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ABSTRACT

Abstract — This thesis investigates source coding problems in which some secrecy should be

ensured with respect to eavesdroppers.

In the first part, we provide some new fundamental results on both detection and secrecy oriented
source coding in the presence of side information at the receiving terminals. We provide several new
results of optimality and single-letter characterization of the achievable rate-error-equivocation
region, and propose practical algorithms to obtain solutions that are as close as possible to the
optimal, which requires the design of optimal quantization in the presence of an eavesdropper. In
the second part, we study the problem of secure estimation in a utility-privacy framework where
the user is either looking to extract relevant aspects of complex data or hide them from a potential

eavesdropper.

The objective is mainly centered on the development of a general framework that combines informa-
tion theory with communication theory, aiming to provide a novel and powerful tool for security in
Smart Grids. From a theoretical perspective, this research was able to quantify fundamental limits

and thus the tradeoff between security and performance (estimation/detection).

Résumé — Cette these porte sur quelques problemes de codage de source dans lesquels on

souhaite préserver la confidentialité vis a vis d’une écoute du canal.

Dans la premiere partie, nous fournissons des nouveaux résultats fondamentaux sur le codage de
source pour la détection (utilisateur légitime) et la confidentialité (vis a vis d’une écoute du canal)
en présence d’informations secondaires aux terminaux de réception. Nous proposons plusieurs nou-
veaux résultats d’optimisation de la région de débit-erreur-équivocation réalisable, et proposons
des algorithmes pratiques pour obtenir des solutions aussi proches que possible de I’optimal, ce
qui nécessite la conception de quantificateurs en présence d’un eavesdropper. Dans la deuxiéeme
partie, nous étudions le probleme de [’estimation sécurisée dans un cadre d’utilité-confidentialité
ou l'utilisateur recherche soit a extraire les aspects pertinents de données complexes ou bien a les

cacher vis a vis d’'un eavesdropper potentiel.

L’objectif est principalement axé sur 1’élaboration d’un cadre général qui combine la théorie de
Uinformation et la théorie de la communication, visant a fournir un nouvel outil pour la confiden-
tialité dans les Smart Grids. D’un point de vue théorique, cette recherche a permis de quantifier les

limites fondamentales et donc le compromis entre sécurité et performance (estimation / détection).
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CHAPTER 1

INTRODUCTION

1.1 A Historical Review

Today, we get in contact with communication in our daily lives in so many different ways. At home or
at work, we get across many devices providing rapid communication from every corner of this world.
Through the telephones at our hands, the televisions in our living rooms, or the computers connected to
the internet at our offices or homes, we are able to communicate instantaneously with people from all
parts of the globe and receive information about various developments and events that occur all around
the world.

The communication growth has been unbelievable during the past two decades. Smart hand-held
communications devices are now at the disposal of almost every individual and have became an es-
sential part of modern human life. Today, as a result of communication and computing technologies
advancements, the term "smart" has been popular recently in different contexts. Smart cities, smart-
grid, etc. have become main innovation agendas of research organizations, technology vendors, and
governments.

Progress in telecommunications over the past couple of decades has been revolutionary. Communi-
cation technology as we see it today became important with telegraphy, then telephony, then video, then
computer communication, and the superb mixture of all of these inexpensive, small portable devices at
our disposal today [1].

The beginnings of what we know now as modern digital communication stem from the work of

Nyquist (1924) [2]. Nyquist developed a model in which a transmitted signal has the general form of

s(t) = ang(t — nT) (1.1)

where ¢(t) represents a basic pulse shape and {a,} is a binary data sequence of {£1} transmitted at a
rate of 1/7 bits/s. Nyquist investigated the problem of determining the maximum signaling rate and the
optimum pulse shape that can be used over a telegraph channel of a given bandwidth without causing
inter-symbol interference. His studies led him to conclude that the maximum pulse rate is 2 times the
channel bandwidth. This rate is now called the Nyquist rate.

In the light of Nyquist’s work, Hartley (1928) [3] investigated the amount of information that can be
transmitted reliably over a band-limited channel when multiple amplitude levels are allowed. Hartley
argued that the maximum number of distinguishable pulse levels that can be transmitted and received

reliably over a communications channel is limited by the dynamic range of the signal amplitude and

1



Partie , Chapter 1 — Introduction

the precision with which the receiver can distinguish amplitude levels.

Another significant advance in the development of communications was the work of Wiener (1942)
[4, 5], who considered the problem of estimating a desired signal waveform s(t) in the presence of
additive noise n(t), based on observation of the received signal r(¢) = s(t) + n(t). This problem
arises in signal demodulation. Wiener determined the linear filter whose output is the best mean-square

approximation to the desired signal s(t).

Hartley’s and Nyquist’s results on the maximum transmission rate of digital information were pre-
cursors to the work of Claude Shannon; often called the father of the Digital Age. In the beginning of
his paper [6] and later his book [7], Shannon acknowledged the work done before him, by such pio-
neers as Nyquist and Hartley at Bell Labs. Though their influence was profound, it was Shannon who
revolutionized communication, and defined a new field of communication research that we now know

as Information Theory. One of those key concepts was his definition of the limit for channel capacity.

Information theory is one of the few scientific fields fortunate enough to have an identifiable be-
ginning - Claude Shannon’s 1948 paper. The story of the evolution of how it progressed from a single
theoretical paper to a broad field that has redefined our world is a fascinating one. For perhaps the first
25 years of its existence, information theory served as a rich source of academic research problems
(8,9, 10, 11] and as a tempting suggestion that its approaches can make communication systems more
efficient and more reliable. Aside from small experiments and a few particular military systems, the
theory was regarded as a beautiful theory and had little interaction with practice. However, by the mid

1970’s, communication systems started implementing information theoretic ideas extensively.

Shannon formulated the basic problem of reliable transmission of information in statistical terms,
using probabilistic models for informations sources and communications channels. Based on such a
statistical formulation, he adopted a logarithmic measure for the average information content of the
source, later called entropy (more specifically, Shannon entropy). The entropy H of a discrete random

variable X with possible values {x;, 25, ... } and probability mass function p(X) is defined as
H(X) = E[~ log,(p(X))] = = >_ p(w:) log, p(x:). (1.2)

Here E is the expected value operator, b is the base of the logarithm used. Common values of b are 2.
When b = 2, the unit of entropy is commonly referred to as bits. When the distribution is continuous

rather than discrete, the sum is replaced with an integral.

Shannon also defined the notion of channel capacity and provided a mathematical framework by
which one can compute it. The key result states that the capacity of the channel, as defined above, is
given by the maximum of the mutual information between the input and output of the channel, where
the maximization is with respect to the input distribution. Let U and V' be the random variables repre-
senting the input and output of the channel, respectively. Let py(v|u) be the conditional distribution
function of V' given U, which is an inherent fixed property of the memoryless communications chan-

nel. Then the choice of the marginal distribution p(u) completely determines the joint distribution

2



1.2. Elements of Practical Communication Systems

pu,v (u, v) which, in turn, induces a mutual information /(U; V'). The channel capacity is defined as

C =supl(U;V) (1.3)

pu
The importance of the channel capacity is as follows: If the information rate R from the source is less
than the channel capacity C' (R < C) then it is theoretically possible to achieve reliable error-free trans-
mission through the channel using some appropriate coding. However, if R > C, reliable transmission
is no longer possible regardless of the amount of signal processing performed at the transmitter and

receiver [12].

. U Channel Vv )
Transmitter Receiver
bviu

Noise

Figure 1.1: Shannon’s model of a memoryless communication channel.

Following Shannon’s work, came the classic publication of Hamming (1950) on error detection
correction to diminish the channel noise impact [13]. Hamming’s work inspired many researchers in
the years that followed, and a variety of new and powerful codes were discovered, many of which are

used today in the implementation of modern communication systems [14, 15].

1.2 Elements of Practical Communication Systems

Information Theory that we know today was not only the work of Claude Shannon but the result of
many significant contributions made by different individuals, from a variety of backgrounds, who took
Shannon’s ideas and expanded upon them. The diversity and directions of their objectives and interests
formed the shape of the Information Theory of today.

The increase in demand for transmission during the last three to four decades, couples with the
development of more sophisticated integrated circuits, has led to the development of very efficient and
more reliable digital communication systems. In the course of these developments, Shannon’s original
results and the generalization of his results on maximum transmission limits over a channel and on
bounds on the performance achieved have served as benchmarks for any communication system design.
The theoretical limits derived by Shannon and other researchers that contributed to the development of
information theory serve as an ultimate goal in the continuing efforts to design and develop more
efficient digital communication systems.

In the most fundamental sense, communication involves implicitly the transmission from one point
to another through a succession of processes. Figure 1.2 illustrates the functional diagram and the basic
elements of a digital communication system [1].

The design of a communication system was based on two concepts. The first is to view all commu-

nication sources as being representable by binary sequences. The second is to design communication

3
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Source Channel Channel Source
Encoder Encoder Modulator  Channel Demodulator Decoder Decoder

XTL @ X!L

Noise

Figure 1.2: Basic elements of a digital communication system.

systems that first convert the source output into a binary sequence and then convert that binary sequence
into a form suitable for transmission over particular physical media such as cable, twisted wire pair,
optical fiber, or electromagnetic radiation through space.

The source, e.g., speech waveform, image waveform, or text file, may be either an analog signal,
such as audio or video signal, or a digital signal, such as the output of a teletype machine, that is discrete
in time and has a finite number of output characters.

The messages produced by the source are converted into a sequence of binary digits. Ideally, we
would like to represent the source output (message) by a few binary digits as possible. In other words,
we seek an efficient representation of the source output that results in little or no redundancy. The
process of efficiently converting the output of either an analog or digital source into a sequence of
binary digits is called source coding or data compression.

The sequence of binary digits from the source encoder, which we call the information sequence,
is passed to the channel encoder. The purpose of the channel encoder is to introduce, in a controlled
manner, some redundancy in the binary information sequence that can be used at the receiver to over-
come the effect of noise and interference encountered during the transmission of the signal through the
channel. Thus, the added redundancy serves to increase the reliability of the received data and improves
the fidelity of the received signal.

The binary sequence at the output of the channel encoder is passed to the digital modulator, which
serves as the interface to the communication channel. Since nearly all communication channels en-
countered in practice are capable of transmitting electric signals (waveforms), the primary purpose of
the digital modulator is to map the binary information sequence into signal waveforms.

The communication channel is a physical medium that is used to send the signal from the transmitter
to the receiver. In wireless transmission, the channel maybe the atmosphere (free space). On the other
hand, telephone channels usually employ a variety of physical media, including wire lines, optical fiber
cables, and wireless (microwave radio). Whatever the physical medium used for transmission of the
information, the essential feature is that the transmitted signal is corrupted in a random manner by a
variety of possible mechanisms, such as additive thermal noise generated by electronic devices, man-
made noise, example, auto Mobile ignition noise, and atmospheric noise, electrical lightning discharges
during thunderstorms, etc.

At the receiving end of a digital communication system, the digital demodulator processes the

4



1.3. Source Coding and Quantization

channel corrupted transmitted waveform and reduces the waveforms to a sequence of numbers that
represent estimates of the transmitted data symbols. the sequence of numbers is passed to the channel
decoder, which attempts to reconstruct the original information sequence from knowledge of the code
used by the channel encoder and the redundancy contained in the received data.

As a final step, the source decoder accepts the output sequence from the channel decoder and, from
knowledge of the source encoding method used, attempts to reconstruct the original signal from the
source. Due to channel decoding errors and possible distortion introduced by the source encoder and,
perhaps, the source decoder, the signal of the output of the source decoder is an approximation to the
original source output. The difference or some function of the difference between the original signal
and the reconstructed signal is a measure of the distortion introduced by the digital communication

system.

1.3 Source Coding and Quantization

In this thesis, our main focus will be on the source coding component. Optimal communication systems
for source transmission could be constructed by separately designing source codes for the source and
error correcting codes for the channel. Hence a work such as this one that focuses only on the source
or signal coding aspects, does not inherently mean a loss of generality. An effective overall system can
always be constructed by cascading a good signal coding system with a good error control system. In
fact, most practical communication systems for source transmission today are based on the separation.

The theory of source coding was first formulated by Shannon where a minimum rate of lossless data
compression was established. This rate is the same as the entropy rate H of the source that was defined
earlier. The exact value of this rate depends on the information source, more specifically, the statistical
nature of the source. It is possible to compress the source, in a lossless manner, with compression rate
close to H.

Shannon also developed the theory of lossy data compression. This is better known as rate-distortion
theory [16]. In lossy data compression, the decompressed data does not have to be exactly the same as
the original data. Instead, some amount of distortion, D, is tolerated. Shannon showed that, for a given
source (with all its statistical properties known) and a given distortion measure, there is a function,
R(D), called the rate-distortion function. The theory says that if D is the tolerable amount of distortion,
then R(D) is the best possible compression rate.

When the compression is lossless (i.e., no distortion or D = 0), the best possible compression rate
is R(0) = H (for a finite alphabet source). In other words, the best possible lossless compression rate
is the entropy rate. In this sense, rate-distortion theory is a generalization of lossless data compression
theory, where we went from no distortion (D = 0) to some distortion (D > 0).

Lossless data compression theory and rate-distortion theory collectively form the source coding
theory. Source coding theory sets fundamental limits on the performance of all data compression algo-
rithms. The theory, in itself, does not specify exactly how to design and implement these algorithms. It

does, however, provide some hints and guidelines on how to achieve optimal performance.
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Quantization; a form of lossy compression method; maps amplitude values into a discrete range, so
that the quantized signal takes on only a discrete, usually finite, set of values. Therefore, quantization
results in loss of information by introducing distortion into the quantized signal which cannot be elim-
inated. Increasing the number of discrete outputs of a quantizer, typically reduces the distortion, but
cannot eliminate it. The fundamental trade-off in this choice is the resulting signal quality versus the

amount of data needed to represent each input.

The set of inputs of a quantizer can be scalars or vectors. If they are scalars, we call the quantizers
scalar quantizers. If they are vectors, we call them vector quantizers. Both scalar and vector quantizers
play an important role in data compression and have therefore been studied extensively. While scalar
quantization is used primarily for analog-to-digital conversion, vector quantization is used with sophis-
ticated digital signal processing, where in most cases the input signal already has some form of digital
representation and the desired output is a compressed version of the digital signal. Vector quantization

is usually, but not exclusively, used for the purpose of data compression.

A vector can be used to describe almost any type of pattern, such as a segment of a speech waveform
or an image, simply by forming a vector of samples from the waveform or image. Vector quantization
can be viewed as a form of pattern recognition where an input pattern is approximated by one of a
predetermined set of standard patterns, or in other language, the input pattern is matched with one of
a stored set of templates or codewords. Vector quantization is far more than a formal generalization of
scalar quantization. In the last few years it has become an important technique in speech recognition as

well as in speech and image compression, and its importance and application are growing.

A vector quantizer () of dimension n and size M is a mapping from a vector (or a "point") in n-
dimensional Euclidean space, IR", into a finite set C containing M output or reproduction points, called

code vectors or codewords. Thus,

Q:R"—2C (1.4)

where C = {cy,cq,...,cyy}and c; € IR" foreach j € J = {1,2,..., M}. The set C is called
codebook or the code and has size M, meaning it has M distinct elements, each a vector in IR". The
resolution, code rate, or, simply, rate of a vector quantizer is R = (log, M)/n, which measures the
number of bits per vector component used to represent the input vector and gives an indication of the

accuracy or precision that is achievable with a vector quantizer if the codebook is well-designed.

Associated with every M point vector quantizer is a partition of IR" into M regions or cells, R ; for
j € J. The jth cell is defined by

Rj={xeR":Q(x) =c;j}, (1.5)
From the definition of the cells, it follows that

UR;=R" and R;(\R; =0 for j+#j (1.6)
J
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In fact, every quantizer can be viewed as a combined effect of two successive operations, an encoder
f,and adecoder, g. The encoder is a mapping f : IR" — J where J = {1,2,..., M}, and the decoder
is the mapping ¢ : J +— C. Thus if Q(x) = c; then f(x) = j and g(j) = c;. With these definitions we
have Q(x) = g(f(x)).

In the context of a waveform communication system, the encoder transmits the index j of the
selected level, c;, chosen to represent an input sample, and not the value c; itself. Thus, if the rate
R is an integer, one could assign to each index j a unique binary R-tuple. This binary R-tuple can be
transmitted or stored and then the decoder reconstructs the corresponding reproduction value. Note that
the decoding can be implemented by a table look-up procedure, where the table or codebook contains
the output set which can be stored with extremely high precision without affecting the transmission rate
R.

When n = 1, vector quantizers become scalar quantizers. In that case, each quantization region
is an interval; and each region R; is then represented by a representation point a; € IR. Thus an M-
S bar—1, by = 400 and M

., aps. A quantization region can be thus written as R; =|b;_, b;] as shown

level quantizer is specified by M + 1 interval endpoints, by = —o0, by, ..
representation points, aq, . .

in Figure 1.3.
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Figure 1.3: Scalar quantization regions and representation points.

Scalar quantizers have many advantages including the facts that they are the simplest and the cheap-
est. Furthermore, they are usually memoryless and thus avoid transmission delays caused by complex
signal processing at the node. It is known that vector quantizers may require lower rates than their scalar
counterparts even for independent source outputs, yet they are generally more complex and consume
more processing time.

For more on quantization and its information-theoretic foundation, rate-distortion theory, see the
original papers by Kolmogorov [17] and Shannon [18], book by Gersho and Gray [19], a collection
of papers edited by Abut [20], surveys by Gray [21] and Kieffer [22], and a comprehensive review by
Gray and Neuhoff [23].

The purpose of quantization is to provide a limited precision description of a previously unknown
input vector. It is only because the input is not known in advance that it is necessary to quantize. Thus
the input must be modeled as a random variable, having some specific statistical character, usually
specified by its probability density function. Consequently, the error introduced in quantizing this input
will also be random. To conveniently assess the performance of a particular quantizer, we need a single
number that indicates the overall quality degradation or distortion incurred over the lifetime of its use
with a particular statistically specified input. In addition, some kind of overall measure of performance,

usually based on statistical averaging, is required that takes into account the input pdf as well as the
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specific quantizer characteristic. The most common measure of the distortion between two vectors is

the squared error defined by

d(Xl,Xg) = ||X1 — X2||2 (17)

For an overall measure of performance that considers the lifetime performance of the quantizer we
can use either a worst-case value or a statistical average of some suitable measure of the distortion.
For a bounded input, the worst-case absolute error, often more simply called the maximum error, is the
maximum of d(x, X) taken over all possible inputs. For an unbounded input with a finite quantizer the
worst-case error is infinite and hence is not a meaningful performance measure. The statistical average
of the distortion is usually a more informative and meaningful performance measure in general it can

be written as

D= X", QXN] = [ dx QE)pxs (x)dx (1.8)

Where pxn(x) is the pdf of X™. The average distortion D is called the mean squared error (MSE).
The mean square error (MSE) is the most common distortion measure used in information the-
ory which forms the basis for the larger part of lossy compression algorithms in use nowadays [23].
The MSE is a norm on the distortion sustained in estimating the source from its encoded values. In
algorithmics and in signal processing, Lloyd-Max is an algorithm that allows the construction of the
optimal quantizer using the MSE distortion [24, 25]. The Lloyd algorithm for quantizer design works

by iterating between two partial solutions

* Given a set of representation codewords {c;, Ca, ...,y }, how should the quantization regions
{R1,Rs,..., R} be chosen?

* Given a set of quantization regions { Ry, Ra, . . ., R}, how should the representation codewords

{c1,c¢q,...,cpr} be chosen?

1.3.1 Distributed Source Coding

The problem of source coding becomes significantly more interesting and challenging in a network

context. Several new scenarios arise:

* Different information of the source information may be available to seperate encoding terminals

that cannot cooperate.

* Decoders may have access to additional side information about the source information.

Distributed source coding (DSC) [26], which refers to the separate encoding and joint decoding of
multiple correlated data sources, has received considerable attention from the signal processing [27],

communications [28, 29, 30] and information theory [31, 32] communities.

8



1.3. Source Coding and Quantization

In [31], Slepian and Wolf (SW) proved that, by exploiting the correlation between the sources
only at the decoder (but not at the encoder), a total rate equal to the joint entropy suffices to achieve
lossless compression. Supposing X and Y are two statistically dependent discrete random processes,
taking values in finite alphabets, which are encoded by two separate encoders, but are decoded by a
joint decoder. Then the SW result says that even if the encoders are independent, to achieve reliable
transmission of both X and Y , the rates of transmission must be such that Ry > H(X|Y), Ry >
H(Y|X),and Rx + Ry > H(X,Y).

Instead of lossless compression in Slepian—Wolf theorem, Wyner and Ziv [32, 33] established the
information theoretic bounds for lossy compression when the decoder has access to an additional in-
formation source, correlated with the input, termed the side information. In [32], they derived the rate-
distortion function for source coding with side information, i.e., Wyner-Ziv (WZ) coding; the solution
employs an auxiliary random variable, which forms a Markov chain with the source and the side infor-
mation. This constraint typically imposes a rate loss in coding rate, when compared to the predictive
coding case, in which the encoder also has access to the side information [34]. The Wyner-Ziv rate is

given by

Ryy(D)=  min  I(XUY) (1.9)

Bld(U.X))<D
Source coding problems with decoder side information are a special case of distributed source
coding problems. The role and potential benefit of Side Information (S.I.) in lossless and lossy data
compression is a central theme in information theory. In ways that are well understood for various
source coding systems, S.I. can be a valuable resource, resulting in significant performance boosts

relative to the case where it is absent.

1.3.2 Detection-Oriented Source Coding

The design of the source encoder/decoder depends on the objective of the communication system.
Lloyd, for instance, aimed at designing systems for the particular application of recovering the source.
In many other applications, the goal is to detect a source rather than estimate it. For example a radar
operator must decide if what he sees on the radar screen indicates the presence of a plane (the signal)
or the presence of parasites (the noise). This type of applications was the original framework of Signal
Detection Theory (see the founding work of Green & Swets, 1966) [35].

Detection, decision making, and hypothesis testing (HT) may sometimes refer to the same thing.
The meaning has been extended in the communication field to detect which one, among a set of mu-
tually exclusive alternatives, is correct. These mutually exclusive alternatives are usually referred to
as hypotheses. The primary problem that we consider in this thesis is the binary hypothesis testing
problem in which we assume that there are two possible hypotheses, the null hypothesis H, and the
alternative hypothesis H;.

A HT can be erroneous in two different ways. Either the detector decides H; when H is the true
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hypothesis or it decides Hy when H; is the correct hypothesis. The probabilities of these two errors,
respectively denoted by « and 3, together give the performance of a detector (or a test) [36].

The conventional HT problem; when no communication is required; is to decide between two al-
ternative distributions from the observed data which is available at the statistician, i.e., Hy : px versus
H; : pg. The optimal error exponent was characterized by Stein [37, 38]:

n—o0

1
lim - log B, = —D(px|lpx)

with /3, being the Type II probability of error, subject to the Type I probability of error o, < e.

Distributed hypothesis testing (HT) has first been investigated by Berger [39] and Ahlswede &
Csiszar in [40]. This was a first step to combine two seemingly different problems which have been
studied separately in the fields of standard statistics inference and information theory. This scenario
consists of a decoder (detector) that is required to perform a binary decision based remotely collected
data sent from the encoder.

