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Abstract

Abstract. Recent applications such as forestry datasets involve the observations of

spatial point pattern data combined with the observation of many spatial covariates.

We consider in this thesis the problem of estimating a parametric form of the intensity

function in such a context. This thesis develops feature selection procedures and gives

some guarantees on their validity. In particular, we propose two different feature se-

lection approaches: the lasso-type methods and the Dantzig selector-type procedures.

For the methods considering lasso-type techniques, we derive asymptotic properties

of the estimates obtained from estimating functions derived from Poisson and logis-

tic regression likelihoods penalized by a large class of penalties. We prove that the

estimates obtained from such procedures satisfy consistency, sparsity, and asymptotic

normality. For the Dantzig selector part, we develop a modified version of the Dantzig

selector, which we call by the adaptive linearized Dantzig selector (ALDS), to obtain

the intensity estimates. More precisely, the ALDS estimates are defined as the solution

to an optimization problem which minimizes the sum of coefficients of the estimates

subject to a linear approximation of the score vector as a constraint. We find that the

estimates obtained from such methods have asymptotic properties similar to the ones

proposed under lasso-type techniques using an adaptive lasso regularization term. We

investigate the computational aspects of the methods developed using either lasso-type

procedures or the Dantzig selector-type approaches. We make links between spatial

point processes intensity estimation and generalized linear models (GLMs), so we only

have to deal with feature selection procedures for GLMs. Thus, easier computational

procedures are implemented and computationally fast algorithm are proposed. Sim-

ulation experiments are conducted to highlight the finite sample performances of the
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estimates from each of two proposed approaches. Finally, our methods are applied to

model the spatial locations a species of tree in the forest observed with a large number

of environmental factors.

Keywords: Campbell theorem, Dantzig selector, lasso, logistic regression

likelihood, Poisson likelihood

Résumé. Les applications récentes telles que les bases de données forestières im-

pliquent des observations de données spatiales associées à l’observation de nombreuses

covariables spatiales. Nous considérons dans cette thèse le problème de l’estimation

d’une forme paramétrique de la fonction d’intensité dans un tel contexte. Cette thèse

développe les procédures de sélection des variables et donne des garanties quant à leur

validité. En particulier, nous proposons deux approches différentes pour la sélection de

variables: les méthodes de type lasso et les procédures de type sélecteur de Dantzig.

Pour les méthodes envisageant les techniques de type lasso, nous dérivons les pro-

priétés asymptotiques des estimations obtenues par les équations estimantes dérivées

des vraisemblances de Poisson et de la régression logistique pénalisées par une grande

classe de pénalités. Nous prouvons que les estimations obtenues par de ces procé-

dures satisfont la consistance, sparsité et la normalité asymptotique. Pour la partie

sélecteur de Dantzig, nous développons une version modifiée du sélecteur de Dantzig,

que nous appelons le sélecteur Dantzig linéarisé adaptatif (ALDS), pour obtenir les

estimations d’intensité. Plus précisément, les estimations ALDS sont définies comme

la solution à un problème d’optimisation qui minimise la somme des coefficients des

estimations sous contrainte de la norme d’une approximation linéaire du vecteur score.

Nous constatons que les estimations obtenues par de ces méthodes ont des propriétés

asymptotiques semblables à celles proposées précédemment à l’aide de méthode régu-

larisation du lasso adaptatif. Nous étudions les aspects computationnels des méthodes

développées en utilisant les procédures de type lasso et de type Sélector Dantzig. Nous

établissons des liens entre l’estimation de l’intensité des processus ponctuels spatiaux
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et les modèles linéaires généralisés (GLM). Ainsi, des procédures de calcul plus faciles

sont implémentées et un algorithme rapide est proposé. Des études de simulation sont

menées pour évaluer les performances des estimations de chacune des deux approches

proposées. Enfin, nos méthodes sont appliquées pour modéliser les positions d’arbres

observées avec un grand nombre de facteurs environnementaux.

Mots clés: Théorème de Campbell, sélecteur de Dantzig, lasso, vraisem-

blance de la régression logistique, vraisemblance de Poisson
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CHAPTER 1
Introduction (English)

Spatial point pattern data occur in a wide range of scientific areas, e.g., ecology, epi-

demiology, biology, geosciences, criminology, and astronomy. The statistical and prob-

abilistic framework to treat spatial point pattern data is spatial point process. Some

recent spatial point process textbooks include Møller and Waagepetersen (2004), Illian

et al. (2008), Diggle (2013), and Baddeley et al. (2015). In this thesis, the main focus

is on the estimation of spatial point processes intensity. The intensity serves as the

first-order characteristics of a spatial point process and often becomes the main interest

in many studies, either in theoretical aspect or in application. Examples include the

study of spatial variation of specific disease risk (e.g., Diggle, 1990, 2013), crime rate

analysis in a city (e.g., Baddeley et al., 2015; Shirota et al., 2017), and modelling the

spatial distribution of trees species in a forest related to some environmental factors

(e.g., Waagepetersen, 2007; Renner and Warton, 2013).

In this study, we consider inhomogeneous spatial point processes described by an

intensity function which depends on spatial covariates. Although it will be stated in

every chapter of this manuscript, we write here that we focus on intensity functions

ρ(·;β) with log-linear form

ρ(u;β) = exp(β>z(u)), u ∈ D ⊂ Rd,

where z(u) = {z1(u), . . . , zp(u)}> are the p spatial covariates measured at location u

and β = {β1, . . . , βp}> is a real p-dimensional parameter. An example in epidemiology

is the study of spatial variation of cancer risk in a city given the locations of patients
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residence and the location of an industrial incinerator (see e.g., Diggle, 1990). In this

study, the main question is whether there is an evidence of increased cancer risk for the

resident close to the incinerator, so the distance between the home address of the pa-

tients to the incinerator is treated as a potential covariate. In criminology, one example

is the analysis of car thefts rate in a city considering some demographical information

as covariates (see e.g., Shirota et al., 2017). Besides that, another application also

occurs in ecology by the interest of modeling the spatial distribution of trees species

in a forest related to some environmental factors such as topological attributes and

soil properties. Therefore, the main concern to these studies is to find the relation-

ship between the intensity and the spatial covariates by assessing the magnitudes of

the components of the vector β. For Poisson point process models which serve as a

tractable class for complete spatial randomness, maximum likelihood estimation (e.g.,

Berman and Turner, 1992; Rathbun and Cressie, 1994) is straightforward to implement

since the likelihood function is easy to evaluate. However, for more general spatial point

processes whose likelihoods are often intractable, computationally expensive Markov

chain Monte Carlo methods are required (Møller and Waagepetersen, 2004). To over-

come this computational issue, many estimating equation-based methods which are

computationally competitive and also have nice theoretical properties are developed,

for example by Waagepetersen (2007), Guan and Shen (2010), Baddeley et al. (2014),

and Guan et al. (2015). It is to be noticed that the estimating equation-based methods

are not restricted to the class of Poisson point processes, thus, it can be applied to

attractive or repulsive point pattern data.

In recent decades, with the advancement of technology and huge investment in

data collection, many applications for estimating the intensity function which involves

a large number of covariates are rapidly available. An example which will be used

throughout this thesis is an ecological study. In particular, we are interested in study-

ing the spatial distribution of Beilschmiedia pendula Lauraceae trees locations surveyed

in a 50-hectare region (D = 1000m× 500m) in a tropical rain forest in Barro Corolado

Island, Panama. More complete data that we have from censuses conducted in the

same observation region contain locations of 297 species of trees (see Condit, 1998;
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Hubbell et al., 1999, 2005). Furthermore, information regarding environmental covari-

ates such as topological attributes and soil nutrients have been also collected. Figure 1.1

depicts the spatial distribution of 3604 locations of Beilschmiedia pendula Lauraceae

trees superimposed on the map of slope field (left) and on the map of concentration of

Phosphorus in the soil (middle). In addition, we present in Figure 1.1 (right) the 3604

locations of Beilschmiedia pendula Lauraceae trees (•) along with the 1928 locations of

Ocotea whitei trees (N). Some research questions regarding this study are: (a) which

areas Beilschmiedia pendula Lauraceae does and does not prefer to live on? (b) which

environmental factors which have significant effect on the appearance of Beilschmiedia

pendula Lauraceae and how to choose them? (c) how large those factors influence the

intensity of Beilschmiedia pendula Lauraceae? (d) is there any competition between

Beilschmiedia pendula Lauraceae and other species of trees in the forest? The study

which relates the distribution of a species to the environment is also commonly known

as species distribution modeling (e.g., Elith and Leathwick, 2009; Franklin, 2010; Ren-

ner, 2013). Species distribution modeling becomes one of the main interests in ecology

and biology since it aims to answer many important questions such as questions (a)-

(d). These are useful, for example, to have information regarding the conservation

efforts and studies of the impact of activities on habitats (e.g., Franklin, 2010). Species

distribution modeling is also able to give the prediction of species distribution to dis-

cover unstudied regions that may be preferable for a species (e.g., Elith and Leathwick,

2009).

Figure 1.1: Maps of 3604 locations of Beilschmiedia pendula Lauraceae trees superim-
posed on the map of elevation field (left), on the map of concentration of Phosporus
in the soil (middle), and on the map of 1928 locations of Ocotea whitei trees (right).

For such an application, note that modeling the intensity of Beilschmiedia pendula

Lauraceae as a function of any possible spatial covariates consisting of environmental
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factors will involve a large number of covariates, so maximum likelihood estimation or

estimating equation-based methods become undesirable. First, these methods cannot

perform variable selection which leads to a hard interpretation of the model. Second,

as the number of covariates is large, employing these methods will yield large variance

for parameter estimates.

The main goal of this research is to study and develop feature selection procedures

for spatial point processes intensity estimation. In particular, we consider two different

feature selection procedures: the lasso-type approaches and the Dantzig selector-type

methods. We investigate both theoretical and computational aspects. For theoretical

aspects, we study the asymptotic properties of our estimates and evaluate whether

or not the estimates obtained from such feature selection procedures satisfy consis-

tency, sparsity, and asymptotic normality. In this thesis, we do not investigate the

non-asymptotic properties of our estimates, for example, by studying the oracle in-

equalities as studied by Bühlmann and Van De Geer (2011) for instance. Even if it

seems feasible for Poisson point process using for instance concentration inequalities

obtained by Reynaud-Bouret (2003), it is not straightforwardly applicable for more gen-

eral spatial point processes due to the lack of such concentration inequalities for general

spatial point processes. By focusing on asymptotic properties, we are able to make our

results available for very large classes of spatial point processes which exhibit strong

dependence (i.e., very clustered or repulsive point processes). If we had stayed with

Poisson case, we would probably have studied the problem differently. Furthermore,

in the application we consider in this thesis, it is not realistic to model Beilschmiedia

pendula Lauraceae by a Poisson point process model as these data exhibit clustering

mainly due to seed dispersal (see e.g., Waagepetersen and Guan, 2009; Thurman et al.,

2015). From a computational point of view, as we make links between spatial point

processes intensity estimation and generalized linear models (GLMs), we only have

to deal with feature selection procedures for GLMs which are easy to implement and

computationally fast. It is worth emphasizing that our proposed methods are not only

limited to the application in ecology and can be applied in different contexts such as

the ones studied by Yue and Loh (2015); Renner et al. (2015); Shirota et al. (2017).
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The rest of this manuscript is organized as follows. In Chapter 3, we develop

lasso-type procedures based on convex and non-convex regularization techniques. We

consider estimating equations based on the Campbell formulas derived from Poisson

likelihood (Waagepetersen, 2007; Guan and Shen, 2010) and logistic regression likeli-

hood (Baddeley et al., 2014) penalized by a penalty function, written by

Q(w;β) = `(w;β)− |D|
p∑
j=1

pλj
(|βj|),

where `(w;β) is either the Poisson or the logistic regression likelihoods, |D| is the

volume of the observation domain and pλ(|θ|) is a penalty function parameterized by

nonnegative λ. Note that if pλ(|θ|) is a l1 norm penalty, it corresponds to lasso regu-

larization method (Tibshirani, 1996). We consider a general form of penalty function

pλ(|θ|), which can be a convex or a non-convex function, to make our results available

in a more general setting. As representatives, we consider seven regularization methods

including convex and non-convex penalties, i.e., ridge (Hoerl and Kennard, 1988), lasso

(Tibshirani, 1996), elastic net (Zou and Hastie, 2005), adaptive lasso (Zou, 2006), adap-

tive elastic net (Zou and Zhang, 2009), SCAD (Fan and Li, 2001), and MC+ (Zhang,

2010). We evaluate their theoretical properties and computational implementation.

From theoretical point of view, we find that the regularization methods employing two

adaptive methods (i.e., adaptive lasso and adaptive elastic net) and two non-convex

penalties (i.e., SCAD and MC+) satisfy consistency, sparsity, and asymptotic nor-

mality. It is worth mentioning that the asymptotic considered in this thesis is the

increasing domain asymptotic, namely we consider spatial point processes observed

over a sequence of bounded domains Dn such that |Dn| → ∞ as n → ∞. In our

setting, |Dn| plays the same role as n, the number of observations, in standard prob-

lems such as lasso-type methods for linear models or generalized linear models. From

computational point of view, our procedure is straightforward to implement in R since

we combine the existing R package spatstat (Baddeley et al., 2015) devoted to the

analysis of spatial point pattern data with two R packages glmnet (Friedman et al.,

2010) and ncvreg (Breheny and Huang, 2011). We also assess the finite properties of
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our estimates obtained from such procedures in a simulation experiment and apply our

methods to model the intensity of Beilschmiedia pendula Lauraceae as a function of 15

spatial covariates consisting of 2 topological properties and 13 soil nutrients.

In Chapter 3, we are restricted to the assumption where the number of covariates

is fixed. This leads to two issues: application and theoretical study. In the application

considered in this study, modeling the intensity of Beilschmiedia pendula Lauraceae as

a function of environmental covariates and their possible interactions can increase the

number of covariates considerably, so the setting for a diverging number of covariates

should be considered. In the theoretical study for a finite number of parameters setting,

it has been proved by Fan and Peng (2004) that, in general, penalization regression

setting, there are many naive and simple model selection procedures which possess

the consistency, sparsity, and asymptotic normality. Therefore, the validity of such

asymptotic properties for spatial point processes considering the situation when the

number of covariates diverges becomes important to study. We relax this assumption

in Chapter 4 by allowing the number of covariates to grow to infinity as the observation

domain increases. We investigate the theoretical properties considered in Chapter 3 but

extend to the situation when the number of parameters diverges. More precisely, we

consider the asymptotic study which allows that both |Dn| (the sequence of observed

domains volume) and pn (the sequence of covariates number) tend to infinity as n

goes to infinity. We prove that the results obtained in Chapter 3 are still valid with

a few restrictions on the sequence of parameters pn, by the main argument requiring

p3
n/|Dn| → 0 as n→∞.

Apart from regularization techniques studied in Chapters 3 and 4, we develop in

Chapter 5 the Dantzig selector-type methods for spatial point processes intensity esti-

mation. In particular, we propose a modified version of the Dantzig selector based on

linear approximation in the constraint vector which we call by the adaptive linearized

Dantzig selector (ALDS). The Dantzig selector (Candes and Tao, 2007) was initially

designed for linear regression models and attracted a lot of attention because of its

two significant contributions: computational and theoretical aspects. From a compu-

tational point of view, an efficient algorithm has been proposed as the implementation
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of the Dantzig selector results in a linear programming. For theoretical aspects, Candes

and Tao (2007) provided sharp non-asymptotic bounds on the l2 norm of estimated

coefficients error and showed that the error is within a factor of log p of the error that

would be achieved if the locations of the non-zero coefficients were known. As log p

grows very slowly, the Dantzig selector only pays a small price for adaptively choos-

ing the significant variables and is then very suitable for a very large dataset. Some

extended studies have been conducted, for example, by James and Radchenko (2009)

who studied the computational implementation of the Dantzig selector for generalized

linear models, Antoniadis et al. (2010) who extended the theoretical results and imple-

mentation of the Dantzig selector for the class of Cox’s proportional hazards model,

and Li et al. (2014) who developed the Dantzig selector for censored linear regression

models and evaluated its asymptotic properties. The general idea of the Dantzig selec-

tor is to minimize the l1 norm of the parameters subject to a constraint on the score

vector given by

min |D|
p∑
j=1

λj|βj| subject to |Uj(β)| ≤ |D|λj for j = 1, . . . , p. (1.1)

More precisely, Uj(β) is the jth component of either the score vector of a likelihood

function or an estimating function and λj ≥ 0, j = 1, 2, . . . , p, are the tuning param-

eters which can be different for every j. Our focus in this chapter is to evaluate the

asymptotic properties of the Dantzig selector-type estimator and compare them to the

ones obtained from regularization methods developed in Chapters 3 and 4, especially

with lasso since the similarities between lasso and Dantzig selector have been discovered

in linear models (see e.g., Meinshausen et al., 2007; Bickel et al., 2009; James et al.,

2009; Asif and Romberg, 2010). We show under some conditions that the estimates

from ALDS are sparse and asymptotically normal. In addition, by proposing the lin-

ear approximation on the constraint vector, we show that the complex optimization

problem (1.1) can be reduced to a linear programming problem, so a computationally

efficient algorithm can be introduced.





CHAPTER 2
Introduction (Français)

Les données spatiales apparaissent dans un large éventail de domaines scientifiques,

par exemple, l’écologie, l’épidémiologie, la biologie, les géosciences, la criminologie

et l’astronomie. Le cadre statistique et probabiliste pour le traitement des données

ponctuelles spatiaux est celui des processus ponctuels spatiaux. Certains livres récents

sur les processus ponctuels spatiaux incluent Møller and Waagepetersen (2004), Illian

et al. (2008), Diggle (2013), and Baddeley et al. (2015). Dans cette thèse, l’accent prin-

cipal est mis sur l’estimation de l’intensité des processus ponctuels spatiaux. L’intensité

sert de caractéristique de premier ordre d’un processus ponctuel spatial et devient sou-

vent l’intérêt principal pour de nombreuses études, tant dans l’aspect théorique que

dans l’application. Des exemples sont l’étude de la variation spatiale du risque spé-

cifique de maladie (e.g., Diggle, 1990, 2013), l’analyse du taux de criminalité dans

une ville (e.g., Baddeley et al., 2015; Shirota et al., 2017), et la modélisation de la

répartition spatiale des espèces d’arbres dans une forêt en fonction de certains facteurs

environnementaux (e.g., Waagepetersen, 2007; Renner and Warton, 2013).

Dans cette étude, nous considérons des processus ponctuels spatiaux inhomogènes

décrits par une fonction d’intensité qui dépend de covariables spatiales. Comme in-

diqué dans chaque chapitre de ce manuscrit, nous nous concentrons sur les fonctions

d’intensité ρ(·;β) avec la forme log-linéaire

ρ(u;β) = exp(β>z(u)), u ∈ D ⊂ Rd,

où z(u) = {z1(u), . . . , zp(u)}> sont les p covariables spatiales mesurées à l’emplacement

33



34

u et β = {β1, . . . , βp}> est un paramètre réel de dimension p. Un exemple d’épidé-

miologie est l’étude de la variation spatiale du risque de cancer dans une ville compte

tenu de l’emplacement de la résidence des patients et de la localisation d’un incinérateur

industriel (e.g., Diggle, 1990). Dans cette étude, la question principale est de savoir s’il

existe une preuve du risque croissant de cancer pour le résident près de l’incinérateur,

de sorte que la distance entre l’adresse résidentielle des patients à l’incinérateur est con-

sidérée comme une covariable potentielle. En criminologie, un exemple est l’analyse

du taux de vols de voitures dans une ville en considérant certaines informations dé-

mographiques comme des covariables (e.g., Shirota et al., 2017). Par ailleurs, une

autre application apparaît également en écologie par l’intérêt de la modélisation de

la répartition spatiale des espèces d’arbres liée à certains facteurs environnementaux

tels que les attributs topologiques et les propriétés du sol. Par conséquent, le but

principal de ces études est de trouver une relation entre l’intensité et les covariables

spatiales en évaluant les grandeurs des composantes du vecteur β. Pour les modèles

de processus ponctuels de Poisson, l’estimation par maximum de vraisemblance (e.g.,

Berman and Turner, 1992; Rathbun and Cressie, 1994) est simple à mettre en œuvre

puisque la fonction de vraisemblance est facile à évaluer. Cependant, pour des proces-

sus ponctuels spatiaux plus généraux dont les vraisemblances sont souvent compliqués,

des méthodes de Monte-Carlo par chaînes de Markov coûteuses sont requises (Møller

and Waagepetersen, 2004). Pour surmonter ce problème de calcul, de nombreuses

méthodes basées sur les équations estimantes, qui sont avantageuses en termes de cal-

cul et ont également de bonnes propriétés théoriques, sont développées, par exemple

par Waagepetersen (2007), Guan and Shen (2010), Baddeley et al. (2014), et Guan

et al. (2015). Il faut remarquer que les méthodes basées sur les équations estimantes

ne sont pas limitées à la classe des processus ponctuels de Poisson, et peuvent être

appliquées à des données attractives ou répulsives.

Au cours des dernières décennies, avec l’avancée de la technologie et l’investisse-

ment énorme dans la collecte de données, de nombreuses applications qui impliquent

un grand nombre de covariables sont disponibles rapidement. Un exemple qui sera

utilisé tout au long de cette thèse est une étude écologique. En particulier, nous nous



35

intéressons à étudier la répartition spatiale des sites d’arbres de Beilschmiedia pendula

Lauraceae dans une région de 50 hectares (D = 1000m × 500m) dans une forêt tropi-

cale humide à l’île Barro Corolado, au Panama. Des données plus complètes issues des

recensements menés dans la même région d’observation contiennent les emplacements

de 297 espèces d’arbres (e.g., Condit, 1998; Hubbell et al., 1999, 2005). En outre,

des informations concernant les covariables environnementales, telles que les attributs

topologiques et les éléments nutritifs des sols ont également été collectées. La Figure 2.1

représente la répartition spatiale des 3604 emplacements d’arbres de Beilschmiedia pen-

dula Lauraceae superposés sur la carte du champ de pente (gauche) et sur la carte de

concentration de Phosporus dans le sol (milieu). De plus, nous présentons dans la

Figure 2.1 (droite) les 3604 emplacements des arbres Beilschmiedia pendula Lauraceae

(•) ainsi que les 1928 emplacements des arbres Ocotea whitei (N). Les questions de

recherche concernant cette étude sont: (a) Dans quelles regions Beilschmiedia pendula

Lauraceae préfèrent-elles et ne préfèrent-elles pas vivre? (b) Quels sont les facteurs en-

vironnementaux qui ont un effet significatif sur l’apparition de Beilschmiedia pendula

Lauraceae? (c) Comment ces facteurs influencent-ils l’intensité de Beilschmiedia pen-

dula Lauraceae? (d) Existe-t-il une concurrence entre Beilschmiedia pendula Lauraceae

et d’autres espèces d’arbres dans la forêt? L’étude qui relie la répartition d’une espèce

à l’environnement est également connue sous le nom de modélisation de la distribution

d’espèces (e.g., Elith and Leathwick, 2009; Franklin, 2010; Renner, 2013). La modéli-

sation de la distribution d’espèces devient l’un des intérêts principaux en ’écologie et

en biologie car elle vise à répondre à de nombreuses questions importantes telles que

les questions (a) - (d). Celles-ci sont utiles, par exemple, pour avoir des informations

concernant les efforts de conservation et les études d’impact des activités sur les habi-

tats (e.g., Franklin, 2010). La modélisation de la distribution d’espèces est également

capable de prédire la répartition des espèces pour découvrir des régions non étudiées

qui peuvent être préférables pour une espèce (e.g., Elith and Leathwick, 2009).

Pour une telle application, notez que la modélisation de l’intensité de Beilschmiedia

pendula Lauraceae en fonction de toutes les covariables spatiales possibles composées de

facteurs environnementaux impliquera un grand nombre de covariables, les méthodes
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Figure 2.1: Cartes de 3604 emplacements des arbres de Beilschmiedia pendula Lau-
raceae superposés sur la carte du champ d’élévation (gauche), sur la carte de concen-
tration de Phosporus dans le sol (milieu), et sur la carte de 1928 emplacements des
arbres de Ocotea whitei (droite).

du maximum de vraisemblance ou les méthodes basées sur les équations estimantes

deviennent alors insuffisantes. Premièrement, ces méthodes ne peuvent pas effectuer

une sélection de variables qui entraîne une interprétation rigoureuse du modèle. Deux-

ièmement, comme le nombre de covariables est élevé, l’utilisation de ces méthodes

entraînera une grande variance pour les estimations de paramètres.

L’objectif principal de cette étude est d’étudier et de développer des procédures de

sélection des variables pour l’estimation de l’intensité des processus ponctuels spati-

aux. En particulier, nous proposons deux approches différentes: les méthodes de type

lasso et de type sélecteur de Dantzig. Nous examinons les aspects théoriques et com-

putationneles. Du point de vue théorique, nous étudions les propriétés asymptotiques

des estimateurs et évaluons si les estimateurs obtenues par ces procédures satisfont les

propriétés de consistance, sparsité et normalité asymptotique. Dans cette thèse, nous

n’étudions pas les propriétés non-asymptotiques de nos estimateurs, par exemple, en

étudiant les inégalités d’oracle développées par Bühlmann and Van De Geer (2011).

Même si cela semble faisable pour un processus ponctuel de Poisson en utilisant par ex-

emple des inégalités de concentration obtenues par Reynaud-Bouret (2003), ce n’est pas

directement applicable pour des processus ponctuels spatiaux plus généraux en raison

de l’absence de telles inégalités de concentration pour les processus ponctuels spati-

aux dans le cas général. En mettant l’accent sur les propriétés asymptotiques, nous

sommes en mesure de rendre nos résultats qui sont applicable pour de très grandes

classes de processus ponctuels spatiaux qui présentent une forte dépendance (c’est-à-

dire des processus ponctuels très cluster ou répulsifs). Si nous étions restés dans le cas
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de Poisson, nous aurions probablement étudié le problème différemment. En plus, dans

l’application que nous considérons dans cette thèse, ce n’est pas réaliste de modéliser

Beilschmiedia pendula Lauraceae par un modèle de processus ponctuel de Poisson car

ces données montrent un regroupement qui sont principalement dû à la dispersion des

graines (e.g., Waagepetersen and Guan, 2009; Thurman et al., 2015). Du point de vue

computationel, comme nous établissons les liens entre l’estimation de l’intensité des

processus ponctuels spatiaux et les modèles linéaires généralisés (GLM), nous devons

seulement traiter les procédures de sélection de variables pour les GLM qui sont faciles

à implémenter et rapides. Il convient de souligner que nos méthodes ne se limitent pas

à l’application en écologie et donc peuvent être appliquées dans différents contextes,

tels que ceux étudiés par Yue and Loh (2015); Renner et al. (2015); Shirota et al.

(2017).

Le reste de ce manuscrit est organisé comme suit. Au Chapitre 3, nous développons

des procédures de type lasso basées sur des techniques de régularisation convexes et

non-convexes. Nous considérons les équations estimantes basées sur le théorème de

Champbell dérivées des vraisemblances de Poisson (Waagepetersen, 2007; Guan and

Shen, 2010) et de la régression logistique (Baddeley et al., 2014) pénalisé par une

fonction de pénalité

Q(w;β) = `(w;β)− |D|
p∑
j=1

pλj
(|βj|),

où `(w;β) est la vraisemblance de Poisson ou la vraisemblance de la régression logis-

tique, |D| est le volume du domaine d’observation et pλ(|θ|) est une fonction de pénalité

paramétrisé par λ (positif). Notez que si pλ(|θ|) est une pénalité de norme l1, cela cor-

respond à la méthode de régularisation lasso (Tibshirani, 1996). Nous considérons une

forme générale de fonction de pénalité pλ(|θ|), qui peut être une fonction convexe ou

non-convexe, pour rendre nos résultats applicables dans un cadre plus général. Dans

cette thèse, nous considérons sept méthodes de régularisation incluant les fonctions de

pénalité convexe et non-convexe, c.-à-d., ridge (Hoerl and Kennard, 1988), lasso (Tib-

shirani, 1996), elastic net (Zou and Hastie, 2005), lasso adaptatif (Zou, 2006), elastic
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net adaptatif (Zou and Zhang, 2009), SCAD (Fan and Li, 2001), et MC+ (Zhang,

2010). Nous évaluons leurs propriétés asymptotiques et leur implémentation compu-

tationnelle. Du point de vue théorique, c’est à noter que l’asymptotique considéré

dans cette thèse est le domaine croissant asymptotique, à savoir nous considérons les

processus ponctuels spatiaux observés sur une séquence de domaines bornés Dn tels

que |Dn| → ∞ à mesure que n → ∞. Dans notre contexte, |Dn| joue le même rôle

que n, le nombre d’observations, dans les problèmes standard tels que les méthodes

de type lasso pour les modèles linéaires ou les modèles linéaires généralisés. Du point

de vue computationel, notre procédure est simple à implémenter dans R puisque nous

combinons le paquet R spatstat (Baddeley et al., 2015) avec glmnet (Friedman et al.,

2010) et ncvreg (Breheny and Huang, 2011). Nous évaluons également les propriétés

finies de nos estimateurs obtenus par de telles procédures dans les études de simula-

tion et appliquons nos méthodes pour modéliser l’intensité de Beilschmiedia pendula

Lauraceae.

Au Chapitre 3, nous nous limitons à l’hypothèse où le nombre de covariables est

fixé. Cela conduit à deux problèmes: l’application et la théorie. Dans l’application

considérée dans cette étude, la modélisation de l’intensité de Beilschmiedia pendula

Lauraceae en fonction des covariables environnementales et de leurs interactions peut

augmenter considérablement le nombre de covariables, donc le contexte où le nombre

de covariables diverge doit être considéré. Pour les propriétés asymptotiques consid-

érées dans cette étude, cela a été prouvé par Fan and Peng (2004), dans le cadre de

la régression pénalisée générale, qu’il existe de nombreuses procédures de sélection de

variables simples qui satisfont aussi les propriétés de consistance, sparsité et normalité

asymptotique dans le cadre de paramètres finis. Nous relaxons cette hypothèse au

Chapitre 4 en permettant au nombre de covariables de croître à l’infini à mesure que

le domaine d’observation augmente. Nous étudions les propriétés asymptotiques con-

sidérées au Chapitre 3 mais étendons à la situation lorsque le nombre de paramètres

diverge. Nous considérons l’étude asymptotique qui permet à la fois que |Dn| (la

séquence des domaines du volume d’observation) et pn (la suite des nombres de co-

variables) tend vers l’infini quand n tend vers l’infini. Nous prouvons que les résultats
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obtenus au Chapitre 3 sont toujours valables avec quelques restrictions sur la suite des

paramètres pn, par l’argument principal exigeant que p3
n/|Dn| → 0 quand n→∞.

Outre les techniques de régularisation étudiées aux Chapitres 3 et 4, nous dévelop-

pons au Chapitre 5, les méthodes de type sélecteur de Dantzig pour l’estimation de

l’intensité des processus ponctuels spatiaux. En particulier, nous proposons une ver-

sion modifiée du sélecteur de Dantzig basé sur une approximation linéaire du vecteur

de contrainte que nous appelons le sélecteur Dantzig linéarisé adaptatif (ALDS). Le

sélecteur de Dantzig (Candes and Tao, 2007) a été initialement conçu pour les modèles

de régression linéaire et a attiré beaucoup d’attention en raison de ses deux contribu-

tions significatives: les aspects computationnel et théoriques. Du point de vue com-

putationel, un algorithme efficace a été proposé comme l’implementation du sélecteur

Dantzig qui résulte en une programmation linéaire. Du point de vue théorique, Candes

and Tao (2007) ont fourni des bornes non asymptotiques optimales sur la norme l2
de l’erreur d’estimation des coefficients et ont montré que cette erreur est un facteur

log p de l’erreur qui serait atteinte si les emplacements des coefficients non nuls étaient

connus. Comme log p croit très lentement, le sélecteur de Dantzig ne paie qu’un petit

prix pour le choix adaptatif des variables significatives et est donc très approprié pour

un très grand jeu de données. Des études approfondies ont été menées, par exemple,

par James and Radchenko (2009) qui ont étudié la mise en oeuvre du sélecteur de

Dantzig pour les modèles linéaires généralisés, Antoniadis et al. (2010) qui ont étendu

les résultats théoriques et la mise en oeuvre du sélecteur Dantzig pour la classe du mod-

èle à risques proportionnels de Cox, et Li et al. (2014), qui ont développé le sélecteur

de Dantzig pour les modèles de régression linéaire censurée et évalué ses propriétés

asymptotiques. L’idée générale du sélecteur de Dantzig est de minimiser la norme l1
des paramètres soumis à une contrainte sur le vecteur de score donné par

min |D|
p∑
j=1

λj|βj| avec des contraintes |Uj(β)| ≤ |D|λj for j = 1, . . . , p. (2.1)

Plus précisément, Uj(β) est la jème composante du vecteur de score d’une fonction de

vraisemblance ou d’une fonction estimante et λj ≥ 0, j = 1, 2, . . . , p, sont les paramètres
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de régularisation qui peuvent être différents pour chaque j. Nos objectifs dans ce

chapitre sont d’évaluer les propriétés asymptotiques des estimateurs obtenus par des

méthodes de type sélecteur de Dantzig et de les comparer à celles obtenues par des

méthodes de régularisation développées dans les Chapitres 3 et 4, surtout avec lasso

puisque les similarités entre le lasso et le sélecteur de Dantzig ont été découvertes

dans les modèles linéaires (e.g., Meinshausen et al., 2007; Bickel et al., 2009; James

et al., 2009; Asif and Romberg, 2010). Nous montrons dans certaines conditions que

les estimations de l’ALDS sont sparse et asymptotiquement normales. De plus, en

proposant l’approximation linéaire sur le vecteur de contraintes, nous montrons que le

problème d’optimisation complexe (2.1) peut être réduit à un problème de program-

mation linéaire, ainsi un algorithme efficace peut être introduit.







CHAPTER 3
Convex and non-convex regularization methods for

spatial point processes intensity estimation

3.1 Introduction

Spatial point pattern data arise in many contexts where interest lies in describing the

distribution of an event in space. Some examples include the locations of trees in

a forest, gold deposits mapped in a geological survey, stars in a cluster star, animal

sightings, locations of some specific cells in retina, or road accidents (see e.g. Møller and

Waagepetersen, 2004; Illian et al., 2008; Baddeley et al., 2015). Interest in methods for

analyzing spatial point pattern data is rapidly expanding accross many fields of science,

notably in ecology, epidemiology, biology, geosciences, astronomy, and econometrics.

One of the main interests when analyzing spatial point pattern data is to estimate

the intensity which characterizes the probability that a point (or an event) occurs in an

infinitesimal ball around a given location. In practice, the intensity is often assumed to

be a parametric function of some measured covariates (e.g. Waagepetersen, 2007; Guan

and Loh, 2007; Møller and Waagepetersen, 2007; Waagepetersen, 2008; Waagepetersen

and Guan, 2009; Guan and Shen, 2010; Coeurjolly and Møller, 2014). In this study, we

assume that the intensity function ρ is parameterized by a vector β and has a log-linear

specification

ρ(u;β) = exp(β>z(u)), (3.1)

where z(u) = {z1(u), . . . , zp(u)}> are the p spatial covariates measured at location u

43
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and β = {β1, . . . , βp}> is a real p-dimensional parameter. When the intensity is a

function of many variables, covariates selection becomes inevitable.

