ces procédures satisfont la consistance, sparsité et la normalité asymptotique. Pour la partie sélecteur de Dantzig, nous développons une version modifiée du sélecteur de Dantzig, que nous appelons le sélecteur Dantzig linéarisé adaptatif (ALDS), pour obtenir les estimations d'intensité. Plus précisément, les estimations ALDS sont définies comme la solution à un problème d'optimisation qui minimise la somme des coefficients des estimations sous contrainte de la norme d'une approximation linéaire du vecteur score.

Nous constatons que les estimations obtenues par de ces méthodes ont des propriétés asymptotiques semblables à celles proposées précédemment à l'aide de méthode régularisation du lasso adaptatif. Nous étudions les aspects computationnels des méthodes développées en utilisant les procédures de type lasso et de type Sélector Dantzig. Nous établissons des liens entre l'estimation de l'intensité des processus ponctuels spatiaux et les modèles linéaires généralisés (GLM). Ainsi, des procédures de calcul plus faciles sont implémentées et un algorithme rapide est proposé. Des études de simulation sont menées pour évaluer les performances des estimations de chacune des deux approches proposées. Enfin, nos méthodes sont appliquées pour modéliser les positions d'arbres observées avec un grand nombre de facteurs environnementaux.
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In this study, we consider inhomogeneous spatial point processes described by an intensity function which depends on spatial covariates. Although it will be stated in every chapter of this manuscript, we write here that we focus on intensity functions ρ(•; β) with log-linear form

ρ(u; β) = exp(β z(u)), u ∈ D ⊂ R d ,
where z(u) = {z 1 (u), . . . , z p (u)} are the p spatial covariates measured at location u and β = {β 1 , . . . , β p } is a real p-dimensional parameter. An example in epidemiology is the study of spatial variation of cancer risk in a city given the locations of patients 25 residence and the location of an industrial incinerator (see e.g., [START_REF] Peter | A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point[END_REF]. In this study, the main question is whether there is an evidence of increased cancer risk for the resident close to the incinerator, so the distance between the home address of the patients to the incinerator is treated as a potential covariate. In criminology, one example is the analysis of car thefts rate in a city considering some demographical information as covariates (see e.g., [START_REF] Shirota | Statistical analysis of origindestination point patterns: Modeling car thefts and recoveries[END_REF]. Besides that, another application also occurs in ecology by the interest of modeling the spatial distribution of trees species in a forest related to some environmental factors such as topological attributes and soil properties. Therefore, the main concern to these studies is to find the relationship between the intensity and the spatial covariates by assessing the magnitudes of the components of the vector β. For Poisson point process models which serve as a tractable class for complete spatial randomness, maximum likelihood estimation (e.g., [START_REF] Berman | Approximating point process likelihoods with glim[END_REF][START_REF] Stephen | Asymptotic properties of estimators for the parameters of spatial inhomogeneous Poisson point processes[END_REF] is straightforward to implement since the likelihood function is easy to evaluate. However, for more general spatial point processes whose likelihoods are often intractable, computationally expensive Markov chain Monte Carlo methods are required [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]. To overcome this computational issue, many estimating equation-based methods which are computationally competitive and also have nice theoretical properties are developed, for example by [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF], [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF], [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF], and [START_REF] Guan | Quasi-likelihood for spatial point processes[END_REF]. It is to be noticed that the estimating equation-based methods are not restricted to the class of Poisson point processes, thus, it can be applied to attractive or repulsive point pattern data.

In recent decades, with the advancement of technology and huge investment in data collection, many applications for estimating the intensity function which involves a large number of covariates are rapidly available. An example which will be used throughout this thesis is an ecological study. In particular, we are interested in studying the spatial distribution of Beilschmiedia pendula Lauraceae trees locations surveyed in a 50-hectare region (D = 1000m × 500m) in a tropical rain forest in Barro Corolado Island, Panama. More complete data that we have from censuses conducted in the same observation region contain locations of 297 species of trees (see [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF]. Furthermore, information regarding environmental covariates such as topological attributes and soil nutrients have been also collected. Figure 1.1 depicts the spatial distribution of 3604 locations of Beilschmiedia pendula Lauraceae trees superimposed on the map of slope field (left) and on the map of concentration of Phosphorus in the soil (middle). In addition, we present in Figure 1.1 (right) the 3604 locations of Beilschmiedia pendula Lauraceae trees (•) along with the 1928 locations of Ocotea whitei trees ( ). Some research questions regarding this study are: (a) which areas Beilschmiedia pendula Lauraceae does and does not prefer to live on? (b) which environmental factors which have significant effect on the appearance of Beilschmiedia pendula Lauraceae and how to choose them? (c) how large those factors influence the intensity of Beilschmiedia pendula Lauraceae? (d) is there any competition between Beilschmiedia pendula Lauraceae and other species of trees in the forest? The study which relates the distribution of a species to the environment is also commonly known as species distribution modeling (e.g., [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF][START_REF] Franklin | Mapping species distributions: spatial inference and prediction[END_REF][START_REF] Renner | Advances in presence-only methods in ecology[END_REF]. Species distribution modeling becomes one of the main interests in ecology and biology since it aims to answer many important questions such as questions (a)- (d). These are useful, for example, to have information regarding the conservation efforts and studies of the impact of activities on habitats (e.g., [START_REF] Franklin | Mapping species distributions: spatial inference and prediction[END_REF]. Species distribution modeling is also able to give the prediction of species distribution to discover unstudied regions that may be preferable for a species (e.g., [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]. For such an application, note that modeling the intensity of Beilschmiedia pendula Lauraceae as a function of any possible spatial covariates consisting of environmental factors will involve a large number of covariates, so maximum likelihood estimation or estimating equation-based methods become undesirable. First, these methods cannot perform variable selection which leads to a hard interpretation of the model. Second, as the number of covariates is large, employing these methods will yield large variance for parameter estimates.

The main goal of this research is to study and develop feature selection procedures for spatial point processes intensity estimation. In particular, we consider two different feature selection procedures: the lasso-type approaches and the Dantzig selector-type methods. We investigate both theoretical and computational aspects. For theoretical aspects, we study the asymptotic properties of our estimates and evaluate whether or not the estimates obtained from such feature selection procedures satisfy consistency, sparsity, and asymptotic normality. In this thesis, we do not investigate the non-asymptotic properties of our estimates, for example, by studying the oracle inequalities as studied by [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF] for instance. Even if it seems feasible for Poisson point process using for instance concentration inequalities obtained by [START_REF] Reynaud | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF], it is not straightforwardly applicable for more general spatial point processes due to the lack of such concentration inequalities for general spatial point processes. By focusing on asymptotic properties, we are able to make our results available for very large classes of spatial point processes which exhibit strong dependence (i.e., very clustered or repulsive point processes). If we had stayed with Poisson case, we would probably have studied the problem differently. Furthermore, in the application we consider in this thesis, it is not realistic to model Beilschmiedia pendula Lauraceae by a Poisson point process model as these data exhibit clustering mainly due to seed dispersal (see e.g., [START_REF] Plenge | Two-step estimation for inhomogeneous spatial point processes[END_REF][START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF]. From a computational point of view, as we make links between spatial point processes intensity estimation and generalized linear models (GLMs), we only have to deal with feature selection procedures for GLMs which are easy to implement and computationally fast. It is worth emphasizing that our proposed methods are not only limited to the application in ecology and can be applied in different contexts such as the ones studied by [START_REF] Ryan | Variable selection for inhomogeneous spatial point process models[END_REF]; [START_REF] Renner | Point process models for presenceonly analysis[END_REF]; [START_REF] Shirota | Statistical analysis of origindestination point patterns: Modeling car thefts and recoveries[END_REF].

The rest of this manuscript is organized as follows. In Chapter 3, we develop lasso-type procedures based on convex and non-convex regularization techniques. We consider estimating equations based on the Campbell formulas derived from Poisson likelihood [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] and logistic regression likelihood [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] penalized by a penalty function, written by

Q(w; β) = (w; β) -|D| p j=1 p λ j (|β j |),
where (w; β) is either the Poisson or the logistic regression likelihoods, |D| is the volume of the observation domain and p λ (|θ|) is a penalty function parameterized by nonnegative λ. Note that if p λ (|θ|) is a l 1 norm penalty, it corresponds to lasso regularization method [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. We consider a general form of penalty function p λ (|θ|), which can be a convex or a non-convex function, to make our results available in a more general setting. As representatives, we consider seven regularization methods including convex and non-convex penalties, i.e., ridge [START_REF] Arthur | Ridge regression. Encyclopedia of statistical sciences[END_REF], lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], elastic net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], adaptive lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], adaptive elastic net [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF], SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], and MC+ [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF]. We evaluate their theoretical properties and computational implementation.

From theoretical point of view, we find that the regularization methods employing two adaptive methods (i.e., adaptive lasso and adaptive elastic net) and two non-convex penalties (i.e., SCAD and MC+) satisfy consistency, sparsity, and asymptotic normality. It is worth mentioning that the asymptotic considered in this thesis is the increasing domain asymptotic, namely we consider spatial point processes observed over a sequence of bounded domains D n such that |D n | → ∞ as n → ∞. In our setting, |D n | plays the same role as n, the number of observations, in standard problems such as lasso-type methods for linear models or generalized linear models. From computational point of view, our procedure is straightforward to implement in R since we combine the existing R package spatstat [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF] devoted to the analysis of spatial point pattern data with two R packages glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and ncvreg [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF]. We also assess the finite properties of our estimates obtained from such procedures in a simulation experiment and apply our methods to model the intensity of Beilschmiedia pendula Lauraceae as a function of 15 spatial covariates consisting of 2 topological properties and 13 soil nutrients.

In Chapter 3, we are restricted to the assumption where the number of covariates is fixed. This leads to two issues: application and theoretical study. In the application considered in this study, modeling the intensity of Beilschmiedia pendula Lauraceae as a function of environmental covariates and their possible interactions can increase the number of covariates considerably, so the setting for a diverging number of covariates should be considered. In the theoretical study for a finite number of parameters setting, it has been proved by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] that, in general, penalization regression setting, there are many naive and simple model selection procedures which possess the consistency, sparsity, and asymptotic normality. Therefore, the validity of such asymptotic properties for spatial point processes considering the situation when the number of covariates diverges becomes important to study. We relax this assumption in Chapter 4 by allowing the number of covariates to grow to infinity as the observation domain increases. We investigate the theoretical properties considered in Chapter 3 but extend to the situation when the number of parameters diverges. More precisely, we consider the asymptotic study which allows that both |D n | (the sequence of observed domains volume) and p n (the sequence of covariates number) tend to infinity as n goes to infinity. We prove that the results obtained in Chapter 3 are still valid with a few restrictions on the sequence of parameters p n , by the main argument requiring

p 3 n /|D n | → 0 as n → ∞.
Apart from regularization techniques studied in Chapters 3 and 4, we develop in Chapter 5 the Dantzig selector-type methods for spatial point processes intensity estimation. In particular, we propose a modified version of the Dantzig selector based on linear approximation in the constraint vector which we call by the adaptive linearized Dantzig selector (ALDS). The Dantzig selector [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] was initially designed for linear regression models and attracted a lot of attention because of its two significant contributions: computational and theoretical aspects. From a computational point of view, an efficient algorithm has been proposed as the implementation of the Dantzig selector results in a linear programming. For theoretical aspects, [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] provided sharp non-asymptotic bounds on the l 2 norm of estimated coefficients error and showed that the error is within a factor of log p of the error that would be achieved if the locations of the non-zero coefficients were known. As log p grows very slowly, the Dantzig selector only pays a small price for adaptively choosing the significant variables and is then very suitable for a very large dataset. Some with lasso since the similarities between lasso and Dantzig selector have been discovered

in linear models (see e.g., [START_REF] Nicolai Meinshausen | Discussion: A tale of three cousins: Lasso, l2boosting and Dantzig[END_REF][START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF]James et al., CHAPTER 2

Introduction (Français)

Les données spatiales apparaissent dans un large éventail de domaines scientifiques, par exemple, l'écologie, l'épidémiologie, la biologie, les géosciences, la criminologie et l'astronomie. Le cadre statistique et probabiliste pour le traitement des données ponctuelles spatiaux est celui des processus ponctuels spatiaux. Certains livres récents sur les processus ponctuels spatiaux incluent [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF], [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF], Diggle (2013), and [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]. Dans cette thèse, l'accent principal est mis sur l'estimation de l'intensité des processus ponctuels spatiaux. L'intensité sert de caractéristique de premier ordre d'un processus ponctuel spatial et devient souvent l'intérêt principal pour de nombreuses études, tant dans l'aspect théorique que dans l'application. Des exemples sont l'étude de la variation spatiale du risque spécifique de maladie (e.g., [START_REF] Peter | A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point[END_REF][START_REF] Peter | Statistical analysis of spatial and spatio-temporal point patterns[END_REF], l'analyse du taux de criminalité dans une ville (e.g., [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF][START_REF] Shirota | Statistical analysis of origindestination point patterns: Modeling car thefts and recoveries[END_REF], et la modélisation de la répartition spatiale des espèces d'arbres dans une forêt en fonction de certains facteurs environnementaux (e.g., [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Renner | Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology[END_REF].

Dans cette étude, nous considérons des processus ponctuels spatiaux inhomogènes décrits par une fonction d'intensité qui dépend de covariables spatiales. Comme indiqué dans chaque chapitre de ce manuscrit, nous nous concentrons sur les fonctions d'intensité ρ(•; β) avec la forme log-linéaire de processus ponctuels de Poisson, l'estimation par maximum de vraisemblance (e.g., [START_REF] Berman | Approximating point process likelihoods with glim[END_REF][START_REF] Stephen | Asymptotic properties of estimators for the parameters of spatial inhomogeneous Poisson point processes[END_REF] est simple à mettre en oeuvre puisque la fonction de vraisemblance est facile à évaluer. Cependant, pour des processus ponctuels spatiaux plus généraux dont les vraisemblances sont souvent compliqués, des méthodes de Monte-Carlo par chaînes de Markov coûteuses sont requises [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]. Pour surmonter ce problème de calcul, de nombreuses méthodes basées sur les équations estimantes, qui sont avantageuses en termes de calcul et ont également de bonnes propriétés théoriques, sont développées, par exemple par Waagepetersen (2007), [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF], [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF]), et Guan et al. (2015). [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF] [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF][START_REF] Franklin | Mapping species distributions: spatial inference and prediction[END_REF][START_REF] Renner | Advances in presence-only methods in ecology[END_REF]. La modélisation de la distribution d'espèces devient l'un des intérêts principaux en 'écologie et en biologie car elle vise à répondre à de nombreuses questions importantes telles que les questions (a) -(d). Celles-ci sont utiles, par exemple, pour avoir des informations concernant les efforts de conservation et les études d'impact des activités sur les habitats (e.g., [START_REF] Franklin | Mapping species distributions: spatial inference and prediction[END_REF]. La modélisation de la distribution d'espèces est également capable de prédire la répartition des espèces pour découvrir des régions non étudiées qui peuvent être préférables pour une espèce (e.g., [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF].

ρ(u; β) = exp(β z(u)), u ∈ D ⊂ R d , où z(u) = {z 1 (u), . . . ,
Pour une telle application, notez que la modélisation de l'intensité de Beilschmiedia pendula Lauraceae en fonction de toutes les covariables spatiales possibles composées de facteurs environnementaux impliquera un grand nombre de covariables, les méthodes Même si cela semble faisable pour un processus ponctuel de Poisson en utilisant par exemple des inégalités de concentration obtenues par [START_REF] Reynaud | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF], ce n'est pas directement applicable pour des processus ponctuels spatiaux plus généraux en raison de l'absence de telles inégalités de concentration pour les processus ponctuels spatiaux dans le cas général. En mettant l'accent sur les propriétés asymptotiques, nous sommes en mesure de rendre nos résultats qui sont applicable pour de très grandes classes de processus ponctuels spatiaux qui présentent une forte dépendance (c'est-àdire des processus ponctuels très cluster ou répulsifs [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. Nous considérons une forme générale de fonction de pénalité p λ (|θ|), qui peut être une fonction convexe ou non-convexe, pour rendre nos résultats applicables dans un cadre plus général. Dans cette thèse, nous considérons sept méthodes de régularisation incluant les fonctions de pénalité convexe et non-convexe, c.-à-d., ridge (Hoerl and Kennard, 1988), lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], elastic net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], lasso adaptatif [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], elastic net adaptatif [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF], SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], et MC+ [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF]. 

CHAPTER 3

Convex and non-convex regularization methods for spatial point processes intensity estimation

Introduction

Spatial point pattern data arise in many contexts where interest lies in describing the distribution of an event in space. Some examples include the locations of trees in a forest, gold deposits mapped in a geological survey, stars in a cluster star, animal sightings, locations of some specific cells in retina, or road accidents (see e.g. [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF][START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF][START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]. Interest in methods for analyzing spatial point pattern data is rapidly expanding accross many fields of science, notably in ecology, epidemiology, biology, geosciences, astronomy, and econometrics.

One of the main interests when analyzing spatial point pattern data is to estimate the intensity which characterizes the probability that a point (or an event) occurs in an infinitesimal ball around a given location. In practice, the intensity is often assumed to be a parametric function of some measured covariates (e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Guan | A thinned block bootstrap variance estimation procedure for inhomogeneous spatial point patterns[END_REF][START_REF] Møller | Modern statistics for spatial point processes[END_REF][START_REF] Rasmus Plenge | Estimating functions for inhomogeneous spatial point processes with incomplete covariate data[END_REF][START_REF] Plenge | Two-step estimation for inhomogeneous spatial point processes[END_REF][START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF][START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. In this study, we assume that the intensity function ρ is parameterized by a vector β and has a log-linear specification

ρ(u; β) = exp(β z(u)), (3.1)
where z(u) = {z 1 (u), . . . , z p (u)} are the p spatial covariates measured at location u 43 and β = {β 1 , . . . , β p } is a real p-dimensional parameter. When the intensity is a function of many variables, covariates selection becomes inevitable.

Variable selection in regression has a number of purposes: provide regularization for good estimation, obtain good prediction, and identify clearly the important variables (e.g. [START_REF] Fan | A selective overview of variable selection in high dimensional feature space[END_REF][START_REF] Mazumder | Sparsenet: Coordinate descent with nonconvex penalties[END_REF]. Identifying a set of relevant features from a list of many features is in general combinatorially hard and computationally intensive. In this context, convex relaxation techniques such as lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] have been effectively used for variable selection and parameter estimation simultaneously. The lasso procedure aims at minimizing:

-log L(β) + λ β 1
where L(β) is the likelihood function for some model of interest. The 1 penalty shrinks coefficients towards zero, and can also set coefficients to be exactly zero. In the context of variable selection, the lasso is often thought of as a convex surrogate for the best-subset selection problem:

-log L(β) + λ β 0 .
The 0 penalty β 0 = p i=1 I(|β i | > 0) penalizes the number of nonzero coefficients in the model.

Since lasso can be suboptimal in model selection for some cases (e.g. [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF][START_REF] Zhang | The sparsity and bias of the lasso selection in highdimensional linear regression[END_REF], many regularization methods then have been developped, motivating to go beyond 1 regime to more aggressive non-convex penalties which bridges the gap between 1 and 0 such as SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] and MC+ [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF].

More recently, there were several works on implementing variable selection for spatial point processes in order to reduce variance inflation from overfitting and bias from underfitting. Thurman and Zhu (2014) focused on using adaptive lasso to select variables for inhomogeneous Poisson point processes. This study then later was extended to the clustered spatial point processes by [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF] who established the asymptotic properties of the estimates in terms of consistency, sparsity, and normality distribution. They also compared their results employing adaptive lasso to SCAD and adaptive elastic net in the simulation study and application, using both regularized weighted and unweighted estimating equations derived from the Poisson likelihood. Yue and Loh (2015) considered modelling spatial point data with Poisson, pairwise interaction point processes, and Neyman-Scott cluster models, incorporated lasso, adaptive lasso, and elastic net regularization methods into generalized linear model framework for fitting these point models. Note that the study by [START_REF] Ryan | Variable selection for inhomogeneous spatial point process models[END_REF] also used an estimating equation derived from the Poisson likelihood. However, [START_REF] Ryan | Variable selection for inhomogeneous spatial point process models[END_REF] did not provide the theoretical study in detail. Although, in application, many penalty functions have been employed to regularization methods for spatial point processes intensity estimation, the theoretical study is still restricted to some specific penalty functions.

In this chapter, we propose regularized versions of estimating equations based on Campbell formula derived from the Poisson and the logistic regression likelihoods to estimate the intensity of the spatial point processes. We consider both convex and non-convex penalty functions. We provide general conditions on the penalty function to ensure an oracle property and a central limit theorem. Thus, we extend the work by [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF] and obtain the theoretical results for more general penalty functions and under less restrictive assumptions on the asymptotic covariance matrix (see Remark 3.6.3). The logistic regression method proposed by [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] is as easy to implement as the Poisson likelihood method, but is less biased since it does not require deterministic numerical approximation. We prove that the estimates obtained by regularizing the logistic regression likelihood can also satisfy asymptotic properties (see Remark 3.6.2). Our procedure is straightforward to implement since we only need to combine the spatstat R package with the two R packages glmnet and ncvreg.

The remainder of this chapter is organized as follows. Section 3.2 gives backgrounds on spatial point processes. Section 3.3 describes standard parameter estimation methods when there is no regularization, while regularization methods are developed in Section 3.4. Section 3.5 develops numerical details induced by the methods introduced in Sections 3.3-3.4. Asymptotic properties following the work by [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] for generalized linear models are presented in Section 3.6. Section 3.7 investigates the finite-sample properties of the proposed method in a simulation study, followed by an application to tropical forestry datasets in Section 3.8, and finished by conclusion and discussion in Section 3.9. Proofs of the main results are postponed to Sections 3.11.1-3.11.3.

Spatial point processes

Let X be a spatial point process on R d . Let D ⊂ R d be a compact set of Lebesgue measure |D| which will play the role of the observation domain. We view X as a locally finite random subset of R d , i.e. the random number of points of X in B, N (B), is almost surely finite whenever B ⊂ R d is a bounded region. Suppose x = {x 1 , x 2 , . . . , x m } denotes a realization of X observed within a bounded region D, where x i , i = 1, . . . , m represent the locations of the observed points, and m is the number of points. Note that m is random and 0 ≤ m < ∞. If m = 0 then x = ∅ is the empty point pattern in D. For further background material on spatial point processes, see for example [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF].

Moments

The first and second-order properties of a point process are described by intensity measure and second-order factorial moment measure. First-order properties of a point process indicate the spatial distribution events in domain of interest. The intensity measure µ on R d is given by

µ(B) = EN (B), B ⊆ R d .
If the intensity measure µ can be written as

µ(B) = B ρ(u)du, B ⊆ R d ,
where ρ is a nonnegative function, then ρ is called the intensity function. If ρ is constant, then X is said to be homogeneous or first-order stationary with intensity ρ.

Otherwise, it is said to be inhomogeneous. We may interpret ρ(u)du as the probability of occurence of a point in an infinitesimally small ball with centre u and volume du.

Second-order properties of a point process indicate the spatial coincidence of events in the domain of interest. The second-order factorial moment measure α

(2) on R d × R d is given by α (2) (C) = E = u,v∈X I[(u, v) ∈ C], C ⊆ R d × R d .
where the = over the summation sign means that the sum runs over all pairwise different points u, v in X, and I[.] is the indicator function. If the second-order factorial moment measure α (2) can be written as

α (2) (C) = I[(u, v) ∈ C]ρ (2) (u, v)dudv, C ⊆ R d × R d ,
where ρ (2) is a nonnegative function, then ρ (2) is called the second-order product density.

Intuitively, ρ (2) (u, v)dudv is the probability for observing a pair of points from X occuring jointly in each of two infinitesimally small balls with centres u, v and volume du, dv. Fore more detail description of moment measures of any order, see appendix C in [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF].

Suppose X has intensity function ρ and second-order product density ρ (2) . Campbell theorem (see e.g. [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF] states that, for any function k :

R d → [0, ∞) or k : R d × R d → [0, ∞) E u∈X k(u) = k(u)ρ(u)du (3.2) E = u,v∈X k(u, v) = k(u, v)ρ (2) (u, v)dudv. (3.3)
In order to study whether a point process deviates from independence (i.e., Poisson point process), we often consider the pair correlation function given by

g(u, v) = ρ (2) (u, v) ρ(u)ρ(v)
when both ρ and ρ (2) exist with the convention 0/0 = 0. For a Poisson point process (Section 3.2.2.1), we have ρ (2) (u, v) = ρ(u)ρ(v) so that g(u, v) = 1. If, for example, g(u, v) > 1 (resp. g(u, v) < 1), this indicates that pair of points are more likely (resp.

less likely) to occur at locations u, v than for a Poisson point process with the same intensity function as X. In the same spirit, we can define ρ (k) the k-th order intensity function (see [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF], for more details). If for any u, v, g (u, v) depends only on u -v, the point process X is said to be second-order reweighted stationary.

Modelling the intensity function

We discuss spatial point process models specified by deterministic or random intensity function. Particularly, we consider two important model classes, namely Poisson and Cox processes. Poisson point processes serve as a tractable model class for no interaction or complete spatial randomness. Cox processes form major classes for clustering or aggregation. For conciseness, we focus on the two later classes of models. We could also have presented determinantal point processes (e.g. [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] which constitute an interesting class of repulsive point patterns with explicit moments.

This has not been further investigated for sake of brevity. In this study, we focus on log-linear models of the intensity function given by (3.1).

Poisson point process

A point process X on D is a Poisson point process with intensity function ρ, assumed to be locally integrable, if the following conditions are satisfied:

1. for any B ⊆ D with 0 ≤ µ(B) < ∞, N (B) ∼ P oisson(µ(B)),
2. conditionally on N (B), the points in X ∩ B are i.i.d. with joint density proportional to ρ(u), u ∈ B.

A Poisson point process with a log-linear intensity function is also called a modulated

Poisson point process (e.g. [START_REF] Møller | Modern statistics for spatial point processes[END_REF][START_REF] Rasmus Plenge | Estimating functions for inhomogeneous spatial point processes with incomplete covariate data[END_REF]. In particular, for Poisson point processes, ρ (2) (u, v) = ρ(u)ρ(v), and g(u, v) = 1, ∀u, v ∈ D. 

Cox processes

A
ρ c (u; β) = exp(β z(u))k(u -c; ω)/κ,
where k is a probability density function determining the distribution of offspring points around the mother points parameterized by ω. Then X = ∪ c∈C X c is a special case of an inhomogeneous Neyman-Scott point process with mothers C and offspring X c , c ∈ C.

The point process X is a Cox process driven by Λ(u) = exp(β z(u)) c∈C k(u -c, ω)/κ (e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF] and we can verify that the intensity function of X is indeed

ρ(u; β) = exp(β z(u)).
One example of Neyman-Scott point process is the Thomas process where

k(u) = (2πω 2 ) -d/2 exp(-u 2 /(2ω 2 ))
is the density for N d (0, ω 2 I d ). Conditionally on a parent event at location c, children events are normally distributed around c. Smaller values of ω correspond to tighter clusters, and smaller values of κ correspond to fewer number of parents. The parameter vector ψ = (κ, ω) is referred to as the interaction parameter as it modulates the spatial interaction (or, dependence) among events.

Log Gaussian Cox process. Suppose that log Λ is a Gaussian random field. Given Λ, the point process X follows Poisson process. Then X is said to be a log Gaussian

Cox process driven by Λ [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]. If the random intensity function can be written as

log Λ(u) = β z(u) + φ(u) -σ 2 /2,
where φ is a zero-mean stationary Gaussian random field with covariance function [START_REF] Møller | Modern statistics for spatial point processes[END_REF][START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. The intensity function of this log Gaussian Cox process is indeed given by ρ(u; β) = exp(β z(u)).

c(u, v; ψ) = σ 2 R(v -u; ζ) which depends on parameter ψ = (σ 2 , ζ)
One example of correlation function is the exponential form (e.g. Waagepetersen and [START_REF] Plenge | Two-step estimation for inhomogeneous spatial point processes[END_REF])

R(v -u; ζ) = exp(-u -v /ζ), for ζ > 0.
Here, ψ = (σ 2 , ζ) constitutes the interaction parameter vector, where σ 2 is the variance and ζ is the correlation scale parameter.

Parametric intensity estimation

One of the standard ways to fit models to data is by maximizing the likelihood of the model for the data. While maximum likelihood method is feasible for parametric Poisson point process models (Section 3.3.1), computationally intensive Markov chain Monte Carlo (MCMC) methods are needed otherwise [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]. As MCMC methods are not yet straightforward to implement, estimating equations based on Campbell theorem have been developed (see e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Møller | Modern statistics for spatial point processes[END_REF][START_REF] Rasmus Plenge | Estimating functions for inhomogeneous spatial point processes with incomplete covariate data[END_REF][START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF][START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF]. We review the estimating equations derived from the Poisson likelihood in Section 3.3.2-3.3.3 and from the logistic regression likelihood in Section 3.3.4.

Maximum likelihood estimation

For an inhomogeneous Poisson point process with intensity function ρ parameterized by β, the likelihood function is Rathbun and Cressie (1994) showed that the maximum likelihood estimator is consistent, asymptotically normal and asymptotically efficient as the sample region goes to R d .

L(β) = u∈X∩D ρ(u; β) exp

Poisson likelihood

Let β 0 be the true parameter vector. By applying Campbell theorem (5.2) to the score function, i.e. the gradient vector of (β) denoted by (1) (β), we have Regarding the parameter ψ (see Section 3.2.2.2), Waagepetersen and [START_REF] Plenge | Two-step estimation for inhomogeneous spatial point processes[END_REF] studied a two-step procedure to estimate both β and ψ, and they proved that, under certain mixing conditions, the parameter estimates ( β, ψ) enjoy the properties of consistency and asymptotic normality.