In such problems, the goal is hence to define an appropriate distortion measure allowing to design
a quantizer adapted to hypothesis testing. The MSE criterion is appropriate when the aim is to recon-
struct the source. However, it can be unreasonable when other applications are concerned. A quantizer
designed to minimize mean squared error may recklessly lose information necessary for good detection
performance. In detection problems, the main degradation measure should be the two types of error.
However, minimizing the error probabilities is difficult and inconvenient to carry out on many occa-
sions. Consequently, several suboptimum performance measures such as the measures of dissimilarity

that are easier to manipulate are studied.

1.3.3 Secrecy-Oriented Source Coding

Nowadays, a huge amounts of information flow in the network. With this huge amount of information,
the main task for network designers is to ensure that the data can be transmitted reliably and also
securely across the network. The latter requirement is becoming increasingly acute, especially when
sensitive information is involved. Let us imagine a network in which information flows from one node
to another through a number of intermediate nodes. The system design generally makes use of these
intermediate nodes to help the transmission. However, these nodes might be public devices or terminals
which we cannot fully trust with access to significant amounts of our information. This scenario leads
to a natural trade-off between cooperation and secrecy in the system and motivates the study of secure
communication and compression.

At the beginning of the information theory era, the majority of studies focused only on problems
of reliable communication. Recently, extensive research is concentrating on secure communication,
i.e., when the goal is to design a communication system that is both reliable and secure. Conventional
techniques for achieving confidentiality and communication networks are based on cryptographic en-
cryption where security was only taken into consideration in the application layer of the OSI model.

In encryption, the transmitter uses a key to encrypt source information, i.e., plaintext, converted into
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ciphertext. The intended receiver extract original plaintext from a ciphertext by a corresponding key.
If an eavesdropping has access to the ciphertext, but it does not know the corresponding decryption
key, then it cannot obtain the source information. The chief failings of this notion of security are the
assumptions placed on the attacker. As a practical matter, the attacker is usually assumed to have a lim-
ited time or limited computed computational resources to that it cannot test all possible keys to extract
the source information.

Shannon [41] introduced the information theoretic notion of security considered at the physical
layer, where secrecy at the eavesdropper is measured through the conditional uncertainty of the source
given the message taking into account the different characteristics possessed by the eavesdropper and
the legitimate receiver. A system is information-theoretically secure if its security derives purely from
information theory [42]. That is, it cannot be broken even when the adversary has unlimited comput-
ing power. The adversary simply does not have enough information to break the encryption. Hence,
information-theoretic security makes no computational assumptions on the attacker, and is accepted as
the strictest form of security [43].

Claude Shannon defined the notion of perfect secrecy [41]. If a secret message J is encrypted to

form a cryptogram C using a secret key K, then perfect secrecy is achieved if

H(J|C) = H(J) (1.10)

That is, if the cipher-text provides no information about the message. Note that the entropies in
1.10 are calculated assuming K is chosen according to some random key distribution. We note here,
that the quantity H(J|C) is typically called the message equivocation, and H (K |C) is called the key
equivocation.

For the physical-layer security design, we not only wish to obtain arbitrarily low probability of
decoding error for Bob, as in traditional channel coding, but also wish to provide some level of security

against Eve as seen in Figure 1.4.

Legitimate
Transmitter Channel Receiver
xn Slog|fl <R 5 Eld(X™,Q(X™) <D
X’n
o LI(X7 (X)) < A
Eavesdropper

Figure 1.4: Secure communication system for lossy estimation of the source.

Information theoretic study of the physical layer security was pioneered by Wyner [44] for the case
of the Wiretap channel. Wyner has shown that perfect security is attainable as long as the channel of

the eavesdropper is a degraded version of the legitimate user’s one. In his setting, a legitimate receiver
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obtains the message over the main channel, while the eavesdropper obtains a degraded version of the
message, through an additional channel called the wire-tap channel. For the general degraded wiretap
channel, the secrecy capacity [45] can be bounded as C; > C,,, — C',,, where (,, is the channel capacity
of the main channel, and C), is the channel capacity of the wiretap channel. Note, for some channels,
Cs = C,, — C,, but in the general degraded wiretap channel, the secrecy capacity is at least equal to
this difference.

Csiszar & Korner [46] studied the case of broadcast channels instead. Several extensions to other
multi-user channels [42] including secure coding for multiple access channels, etc. were then consid-
ered. In all these settings, the eavesdropper is assumed to be obtaining different information than that of
the legitimate receiver via a wiretap or a broadcast channel. On the contrary, in this thesis, we assume
that the eavesdropper can obtain the same information obtained by the legitimate receiver.

While practical codes exist that obtain varying levels of information-theoretic security, most designs
suffer from one or more of several drawbacks. If an eavesdropper has a better channel than a legitimate
receiver, say the channel capacity of the wiretap channel C,, exceeds that of the main channel C,,, then
the scheme will likely fail. For some channels, C,, > C,,, implies that the secrecy capacity of the system
is zero. For example, consider what occurs when an eavesdropper has a noise-free channel. These types
of scenarios necessitate the coupling of physical-layer security schemes with additional protection. Of
course, cryptography can fill that role nicely.

When a system exposes its secret information to an unauthorised entity, the information exposed is
called Information leakage. The information leakage can be measured using different ways depending
on the designer’s point of view. One of the most common metrics for measuring information leakage is
the mutual information of (i.e. the amount of information shared between) the system’s secret data and
the data accessible by an eavesdropper.

In this work, we consider a secure lossy source coding problem under an information leakage rate
constraint. The secure source coding problem is essentially a source coding problem with an addi-
tional secrecy constraint. For a given source sequence X", and the output of the encoder/quantizer
f(X™), that is available to the eavesdropper, the information leakage rate is defined as a normalized
mutual information £7(X™; f(X™)). The solution to a secure lossy source coding problem is the opti-
mal tradeoff between transmission rate, incurred distortion at the decoder, and information leakage rate
at the eavesdropper in the form of a rate-distortion-leakage region.

This thesis (in Chapters 2 and 3) provides some new fundamental results on both detection and
secrecy oriented source coding in the presence of side informations at the receiving terminals.

More precisely, we investigate the problem of secure multiterminal HT with side information at

both the detector and the eavesdropper. This scenario consists of three nodes:

¢ A main encoder (referred to as Alice), that observes a local source,

* A legitimate receiver (referred to as Bob), that wishes to estimate the joint distribution of Alice’s
source and the directly available side information from a compressed version received through a

(public) rate-limited channel,
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* An eavesdropper (referred to as Eve), that perfectly observes the information bits sent by Alice

to Bob, and has also access to a correlated source which can be used as side information.

In Chapter 2, we study the fundamental limits of the problem, i.e. the trade-off between the maxi-
mum achievable error exponent at the detector, (i.e., the minimum type II error probability for a fixed
type I probability of error), the coding rate at the encoder and the leakage rate at the eavesdropper.
Whereas in Chapter 3, we propose practical algorithms to obtain solutions that are as close as possi-
ble to the optimal, which requires the design of optimal quantization (both scalar and vector) in the

presence of an eavesdropper.

1.4 Secure Distributed Source Coding with Applications to Smart
Meters

1.4.1 Introduction

Governments and power companies across the world have recognized that the traditional grid, which
has not significantly changed in 100 years, was not designed to meet the increased demands of a restruc-
tured electricity marketplace, the energy needs of a digital society, or the increased use and variability
of renewable power production and must be replaced and upgraded by more efficient, flexible and
intelligent energy-distribution networks.

This radical change is also stimulated by the pressing need to de-carbonise electricity supply, to
replace ageing assets and to make effective use of rapidly developing information and communica-
tion technologies (ICTs). These aims all converge in the Smart Grid. The Smart Grid uses advanced
information and communication to control this new energy system reliably and efficiently.

In its current state, the grid consists of four major components: generation produces electric energy
in different manners, e.g., by burning fossil fuels, inducing nuclear reaction, harnessing water (hydro-
electric dams), wind, solar, and tidal forces; transmission moves electricity via a very high voltage
infrastructure; distribution steps down current and spreads out for consumption; and consumption, i.e.,
industrial, commercial, and residential, uses the electric energy in a multitude of ways.

The part of the power system supplying energy has good communication links to ensure its effective
operation, to enable market transactions, to maintain the security of the system, and to facilitate the
integrated operation of the generators and the transmission circuits. This part of the power system has
some automatic control systems though these may be limited to local, discrete functions to ensure
predictable behaviour by the generators and the transmission network during major disturbances.

The distribution system, feeding load, is very extensive but is almost entirely passive with little
communication and only limited local controls. Other than for the very largest loads (for example, in
a steelworks or in aluminium smelters), there is no real-time monitoring of either the voltage being
offered to a load or the current being drawn by it. There is very little interaction between the loads and

the power system other than the supply of load energy whenever it is demanded. The present revolution
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in communication systems, particularly stimulated by the internet, offers the possibility of much greater
monitoring and control throughout the power system and hence more effective, flexible and lower
cost operation. The Smart Grid is an opportunity to use new ICTs (Information and Communication
Technologies) to revolutionise the electrical power system. However, due to the huge size of the power
system and the scale of investment that has been made in it over the years, any significant change will
be expensive and requires careful justification.

The consensus among climate scientists is clear that man-made greenhouse gases are leading to
dangerous climate change. Hence ways of using energy more effectively and generating electricity
without the production of CO2 must be found. The effective management of loads and reduction of
losses and wasted energy needs accurate information while the use of large amounts of renewable
generation requires the integration of the load in the operation of the power system in order to help
balance supply and demand. Smart meters are an important element of the Smart Grid as they can
provide information about the loads and hence the power flows throughout the network. Once all the
parts of the power system are monitored, its state becomes observable and many possibilities for control
emerge.

The Smart Grid vision is to give much greater visibility to lower voltage networks and to enable
the participation of customers in the operation of the power system, particularly through Smart Meters
and Smart Homes. The Smart Grid will support improved energy efficiency and allow a much greater

utilisation of renewables.

1.4.2 Smart Grid Communication Infrastructure

The operation of smart grid will feature bi-directional digital communication, bi-directional power
flow, and consumer empowerment with enhanced situation awareness. As such, adaptive signal pro-
cessing, distributed detection and estimation, statistical signal processing, signal representation and
data compression, machine learning, optimization methods, efficient computational algorithms, etc.,
will all prove to be important tools to make possible some of the important features envisioned for the
smart grid — demand response, distribution automation, self-healing, improved security, etc.

The communication infrastructure of a power system typically consists of SCADA systems with
dedicated communication channels to and from the System Control Centre and a Wide Area Network
(WAN). The SCADA systems connect all the major power system operational facilities, that is, the
central generating stations, the transmission grid substations and the primary distribution substations
to the System Control Centre.

An essential development of the Smart Grid is to extend communication throughout the distribution
system and to establish two-way communications with customers through Neighbourhood Area Net-
works (NANs) covering the areas served by distribution substations. Customers’ premises will have
Home Area Networks (HANSs). The interface of the Home and Neighbourhood Area Networks will be
through a smart meter or smart interfacing device.

Smart meters may be used in various ways and thus lead to different requirements for the metering
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communication system. Automated meter reading (AMR) requires only occasional transmission of
recorded energy data (perhaps once a month) while advanced metering infrastructure (AMI) requires
frequent bi-directional communication (perhaps every 30 minutes). The use of smart meters to support
Smart Grid operation of the distribution network has not yet been implemented widely but is likely to

place severe demands on the communication system.

1.4.3 Smart Metering

The connection of a large amount of intermittent renewable generation alters the pattern of the output
of central generation and the power flows in both transmission and distribution circuits. One solution
to this increase in variability is to add large-scale energy storage devices to the power system. This is
often not practical at present due to technical limitations and cost. Therefore, flexibility in the demand
side is seen as another way to enable the integration of a large amount of renewable energy.

Effective implementation of the Demand-Side Integration needs an advanced ICT (Information and
Communication Technology) infrastructure and good knowledge of system loads. However, the electro-
mechanical meters that are presently installed in domestic premises have little or no communication
ability and do not transmit information of the load in real time. Smart metering refers to systems that
measure, collect, analyse, and manage energy use using advanced ICT. The concept includes two-way
communication networks between smart meters and various actors in the energy supply system. The
smart meter’s objective is to provide real-time or near-real-time information exchange and advanced
control capabilities.

Electronic smart meters not only can measure instantaneous power and the amount of energy con-
sumed over time but also other parameters such as power factor, reactive power, voltage and frequency,
with high accuracy. Data can be measured and stored at specific intervals. Moreover, electronic meters
are not sensitive to external magnets or orientation of the meter itself, so they are more tamperproof

and more reliable.

In-home Smart
display appliances

Micro- i Other meters
generation

Home Area Network

( Meter data )
management
.
Neighbourhogd Area *

Wide Area Network Network

‘Last Mile’
Figure 1.5: Smart metering communication.

A typical communications architecture for smart metering is shown in Figure 1.5. It has three com-
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munications interfaces: Wide Area Network (WAN), Neighbourhood Area Network (NAN) and Home
Area Network (HAN) [47].

* Home-area network: A Home-Area Network (HAN) is an integrated system of smart meter, in-
home display, microgeneration, smart appliances, smart sockets, HVAC (Heating, Ventilation,
Air Conditioning) facilities and plug-in hybrid/electric vehicles. A HAN uses wired or wireless
communications and networking protocols to ensure the interoperability of networked appliances
and the interface to a smart meter. It also includes security mechanisms to protect consumer data

and the metering system.

» Neighbourhood area network: The primary function of the Neighbourhood Area Network (NAN)
is to transfer consumption readings from smart meters. The NAN should also facilitate diagnostic
messages, firmware upgrades and real-time or near real-time messages for the power system

support.

* Data concentrator: The data concentrator acts as a relay between the smart meters and the gate-
way. It manages the meters by automatically detecting them, creates and optimises repeating
chains (if required to establish reliable communication), coordinates the bi-directional delivery

of data, and monitors the conditions of the meters.

* Meter data management system: The core of a meter data management system is a database. It
typically provides services such as data acquisition, validation, adjustment, storage and calcula-
tion (for example, data aggregation), in order to provide refined information for customer service
and system operation purposes such as billing, demand forecasting and demand response. A
major issue in the design and implementation of a meter data management system is how to
make it open and flexible enough to integrate to existing business/enterprise applications and
deliver better services and more value to customers while ensuring data security. Besides the
common database functionalities, a meter data management system for smart metering also pro-
vides functions such as remote meter connection/disconnection, power status verification, supply

restoration verification and on-demand reading of remote smart meters.

1.4.4 Automated control and incident detection (system surveillance)

This thesis focuses mainly on distributed binary detection when side information is directly available at
the decoder with possible applications in smart grids. Applications may arise in the context of testing
against independence; i.e. when the two remote sources are independent under the alternative hypoth-
esis. In that case distributed detection can be used to notify a fault at the level of the smart meter, an

incident at the level of the TSO, or a voltage/frequency fluctuation etc.
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Figure 1.6: Distributed HT against independence used for fault detection

Fault Detection

The integrity of smart meter data is a paramount concern for customers (as well as utilities). A lack of
confidence may lead to a public and political backlash, like the one against Pacific Gas and Electricity
(PG&E) in Bakersfield, California in 2009. Thousands of customers complained that their smart meters
were overcharging them. PG&E attributed the higher bills to a rate increase and spikes in usage due to
summer weather [48]. However, in at least some cases, it appears that billing discrepancies were due
to improper installation or malfunctioning equipment [49]. The consequences for PG&E are ongoing
lawsuits, political pressure for a moratorium on deployment and increased scrutiny of their smart me-
ters [50], [51]. Some PG&E customers now verify the integrity of their billing independently using

consumer-device wireless power meters [52].

Smart meters have created a growing array of serious problems and as any other devices, meters
could face failure problems causing them to communicate false and unreliable data to the provider/col-
lector. To elaborate, the source in this case could be the readings of a smart meter of a certain consump-
tion unit while the decoder could be the collector or the provider, having access to side information
representing some useful correlated data (history, etc.). Distributed detection can be then adopted to
test the joint distribution of these two data. Any absence of correlation could indicate a smart meter

deficiency and hence a fault detection at the level of the smart meter could be investigated.

In the control of electric power systems, especially in the wide area backup protection of electric
power systems, the prerequisite of protection device’s accurate, fast and reliable performance is its
corresponding fault type and fault location can be discriminated quickly and defined exactly. In [53],

the author uses discriminant analysis theory to detect faults in smart meters.

Incident Detection

Experts agreed that the Transmission System Operators TSOs and the Distribution System Operators
DSOs need to perform monitoring actions to detect possible incidents affecting the power grid as a
whole and also in each member state MS. In European-wide incidents, many experts consider that
TSOs should be the organisations in charge of monitoring and triggering alarms. Incidents may take
place at the consumer level (smart metering at the customer) [54], or at the DSO/TSO level. Distributed

hypothesis testing against independence can also be used to detect such incidents.
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Detection of Non-technical Losses

Technical losses are naturally occurring losses (caused by actions internal to the power system) and
consist mainly of power dissipation in electrical system components such as transmission lines, power
transformers, measurement systems, etc. Technical losses are possible to compute and control, provided
the power system in question consists of known quantities of loads.

Non-technical losses (NTL), on the other hand, are caused by actions external to the power system,
or are caused by loads and conditions that the technical losses computation failed to take into account.
NTL are more difficult to measure because these losses are often unaccounted for by the system oper-

ators and thus have no recorded information [55]. The most probable causes of NTL are:

Electricity theft

* Non-payment by customers

* Errors in technical losses computation

* Errors in accounting and record keeping that distort technical information

* Component breakdowns that drastically increase losses

In the same way mentioned in the previous sections, monitoring the distribution of the data collected
could help us detect such losses. A more precise Hypothesis testing could later be performed in order
to define the type of this technical losses (Component breakdowns for example will have much more

impact on the distribution than electricity theft and so on).

Reducing Voltage and Frequency Fluctuations

Voltage fluctuations can be described as repetitive or random variations of the voltage envelope due
to sudden changes in the real and reactive power drawn by a load. To allow equipment connected to
the power system to operate correctly it is important for both the utility and their customers to ensure
that the operating voltage of the system remains within the boundaries set by the appropriate standards.
Reducing the effects of voltage fluctuations could be done using different strategies.

Frequency fluctuations should also be taken into consideration. Any inequality between production
and consumption results in an instantaneous change in frequency from nominal, frequency should be
always monitored and controlled. Traditionally, frequency regulation is provided by varying the power
output of generators which have restricted ramp rates. New energy storage technologies can also be
useful by rapidly changing their outputs and providing frequency regulation with very fast response to
frequency fluctuations.

In HT, the remote source could be the measured voltage or frequency at different time-slots, and
the side information could be the desired values or some historical data. HT could be used to measure
the correlation between these random variables, lower correlation means higher fluctuations and action

should be taken while higher correlation could mean more stability of the electic network.
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1.4.5 Information Security for the Smart Grid

With millions of customers becoming part of the Smart Grid, the information and communication in-
frastructure will use different communication technologies and network architectures that may become
vulnerable to theft of data or malicious cyber attacks. Ensuring information security in the Smart Grid
is a much more complex task than in conventional power systems because the systems are so exten-
sive and integrated with other networks. Potentially sensitive personal data is transmitted and, in order
to control costs, public ICT infrastructure such as the Internet will be used. Moreover, the size of the
physical system widens the range of possible attacks and constrains the set of feasible countermeasures.

The Smart Grid requires reliable and secure delivery of information in real time. . Delays in the
delivery of information accurately and safely are less tolerable in the Smart Grid than for much com-
mercial data transmission as the information is required for real-time or near real-time monitoring
and control. A lot of monitoring and control information is periodic and contributes to a regular traf-
fic pattern in the communication networks of the Smart Grid, though during power system faults and
contingencies there will be a very large number of messages. Any form of interruption resulting from
security issues is likely to have serious effects on the reliable and safe operation of the Smart Grid.
Therefore, protecting the whole communication system which is the core of the smart grid is one of the

primary goals.

Smart Grid Privacy Concerns

The Deployment of smart grids have raised many privacy concerns. Smart meters installed inside the
houses communicate detailed consumption data to different central units and utilities. These detailed
data may leak personal information. These information facilitate the creation of user lifestyle profiles,
including house occupancy, meal times, working hours, vacation days ... and hence threatens user
privacy.

Malicious attacks against the power grid can directly affect everybody’s lifestyle. Public bodies and
C-level staff of the utilities operating the distribution and transmission networks, as well as electricity
marketers and generation organisations should be aware of this situation. Mechanisms to improve the
security posture of the current networks are being put in place where cyber security is included as a
primary objective of the smart grids.

Researchers have designed protocols that allow for price billing of consumption while not revealing
any consumption information to the providers [56]. Meters send readings at different time slots to
customer devices that compute a billing message alongside a mathematical proof that a fee is correct.
The provider receives the payment message with the proof to check whether the bill is correct without
knowing any information about individual meter readings. This protocol uses encryption techniques to
send these data, and the user devices perform the billing computation after decrypting the reading using
the encryption key. In our thesis, our focus will be on information theoretic security instead.

Providing information security has been a common need of ICT systems since the Internet became

the main mode of communication. Thus there are well-established mechanisms to provide information

19



Partie , Chapter 1 — Introduction

security against possible threats. Existing security approaches based on cryptography may happen to be
difficult to apply in this context, because of the very large dimensions involved. In fact, cryptography
heavily relies on secret keys and the dissemination of these keys is often the weak point of the system.
If the key remains the same for a very long time, this leaves room for possible adversaries to crack
the system, and changing frequently the keys may be either resource consuming or difficult to imple-
ment on a very large and distributed system. It is therefore the right time to check the applicability of
recently proposed techniques not relying on cryptography. Information-theoretic results prove the exis-
tence of physical-layer coding that guarantees a level of secrecy against eavesdroppers, by harnessing
the statistical asymmetries inherently in data (sources, side informations) and communication media
(interference, noise), without consuming additional resources or requiring pre-shared secret keys. The
application of information-theoretic style approaches to secure Smart Grids is extremely attractive, not
only because statistical asymmetries between nodes are abundantly available in such scenarios but spe-
cially because information theory has the mathematical tools to characterize the fundamental limits,
optimal trade-off between reliable estimation/detection and what can be guaranteed in terms of secure
information, no matter the way in which the malicious eavesdroppers process the information.

Unlike cyber security, physical layer security has been hardly addressed in the literature of the
smart grid to date. In [57], the author proposed a way to encode the redundant measurement at a bit
rate below its entropy, so that it cannot be decoded from the encoded bits alone. In this way, he guar-
antees information-theoretic confidentiality, regardless of the computational power of an eavesdropper.
Redundant metering is frequently used to verify the integrity of billing data reported by advanced me-
tering infrastructure, but the redundant measurement introduces a potential confidentiality leak.

The key idea is to compress the redundant measurement to a rate below its entropy, so that it
cannot be recovered from just the encoded bits. But the redundant measurement can be recovered
in conjunction with the reported measurement, as long as the compression rate is greater than the
conditional entropy of the redundant measurement given the reported measurement. Unlike encryption,
this method guarantees confidentiality regardless of the computational capability of the eavesdropper

Encryption appears to be the typical approach [58, 59]; however, such approach does not have a ro-
bust theoretical basis for both privacy and detection/estimation performance. Such a basis is important
for several reasons. First, a theoretical abstraction allows us to recast the problem in a technology-
independent manner — we need a privacy framework that not only addresses the capabilities of current
techniques but is also extensible to future ones. Second, a theoretical framework enables us to exam-
ine the costs of lost privacy against the benefits of data dissemination, namely, the trade-off between
privacy and decoder performance. It would be desirable to have the ability to decide that trade-off.
Finally, a theoretical framework for privacy and performance may expose points of trade-off that are

unexpected.
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CHAPTER 2

HYPOTHESIS TESTING WITH
COMMUNICATION AND SECURITY
CONSTRAINTS

Abstract — A receiver “Bob” is interested in detecting the joint probability distribution of 2 re-
motely located data. “Bob” has access to the encoded version of some observations of a random
variable X ; collected and encoded with a rate R by an encoder “Alice” and sent over a public
noise-less channel; and some directly available observations of another random variable Y. At
the mean time, an eavesdropper “Eve” has access to these encoded data. It is required to find the
maximum error exponent, i.e., the minimum type Il probability of error for a type I probability of
error being at most € and a certain equivocation rate, i.e., determine a trade-off between the rate,
the error exponent, and the equivocation rate. First, we investigate the case of general hypothesis
testing where under both hypotheses the joint distribution could be anything. Then, we investigate
the special case of testing against independence where under the alternate hypothesis, the joint dis-
tribution refers to the case where X and Y are independent, and we determine the optimal single

letter rate-exponent-equivocation and provide examples to Gaussian and Binary sources.