Variable selection in regression has a number of purposes: provide regularization for

good estimation, obtain good prediction, and identify clearly the important variables

(e.g. Fan and Lv, 2010; Mazumder et al., 2011). Identifying a set of relevant features

from a list of many features is in general combinatorially hard and computationally

intensive. In this context, convex relaxation techniques such as lasso (Tibshirani, 1996)

have been effectively used for variable selection and parameter estimation simultane-

ously. The lasso procedure aims at minimizing:

− logL(β) + λ‖β‖1

where L(β) is the likelihood function for some model of interest. The `1 penalty

shrinks coefficients towards zero, and can also set coefficients to be exactly zero. In

the context of variable selection, the lasso is often thought of as a convex surrogate for

the best-subset selection problem:

− logL(β) + λ‖β‖0.

The `0 penalty ‖β‖0 = ∑p
i=1 I(|βi| > 0) penalizes the number of nonzero coefficients in

the model.

Since lasso can be suboptimal in model selection for some cases (e.g. Fan and Li,

2001; Zou, 2006; Zhang and Huang, 2008), many regularization methods then have

been developped, motivating to go beyond `1 regime to more aggressive non-convex

penalties which bridges the gap between `1 and `0 such as SCAD (Fan and Li, 2001)

and MC+ (Zhang, 2010).

More recently, there were several works on implementing variable selection for spa-

tial point processes in order to reduce variance inflation from overfitting and bias from

underfitting. Thurman and Zhu (2014) focused on using adaptive lasso to select vari-

ables for inhomogeneous Poisson point processes. This study then later was extended

to the clustered spatial point processes by Thurman et al. (2015) who established the
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asymptotic properties of the estimates in terms of consistency, sparsity, and normal-

ity distribution. They also compared their results employing adaptive lasso to SCAD

and adaptive elastic net in the simulation study and application, using both regularized

weighted and unweighted estimating equations derived from the Poisson likelihood. Yue

and Loh (2015) considered modelling spatial point data with Poisson, pairwise inter-

action point processes, and Neyman-Scott cluster models, incorporated lasso, adaptive

lasso, and elastic net regularization methods into generalized linear model framework

for fitting these point models. Note that the study by Yue and Loh (2015) also used an

estimating equation derived from the Poisson likelihood. However, Yue and Loh (2015)

did not provide the theoretical study in detail. Although, in application, many penalty

functions have been employed to regularization methods for spatial point processes

intensity estimation, the theoretical study is still restricted to some specific penalty

functions.

In this chapter, we propose regularized versions of estimating equations based on

Campbell formula derived from the Poisson and the logistic regression likelihoods to

estimate the intensity of the spatial point processes. We consider both convex and

non-convex penalty functions. We provide general conditions on the penalty function

to ensure an oracle property and a central limit theorem. Thus, we extend the work

by Thurman et al. (2015) and obtain the theoretical results for more general penalty

functions and under less restrictive assumptions on the asymptotic covariance matrix

(see Remark 3.6.3). The logistic regression method proposed by Baddeley et al. (2014)

is as easy to implement as the Poisson likelihood method, but is less biased since it

does not require deterministic numerical approximation. We prove that the estimates

obtained by regularizing the logistic regression likelihood can also satisfy asymptotic

properties (see Remark 3.6.2). Our procedure is straightforward to implement since

we only need to combine the spatstat R package with the two R packages glmnet and

ncvreg.

The remainder of this chapter is organized as follows. Section 3.2 gives backgrounds

on spatial point processes. Section 3.3 describes standard parameter estimation meth-

ods when there is no regularization, while regularization methods are developed in
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Section 3.4. Section 3.5 develops numerical details induced by the methods introduced

in Sections 3.3-3.4. Asymptotic properties following the work by Fan and Li (2001)

for generalized linear models are presented in Section 3.6. Section 3.7 investigates the

finite-sample properties of the proposed method in a simulation study, followed by

an application to tropical forestry datasets in Section 3.8, and finished by conclusion

and discussion in Section 3.9. Proofs of the main results are postponed to Sections

3.11.1-3.11.3.

3.2 Spatial point processes

Let X be a spatial point process on Rd. Let D ⊂ Rd be a compact set of Lebesgue

measure |D| which will play the role of the observation domain. We view X as a locally

finite random subset of Rd, i.e. the random number of points of X in B, N(B), is almost

surely finite whenever B ⊂ Rd is a bounded region. Suppose x = {x1, x2, . . . , xm}

denotes a realization of X observed within a bounded region D, where xi, i = 1, . . . ,m

represent the locations of the observed points, and m is the number of points. Note

that m is random and 0 ≤ m <∞. If m = 0 then x = ∅ is the empty point pattern in

D. For further background material on spatial point processes, see for example Møller

and Waagepetersen (2004).

3.2.1 Moments

The first and second-order properties of a point process are described by intensity

measure and second-order factorial moment measure. First-order properties of a point

process indicate the spatial distribution events in domain of interest. The intensity

measure µ on Rd is given by

µ(B) = EN(B), B ⊆ Rd.

If the intensity measure µ can be written as

µ(B) =
∫
B
ρ(u)du, B ⊆ Rd,
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where ρ is a nonnegative function, then ρ is called the intensity function. If ρ is

constant, then X is said to be homogeneous or first-order stationary with intensity ρ.

Otherwise, it is said to be inhomogeneous. We may interpret ρ(u)du as the probability

of occurence of a point in an infinitesimally small ball with centre u and volume du.

Second-order properties of a point process indicate the spatial coincidence of events

in the domain of interest. The second-order factorial moment measure α(2) on Rd×Rd

is given by

α(2)(C) = E
6=∑

u,v∈X
I[(u, v) ∈ C], C ⊆ Rd × Rd.

where the 6= over the summation sign means that the sum runs over all pairwise different

points u, v in X, and I[.] is the indicator function. If the second-order factorial moment

measure α(2) can be written as

α(2)(C) =
∫ ∫

I[(u, v) ∈ C]ρ(2)(u, v)dudv, C ⊆ Rd × Rd,

where ρ(2) is a nonnegative function, then ρ(2) is called the second-order product density.

Intuitively, ρ(2)(u, v)dudv is the probability for observing a pair of points from X

occuring jointly in each of two infinitesimally small balls with centres u, v and volume

du, dv. Fore more detail description of moment measures of any order, see appendix C

in Møller and Waagepetersen (2004).

Suppose X has intensity function ρ and second-order product density ρ(2). Campbell

theorem (see e.g. Møller and Waagepetersen, 2004) states that, for any function k :

Rd → [0,∞) or k : Rd × Rd → [0,∞)

E
∑
u∈X

k(u) =
∫
k(u)ρ(u)du (3.2)

E
6=∑

u,v∈X
k(u, v) =

∫ ∫
k(u, v)ρ(2)(u, v)dudv. (3.3)

In order to study whether a point process deviates from independence (i.e., Poisson
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point process), we often consider the pair correlation function given by

g(u, v) = ρ(2)(u, v)
ρ(u)ρ(v)

when both ρ and ρ(2) exist with the convention 0/0 = 0. For a Poisson point process

(Section 3.2.2.1), we have ρ(2)(u, v) = ρ(u)ρ(v) so that g(u, v) = 1. If, for example,

g(u, v) > 1 (resp. g(u, v) < 1), this indicates that pair of points are more likely (resp.

less likely) to occur at locations u, v than for a Poisson point process with the same

intensity function as X. In the same spirit, we can define ρ(k) the k-th order intensity

function (see Møller and Waagepetersen, 2004, for more details). If for any u, v, g(u, v)

depends only on u − v, the point process X is said to be second-order reweighted

stationary.

3.2.2 Modelling the intensity function

We discuss spatial point process models specified by deterministic or random inten-

sity function. Particularly, we consider two important model classes, namely Poisson

and Cox processes. Poisson point processes serve as a tractable model class for no

interaction or complete spatial randomness. Cox processes form major classes for clus-

tering or aggregation. For conciseness, we focus on the two later classes of models. We

could also have presented determinantal point processes (e.g. Lavancier et al., 2015)

which constitute an interesting class of repulsive point patterns with explicit moments.

This has not been further investigated for sake of brevity. In this study, we focus on

log-linear models of the intensity function given by (3.1).

3.2.2.1 Poisson point process

A point process X on D is a Poisson point process with intensity function ρ, assumed

to be locally integrable, if the following conditions are satisfied:

1. for any B ⊆ D with 0 ≤ µ(B) <∞, N(B) ∼ Poisson(µ(B)),

2. conditionally on N(B), the points in X ∩ B are i.i.d. with joint density propor-

tional to ρ(u), u ∈ B.
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A Poisson point process with a log-linear intensity function is also called a modulated

Poisson point process (e.g. Møller and Waagepetersen, 2007; Waagepetersen, 2008). In

particular, for Poisson point processes, ρ(2)(u, v) = ρ(u)ρ(v), and g(u, v) = 1, ∀u, v ∈ D.

3.2.2.2 Cox processes

A Cox process is a natural extension of a Poisson point process, obtained by considering

the intensity function of the Poisson point process as a realization of a random field.

Suppose that Λ = {Λ(u) : u ∈ D} is a nonnegative random field. If the conditional

distribution of X given Λ is a Poisson point process on D with intensity function Λ,

then X is said to be a Cox process driven by Λ (see e.g. Møller and Waagepetersen,

2004). There are several types of Cox processes. Here, we consider two types of Cox

processes: a Neyman-Scott point process and a log Gaussian Cox process.

Neyman-Scott point processes. Let C be a stationary Poisson process (mother

process) with intensity κ > 0. Given C, let Xc, c ∈ C, be independent Poisson processes

(offspring processes) with intensity function

ρc(u;β) = exp(β>z(u))k(u− c;ω)/κ,

where k is a probability density function determining the distribution of offspring points

around the mother points parameterized by ω. Then X = ∪c∈CXc is a special case of

an inhomogeneous Neyman-Scott point process with mothers C and offspring Xc, c ∈ C.

The point process X is a Cox process driven by Λ(u) = exp(β>z(u))∑c∈C k(u− c, ω)/κ

(e.g. Waagepetersen, 2007; Coeurjolly and Møller, 2014) and we can verify that the

intensity function of X is indeed

ρ(u;β) = exp(β>z(u)).

One example of Neyman-Scott point process is the Thomas process where

k(u) = (2πω2)−d/2 exp(−‖u‖2/(2ω2))

is the density for Nd(0, ω2Id). Conditionally on a parent event at location c, children
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events are normally distributed around c. Smaller values of ω correspond to tighter

clusters, and smaller values of κ correspond to fewer number of parents. The parame-

ter vector ψ = (κ, ω)> is referred to as the interaction parameter as it modulates the

spatial interaction (or, dependence) among events.

Log Gaussian Cox process. Suppose that log Λ is a Gaussian random field. Given

Λ, the point process X follows Poisson process. Then X is said to be a log Gaussian

Cox process driven by Λ (Møller and Waagepetersen, 2004). If the random intensity

function can be written as

log Λ(u) = β>z(u) + φ(u)− σ2/2,

where φ is a zero-mean stationary Gaussian random field with covariance function

c(u, v;ψ) = σ2R(v − u; ζ) which depends on parameter ψ = (σ2, ζ)> (Møller and

Waagepetersen, 2007; Coeurjolly and Møller, 2014). The intensity function of this log

Gaussian Cox process is indeed given by

ρ(u;β) = exp(β>z(u)).

One example of correlation function is the exponential form (e.g. Waagepetersen and

Guan, 2009)

R(v − u; ζ) = exp(−‖u− v‖/ζ), for ζ > 0.

Here, ψ = (σ2, ζ)> constitutes the interaction parameter vector, where σ2 is the vari-

ance and ζ is the correlation scale parameter.

3.3 Parametric intensity estimation

One of the standard ways to fit models to data is by maximizing the likelihood of

the model for the data. While maximum likelihood method is feasible for paramet-

ric Poisson point process models (Section 3.3.1), computationally intensive Markov

chain Monte Carlo (MCMC) methods are needed otherwise (Møller andWaagepetersen,
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2004). As MCMC methods are not yet straightforward to implement, estimating equa-

tions based on Campbell theorem have been developed (see e.g. Waagepetersen, 2007;

Møller andWaagepetersen, 2007; Waagepetersen, 2008; Guan and Shen, 2010; Baddeley

et al., 2014). We review the estimating equations derived from the Poisson likelihood

in Section 3.3.2-3.3.3 and from the logistic regression likelihood in Section 3.3.4.

3.3.1 Maximum likelihood estimation

For an inhomogeneous Poisson point process with intensity function ρ parameterized

by β, the likelihood function is

L(β) =
∏

u∈X∩D
ρ(u;β) exp

(∫
D

(
1− ρ(u;β)

)
du
)
,

and the log-likelihood function of β is

`(β) =
∑

u∈X∩D
log ρ(u;β)−

∫
D
ρ(u;β)du, (3.4)

where we have omitted the constant term
∫
D 1du = |D|. As the intensity function has

log-linear form (3.1), (3.4) reduces to

`(β) =
∑

u∈X∩D
β>z(u)−

∫
D

exp(β>z(u))du.

Rathbun and Cressie (1994) showed that the maximum likelihood estimator is consis-

tent, asymptotically normal and asymptotically efficient as the sample region goes to

Rd.

3.3.2 Poisson likelihood

Let β0 be the true parameter vector. By applying Campbell theorem (5.2) to the score

function, i.e. the gradient vector of `(β) denoted by `(1)(β), we have

E`(1)(β) = E
∑

u∈X∩D
z(u)−

∫
D

z(u) exp(β>z(u))du

=
∫
D

z(u) exp(β>0 z(u))du−
∫
D

z(u) exp(β>z(u))du

=
∫
D

z(u)(exp(β>0 z(u))− exp(β>z(u)))du = 0
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when β = β0. So, the score function of the Poisson log-likelihood appears to be an

unbiased estimating equation, even though X is not a Poisson point process. The

estimator maximizing (3.4) is referred to as the Poisson estimator. The properties of

the Poisson estimator have been carefully studied. Schoenberg (2005) showed that

the Poisson estimator is still consistent for a class of spatio-temporal point process

models. The asymptotic normality for a fixed observation domain was obtained by

Waagepetersen (2007) while Guan and Loh (2007) established asymptotic normality

under an increasing domain assumption and for suitable mixing point processes.

Regarding the parameter ψ (see Section 3.2.2.2), Waagepetersen and Guan (2009)

studied a two-step procedure to estimate both β and ψ, and they proved that, un-

der certain mixing conditions, the parameter estimates (β̂, ψ̂) enjoy the properties of

consistency and asymptotic normality.

3.3.3 Weighted Poisson likelihood

Although the estimating equation approach derived from the Poisson likelihood is sim-

pler and faster to implement than maximum likelihood estimation, it potentially pro-

duces a less efficient estimate than that of maximum likelihood (Waagepetersen, 2007;

Guan and Shen, 2010) because information about interaction of events is ignored. To

regain some lack of efficiency, Guan and Shen (2010) proposed a weighted Poisson

log-likelihood function given by

`(w;β) =
∑

u∈X∩D
w(u) log ρ(u;β)−

∫
D
w(u)ρ(u;β)du, (3.5)

where w(·) is a weight surface. By regarding (3.5), we see that a larger weight w(u)

makes the observations in the infinitesimal region du more influent. By Campbell

theorem, `(1)(w;β) is still an unbiased estimating equation. In addition, Guan and

Shen (2010) proved that, under some conditions, the parameter estimates are consistent

and asymptotically normal.

Guan and Shen (2010) showed that a weight surface w(·) that minimizes the trace

of the asymptotic variance-covariance matrix of the estimates maximizing (3.5) can
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result in more efficient estimates than Poisson estimator. In particular, the proposed

weight surface is

w(u) = {1 + ρ(u)f(u)}−1,

where f(u) =
∫
D{g(‖v − u‖;ψ)− 1}du and g(·) is the pair correlation function. For a

Poisson point process, note that f(u) = 0 and hence w(u) = 1, which reduces to maxi-

mum likelihood estimation. For general point processes, the weight surface depends on

both the intensity function and the pair correlation function, thus incorporates infor-

mation on both inhomogeneity and dependence of the spatial point processes. When

clustering is present so that g(v−u) > 1, then f(u) > 0 and hence the weight decreases

with ρ(u). The weight surface can be achieved by setting ŵ(u) = {1 + ρ̂(u)f̂(u)}−1.

To get the estimate ρ̂(u), one uses parametric estimation considering ρ(u;β) with β is

substituted by β̃ given by Poisson estimates, that is, ρ̂(u;β) = ρ(u; β̃). Alternatively,

ρ̂(u) can also be computed nonparametrically by kernel method. Furthermore, Guan

and Shen (2010) suggessted to approximate f(u) by K(r) − πr2, where K(·) is the

Ripley’s K−function estimated by

K̂(r) =
6=∑

u,v∈X∩D

I[‖u− v‖ ≤ r]
ρ̂(u)ρ̂(v)|D ∩Du−v|

.

Guan et al. (2015) extended the study by Guan and Shen (2010) and considered

more complex estimating equations. Specifically, w(u)z(u) is replaced by a function

h(u;β) in the derivative of (3.5) with respect to β. The procedure results in a slightly

more efficient estimate than the one obtained from (3.5). However, the computational

cost is more important and since we combine estimating equations and penalization

methods (see Section 3.4.1), we have not considered this extension.

3.3.4 Logistic regression likelihood

Although the estimating equations discussed in Section 3.3.2 and 3.3.3 are unbiased,

these methods do not, in general, produce unbiased estimator in practical implementa-

tions. Waagepetersen (2008) and Baddeley et al. (2014) proposed another estimating
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function which is indeed close to the score of the Poisson log-likelihood but is able

to obtain less biased estimator than Poisson estimates. In addition, their proposed

estimating equation is in fact the derivative of the logistic regression likelihood.

Following Baddeley et al. (2014), we define the weighted logistic regression log-

likelihood function by

`(w;β) =
∑

u∈X∩D
w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)

−
∫
D
w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du, (3.6)

where δ(u) is a nonnegative real-valued function. Its role as well as an explanation of the

name ’logistic method’ will be explained further in Section 3.5.2. Note that the score

of (3.6) is an unbiased estimating equation. Waagepetersen (2008) showed asymptotic

normality for Poisson and certain clustered point processes for the estimator obtained

from a similar procedure. Furthermore, the methodology and results were studied by

Baddeley et al. (2014) considering spatial Gibbs point processes.

To determine the optimal weight surface w(·) for logistic method, we follow Guan

and Shen (2010) who minimized the trace of the asymptotic covariance matrix of the

estimates. We obtain the weight surface defined by

w(u) = ρ(u) + δ(u)
δ(u){1 + ρ(u)f(u)} ,

where ρ(u) and f(u) can be estimated as in Section 3.3.3.

3.4 Regularization techniques

This section discusses convex and non-convex regularization methods for spatial point

process intensity estimation.

3.4.1 Methodology

Regularization techniques were introduced as alternatives to stepwise selection for vari-

able selection and parameter estimation. In general, a regularization method attempts

to maximize the penalized log-likelihood function `(θ) − η
∑p
j=1 pλj

(|θj|), where `(θ)
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is the log-likelihood function of θ, η is the number of observations, and pλ(θ) is a

nonnegative penalty function parameterized by a real number λ ≥ 0.

Let `(w;β) be either the weighted Poisson log-likelihood function (3.5) or the

weighted logistic regression log-likelihood function (3.6). In a similar way, we define

the penalized weighted log-likelihood function given by

Q(w;β) = `(w;β)− |D|
p∑
j=1

pλj
(|βj|), (3.7)

where |D| is the volume of the observation domain, which plays the same role as

the number of observations η in our setting, λj is a nonnegative tuning parameter

corresponding to βj for j = 1, . . . , p, and pλ is a penalty function described in details

in the next section.

3.4.2 Penalty functions and regularization methods

For any λ ≥ 0, we say that pλ(·) : R+ → R is a penalty function if pλ is a nonnegative

function with pλ(0) = 0. Examples of penalty function are the

• `2 norm: pλ(θ) = 1
2λθ

2,

• `1 norm: pλ(θ) = λθ,

• Elastic net: for 0 < γ < 1, pλ(θ) = λ{γθ + 1
2(1− γ)θ2},

• SCAD: for any γ > 2, pλ(θ) =



λθ if θ ≤ λ

γλθ− 1
2 (θ2+λ2)
γ−1 if λ ≤ θ ≤ γλ

λ2(γ2−1)
2(γ−1) if θ ≥ γλ,

• MC+: for any γ > 1, pλ(θ) =


λθ − θ2

2γ if θ ≤ γλ

1
2γλ

2 if θ ≥ γλ.

The first and second derivatives of the above functions are given by Table 3.1. It is to

be noticed that p′λ is not differentiable at θ = λ, γλ (resp. θ = γλ) for SCAD (resp.

for MC+) penalty.
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Table 3.1: The first and the second derivatives of several penalty functions.

Penalty p′λ(θ) p′′λ(θ)

`2 λθ λ

`1 λ 0

Elastic net λ{(1− γ)θ + γ} λ(1− γ)

SCAD


λ if θ ≤ λ
γλ−θ
γ−1 if λ ≤ θ ≤ γλ

0 if θ ≥ γλ


0 if θ < λ
−1
γ−1 if λ < θ < γλ

0 if θ > γλ

MC+
λ−

θ
γ

if θ ≤ γλ

0 if θ ≥ γλ


−1
γ

if θ < γλ

0 if θ > γλ

As a first penalization technique to improve ordinary least squares, ridge regression

(e.g. Hoerl and Kennard, 1988) works by minimizing the residual sum of squares subject

to a bound on the `2 norm of the coefficients. As a continuous shrinkage method, ridge

regression achieves its better prediction through a bias-variance trade-off. Ridge can

also be extended to fit generalized linear models. However, the ridge cannot reduce

model complexity since it always keeps all the predictors in the model. Then, it was

introduced a method called lasso (Tibshirani, 1996), where it employs `1 penalty to

obtain variable selection and parameter estimation simultaneously. Despite lasso enjoys

some attractive statistical properties, it has some limitations in some senses (Fan and

Li, 2001; Zou and Hastie, 2005; Zou, 2006; Zhang and Huang, 2008; Zhang, 2010),

making huge possibilities to develop other methods. In the scenario where there are

high correlations among predictors, Zou and Hastie (2005) proposed an elastic net

technique which is a convex combination between `1 and `2 penalties. This method is

particularly useful when the number of predictors is much larger than the number of

observations since it can select or eliminate the strongly correlated predictors together.

The lasso procedure suffers from nonnegligible bias and does not satisfy an oracle

property asymptotically (Fan and Li, 2001). Fan and Li (2001) and Zhang (2010),

among others, introduced non-convex penalties to get around these drawbacks. The

idea is to bridge the gap between `0 and `1, by trying to keep unbiased the estimates

of nonzero coefficients and by shrinking the less important variables to be exactly
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zero. The rationale behind the non-convex penalties such as SCAD and MC+ can

also be understood by considering its first derivative (see Table 3.1). They start by

applying the similar rate of penalization as the lasso, and then continuously relax that

penalization until the rate of penalization drops to zero. However, employing non-

convex penalties in regression analysis, the main challenge is often in the minimization

of the possible non-convex objective function when the non-convexity of the penalty

is no longer dominated by the convexity of the likelihood function. This issue has

been carefully studied. Fan and Li (2001) proposed the local quadratic approximation

(LQA). Zou and Li (2008) proposed a local linear approximation (LLA) which yields an

objective function that can be optimized using least angle regression (LARS) algorithm

(Efron et al., 2004). Finally, Breheny and Huang (2011) and Mazumder et al. (2011)

investigated the application of coordinate descent algorithm to non-convex penalties.

Table 3.2: Details of some regularization methods.

Method ∑p
j=1 pλj

(|βj|)

Ridge ∑p
j=1

1
2λβ

2
j

Lasso ∑p
j=1 λ|βj|

Enet* ∑p
j=1 λ{γ|βj|+ 1

2(1− γ)β2
j }

AL* ∑p
j=1 λj|βj|

Aenet* ∑p
j=1 λj{γ|βj|+ 1

2(1− γ)β2
j }

SCAD ∑p
j=1 pλ(|βj|), with pλ(θ) =


λθ if (θ ≤ λ)
γλθ− 1

2 (θ2+λ2)
γ−1 if (λ ≤ θ ≤ γλ)

λ2(γ2−1)
2(γ−1) if (θ ≥ γλ)

MC+ ∑p
j=1

{(
λ|βj| −

β2
j

2γ

)
I(|βj| ≤ γλ) + 1

2γλ
2I(|βj| ≥ γλ)

}
* Enet, AL and Aenet, respectively, stand for elastic net, adaptive
lasso and adaptive elastic net

In (3.7), it is worth emphasizing that we allow each direction to have a different

regularization parameter. By doing this, the `1 and elastic net penalty functions are

extended to the adaptive lasso (e.g. Zou, 2006) and adaptive elastic net (e.g. Zou and

Zhang, 2009). Table 3.2 details the regularization methods considered in this study.
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3.5 Numerical methods

We present numerical aspects in this section. For nonregularized estimation, there

are two approaches that we consider. Weighted Poisson regression is explained in

Section 3.5.1, while logistic regression is reviewed in Section 3.5.2. Penalized estimation

procedure is done by employing coordinate descent algorithm (Section 3.5.3). We

separate the use of the convex and non-convex penalties in Section 3.5.3.1 and 3.5.3.2.

3.5.1 Weighted Poisson regression

Berman and Turner (1992) developed a numerical quadrature method to approximate

maximum likelihood estimation for an inhomogeneous Poisson point process. They

approximated the likelihood by a finite sum that had the same analytical form as the

weighted likelihood of generalized linear model with Poisson response. This method

was then extended to Gibbs point processes by Baddeley and Turner (2000). Suppose

we approximate the integral term in (3.4) by Riemann sum approximation

∫
D
ρ(u;β)du ≈

M∑
i

viρ(ui;β)

where ui, i = 1, . . . ,M are points in D consisting of the m data points and M − m

dummy points. The quadrature weights vi > 0 are such that∑i vi = |D|. To implement

this method, the domain is firstly partitioned into M rectangular pixels of equal area,

denoted by a. Then one dummy point is placed in the center of the pixel. Let ∆i

be an indicator whether the point is an event of point process (∆i = 1) or a dummy

point (∆i = 0). Without loss of generality, let ui, . . . , um be the observed events and

um+1, . . . , uM be the dummy points. Thus, the Poisson log-likelihood function (3.4)

can be approximated and rewritten as

`(β) ≈
M∑
i

vi{yi log ρ(ui;β)− ρ(ui;β)}, where yi = v−1
i ∆i. (3.8)

Equation (3.8) corresponds to a quasi Poisson log-likelihood function. Maximizing

(3.8) is equivalent to fitting a weighted Poisson generalized linear model, which can
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be performed using standard statistical software. Similarly, we can approximate the

weighted Poisson log-likelihood function (3.5) using numerical quadrature method by

`(w;β) ≈
M∑
i

wivi{yi log ρ(ui;β)− ρ(ui;β)}. (3.9)

where wi is the value of the weight surface at point i. The estimate ŵi is obtained as

suggested by Guan and Shen (2010). The similarity beetween (3.8) and (3.9) allows

us to compute the estimates using software for generalized linear model as well. This

fact is in particular exploited in the ppm function in the spatstat R package (Baddeley

and Turner, 2005; Baddeley et al., 2015) with option method="mpl". To make the

presentation becomes more general, the number of dummy points is denoted by nd2

for the next sections.

3.5.2 Logistic regression

To perform well, the Berman-Turner approximation often requires a quite large number

of dummy points. Hence, fitting such generalized linear models can be computation-

ally intensive, especially when dealing with a quite large number of points. When the

unbiased estimating equations are approximated using deterministic numerical approx-

imation as in Section 3.5.1, it does not always produce unbiased estimator. To achieve

unbiased estimator, we estimate (3.6) by

`(w;β) ≈
∑

u∈X∩D
w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)
+

∑
u∈D∩D

w(u) log
(

δ(u)
ρ(u;β) + δ(u)

)
, (3.10)

where D is dummy point process independent of X and with intensity function δ. The

form (3.10) is related to the estimating equation defined by Baddeley et al. (2014, eq.

7). Besides that, we consider this form since if we apply Campbell theorem to the last

term of (3.10), we obtain

E
∑

u∈D∩D
w(u) log

(
δ(u)

ρ(u;β) + δ(u)

)
=
∫
D
w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du,

which is exactly what we have in the last term of (3.6). In addition, conditional on

X∪D, (3.10) is the weighted likelihood function for Bernoulli trials, y(u) = 1{u ∈ X}
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for u ∈ X ∪ D, with

P{y(u) = 1} = ρ(u;β)
δ(u) + ρ(u;β) =

exp
(
− log δ(u) + β>z(u)

)
1 + exp

(
− log δ(u) + β>z(u)

) .
Precisely, (3.10) is a weighted logistic regression with offset term− log δ. Thus, parame-

ter estimates can be straightforwardly obtained using standard software for generalized

linear models. This approach is in fact provided in the spatstat package in R by calling

the ppm function with option method="logi" (Baddeley et al., 2014, 2015).

In spatstat, the dummy point process D generates nd2 points in average in D

from a Poisson, binomial, or stratified binomial point process. Baddeley et al. (2014)

suggested to choose δ(u) = 4m/|D|, where m is the number of points (so, nd2 = 4m).

Furthermore, to determine δ, this option can be considered as a starting point for a

data-driven approach (see Baddeley et al., 2014, for further details).

3.5.3 Coordinate descent algorithm

LARS algorithm (Efron et al., 2004) is a remarkably efficient method for computing

an entire path of lasso solutions. For linear models, the computational cost is of order

O(Mp2), which is the same order as a least squares fit. Coordinate descent algorithm

(Friedman et al., 2007, 2010) appears to be a more competitive algorithm for comput-

ing the regularization paths by costs O(Mp) operations. Therefore we adopt cyclical

coordinate descent methods, which can work really fast on large datasets and can take

advantage of sparsity. Coordinate descent algorithms optimize a target function with

respect to a single parameter at a time, iteratively cycling through all parameters un-

til convergence criterion is reached. We detail this for some convex and non-convex

penalty functions in the next two sections. Here, we only present the coordinate de-

scent algorithm for fitting generalized weighted Poisson regression. A similar approach

is used to fit penalized weighted logistic regression.
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3.5.3.1 Convex penalty functions

Since `(w;β) given by (3.9) is a concave function of the parameters, the Newton-

Raphson algorithm used to maximize the penalized log-likelihood function can be done

using the iteratively reweighted least squares (IRLS) method. If the current estimate

of the parameters is β̃, we construct a quadratic approximation of the weighted Poisson

log-likelihood function using Taylor’s expansion:

`(w;β) ≈ `Q(w;β) = − 1
2M

M∑
i

νi(y∗i − z>i β)2 + C(β̃), (3.11)

where C(β̃) is a constant, y∗i are the working response values and νi are the weights,

νi = wivi exp(z>i β̃)

y∗i = z>i β̃ + yi − exp(z>i β̃)
exp(z>i β̃)

.

Regularized Poisson linear model works by firstly identifying a decreasing sequence

of λ ∈ [λmin, λmax], for which starting with minimum value of λmax such that the entire

vector β̂ = 0. For each value of λ, an outer loop is created to compute `Q(w;β) at β̃.

Secondly, a coordinate descent method is applied to solve a penalized weighted least

squares problem

min
β∈Rp

Ω(β) = min
β∈Rp
{−`Q(w;β) +

p∑
j=1

pλj
(|βj|)}. (3.12)

The coordinate descent method is explained as follows. Suppose we have the esti-

mate β̃l for l 6= j, l, j = 1, . . . , p. The method consists in partially optimizing (3.12)

with respect to βj, that is

min
βj

Ω(β̃1, . . . , β̃j−1, βj, β̃j+1, . . . , β̃p).

Friedman et al. (2007) have provided the form of the coordinate-wise update for pe-

nalized regression using several penalties such as nonnegative garrote (Breiman, 1995),

lasso, elastic net, fused lasso (Tibshirani et al., 2005), group lasso (Yuan and Lin,

2006), Berhu penalty (Owen, 2007), and LAD-lasso (Wang et al., 2007a). For instance,
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the coordinate-wise update for the elastic net, which embraces the ridge and lasso

regularization by setting respectively γ to 0 or 1, is

β̃j ←
S

(
M∑
i=1

νjzij(yi − ỹ(j)
i ), λγ

)
M∑
i=1

νjz
2
ij + λ(1− γ)

, (3.13)

where ỹ(j)
i = β̃0 +∑l 6=j zilβ̃l is the fitted value excluding the contribution from covariate

zij, and S(z, λ) is the soft-thresholding operator with value

S(z, λ) = sign(z)(|z| − λ)+ =



z − λ if z > 0 and λ < |z|

z + λ if z < 0 and λ < |z|

0 if λ ≥ |z|.

(3.14)

The update (3.13) is repeated for j = 1, . . . , p until convergence. Coordinate de-

scent algorithm for several convex penalties is implemented in the R package glmnet

(Friedman et al., 2010). For (3.13), we can set γ = 0 to implement ridge and γ = 1 to

lasso, while we set 0 < γ < 1 to apply elastic net regularization. For adaptive lasso,

we follow Zou (2006), take γ = 1 and replace λ by λj = λ/|β̃j|τ , where β̃ is an initial

estimate, say β̃(ols) or β̃(ridge), and τ is a positive tuning parameter. To avoid the

computational evaluation for choosing τ , we follow Zou (2006, Section 3.4) and Wasser-

man and Roeder (2009) who also considered τ = 1, so we choose λj = λ/|β̃j(ridge)|,

where β̃(ridge) is the estimates obtained from ridge regression. Implementing adaptive

elastic net follows along similar lines.

3.5.3.2 Non-convex penalty functions

Breheny and Huang (2011) have investigated the application of coordinate descent

algorithm to fit penalized generalized linear model using SCAD and MC+, for which

the penalty is non-convex. Mazumder et al. (2011) also studied the coordinate-wise

optimization algorithm in linear models considering more general non-convex penalties.

Mazumder et al. (2011) concluded that, for a known current estimate θ̃, the uni-
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variate penalized least squares function Qu(θ) = 1
2(θ− θ̃)2 +pλ(|θ|) should be convex to

ensure that the coordinate-wise procedure converges to a stationary point. Mazumder

et al. (2011) found that this turns out to be the case for SCAD and MC+ penalty, but

it cannot be satisfied by bridge (or power) penalty and some cases of log-penalty.