E (1) (β) = E

Weighted Poisson likelihood

Although the estimating equation approach derived from the Poisson likelihood is simpler and faster to implement than maximum likelihood estimation, it potentially produces a less efficient estimate than that of maximum likelihood (Waagepetersen, 2007;

Guan and Shen, 2010) because information about interaction of events is ignored. To regain some lack of efficiency, [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] proposed a weighted Poisson log-likelihood function given by

(w; β) = u∈X∩D w(u) log ρ(u; β) - D w(u)ρ(u; β)du, (3.5)
where w(•) is a weight surface. By regarding (3.5), we see that a larger weight w(u) makes the observations in the infinitesimal region du more influent. By Campbell theorem, (1) (w; β) is still an unbiased estimating equation. In addition, [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] proved that, under some conditions, the parameter estimates are consistent and asymptotically normal. [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] showed that a weight surface w(•) that minimizes the trace of the asymptotic variance-covariance matrix of the estimates maximizing (3.5) can result in more efficient estimates than Poisson estimator. In particular, the proposed weight surface is

w(u) = {1 + ρ(u)f (u)} -1 , where f (u) = D {g( v -u ; ψ) -1}du and g(•)
is the pair correlation function. For a

Poisson point process, note that f (u) = 0 and hence w(u) = 1, which reduces to maximum likelihood estimation. For general point processes, the weight surface depends on both the intensity function and the pair correlation function, thus incorporates information on both inhomogeneity and dependence of the spatial point processes. When clustering is present so that g(v -u) > 1, then f (u) > 0 and hence the weight decreases with ρ(u). The weight surface can be achieved by setting ŵ(u

) = {1 + ρ(u) f (u)} -1 .
To get the estimate ρ(u), one uses parametric estimation considering ρ(u; β) with β is substituted by β given by Poisson estimates, that is, ρ(u; β) = ρ(u; β). Alternatively, ρ(u) can also be computed nonparametrically by kernel method. Furthermore, Guan and Shen (2010 [START_REF] Guan | Quasi-likelihood for spatial point processes[END_REF] extended the study by [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] and considered more complex estimating equations. Specifically, w(u)z(u) is replaced by a function h(u; β) in the derivative of (3.5) with respect to β. The procedure results in a slightly more efficient estimate than the one obtained from (3.5). However, the computational cost is more important and since we combine estimating equations and penalization methods (see Section 3.4.1), we have not considered this extension.

) suggessted to approximate f (u) by K(r) -πr 2 , where K(•) is the Ripley's K-function estimated by K(r) = = u,v∈X∩D I[ u -v ≤ r] ρ(u)ρ(v)|D ∩ D u-v | .

Logistic regression likelihood

Although the estimating equations discussed in Section 3.3.2 and 3.3.3 are unbiased, these methods do not, in general, produce unbiased estimator in practical implementations. [START_REF] Rasmus Plenge | Estimating functions for inhomogeneous spatial point processes with incomplete covariate data[END_REF] and [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] proposed another estimating function which is indeed close to the score of the Poisson log-likelihood but is able to obtain less biased estimator than Poisson estimates. In addition, their proposed estimating equation is in fact the derivative of the logistic regression likelihood.

Following [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF], we define the weighted logistic regression loglikelihood function by

(w; β) = u∈X∩D w(u) log ρ(u; β) δ(u) + ρ(u; β) - D w(u)δ(u) log ρ(u; β) + δ(u) δ(u) du, (3.6)
where δ(u) is a nonnegative real-valued function. Its role as well as an explanation of the name 'logistic method' will be explained further in Section 3.5.2. Note that the score of (3.6) is an unbiased estimating equation. [START_REF] Rasmus Plenge | Estimating functions for inhomogeneous spatial point processes with incomplete covariate data[END_REF] showed asymptotic normality for Poisson and certain clustered point processes for the estimator obtained from a similar procedure. Furthermore, the methodology and results were studied by [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] considering spatial Gibbs point processes.

To determine the optimal weight surface w(•) for logistic method, we follow Guan and Shen (2010) who minimized the trace of the asymptotic covariance matrix of the estimates. We obtain the weight surface defined by

w(u) = ρ(u) + δ(u) δ(u){1 + ρ(u)f (u)} ,
where ρ(u) and f (u) can be estimated as in Section 3.3.3.

Regularization techniques

This section discusses convex and non-convex regularization methods for spatial point process intensity estimation.

Methodology

Regularization techniques were introduced as alternatives to stepwise selection for variable selection and parameter estimation. In general, a regularization method attempts to maximize the penalized log-likelihood function (θ) -η p j=1 p λ j (|θ j |), where (θ)

is the log-likelihood function of θ, η is the number of observations, and p λ (θ) is a nonnegative penalty function parameterized by a real number λ ≥ 0.

Let (w; β) be either the weighted Poisson log-likelihood function (3.5) or the weighted logistic regression log-likelihood function (3.6). In a similar way, we define the penalized weighted log-likelihood function given by

Q(w; β) = (w; β) -|D| p j=1 p λ j (|β j |), (3.7)
where |D| is the volume of the observation domain, which plays the same role as the number of observations η in our setting, λ j is a nonnegative tuning parameter corresponding to β j for j = 1, . . . , p, and p λ is a penalty function described in details in the next section.

Penalty functions and regularization methods

For any λ ≥ 0, we say that p λ (•) :

R + → R is a penalty function if p λ is a nonnegative function with p λ (0) = 0. Examples of penalty function are the • 2 norm: p λ (θ) = 1 2 λθ 2 , • 1 norm: p λ (θ) = λθ, • Elastic net: for 0 < γ < 1, p λ (θ) = λ{γθ + 1 2 (1 -γ)θ 2 }, • SCAD: for any γ > 2, p λ (θ) =                  λθ if θ ≤ λ γλθ-1 2 (θ 2 +λ 2 ) γ-1 if λ ≤ θ ≤ γλ λ 2 (γ 2 -1) 2(γ-1) if θ ≥ γλ, • MC+: for any γ > 1, p λ (θ) =        λθ -θ 2 2γ if θ ≤ γλ 1 2 γλ 2 if θ ≥ γλ.
The first and second derivatives of the above functions are given by Table 3.1. It is to be noticed that p λ is not differentiable at θ = λ, γλ (resp. θ = γλ) for SCAD (resp.

for MC+) penalty.

Table 3.1: The first and the second derivatives of several penalty functions.

Penalty p λ (θ) p λ (θ) 2 λθ λ 1 λ 0 Elastic net λ{(1 -γ)θ + γ} λ(1 -γ) SCAD        λ if θ ≤ λ γλ-θ γ-1 if λ ≤ θ ≤ γλ 0 if θ ≥ γλ        0 if θ < λ -1 γ-1 if λ < θ < γλ 0 if θ > γλ MC+    λ -θ γ if θ ≤ γλ 0 if θ ≥ γλ    -1 γ if θ < γλ 0 if θ > γλ
As a first penalization technique to improve ordinary least squares, ridge regression (e.g. [START_REF] Arthur | Ridge regression. Encyclopedia of statistical sciences[END_REF] works by minimizing the residual sum of squares subject to a bound on the 2 norm of the coefficients. As a continuous shrinkage method, ridge regression achieves its better prediction through a bias-variance trade-off. Ridge can also be extended to fit generalized linear models. However, the ridge cannot reduce model complexity since it always keeps all the predictors in the model. Then, it was introduced a method called lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], where it employs 1 penalty to obtain variable selection and parameter estimation simultaneously. Despite lasso enjoys some attractive statistical properties, it has some limitations in some senses [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF][START_REF] Zou | Regularization and variable selection via the elastic net[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF][START_REF] Zhang | The sparsity and bias of the lasso selection in highdimensional linear regression[END_REF][START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF], making huge possibilities to develop other methods. In the scenario where there are high correlations among predictors, [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] proposed an elastic net technique which is a convex combination between 1 and 2 penalties. This method is particularly useful when the number of predictors is much larger than the number of observations since it can select or eliminate the strongly correlated predictors together.

The lasso procedure suffers from nonnegligible bias and does not satisfy an oracle property asymptotically [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF]. [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] and [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF], among others, introduced non-convex penalties to get around these drawbacks. The idea is to bridge the gap between 0 and 1 , by trying to keep unbiased the estimates of nonzero coefficients and by shrinking the less important variables to be exactly zero. The rationale behind the non-convex penalties such as SCAD and MC+ can also be understood by considering its first derivative (see Table 3.1). They start by applying the similar rate of penalization as the lasso, and then continuously relax that penalization until the rate of penalization drops to zero. However, employing nonconvex penalties in regression analysis, the main challenge is often in the minimization of the possible non-convex objective function when the non-convexity of the penalty is no longer dominated by the convexity of the likelihood function. This issue has been carefully studied. [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] proposed the local quadratic approximation (LQA). [START_REF] Zou | One-step sparse estimates in nonconcave penalized likelihood models[END_REF] proposed a local linear approximation (LLA) which yields an objective function that can be optimized using least angle regression (LARS) algorithm [START_REF] Efron | Least angle regression[END_REF]. Finally, [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF] and [START_REF] Mazumder | Sparsenet: Coordinate descent with nonconvex penalties[END_REF] investigated the application of coordinate descent algorithm to non-convex penalties.

Table 3.2: Details of some regularization methods.

Method p j=1 p λj (|β j |) Ridge p j=1 1 2 λβ 2 j Lasso p j=1 λ|β j | Enet * p j=1 λ{γ|β j | + 1 2 (1 -γ)β 2 j } AL * p j=1 λ j |β j | Aenet * p j=1 λ j {γ|β j | + 1 2 (1 -γ)β 2 j } SCAD p j=1 p λ (|β j |), with p λ (θ) =          λθ if (θ ≤ λ) γλθ-1 2 (θ 2 +λ 2 ) γ-1 if (λ ≤ θ ≤ γλ) λ 2 (γ 2 -1) 2(γ-1) if (θ ≥ γλ) MC+ p j=1 λ|β j | - β 2 j 2γ I(|β j | ≤ γλ) + 1 2 γλ 2 I(|β j | ≥ γλ)
* Enet, AL and Aenet, respectively, stand for elastic net, adaptive lasso and adaptive elastic net

In (3.7), it is worth emphasizing that we allow each direction to have a different regularization parameter. By doing this, the 1 and elastic net penalty functions are extended to the adaptive lasso (e.g. [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] and adaptive elastic net (e.g. [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF]. Table 3.2 details the regularization methods considered in this study.

Numerical methods

We present numerical aspects in this section. For nonregularized estimation, there are two approaches that we consider. Weighted Poisson regression is explained in Section 3.5.1, while logistic regression is reviewed in Section 3.5.2. Penalized estimation procedure is done by employing coordinate descent algorithm (Section 3.5.3). We separate the use of the convex and non-convex penalties in Section 3.5.3.1 and 3.5.3.2.

Weighted Poisson regression

Berman and Turner (1992) developed a numerical quadrature method to approximate maximum likelihood estimation for an inhomogeneous Poisson point process. They approximated the likelihood by a finite sum that had the same analytical form as the weighted likelihood of generalized linear model with Poisson response. This method was then extended to Gibbs point processes by [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns[END_REF]. Suppose

we approximate the integral term in (3.4) by Riemann sum approximation

D ρ(u; β)du ≈ M i v i ρ(u i ; β)
where u i , i = 1, . . . , M are points in D consisting of the m data points and M -m dummy points. The quadrature weights v i > 0 are such that i v i = |D|. To implement this method, the domain is firstly partitioned into M rectangular pixels of equal area, denoted by a. Then one dummy point is placed in the center of the pixel. Let ∆ i be an indicator whether the point is an event of point process (∆ i = 1) or a dummy point (∆ i = 0). Without loss of generality, let u i , . . . , u m be the observed events and u m+1 , . . . , u M be the dummy points. Thus, the Poisson log-likelihood function (3.4) can be approximated and rewritten as 

(β) ≈ M i v i {y i log ρ(u i ; β) -ρ(u i ; β)}, where y i = v -1 i ∆ i . ( 3 
≈ M i w i v i {y i log ρ(u i ; β) -ρ(u i ; β)}. (3.9)
where w i is the value of the weight surface at point i. The estimate ŵi is obtained as suggested by [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF]. The similarity beetween (3.8) and (3.9) allows us to compute the estimates using software for generalized linear model as well. This fact is in particular exploited in the ppm function in the spatstat R package [START_REF] Baddeley | Spatstat: An R package for analyzing spatial point pattens[END_REF][START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF] with option method="mpl". To make the presentation becomes more general, the number of dummy points is denoted by nd 2

for the next sections.

Logistic regression

To perform well, the Berman-Turner approximation often requires a quite large number of dummy points. Hence, fitting such generalized linear models can be computationally intensive, especially when dealing with a quite large number of points. When the unbiased estimating equations are approximated using deterministic numerical approximation as in Section 3.5.1, it does not always produce unbiased estimator. To achieve unbiased estimator, we estimate (3.6) by

(w; β) ≈ u∈X∩D w(u) log ρ(u; β) δ(u) + ρ(u; β) + u∈D∩D w(u) log δ(u) ρ(u; β) + δ(u) , (3.10)
where D is dummy point process independent of X and with intensity function δ. The form (3.10) is related to the estimating equation defined by Baddeley et al. (2014, eq. 7). Besides that, we consider this form since if we apply Campbell theorem to the last term of (3.10), we obtain

E u∈D∩D w(u) log δ(u) ρ(u; β) + δ(u) = D w(u)δ(u) log ρ(u; β) + δ(u) δ(u) du,
which is exactly what we have in the last term of (3.6). In addition, conditional on

X ∪ D, (3.10) is the weighted likelihood function for Bernoulli trials, y(u) = 1{u ∈ X} for u ∈ X ∪ D, with P{y(u) = 1} = ρ(u; β) δ(u) + ρ(u; β) = exp -log δ(u) + β z(u) 1 + exp -log δ(u) + β z(u) .
Precisely, (3.10) is a weighted logistic regression with offset termlog δ. Thus, parameter estimates can be straightforwardly obtained using standard software for generalized linear models. This approach is in fact provided in the spatstat package in R by calling the ppm function with option method="logi" [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF][START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF].

In spatstat, the dummy point process D generates nd 2 points in average in D from a Poisson, binomial, or stratified binomial point process. [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] suggested to choose δ(u) = 4m/|D|, where m is the number of points (so, nd 2 = 4m).

Furthermore, to determine δ, this option can be considered as a starting point for a data-driven approach (see [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF], for further details).

Coordinate descent algorithm

LARS algorithm [START_REF] Efron | Least angle regression[END_REF]) is a remarkably efficient method for computing an entire path of lasso solutions. For linear models, the computational cost is of order O(M p 2 ), which is the same order as a least squares fit. Coordinate descent algorithm [START_REF] Friedman | Pathwise coordinate optimization[END_REF][START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] appears to be a more competitive algorithm for computing the regularization paths by costs O(M p) operations. Therefore we adopt cyclical coordinate descent methods, which can work really fast on large datasets and can take advantage of sparsity. Coordinate descent algorithms optimize a target function with respect to a single parameter at a time, iteratively cycling through all parameters until convergence criterion is reached. We detail this for some convex and non-convex penalty functions in the next two sections. Here, we only present the coordinate descent algorithm for fitting generalized weighted Poisson regression. A similar approach is used to fit penalized weighted logistic regression.

Convex penalty functions

Since (w; β) given by (3.9) is a concave function of the parameters, the Newton-Raphson algorithm used to maximize the penalized log-likelihood function can be done using the iteratively reweighted least squares (IRLS) method. If the current estimate of the parameters is β, we construct a quadratic approximation of the weighted Poisson log-likelihood function using Taylor's expansion:

(w; β) ≈ Q (w; β) = - 1 2M M i ν i (y * i -z i β) 2 + C( β), (3.11) 
where C( β) is a constant, y * i are the working response values and ν i are the weights,

ν i = w i v i exp(z i β) y * i = z i β + y i -exp(z i β) exp(z i β) .
Regularized Poisson linear model works by firstly identifying a decreasing sequence of λ ∈ [λ min , λ max ], for which starting with minimum value of λ max such that the entire vector β = 0. For each value of λ, an outer loop is created to compute Q (w; β) at β.

Secondly, a coordinate descent method is applied to solve a penalized weighted least squares problem

min β∈R p Ω(β) = min β∈R p {-Q (w; β) + p j=1 p λ j (|β j |)}.
(3.12)

The coordinate descent method is explained as follows. Suppose we have the estimate βl for l = j, l, j = 1, . . . , p. The method consists in partially optimizing (3.12)

with respect to β j , that is min [START_REF] Friedman | Pathwise coordinate optimization[END_REF] have provided the form of the coordinate-wise update for penalized regression using several penalties such as nonnegative garrote [START_REF] Breiman | Better subset regression using the nonnegative garrote[END_REF], lasso, elastic net, fused lasso [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF], group lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], Berhu penalty [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF], and LAD-lasso (Wang et al., 2007a). For instance, the coordinate-wise update for the elastic net, which embraces the ridge and lasso regularization by setting respectively γ to 0 or 1, is

β j Ω( β1 , . . . , βj-1 , β j , βj+1 , . . . , βp ).
βj ← S M i=1 ν j z ij (y i - ỹ(j) i ), λγ M i=1 ν j z 2 ij + λ(1 -γ) , (3.13)
where ỹ(j) i = β0 + l =j z il βl is the fitted value excluding the contribution from covariate z ij , and S(z, λ) is the soft-thresholding operator with value

S(z, λ) = sign(z)(|z| -λ) + =                  z -λ if z > 0 and λ < |z| z + λ if z < 0 and λ < |z| 0 if λ ≥ |z|.
(3.14)

The update (3.13) is repeated for j = 1, . . . , p until convergence. Coordinate descent algorithm for several convex penalties is implemented in the R package glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. For (3.13), we can set γ = 0 to implement ridge and γ = 1 to lasso, while we set 0 < γ < 1 to apply elastic net regularization. For adaptive lasso, we follow [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], take γ = 1 and replace λ by λ j = λ/| βj | τ , where β is an initial estimate, say β(ols) or β(ridge), and τ is a positive tuning parameter. To avoid the computational evaluation for choosing τ , we follow Zou (2006, Section 3.4) and Wasserman and Roeder (2009) who also considered τ = 1, so we choose

λ j = λ/| βj (ridge)|,
where β(ridge) is the estimates obtained from ridge regression. Implementing adaptive elastic net follows along similar lines.

Non-convex penalty functions

Breheny and Huang ( 2011) have investigated the application of coordinate descent algorithm to fit penalized generalized linear model using SCAD and MC+, for which the penalty is non-convex. [START_REF] Mazumder | Sparsenet: Coordinate descent with nonconvex penalties[END_REF] also studied the coordinate-wise optimization algorithm in linear models considering more general non-convex penalties. [START_REF] Mazumder | Sparsenet: Coordinate descent with nonconvex penalties[END_REF] concluded that, for a known current estimate θ, the uni-variate penalized least squares function Q u (θ) = 1 2 (θθ) 2 + p λ (|θ|) should be convex to ensure that the coordinate-wise procedure converges to a stationary point. [START_REF] Mazumder | Sparsenet: Coordinate descent with nonconvex penalties[END_REF] found that this turns out to be the case for SCAD and MC+ penalty, but it cannot be satisfied by bridge (or power) penalty and some cases of log-penalty. [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF] derived the solution of coordinate descent algorithm for SCAD and MC+ in generalized linear models cases, and it is implemented in the ncvreg package of R. Let βl be a vector containing estimates βl for l = j, l, j = 1, . . . , p, and we wish to partially optimize (3.12) with respect to

β j . If we define gj = M i=1 ν j z ij (y i - ỹ(j) i ) and ηj = M i=1 ν j z 2 ij , the coordinate-wise update for SCAD is βj ←                  S(g j ,λ) ηj if |g j | ≤ λ(η j + 1) S(g j ,γλ/(γ-1)) ηj -1/(γ-1) if λ(η j + 1) ≤ |g j | ≤ ηj λγ gj ηj if |g j | ≥ ηj λγ,
for any γ > max j (1 + 1/η j ). Then, for γ > max j (1/η j ) and the same definition of gj and ηj , the coordinate-wise update for MC+ is βj

←        S(g j ,λ) ηj -1/γ if |g j | ≤ ηj λγ gj ηj if |g j | ≥ ηj λγ,
where S(z, λ) is the soft-thresholding operator given by (3.14).

Selection of regularization or tuning parameter

It is worth noticing that coordinate descent procedures (and other computation procedures computing the penalized likelihood estimates) rely on the tuning parameter λ so that the choice of λ is also becoming an important task. The estimation using a large value of λ tends to have smaller variance but larger biases, whereas the estimation using a small value of λ leads to have zero biases but larger variance. The trade-off between the biases and the variances yields an optimal choice of λ [START_REF] Fan | A selective overview of variable selection in high dimensional feature space[END_REF].

To select λ, it is reasonable to identify a range of λ values extending from a maximum value of λ for which all penalized coefficients are zero to λ = 0 (e.g. [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF][START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF]. After that, we select a λ value which optimizes some criterion. By fixing a path of λ ≥ 0, we select the tuning parameter λ which minimizes WQBIC(λ), a weighted version of the BIC criterion, defined by

WQBIC(λ) = -2 (w; β(λ)) + s(λ) log |D|,
where s(λ) = p j=1 I{ βj (λ) = 0} is the number of selected covariates with nonzero regression coefficients and |D| is the observation volume which represents the sample size. For linear regression models, Y = X β + , Wang et al. (2007b) proposed BICtype criterion for choosing λ by

BIC(λ) = log Y -X β(λ) 2 η + 1 η log(η)DF(λ),
where η is the number of observations and DF(λ) is the degree of freedom. This criterion is consistent, meaning that, it selects the correct model with probability approaching 1 in large samples when a set of candidate models contains the true model.

Their findings is in line with the study of [START_REF] Zhang | Regularization parameter selections via generalized information criterion[END_REF] for which the criterion was presented in more general way, called generalized information criterion (GIC). The criterion WQBIC is the specific form of GIC proposed by [START_REF] Zhang | Regularization parameter selections via generalized information criterion[END_REF].

The selection of γ for SCAD and MC+ is another task, but we fix γ = 3.7 for SCAD and γ = 3 for MC+, following [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] and [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF] respectively, to avoid more complexities.

Asymptotic theory

In this section, we present the asymptotic results for the regularized weighted Poisson 

Notation and conditions

We recall the classical definition of strong mixing coefficients adapted to spatial point processes (e.g. [START_REF] Dimitris N Politis | Large sample inference for irregularly spaced dependent observations based on subsampling[END_REF]: for k, l ∈ N ∪ {∞} and q ≥ 1, define

α k,l (q) = sup{|P(A ∩ B) -P(A)P(B)| : A ∈ F (Λ 1 ), B ∈ F (Λ 2 ), Λ 1 ∈ B(R d ), Λ 2 ∈ B(R d ), |Λ 1 | ≤ k, |Λ 2 | ≤ l, d(Λ 1 , Λ 2 ) ≥ q}, (3.15)
where F is the σ-algebra generated by (C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2 + t, the product density ρ (k) exists and satisfies ρ (k) < ∞.

X∩Λ i , i = 1, 2, d(Λ 1 , Λ 2 )
(C.5) For the strong mixing coefficients (3.15), we assume that there exists some t > d(2 + t)/t such that α 2,∞ (q) = O(q -t).

(C.6) There exists a p × p positive definite matrix I 0 such that for all sufficiently large

n, |D n | -1 {B n (w; β 0 ) + C n (w; β 0 )} ≥ I 0 .
(C.7) There exists a p × p positive definite matrix I 0 such that for all sufficiently large n, we have

|D n | -1 A n (w; β 0 ) ≥ I 0 .
(C.8) The penalty function p λ (•) is nonnegative on R+, continuously differentiable on R + \ {0} with derivative p λ assumed to be a Lipschitz function on R + \ {0}. Furthermore, given (λ n,j ) n≥1 , for j = 1, . . . , s, we assume that there exists (r n,j ) n≥1 , where |D n | 1/2 rn,j → ∞ as n → ∞, such that, for n sufficiently large, p λ n,j is thrice continuously differentiable in the ball centered at |β 0j | with radius rn,j and we assume that the third derivative is uniformly bounded.

Under the condition (C.8), we define the sequences a n , b n and c n by

a n = max j=1,...s |p λ n,j (|β 0j |)|, (3.16) b n = inf j=s+1,...,p inf |θ|≤ n θ =0 p λ n,j (θ), for n = K 1 |D n | -1/2 , (3.17) c n = max j=1,...s |p λ n,j (|β 0j |)|. (3.18)
These sequences a n , b n and c n , detailed in Table 3.3 for the different methods considered in this chapter, play a central role in our results. Even if this will be discussed later in Section 3.6.3, we specify right now that we require that

a n |D n | 1/2 → 0, b n |D n | 1/2 → ∞
and c n → 0. 

{λ n,j (1 -γ)|β 0j | + γ } γ min j=s+1,...p {λ n,j } (1 -γ) max j=1,...,s {λ n,j } SCAD 0 * λ n ** 0 * MC+ 0 * λ n -K1 γ|Dn| 1/2 ** 0 * * if λ n → 0 as n → ∞ ** if |D n | 1/2 λ n → ∞ as n → ∞

Main results

We state our main results here. Proofs are relegated to Sections 3.11.1-3.11.3.

We first show in Theorem 3.6.1 that the penalized weighted Poisson likelihood estimator converges in probability and exhibits its rate of convergence. 

β 0 = O P (|D n | -1/2 + a n ).
This implies that, if 

a n = O(|D n | -1/2 )
a n |D n | 1/2 → 0, b n |D n | 1/2 → ∞ and c n → 0 as n → ∞, the root-|D n | consistent local maximizers β = ( β 1 , β 2 ) in Theorem 1 satisfy: (i) Sparsity: P( β2 = 0) → 1 as n → ∞, (ii) Asymptotic Normality: |D n | 1/2 Σ n (w; β 0 ) -1/2 ( β1 -β 01 ) d - → N (0, I s ),
where 

Σ n (w; β 0 ) =|D n |{A n,11 (w; β 0 ) + |D n |Π n } -1 {B n,11 (w; β 0 ) + C n,11 (w; β 0 )} {A n,11 (w; β 0 ) + |D n |Π n } -1 , (3.19) Π n =diag{p λ n,
(w; β 0 )) is the s × s top-left corner of A n (w; β 0 ) (resp. B n (w; β 0 ), C n (w; β 0 )).
As a consequence, Σ n (w; β 0 ) is the asymptotic covariance matrix of β1 . Note that

Σ n (w; β 0 ) -1/2 is the inverse of Σ n (w; β 0 ) 1/2 , where Σ n (w; β 0 ) 1/2 is any square matrix with Σ n (w; β 0 ) 1/2 Σ n (w; β 0 ) 1/2 = Σ n (w; β 0 ).
Remark 3.6.1. For lasso and adaptive lasso, Π n = 0. For other penalties, since Remark 3.6.3. We want to highlight here the main theoretical differences with the work by [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF]. First, the methodology and results are available for the logistic regression likelihood. Second, we consider very general penalty function while [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF] only considered the adaptive lasso method. Third, we do not assume, as in [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF], that Combination of conditions (C.1)-(C.6) are used to establish a central limit theorem for |D n | -1/2 (1) n (w; β 0 ) using a general central limit theorem for triangular arrays of nonstationary random fields obtained by [START_REF] Karácsony | A central limit theorem for mixing random fields[END_REF], which is an extension from [START_REF] Bolthausen | On the central limit theorem for stationary mixing random fields[END_REF], then later extended to nonstationary random fields by [START_REF] Guyon | Random fields on a network: modeling, statistics, and applications[END_REF]. As pointed out by [START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF], condition (C.6) is a spatial average assumption like when establishing asymptotic normality of ordinary least square estimators for linear models. This condition is also useful to make sure that the matrix

c n = o(1), then Π n = o(1). Since A n,11 (w; β 0 ) = O(|D n |) from
|D n | -1 M n → M as n → ∞ (where M n is A n , B n , or C n ),

Discussion of the conditions

|D n | -1 {B n (w; β 0 ) + C n (w; β 0 )} is invertible. Conditions (C.6)-(C.7) ensure that the matrix Σ n (w; β 0 ) is invertible for sufficiently large n. Conditions (C.1)-(C.6)
are discussed in details for several models by [START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. They are satisfied for a large class of intensity functions and a large class of models including Poisson and Cox processes discussed in Section 3.2.2. Condition (C.8) controls the higher order terms in Taylor expansion of the penalty function. Roughly speaking, we ask the penalty function to be at least Lipschitz and thrice differentiable in a neighborhood of the true parameter vector. As it is, the condition looks technical, however, it is obviously satisfied for ridge, lasso, elastic net (and the adaptive versions). According to the choice of λ n , it is satisfied for SCAD and MC+ when |β 0j |, for j = 1, . . . , s, is not equal to γλ n and/or λ n . Theorem 3.6.2 requires the conditions For the ridge regularization method, b n = 0, preventing from applying Theorem 3.6.2 for this penalty. For lasso and elastic net,

a n |D n | 1/2 → 0, b n |D n | 1/2 → ∞
a n = K 2 b n for some constant K 2 > 0 (K 2 =1 for lasso). The two conditions a n |D n | 1/2 → 0 and b n |D n | 1/2 → ∞
as n → ∞ cannot be satisfied simultaneously. This is different for the adaptive versions where a compromise can be found by adjusting the λ n,j 's, as well as the two non-convex penalties SCAD and MC+, for which λ n can be adjusted. For the regularization methods considered in this study, the condition c n → 0 is implied by the condition a n |D n | 1/2 → 0 as n → ∞.

Simulation study

We conduct a simulation study with three different scenarios, described in Section 3.7.1, to compare the estimates of the regularized Poisson likelihood (PL) and that of the regularized weighted Poisson likelihood (WPL). We also want to explore the behaviour of the estimates using different regularization methods. Empirical findings are presented in Section 3.7.2. Furthermore, we compare, in Section 3.7.3, the estimates of the regularized (un)weighted logistic likelihood and the ones of the regularized (un)weighted Poisson likelihood.

Simulation set-up

The setting is quite similar to that of [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF] and [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF].

The spatial domain is D = [0, 1000] × [0, 500]. We center and scale the 201 × 101 pixel images of elevation (x 1 ) and gradient of elevation (x 2 ) contained in the bei datasets of spatstat library in R (R Core Team, 2016), and use them as two true covariates. In addition, we create three different scenarios to define extra covariates: Scenario 1. We generate eighteen 201×101 pixel images of covariates as standard Gaussian white noise and denote them by x 3 , . . . , x 20 . We define z(u) = x(u) = {x 1 (u), . . . , x 20 (u)} as the covariates vector. The regression coefficients for z 3 , . . . , z 20 are set to zero. Scenario 2. First, we generate eighteen 201 × 101 pixel images of covariates as in the scenario 1. Second, we transform them, together with x 1 and x 2 , to have multicollinearity. Third, we define z(u) = V x(u), where x(u) = {x 1 (u), . . . , x 20 (u)} . More precisely, V is such that Ω = V V, and

(Ω) ij = (Ω) ji = 0.7 |i-j| for i, j = 1, . . . , 20, except (Ω) 12 = (Ω) 21 = 0, to preserve the correlation between x 1 and x 2 . The regression coefficients for z 3 , . . . , z 20 are set to zero. Scenario 3. We consider a more complex situation. We center and scale the 13 soil nutrients covariates obtained from the study in tropical forest of Barro Colorado Island (BCI) in central Panama (see [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF], and use them as the extra covariates. Together with x 1 and x 2 , we keep the structure of the covariance matrix to preserve the complexity of the situation. In this setting, we have z(u) = x(u) = {x 1 (u), . . . , x 15 (u)} .