Keywords — Hypothesis testing, communication constraints, security Constraints, error exponent.

2.1 Introduction

This chapter studies the problem of hypothesis testing (HT) in which data is compressed and sent
to a detector that seeks to decide between two possible distributions. The aim is to characterize all
achievable rates of data and equivocation, and the maximal exponent of the Type II error probability
when the Type 1 error probability is at most a fixed value. The conventional HT problem is to decide
between two alternative distributions from the observed data which is available at the statistician, i.e.,

Hy : px versus H; : pg. The optimal error exponent was characterized by Stein [37, 38]:

) 1
lim —log 8, = —D(px||px)

n—oo n,

with (3, being the Type II probability of error, subject to the Type I probability of error o, < €.
The problem of multiterminal hypothesis testing (HT) under communication constraints has first

been investigated by Berger [39]. Distributed HT was first introduced in [40] where the authors studied
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Figure 2.1: HT with communication and privacy constraints.

this problem in the presence of communication constraints. A single-letter characterization is given
for testing against independence while partial results are obtained for the general HT problem. Later
on [60], a lower bound on the optimal error exponent was proposed based on the exponent of Wyner-
Ziv coding [61]. Further results are reported in [62], where based on a sophisticated binning scheme,
a novel lower bound is derived. Although for related source coding problems the schemes based on
random binning perform well and often optimal, the use of binning in HT is more involved due to the
fact that the overall error probability may be dominated by errors in decoding the bin indices. More
recently, the authors in [63] studied HT without security constraints and showed that binning is optimal
for the type of problems in which the main purpose is to test against conditional independence.

n [64], it was shown that the rate-exponent region of the successive refinement testing against
independence and rate regions of the successive refinement lossless one-helper problem are congruent
to each other. A strong converse for the successive refinement testing against independence problem
is proved which shows the optimal type II error exponents under constant type I error constraints are
independent of the exact values of those constants. In [65], they study the vector Gaussian versions
of the two problems; hypothesis testing under a communication constraint and the lossy one-helper
problem.

In [66], Lower bounds on the error exponent for type Il probability of error are presented subject
to the exponential-type constraint «,, < exp(—nr) on the error probability of the first kind. On the
other hand, [67] studies the problem of interactive testing against independence with communication
constraints, where a computable characterization is provided for the optimal trade-off between the com-
munication rates in two-round interaction and the testing performance measured by the error exponent.
In [68], they study the case where the two nodes interactively communicate with each other in q rounds
to perform a simple binary hypothesis testing on whether the observed random sequences at the nodes
are generated independently or not.

The optimal trade-off between distortion and equivocation is well-known in the conventional rate-
distortion setup [69], but is not when the target function is the error exponent instead of an average
per-letter distortion. More recently in [70], They establish inner and outer bounds on the rate-distortion-
equivocation region for the lossy source coding problem with secrecy constraints in which a remote
information source should be transmitted to a single destination via multiple agents in the presence of a
passive eavesdropper. The eavesdropper, with access to side information correlated to the source, is able
to listen in on one of the links from the agents to the destination in order to obtain as much information
as possible about the source. On the other hand, the optimal rate-exponent-distortion region for the

case of joint estimation and detection against independence was also determined [71]. However, the
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problem of HT between two general joint probability distributions is still open and appears to be of a
formidable mathematical complexity [72]. Privacy constraints were investigated in the case of parallel
distributed detection systems within the Bayesian framework in [73] while differential privacy was
addressed in [74].

This chapter addresses the scenario of HT under both communication and privacy constraints. The
corresponding model is shown in Fig. 2.1 where Alice maximizes not only the exponent but also the
equivocation rate —average uncertainty— at an eavesdropper, denoted as Eve. Eve is assumed to perfectly
observe the information bits sent by Alice and has access to a correlated i.i.d. string Z" = (Z4, ..., Z,)
(possibly the same as Bob). We study the minimum amount of data that Alice needs to communicate to
Bob to guarantee the desired exponent while satisfying the average uncertainty requirement at Eve. The
optimal tradeoff between distortion and equivocation is well-known in the conventional rate-distortion
setup [78], but is not when the target function is the error exponent instead of an average per-letter
distortion. The standard source coding problem and the HT problem without privacy constraints appear
to be fundamental different from each other.

The chapter is divided into two parts. In the first part, we study the general HT problem and derive an
achievable region. The region we provide uses a double layer scheme based on binning and generalizes
that provided in [60] by taking into consideration both testing and decoding errors which takes place
during the binning process. The use of the double layer based on binning made the problem very
complicated but provided a better overall error exponent and was needed to improve the security in
the region. In [62], a similar while not equivalent lower bound on the error exponent was proposed
but unfortunately the proof is not available. In the second part, we study the special case of testing
against independence where we assume that under both hypothesis the probability distributions have
equal marginals. In this case, only one layer was used without binning and an optimal single-letter
characterization of the rate-exponent-equivocation region is provided. Applications of our results arise
in the context in which data must remain private even from the statistician (see [75] and references
therein), the region is also evaluated for Gaussian and binary sources.

The rest of this chapter is organized as follows. Section II provides notations and problem defini-
tions. Section III gives the main results of the general hypothesis testing, Section IV demonstrates the
result for testing against independence and give an example in which sources are binary and Gaussian.

Concluding remarks are given in Section V.

2.2 Problem Definition

2.2.1 Notations

Upper case letters X denote random variables (RVs) with values x in the finite set X. The cardinality
of X is denoted by ||X||. For RVs X and Y with joint PD pyy, H(X), H(Y|X) denote the entropy
and the conditional entropy, respectively, and h(X), h(Y|X) denote the differential entropies, while
I(X;Y) denotes the mutual information. The notation /(px; py|x) is also used to denote the mutual
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information between X and Y while assuming that the distribution pxpy|x governs the pattern. For
p € [0,1], Ha(p) denotes the binary entropy function. For two PDs p,q on X, D(p||q) is Kullback-
Leibler divergence. x} stands for the collection (xy, zj41, . . ., x,) Where we use z" to denote vectors in
X™ of length n and =7 is simply denoted z™. Let (X, Y, Z) be three RVs such that P(z|y, z) = P(z|y)
for each (x,y, z), then X -e- Y —e- Z form a Markov Chain.

For a random variable X, we will consider that py is the distribution of X while ¢y is the empirical
distribution or "type" of X as defined in [76]. T} denotes the set of all sequences 2" having gx as their
type.

ForaPD px € P(X), T7(X) denotes the set of strong typical sequences [17] with constant € > 0,
and for a stochastic mapping W : X — Y, T7(Y|z") denotes the set of conditional strong typical
sequences for a sequence 2™ € X'™ with constant ¢ > 0. Finally, for o, 5 € [0,1], ax 8 = a(1 — 8) +

(1—a)p.

2.2.2 System Model

The model is shown in Fig. 2.1, where an encoder Alice observes i.i.d realizations of a vector random
variable X, and encodes at a rate R. A statistician Bob (the detector), observes the encoded version
f(X™) of X™ = (Xy,...,X,) and an i.i.d realizations of a vector Y" directly available, which is arbi-
trary dependent on X by memoryless. An eavesdropper (referred to as Eve) has access to J = f(X™)
and another side information Z", also consisting of i.i.d. samples arbitrary dependent on (X™, Y™).

Alice wishes to communicate the source by using an encoding mapping:

fox" = AL .. fll} (2.1)

with coding rate log || f|| < nR. The detector Bob is required to make a decision between two hypothe-

Ses:

(2.2)

It is further assumed that the marginal distributions of X and Y are the same under both hypotheses,
i.e., px = px and py = py which does not allow Bob to make the decision without the information
sent by Alice. In this setting, Bob has to decide on the basis of the sample Y" and the message f(X™)
between H( and H1, of which only one is true. For the sake of simplicity, we denote the corresponding
probability distributions by P = p(xn)y» and P=p FXm)Y -

Givene € (0,1),let A, C {1,...,||f||} x V™ be the acceptance region for the detector at Bob. The

two types of probabilities of error are defined as:

Typel: a,(f,A,) = P(A) <e, (2.3)
Typell: B.(f,A) = P(A,) . (2.4)

Then, the goal of the detector Bob is to find an encoding function f and an acceptance region A,, that
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minimize the probability (2.4) for a prescribed probability (2.3), and guarantee the equivocation rate

(or average uncertainty) at Eve such that:

CHXC (X2 2 A, @5

or an equivalent definition is the information leakage:
1
SI(XT F(XM)ZT) < H(X) — A 2.6)
n

For the reasons mentioned above, we change the definition of 3, to include the following:

Bu(f.2) £ min {B(A,)| A, C F(X") x Y7 P(A]) <, o
LH(X"JZ") > A}
51{(”, 6) = mfin 671(]07 8) (28)

According to [40], the asymptotic behavior of the second type probability of error can be described by
a parameter O (R) where:

NS g
©,(R) £ sup {=D(P||P)|log|| f|| < nR} (2.9)
f n

O(R) £ sup ©,(R) (2.10)

Definition 2.1 (Multi-letter characterization) A multi-letter characterization of the rate-exponent-e
quivocation region R* is thus given by the set of all tuples (R, E,A) € Ri such that there exists an

encoding function f satisfying:

1

“log|fll < R, 2.11)

:LD(IP’H]P’) > B, 2.12)
iH(X”]f(X”)Z”) > A 2.13)

Our objective is to derive an achievable single-letter representation of this region.

2.3 General Hypothesis Testing

In this section we focus on the case where under both hypotheses, the two distributions are general, in

other words the two hypotheses are Hy : pxy and H; : pgy-
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2.3.1 Rate-Error-Equivocation Region for the general HT

Our main result for general hypothesis testing is an achievable rate-error-equivocation region and can

thus be summarized by the following proposition:

Proposition 2.1 (Achievable rate-error-equivocation region) A set of all tuples (R, E, A) is achiev-

able if the following inequalities are satisfied:

R > I(px;puix) (2.14)
E < min{Ey; Ex(R — I(px; puix));

Ey(H(pxjuzlpuz) — A)} (2.15)
A < H(pxwzlpuz) (2.16)

where U and V' are auxiliary random variables defined on some finite sets U and V such that U —e—
V - X - (Y,Y, Z) form a Markov chain. U and V are also defined such that (U,V) - X Y
and pgy|x = puvix; and Ey and Es are defined by:

B = min D(ppvsv|lpoo ey ) 2.17
1 OV RV EPUY) (PgvxvllPovsy) ( )

ZWUV)={ OVXY:PUVX)=PUVX),

o (2.18)
P(OVY)=PUVY)},
E2(R - I(pX§pU|X)) =
inf sup inf inf Glovxyw, R — I(px; puix)) , (2.19)
Ix|U g* Qv |\u v XY |U
vIivx WUXx =6 x
Ey(H(pxwzlpuz) — A) =
inf sup inf inf G[QVXY|Ua H(pX\UZ|pUZ) - A] s (220)
ax|\u qé/\UX qy|u avXxy|U

—*
QV\UX_qV‘UX

Equations G[qv xv|u, R — I(px;puix)] and Glgv xvu, H(pxjwz|puz) — A] are defined in (2.21) and
(2.22) at the bottom of the next page. This proposition is proved in Appendix A.1.

2.3.2 Degraded Hypothesis with an Arbitrary Large Coding Rate

In this section, we suppose that the alternate hypothesis H; is a degraded hypothesis with respect to
hypothesis Hy, i.e., X - Y -e- Y form a Markov chain in this order while the rate R is infinity, in other
words, the channel is not rate limited. In this particular case, we give an achievable error-equivocation

region and show it’s optimal. We will consider the case where the conditional probability distribution
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of the information available at the eavesdropper Z knowing X is the same as that of side information

Y at the decoder under the alternate hypothesis H;. In other words, we will suppose that p ZIX = Py|x-

Proposition 2.2 (Degraded Hypothesis) R* is given by the set of all tuples (E,A) € R3 such that

there exists an encoding function f satisfying:

E < DUY|UY), (2.23)
A < H(X|UY), (2.24)

where the auxiliary random variable U is chosen such that U - X -~ Y —e- Y form a Markov chain.

The proof of this proposition is given in Appendix A.2. In the proof it can be noticed that binning is

not useful in this case to prove the region is optimal and thus is not used.

2.4 Testing Against Independence

In this particular case, the goal is to focus on testing against independence, i.e., between:

Hy :
0: Pxvy, (2.25)
Hy: px Xpy,
where the two types of error probabilities are in this case defined as the following:
Typel: a, = Pr(H|X"Y" ~pyy), (2.26)
Typell: B, = Pr(HoX"Y™ ~p% x pi) . (2.27)
Bounding the error exponent in this case is much easier due to the fact that:
1 1 N

Glavxyw, B — I(px;puix)] =

min{D(qv xyvllpxyivevivxlaw); D(avxyivllpgyivavivxlao)}
+[R = I(px;puix) — Hqux; qviox) + quy; qvioy)] T R < I(px;puix) + I(qux;aviux)

00 else.

2.21)
Glavxyiv, H(pxjwzlpvz) — Al =

min{D(QVXY\U\ ’pXY|UQV|UX\QU); D(QVXY|UHP)_(}7\UQV\UX lqu)}

+HH (pxwzlpvz) — Hqux; aviox) + Iquy; qvioy) — Al A > H(pxwzlpuz) — qux; aviox)
00 else.

(2.22)
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Thus, a multi-letter characterization of the rate-exponent-equivocation region R* is given by the set of

all tuples (R, E, A) € R? such that there exists an encoding function f satisfying:

1
ﬁlOngH < R, (2.29)
ey = B, 2.30)
iH(X"|f(X”)Z”) > AL (2.31)

2.4.1 Single-Letter Rate-Error-Equivocation Region

We now state the optimal rate-error-distortion region for testing against independence which provides

a single-letter expression.

Proposition 2.3 (Single-letter characterization) Let R* be the set of all achievable tuples (R, E, ),

then there exists a random variable U on some finite set U satisfying:

R > I(U;X), (2.32)
E < I(UY), (2.33)
A < H(X|UZ), (2.34)

where U - X - (Y, Z) form a Markov chain.

Note that equivocation is independent of the statistical differences between Y and Z. In contrast
to the rate-distortion-equivocation setting previously studied in [78], in the current setting of testing
against independence, the analog information Y available at Bob cannot help to improve the equivoca-
tion rate at the Eavesdropper. This observation can simply be explained by the fact that in both cases
where Y is independent of X or not, then Alice must encode for the worst case and cannot use it to
perform binning (e.g. Wyner-Ziv coding).

The proof of both the achievability and converse parts of Proposition 2.3 are given in Appendix A.3.

2.4.2 Eve is the Statistician

We now assume that Eve is an untrusted statistician, i.e., YY" = Z". In addition to this, Alice wishes to
maximize the equivocation only with respect to a specific part of the source X" that is denoted by S”,
where f(X") -e- X™ - (S™,Y"). Eve observes the same signal Y. In this setting, the equivocation
rate is given by

;H(S”\ FXMY™) > A (2.35)

Note that this definition does not affect the coding rate and the exponent and thus the other quantities

remains the same.

30



2.4. Testing Against Independence

Proposition 2.4 (Detection under privacy constraints) Let R* be the set of all achievable tuples

(R, E,A), then there exists a random variable U on some finite set U satisfying:

R > I(U;X), (2.36)
E < I(UY), (2.37)
A < H(S|UY), (2.38)

where U -— X —e- (Y, S) form a Markov chain.

Proof 2.1 We first prove the direct part, by replacing X" with S™ in [78, Lemma 2], we obtain:

H(S"|rY™) 2 n[H(S|UY) = n.] , (2.39)
provided that n is large enough. In order to show the converse, we set again U; = (J, Y1) with
J = f(X™) and thus

1 1 : ,
A< ﬁH(S"UY”) = EZH(Si|J51‘1Y"1}Q}QL) (2.40)
i=1
1 n
< EZH(Si\UiYi) (2.41)
i=1
= H(S|UY). (2.42)

This concludes the proof of the proposition.

2.4.3 X follows an arbitrary distribution under Hypothesis /7,

In many situations, the marginal distribution of the source X under the alternate hypothesis H; could
be unknown, and hence the problem should be modified to take this idea into consideration. In this

case, our two hypotheses will be defined as follow:

{ Hy: pxvy, (2.43)

Hy: px Xpy,

where py is any arbitrary distribution. The problem becomes as follow, we need to find the optimal

region (R, £, A) satisfying the following conditions:

1
log|lfll < R, (2.44)
1 _ .
1
SHX|f(XMZT) = A, (2.46)
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and hence in other words:

Slogllfl < R,
%mﬁin D(pf(X")Y" ﬁf(Xn)pYn) > F, (2.47)
SHX'f(XMZm) > AL
Define px = Y pxy, then it can be shown that
D(pxvy||pxpy) = D(pxv|lpxpy) + D(px||px) (2.48)
Since D(px||px) > 0, then we can say that:
min D(pseeny»|[Dyeempyn) = Dpsoemyallpseenpyn)
= I(f(X");Y") (2.49)

And hence the solution of the optimal region remains the same.

2.4.4 Testing on Binary Sources

Consider the source model depicted in Fig. 2.2 where the source X is binary and the sources Y and Z
are the outputs with input X of a Binary Erasure Channel (BEC) with erasure probability ¢ € [0, 1/2]
and a Binary Symmetric Channel (BSC) with crossover probability p € [0, 1/2], respectively.

Y 1—e¢ X 1—p Z
0 0 0
/ p
€
€
\ D
1 1 1

Figure 2.2: Testing on binary sources.

Assume that the source is uniformly distributed , i.e., Pr(X = 0) = Pr(X =1) = 1/2.

Proposition 2.5 (Rate-exponent-equivocation region) The rate-exponent-equivocation region R* is
the set of all tuples (R, E, A) such that there exist a € [0, 1/2] satisfying:

R > 1- Hy(a), (2.50)
E < (1-¢(1- H(a)), (2.51)
A < Hy(p) + Ha(a) — Hy(axp) . (2.52)

This proposition is proved in Appendix A.4.
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2.4.5 Testing on Gaussian Sources

Consider the source model depicted in Fig. 2.3 where the source at Alice is a standard Gaussian and the
other sources are the outputs of additive white Gaussian noise (AWGN) channels with input X, gains
Py, pz, and noise powers 1 — p?, 1 — p?, respectively, for some 0 < py, pz < 1.

Py Ny ~N(0,1—p})

~.

®
>
~

Figure 2.3: Testing on Gaussian sources.

Proposition 2.6 (Inner rate-exponent-equivocation region) A set of all tuples (R, E, A) is achiev-

able if the following inequalities are simultaneously satisfied:

1 1
> “log|—yp 2.53
R > 20g<1_pU2>, (2.53)
1 1
E < Zlog|——s— 2.54
1—pu?)(1 = ps°
A < [log%re( po )L~ pz )] (2.55)
L= pupz I

The proof is given in Appendix A.S.

2.4.6 Numerical Results

Based on the results stated in Proposition 2.6, we now plot the error exponent £ as a function of the
equivocation A, for the same string observations at Bob and Eve, i.e., Y = Z with p? = p%, = 0.5
and different coding rates. By observing Fig. 2.4, we notice that the error exponent is decreasing as
a function of the equivocation which is an expected outcome since if Alice wishes to increase the
exponent (decreasing the error probability) then the desired level of privacy might not be guaranteed
anymore. Thus, there exists a tradeoff between the number of encoded bits (from the total amount R
of allowed bits) and the equivocation rate. Indeed, for each value R, the exponent £ is limited by two
factors: the coding rate 12, when the equivocation is small, and the desired equivocation rate A, when
the coding rate is above a certain threshold.

We next plot the same function for different correlation values p? and an arbitrary large coding rate
R, as shown in Fig. 2.5. From this picture, we can observe that as the correlation increases, the error
exponent increases as well while the equivocation decreases. This can be explained by the fact that an
increase of the correlation implies a higher information leakage at Eve. Otherwise the behavior of the

tradeoff between the exponent and the equivocation rate remains unchanged.
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Figure 2.4: Error exponent as a function of the equivocation rate for different coding rates.
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Figure 2.5: Error exponent as a function of the equivocation rate for different correlation values p?
with an arbitrary large coding rate.

2.5 Conclusion

In this chapter, we focused on the problem of hypothesis testing with both communication and privacy
constraints. Bob needs to choose between two hypotheses based on the available information and the
information remotely communicated by Alice. Indeed, Alice communicate over a public error-free but
rate-limited channel. The goal is to guarantee a desired error exponent at Bob for a given rate while
satisfying an average equivocation rate at Eve.

When testing against independence, we were able to characterize the optimal trade-off between
the rate, the error exponent requirement and the privacy guarantees. Only one encoding layer without
binning was needed. In the case of general hypothesis testing, an approach based on the method of
types was used in order to derive an achievable rate-error-equivocation region without being able to

prove its optimality.
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CHAPTER 3

QUANTIZATION LEARNING FOR
DISTRIBUTED BINARY DECISION WITH
PRIVACY CONSTRAINTS

Abstract — The design of a quantizer for distributed binary decision in the presence of an eaves-
dropper (Eve) is investigated. An encoder/quantizer (Alice) observes a source and communicates it
via a public noiseless rate-limited channel with the detector (Bob) who has also access to a corre-
lated analog source. Bob can take advantage of both information to perform a binary decision on
the joint probability law of these observations. Eve is further assumed to have access to a differ-
ent correlated analog source and perfectly observe the information bits sent by Alice. This chapter
evaluates the various trade-offs between the probabilities of error (on the decision) depending on
the amount of information leakage from Alice to Eve in both scalar and vector quantization cases.
The particular case of Testing against independence is studied for the case of vector quantization
where the error exponent reduces to the mutual information between the two sources, in which
case a solution is obtained via an algorithm very similar to that given by Lloyd-Max. Numerical
results for memoryless Gaussian sources first demonstrate the performance of the proposed quan-
tization methods, and a practical application involving electric consumption data measured from

real houses is then investigated.

Keywords — Hypothesis testing; distributed; AUC; error; quantization; secrecy; source coding;

distortion measure.

3.1 Introduction

Many applications require a message to be transmitted from an information source to a desired desti-
nation, where decisions are made on the source based on the received data. For instance, data might be
sent by an object-detection radar or a video surveillance camera to a monitoring station interested in
detecting a specific target or object in the radar’s range of vision. In such an application, it is frequently
crucial to decrease the rate of transmitted data by encoding the source prior to transmission, and the
fact that the receiver has only to make a test, and not to estimate the original signal provides more
degrees of freedom to reduce the transmission rate. In our setting, it is even further assumed that the

signal which is transmitted, if listened by an eavesdropper, do not provide too much information on the

original signal.
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Obviously, quantization is the tool of choice for reducing the rate, but, in contrast with the classical
situation, distortion is the design criterion for optimizing the quantization. In our case, we are interested
in the best possible performance for the test while ensuring that the raw data remain secure w.r.t. an
eventual eavesdropper.