Breheny and Huang (2011) derived the solution of coordinate descent algorithm

for SCAD and MC+ in generalized linear models cases, and it is implemented in the

ncvreg package of R. Let β̃l be a vector containing estimates β̃l for l 6= j, l, j =

1, . . . , p, and we wish to partially optimize (3.12) with respect to βj. If we define

g̃j = ∑M
i=1 νjzij(yi − ỹ

(j)
i ) and η̃j = ∑M

i=1 νjz
2
ij, the coordinate-wise update for SCAD is

β̃j ←



S(g̃j ,λ)
η̃j

if |g̃j| ≤ λ(η̃j + 1)
S(g̃j ,γλ/(γ−1))
η̃j−1/(γ−1) if λ(η̃j + 1) ≤ |g̃j| ≤ η̃jλγ

g̃j

η̃j
if |g̃j| ≥ η̃jλγ,

for any γ > maxj(1 + 1/η̃j). Then, for γ > maxj(1/η̃j) and the same definition of g̃j
and η̃j, the coordinate-wise update for MC+ is

β̃j ←


S(g̃j ,λ)
η̃j−1/γ if |g̃j| ≤ η̃jλγ

g̃j

η̃j
if |g̃j| ≥ η̃jλγ,

where S(z, λ) is the soft-thresholding operator given by (3.14).

3.5.4 Selection of regularization or tuning parameter

It is worth noticing that coordinate descent procedures (and other computation proce-

dures computing the penalized likelihood estimates) rely on the tuning parameter λ so

that the choice of λ is also becoming an important task. The estimation using a large

value of λ tends to have smaller variance but larger biases, whereas the estimation

using a small value of λ leads to have zero biases but larger variance. The trade-off

between the biases and the variances yields an optimal choice of λ (Fan and Lv, 2010).

To select λ, it is reasonable to identify a range of λ values extending from a max-

imum value of λ for which all penalized coefficients are zero to λ = 0 (e.g. Friedman
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et al., 2010; Breheny and Huang, 2011). After that, we select a λ value which opti-

mizes some criterion. By fixing a path of λ ≥ 0, we select the tuning parameter λ

which minimizes WQBIC(λ), a weighted version of the BIC criterion, defined by

WQBIC(λ) = −2`(w; β̂(λ)) + s(λ) log |D|,

where s(λ) = ∑p
j=1 I{β̂j(λ) 6= 0} is the number of selected covariates with nonzero

regression coefficients and |D| is the observation volume which represents the sample

size. For linear regression models, Y = X>β̂ + ε, Wang et al. (2007b) proposed BIC-

type criterion for choosing λ by

BIC(λ) = log ‖Y −X>β̂(λ)‖2

η
+ 1
η

log(η)DF(λ),

where η is the number of observations and DF(λ) is the degree of freedom. This

criterion is consistent, meaning that, it selects the correct model with probability ap-

proaching 1 in large samples when a set of candidate models contains the true model.

Their findings is in line with the study of Zhang et al. (2010) for which the criterion

was presented in more general way, called generalized information criterion (GIC). The

criterion WQBIC is the specific form of GIC proposed by Zhang et al. (2010).

The selection of γ for SCAD and MC+ is another task, but we fix γ = 3.7 for

SCAD and γ = 3 for MC+, following Fan and Li (2001) and Breheny and Huang

(2011) respectively, to avoid more complexities.

3.6 Asymptotic theory

In this section, we present the asymptotic results for the regularized weighted Poisson

likelihood estimator when considering X as a d-dimensional point process observed

over a sequence of observation domain D = Dn, n = 1, 2, . . . which expands to Rd as

n → ∞. The regularization parameters λj = λn,j for j = 1, . . . , p are now indexed

by n. These asymptotic results also hold for the regularized unweighted Poisson like-

lihood estimator. For sake of conciseness, we do not present the asymptotic results

for the regularized logistic regression estimate. The results are very similar. The main
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difference is lying in the conditions (C.6) and (C.7) for which the matrices An,Bn, and

Cn have a different expression (see Remark 3.6.2).

3.6.1 Notation and conditions

We recall the classical definition of strong mixing coefficients adapted to spatial point

processes (e.g. Politis et al., 1998): for k, l ∈ N ∪ {∞} and q ≥ 1, define

αk,l(q) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F (Λ1), B ∈ F (Λ2),

Λ1 ∈ B(Rd),Λ2 ∈ B(Rd), |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ q}, (3.15)

where F is the σ-algebra generated by X∩Λi, i = 1, 2, d(Λ1,Λ2) is the minimal distance

between sets Λ1 and Λ2, and B(Rd) denotes the class of Borel sets in Rd.

Let β0 = {β01, . . . , β0s, β0(s+1), . . . , β0p}> = {β>01,β
>
02}> = (β>01,0>)> denote the

p-dimensional vector of true coefficient values, where β01 is the s-dimensional vector

of nonzero coefficients and β02 is the (p-s)-dimensional vector of zero coefficients.

We define the p× p matrices An(w;β0),Bn(w;β0), and Cn(w;β0) by

An(w;β0) =
∫
Dn

w(u)z(u)z(u)>ρ(u;β0)du,

Bn(w;β0) =
∫
Dn

w(u)2z(u)z(u)>ρ(u;β0)du, and

Cn(w;β0) =
∫
Dn

∫
Dn

w(u)w(v)z(u)z(v)>{g(u, v)− 1}ρ(u;β0)ρ(v;β0)dudv.

Consider the following conditions (C.1)-(C.8) which are required to derive our asymp-

totic results, where o denotes the origin of Rd:

(C.1) For every n ≥ 1, Dn = nE = {ne : e ∈ E}, where E ⊂ Rd is convex, compact,

and contains o in its interior.

(C.2) We assume that the intensity function has the log-linear specification given

by (3.1) where β ∈ Θ and Θ is an open convex bounded set of Rp.

(C.3) The covariates z and the weight function w satisfy

sup
u∈Rd

||z(u)|| <∞ and sup
u∈Rd

|w(u)| <∞.
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(C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2 + t, the product density

ρ(k) exists and satisfies ρ(k) <∞.

(C.5) For the strong mixing coefficients (3.15), we assume that there exists some t̃ >

d(2 + t)/t such that α2,∞(q) = O(q−t̃).

(C.6) There exists a p× p positive definite matrix I0 such that for all sufficiently large

n, |Dn|−1{Bn(w;β0) + Cn(w;β0)} ≥ I0.

(C.7) There exists a p× p positive definite matrix I′0 such that for all sufficiently large

n, we have |Dn|−1An(w;β0) ≥ I′0.

(C.8) The penalty function pλ(·) is nonnegative on R+, continuously differentiable

on R+ \ {0} with derivative p′λ assumed to be a Lipschitz function on R+ \

{0}. Furthermore, given (λn,j)n≥1, for j = 1, . . . , s, we assume that there exists

(r̃n,j)n≥1, where |Dn|1/2r̃n,j → ∞ as n → ∞, such that, for n sufficiently large,

pλn,j
is thrice continuously differentiable in the ball centered at |β0j| with radius

r̃n,j and we assume that the third derivative is uniformly bounded.

Under the condition (C.8), we define the sequences an, bn and cn by

an = max
j=1,...s

|p′λn,j
(|β0j|)|, (3.16)

bn = inf
j=s+1,...,p

inf
|θ|≤εn
θ 6=0

p′λn,j
(θ), for εn = K1|Dn|−1/2, (3.17)

cn = max
j=1,...s

|p′′λn,j
(|β0j|)|. (3.18)

These sequences an, bn and cn, detailed in Table 3.3 for the different methods considered

in this chapter, play a central role in our results. Even if this will be discussed later in

Section 3.6.3, we specify right now that we require that an|Dn|1/2 → 0, bn|Dn|1/2 →∞

and cn → 0.
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Table 3.3: Details of the sequences an, bn and cn for a given regularization method.

Method an bn cn

Ridge λn max
j=1,...s

{|β0j|} 0 λn

Lasso λn λn 0

Enet λn

[
(1− γ) max

j=1,...s
{|β0j|}+ γ

]
γλn (1− γ)λn

AL max
j=1,...s

{λn,j} min
j=s+1,...p

{λn,j} 0

Aenet max
j=1,...s

{λn,j
(
(1− γ)|β0j|+ γ

)
} γ min

j=s+1,...p
{λn,j} (1− γ) max

j=1,...,s
{λn,j}

SCAD 0* λn
** 0*

MC+ 0* λn − K1
γ|Dn|1/2

** 0*

* if λn → 0 as n→∞
** if |Dn|1/2λn →∞ as n→∞

3.6.2 Main results

We state our main results here. Proofs are relegated to Sections 3.11.1-3.11.3.

We first show in Theorem 3.6.1 that the penalized weighted Poisson likelihood

estimator converges in probability and exhibits its rate of convergence.

Theorem 3.6.1. Assume the conditions (C.1)-(C.8) hold and let an and cn be given
by (3.16) and (3.18). If an = O(|Dn|−1/2) and cn = o(1), then there exists a local
maximizer β̂ of Q(w;β) such that ‖β̂ − β0‖ = OP(|Dn|−1/2 + an).

This implies that, if an = O(|Dn|−1/2) and cn = o(1), the penalized weighted

Poisson likelihood estimator is root-|Dn| consistent. Furthermore, we demonstrate in

Theorem 3.6.2 that such a root-|Dn| consistent estimator ensures the sparsity of β̂; that

is, the estimate will correctly set β2 to zero with probability tending to 1 as n → ∞,

and β̂1 is asymptotically normal.

Theorem 3.6.2. Assume the conditions (C.1)-(C.8) hold. If an|Dn|1/2 → 0,
bn|Dn|1/2 → ∞ and cn → 0 as n → ∞, the root-|Dn| consistent local maximizers
β̂ = (β̂>1 , β̂

>
2 )> in Theorem 1 satisfy:

(i) Sparsity: P(β̂2 = 0)→ 1 as n→∞,

(ii) Asymptotic Normality: |Dn|1/2Σn(w;β0)−1/2(β̂1 − β01) d−→ N (0, Is),
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where

Σn(w;β0) =|Dn|{An,11(w;β0) + |Dn|Πn}−1{Bn,11(w;β0) + Cn,11(w;β0)}
{An,11(w;β0) + |Dn|Πn}−1, (3.19)

Πn =diag{p′′λn,1(|β01|), . . . , p′′λn,s
(|β0s|)}, (3.20)

and where An,11(w;β0) (resp. Bn,11(w;β0),Cn,11(w;β0)) is the s× s top-left corner of
An(w;β0) (resp. Bn(w;β0),Cn(w;β0)).

As a consequence, Σn(w;β0) is the asymptotic covariance matrix of β̂1. Note that

Σn(w;β0)−1/2 is the inverse of Σn(w;β0)1/2, where Σn(w;β0)1/2 is any square matrix

with Σn(w;β0)1/2
(
Σn(w;β0)1/2

)>
= Σn(w;β0).

Remark 3.6.1. For lasso and adaptive lasso, Πn = 0. For other penalties, since
cn = o(1), then ‖Πn‖ = o(1). Since ‖An,11(w;β0)‖ = O(|Dn|) from conditions (C.2)
and (C.3), |Dn| ‖Πn‖ is asymptotically negligible with respect to ‖An,11(w;β0)‖.

Remark 3.6.2. Theorems 3.6.1 and 3.6.2 remain true for the regularized weighted
logistic regression likelihood estimates if we extend the condition (C.3) by replacing in
the expression of the matrices An,Bn, and Cn, w(u) by w(u)δ(u)/(ρ(u;β0) + δ(u)), u ∈
Dn and by adding supu∈Rd δ(u) <∞.

Remark 3.6.3. We want to highlight here the main theoretical differences with the
work by Thurman et al. (2015). First, the methodology and results are available for the
logistic regression likelihood. Second, we consider very general penalty function while
Thurman et al. (2015) only considered the adaptive lasso method. Third, we do not
assume, as in Thurman et al. (2015), that |Dn|−1Mn → M as n → ∞ (where Mn

is An,Bn, or Cn), when M is a positive definite matrix. Instead we assume sharper
condition assuming limn→∞ νmin(|Dn|−1Mn) > 0, where Mn is either An or Bn + Cn

and νmin(M′) is the smallest eigenvalue of a positive definite matrix M′. This makes
the proofs a little bit more technical.

3.6.3 Discussion of the conditions

We adopt the conditions (C.1)-(C.6) based on the paper from Coeurjolly and Møller

(2014). In condition (C.1), the assumption that E contains o in its interior can be

made without loss of generality. If instead u is an interior point of E, then condition

(C.1) could be modified to that any ball with centre u and radius r > 0 is contained in

Dn = nE for all sufficiently large n. Condition (C.3) is quite standard. From conditions

(C.2)-(C.5), the matrices An(w;β0), Bn(w;β0) and Cn(w;β0) are bounded by |Dn| (see

e.g. Coeurjolly and Møller, 2014).
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Combination of conditions (C.1)-(C.6) are used to establish a central limit theo-

rem for |Dn|−1/2`(1)
n (w;β0) using a general central limit theorem for triangular arrays

of nonstationary random fields obtained by Karácsony (2006), which is an extension

from Bolthausen (1982), then later extended to nonstationary random fields by Guyon

(1995). As pointed out by Coeurjolly and Møller (2014), condition (C.6) is a spa-

tial average assumption like when establishing asymptotic normality of ordinary least

square estimators for linear models. This condition is also useful to make sure that

the matrix |Dn|−1{Bn(w;β0) + Cn(w;β0)} is invertible. Conditions (C.6)-(C.7) ensure

that the matrix Σn(w;β0) is invertible for sufficiently large n. Conditions (C.1)-(C.6)

are discussed in details for several models by Coeurjolly and Møller (2014). They are

satisfied for a large class of intensity functions and a large class of models including

Poisson and Cox processes discussed in Section 3.2.2.

Condition (C.8) controls the higher order terms in Taylor expansion of the penalty

function. Roughly speaking, we ask the penalty function to be at least Lipschitz and

thrice differentiable in a neighborhood of the true parameter vector. As it is, the

condition looks technical, however, it is obviously satisfied for ridge, lasso, elastic net

(and the adaptive versions). According to the choice of λn, it is satisfied for SCAD and

MC+ when |β0j|, for j = 1, . . . , s, is not equal to γλn and/or λn.

Theorem 3.6.2 requires the conditions an|Dn|1/2 → 0, bn|Dn|1/2 →∞ and cn → 0 as

n → ∞ simultaneously. By requiring these assumptions, the corresponding penalized

weighted Poisson likelihood estimators possess the oracle property and perform as well

as weighted Poisson likelihood estimator which estimates β1 knowing the fact that

β2 = 0.

For the ridge regularization method, bn = 0, preventing from applying Theo-

rem 3.6.2 for this penalty. For lasso and elastic net, an = K2bn for some constant

K2 > 0 (K2=1 for lasso). The two conditions an|Dn|1/2 → 0 and bn|Dn|1/2 → ∞

as n → ∞ cannot be satisfied simultaneously. This is different for the adaptive ver-

sions where a compromise can be found by adjusting the λn,j’s, as well as the two

non-convex penalties SCAD and MC+, for which λn can be adjusted. For the regu-

larization methods considered in this study, the condition cn → 0 is implied by the
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condition an|Dn|1/2 → 0 as n→∞.

3.7 Simulation study

We conduct a simulation study with three different scenarios, described in Section

3.7.1, to compare the estimates of the regularized Poisson likelihood (PL) and that

of the regularized weighted Poisson likelihood (WPL). We also want to explore the

behaviour of the estimates using different regularization methods. Empirical findings

are presented in Section 3.7.2. Furthermore, we compare, in Section 3.7.3, the esti-

mates of the regularized (un)weighted logistic likelihood and the ones of the regularized

(un)weighted Poisson likelihood.

3.7.1 Simulation set-up

The setting is quite similar to that of Waagepetersen (2007) and Thurman et al. (2015).

The spatial domain is D = [0, 1000]× [0, 500]. We center and scale the 201× 101 pixel

images of elevation (x1) and gradient of elevation (x2) contained in the bei datasets of

spatstat library in R (R Core Team, 2016), and use them as two true covariates. In

addition, we create three different scenarios to define extra covariates:

Scenario 1. We generate eighteen 201×101 pixel images of covariates as standard Gaus-

sian white noise and denote them by x3, . . . , x20. We define z(u) = x(u) =

{x1(u), . . . , x20(u)}> as the covariates vector. The regression coefficients

for z3, . . . , z20 are set to zero.

Scenario 2. First, we generate eighteen 201 × 101 pixel images of covariates as in

the scenario 1. Second, we transform them, together with x1 and x2, to

have multicollinearity. Third, we define z(u) = V>x(u), where x(u) =

{x1(u), . . . , x20(u)}>. More precisely, V is such that Ω = V>V, and

(Ω)ij = (Ω)ji = 0.7|i−j| for i, j = 1, . . . , 20, except (Ω)12 = (Ω)21 = 0,

to preserve the correlation between x1 and x2. The regression coefficients

for z3, . . . , z20 are set to zero.
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Scenario 3. We consider a more complex situation. We center and scale the 13 soil

nutrients covariates obtained from the study in tropical forest of Barro

Colorado Island (BCI) in central Panama (see Condit, 1998; Hubbell et al.,

1999, 2005), and use them as the extra covariates. Together with x1 and x2,

we keep the structure of the covariance matrix to preserve the complexity of

the situation. In this setting, we have z(u) = x(u) = {x1(u), . . . , x15(u)}>.

The regression coefficients for z3, . . . , z15 are set to zero.

The different maps of the covariates obtained from scenarios 2 and 3 are depicted

in Section 3.10. Except for z3 which has high correlation with z2, the extra covariates

obtained from scenario 2 tend to have a constant value (Figure 3.3). This is completely

different from the ones obtained from scenario 3 (Figure 3.4).

The mean number of points over the domain D, µ, is chosen to be 1600. We set

the true intensity function to be log ρ(u;β0) = {β0 + β1z1(u) + β2z2(u)}, where β1 = 2

represents a relatively large effect of elevation, β2 = 0.75 reflects a relatively small effect

of gradient, and β0 is selected such that each realization has 1600 points in average.

Furthermore, we erode regularly the domain D such that, with the same intensity

function, the mean number of points over the new domain D 	 R becomes 400. The

erosion is used to observe the convergence of the procedure as the observation domain

expands. We consider the default number of dummy points for the Poisson likelihood,

denoted by nd2, as suggested in the spatstat R package, i.e. nd2 ≈ 4m, where m is the

number of points. With these scenarios, we simulate 2000 spatial point patterns from

a Thomas point process using the rThomas function in the spatstat package. We also

consider two different κ parameters (κ = 5× 10−4, κ = 5× 10−5) as different levels of

spatial interaction and let ω = 20. For each of the four combinations of κ and µ, we fit

the intensity to the simulated point pattern realizations. We also fit the oracle model

which only uses the two true covariates.

All models are fitted using modified internal function in spatstat (Baddeley et al.,

2015), glmnet (Friedman et al., 2010), and ncvreg (Breheny and Huang, 2011). A

modification of the ncvreg R package is required to include the penalized weighted
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Poisson and logistic likelihood methods.

3.7.2 Simulation results

To better understand the behaviour of Thomas processes designed in this study, Figure

3.1 shows the plot of the four realizations using different κ and µ. The smaller value

of κ, the tighter the clusters since there are fewer parents. When µ = 400, i.e. by

considering the realizations observed on D 	 R, the mean number of points over the

2000 replications and standard deviation are 396 and 47 (resp. 400 and 137) when

κ = 5 × 10−4 (resp. κ = 5 × 10−5). When µ = 1600, the mean number of points and

standard deviation are 1604 and 174 (resp. 1589 and 529) when κ = 5 × 10−4 (resp.

κ = 5× 10−5).

Figure 3.1: Realizations of a Thomas process for µ = 400 (row 1), µ = 1600 (row 2),
κ = 5× 10−4 (column 1), and κ = 5× 10−5 (column 2).

Tables 3.4 and 3.5 present the selection properties of the estimates using the penal-

ized PL and the penalized WPL methods. Similarly to Bühlmann and Van De Geer

(2011), the indices we consider are the true positive rate (TPR), the false positive rate

(FPR), and the positive predictive value (PPV). TPR corresponds to the ratio of the

selected true covariates over the number of true covariates, while FPR corresponds to

the ratio of the selected noisy covariates over the number of noisy covariates. TPR

explains how the model can correctly select both z1 and z2. Finally, FPR investigates

how the model uncorrectly select among z3 to zp (p = 20 for scenarios 1 and 2 and

p = 15 for scenario 3). PPV corresponds to the ratio of the selected true covariates over
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Table 3.4: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D 	 R (µ = 400) for different values
of κ and for the three different scenarios. Different penalty functions are considered
as well as two estimating equations, the regularized Poisson likelihood (PL) and the
regularized weighted Poisson likelihood (WPL).

Method
κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100* 27 35 56 0* 98 89 35 34 33 0* 62

Enet 100* 59 18 39 4 36 91 60 21 31 0* 57

AL 100* 1 93 58 0* 100* 88 7 72 35 0* 67

Aenet 100* 6 72 59 0* 99 89 12 61 34 0* 64

SCAD 100* 18 41 66 0* 98 90 17 46 31 0* 56

MC+ 100* 21 36 68 0* 96 90 21 42 30 0* 54

Scenario 2

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100* 25 35 52 1 88 90 38 29 31 0* 55

Enet 100* 52 19 49 4 62 90 60 20 24 1 38

AL 99 4 80 52 0* 100* 87 9 67 36 0* 67

Aenet 99 8 65 53 0* 99 88 14 54 35 0* 65

SCAD 100* 17 43 64 0* 92 88 17 45 28 0* 50

MC+ 100* 18 41 59 1 87 88 21 41 27 0* 50

Scenario 3

Ridge 100 100 13 100 100 13 100 100 13 100 100 13

Lasso 100* 56 24 52 2 87 98 89 15 13 2 20

Enet 100* 76 18 47 4 63 99 94 14 8 2 11

AL 100* 29 42 52 0* 100* 95 77 17 18 2 30

Aenet 100* 38 33 54 0* 99 96 82 16 15 1 25

SCAD 100* 34 33 58 0* 85 95 71 18 13 1 22

MC+ 100* 35 32 56 0* 84 95 71 18 13 1 23
* Approximate value

the total number of selected covariates in the model. PPV describes how the model

can approximate the oracle model in terms of selection. Therefore, we want to find the
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Table 3.5: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D (µ = 1600) for different values
of κ and for the three different scenarios. Different penalty functions are considered
as well as two estimating equations, the regularized Poisson likelihood (PL) and the
regularized weighted Poisson likelihood (WPL).

Method
κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100 26 35 52 0* 100* 98 48 22 56 0* 96

Enet 100 64 16 55 6 50 99 76 14 50 5 45

AL 100 0* 98 50 0 100 96 6 77 55 0* 98

Aenet 100 4 79 54 0* 100* 97 11 60 57 0* 96

SCAD 100 17 50 60 0* 100* 98 18 47 52 0* 90

MC+ 100 22 47 60 0* 97 98 23 42 44 0* 79

Scenario 2

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100 26 33 51 0* 97 98 43 24 52 1 91

Enet 100 56 18 51 5 55 99 69 15 49 4 62

AL 100 1 92 51 0 100 96 10 67 53 0* 99

Aenet 100 4 78 51 0* 100* 97 15 52 53 0* 98

SCAD 100 21 37 53 1 85 96 16 50 45 1 77

MC+ 100 24 35 47 2 76 97 19 47 42 2 72

Scenario 3

Ridge 100 100 13 100 100 13 100 100 13 100 100 13

Lasso 100 69 19 52 1 96 100 95 14 48 4 75

Enet 100 85 16 52 5 71 100 97 14 43 5 62

AL 100 43 32 51 0* 100* 99 86 15 51 2 86

Aenet 100 49 27 52 0* 99 99 89 15 50 3 82

SCAD 100 47 27 43 2 72 99 78 17 40 2 63

MC+ 100 48 26 44 2 75 99 79 17 37 2 61
* Approximate value

methods which have a TPR and a PPV close to 100%, and a FPR close to 0.

Generally, for both the penalized PL and the penalized WPL methods, the best
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selection properties are obtained for a larger value of κ which shows weaker spatial

dependence. For a more clustered one, indicated by a smaller value of κ, it seems

more difficult to select the true covariates. As µ increases from 400 (Table 3.4) to

1600 (Table 3.5), the TPR tends to improve, so the model can select both z1 and

z2 more frequently. Ridge, lasso, and elastic net are the regularization methods that

cannot satisfy our theorems. It is firstly emphasized that all covariates are always

selected by the ridge so that the rates are never changed whatever method used. For

the penalized PL with lasso and elastic net regularization, it is shown that they tend

to have quite large value of FPR, meaning that they wrongly keep the noisy covariates

more frequently. When the penalized WPL is applied, we gain smaller FPR, but we

suffer from smaller TPR at the same time. This smaller TPR actually comes from the

unselection of z2 which has smaller coefficient than that of z1.

When we apply adaptive lasso, adaptive elastic net, SCAD, and MC+, we achieve

better performance, especially for FPR which is closer to zero which automatically

improves the PPV. Adaptive elastic net (resp. elastic net) has slightly larger FPR

than adaptive lasso (resp. lasso). Among all regularization methods considered in this

chapter, adaptive lasso seems to outperform the other ones.

Considering scenarios 1 and 2, we observe best selection properties for the penalized

PL combined with adaptive lasso. As the design is getting more complex for scenario 3,

applying the penalized PL suffers from much larger FPR, indicating that this method

may not be able to overcome the complicated situation. However, when we use the

penalized WPL, the properties seem to be more stable for the different designs of

simulation study. One more advantage when considering the penalized WPL is that

we can remove almost all extra covariates. It is worth noticing that we may suffer from

smaller TPR when we apply the penalized WPL, but we lose the only less informative

covariates. From Tables 3.4 and 3.5, when we are faced with complex situation, we

would recommend the use of the penalized WPL method with adaptive lasso penalty if

the focus is on selection properties. Otherwise, the use of the penalized PL combined

with adaptive lasso penalty is more preferable.

Tables 3.6 and 3.7 give the prediction properties of the estimates in terms of bi-



76

Table 3.6: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 repli-
cations of Thomas processes on the domainD	R (µ = 400) for different values of κ and
for the three different scenarios. Different penalty functions are considered as well as
two estimating equations, the regularized Poisson likelihood (PL) and the regularized
weighted Poisson likelihood (WPL).

Method
κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1

Oracle 0.11 0.18 0.21 0.64 0.20 0.67 0.29 0.81 0.86 0.57 0.54 0.78

Ridge 0.11 0.38 0.40 0.72 0.69 1.00 0.28 1.26 1.29 0.98 1.03 1.42

Lasso 0.28 0.32 0.42 1.06 0.32 1.11 0.47 0.99 1.10 1.40 0.73 1.58

Enet 0.24 0.38 0.44 1.28 0.28 1.31 0.45 1.04 1.13 1.59 0.58 1.70

AL 0.10 0.29 0.31 0.87 0.32 0.92 0.38 0.96 1.03 1.18 0.93 1.50

Aenet 0.14 0.30 0.33 0.93 0.39 1.01 0.40 0.96 1.04 1.29 0.82 1.53

SCAD 0.26 0.27 0.38 1.06 0.37 1.12 0.46 0.79 0.91 1.49 0.67 1.64

MC+ 0.28 0.28 0.39 1.04 0.38 1.11 0.47 0.78 0.92 1.48 0.70 1.64

Scenario 2

Oracle 0.12 0.23 0.26 0.71 0.26 0.76 0.30 0.78 0.84 0.59 0.62 0.84

Ridge 0.14 0.46 0.48 0.69 0.93 1.16 0.32 1.23 1.27 0.92 1.15 1.47

Lasso 0.34 0.33 0.48 1.20 0.37 1.26 0.45 0.96 1.06 1.50 0.69 1.65

Enet 0.38 0.40 0.55 1.40 0.35 1.44 0.44 1.03 1.12 1.78 0.49 1.85

AL 0.20 0.33 0.39 0.85 0.32 0.91 0.37 0.93 1.00 1.17 0.86 1.45

Aenet 0.25 0.33 0.42 0.96 0.34 1.02 0.40 0.94 1.02 1.29 0.78 1.51

SCAD 0.38 0.30 0.48 0.95 0.48 1.06 0.44 0.80 0.91 1.53 0.70 1.68

MC+ 0.39 0.30 0.49 1.01 0.49 1.13 0.44 0.80 0.92 1.52 0.71 1.68

Scenario 3

Oracle 0.12 0.46 0.48 0.70 0.26 0.75 0.65 1.14 1.31 0.87 0.88 1.24

Ridge 0.13 1.03 1.04 0.71 1.45 1.62 0.52 3.10 3.14 0.90 2.86 3.00

Lasso 0.20 0.69 0.71 1.26 0.40 1.32 0.51 2.91 2.95 1.93 0.68 2.04

Enet 0.21 0.83 0.86 1.53 0.40 1.58 0.52 2.94 2.99 2.03 0.60 2.12

AL 0.18 0.57 0.60 0.91 0.33 0.97 0.52 2.80 2.85 1.77 0.84 1.96

Aenet 0.22 0.61 0.65 1.04 0.36 1.10 0.52 2.80 2.85 1.86 0.73 2.00

SCAD 0.27 0.61 0.67 1.18 0.59 1.32 0.48 2.49 2.54 1.91 0.64 2.02

MC+ 0.27 0.62 0.68 1.20 0.58 1.33 0.48 2.49 2.54 1.89 0.67 2.00
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Table 3.7: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 repli-
cations of Thomas processes on the domain D (µ = 1600) for different values of κ and
for the three different scenarios. Different penalty functions are considered as well as
two estimating equations, the regularized Poisson likelihood (PL) and the regularized
weighted Poisson likelihood (WPL).

Method
κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1

Oracle 0.05 0.11 0.12 0.33 0.15 0.37 0.16 0.45 0.48 0.41 0.22 0.46

Ridge 0.04 0.21 0.21 0.70 0.55 0.90 0.13 0.72 0.73 0.74 0.58 0.94

Lasso 0.14 0.19 0.24 1.03 0.20 1.05 0.23 0.60 0.64 0.99 0.43 1.08

Enet 0.11 0.22 0.24 1.14 0.29 1.17 0.20 0.62 0.65 1.12 0.43 1.20

AL 0.04 0.18 0.18 0.87 0.18 0.89 0.16 0.58 0.60 0.87 0.42 0.96

Aenet 0.05 0.18 0.18 0.96 0.22 0.99 0.17 0.58 0.60 0.90 0.48 1.02

SCAD 0.19 0.18 0.26 1.30 0.34 1.34 0.14 0.53 0.55 1.37 0.51 1.46

MC+ 0.20 0.18 0.27 1.33 0.28 1.36 0.15 0.53 0.55 1.38 0.52 1.48

Scenario 2

Oracle 0.05 0.15 0.16 0.36 0.17 0.40 0.18 0.46 0.49 0.39 0.26 0.47

Ridge 0.05 0.27 0.27 0.69 0.62 0.94 0.17 0.74 0.80 0.78 0.64 1.01

Lasso 0.16 0.20 0.25 1.16 0.24 1.18 0.23 0.60 0.64 1.14 0.43 1.22

Enet 0.17 0.23 0.29 1.24 0.24 1.26 0.23 0.63 0.67 1.33 0.42 1.40

AL 0.07 0.18 0.20 0.85 0.18 0.87 0.18 0.58 0.61 0.83 0.41 0.93

Aenet 0.09 0.19 0.21 0.94 0.20 0.96 0.20 0.59 0.62 0.92 0.41 1.01

SCAD 0.26 0.20 0.33 1.26 0.51 1.36 0.19 0.51 0.55 1.31 0.60 1.44

MC+ 0.26 0.20 0.33 1.31 0.55 1.42 0.19 0.51 0.55 1.32 0.61 1.46

Scenario 3

Oracle 0.13 0.31 0.34 0.43 0.18 0.47 0.31 0.96 1.01 0.75 0.35 0.83

Ridge 0.11 0.84 0.86 0.70 0.96 1.19 0.23 2.50 2.51 1.02 1.43 1.76

Lasso 0.12 0.64 0.65 1.14 0.29 1.17 0.22 2.41 2.42 1.40 0.61 1.52

Enet 0.13 0.71 0.73 1.35 0.30 1.39 0.23 2.42 2.43 1.63 0.56 1.73

AL 0.14 0.55 0.57 0.89 0.18 0.91 0.22 2.37 2.38 1.12 0.67 1.31

Aenet 0.15 0.56 0.58 1.00 0.22 1.03 0.22 2.36 2.37 1.26 0.64 1.41

SCAD 0.24 0.58 0.62 1.41 0.40 1.47 0.24 2.09 2.10 1.50 0.68 1.65

MC+ 0.24 0.58 0.63 1.44 0.42 1.50 0.24 2.09 2.10 1.49 0.71 1.65
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ases, standard deviations (SD), and square root of mean squared errors (RMSE), some

criterions we define by

Bias =
 p∑
j=1
{Ê(β̂j)− βj}2

 1
2

, SD =
 p∑
j=1

σ̂2
j

 1
2

,RMSE =
 p∑
j=1

Ê(β̂j − βj)2

 1
2

,

where Ê(β̂j) and σ̂2
j are respectively the empirical mean and variance of the estimates

β̂j, for j = 1, . . . , p, where p = 20 for scenarios 1 and 2, and p = 15 for scenario 3.

In general, the properties improve with larger value of κ and µ due to weaker spatial

dependence and larger sample size. For the oracle model where the model contains only

z1 and z2, the WPL estimates are more efficient than the PL estimates, particularly in

the more clustered case, agreeing with the findings by Guan and Shen (2010).

When the regularization methods are applied, the bias increases in general, espe-

cially when we consider the penalized WPL method. The regularized WPL has a larger

bias since this method does not select z2 much more frequently. Furthermore, weighted

method seems to introduce extra bias, even though the regularization is not considered

as in the oracle model. For a low clustered process, the SD using the penalized WPL

is similar to that of the penalized PL which may be because of the weaker dependence

represented by larger κ, making weight surface w(·) closer to 1. However, a larger

RMSE is obtained from the penalized WPL. When we observe the more clustered pro-

cess, we obtain smaller SD using the penalized WPL which explains why in some cases

(mainly scenario 3) the RMSE gets smaller.

For the ridge method, the bias is closest to that of the oracle model, but it has the

largest SD. Among the regularization methods, the adaptive lasso method has the best

performance in terms of prediction.

Considering scenarios 1 and 2, we obtain best properties when we apply the penal-

ized PL with adaptive lasso penalty. As the design is getting much more complex for

scenario 3, when we use the penalized PL with adaptive lasso, the SD is doubled and

even quadrupled due to the overselection of many unimportant covariates. In particu-

lar, for the more clustered process, the better properties are even obtained by applying

the regularized WPL combined with adaptive lasso. From Tables 3.6 and 3.7, when the
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focus is on prediction properties, we would recommend to apply the penalized WPL

combined with adaptive lasso penalty when the observed point pattern is very clus-

tered and when covariates have a complex stucture of covariance matrix. Otherwise,

the use of the penalized PL combined with adaptive lasso penalty is more favorable.

Our recommendations in terms of prediction support as what we recommend in terms

of selection.