The regression coefficients for z 3 , . . . , z 15 are set to zero.

The different maps of the covariates obtained from scenarios 2 and 3 are depicted in Section 3.10. Except for z 3 which has high correlation with z 2 , the extra covariates obtained from scenario 2 tend to have a constant value (Figure 3.3). This is completely different from the ones obtained from scenario 3 (Figure 3.4).

The mean number of points over the domain D, µ, is chosen to be 1600. We set the true intensity function to be log ρ(u;

β 0 ) = {β 0 + β 1 z 1 (u) + β 2 z 2 (u)}, where β 1 = 2
represents a relatively large effect of elevation, β 2 = 0.75 reflects a relatively small effect of gradient, and β 0 is selected such that each realization has 1600 points in average. Furthermore, we erode regularly the domain D such that, with the same intensity function, the mean number of points over the new domain D R becomes 400. The erosion is used to observe the convergence of the procedure as the observation domain expands. We consider the default number of dummy points for the Poisson likelihood, denoted by nd 2 , as suggested in the spatstat R package, i.e. nd 2 ≈ 4m, where m is the number of points. With these scenarios, we simulate 2000 spatial point patterns from a Thomas point process using the rThomas function in the spatstat package. We also consider two different κ parameters (κ = 5 × 10 -4 , κ = 5 × 10 -5 ) as different levels of spatial interaction and let ω = 20. For each of the four combinations of κ and µ, we fit the intensity to the simulated point pattern realizations. We also fit the oracle model which only uses the two true covariates.

All models are fitted using modified internal function in spatstat [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF], glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], and ncvreg [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF]. A modification of the ncvreg R package is required to include the penalized weighted Poisson and logistic likelihood methods.

Simulation results

To better understand the behaviour of Thomas processes designed in this study, Figure Tables 3.4 and 3.5 present the selection properties of the estimates using the penalized PL and the penalized WPL methods. Similarly to [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF], the indices we consider are the true positive rate (TPR), the false positive rate (FPR), and the positive predictive value (PPV). TPR corresponds to the ratio of the selected true covariates over the number of true covariates, while FPR corresponds to the ratio of the selected noisy covariates over the number of noisy covariates. TPR explains how the model can correctly select both z 1 and z 2 . Finally, FPR investigates how the model uncorrectly select among z 3 to z p (p = 20 for scenarios 1 and 2 and p = 15 for scenario 3). PPV corresponds to the ratio of the selected true covariates over Generally, for both the penalized PL and the penalized WPL methods, the best selection properties are obtained for a larger value of κ which shows weaker spatial dependence. For a more clustered one, indicated by a smaller value of κ, it seems more difficult to select the true covariates. As µ increases from 400 (Table 3.4) to 1600 (Table 3.5), the TPR tends to improve, so the model can select both z 1 and z 2 more frequently. Ridge, lasso, and elastic net are the regularization methods that cannot satisfy our theorems. It is firstly emphasized that all covariates are always selected by the ridge so that the rates are never changed whatever method used. For the penalized PL with lasso and elastic net regularization, it is shown that they tend to have quite large value of FPR, meaning that they wrongly keep the noisy covariates more frequently. When the penalized WPL is applied, we gain smaller FPR, but we suffer from smaller TPR at the same time. This smaller TPR actually comes from the unselection of z 2 which has smaller coefficient than that of z 1 .

When we apply adaptive lasso, adaptive elastic net, SCAD, and MC+, we achieve better performance, especially for FPR which is closer to zero which automatically improves the PPV. Adaptive elastic net (resp. elastic net) has slightly larger FPR than adaptive lasso (resp. lasso). Among all regularization methods considered in this chapter, adaptive lasso seems to outperform the other ones.

Considering scenarios 1 and 2, we observe best selection properties for the penalized PL combined with adaptive lasso. As the design is getting more complex for scenario 3, applying the penalized PL suffers from much larger FPR, indicating that this method may not be able to overcome the complicated situation. However, when we use the penalized WPL, the properties seem to be more stable for the different designs of simulation study. One more advantage when considering the penalized WPL is that we can remove almost all extra covariates. It is worth noticing that we may suffer from smaller TPR when we apply the penalized WPL, but we lose the only less informative covariates. From Tables 3.4 and 3.5, when we are faced with complex situation, we would recommend the use of the penalized WPL method with adaptive lasso penalty if the focus is on selection properties. Otherwise, the use of the penalized PL combined with adaptive lasso penalty is more preferable.

Tables 3.6 and 3.7 give the prediction properties of the estimates in terms of bi- 

=   p j=1 { Ê( βj ) -β j } 2   1 2 , SD =   p j=1 σ2 j   1 2 , RMSE =   p j=1 Ê( βj -β j ) 2   1 2
, where Ê( βj ) and σ2 j are respectively the empirical mean and variance of the estimates βj , for j = 1, . . . , p, where p = 20 for scenarios 1 and 2, and p = 15 for scenario 3.

In general, the properties improve with larger value of κ and µ due to weaker spatial dependence and larger sample size. For the oracle model where the model contains only z 1 and z 2 , the WPL estimates are more efficient than the PL estimates, particularly in the more clustered case, agreeing with the findings by [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF].

When the regularization methods are applied, the bias increases in general, especially when we consider the penalized WPL method. The regularized WPL has a larger bias since this method does not select z 2 much more frequently. Furthermore, weighted method seems to introduce extra bias, even though the regularization is not considered as in the oracle model. For a low clustered process, the SD using the penalized WPL is similar to that of the penalized PL which may be because of the weaker dependence represented by larger κ, making weight surface w(•) closer to 1. However, a larger RMSE is obtained from the penalized WPL. When we observe the more clustered process, we obtain smaller SD using the penalized WPL which explains why in some cases (mainly scenario 3) the RMSE gets smaller.

For the ridge method, the bias is closest to that of the oracle model, but it has the largest SD. Among the regularization methods, the adaptive lasso method has the best performance in terms of prediction.

Considering scenarios 1 and 2, we obtain best properties when we apply the penalized PL with adaptive lasso penalty. As the design is getting much more complex for scenario 3, when we use the penalized PL with adaptive lasso, the SD is doubled and even quadrupled due to the overselection of many unimportant covariates. In particular, for the more clustered process, the better properties are even obtained by applying the regularized WPL combined with adaptive lasso. From Tables 3.6 and 3.7, when the focus is on prediction properties, we would recommend to apply the penalized WPL combined with adaptive lasso penalty when the observed point pattern is very clustered and when covariates have a complex stucture of covariance matrix. Otherwise, the use of the penalized PL combined with adaptive lasso penalty is more favorable.

Our recommendations in terms of prediction support as what we recommend in terms of selection.

Logistic regression

Our concern here is to compare the estimates of the penalized (un)weighted logistic likelihood to that of the penalized (un)weighted Poisson likelihood with different number of dummy points. We remind that the number of dummy points comes up when we discretize the integral terms in (3.5) and in (3.6). In the following, to ease the presentation, we use the term Poisson estimates (resp. logistic estimates) for parameter estimates obtained using the regularized Poisson likelihood (resp. the regularized logistic regression likelihood).

Table 3.8: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of Thomas processes on the domain D (µ = 1600) for κ = 5 × 10 -5 , for two different scenarios, and for three different numbers of dummy points. Different estimating equations are considered, the regularized (un)weighted Poisson and (un)weighted logistic regression likelihoods, employing adaptive lasso regularization method. different situations: (a) nd 2 < m, (b) nd 2 ≈ m, and (c) nd 2 > m, where m is the number of points. In the following, m ≈ 1600 and nd 2 = 400, 1600, and 6400. Note that the choice by default from the Poisson likelihood in spatstat corresponds to case (c). [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] showed that for datasets with very large number of points and for very structured point processes, the logistic likelihood method is clearly preferable as it requires a smaller number of dummy points to perform quickly and efficiently. We want to investigate a similar comparison when these methods are regularized.

We only repeat the results for κ = 5 × 10 -5 and µ = 1600, and for scenarios 2 and 3. We use the same selection and prediction indices examined in Section 3.7.2 and consider only the adaptive lasso method.

Table 3.8 presents selection properties for the Poisson and logistic likelihoods with adaptive lasso regularization. For unweighted versions of the procedure, the regularized logistic method outperforms the regularized Poisson method when nd = 20, i.e. when the number of dummy points is much smaller than the number of points. When nd 2 ≈ m or nd 2 > m, the methods tend to have similar performances. When we consider weighted versions of the regularized logistic and Poisson likelihoods, the results

do not change that much with nd and the regularized Poisson likelihood method slightly outperforms the regularized logistic likelihood method. In addition, for scenario 3 which considers a more complex situation, the methods tend to select the noisy covariates much more frequently.

Empirical biases, standard deviation and square root of mean squared errors are presented in Table 3.9. We include all empirical results for the standard Poisson and logistic estimates (i.e. no regularization is considered). Let us first consider the unweighted methods with no regularization. The logistic method clearly has smaller bias, especially when nd = 20, which explains why in most situations the RMSE is smaller.

However, for the weighted methods, although the logistic method has smaller bias in general, it produces much larger SD, leading to larger RMSE for all cases. When we compare the weighted and the unweighted methods for logistic estimates, in general, not only do we fail to reduce the SD, but we also have larger bias. When the adaptive lasso regularization is considered, combined with the unweighted methods, we can preserve the bias in general and simultaneously improve the SD, and hence improve the RMSE. The logistic likelihood method slightly outperforms the Poisson likelihood method. When the weighted methods are considered, we obtain smaller SD, but we have larger bias. For weighted versions of the Poisson and logistic likelihoods, the results do not change that much with nd and the weighted Poisson method slightly outperforms the weighted logistic method. From Tables 3.8 and 3.9, when the number of dummy points can be chosen as nd 2 ≈ m or nd 2 > m, we would recommend to apply the Poisson likelihood method. When the number of dummy points should be chosen as nd 2 < m, the logistic likelihood method is more favorable. Our recommendations regarding whether weighted or unweighted methods follow the ones as in Section 3.7.2.

Application to forestry datasets

In a 50-hectare region (D = 1, 000m × 500m) of the tropical moist forest of Barro Colorado Island (BCI) in central Panama, censuses have been carried out where all freestanding woody stems at least 10 mm diameter at breast height were identified, tagged, and mapped, resulting in maps of over 350,000 individual trees with more than 300 species (see [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF]. It is of interest to know how the very high number of different tree species continues to coexist, profiting from different habitats determined by e.g. topography or soil properties (see e.g. Waagepetersen,

2007; Waagepetersen and [START_REF] Plenge | Two-step estimation for inhomogeneous spatial point processes[END_REF]. In particular, the selection of covariates among topological attributes and soil minerals as well as the estimation of their coefficients are becoming our most concern. We apply the regularized (un)weighted Poisson and the logistic likelihoods, combined with adaptive lasso regularization to select and estimate parameters. Since we do not deal with datasets which have very large number of points, we can set the default number of dummy points for Poisson likelihood as in the spatstat package, i.e. the number of dummy points can be chosen to be larger than the number of points, to perform quickly and efficiently. It is worth emphasizing that we center and scale the 15 covariates to observe which one has the largest effect on the intensity. The results are presented in Table 3.10: 12 covariates for the Poisson likelihood and 11 for the lo-gistic method are selected out of the 15 covariates using the unweighted methods while only 5 covariates (both for the Poisson and logistic methods) are selected using the weighted versions. The unweighted methods tend to overfit the model by overselecting unimportant covariates.

The weighted methods tend to keep out the uninformative covariates. Both Poisson and logistic estimates own similar selection and estimation results. First, we find some differences on estimation between the unweighted and the weighted methods, especially for slope and Manganese (Mn), for which the weighted methods have approximately two times larger estimators. Second, we may loose some nonzero covariates when we apply the weighted methods, even though it is only for the covariates which have relatively small coefficient. Boron (B) has high correlation with many of the other covariates, particularly with those which are not selected. This is possibly why Boron, which is selected and may have nonnegligible coefficient in the unweighted methods, is not chosen in the model. This may explain why the weighted methods introduce extra biases. However, since the situation appears to be quite close to the scenario 3 from the simulation study, the weighted methods are more favorable in terms of both selection and prediction.

In this application, we do not face any computational problem. Nevertheless, if we have to model a species of trees with much more points, the default value for nd will lead to numerical problems. In such a case, the logistic likelihood would be a good alternative.

These results suggest that BPL trees favor to live in areas of higher elevation and slope. This result is different from the findings by Waagepetersen (2007) and [START_REF] Guan | A thinned block bootstrap variance estimation procedure for inhomogeneous spatial point patterns[END_REF] which concluded based on standard error estimation that BPL trees do not really prefer either high or low altitudes. However, we have the same conclusion with the analysis by [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] and Thurman et al. ( 2015) that BPL trees prefer to live on higher altitudes. Further, higher levels of Manganese (Mn) and lower levels of both Phosporus (P) and Zinc (Zn) concentrations in soil are associated with higher appearance of BPL trees.

Conclusion and discussion

We develop regularized versions of estimating equations based on Campbell theorem derived from the Poisson and the logistic likelihoods. Our procedure is able to estimate intensity function of spatial point processes, when the intensity is a function of many covariates and has a log-linear form. Furthermore, our procedure is also generally easy to implement in R since we need to combine spatstat package with glmnet and ncvreg packages. We study the asymptotic properties of both regularized weighted Poisson and logistic estimates in terms of consistency, sparsity, and normality distribution. We find that, among the regularization methods considered in this work, adaptive lasso, adaptive elastic net, SCAD, and MC+ are the methods that can satisfy our theorems.

We carry out some scenarios in the simulation study to observe selection and prediction properties of the estimates. We compare the penalized Poisson likelihood (PL)

and the penalized weighted Poisson likelihood (WPL) with different penalty functions.

From the results, when we deal with covariates having a complex covariance matrix and when the point pattern looks quite clustered, we recommend to apply the penalized WPL combined with adaptive lasso regularization. Otherwise, the regularized PL with adaptive lasso is more preferable. The further and more careful investigation to choose the tuning parameters may be needed to improve the selection properties. We note the bias increases quite significantly when the regularized WPL is applied. When the penalized WPL is considered, a two-step procedure may be needed to improve the prediction properties: (1) use the penalized WPL combined with adaptive lasso to chose the covariates, then (2) use the selected covariates to obtain the estimates. This post-selection inference procedure has not been investigated in this study.

We also compare the estimates obtained from the Poisson and the logistic likelihoods. When the number of dummy points can be chosen to be either similar to or larger than the number of points, we recommend the use of the Poisson likelihood method. Nevertheless, when the number of dummy points should be chosen to be smaller than the number of points, the logistic method is more favorable.

A further work would consist in studying the situation when the number of the covariates is much larger than the sample size. In such a situation, the coordinate descent algorithm used in this study may cause some numerical troubles. The Dantzig selector procedure introduced by Candes and Tao ( 2007) might be a good alternative as the implementaion for linear models (and for generalized linear models) results in a linear programming. It would be interesting to bring this approach to spatial point process setting.

Maps of covariates

In this section, we present the maps of covariates used in the simulation studies (scenarios 2 and refsce3) and in the application. 

Proofs of the main results

Auxiliary Lemma

The following result is used in the proof of Theorems 3.6.1-3.6.2. Throughout the proofs, the notation X n = O P (x n ) or X n = o P (x n ) for a random vector X n and a sequence of real numbers x n means that X n = O P (x n ) and X n = o P (x n ). In the same way for a vector V n or a squared matrix M n , the notation V n = O(x n ) and

M n = O(x n ) mean that V n = O(x n ) and M n = O(x n ).
Lemma 3.11.1. Under the conditions (C.1)-(C.6), the following convergence holds in distribution as n → ∞ {B n (w;

β 0 ) + C n (w; β 0 )} -1/2 (1) n (w; β 0 ) d - → N (0, I p ). (3.21) Moreover as n → ∞, |D n | -1 2 (1) n (w; β 0 ) = O P (1). (3.22)
Proof. Let us first note that using Campbell Theorems (5.2)-( 5.3)

Var[ (1) n (w; β 0 )] = B n (w; β 0 ) + C n (w; β 0 ).
The proof of (3.21) follows [START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. Let C i = i + (-1/2, 1/2] d be the unit box centered at i ∈ Z d and define

I n = {i ∈ Z d , C i ∩ D n = ∅}. Set D n = i∈In C i,n , where C i,n = C i ∩ D n . We have (1) n (w; β 0 ) = i∈In Y i,n
where

Y i,n = u∈X∩C i,n w(u)z(u) - C i,n
w(u)z(u) exp(β 0 z(u))du. 

For any

{B n (w; β 0 ) + C n (w; β 0 )} -1/2 (1) n (w; β 0 ) = O P (1)
as n → ∞. The second result (3.22) is deduced from condition (C.6) which in particular implies that

|D n | 1/2 {B n (w; β 0 ) + C n (w; β 0 )} -1/2 = O(1).

Proof of Theorem 3.6.1

In the proof of this result and the following ones, the notation κ stands for a generic constant which may vary from line to line. In particular this constant is independent of n, β 0 and k.

Proof. Let d n = |D n | -1/2 + a n , and k = {k 1 , k 2 , . . . , k p } ∈ R p . We remind the reader that the estimate of β 0 is defined as the maximum of the function Q (given by (3.7)) over Θ, an open convex bounded set of R p . For any k such that k ≤ K < ∞, β 0 + d n k ∈ Θ for n sufficiently large. Assume this is valid in the following. To prove Theorem 3.6.1, we follow the main argument by [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] and aim at proving that for any given > 0, there exists K > 0 such that for n sufficiently large

P sup k =K ∆ n (k) > 0 ≤ , where ∆ n (k) = Q(w; β 0 + d n k) -Q(w; β 0 ). (3.24)
Equation (3.24) will imply that with probability at least 1 -, there exists a local maximum in the ball {β 0 + d n k : k ≤ K}, and therefore a local maximizer β such that β -

β 0 = O P (d n ). We decompose ∆ n (k) as ∆ n (k) = T 1 + T 2 where T 1 = n (w; β 0 + d n k) -n (w; β 0 ) T 2 =|D n | p j=1 p λ n,j (|β 0j |) -p λ n,j (|β 0j + d n k j |) .
Since ρ(u; •) is infinitely continuously differentiable and (2) n (w; β) = -A n (w; β), then using a second-order Taylor expansion there exists t ∈ (0, 1) such that

T 1 = d n k (1) n (w; β 0 ) - 1 2 d 2 n k A n (w; β 0 )k + 1 2 d 2 n k (A n (w; β 0 ) -A n (w; β 0 + td n k)) k.
Since Θ is convex and bounded and since w(•) and z(•) are uniformly bounded by conditions (C.2)-(C.3), there exists a nonnegative constant κ such that

1 2 A n (w; β 0 ) -A n (w; β 0 + td n k) ≤ κd n |D n |.
Let ν min (M) be the smallest eigenvalue of a squared matrix M. By condition (C.7),

ν := lim inf n→∞ ν min (|D n | -1 A n (w; β 0 )) = lim inf n→∞ k (|D n | -1 A n (w; β 0 )) k k 2 > 0.
Hence

T 1 ≤ d n (1) n (w; β 0 ) k - ν 2 d 2 n |D n | k 2 + κd 3 n |D n |. Regarding the term T 2 , T 2 ≤ T 2 := |D n | s j=1 p λ n,j (|β 0j |) -p λ n,j (|β 0j + d n k j |)
since for any j the penalty function p λ n,j is nonnegative and p λ n,j (|β 0j |) = 0 for j = s + 1, . . . , p.

Since 1), then by (C.8), for n sufficiently large, p λ n,j is twice continuously differentiable for every β j = β 0j + td n k j with t ∈ (0, 1). Therefore using a third-order Taylor expansion, there exist t j ∈ (0, 1), j = 1, . . . , s such that

d n |D n | 1/2 = O(
-T 2 = d n |D n | s j=1 k j p λ n,j (|β 0j |) sign(β 0,j ) + 1 2 d 2 n |D n | s j=1 k 2 j p λ n,j (|β 0j |) + 1 6 d 3 n |D n | s j=1 k 3 j p λ n,j (|β 0j + t j d n k j |).
Now by definition of a n and c n and from condition (C.8), we deduce that there exists κ such that

T 2 ≤ a n d n |D n | |k 1| + 1 2 c n d 2 n |D n | k 2 + κd 3 n |D n | ≤ √ sa n d n |D n | k + 1 2 c n d 2 n |D n | k 2 + κd 3 n |D n | from Cauchy-Schwarz inequality. Since c n = o(1), d n = o(1) and a n d n |D n | = O(d 2 n |D n |), then for n sufficiently large ∆ n (k) ≤ d n (1) n (w; β 0 ) k - ν 4 d 2 n |D n | k 2 + 2 √ sd 2 n |D n | k
We now return to (3.24): for n sufficiently large

P sup k =K ∆ n (k) > 0 ≤ P (1) n (w; β 0 ) > ν 4 d n |D n |K -2 √ sd n |D n | Since d n |D n | = O(|D n | 1/2
), by choosing K large enough, there exists κ such that for n sufficiently large

P sup k =K ∆ n (k) > 0 ≤ P (1) n (w; β 0 ) > κ|D n | 1/2 ≤
for any given > 0 from (3.22).

Proof of Theorem 3.6.2

To prove Theorem 3.6.2(i), we provide Lemma 3.11.2 as follows. 

Q w; (β 1 , 0 ) = max β 2 ≤K 1 |Dn| -1/2 Q w; (β 1 , β 2 ) .
Proof. It is sufficient to show that with probability tending to 1 as n → ∞, for any 

β 1 satisfying β 1 -β 01 = O P (|D n | -1/2 ), for some small ε n = K 1 |D n | -1/2 ,
∂β j = ∂ n (w; β 0 ) ∂β j + t p l=1 ∂ 2 n (w; β 0 + t(β -β 0 )) ∂β j ∂β l (β l -β 0l ) = O P (|D n | 1/2 ) + O P (|D n ||D n | -1/2 ) = O P (|D n | 1/2 ).
Third, let 0 < β j < ε n and b n the sequence given by (3.17 

∂β j < 0 = P ∂ n (w; β) ∂β j -|D n |p λ n,j (|β j |) sign(β j ) < 0 = P ∂ n (w; β) ∂β j < |D n |p λ n,j (|β j |) ≥ P ∂ n (w; β) ∂β j < |D n |b n = P ∂ n (w; β) ∂β j < |D n | 1/2 |D n | 1/2 b n . P (∂Q(w; β)/∂β j < 0) - → 1 as n → ∞ since ∂ n (w; β)/∂β j = O P (|D n | 1/2 ) and b n |D n | 1/2 - → ∞.
This proves (3.25). We proceed similarly to prove (3.26).

Proof. We now focus on the proof of Theorem 3.6.2. Since Theorem 3.6.2(i) is proved by Lemma 3.11.2, we only need to prove Theorem 3.6.2(ii), which is the asymptotic normality of β1 . As shown in Theorem 3.6.1, there is a root-|D n | consistent local maximizer β of Q(w; β), and it can be shown that there exists an estimator β1 in Theorem 3.6.1 that is a root-(|D n |) consistent local maximizer of Q w; (β 1 , 0 ) , which is regarded as a function of β 1 , and that satisfies ∂Q(w; β) ∂β j = 0 for j = 1, . . . , s, and β = ( β 1 , 0 ) .

There exists t ∈ (0, 1) and 

β = β + t(β 0 -β) such that 0 = ∂ n (w; β) ∂β j -|D n |p λ n,j (| βj |) sign( βj ) = ∂ n (w; β 0 ) ∂β j + s l=1 ∂ 2 n (w; β) ∂β j ∂β l ( βl -β 0l ) -|D n |p λ n,j (| βj |) sign( βj ) = ∂ n (w; β 0 ) ∂β j + s l=1 ∂ 2 n (w; β 0 ) ∂β j ∂β l ( βl -β 0l ) + s l=1 Ψ n,jl ( βl -β 0l ) -|D n |p λ n,j (|β 0j |) sign(β 0j ) -|D n |φ n,
φ n,j = p λ n,j (| βj |) sign( βj ) -p λ n,j (|β 0j |) sign(β 0j ) = p λ n,j (| βj |) -p λ n,j (|β 0j |) sign(β 0j ) + p λ n,j (| βj |) sign( βj ) -sign(β 0j ) ≤ κ | βj | -|β 0j | + 2a n ≤ κ| βj -β 0j | + 2a n .
(3.28)

We now decompose φ n,j as φ n,j = T 1 + T 2 where

T 1 = φ n,j I(| βj -β 0j | ≤ rn,j ) and T 2 = φ n,j I(| βj -β 0j | > rn,j )
and where rn,j is the sequence defined in the condition (C.8). Under this condition, the following Taylor expansion can be derived for the term T 1 : there exists t ∈ (0, 1) and βj = βj + t(β 0j -βj ) such that

T 1 = p λ n,j (|β 0j |)( βj -β 0j )I(| βj -β 0j | ≤ rn,j ) + 1 2 ( βj -β 0j ) 2 p λ n,j (| βj |)sign( βj )I(| βj -β 0j | ≤ rn,j ) = p λ n,j (|β 0j |)( βj -β 0j )I(| βj -β 0j | ≤ rn,j ) + O P (|D n | -1 )
where the latter equation ensues from Theorem 3.6.1 and condition (C.8). Again, from Theorem 3.6.1, I(| βj -β 0j | ≤ rn,j )

L 1 -→ 1 which implies that I(| βj -β 0j | ≤ rn,j ) P -→ 1, so T 1 = p λ n,j (|β 0j |)( βj -β 0j ) 1 + o P (1) + O P (|D n | -1 ).
Regarding the term T 2 , we have by (3.28)

T 2 ≤ {κ| βj -β 0j | + 2a n } I(| βj -β 0j | > rn,j ). By Theorem 3.6.1, | βj -β 0j | = O P (|D n | -1/2 ) and I(| βj -β 0j | > rn,j ) = o P (1), since a n = O(|D n | -1/2 ), we obtain T 2 = o P (|D n | -1/2
), and we deduce that

φ n,j = p λ n,j (|β 0j |)( βj -β 0j ) 1 + o P (1) + o P (|D n | -1/2 ). (3.29) Let (1)
n,1 (w; β 0 ) (resp.

(2)

n,1 (w; β 0 )) be the first s components (resp. s × s top-left corner) of (1) n (w; β 0 ) (resp.

(2) n (w; β 0 )). Let also Ψ n be the s × s matrix containing Ψ n,jl , j, l = 1, . . . , s. Finally, let the vector p n , the vector φ n and the s × s matrix M n be p n = {p λ n,1 (|β 01 |) sign(β 01 ), . . . , p λn,s (|β 0s |) sign(β 0s )} , φ n = {φ n,1 , . . . , φ n,s } , and

M n = {B n,11 (w; β 0 ) + C n,11 (w; β 0 )} -1/2 .
We rewrite both sides of (3.27) as

(1) n,1 (w; β 0 ) + (2) n,1 (w; β 0 )( β1 -β 01 ) + Ψ n ( β1 -β 01 ) -|D n |p n -|D n |φ n = 0. (3.30)
By definition of Π n given by (3.20) and from (3.29), we obtain

φ n = Π n ( β1 -β 01 ) 1 + o P (1) + o P (|D n | -1/2
). Using this, we deduce, by premultiplying both sides of (3.30) by M n , that

M n (1) n,1 (w; β 0 )-M n A n,11 (w; β 0 ) + |D n |Π n ( β1 -β 01 ) = O(|D n | M n p n ) + o P (|D n | M n Π n ( β1 -β 01 ) ) + o P ( M n |D n | 1/2 ) + O P ( M n Ψ n ( β1 -β 01 ) ).
The condition (C.6) implies that there exists an s × s positive definite matrix I 0 such that for all sufficiently large n, we have

|D n | -1 (B n,11 (w; β 0 ) + C n,11 (w; β 0 )) ≥ I 0 , hence M n = O(|D n | -1/2 ). Now, Ψ n = O P (|D n | 1/2 ) by conditions (C.2)-(C.
3) and by Theorem 3.6.1, and β1 -β 01 = O P (|D n | -1/2 ) by Theorem 3.6.1 and by Theorem 3.6.2(i). Finally, since by assumption a n = o(|D n | -1/2 ), we deduce that

M n Ψ n ( β1 -β 01 ) = O P (|D n | -1/2 ) = o P (1), |D n | M n Π n ( β1 -β 01 ) = o P (1), M n |D n | 1/2 = O(1), |D n | M n p n = O(a n |D n | 1/2 ) = o(1).
Therefore, we have that

M n (1) n,1 (w; β 0 ) -M n A n,11 (w; β 0 ) + |D n |Π n ( β1 -β 01 ) = o P (1).
From (3.21), Theorem 3.6.2(i) and by Slutsky's Theorem, we deduce that

{B n,11 (w; β 0 ) + C n,11 (w; β 0 )} -1/2 {A n,11 (w; β 0 ) + |D n |Π n }( β1 -β 01 ) d - → N (0, I s )
as n → ∞, which can be rewritten, in particular under (C.7), as

|D n | 1/2 Σ n (w; β 0 ) -1/2 ( β1 -β 01 ) d - → N (0, I s )
where Σ n (w, β 0 ) is given by (3.19).