Even without any privacy constraint, a first problem is to define an appropriate distortion measure
allowing to design a quantizer adapted to hypothesis testing. The mean square error (MSE) is the
appropriate distortion measure when the goal is to estimate the source from the corresponding quantized
values. However, in detection problems, the main degradation measure should be the type II probability
of error (the failure to reject a false null hypothesis) for a prescribed type I probability of error (the
incorrect rejection of a true null hypothesis). Minimizing the error probability to determine the optimal
quantization scheme is difficult and inconvenient to carry out on many occasions. Consequently, several
sub-optimal criteria which are more flexible to estimate and manipulate have been used in this situation.

Contributions on the problem of designing a scalar quantizer for detection or classification systems
are numerous. Original work in this area was particularly done by Kassam, Poor, Picinbono and Buck-
lew; which aim to design a quantizer that optimizes a decision rule based on quantized information.
For hypothesis testing, optimal quantizations have been analysed for a variety of quantization schemes
and various distortion criteria [79, 80, 81, 82, 83, 84, 85, 86].

The loss induced by quantization in various Ali-Silvey distances, measuring the difference between
two probability distributions, was investigated by [80] and applied to binary detection problems. A
comparison between the properties of the well-known Kullback-Leibler Divergence (KLD) with a
measure referred to as Bhattacharyya distance was first provided by [87]. This is indeed one of the
Ali-Silvey distances that have successfully been applied to signal detection and statistical optimization.
Subsequently, [88, 89] proposed the generalized f-divergences as distortion measures for an efficient
discrimination between statistical hypotheses. Later, [90, 91] used the empirical divergence maximiza-
tion (EDM), i.e., a proposed strategy to estimate the KLD when maximized over a class of quantization
rules.

Some results also addressed distributed detection, such as [92] where authors study one-bit quan-
tization for testing against independence between a remote and an available source. Bayesian decen-
tralized binary decision was investigated in [93], where N sensors observe N random samples whose
joint probability law is unknown but can only be one out of two possibilities. Sensors communicate
one-bit messages to a fusion center and quantization is based on Chernoff’s bound (see also [82]) in
the asymptotic regime of N with large number of sensors. The problem of scalar quantization for hy-
pothesis testing has been studied by [84], the encoders were scalar, optimization was based on the
Bhattacharyya coefficient, and the decision rule was based on likelihood ratio given by the Neyman-
Pearson lemma as the most powerful decision rule [94].

More recently, [95] investigated high rate LLR quantizers of i.i.d. sources for many reconstruction
and detection criteria and succeeded in writing a compact expression of the error exponent induced by
quantization. Later, [96] extended their results to the case where a sensing unit observes samples of a

correlated stationary ergodic multivariate process, i.e. the case of non-independent observations. Their
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main contribution includes providing a distortion measure in the high-rate regime i.e., when the rate of
quantization tends to infinity.

In our problem, the joint probability distribution of two remote sources is assumed to be known
under both the null hypothesis Hj and the alternative hypothesis /;, and the most powerful Neyman-
Pearson hypothesis test is used as a decision rule (checking the log-likelihood ratio (LLR) against a
given threshold 7' [38]). The likelihood ratio test rejects the null hypothesis if the LLR value of this
ratio is too small. How small is too small depends on the significance level of the test, i.e., on what
probability of type I error « is considered tolerable. The significance level of the test is determined by
the given threshold 7'. By fixing the type I probability of error to a specified small amount, say ¢, the
performance of the test can be thus computed in terms of the type II probability of error 3.

Detection errors do depend on the quantizer. Therefore, we need to design the quantizer in such
a way that the errors are minimized. Unfortunately, such formulations do not lead -in most cases- to
computationally tractable algorithms. However, when the number of samples is very large, an asymp-
totic expression for the probabilities of error can be written using Stein’s lemma [77] where the type II
probability of error is related to the Kullback-Leibler Divergence referred to also by the error exponent
when o < e. In that case the value of /3 is not affected by «.. Based on this result, designing the optimal
quantizer is equivalent to maximize the error exponent. However, tuning the quantizer so that the error
exponent is maximized can be done explicitly only in the special case of testing against independence.
In the general case, other distortion measures have to be considered.

In this chapter, we consider the problem of distributed binary detection operating over insecure
links. This mainly consists of testing the joint probability of two distributed sources in the presence of
an eavesdropper, as described in Figure 3.1. A similar framework was previously investigated in [97],
where binary quantizers are derived in presence of an eavesdropper by maximizing the KLD at the
fusion center while constraining the eavesdroppers KLD to a prescribed level. It is worth mentioning
that in our setup it is not possible to take the decision at sensor level since it is based on the joint
distribution only available at the decision center. Therefore, taking the decision at the sensor level
allowed them to consider as distortion metric the KLLD between the posterior probabilities of the two
hypotheses Hy and H;. On the other hand, [98] studied the problem of designing quantizers for a
distributed detection network that maximizes the difference in the KLLD at the fusion center and the
eavesdroppers.

On the other hand, [99] investigated the problem of designing optimal decision rules for a censor-
ing sensor network in the presence of eavesdroppers. In their paper, they assumed that Eve can only
determine whether the sensor transmits its decision or not. In reality, Eve can extract much more in-
formation than just merely determining the presence or absence of transmission, and hence can make a
reasonably good approximation of the source.

In our previous work, [100], we studied the fundamental limits of the problem, i.e. the trade-
off between the maximum achievable error exponent at the detector, (i.e., the minimum type II error
probability for a fixed type I probability of error), the coding rate at the encoder and the leakage rate at
the eavesdropper. In this chapter, we propose practical algorithms to obtain solutions that are as close
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as possible to the optimal, which requires the design of optimal quantization in the presence of an
eavesdropper.

This chapter makes two contributions: The first part will focus mainly on the scalar quantization
where the testing is between two general probability distributions [101]. In this case, the Bhattacharyya
coefficient is used as a distortion measure since it is much easier to manipulate than the standard di-
vergence and guarantees very close performs to those given by the KLD. The second part focuses on
vector quantization for the case of testing against independence. A general algorithm of optimization
is given in both cases, and the performance for the of case Gaussian sources is evaluated.

This theoretical results for this scenario would truly come up in practice in many different ways.
In this chapter, the application to smart meters will show how testing against independence can be
used to test the integrity of the smart devices present at the houses. The joint distribution of some data
collected at the smart meter and some other data available at the provider allows the collector to check
whether the smart meter behaves properly. Applications of our results arise in these contexts where data
must remain private even from the statistician (see [102] and references therein) where any absence of
correlation may indicate a smart meter deficiency and hence a fault detection.

This chapter is organized as follow. Section 3.2 provides notations and main definitions and Sec-
tion 3.3 presents the algorithm for scalar quantization of general hypothesis testing and main results.
Section 3.4 on the other hand discusses the case of vector quantization for testing against indepen-
dence and provides an optimization algorithm similar to that of Lloyd-max for the case of detection.
Section 3.5 demonstrates the performance for testing against independence in the case of Gaussian
sources. Section 3.6 introduces a smart grid application to our problem where the main concern is to
detect a smart meter deficiency in the presence of a potential eavesdropper. Concluding remarks are

given in Section 3.7.

3.2 Problem Definition

3.2.1 Notations

Random variables are usually written in upper case letters: X, Y, etc. The cardinality of X is denoted
by ||X|| or simply X. Particular realizations of a random variable are written in corresponding lower
case letters. For example xq, x5, ..., 2; could be samples corresponding to the random variable X
and a cumulative probability is formally written P(X > x) to differentiate random variable from
realization. We use z"; also x; to denote vectors in X" of length n. The Probability density functions
(pdfs) and the probability distributions are denoted by the lower case letter p. The distribution and the
joint distribution of X and Y will be denoted pyx, py and pxy respectively.

For RVs X and Y with joint PD pxy, H(X), H(Y|X) denote the entropy and the conditional
entropy, respectively, and h(X), h(Y|X) denote the differential entropies, while I(X;Y") denotes the
mutual information. Let (X, Y, Z) be three RVs such that P(z|y, z) = P(x|y) for each (x,y, z), then
X -~ Y e Z form a Markov Chain.
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Figure 3.1: Distributed detection under privacy constraints.

3.2.2 System Model

Our model is defined by three nodes as described in Figure 3.1. Alice (the quantizer) observes a se-

quence of vectors X” = (Xy,...,X,) of i.i.d. samples while Bob (the detector) observes another se-
quence of i.i.d. samples y” = (y1, ..., y-). These vectors are n-dimensional, i.e.
Xt = (T4 0253 Tepn), t=1,2,...,7. (3.1)

7 will be referred to as the number of sample vectors available at both the encoder and the decoder.
Although sample vectors are considered to be i.i.d. with respect to each other, each vector can involve
samples with memory.

Alice wishes to encode its data with a maximum rate R [bits per dimension] which is accomplished

by mapping the inputs into the quantized values j© = (f(x1),..., f(X;)), using an n-dimensional
vector quantizer:

FrX" s T={1,...,M)}. (3.2)
The transformation is done using a codebook of size ||J|| = M = 2", Each vector is encoded by

an index pointing to some codeword from a finite set of vectors, called the codebook. Each codeword;
also called reproduction vector is also n-dimensional.

J is the set of all possible binary words sent through the channel to represent the original vec-
tor x € A" . Since the set of indices J is discrete and the set X" is continuous, the mapping
function is non-injective. The set of different input vectors producing same output value will be re-
ferred to as the quantization region. Let R; be the encoding region associated with the index j.
R = {R1,Rs,...,Ru} denotes the partition of the space. That is, the regions are disjoint and ex-
haustive. If the source vector x is in the encoding region R ;, then its representation is the jth codeword
in the codebook:

fx)=j, if x€R, . (3.3)

The detector Bob receives the message ;7 communicated by Alice and the sequence y”. His goal is to
make a decision between two possibilities of the joint probability law of (X™, Y™) as it can only be one

out of two hypotheses:

{ Hy: (X" Y™) ~pxnyn(X,Y), (3.4)

Hy: (X™MY"™) ~ pgnpn(X,y) .

It is further assumed that the marginal distributions of X" and Y are the same under both hypotheses,
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1.e., pxn = pxn» and py» = py» Which does not allow Bob to make the decision without the information
sent by Alice. Let H, and H; be the possible outcomes of the decision process. The two types of error

probabilities associated with the given detection problem are given by

Type I : o, = Pr (ﬁl\X”Y” ~ pxnyn(X, y)) ,

. (3.5)

The message f(x") is sent to Bob via a public link that is perfectly overheard by Eve (the eavesdropper)
who may have access to another sequence of vectors z”. The random variable Z" is arbitrary correlated
to (X™, Y™). The goal of this system is then to find a quantization function f and an acceptance region
that minimize the type II probability for a prescribed type I probability, and ensures that the information
leakage at Eve is bounded, i.e.,

7111 (X" f(X™), Z") < A (3.6)

In practice, using the probability density functions in order to perform necessary computations is
not practical, most often training sets are used instead. This training sequence can be obtained from
some large database. For example, if the source is a speech signal, then the training sequence can be
obtained by recording several long phone conversations. The training set is assumed to be sufficiently
large so that all the statistical properties of the source are captured. We will refer to Tx, Ty and Tz, the
training sequences of X" ~ Pxn, Y™ ~ Py» and Z" ~ Pyn respectively.

The design problem can be thus stated as follows: given the training set, the statistical properties
pxnyn» and pgnyn, the rate R and the allowed amount of information leakage A, find a codebook
and a partition R which result in the smallest average distortion. The main concern would be to find
the best distortion measure that represents the hypothesis testing problem in such a way involving the
probabilities of errors of the testing problem at Bob, and while also considering the information leakage

at Eve.

3.3 Scalar Quantization

The set of inputs of a quantizer can be scalars or vectors. If they are scalars, we call the quantizers scalar
quantizers. If they are vectors, we call them vector quantizers. Scalar quantizers have many advantages
including the facts that they are the simplest and the cheapest. Furthermore, they are usually memory-
less and thus avoid transmission delays caused by complex signal processing at the node. Moreover,
scalar quantizers generally perform well in terms of estimation criteria, therefore there’s no reason to
believe they cannot perform in terms of decision criteria.

In this section, the case of scalar quantization is considered, i.e, the case of n = 1. If the initial
signal is analog, then the first step to be accomplished prior to quantization is sampling. As stated in
the problem definition, we will suppose that after the sampling process we ended up with 7 series of
scalars available at the level of the quantizer. Since we’re using a scalar quantizer, each input scalar

is treated separately in producing the output, i.e., the inputs 2" = (z1,...,x,) are mapped to the
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quantized values j™ = (f(xy),..., f(x,)), using a scalar quantizer:
fiX—JT={1... M, (3.7)

with coding rate || 7| < 2%.

3.3.1 Quantizer Design

A scalar quantizer maps each input value to a quantization region by comparing the input value to the
quantizer boundary endpoints. Quantization regions are hence reduced into intervals and the quantizer
outputs the index of the associated interval. Consider the objective of transmitting a sample x of the
source X characterized by a probability density function (pdf) px over a channel that can only carry
R bits, each time it is used. That is, we can only use R bits to encode each sample of X. Naturally,
this restriction implies that we are forced to encode any outcome of X into one of M = 2 different

symbols. The M decision intervals are defined by the following M + 1 endpoints
aj,7€{0,1,.... M}, (3.8)

These endpoints will also be called decision boundaries or decision thresholds. A source sample value

x is quantized to the quantization index j if and only if z falls into the jth decision interval

F10) =laj-1, a4 (3.9)

such that
ap=—-o00< a1 < - -<apy_1<ay =400 (3.10)

The most powerful decision rule v, : J7 x Y™ — {Hy, H,} implements the Neyman-Pearson lemma.
We denote by pj(j7,y") a short notation for p}, (y")P(J™ = j7|Y™ = y7, Hy); the probability of the
observed outcomes of (J7,Y") given the the hypothesis Hy, 6 € {0,1}. The notation p}(j”,y")
is reduced to py(j,y) when 7 = 1. Let A(j7,y") be the Likelihood-Ratio with j™ being the indices
recieved from the quantizer when 7 samples are available at the quantizer [94]:

AGTLy7) = piim,y")

AR L VA 3.11
po(37y7) G1D

The likelihood ratio expresses how many times more likely the data are under one model than the other.
The decision rule consists in accepting the alternative hypothesis when the log-likelihood ratio (LLR)

surpasses a given non-negative threshold 7'. We define the acceptance region for H such that:

A ={(Ty) €T XY NG Y) < T}, (3.12)

41



Partie I, Chapter 3 — Quantization Learning for Distributed Binary Decision with Privacy Constraints

In other words, the decision rule 7, at the level of Bob is defined as:

. [f[O if (jT>yT) € AT )
Uy ) =4 (3.13)
H, if (57,y7) € AS.

With 7 samples sent, the corresponding error probabilities can be computed as:

a(f,T) = Pr{Hi|H,)} = S Jor o POUT T (3.14)

J1=1 Jjr=1

ST = Pr )y = 3 S Jo sy g PRG0N (3.15)

J1=1 Jr=1
The two types probabilities of error have negative correlation with respect 7". Tuning threshold 7" allows
us to manipulate the values of the probability of errors as we desire and depending on what type of error

we are more interested.

Difficulties arise because of the natural decision criterion to optimize. In this case, optimizing these
probabilities does not yield a tractable design procedure. For this reason, we replace the natural criterion
by a measure of dissimilarity (or distributional distance) between the distributions under the hypotheses.
The KLD is a non-symmetric measure of the difference between two probability distributions. Another
quite broad class of distributional distances called Ali-Silvey distances which are most frequently used
and have found successful application in statistical optimization. In what follows we will focus on the

Bhattacharyya distance defined as:
Dp = —log | Ey (VA)] . (3.16)

With A being the LLR defined in Equation (3.11), Ej is the mean with respect to the distribution py.
We choose to optimize f according to the Bhattacharyya distance which is equivalent to minimizing

the so called Bhattacharyya coefficient dg given by

dg(pg, p]) = Eo[yA(JT,Y7T)] . (3.17)
The sequence x7 is quantized into the message j™ = (j1, J2, - - ., j-) and thus j, € {1,..., M} are also
iid. fort = {1,...,7}. The Bhattacharyya coefficient dp, for T samples, can be evaluated as:

dp(pg. p) = Z Z/ VR G Y E G )y (3.18)

Jji=1 jr=1

= (Z/y[po(j, y)p1(J, y)]l/zdy) = (dg(po,;1))" - (3.19)
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In terms of the decision thresholds the Bhattacharyya coefficient per sample can be expressed as:

2" aj aj
d(pop) =3 [ [ pxv@w)de [ pey(e.y)de] Py (3.20)
j=1 aj_1 aj_1

Optimizing (dg(po,p1))” is equivalent to optimizing dg(po, p1). Hence, the optimal quantization
thresholds do not depend on 7 which was expected as we’re dealing with scalar quantization for i.i.d.
samples where each sample is processed separately. From now on, the term dg(po, p1) will be simply
denoted dp. The optimization problem with privacy constraints can thus be seen in the following two
different ways. Given a maximum information leakage as a threshold, we would like to maximize the
error exponent, thus minimize the Bhattacharyya coefficient dp. Or, given a minimum error exponent
threshold at the level of the detector, we aim at minimizing the information leakage. These problems
read as follows:

Problem 1 : mfin dp

subject to TU(XT T, Z7) <A

Problem 2 : mfin T (X7 T, Z7)
subject to —logdpg > E.

J is another way to write the random variable f(X); a discrete random variable representing the index
of the interval being sent by the quantizer. The information leakage based on the mutual information

can be expressed by:

iI(XT;JZZT) = 1(X;J.2) (3.21)
= I(X3J) = I(Z;]) + 1(X; Z) . (3.22)

Equation (3.21) is due to the memoryless property of (J7, X7, Y™, Z7). Equation (3.22) is obtained
using the chain rule and the fact that / -o— X —e— Y form a Markov chain. The mutual information
I(X; J) = H(J) represents the actual rate of the quantizer. Note that for a given joint distribution of the
random variables (X, Z), the value I(X; Z) is constant, hence represents the minimum possible value
of the information leakage A. An information leakage smaller than A,,;, = /(X Z) is not achievable.
More specifically, Problem 1 is meaningful only when A,;, = I(X; Z) < A < A*. This critical value
A~ is equal to Eve’s mutual information /(X .J, Z), which Eve attains when the detector attains the
minimum Bhattacharrya coefficient d. This minimum coefficient d%; can be found by solving Problem
1 in the absence of the constraint. A possible formulation of an iterative algorithm to solve the problem

1 is outlined by Algorithm 1.

(k) (k)
aj a; a5 a5
v ) = [ povewds [ pep@ois 4 ([ by s [ by ()2

j—1 j—1 a;
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Algorithm 1 Scalar Quantizer Design for Distributed Binary Decision with Privacy Constraints

1. Scalar quantizer: For a given maximum rate R, M = 2% is the number of guantization
regions. The designer is looking to find the M + 1 decision thresholds defined by {ay =
—00, a1, . ..,Gp—1, 0y = 00} that minimize the Bhattacharrya coefficient under a maximum
allowed information leakage. The optimal quantization thresholds corresponds to the M indices
such that:

F710) =laj-1,a4] (3.23)
2. Imitialization: Initialize the decision thresholds with {ag = —o0, a§°>, e ag\(})_l, ay = +oo}

and calculate the corresponding initial Bhattacharyya coefficient dg). Make sure the decision
thresholds are initialized such that I(X; J, Z)(® < A. Set k = 0.

3. Iteration:

(a) For j = {1,...,M — 1}: Optimize a§~k) with respect to dg), while keeping constant
(k) (k) (

ag, - -, 0; 1,055y, ..., ay, The new threshold will be called aij). The function being

minimized is the sum of M non-negative functions, where two of them only dependent on
o,

aM = argmin gt (ay) (3.24)

subjectto [(X;J,Z)(a;) <A, (3.25)

The expression of ¢; is shown in Equation (3.26).

(b) Calculate the corresponding Bhattacharyya coefficient and information leakage dgH) and

I(X; J, Z)*+1) respectively.
(c) if ‘dgﬂ) — dg)‘ < 4, stop with a(()kﬂ), o ,ag\l}ﬂ) the final quantizer’s parameters. Else let
k — k 4+ 1 and return to (a).

Remark 3.1 Without a privacy constraint, if the marginal distribution of X under both hypotheses H,
and Hy is symmetric, then the optimal quantization of X is also symmetric. Therefore, Our problem
could be reduced into finding % — 1 decision thresholds if M is even, or % decision thresholds if M

is odd. Suppose M is even, then Yk > 0, we can write

Vag-k) such that  j € {0,..., % —1}, a§-’“) <0, (3.27)
val such that  je (M 41,..., M}, ol =—all) >0, (3.28)
a(ff)/z —0. (3.29)

3.4 Vector Quantization

By combining source inputs together and encoding them as one single block, we can accomplish more

efficient compression algorithms. Although vector quantizers are generally more complex and spend
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more processing time, the adoption of vector quantization for a given rate will most probably achieve
lower errors than when scalar quantization is used at the same rate. Going from one dimension to
multi-dimensions is a major step that allows many new ideas, concepts, techniques, and applications to
arise that often have no counterpart in the simpler case of scalar quantization. Nevertheless, there are
interesting similarities with scalar quantization where many of the design techniques used in VQ are
natural generalizations of those in the scalar case [19]. In this particular case, the goal is to focus on
testing against independence, i.e., between the given bivariate distribution pxny~ against the alternative

of independence given by:

Hy: (X™Y") ~pxnyn(X,y), (3.30)
Hy s (X7 Y™) ~ pxn(X) X pyn(y) -

3.4.1 VQ Algorithm for Detection

Finding an optimal VQ consists of finding the set of regions R and their corresponding codebook
defined in Section 3.2 that minimizes a given objective function which quantizes the quantizer’s per-
formance. Even without privacy, defining an appropriate distortion measure allowing the design of a
quantizer adapted to hypothesis testing is an interesting challenge. The MSE criterion is convenient
when the aim is to reconstruct the source X". However, estimating the source X" is not our concern, it
will be unreasonable to use such criterion when the problem converts into distributed binary decision
as we are only interested in testing whether the two remote sources belong to a certain distribution or
another. In the coming section, we aim at finding a suitable distortion measure adequate to this kind of
problems. Since each vector is encoded separately, the design of the optimal quantizer does not depend
on the number of sample vectors encoded, and consequently 7 will not be taken into consideration

during the design of the quantizer.

Optimal Quantizer and Distortion Criterion

Quantizer design is typically viewed as a task where the standard objective function is to minimize an
expected distortion. We aim at predicting the best distortion that suits our problem most.