3.7.3 Logistic regression

Our concern here is to compare the estimates of the penalized (un)weighted logistic

likelihood to that of the penalized (un)weighted Poisson likelihood with different num-

ber of dummy points. We remind that the number of dummy points comes up when

we discretize the integral terms in (3.5) and in (3.6). In the following, to ease the

presentation, we use the term Poisson estimates (resp. logistic estimates) for parame-

ter estimates obtained using the regularized Poisson likelihood (resp. the regularized

logistic regression likelihood).

Table 3.8: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D (µ = 1600) for κ = 5×10−5, for two
different scenarios, and for three different numbers of dummy points. Different estimat-
ing equations are considered, the regularized (un)weighted Poisson and (un)weighted
logistic regression likelihoods, employing adaptive lasso regularization method.

Method nd
Scenario 2 Scenario 3

Unweighted Weighted Unweighted Weighted

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Poisson
20 96 35 32 53 0* 96 98 82 16 47 2 79

40 95 6 77 52 0* 95 98 83 16 46 2 77

80 95 4 83 50 0* 94 98 83 16 43 2 74

Logistic
20 94 11 60 49 0* 91 98 72 20 41 2 73

40 94 8 67 50 0* 93 99 81 16 43 2 74

80 94 5 77 50 0* 93 99 83 16 42 2 73
* Approximate value

We consider three different numbers of dummy points denoted by nd2. By these

different numbers of dummy points, we want to observe the properties with three
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Table 3.9: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 repli-
cations of Thomas processes on the domain D (µ = 1600) for κ = 5 × 10−5, for two
different scenarios, and for three different numbers of dummy points. Different estimat-
ing equations are considered, the regularized (un)weighted Poisson and (un)weighted
logistic regression likelihoods, employing adaptive lasso regularization method.

Method nd
Scenario 2 Scenario 3

Unweighted Weighted Unweighted Weighted

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

No regularization

Poisson
20 0.37 0.64 0.74 0.29 0.74 0.79 0.28 2.15 2.16 0.42 2.06 2.11

40 0.14 0.63 0.65 0.16 0.73 0.75 0.33 2.47 2.50 0.42 2.32 2.35

80 0.17 0.64 0.66 0.11 0.75 0.76 0.26 2.57 2.58 0.43 2.40 2.43

Logistic
20 0.03 0.69 0.69 0.32 1.34 1.37 0.20 2.31 2.32 0.36 2.95 2.97

40 0.07 0.60 0.61 0.12 0.96 0.97 0.23 2.31 2.32 0.37 2.56 2.58

80 0.10 0.60 0.61 0.14 0.81 0.82 0.25 2.36 2.38 0.42 2.38 2.42

Adaptive lasso

Poisson
20 0.30 0.59 0.67 0.86 0.47 0.98 0.30 2.00 2.03 1.14 0.68 1.33

40 0.20 0.58 0.61 0.86 0.49 0.99 0.33 2.33 2.35 1.18 0.70 1.37

80 0.18 0.59 0.62 0.88 0.51 1.02 0.28 2.41 2.43 1.22 0.71 1.41

Logistic
20 0.19 0.50 0.53 0.95 0.55 1.09 0.23 2.06 2.07 1.26 0.73 1.45

40 0.18 0.52 0.55 0.89 0.52 1.03 0.23 2.15 2.16 1.22 0.72 1.42

80 0.18 0.55 0.58 0.89 0.52 1.03 0.25 2.21 2.22 1.24 0.71 1.43

different situations: (a) nd2 < m, (b) nd2 ≈ m, and (c) nd2 > m, where m is the

number of points. In the following, m ≈ 1600 and nd2 = 400, 1600, and 6400. Note

that the choice by default from the Poisson likelihood in spatstat corresponds to

case (c). Baddeley et al. (2014) showed that for datasets with very large number

of points and for very structured point processes, the logistic likelihood method is

clearly preferable as it requires a smaller number of dummy points to perform quickly

and efficiently. We want to investigate a similar comparison when these methods are

regularized.

We only repeat the results for κ = 5 × 10−5 and µ = 1600, and for scenarios 2

and 3. We use the same selection and prediction indices examined in Section 3.7.2 and

consider only the adaptive lasso method.
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Table 3.8 presents selection properties for the Poisson and logistic likelihoods with

adaptive lasso regularization. For unweighted versions of the procedure, the regularized

logistic method outperforms the regularized Poisson method when nd = 20, i.e. when

the number of dummy points is much smaller than the number of points. When

nd2 ≈ m or nd2 > m, the methods tend to have similar performances. When we

consider weighted versions of the regularized logistic and Poisson likelihoods, the results

do not change that much with nd and the regularized Poisson likelihood method slightly

outperforms the regularized logistic likelihood method. In addition, for scenario 3 which

considers a more complex situation, the methods tend to select the noisy covariates

much more frequently.

Empirical biases, standard deviation and square root of mean squared errors are

presented in Table 3.9. We include all empirical results for the standard Poisson and

logistic estimates (i.e. no regularization is considered). Let us first consider the un-

weighted methods with no regularization. The logistic method clearly has smaller bias,

especially when nd = 20, which explains why in most situations the RMSE is smaller.

However, for the weighted methods, although the logistic method has smaller bias in

general, it produces much larger SD, leading to larger RMSE for all cases. When we

compare the weighted and the unweighted methods for logistic estimates, in general,

not only do we fail to reduce the SD, but we also have larger bias. When the adap-

tive lasso regularization is considered, combined with the unweighted methods, we can

preserve the bias in general and simultaneously improve the SD, and hence improve

the RMSE. The logistic likelihood method slightly outperforms the Poisson likelihood

method. When the weighted methods are considered, we obtain smaller SD, but we

have larger bias. For weighted versions of the Poisson and logistic likelihoods, the

results do not change that much with nd and the weighted Poisson method slightly

outperforms the weighted logistic method. From Tables 3.8 and 3.9, when the number

of dummy points can be chosen as nd2 ≈ m or nd2 > m, we would recommend to apply

the Poisson likelihood method. When the number of dummy points should be chosen

as nd2 < m, the logistic likelihood method is more favorable. Our recommendations

regarding whether weighted or unweighted methods follow the ones as in Section 3.7.2.
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3.8 Application to forestry datasets

In a 50-hectare region (D = 1, 000m × 500m) of the tropical moist forest of Barro

Colorado Island (BCI) in central Panama, censuses have been carried out where all free-

standing woody stems at least 10 mm diameter at breast height were identified, tagged,

and mapped, resulting in maps of over 350,000 individual trees with more than 300

species (see Condit, 1998; Hubbell et al., 1999, 2005). It is of interest to know how the

very high number of different tree species continues to coexist, profiting from different

habitats determined by e.g. topography or soil properties (see e.g. Waagepetersen,

2007; Waagepetersen and Guan, 2009). In particular, the selection of covariates among

topological attributes and soil minerals as well as the estimation of their coefficients

are becoming our most concern.

Figure 3.2: Maps of locations of BPL trees (top left), elevation (top right), slope
(bottom left), and concentration of phosporus (bottom right).

We are particularly interested in analyzing the locations of 3,604 Beilschmiedia pen-

dula Lauraceae (BPL) tree stems. We model the intensity of BPL trees as a log-linear

function of two topological attributes and 13 soil properties as the covariates. Figure

3.2 contains maps of the locations of BPL trees, elevation, slope, and concentration

of Phosporus. BPL trees seem to appear in greater abundance in the areas of high
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elevation, steep slope, and low concentration of Phosporus. The covariates maps are

depicted in Figure 3.4.

Table 3.10: Barro Colorado Island data analysis: Parameter estimates of the re-
gression coefficients for Beilschmiedia pendula Lauraceae trees applying regularized
(un)weighted Poisson and logistic regression likelihoods with adaptive lasso regulariza-
tion.

Unweighted method Weighted method

Poisson estimates Logistic estimates Poisson estimates Logistic estimates

Elev 0.39 0.40 0.41 0.45

Slope 0.26 0.32 0.51 0.60

Al 0 0 0 0

B 0.30 0.30 0 0

Ca 0.10 0.15 0 0

Cu 0.10 0.12 0 0

Fe 0.05 0 0 0

K 0 0 0 0

Mg -0.17 -0.18 0 0

Mn 0.12 0.13 0.23 0.24

P -0.60 -0.60 -0.50 -0.52

Zn -0.43 -0.46 -0.35 -0.37

N 0 0 0 0

N.min -0.12 -0.10 0 0

pH -0.14 -0.14 0 0

Nb of cov. 12 11 5 5

We apply the regularized (un)weighted Poisson and the logistic likelihoods, com-

bined with adaptive lasso regularization to select and estimate parameters. Since we do

not deal with datasets which have very large number of points, we can set the default

number of dummy points for Poisson likelihood as in the spatstat package, i.e. the

number of dummy points can be chosen to be larger than the number of points, to

perform quickly and efficiently. It is worth emphasizing that we center and scale the

15 covariates to observe which one has the largest effect on the intensity. The results

are presented in Table 3.10: 12 covariates for the Poisson likelihood and 11 for the lo-
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gistic method are selected out of the 15 covariates using the unweighted methods while

only 5 covariates (both for the Poisson and logistic methods) are selected using the

weighted versions. The unweighted methods tend to overfit the model by overselecting

unimportant covariates.

The weighted methods tend to keep out the uninformative covariates. Both Poisson

and logistic estimates own similar selection and estimation results. First, we find some

differences on estimation between the unweighted and the weighted methods, especially

for slope and Manganese (Mn), for which the weighted methods have approximately

two times larger estimators. Second, we may loose some nonzero covariates when

we apply the weighted methods, even though it is only for the covariates which have

relatively small coefficient. Boron (B) has high correlation with many of the other

covariates, particularly with those which are not selected. This is possibly why Boron,

which is selected and may have nonnegligible coefficient in the unweighted methods,

is not chosen in the model. This may explain why the weighted methods introduce

extra biases. However, since the situation appears to be quite close to the scenario 3

from the simulation study, the weighted methods are more favorable in terms of both

selection and prediction.

In this application, we do not face any computational problem. Nevertheless, if we

have to model a species of trees with much more points, the default value for nd will

lead to numerical problems. In such a case, the logistic likelihood would be a good

alternative.

These results suggest that BPL trees favor to live in areas of higher elevation and

slope. This result is different from the findings by Waagepetersen (2007) and Guan

and Loh (2007) which concluded based on standard error estimation that BPL trees

do not really prefer either high or low altitudes. However, we have the same conclusion

with the analysis by Guan and Shen (2010) and Thurman et al. (2015) that BPL trees

prefer to live on higher altitudes. Further, higher levels of Manganese (Mn) and lower

levels of both Phosporus (P) and Zinc (Zn) concentrations in soil are associated with

higher appearance of BPL trees.
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3.9 Conclusion and discussion

We develop regularized versions of estimating equations based on Campbell theorem

derived from the Poisson and the logistic likelihoods. Our procedure is able to estimate

intensity function of spatial point processes, when the intensity is a function of many

covariates and has a log-linear form. Furthermore, our procedure is also generally easy

to implement in R since we need to combine spatstat package with glmnet and ncvreg

packages. We study the asymptotic properties of both regularized weighted Poisson

and logistic estimates in terms of consistency, sparsity, and normality distribution. We

find that, among the regularization methods considered in this work, adaptive lasso,

adaptive elastic net, SCAD, and MC+ are the methods that can satisfy our theorems.

We carry out some scenarios in the simulation study to observe selection and pre-

diction properties of the estimates. We compare the penalized Poisson likelihood (PL)

and the penalized weighted Poisson likelihood (WPL) with different penalty functions.

From the results, when we deal with covariates having a complex covariance matrix

and when the point pattern looks quite clustered, we recommend to apply the penal-

ized WPL combined with adaptive lasso regularization. Otherwise, the regularized PL

with adaptive lasso is more preferable. The further and more careful investigation to

choose the tuning parameters may be needed to improve the selection properties. We

note the bias increases quite significantly when the regularized WPL is applied. When

the penalized WPL is considered, a two-step procedure may be needed to improve the

prediction properties: (1) use the penalized WPL combined with adaptive lasso to

chose the covariates, then (2) use the selected covariates to obtain the estimates. This

post-selection inference procedure has not been investigated in this study.

We also compare the estimates obtained from the Poisson and the logistic likeli-

hoods. When the number of dummy points can be chosen to be either similar to or

larger than the number of points, we recommend the use of the Poisson likelihood

method. Nevertheless, when the number of dummy points should be chosen to be

smaller than the number of points, the logistic method is more favorable.

A further work would consist in studying the situation when the number of the
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covariates is much larger than the sample size. In such a situation, the coordinate

descent algorithm used in this study may cause some numerical troubles. The Dantzig

selector procedure introduced by Candes and Tao (2007) might be a good alternative

as the implementaion for linear models (and for generalized linear models) results in

a linear programming. It would be interesting to bring this approach to spatial point

process setting.

3.10 Maps of covariates

In this section, we present the maps of covariates used in the simulation studies (sce-

narios 2 and refsce3) and in the application.

Figure 3.3: Maps of covariates designed in scenario 2. The first two top left images
are the elevation and the slope. The other 18 covariates are generated as standard
Gaussian white noise but transformed to get multicollinearity.
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Figure 3.4: Maps of covariates used in scenario 3 and in application. From left to
right: Elevation, slope, Aluminium, Boron, and Calcium (1st row), Copper, Iron,
Potassium, Magnesium, and Manganese (2nd row), Phosporus, Zinc, Nitrogen, Nitrigen
mineralisation, and pH (3rd row).

3.11 Proofs of the main results

3.11.1 Auxiliary Lemma

The following result is used in the proof of Theorems 3.6.1-3.6.2. Throughout the

proofs, the notation Xn = OP(xn) or Xn = oP(xn) for a random vector Xn and a

sequence of real numbers xn means that ‖Xn‖ = OP(xn) and ‖Xn‖ = oP(xn). In the

same way for a vector Vn or a squared matrix Mn, the notation Vn = O(xn) and

Mn = O(xn) mean that ‖Vn‖ = O(xn) and ‖Mn‖ = O(xn).

Lemma 3.11.1. Under the conditions (C.1)-(C.6), the following convergence holds in
distribution as n→∞

{Bn(w;β0) + Cn(w;β0)}−1/2`(1)
n (w;β0) d−→ N (0, Ip). (3.21)

Moreover as n→∞,
|Dn|−

1
2 `(1)
n (w;β0) = OP(1). (3.22)

Proof. Let us first note that using Campbell Theorems (5.2)-(5.3)

Var[`(1)
n (w;β0)] = Bn(w;β0) + Cn(w;β0).

The proof of (3.21) follows Coeurjolly and Møller (2014). Let Ci = i + (−1/2, 1/2]d
be the unit box centered at i ∈ Zd and define In = {i ∈ Zd, Ci ∩ Dn 6= ∅}. Set
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Dn =
⋃
i∈In

Ci,n, where Ci,n = Ci ∩Dn. We have

`(1)
n (w;β0) =

∑
i∈In

Yi,n

where
Yi,n =

∑
u∈X∩Ci,n

w(u)z(u)−
∫
Ci,n

w(u)z(u) exp(β>0 z(u))du.

For any n ≥ 1 and any i ∈ In, Yi,n has zero mean, and by condition (C.4),

sup
n≥1

sup
i∈In

E(‖Yi,n‖2+δ) <∞. (3.23)

If we combine (3.23) with conditions (C.1)-(C.6), we can apply Karácsony (2006,
Theorem 4), a central limit theorem for triangular arrays of random fields, to ob-
tain (3.21) which also implies that

{Bn(w;β0) + Cn(w;β0)}−1/2`(1)
n (w;β0) = OP(1)

as n→∞. The second result (3.22) is deduced from condition (C.6) which in particular
implies that |Dn|1/2{Bn(w;β0) + Cn(w;β0)}−1/2 = O(1).

3.11.2 Proof of Theorem 3.6.1

In the proof of this result and the following ones, the notation κ stands for a generic

constant which may vary from line to line. In particular this constant is independent

of n, β0 and k.

Proof. Let dn = |Dn|−1/2 + an, and k = {k1, k2, . . . , kp}> ∈ Rp. We remind the reader
that the estimate of β0 is defined as the maximum of the function Q (given by (3.7))
over Θ, an open convex bounded set of Rp. For any k such that ‖k‖ ≤ K < ∞,
β0 + dnk ∈ Θ for n sufficiently large. Assume this is valid in the following. To prove
Theorem 3.6.1, we follow the main argument by Fan and Li (2001) and aim at proving
that for any given ε > 0, there exists K > 0 such that for n sufficiently large

P
(

sup
‖k‖=K

∆n(k) > 0
)
≤ ε, where ∆n(k) = Q(w;β0 + dnk)−Q(w;β0). (3.24)

Equation (3.24) will imply that with probability at least 1 − ε, there exists a local
maximum in the ball {β0 + dnk : ‖k‖ ≤ K}, and therefore a local maximizer β̂ such
that ‖β̂ − β0‖ = OP(dn). We decompose ∆n(k) as ∆n(k) = T1 + T2 where

T1 =`n(w;β0 + dnk)− `n(w;β0)
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T2 =|Dn|
p∑
j=1

(
pλn,j

(|β0j|)− pλn,j
(|β0j + dnkj|)

)
.

Since ρ(u; ·) is infinitely continuously differentiable and `(2)
n (w;β) = −An(w;β), then

using a second-order Taylor expansion there exists t ∈ (0, 1) such that

T1 = dnk>`(1)
n (w;β0)− 1

2d
2
nk>An(w;β0)k

+ 1
2d

2
nk> (An(w;β0)−An(w;β0 + tdnk)) k.

Since Θ is convex and bounded and since w(·) and z(·) are uniformly bounded by
conditions (C.2)-(C.3), there exists a nonnegative constant κ such that

1
2‖An(w;β0)−An(w;β0 + tdnk)‖ ≤ κdn|Dn|.

Let νmin(M) be the smallest eigenvalue of a squared matrix M. By condition (C.7),

ν̌ := lim inf
n→∞

νmin(|Dn|−1An(w;β0)) = lim inf
n→∞

k> (|Dn|−1An(w;β0)) k
‖k‖2 > 0.

Hence
T1 ≤ dn‖`(1)

n (w;β0)‖ ‖k‖ − ν̌

2d
2
n|Dn|‖k‖2 + κd3

n|Dn|.

Regarding the term T2,

T2 ≤ T ′2 := |Dn|
s∑
j=1

(
pλn,j

(|β0j|)− pλn,j
(|β0j + dnkj|)

)

since for any j the penalty function pλn,j
is nonnegative and pλn,j

(|β0j|) = 0 for j =
s+ 1, . . . , p.

Since dn|Dn|1/2 = O(1), then by (C.8), for n sufficiently large, pλn,j
is twice con-

tinuously differentiable for every βj = β0j + tdnkj with t ∈ (0, 1). Therefore using a
third-order Taylor expansion, there exist tj ∈ (0, 1), j = 1, . . . , s such that

−T ′2 = dn|Dn|
s∑
j=1

kjp
′
λn,j

(|β0j|) sign(β0,j) + 1
2d

2
n|Dn|

s∑
j=1

k2
jp
′′
λn,j

(|β0j|)

+ 1
6d

3
n|Dn|

s∑
j=1

k3
jp
′′′
λn,j

(|β0j + tjdnkj|).

Now by definition of an and cn and from condition (C.8), we deduce that there exists
κ such that

T ′2 ≤ andn|Dn| |k>1|+ 1
2cnd

2
n|Dn|‖k‖2 + κd3

n|Dn|
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≤
√
sandn|Dn|‖k‖+ 1

2cnd
2
n|Dn|‖k‖2 + κd3

n|Dn|

from Cauchy-Schwarz inequality. Since cn = o(1), dn = o(1) and andn|Dn| = O(d2
n|Dn|),

then for n sufficiently large

∆n(k) ≤ dn‖`(1)
n (w;β0)‖ ‖k‖ − ν̌

4d
2
n|Dn|‖k‖2 + 2

√
sd2

n|Dn|‖k‖

We now return to (3.24): for n sufficiently large

P
(

sup
‖k‖=K

∆n(k) > 0
)
≤ P

(
‖`(1)
n (w;β0)‖ > ν̌

4dn|Dn|K − 2
√
sdn|Dn|

)

Since dn|Dn| = O(|Dn|1/2), by choosing K large enough, there exists κ such that
for n sufficiently large

P
(

sup
‖k‖=K

∆n(k) > 0
)
≤ P

(
‖`(1)
n (w;β0)‖ > κ|Dn|1/2

)
≤ ε

for any given ε > 0 from (3.22).

3.11.3 Proof of Theorem 3.6.2

To prove Theorem 3.6.2(i), we provide Lemma 3.11.2 as follows.

Lemma 3.11.2. Assume the conditions (C.1)-(C.6) and condition (C.8) hold. If an =
O(|Dn|−1/2) and bn|Dn|1/2 →∞ as n→∞, then with probability tending to 1, for any
β1 satisfying ‖β1 − β01‖ = OP(|Dn|−1/2), and for any constant K1 > 0,

Q
(
w; (β1

>,0>)>
)

= max
‖β2‖≤K1|Dn|−1/2

Q
(
w; (β1

>,β2
>)>

)
.

Proof. It is sufficient to show that with probability tending to 1 as n→∞, for any
β1 satisfying ‖β1 − β01‖ = OP(|Dn|−1/2), for some small εn = K1|Dn|−1/2, and for
j = s+ 1, . . . , p,

∂Q(w;β)
∂βj

< 0 for 0 < βj < εn, and (3.25)

∂Q(w;β)
∂βj

> 0 for − εn < βj < 0. (3.26)

First note that by (3.22), we obtain ‖`(1)
n (w;β0)‖ = OP(|Dn|1/2). Second, by con-
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ditions (C.2)-(C.3), there exists t ∈ (0, 1) such that

∂`n(w;β)
∂βj

= ∂`n(w;β0)
∂βj

+ t
p∑
l=1

∂2`n(w;β0 + t(β − β0))
∂βj∂βl

(βl − β0l)

= OP(|Dn|1/2) +OP(|Dn||Dn|−1/2) = OP(|Dn|1/2).

Third, let 0 < βj < εn and bn the sequence given by (3.17). By condition (C.8), bn
is well-defined and since by assumption bn|Dn|1/2 → ∞, in particular, bn > 0 for n
sufficiently large. Therefore, for n sufficiently large,

P
(
∂Q(w;β)
∂βj

< 0
)

= P
(
∂`n(w;β)

∂βj
− |Dn|p′λn,j

(|βj|) sign(βj) < 0
)

= P
(
∂`n(w;β)

∂βj
< |Dn|p′λn,j

(|βj|)
)

≥ P
(
∂`n(w;β)

∂βj
< |Dn|bn

)

= P
(
∂`n(w;β)

∂βj
< |Dn|1/2|Dn|1/2bn

)
.

P (∂Q(w;β)/∂βj < 0) −→ 1 as n→∞ since ∂`n(w;β)/∂βj = OP(|Dn|1/2) and bn|Dn|1/2 −→
∞. This proves (3.25). We proceed similarly to prove (3.26).

Proof. We now focus on the proof of Theorem 3.6.2. Since Theorem 3.6.2(i) is proved
by Lemma 3.11.2, we only need to prove Theorem 3.6.2(ii), which is the asymptotic
normality of β̂1. As shown in Theorem 3.6.1, there is a root-|Dn| consistent local
maximizer β̂ of Q(w;β), and it can be shown that there exists an estimator β̂1 in
Theorem 3.6.1 that is a root-(|Dn|) consistent local maximizer of Q

(
w; (β1

>,0>)>
)
,

which is regarded as a function of β1, and that satisfies

∂Q(w; β̂)
∂βj

= 0 for j = 1, . . . , s, and β̂ = (β̂>1 ,0>)>.

There exists t ∈ (0, 1) and β̆ = β̂ + t(β0 − β̂) such that

0 =∂`n(w; β̂)
∂βj

− |Dn|p′λn,j
(|β̂j|) sign(β̂j)

=∂`n(w;β0)
∂βj

+
s∑
l=1

∂2`n(w; β̆)
∂βj∂βl

(β̂l − β0l)− |Dn|p′λn,j
(|β̂j|) sign(β̂j)

=∂`n(w;β0)
∂βj

+
s∑
l=1

∂2`n(w;β0)
∂βj∂βl

(β̂l − β0l) +
s∑
l=1

Ψn,jl(β̂l − β0l)

− |Dn|p′λn,j
(|β0j|) sign(β0j)− |Dn|φn,j, (3.27)



92

where

Ψn,jl = ∂2`n(w; β̆)
∂βj∂βl

− ∂2`n(w;β0)
∂βj∂βl

and φn,j = p′λn,j
(|β̂j|) sign(β̂j) − p′λn,j

(|β0j|) sign(β0j). Since p′λ is a Lipschitz function
by condition (C.8), there exists κ ≥ 0 such that by condition on an

φn,j = p′λn,j
(|β̂j|) sign(β̂j)− p′λn,j

(|β0j|) sign(β0j)

=
(
p′λn,j

(|β̂j|)− p′λn,j
(|β0j|)

)
sign(β0j) + p′λn,j

(|β̂j|)
(

sign(β̂j)− sign(β0j)
)

≤ κ
∣∣∣|β̂j| − |β0j|

∣∣∣+ 2an
≤ κ|β̂j − β0j|+ 2an. (3.28)

We now decompose φn,j as φn,j = T1 + T2 where

T1 = φn,jI(|β̂j − β0j| ≤ r̃n,j) and T2 = φn,jI(|β̂j − β0j| > r̃n,j)

and where r̃n,j is the sequence defined in the condition (C.8). Under this condition, the
following Taylor expansion can be derived for the term T1: there exists t ∈ (0, 1) and
β̌j = β̂j + t(β0j − β̂j) such that

T1 = p′′λn,j
(|β0j|)(β̂j − β0j)I(|β̂j − β0j| ≤ r̃n,j)

+ 1
2(β̂j − β0j)2p′′′λn,j

(|β̆j|)sign(β̌j)I(|β̂j − β0j| ≤ r̃n,j)

= p′′λn,j
(|β0j|)(β̂j − β0j)I(|β̂j − β0j| ≤ r̃n,j) +OP(|Dn|−1)

where the latter equation ensues from Theorem 3.6.1 and condition (C.8). Again, from
Theorem 3.6.1, I(|β̂j − β0j| ≤ r̃n,j) L1

−→ 1 which implies that I(|β̂j − β0j| ≤ r̃n,j) P−→ 1, so
T1 = p′′λn,j

(|β0j|)(β̂j − β0j)
(
1 + oP(1)

)
+OP(|Dn|−1).

Regarding the term T2, we have by (3.28)

T2 ≤ {κ|β̂j − β0j|+ 2an} I(|β̂j − β0j| > r̃n,j).

By Theorem 3.6.1, |β̂j − β0j| = OP(|Dn|−1/2) and I(|β̂j − β0j| > r̃n,j) = oP(1), since
an = O(|Dn|−1/2), we obtain T2 = oP(|Dn|−1/2), and we deduce that

φn,j = p′′λn,j
(|β0j|)(β̂j − β0j)

(
1 + oP(1)

)
+ oP(|Dn|−1/2). (3.29)

Let `(1)
n,1(w;β0) (resp. `(2)

n,1(w;β0)) be the first s components (resp. s × s top-left
corner) of `(1)

n (w;β0) (resp. `(2)
n (w;β0)). Let also Ψn be the s × s matrix containing

Ψn,jl, j, l = 1, . . . , s. Finally, let the vector p′n, the vector φn and the s× s matrix Mn
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be

p′n = {p′λn,1(|β01|) sign(β01), . . . , p′λn,s
(|β0s|) sign(β0s)}>,

φn = {φn,1, . . . , φn,s}>, and
Mn = {Bn,11(w;β0) + Cn,11(w;β0)}−1/2.

We rewrite both sides of (3.27) as

`
(1)
n,1(w;β0) + `

(2)
n,1(w;β0)(β̂1 − β01) + Ψn(β̂1 − β01)− |Dn|p′n − |Dn|φn = 0. (3.30)

By definition of Πn given by (3.20) and from (3.29), we obtain φn = Πn(β̂1−β01)
(
1+

oP(1)
)

+ oP(|Dn|−1/2). Using this, we deduce, by premultiplying both sides of (3.30)
by Mn, that

Mn`
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01)

= O(|Dn| ‖Mnp′n‖) + oP(|Dn| ‖MnΠn(β̂1 − β01)‖)
+ oP(‖Mn‖ |Dn|1/2) +OP(‖MnΨn(β̂1 − β01)‖).

The condition (C.6) implies that there exists an s× s positive definite matrix I′′0 such
that for all sufficiently large n, we have |Dn|−1(Bn,11(w;β0)+Cn,11(w;β0)) ≥ I′′0, hence
‖Mn‖ = O(|Dn|−1/2).

Now, ‖Ψn‖ = OP(|Dn|1/2) by conditions (C.2)-(C.3) and by Theorem 3.6.1, and
‖β̂1 − β01‖ = OP(|Dn|−1/2) by Theorem 3.6.1 and by Theorem 3.6.2(i). Finally, since
by assumption an = o(|Dn|−1/2), we deduce that

‖MnΨn(β̂1 − β01)‖ = OP(|Dn|−1/2) = oP(1),
|Dn| ‖MnΠn(β̂1 − β01)‖ = oP(1),

‖Mn‖ |Dn|1/2 = O(1),
|Dn| ‖Mnp′n‖ = O(an|Dn|1/2) = o(1).

Therefore, we have that

Mn`
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01) = oP(1).

From (3.21), Theorem 3.6.2(i) and by Slutsky’s Theorem, we deduce that

{Bn,11(w;β0) + Cn,11(w;β0)}−1/2{An,11(w;β0) + |Dn|Πn}(β̂1 − β01) d−→ N (0, Is)

as n→∞, which can be rewritten, in particular under (C.7), as

|Dn|1/2Σn(w;β0)−1/2(β̂1 − β01) d−→ N (0, Is)

where Σn(w,β0) is given by (3.19).





CHAPTER 4
Regularized Poisson and logistic regression

methods for spatial point processes intensity
estimation with a diverging number of covariates

4.1 Introduction

Intensity estimation for inhomogeneous spatial point processes have become one of

the main interests in many applications and it is often assumed that the intensity

can be modeled as a parametric function of certain covariates (see e.g. Møller and

Waagepetersen, 2007; Renner and Warton, 2013; Yue and Loh, 2015). For paramet-

ric estimation, while maximum likelihood estimation (e.g. Berman and Turner, 1992;

Rathbun and Cressie, 1994) has been widely implemented for Poisson point process

models, estimating equation-based methods (e.g. Waagepetersen, 2007, 2008; Guan

and Shen, 2010; Baddeley et al., 2014) are more simple to implement for more general

spatial point process models, overcoming the possible drawback of MCMC methods

which are usually computational expensive (Møller and Waagepetersen, 2004). How-

ever, when the number of covariates is relatively large, maximum likelihood estimation

and estimating equation-based methods may become undesirable. First, these meth-

ods cannot perform variable selection which leads to hard interpretation of the model.

Second, as the number of covariates is large, employing these methods will yield large

variance for parameter estimates.

In this study, we consider feature selection procedures for spatial point processes

95
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intensity estimation. We model the intensity as a log-linear form of some covariates:

ρ(u;β) = exp(β>z(u)). (4.1)

More precisely, z(u) = {z1(u), . . . , zp(u)}> are the p spatial covariates measured at

location u and β = {β1, . . . , βp}> is a real p-dimensional parameter. Such variable

selection procedures have been previously investigated, for example, by Renner and

Warton (2013); Thurman and Zhu (2014) for Poisson point process model and by

Thurman et al. (2015), and in Chapter 2, for more general spatial point processes

model. The main idea is to regularize the estimating functions based on Campbell

theorem by a chosen penalty function. Theoretical study has been conducted by Thur-

man et al. (2015) who established the asymptotic properties of the estimates in terms

of consistency, sparsity, and normality distribution using regularized estimating func-

tions based on Campbell theorem derived from Poisson likelihood with adaptive lasso

penalty, while we studied in Chapter 2 the same asymptotic properties by penalizing

the estimating functions derived from both Poisson and logistic regression likelihoods

considering more general penalty functions.

It is worth emphasizing that the previously mentioned procedures only considered

a finite number of covariates p. In recent decades, with the advancement of technol-

ogy and huge investment in data collection, more complex spatial data with a plenty of

covariates have been rapidly available, so the setting when the number of parameter di-

verges should be considered. For example, in a 50-hectare region (D = 1, 000m×500m)

of the tropical moist forest of Barro Colorado Island (BCI) in central Panama, censuses

have been carried out where all free-standing woody stems at least 10 mm diameter at

breast height were identified, tagged, and mapped, resulting in maps of over 350,000

individual trees with more than 300 species (see Condit, 1998; Hubbell et al., 1999,

2005). At the same region, many environmental covariates such as topographical at-

tributes and soil properties have been also collected. Modeling the intensity of a specific

tree species as a function of environmental covariates and their possible interactions

can increase the number of covariates considerably. This chapter intends to extend the
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results we obtained in Chapter 2 to the case where the number of parameters diverges.

Asymptotic properties which considers a diverging number of parameters for M -

estimators have long been studied (e.g Huber, 1973; Portnoy, 1984) but have recently

been investigated for penalized regression estimators by Fan and Peng (2004); Zou

and Zhang (2009). In particular, as argued by Fan and Peng (2004), even though

the asymptotic properties (i.e. consistency, sparsity, and asymptotic normality) pro-

posed by Fan and Li (2001) for penalized regression estimator under finite number

of parameters setting are encouraging, there are many naive and simple model selec-

tion procedures which possess those properties. As importance of the validity of these

asymptotic properties for a diverging number of parameters setting, we consider to

study this type of asymptotic properties in spatial point processes setting.

We investigate in this chapter the asymptotic properties of the estimates obtained

from regularized Poisson and logistic regression methods studied in Chapter 2 but

considering the setting where the number of covariates diverges as the domain of ob-

servation increases. We show that under some conditions, if the number of covariates

does not grow too fast with respect to the observation domain, our estimates satisfy

consistency, sparsity, and normality distribution. It is worth noticing that we do not

make any assumption on the distribution of spatial point process, making our results

available for large classes of spatial point process. Furthermore, our procedure does not

require further effort for computational implementation since we combine the spatstat

(Baddeley et al., 2015) R package with the two R packages glmnet (Friedman et al.,

2010) and ncvreg (Breheny and Huang, 2011).

The rest of this chapter is organized as follows. In Section 4.2, we introduce brief

background on spatial point processes as well as regularization methods for spatial

point processes intensity estimation. Section 4.3 presents our asymptotic results. We

investigate in Section 4.4 the finite sample performance of the proposed methods in a

simulation study and in an application to tropical forestry datasets. Conclusion and

discussion are presented in Section 4.5. Proofs of the main results are postponed to

Sections 4.6.1-4.6.3.
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4.2 Regularization methods for spatial point pro-
cesses

This section gives brief introduction on spatial point processes and reviews regular-

ization methods for spatial point processes intensity estimation previously studied in

Chapter 2 when the number of parameters is finite.