CHAPTER 4 Regularized Poisson and logistic regression methods for spatial point processes intensity estimation with a diverging number of covariates

Introduction

Intensity estimation for inhomogeneous spatial point processes have become one of the main interests in many applications and it is often assumed that the intensity can be modeled as a parametric function of certain covariates (see e.g. [START_REF] Møller | Modern statistics for spatial point processes[END_REF][START_REF] Renner | Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology[END_REF][START_REF] Ryan | Variable selection for inhomogeneous spatial point process models[END_REF]. For parametric estimation, while maximum likelihood estimation (e.g. [START_REF] Berman | Approximating point process likelihoods with glim[END_REF] Rathbun and Cressie, 1994) has been widely implemented for Poisson point process models, estimating equation-based methods (e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Rasmus Plenge | Estimating functions for inhomogeneous spatial point processes with incomplete covariate data[END_REF][START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF][START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] are more simple to implement for more general spatial point process models, overcoming the possible drawback of MCMC methods which are usually computational expensive [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]. However, when the number of covariates is relatively large, maximum likelihood estimation and estimating equation-based methods may become undesirable. First, these methods cannot perform variable selection which leads to hard interpretation of the model.

Second, as the number of covariates is large, employing these methods will yield large variance for parameter estimates.

In this study, we consider feature selection procedures for spatial point processes 95 intensity estimation. We model the intensity as a log-linear form of some covariates: It is worth emphasizing that the previously mentioned procedures only considered a finite number of covariates p. In recent decades, with the advancement of technology and huge investment in data collection, more complex spatial data with a plenty of covariates have been rapidly available, so the setting when the number of parameter diverges should be considered. For example, in a 50-hectare region (D = 1, 000m×500m) of the tropical moist forest of Barro Colorado Island (BCI) in central Panama, censuses have been carried out where all free-standing woody stems at least 10 mm diameter at breast height were identified, tagged, and mapped, resulting in maps of over 350,000

individual trees with more than 300 species (see [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF]. At the same region, many environmental covariates such as topographical attributes and soil properties have been also collected. Modeling the intensity of a specific tree species as a function of environmental covariates and their possible interactions can increase the number of covariates considerably. This chapter intends to extend the results we obtained in Chapter 2 to the case where the number of parameters diverges.

Asymptotic properties which considers a diverging number of parameters for Mestimators have long been studied (e.g Huber, 1973;[START_REF] Portnoy | Asymptotic behavior of m-estimators of p regression parameters when p 2 /n is large. I. consistency[END_REF] but have recently been investigated for penalized regression estimators by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF]; [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF]. In particular, as argued by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF], even though the asymptotic properties (i.e. consistency, sparsity, and asymptotic normality) proposed by [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] for penalized regression estimator under finite number of parameters setting are encouraging, there are many naive and simple model selection procedures which possess those properties. As importance of the validity of these asymptotic properties for a diverging number of parameters setting, we consider to study this type of asymptotic properties in spatial point processes setting.

We investigate in this chapter the asymptotic properties of the estimates obtained from regularized Poisson and logistic regression methods studied in Chapter 2 but considering the setting where the number of covariates diverges as the domain of observation increases. We show that under some conditions, if the number of covariates does not grow too fast with respect to the observation domain, our estimates satisfy consistency, sparsity, and normality distribution. It is worth noticing that we do not make any assumption on the distribution of spatial point process, making our results available for large classes of spatial point process. Furthermore, our procedure does not require further effort for computational implementation since we combine the spatstat [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF] R package with the two R packages glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and ncvreg [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF].

The rest of this chapter is organized as follows. In Section 4.2, we introduce brief background on spatial point processes as well as regularization methods for spatial point processes intensity estimation. Section 4.3 presents our asymptotic results. We investigate in Section 4.4 the finite sample performance of the proposed methods in a simulation study and in an application to tropical forestry datasets. Conclusion and discussion are presented in Section 4.5. Proofs of the main results are postponed to Sections 4.6.1-4.6.3.

Regularization methods for spatial point processes

This section gives brief introduction on spatial point processes and reviews regularization methods for spatial point processes intensity estimation previously studied in Chapter 2 when the number of parameters is finite.

Let X be a spatial point process on R d . We view X as a locally finite random subset of R d . Let D ⊂ R d be a compact set of Lebesgue measure |D| which will play the role of the observation domain. Suppose X has intensity function ρ and second-order product density ρ (2) . Campbell theorem (see e.g. [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF] states that, for any function k :

R d → [0, ∞) or k : R d × R d → [0, ∞) E u∈X k(u) = k(u)ρ(u)du (4.2) E = u,v∈X k(u, v) = k(u, v)ρ (2) (u, v)dudv. (4.3)
We may interpret ρ(u)du as the probability of occurence of a point in an infinitesimally small ball with centre u and volume du. Intuitively, ρ (2) (u, v)dudv is the probability for observing a pair of points from X occuring jointly in each of two infinitesimally small balls with centres u, v and volume du, dv. For further background materials on spatial point processes, see for example [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]; [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF].

Let (w; β) be the weighted Poisson likelihood (e.g. [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] or the weighted logistic regression likelihood (e.g. [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] given respectively by

PL (w; β) = u∈X∩D w(u) log ρ(u; β) - D w(u)ρ(u; β)du, (4.4) LRL (w; β) = u∈X∩D w(u) log ρ(u; β) δ(u) + ρ(u; β) - D w(u)δ(u) log ρ(u; β) + δ(u) δ(u) du, (4.5)
where w(•) is a weight function depending on the first and the second-order characterictics of X and δ(•) is a nonnegative real-valued function. We recommend the interested readers to look at the paper by [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] for further details on the weight function w(•) and the paper by [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] for the role of function δ(•). The Poisson estimator (resp. the logistic regression estimator) can be obtained by maximizing (4.4) (resp. (4.5)). Note that these methods cannot perform variable selection.

To do so, regularization methods (see e. 4.1, include l 2 penalty (Hoerl and [START_REF] Arthur | Ridge regression. Encyclopedia of statistical sciences[END_REF], l 1 penalty [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], elastic net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF][START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF], SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], and MC+ [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF]). See, for example, [START_REF] Friedman | The elements of statistical learning (2nd Edition)[END_REF] for further backgrounds about penalty function, regularization methods, and related materials for more general objectives. 

l 2 penalty 1 2 λθ 2 l 1 penalty λ|θ| Elastic net λ{γ|θ| + 1 2 (1 -γ)θ 2 } SCAD λθI(θ ≤ λ) + γλθ-1 2 (θ 2 +λ 2 ) γ-1 I(λ ≤ θ ≤ γλ) + λ 2 (γ 2 -1) 2(γ-1) I(θ ≥ γλ) MC+ λθ -θ 2 2γ I(θ ≤ γλ) + 1 2 γλ 2 I(θ ≥ γλ)

Asymptotic properties

In this section, we present asymptotic properties of the regularized Poisson estimator when both |D n | → ∞ and p n → ∞ as n → ∞. In particular, we consider X as a ddimensional point process observed over a sequence of observation domain D = D n , n = 1, 2, . . . which expands to R d as n → ∞. We assume that X has a log-linear form of intensity function given by (4.1) for which the dimension of parameter β, denoted now by p n , diverges to ∞ as n → ∞. We provide notation and conditions, and discuss the differences with the setting where p is fixed in Section 4. 

Notation and conditions

Throughout this section and Sections 4.6.1-4.6. We recall the classical definition of strong mixing coefficients adapted to spatial point processes (e.g. [START_REF] Dimitris N Politis | Large sample inference for irregularly spaced dependent observations based on subsampling[END_REF]: for k, l ∈ N ∪ {∞} and q ≥ 1, define

α k,l (q) = sup{|P(A ∩ B) -P(A)P(B)| : A ∈ F (Λ 1 ), B ∈ F (Λ 2 ), Λ 1 ∈ B(R d ), Λ 2 ∈ B(R d ), |Λ 1 | ≤ k, |Λ 2 | ≤ l, d(Λ 1 , Λ 2 ) ≥ q}, (4.9)
where F is the σ-algebra generated by X∩Λ i , i = 1, 2, d(Λ 1 , Λ 2 ) is the minimal distance between sets Λ 1 and Λ 2 , and B(R d ) denotes the class of Borel sets in R d .

We define the p n × p n matrices A n (w; β 0 ), B n (w; β 0 ) and C n (w; β 0 ) by

A n (w; β 0 ) = Dn w(u)z(u)z(u) ρ(u; β 0 )du, B n (w; β 0 ) = Dn w(u) 2 z(u)z(u) ρ(u; β 0 )du, C n (w; β 0 ) = Dn Dn w(u)w(v)z(u)z(v) {g(u, v) -1}ρ(u; β 0 )ρ(v; β 0 )dudv,
where g(u, v) is a pair correlation function indicating the attraction (or repulsion)

among points given by

g(u, v) = ρ (2) (u, v) ρ(u)ρ(v) ,
when both ρ and ρ (2) exist with the convention 0/0 = 0. For a Poisson point process, 

we have g(u, v) = 1 since ρ (2) (u, v) = ρ(u)ρ(v). If,
b n = inf j=s+1,...,pn inf |θ|≤ n θ =0 p λ n,j (θ), for n = K 1 |D n | -1/2 , ( 4 
|z i (u)| < ∞, i = 1, • • • , p n and sup u∈R d |w(u)| < ∞.
(C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2 + t, the product density ρ (k) exists and satisfies ρ (k) < ∞.

(C.5) For the strong mixing coefficients (4.9), we assume that there exists some t > d(2 + t)/t such that α 2,∞ (q) = O(q -t).

( However, to obtain an estimator which is consistent and has two other properties:

sparsity and normality distribution, we need that the number of covariates does not grow too fast with respect to the volume of the observation domain stated by condition (C.9). This condition is similar to that of [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] when |D n | is simply replaced by n (the sample size in their context).

Main results

We state our main results here. Proofs are relegated to Sections 4.6.1-4.6.3.

We first show in Theorem 4.3.1 that the penalized weighted Poisson likelihood estimator converges in probability and exhibits its rate of convergence. 

β 0 = O P √ p n (|D n | -1/2 + a n ) .
This implies that, if

a n = O(|D n | -1/2 ) and c n = o(1), our estimator is root-(|D n |/p n ) consistent.
Note that the convergence rate of our estimator is the √ p n times the convergence rate of the estimator obtained assuming finite number of parameters we studied in Chapter 2. In addition, when we compare our results to that under regularized likelihood estimation developed by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] 

|D n | 1/2 → 0, b n |D n |/p 2 n → ∞ and √ p n c n → 0 as n → ∞, the root-(|D n |/p n ) consistent local maximizers β = ( β 1 , β 2 ) in Theorem 4.3.1 satisfy: (i) Sparsity: P( β2 = 0) → 1 as n → ∞, (ii) Asymptotic Normality: |D n | 1/2 Σ n (w; β 0 ) -1/2 ( β1 -β 01 ) d - → N (0, I s ),
where 

Σ n (w; β 0 ) =|D n |{A n,11 (w; β 0 ) + |D n |Π n } -1 {B n,
|D n |{A n,11 (w; β 0 )} -1 {B n,11 (w; β 0 ) + C n,11 (w; β 0 )}{A n,11 (w; β 0 )} -1 .
This means that we have the same efficiency as estimator of β 01 obtained by maximizing the likelihood function or solving estimating equations based on the submodel knowing that β 02 = 0. This shows that when n is sufficiently large, our estimator is as efficient as the oracle one.

To satisfy Theorem 4.3.2, we require that

a n |D n | 1/2 → 0, b n |D n |/p 2 n → ∞ and √ p n c n → 0 as n → ∞ simultaneously.
In particular, conditions on a n and c n ensure the asymptotic normality of β1 while condition on b n is used to prove the sparsity. Conditions regarding a n and c n are similar to the ones imposed by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] when |D n | is replaced by n in their context to represent the sample size. However, we require a slightly stronger condition than the one required by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] which in the present setting could be written as b n |D n |/p n → ∞. As compensation, we do not need to impose, as [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] did, for any 0 < K 2 < ∞,

ν max |D n | -1 A n (w; β 0 ) < K 2 ,
where ν max (M n ) is the largest eigenvalue of a squared matrix M n . Such a condition is not straightforwardly satisfied in our setting since the other conditions only imply that

ν max |D n | -1 A n (w; β 0 ) = O(p n ).
Further details regarding a n , b n and c n for each method are presented in Table 4.2.

For the ridge regularization method, b n = 0, preventing from applying Theorem 4.3.2 for this penalty. For lasso and elastic net,

a n = K 3 b n for some constant K 3 > 0 (K 3 =1 for lasso). The two conditions a n |D n | 1/2 → 0 and b n |D n |/p 2
n → ∞ as n → ∞ cannot be satisfied simultaneously. This is different for the adaptive versions where a compromise can be found by adjusting the λ n,j 's, as well as the two nonconvex penalties SCAD and MC+, for which λ n can be adjusted. For the regularization methods we consider in this study, the condition √ p n c n → 0 is implied by the condition a n |D n | 1/2 → 0 as n → ∞ and condition (C.9).

Numerical results

This section is devoted to present numerical results. More precisely, we conduct simulation experiments in Section 4.4.1 to assess the finite sample peformance of our estimates and apply our method to an application in ecology in Section 4.4.2. We apply the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL)

to select covariates and estimate their coefficients simultaneously. Similar approach can be used easily for the regularized (un)weighted logistic regression (see Chapter 2, Section 2.5).

To numerically evaluate the parameters estimates, we apply Berman-Turner method [START_REF] Berman | Approximating point process likelihoods with glim[END_REF] combined with coordinate descent algorithm (Friedman et al., 2007) to perform variable selection and parameter estimation. Berman-Turner device allows to show that maximizing (4.4) is equivalent to fitting a weighted Poisson generalized linear model, so the standard software for generalized linear model can be used. This in fact has been exploited in the spatstat R package [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF].

{λ n,j (1 -γ)|β 0j | + γ } γ min j=s+1,...p {λ n,j } (1 -γ) max j=1,...,s {λ n,j } SCAD 0 * λ n ** 0 * MC+ 0 * λ n - K 1 √ pn γ √ |Dn| ** 0 * * if λ n → 0 for n sufficient large ** if |D n |/p 2 n λ n → ∞ for n sufficient large
Coordinate descent algorithm, which has been implemented in the glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for some convex penalties and in the ncvreg [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF] for some nonconvex penalties, is used to compute the regularization paths solutions.

More details for computational strategies have been discussed in detail in Chapter 2.

Our methods rely on the tuning parameter λ. Some previous studies suggested to use BIC-type method to select the tuning parameter in order to obtain selection consistent estimator (see e.g. [START_REF] Zou | On the "degrees of freedom" of the lasso[END_REF]Wang et al., 2007b[START_REF] Wang | Shrinkage tuning parameter selection with a diverging number of parameters[END_REF]. In this study, we select λ which minimizes WQBIC(λ), a weighted version of the BIC criterion, defined by

WQBIC(λ) = -2 (w; β(λ)) + s(λ) log |D|,
where s(λ) = p j=1 I{ βj (λ) = 0} is the number of selected covariates with nonzero regression coefficients and |D| is the volume of observation domain. To implement the adaptive methods (i.e. adaptive lasso and adaptive elastic net), we define λ j = λ/| βj (ridge)|, j = 1, • • • , p, where β(ridge) is the estimates obtained from ridge regression and λ is a tuning parameter chosen by WQBIC(λ) criterion as described above.

Following Chapter 2, we fix γ = 0.5 for elastic net and its adaptive version, γ = 3.7

for SCAD, and γ = 3 for MC+. For further discussion regarding the selection of γ for SCAD and MC+, see e.g. [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] and [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF].

Simulation study

In this section, we aim to observe our estimates behaviour in different situations when a large number of covariates for fitting spatial point process intensity estimation is involed. We intend to extend the setting considered in Chapter 2. We start with relatively complex situation where strong multicollinearity is present (Scenarios 1a and 2a) and we then consider more complex setting using real datasets (Scenarios 1b and 2b). We have two different scenarios (Scenarios 1 and 2) for which the number of true covariates as well as their coefficients are set to be different in each setting.

We set the spatial domain to be D = [0, 1000] × [0, 500] and set the mean number of points over D to be 1600. The true intensity function is set to be ρ(u; β 0 ) = exp(z(u) β 0 ), where z(u) = {1, z 1 (u), . . . , z 50 (u)} and β 0 = {β 0 , β 01 , • • • , β 050 }. Here, we do not estimate β 0 since it is chosen such that each realization has 1600 points in average. We consider two different scenarios described as follows.

Scenario 1. We define the true vector β 0 = {β 0 , 2, 0.75, 0, • • • , 0}. To define the covariates, we center and scale the 201 × 101 pixel images of elevation (x 1 ) and gradient of elevation (x 2 ) contained in the bei datasets of spatstat library in R (R Core Team, 2016), and use them as two true covariates. In addition, we create two settings to define extra covariates:

a. First, we generate 48 201 × 101 pixel images of covariates as a standard

Gaussian white noise and denote them by x 3 , . . . , x 50 . Second, we transform them, together with x 1 and x 2 , to have multicollinearity. In par-ticular, we define z(u) = V x(u), where x(u) = {x 1 (u), . . . , x 50 (u)} .

More precisely, V is such that Ω = V V, and (Ω) ij = (Ω) ji = 0.7 |i-j| for i, j = 1, . . . , 50, except (Ω) 12 = (Ω) 21 = 0, to preserve the correlation between x 1 and x 2 .

b. We center and scale the 13 50 × 25 pixel images of soil nutrients obtained from the study in tropical forest of Barro Colorado Island (BCI) in central Panama (see [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF] and convert them to be 201 × 101 pixel images as x 1 and x 2 . In addition, we consider the interaction between two soil nutrients such that we have 50 covariates in total. We use 48 covariates (13 soil nutrients and 35 interactions between them) as the extra covariates. Together with x 1 and x 2 , we keep the structure of the covariance matrix to preserve the complexity of the situation. In this setting, we have

z(u) = x(u) = {1, x 1 (u), . . . , x 50 (u)} .
Scenario 2. In this setting, we consider five true covariates out of 50 covariates. In addition of elevation (x 1 ) and gradient of elevation (x 2 ), we convert 50×25 pixel images of concentration of Aluminium (x 3 ), Boron (x 4 ) and Calcium (x 5 ) in the soil to be 201 × 101 pixel images as x 1 and x 2 and set them to be other three true covariates. All five covariates are centered and scaled.

We define the true coefficient vector β 0 = {β 0 , 5, 4, 3, 2, 1, 0, • • • , 0}. As in Scenario 1, we make two settings to define extra 45 covariates:

a. This setting is similar to that of Scenario 1a. We generate 45 201 × 101 pixel images of covariates as standard Gaussian white noise, denote them by x 6 , . . . , x 50 , and define z(u) = V x(u), where V is such that

Ω = V V, and (Ω) ij = (Ω) ji = 0.7 |i-j| for i, j = 1, . . . , 50, except (Ω) kl = (Ω) lk = 0, for k, l = 1, • • • , 5, k = l, to preserve the correlation among x 1 -x 5 .
b. We use the real dataset as in Scenario 1b and consider similar setting. In this setting, we define 5 true covariates which have different regression coefficients as in Scenario 1b.

With these scenarios, we simulate 2000 spatial point patterns from a Thomas point process using the rThomas function in the spatstat package. We set the interaction parameter κ to be (κ = 5 × 10 -4 , κ = 5 × 10 -5 ) and let ω = 20. Briefly, smaller values of ω correspond to tighter clusters, and smaller values of κ correspond to fewer number of parents (see e.g., [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF], for further details regarding the Thomas point process). For each scenario with different κ, we fit the intensity to the simulated point pattern realizations.

We present in Table 4.3 the selection properties of our estimates. We consider the true positive rate (TPR), the false positive rate (FPR), and the positive predictive value (PPV) to evaluate the selection properties of the estimates. We want to find the methods which have a TPR close to 100% meaning that it can select correctly all the true covariates, a FPR close to 0 showing that it can remove all the extra covariates from the model, and a PPV close to 100% indicating that, for Scenario 1 (resp. Scenario 2), it can keep exactly the two (resp. five) true covariates and remove all the 48 (resp. 45) extra covariates.

In general, for both regularized PL and regularized WPL, the best selection properties are obtained from larger κ (5 × 10 -4 ) which indicates weaker spatial dependence.

To compare the regularization methods, we emphasize here that the main difference between regularization methods which satisfy (adaptive lasso, adaptive elastic net, SCAD, and MC+) and which cannot satisfy (lasso, elastic net) our theorems is that the methods which cannot satisfy our theorems tend to overselect covariates, leading to suffer from larger FPR and smaller PPV in general. Among all regularization methods considered in this study, adaptive lasso and adaptive elastic net seem to outperform the other methods in most cases. Although adaptive lasso and adaptive elastic net perform quite similarly, adaptive lasso is slightly better. The difference in these results compared with the ones obtained in Chapter 2 is that adaptive elastic net appears to be another alternative (appart from adaptive lasso) to perform variable selection for the setting involving large number of covariates. By combining l 1 and l 2 penalties, the adaptive elastic net becomes more appropriate in the situation where the number of covariates is large with the potential existance of strong multicollinearity. This may explain why adaptive elastic net perform better in our setting than that we considered in Chapter 2.

We do not consider in this study the extra covariates generated as standard Gaussian white noise independently as we considered in Chapter 2 as in Scenario 1. We are still able to show in the current chapter that even when the strong multicollinearity exists such as in Scenario 1a, our proposed methods work well for the penalization methods satisfying our theorems. However, as probably expected, our methods are getting difficult to distinguish between the important and the noisy covariates as the setting becomes more and more complex. Furthermore, we cannot see clearly which one in which particular cases we could recommend between the regularized PL and the regularized WPL or vice versa. This is quite different from what we suggested in Chapter 2 that we would recommend the use of regularized WPL with adaptive lasso for a very structured and clustered case while we prefer with penalized PL with adaptive lasso for the other cases. In the experiments we conduct in this chapter, we find that the regularized PL and WPL (with adaptive lasso) perform quite similar for the easiest (Scenario 1a) and the toughest (Scenario 2b) setting. For Scenarios 1b and 2a, the regularized WPL with adaptive lasso seems to be more favorable. From Table 4.3, we would recommend in general to combine the regularized WPL with adaptive lasso to perform variable selection.

Table 4.4 gives the prediction properties of the estimates in terms of biases, standard deviations (SD), and square root of mean squared errors (RMSE), some criterions we define by

Bias =   50 j=1 { Ê( βj ) -β 0j } 2   1 2 , SD =   50 j=1 σ2 j   1 2 , RMSE =   50 j=1 Ê( βj -β 0j ) 2   1 2
, where Ê( βj ) and σ2 j are respectively the empirical mean and variance of the estimates βj , for j = 1, . . . , 50.

By combining l 1 and l 2 penalties, adaptive elastic net seems to balance the selection and the prediction properties. This is why in most complex cases (Scenario 2 with κ = 5 × 10 -5 ), adaptive elastic net decides to choose more covariates than adaptive lasso (which includes true and noisy covariates) to suffer from slightly less appropriate properties for the selection performance but to be able to improve significantly the prediction properties.

Application to forestry datasets

We now consider the study of ecology in a tropical rainforest in Barro Corrolado Island (BCI), Panama, described previously in Section 4.1. In particular, we are interested to study the spatial distribution of 3,604 locations of Beilschmiedia pendula Lauraceae (BPL) trees by estimating its intensity. There have been 93 available covariates which can be considered including 2 topological attributes, 13 soil properties, and 78 interactions between two soil nutrients. We model the intensity of BPL tree as a log-linear function of these 93 covariates. Regarding the relatively large number of covariates, we apply our proposed methods to select few covariates among them and estimate their coefficients. In particular, we use the regularized Poisson methods with lasso, adaptive lasso, and SCAD. Note that we center and scale all the covariates to observe which covariates owing relatively large effect on the intensity. We present in Table 4.5 the number of selected and non-selected covariates by each method. Out of 93 covariates, more than 50% from the total number of covariates are selected by regularized PL while much less covariates are selected by regularized WPL. The regularized PL seems to overfit model by overselecting less informative covariates.

Regarding lasso method, 77 covariates are selected by regularized PL method while 45 covariates are selected by regularized WPL. Lasso tends to keep less important covariates in the model even if we consider weighted method. This may explain why lasso cannot satisfy our Theorem 4.3.2. Different from lasso, adaptive lasso and SCAD, which satisfy our Theorem 4.3.2, seem to perform better by keeping less informative covariates out from the model. However, regularized WPL combined with SCAD seems to underfit model by removing some potentially important covariates. Regularized WPL with adaptive lasso seems to outperform the other methods.

Table 4.6 gives the information regarding 10 covariates commonly selected among six combination methods. Although the magnitudes of the estimates can be slightly different, the signs all agree with each other. Some covariates suspected to have relatively high influence to the intensity of BPL include: elevation, slope, concentration of

Copper, Phosphorus and Zinc in the soil as well as the interaction between Magnesium and Phosphorus. SCAD may loose five (out of six) potentially important covariates by removing them from the model. Figure 4.2: Estimates of BPL tree intensity (log scale) for each method: row 1: regularized PL, row 2: regularized WPL, column 1 (resp. 2 and 3): lasso (resp. adaptive lasso and SCAD).

These results suggest that BPL trees favor to live in the areas of higher elevation and slope with high concentration of Copper in the soil. Furthermore, BPL trees prefer to live in the areas with lower concentration levels of Phosphorus and Zinc in the soil.

The interaction between Magnesium and Phosphorus gives positive association with the appearance of BPL trees. The maps of 3,604 locations of BPL trees as well as six most influencing covariates are depicted in Figure 4.1. We also present the estimate of the intensity (log scale) for each of the six methods in Figure 4.2.

Conclusion and discussion

We consider feature selection procedures for spatial point processes intensity estimation by regularizing the estimating functions derived from Poisson and logistic regression likelihoods in a setting where the number of parameters diverges as the volume of observation domain increases. Under some regularity conditions, we prove that the estimates obtained from such setting satisfy consistency, sparsity, and normality distribution. Our results are available for large classes of spatial point processes and for many penalty functions.

We conduct some simulation experiments to evaluate the finite sample properties of the regularized Poisson estimator and regularized weighted Poisson estimator. From the results, we would recommend in general the combination between regularized WPL and adaptive lasso if the concern is on variable selection. Furthermore, when the focus is for prediction, the regularized WPL combined with adaptive elastic net is more preferable for a clustered process considering large number of covariates with the present of strong multicollinearity and complex spatial structure. Otherwise, we would recommend to combine the regularized PL with adaptive elastic net. For more general advice, we would recommend to use the adaptive elastic net than the adaptive lasso since adaptive elastic net is able to balance the selection and the prediction properties by combining the l 1 and the l 2 penalties.

As proposed in Chapter 2, combination between spatstat R package with two R packages glmnet and ncvreg can work quite fast even when we consider a significantly larger number of covariates. It is worth noticing that, as other regularization methods, our methods also rely on the selection of the tuning parameter. As the study in a classical regression analysis, the BIC-type methods are proposed to obtain selection consistent estimator (see e.g. [START_REF] Zou | On the "degrees of freedom" of the lasso[END_REF]Wang et al., 2007b[START_REF] Wang | Shrinkage tuning parameter selection with a diverging number of parameters[END_REF]. We have numerical evidence from simulation studies that this criterion can satisfy the selection consistency when regularization methods satisfying our theorems are considered. Such a criterion is also used under spatial point process setting by [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF] for practical implementation. However, theoretical justification may be needed under spatial point process setting to support our theoretical results. We leave this direction for further research.

We apply our methods to the Barro Corrolado Island study to estimate the intensity of Beilschmiedia pendula Lauraceae (BPL) tree as a log-linear function of 93 environmental covariates. Regularized weighted Poisson likelihood combined with adaptive lasso seems to outperform the other methods. Among 93 covariates, we find six spatial covariates which may have high influence to the appearance of BPL trees, including two topological attributes: elevation and slope and four soil nutrients: Copper, Phosphorus, Zinc and the interaction between Magnesium and Phosphorus.

A further work would consider to include other 296 species of trees, which were surveyed in the same observation region as BPL was observed on, to study the existence of any competition between BPL and other species of trees in the forest. In such a situation, the methods used in this study may face some computational issues. The Dantzig selector [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF]) might be a good alternative since the implementation for the linear models (and generalized linear models) results in a linear programming.

Thus, more competitive algorithms is available. It would be interesting to bring this approach to spatial point process setting and investigate both its theoretical properties and computational implementation.

Proofs of the main results

Auxiliary Lemma

The following Lemma is used in the proof of Theorem 4.3.1 and Lemma 4.6.2 (which includes Lemma 4.6.3 and Theorem 4.3.2). Throughout the proofs, the notation X n = O P (x n ) or X n = o P (x n ) for a random vector X n and a sequence of real numbers x n means that X n = O P (x n ) and X n = o P (x n ). In the same way for a vector V n or a squared matrix M n , the notation In the proof of this result and the following ones, the notation κ stands for a generic constant which may vary from line to line. In particular this constant is independent of n, β 0 and k.