A key characteristic of any quantizer is its dimension n, a positive integer. In our setting, x = z",
y = y" are the vectors of dimension n available at Alice and Bob respectively and defined over some
alphabet X", )" C IR". Hence, f : X" — J = {1,..., M} is the n-dimensional M-points vector
memoryless quantizer (VQ), that is, operating independently on successive vectors. Our goal is to find
an encoding function f and an acceptance region that minimizes the errors /3, (o) as «,, — 0, our

objective function becomes:

D7) = dimy log (o, ) <~ L(Y™ (X)) (3.31)

an—0n,

The last inequality is proven by [40]. The latter mutual information represents the error exponent for
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testing against independence. The objective function can be reduced to:
1 n n 1 n n n n
L(f) < —h(Y"|f(X")) < 5 -log(2me)" B(|Y" = E(Y"|f(X™)]) , (3.32)

The last inequality is a result of the Maximum Differential Entropy Lemma [37]. E(||[Y"—E(Y™|f(X™))||?)
is the covariance matrix of the error vector of the minimum mean squared error (MMSE) estimate of Y
given f. Our problem can be seen as equivalent to minimizing the distortion between Y available at the
detector and the information carried by the quantization outputs. A reproduction decoder can be thus
seen as a mapping g : J — V" whose reproduction alphabet/codebook is = {y1,92, .-, yu} C
IR". Of-course, the reproduction decoder doesn’t really exist as we are not looking to reproduce any
source at Bob but rather looking to make a decision, hence it’s only an intermediate function that allows
us to compute the optimal quantization regions R needed to perform the necessary encoding at Alice.

As a result, the objective function can be finally written as

BOV =90 = [ [ powGe)lly =g o f00lPdxdy (3:33)
M 2
= > | pxeByxelly - 34l ldx (3.34)
j=1"%
§; € Y™ is called the representative of the region/cell R;. ||v]| = 27 v? denotes the usual squared

Euclidean norm of some vector v € R™ and Q(x) = g o f(x) = g(f(x)) is the function that maps X"
to V™. The problem of finding the optimal quantizer thus becomes finding the set of optimal regions R
and representatives )" that minimize the expected distortion E(||Y™ — Y™(f)||?) under the condition

that the regions form a partition of space.

M
(Ropt: Vipe) = argmin 3 [ psen(x) Byopxo [y = 35 x . (339)

RYI"  j=1
Partial Solutions
As it is, it is nearly impossible to find the global minimizer of the expected distortion simultaneously

with respect to all the regions and representatives. Nevertheless, the optimization problem defined in

Equation (3.35) can be divided into two partial solutions. In the first step, we will focus on finding the

optimal representatives JA/[}pt ={¥%,...,¥,} given the quantization regions R = {R,..., Ry}
ygpt = argminZ/ / anY"(Xv}’)HY - }A’]H dXdy ) (336)
V¥ j=1 /Y IR

The Euclidean distance in this case can be written as ||y — ¥;||*> = (y — ¥;)7(y — §;)- The function

being minimized is the sum of M non-negative functions, each one of them only dependent on one of
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the y;. The problem can be decoupled into M independent problems:

y; = arg min/

[ pxevn (. ¥)(y = 95)7(y - 9,)dxdy (3.37)
A2 yrJR;

The minimum is found by computing the gradient with respect to y; and equating to zero. Vj € J, the

expression of each representative can be thus written as:

o Jyn Jr, Dxnye (%, y)ydxdy

; (3.38)
’ ij pxn(x)dx
Similarly, we now try finding the optimal quantization regions Ropt = {R7,..., R}, } given the rep-
resentatives " = {§1,...,yu}
& 2
Ropy = argmin Y. [ pxa(x) [ pyopen(yix) y = 3, dydx. (3:39)
Rl ..... ’RN[ j:1 Rj yn

The problem can be also decoupled into M independent problems and each region can be computed

separately. Let
d(X7 S’]) = A}n pY"|X":x(Y‘X)Hy - S’JH2dy ) (340)

Vj € {1,..., M} the optimal region can be defined as:

Ry = {x[d(x,9;) < d(x,9;),5' # i} - (3.41)

Iterative Algorithm

An iterative algorithm can thus be derived by iterating between the two partial solutions described
above and is given by Algorithm 2. In this algorithm, the output of the quantizer must be carrying as
much information about Y" and not X" and that’s what makes the essential difference between this

algorithm and the standard k means algorithm.

3.4.2 VQ Algorithm under Privacy Constraints

In the previous section, we have presented a new technique for finding the optimal quantizer for a
particular type of detection but the original system had been designed without considering the possible
security threats. A potential eavesdropper Eve can extract information about the source, and hence can
make a reasonably good decision regarding the initial source based on its receptions. In this setting, the
message sent to Bob via the public rate-limited link is perfectly overheard by Eve (the eavesdropper)
who may as well have access to a vector Z" arbitrary correlated with (X", Y™) as described in the

problem definition.
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Algorithm 2 Vector Quantizer Design for Distributed Binary Decision

1. Initialize {3\”, 3, ..., 31,
2. Loop
(a) leen the set of representatives {y1 ,y(k) ce y M } calculate the set of regions R*) =
RV RP . REY such tha:
k - . .
R = {x[d(x,91") < d(x,9}"), 7' # i} (3.42)
(b) Given the set of regions R*) = {ng), ng), . ,RE\IZ)}, calculate the set of representatives
{yngrl)? yngrl)’ s 7S’S\I/€[+1)} such that
wrny v TR Py (%, y )ydxdy
Y = . . (3.43)
fR<k> pxn(x)dx
J
3. Repeat until maxHy(kJrl §k)|| < 4.
4. Return {R%,R3,..., Ry}

Distorton Criterion

The new goal becomes minimizing the errors 3, () as well as the information leakage at Eve. Our

new objective function that we’re looking forward to minimize thus becomes:
1 n n 1 n n n

I' is now a Lagrangian cost function formed in the manner to incorporate the separate costs of the two
costs; the detection distortion and the information leakage. \ is a variable representing a compromise
between the level of privacy and detection errors. The information leakage can be decomposed as
LI(X™ f(X™),Z™) = TH(f|Z") 4+ LI(X™; Z™). The term I(X™; Z™) is constant and independent of
the quantization function f and depends on the correlation between the two sources X" and Z". In this
case, we call A,,;, the constant value given by A,,;,, = %[ (X™; Z™) which represents the minimum
information leakage achievable at Eve. Any lower information leakage is not attainable. The objective
function thus doesn’t have to include such a constant value and can be furthermore reduced to be written

as

DA < h(Y'If)+ A H(T1Z) (345)

IN

1 n 1 n Orn 2 l n
%log@ﬂe) +%10gE(||Y Y™ ()l )+/\nH(J|Z ). (3.46)
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Remark 3.2 In most cases, the optimal quantizer will have to be learned from a training set of sam-
ples. Moreover, calculating the metrics defined in Equations (3.46) is impractical and the need to use
the Monte-Carlo technique over the training set is inevitable especially due to integrating over a com-
plicated domain. In Monte Carlo, the final outcome is an approximation of the correct value with

respective error bars.

By =V NI = X [ o0 [ prepe )y = 95l ey (3:47)
JjeT
1 1 g
DD D C i) DR VA #1 DITHCOR (3.48)
JeT X xeTx TYIX yeTyixx
H(J|Z") = N ST H(J|Z" = z) ZZP jlz)log, P(jlz) (3.49)
2 26Tz 2 2€Tzjed
(3.50)

Iz,(x) is 1if x € R; and 0 otherwise is called the indicator function of region R;. Ty|x—x is a set of

y vectors such that'y ~ pyn|xn—x 0f size Ny|x.
The problem of finding the optimal set of regions R and representatives Y™ becomes:
A 1 N
(Ropt, Vi) = argmin { - log BIY™ = ¥7|) + AH(J|Z") | (3.51)

RJ}n

Iterative Algorithm

In parallel to Section 3.4.1, we essentially repeat all the concepts and derivations adapted to the case of
the presence of an eavesdropper. The optimization problem defined in Equation (3.51) can be divided
into two partial solutions likewise: finding the optimal representatives n given the quantization regions

‘R and finding the optimal quantization regions R given the representatives Y. As a first step, given

the quantization regions R = {R4,..., R}, we can write:
{5, 9ub = argmm{ logZ/ / pxryn (X, )|y — 95| dde+AH(J|Z”)}
Y1 Y M jieJ
= argmmZ/ / pxnyn (X, ¥)|ly — 3|2 dxdy . (3.52)

Yi,u¥YM jeJ

The fact that H(J|Z™) is independent of all representatives )™, the solution of the optimal representa-

tives is hence the same as before.

An iterative algorithm for finding the optimal regions R and the representation points Y™ to meet

the above necessary conditions is outlined in Algorithm 3.
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Algorithm 3 Vector Quantizer Design for Distributed Binary Decision with Privacy Constraints

1. Given a training set {(xl, V1,21), (X2, ¥2,22), ... } ~ Dxnynzn,
2. Initialize {Rgo), R(QO), cee Rg\?[)} by assigning the the vectors x to the regions randomly,
3. Loop
. (k) . o(k) & (k) (k)
(a) For a given R'®, calculate the set of representatives {y; ', ¥5 ', ..., ¥,/ } such that

1 ()
o _ Jyn o oy (x, ¥ )y dxdy N XGZTX(N vIx y€T§X Xy)IL %; (%) .
J fREk) DPxn (X)dX 3 ]1 ( ) ' ’

xE€Tx

(b) For a given set of representatives {ylk),ygk),...,yM)} calculate R*+D =

{ngﬂ), ngﬂ), e ,R%’}H)} by looping over all vectors x € Tx and moving each vec-

tor over all set of regions R(¥) and then calculate the corresponding I'( f, \) function given
by:

Ny‘

]EJ X xeTx

L(f,A) = 1og{z > > ||y—yj||2)11nj(x>} (3.54)

YE€Ty|x=x

- /\Z { Z <L Z ]p(X, Z)HR]' (X)) 1Og2 (]\i Z ]p(X, Z>]]‘Rj (X))} )

jeTJ Z z€T7 X xeTx X xeTx

Update 1x,(x)* 1) at each time after assigning x to the region having the minimum
T(f,\). p(x,2) = pxnzn(X,2)/pxn(X)pzn(z) is called observed to expected ratio.

4. Repeat until maXHy(kH) §k)|| <.

5. Return {R},R5,..., Ry}

3.4.3 Probabilities of Error

In source coding, the term "error" arises in many different ways. In estimation theory, it’s usually the
distortion measure between the initial source vector and the decoded version. In the context of decision
making, the probability of error is considered as being the probability of making a wrong decision and
which would have a different value for each type of error. There are also the errors that may occur
during transmission, but these will be ignored in our study. The probabilities of error are certainly the

most important criteria to evaluate the performance or "goodness" of our test.

No hypothesis test is 100% certain. Because the test is based on probabilities, there is always a
possibility of drawing an false decision. In hypothesis testing in statistics, two types of error are distin-
guished. These two errors are inversely related and determined by the level of significance of the test

which is determined by the previously defined threshold 7". Consequently, the designer must decide
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which error has more severe outcome for the situation before specifying the risks.

In order to compare the performance of our test for the various scenarios studied, we need to plot
the graph of 3, versus «,, for different rates, privacy constraints and VQ dimensions. The expressions
of a,, and (3, shown in Equation (3.5) cannot be calculated directly, and for that reason we use Monte
Carlo integration along with the training set. Just as in the case of scalar quantization, we use py(J,y)
as a short notation for py«~ (y)P(J = j|Y =y, Hy),0 = {0,1}.Let N = Nx = Ny, for the hypotheses
defined in Equation (3.30), we write

. 1
Po(j.y) = — D pyrxe(y[x)1g,(x), (3.55)
NXGTX
Pi(jy) = — Z pyn(y) 1. (x) . (3.56)
xeTx

Unlike the optimal quantization function, the acceptance region depends on the number of sample
vectors 7. The likelihood ratio for a collection of statistically independent observations factors into a
product of individual likelihood ratios. The LLR for 7 sample vectors can be simplified using:

. . pl(qut)
AGT YY) = TTA G y,) = TR Y 3.57
(7 y") tl;[l (ji, ¥t) tl;[lpo(]t:}’t) (3.57)

For a given quantization function f, the probabilities of error can be computed as follow:

M M
an(T,7) = Zl...Zl/A(jTyTprg(jT,yT)dyT (3.58)
J1= Ir= ’
M M
=YY z (I, (x) HA(jt,yt>>TJ), (3.59)
Ji=1 Jk=1 (x7,y")eTxy t=1 =1
M M
n(1,7) = ,y')d 3.60
Ba(T,T) ;1 jZl/AijT Ly )dy” (3.60)
M M - ,
= Y Y Y (e ex0) X (UIIAGey) <T1) . G6D)
Jji=1 Je=1 xT€Tx t=1 yTETY t=1

3.5 Testing Against Independence with Memoryless Gaussian

Sources

In this section, we will consider the special case of memoryless Gaussian sources. The HT problem can

be thus represented by the following observation model:

(3.62)

{ Ho: (z,y) ~N(0,30) ,
H1 : (I,y) NN(0721) .
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(X™, Z™) are also i.i.d. such that (X, Z) ~ NV (0, ) with

5, = oy pyoy 5, = oy 0 5, — oy pz0% (3.63)
pyoy oy | 0 oy) pz0% 0%

pz denotes the correlation coefficient between X and the side information Z at Eve. In what follows,
we will take oy = 07 = 1, py = 0.8. Note that the marginal distributions of X and Y under both
hypotheses follow the standard normal distribution A/(0, 1). In the coming sections, we will study both
scalar and vector quantization for this special application of Gaussian sources, plot performance curves

under various privacy constraints for both cases and compare.

3.5.1 Scalar Quantization of 7 samples

In this section we will consider two cases; the case where there’s no side information available at Eve,
and the case where some side information Z normally correlated with X is available at Eve. Notice
that having no side information Z at Eve, is equivalent to setting p; = 0. In this case, the quantity
I(X; J, Z) reduces to I(X; J) when X and Z are independent.

No Side Information Available at Eve

Table 3.1 shows various designs and optimization results under different values of 7 and R. For the
case of & = 1, the decision threshold to be optimized is thus reduced to a single variable a. When
A = 0.25, the Bhattacharyya coefficient is minimized when a = =+1.73 which will represent the
optimal decision threshold in this case. Repeating the same procedure for 7 = 2, 3,4 shows that the
best decision threshold remains a = £1.73 for any 7. It is important to mention that under no privacy
constraints, i.e. A > A*, since the marginal distribution of X under both H, and H; is symmetric in

our example, the optimal quantization of X is thus symmetric as well.

Rate Information Leakage Decision Threshold(s) Bhattacharyya Coefficient

R A {CLl,...,CLM_l} dB
0.25 11,73 0.980
1 0.50 1192 0.958
. 0.75 +0.79 0.937
= A =1 0 0.916
, 1.489 -0.89. 0.45, 3.34 0.888
A* — 1.935 -0.89. 0, 0.89 0.871
r=2 0.25 1173 0.960
=10 0.25 1173 0.816
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Table 3.1: Optimal decision threshold(s) for different information leakages at R = 1, R = 2. The
values of a( and aj; are excluded from the table. A* is the critical information leakage.

Figure 3.2a represents a trade-off between privacy and performance. Since A is the tolerable limit
on the performance of Eve, the greater the information leakage, the better the performance of the
distributed detection network which is represented by an increase in the Bhattacharyya distance Dp.
Note that, beyond a certain value of A*, the maximum Dp gets saturated to the optimal Dy at the
detector in the absence of Eve. This saturation level for this example is A* = 1, V7 > 1. Note also
that when A = 0, the network achieves perfect privacy. But, this also forces the network to go blind
in that dg — 1, or Dg — 0, a zero actual rate, yielding maximal error at the detector level. On the
other extreme, consider a scenario where A > A* = 1 in the case of R = 1. This is equivalent to the
case where there is no eavesdropper present in the network, and the optimal quantizer for the case of
R = 11is obviously given by the decision threshold a* = 0; the value that minimizes the Bhattacharyya
coefficient dg under no privacy constraints.

The performance of our test can be plotted using the expression of the two probabilities of error
obtained in Section 3.4.3. Figure 3.3a shows the impact of the information leakage constraint on the
performance for R = 1 and R = 2. Figure 3.3b shows the impact of adjusting the privacy constraint for
7 = 10, it is clearly seen that the cost is much higher now with a large value of 7. This clearly makes
sense: we are deliberately using “out of tune” quantizers, so that the information leakage remains small.
As a consequence, when this allowed leakage is small, the test cannot remain really accurate unless one

increases significantly 7.

Side Information Available at Eve

In this section, we study the impact of side information at Eve, with different values of p, and evaluate
the impact of this correlation on the information leakage and detection performance. Therefore, we
consider the cases of p; = {0.3,0.6,0.9} and compare them to the scenario without side information
at Eve. In this case, the minimum information leakage for a given pz is Ay = 1(X; Z) = —3 log,(1—
py)-

Obviously, for a correlation p; > 0, perfect privacy is no longer admissible even for a zero rate
quantizer. The minimum information leakage that can be achieved becomes A,,;,. Table 3.2 shows
various scenarios for different correlations between the side information at Eve and the source X, their
corresponding minimum and critical information leakage, and the optimal quantization for different
privacy constraints.

Figure 3.3c shows type II probability of error vs. type I probability of error for different correlations
pz between X and Z for 7 = 10 and different information leakages A. Note that for the same amount
of admissible information leakage and a higher correlation pz, the errors at Bob increase as the allowed
entropy rate decreases.

For any finite A > 0, we numerically investigate the trade-off between privacy and performance

for various values of p . This trade-off is captured by Figure 3.2b, where the maximum Dy at the level
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of the detector in the presence of a constrained Eve increases with increasing A. Note that, beyond a

certain value of A*, the maximum Dpg gets saturated to the optimal Dy at the detector in the absence

of Eve. The critical information leakage is no longer A* = 1 for the case of having a correlated side

information at the eavesdropper. In fact, the critical leakage increases with higher p, and information

leakage for a given quantization scheme becomes higher. The saturation level of Dp for this example
occurs at A* = 1 for py = 1 and A* = 1.13 for pz = 0.6.

Correlation ~ Minimum Critical ~ Information ~ Decision =~ Bhattacharyya
0z Leakage A,,;, Leakage A* Leakage A Threshold(s) Coefficient dp
0.25 4+1.89 0.9848
0.3 0.068 1.025 0.50 +1.31 0.9626
1 40.24 0.9181
0.50 +1.79 0.9818
0.6 0.322 1.13
0.75 +1.16 0.9554
1 +0.61 0.9293
1.25 +2.09 0.9897
0.9 1.198 1.648
1.50 +0.9 0.9425

Table 3.2: Optimal decision thresholds for different information leakages and correlations for R = 1.
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Figure 3.2: In (a), we show Bhattacharyya distance versus information leakage for different values of
T atrate R = 1. In (b), we consider different values of p.

3.5.2 Vector Quantization

In this particular example, X", Y™, Z" denote a sequence of i.i.d. random variables from (XY, 7).
For the Gaussian sources given in Equation (3.62), we can then write the conditional probability of
Y;'XZ = T; ,’i: {1,771} as

YilXi =z ~ N(pyai, (1= p7)) - (3.64)
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Figure 3.3: Type Il vs type I probability of error. In (a), different combinations of rate-leakage scenarios
are considered at 7 = 1. (b) shows the impact of the allowed information leakage on performance when
7 = 10. (c) shows the impact of the side information at Eve on performance-privacy trade-off.

The conditional mean of the distance ||y — §,||* with respect to X™ = x is then Eyn x»[||y — ;] =
lpyx — ¥;]I> + n(1 — p3.). Then the distortion measure reduces to a much smoother form for this.

Equation (3.33) can be rephrased in much similar way:

E(|Y" =Y (NIF) =X /72 pxn(%)[lpyx — 95| dx +n(l = pi.) . (3.65)
JET "I

In the absence of any privacy constraint, the partial solutions can be simplified. Given the quantization

regions R = {Ry,...,Ru}, Vj € J the optimal representatives can be calculated using:

o PY IR, XDxn (x)dx
J ij pX'n (X)dX

(3.66)

And given the representatives yn = {¥1,.-.-,¥m}, Vj € J the optimal regions can be defined as:

Ry = {x| lovx = 951I° < lpvx = 95115 # i} - (3.67)

Results show that regions remain unchanged with different values of py- whereas the values of the
centroids given by V" are scaled by py. This can be explained theoretically. Let xn = {X1,X9,..., Xy}
be the set of centroids/representatives of our quantization scheme when py = 1,thenVj € {1,..., M},

X; is given using the following expression

- ij xpxn (x)dx
B ij pxn(x)dx

A

(3.68)

*
J

The set X" represents the quantization centroids given by Lloyd-max. The set of representatives yn

is related to X" by Y5 = pyX; Vj € {1,..., M}. On the other hand, the optimal regions defined in
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Equation (3.67) become

A 2 A 2
* YJ yj’ .1 .
R = x| |Ix— = <|x—=-. (3.69)
;o= {xl| ol <=0 # 7}
= {xl Ix=%1” < Ilx = %0175 #4} - (3.70)

This shows us that under no privacy constraint, the quantization regions do not change with py for
this particular example of standard Gaussian sources. Figures 3.4a to 3.4d show the optimal quantiza-
tion regions under different scenarios.

Figure 3.5a shows that increasing the quantization dimension n gives better performance even for
smaller rates. This demonstrates the advantage of vector quantization on the performance of testing.
On the other hand, even without imposing any privacy constraint, decreasing the rate R is equivalent
to increasing the level of security of the system. We have seen before that the information leakage
%H (J™) is nothing but the actual coding rate in the absence of side information at the eavesdropper,
hence, a rate constraint is also a privacy constraint. The figure shows that a higher VQ dimension n
leads to better performance and probably better privacy.

Figure 3.5b demonstrates the impact of varying the quantization dimension n but keeping constant
n x 7 for a given rate of R = 0.5. You can see that for a higher n, the performance is slightly enhanced
although typically the same number of scalar samples is available even if each scalar input is i.i.d. with
the other as in our case. This shows that given a specific sequence of scalar samples available, the most
efficient performance-wise technique is to increase n as much as possible.

To elaborate, Table 3.3 shows the maximum value of the type II probability of error when ¢ = 0.01
and «a,, < ¢ for the studied senarios. The lower [, («,,) demonstrates the better detection performance

and the importance of using a higher VQ dimension.

R nxt n 71 Typellerror j3,

2 8 0.3603
0.5 16 4 4 0.3230
8 2 0.2859

Table 3.3: Minimum §3,, for type I error o, < 0.01 as n varies.

In order to study VQ with privacy, we need to examine how quantization cells change with different
values of \. For this objective, Figures 3.4e to 3.4h consider the case of VQ of dimension n = 2, a
maximum quantization cells of M = 4, and a correlation of py = 0.8 under py, whereas Figures 3.4i
and 3.4j and Figures 3.4k and 3.41 show VQ for M = 8 and M = 32 respectively. All these figures
demonstrate how quantization cells change when decreasing the allowed level of information leakage
gradually by increasing the value of \. It is noticed that the quantizer might not be using all number of
available quantization cells in order to ensure a higher privacy level.

In order to demonstrate the importance of vector quantization over scalar quantization, let’s consider

a fixed maximum rate R and plot the performance curve f3, vs. «, for different values of quantization
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dimension. Let the fixed rate be R = 1 bits/dimension. Figure 3.5¢ shows how detection performance
changes with VQ. A significant difference is not present, but an advantage slightly starts to appear for
high values of n.

Finally, in Figure 3.5d, we compare vector quantization to scalar quantization when 7 = 1 and
when the maximum admissible information leakage is A. For VQ, we consider the case of sending 1
vector of dimension n = 4, while for SQ, we send 7 = 4 samples of the scalar 2. We then compare the
performance for A = 0.85 and A = 0.4. The corresponding figure shows the important advantage of

VQ over SQ in terms of performance especially under privacy constraints.
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(@Qn=2M=4 bn=2M=8 ©)n=2M=16 dn=3M=4

(e) A =0.06 HH)A=0.12 () A=0.18 (h) A =0.185

(i) A = 0.08 () A =0.14 K A=0 MHA=0.1

Figure 3.4: Results for VQ optimal regions. First row shows optimal quantization regions under no
privacy constraints when py = 0.8. Second row shows optimal quantization regions forn = 2, M =4
when py = 0.8 for various values of A. In the third row, (i) and (j) show the optimal quantization
regions for n = 2, M = 8, py = 0.8 for various values of A\ while (k) and (1) show that of M = 32.
Figures represent 2-dimensional or 3-dimensional space. Codewords are marked with circles, and the
optimal regions are separated with boundary lines. The training vectors are assigned to regions using
different colors.