Let X be a spatial point process on Rd. We view X as a locally finite random subset

of Rd. Let D ⊂ Rd be a compact set of Lebesgue measure |D| which will play the role of

the observation domain. Suppose X has intensity function ρ and second-order product

density ρ(2). Campbell theorem (see e.g. Møller and Waagepetersen, 2004) states that,

for any function k : Rd → [0,∞) or k : Rd × Rd → [0,∞)

E
∑
u∈X

k(u) =
∫
k(u)ρ(u)du (4.2)

E
6=∑

u,v∈X
k(u, v) =

∫ ∫
k(u, v)ρ(2)(u, v)dudv. (4.3)

We may interpret ρ(u)du as the probability of occurence of a point in an infinitesimally

small ball with centre u and volume du. Intuitively, ρ(2)(u, v)dudv is the probability

for observing a pair of points from X occuring jointly in each of two infinitesimally

small balls with centres u, v and volume du, dv. For further background materials on

spatial point processes, see for example Møller and Waagepetersen (2004); Illian et al.

(2008).

Let `(w;β) be the weighted Poisson likelihood (e.g. Guan and Shen, 2010) or the

weighted logistic regression likelihood (e.g. Baddeley et al., 2014) given respectively by

`PL(w;β) =
∑

u∈X∩D
w(u) log ρ(u;β)−

∫
D
w(u)ρ(u;β)du, (4.4)

`LRL(w;β) =
∑

u∈X∩D
w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)

−
∫
D
w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du, (4.5)

where w(·) is a weight function depending on the first and the second-order characteric-

tics of X and δ(·) is a nonnegative real-valued function. We recommend the interested
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readers to look at the paper by Guan and Shen (2010) for further details on the weight

function w(·) and the paper by Baddeley et al. (2014) for the role of function δ(·). The

Poisson estimator (resp. the logistic regression estimator) can be obtained by maxi-

mizing (4.4) (resp. (4.5)). Note that these methods cannot perform variable selection.

To do so, regularization methods (see e.g. Chapter 2) are introduced by maximizing a

penalized version of (4.4)-(4.5)

Q(w;β) = `(w;β)− |D|
p∑
j=1

pλj
(|βj|), (4.6)

where `(w;β) is either the Poisson likelihood (4.4) or the logistic regression likelihood

(4.5). We refer the second term of (4.6) to as a penalization term. In this term, we have

mainly two parts: (1) a penalty function pλ parameterized by λ ≥ 0 which can change

for each component j, j = 1, · · · , p, and (2) the volume of the observation domain |D|

which plays the role as the sample size in spatial point process framework. For any

nonnegative λ, we say that pλ(·) is a penalty function if pλ is a nonnegative function

with pλ(0) = 0. Some examples, described in Table 4.1, include l2 penalty (Hoerl and

Kennard, 1988), l1 penalty (Tibshirani, 1996; Zou, 2006), elastic net (Zou and Hastie,

2005; Zou and Zhang, 2009), SCAD (Fan and Li, 2001), and MC+ (Zhang, 2010). See,

for example, Friedman et al. (2008) for further backgrounds about penalty function,

regularization methods, and related materials for more general objectives.

Table 4.1: Examples of penalty function.

Penalty pλ(θ)

l2 penalty 1
2λθ

2

l1 penalty λ|θ|

Elastic net λ{γ|θ|+ 1
2(1− γ)θ2}

SCAD λθI(θ ≤ λ) + γλθ− 1
2 (θ2+λ2)
γ−1 I(λ ≤ θ ≤ γλ) + λ2(γ2−1)

2(γ−1) I(θ ≥ γλ)

MC+
(
λθ − θ2

2γ

)
I(θ ≤ γλ) + 1

2γλ
2I(θ ≥ γλ)
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4.3 Asymptotic properties

In this section, we present asymptotic properties of the regularized Poisson estimator

when both |Dn| → ∞ and pn → ∞ as n → ∞. In particular, we consider X as a d-

dimensional point process observed over a sequence of observation domainD = Dn, n =

1, 2, . . . which expands to Rd as n → ∞. We assume that X has a log-linear form of

intensity function given by (4.1) for which the dimension of parameter β, denoted now

by pn, diverges to ∞ as n → ∞. We provide notation and conditions, and discuss

the differences with the setting where p is fixed in Section 4.3.1. Our main results are

presented in Section 4.3.2. For sake of conciseness, we do not present the asymptotic

results for the regularized logistic regression estimator. The results are very similar.

The main difference is lying in the conditions (C.6) and (C.7) for which the matrices

An,Bn, and Cn have a different expression (see Remark 4.3.2).

4.3.1 Notation and conditions

Throughout this section and Sections 4.6.1-4.6.3, let

`n(w;β) =`n,PL(w;β)

=
∑

u∈X∩Dn

w(u) log ρ(u;β)−
∫
Dn

w(u)ρ(u;β)du, (4.7)

Qn(w;β) =`n(w;β)− |Dn|
pn∑
j=1

pλn,j
(|βj|), (4.8)

be respectively the weighted Poisson likelihood and the penalized likelihood.

Let β0 = {β01, . . . , β0s, β0(s+1), . . . , β0pn}> = {β>01,β
>
02}> = (β>01,0>)> denote the

pn-dimensional vector of true coefficients, where β01 is the s-dimensional vector of

nonzero coefficients and β02 is the (pn − s)-dimensional vector of zero coefficients. We

assume that the number of nonzero coefficients, s, does not depend on n. Let z01 and

z02 denote the corresponding s-dimensional and (pn− s)-dimensional vectors of spatial

covariates.

We recall the classical definition of strong mixing coefficients adapted to spatial
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point processes (e.g. Politis et al., 1998): for k, l ∈ N ∪ {∞} and q ≥ 1, define

αk,l(q) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F (Λ1), B ∈ F (Λ2),

Λ1 ∈ B(Rd),Λ2 ∈ B(Rd), |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ q}, (4.9)

where F is the σ-algebra generated by X∩Λi, i = 1, 2, d(Λ1,Λ2) is the minimal distance

between sets Λ1 and Λ2, and B(Rd) denotes the class of Borel sets in Rd.

We define the pn × pn matrices An(w;β0),Bn(w;β0) and Cn(w;β0) by

An(w;β0) =
∫
Dn

w(u)z(u)z(u)>ρ(u;β0)du,

Bn(w;β0) =
∫
Dn

w(u)2z(u)z(u)>ρ(u;β0)du,

Cn(w;β0) =
∫
Dn

∫
Dn

w(u)w(v)z(u)z(v)>{g(u, v)− 1}ρ(u;β0)ρ(v;β0)dudv,

where g(u, v) is a pair correlation function indicating the attraction (or repulsion)

among points given by

g(u, v) = ρ(2)(u, v)
ρ(u)ρ(v) ,

when both ρ and ρ(2) exist with the convention 0/0 = 0. For a Poisson point process,

we have g(u, v) = 1 since ρ(2)(u, v) = ρ(u)ρ(v). If, for example, g(u, v) > 1 (resp.

g(u, v) < 1), this indicates that pair of points are more likely (resp. less likely) to

occur at locations u, v than for a Poisson point process.

We denote by An,11(w;β0) (resp. Bn,11(w;β0),

Cn,11(w;β0)) the s × s top-left corner of An(w;β0) (resp. Bn(w;β0), Cn(w;β0)). It

is worth noticing that An,11(w;β0), Bn,11(w;β0) and Cn,11(w;β0) depend on n only

through Dn and not on pn.

Under the condition (C.8), we define the sequences an, bn and cn by

an = max
j=1,...,s

|p′λn,j
(|β0j|)|, (4.10)

bn = inf
j=s+1,...,pn

inf
|θ|≤εn
θ 6=0

p′λn,j
(θ), for εn = K1|Dn|−1/2, (4.11)

cn = max
j=1,...,s

|p′′λn,j
(|β0j|)|, (4.12)
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where K1 is any positive constant.

Consider the following conditions (C.1)-(C.9) which are required to derive our asymp-

totic results, where o denotes the origin of Rd:

(C.1) For every n ≥ 1, Dn = nE = {ne : e ∈ E}, where E ⊂ Rd is convex, compact,

and contains o in its interior.

(C.2) We assume that the intensity function has the log-linear specification given

by (4.1) where β ∈ Θ and Θ is an open convex bounded set of Rpn . Fur-

thermore, we assume that there exists a neighborhood Ξ(β0) of β0 such that

supu∈Rd ρ(u;β) <∞ for all β ∈ Ξ(β0).

(C.3) The covariates z and the weight function w satisfy

sup
u∈Rd

|zi(u)| <∞, i = 1, · · · , pn and sup
u∈Rd

|w(u)| <∞.

(C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2 + t, the product density

ρ(k) exists and satisfies ρ(k) <∞.

(C.5) For the strong mixing coefficients (4.9), we assume that there exists some t̃ >

d(2 + t)/t such that α2,∞(q) = O(q−t̃).

(C.6) We assume that νmin
(
|Dn|−1{Bn,11(w;β0)+Cn,11(w;β0)}

)
> 0 for all sufficiently

large n, where νmin(Mn) is the smallest eigenvalue of a squared matrix Mn.

(C.7) We assume that, for all sufficiently large n, νmin
(
|Dn|−1An(w;β0)

)
> 0.

(C.8) The penalty function pλ(·) is nonnegative on R+, continuously differentiable

on R+ \ {0} with derivative p′λ assumed to be a Lipschitz function on R+ \

{0}. Furthermore, given (λn,j)n≥1, for j = 1, . . . , s, we assume that there exists

(r̃n,j)n≥1, where
√
|Dn|/pnr̃n,j →∞ as n→∞, such that, for n sufficiently large,

pλn,j
is thrice continuously differentiable in the ball centered at |β0j| with radius

r̃n,j and we assume that the third derivative is uniformly bounded.
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(C.9) We assume that p3
n/|Dn| → 0 as n→∞.

Conditions (C.1)-(C.8) are quite similar to the ones we require in Chapter 2 in the

setting when the number of parameters to estimate is fixed. Condition (C.2) is slightly

stronger since we have to ensure that ρ(u;β) is finite for β in the neighborhood of

β0. Note that supu∈Rd ρ(u;β0) < ∞ follows directly from condition (C.3). We derive

asymptotic properties when both |Dn| and pn tend to infinity as n is large enough.

However, to obtain an estimator which is consistent and has two other properties:

sparsity and normality distribution, we need that the number of covariates does not

grow too fast with respect to the volume of the observation domain stated by condi-

tion (C.9). This condition is similar to that of Fan and Peng (2004) when |Dn| is simply

replaced by n (the sample size in their context).

4.3.2 Main results

We state our main results here. Proofs are relegated to Sections 4.6.1-4.6.3.

We first show in Theorem 4.3.1 that the penalized weighted Poisson likelihood

estimator converges in probability and exhibits its rate of convergence.

Theorem 4.3.1. Assume the conditions (C.1)-(C.5) and (C.7)-(C.9) hold. Let an and
cn be given respectively by (4.10) and (4.12). If an = O(|Dn|−1/2) and cn = o(1), then
there exists a local maximizer β̂ of Qn(w;β) such that ‖β̂ − β0‖ = OP

(√
pn(|Dn|−1/2 +

an)
)
.

This implies that, if an = O(|Dn|−1/2) and cn = o(1), our estimator is root-(|Dn|/pn)

consistent. Note that the convergence rate of our estimator is the√pn times the conver-

gence rate of the estimator obtained assuming finite number of parameters we studied

in Chapter 2. In addition, when we compare our results to that under regularized like-

lihood estimation developed by Fan and Peng (2004) who also considered a diverging

number of parameters setting, our estimator has the same rate of convergence when

we replace |Dn| by n to their context, in which both |Dn| in current setting and n in

their setting play the same role as the sample size.

Furthermore, we demonstrate in Theorem 4.3.2 that such a root-(|Dn|/pn) consis-

tent estimator ensures the sparsity of β̂; that is, the estimate will correctly set β2 to
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zero with probability tending to 1 as n→∞, and β̂1 is asymptotically normal.

Theorem 4.3.2. Assume the conditions (C.1)-(C.9) are satisfied. If an|Dn|1/2 → 0,
bn
√
|Dn|/p2

n → ∞ and √pncn → 0 as n → ∞, the root-(|Dn|/pn) consistent local
maximizers β̂ = (β̂>1 , β̂

>
2 )> in Theorem 4.3.1 satisfy:

(i) Sparsity: P(β̂2 = 0)→ 1 as n→∞,

(ii) Asymptotic Normality: |Dn|1/2Σn(w;β0)−1/2(β̂1 − β01) d−→ N (0, Is),

where

Σn(w;β0) =|Dn|{An,11(w;β0) + |Dn|Πn}−1{Bn,11(w;β0) + Cn,11(w;β0)}
{An,11(w;β0) + |Dn|Πn}−1, (4.13)

Πn =diag{p′′λn,1(|β01|), . . . , p′′λn,s
(|β0s|)}. (4.14)

As a consequence, Σn(w;β0) is the asymptotic covariance matrix of β̂1. Note that
Σn(w;β0)−1/2 is the inverse of Σn(w;β0)1/2, where Σn(w;β0)1/2 is any square matrix
with Σn(w;β0)1/2

(
Σn(w;β0)1/2

)>
= Σn(w;β0).

Remark 4.3.1. For lasso and adaptive lasso, Πn = 0. For other penalties, since
cn = o(1), then ‖Πn‖ = o(1). Since ‖An,11(w;β0)‖ = O(|Dn|) from conditions (C.2)
and (C.3), |Dn| ‖Πn‖ is asymptotically negligible with respect to ‖An,11(w;β0)‖.

Remark 4.3.2. Theorems 4.3.1 and 4.3.2 remain true for the regularized logistic re-
gression likelihood estimates if we replace in the expression of the matrices An,Bn,
and Cn, w(u) by w(u)δ(u)/(ρ(u;β0) + δ(u)), u ∈ Dn and extend the condition (C.3) by
adding supu∈Rd δ(u) <∞.

We show in Theorem 4.3.2 that the sparsity and the normality distribution are

still valid when the number of parameters diverges. By Remark 4.3.1, when n is large

enough, Σn(w;β0) in (4.13) becomes approximately

|Dn|{An,11(w;β0)}−1{Bn,11(w;β0) + Cn,11(w;β0)}{An,11(w;β0)}−1.

This means that we have the same efficiency as estimator of β01 obtained by maximizing

the likelihood function or solving estimating equations based on the submodel knowing

that β02 = 0. This shows that when n is sufficiently large, our estimator is as efficient

as the oracle one.

To satisfy Theorem 4.3.2, we require that an|Dn|1/2 → 0, bn
√
|Dn|/p2

n → ∞ and
√
pncn → 0 as n→∞ simultaneously. In particular, conditions on an and cn ensure the
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asymptotic normality of β̂1 while condition on bn is used to prove the sparsity. Con-

ditions regarding an and cn are similar to the ones imposed by Fan and Peng (2004)

when |Dn| is replaced by n in their context to represent the sample size. However, we

require a slightly stronger condition than the one required by Fan and Peng (2004)

which in the present setting could be written as bn
√
|Dn|/pn → ∞. As compensa-

tion, we do not need to impose, as Fan and Peng (2004) did, for any 0 < K2 < ∞,

νmax
(
|Dn|−1An(w;β0)

)
< K2, where νmax(Mn) is the largest eigenvalue of a squared

matrix Mn. Such a condition is not straightforwardly satisfied in our setting since the

other conditions only imply that νmax
(
|Dn|−1An(w;β0)

)
= O(pn).

Further details regarding an, bn and cn for each method are presented in Table 4.2.

For the ridge regularization method, bn = 0, preventing from applying Theorem 4.3.2

for this penalty. For lasso and elastic net, an = K3bn for some constant K3 > 0

(K3=1 for lasso). The two conditions an|Dn|1/2 → 0 and bn
√
|Dn|/p2

n →∞ as n→∞

cannot be satisfied simultaneously. This is different for the adaptive versions where

a compromise can be found by adjusting the λn,j’s, as well as the two nonconvex

penalties SCAD and MC+, for which λn can be adjusted. For the regularization

methods we consider in this study, the condition √pncn → 0 is implied by the condition

an|Dn|1/2 → 0 as n→∞ and condition (C.9).

4.4 Numerical results

This section is devoted to present numerical results. More precisely, we conduct simula-

tion experiments in Section 4.4.1 to assess the finite sample peformance of our estimates

and apply our method to an application in ecology in Section 4.4.2. We apply the regu-

larized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL)

to select covariates and estimate their coefficients simultaneously. Similar approach

can be used easily for the regularized (un)weighted logistic regression (see Chapter 2,

Section 2.5).

To numerically evaluate the parameters estimates, we apply Berman-Turner method

(Berman and Turner, 1992) combined with coordinate descent algorithm (Friedman
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Table 4.2: Details of the sequences an, bn and cn for a given regularization method.

Method an bn cn

Ridge λn max
j=1,...s

{|β0j|} 0 λn

Lasso λn λn 0

Enet λn

[
(1− γ) max

j=1,...s
{|β0j|}+ γ

]
γλn (1− γ)λn

AL max
j=1,...s

{λn,j} min
j=s+1,...p

{λn,j} 0

Aenet max
j=1,...s

{λn,j
(
(1− γ)|β0j|+ γ

)
} γ min

j=s+1,...p
{λn,j} (1− γ) max

j=1,...,s
{λn,j}

SCAD 0* λn
** 0*

MC+ 0* λn − K1
√
pn

γ
√
|Dn|

** 0*

* if λn → 0 for n sufficient large
** if

√
|Dn|/p2

nλn →∞ for n sufficient large

et al., 2007) to perform variable selection and parameter estimation. Berman-Turner

device allows to show that maximizing (4.4) is equivalent to fitting a weighted Poisson

generalized linear model, so the standard software for generalized linear model can be

used. This in fact has been exploited in the spatstat R package (Baddeley et al., 2015).

Coordinate descent algorithm, which has been implemented in the glmnet (Friedman

et al., 2010) for some convex penalties and in the ncvreg (Breheny and Huang, 2011)

for some nonconvex penalties, is used to compute the regularization paths solutions.

More details for computational strategies have been discussed in detail in Chapter 2.

Our methods rely on the tuning parameter λ. Some previous studies suggested

to use BIC-type method to select the tuning parameter in order to obtain selection

consistent estimator (see e.g. Zou et al., 2007; Wang et al., 2007b, 2009). In this study,

we select λ which minimizes WQBIC(λ), a weighted version of the BIC criterion,

defined by

WQBIC(λ) = −2`(w; β̂(λ)) + s(λ) log |D|,

where s(λ) = ∑p
j=1 I{β̂j(λ) 6= 0} is the number of selected covariates with nonzero
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regression coefficients and |D| is the volume of observation domain. To implement

the adaptive methods (i.e. adaptive lasso and adaptive elastic net), we define λj =

λ/|β̃j(ridge)|, j = 1, · · · , p, where β̃(ridge) is the estimates obtained from ridge regres-

sion and λ is a tuning parameter chosen by WQBIC(λ) criterion as described above.

Following Chapter 2, we fix γ = 0.5 for elastic net and its adaptive version, γ = 3.7

for SCAD, and γ = 3 for MC+. For further discussion regarding the selection of γ for

SCAD and MC+, see e.g. Fan and Li (2001) and Breheny and Huang (2011).

4.4.1 Simulation study

In this section, we aim to observe our estimates behaviour in different situations when

a large number of covariates for fitting spatial point process intensity estimation is

involed. We intend to extend the setting considered in Chapter 2. We start with

relatively complex situation where strong multicollinearity is present (Scenarios 1a and

2a) and we then consider more complex setting using real datasets (Scenarios 1b and

2b). We have two different scenarios (Scenarios 1 and 2) for which the number of true

covariates as well as their coefficients are set to be different in each setting.

We set the spatial domain to be D = [0, 1000]× [0, 500] and set the mean number

of points over D to be 1600. The true intensity function is set to be ρ(u;β0) =

exp(z(u)>β0), where z(u) = {1, z1(u), . . . , z50(u)}> and β0 = {β0, β01, · · · , β050}. Here,

we do not estimate β0 since it is chosen such that each realization has 1600 points in

average. We consider two different scenarios described as follows.

Scenario 1. We define the true vector β0 = {β0, 2, 0.75, 0, · · · , 0}. To define the co-

variates, we center and scale the 201 × 101 pixel images of elevation (x1)

and gradient of elevation (x2) contained in the bei datasets of spatstat

library in R (R Core Team, 2016), and use them as two true covariates. In

addition, we create two settings to define extra covariates:

a. First, we generate 48 201× 101 pixel images of covariates as a standard

Gaussian white noise and denote them by x3, . . . , x50. Second, we trans-

form them, together with x1 and x2, to have multicollinearity. In par-
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ticular, we define z(u) = V>x(u), where x(u) = {x1(u), . . . , x50(u)}>.

More precisely, V is such that Ω = V>V, and (Ω)ij = (Ω)ji = 0.7|i−j|

for i, j = 1, . . . , 50, except (Ω)12 = (Ω)21 = 0, to preserve the correlation

between x1 and x2.

b. We center and scale the 13 50 × 25 pixel images of soil nutrients ob-

tained from the study in tropical forest of Barro Colorado Island (BCI)

in central Panama (see Condit, 1998; Hubbell et al., 1999, 2005) and

convert them to be 201 × 101 pixel images as x1 and x2. In addi-

tion, we consider the interaction between two soil nutrients such that

we have 50 covariates in total. We use 48 covariates (13 soil nutri-

ents and 35 interactions between them) as the extra covariates. To-

gether with x1 and x2, we keep the structure of the covariance matrix

to preserve the complexity of the situation. In this setting, we have

z(u) = x(u) = {1, x1(u), . . . , x50(u)}>.

Scenario 2. In this setting, we consider five true covariates out of 50 covariates. In

addition of elevation (x1) and gradient of elevation (x2), we convert 50×25

pixel images of concentration of Aluminium (x3), Boron (x4) and Calcium

(x5) in the soil to be 201× 101 pixel images as x1 and x2 and set them to

be other three true covariates. All five covariates are centered and scaled.

We define the true coefficient vector β0 = {β0, 5, 4, 3, 2, 1, 0, · · · , 0}. As in

Scenario 1, we make two settings to define extra 45 covariates:

a. This setting is similar to that of Scenario 1a. We generate 45 201× 101

pixel images of covariates as standard Gaussian white noise, denote

them by x6, . . . , x50, and define z(u) = V>x(u), where V is such that

Ω = V>V, and (Ω)ij = (Ω)ji = 0.7|i−j| for i, j = 1, . . . , 50, except

(Ω)kl = (Ω)lk = 0, for k, l = 1, · · · , 5, k 6= l, to preserve the correlation

among x1 - x5.

b. We use the real dataset as in Scenario 1b and consider similar setting. In
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this setting, we define 5 true covariates which have different regression

coefficients as in Scenario 1b.

With these scenarios, we simulate 2000 spatial point patterns from a Thomas point

process using the rThomas function in the spatstat package. We set the interaction

parameter κ to be (κ = 5× 10−4, κ = 5× 10−5) and let ω = 20. Briefly, smaller values

of ω correspond to tighter clusters, and smaller values of κ correspond to fewer number

of parents (see e.g., Møller and Waagepetersen, 2004, for further details regarding the

Thomas point process). For each scenario with different κ, we fit the intensity to the

simulated point pattern realizations.

We present in Table 4.3 the selection properties of our estimates. We consider the

true positive rate (TPR), the false positive rate (FPR), and the positive predictive

value (PPV) to evaluate the selection properties of the estimates. We want to find

the methods which have a TPR close to 100% meaning that it can select correctly

all the true covariates, a FPR close to 0 showing that it can remove all the extra

covariates from the model, and a PPV close to 100% indicating that, for Scenario 1

(resp. Scenario 2), it can keep exactly the two (resp. five) true covariates and remove

all the 48 (resp. 45) extra covariates.

In general, for both regularized PL and regularized WPL, the best selection prop-

erties are obtained from larger κ (5×10−4) which indicates weaker spatial dependence.

To compare the regularization methods, we emphasize here that the main difference

between regularization methods which satisfy (adaptive lasso, adaptive elastic net,

SCAD, and MC+) and which cannot satisfy (lasso, elastic net) our theorems is that

the methods which cannot satisfy our theorems tend to overselect covariates, leading to

suffer from larger FPR and smaller PPV in general. Among all regularization methods

considered in this study, adaptive lasso and adaptive elastic net seem to outperform

the other methods in most cases. Although adaptive lasso and adaptive elastic net

perform quite similarly, adaptive lasso is slightly better. The difference in these results

compared with the ones obtained in Chapter 2 is that adaptive elastic net appears to

be another alternative (appart from adaptive lasso) to perform variable selection for
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Table 4.3: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D for two different values of κ and
for the two different scenarios. Different penalty functions are considered as well as
two estimating equations, the regularized Poisson likelihood (PL) and the regularized
weighted Poisson likelihood (WPL).

Method
Regularized PL Regularized WPL Regularized PL Regularized WPL

κ = 5× 10−4 κ = 5× 10−5

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1a

Lasso 1001 13 28 96 4 62 97 23 20 64 1 76

Enet 1001 34 12 93 8 48 97 48 10 59 2 58

AL 1001 1 92 97 01 96 95 3 68 70 01 98

Aenet 1001 2 76 97 1 85 95 6 52 67 01 95

SCAD 1001 7 41 97 1 87 96 4 61 56 01 79

MC+ 1001 8 37 96 1 85 96 5 58 52 1 74

Scenario 1b

Lasso 1001 45 10 91 11 52 1001 96 4 20 6 22

Enet 1001 63 7 87 18 31 1001 98 4 15 6 14

AL 1001 26 19 95 5 81 99 85 5 26 5 35

Aenet 1001 30 15 95 6 74 1001 87 5 24 5 30

SCAD 1001 26 18 93 5 76 1001 76 5 23 4 28

MC+ 1001 26 17 93 5 76 99 76 5 22 5 27

Scenario 2a

Lasso 98 93 10 84 73 14 98 96 10 47 35 16

Enet 99 98 10 85 80 11 99 98 10 46 38 12

AL 95 49 18 83 35 27 95 64 15 50 23 28

Aenet 96 52 17 84 40 21 96 68 14 48 26 20

SCAD 86 74 13 65 45 36 75 60 21 39 26 30

MC+ 87 78 13 65 47 35 73 60 22 39 26 30

Scenario 2b

Lasso 80 64 13 75 60 12 78 69 11 64 57 9

Enet 85 73 12 82 69 11 84 79 11 68 64 8

AL 56 26 19 54 25 20 59 35 17 48 30 13

Aenet 59 30 18 57 29 18 64 43 15 52 36 11

SCAD 43 21 20 42 20 23 46 24 27 41 25 16

MC+ 44 21 20 43 20 23 46 24 26 41 26 16
1 Approximate value
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Table 4.4: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 repli-
cations of Thomas processes on the domain D for two different values of κ and for the
two different scenarios. Different penalty functions are considered as well as two esti-
mating equations, the regularized Poisson likelihood (PL) and the regularized weighted
Poisson likelihood (WPL).

Method
Regularized PL Regularized WPL Regularized PL Regularized WPL

κ = 5× 10−4 κ = 5× 10−5

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1a

Lasso 0.19 0.19 0.27 0.43 0.29 0.52 0.29 0.60 0.67 0.94 0.53 1.08

Enet 0.27 0.22 0.35 0.72 0.32 0.79 0.34 0.66 0.74 1.21 0.40 1.27

AL 0.05 0.18 0.19 0.14 0.24 0.28 0.19 0.60 0.63 0.57 0.57 0.81

Aenet 0.07 0.19 0.20 0.20 0.27 0.33 0.22 0.60 0.64 0.69 0.55 0.88

SCAD 0.19 0.19 0.27 0.29 0.32 0.43 0.14 0.55 0.57 1.10 0.71 1.31

MC+ 0.20 0.19 0.28 0.32 0.37 0.49 0.15 0.55 0.57 1.15 0.72 1.35

Scenario 1b

Lasso 0.18 1.03 1.05 0.57 0.58 0.81 1.97 8.00 8.23 1.85 2.11 2.81

Enet 0.27 1.32 1.34 0.81 0.73 1.09 1.87 7.73 7.96 1.94 2.02 2.80

AL 0.18 0.73 0.76 0.28 0.43 0.51 1.26 6.23 6.36 1.68 1.70 2.39

Aenet 0.21 0.72 0.75 0.36 0.44 0.57 1.05 5.45 5.55 1.76 1.49 2.31

SCAD 0.26 0.99 1.02 0.39 0.63 0.74 1.20 5.55 5.68 1.71 1.59 2.34

MC+ 0.26 0.99 1.03 0.40 0.64 0.76 1.21 5.53 5.66 1.71 1.59 2.33

Scenario 2a

Lasso 1.45 1.89 2.38 2.24 2.47 3.34 0.94 8.86 8.91 4.53 5.79 7.35

Enet 1.54 1.89 2.44 2.38 2.62 3.54 1.27 6.54 6.66 4.95 4.85 6.93

AL 1.57 1.80 2.39 2.20 2.16 3.09 1.33 6.38 6.52 4.31 4.50 6.23

Aenet 2.05 1.60 2.59 2.64 2.11 3.38 1.95 4.75 5.13 4.89 3.73 6.14

SCAD 2.26 1.75 2.86 3.84 2.43 4.54 3.74 3.45 5.09 5.79 2.73 6.40

MC+ 2.45 1.77 3.02 3.95 2.39 4.61 3.81 3.41 5.12 5.82 2.71 6.42

Scenario 2b

Lasso 3.28 2.87 4.36 3.36 3.20 4.64 3.85 13.41 13.95 4.61 11.20 12.11

Aenet 3.39 2.45 4.18 3.48 2.75 4.44 3.76 7.86 8.71 4.66 6.96 8.37

AL 3.64 1.59 3.97 3.69 1.78 4.10 3.89 8.99 9.80 4.70 6.95 8.39

Aenet 3.71 1.34 3.95 3.79 1.58 4.10 4.03 4.89 6.34 4.88 4.38 6.55

SCAD 4.56 2.22 5.07 4.67 2.27 5.19 5.22 3.27 6.16 5.65 3.18 6.48

MC+ 4.53 2.24 5.05 4.64 2.29 5.18 5.23 3.25 6.15 5.66 3.21 6.51



112

the setting involving large number of covariates. By combining l1 and l2 penalties, the

adaptive elastic net becomes more appropriate in the situation where the number of

covariates is large with the potential existance of strong multicollinearity. This may

explain why adaptive elastic net perform better in our setting than that we considered

in Chapter 2.

We do not consider in this study the extra covariates generated as standard Gaus-

sian white noise independently as we considered in Chapter 2 as in Scenario 1. We are

still able to show in the current chapter that even when the strong multicollinearity

exists such as in Scenario 1a, our proposed methods work well for the penalization

methods satisfying our theorems. However, as probably expected, our methods are

getting difficult to distinguish between the important and the noisy covariates as the

setting becomes more and more complex. Furthermore, we cannot see clearly which

one in which particular cases we could recommend between the regularized PL and

the regularized WPL or vice versa. This is quite different from what we suggested in

Chapter 2 that we would recommend the use of regularized WPL with adaptive lasso

for a very structured and clustered case while we prefer with penalized PL with adap-

tive lasso for the other cases. In the experiments we conduct in this chapter, we find

that the regularized PL and WPL (with adaptive lasso) perform quite similar for the

easiest (Scenario 1a) and the toughest (Scenario 2b) setting. For Scenarios 1b and 2a,

the regularized WPL with adaptive lasso seems to be more favorable. From Table 4.3,

we would recommend in general to combine the regularized WPL with adaptive lasso

to perform variable selection.

Table 4.4 gives the prediction properties of the estimates in terms of biases, standard

deviations (SD), and square root of mean squared errors (RMSE), some criterions we

define by

Bias =
 50∑
j=1
{Ê(β̂j)− β0j}2

 1
2

, SD =
 50∑
j=1

σ̂2
j

 1
2

,RMSE =
 50∑
j=1

Ê(β̂j − β0j)2

 1
2

,

where Ê(β̂j) and σ̂2
j are respectively the empirical mean and variance of the estimates

β̂j, for j = 1, . . . , 50.
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In general, the properties improve with larger κ due to weaker spatial dependence.

Regarding the regularization methods considered in this study, adaptive lasso and

adaptive elastic net perform best. Adaptive elastic net becomes more preferable than

adaptive lasso for a clustered process (κ = 5× 10−5) and for a structured spatial data

(Scenarios 1b and 2b). This is different from the results we obtained in Chapter 2

recommending to use adaptive lasso as the best method. We find here that adaptive

elastic net appears to be more competitive than adaptive lasso especially in the complex

situation: large number of covariates, strong multicollinearity, and complex spatial

structure due to the advantage of combining l1 and l2 penalties.

By employing regularized WPL, we have potentially more efficient estimates espe-

cially for the more clustered process. However, this does not mean that the regularized

WPL is able to improve the RMSE since it usually introduces extra biases. Regular-

ized WPL seems more appropriate for the case having covariates with complex spatial

structure (Scenarios 1b and 2b). Otherwise, regularized PL seems more favorable.

From Table 4.4, when the focus is on prediction, we would recommend to combine the

regularized WPL with adaptive elastic net when we deal with a clustered spatial point

process which have covariates with complex spatial structure while we would recom-

mend the regularized PL combined with adaptive elastic net for a clustered process

with no complex spatial structure. However, if we are faced with a less clustered pro-

cess, the regularized PL combined with adaptive lasso is slightly more preferable for

the case with no complex spatial structure in the covariates while the regularized WPL

combined with adaptive lasso is slightly more recommended for the case with complex

structure in the covariates. Note that the adaptive lasso is slightly better than the

adaptive elastic net for a few cases. Thus, as general advice, we would recommend to

use adaptive elastic net (instead of adaptive lasso) if the focus is for prediction.

Note that the combination between the regularized WPL and adaptive lasso is more

preferable if the focus is on variable selection while adaptive elastic net is more favorable

if the focus is for prediction. To have a more general recommendation, we would

recommend to apply adaptive elastic net when we are faced with complex situation:

large number of covariates, strong multicollinearity, and complex spatial structure.
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By combining l1 and l2 penalties, adaptive elastic net seems to balance the selection

and the prediction properties. This is why in most complex cases (Scenario 2 with

κ = 5 × 10−5), adaptive elastic net decides to choose more covariates than adaptive

lasso (which includes true and noisy covariates) to suffer from slightly less appropriate

properties for the selection performance but to be able to improve significantly the

prediction properties.

4.4.2 Application to forestry datasets

We now consider the study of ecology in a tropical rainforest in Barro Corrolado Island

(BCI), Panama, described previously in Section 4.1. In particular, we are interested

to study the spatial distribution of 3,604 locations of Beilschmiedia pendula Lauraceae

(BPL) trees by estimating its intensity. There have been 93 available covariates which

can be considered including 2 topological attributes, 13 soil properties, and 78 inter-

actions between two soil nutrients. We model the intensity of BPL tree as a log-linear

function of these 93 covariates. Regarding the relatively large number of covariates, we

apply our proposed methods to select few covariates among them and estimate their

coefficients. In particular, we use the regularized Poisson methods with lasso, adaptive

lasso, and SCAD. Note that we center and scale all the covariates to observe which

covariates owing relatively large effect on the intensity.