V n = O(x n ) and M n = O(x n ) mean that V n = O(x n ) and M n = O(x n ).
Proof. Let d n = √ p n (|D n | -1/2 + a n )
, and k = {K 1 , k 2 , . . . , k pn } . We remind the reader that the estimate of β 0 is defined as the maximum of the function Q n (given by (4.8)) over Θ, an open convex bounded set of R pn for any n ≥ 1. For any k such that k ≤ K < ∞, β 0 + d n k ∈ Θ for n sufficiently large. Assume this is valid in the following. To prove Theorem 4.3.1, we aim at proving that for any given > 0, there exists sufficiently large K > 0 such that for n sufficiently large

P sup k =K ∆ n (k) > 0 ≤ , where ∆ n (k) = Q n (w; β 0 + d n k) -Q n (w; β 0 ). (4.16)
Equation ( 4.16) will imply that with probability at least 1 -, there exists a local maximum in the ball {β 0 + d n k : k ≤ K}, and therefore a local maximizer β is such that ββ 0 = O P (d n ). We decompose ∆ n (k) as ∆ n (k) = T 1 + T 2 where

T 1 = n (w; β 0 + d n k) -n (w; β 0 ) T 2 = |D n | pn j=1 p λ n,j (|β 0j |) -p λ n,j (|β 0j + d n k j |) .
Since ρ(u; •) is infinitely continuously differentiable and (2) n (w; β) = -A n (w; β), then using a second-order Taylor expansion there exists t ∈ (0, 1) such that

T 1 = d n k (1) n (w; β 0 ) - 1 2 d 2 n k A n (w; β 0 )k + 1 2 d 2 n k (A n (w; β 0 ) -A n (w; β 0 + td n k)) k.
By conditions (C.2)-(C.3), there exists a nonnegative constant κ such that

1 2 A n (w; β 0 ) -A n (w; β 0 + td n k) ≤ κd n |D n |p n . Now, by condition (C.7), ν := lim inf n→∞ ν min (|D n | -1 A n (w; β 0 )) = lim inf n→∞ k (|D n | -1 A n (w; β 0 )) k k 2 > 0.
Therefore, we have

T 1 ≤ d n (1) n (w; β 0 ) k - ν 2 d 2 n |D n | k 2 + κp n d 3 n |D n | k 2 .
Now by the condition (C.9) and by assumption that a n = O(|D n | -1/2 ), we obtain

p n d n = o(1), so κp n d 3 n |D n | k 2 = o(1)d 2 n |D n | k 2 .
Hence, for n sufficiently large

T 1 ≤ d n (1) n (w; β 0 ) k - ν 4 d 2 n |D n | k 2 .
Regarding the term T 2 ,

T 2 ≤ T 2 := |D n | s j=1 p λ n,j (|β 0j |) -p λ n,j (|β 0j + d n k j |)
since for any j the penalty function p λ n,j is nonnegative and p λ n,j (|β 0j |) = 0 for j = s + 1, . . . , p n . From (C.8), for n sufficiently large, p λ n,j is twice continuously differentiable for every β j = β 0j + td n k j with t ∈ (0, 1). Therefore using a third-order Taylor expansion, there exist t j ∈ (0, 1), j = 1, . . . , s such that -T 2 = T 2,1 + T 2,2 + T 2,3 , where

T 2,1 = d n |D n | s j=1 k j p λ n,j (|β 0j |) sign(β 0,j ) ≤ √ sa n d n |D n | k ≤ d 2 n |D n | k , T 2,2 = 1 2 d 2 n |D n | s j=1 k 2 j p λ n,j (|β 0j |) ≤ c n d 2 n |D n | k 2 , T 2,3 = 1 6 d 3 n |D n | s j=1 k 3 j p λ n,j (|β 0j + t j d n k j |) ≤ κd 3 n |D n |.
The three inequalities above are obtained using the definitions of a n and c n , from condition (C.8) and from Cauchy-Schwarz inequality. We deduce that for n sufficiently large

T 2 ≤ |T 2 | ≤ 2d 2 n |D n | k ,
and then

∆ n (k) ≤ d n (1) n (w; β 0 ) k - ν 4 d 2 n |D n | k 2 + 2d 2 n |D n | k .
We now return to (4.16): for n sufficiently large 

P sup k =K ∆ n (k) > 0 ≤ P (1) n (w; β 0 ) > ν 4 d n |D n |K -2d n |D n | . Since d n |D n | = O( p n |D n |),
∂β j = ∂ n (w; β 0 ) ∂β j + R n ,
where R n = Dn w(u)z j (u) ρ(u; β) -ρ(u; β 0 ) du. Using similar arguments used in the proof of Lemma 4.6.1, we can prove that

∂ n (w; β 0 ) ∂β j = O P ( |D n |).
Let u ∈ R d . By Taylor expansion, there exists t ∈ (0, 1), such that

ρ(u; β) = ρ(u; β 0 ) + (β -β 0 ) z(u)ρ(u; β 0 + t(β -β 0 )).
For n sufficiently large, β 0 +t(β-β 0 ) ∈ Ξ(β 0 ) defined in condition (C.2). Therefore, for n sufficiently large, we have by Cauchy-Schwarz inequality and conditions (C.2)-(C.3)

|R n | ≤ κ Dn β -β 0 z(u) du = O P ( |D n |p 2 n ).
We therefore deduce that for any j = s + 1, . . The remainder of the proof follows [START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. Let C i = i + (-1/2, 1/2] d be the unit box centered at i ∈ Z d and define There exists t ∈ (0, 1) and We now decompose φ n,j as φ n,j = T 1 + T 2 where

I n = {i ∈ Z d , C i ∩ D n = ∅}. Set D n = i∈In C i,n , where C i,n = C i ∩ D n . We have
β = β + t(β 0 -β) such that for j = 1, • • • , s 0 = ∂ n (w; β) ∂β j -|D n |p λ n,j (| βj |) sign( βj ) = ∂ n (w; β 0 ) ∂β j + s l=1 ∂ 2 n (w; β) ∂β j ∂β l ( βl -β 0l ) -|D n |p λ n,j (| βj |) sign( βj ) = ∂ n (w; β 0 ) ∂β j + s l=1 ∂ 2 n (w; β 0 ) ∂β j ∂β l ( βl -β 0l ) + s l=1 Ψ n,jl ( βl -β 0l ) -|D n |p λ n,j (|β 0j |) sign(β 0j ) -|D n |φ n,
T 1 = φ n,j I(| βj -β 0j | ≤ rn,j ) and T 2 = φ n,j I(| βj -β 0j | > rn,j )
and where rn,j is the sequence defined in the condition (C.8). Under this condition, the following Taylor expansion can be derived for the term T 1 : there exists t ∈ (0, 1) and βj = βj + t(β 0j -βj ) such that -→ 1 which implies that I(| βj -β 0j | ≤ rn,j )

T 1 = p λ n,j (|β 0j |)( βj -β 0j )I(| βj -β 0j | ≤ rn,j ) + 1 2 ( βj -β 0j ) 2 p λ n,
P -→ 1, so T 1 = p λ n,j (|β 0j |)( βj -β 0j ) 1 + o P (1) + O P (p n /|D n |).
Regarding the term T 2 , we have by (4.23)

T 2 ≤ {κ| βj -β 0j | + 2a n } I(| βj -β 0j | > rn,j ).
Now, we want to prove that

T 2 = o P (|D n | -1/2 ). Let S n = | βj -β 0j | I(| βj -β 0j | > rn,j ) and T n = I(S n > |D n | -1/2 ). If ET n P -→ 0 then S n = o P (|D n | -1/2
) which implies that, by combining with the condition on a n , T 2 = o P (|D n | -1/2 ). Condition (C.8) implies in particular that for n large enough, rn,j > p n /|D n | > 1/|D n |. Using this, it can be checked that the binary random variable T n reduces to T n = I(| βj -β 0j | > rn,j ). Hence, n,1 (w; β 0 ) (resp.

ET n = P | βj -β 0j | > rn,j = P   | βj -β 0j | > √ p n |D n | rn,j |D n | √ p n   ,
(2)

n,1 (w; β 0 )) be the first s components (resp. s × s top-left corner) of (1) n (w; β 0 ) (resp.

(2) n (w; β 0 )). Let also Ψ n be the s × s matrix containing Ψ n,jl , j, l = 1, . . . , s. Finally, let the vector p n , the vector φ n and the s × s matrix M n be 

p n = {p λ n,
M n = {B n,11 (w; β 0 ) + C n,11 (w; β 0 )} -1/2 .
We rewrite both sides of (4.22) as

(1) n,1 (w; β 0 ) + (2) n,1 (w; β 0 )( β1 -β 01 ) + Ψ n ( β1 -β 01 ) -|D n |p n -|D n |φ n = 0. (4.25)
By definition of Π n given by (4.14) and from (4.24), we obtain

φ n = Π n ( β1 -β 01 ) 1 + o P (1) + O P (p n /|D n |) + o P (|D n | -1/2
). Using this, we deduce, by premultiplying both sides of (4.25) by M n , that 

M n (1) n,1 (w; β 0 )-M n A n,11 (w; β 0 ) + |D n |Π n ( β1 -β 01 ) = O(|D n | M n p n ) + o P (|D n | M n Π n ( β1 -β 01 ) ) + O P ( M n p n ) + o P ( M n |D n | 1/2 ) + O P ( M n Ψ n ( β1 -β 01 ) ). Now, M n = O(1/ |D n |
|D n | M n p n = O(a n D n ) = o(1), |D n | M n Π n ( β1 -β 01 ) = O P |D n |c n p n |D n | = o P (1), M n |D n | = O(1), M n p n = O   p 2 n |D n |   = o(1),
and estimating equation-based methods have been recently proposed. Such methods are able to perform variable selection while keeping interesting properties in terms of prediction. For Poisson point process models, the idea is to penalize the Poisson likelihood by a penalty fuction (see [START_REF] Renner | Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology[END_REF][START_REF] Andrew | Variable selection for spatial Poisson point processes via a regularization method[END_REF] such as l 1 penalty. For more general point process models, instead of using the likelihood of the processes which often requires computational intensive MCMC methods [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF], penalized versions of estimating functions based on Campbell theorem derived both from Poisson and logistic regression likelihoods have been developped (see Chapters 2 and 3). Some examples of penalty functions are 2 penalty (e.g. [START_REF] Arthur | Ridge regression. Encyclopedia of statistical sciences[END_REF], 1 penalty (e.g. [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], elastic net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF][START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF], SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], and MC+ [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF].

Apart from regularization techniques, the Dantzig selector [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] has appeared to enrich the class of variable selection methods for linear regression models. Unlike most other variable selection methods such as lasso, SCAD, and MC+, which minimize the sum of squared errors subject to a penalty function, the Dantzig selector minimizes the l 1 norm of the coefficients subject to a constraint on the error terms. Similarly to the lasso method or regularization method involving the SCAD or MC+ penalty functions, the Dantzig selector is able to perform variable selection and parameter estimation simultaneously. Nevertheless, unlike the other methods, the standard linear programming can be used to compute the solution to the Dantzig selector optimization problem, providing a computationally efficient algorithm. [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] also provided sharp non-asymptotic bounds on the l 2 norm of estimated coefficients error and showed that the error is within a factor of log p of the error that would be achieved if the locations of the non-zero coefficients were known. As log p grows very slowly, the Dantzig selector only pays a small price for adaptively choosing the significant variables and is then very suitable for a very large dataset. Some the asymptotic properties of our estimates and prove, under some conditions, that they satisfy sparsity and asymptotic normality. In addition, we find a closed form expression of our estimates. We also prove that the complex optimization problem can be reduced to a linear programming problem, which potentially produces a computationally efficient algorithm. In this study, we do not investigate finite sample properties like oracle inequalities obtained by [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF]; [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF], for example, for simpler models and in the independent case. Even if it seems feasible to derive finite sample size properties for Poisson point process using for instance concentration inequalities obtained by [START_REF] Reynaud | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF], it is not straightforwardly applicable for more general spatial point processes due to the lack of such concentration inequalities for general spatial point processes. By focusing on asymptotic properties, we are able to make our results available for very large classes of spatial point processes which exhibit strong dependence (i.e. very clustered or repulsive point processes).

The rest of this chapter is structured as follows. Section 5.2 presents our general setting. Section 5.3 details methodology, establishes its asymptotic properties, discusses the results we obtain and the conditions we impose, and presents computational strategy. Section 5.4 reports numerical results from a simulation study. Finally, Section 5.5 provides conclusion and discussion. Proofs of the main results as well as the derivation of the dual to the Dantzig selector optimization problem are deferred to Sections 5.6.1-5.6.5.

Preliminaries

Let X be a spatial point process on R d . We view X as a locally finite random subset of R d . Let D ⊂ R d be a compact set of Lebesgue measure |D| which will play the role of the observation domain. Suppose X has intensity function ρ and second-order product density ρ (2) . Campbell theorem (see e.g. [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF] states that, for any function k :

R d → [0, ∞) or k : R d × R d → [0, ∞) E u∈X k(u) = k(u)ρ(u)du (5.2) E = u,v∈X k(u, v) = k(u, v)ρ (2) (u, v)dudv.
(5.3)

We may interpret ρ(u)du as the probability of occurence of a point in an infinitesimally small ball with centre u and volume du. Intuitively, ρ (2) (u, v)dudv is the probability for observing a pair of points from X occuring jointly in each of two infinitesimally small balls with centres u, v and volume du, dv. For further background material on spatial point processes, see for example [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]; [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF].

Given a p × p matrix M and a p × 1 vector V, we denote the transposition and the complement of matrix M (resp. vector V) by M and M c (resp. by V and

V c ). Let V r = ( p j=1 |V j | r ) 1/r for 0 < r < ∞, V 0 = #{j, V j = 0} and V ∞ = max 1≤j≤p |V j |. Let M = M 2 = ( p i=1 p j=1 M 2 ij ) 1/2
. Finally, we recall the classical definition of strong mixing coefficients adapted to spatial point processes (e.g. [START_REF] Dimitris N Politis | Large sample inference for irregularly spaced dependent observations based on subsampling[END_REF]

: for k, l ∈ N ∪ {∞} and q ≥ 1, define α k,l (q) = sup{|P(A ∩ B) -P(A)P(B)| : A ∈ F (Λ 1 ), B ∈ F (Λ 2 ), Λ 1 ∈ B(R d ), Λ 2 ∈ B(R d ), |Λ 1 | ≤ k, |Λ 2 | ≤ l, d(Λ 1 , Λ 2 ) ≥ q}, (5.4)
where F is the σ-algebra generated by X∩Λ i , i = 1, 2, d(Λ 1 , Λ 2 ) is the minimal distance between sets Λ 1 and Λ 2 , and B(R d ) denotes the class of Borel sets in R d .

The adaptive linearized Dantzig selector for spatial point processes

In this section, we present the Dantzig selector-type methods, based on linear approximation in the constraint vector, to estimate the intensity of spatial point processes.

More precisely, we describe the methodology in Section 5.3.1 and present the asymptotic properties in Section 5.3.2. Computational aspects are discussed in Section 5.3.3.

Methodology

Consider a log-linear form of the intensity ρ(•; β) given by (5.1). One of the traditional ways to obtain the estimates is by maximizing the likelihood function It is to be noticed that (5.11) can be rewritten in a matrix form as (5.12) where Λ = diag{ λ1 , • • • , λp }. One possible challenge of (5.12) is that it may be a non-convex optimization problem due to the possible nonconvexity of the constraint vector. To ease some theoretical difficulties, similarly to Dicker (2010, Chapter 3), we propose a convex version of (5.12) based on a linear approximation to the constraint vector. We call this approach by the adaptive linearized Dantzig selector (ALDS) and we define the criterion by

LRL (w; β) = u∈X∩D w(u) log ρ(u; β) δ(u) + ρ(u; β) - D w(u)δ(u) log ρ(u; β) + δ(u) δ(u) du, ( 5 
min Λβ 1 subject to Λ -1 U(w; β) ∞ ≤ 1,
min Λβ 1 subject to Λ -1 U(w; β) + A(w; β)( β -β) ∞ ≤ 1, (5.13) 
where β is an initial estimator and -A(w; β) is the derivative of U(w; β) evaluated at β. We provide more details on its role in the following section. For the rest of this chapter, we denote by β the solution of (5.13).

Asymptotic results

In this section, we present asymptotic results for the adaptive linearized Dantzig selec- 

Notation and assumptions

Throughout this section and Sections 5.6.1-5.6.5, let among points given by

g(u, v) = ρ (2) (u, v) ρ(u)ρ(v) ,
when both ρ and ρ (2) exist with the convention 0/0 = 0. For a Poisson point process,

we have g(u, v) = 1 since ρ (2) (u, v) = ρ(u)ρ(v). If, for example, g(u, v) > 1 (resp.
g(u, v) < 1), this indicates that pair of points are more likely (resp. less likely) to occur at locations u, v than for a Poisson point process.

We denote by A n,11 (w; β 0 ) (resp. B n,11 (w; β 0 ), C n,11 (w; β 0 )) the s×s top-left corner of A n (w; β 0 ) (resp. B n (w; β 0 ), C n (w; β 0 )).

For any β ∈ Θ, we decompose A n (w; β) by (C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2 + t, the product density ρ (k) exists and satisfies ρ (k) < ∞.

A n (w; β) =        A n,1 (w; β) A n,2 (w; β)        =        A n,
(C.5) For the strong mixing coefficients (5.4), we assume that there exists some t > d(2 + t)/t such that α 2,∞ (q) = O(q -t).

(C.6) There exists a p × p positive definite matrix I 0 such that for all sufficiently large

n, |D n | -1 {B n (w; β 0 ) + C n (w; β 0 )} ≥ I 0 .
Theorem 5.3.2. Assume the conditions (C.1)-(C.9) hold. Then, β1 defined by Theorem 5.3.1 satisfies:

|D n | 1/2 Σ n (w; β 0 ) -1/2 ( β1 -β 01 ) d - → N (0, I s ),
where Condition (C.8) has also to be enriched; we require that β is such that ∆ n ( β) = O P (1), where ∆ n ( β) is defined by (5.39) in Section 5.6.4 with U n,1 (β 0 ) is given by (5.8) and A n,11 (w; β 0 ) is the corresponding s × s top-left corner of A n (w; β 0 ). We show in Theorems 5.3.1 and 5.3.2 that the sparsity and the asymptotic normality are valid for the adaptive linearized Dantzig selector esimates. Since (5.24) is the variance-covariance matrix of β1 , this implies that we have the same efficiency as the estimator of β 01 obtained by maximizing the likelihood function or solving estimating equations based on the submodel knowing that β 02 = 0. This shows that when n is sufficiently large, our estimator is as efficient as the oracle one.

Σ n (w; β 0 ) =|D n |{A n,11 (w; β 0 )} -1 {B n,
) + δ(u)), u ∈ D n .

Computations

This section discusses the numerical aspects used to compute the adaptive linearized Dantzig selector estimates. We aim to solve (5.13) using an iterative algorithm which is quite similar to the one proposed by James and Radchenko (2009) for computing the Dantzig selector estimator for generalized linear models. Another computational strategy seems also possible using primal-dual pursuit algorithm as proposed by Asif Poisson variables y i with weights v i w i . Thus, standard statistical software for generalized linear models can be used to obtain the estimates. This fact is implemented in the spatstat R package by ppm function [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF].

The adaptive linearized Dantzig selector algorithm

Before presenting the main algorithm, let us first consider the following matrices and vectors. We define the M × p matrix z and the M × M matrix v by

z =             z 1 (u 1 ) z 2 (u 1 ) . . . z p (u 1 ) . . . . . . . . . . . . z 1 (u M ) z 2 (u M ) . . . z p (u M )             v = diag{v 1 w 1 , . . . , v M w M },
where v 1 , . . . , v M and w 1 , . . . , w M are, respectively, the quadrature weights and the weight function obtained from (5.25). We remind the readers that M is the total number of observed points and dummy points which plays the same role as the number of observations in classical regression analysis. We also denote the ith row and the jth column of the matrix z by the vectors z i• and z •j , respectively, given by

z i• = {z 1 (u i ), . . . , z p (u i )} , for i = 1, . . . , M, z •j = {z j (u 1 ), . . . , z j (u M )} , for j = 1, . . . , p.
By convention, z ij = z j (u i ). Now, by (5.25), the adaptive linearized Dantzig selector criterion defined in (5.13) can be rewritten as

min p j=1 λj |β j | subject to z •j v y -exp(z β) + z •j v exp(z β)z •j ( β -β) ≤ λj (5.26)
where y = {y 1 , • • • , y M } is given by (5.25).

Note that, given an initial estimate β, (5.26) is a linear optimization problem which can be solved direcly by linear programming. Form a theoretical point of view, we have already mentioned that the initial estimates obtained by maximizing the Poisson likelihood or the logistic regression likelihood satisfy condition (C.8) which is sufficient to derive the asymptotic results. In practice, these proposed initial estimates can be computed easily by ppm function in the spatstat R package. However, these choices cannot always perform well when the number of parameters to estimate is large due to unstability and convergence issues. Another alternative is to start with β obtained as the ridge regression estimate, i.e. maximizing (w; β) -p j=1 λβ 2 j , to obtain more stable initial estimate.

In this study, instead of using a single initial estimate, we propose an iterative algorithm to compute the estimate for which it is always updated until convergence criterion is held. This will guarantee the stability of the results, hence, improve the prediction. More precisely, our iterative algorithm is divided into three steps, explained as follows. Our approach is quite similar to the ones proposed by James and Radchenko (2009) and can be viewed as its extension as we consider the weights v i w i , i = 1, . . . , M in Step 2 and use the adaptive version of the Dantzig selector in Step 3.

Step 0. Set the initial estimates β(0) .

Step 1. Note that (k) denotes the corresponding estimate from the kth iteration. At the (k + 1)th iteration, compute

Ω i = exp(z i• β(k) ) and Y i = p j=1 z ij β(k) j + y i -exp(z i• β(k) )
/Ω i , where y i is given by (5.25).

Step

2. Define Ỹi = Y i √ v i w i Ω i and zij = z ij √ v i w i Ω i .
Step 3. Use the adaptive Dantzig selector for linear models where Ω is the M × M matrix Ω = diag{Ω 1 , . . . , Ω M }. Note that (5.27) can be solved by linear programming. Furthermore, for any given β, (5.27) is the same as the ones defined by (5.26), so the solution to (5.27) is in the feasible region for (5.26).

Tuning parameter selection

Our procedure relies on a tuning parameter λj = j = 1, • • • , p. Similarly to Chapters 2 and 3, we define λj = λ| βj (ridge)| -1 , where λ is the modified tuning parameter and β(ridge) is the estimate obtained from ridge regression. Therefore, we need to choose an appropriate λ, which is a scalar, in order to achieve good performance. Some previous studies have been conducted by [START_REF] Zou | On the "degrees of freedom" of the lasso[END_REF]; Wang et al. (2007b[START_REF] Wang | Shrinkage tuning parameter selection with a diverging number of parameters[END_REF] who suggested to use BIC-type methods to select the tuning parameter. We follow 

Simulation study

In this section, we aim to highlight the finite sample properties of our estimates in a simulation experiment and compare them to the estimates obtained by maximizing the Poisson likelihood penalized by adaptive lasso penalty previously developped in Chapters 2 and 3. We consider a setting similar to the ones used in Chapters 2 and 3. We start with relatively complex situation where strong multicollinearity is present (Scenarios 1a and 2a) and we then consider more complex setting using real datasets (Scenarios 1b and 2b). We have two different scenarios (Scenarios 1 and 2) for which the number of true covariates as well as their coefficients are set to be different in each setting.

We set the spatial domain to be D = [0, 1000] × [0, 500] and set the mean number of points over D to be 1600. The true intensity function is set to be ρ(u; β 0 ) = exp(z(u) β 0 ), where z(u) = {1, z 1 (u), . . . , z 50 (u)} and β 0 = {β 0 , β 01 , • • • , β 050 }. Here, we do not estimate β 0 since it is chosen such that each realization has 1600 points in average. We consider two different scenarios described as follows.

Scenario 1. We define the true vector β 0 = {β 0 , 2, 0.75, 0, • • • , 0}. To define the covariates, we center and scale the 201 × 101 pixel images of elevation (x 1 ) and gradient of elevation (x 2 ) contained in the bei datasets of spatstat library in R (R Core Team, 2016), and use them as two true covariates. In addition, we create two settings to define extra covariates: a. First, we generate 48 201 × 101 pixel images of covariates as a standard Gaussian white noise and denote them by x 3 , . . . , x 50 . Second, we transform them, together with x 1 and x 2 , to have multicollinearity. In particular, we define z(u) = V x(u), where x(u) = {x 1 (u), . . . , x 50 (u)} .

More precisely, V is such that Ω = V V, and (Ω) ij = (Ω) ji = 0.7 |i-j| for i, j = 1, . . . , 50, except (Ω) 12 = (Ω) 21 = 0, to preserve the correlation between x 1 and x 2 . b. We center and scale the 13 50 × 25 pixel images of soil nutrients obtained from the study in tropical forest of Barro Colorado Island (BCI) in central Panama (see [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF] and convert them to be 201 × 101 pixel images as x 1 and x 2 . In addition, we consider the interaction between two soil nutrients such that we have 50 covariates in total. We use 48 covariates (13 soil nutrients and 35 interactions between them) as the extra covariates. Together with x 1 and x 2 , we keep the structure of the covariance matrix to preserve the complexity of the situation. In this setting, we have We do not consider in this chapter the extra covariates generated as standard Gaussian white noise independently as considered in Chapter 2 (Scenario 1). We are still able to show that even when the strong multicollinearity exists such as in Scenario 1a, our proposed methods work well especially using unweighted methods.

However, as probably expected, our methods are getting difficult to distinguish between the important and the noisy covariates as the setting becomes more and more complex. In general, the best selection properties are obtained from larger κ (5 × 10 -4 ) which indicates weaker spatial dependence. To compare between the adaptive lasso (AL) and the adaptive linearized Dantzig selector (ALDS), we find that ALDS seems to be sparser than AL. AL and ALDS (combined with PL) perform quite similar for Scenario 1a, but ALDS (combine with PL) performs better for a more complex situation. However, the combination between the WPL and ALDS tends to underfit model by selecting very few covariates. From Table 5.1, we would recommend in general to combine the PL with ALDS to perform variable selection.

Table 5.2 gives the prediction properties of the estimates in terms of biases, standard deviations (SD), and square root of mean squared errors (RMSE), some criterions we , where Ê( βj ) and σ2 j are respectively the empirical mean and variance of the estimates βj , for j = 1, . . . , 50.

In general, the properties improve with larger κ due to weaker spatial dependence.

To compare the two variable selection procedures, combined with the PL, ALDS has a smaller variance than AL but has larger biases. This may come from the fact that ALDS is sparser than AL. The biases are in general not too large yielding a better performance in terms of RMSE for the ALDS. When the WPL is considered, ALDS still has smaller variance but much higher biases, so the AL is more preferable. This is because ALDS (combined with WPL) selects much fewer covariates. From table 5.2, when our focus is on prediction, as a general advice, we would recommend combining the PL with ALDS.

Conclusion and discussion

We propose the adaptive linearized Dantzig selector (ALDS), a modified version of the Dantzig selector based on linear approximation on the constraint vector, for spatial point processes intensity estimation. Under some conditions, we prove that the estimates obtained from such procedures satisfy sparsity and asymptotic normality.

We find that the asymptotic properties we derive under ALDS are similar to the ones we develop under adaptive lasso (AL) procedures as studied in Chapter 2. For computational point of view, as we make links between spatial point processes intensity estimation and generalized linear models (GLMs), we only need to deal with feature selection procedures for GLMs which are easy to implement and computationally fast.

We make a simulation study with some different scenarios to assess the finite sample performances of the estimates obtained from ALDS compared to the ones from AL.

In general, the best two methods are between the weighted Poisson likelihood (WPL) with AL and the Poisson likelihood (PL) with ALDS. Since the combination between

Proof of Lemma 5.3.1

Proof. Consider (5.29) and its dual given by (5.30). By arguments similar to the ones derived in Section 5.6.2, we can show that the dual function of the Lagrange form associated with the problem (5.31) is equivalent to for any given β ∈ R p . Regarding (5.32) and (5.33), we show that Λ n β ≤ Λ n β whenever the solution set α is feasible. Thus, by condition (5.16), it is proved that β solves (5.13). In addition, since sup α∈R p L( β; α) = inf β∈R p L(β; α) = L( β; α) = Λ n β 1 by conditions (5.16)-(5.19), strong duality holds, meaning that ( β, α) is a unique primal dual solution to the problems (5.13) and (5.31).

Proof of Theorem 5.3.1

Proof. To prove Theorem 5.3.1, it is sufficient to show that with probability tending to 1, β and α given by (5.20)-(5.23) satisfy conditions (5.16)-(5.19).

We derive the following results which will be used in the proofs of Theorems 5.3.1 and 5.3.2. Consider the matrix A n (w; β) and their corresponding partitions given by (5.15), and the matrices Λ n,1 and Λ n,2 . Note that by condition (C.9), where the last line is obtained from (5.34)-(5.38). Hence, (5.17) is satisfied with probability tending to 1. We finally focus on (5.16). Note that Thus, the result is proved from Lemma 5.6.2 and Slutsky's theorem.

CHAPTER 6

Summary and future extensions

Summary

This thesis focuses to develop feature selection procedures for estimating the intensity of spatial point processes which depends on spatial covariates. In Chapter 3, we adopt the lasso-type procedures based on convex and non-convex regularization techniques to perform variable selection and improve the prediction. In particular, we regularize by a penalty function the estimating equations based on Campbell theorem derived from the Poisson and logistic regression likelihoods. We show that when the observation domain goes to R d , the estimates obtained from such procedures are consistent, sparse and asymptotically normal if an appropriate regularization method is chosen such that the tuning parameter follows an appropriate rate. These results indicate that not only do our methods select automatically and consistently the important covariates, but also produce estimates which are as efficient as the estimates where the true set of covariates is known in advance. In Chapter 4, we liberate the assumption required in Chapter 3, which deals with a finite number of covariates, such that the number of parameters to estimate diverges as the observation region increases. We prove that the attractive properties gained in Chapter 3 are still valid for a diverging number of parameters setting, with a few additional assumptions to impose mainly requiring that the number of parameters does not go too fast with respect to the volume of the observation domain.

From a computational point of view regarding the methods developed in Chap-159 ters 3 and 4, we make links between spatial point processes intensity estimation and generalized linear models (GLMs) previously proposed by [START_REF] Berman | Approximating point process likelihoods with glim[END_REF]; Waagepetersen (2008); [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF], so we only have to deal with feature selection procedures for GLMs. Hence, we clearly have many advantages: the existing R packages for variable selection for GLMs are available, have been carefully studied, easy to implement and computationally fast. This makes our approaches are highly applicable. In particular, we combine the spatstat R package [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF] and the two R packages: glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and ncvreg [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF].

We conduct simulation experiments to assess the finite sample properties of our estimates. From the results, we have the following conclusions. First, among the regularization methods considered in Chapters 3 and 4, the methods which satisfy the sparsity and the asymptotic normality (i.e., adaptive lasso, adaptive elastic net, SCAD and MC+) perform better than the ones which cannot satisfy (i.e., ridge, lasso and elastic net). We consider that the total number of covariates used in Chapter 3 is 20 (and 15) while we decide to use 50 covariates for the simulation study set in Chapter 4. Adaptive lasso seems to perform best in the situations where the number of covariates is not too large such as the ones considered in the Chapter 3. However, when the number of covariates increases considerably, adaptive elastic net appears to be slightly more competitive than adaptive lasso, mainly because of the presence of the strong multicollinearity and the complex spatial structure of the covariates. Second, the Poisson likelihood (PL) and the weighted Poisson likelihood (WPL) perform differently depending on the situations where they are applied. In general, the PL produces less biased estimates but less efficient estimates than that of the WPL. The WPL gains smaller RMSE, in general, for clustered point processes. Third, the Poisson estimates and the logistic regression likelihood estimates (combined with adaptive lasso) perform quite similarly, especially when the number of dummy points used to approximate the integral term in the likelihood can be chosen to be either similar to or larger than the number of data points.