58



3.5. Testing Against Independence with Memoryless Gaussian Sources

0.9

ﬁo

0.7 [

0.3

Type |l probability of error

—n=02, R=1.0000
—n=08, R=0.2500

n=16, R=0.1250
—n=32, R=0.0625

o
©

0.1

O,‘2 O.‘3 0.‘4 0.‘5 0.‘6 0.‘7 0.‘8 0.‘9
Type | probability of error «
@R<1

o
0
T

°
Y

o
o

o
o

0.4

Type Il probability of error 3

—SQn=1, =1
——SQn=1, =2

SQ n=1, 7=3
—SQn=1, =4
---VQn=2, =1

VQ n=3, =1
---VQn=4, =1

1
0.1

O.‘2 O.‘3 O.‘4 O.‘S 0.‘6 0.‘7 0.8 0.9
Type | probability of error «
(c) Without Privacy Constraints

0.4

0.35

o
w

o

N

a1
T

o

i

2
T

o
-
T

o

o

a
T

Type |l probability of error 8

—n=4. =4
n=8. =2

——n=2, =8| |

o

0.2 0.4 0.6 0.8 1

Type | probability of error «
(b) n x T = constant

1.2

e o o
N » ©

e
o

Type Il probability of error 3

o
i

——SQ n=1, 7=4, A=0.40

-—~-VQ n=4, =1, A=0.40
7=1, A=0.85

——SQ n=1, =4, A=0.85] |

o

1 1 1
0.2 0.4 0.6 0.8 1

Type | probability of error «
(d) With Privacy Constraints

1.2

Figure 3.5: Performance-privacy trade-offs for different VQ scenarios. Row 1 shows detection per-
formance under no privacy constraints. (a) plots errors at small rates [ whereas (b) compares errors
when R = 0.5 for the same n x 7 and a variable VQ dimension. Row 2 compares VQ and SQ at rate
R =1 when n x 7 is also the same under both methods. (c) compares the 2 methods under no privacy
constraints while (d) compares them when a maximum information leakage value is given.
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3.6 Pratical Application: Smart Meter Fault Detection under Pri-

vacy Contraints

Communication plays a key component of the smart grid. Signal processing, distributed estimation and
detection, machine learning, etc., are important tools to many significant features of the smart grid,

such as demand response, distribution automation, auto-recovery, improved reliability and privacy, etc.

A smart meter is one of the most successful key parts of the smart grid. Smart meters transmit up-to-
one-minute consumption data, remarkably reducing the need for visits from a meter reader. However,
over the past few years, smart meters have created a growing array of serious problems needing imme-
diate actions including meter failure. As any other devices, meters could face failure problems causing
them to communicate false and unreliable data to the central unit. A smart meter false reading could be
due to incorrect installation of the device or due to a transmission failure, etc. On the other hand, data
sent by the smart meter can be manipulated by owners before being sent to the central unit in order to
cut power bills which may lead to huge financial losses or probably disrupt the whole power grid. In

such cases, the term Fraud detection can be used instead of Fault detection.

Another major concern related to smart meters is the privacy invasion. “The smart electric grid may
be just a little too smart”. A smart meter can gather much more data than just how much electricity a
home is consuming. It can tell how many people are living in the house, when they get up, when they
go to sleep and when they are or not home etc. Each appliance; the refrigerator, microwave, toaster,
washer/dryer, etc.; has its own energy fingerprint or "appliance load signature" hidden in the aggregate
data consumption. Anyone who gets hold of this data is able to reveal what type of appliances in use and
how often they are being used. Many consumers are worried that such smart devices would make them
vulnerable to thefts, annoying marketers, or police investigations. In what follows, we will propose a
model that enables us to detect faults at the level of the smart meter reading taking into consideration

privacy issues.

Consider a neighborhood area network made up of some number of residential users where each
user is equipped with a smart meter that records real-time data about electricity use. The network
of electricity users perform data aggregation via other users, for example, and report the real-time
aggregated data to the Central Unit (CU) via the local gateway/data aggregation unit (DAU) as shown
in Figure 3.6. On receiving the reports from the DAU, the CU can estimate the average real-time

electricity use of the area.

The average aggregate data of the residential area will be referred to as Y. On the other hand,
another data X from a separate house in the neighbourhood area network is encoded with a rate R and
sent via a public rate-limited channel to the central unit that is looking to detect any fault or fraud at the
smart meter of that particular house. Fault Detection can then be done by testing whether that two sets
of data X™ and Y are correlated or not. A non-correlation could signify that the data readings of the

smart meter are erroneous or manipulated. Therefore, we would like to make a decision between one
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ﬁ ﬁ ﬁ Local Gateway / DAU

Central Unit

Figure 3.6: An illustration of the studied model.

of the following two hypotheses

Hy :  Smart meter’s sending flawless data ,
(3.71)

H, : Smart meter’s sending flawed data .

In what follows, we will ignore how data aggregation is performed and rather focus on how the
detection at the level of the central unit takes place, and what would be the optimal encoder f needed to
perform the detection such that the errors are minimized and information leakage about X" is bounded.

We will assume there’s no side information available at Eve.

Our model can be hence seen exactly as the problem described in Figure 3.1. Similar to the problem
of testing against independence defined before, the goal is to make a decision between two possibilities

of the probability law of (X™, Y™) as it can only be one out of two hypotheses:

{ Hy: (X™Y™) ~ pxnyn(X,y), (3.72)

H1 : (anyn) Nﬁxn(X) X pyn(y) .

Px» 18 any arbitrary distribution, and py~ is the marginal distribution of Y™ under Hy. In other words,
the problem is seen as follow, H represents the case where the smart meter is functioning properly and
the joint distribution of X" and Y™ at the normal state would be px~y~ which could be constructed
using historical data. Under H;, X" could be coming from any unknown distribution and that’s why
the distribution of X" under H, is an arbitrary distribution. /7; represents the hypothesis where a fault
should be detected at the level of the smart meter. For this particular scenario, our optimization function

therefore becomes:

1 1
L(f,A) = i{%;logﬂn(amf)+)\E[(Xn;f(X")) (3.73)
1 1
< _EDKLQ?f(X”)Y"||ﬁf(X")pY”) + )\%I(X”; f(X™), (3.74)
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The last inequality is also proven by [40]. However, the latter expression can be decomposed as follow:

Drr(®sxmyyellBrxmpyn) = Drr®sxcmyyellprxmpyn) + Drr(rxenm|lbrixny)  (3.75)
= I(f(X");Y") + D(psxm)lDrxny) (3.76)

px» being the marginal distribution of X" under Hy. Since D(ps(xn)|[Prxny) > 0, the objective func-
tion is thus upper bounded by the distortion provided in Equation (3.51) when Z = () whose solution

would be feasible to this particular scenario.

3.6.1 Training Set

A free data set containing detailed power consumption from six different houses is provided by Ref-
erence Energy Disaggregation Data Set (REDD) [103]. The data contains power consumption for the
total electricity usage as well as for each separate appliance in the house for a number of real houses
over several months’ time. The data is recorded at a frequency of once a second for the aggregate load
and once every three seconds for the appliances.

From now on, we will use the total electricity consumption in one of the six houses to represent our
source X", while the source Y will be the mean of the total consumption of all available six houses.
The data will be split into a training set and a test set. In the first part, the optimal quantizer will have
to be learned from these data samples, while the data extracted from the second part will be used to
evaluate our quantizer performance and system security.

The quantization design given in Algorithm 3 requires a training sequence Tyx—x V X. Conse-
quently, we would like to generate sample vectors of Y ~ pyn|xn_ to allow the quantization design
to be possible. When direct sampling is difficult, a common algorithm for obtaining a sequence of ob-
servation samples from a multivariate probability distribution is known as Gibb’s sampling. However,
This algorithm is unsuccessful when the multivariate distribution contains islands of high-probability
states, with no paths between them. In order to avoid such islands present in the empirical distribution,
an appropriate distribution can be fitted closely to the observed frequency of the data. A distribution

giving a close fit is supposed to lead to good predictions.

Probability Distribution Fitting

There is generally no unique distribution type suitable for modeling household electricity use. However,
there are benefits in not using for example the normal distribution, since it extends to negative electric
consumption use values whereas for example the Weibull distribution and Log-Normal distribution do
not. Upon inspection the histograms of the data sets, several distributions can be proposed, like Log-
normal, Weibull, Gamma, etc. which appear to capture the essential random features of the data sets.
[104] presents models of electricity use in an average household based on fit to Log-normal and Weibull
probability distributions.

To estimate the goodness of fit between original data sets and proposed distributions, several tests
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exist. The Kolmogorov-Smirnov statistic allows us to measure the maximum difference in value be-
tween the empirical cumulative distribution and the proposed to be fitted distribution. Although more
specialised tests have been developed, the K-S test remains widely used. Comparing the K-S statistic
for several distribution densities allows us to choose those who fit our model the most. For a given

cumulative distribution function F'(x),

Dic—s = sup [F(x) = F(x)|, (3.77)

E (x) is the empirical cumulative distribution function. Table 4.3 shows different values of the K-S
statistic for different distributions for both the univariate and the multivariate case when n = 1. The
parameters of each distribution are calculated using the maximum likelihood estimator. After inspecting

the table, we choose to model the consumption in each household using the log-normal distribution.

Univariate Model Multivariate Model

X Y (X,Y)
Normal ~ 0.1799  0.1508 0.2742
Log Normal ~ 0.0708  0.0414 0.1009

Weibull 0.1199 0.1011

Logistic 0.1782  0.1260

loglogistic ~ 0.0804  0.0407

Gamma 0.1164 0.0709

tlocationscale 0.2030  0.1200
T copula 0.0942

Table 3.4: K-S statistic for different distribution laws for the univariate case.

Maximum Likelihood Estimator for Log-Normal Distibution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution
of arandom variable whose logarithm is normally distributed. A random variable which is log-normally
distributed takes only positive real values. On the other hand, the multivariate log-normal distribution
can take several forms. One form of the multivariate log-normal can be written as

InN(z1,...,2,) = ! exp(—;(lnx —w)’E Hnx — p)) . (3.78)

The parameters p and X can be estimated using the maximum likelihood estimation (MLE) while
only knowing the consumption in a certain period of time. In general, for a fixed set of data and un-
derlying statistical model, the method of maximum likelihood selects the set of values of the model
parameters that maximizes the likelithood function. For determining the maximum likelihood estima-

tors of the log-normal distribution parameters g and 3, we can use the same procedure as for the
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normal distribution, the estimated g and S are thus,

1
A= X lx, (3.79)

)

_ ;[ S (Inx — @)(Inx — A&)T . (3.80)

After estimating the parameters, we can now plot and compare the initial empirical distribution and
the proposed log-normal. Figures 3.8c to 3.8e show both the empirical distribution and the estimated
lognormal when n = 1. Finally, To generate more sample vectors, we will be using the estimated log-
normal joint distribution. Simulating log-normal random outcomes is nothing more than exponentiating

simulated normal random multivariates of the same parameters i and >

3.6.2 Results

Figures 3.7a to 3.7c show how samples of the testing set are distributed over the optimal quantization

regions when n = 2 for different values of the rate R.

In order to compare the performance of the central unit performing the fault detection, we plot the
type II vs. type I probability of error for various scenarios. In Figure 3.7d, we fix R = 0.5 and we vary
the dimension of 7, it can be seen how the performance gets better and better with the increase of n.
Of course in reality, we can increase n much more as we won’t be having any computation limitations
and hence obtain a much better performance. On the other hand, Figure 3.7¢e shows the variation of the
probabilities of error for a fixed n = 4 and R = 0.5 for different values of the privacy constraint A. An
increase in A shows an increase in privacy but the performance is affected. This change in performance
is represented by an increase in errors. Note also that when A — 0, the network achieves perfect

privacy. But, this also forces the network to achieve maximum detection errors.

It’s noted that the performance in this case isn’t quite as good as for the case of memoryless Gaus-
sian sources discussed earlier, even though in this case there is memory in the sources. This is basically
because the correlation between X" and Y is much lower now. In the previous section, we have con-
sidered a correlation of 0.8, whereas the correlation here is said to be something between 0.3 and 0.4.
Therefore, unless the observations are highly correlated, different solutions are recommended in or-
der to improve the performance. The designer can eventually increase the rate, the number of vector
samples or the VQ dimension in order to achieve higher detection performance. The role of the quan-
tization rate is more important: passing from 1 bit/dimension to 2 bits/dimension provides significant
performance improvement. However, this could be useful in systems not taking into account security.
In our scenario, increasing the rate would enormously increase the information leakage at the level of

the eavesdropper as a result of the direct relation between the two measures.
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Figure 3.7: Row 1: optimal quantization regions for n = 2 (x and y axis are amplitudes 1 and 2 of the
vector x respectively). Row 2: type II vs type I probabilities of error. In (d), we study the impact of
the VQ dimension n when R = 0.5 and A > R. In (e), we study the impact of the allowed level of
information leakage on performance when n = 4 and R = 0.5. In all of these figures, 7 = 5.

3.7 Conclusion

In this chapter, we derived an algorithm for binary detection with quantized samples between a remote
and a directly available source in the presence of privacy constraints for both scalar and vector quanti-
zation. In the VQ part, we considered only the special case of testing against independence. In SQ, our
algorithm uses the Bhattacharyya distance as a distortion measure and an optimization criterion. While
in VQ, we were able to use the asymptotic error exponent as it reduces to the mutual information be-
tween the encoder output and the remote source, an iterative algorithm that calculates the quantization
regions and the corresponding representatives was then derived.

The algorithm was applied to the special case of testing against independence with Gaussian sources.
Numerical results show that the greater the information leakage we can tolerate, the better the detec-
tion performance, this remains true until certain value of the information leakage known by the critical
leakage, beyond which the Distortion Measure gets saturated to the optimal distance in the absence

of Eve. In presence of correlated side information at Eve, perfect privacy is not possible. Globally,
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Figure 3.8: Results for probability distribution fitting with lognormal. First row: illustration of the
Kolmogorov-Smirnov statistic. Red line is the estimated lognormal CDF, blue line is ECDF, and the
black arrow is the K-S statistic. Second row: empirical univariate distribution vs. fitted log-normal
distribution of X and Y for n = 1. Third row: joint empirical distribution vs. fitted joint log-normal
distribution of (X,Y") forn = 1.

increasing the sample vectors size has no impact on the privacy level but does improve the detection
performance. For a large sample size, the cost of privacy becomes the central bottleneck in terms of

test performance. Finally, results show that VQ doesn’t have an important advantage over SQ when
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no privacy constraints are present, but appears to be much more efficient in the presence of privacy
constraints especially when n gets larger and larger.

Passing from scalar quantization to vector quantization, may not appear to be conceptually hard
at the beginning; apparently, the significant modification of the SQ procedure would be replacing the
scalar sources with vectors; but turned out to be more complex both analytically and numerically.

The chapter also addressed an important application in the context of smart grids where HT can be
used by collectors (the statistician) to test the integrity of the smart devices present at the houses while
keeping private the meters measurements from the collectors.

One of the most important aspect of this application is the adaptation to unknown or varying ob-
servation statistics. When no observation model is available, we extended the design algorithm to use
with training sequences developed under each hypothesis. Of course, during the design procedure we
needed distribution fitting in order to generate the sample vectors of Ty|x. Nevertheless, if data were
large enough, we could have used Gibb’s sampling directly from the empirical distribution.

Increasing VQ dimension provides significant performance improvement. However, the role of the
quantization rate is more important: passing from a small rate to a high rate provides much more im-
provement. Increasing the rate could be interesting in systems not taking security into account but is
highly undesirable in the case where security plays an essential role considering the fact that informa-
tion leakage is directly related to the rate.

In our further studies, we will extend the VQ scheme of testing against independence to the case
of general hypothesis testing. We will also address decentralized communication network when both
sources are remotely located with respect to the detector. The later scenario should be interesting es-
pecially for the smart meter application studied in this chapter. The decentralized system could also be

extended to include /V different sources requiring the design of N corresponding quantizers.
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CHAPTER 4

QUANTIZATION LEARNING FOR A
UTILITY-PRIVACY FRAMEWORK

Abstract — Consider a source coding problem in presence of two dependent with memory sources
(X,Y), for which only X is available at the encoder (referred to Alice). We first study the design
of vector quantization for the situation where one of the source outputs, i.e., X, must be transmit-
ted to the receiver (referred to Bob) within a prescribed distortion tolerance as in ordinary source
coding. On the other hand, the other source, i.e., Y, has to be kept as secret as possible from the
receiver or wiretappers. We next consider the opposite case where Y represents a relevant utility se-
quence to be reconstructed at Bob while trying to keep information about X secret from an eventual
eavesdropper. Numerical results for memoryless Gaussian sources demonstrate the performance of
the proposed quantization methods. A practical application involving electric consumption data

measured from real houses is finally investigated.

Keywords — Lossy source coding; vector quantization; distortion measure; algorithm; privacy;

information leakage.

4.1 Introduction

It is well-known that real sources cannot be transmitted without distortion over a finite capacity channel,
and therefore must be sampled and compressed before transmission. Even if the sampled measurements
take values in a discrete alphabet, there may be a need to distort the data in some way to guarantee a
certain level of privacy. However, such a distortion should not affect the system’s reliability.
Traditionally, the majority of studies focused only on problems of reliable communication. Re-
cently, extensive research is concentrating on secure communication, i.e., when the goal is to design a
communication system that is both reliable and secure. In earlier researches, the focus in secure sys-
tems was on cryptography and security was only taken into consideration in the application layer of the
OSI model. The information-theoretic study of physical-layer security was pioneered by [44] for the
case of the Wiretap channel. Secrecy at the eavesdropper is measured through the conditional uncer-
tainty of the source given the message taking into account the different characteristics possessed by the
eavesdropper and the legitamate reciever. Wyner has shown that perfect security is attainable as long as
the channel of the eavesdropper is a degraded version of the legitimate user’s one. Later, [46] extended

this result to the general broadcast channels. Several extensions to different multi-user settings can be
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found in [42]. It is important to emphasize that in all of the above mentioned works, the eavesdrop-
per is assumed to observe a noisy (degraded) version of that of the legitimate receiver via a wiretap
or a broadcast channel. On the contrary, this chapter assumes that communication is performed over
a public channel where the eavesdropper has access to the same information as that of the legitimate

receiver.

Source coding with security constraints has been first studied in [105, 106]. A source is composed
of two subsets, a decoder must guarantee a distortion that is not larger than D, for the utility subset
using a certain distortion measure and at the same time cannot be smaller than D for the secret subset
using another distortion in conjunction with any other decoder. The authors in [107] formulate the
problem that involves minimization of distortion measure by the encoder and the decoder subject to
a entropy based privacy constraint. They characterize the achievable distortion-privacy region with
or without compression at the transmitter. They also study the impact of the presence of an average
power constrained Gaussian communication channel on the privacy-distortion trade-off. More recently,
source coding with side information subject to a privacy constraint was also studied. As we said before,
security of the source may depend on the different characteristics (side information) which are available
at the legitimate receiver and the eavesdropper. Secure lossless distributed source coding was mainly
studied by [108, 109, 110], whereas the lossy case was considered by [111, 78].

In our previous works [100, 101], we investigated secure quantization schemes for the problem
of detection at the receiver, i.e., when the receiver aims at making decisions on the source based on
the encoded data. In this chapter, we investigate two scenarios. The general problem of secure lossy
source coding in the presence of an eavesdropper, who observes the information bits and is looking to
reveal a private uncoded correlated sequence. In the second scenario, the opposite case is considered.
The decoder wishes to recover the uncoded correlated sequence; also known as relevant utility in this
case; while the eavesdropper aims at revealing information about the coded source itself. It is assumed
that all links between encoders and decoders are public and noiseless so that they cannot provide any
advantage to increase secrecy. The key aspect of this model is that the message J produced by the
encoder could play a double role depending on the desired setting. In the first setting, it needs to carry
the description of the source X itself while still preserving privacy of a relevant data Y unavailable at
the encoder. In the other setting, it needs to carry information about a relevant data Y aimed at enabling
the decoder to reproduce this correlated data in the best possible way while keeping data about the

source X private from an eventual eavesdropper.

Extracting relevant aspects of complex data as in the second scenario is a fundamental task in sig-
nal processing and statistics. The problem is often that the data contains many structures in which
one or some of them might be relevant. For example, speech signals may be characterized by their
volume level, pitch, or content; pictures can be represented by their level of luminosity, color satura-
tion, etc. This problem was stated in an information-theoretic way by the information bottleneck (IB)
method [112]. Given the joint distribution of a source variable X and another relevance variable Y, IB
operates to compress X, while preserving maximum information about Y. The variable Y thus implic-

itly defines what is relevant in X. A practical application involving electric consumption data measured
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Figure 4.1: Lossy source coding with a privacy constraint.

e FX7) -
X Liog||f| <R

from real houses is finally investigated.

Such scenario may appear eccentric, but could have relevant applications in the context of smart
grids which involve features as demand response and load shifting. As a matter of fact, many new stud-
ies are carried out to allow peak energy demands to be shifted to off-peak hours, thus reducing costs for
power generation facilities as well as households consumptions. In some communities, capacity to gen-
erate power is limited, and when consumers use large amounts of power simultaneously, "brownouts"
may occur.

During a peak load period (e.g. a specific day or hour of the day), we can estimate the consumption
of a certain appliance (heater, washer, etc.) in a particular neighbourhood network from the correlated
total consumption available at the source, to check if it forms a significant proportion of the total peak
demand. If that’s the case, work could be oriented in such a way to perform load shifting per device
depending on its impact on the peak demand.

In this chapter, we will rather focus on an application that depends only on consumption in one
household as we do not have enough information regarding a given appliance in a neighbourhood area

network.

Notations

Random variables (RVs) are denoted by upper case letters. The cardinality of X is denoted by ||X|| or
simply X. Particular realizations of a random variable are written in corresponding lower case letters
while samples are denoted with small letters. We use 2" and x to denote vectors samples from X" of
length n. The Probability density functions (pdfs) are denoted by the lower case letter p. The pdfs and
the joint pdf of X and Y will be denoted px, py and pxy, respectively. For RVs X and Y with joint
pdf pxy, h(X), h(Y|X) denote the entropy and the conditional entropy, respectively, while I(X;Y)

denotes the mutual information.

4.2 Lossy Source Coding with a Privacy Constraint

4.2.1 Problem Definition

In this section, we give a more rigorous formulation of the context depicted in Figure 4.1. The primary
challenge in characterizing the privacy-utility trade-off is finding the appropriate quantitative measures
of both the utility retained as well as the amount of information leaked.

Alice (the quantizer) observes a source of X" = (Xj,...,X,) with memory. Alice wishes to

encode its data with a maximum rate R [bits per dimension] which is accomplished by mapping each
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vector to the index j = f(z") € J using an n dimensional vector quantizer:
f: X" —J=A{1,...,.M} 4.1)

M < 2"E_ Bob is looking recover the source X" from the received compressed version. The aim
of Alice is to transmit the source to Bob in such a way resulting in a minimum expected distortion at

A

Bob. Bob then computes an output sequence Xn = (X 1,--.,Xp) using the decoding function
gx o J = X" 4.2)

The encoder is chosen such that the input and output sequences achieve a desired utility given by an

expected distortion constraint

1 1 N
Dy = TE[(X", gx (F(X")] = © Eld(X", £ @3)
X" = {%y,...,%p} is also denoted as the reproduction alphabet in this setting such that gx (j) = ;.