Table 4.5: Number of selected and non-selected covariates among 93 covariates by
regularized Poisson likelihood with lasso, adaptive lasso, and SCAD regularization.

Method
Regularized PL Regularized WPL

#Selected #No #Selected #No

LASSO 77 16 45 48

AL 50 43 10 83

SCAD 58 35 3 90

We present in Table 4.5 the number of selected and non-selected covariates by each

method. Out of 93 covariates, more than 50% from the total number of covariates are

selected by regularized PL while much less covariates are selected by regularized WPL.
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Table 4.6: 10 common covariates selected

Covariates
Regularized PL Regularized WPL

LASSO AL SCAD LASSO AL SCAD

Elev 0.32 0.40 0.33 0.40 0.32 0

Slope 0.39 0.40 0.36 0.42 0.44 0

Cu 0.56 0.31 0.61 0.39 0.33 0

Mn 0.14 0.14 0.09 0.15 0.22 0

P -0.48 -0.43 -0.54 -0.33 -0.57 -1.07

Zn -0.75 -0.66 -0.83 -0.58 -0.40 0

Al:P -0.30 -0.29 -0.31 -0.28 -0.16 0

Mg:P 0.62 0.29 0.45 0.48 0.42 0

Zn:N 0.21 0.35 0.30 0.01 0 0.62

N.Min:pH 0.44 0.44 0.49 0.25 0.27 0

The regularized PL seems to overfit model by overselecting less informative covariates.

Regarding lasso method, 77 covariates are selected by regularized PL method while

45 covariates are selected by regularized WPL. Lasso tends to keep less important

covariates in the model even if we consider weighted method. This may explain why

lasso cannot satisfy our Theorem 4.3.2. Different from lasso, adaptive lasso and SCAD,

which satisfy our Theorem 4.3.2, seem to perform better by keeping less informative

covariates out from the model. However, regularized WPL combined with SCAD seems

to underfit model by removing some potentially important covariates. Regularized

WPL with adaptive lasso seems to outperform the other methods.

Table 4.6 gives the information regarding 10 covariates commonly selected among

six combination methods. Although the magnitudes of the estimates can be slightly

different, the signs all agree with each other. Some covariates suspected to have rela-

tively high influence to the intensity of BPL include: elevation, slope, concentration of

Copper, Phosphorus and Zinc in the soil as well as the interaction between Magnesium

and Phosphorus. SCAD may loose five (out of six) potentially important covariates by
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removing them from the model.

Figure 4.1: Maps of 3,604 locations of BPL trees and the six covariates suspected to
have high influence on the intensity of BPL trees, row 1: elevation, slope, and Copper,
row 2: Phosphorus Zinc and the interaction between Magnesium and Phosphorus.

Figure 4.2: Estimates of BPL tree intensity (log scale) for each method: row 1: regu-
larized PL, row 2: regularized WPL, column 1 (resp. 2 and 3): lasso (resp. adaptive
lasso and SCAD).

These results suggest that BPL trees favor to live in the areas of higher elevation

and slope with high concentration of Copper in the soil. Furthermore, BPL trees prefer

to live in the areas with lower concentration levels of Phosphorus and Zinc in the soil.

The interaction between Magnesium and Phosphorus gives positive association with

the appearance of BPL trees. The maps of 3,604 locations of BPL trees as well as six

most influencing covariates are depicted in Figure 4.1. We also present the estimate of

the intensity (log scale) for each of the six methods in Figure 4.2.

4.5 Conclusion and discussion

We consider feature selection procedures for spatial point processes intensity estimation

by regularizing the estimating functions derived from Poisson and logistic regression

likelihoods in a setting where the number of parameters diverges as the volume of
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observation domain increases. Under some regularity conditions, we prove that the

estimates obtained from such setting satisfy consistency, sparsity, and normality dis-

tribution. Our results are available for large classes of spatial point processes and for

many penalty functions.

We conduct some simulation experiments to evaluate the finite sample properties

of the regularized Poisson estimator and regularized weighted Poisson estimator. From

the results, we would recommend in general the combination between regularized WPL

and adaptive lasso if the concern is on variable selection. Furthermore, when the

focus is for prediction, the regularized WPL combined with adaptive elastic net is

more preferable for a clustered process considering large number of covariates with the

present of strong multicollinearity and complex spatial structure. Otherwise, we would

recommend to combine the regularized PL with adaptive elastic net. For more general

advice, we would recommend to use the adaptive elastic net than the adaptive lasso

since adaptive elastic net is able to balance the selection and the prediction properties

by combining the l1 and the l2 penalties.

As proposed in Chapter 2, combination between spatstat R package with two R

packages glmnet and ncvreg can work quite fast even when we consider a significantly

larger number of covariates. It is worth noticing that, as other regularization methods,

our methods also rely on the selection of the tuning parameter. As the study in a

classical regression analysis, the BIC-type methods are proposed to obtain selection

consistent estimator (see e.g. Zou et al., 2007; Wang et al., 2007b, 2009). We have

numerical evidence from simulation studies that this criterion can satisfy the selection

consistency when regularization methods satisfying our theorems are considered. Such

a criterion is also used under spatial point process setting by Thurman et al. (2015)

for practical implementation. However, theoretical justification may be needed under

spatial point process setting to support our theoretical results. We leave this direction

for further research.

We apply our methods to the Barro Corrolado Island study to estimate the intensity

of Beilschmiedia pendula Lauraceae (BPL) tree as a log-linear function of 93 environ-

mental covariates. Regularized weighted Poisson likelihood combined with adaptive
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lasso seems to outperform the other methods. Among 93 covariates, we find six spatial

covariates which may have high influence to the appearance of BPL trees, including two

topological attributes: elevation and slope and four soil nutrients: Copper, Phosphorus,

Zinc and the interaction between Magnesium and Phosphorus.

A further work would consider to include other 296 species of trees, which were sur-

veyed in the same observation region as BPL was observed on, to study the existence of

any competition between BPL and other species of trees in the forest. In such a situa-

tion, the methods used in this study may face some computational issues. The Dantzig

selector (Candes and Tao, 2007) might be a good alternative since the implementation

for the linear models (and generalized linear models) results in a linear programming.

Thus, more competitive algorithms is available. It would be interesting to bring this

approach to spatial point process setting and investigate both its theoretical properties

and computational implementation.

4.6 Proofs of the main results

4.6.1 Auxiliary Lemma

The following Lemma is used in the proof of Theorem 4.3.1 and Lemma 4.6.2 (which

includes Lemma 4.6.3 and Theorem 4.3.2). Throughout the proofs, the notation Xn =

OP(xn) or Xn = oP(xn) for a random vector Xn and a sequence of real numbers xn
means that ‖Xn‖ = OP(xn) and ‖Xn‖ = oP(xn). In the same way for a vector Vn

or a squared matrix Mn, the notation Vn = O(xn) and Mn = O(xn) mean that

‖Vn‖ = O(xn) and ‖Mn‖ = O(xn).

Lemma 4.6.1. Under conditions (C.1)-(C.5), the following result holds as n→∞

`(1)
n (w;β0) = OP

(√
pn|Dn|

)
. (4.15)

Proof. Using Campbell Theorems (4.2)-(4.3), the score vector `(1)
n (w;β0) has variance

Var[`(1)
n (w;β0)] = Bn(w;β0) + Cn(w;β0).

Conditions (C.4)-(C.5) allow us to obtain that supu∈Rd

∫
Rd{g(u, v) − 1}dv < ∞. We
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then deduce using conditions (C.1)-(C.3) that

Bn(w;β0) + Cn(w;β0) = O(pn|Dn|).

The result is proved since for any centered real-valued stochastic process Yn with finite
variance Var[Yn], Yn = OP(

√
Var[Yn]).

4.6.2 Proof of Theorem 4.3.1

In the proof of this result and the following ones, the notation κ stands for a generic

constant which may vary from line to line. In particular this constant is independent

of n, β0 and k.

Proof. Let dn = √p
n
(|Dn|−1/2 + an), and k = {K1, k2, . . . , kpn}>. We remind the

reader that the estimate of β0 is defined as the maximum of the function Qn (given
by (4.8)) over Θ, an open convex bounded set of Rpn for any n ≥ 1. For any k such
that ‖k‖ ≤ K <∞, β0 + dnk ∈ Θ for n sufficiently large. Assume this is valid in the
following. To prove Theorem 4.3.1, we aim at proving that for any given ε > 0, there
exists sufficiently large K > 0 such that for n sufficiently large

P
(

sup
‖k‖=K

∆n(k) > 0
)
≤ ε, where ∆n(k) = Qn(w;β0 + dnk)−Qn(w;β0). (4.16)

Equation (4.16) will imply that with probability at least 1 − ε, there exists a local
maximum in the ball {β0 + dnk : ‖k‖ ≤ K}, and therefore a local maximizer β̂ is such
that ‖β̂ − β0‖ = OP(dn). We decompose ∆n(k) as ∆n(k) = T1 + T2 where

T1 = `n(w;β0 + dnk)− `n(w;β0)

T2 = |Dn|
pn∑
j=1

(
pλn,j

(|β0j|)− pλn,j
(|β0j + dnkj|)

)
.

Since ρ(u; ·) is infinitely continuously differentiable and `(2)
n (w;β) = −An(w;β), then

using a second-order Taylor expansion there exists t ∈ (0, 1) such that

T1 = dnk>`(1)
n (w;β0)− 1

2d
2
nk>An(w;β0)k

+ 1
2d

2
nk> (An(w;β0)−An(w;β0 + tdnk)) k.

By conditions (C.2)-(C.3), there exists a nonnegative constant κ such that

1
2‖An(w;β0)−An(w;β0 + tdnk)‖ ≤ κdn|Dn|pn.
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Now, by condition (C.7),

ν̌ := lim inf
n→∞

νmin(|Dn|−1An(w;β0)) = lim inf
n→∞

k> (|Dn|−1An(w;β0)) k
‖k‖2 > 0.

Therefore, we have

T1 ≤ dn‖`(1)
n (w;β0)‖ ‖k‖ − ν̌

2d
2
n|Dn|‖k‖2 + κpnd

3
n|Dn|‖k‖2.

Now by the condition (C.9) and by assumption that an = O(|Dn|−1/2), we obtain
pndn = o(1), so κpnd3

n|Dn|‖k‖2 = o(1)d2
n|Dn|‖k‖2. Hence, for n sufficiently large

T1 ≤ dn‖`(1)
n (w;β0)‖ ‖k‖ − ν̌

4d
2
n|Dn|‖k‖2.

Regarding the term T2,

T2 ≤ T ′2 := |Dn|
s∑
j=1

(
pλn,j

(|β0j|)− pλn,j
(|β0j + dnkj|)

)

since for any j the penalty function pλn,j
is nonnegative and pλn,j

(|β0j|) = 0 for j =
s+ 1, . . . , pn.

From (C.8), for n sufficiently large, pλn,j
is twice continuously differentiable for every

βj = β0j + tdnkj with t ∈ (0, 1). Therefore using a third-order Taylor expansion, there
exist tj ∈ (0, 1), j = 1, . . . , s such that −T ′2 = T ′2,1 + T ′2,2 + T ′2,3, where

T ′2,1 = dn|Dn|
s∑
j=1

kjp
′
λn,j

(|β0j|) sign(β0,j) ≤
√
sandn|Dn| ‖k‖ ≤ d2

n|Dn| ‖k‖,

T ′2,2 = 1
2d

2
n|Dn|

s∑
j=1

k2
jp
′′
λn,j

(|β0j|) ≤ cnd
2
n|Dn|‖k‖2,

T ′2,3 = 1
6d

3
n|Dn|

s∑
j=1

k3
jp
′′′
λn,j

(|β0j + tjdnkj|) ≤ κd3
n|Dn|.

The three inequalities above are obtained using the definitions of an and cn, from
condition (C.8) and from Cauchy-Schwarz inequality. We deduce that for n sufficiently
large

T2 ≤ |T ′2| ≤ 2d2
n|Dn|‖k‖,

and then

∆n(k) ≤ dn‖`(1)
n (w;β0)‖ ‖k‖ − ν̌

4d
2
n|Dn|‖k‖2 + 2d2

n|Dn|‖k‖.
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We now return to (4.16): for n sufficiently large

P
(

sup
‖k‖=K

∆n(k) > 0
)
≤ P

(
‖`(1)
n (w;β0)‖ > ν̌

4dn|Dn|K − 2dn|Dn|
)
.

Since dn|Dn| = O(
√
pn|Dn|), by choosing K large enough, there exists κ such that for

n sufficiently large

P
(

sup
‖k‖=K

∆n(k) > 0
)
≤ P

(
‖`(1)
n (w;β0)‖ > κ

√
pn|Dn|

)
≤ ε

for any given ε > 0 from (4.15) in Lemma 4.6.1.

4.6.3 Proof of Theorem 4.3.2

Before proving Theorem 4.3.2, we present Lemmas 4.6.2-4.6.3. Lemma 4.6.2 is used to

prove Theorem 4.3.2(i) while Lemma 4.6.3 is used to derive Theorem 4.3.2(ii).

Lemma 4.6.2. Assume the conditions (C.1)-(C.8) hold. If an = O(|Dn|−1/2) and
bn
√
|Dn|/p2

n →∞ as n→∞, then with probability tending to 1, for any β1 satisfying
‖β1 − β01‖ = OP(

√
pn/|Dn|), and for any constant K1 > 0,

Q
(
w; (β1

>,0>)>
)

= max
‖β2‖≤K1

√
pn/|Dn|

Q
(
w; (β1

>,β2
>)>

)
.

Proof. Let εn = K1

√
pn/|Dn|. It is sufficient to show that with probability tending

to 1 as n→∞, for any β1 satisfying ‖β1 − β01‖ = OP(
√
pn/|Dn|), we have for any

j = s+ 1, . . . , pn

∂Qn(w;β)
∂βj

< 0 for 0 < βj < εn, and (4.17)

∂Qn(w;β)
∂βj

> 0 for − εn < βj < 0. (4.18)

From (4.7),

∂`n(w;β)
∂βj

= ∂`n(w;β0)
∂βj

+Rn,

where Rn =
∫
Dn
w(u)zj(u)

(
ρ(u;β)− ρ(u;β0)

)
du. Using similar arguments used in the
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proof of Lemma 4.6.1, we can prove that

∂`n(w;β0)
∂βj

= OP(
√
|Dn|).

Let u ∈ Rd. By Taylor expansion, there exists t ∈ (0, 1), such that

ρ(u;β) = ρ(u;β0) + (β − β0)>z(u)ρ(u;β0 + t(β − β0)).

For n sufficiently large, β0+t(β−β0) ∈ Ξ(β0) defined in condition (C.2). Therefore, for
n sufficiently large, we have by Cauchy-Schwarz inequality and conditions (C.2)-(C.3)

|Rn| ≤ κ
∫
Dn

‖β − β0‖‖z(u)‖du = OP(
√
|Dn|p2

n).

We therefore deduce that for any j = s+ 1, . . . , pn

∂`n(w;β)
∂βj

= OP(
√
|Dn|p2

n). (4.19)

Now, we want to prove (4.17). Let 0 < βj < εn and bn be the sequence given
by (4.11). By condition (C.8), bn is well-defined and since by assumption bn

√
|Dn|/p2

n →
∞, in particular, bn > 0 for n sufficiently large. Therefore, for n sufficiently large,

P
(
∂Qn(w;β)

∂βj
< 0

)
= P

(
∂`n(w;β)

∂βj
− |Dn|p′λn,j

(|βj|) sign(βj) < 0
)

= P
(
∂`n(w;β)

∂βj
< |Dn|p′λn,j

(|βj|)
)

≥ P
(
∂`n(w;β)

∂βj
< |Dn|bn

)

= P
∂`n(w;β)

∂βj
<
√
|Dn|p2

n

√√√√ |Dn|
p2
n

bn

 .
The assertion (4.17) is therefore deduced from (4.19) and from assumption that
bn
√
|Dn|/p2

n →∞ as n→∞. We proceed similarly to prove (4.18).

Lemma 4.6.3. Under the conditions (C.1)-(C.8) and the conditions required in
Lemma 4.6.2, the following convergence holds in distribution as n→∞

{Bn,11(w;β01) + Cn,11(w;β01)}−1/2`
(1)
n,1(w;β01) d−→ N (0, Is), (4.20)

where `
(1)
n,1(w;β0) is the first s components of `(1)

n (w;β0) and Bn,11(w;β0)
(resp. Cn,11(w;β0)) is the s× s top-left corner of Bn(w;β0) (resp Cn(w;β0)).
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Proof. By Lemma 4.6.2 and by using Campbell Theorems (4.2)-(4.3),

Var[`(1)
n,1(w;β0)] = Bn,11(w;β0) + Cn,11(w;β0).

The remainder of the proof follows Coeurjolly and Møller (2014). Let Ci = i +
(−1/2, 1/2]d be the unit box centered at i ∈ Zd and define In = {i ∈ Zd, Ci∩Dn 6= ∅}.
Set Dn =

⋃
i∈In

Ci,n, where Ci,n = Ci ∩Dn. We have

`
(1)
n,1(w;β0) =

∑
i∈In

Yi,n

where
Yi,n =

∑
u∈X∩Ci,n

w(u)z01(u)−
∫
Ci,n

w(u)z01(u) exp(β>01z01(u))du.

For any n ≥ 1 and any i ∈ In, Yi,n has zero mean, and by condition (C.4),

sup
n≥1

sup
i∈In

E(‖Yi,n‖2+δ) <∞. (4.21)

If we combine (4.21) with conditions (C.1)-(C.6), we can apply Karácsony (2006,
Theorem 4), a central limit theorem for triangular arrays of random fields.

Proof. We now focus on the proof of Theorem 4.3.2. Since Theorem 4.3.2(i) is proved
by Lemma 4.6.2, we only need to prove Theorem 4.3.2(ii), which is the asymptotic
normality of β̂1. As shown in Theorem 4.3.1, there is a root-(|Dn|/pn) consistent local
maximizer β̂ of Qn(w;β), and it can be shown that there exists an estimator β̂1 in The-
orem 4.3.1 that is a root-(|Dn|/pn) consistent local maximizer of Qn

(
w; (β1

>,0>)>
)
,

which is regarded as a function of β1, and that satisfies

∂Qn(w; β̂)
∂βj

= 0 for j = 1, . . . , s and β̂ = (β̂>1 ,0>)>.

There exists t ∈ (0, 1) and β̃ = β̂ + t(β0 − β̂) such that for j = 1, · · · , s

0 =∂`n(w; β̂)
∂βj

− |Dn|p′λn,j
(|β̂j|) sign(β̂j)

=∂`n(w;β0)
∂βj

+
s∑
l=1

∂2`n(w; β̃)
∂βj∂βl

(β̂l − β0l)− |Dn|p′λn,j
(|β̂j|) sign(β̂j)

=∂`n(w;β0)
∂βj

+
s∑
l=1

∂2`n(w;β0)
∂βj∂βl

(β̂l − β0l) +
s∑
l=1

Ψn,jl(β̂l − β0l)

− |Dn|p′λn,j
(|β0j|) sign(β0j)− |Dn|φn,j, (4.22)



124

where

Ψn,jl = ∂2`n(w; β̃)
∂βj∂βl

− ∂2`n(w;β0)
∂βj∂βl

and φn,j = p′λn,j
(|β̂j|) sign(β̂j) − p′λn,j

(|β0j|) sign(β0j). Since p′λ is a Lipschitz function
by condition (C.8), there exists κ ≥ 0 such that by condition on an

φn,j = p′λn,j
(|β̂j|) sign(β̂j)− p′λn,j

(|β0j|) sign(β0j)

=
(
p′λn,j

(|β̂j|)− p′λn,j
(|β0j|)

)
sign(β0j) + p′λn,j

(|β̂j|)
(

sign(β̂j)− sign(β0j)
)

≤ κ
∣∣∣|β̂j| − |β0j|

∣∣∣+ 2an
≤ κ|β̂j − β0j|+ 2an. (4.23)

We now decompose φn,j as φn,j = T1 + T2 where

T1 = φn,jI(|β̂j − β0j| ≤ r̃n,j) and T2 = φn,jI(|β̂j − β0j| > r̃n,j)

and where r̃n,j is the sequence defined in the condition (C.8). Under this condition, the
following Taylor expansion can be derived for the term T1: there exists t ∈ (0, 1) and
β̌j = β̂j + t(β0j − β̂j) such that

T1 = p′′λn,j
(|β0j|)(β̂j − β0j)I(|β̂j − β0j| ≤ r̃n,j)

+ 1
2(β̂j − β0j)2p′′′λn,j

(|β̃j|)sign(β̌j)I(|β̂j − β0j| ≤ r̃n,j)

= p′′λn,j
(|β0j|)(β̂j − β0j)I(|β̂j − β0j| ≤ r̃n,j) +OP(pn/|Dn|)

where the latter equation ensues from Theorem 4.3.1 and condition (C.8). Again, from
Theorem 4.3.1, I(|β̂j − β0j| ≤ r̃n,j) L1

−→ 1 which implies that I(|β̂j − β0j| ≤ r̃n,j) P−→ 1, so
T1 = p′′λn,j

(|β0j|)(β̂j − β0j)
(
1 + oP(1)

)
+OP(pn/|Dn|).

Regarding the term T2, we have by (4.23)

T2 ≤ {κ|β̂j − β0j|+ 2an} I(|β̂j − β0j| > r̃n,j).

Now, we want to prove that T2 = oP(|Dn|−1/2). Let Sn = |β̂j − β0j| I(|β̂j − β0j| > r̃n,j)
and Tn = I(Sn > |Dn|−1/2). If ETn P−→ 0 then Sn = oP(|Dn|−1/2) which implies that,
by combining with the condition on an, T2 = oP(|Dn|−1/2). Condition (C.8) implies
in particular that for n large enough, r̃n,j >

√
pn/|Dn| >

√
1/|Dn|. Using this, it can

be checked that the binary random variable Tn reduces to Tn = I(|β̂j − β0j| > r̃n,j).
Hence,

ETn = P
(
|β̂j − β0j| > r̃n,j

)
= P

|β̂j − β0j| >
√
pn√
|Dn|

r̃n,j
√
|Dn|

√
pn

 ,
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which implies the result since |β̂j−β0j| = OP(
√
pn/|Dn|) from Theorem 4.3.1 and since√

|Dn|/pnr̃n,j given by condition (C.8). We now deduce that

φn,j = p′′λn,j
(|β0j|)(β̂j − β0j)

(
1 + oP(1)

)
+OP(pn/|Dn|) + oP(|Dn|−1/2). (4.24)

Let `(1)
n,1(w;β0) (resp. `(2)

n,1(w;β0)) be the first s components (resp. s × s top-left
corner) of `(1)

n (w;β0) (resp. `(2)
n (w;β0)). Let also Ψn be the s × s matrix containing

Ψn,jl, j, l = 1, . . . , s. Finally, let the vector p′n, the vector φn and the s× s matrix Mn

be

p′n = {p′λn,1(|β01|) sign(β01), . . . , p′λn,s
(|β0s|) sign(β0s)}>,

φn = {φn,1, . . . , φn,s}>, and
Mn = {Bn,11(w;β0) + Cn,11(w;β0)}−1/2.

We rewrite both sides of (4.22) as

`
(1)
n,1(w;β0) + `

(2)
n,1(w;β0)(β̂1 − β01) + Ψn(β̂1 − β01)− |Dn|p′n − |Dn|φn = 0. (4.25)

By definition of Πn given by (4.14) and from (4.24), we obtain φn = Πn(β̂1−β01)
(
1+

oP(1)
)

+ OP(pn/|Dn|) + oP(|Dn|−1/2). Using this, we deduce, by premultiplying both
sides of (4.25) by Mn, that

Mn`
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01)

= O(|Dn| ‖Mnp′n‖) + oP(|Dn| ‖MnΠn(β̂1 − β01)‖)
+OP(‖Mn‖pn) + oP(‖Mn‖|Dn|1/2)
+OP(‖MnΨn(β̂1 − β01)‖).

Now, ‖Mn‖ = O(1/
√
|Dn|) by condition (C.6), ‖Ψn‖ = OP(

√
pn|Dn|) by conditions

(C.2)-(C.3) and by Theorem 4.3.1, and ‖β̂1 − β01‖ = OP(
√
pn/|Dn|) by Theorem 4.3.1

and by Theorem 4.3.2(i). Finally, since by assumptions an|Dn|1/2 → 0 and cn
√
pn → 0

as n→∞, we deduce that

|Dn| ‖Mnp′n‖ = O(an
√
Dn) = o(1),

|Dn| ‖MnΠn(β̂1 − β01)‖ = OP

(√
|Dn|cn

√
pn
|Dn|

)
= oP(1),

‖Mn‖
√
|Dn| = O(1),

‖Mn‖ pn = O


√√√√ p2

n

|Dn|

 = o(1),
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‖MnΨn(β̂1 − β01)‖ = OP


√√√√ p2

n

|Dn|

 = oP(1).

The last two lines are obtained from (C.9). Therefore, we have that

Mn`
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01) = oP(1).

By (5.41) in Lemma 4.6.3 and by Slutsky’s Theorem, we deduce that

{Bn,11(w;β0) + Cn,11(w;β0)}−1/2{An,11(w;β0) + |Dn|Πn}(β̂1 − β01) d−→ N (0, Is)

as n→∞, which can be rewritten, in particular under (C.7), as

|Dn|1/2Σn(w;β0)−1/2(β̂1 − β01) d−→ N (0, Is)

where Σn(w,β0) is given by (4.13).







CHAPTER 5
The adaptive linearized Dantzig selector for spatial

point processes intensity estimation

5.1 Introduction

Several recent applications involve the observation of spatial point pattern data to-

gether with spatial covariates (see e.g. Waagepetersen, 2007; Møller andWaagepetersen,

2007; Thurman et al., 2015; Renner et al., 2015). Examples include the study of spatial

variation of specific disease risk related to pollution sources (e.g. Diggle, 1990, 2013),

crime rate analysis in a city related to some demographical information (e.g. Shirota

et al., 2017), and modelling of the spatial distribution of trees species in a forest related

to some environmental factors (e.g. Waagepetersen, 2007; Renner and Warton, 2013).

We focus in this chapter on the log-linear model for the intensity function defined by

ρ(u;β) = exp(z(u)>β), u ∈ D ⊂ Rd, (5.1)

where z(u) = {z1(u), . . . , zp(u)}> are the p spatial covariates measured at location u

and β = {β1, . . . , βp}> is a real p-dimensional parameter. Parametric approaches to

estimate β include likelihood-based methods (e.g. Berman and Turner, 1992; Rath-

bun and Cressie, 1994; Møller and Waagepetersen, 2004), estimating equation-based

methods (e.g. Waagepetersen, 2007, 2008; Guan and Shen, 2010; Baddeley et al., 2014;

Guan et al., 2015), and variational approaches (e.g. Baddeley and Dereudre, 2013;

Coeurjolly and Møller, 2014). All these methods are not appropriate when the number

of covariates is large. To tackle this problem, regularized versions of likelihood-based
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and estimating equation-based methods have been recently proposed. Such methods

are able to perform variable selection while keeping interesting properties in terms of

prediction. For Poisson point process models, the idea is to penalize the Poisson like-

lihood by a penalty fuction (see Renner and Warton, 2013; Thurman and Zhu, 2014)

such as l1 penalty. For more general point process models, instead of using the like-

lihood of the processes which often requires computational intensive MCMC methods

(Møller and Waagepetersen, 2004), penalized versions of estimating functions based on

Campbell theorem derived both from Poisson and logistic regression likelihoods have

been developped (see Chapters 2 and 3). Some examples of penalty functions are `2

penalty (e.g. Hoerl and Kennard, 1988), `1 penalty (e.g. Tibshirani, 1996; Zou, 2006),

elastic net (Zou and Hastie, 2005; Zou and Zhang, 2009), SCAD (Fan and Li, 2001),

and MC+ (Zhang, 2010).

Apart from regularization techniques, the Dantzig selector (Candes and Tao, 2007)

has appeared to enrich the class of variable selection methods for linear regression

models. Unlike most other variable selection methods such as lasso, SCAD, and MC+,

which minimize the sum of squared errors subject to a penalty function, the Dantzig

selector minimizes the l1 norm of the coefficients subject to a constraint on the error

terms. Similarly to the lasso method or regularization method involving the SCAD

or MC+ penalty functions, the Dantzig selector is able to perform variable selection

and parameter estimation simultaneously. Nevertheless, unlike the other methods, the

standard linear programming can be used to compute the solution to the Dantzig selec-

tor optimization problem, providing a computationally efficient algorithm. Candes and

Tao (2007) also provided sharp non-asymptotic bounds on the l2 norm of estimated

coefficients error and showed that the error is within a factor of log p of the error that

would be achieved if the locations of the non-zero coefficients were known. As log p

grows very slowly, the Dantzig selector only pays a small price for adaptively choos-

ing the significant variables and is then very suitable for a very large dataset. Some

extended studies have been conducted. For example, James and Radchenko (2009)

studied the computational implementation of the Dantzig selector for generalized linear

models. Antoniadis et al. (2010) extended the theoretical results and the implementa-
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tion of the Dantzig selector for the class of Cox’s proportional hazards model. Dicker

(2010) provided a large sample study of the Dantzig selector and proposed its adaptive

version to establish interesting asymptotic properties of the estimates. Finally, Li et al.

(2014) developed the Dantzig selector for censored linear regression models and eval-

uated its asymptotic properties. To our knowledge, there have not been conducted a

study which develops the Dantzig selector-type approaches for spatial point processes

intensity estimation.

This chapter considers the Dantzig selector-type methods based on estimating equa-

tions to obtain intensity estimates for spatial point processes. In particular, we propose

a modified version of the Dantzig selector based on linear approximation in the con-

straint vector which we call by the adaptive linearized Dantzig selector. Although our

proposed methods may work for a very general estimating function, we focus on es-

timating functions derived from Poisson and logistic regression likelihoods, which, as

detailed in Chapter 2, have strong links with Poisson and logistic regressions. We study

the asymptotic properties of our estimates and prove, under some conditions, that they

satisfy sparsity and asymptotic normality. In addition, we find a closed form expression

of our estimates. We also prove that the complex optimization problem can be reduced

to a linear programming problem, which potentially produces a computationally effi-

cient algorithm. In this study, we do not investigate finite sample properties like oracle

inequalities obtained by Candes and Tao (2007); Bühlmann and Van De Geer (2011),

for example, for simpler models and in the independent case. Even if it seems feasible

to derive finite sample size properties for Poisson point process using for instance con-

centration inequalities obtained by Reynaud-Bouret (2003), it is not straightforwardly

applicable for more general spatial point processes due to the lack of such concentration

inequalities for general spatial point processes. By focusing on asymptotic properties,

we are able to make our results available for very large classes of spatial point processes

which exhibit strong dependence (i.e. very clustered or repulsive point processes).

The rest of this chapter is structured as follows. Section 5.2 presents our general

setting. Section 5.3 details methodology, establishes its asymptotic properties, dis-

cusses the results we obtain and the conditions we impose, and presents computational
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strategy. Section 5.4 reports numerical results from a simulation study. Finally, Sec-

tion 5.5 provides conclusion and discussion. Proofs of the main results as well as the

derivation of the dual to the Dantzig selector optimization problem are deferred to

Sections 5.6.1-5.6.5.

5.2 Preliminaries

Let X be a spatial point process on Rd. We view X as a locally finite random subset of

Rd. Let D ⊂ Rd be a compact set of Lebesgue measure |D| which will play the role of

the observation domain. Suppose X has intensity function ρ and second-order product

density ρ(2). Campbell theorem (see e.g. Møller and Waagepetersen, 2004) states that,

for any function k : Rd → [0,∞) or k : Rd × Rd → [0,∞)

E
∑
u∈X

k(u) =
∫
k(u)ρ(u)du (5.2)

E
6=∑

u,v∈X
k(u, v) =

∫ ∫
k(u, v)ρ(2)(u, v)dudv. (5.3)

We may interpret ρ(u)du as the probability of occurence of a point in an infinitesimally

small ball with centre u and volume du. Intuitively, ρ(2)(u, v)dudv is the probability

for observing a pair of points from X occuring jointly in each of two infinitesimally

small balls with centres u, v and volume du, dv. For further background material on

spatial point processes, see for example Møller and Waagepetersen (2004); Illian et al.

(2008).

Given a p × p matrix M and a p × 1 vector V, we denote the transposition and

the complement of matrix M (resp. vector V) by M> and Mc (resp. by V> and

Vc). Let ‖V‖r = (∑p
j=1 |Vj|r)1/r for 0 < r < ∞, ‖V‖0 = #{j, Vj 6= 0} and ‖V‖∞ =

max1≤j≤p |Vj|. Let ‖M‖ = ‖M‖2 = (∑p
i=1

∑p
j=1M

2
ij)1/2.

Finally, we recall the classical definition of strong mixing coefficients adapted to

spatial point processes (e.g. Politis et al., 1998): for k, l ∈ N ∪ {∞} and q ≥ 1, define

αk,l(q) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F (Λ1), B ∈ F (Λ2),

Λ1 ∈ B(Rd),Λ2 ∈ B(Rd), |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ q}, (5.4)
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where F is the σ-algebra generated by X∩Λi, i = 1, 2, d(Λ1,Λ2) is the minimal distance

between sets Λ1 and Λ2, and B(Rd) denotes the class of Borel sets in Rd.

5.3 The adaptive linearized Dantzig selector for spa-
tial point processes

In this section, we present the Dantzig selector-type methods, based on linear approx-

imation in the constraint vector, to estimate the intensity of spatial point processes.

More precisely, we describe the methodology in Section 5.3.1 and present the asymp-

totic properties in Section 5.3.2. Computational aspects are discussed in Section 5.3.3.

5.3.1 Methodology

Consider a log-linear form of the intensity ρ(·;β) given by (5.1). One of the traditional

ways to obtain the estimates is by maximizing the likelihood function `(β) or by solving

U(β) = 0, where U(β) is an unbiased estimating function. In this study, we consider

estimating equations derived from Poisson (Waagepetersen, 2007; Guan and Shen,

2010) and logistic regression (Baddeley et al., 2014) likelihoods defined respectively by

UPL(w;β) =
∑

u∈X∩D
w(u)z(u)−

∫
D
w(u)z(u)ρ(u;β)du, (5.5)

ULRL(w;β) =
∑

u∈X∩D

w(u)z(u)δ(u)
δ(u) + ρ(u;β) −

∫
D

w(u)z(u)ρ(u;β)δ(u)
δ(u) + ρ(u;β) du. (5.6)

Their corresponding likelihoods are

`PL(w;β) =
∑

u∈X∩D
w(u) log ρ(u;β)−

∫
D
w(u)ρ(u;β)du, (5.7)

`LRL(w;β) =
∑

u∈X∩D
w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)

−
∫
D
w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du, (5.8)

where w(·) is a weight function depending on the first and the second-order character-

ictics of X and δ(·) is a nonnegative real-valued function. We refer the reader to Guan

and Shen (2010) for further details on the weight function w(·) and to Baddeley et al.
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(2014) for the role of function δ(·). Note that, as explained in Chapter 2 (Section 2.3),

(5.5) and (5.6) are unbiased estimating equations.