We apply our methods to model the intensity of Beilschmiedia pendula Lauraceae as squares fit, where M is the number of observations in the linear models' context. As we employ coordinate descent algorithm [START_REF] Friedman | Pathwise coordinate optimization[END_REF] in Chapters 3 and 4, which is proved to be computationally faster than LARS algorithm (by cost O(M p)), our ALDS may be slightly more computationally expensive than that developed in Chapters 3 and 4, in a similar conclusion to the comparison between LARS and coordinate descent algorithm (see e.g., [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. Even though we have preliminary numerical results for ALDS which are encouraging, one may prefer to implement a faster method such as adaptive lasso albeit it performs slightly under the performance of ALDS. This makes an open research area to develop computationally faster methods while keeping their good performances for the Dantzig-selector type methods.

Future extensions

This work has the potential to be extended in a number of directions. We draw some examples in the following sections.

Spatio-temporal point processes

We have not covered developments for spatio-temporal point processes in this thesis.

In the application considered in this study, we find less interesting reasons to extend our study to the spatio-temporal point processes setting. First, we find that there is no much variation for the maps of Beilschmiedia pendula Lauraceae appearances among the different year observations. Second, the available covariates for topological attributes and soil properties are only available in space. Moreover, after personal contact with Prof. Jim Dalling (one of the PIs responsible for collecting and analyzing soil nutrients data, see http://ctfs.si.edu/webatlas/datasets/bci/soilmaps/BCIsoil.html), he finds that their results are very similar to the ones conducted more recently by his colleagues.

Note that in other applications such as spatio-temporal incidences of forest fires (e.g., [START_REF] Møller | Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires[END_REF][START_REF] Serra | Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: the case of catalonia, 1994-2008[END_REF], it may be more useful and interesting to consider extensions of our study in spatio-temporal point processes setting since such applications also consider a relatively large number of covariates. The intensity function naturally becomes ρ(u, t; β) = exp(β z(u, t)), (6.1)

where z(u, t) = {z 1 (u, t), . . . , z k (u, t)} are the k covariates varying in space and time (see e.g., [START_REF] Peter | Statistical analysis of spatial and spatio-temporal point patterns[END_REF][START_REF] Jonatan | Spatio-temporal point process statistics: a review[END_REF]. In the previously mentioned applications, it is not easy to obtain the information of covariates in both space and time.

Furthermore, it is also sometimes less realistic to consider spatio-temporal covariates.

For example, in the application used by [START_REF] Møller | Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires[END_REF], temperature is more relevant to be treated as temporal covariates and elevation is treated as spatial covariates. In such a way, one possibility is to assume first-order spatio-temporal separability (e.g., [START_REF] Gabriel | Second-order analysis of inhomogeneous spatiotemporal point process data[END_REF][START_REF] Møller | Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes[END_REF] :

ρ(u, t; β) = ρ 1 (u; β 1 )ρ 2 (t; β 2 ) = exp(β 1 z(u) + β 2 z(t)), (

where z(u) = {z 1 (u), . . . , z p (u)} and z(t) = {z 1 (t), . . . , z q (t)} are, respectively, the p spatial covariates observed at location u and the q temporal covariates collected at time t. β 1 and β 2 are the associated real p and q dimensional parameters which exhibit the effects of both spatial and temporal covariates to the intensity.

By assuming (6.2), the spatio-temporal processes may be regarded using spatial and temporal margins (e.g [START_REF] Møller | Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires[END_REF]. Thus, parameter estimates can be conducted by separating into Poisson likelihoods for the spatial margin and the temporal margin and then maximizing the corresponding Poisson likelihood. To perform the variable selection, the idea is, first, to regularize by a penalty function the Poisson likelihood of the temporal point process and, second, to apply a regularization technique for the Poisson likelihood of the spatial point process. This seems feasible in term of practical implementation. However, further study is needed regarding the theoretical justification.

Multivariate point processes

In the application we consider in this thesis, we focus to model the intensity of a single species of trees. Since the locations of each of hundreds of species of trees have been collected, a natural extension would consider assessing the hypotheses regarding biodiversity in the forest by involving as many as possible the species of trees in the analysis.

In a such analysis, taking the form of the intensity has to be taken carefully in order to be able to embrace the effect of both spatial covariates and the interactions among trees (which can be distinguished into interaction intra-specific: interaction between individuals of the same species and interaction inter-specific: interaction between trees of different species). This leads to not only study the first-order characteristics such as the intensity, but also the second-order characteristics such as cross pair correlation function.

Related recent study has been conducted by [START_REF] Rasmus Plenge Waagepetersen | Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes[END_REF] who modeled the nine species of trees contained in BCI study (e.g., [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF] by multivariate log-Gaussian Cox processes. Waagepetersen et al. ( 2016) decomposed the random intensity into three parts which exhibits spatial inhomogeneity due to the dependence on the spatial covariates, correlation across species, and clustering due to species-specific factors such as seed dispersal. However, considerable challenges remain due to the very high number of parameters to estimate, especially when a large number of tree species is considered. Thus, in the similar motivation as of this thesis, similar feature selection procedures seem interesting to study more carefully in order to obtain more interpretable models and practically applicable statistical methods for point patterns with hundreds of types of points.

Tuning parameter selection

In this study, we develop methods whose estimates satisfy some interesting properties: consistency, sparsity, and asymptotic normality. Nevertheless, it is worth noticing that our methods rely on the tuning parameter λ. For practical implementation, we suggest selecting λ which minimizes WQBIC(λ) defined by WQBIC(λ) = -2 (w; β(λ)) + β 0 log |D|, (6.3) where (w; β(λ)) is the Poisson or logistic regression likelihoods, β 0 is the number of selected nonzero coefficients and |D| is the volume of observation domain. It has been proved in the contexts of linear and generalized linear models that BIC-type methods satisfy selection consistency (e.g., [START_REF] Zou | On the "degrees of freedom" of the lasso[END_REF]Wang et al., 2007b[START_REF] Wang | Shrinkage tuning parameter selection with a diverging number of parameters[END_REF][START_REF] Zhang | Regularization parameter selections via generalized information criterion[END_REF], meaning that it selects the correct model with probability tending to 1 in large samples when a set of candidate models contains the true model. It may be true that the criterion defined by (6.3) or its slightly modified form can also satisfy the selection consistency in the spatial point processes framework. However, this needs further investigation.

The generalized Dantzig selector

Regarding Chapter 5 in this manuscript, note that the adaptive Dantzig selector (5. results may be able to derive in a similar way as developped in Chapter 5. However, the computational implementation may be much more challenging due to the possible nonconvex optimization problem, if for example, SCAD or MC+ penalties are considered.

The more interesting extension is to consider the combination between l 1 and l 2 penalties in a fashion similar to the adaptive elastic net but adapted to the Dantzig selector setting. More precisely, in (6.4), p λ j (|β j |) = λ j {γ|β j | + 1 2 (1 -γ)β 2 j } and p λ j (|β j |) = λ j {γ(sign(β j ) -β j ) + + |β j |} for j = 1, • • • , p, where 0 < γ < 1. In real applications, the setting which considers the involvement of a lot of covariates with complex spatial structure and the presence of strong multicollinearity is easily found.

In such situations, the adaptive elastic net may outperform adaptive lasso as it is the case for linear regression (see e.g., [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF]. We have preliminary results, as considered in the simulation experiments in Chapter 4, that the adaptive elastic net is slightly more preferable than the adaptive lasso. As the adaptive linearized Dantzig selector has slightly better results than the ones from the regularization methods with the adaptive lasso, it is interesting to investigate the theoretical and computational aspects of the proposed ideas in the spatial point processes setting, which may also be regarded as an extension of the Dantzig selector-type approaches in a more general context.

Note that we consider a fixed number of parameters setting in Chapter 5. In a similar motivation, as we consider from Chapter 3 to Chapter 4, it seems also possible to extend the Chapter 5 in the situation where the number of parameters diverges.
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  extended studies have been conducted, for example, byJames and Radchenko (2009) who studied the computational implementation of the Dantzig selector for generalized linear models,[START_REF] Antoniadis | The Dantzig selector in Cox's proportional hazards model[END_REF] who extended the theoretical results and implementation of the Dantzig selector for the class of Cox's proportional hazards model, and Li et al. (2014) who developed the Dantzig selector for censored linear regression models and evaluated its asymptotic properties. The general idea of the Dantzig selector is to minimize the l 1 norm of the parameters subject to a constraint on the score vector given by min |D| p j=1 λ j |β j | subject to |U j (β)| ≤ |D|λ j for j = 1, . . . , p.(1.1) More precisely, U j (β) is the jth component of either the score vector of a likelihood function or an estimating function and λ j ≥ 0, j = 1, 2, . . . , p, are the tuning parameters which can be different for every j. Our focus in this chapter is to evaluate the asymptotic properties of the Dantzig selector-type estimator and compare them to the ones obtained from regularization methods developed in Chapters 3 and 4, especially
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 2 Figure 2.1 (droite) les 3604 emplacements des arbres Beilschmiedia pendula Lauraceae (•) ainsi que les 1928 emplacements des arbres Ocotea whitei ( ). Les questions de recherche concernant cette étude sont: (a) Dans quelles regions Beilschmiedia pendula Lauraceae préfèrent-elles et ne préfèrent-elles pas vivre? (b) Quels sont les facteurs environnementaux qui ont un effet significatif sur l'apparition de Beilschmiedia pendula Lauraceae? (c) Comment ces facteurs influencent-ils l'intensité de Beilschmiedia pendula Lauraceae? (d) Existe-t-il une concurrence entre Beilschmiedia pendula Lauraceae et d'autres espèces d'arbres dans la forêt? L'étude qui relie la répartition d'une espèce à l'environnement est également connue sous le nom de modélisation de la distribution d'espèces (e.g.,[START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF][START_REF] Franklin | Mapping species distributions: spatial inference and prediction[END_REF][START_REF] Renner | Advances in presence-only methods in ecology[END_REF]. La modéli-
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 21 Figure 2.1: Cartes de 3604 emplacements des arbres de Beilschmiedia pendula Lauraceae superposés sur la carte du champ d'élévation (gauche), sur la carte de concentration de Phosporus dans le sol (milieu), et sur la carte de 1928 emplacements des arbres de Ocotea whitei (droite).
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 1 ρ(u; β) du , and the log-likelihood function of β is (omitted the constant term D 1du = |D|. As the intensity function has log-linear form (3

  0 z(u)) -exp(β z(u)))du = 0 when β = β 0 . So, the score function of the Poisson log-likelihood appears to be an unbiased estimating equation, even though X is not a Poisson point process. The estimator maximizing (3.4) is referred to as the Poisson estimator. The properties of the Poisson estimator have been carefully studied. Schoenberg (2005) showed that the Poisson estimator is still consistent for a class of spatio-temporal point process models. The asymptotic normality for a fixed observation domain was obtained by Waagepetersen (2007) while[START_REF] Guan | A thinned block bootstrap variance estimation procedure for inhomogeneous spatial point patterns[END_REF] established asymptotic normality under an increasing domain assumption and for suitable mixing point processes.

  likelihood estimator when considering X as a d-dimensional point process observed over a sequence of observation domain D = D n , n = 1, 2, . . . which expands to R d as n → ∞. The regularization parameters λ j = λ n,j for j = 1, . . . , p are now indexed by n. These asymptotic results also hold for the regularized unweighted Poisson likelihood estimator. For sake of conciseness, we do not present the asymptotic results for the regularized logistic regression estimate. The results are very similar. The main difference is lying in the conditions (C.6) and (C.7) for which the matrices A n , B n , and C n have a different expression (see Remark 3.6.2).

  is the minimal distance between sets Λ 1 and Λ 2 , and B(R d ) denotes the class of Borel sets in R d . Let β 0 = {β 01 , . . . , β 0s , β 0(s+1) , . . . , β 0p } = {β 01 , β 02 } = (β 01 , 0 ) denote the p-dimensional vector of true coefficient values, where β 01 is the s-dimensional vector of nonzero coefficients and β 02 is the (p-s)-dimensional vector of zero coefficients. We define the p × p matrices A n (w; β 0 ), B n (w; β 0 ), and C n (w; β 0 ) by A n (w; β 0 ) = Dn w(u)z(u)z(u) ρ(u; β 0 )du, B n (w; β 0 ) = Dn w(u) 2 z(u)z(u) ρ(u; β 0 )du, and C n (w; β 0 ) = Dn Dn w(u)w(v)z(u)z(v) {g(u, v) -1}ρ(u; β 0 )ρ(v; β 0 )dudv. Consider the following conditions (C.1)-(C.8) which are required to derive our asymptotic results, where o denotes the origin of R d : (C.1) For every n ≥ 1, D n = nE = {ne : e ∈ E}, where E ⊂ R d is convex, compact, and contains o in its interior. (C.2) We assume that the intensity function has the log-linear specification given by (3.1) where β ∈ Θ and Θ is an open convex bounded set of R p . (C.3) The covariates z and the weight function w satisfy sup u∈R d ||z(u)|| < ∞ and sup u∈R d |w(u)| < ∞.

  Assume the conditions (C.1)-(C.8) hold and let a n and c n be given by (3.16) and (3.18). If a n = O(|D n | -1/2 ) and c n = o(1), then there exists a local maximizer β of Q(w; β) such that β -

  We adopt the conditions (C.1)-(C.6) based on the paper from[START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. In condition (C.1), the assumption that E contains o in its interior can be made without loss of generality. If instead u is an interior point of E, then condition (C.1) could be modified to that any ball with centre u and radius r > 0 is contained inD n = nEfor all sufficiently large n. Condition (C.3) is quite standard. From conditions (C.2)-(C.5), the matrices A n (w; β 0 ), B n (w; β 0 ) and C n (w; β 0 ) are bounded by |D n | (see e.g. Coeurjolly and Møller, 2014).

  and c n → 0 as n → ∞ simultaneously. By requiring these assumptions, the corresponding penalized weighted Poisson likelihood estimators possess the oracle property and perform as well as weighted Poisson likelihood estimator which estimates β 1 knowing the fact that β 2 = 0.

  3.1 shows the plot of the four realizations using different κ and µ. The smaller value of κ, the tighter the clusters since there are fewer parents. When µ = 400, i.e. by considering the realizations observed on D R, the mean number of points over the 2000 replications and standard deviation are 396 and 47 (resp. 400 and 137) when κ = 5 × 10 -4 (resp. κ = 5 × 10 -5 ). When µ = 1600, the mean number of points and standard deviation are 1604 and 174 (resp. 1589 and 529) when κ = 5 × 10 -4 (resp. κ = 5 × 10 -5 ).

Figure 3

 3 Figure 3.1: Realizations of a Thomas process for µ = 400 (row 1), µ = 1600 (row 2), κ = 5 × 10 -4 (column 1), and κ = 5 × 10 -5 (column 2).

Figure 3 . 2 :

 32 Figure 3.2: Maps of locations of BPL trees (top left), elevation (top right), slope (bottom left), and concentration of phosporus (bottom right).

Figure 3 . 3 :

 33 Figure 3.3: Maps of covariates designed in scenario 2. The first two top left images are the elevation and the slope. The other 18 covariates are generated as standard Gaussian white noise but transformed to get multicollinearity.

Figure 3 . 4 :

 34 Figure 3.4: Maps of covariates used in scenario 3 and in application. From left to right: Elevation, slope, Aluminium, Boron, and Calcium (1st row), Copper, Iron, Potassium, Magnesium, and Manganese (2nd row), Phosporus, Zinc, Nitrogen, Nitrigen mineralisation, and pH (3rd row).

  Assume the conditions (C.1)-(C.6) and condition (C.8) hold. If a n = O(|D n | -1/2 ) and b n |D n | 1/2 → ∞ as n → ∞, then with probability tending to 1, for any β 1 satisfying β 1 -β 01 = O P (|D n | -1/2 ), and for any constant K 1 > 0,

  ). By condition (C.8), b n is well-defined and since by assumption b n |D n | 1/2 → ∞, in particular, b n > 0 for n sufficiently large. Therefore, for n sufficiently large, P ∂Q(w; β)

  z(u) = {z 1 (u), . . . , z p (u)} are the p spatial covariates measured at location u and β = {β 1 , . . . , β p } is a real p-dimensional parameter. Such variable selection procedures have been previously investigated, for example, by Renner and Warton (2013); Thurman and Zhu (2014) for Poisson point process model and by Thurman et al. (2015), and in Chapter 2, for more general spatial point processes model. The main idea is to regularize the estimating functions based on Campbell theorem by a chosen penalty function. Theoretical study has been conducted by Thurman et al. (2015) who established the asymptotic properties of the estimates in terms of consistency, sparsity, and normality distribution using regularized estimating functions based on Campbell theorem derived from Poisson likelihood with adaptive lasso penalty, while we studied in Chapter 2 the same asymptotic properties by penalizing the estimating functions derived from both Poisson and logistic regression likelihoods considering more general penalty functions.

  β) is either the Poisson likelihood (4.4) or the logistic regression likelihood (4.5). We refer the second term of (4.6) to as a penalization term. In this term, we have mainly two parts: (1) a penalty function p λ parameterized by λ ≥ 0 which can change for each component j, j = 1, • • • , p, and (2) the volume of the observation domain |D| which plays the role as the sample size in spatial point process framework. For any nonnegative λ, we say that p λ (•) is a penalty function if p λ is a nonnegative function with p λ (0) = 0. Some examples, described in Table

  3, let n (w; β) = n,PL (w; β) = u∈X∩Dn w(u) log ρ(u; β) -Dn w(u)ρ(u; β)du, (4.7) Q n (w; β) = n (w; β) -|D n | pn j=1 p λ n,j (|β j |), (4.8) be respectively the weighted Poisson likelihood and the penalized likelihood. Let β 0 = {β 01 , . . . , β 0s , β 0(s+1) , . . . , β 0pn } = {β 01 , β 02 } = (β 01 , 0 ) denote the p n -dimensional vector of true coefficients, where β 01 is the s-dimensional vector of nonzero coefficients and β 02 is the (p n -s)-dimensional vector of zero coefficients. We assume that the number of nonzero coefficients, s, does not depend on n. Let z 01 and z 02 denote the corresponding s-dimensional and (p n -s)-dimensional vectors of spatial covariates.

  .11) c n = max j=1,...,s |p λ n,j (|β 0j |)|, (4.12) where K 1 is any positive constant. Consider the following conditions (C.1)-(C.9) which are required to derive our asymptotic results, where o denotes the origin of R d : (C.1) For every n ≥ 1, D n = nE = {ne : e ∈ E}, where E ⊂ R d is convex, compact, and contains o in its interior. (C.2) We assume that the intensity function has the log-linear specification given by (4.1) where β ∈ Θ and Θ is an open convex bounded set of R pn . Furthermore, we assume that there exists a neighborhood Ξ(β 0 ) of β 0 such that sup u∈R d ρ(u; β) < ∞ for all β ∈ Ξ(β 0 ). (C.3) The covariates z and the weight function w satisfy sup u∈R d

  Assume the conditions (C.1)-(C.5) and (C.7)-(C.9) hold. Let a n and c n be given respectively by (4.10) and (4.12). If a n = O(|D n | -1/2 ) and c n = o(1), then there exists a local maximizer β of Q n (w; β) such that β -

Figure 4 . 1 :

 41 Figure 4.1: Maps of 3,604 locations of BPL trees and the six covariates suspected to have high influence on the intensity of BPL trees, row 1: elevation, slope, and Copper, row 2: Phosphorus Zinc and the interaction between Magnesium and Phosphorus.

  Under conditions (C.1)-(C.5), the following result holds as n → ∞ (1) n (w; β 0 ) = O P p n |D n | . (4.15) Proof. Using Campbell Theorems (4.2)-(4.3), the score vector (1) n (w; β 0 ) has variance Var[ (1) n (w; β 0 )] = B n (w; β 0 ) + C n (w; β 0 ). Conditions (C.4)-(C.5) allow us to obtain that sup u∈R d R d {g(u, v) -1}dv < ∞. We then deduce using conditions (C.1)-(C.3) that B n (w; β 0 ) + C n (w; β 0 ) = O(p n |D n |). The result is proved since for any centered real-valued stochastic process Y n with finite variance Var[Y n ], Y n = O P ( Var[Y n ]).

  z 01 (u) exp(β 01 z 01 (u))du. For any n ≥ 1 and any i ∈ I n , Y i,n has zero mean, and by condition (C.4), sup n≥1 sup i∈In E( Y i,n 2+δ ) < ∞. (4.21) If we combine (4.21) with conditions (C.1)-(C.6), we can apply Karácsony (2006, Theorem 4), a central limit theorem for triangular arrays of random fields. Proof. We now focus on the proof of Theorem 4.3.2. Since Theorem 4.3.2(i) is proved by Lemma 4.6.2, we only need to prove Theorem 4.3.2(ii), which is the asymptotic normality of β1 . As shown in Theorem 4.3.1, there is a root-(|D n |/p n ) consistent local maximizer β of Q n (w; β), and it can be shown that there exists an estimator β1 in Theorem 4.3.1 that is a root-(|D n |/p n ) consistent local maximizer of Q n w; (β 1 , 0 ) , which is regarded as a function of β 1 , and that satisfies ∂Q n (w; β) ∂β j = 0 for j = 1, . . . , s and β = ( β 1 , 0 ) .

  j (| βj |)sign( βj )I(| βj -β 0j | ≤ rn,j ) = p λ n,j (|β 0j |)( βj -β 0j )I(| βj -β 0j | ≤ rn,j ) + O P (p n /|D n |) where the latter equation ensues from Theorem 4.3.1 and condition (C.8). Again, from Theorem 4.3.1, I(| βj -β 0j | ≤ rn,j ) L 1

  extended studies have been conducted. For example,James and Radchenko (2009) studied the computational implementation of the Dantzig selector for generalized linear models.[START_REF] Antoniadis | The Dantzig selector in Cox's proportional hazards model[END_REF] extended the theoretical results and the implementa-tion of the Dantzig selector for the class of Cox's proportional hazards model. Dicker (2010) provided a large sample study of the Dantzig selector and proposed its adaptive version to establish interesting asymptotic properties of the estimates. Finally, Li et al. (2014) developed the Dantzig selector for censored linear regression models and evaluated its asymptotic properties. To our knowledge, there have not been conducted a study which develops the Dantzig selector-type approaches for spatial point processes intensity estimation. This chapter considers the Dantzig selector-type methods based on estimating equations to obtain intensity estimates for spatial point processes. In particular, we propose a modified version of the Dantzig selector based on linear approximation in the constraint vector which we call by the adaptive linearized Dantzig selector. Although our proposed methods may work for a very general estimating function, we focus on estimating functions derived from Poisson and logistic regression likelihoods, which, as detailed in Chapter 2, have strong links with Poisson and logistic regressions. We study

  (β) or by solving U(β) = 0, where U(β) is an unbiased estimating function. In this study, we consider estimating equations derived from Poisson[START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] and logistic regression[START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] likelihoods defined respectively by U PL (w; β)

  .8) where w(•) is a weight function depending on the first and the second-order characterictics of X and δ(•) is a nonnegative real-valued function. We refer the reader to Guan and Shen (2010) for further details on the weight function w(•) and to Baddeley et al. Now, it looks more clearly that (5.11) is quite similar to (5.10). With the same objective function, the adaptive Dantzig selector uses the score vector as a constraint, while the adaptive lasso uses the likelihood function as a constraint. Similarities between lasso and Dantzig selector in linear regression contexts have been studied by Meinshausen et al. (2007); Bickel et al. (2009); James et al. (2009); Asif and Romberg (2010).

  tor estimator when |D n | → ∞ as n → ∞ with a fixed number of parameters p. More precisely, we consider increasing domain asymptotic, i.e. X is a d-dimensional point process observed over a sequence of observation domain D = D n , n = 1, 2, . . . which expands to R d as n → ∞. The modified tuning parameters λj = λn,j for j = 1, . . . , p are now indexed by n, so Λ n = diag{ λn,1 , • • • , λn,p }. We only present in this section the results for the methods considering estimating equations derived from the Poisson like-lihood. For sake of conciseness, we do not present asymptotic results for the methods using estimating equations derived from the logistic regression likelihood. The results are very similar. The main difference is lying in the conditions (C.6)-(C.8) for which the matrices A n , B n , and C n have a different expression (see Remark 5.3.3).

U

  n (w; β) = U n,PL (w; β) = u∈X∩Dn w(u)z(u) -Dn w(u)z(u)ρ(u; β)du (5.14) be the score vector of the weighted Poisson likelihood. We denote by β 0 = {β 01 , . . . , β 0s , β 0(s+1) , . . . , β 0p } = {β 01 , β 02 } = (β 01 , 0 ) the p-dimensional vector of true coefficients, where β 01 is the s-dimensional vector of nonzero coefficients and β 02 is the (p -s)-dimensional vector of zero coefficients. Let Λ n,1 = diag{ λn,1 , • • • , λn,s } and Λ n,2 = diag{ λn,s+1 , • • • , λn,p } denote the decomposition of Λ n . We define the p × p matrices A n (w; β 0 ), B n (w; β 0 ) and C n (w; β 0 ) by A n (w; β 0 ) = Dn w(u)z(u)z(u) ρ(u; β 0 )du, B n (w; β 0 ) = Dn w(u) 2 z(u)z(u) ρ(u; β 0 )du, C n (w; β 0 ) = Dn Dn w(u)w(v)z(u)z(v) {g(u, v) -1}ρ(u; β 0 )ρ(v; β 0 )dudv, where g(u, v) is the pair correlation function indicating the attraction (or repulsion)

  Consider the following conditions (C.1)-(C.9) which are required to derive our asymptotic results:(C.1) For every n ≥ 1, D n = nE = {ne : e ∈ E}, where E ⊂ R d is convex, compact,and contains the origin of R d in its interior. (C.2) We assume that the intensity function has the log-linear specification given by (5.1) where β ∈ Θ and Θ is an open convex bounded set of R p . (C.3) The covariates z and the weight function w satisfy sup u∈R d ||z(u)|| < ∞ and sup u∈R d |w(u)| < ∞.

  j | subject to |z •j ( Ỹzβ)| ≤ λj for j = 1, . . . , p, j | subject to |z •j vΩ(Yzβ)| ≤ λj for j = 1,. . . , p, (5.27) 

  these works and suggest to choose λ which minimizes WQBIC( λ), a weighted version of the BIC criterion, defined by WQBIC( λ) = -2 (w; β( λ)) + s( λ) log |D|, where (w; β( λ)) is the Poisson likelihood function, s( λ) = p j=1 I{ βj ( λ) = 0} is the number of selected covariates with nonzero regression coefficients and |D| is the volume of observation domain.

  w; β) + A n (w; β)( ββ) -sign(α1 , if Λ -1 n {U n (w; β) + A n (w; β)( β --Λ n β as the dual vector in the Lagrange form associated with the problem (5.31). The solution set α is feasible ifΛ -1 n {U n (w; β) + A n (w; β)( ββ)} ∞ ≤ 1. This shows that the dual function of (5.31) is equivalent to the primal problem (5.13).Now, let us take any α ∈ R p . By conditions (5.17), (5.19), and (5.18) respectivelyinf β∈R p L(β; α) = α Λ -1 n U n (w; β) + A n (w; β) βα 1 = α Λ -1 n A n (w; β) β = Λ n β 1 .Thus, it is valid thatΛ n β 1 = inf β∈R p L(β; α) ≤ sup

  (C.1)-(C.3) and (C.7)-(C.8), sup β∈Θ sup u∈R d ρ(u, β) < ∞ so in partic-so, (5.18) is satisfied. Now, we want to show that (5.19) holds. We haveα Λ -1 n U n (w; β) + A n (w; β)( ββ) = I + II,whereI = α Λ -1 n U n (w; β) = α 1 Λ -1 n,1 U n,1 (w; β), II = α 1 Λ -1 n,1 A n,1 (w; β) βα 1 Λ -1 n,1 A n,11 (w; β) β1 = α 1 Λ -1 n,1 A n,1 (w; β) β α 1 Λ -1 n,1 {U n,1 (w; β) + A n,1 (w; β) β -Λ n,1 sign( α1 )} = -α 1 Λ -1 n,1 {U n,1 (w; β) -Λ n,1 sign( α1 )},from (5.20)-(5.23). By summing I and II, we deduce that (5.19) holds.To prove (5.17) holds, let us decompose the vector Λ -1 n A n (w; β)Λ -1 n α byΛ -1 n A n (w; β)Λ -1 n α I . By (5.22)-(5.23), we can show thatI ∞ = Λ -1 n,1 A n,11 (w; β)Λ -1 n α1 ∞ = sign( β1 ) ∞ = 1.Regarding II , by (5.22)-(5.23), we haveII = Λ -1 n,2 A n,21 (w; β)Λ -1 n α1 = Λ -1 n,2 A n,21 (w; β)Λ -1 n Λ n,1 {A n,11 (w; β)} -1 Λ n,1 sign( β1 ) = Λ -1 n,2 A n,21 (w; β){A n,11 (w; β)} -1 Λ n,1 sign( β1 ) = o(|D n | -1/2 )O(|D n |)o P (|D n | -1 )o(|D n | 1/2 )O P (1) = o P (1),

Λ - 1 n

 1 {U n (w; β) + A n (w; β)( ββ)} = n,1 (w; β) + A n,1 (w; β)( ββ)} Λ -1n,2 {U n,2 (w; β) + A n,2 (w; β)( β -40), we can show using a Taylor expansion that β1 -β 01 = A n,11 (w; β) -1 U n,1 (w; β) + A n,1 (w; β) β -Λ n,1 sign( α1 ) -β 01 = A n,11 (w; β) -1 U n,1 (w; β) + A n,1 (w; β)( ββ 0 ) -Λ n,1 sign( α1 ) = A n,11 (w; β) -1 U n,1 (w; β 0 ) + ∆ n,1 (w; β) + O P (1) + o P (|D n | 1/2 ) = A n,11 (w; β) -1 U n,1 (w; β 0 ) + ∆ n,1 (w; β) + o P (|D n | 1/2 ) .Hence,T n ={B n,11 (w; β 0 ) + C n,11 (w; β 0 )} -1/2 A n,11 (w; β 0 )A n,11 (w; β) -1 U n,1 (w; β 0 ) + ∆ n,1 (w; β) + o P (|D n | 1/2 ) .Let us now decompose T n = T 1,n + T 2,n , where, for an identity matrix with dimension s denoted by I s ,T 1,n = {B n,11 (w; β 0 ) + C n,11 (w; β 0 )} -1/2 A n,11 (w; β 0 )A n,11 (w; β) -1 -I s U n,1 (w; β 0 ) + ∆ n (w; β) + o P (|D n | 1/2 ) , T 2,n = {B n,11 (w; β 0 ) + C n,11 (w; β 0 )} -1/2 U n,1 (w; β 0 ) + ∆ n (w; β) + o P (|D n | 1/2 ) .By conditions (C.6) and (C.8), we have{B n,11 (w; β 0 ) + C n,11 (w; β 0 )} -1/2 = O(|D n | -1/2 ) A n,11 (w; β 0 )A n,11 (w; β) -1 -I s = o P (1), and let us remind that U n,1 (w; β 0 ) = O P (|D n | 1/2 ) from Lemma 5.6.1 and ∆ n (w; β) + o P (|D n | 1/2 ) = o P (|D n | 1/2 ) from (5.40). Hence, T 1,n = O(|D n | -1/2 )o P (1) O P (|D n | 1/2 ) + o P (|D n | 1/2 ) = o P (1), T 2,n = {B n,11 (w; β 0 ) + C n,11 (w; β 0 )} -1/2 U n,1 (w; β 0 ) + o P (1).