[E is the expectation and d : X" X X" — RR7 is a distortion measure.

The message f(x) is sent to Bob via a public link that is perfectly overheard by Eve (could be the
collector itself). It is assumed that the eavesdropper has full knowledge of all system properties: the
source statistics, the encoder f, and the legitimate decoder gx. We assume a mutual information rate as
a metric for privacy leakage; however, we allow the fact that an inference can be made from the source
X™ about another sequence. We model the inferred data as a random variable Y™ correlated with the
measurement variable X" according to the joint distribution pxny~. Thus, the privacy leakage is the

mutual information between Y and the message f(X").
1 n n
Ly = ﬁ](y (X)) (4.4)

4.2.2 Optimal Quantizer Design

For a given rate R, the optimal encoder f is obtained from the optimization of 2 types of secure lossy
compression problems. Given a maximum information leakage Ly < A, minimize the distortion D.
Or, given a distortion at Bob Dy < D, minimize the information leakage at Eve Ly .

Instead of using a cost function Dy, with a constrained Ly, or Ly, with a constrained Dx, we use

the unconstrained Lagrangian cost function

I'(f,9x,A) = Dx + ALy , 4.5)

Where A > 0 is the Lagrange multiplier. The distortion d(x, X) between an input x and the decoder
output X = gx (f(x)) is assumed to be the squared error distortion. The MSE is well-known distortion
measure usually used when estimating the source from the corresponding quantized values.

The set of different input vectors producing same output value will be referred to as the quantization
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region. Let R; be the encoding region associated with the index j. R = {R1,R2,..., Ry} denotes
the partition of the space defining the mapping f(x) = j, if x € R;. The expected distortions can be

thus written as

1

Dy = f/ pren (%)% — gx 0 f(x)||2dx (4.6)

- - Z/ pxn (X)||x — %;]]2dx 4.7
jej

4.8)

The information leakage can be written as
Ly = —I(Y™ f(X™)) = ZH(F(X") = ~H(/(X")Y") 49)

Remark 4.1 In most cases, what we have available is a set of sample vectors given by the training
sequence instead of the pdfs. In such scenario, the optimal quantizer will have to be learned from this
training sequence. We will refer to Tx and Ty, the training sequences of X™ ~ Pxn and Y™ ~ Pyn of

sizes Nx and Ny respectively. Define

K;(Ci(x) = +— > Cj(x (4.10)

X xeTx
With C;(x) being any function of x which may also depend on j. The expression K; is only used as
an intermediate to reduce equations’ sizes. The expected distortion and the information leakage can be

thus estimated as follow

nDx = > Kj(llx—%?% .11
JjeJ

nLy = =Y K;(1)logK;(1 ZZK y))log, K;(p(x,y)) (4.12)
JjET YyeTvjed

Iz,(x) is 1 if x € R; and 0 otherwise is called the indicator function of region R;. p(X,y) =
pxryn(X,¥)/pxn (X)pyn (y)-

The problem of finding the optimal set of regions R and representatives X" becomes:

A

(Ropt7 xg

opt

) = argmin {Dx(R,X") + ALy(R)} , (4.13)

R,A™

Dx(R,X™) and Ly (R) are used to emphasize that the expected distortion of the quantizer f depends
on the quantization regions R and their representatives X" while the information leakage only depends
on the quantization regions.

As itis, it is nearly impossible to find the global minimizer of the expected distortion simultaneously

with respect to all the regions and representatives. Nevertheless, the optimization problem defined in
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FXM) : L Bob} Y : LE[d(Y",Y™)] < D

X" Alice 1
Hlog||f|| <R % %I(an(Xn)) <A

Figure 4.2: Secure lossy coding of a correlated relevant information with privacy constraints.

Equation (4.13) can be divided into two partial solutions. In the first step, we will focus on finding the

optimal representatives Xgpt ={X},...,X},} given the quantization regions R = {R1,..., Ry }. We
can write:
{ﬁ;,,ﬁ}l = argmln{DX(’R,fcl,,fcM) +)\Ly(R)} (414)
K1yeers XM
= argmin Dx(R,Xy,...,Xy) . (4.15)
X1yeers XM

The fact that Ly (R ) is independent of all representatives X", the solution of the optimal representatives

is hence the same as those obtained by Lloyd-max

Jr, 3 ()xlx

& = Vied{l,...,M (4.16)
! Jr, Pxn (x)dx jed J
Similarly, we now try finding the optimal quantization regions Ropt = {R7, ..., R}, } given the rep-
resentatives X" = {Xy,..., %y}
(R, Ry} = arg min {Dx(Ri,.. ., R, &) + ALy (Ry, .. R, } (4.17)
Tyeeney M

As you can see here, the problem is more complicated and cannot be decoupled into M different
problems. An iterative algorithm for finding the optimal regions R and the representation points X" to
meet the above necessary conditions is outlined in Algorithm 4.

4.3 Lossy Source Coding of a Correlated Relevant Information

with a Privacy Constraint

4.3.1 Problem Definition

In this section, we study the setting depicted in Figure 4.2. The decoder is not concerned in recovering
X" anymore, but the correlated relevant information Y from the received message f(X"), while
keeping the source private from the eavesdropper. For this purpose, we define the following decoding

function:
gy : T = " (4.19)
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Algorithm 4 Vector Quantizer Design

1. Given a training set {(xl, V1), (X2,¥2), ... } ~ Pxnyn,

2. Initialize {R&O), Rgo), e ,RE&)} by assigning the vectors x to the regions randomly,
3. Loop
(a) For a given R™®), calculate the set of representatives {xlk), ﬁgk), cee ﬁg\]})} such that

3 ]l%]) (x)x

A (k) Jr, pxn(x)xdx xETx

W = 2 : (4.18)
T Jj, pxn(x)dx > 1) (x)
x€Tx

(b) For a given set of representatives {f(g ,xgk), e ,&5\]})}, calculate R*+D =

{ngﬂ), Ré’”l), e ,RS\]}H)} by looping over all vectors x and moving each vector over

all set of regions in R*) and then calculate the corresponding I'(f, gx, A) function given
by:

nr(fa 9x, )‘) = Z K]'(HX - )A(JHZ)
JjeT
- A { 1)log K;(1 Z Ky ( ))log, K; (p(x,y))} :
JjET YVyeTy

Moving a vector x from R; to R; can be simply done by updating K;(C(x)) with
K;(C(x)) —ﬁC’(x) and that of K;/(C'(x)) with K/ (C’(x))+N—1XC’(x). Update 1, (x)*+)
at each time after assigning x to the region having the minimum I'(f, gx, A).

4. Step 4: Repeat until maxHX(kJrl — }A{;k)H <.

5. Step 5: Return {R}, R3, ..., Ry}

where * = {§1,...,§um} is the reproduction alphabet in this setting such that gy (j) = y;. The
average distortion of the code is given by

Dy = E[d(Y", g (F(X")))] = ~ E[d(Y",7") (4.20)

n

where d : Y™ X 37" — IR is a distortion measure. On the other hand, the information leakage at the
eavesdropper becomes:
1
Lx=—-I(X" f(X™). 4.21
x = I(X7f(X) @.21)
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4.3.2 Quantizer Design

Similarly, the objective function to be optimized can be written

The distortion measure d(y", ™) between y™ and the decoder output 5" = gy (f(z™)) is also assumed

be the squared error distortion.

1
Dy = = [ [ pxve e ¥lly = gv o fx)|dxdy (4.23)

1 A

= =S [ o) [ o (r0)lly - Py (424)
N jeg /R yn
1 1 o

= Y Kilg— X ly=3l" (4.25)

jeJg VIX yeTyix=x

Ty|x=x is a set of y vectors such that y ~ pyn xn_x of size Ny|x. The information leakage can be
reduced to nLx = H(f(X")) = — X K;(1)log K;(1). This is due to the fact that knowing X", the
JjeET

uncertainty about f(X™) is null; H(f(X")|X™) = 0. The problem of finding the optimal set of regions
‘R and the corresponding representatives Y™ become

(Ropt, Vipe) = argmin { Dy (R, ") + ALx(R) | (4.26)

pt N
R7yn

The design of the optimal quantizer is hence outlined in Algorithm 5.

4.4 Application: Memoryless Gaussian Sources

Consider the special case of memoryless Gaussian sources represented by the following observation

model:

2
POX0Oy Oy

2
(X,Y) ~N(0,%) 2:( ox P UXUY) (4.29)

In this particular example, X", Y™ denote a sequence of i.i.d. random variables from (X, Y"). In what
follows, we will take ox = oy = 1. Note that the marginal distributions of X and Y under both
hypotheses follow the standard normal distribution N (0, 1).

We can hence write the conditional probability of Y;| X; = x; ,i={1,...,n} as
Yi|Xi = 2i ~ N(pi, (1= ) - (4.30)
The expected distortion Dy when the decoder aims at recovering Y can be written:
1 o2
Dy = — /X pxn (%) By [y — §51%dx 4.31)
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Algorithm 5 Vector Quantizer Design for Distributed Binary Decision with Privacy Constraints

1. Given a the training set {(xl, v1), (X2,¥2), - - } ~ Dxnymn,

2. Initialize {R&O), Rgo), e ,RE&)} by assigning the the vectors x to the regions randomly,

3. Loop
(a) For a given R™®), calculate the set of representatives {y1 ,y( ) ,yg’; } such that
1 (k)
) Jyn S pxnyn (X, y)ydxdy XEZTX( Ny|x ygyzlx XY)H %, ()
¥ = J ~ 0 (4.27)
S pxn(x)dx > 1x7(x)
J x€Tx ’
(b) For a given set of representatives {y1 ,ygk), . ,y%}} calculate R*+D =
{R (k1) R(Hl , R (k1 )} by looping over all vectors x in the training set and moving

each vector over all set of regions in R*) and then calculate the corresponding I'( f, gy, \)
function given by:

nF(f,gy,A)ZZ{Kj(NYlX >y = 9ilP) = AK (D) log K;(1)} - (4.28)

jedJ

Update I, (x)**+1) at each time after assigning x to the region having the minimum

L'(f,9v, A).

4. Step 4: Repeat until maxHyjk+1 gk)H <.

5. Step 5: Return {R7,R5,..., R}

The conditional mean of the distance ||y — ¥,||* with respect to X™ = x is then Eynixn[|ly — ¥; I17] =
|px — §,]I> + n(1 — p?). Then the expected distortion measure reduces to a much smoother form for

this case

z / pxn (%) px — §lPdx + (1 p?) . (4.32)
]67

It can be noticed that D is a particular solution of Dy when p = 1.

In the absence of any privacy constraint, the algorithm minimizing Dy, § = {X,Y} proceeds by

alternating between two steps:

. . f xXpxn(x)dx . 2 . 5 . ]

ifo=X:% = T Ry o= X x -yl < lx—9y0% 0 #5}
J

. ~ pf prn(x)dx ~ 2 ~ 2 . 3

if0=Y:y; = W R = {X| lox = 35117 < llpx = 95 7j/7éj}‘
J

(4.33)

Results show that regions remain unchanged in the two settings and with different values of p whereas
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(a) argmin Dx (b) argmin Dy, p=0.8 (¢c) argmin Dy , p = 0.6
’R,,)e" ’R-vj)n 7?.,:)7"'

Figure 4.3: Results for VQ optimal regions when R = 2. (a) shows optimal quantization regions and
representatives under no privacy constraints when the decoder aims at recovering X". (b) and (c) show
optimal quantization regions and representatives under no privacy constraints when the decoder aims
at recovering Y when p = 0.8 and p = 0.6 respectively. Circles show optimal centroids and dots show
Voronoi centroids.

the values of the centroids given by Y™ are scaled by p. This can be explained theoretically,

o2 o2
A A . . Y Yy, . .
{xI lox=9,1° < lox = 351%,4' #5} = {x] HX—?]H <HX—7JH 4 #5)

= x| Ix = %017 < = &p|* 5 # ) 434

Figures 4.3a to 4.3c show the optimal quantization regions for different scenarios for the given

Gaussian sources when the rate B = 2.

The performance of VQ is typically given in terms of the signal-to-distortion ratio (SDR):

2

SDR = 101log,, % (indB), 6= {X,V} (4.35)
0

where o7 is the variance of the source and Dy is the expected distortion. Table 4.1 shows the perfor-
mance of the VQ for the memoryless Gaussian sources when the decoder aims at decoding X" while
Table 4.2 shows the performance when the decoder aims at decoding Y. It can be noticed the decline
in performance from the first to the second scenario. In other words, in order to recover Y with the

same distortion of recovering X", we might need 4 times the rate.
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Rate SDR (in dB)

(bits/dimesion) n=1 n=2 n=3 n=4 n=5 n=6 n=38 n=10

1 43441 44313 44861 47496 4.8392 4.9890 5.4295 6.2376
2 9.3180 9.6905 10.1266 10.6654 11.6294 - - -
3 14.6554 15.3717 16.3239 - - - - -
4 20.2535 20.6972 - - - - - -
5 25.2260 26.0711 - - - - - -

Table 4.1: The performance of the VQ for the memoryless Gaussian source when the decoder aims at
recovering X", i.e., SDR = 101log,y(c%/Dx).

Rate SDR (in dB)
(bits/dimesion)  n=1 n=2 n=3 n=4 n=>5 n=6 n=8 n=10

22805 2.2324 23085 24365 24364 24988 2.6164 2.8307
3.5558 3.6680 3.7776 3.8190 39164 - - -
4.1403 42951 43355 - - - - -
44074 43622 - - - - - .
44260 44766 - _ _ ; ; ;

DN A W N =

Table 4.2: The performance of the VQ for the memoryless Gaussian source when the decoder aims at
recovering Y™, i.e., SDR = 10log,o(c%/Dy) when p = 0.8.

Figure 4.4a demonstrate the rate-distortion function when # = X and ¢ = Y at 2 different corre-
lations p = 0.8,0.9. It can be noticed that the R(D) function is better when the problem is recovering
X" from f(X™). A higher p also signifies a better rate-distortion function. This is well demonstrated in
Figure 4.4b. The variation of the R(D) function with respect to n is not significant because the source
is memoryless. A significant improvement would have taken place if the source was not memoryless.

In order to study the performance of VQ with privacy, we need to investigate the variation of in-
formation leakage vs. distortion for a given rate. The expression of the information leakage in Equa-
tion (4.12) is a time consuming execution. For the memoryless Gaussian sources defined in Equa-
tion (4.29), we can use the fact that Y™ = pI X"+ N (0, (1 — p?)I) when ox = oy = 1 and the entropy
power inequality to find a feasible solution with much lower execution time. / being the identity matrix

of size n. 1 1 1
Ly = ~(h(Y™) = h(Y"|f)) = 5 logs(2re) = —h(¥"]) (436

Using the entropy power inequality, a lower bound of ~A(Y™|f) is given
n 2 n
WY |f) 2 5 logy (p*22""1) 4 (2me) (1 — 7)) (437)