It is worth emphasizing that maximizing (5.7)-(5.8) cannot perform variable se-

lection. To do so, regularization methods (see Chapter 2) are usually introduced by

maximizing a penalized version of (5.7)-(5.8)

Q(w;β) = `(w;β)− |D|
p∑
j=1

pλj
(|βj|), (5.9)

where `(w;β) is either the Poisson likelihood (5.7) or the logistic regression likelihood

(5.8), pλ is a penalty function parameterized by λ ≥ 0 which can change for each

component j, j = 1, · · · , p, and |D| the volume of the observation domain which plays

the role as the sample size in the spatial point process framework. We call the pa-

rameter λ by tuning parameter. Note that if pλ is a l1 penalty, it corresponds to lasso

regularization method (Tibshirani, 1996; Zou, 2006), and (5.9) becomes equivalent to

min
p∑
j=1

λ̃j|βj| subject to |`(w;β)| ≤ κ, (5.10)

where λ̃j = |D|λj, j = 1, 2, . . . , p, are the modified versions of λj given by (5.9) and κ

is a positive constant.

The Dantzig selector has recently been proposed by Candes and Tao (2007) as an

alternative to lasso-type techniques. In this chapter, we consider the adaptive version

of the Dantzig selector for spatial point processes intensity estimation. The estimator

is defined as the solution to

min
p∑
j=1

λ̃j|βj| subject to |Uj(w;β)| ≤ λ̃j for j = 1, . . . , p, (5.11)

where and Uj(w;β) is the jth element of either (5.5) or (5.6). When the specific need

is unnecessary, we denote the estimating function by U(w;β) to simplify notation. Of

course we could have simply used the notation λj in (5.11) instead of λ̃j. We decided

to make a difference between λj and λ̃j = λj|D| so that we can further compare the

assumptions we impose on λ̃j for the ALDS and the assumptions we made on λj when

we focused on the adaptive lasso method.
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Now, it looks more clearly that (5.11) is quite similar to (5.10). With the same

objective function, the adaptive Dantzig selector uses the score vector as a constraint,

while the adaptive lasso uses the likelihood function as a constraint. Similarities be-

tween lasso and Dantzig selector in linear regression contexts have been studied by

Meinshausen et al. (2007); Bickel et al. (2009); James et al. (2009); Asif and Romberg

(2010).

It is to be noticed that (5.11) can be rewritten in a matrix form as

min ‖Λβ‖1 subject to
∥∥∥∥Λ−1U(w;β)

∥∥∥∥
∞
≤ 1, (5.12)

where Λ = diag{λ̃1, · · · , λ̃p}. One possible challenge of (5.12) is that it may be a

non-convex optimization problem due to the possible nonconvexity of the constraint

vector. To ease some theoretical difficulties, similarly to Dicker (2010, Chapter 3), we

propose a convex version of (5.12) based on a linear approximation to the constraint

vector. We call this approach by the adaptive linearized Dantzig selector (ALDS) and

we define the criterion by

min ‖Λβ‖1 subject to
∥∥∥∥Λ−1

{
U(w; β̃) + A(w; β̃)(β̃ − β)

}∥∥∥∥
∞
≤ 1, (5.13)

where β̃ is an initial estimator and −A(w; β̃) is the derivative of U(w; β̃) evaluated

at β̃. We provide more details on its role in the following section. For the rest of this

chapter, we denote by β̂ the solution of (5.13).

5.3.2 Asymptotic results

In this section, we present asymptotic results for the adaptive linearized Dantzig selec-

tor estimator when |Dn| → ∞ as n → ∞ with a fixed number of parameters p. More

precisely, we consider increasing domain asymptotic, i.e. X is a d-dimensional point

process observed over a sequence of observation domain D = Dn, n = 1, 2, . . . which

expands to Rd as n → ∞. The modified tuning parameters λ̃j = λ̃n,j for j = 1, . . . , p

are now indexed by n, so Λn = diag{λ̃n,1, · · · , λ̃n,p}. We only present in this section the

results for the methods considering estimating equations derived from the Poisson like-
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lihood. For sake of conciseness, we do not present asymptotic results for the methods

using estimating equations derived from the logistic regression likelihood. The results

are very similar. The main difference is lying in the conditions (C.6)-(C.8) for which

the matrices An,Bn, and Cn have a different expression (see Remark 5.3.3).

5.3.2.1 Notation and assumptions

Throughout this section and Sections 5.6.1-5.6.5, let

Un(w;β) = Un,PL(w;β) =
∑

u∈X∩Dn

w(u)z(u)−
∫
Dn

w(u)z(u)ρ(u;β)du (5.14)

be the score vector of the weighted Poisson likelihood.

We denote by β0 = {β01, . . . , β0s, β0(s+1), . . . , β0p}> = {β>01,β
>
02}> = (β>01,0>)>

the p-dimensional vector of true coefficients, where β01 is the s-dimensional vector of

nonzero coefficients and β02 is the (p − s)-dimensional vector of zero coefficients. Let

Λn,1 = diag{λ̃n,1, · · · , λ̃n,s} and Λn,2 = diag{λ̃n,s+1, · · · , λ̃n,p} denote the decomposi-

tion of Λn.

We define the p× p matrices An(w;β0),Bn(w;β0) and Cn(w;β0) by

An(w;β0) =
∫
Dn

w(u)z(u)z(u)>ρ(u;β0)du,

Bn(w;β0) =
∫
Dn

w(u)2z(u)z(u)>ρ(u;β0)du,

Cn(w;β0) =
∫
Dn

∫
Dn

w(u)w(v)z(u)z(v)>{g(u, v)− 1}ρ(u;β0)ρ(v;β0)dudv,

where g(u, v) is the pair correlation function indicating the attraction (or repulsion)

among points given by

g(u, v) = ρ(2)(u, v)
ρ(u)ρ(v) ,

when both ρ and ρ(2) exist with the convention 0/0 = 0. For a Poisson point process,

we have g(u, v) = 1 since ρ(2)(u, v) = ρ(u)ρ(v). If, for example, g(u, v) > 1 (resp.

g(u, v) < 1), this indicates that pair of points are more likely (resp. less likely) to

occur at locations u, v than for a Poisson point process.

We denote by An,11(w;β0) (resp. Bn,11(w;β0),Cn,11(w;β0)) the s×s top-left corner
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of An(w;β0) (resp. Bn(w;β0),Cn(w;β0)).

For any β ∈ Θ, we decompose An(w;β) by

An(w;β) =


An,1(w;β)

An,2(w;β)

 =


An,11(w;β) An,12(w;β)

An,21(w;β) An,22(w;β)

 , (5.15)

where An,1(w;β) (resp. A2(w;β)) is the first s×p (resp. the following (p−s)×p) com-

ponents of An(w;β) and An,11(w;β) (resp. An,12(w;β), An,21(w;β), and An,22(w;β))

is the s × s top-left corner (resp. the s × (p − s) top-right corner, the (p − s) × s

bottom-left corner, and the (p− s)× (p− s) bottom-right corner) of An(w;β).

Consider the following conditions (C.1)-(C.9) which are required to derive our asymp-

totic results:

(C.1) For every n ≥ 1, Dn = nE = {ne : e ∈ E}, where E ⊂ Rd is convex, compact,

and contains the origin of Rd in its interior.

(C.2) We assume that the intensity function has the log-linear specification given

by (5.1) where β ∈ Θ and Θ is an open convex bounded set of Rp.

(C.3) The covariates z and the weight function w satisfy

sup
u∈Rd

||z(u)|| <∞ and sup
u∈Rd

|w(u)| <∞.

(C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2 + t, the product density

ρ(k) exists and satisfies ρ(k) <∞.

(C.5) For the strong mixing coefficients (5.4), we assume that there exists some t̃ >

d(2 + t)/t such that α2,∞(q) = O(q−t̃).

(C.6) There exists a p× p positive definite matrix I0 such that for all sufficiently large

n, |Dn|−1{Bn(w;β0) + Cn(w;β0)} ≥ I0.
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(C.7) There exists a p× p positive definite matrix I′0 such that for all sufficiently large

n, we have |Dn|−1An(w;β0) ≥ I′0.

(C.8) The initial estimate β̃ satisfies ‖β̃ − β0‖ = OP(|Dn|−1/2). Furthermore, we

assume that
∥∥∥An,11(w;β0)An,11(w; β̃)−1 − Is

∥∥∥ = oP(1), where Is is an identity

matrix with dimension s.

(C.9) Consider the sequences ãn = maxj=1,...,s λ̃n,j and b̃n = minj=s+1,...,p λ̃n,j. We

assume that ãn|Dn|−1/2 → 0 and b̃n|Dn|−1/2 →∞ as n→∞.

Conditions (C.1)-(C.7) are similar to the ones required in Chapter 2. Although

condition (C.8) looks quite strong, the initial estimates required by this condition

can be satisfied by considering, for example, an estimate obtained from estimating

equation-based methods developed by Guan and Shen (2010); Baddeley et al. (2014),

i.e. estimating equations described in Chapter 2 (Section 2.3) when no regularization

is considered. Condition (C.9) is also imposed in Chapter 2 since the sequences ãn
and b̃n used in the current chapter are similar to the ones defined in Chapter 2 when

the adaptive lasso penalty is considered. For a moment, denote an = ãn|Dn| and

bn = b̃n|Dn|, the condition (C.9) becomes an
√
|Dn| → 0 and bn

√
|Dn| → ∞, which is

exactly the assumption we imposed on the regularization methods using the adaptive

lasso technique (see Theorem 3.6.2 in Chapter 2).

5.3.2.2 Main results

We state our main results here. Proofs are relegated to Sections 5.6.1-5.6.5.

The optimization problem (5.13) allows us to characterize the solution β̂ in terms of

primal and dual feasibility and complementary slackness conditions stated in Lemma 5.3.1.

Lemma 5.3.1. If there exists α̂ ∈ Rp such that∥∥∥Λ−1
n {Un(w; β̃) + An(w; β̃)(β̃ − β̂)}

∥∥∥
∞
≤ 1, (5.16)

‖Λ−1
n An(w; β̃)Λ−1

n α̂‖∞ ≤ 1, (5.17)
α̂>Λ−1

n An(w; β̃)β̂ = ‖Λnβ̂‖1, (5.18)
α̂>Λ−1

n

{
Un(w; β̃) + An(w; β̃)(β̃ − β̂)

}
= ‖α̂‖1, (5.19)



139

then β̂ is the solution to (5.13).

In particular, conditions (5.16) and (5.17) are primal and dual feasibility condi-

tions, while (5.18) and (5.19) are complementary slackness conditions. Inspired by

Asif (2008), we follow the main arguments by Boyd and Vandenberghe (2004, section

5.2) to derive the Dantzig selectors’ dual optimization problem to (5.13), given by

(5.31), and present them in detail in Section 5.6.2. If the vector α̂ in Lemma 5.3.1 is

defined as the solution to (5.31), Lemma 5.3.1 implies that conditions (5.16)-(5.19) are

necessary and sufficient for (β̂, α̂) to be the unique primal-dual solution pair to (5.13)

and (5.31).

Considering Lemma 5.3.1, we provide in Theorem 5.3.1 the primal-dual pair solution

(β̂, α̂). Furthermore, under some conditions, we find a closed form expression for β̂

which is valid with probability tending to 1.

Theorem 5.3.1. Suppose the conditions (C.1)-(C.3) and (C.7)-(C.9) hold. Then, with
probablity tending to 1, the solutions to (5.13) and (5.31) denoted respectively by β̂ =
{β̂
>
1 , β̂

>
2 }> and α̂ = {α̂>1 , α̂>2 }> are given by

β̂1 = {An,11(w; β̃)}−1
{
Un,1(w; β̃) + An,1(w; β̃)β̃ −Λn,1 sign(α̂1)

}
, (5.20)

β̂2 = 0, (5.21)
α̂1 = Λn,1{An,11(w; β̃)}−1Λn,1 sign(β̂1), (5.22)
α̂2 = 0. (5.23)

Remark 5.3.1. Condition (C.9) is the key in Theorem 5.3.1. Suppose we consider
a constant λ̃n as used by the original Dantzig selector (Candes and Tao, 2007). This
implies that ãn = b̃n = λ̃n, so the two conditions ãn|Dn|−1/2 → 0 and b̃n|Dn|−1/2 →∞
as n → ∞ cannot be satisfied simultaneously. This justifies the introduction of the
adaptive version of the Dantzig selector.

In Theorem 5.3.1, by the main argument stated by condition (C.9), our estima-

tor possesses sparsity, meaning that our estimator will correctly set β2 to zero with

probability tending to 1 as n → ∞. Furthermore, we demonstrate in Theorem 5.3.2

that the first s elements of the estimator proposed by Theorem 5.3.1, that is β̂1, is

asymptotically normal.
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Theorem 5.3.2. Assume the conditions (C.1)-(C.9) hold. Then, β̂1 defined by Theo-
rem 5.3.1 satisfies:

|Dn|1/2Σn(w;β0)−1/2(β̂1 − β01) d−→ N (0, Is),

where

Σn(w;β0) =|Dn|{An,11(w;β0)}−1{Bn,11(w;β0) + Cn,11(w;β0)}
{An,11(w;β0)}−1. (5.24)

As a consequence, Σn(w;β0) is the asymptotic covariance matrix of β̂1. Note that
Σn(w;β0)−1/2 is the inverse of Σn(w;β0)1/2, where Σn(w;β0)1/2 is any square matrix
with Σn(w;β0)1/2

(
Σn(w;β0)1/2

)>
= Σn(w;β0).

Remark 5.3.2. We observe that the asymptotic covariance matrix of β̂1 is the same
one as the one derived from the Poisson likelihood regularized by an adaptive lasso
penalty, see Theorem 3.6.2 in Chapter 2.

Remark 5.3.3. Theorems 5.3.1 and 5.3.2 remain true for the adaptive linearized
Dantzig selector using estimating functions derived from logistic regression likelihood if
we extend the condition (C.3) by adding supu∈Rd δ(u) < ∞, and replace in the expres-
sion of the matrices An,Bn, and Cn, w(u) by w(u)δ(u)/(ρ(u;β0) + δ(u)), u ∈ Dn.

Condition (C.8) has also to be enriched; we require that β̃ is such that ∆n(β̃) =
OP(1), where ∆n(β̃) is defined by (5.39) in Section 5.6.4 with Un,1(β0) is given by
(5.8) and An,11(w;β0) is the corresponding s× s top-left corner of An(w;β0).

We show in Theorems 5.3.1 and 5.3.2 that the sparsity and the asymptotic normality

are valid for the adaptive linearized Dantzig selector esimates. Since (5.24) is the

variance-covariance matrix of β̂1, this implies that we have the same efficiency as the

estimator of β01 obtained by maximizing the likelihood function or solving estimating

equations based on the submodel knowing that β02 = 0. This shows that when n is

sufficiently large, our estimator is as efficient as the oracle one.

5.3.3 Computations

This section discusses the numerical aspects used to compute the adaptive linearized

Dantzig selector estimates. We aim to solve (5.13) using an iterative algorithm which

is quite similar to the one proposed by James and Radchenko (2009) for computing

the Dantzig selector estimator for generalized linear models. Another computational

strategy seems also possible using primal-dual pursuit algorithm as proposed by Asif
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(2008) for linear models. An extension to spatial point process setting may be feasible.

This has not been investigated in this chapter.

In this section, we present the computational implementation for the method using

the estimating functions derived from the Poisson likelihood. A similar approach can

be derived for the version using the logistic regression likelihood.

We first review in Section 5.3.3.1 the method proposed by Berman and Turner

(1992) who proved that fitting a Poisson point process is nearly equivalent to fitting a

weighted Poisson generalized linear models. Second, we present in Section 5.3.3.2 the

computational algorithm to compute the adaptive linearized Dantzig selector estimates

based on the results obtained in Section 5.3.3.1. Third, the final procedure depends on

a tuning parameter, a problem discussed in Section 5.3.3.3.

5.3.3.1 Weighted Poisson regression

Berman and Turner (1992) developed a numerical quadrature method to approximate

maximum likelihood estimation for an inhomogeneous Poisson point process. Suppose

we approximate the integral term in (5.5) by Riemann sum approximation

∫
D
w(u)z(u)ρ(u;β)du ≈

M∑
i=1

viwiz(ui)ρ(ui;β)

where ui, i = 1, . . . ,M are points in D consisting of the m data points and M − m

dummy points. To simplify notation, note that vi (resp. wi) means v(ui) (resp. w(ui)).

The quadrature weights vi > 0 are such that ∑i vi = |D|. To implement this method,

the domain is firstly partitioned into M rectangular pixels of equal area, denoted by

a. Then one dummy point is placed in the center of the pixel. Let ∆i be an indicator

whether the point is an event of point process (∆i = 1) or a dummy point (∆i = 0).

Without loss of generality, let u1, . . . , um be the observed events and um+1, . . . , uM be

the dummy points. Thus, (5.5) can be approximated and rewritten as

U(β) ≈
M∑
i

viwiz(ui){yi − ρ(ui;β)}, where yi = v−1
i ∆i. (5.25)

Equation (5.25) is formally equivalent to the weighted score function of independent
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Poisson variables yi with weights viwi. Thus, standard statistical software for gener-

alized linear models can be used to obtain the estimates. This fact is implemented in

the spatstat R package by ppm function (Baddeley et al., 2015).

5.3.3.2 The adaptive linearized Dantzig selector algorithm

Before presenting the main algorithm, let us first consider the following matrices and

vectors. We define the M × p matrix z and the M ×M matrix v by

z =



z1(u1) z2(u1) . . . zp(u1)

... ... . . . ...

z1(uM) z2(uM) . . . zp(uM)


v = diag{v1w1, . . . , vMwM},

where v1, . . . , vM and w1, . . . , wM are, respectively, the quadrature weights and the

weight function obtained from (5.25). We remind the readers that M is the total

number of observed points and dummy points which plays the same role as the number

of observations in classical regression analysis. We also denote the ith row and the jth

column of the matrix z by the vectors zi· and z·j, respectively, given by

zi· = {z1(ui), . . . , zp(ui)}>, for i = 1, . . . ,M,

z·j = {zj(u1), . . . , zj(uM)}>, for j = 1, . . . , p.

By convention, zij = zj(ui).

Now, by (5.25), the adaptive linearized Dantzig selector criterion defined in (5.13)

can be rewritten as

min
p∑
j=1

λ̃j|βj| subject to
∣∣∣z>·jv(y− exp(zβ̃)

)
+ z>·jv exp(zβ̃)z>·j(β̃ − β)

∣∣∣ ≤ λ̃j (5.26)

where y = {y1, · · · , yM}> is given by (5.25).

Note that, given an initial estimate β̃, (5.26) is a linear optimization problem which

can be solved direcly by linear programming. Form a theoretical point of view, we
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have already mentioned that the initial estimates obtained by maximizing the Poisson

likelihood or the logistic regression likelihood satisfy condition (C.8) which is sufficient

to derive the asymptotic results. In practice, these proposed initial estimates can be

computed easily by ppm function in the spatstat R package. However, these choices

cannot always perform well when the number of parameters to estimate is large due

to unstability and convergence issues. Another alternative is to start with β̃ obtained

as the ridge regression estimate, i.e. maximizing `(w;β) −∑p
j=1 λ̃β

2
j , to obtain more

stable initial estimate.

In this study, instead of using a single initial estimate, we propose an iterative

algorithm to compute the estimate for which it is always updated until convergence

criterion is held. This will guarantee the stability of the results, hence, improve the

prediction. More precisely, our iterative algorithm is divided into three steps, explained

as follows. Our approach is quite similar to the ones proposed by James and Radchenko

(2009) and can be viewed as its extension as we consider the weights viwi, i = 1, . . . ,M

in Step 2 and use the adaptive version of the Dantzig selector in Step 3.

Step 0. Set the initial estimates β̃(0).

Step 1. Note that (k) denotes the corresponding estimate from the kth iteration. At

the (k + 1)th iteration, compute Ωi = exp(z>i· β̃
(k)) and Yi = ∑p

j=1 zijβ̃
(k)
j +(

yi − exp(z>i· β̃
(k))

)
/Ωi, where yi is given by (5.25).

Step 2. Define Ỹi = Yi
√
viwiΩi and z̃ij = zij

√
viwiΩi.

Step 3. Use the adaptive Dantzig selector for linear models

min
p∑
j=1

λ̃j|βj| subject to |z̃>·j(Ỹ − z̃β)| ≤ λ̃j for j = 1, . . . , p,

to compute β̃(k+1).

Step 4. Repeat Steps 1-3 until convergence.
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More precisely, Step 3 is equivalent to

min
p∑
j=1

λ̃j|βj| subject to |z>·jvΩ(Y − zβ)| ≤ λ̃j for j = 1, . . . , p, (5.27)

where Ω is the M ×M matrix Ω = diag{Ω1, . . . ,ΩM}. Note that (5.27) can be solved

by linear programming. Furthermore, for any given β̃, (5.27) is the same as the ones

defined by (5.26), so the solution to (5.27) is in the feasible region for (5.26).

5.3.3.3 Tuning parameter selection

Our procedure relies on a tuning parameter λ̃j = j = 1, · · · , p. Similarly to Chapters

2 and 3, we define λ̃j = λ̃|β̂j(ridge)|−1, where λ̃ is the modified tuning parameter and

β̂(ridge) is the estimate obtained from ridge regression. Therefore, we need to choose

an appropriate λ̃, which is a scalar, in order to achieve good performance. Some

previous studies have been conducted by Zou et al. (2007); Wang et al. (2007b, 2009)

who suggested to use BIC-type methods to select the tuning parameter. We follow

these works and suggest to choose λ̃ which minimizes WQBIC(λ̃), a weighted version

of the BIC criterion, defined by

WQBIC(λ̃) = −2`(w; β̂(λ̃)) + s(λ̃) log |D|,

where `(w; β̂(λ̃)) is the Poisson likelihood function, s(λ̃) = ∑p
j=1 I{β̂j(λ̃) 6= 0} is the

number of selected covariates with nonzero regression coefficients and |D| is the volume

of observation domain.

5.4 Simulation study

In this section, we aim to highlight the finite sample properties of our estimates in

a simulation experiment and compare them to the estimates obtained by maximizing

the Poisson likelihood penalized by adaptive lasso penalty previously developped in

Chapters 2 and 3. We consider a setting similar to the ones used in Chapters 2 and

3. We start with relatively complex situation where strong multicollinearity is present

(Scenarios 1a and 2a) and we then consider more complex setting using real datasets
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(Scenarios 1b and 2b). We have two different scenarios (Scenarios 1 and 2) for which

the number of true covariates as well as their coefficients are set to be different in each

setting.

We set the spatial domain to be D = [0, 1000]× [0, 500] and set the mean number

of points over D to be 1600. The true intensity function is set to be ρ(u;β0) =

exp(z(u)>β0), where z(u) = {1, z1(u), . . . , z50(u)}> and β0 = {β0, β01, · · · , β050}. Here,

we do not estimate β0 since it is chosen such that each realization has 1600 points in

average. We consider two different scenarios described as follows.

Scenario 1. We define the true vector β0 = {β0, 2, 0.75, 0, · · · , 0}. To define the co-

variates, we center and scale the 201 × 101 pixel images of elevation (x1)

and gradient of elevation (x2) contained in the bei datasets of spatstat

library in R (R Core Team, 2016), and use them as two true covariates. In

addition, we create two settings to define extra covariates:

a. First, we generate 48 201× 101 pixel images of covariates as a standard

Gaussian white noise and denote them by x3, . . . , x50. Second, we trans-

form them, together with x1 and x2, to have multicollinearity. In par-

ticular, we define z(u) = V>x(u), where x(u) = {x1(u), . . . , x50(u)}>.

More precisely, V is such that Ω = V>V, and (Ω)ij = (Ω)ji = 0.7|i−j|

for i, j = 1, . . . , 50, except (Ω)12 = (Ω)21 = 0, to preserve the correlation

between x1 and x2.

b. We center and scale the 13 50 × 25 pixel images of soil nutrients ob-

tained from the study in tropical forest of Barro Colorado Island (BCI)

in central Panama (see Condit, 1998; Hubbell et al., 1999, 2005) and

convert them to be 201 × 101 pixel images as x1 and x2. In addi-

tion, we consider the interaction between two soil nutrients such that

we have 50 covariates in total. We use 48 covariates (13 soil nutri-

ents and 35 interactions between them) as the extra covariates. To-

gether with x1 and x2, we keep the structure of the covariance matrix

to preserve the complexity of the situation. In this setting, we have
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z(u) = x(u) = {1, x1(u), . . . , x50(u)}>.

Scenario 2. In this setting, we consider five true covariates out of 50 covariates. In

addition of elevation (x1) and gradient of elevation (x2), we convert 50×25

pixel images of concentration of Aluminium (x3), Boron (x4) and Calcium

(x5) in the soil to be 201× 101 pixel images as x1 and x2 and set them to

be other three true covariates. All five covariates are centered and scaled.

We define the true coefficient vector β0 = {β0, 5, 4, 3, 2, 1, 0, · · · , 0}. As in

Scenario 1, we make two settings to define extra 45 covariates:

a. This setting is similar to that of Scenario 1a. We generate 45 201× 101

pixel images of covariates as standard Gaussian white noise, denote

them by x6, . . . , x50, and define z(u) = V>x(u), where V is such that

Ω = V>V, and (Ω)ij = (Ω)ji = 0.7|i−j| for i, j = 1, . . . , 50, except

(Ω)kl = (Ω)lk = 0, for k, l = 1, · · · , 5, k 6= l, to preserve the correlation

among x1 - x5.

b. We use the real dataset as in Scenario 1b and consider similar setting. In

this setting, we define 5 true covariates which have different regression

coefficients as in Scenario 1b.

With these scenarios, we simulate 2000 spatial point patterns from a Thomas point

process using the rThomas function in the spatstat package. We set the interaction

parameter κ to be (κ = 5× 10−4, κ = 5× 10−5) and let ω = 20. Briefly, smaller values

of ω correspond to tighter clusters, and smaller values of κ correspond to fewer number

of parents (see e.g., Møller and Waagepetersen, 2004, for further details regarding the

Thomas point process).

We present in Table 5.1 the selection properties of our estimates. We consider the

true positive rate (TPR), the false positive rate (FPR), and the positive predictive

value (PPV) to evaluate the selection properties of the estimates. We want to find

the methods which have a TPR close to 100% meaning that it can select correctly

all the true covariates, a FPR close to 0 showing that it can remove all the extra
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Table 5.1: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D for two different values of κ and
for the two different scenarios. The Poisson likelihood (PL) and the weighted Poisson
likelihood (WPL) are combined with two feature selection procedures: the adaptive
lasso (AL) and the adaptive linearized Dantzig selector (ALDS).

Method
PL WPL PL WPL

κ = 5× 10−4 κ = 5× 10−5

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1a

AL 1001 1 92 97 01 96 95 3 70 70 01 98

ALDS 1001 01 95 50 01 1001 92 2 80 50 01 93

Scenario 1b

AL 1001 26 19 95 4 83 99 85 5 29 6 39

ALDS 1001 16 31 51 01 1001 98 61 6 19 1 31

Scenario 2a

AL 96 48 19 85 36 27 96 64 15 45 17 31

ALDS 84 19 36 01 01 01 82 26 33 01 01 1

Scenario 2b

AL 56 27 19 54 26 19 59 33 18 48 27 13

ALDS 46 14 28 01 01 01 46 14 30 01 01 01

1 Approximate value

covariates from the model, and a PPV close to 100% indicating that, for Scenario 1

(resp. Scenario 2), it can keep exactly the two (resp. five) true covariates and remove

all the 48 (resp. 45) extra covariates.

We do not consider in this chapter the extra covariates generated as standard

Gaussian white noise independently as considered in Chapter 2 (Scenario 1). We

are still able to show that even when the strong multicollinearity exists such as in

Scenario 1a, our proposed methods work well especially using unweighted methods.

However, as probably expected, our methods are getting difficult to distinguish between

the important and the noisy covariates as the setting becomes more and more complex.
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Table 5.2: Empirical prediction properties (Bias, SD, and RMSE) based on 2000 repli-
cations of Thomas processes on the domain D for two different values of κ and for the
two different scenarios. The Poisson likelihood (PL) and the weighted Poisson likeli-
hood (WPL) are combined with two feature selection procedures: the adaptive lasso
(AL) and the adaptive linearized Dantzig selector (ALDS).

Method
PL WPL PL WPL

κ = 5× 10−4 κ = 5× 10−5

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1a

AL 0.05 0.18 0.19 0.15 0.25 0.29 0.20 0.59 0.63 0.57 0.56 0.80

ALDS 0.05 0.19 0.20 0.82 0.19 0.84 0.22 0.60 0.64 0.87 0.52 1.02

Scenario 1b

AL 1.26 6.13 6.26 1.63 1.81 2.43 0.18 0.71 0.73 0.28 0.40 0.49

ALDS 0.68 3.92 3.98 1.80 0.65 1.92 0.16 0.54 0.56 0.87 0.20 0.90

Scenario 2a

AL 1.56 1.76 2.36 2.09 2.10 2.96 1.44 4.89 5.10 4.66 3.85 6.05

ALDS 2.35 1.59 2.84 7.41 0.12 7.41 2.64 3.61 4.47 7.40 0.18 7.41

Scenario 2b

AL 3.65 1.62 3.99 3.71 1.85 4.14 6.96 2.21 7.30 7.10 1.88 7.35

ALDS 3.94 1.19 4.12 7.41 0.07 7.41 7.03 1.60 7.21 7.42 0.00 7.42

In general, the best selection properties are obtained from larger κ (5×10−4) which

indicates weaker spatial dependence. To compare between the adaptive lasso (AL) and

the adaptive linearized Dantzig selector (ALDS), we find that ALDS seems to be sparser

than AL. AL and ALDS (combined with PL) perform quite similar for Scenario 1a, but

ALDS (combine with PL) performs better for a more complex situation. However, the

combination between the WPL and ALDS tends to underfit model by selecting very

few covariates. From Table 5.1, we would recommend in general to combine the PL

with ALDS to perform variable selection.

Table 5.2 gives the prediction properties of the estimates in terms of biases, standard

deviations (SD), and square root of mean squared errors (RMSE), some criterions we
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define by

Bias =
 50∑
j=1
{Ê(β̂j)− β0j}2

 1
2

, SD =
 50∑
j=1

σ̂2
j

 1
2

,RMSE =
 50∑
j=1

Ê(β̂j − β0j)2

 1
2

,

where Ê(β̂j) and σ̂2
j are respectively the empirical mean and variance of the estimates

β̂j, for j = 1, . . . , 50.

In general, the properties improve with larger κ due to weaker spatial dependence.

To compare the two variable selection procedures, combined with the PL, ALDS has

a smaller variance than AL but has larger biases. This may come from the fact that

ALDS is sparser than AL. The biases are in general not too large yielding a better

performance in terms of RMSE for the ALDS. When the WPL is considered, ALDS

still has smaller variance but much higher biases, so the AL is more preferable. This is

because ALDS (combined with WPL) selects much fewer covariates. From table 5.2,

when our focus is on prediction, as a general advice, we would recommend combining

the PL with ALDS.

5.5 Conclusion and discussion

We propose the adaptive linearized Dantzig selector (ALDS), a modified version of

the Dantzig selector based on linear approximation on the constraint vector, for spa-

tial point processes intensity estimation. Under some conditions, we prove that the

estimates obtained from such procedures satisfy sparsity and asymptotic normality.

We find that the asymptotic properties we derive under ALDS are similar to the ones

we develop under adaptive lasso (AL) procedures as studied in Chapter 2. For com-

putational point of view, as we make links between spatial point processes intensity

estimation and generalized linear models (GLMs), we only need to deal with feature

selection procedures for GLMs which are easy to implement and computationally fast.

We make a simulation study with some different scenarios to assess the finite sample

performances of the estimates obtained from ALDS compared to the ones from AL.

In general, the best two methods are between the weighted Poisson likelihood (WPL)

with AL and the Poisson likelihood (PL) with ALDS. Since the combination between
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the PL and ALDS performs slightly better and looks more stable, we would recommend

using the PL combined with ALDS.

Future work could consist of considering combination between l1 and l2 penalties

in a fashion similar to the adaptive elastic net but combined with the Dantzig selector

method. In real applications, the setting which considers the involvement of a lot of

covariates with complex spatial structure and the presence of strong multicollinearity

is easily found. In such situations, the adaptive elastic net may outperform adaptive

lasso as it is the case for linear regression (see e.g. Zou and Zhang, 2009). We have

preliminary results, as considered in the simulation experiment in Chapter 3, that the

adaptive elastic net is more favorable than the adaptive lasso for such situations. It

would be interesting to bring this approach in the Dantzig selector-type methods.

5.6 Supplementary materials

5.6.1 Auxiliary Lemma

The following Lemma is used in the proof of Theorems 5.3.1 and 5.3.2. Throughout

the proofs, the notation Xn = OP(xn) or Xn = oP(xn) for a random vector Xn and

a sequence of real numbers xn means that ‖Xn‖ = OP(xn) and ‖Xn‖ = oP(xn). In

the same way for a vector Vn or a squared matrix Mn, the notation Vn = O(xn) and

Mn = O(xn) mean that ‖Vn‖ = O(xn) and ‖Mn‖ = O(xn). We follow the convention

that ‖ · ‖ means ‖ · ‖2.

Lemma 5.6.1. Under conditions (C.1)-(C.5), the following result holds as n→∞

Un(w;β0) = OP

(√
|Dn|

)
. (5.28)

Proof. Using Campbell Theorems (5.2)-(5.3), the score vector Un(w;β0) has variance

Var[Un(w;β0)] = Bn(w;β0) + Cn(w;β0).

Conditions (C.4)-(C.5) allow us to obtain that supu∈Rd

∫
Rd{g(u, v) − 1}dv < ∞. We

then deduce using conditions (C.2)-(C.3) that

Bn(w;β0) + Cn(w;β0) = O(|Dn|).

The result is proved since for any centered real-valued stochastic process Yn with finite



151

variance Var[Yn], Yn = OP(
√

Var[Yn]).

5.6.2 Formulation of the Dantzig selector’s dual optimization
problem to (5.13)

We follow the main arguments by Boyd and Vandenberghe (2004, section 5.2) to derive

the Dantzig selectors’ dual optimization problem to (5.13). First, the Lagrangian form

associated with the problem (5.13) is

L(β;α) = ‖Λnβ‖1 +α>Λ−1
n

{
Un(w; β̃) + An(w; β̃)(β̃ − β)

}
− ‖α‖1, (5.29)

where α ∈ Rp is the dual vector (which can be viewed as a lagrange multiplier) and β̃

is any given initial estimator. To simplify the presentation, although this is not always

required, we refer to β̃ as the initial estimator which satisfies condition (C.8). Second,

the dual function of (5.29) is defined by

inf
β∈Rp

L(β;α) =α>Λ−1
n

{
Un(w; β̃) + An(w; β̃)β̃

}
− ‖α‖1

+ inf
β∈Rp

{(
sign(β)−α>Λ−1

n An(w; β̃)Λ−1
n

)
Λnβ

}

=


α>Λ−1

n

{
Un(w; β̃) + An(w; β̃)β̃

}
− ‖α‖1, if ‖Υn‖∞ ≤ 1,

−∞ otherwise,
(5.30)

where Υn = α>Λ−1
n An(w; β̃)Λ−1

n . Note that sign(β)>Λβ = ‖Λβ‖1 since Λn is a diago-

nal matrix with positive entries. The solution set β is feasible if ‖Υn‖∞ ≤ 1. Third, the

Lagrange dual of (5.29) maximizes the dual function given by supα∈Rp infβ∈Rp L(β;α).