p

  λ j (|β j |) subject to |U j (w; β)| ≤ |D|p λ j (|β j |) for j = 1, . . . , p, (6.4) where p λ (|θ|) is a penalty function which can be a convex or a non-convex function (see Chapter 3 as examples) and p λ (|θ|) is its derivative with respect to θ. The theoretical

  Un exemple d'épidémiologie est l'étude de la variation spatiale du risque de cancer dans une ville compte tenu de l'emplacement de la résidence des patients et de la localisation d'un incinérateur industriel (e.g.,[START_REF] Peter | A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point[END_REF]. Dans cette étude, la question principale est de savoir s'il existe une preuve du risque croissant de cancer pour le résident près de l'incinérateur, de sorte que la distance entre l'adresse résidentielle des patients à l'incinérateur est considérée comme une covariable potentielle. En criminologie, un exemple est l'analyse du taux de vols de voitures dans une ville en considérant certaines informations démographiques comme des covariables (e.g.,[START_REF] Shirota | Statistical analysis of origindestination point patterns: Modeling car thefts and recoveries[END_REF]. Par ailleurs, une autre application apparaît également en écologie par l'intérêt de la modélisation de

z p (u)} sont les p covariables spatiales mesurées à l'emplacement 33 u et β = {β 1 , . . . , β p } est un paramètre réel de dimension p. la répartition spatiale des espèces d'arbres liée à certains facteurs environnementaux tels que les attributs topologiques et les propriétés du sol. Par conséquent, le but principal de ces études est de trouver une relation entre l'intensité et les covariables spatiales en évaluant les grandeurs des composantes du vecteur β. Pour les modèles

  . En outre, des informations concernant les covariables environnementales, telles que les attributs topologiques et les éléments nutritifs des sols ont également été collectées. La Figure 2.1 représente la répartition spatiale des 3604 emplacements d'arbres de Beilschmiedia pendula Lauraceae superposés sur la carte du champ de pente (gauche) et sur la carte de concentration de Phosporus dans le sol (milieu). De plus, nous présentons dans la

  ). Si nous étions restés dans le cas de Poisson, nous aurions probablement étudié le problème différemment. En plus, dans l'application que nous considérons dans cette thèse, ce n'est pas réaliste de modéliser Beilschmiedia pendula Lauraceae par un modèle de processus ponctuel de Poisson car

	ces données montrent un regroupement qui sont principalement dû à la dispersion des
	graines (e.g., Waagepetersen and Guan, 2009; Thurman et al., 2015). Du point de vue
	computationel, comme nous établissons les liens entre l'estimation de l'intensité des
	processus ponctuels spatiaux et les modèles linéaires généralisés (GLM), nous devons
	seulement traiter les procédures de sélection de variables pour les GLM qui sont faciles
	à implémenter et rapides. Il convient de souligner que nos méthodes ne se limitent pas
	à l'application en écologie et donc peuvent être appliquées dans différents contextes,

tels que ceux étudiés par Yue and Loh (2015); Renner et al. (2015); Shirota et al. (2017). Le reste de ce manuscrit est organisé comme suit. Au Chapitre 3, nous développons des procédures de type lasso basées sur des techniques de régularisation convexes et non-convexes. Nous considérons les équations estimantes basées sur le théorème de Champbell dérivées des vraisemblances de Poisson (Waagepetersen, 2007; Guan and Shen, 2010) et de la régression logistique (Baddeley et al., 2014) pénalisé par une fonction de pénalité Q(w; β) = (w; β) -|D| p j=1 p λ j (|β j |), où (w; β) est la vraisemblance de Poisson ou la vraisemblance de la régression logistique, |D| est le volume du domaine d'observation et p λ (|θ|) est une fonction de pénalité paramétrisé par λ (positif). Notez que si p λ (|θ|) est une pénalité de norme l 1 , cela correspond à la méthode de régularisation lasso

et la mise en oeuvre du sélecteur Dantzig pour la classe du mod- èle à risques proportionnels de Cox, et Li et al. (2014), qui ont développé le sélecteur de Dantzig pour les modèles de régression linéaire censurée et évalué ses propriétés asymptotiques

  Nous évaluons leurs propriétés asymptotiques et leur implémentation computationnelle. Du point de vue théorique, c'est à noter que l'asymptotique considéré dans cette thèse est le domaine croissant asymptotique, à savoir nous considérons les processus ponctuels spatiaux observés sur une séquence de domaines bornés D n tels que |D n | → ∞ à mesure que n → ∞. Dans notre contexte, |D n | joue le même rôle que n, le nombre d'observations, dans les problèmes standard tels que les méthodes de type lasso pour les modèles linéaires ou les modèles linéaires généralisés. Du point de vue computationel, notre procédure est simple à implémenter dans R puisque nous combinons le paquet R spatstat (Baddeley et al., 2015) avec glmnet (Friedman et al., . L'idée générale du sélecteur de Dantzig est de minimiser la norme l 1

	obtenus au Chapitre 3 sont toujours valables avec quelques restrictions sur la suite des de régularisation qui peuvent être différents pour chaque j. Nos objectifs dans ce
	paramètres p n , par l'argument principal exigeant que p 3 n /|D n | → 0 quand n → ∞. chapitre sont d'évaluer les propriétés asymptotiques des estimateurs obtenus par des
	Outre les techniques de régularisation étudiées aux Chapitres 3 et 4, nous dévelop-méthodes de type sélecteur de Dantzig et de les comparer à celles obtenues par des
	pons au Chapitre 5, les méthodes de type sélecteur de Dantzig pour l'estimation de méthodes de régularisation développées dans les Chapitres 3 et 4, surtout avec lasso
	l'intensité des processus ponctuels spatiaux. En particulier, nous proposons une ver-puisque les similarités entre le lasso et le sélecteur de Dantzig ont été découvertes
	sion modifiée du sélecteur de Dantzig basé sur une approximation linéaire du vecteur dans les modèles linéaires (e.g., Meinshausen et al., 2007; Bickel et al., 2009; James
	de contrainte que nous appelons le sélecteur Dantzig linéarisé adaptatif (ALDS). Le et al., 2009; Asif and Romberg, 2010). Nous montrons dans certaines conditions que
	sélecteur de Dantzig (Candes and Tao, 2007) a été initialement conçu pour les modèles les estimations de l'ALDS sont sparse et asymptotiquement normales. De plus, en
	de régression linéaire et a attiré beaucoup d'attention en raison de ses deux contribu-proposant l'approximation linéaire sur le vecteur de contraintes, nous montrons que le
	tions significatives: les aspects computationnel et théoriques. Du point de vue com-problème d'optimisation complexe (2.1) peut être réduit à un problème de program-
	putationel, un algorithme efficace a été proposé comme l'implementation du sélecteur mation linéaire, ainsi un algorithme efficace peut être introduit.
	Dantzig qui résulte en une programmation linéaire. Du point de vue théorique, Candes
	tion et appliquons nos méthodes pour modéliser l'intensité de Beilschmiedia pendula and Tao (2007) ont fourni des bornes non asymptotiques optimales sur la norme l 2
	Lauraceae. de l'erreur d'estimation des coefficients et ont montré que cette erreur est un facteur
	Au Chapitre 3, nous nous limitons à l'hypothèse où le nombre de covariables est log p de l'erreur qui serait atteinte si les emplacements des coefficients non nuls étaient
	fixé. Cela conduit à deux problèmes: l'application et la théorie. Dans l'application connus. Comme log p croit très lentement, le sélecteur de Dantzig ne paie qu'un petit
	considérée dans cette étude, la modélisation de l'intensité de Beilschmiedia pendula prix pour le choix adaptatif des variables significatives et est donc très approprié pour
	Lauraceae en fonction des covariables environnementales et de leurs interactions peut un très grand jeu de données. Des études approfondies ont été menées, par exemple,
	augmenter considérablement le nombre de covariables, donc le contexte où le nombre par James and Radchenko (2009) qui ont étudié la mise en oeuvre du sélecteur de
	de covariables diverge doit être considéré. Pour les propriétés asymptotiques consid-Dantzig pour les modèles linéaires généralisés, Antoniadis et al. (2010) qui ont étendu
	érées dans cette étude, cela a été prouvé par Fan and Peng (2004), dans le cadre de la régression pénalisée générale, qu'il existe de nombreuses procédures de sélection de variables simples qui satisfont aussi les propriétés de consistance, sparsité et normalité asymptotique dans le cadre de paramètres finis. Nous relaxons cette hypothèse au Chapitre 4 en permettant au nombre de covariables de croître à l'infini à mesure que les résultats théoriques des paramètres soumis à une contrainte sur le vecteur de score donné par
	le domaine d'observation augmente. Nous étudions les propriétés asymptotiques con-p
	j=1 sidérées au Chapitre 3 mais étendons à la situation lorsque le nombre de paramètres min |D| λ j |β j | avec des contraintes |U j (β)| ≤ |D|λ j for j = 1, . . . , p. (2.1)
	diverge. Nous considérons l'étude asymptotique qui permet à la fois que |D n | (la Plus précisément, U j (β) est la jème composante du vecteur de score d'une fonction de
	séquence des domaines du volume d'observation) et p n (la suite des nombres de co-vraisemblance ou d'une fonction estimante et λ j ≥ 0, j = 1, 2, . . . , p, sont les paramètres
	variables) tend vers l'infini quand n tend vers l'infini. Nous prouvons que les résultats

2010) et ncvreg
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. Nous évaluons également les propriétés finies de nos estimateurs obtenus par de telles procédures dans les études de simula-

Table 3 .

 3 3: Details of the sequences a n , b n and c n for a given regularization method.

	Method a n			b n	c n
	Ridge λ n max j=1,...s	{|β 0j |}	0	λ n
	Lasso λ n			λ n	0
	Enet	λ n (1 -γ) max j=1,...s	{|β 0j |} + γ γλ n	(1 -γ)λ n
	AL	max j=1,...s	{λ n,j }	min j=s+1,...p	{λ n,j } 0
	Aenet	max j=1,...s			

Table 3 .

 3 4: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of Thomas processes on the domain D R (µ = 400) for different values of κ and for the three different scenarios. Different penalty functions are considered as well as two estimating equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL). Approximate value the total number of selected covariates in the model. PPV describes how the model can approximate the oracle model in terms of selection. Therefore, we want to find the Table 3.5: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of Thomas processes on the domain D (µ = 1600) for different values of κ and for the three different scenarios. Different penalty functions are considered as well as two estimating equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL).

				κ = 5 × 10 -4					κ = 5 × 10 -5		
	Method	Regularized PL Regularized WPL Regularized PL Regularized WPL
		TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV
							Scenario 1					
	Ridge	100 100 10 100 100	10	100 100 10 100 100	10
	Lasso	100 * 27	35	56	0 *	98	89	35	34	33	0 *	62
	Enet	100 * 59	18	39	4	36	91	60	21	31	0 *	57
	AL	100 * 1	93	58	0 * 100 * 88	7	72	35	0 *	67
	Aenet	100 * 6	72	59	0 *	99	89	12	61	34	0 *	64
	SCAD 100 * 18	41	66	0 *	98	90	17	46	31	0 *	56
	MC+	100 * 21	36	68	0 *	96	90	21	42	30	0 *	54
							Scenario 2					
	Ridge	100 100 10 100 100	10	100 100 10 100 100	10
	Lasso	100 * 25	35	52	1	88	90	38	29	31	0 *	55
	Enet	100 * 52	19	49	4	62	90	60	20	24	1	38
	AL	99	4	80	52	0 * 100 * 87	9	67	36	0 *	67
	Aenet	99	8	65	53	0 *	99	88	14	54	35	0 *	65
	SCAD 100 * 17	43	64	0 *	92	88	17	45	28	0 *	50
	MC+	100 * 18	41	59	1	87	88	21	41	27	0 *	50
							Scenario 3					
	Ridge	100 100 13 100 100	13	100 100 13 100 100	13
	Lasso	100 * 56	24	52	2	87	98	89	15	13	2	20
	Enet	100 * 76	18	47	4	63	99	94	14	8	2	11
	AL	100 * 29	42	52	0 * 100 * 95	77	17	18	2	30
	Aenet	100 * 38	33	54	0 *	99	96	82	16	15	1	25
	SCAD 100 * 34	33	58	0 *	85	95	71	18	13	1	22
	MC+	100 * 35	32	56	0 *	84	95	71	18	13	1	23

*
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 3 6: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of Thomas processes on the domain D R (µ = 400) for different values of κ and for the three different scenarios. Different penalty functions are considered as well as two estimating equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL).

		κ = 5 × 10 -4	κ = 5 × 10 -5
	Method	Regularized PL Regularized WPL Regularized PL Regularized WPL
		Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE
		Scenario 1
	Oracle 0.11 0.18 0.21 0.64 0.20 0.67 0.29 0.81 0.86 0.57 0.54 0.78
	Ridge 0.11 0.38 0.40 0.72 0.69 1.00 0.28 1.26 1.29 0.98 1.03 1.42
	Lasso	0.28 0.32 0.42 1.06 0.32 1.11 0.47 0.99 1.10 1.40 0.73 1.58
	Enet	0.24 0.38 0.44 1.28 0.28 1.31 0.45 1.04 1.13 1.59 0.58 1.70
	AL	0.10 0.29 0.31 0.87 0.32 0.92 0.38 0.96 1.03 1.18 0.93 1.50
	Aenet 0.14 0.30 0.33 0.93 0.39 1.01 0.40 0.96 1.04 1.29 0.82 1.53
	SCAD 0.26 0.27 0.38 1.06 0.37 1.12 0.46 0.79 0.91 1.49 0.67 1.64
	MC+	0.28 0.28 0.39 1.04 0.38 1.11 0.47 0.78 0.92 1.48 0.70 1.64
		Scenario 2
	Oracle 0.12 0.23 0.26 0.71 0.26 0.76 0.30 0.78 0.84 0.59 0.62 0.84
	Ridge 0.14 0.46 0.48 0.69 0.93 1.16 0.32 1.23 1.27 0.92 1.15 1.47
	Lasso	0.34 0.33 0.48 1.20 0.37 1.26 0.45 0.96 1.06 1.50 0.69 1.65
	Enet	0.38 0.40 0.55 1.40 0.35 1.44 0.44 1.03 1.12 1.78 0.49 1.85
	AL	0.20 0.33 0.39 0.85 0.32 0.91 0.37 0.93 1.00 1.17 0.86 1.45
	Aenet 0.25 0.33 0.42 0.96 0.34 1.02 0.40 0.94 1.02 1.29 0.78 1.51
	SCAD 0.38 0.30 0.48 0.95 0.48 1.06 0.44 0.80 0.91 1.53 0.70 1.68
	MC+	0.39 0.30 0.49 1.01 0.49 1.13 0.44 0.80 0.92 1.52 0.71 1.68
		Scenario 3
	Oracle 0.12 0.46 0.48 0.70 0.26 0.75 0.65 1.14 1.31 0.87 0.88 1.24
	Ridge 0.13 1.03 1.04 0.71 1.45 1.62 0.52 3.10 3.14 0.90 2.86 3.00
	Lasso	0.20 0.69 0.71 1.26 0.40 1.32 0.51 2.91 2.95 1.93 0.68 2.04
	Enet	0.21 0.83 0.86 1.53 0.40 1.58 0.52 2.94 2.99 2.03 0.60 2.12
	AL	0.18 0.57 0.60 0.91 0.33 0.97 0.52 2.80 2.85 1.77 0.84 1.96
	Aenet 0.22 0.61 0.65 1.04 0.36 1.10 0.52 2.80 2.85 1.86 0.73 2.00
	SCAD 0.27 0.61 0.67 1.18 0.59 1.32 0.48 2.49 2.54 1.91 0.64 2.02
	MC+	0.27 0.62 0.68 1.20 0.58 1.33 0.48 2.49 2.54 1.89 0.67 2.00

Table 3 .

 3 7: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of Thomas processes on the domain D (µ = 1600) for different values of κ and for the three different scenarios. Different penalty functions are considered as well as two estimating equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL).

		κ = 5 × 10 -4	κ = 5 × 10 -5
	Method	Regularized PL Regularized WPL Regularized PL Regularized WPL
		Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE
		Scenario 1
	Oracle 0.05 0.11 0.12 0.33 0.15 0.37 0.16 0.45 0.48 0.41 0.22 0.46
	Ridge 0.04 0.21 0.21 0.70 0.55 0.90 0.13 0.72 0.73 0.74 0.58 0.94
	Lasso	0.14 0.19 0.24 1.03 0.20 1.05 0.23 0.60 0.64 0.99 0.43 1.08
	Enet	0.11 0.22 0.24 1.14 0.29 1.17 0.20 0.62 0.65 1.12 0.43 1.20
	AL	0.04 0.18 0.18 0.87 0.18 0.89 0.16 0.58 0.60 0.87 0.42 0.96
	Aenet 0.05 0.18 0.18 0.96 0.22 0.99 0.17 0.58 0.60 0.90 0.48 1.02
	SCAD 0.19 0.18 0.26 1.30 0.34 1.34 0.14 0.53 0.55 1.37 0.51 1.46
	MC+	0.20 0.18 0.27 1.33 0.28 1.36 0.15 0.53 0.55 1.38 0.52 1.48
		Scenario 2
	Oracle 0.05 0.15 0.16 0.36 0.17 0.40 0.18 0.46 0.49 0.39 0.26 0.47
	Ridge 0.05 0.27 0.27 0.69 0.62 0.94 0.17 0.74 0.80 0.78 0.64 1.01
	Lasso	0.16 0.20 0.25 1.16 0.24 1.18 0.23 0.60 0.64 1.14 0.43 1.22
	Enet	0.17 0.23 0.29 1.24 0.24 1.26 0.23 0.63 0.67 1.33 0.42 1.40
	AL	0.07 0.18 0.20 0.85 0.18 0.87 0.18 0.58 0.61 0.83 0.41 0.93
	Aenet 0.09 0.19 0.21 0.94 0.20 0.96 0.20 0.59 0.62 0.92 0.41 1.01
	SCAD 0.26 0.20 0.33 1.26 0.51 1.36 0.19 0.51 0.55 1.31 0.60 1.44
	MC+	0.26 0.20 0.33 1.31 0.55 1.42 0.19 0.51 0.55 1.32 0.61 1.46
		Scenario 3
	Oracle 0.13 0.31 0.34 0.43 0.18 0.47 0.31 0.96 1.01 0.75 0.35 0.83
	Ridge 0.11 0.84 0.86 0.70 0.96 1.19 0.23 2.50 2.51 1.02 1.43 1.76
	Lasso	0.12 0.64 0.65 1.14 0.29 1.17 0.22 2.41 2.42 1.40 0.61 1.52
	Enet	0.13 0.71 0.73 1.35 0.30 1.39 0.23 2.42 2.43 1.63 0.56 1.73
	AL	0.14 0.55 0.57 0.89 0.18 0.91 0.22 2.37 2.38 1.12 0.67 1.31
	Aenet 0.15 0.56 0.58 1.00 0.22 1.03 0.22 2.36 2.37 1.26 0.64 1.41
	SCAD 0.24 0.58 0.62 1.41 0.40 1.47 0.24 2.09 2.10 1.50 0.68 1.65
	MC+	0.24 0.58 0.63 1.44 0.42 1.50 0.24 2.09 2.10 1.49 0.71 1.65

  We consider three different numbers of dummy points denoted by nd 2 . By these different numbers of dummy points, we want to observe the properties with three Table3.9: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of Thomas processes on the domain D (µ = 1600) for κ = 5 × 10 -5 , for two different scenarios, and for three different numbers of dummy points. Different estimating equations are considered, the regularized (un)weighted Poisson and (un)weighted logistic regression likelihoods, employing adaptive lasso regularization method.

					Scenario 2				Scenario 3
	Method nd	Unweighted		Weighted	Unweighted	Weighted
			Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE
								No regularization		
		20 0.37 0.64 0.74 0.29 0.74 0.79 0.28 2.15 2.16 0.42 2.06 2.11
	Poisson	40 0.14 0.63 0.65 0.16 0.73 0.75 0.33 2.47 2.50 0.42 2.32 2.35
		80 0.17 0.64 0.66 0.11 0.75 0.76 0.26 2.57 2.58 0.43 2.40 2.43
		20 0.03 0.69 0.69 0.32 1.34 1.37 0.20 2.31 2.32 0.36 2.95 2.97
	Logistic	40 0.07 0.60 0.61 0.12 0.96 0.97 0.23 2.31 2.32 0.37 2.56 2.58
		80 0.10 0.60 0.61 0.14 0.81 0.82 0.25 2.36 2.38 0.42 2.38 2.42
								Adaptive lasso			
		20 0.30 0.59 0.67 0.86 0.47 0.98 0.30 2.00 2.03 1.14 0.68 1.33
	Poisson	40 0.20 0.58 0.61 0.86 0.49 0.99 0.33 2.33 2.35 1.18 0.70 1.37
		80 0.18 0.59 0.62 0.88 0.51 1.02 0.28 2.41 2.43 1.22 0.71 1.41
		20 0.19 0.50 0.53 0.95 0.55 1.09 0.23 2.06 2.07 1.26 0.73 1.45
	Logistic	40 0.18 0.52 0.55 0.89 0.52 1.03 0.23 2.15 2.16 1.22 0.72 1.42
		80 0.18 0.55 0.58 0.89 0.52 1.03 0.25 2.21 2.22 1.24 0.71 1.43
					Scenario 2				Scenario 3
	Method nd	Unweighted	Weighted	Unweighted	Weighted
				TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV
			20 96	35	32	53	0 * 96	98	82	16	47	2	79
	Poisson	40 95	6	77	52	0 * 95	98	83	16	46	2	77
			80 95	4	83	50	0 * 94	98	83	16	43	2	74
			20 94	11	60	49	0 * 91	98	72	20	41	2	73
	Logistic	40 94	8	67	50	0 * 93	99	81	16	43	2	74
			80 94	5	77	50	0 * 93	99	83	16	42	2	73

* Approximate value

Table 3 .

 3 10: Barro Colorado Island data analysis: Parameter estimates of the regression coefficients for Beilschmiedia pendula Lauraceae trees applying regularized (un)weighted Poisson and logistic regression likelihoods with adaptive lasso regularization.

		Unweighted method	Weighted method
		Poisson estimates Logistic estimates Poisson estimates Logistic estimates
	Elev	0.39	0.40	0.41	0.45
	Slope	0.26	0.32	0.51	0.60
	Al	0	0	0	0
	B	0.30	0.30	0	0
	Ca	0.10	0.15	0	0
	Cu	0.10	0.12	0	0
	Fe	0.05	0	0	0
	K	0	0	0	0
	Mg	-0.17	-0.18	0	0
	Mn	0.12	0.13	0.23	0.24
	P	-0.60	-0.60	-0.50	-0.52
	Zn	-0.43	-0.46	-0.35	-0.37
	N	0	0	0	0
	N.min	-0.12	-0.10	0	0
	pH	-0.14	-0.14	0	0
	Nb of cov.	12	11	5	5

  n ≥ 1 and any i ∈ I n , Y i,n has zero mean, and by condition (C.4),

	sup	sup	E( Y i,n	2+δ ) < ∞.	(3.23)
	n≥1	i∈In			
	If we combine (3.23) with conditions (C.1)-(C.6), we can apply Karácsony (2006,
	Theorem 4), a central limit theorem for triangular arrays of random fields, to ob-
	tain (3.21) which also implies that			

  = p λ n,j (| βj |) sign( βj ) -p λ n,j (|β 0j |) sign(β 0j ). Since p λ is a Lipschitz function by condition (C.8), there exists κ ≥ 0 such that by condition on a n

	where				
	Ψ n,jl =	∂ 2 ∂β j ∂β l n (w; β)	-	∂ 2	n (w; β 0 ) ∂β j ∂β l
	and φ n,j				
					j ,	(3.27)

Table 4 .
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1: Examples of penalty function. Penalty p λ (θ)

  3.1. Our main results are presented in Section 4.3.2. For sake of conciseness, we do not present the asymptotic results for the regularized logistic regression estimator. The results are very similar.

The main difference is lying in the conditions (C.6) and (C.7) for which the matrices A n , B n , and C n have a different expression (see Remark 4.3.2).

  Furthermore, given (λ n,j ) n≥1 , for j = 1, . . . , s, we assume that there exists (r n,j ) n≥1 , where |D n |/p n rn,j → ∞ as n → ∞, such that, for n sufficiently large, p λ n,j is thrice continuously differentiable in the ball centered at |β 0j | with radius rn,j and we assume that the third derivative is uniformly bounded. (C.9) We assume that p 3 n /|D n | → 0 as n → ∞. Conditions (C.1)-(C.8) are quite similar to the ones we require in Chapter 2 in the setting when the number of parameters to estimate is fixed. Condition (C.2) is slightly stronger since we have to ensure that ρ(u; β) is finite for β in the neighborhood of β 0 . Note that sup u∈R d ρ(u; β 0 ) < ∞ follows directly from condition (C.3). We derive asymptotic properties when both |D n | and p n tend to infinity as n is large enough.

C.6) We assume that ν min |D n | -1 {B n,11 (w; β 0 )+C n,11 (w; β 0 )} > 0 for all sufficiently large n, where ν min (M n ) is the smallest eigenvalue of a squared matrix M n . (C.7) We assume that, for all sufficiently large n, ν min |D n | -1 A n (w; β 0 ) > 0. (C.8) The penalty function p λ (•) is nonnegative on R+, continuously differentiable on R + \ {0} with derivative p λ assumed to be a Lipschitz function on R + \ {0}.

  who also considered a diverging number of parameters setting, our estimator has the same rate of convergence when we replace |D n | by n to their context, in which both |D n | in current setting and n in their setting play the same role as the sample size.

	Furthermore, we demonstrate in Theorem 4.3.2 that such a root-(|D

n |/p n ) consistent estimator ensures the sparsity of β; that is, the estimate will correctly set β 2 to zero with probability tending to 1 as n → ∞, and β1 is asymptotically normal. Theorem 4.3.2. Assume the conditions (C.1)-(C.9) are satisfied. If a n

  11 (w; β 0 ) + C n,11 (w; β 0 )} {A n,11 (w; β 0 ) + |D n |Π n } -1 , (4.13) Π n =diag{p λ n,1 (|β 01 |), . . . , p λn,s (|β 0s |)}.

	(4.14)
	As a consequence, Σ

n (w; β 0 ) is the asymptotic covariance matrix of β1 . Note that Σ n (w; β 0 ) -1/2 is the inverse of Σ n (w; β 0 ) 1/2 , where Σ n (w; β 0 ) 1/2 is any square matrix with Σ n (w; β 0 ) 1/2 Σ n (w; β 0 ) 1/2 = Σ n (w; β 0 ). Remark 4.3.1. For lasso and adaptive lasso, Π n = 0. For other penalties, since

c n = o(1), then Π n = o(1). Since A n,11 (w; β 0 ) = O(|D n |) from conditions (C.2) and (C.3), |D n | Π n is

asymptotically negligible with respect to A n,11 (w; β 0 ) . Remark 4.3.2. Theorems 4.3.1 and 4.3.2 remain true for the regularized logistic regression likelihood estimates if we replace in the expression of the matrices A n , B n , and C n , w(u) by w(u)δ(u)/(ρ(u; β 0 ) + δ(u)), u ∈ D n and extend the condition (C.3) by adding sup u∈R d δ(u) < ∞. We show in Theorem 4.3.2 that the sparsity and the normality distribution are still valid when the number of parameters diverges. By Remark 4.3.1, when n is large enough, Σ n (w; β 0 ) in (4.13) becomes approximately

Table 4 .

 4 2: Details of the sequences a n , b n and c n for a given regularization method.

	Method a n			b n	c n
	Ridge λ n max j=1,...s	{|β 0j |}	0	λ n
	Lasso λ n			λ n	0
	Enet	λ n (1 -γ) max j=1,...s	{|β 0j |} + γ γλ n	(1 -γ)λ n
	AL	max j=1,...s	{λ n,j }	min j=s+1,...p	{λ n,j } 0
	Aenet	max j=1,...s			

Table 4 .

 4 3: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of Thomas processes on the domain D for two different values of κ and for the two different scenarios. Different penalty functions are considered as well as two estimating equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL).

		Regularized PL Regularized WPL Regularized PL Regularized WPL
	Method		κ = 5 × 10 -4					κ = 5 × 10 -5		
		TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV
						Scenario 1a					
	Lasso	100 1 13 28	96	4	62	97 23 20	64	1	76
	Enet	100 1 34 12	93	8	48	97 48 10	59	2	58
	AL	100 1 1	92	97	0 1	96	95	3	68	70	0 1	98
	Aenet	100 1 2	76	97	1	85	95	6	52	67	0 1	95
	SCAD 100 1 7	41	97	1	87	96	4	61	56	0 1	79
	MC+	100 1 8	37	96	1	85	96	5	58	52	1	74
						Scenario 1b					
	Lasso	100 1 45 10	91 11	52	100 1 96	4	20	6	22
	Enet	100 1 63	7	87 18	31	100 1 98	4	15	6	14
	AL	100 1 26 19	95	5	81	99 85	5	26	5	35
	Aenet	100 1 30 15	95	6	74	100 1 87	5	24	5	30
	SCAD 100 1 26 18	93	5	76	100 1 76	5	23	4	28
	MC+	100 1 26 17	93	5	76	99 76	5	22	5	27
						Scenario 2a					
	Lasso	98 93 10	84 73	14	98 96 10	47 35	16
	Enet	99 98 10	85 80	11	99 98 10	46 38	12
	AL	95 49 18	83 35	27	95 64 15	50 23	28
	Aenet	96 52 17	84 40	21	96 68 14	48 26	20
	SCAD	86 74 13	65 45	36	75 60 21	39 26	30
	MC+	87 78 13	65 47	35	73 60 22	39 26	30
						Scenario 2b					
	Lasso	80 64 13	75 60	12	78 69 11	64 57	9
	Enet	85 73 12	82 69	11	84 79 11	68 64	8
	AL	56 26 19	54 25	20	59 35 17	48 30	13
	Aenet	59 30 18	57 29	18	64 43 15	52 36	11
	SCAD	43 21 20	42 20	23	46 24 27	41 25	16
	MC+	44 21 20	43 20	23	46 24 26	41 26	16

Table 4 .