This can be reformulated as a dual problem to (5.13), by including the dual feasibility

condition as a constraint, given by

max
(
α>Λ−1

n

{
Un(w; β̃) + An(w; β̃)β̃

}
− ‖α‖1

)
subject to ‖α>Λ−1

n An(w; β̃)Λ−1
n ‖∞ ≤ 1.

(5.31)
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5.6.3 Proof of Lemma 5.3.1

Proof. Consider (5.29) and its dual given by (5.30). By arguments similar to the ones
derived in Section 5.6.2, we can show that the dual function of the Lagrange form
associated with the problem (5.31) is equivalent to

sup
α∈Rp

L(β;α) = ‖Λnβ‖1 + sup
α∈Rp

α>
(
Λ−1
n

{
Un(w; β̃) + An(w; β̃)(β̃ − β)

}
− sign(α)

)

=
‖Λnβ‖1, if

∥∥∥Λ−1
n {Un(w; β̃) + An(w; β̃)(β̃ − β)}

∥∥∥
∞
≤ 1,

∞ otherwise,
(5.32)

if we set −Λnβ as the dual vector in the Lagrange form associated with the prob-
lem (5.31). The solution set α is feasible if

∥∥∥Λ−1
n {Un(w; β̃)+An(w; β̃)(β̃−β)}

∥∥∥
∞
≤ 1.

This shows that the dual function of (5.31) is equivalent to the primal problem (5.13).
Now, let us take any α̂ ∈ Rp. By conditions (5.17), (5.19), and (5.18) respectively

inf
β∈Rp

L(β; α̂) = α̂>Λ−1
n

{
Un(w; β̃) + An(w; β̃)β̃

}
− ‖α̂‖1

= α̂>Λ−1
n An(w; β̃)β̂

= ‖Λnβ̂‖1.

Thus, it is valid that

‖Λnβ̂‖1 = inf
β∈Rp

L(β; α̂) ≤ sup
α∈Rp

inf
β∈Rp

L(β;α) ≤ sup
α∈Rp

L(β̄;α), (5.33)

for any given β̄ ∈ Rp. Regarding (5.32) and (5.33), we show that ‖Λnβ̂‖ ≤ ‖Λnβ‖
whenever the solution set α is feasible. Thus, by condition (5.16), it is proved that
β̂ solves (5.13). In addition, since supα∈Rp L(β̂;α) = infβ∈Rp L(β; α̂) = L(β̂; α̂) =
‖Λnβ̂‖1 by conditions (5.16)-(5.19), strong duality holds, meaning that (β̂, α̂) is a
unique primal dual solution to the problems (5.13) and (5.31).

5.6.4 Proof of Theorem 5.3.1

Proof. To prove Theorem 5.3.1, it is sufficient to show that with probability tending
to 1, β̂ and α̂ given by (5.20)-(5.23) satisfy conditions (5.16)-(5.19).

We derive the following results which will be used in the proofs of Theorems 5.3.1
and 5.3.2. Consider the matrix An(w; β̃) and their corresponding partitions given by
(5.15), and the matrices Λn,1 and Λn,2. Note that by condition (C.9),

Λn,1 = o(|Dn|1/2), (5.34)
Λ−1
n,2 = o(|Dn|−1/2). (5.35)

and by conditions (C.1)-(C.3) and (C.7)-(C.8), supβ∈Θ supu∈Rd ρ(u, β) <∞ so in partic-
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ular for any t ∈ [0, 1] and β̌ = β̃ + t(β0 − β̃)

An(w; β̌) = O(|Dn|), (5.36)

which also implies that

An(w; β̃) = O(|Dn|). (5.37)

Note that (5.37) also implies that all the partitions of An(w; β̃) are bounded by |Dn|.
Now, note that condition (C.7) implies that An,11(w;β0)−1 = O(|Dn|−1). Thus, by
conditions (C.7)-(C.8),

An,11(w; β̃)−1 = An,11(w;β0)−1 + An,11(w;β0)−1{An,11(w;β0)An,11(w; β̃)−1 − Is}
= oP(|Dn|−1). (5.38)

Finally, we define the p× 1 vector ∆n(w; β̃) by

∆n(w; β̃) = Un(w; β̃)−Un(w;β0) + An(w;β0)(β̃ − β0), (5.39)

with ∆n,1(w; β̃) and ∆n,2(w; β̃) are respectively the first s elements and the last p− s
elements of ∆n(w; β̃). Note that

∆n(w; β̃) = −
∫
Dn

w(u)z(u){ρ(u; β̃)− ρ(u;β0)}du+
∫
Dn

w(u)z(u)z(u)>ρ(u;β0)du(β̃ − β0).

Again, from condition (C.2), there exists t ∈ (0, 1) such that

ρ(u; β̃)− ρ(u;β0) = (β̃ − β0)>z(u)ρ(u;β0)

+ 1
2(β̃ − β0)>z(u)z(u)>(β̃ − β0)ρ(u;β0 + t(β̃ − β0),

which yields that

∆n(w; β̃) = −1
2

∫
Dn

w(u)(β̃ − β0)>z(u)z(u)>(β̃ − β0)ρ(u;β0 + t(β̃ − β0)du

= OP(‖β̃ − β0‖2|Dn|) = OP(1), (5.40)

from conditions (C.1)-(C.3) and (C.8). (5.40) also implies that ∆n,1(w; β̃) = OP(1) and
∆n,2(w; β̃) = OP(1).

Now we focus to prove Theorem 5.3.1. By (5.20)-(5.23),

α̂>Λ−1
n An(w; β̃)β̂ = α̂>1 Λ−1

n,1An,11(w; β̃)β̂1

= sign(β̂1)>Λn,1
{
An,11(w; β̃)

}−1
Λn,1Λ−1

n,1An,11(w; β̃)β̂1

= sign(β̂1)>Λn,1β̂1

= ‖Λn,1β̂1‖1 = ‖Λnβ̂‖1,
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so, (5.18) is satisfied. Now, we want to show that (5.19) holds. We have

α̂>Λ−1
n

{
Un(w; β̃) + An(w; β̃)(β̃ − β̂)

}
= I + II,

where

I = α̂>Λ−1
n Un(w; β̃) = α̂>1 Λ−1

n,1Un,1(w; β̃),
II = α̂>1 Λ−1

n,1An,1(w; β̃)β̃ − α̂>1 Λ−1
n,1An,11(w; β̃)β̂1

= α̂>1 Λ−1
n,1An,1(w; β̃)β̃

− α̂>1 Λ−1
n,1{Un,1(w; β̃) + An,1(w; β̃)β̃ −Λn,1 sign(α̂1)}

= − α̂>1 Λ−1
n,1{Un,1(w; β̃)−Λn,1 sign(α̂1)},

from (5.20)-(5.23). By summing I and II, we deduce that (5.19) holds.
To prove (5.17) holds, let us decompose the vector Λ−1

n An(w; β̃)Λ−1
n α̂ by

Λ−1
n An(w; β̃)Λ−1

n α̂ =

 I′

II′

 =

Λ−1
n,1An,1(w; β̃)Λ−1

n α̂

Λ−1
n,2An,2(w; β̃)Λ−1

n α̂

 .
Now, consider I′. By (5.22)-(5.23), we can show that

‖I′‖∞ = ‖Λ−1
n,1An,11(w; β̃)Λ−1

n α̂1‖∞
= ‖ sign(β̂1)‖∞ = 1.

Regarding II′, by (5.22)-(5.23), we have

II′ = Λ−1
n,2An,21(w; β̃)Λ−1

n α̂1

= Λ−1
n,2An,21(w; β̃)Λ−1

n Λn,1{An,11(w; β̃)}−1Λn,1 sign(β̂1)
= Λ−1

n,2An,21(w; β̃){An,11(w; β̃)}−1Λn,1 sign(β̂1)
= o(|Dn|−1/2)O(|Dn|)oP(|Dn|−1)o(|Dn|1/2)OP(1) = oP(1),

where the last line is obtained from (5.34)-(5.38). Hence, (5.17) is satisfied with prob-
ability tending to 1. We finally focus on (5.16). Note that

Λ−1
n {Un(w; β̃) + An(w; β̃)(β̃ − β̂)} =

 Ĩ

ĨI



=

Λ−1
n,1{Un,1(w; β̃) + An,1(w; β̃)(β̃ − β̂)}

Λ−1
n,2{Un,2(w; β̃) + An,2(w; β̃)(β̃ − β̂)}

 .
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Regarding Ĩ, from (5.20)-(5.21),

Ĩ =‖Λ−1
n,1Un,1(w; β̃) + Λ−1

n,1An,1(w; β̃)β̃ −Λ−1
n,1An,11(w; β̃)β̂1‖∞

=‖Λ−1
n,1Un,1(w; β̃) + Λ−1

n,1An,1(w; β̃)β̃
−Λ−1

n,1{Un,1(w; β̃) + An,1(w; β̃)β̃ −Λn,1 sign(α̂1)}‖∞
=‖ sign(α̂1)‖∞ = 1.

Now, consider ĨI. By Taylor expansion, we can show that by considering ∆n,2(w; β̃)
defined by (5.40) and by conditions (C.1)-(C.3) and (C.8), we have

Un,2(w; β̃) + An,2(w; β̃)(β̃ − β̂) = Un,2(w;β0) + ∆n,2(w; β̃)
+ {An,2(w; β̃)−An,2(w;β0)}(β̃ − β̂)

= Un,2(w;β0) +OP(1).

Hence, by noting that Un,2(w;β0) = OP(|Dn|1/2) from Lemma 5.6.1 and by (5.35)

ĨI = Λ−1
n,2{Un,2(w;β0) +OP(1)}

= o(|Dn|−1/2){OP(|Dn|1/2) +OP(1)}
=oP(1).

5.6.5 Proof of Theorem 5.3.2

Proof. Before proving Theorem 5.3.2, we provide Lemma 5.6.2 stated below. This
Lemma has been discovered in Chapter 3 and the proofs are omitted here.
Lemma 5.6.2. Under the conditions (C.1)-(C.9), the following convergence holds in
distribution as n→∞

{Bn,11(w;β0) + Cn,11(w;β0)}−1/2Un,1(w;β0) d−→ N (0, Is), (5.41)

where Un,1(w;β0) corresponds to the first s components of Un(w;β0) and Bn,11(w;β0)
(resp. Cn,11(w;β0)) is the s× s top-left corner of Bn(w;β0) (resp Cn(w;β0)).

Let us consider the vector Tn given by

Tn = |Dn|1/2Σn(w;β0)−1/2(β̂1 − β01),
= {Bn,11(w;β0) + Cn,11(w;β0)}−1/2{An,11(w;β0)}(β̂1 − β01),

where Σn(w;β0) in the first line is given by (5.24).
Now, by (5.20)-(5.21), by conditions (C.1)-(C.3), (C.6)-(C.8) and by ∆n,1(w; β̃) given
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by (5.40), we can show using a Taylor expansion that

β̂1 − β01 = An,11(w; β̃)−1
{
Un,1(w; β̃) + An,1(w; β̃)β̃ −Λn,1 sign(α̂1)

}
− β01

= An,11(w; β̃)−1
{
Un,1(w; β̃) + An,1(w; β̃)(β̃ − β0)−Λn,1 sign(α̂1)

}
= An,11(w; β̃)−1

{
Un,1(w;β0) + ∆n,1(w; β̃) +OP(1) + oP(|Dn|1/2)

}
= An,11(w; β̃)−1

{
Un,1(w;β0) + ∆n,1(w; β̃) + oP(|Dn|1/2)

}
.

Hence,

Tn ={Bn,11(w;β0) + Cn,11(w;β0)}−1/2An,11(w;β0)An,11(w; β̃)−1{
Un,1(w;β0) + ∆n,1(w; β̃) + oP(|Dn|1/2)

}
.

Let us now decompose Tn = T1,n + T2,n, where, for an identity matrix with dimension
s denoted by Is,

T1,n = {Bn,11(w;β0) + Cn,11(w;β0)}−1/2
{
An,11(w;β0)An,11(w; β̃)−1 − Is

}
{
Un,1(w;β0) + ∆n(w; β̃) + oP(|Dn|1/2)

}
,

T2,n = {Bn,11(w;β0) + Cn,11(w;β0)}−1/2
{
Un,1(w;β0) + ∆n(w; β̃) + oP(|Dn|1/2)

}
.

By conditions (C.6) and (C.8), we have

{Bn,11(w;β0) + Cn,11(w;β0)}−1/2 = O(|Dn|−1/2)
An,11(w;β0)An,11(w; β̃)−1 − Is = oP(1),

and let us remind that Un,1(w;β0) = OP(|Dn|1/2) from Lemma 5.6.1 and ∆n(w; β̃) +
oP(|Dn|1/2) = oP(|Dn|1/2) from (5.40). Hence,

T1,n = O(|Dn|−1/2)oP(1)
(
OP(|Dn|1/2) + oP(|Dn|1/2)

)
= oP(1),

T2,n = {Bn,11(w;β0) + Cn,11(w;β0)}−1/2Un,1(w;β0) + oP(1).

Thus, the result is proved from Lemma 5.6.2 and Slutsky’s theorem.







CHAPTER 6
Summary and future extensions

6.1 Summary

This thesis focuses to develop feature selection procedures for estimating the intensity

of spatial point processes which depends on spatial covariates. In Chapter 3, we adopt

the lasso-type procedures based on convex and non-convex regularization techniques to

perform variable selection and improve the prediction. In particular, we regularize by

a penalty function the estimating equations based on Campbell theorem derived from

the Poisson and logistic regression likelihoods. We show that when the observation

domain goes to Rd, the estimates obtained from such procedures are consistent, sparse

and asymptotically normal if an appropriate regularization method is chosen such that

the tuning parameter follows an appropriate rate. These results indicate that not only

do our methods select automatically and consistently the important covariates, but

also produce estimates which are as efficient as the estimates where the true set of

covariates is known in advance. In Chapter 4, we liberate the assumption required in

Chapter 3, which deals with a finite number of covariates, such that the number of

parameters to estimate diverges as the observation region increases. We prove that

the attractive properties gained in Chapter 3 are still valid for a diverging number

of parameters setting, with a few additional assumptions to impose mainly requiring

that the number of parameters does not go too fast with respect to the volume of the

observation domain.

From a computational point of view regarding the methods developed in Chap-
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ters 3 and 4, we make links between spatial point processes intensity estimation and

generalized linear models (GLMs) previously proposed by Berman and Turner (1992);

Waagepetersen (2008); Baddeley et al. (2014), so we only have to deal with feature

selection procedures for GLMs. Hence, we clearly have many advantages: the existing

R packages for variable selection for GLMs are available, have been carefully studied,

easy to implement and computationally fast. This makes our approaches are highly

applicable. In particular, we combine the spatstat R package (Baddeley et al., 2015)

and the two R packages: glmnet (Friedman et al., 2010) and ncvreg (Breheny and

Huang, 2011).

We conduct simulation experiments to assess the finite sample properties of our

estimates. From the results, we have the following conclusions. First, among the

regularization methods considered in Chapters 3 and 4, the methods which satisfy

the sparsity and the asymptotic normality (i.e., adaptive lasso, adaptive elastic net,

SCAD and MC+) perform better than the ones which cannot satisfy (i.e., ridge, lasso

and elastic net). We consider that the total number of covariates used in Chapter 3

is 20 (and 15) while we decide to use 50 covariates for the simulation study set in

Chapter 4. Adaptive lasso seems to perform best in the situations where the number

of covariates is not too large such as the ones considered in the Chapter 3. However,

when the number of covariates increases considerably, adaptive elastic net appears to

be slightly more competitive than adaptive lasso, mainly because of the presence of the

strong multicollinearity and the complex spatial structure of the covariates. Second, the

Poisson likelihood (PL) and the weighted Poisson likelihood (WPL) perform differently

depending on the situations where they are applied. In general, the PL produces less

biased estimates but less efficient estimates than that of the WPL. The WPL gains

smaller RMSE, in general, for clustered point processes. Third, the Poisson estimates

and the logistic regression likelihood estimates (combined with adaptive lasso) perform

quite similarly, especially when the number of dummy points used to approximate the

integral term in the likelihood can be chosen to be either similar to or larger than the

number of data points.

We apply our methods to model the intensity of Beilschmiedia pendula Lauraceae as
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a log-linear function of 15 covariates in Chapter 3 consisting of 2 topological attributes

and 13 soil nutrients, which is extended in Chapter 4 by adding the interactions between

two soil properties such that we have 93 covariates in total. Among 93 covariates, we

have 10 covariates which are selected commonly by each method, for which the 5 (out

of 15) covariates selected in the application considered in Chapter 3 are also included in

the 10 common selected covariates chosen in the application considered in Chapter 4.

Furthermore, based on the magnitude of the coefficients, we find six spatial covariates

which may have a high influence to the appearance of BPL trees, including two topo-

logical attributes: elevation and slope and four soil nutrients: Copper, Phosphorus,

Zinc and the interaction between Magnesium and Phosphorus.

In Chapter 5, we study another feature selection procedure based on the develop-

ment of the Dantzig selector-type methods. In particular, we propose the adaptive

linearized Dantzig selector (ALDS) which is based on the linear approximation on the

constraint vector. Compared to the ones without linearization, this approach leads to

two advantages: in theoretical and computational aspects. In theory, the asymptotic

results can be derived more easily than that without linearisation in the constraint vec-

tor. In practice, the optimization problem can be solved by linear programming. We

find that the asymptotic properties of the estimates obtained from ALDS are similar

to the ones we develop in Chapter 3 when adaptive lasso is considered. This may not

be surprising since the similarities of the theoretical properties between the estimates

of the Dantzig selector and the lasso have already been discovered in other contexts

(see e.g., Meinshausen et al., 2007; Bickel et al., 2009; Dicker, 2010). In the simulation

study, ALDS performs slightly better and looks more stable than adaptive lasso. In

this thesis, we do not compare rigorously the computational cost between ALDS and

adaptive lasso for spatial point processes intensity estimation. However, to have an

intuition, James et al. (2009) developed an algorithm to compute the Dantzig selector

solution for linear models which is quite similar to the one we propose in this study.

The algorithm proposed by James et al. (2009) has same computational cost as LARS

algorithm (Efron et al., 2004), a known algorithm to compute the entire path lasso

solutions by cost O(Mp2), which also has the same computational cost as the least
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squares fit, where M is the number of observations in the linear models’ context. As

we employ coordinate descent algorithm (Friedman et al., 2007) in Chapters 3 and 4,

which is proved to be computationally faster than LARS algorithm (by cost O(Mp)),

our ALDS may be slightly more computationally expensive than that developed in

Chapters 3 and 4, in a similar conclusion to the comparison between LARS and co-

ordinate descent algorithm (see e.g., Friedman et al., 2010). Even though we have

preliminary numerical results for ALDS which are encouraging, one may prefer to im-

plement a faster method such as adaptive lasso albeit it performs slightly under the

performance of ALDS. This makes an open research area to develop computationally

faster methods while keeping their good performances for the Dantzig-selector type

methods.

6.2 Future extensions

This work has the potential to be extended in a number of directions. We draw some

examples in the following sections.

6.2.1 Spatio-temporal point processes

We have not covered developments for spatio-temporal point processes in this thesis.

In the application considered in this study, we find less interesting reasons to extend

our study to the spatio-temporal point processes setting. First, we find that there is no

much variation for the maps of Beilschmiedia pendula Lauraceae appearances among the

different year observations. Second, the available covariates for topological attributes

and soil properties are only available in space. Moreover, after personal contact with

Prof. Jim Dalling (one of the PIs responsible for collecting and analyzing soil nutrients

data, see http://ctfs.si.edu/webatlas/datasets/bci/soilmaps/BCIsoil.html),

he finds that their results are very similar to the ones conducted more recently by his

colleagues.

Note that in other applications such as spatio-temporal incidences of forest fires

(e.g., Møller and Díaz-Avalos, 2010; Serra et al., 2014), it may be more useful and
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interesting to consider extensions of our study in spatio-temporal point processes set-

ting since such applications also consider a relatively large number of covariates. The

intensity function naturally becomes

ρ(u, t;β) = exp(β>z(u, t)), (6.1)

where z(u, t) = {z1(u, t), . . . , zk(u, t)}> are the k covariates varying in space and time

(see e.g., Diggle, 2013; González et al., 2016). In the previously mentioned applica-

tions, it is not easy to obtain the information of covariates in both space and time.

Furthermore, it is also sometimes less realistic to consider spatio-temporal covariates.

For example, in the application used by Møller and Díaz-Avalos (2010), temperature

is more relevant to be treated as temporal covariates and elevation is treated as spa-

tial covariates. In such a way, one possibility is to assume first-order spatio-temporal

separability (e.g., Gabriel and Diggle, 2009; Møller and Ghorbani, 2012) :

ρ(u, t;β) = ρ1(u;β1)ρ2(t;β2) = exp(β>1 z(u) + β>2 z(t)), (6.2)

where z(u) = {z1(u), . . . , zp(u)}> and z(t) = {z1(t), . . . , zq(t)}> are, respectively, the

p spatial covariates observed at location u and the q temporal covariates collected at

time t. β1 and β2 are the associated real p and q dimensional parameters which exhibit

the effects of both spatial and temporal covariates to the intensity.

By assuming (6.2), the spatio-temporal processes may be regarded using spatial

and temporal margins (e.g Møller and Díaz-Avalos, 2010). Thus, parameter estimates

can be conducted by separating into Poisson likelihoods for the spatial margin and

the temporal margin and then maximizing the corresponding Poisson likelihood. To

perform the variable selection, the idea is, first, to regularize by a penalty function the

Poisson likelihood of the temporal point process and, second, to apply a regularization

technique for the Poisson likelihood of the spatial point process. This seems feasible

in term of practical implementation. However, further study is needed regarding the

theoretical justification.
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6.2.2 Multivariate point processes

In the application we consider in this thesis, we focus to model the intensity of a single

species of trees. Since the locations of each of hundreds of species of trees have been

collected, a natural extension would consider assessing the hypotheses regarding biodi-

versity in the forest by involving as many as possible the species of trees in the analysis.

In a such analysis, taking the form of the intensity has to be taken carefully in order

to be able to embrace the effect of both spatial covariates and the interactions among

trees (which can be distinguished into interaction intra-specific: interaction between

individuals of the same species and interaction inter-specific: interaction between trees

of different species). This leads to not only study the first-order characteristics such

as the intensity, but also the second-order characteristics such as cross pair correlation

function.

Related recent study has been conducted by Waagepetersen et al. (2016) who mod-

eled the nine species of trees contained in BCI study (e.g., Condit, 1998; Hubbell et al.,

2005) by multivariate log-Gaussian Cox processes. Waagepetersen et al. (2016) decom-

posed the random intensity into three parts which exhibits spatial inhomogeneity due

to the dependence on the spatial covariates, correlation across species, and clustering

due to species-specific factors such as seed dispersal. However, considerable challenges

remain due to the very high number of parameters to estimate, especially when a large

number of tree species is considered. Thus, in the similar motivation as of this thesis,

similar feature selection procedures seem interesting to study more carefully in order

to obtain more interpretable models and practically applicable statistical methods for

point patterns with hundreds of types of points.

6.2.3 Tuning parameter selection

In this study, we develop methods whose estimates satisfy some interesting properties:

consistency, sparsity, and asymptotic normality. Nevertheless, it is worth noticing that

our methods rely on the tuning parameter λ. For practical implementation, we suggest
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selecting λ which minimizes WQBIC(λ) defined by

WQBIC(λ) = −2`(w; β̂(λ)) + ‖β̂‖0 log |D|, (6.3)

where `(w; β̂(λ)) is the Poisson or logistic regression likelihoods, ‖β̂‖0 is the number of

selected nonzero coefficients and |D| is the volume of observation domain. It has been

proved in the contexts of linear and generalized linear models that BIC-type methods

satisfy selection consistency (e.g., Zou et al., 2007; Wang et al., 2007b, 2009; Zhang

et al., 2010), meaning that it selects the correct model with probability tending to 1

in large samples when a set of candidate models contains the true model. It may be

true that the criterion defined by (6.3) or its slightly modified form can also satisfy

the selection consistency in the spatial point processes framework. However, this needs

further investigation.

6.2.4 The generalized Dantzig selector

Regarding Chapter 5 in this manuscript, note that the adaptive Dantzig selector (5.11)

can be written more generally as

min |D|
p∑
j=1

pλj
(|βj|) subject to |Uj(w;β)| ≤ |D|p′λj

(|βj|) for j = 1, . . . , p, (6.4)

where pλ(|θ|) is a penalty function which can be a convex or a non-convex function (see

Chapter 3 as examples) and p′λ(|θ|) is its derivative with respect to θ. The theoretical

results may be able to derive in a similar way as developped in Chapter 5. However, the

computational implementation may be much more challenging due to the possible non-

convex optimization problem, if for example, SCAD or MC+ penalties are considered.

The more interesting extension is to consider the combination between l1 and l2

penalties in a fashion similar to the adaptive elastic net but adapted to the Dantzig

selector setting. More precisely, in (6.4), pλj
(|βj|) = λj{γ|βj| + 1

2(1 − γ)β2
j } and

p′λj
(|βj|) = λj{γ(sign(βj) − βj)+ + |βj|} for j = 1, · · · , p, where 0 < γ < 1. In real

applications, the setting which considers the involvement of a lot of covariates with

complex spatial structure and the presence of strong multicollinearity is easily found.
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In such situations, the adaptive elastic net may outperform adaptive lasso as it is the

case for linear regression (see e.g., Zou and Zhang, 2009). We have preliminary results,

as considered in the simulation experiments in Chapter 4, that the adaptive elastic net

is slightly more preferable than the adaptive lasso. As the adaptive linearized Dantzig

selector has slightly better results than the ones from the regularization methods with

the adaptive lasso, it is interesting to investigate the theoretical and computational

aspects of the proposed ideas in the spatial point processes setting, which may also

be regarded as an extension of the Dantzig selector-type approaches in a more general

context.

Note that we consider a fixed number of parameters setting in Chapter 5. In a

similar motivation, as we consider from Chapter 3 to Chapter 4, it seems also possible

to extend the Chapter 5 in the situation where the number of parameters diverges.







Bibliography

Anestis Antoniadis, Piotr Fryzlewicz, and Frédérique Letué. The Dantzig selector in

Cox’s proportional hazards model. Scandinavian Journal of Statistics, 37(4):531–

552, 2010.

M Salman Asif. Primal dual pursuit: A homotopy based algorithm for the Dantzig

selector. Master’s thesis, Georgia Institute of Technology, 2008.

M Salman Asif and Justin Romberg. On the lasso and dantzig selector equivalence. In

Information Sciences and Systems (CISS), 2010 44th Annual Conference on, pages

1–6. IEEE, 2010.

Adrian Baddeley and David Dereudre. Variational estimators for the parameters of

Gibbs point process models. Bernoulli, 19(3):905–930, 2013.

Adrian Baddeley and Rolf Turner. Practical maximum pseudolikelihood for spatial

point patterns. Australian & New Zealand Journal of Statistics, 42(3):283–322, 2000.

Adrian Baddeley and Rolf Turner. Spatstat: An R package for analyzing spatial point

pattens. Journal of Statistical Software, 12(6):1–42, 2005.

Adrian Baddeley, Jean-François Coeurjolly, Ege Rubak, and Rasmus Plenge

Waagepetersen. Logistic regression for spatial Gibbs point processes. Biometrika,

101(2):377–392, 2014.

Adrian Baddeley, Ege Rubak, and Rolf Turner. Spatial Point Patterns: Methodology

and Applications with R. CRC Press, 2015.

169



170

Mark Berman and Rolf Turner. Approximating point process likelihoods with glim.

Applied Statistics, 41(1):31–38, 1992.

Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of

lasso and Dantzig selector. The Annals of Statistics, pages 1705–1732, 2009.

Erwin Bolthausen. On the central limit theorem for stationary mixing random fields.

The Annals of Probability, 10(4):1047–1050, 1982.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

Patrick Breheny and Jian Huang. Coordinate descent algorithms for nonconvex pe-

nalized regression, with applications to biological feature selection. The Annals of

Applied Statistics, 5(1):232–253, 2011.

Leo Breiman. Better subset regression using the nonnegative garrote. Technometrics,

37(4):373–384, 1995.

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods,

theory and applications. Springer Science & Business Media, 2011.

Emmanuel Candes and Terence Tao. The Dantzig selector: statistical estimation when

p is much larger than n. The Annals of Statistics, 35(6):2313–2351, 2007.

Jean-François Coeurjolly and Jesper Møller. Variational approach to estimate the

intensity of spatial point processes. Bernoulli, 20(3):1097–1125, 2014.

Richard Condit. Tropical forest census plots. Springer-Verlag and R. G. Landes Com-

pany, Berlin, Germany, and Georgetown, Texas, 1998.

Lee Dicker. Regularized regression methods for variable selection and estimation. PhD

thesis, Harvard University, 2010.



171

Peter J Diggle. A point process modelling approach to raised incidence of a rare

phenomenon in the vicinity of a prespecified point. Journal of the Royal Statistical

Society. Series A (Statistics in Society), pages 349–362, 1990.

Peter J Diggle. Statistical analysis of spatial and spatio-temporal point patterns. CRC

Press, 2013.

Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle

regression. The Annals of Statistics, 32(2):407–499, 2004.

Jane Elith and John R Leathwick. Species distribution models: ecological explanation

and prediction across space and time. Annual review of ecology, evolution, and

systematics, 40:677–697, 2009.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood

and its oracle properties. Journal of the American Statistical Association, 96(456):

1348–1360, 2001.

Jianqing Fan and Jinchi Lv. A selective overview of variable selection in high dimen-

sional feature space. Statistica Sinica, 20(1):101–148, 2010.

Jianqing Fan and Heng Peng. Nonconcave penalized likelihood with a diverging number

of parameters. The Annals of Statistics, 32(3):928–961, 2004.

Janet Franklin. Mapping species distributions: spatial inference and prediction. Cam-

bridge University Press, 2010.

Jerome Friedman, Trevor Hastie, Holger Höfling, Robert Tibshirani, et al. Pathwise

coordinate optimization. The Annals of Applied Statistics, 1(2):302–332, 2007.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning (2nd Edition). Springer series in statistics Springer, Berlin, 2008.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for gen-

eralized linear models via coordinate descent. Journal of Statistical Software, 33(1):

1–22, 2010.



172

Edith Gabriel and Peter J Diggle. Second-order analysis of inhomogeneous spatio-

temporal point process data. Statistica Neerlandica, 63(1):43–51, 2009.

Jonatan A González, Francisco J Rodríguez-Cortés, Ottmar Cronie, and Jorge Mateu.

Spatio-temporal point process statistics: a review. Spatial Statistics, 18:505–544,

2016.

Yongtao Guan and Ji Meng Loh. A thinned block bootstrap variance estimation pro-

cedure for inhomogeneous spatial point patterns. Journal of the American Statistical

Association, 102(480):1377–1386, 2007.

Yongtao Guan and Ye Shen. A weighted estimating equation approach for inhomoge-

neous spatial point processes. Biometrika, 97(4):867–880, 2010.

Yongtao Guan, Abdollah Jalilian, and Rasmus Plenge Waagepetersen. Quasi-likelihood

for spatial point processes. Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology), 77(3):677–697, 2015.

Xavier Guyon. Random fields on a network: modeling, statistics, and applications.

Springer Science & Business Media, 1995.

Arthur E Hoerl and Robert W Kennard. Ridge regression. Encyclopedia of statistical

sciences, 1988.

Stephen P Hubbell, Robin B Foster, Sean T O’Brien, KE Harms, Richard Condit,

B Wechsler, S JosephWright, and S Loo De Lao. Light-gap disturbances, recruitment

limitation, and tree diversity in a neotropical forest. Science, 283(5401):554–557,

1999.

Stephen P Hubbell, Richard Condit, and Robin B Foster. Barro Colorado forest census

plot data. 2005. URL http://ctfs.si.edu/datasets/bci.

Peter J Huber. Robust regression: asymptotics, conjectures and monte carlo. The

Annals of Statistics, pages 799–821, 1973.

http://ctfs. si.edu/datasets/bci


173

Janine Illian, Antti Penttinen, Helga Stoyan, and Dietrich Stoyan. Statistical analysis

and modelling of spatial point patterns, volume 70. John Wiley & Sons, 2008.

Gareth M James and Peter Radchenko. A generalized Dantzig selector with shrinkage

tuning. Biometrika, 96(2):323–337, 2009.

Gareth M James, Peter Radchenko, and Jinchi Lv. DASSO: connections between

the Dantzig selector and lasso. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 71(1):127–142, 2009.

Zsolt Karácsony. A central limit theorem for mixing random fields. Miskolc Mathe-

matical Notes, 7:147–160, 2006.

Frédéric Lavancier, Jesper Møller, and Ege Rubak. Determinantal point process models

and statistical inference. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 77(4):853–877, 2015.

Yi Li, Lee Dicker, and Sihai Dave Zhao. The Dantzig selector for censored linear

regression models. Statistica Sinica, 24(1):251, 2014.

Rahul Mazumder, Jerome H Friedman, and Trevor Hastie. Sparsenet: Coordinate

descent with nonconvex penalties. Journal of the American Statistical Association,

106(495):1125–1138, 2011.

Nicolai Meinshausen, Guilherme Rocha, and Bin Yu. Discussion: A tale of three

cousins: Lasso, l2boosting and Dantzig. The Annals of Statistics, 35(6):2373–2384,

2007.

Jesper Møller and Carlos Díaz-Avalos. Structured spatio-temporal shot-noise Cox point

process models, with a view to modelling forest fires. Scandinavian Journal of Statis-

tics, 37(1):2–25, 2010.

Jesper Møller and Mohammad Ghorbani. Aspects of second-order analysis of structured

inhomogeneous spatio-temporal point processes. Statistica Neerlandica, 66(4):472–

491, 2012.



174

Jesper Møller and Rasmus Plenge Waagepetersen. Statistical inference and simulation

for spatial point processes. CRC Press, 2004.

Jesper Møller and Rasmus Plenge Waagepetersen. Modern statistics for spatial point

processes. Scandinavian Journal of Statistics, 34(4):643–684, 2007.

Art B Owen. A robust hybrid of lasso and ridge regression. Contemporary Mathematics,

443:59–72, 2007.

Dimitris N Politis, Efstathios Paparoditis, and Joseph P Romano. Large sample infer-

ence for irregularly spaced dependent observations based on subsampling. Sankhyā:
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