 4 4: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of Thomas processes on the domain D for two different values of κ and for the two different scenarios. Different penalty functions are considered as well as two estimating equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL).

		Regularized PL Regularized WPL Regularized PL Regularized WPL
	Method	κ = 5 × 10 -4	κ = 5 × 10 -5
		Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE
		Scenario 1a	
	Lasso 0.19 0.19 0.27 0.43 0.29 0.52 0.29 0.60 0.67 0.94 0.53 1.08
	Enet	0.27 0.22 0.35 0.72 0.32 0.79 0.34 0.66 0.74 1.21 0.40 1.27
	AL	0.05 0.18 0.19 0.14 0.24 0.28 0.19 0.60 0.63 0.57 0.57 0.81
	Aenet 0.07 0.19 0.20 0.20 0.27 0.33 0.22 0.60 0.64 0.69 0.55 0.88
	SCAD 0.19 0.19 0.27 0.29 0.32 0.43 0.14 0.55 0.57 1.10 0.71 1.31
	MC+ 0.20 0.19 0.28 0.32 0.37 0.49 0.15 0.55 0.57 1.15 0.72 1.35
		Scenario 1b	
	Lasso 0.18 1.03 1.05 0.57 0.58 0.81 1.97 8.00 8.23 1.85 2.11 2.81
	Enet	0.27 1.32 1.34 0.81 0.73 1.09 1.87 7.73 7.96 1.94 2.02 2.80
	AL	0.18 0.73 0.76 0.28 0.43 0.51 1.26 6.23 6.36 1.68 1.70 2.39
	Aenet 0.21 0.72 0.75 0.36 0.44 0.57 1.05 5.45 5.55 1.76 1.49 2.31
	SCAD 0.26 0.99 1.02 0.39 0.63 0.74 1.20 5.55 5.68 1.71 1.59 2.34
	MC+ 0.26 0.99 1.03 0.40 0.64 0.76 1.21 5.53 5.66 1.71 1.59 2.33
		Scenario 2a	
	Lasso 1.45 1.89 2.38 2.24 2.47 3.34 0.94 8.86 8.91 4.53 5.79 7.35
	Enet	1.54 1.89 2.44 2.38 2.62 3.54 1.27 6.54 6.66 4.95 4.85 6.93
	AL	1.57 1.80 2.39 2.20 2.16 3.09 1.33 6.38 6.52 4.31 4.50 6.23
	Aenet 2.05 1.60 2.59 2.64 2.11 3.38 1.95 4.75 5.13 4.89 3.73 6.14
	SCAD 2.26 1.75 2.86 3.84 2.43 4.54 3.74 3.45 5.09 5.79 2.73 6.40
	MC+ 2.45 1.77 3.02 3.95 2.39 4.61 3.81 3.41 5.12 5.82 2.71 6.42
		Scenario 2b	
	Lasso 3.28 2.87 4.36 3.36 3.20 4.64 3.85 13.41 13.95 4.61 11.20 12.11
	Aenet 3.39 2.45 4.18 3.48 2.75 4.44 3.76 7.86 8.71 4.66 6.96 8.37
	AL	3.64 1.59 3.97 3.69 1.78 4.10 3.89 8.99 9.80 4.70 6.95 8.39
	Aenet 3.71 1.34 3.95 3.79 1.58 4.10 4.03 4.89 6.34 4.88 4.38 6.55
	SCAD 4.56 2.22 5.07 4.67 2.27 5.19 5.22 3.27 6.16 5.65 3.18 6.48
	MC+ 4.53 2.24 5.05 4.64 2.29 5.18 5.23 3.25 6.15 5.66 3.21 6.51

Table 4 .

 4 5: Number of selected and non-selected covariates among 93 covariates by regularized Poisson likelihood with lasso, adaptive lasso, and SCAD regularization.

	Method	Regularized PL Regularized WPL
		#Selected #No #Selected #No
	LASSO	77	16	45	48
	AL	50	43	10	83
	SCAD	58	35	3	90

Table 4

 4 

		.6: 10 common covariates selected
	Covariates	Regularized PL	Regularized WPL
		LASSO AL SCAD LASSO AL SCAD
	Elev	0.32 0.40 0.33	0.40 0.32	0
	Slope	0.39 0.40 0.36	0.42 0.44	0
	Cu	0.56 0.31 0.61	0.39 0.33	0
	Mn	0.14 0.14 0.09	0.15 0.22	0
	P	-0.48 -0.43 -0.54	-0.33 -0.57 -1.07
	Zn	-0.75 -0.66 -0.83	-0.58 -0.40	0
	Al:P	-0.30 -0.29 -0.31	-0.28 -0.16	0
	Mg:P	0.62 0.29 0.45	0.48 0.42	0
	Zn:N	0.21 0.35 0.30	0.01	0 0.62
	N.Min:pH	0.44 0.44 0.49	0.25 0.27	0

  by choosing K large enough, there exists κ such that for Assume the conditions (C.1)-(C.8) hold. If a n = O(|D n | -1/2 ) and b n |D n |/p 2 n → ∞ as n → ∞,then with probability tending to 1, for any β 1 satisfying β 1 -β 01 = O P ( p n /|D n |), and for any constant K 1 > 0, Let ε n = K 1 p n /|D n |. It is sufficient to show that with probability tending to 1 as n → ∞, for any β 1 satisfying β 1 -β 01 = O P ( p n /|D n |), we have for any j = s + 1, . . . , p n

	n sufficiently large		
	P sup k =K	∆ n (k) > 0 ≤ P	(1) n (w; β 0 ) > κ p n |D n | ≤
	for any given > 0 from (4.15) in Lemma 4.6.1.
	4.6.3 Proof of Theorem 4.3.2
	Before proving Theorem 4.3.2, we present Lemmas 4.6.2-4.6.3. Lemma 4.6.2 is used to
	prove Theorem 4.3.2(i) while Lemma 4.6.3 is used to derive Theorem 4.3.2(ii).
	Lemma 4.6.2. Q w; (β 1 , 0 ) =	max √	Q w; (β 1 , β 2 ) .
				β 2 ≤K 1	pn/|Dn|
	Proof. ∂Q n (w; β) ∂β j	< 0 for 0 < β j < ε n , and	(4.17)
		∂Q n (w; β) ∂β j	> 0 for -ε n < β j < 0.	(4.18)
	From (4.7),		
		∂ n (w; β)

  Now, we want to prove (4.17). Let 0 < β j < ε n and b n be the sequence given by (4.11). By condition (C.8), b n is well-defined and since by assumption b n |D n |/p 2 n → ∞, in particular, b n > 0 for n sufficiently large. Therefore, for n sufficiently large, )) is the s × s top-left corner of B n (w; β 0 ) (resp C n (w; β 0 )). (w; β 0 )] = B n,11 (w; β 0 ) + C n,11 (w; β 0 ).

	. , p n = O P ( |D n |p 2 n ). ∂ n (w; β) ∂ n (w; β) ∂β j < 0 = P ∂β j -|D n |p λ n,j (|β j |) sign(β j ) < 0 = P ∂ n (w; β) ∂β j < |D n |p λ n,j (|β j |) ≥ P ∂ n (w; β) ∂β j < |D n |b n = P   ∂ n (w; β) ∂β j < |D n |p 2 n |D n | p 2 n b n   . The assertion (4.17) is therefore deduced from (4.19) and from assumption that (4.19) P ∂Q n (w; β) ∂β j b n |D n |/p 2 n → ∞ as n → ∞. We proceed similarly to prove (4.18). Lemma 4.6.3. Under the conditions (C.1)-(C.8) and the conditions required in Lemma 4.6.2, the following convergence holds in distribution as n → ∞ {B n,11 (w; β 01 ) + C n,11 (w; β 01 )} -1/2 (1) n,1 (w; β 01 ) d -→ N (0, I s ), (4.20) where (1) n,1 (w; β 0 ) is the first s components of (1) n (w; β 0 ) and B n,11 (w; β 0 ) (resp. C n,11 (w; β 0 Proof. By Lemma 4.6.2 and by using Campbell Theorems (4.2)-(4.3), (1) Var[ n,1

  and φ n,j = p λ n,j (| βj |) sign( βj ) -p λ n,j (|β 0j |) sign(β 0j ). Since p λ is a Lipschitz function by condition (C.8), there exists κ ≥ 0 such that by condition on a nφ n,j = p λ n,j (| βj |) sign( βj ) -p λ n,j (|β 0j |) sign(β 0j ) = p λ n,j (| βj |) -p λ n,j (|β 0j |) sign(β 0j ) + p λ n,j (| βj |) sign( βj ) -sign(β 0j )

	where				
	Ψ n,jl =	∂ 2 ∂β j ∂β l n (w; β)	-	∂ 2	n (w; β 0 ) ∂β j ∂β l
	≤ κ | βj | -|β 0j | + 2a n				
	≤ κ| βj -β 0j | + 2a n .					(4.23)
					j ,	(4.22)

  which implies the result since | βj -β 0j | = O P ( p n /|D n |) from Theorem 4.3.1 and since|D n |/p n rn,j given by condition (C.8). We now deduce thatφ n,j = p λ n,j (|β 0j |)( βj -β 0j ) 1 + o P (1) + O P (p n /|D n |) + o P (|D n | -1/2 ).

		(4.24)
	Let	(1)

  1 (|β 01 |) sign(β 01 ), . . . , p λn,s (|β 0s |) sign(β 0s )} , φ n = {φ n,1 , . . . , φ n,s } , and

  ) by condition (C.6), Ψ n = O P ( p n |D n |) by conditions (C.2)-(C.3) and by Theorem 4.3.1, and β1 -β 01 = O P ( p n /|D n |) by Theorem 4.3.1 and by Theorem 4.3.2(i). Finally, since by assumptions a n |D n | 1/2 → 0 and c n √ p n → 0 as n → ∞, we deduce that

  is the s × s top-left corner (resp. the s × (p -s) top-right corner, the (p -s) × s bottom-left corner, and the (p -s) × (p -s) bottom-right corner) of A

				
	A n,21 (w; β) A n,22 (w; β)	     	,	(5.15)
	where A n,1 (w; β) (resp. A 2 (w; β)) is the first s×p (resp. the following (p-s)×p) com-
	ponents of A n (w; β) and A n,11 (w; β) (resp. A n,12 (w; β), A n,21 (w; β), and A n,22 (w; β))

11 (w; β) A n,12 (w; β) n (w; β).

  As a consequence, Σ n (w; β 0 ) is the asymptotic covariance matrix of β1 . Note that Σ n (w; β 0 ) -1/2 is the inverse of Σ n (w; β 0 ) 1/2 , where Σ n (w; β 0 ) 1/2 is any square matrix with Σ n (w; β 0 ) 1/2 Σ n (w; β 0 ) 1/2 = Σ n (w; β 0 ). We observe that the asymptotic covariance matrix of β1 is the same one as the one derived from the Poisson likelihood regularized by an adaptive lasso penalty, see Theorem 3.6.2 in Chapter 2.

	11 (w; β 0 ) + C n,11 (w; β 0 )}	
	{A n,11 (w; β 0 )} -1 .	(5.24)
	Remark 5.3.2. Remark 5.3.3. Theorems 5.3.1 and 5.3.2 remain true for the adaptive linearized
	Dantzig selector using estimating functions derived from logistic regression likelihood if
	we extend the condition (C.3) by adding sup u∈R	

d δ(u) < ∞, and replace in the expression of the matrices A n , B n , and C n , w(u) by w(u)δ(u)/(ρ(u; β 0

Table 5 .

 5 1: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of Thomas processes on the domain D for two different values of κ and for the two different scenarios. The Poisson likelihood (PL) and the weighted Poisson likelihood (WPL) are combined with two feature selection procedures: the adaptive lasso (AL) and the adaptive linearized Dantzig selector (ALDS).

		PL		WPL			PL		WPL
	Method		κ = 5 × 10 -4					κ = 5 × 10 -5
		TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV
						Scenario 1a			
	AL	100 1 1	92	97	0 1 96	95	3	70	70	0 1 98
	ALDS 100 1 0 1 95	50	0 1 100 1 92	2	80	50	0 1 93
						Scenario 1b			
	AL	100 1 26 19	95	4	83	99 85	5	29	6	39
	ALDS 100 1 16 31	51	0 1 100 1 98 61	6	19	1	31
						Scenario 2a			
	AL	96 48 19	85 36 27	96 64 15	45 17 31
	ALDS	84 19 36	0 1	0 1	0 1 82 26 33	0 1	0 1	1
						Scenario 2b			
	AL	56 27 19	54 26 19	59 33 18	48 27 13
	ALDS	46 14 28	0 1	0 1	0 1 46 14 30	0 1	0 1	0 1
	1 Approximate value							
	covariates from the model, and a PPV close to 100% indicating that, for Scenario 1
	(resp. Scenario 2), it can keep exactly the two (resp. five) true covariates and remove
	all the 48 (resp. 45) extra covariates.						

Table 5 .

 5 2: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of Thomas processes on the domain D for two different values of κ and for the two different scenarios. The Poisson likelihood (PL) and the weighted Poisson likelihood (WPL) are combined with two feature selection procedures: the adaptive lasso (AL) and the adaptive linearized Dantzig selector (ALDS).

		PL	WPL	PL	WPL
	Method		κ = 5 × 10 -4		κ = 5 × 10 -5
		Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE
			Scenario 1a	
	AL	0.05 0.18 0.19 0.15 0.25 0.29 0.20 0.59 0.63 0.57 0.56 0.80
	ALDS 0.05 0.19 0.20 0.82 0.19 0.84 0.22 0.60 0.64 0.87 0.52 1.02
			Scenario 1b	
	AL	1.26 6.13 6.26 1.63 1.81 2.43 0.18 0.71 0.73 0.28 0.40 0.49
	ALDS 0.68 3.92 3.98 1.80 0.65 1.92 0.16 0.54 0.56 0.87 0.20 0.90
			Scenario 2a	
	AL	1.56 1.76 2.36 2.09 2.10 2.96 1.44 4.89 5.10 4.66 3.85 6.05
	ALDS 2.35 1.59 2.84 7.41 0.12 7.41 2.64 3.61 4.47 7.40 0.18 7.41
			Scenario 2b	
	AL	3.65 1.62 3.99 3.71 1.85 4.14 6.96 2.21 7.30 7.10 1.88 7.35
	ALDS 3.94 1.19 4.12 7.41 0.07 7.41 7.03 1.60 7.21 7.42 0.00 7.42

Approximate value

Acknowledgments

In general, the properties improve with larger κ due to weaker spatial dependence.

Regarding the regularization methods considered in this study, adaptive lasso and adaptive elastic net perform best. Adaptive elastic net becomes more preferable than adaptive lasso for a clustered process (κ = 5 × 10 -5 ) and for a structured spatial data (Scenarios 1b and 2b). This is different from the results we obtained in Chapter 2 recommending to use adaptive lasso as the best method. We find here that adaptive elastic net appears to be more competitive than adaptive lasso especially in the complex situation: large number of covariates, strong multicollinearity, and complex spatial structure due to the advantage of combining l 1 and l 2 penalties.

By employing regularized WPL, we have potentially more efficient estimates especially for the more clustered process. However, this does not mean that the regularized WPL is able to improve the RMSE since it usually introduces extra biases. Regularized WPL seems more appropriate for the case having covariates with complex spatial structure (Scenarios 1b and 2b). Otherwise, regularized PL seems more favorable.

From Table 4.4, when the focus is on prediction, we would recommend to combine the regularized WPL with adaptive elastic net when we deal with a clustered spatial point process which have covariates with complex spatial structure while we would recommend the regularized PL combined with adaptive elastic net for a clustered process with no complex spatial structure. However, if we are faced with a less clustered process, the regularized PL combined with adaptive lasso is slightly more preferable for the case with no complex spatial structure in the covariates while the regularized WPL combined with adaptive lasso is slightly more recommended for the case with complex structure in the covariates. Note that the adaptive lasso is slightly better than the adaptive elastic net for a few cases. Thus, as general advice, we would recommend to use adaptive elastic net (instead of adaptive lasso) if the focus is for prediction.

Note that the combination between the regularized WPL and adaptive lasso is more preferable if the focus is on variable selection while adaptive elastic net is more favorable if the focus is for prediction. To have a more general recommendation, we would recommend to apply adaptive elastic net when we are faced with complex situation: large number of covariates, strong multicollinearity, and complex spatial structure.

The last two lines are obtained from (C.9). Therefore, we have that

By (5.41) in Lemma 4.6.3 and by Slutsky's Theorem, we deduce that

as n → ∞, which can be rewritten, in particular under (C.7), as

where Σ n (w, β 0 ) is given by (4.13).

CHAPTER 5

The adaptive linearized Dantzig selector for spatial point processes intensity estimation

Introduction

Several recent applications involve the observation of spatial point pattern data together with spatial covariates (see e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Møller | Modern statistics for spatial point processes[END_REF][START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF][START_REF] Renner | Point process models for presenceonly analysis[END_REF]. Examples include the study of spatial variation of specific disease risk related to pollution sources (e.g. [START_REF] Peter | A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point[END_REF][START_REF] Peter | Statistical analysis of spatial and spatio-temporal point patterns[END_REF], crime rate analysis in a city related to some demographical information (e.g. [START_REF] Shirota | Statistical analysis of origindestination point patterns: Modeling car thefts and recoveries[END_REF], and modelling of the spatial distribution of trees species in a forest related to some environmental factors (e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Renner | Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology[END_REF].

We focus in this chapter on the log-linear model for the intensity function defined by

where z(u) = {z 1 (u), . . . , z p (u)} are the p spatial covariates measured at location u and β = {β 1 , . . . , β p } is a real p-dimensional parameter. Parametric approaches to estimate β include likelihood-based methods (e.g. [START_REF] Berman | Approximating point process likelihoods with glim[END_REF][START_REF] Stephen | Asymptotic properties of estimators for the parameters of spatial inhomogeneous Poisson point processes[END_REF][START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF], estimating equation-based methods (e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Rasmus Plenge | Estimating functions for inhomogeneous spatial point processes with incomplete covariate data[END_REF][START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF][START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF][START_REF] Guan | Quasi-likelihood for spatial point processes[END_REF], and variational approaches (e.g. [START_REF] Baddeley | Variational estimators for the parameters of Gibbs point process models[END_REF][START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. All these methods are not appropriate when the number of covariates is large. the role as the sample size in the spatial point process framework. We call the parameter λ by tuning parameter. Note that if p λ is a l 1 penalty, it corresponds to lasso regularization method [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], and (5.9) becomes equivalent to (5.10) where λj = |D|λ j , j = 1, 2, . . . , p, are the modified versions of λ j given by (5.9) and κ is a positive constant.

The Dantzig selector has recently been proposed by [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] as an alternative to lasso-type techniques. In this chapter, we consider the adaptive version of the Dantzig selector for spatial point processes intensity estimation. The estimator is defined as the solution to . . . , p, (5.11) where and U j (w; β) is the jth element of either (5.5) or (5.6). When the specific need is unnecessary, we denote the estimating function by U(w; β) to simplify notation. Of course we could have simply used the notation λ j in (5.11) instead of λj . We decided to make a difference between λ j and λj = λ j |D| so that we can further compare the assumptions we impose on λj for the ALDS and the assumptions we made on λ j when we focused on the adaptive lasso method.

(C.7) There exists a p × p positive definite matrix I 0 such that for all sufficiently large n, we have

). Furthermore, we assume that A n,11 (w; β 0 )A n,11 (w; β) -1 -I s = o P (1), where I s is an identity matrix with dimension s.

(C.9) Consider the sequences ãn = max j=1,...,s λn,j and bn = min j=s+1,...,p λn,j . We assume that ãn exactly the assumption we imposed on the regularization methods using the adaptive lasso technique (see Theorem 3.6.2 in Chapter 2).

Main results

We state our main results here. Proofs are relegated to Sections 5.6.1-5.6.5.

The optimization problem (5.13) allows us to characterize the solution β in terms of primal and dual feasibility and complementary slackness conditions stated in Lemma 5.3.1.

then β is the solution to (5.13).

In particular, conditions (5.16) and (5.17) are primal and dual feasibility conditions, while (5.18) and (5.19) are complementary slackness conditions. Inspired by [START_REF] Salman | Primal dual pursuit: A homotopy based algorithm for the Dantzig selector[END_REF], we follow the main arguments by [START_REF] Boyd | Convex optimization[END_REF] (5.23)

Remark 5.3.1. Condition (C.9) is the key in Theorem 5.3.1. Suppose we consider a constant λn as used by the original Dantzig selector [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF]. This implies that ãn = bn = λn , so the two conditions ãn

as n → ∞ cannot be satisfied simultaneously. This justifies the introduction of the adaptive version of the Dantzig selector.

In Theorem 5.3.1, by the main argument stated by condition (C.9), our estimator possesses sparsity, meaning that our estimator will correctly set β 2 to zero with probability tending to 1 as n → ∞. Furthermore, we demonstrate in Theorem 5.3.2 that the first s elements of the estimator proposed by Theorem 5.3.1, that is β1 , is asymptotically normal.

(2008) for linear models. An extension to spatial point process setting may be feasible.

This has not been investigated in this chapter.

In this section, we present the computational implementation for the method using the estimating functions derived from the Poisson likelihood. A similar approach can be derived for the version using the logistic regression likelihood.

We first review in Section 5.3.3.1 the method proposed by [START_REF] Berman | Approximating point process likelihoods with glim[END_REF] who proved that fitting a Poisson point process is nearly equivalent to fitting a weighted Poisson generalized linear models. Second, we present in Section 5.3.3.2 the computational algorithm to compute the adaptive linearized Dantzig selector estimates based on the results obtained in Section 5.3.3.1. Third, the final procedure depends on a tuning parameter, a problem discussed in Section 5.3.3.3.

Weighted Poisson regression

Berman and Turner (1992) developed a numerical quadrature method to approximate maximum likelihood estimation for an inhomogeneous Poisson point process. Suppose we approximate the integral term in (5.5) by Riemann sum approximation

where u i , i = 1, . . . , M are points in D consisting of the m data points and M -m dummy points. To simplify notation, note that v i (resp. w i ) means v(u i ) (resp. w(u i )).

The quadrature weights v i > 0 are such that i v i = |D|. To implement this method, the domain is firstly partitioned into M rectangular pixels of equal area, denoted by a. Then one dummy point is placed in the center of the pixel. Let ∆ i be an indicator whether the point is an event of point process (∆ i = 1) or a dummy point (∆ i = 0).

Without loss of generality, let u 1 , . . . , u m be the observed events and u m+1 , . . . , u M be the dummy points. Thus, (5.5) can be approximated and rewritten as

(5.25) Equation (5.25) is formally equivalent to the weighted score function of independent z(u) = x(u) = {1, x 1 (u), . . . , x 50 (u)} .

Scenario 2. In this setting, we consider five true covariates out of 50 covariates. In addition of elevation (x 1 ) and gradient of elevation (x 2 ), we convert 50×25 pixel images of concentration of Aluminium (x 3 ), Boron (x 4 ) and Calcium (x 5 ) in the soil to be 201 × 101 pixel images as x 1 and x 2 and set them to be other three true covariates. All five covariates are centered and scaled.

We define the true coefficient vector β 0 = {β 0 , 5, 4, 3, 2, 1, 0, • • • , 0}. As in Scenario 1, we make two settings to define extra 45 covariates:

a. This setting is similar to that of Scenario 1a. We generate 45 201 × 101 pixel images of covariates as standard Gaussian white noise, denote them by x 6 , . . . , x 50 , and define z(u) = V x(u), where V is such that Ω = V V, and (Ω) ij = (Ω) ji = 0.7 |i-j| for i, j = 1, . . . , 50, except

b. We use the real dataset as in Scenario 1b and consider similar setting. In this setting, we define 5 true covariates which have different regression coefficients as in Scenario 1b.

With these scenarios, we simulate 2000 spatial point patterns from a Thomas point process using the rThomas function in the spatstat package. We set the interaction parameter κ to be (κ = 5 × 10 -4 , κ = 5 × 10 -5 ) and let ω = 20. Briefly, smaller values of ω correspond to tighter clusters, and smaller values of κ correspond to fewer number of parents (see e.g., [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF], for further details regarding the Thomas point process).

We present in Table 5.1 the selection properties of our estimates. We consider the true positive rate (TPR), the false positive rate (FPR), and the positive predictive value (PPV) to evaluate the selection properties of the estimates. We want to find the methods which have a TPR close to 100% meaning that it can select correctly all the true covariates, a FPR close to 0 showing that it can remove all the extra the PL and ALDS performs slightly better and looks more stable, we would recommend using the PL combined with ALDS.

Future work could consist of considering combination between l 1 and l 2 penalties in a fashion similar to the adaptive elastic net but combined with the Dantzig selector method. In real applications, the setting which considers the involvement of a lot of covariates with complex spatial structure and the presence of strong multicollinearity is easily found. In such situations, the adaptive elastic net may outperform adaptive lasso as it is the case for linear regression (see e.g. [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF]. We have preliminary results, as considered in the simulation experiment in Chapter 3, that the adaptive elastic net is more favorable than the adaptive lasso for such situations. It would be interesting to bring this approach in the Dantzig selector-type methods.

Supplementary materials

Auxiliary Lemma

The following Lemma is used in the proof of Theorems 5.3.1 and 5.3.2. Throughout the proofs, the notation X n = O P (x n ) or X n = o P (x n ) for a random vector X n and a sequence of real numbers x n means that X n = O P (x n ) and X n = o P (x n ). In the same way for a vector V n or a squared matrix M n , the notation V n = O(x n ) and

Lemma 5.6.1. Under conditions (C.1)-(C.5), the following result holds as n → ∞

(5.28)

Proof. Using Campbell Theorems (5.2)-( 5.3), the score vector U n (w; β 0 ) has variance

The result is proved since for any centered real-valued stochastic process

Formulation of the Dantzig selector's dual optimization problem to (5.13)

We follow the main arguments by Boyd and Vandenberghe (2004, section 5.2) to derive the Dantzig selectors' dual optimization problem to (5.13). First, the Lagrangian form associated with the problem (5.13) is

where α ∈ R p is the dual vector (which can be viewed as a lagrange multiplier) and β is any given initial estimator. To simplify the presentation, although this is not always required, we refer to β as the initial estimator which satisfies condition (C.8). Second, the dual function of (5.29) is defined by

(5.30)

where

Note that sign(β) Λβ = Λβ 1 since Λ n is a diagonal matrix with positive entries. The solution set β is feasible if Υ n ∞ ≤ 1. Third, the Lagrange dual of (5.29) maximizes the dual function given by sup α∈R p inf β∈R p L(β; α). This can be reformulated as a dual problem to (5.13), by including the dual feasibility condition as a constraint, given by

(5.31) ular for any t ∈ [0, 1] and β = β + t(β 0 -β) (5.36) which also implies that

(5.37)

Note that (5.37) also implies that all the partitions of A n (w; 

Now, consider ĨI. By Taylor expansion, we can show that by considering ∆ n,2 (w; β) defined by (5.40) and by conditions (C.1)-(C.3) and (C.8), we have

Hence, by noting that U n,2 (w; β 0 ) = O P (|D n | 1/2 ) from Lemma 5.6.1 and by (5.35)

Proof of Theorem 5.3.2

Proof. Before proving Theorem 5.3.2, we provide Lemma 5.6.2 stated below. This Lemma has been discovered in Chapter 3 and the proofs are omitted here. Let us consider the vector T n given by

where Σ n (w; β 0 ) in the first line is given by (5. two soil properties such that we have 93 covariates in total. Among 93 covariates, we have 10 covariates which are selected commonly by each method, for which the 5 (out of 15) covariates selected in the application considered in Chapter 3 are also included in the 10 common selected covariates chosen in the application considered in Chapter 4.

Furthermore, based on the magnitude of the coefficients, we find six spatial covariates which may have a high influence to the appearance of BPL trees, including two topological attributes: elevation and slope and four soil nutrients: Copper, Phosphorus, Zinc and the interaction between Magnesium and Phosphorus.

In Chapter 5, we study another feature selection procedure based on the development of the Dantzig selector-type methods. In particular, we propose the adaptive linearized Dantzig selector (ALDS) which is based on the linear approximation on the constraint vector. Compared to the ones without linearization, this approach leads to two advantages: in theoretical and computational aspects. In theory, the asymptotic results can be derived more easily than that without linearisation in the constraint vector. In practice, the optimization problem can be solved by linear programming. We find that the asymptotic properties of the estimates obtained from ALDS are similar to the ones we develop in Chapter 3 when adaptive lasso is considered. This may not be surprising since the similarities of the theoretical properties between the estimates of the Dantzig selector and the lasso have already been discovered in other contexts (see e.g., [START_REF] Nicolai Meinshausen | Discussion: A tale of three cousins: Lasso, l2boosting and Dantzig[END_REF][START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF][START_REF] Dicker | Regularized regression methods for variable selection and estimation[END_REF]. In the simulation study, ALDS performs slightly better and looks more stable than adaptive lasso. In this thesis, we do not compare rigorously the computational cost between ALDS and adaptive lasso for spatial point processes intensity estimation. However, to have an intuition, James et al. ( 2009) developed an algorithm to compute the Dantzig selector solution for linear models which is quite similar to the one we propose in this study.

The algorithm proposed by James et al. (2009) has same computational cost as LARS algorithm [START_REF] Efron | Least angle regression[END_REF], a known algorithm to compute the entire path lasso solutions by cost O(M p 2 ), which also has the same computational cost as the least