L7 (.J), H(Y™|f) can be hence

Using the fact that th(X"|f) = th(X") — tH(J) = ;log,(2me) — +

1
n
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p=1.0, n=1
-—-p=1.0, n=5
—p=0.9, n=1
——-p=0.9, n=5|
p=0.8, n=1
~~~p=0.8,n=5|"
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Figure 4.4: 0 € {X,Y}. (a) shows the rate-distortion function R(D) when n = 1 and n = 5. Blue
curves show R(Dx) when the main problem is to recover X™. Red and green curves show R(Dy )
when the main problem is to recover Y, the vertical doted lines in this case represent the minimum
attainable distortion, Dy (;im) = 1 — p? at each case. (b) show distortion Dy / ag vs. correlation p, a
correlation of p = 1 corresponds to the case of § = X.

expressed in terms of H (/) only

1 1
Ly < 5 log,(2me) — 5 log, ((2ﬂe)p22_%h(‘]) + (2me)(1 — p2)) (4.38)
1 2
= —5log, (P27 + (1= p?)) (4.39)
1
= —5log (P27 + (1= p)) (4.40)

The objective functions of the two settings can be written

A 1
(Ropt; Xgpy) = argmin {E Z

A 1 2
: | pxe(llx = %] %dx = A5 logy (022771 + (1= 7))}
R,Xn jeg ' Ri

(Rope V) = agmin (-3 [ pn(llpx — 9,2 + (1= p7) + A+ H(J))
RY" jeg ' Ri n

%H (J) is nothing but the actual rate of the encoder. Figure 4.5a studies the first setting, i.e., Lx vs.

Dy when R = 1 and n = 4 for different correlation values p between X and Y. A higher correlation

value indicates a better distortion-leakage curve. On the other hand, Figure 4.5a studies the second

setting, 1.e., Ly vs. Dx when for different correlation values p between X and Y. Contrarily, A lower

correlation value indicates a better distortion-leakage curve.
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Figure 4.5: (a) shows the rate-leakage function Ly (Dx). (b) shows the rate-leakage function Lx (Dy).
In both cases, we assume n = 4 and R = 1.

4.5 Pratical Application: Smart Meter Device Consumption Re-

covery under Privacy Contraints

Smart meters read aggregate power consumption in the house and communicates it to the central unit in
the aim of providing a certain utility for the user. However, the collection of such data at a fine-grained
time-scale presents privacy risks to the household occupants. Aggregate loads can be disaggregated and
that the per-device consumption at every instant can be retrieved which may reveal private information,
including household occupancy, sleeping and eating patterns of its members, etc.

Experimental setup. The scenario of this experiment involves a smart meter in a household and
a service provider. The smart meter reads the aggregate consumption and communicates data to the
service provider. Exactly as before, two scenarios can be studied. In the first scenario, the service
provider is looking to recover the aggregate consumption X" in the household. The household is willing
to give the aggregate load X™ to the service provider, but wishes to keep the information leakage
regarding a certain appliance Y"; say the washing machine; bounded. In the second scenario, the service
provider is looking to recover the consumption of a certain appliance Y™ in the household; say also the
washing machine; to provide utility to the user, for instance automated control of the washer/dryer. The
household is also willing to give the encoded version of the aggregate load X" to the service provider,
but wishes to keep the information leakage regarding the source X" bounded.

The Reference Energy Disaggregation Data Set (REDD), is an available data set containing detailed
power usage information from several real households [103]. The data contains power consumption for
the whole house as well as for each individual device in the house recorded during a couple of months.
From now on, we will use the total electrical consumption in one of the houses to represent our source
X", while the sequence Y™ will be the consumption of the washer/dryer available at the same time.

Equation (4.28) requires a training sequence Tyx—x V X. Consequently, we would like to generate
sample vectors of Y| X" = x to allow the quantization design to be possible. In order to do that, an

appropriate distribution can be fitted closely to the observed data. A distribution giving a close fit is
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supposed to lead to good predictions.

There are many probability distributions of which some can be fitted more closely to the observed
data than others, depending on the characteristics of the data. A copula; used to describe the depen-
dence between random variables; can also be adopted to generate pseudo-random samples from general
classes of multivariate probability distributions.

To estimate the goodness of fit between original data sets and proposed distributions, several tests
exist. The Kolmogorov-Smirnov statistic allows us to measure the maximum difference in value be-
tween the empirical cumulative distribution and the proposed to be fitted distribution. Comparing this
value for several distribution densities allows us to choose those who fit our model the most. The

Kolmogorov-Smirnov statistic for a given cumulative distribution function F'(u) is

Dycs = sup |F(u) — F(u)], (4.41)

F'(u) is the empirical cumulative distribution function. Table 4.3 shows different values of the K-S
statistic for different distributions for both the univariate and the multivariate case when n = 1 and
compare with a T copula. It can be noticed that using the T copula in order to generate samples has
an advantage. Figure 4.6 shows the empirical distribution and the different distribution fittings of the

univariate model when n = 1.

Univariate Model Multivariate Model

X Y (X,Y)
Normal 0.1335 0.1876 0.2431
Log Normal 0.1195 0.1833 0.2361

Weibull 0.2237 0.2631

Logistic 0.0734  0.1050

loglogistic ~ 0.0624  0.1025

Gamma 0.1243  0.1848

tlocationscale 0.0751  0.0831
T copula 0.0539

Table 4.3: K-S statistic for different distribution laws when n = 1.

Results

Figures 4.7a to 4.7e show how the optimal quantization regions are distributed over the given testing
set of the REDD data when n = 2 for both scenarios. For the first scenario; i.e. when the decoder aims
at recovering X", the regions are nothing but the Voronoi regions. Figure 4.8 show performance with
and without privacy constraint. It can be noticed the impact of an increase in n is much more significant

now that the sources are no longer memoryless.
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Figure 4.6: Empirical univariate distribution versus various proposed distribution fittings

Tables 4.4 and 4.5 show performance of the two scenario using the SDR metric for different values
of the rate and the VQ dimension. The distortion in scenario 2 is very high, this is basically due to the
low correlation between X" and Y"; the correlation between the aggregate consumption and that of
the washer/dryer is lower than 0.2. On the other hand, much better performance is achieved when the
problem becomes recovering the main source while keeping secret a lowly correlated sequence.

Different approaches can be done in order to improve the signal to distortion ratio. The designer can
eventually increase the rate or the VQ dimension in order to achieve better performance. The role of
the quantization rate appears to be more efficient. However, this could be useful in systems not taking
into account security. In our scenario, increasing the rate would enormously increase the information

leakage at the level of the eavesdropper as a result of the direct relation between the two measures.

vVQ SDR (in dB)
dimesion R=1 R=2 R=3 R=4 R=5

n=2 7.3266 14.0087 18.6309 22.7004 27.1631
n=3 9.4814 14.5406 19.6680 - -
n=4 10.4940 15.7922 - - -

Table 4.4: The performance of the VQ when the decoder aims at recovering X", i.e., SDR =

VQ SDR (in dB)
dimesion R=0.5 R=1 R=2 R=3 R=4

n=2 1.1981 2.2097 2.7715 2.8534 2.9307
n=4 1.9523 3.0755 3.3738 - -

Table 4.5: The performance of the VQ when the decoder aims at recovering Y", i.e., SDR =
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Figure 4.7: Optimal quantization regions for n = 2. First row shows regions optimizing Dx. Second
row shows regions optimizing Dy . X and y axis are amplitudes 1 and 2 of the vector x respectively.
Codewords are marked with circles.

4.6 Conclusion

The theoretical framework that we have developed here allows us to precisely quantify the utility-
privacy trade-off problem in two cases. Given a series of measurements X", we reveal a perturbation
X™ that allows us to guarantee a measure of both privacy about a correlated sequence Y and utility in
X™ in the first case. In the second scenario, we reveal a perturbation Y™ that allows us to guarantee a
measure of both privacy about the source X™ and utility about the correlated sequence Y. The utility
guarantee comes from the upper bound on the MSE distance while the privacy guarantee comes from
the bound on information leakage while

The algorithm was applied to the spacial case of memoryless Gaussian sources. Numerical results
show that the greater the information leakage we can tolerate, the better the signal to distortion ratio. In
the case where the objective is to recover the correlated sequence, zero distortion is not possible even
at infinite rate unless the two sequences are perfectly correlated. In memoryless sources, increasing
the vectors’ size has no impact on the privacy level but does improve the decoder performance. The
improvement would be much more efficient for systems with memory.

The chapter also addressed an important application in the context of smart grids where both sce-
narios can be used depending on the utility needed. The two experiments; carried out on real smart-

meter dataset; show that information leakage can be bounded over time while maintaining utility of the
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Figure 4.8: First row shows performance when the decoder aims at recovering X". (a) shows the smart
meter performance under no privacy constraint. (b) shows leakage vs. distortion in the presence of
privacy when R = 1. Second row shows performance when the decoder aims at recovering Y. (c)
shows the smart meter performance under no privacy constraint. (d) shows leakage vs. distortion in the
presence of privacy when IR = 1.

distorted data. The importance of such application is the ability to adapt to an unknown or a variable

observation statistics. When the observation model was not available, we were able to extend the design

algorithm to use with the available training sequences.
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CHAPTER 5

CONCLUSION

5.1 General Comments

In this thesis, we derived some fundamental results on secure binary detection with side information
in Chapters 2 and 3, and secure estimation (utility-privacy framework) in Chapter 4. In Chapter 2,
we provided several new results of optimality and single-letter characterization of the achievable rate-
error-equivocation region, whereas Chapters 3 and 4 provided an iterative algorithm for the design of
the optimal quantizers that correspond to the corresponding specific scenario.

In Chapter 2, we were able to derive an achievable rate-error-equivocation region for the case of
distributed general hypothesis problem when the side information is directly available at the detector,
but was only able to prove the region’s optimality for the particular case of testing against independence.
This represents a main limitation of our results.

Similar limitations were also present in Chapter 3, where the design of the optimal vector quan-
tization scheme was also restricted to the case of testing against independence as the error exponent
was reduced to a smoother mutual information between the two remote sources, whereas the general
hypothesis testing was applicable only when quantization was considered to be scalar.

Another limiting factor in Chapter 2 is the fact that both the encoder and the detector were assumed
to observe vectors of i.i.d. realisations of X and Y respectively. The assumption that observations be
1.1.d. tends to simplify the underlying mathematics of the statistical methods. However, in the practical
applications considered in this thesis, the assumption cannot be considered realistic. We cannot assume
that the voltages/frequencies or the electric consumptions measured at different adjacent time-slots to
be independent. Such a restriction was solved in Chapter 3 where vectors were no longer i.i.d. when a
vector quantization scheme was to be designed. This is considered as a huge advantage.

In spite of the aforementioned limitations, several possible extensions of this work can be identified,

especially when taking into consideration possible applications in the context of smart grid.

5.2 Further Directions in the Detection Framework

5.2.1 M-ary Hypothesis Testing

In many problems, one might be required to distinguish between more than two hypotheses where
signal detection problems can be casted in the framework of M-ary hypothesis testing. In such sce-

nario, we wish to decide among M possible situations from some observations (data). These problems
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Figure 5.1: Distributed detection with coded side information under privacy constraints.

frequently occurs in pattern recognition or in communication when one of M signals is to be detected.
In both of Chapters 2 and 3, our problem only takes into consideration binary hypothesis testing, but
what if there are multiple hypotheses that we need to choose from, for example M possible probability
density functions of the source. This could also be an interesting problem with many applications in
the domain of Smart Grids.
Although the Neyman Pearson decision rule adopted in our work can be extended for the M-ary
hypothesis testing, it is often not used in practice. More commonly the minimum probability of error

criterion or its generalization, the Bayes risk, is employed.

5.2.2 Hypothesis Testing with Coded Side Information

We can also think about an extension of the binary detection with side information at the detector to
the case where the side information is no longer directly available but rather coded and sent through
another noiseless channel. This could be critical when the data known by the "side information" is also
remotely located with respect to the detector and perhaps susceptible to eavesdropping.

When coded, the side information is no longer referred to as side information especially when the
goal remains to test between Hy : pxy and H; : pgy. X" and Y™ become 2 sources encoded separately

and tested jointly. An (n, Rx, Ry )-code for source coding in this setup is defined by

* An encoding function at the source X™ denoted by fx : X"+ {1,2,... 2"},
e An encoding function at the source Y™ denoted by fy : Y™+ {1,2,... 2"}

e A decision rule at the detector denoted by v : {1,2,..., 2"} x {1,2, ... 2"} s {H,, H,}.

Eve could also be monitoring the channel between Charlie (the encoder of the side information)
and the detector as seen in Figure 5.1. In that case, another security constraint must be taken into
consideration. The new goal becomes finding the two optimal encoders fx and fy that secure the
desired trade-off between the HT performance at Bob and the privacy level at Eve, i.e. minimizing
the errors 5(fx, fy, «) as well as the two information leakages at Eve. For the case of testing against
independence, the new objective function for this scenario becomes:

DU fr Ao Ay) € = (X (YD) h T(X fe (X, 20+ Ay T fy (V) 27, 6.)
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LI(fx(X™); fy (Y™)) represents the error exponent of the test at the detector Bob for the case of multi-
terminal testing against independence [60]. The eavesdropper could be intercepting both channel simultaneously
or could be intercepting only one of the channels at a time and at that time, is only interested in obtaining
information about the related source of that channel. In both cases, the expression of the information leakage
composite won’t be affected. This is mainly due to the Markov chains given by fx(X") o= X™ - (Y, Z")
and fy (Y") - Y" - (X", Z").

If only one of the channel is being monitored, this could be seen as a particular case of this scenario taking
either Ax = 0 or A\y = 0. The main problem studied in Chapters 2 and 3; an important subsystem of the above

general system; is also a special case with Ry > %log |IV"||, which means that Y is fully observed by the

decoder (system with full side information).

To find the optimal vector quantizers, we can essentially repeat all the concepts adapted to the case of the

presence of an uncoded side information.

W(fy (Y1 fx (X)) < / / pxnye(%,¥) Qv (y) — Qx ()| dxdy (52)
xn Jyn
2nRX2nRY

- R v — ;| *dxdy . 5.3

jzzjl JZ1 /Rj /Sj/px v (%, ¥) 95 — %;||7dxdy (5.3)

Qx : X" — X" and Qy : V'~ Y™ are the vector quantizers corresponding to the encoders fx and fy
of dimension n and size Mx = 2"%x and My = 2"%v respectively. xn = {X1,%2,..., XM} C R" and
yn = {¥1,¥2,...,¥m,} C IR™ are their respective reproduction alphabets, whereas R = {R1,..., Ry }

and S = {S1,...,Sm, } are their respective quantization regions.

The smart grid application considered in section 3.6 could also make sense in the following framework. A
coded side information means that the average electric consumption of the neighbourhood area network is no
longer fully observed by the detector, but rather encoded by a separate encoder and sent over another rate-limited

channel.

5.2.3 Decentralized Hypothesis Testing Network

Recently, there is an increasing interest in using decentralized systems with distributed encoders. One example of
the decentralized system is shown in Figure 5.2. This system consists of k£ nodes, a detector and an eavesdropper.
Correlated observation vectors X" are collected by the nodes. Each node processes the observation by mapping
it into the discrete variable f;(X"); that is transmitted to the detector. The detector makes a decision on the joint
distribution of the k sources based on the information it receives and a possible side information Y.

The goal is therefore to test between Hy : px, x,..x, vs. Hy : p X1 Ko X This could be very useful espe-
cially if you would like to know the probability distribution profile of a large consumption region or multiple
production units.

The biggest issue we may face in the design of encoders of such scenario is that there’s no explicit expression
of the error exponent. On the other hand, the information leakage could be simply written the same way as before,

and the method of Lagrange multipliers can be extended to solve problems with multiple constraints using a
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Figure 5.2: Decentralized detection under privacy constraints.

similar argument.

1 1&
=1

5.3 Further Directions in the Estimation Framework

The decentralized network defined in the previous section could also be seen in an estimation lossy source
coding framework where the decoder is interested in estimating the sum, for example, of the k separate sources
S" = X'+ X§ +--- + Xj. Of-course this could be done by decoding each source separately and then adding
the k different estimated codewords obtained, however, this is not the most efficient way to estimate the sum.
The overall measure of performance at Bob is then the average distortion between the sum and the estimated

sum, which is actually the output of the decoder g, over all possible inputs.

E[d(S™,S™)] :/n/n"'/n/an{LX;L...X;CL,Y"(XlaX%---axka}’)
1 2 k

(5.5)
(%1 + %2 4 -+ xx) — g(f1(x1), fa(x2), .-, fu(xn), ¥) IPdxidxs . . . dxy,
The decoder function at Bob is thus denoted by
g:{1,2,..., 2"y s {12,202 (1,2, 20k s Y s S (5.6)

In this scenario, we can explore the above mentioned problem, where k nodes must separately compress their
sources in such a way that the eavesdropper with side information learns as little as possible about them. In this
model, a general secure distributed compression problem is considered in which the transmitters, with correlated
observations, intend to send information to a receiver, Bob, over noiseless channels with limited capacity in such

a way that he can reconstruct the arithmetic mean of the k source reliably. Also, there is an eavesdropper, Eve,
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Figure 5.3: Decentralized estimation under privacy constraints.

who’s listening to each channel, one at a time, and when she listens to each of the sender’s channel, she is only
interested in learning information about that sender’s source. . Bob and Eve have their own side information
correlated to encoders’ observations. In a problem where it’s required to design k& vector quantizer optimal to

such scenario, the new objective function becomes

k

1 A 1

DU fio Ao Ar) = E(S™, S™)] + EZ/\J(XZ‘; filXi), Z2") (5.7
i=1

The fundamental limits of the problem, i.e. the trade-off between the coding rates, the distortion at Bob, and

the equivocations at Eve can also be studied. Suppose k = 2, the new problem can then be defined as follow, we

are required to find a region (R1, Re, D, A, Ag) such that:

R > HIAXDI,

Ry > (X3,

D < %E[(S*n,gn)]’ where S™ = XJ' + X7 5.8)
Ar = RI(XT;fi(XT), 27)

Ny > LI(X3; f2(X5), 27

This extension could also be interesting as a smart grid application when the purpose is to estimate the total
consumption of a neighbourhood area network. Monitoring the total electric consumption in a residential area
is very important for features of the smart grid as “demand response”. Such applications improve the ability
of electricity producers and consumers to communicate with one another and make decisions about how and
when to produce and consume electrical power, allowing a change in the power consumption of an electric utility

customer to better match the demand for power with the supply without threatening the privacy of the clients.
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APPENDIX A

AUXILIARY PROOFS OF CHAPTER 2

A.1 Proof of Proposition 2.1

We now prove the achievability of the region given in Proposition 2.1 for General Hypothesis Testing under both
communication and Privacy constraints.

Codebook generation
Randomly pick 2"/t sequences u™ (1) from T7*(U ). For each joint type gy x, fix a conditional type Ty x (qux)
and randomly choose a set of codewords B™(qyx) drawn uniformly with replacement from the marginal type

class Ty, induced by gy x and q‘*/‘U - The size of the codebook B"(qy7x) is an integer satisfying:
exp(nl (qux; @y x) + (U] V] [X] +2)log(n + 1))

< [B"(qux)|
< exp(nd(qux; @yrx) + (UL V] X] + 4) log(n + 1)) .

Encoding

Assume that a sequence z" is produced at Alice. Look for the codeword u"(r1) such that 2" € T(X|U)(u")
[OR (u™,z") € T?(U;X)]. As a second step, for each u"(r1), look for the sequence v"(ry,r2) having a

conditional type q‘*,w - The encoder sends the positions of the sequence u™ and v™ denoted by r1 and 73 and the
(A.1)

[

joint type k of (u*, ™). The encoder message is set to J1 X Jo X K:

{112a"'1M1 eXp[an]} )
{1,2,..., My &
{1,2,..., (n + 1)lUlIxly

J =
exp[nRs|},

T2 =
IC pu—
The first encoding step requires that Ry > I(px;pyx) to succeed with a probability higher than 1 — §. There

are two cases to be considered:
1. log|B"(qux)| < nR2, we can map each member of | B" (qyx )| to an element of 7> in a one-to-one manner.

2. log|B™(qux)| > nR2, we assign each distinct member of |B" (g x)| to J2 uniformly at random.

Decoding
In the first decoding step, Bob looks for the unique codeword v (r) such that (u"(r1),y"™) € T2(U;Y). The

second decoding step is also composed of 2 cases:
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1. log|B"(qux)| < nRa, decoder decodes with no error.

2. log|B™(qux)| > nRa, the decoder having Y as side information receives 72 as bin index, looks for the
sequence v having the minimum H (v™|u",y™) from Bin(ry) containing sequences v" € B"(qux) and

having 3 as index.

Let 6y, C T/ (X |u"(r1)v"™(71,72)), the decoder then sets the acceptance region .A,, for Hy to:
M M,

An=|J U Gy x TL Y ™ (r1)0" (r1,72)) - (A2)

ri=lro=1

Equivocation Rate

Denote by the event E : “An error occurred during the encoding or the decoding step” and letd = ¢/(H (X |UZ)—

R»). Using [78, Lemma 2], the equivocation rate at Eve can be lower bounded as follow:

| pr{E} i}

SH(X"f(XMZ") 2 — L H(X"|rrakZ", E) (A.3)

1-4¢
> [H(X™) — I(X™m2Z") — I(X"; rak|r Z™)] (A4)

n

1-¢
> - [H(X™) — I(X™U"Z") — H(re) — H(k)] (A.5)
> [H(X|UZ)—Ry] —¢. (A.6)
The last line follows from the i.i.d assumption and the fact that 7o € {1,...,2"%2} and hence H(ry) <

log(2™#2) = nRy. The disappearance of the term H (k) is due to the fact that k € K = {1,2,..., (n + 1)“II*1}
and hence H (k) < log(n + 1)/I*l and Llog(n + DI — 0 as n — co. Thus, each A < H(X|UZ) — Ry

is achievable.

Error Exponent

The probability of error can be written as
P.< P} + PP, (A7)

where P} represents the probability of decoding errors, while P/ is the probability of testing errors.

Calculation of P}

We now evaluate the decoding errors, i.e., the errors occurring when the wrong sequence v" is selected, where the
definitions of the decoding errors are the same as in the method of types [113]. The proof uses similar techniques

to those in [114]. Let ©" be the chosen encoded sequence in our scheme, and let F be the event:
F={30" #0"|H@"u",y") < H@"u",y")} . (A.8)
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Consider the following subsets of the sequence space:

& = {(u™ o™ 2" y") . "€ T;‘*/IUX,Iog|B"(qUX)\ >nRy},
62 — {(un)vnvxn)yn) oo ¢ % } )

9y iux

(A9)

where £ corresponds to binning errors while £ corresponds to the covering errors. Equivalently, we can view

these error events as properties of the joint type, so we can define:

Dr={aqvxyw: avux =Gy log|B"(aux)| = nRa}

(A.10)
Dy ={aqvxyw: avux # Guxt -

In order to calculate this error exponent, we need to use the following lemmas. In this appendix, we evaluate the

error exponent of the decoding errors, i.e., we prove:

Es = inf sup inf inf Glavxyu, Ra] -

9x g* qy v XY |U
vigx WUx=Grux

In order to calculate this error exponent, we need to use the following lemmas.

Lemma A.1 For all strings u", v", x" such that v" € T,
Pr{v" € B"(qux)}

< (n+ HMIOHIXDH s expln(T(qux; iy x) — Hgv))] -

Proof A.1 During the construction process of the code-book B™(qux ), each of the codewords is chosen with
-1
replacement from the set Ty, . We make | B" (qu x)| such choices with a probability ‘T(?V‘ . Using the fact that

’T(?X’ > (n+4 1)~ *lexp[nH (qx)], and the bounds given on |B"(qrx)

, the lemma can be proved.

Lemma A.2 For any pair of strings x™ and y", let:
Fla™y") ={z", g"H@",7") < H(z",y")}, (A.11)

then
|F(z™,y™)| < (n + DI¥IV expnH (2", y™)] . (A.12)

Proof A.2 For all qxy such that H(qxy) < H(z"™,y"), we have:

Fan )l = 2 .
< X exp[nH(qxy)] (A.13)

9xy

< (n+ 1)¥W exp[nH (=", y™)] .

Lemma A.3 For any pair of strings x™ and y", let:
Fa"ly") ={2"H(@"|y") < H(z"[y")} (A.14)
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then
IF(@"[y™)| < (n+ 1)F expnH (2"]y™)] . (A.15)

Proof A.3 The proof of this lemma is very identical to that of lemma A.2 and will thus be ommited.

Lemma A.4 Suppose that (u™,v", 2™, y") € (&), ie., that v™ € an\*/wx' Then,

1
Pr{V" =" X" =2" Y" =y"|U" = u"} < py (2", y"[u") ——
n
Wux

(A.16)

Proof A.4 Define the following event G = {I0" € B"(qux) : 9" € T;*‘ }. For (u™,v™, 2™, y™) in this
VIUX
lemma, {U" = u™, V" = 0" X" = 2", Y™ = y"} implies that the event G has occurred:

Pr{V" =" X" =", Y" = y"|U" = u"}

—  Pr{VP =" X" =" Y" =y, GIU" = u"} (A.17)
= Pr{X" =2"Y" =y"|U" =u"}
x Pr{GIU" =u™, X" =2 Y" =y"}

X Pr{V" =" |U" =u™, X" =2, Y" =y", G} (A.18)
< anYW(xn’yn‘un)
X Pr{V" =" |U" =u™, X" =2, Y" =y", G} (A.19)
= Pyjo (@ y" ") — (A.20)
™
Ivivx

where in the last line, we used the fact that V" is uniformly distributed over T ox
VIUX

Lemma A.5 Suppose that the sequence (u™,v™, 2™, y") is in €. Then
Pr{V"=0", X" = 2", Y" = y"|U" = u"} < exp[—(n+ 1) (A.21)

Proof A.5 For (u",v"™, x", y") in this lemma, {U" = v, V" =" X" = 2", Y™ = y"} implies that the event
G has occurred. Thus

Pr{V" =" X" = 2" Y" = y"|U" = u"}

= Pr{V"=u" X" =2"Y" =y", G|U" =u"} (A.22)
= Pl (e u") Pr{G|U" = u", X" = 2™}
x Pr{Y" = y"|U" = u", X" = 2", G}

x Pr {v” =" U =y, X = 2", Y =y, GC} (A.23)

< Pr{G|U" = u", X" = 2"} (A.24)

Pr{Ge|U" = u™, X™ = 2"} is the probability that there is no ?" € B"(qux) such that ?" € T!. . Let

Iviux
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mgo = |B"(qux)| and B" (qu x)[r2] be the ro-th codeword in the set B" (qux ). Then

Pr{Ge|U" = u", X7 = 27} = i Pr{B"(qUX)[r2]¢T”* }

ro=1 dyviux
ma
~ fln-pe{Erainl ey, })
7, (A.25)
— 1 . V|UX mo
( T ] )
T'I’L
qv\UX

< exp[— [Ty ‘ ma)
The last line follows by applying the inequality (1 — t)™ < exp(—tm). By using the following properties:

] ] < exp[nH(qy )] (A.26)

T o] = 0+ )TV exp(n (gy i |aux) (A27)
That allows us to write:
Pr{Ge|U" =u", X" = 2"} <exp[—ma(n+1)~UIVI¥] exp[—nl (717 x; qux)]]
< exp[—(n + 1)
where the last step follows from the fact the ma > exp(nl(qux; q{/‘UX) + (|| V|| X| + 2)log(n + 1))
Lemma A.6 Let (u", 0", z", y") € &. Then
1. Iflog |B"(qux)| < nRy then
Pr{F|U" =u", V" =", X" =2"Y"=y"} =0
2. Iflog |B"(qux)| = nRs
Pr{F|U" = u", V" = ", X" = g™, Y™ = y"}
< exp[-n((R2 — I{qux; ¢yux) + Iquys avipy) — 6) 7))

where ;' = Llog(n + 1)|V|(1+|u||X\+|UI|y|)+4
n

Proof A.6 If qux is such thatlog |B™(qux )| < nRa, then the decoder decodes with no error. On the other hand,
iflog |B"(qux)| > nRa, then for the given sequence (u™,v", x" y"), the probability Pr{F|U™ = u", V" =
" X" =" Y™ = y"} is bounded as in (A.28).

(a) follows from lemma A.1, and (b) follows from lemma A.3.

Using lemma A.4, lemma A.5 and lemma A.6, the probability of error P} can thus be bounded as in (A.29). The

last term can be omitted and thus by using inequality (A.30) and the following inequalities:

‘TQV|UX‘ > (n+ 1)UV explnH (qyyx|qux)]
Tovvxy|l < explnH(quvxy)] < (n+ 1)‘MHVHX|D}|
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we can write:

Py <X Y X wmin{Dvxyullexypavvxlaw);

dx|U 9y |U VXY |UED,

D(avxywllpxywavivxlaw)} + [Re — gy yxi qux) + Havpysquy) — 65]F

The summations can be upper bounded by maximizing over the types and optimizing over the choice of the

channel q‘*/‘U x-

P} < [P0 [P" )| [P"(V % X x )] exp ( ~ n(imin

max {Ininmin wxviw  G"vxyw,Pxyiu,n, Ra]))
yipx MU WIUx=%ux

G" [qule, pXY|U7 n, RQ] is as defined by (A49)

Pr{F|U™ = w, V" = o, X" = 27, Y™ = g}

< Yrerrfunymy Pr{0" € B"(qux), ma(0") = ma(v")|U" = u™, V" =", X" = 2™, V" = y"}
VF£v
< Yenerrlunymy Pr{t" € B"(qux)|U" = u", X" = 2", Y" = y"}
VF£v
X Pr{ms(0") = ma(v™)|0" € B"(qux)}
(a)
< Carerqrpun yry(n + MO expln(I(qy x; Tux) — H(C_IV)]ML2
VF#v
(b)
< (n+ YMICHMIXFAZDH oxpln H (qy vy [quy )] expln(] (qux; @ x) — Hav)l e
< (n + 1)‘V|(1+WHX|HUH3}D+4 exp[—n(Rg - ](QUx; Q1*/|UX) + ](QUY§ QV|UY))]
= exp[-n((R2 — I(qux; Gyux) + L(quys qvioy) — 65) 7))
(A.28)
Pi S SPH{FU" =, V= X7 =0t Y =y

xPr{V"—v X" =a"Y"=y"|U" =u"}
S Pr{V" =" X" =2 Y" =y"|U" = u"}
&2

%: {eXp[_n((RQ — I(qux; Q{(/|Ux) + I(quy; (JV|UY) —0p))] x p%y\U(ﬁna y"u”) ! H

Viux
+ Yexp[—(n+ 1)
&2
= x| = > Phey (2" y")
Ixw aviv " qvxy €D (vham iy ) €Ty, vy TqVIUX‘
x exp[—n((Ry — I(qUX;q‘*/|UX) + I(quy; qvivy) — 51’?)+)])
exp[—(n + 1)2]}
QVXY|U€D2 (Unvxnayn)eTquy‘U
(A.29)
Py y"u") < max { exp[—n(D(gxywllpxvivlar) + H(axyila));
exp[—n(D(gxvvllpzyivlav) + H(QXY\U’(]U))]} (A.30)
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The size of the set of all empirical distributions of X and of length n can be bounded by:
P& < (n+ 1) (A31)
Similarly, the sets |P"(X)

can be absorbed inside the exponent and thus become insignificant for a sufficiently large n. Using continuity
)

P"(V x X x Y)| can be bounded in an identical manner. Thus the cardinalities

B

arguments as used in [114, Lemma 14], the probability of error will be written as: lin_l> inf —% log Pé"
n—oo

> lim inf min max mininf gy xyvv

n—oo *
IX|U G5 x YU qV\UX:q{(/‘UX

Gn[QVXY|Ua Pxvyiu, Rg, |

> i;lf sup i{;afinf vxy|U G[qVXy|U,R2]
*
X dyviux Y qV|UX:q\*/|UX

where G[qy/ XY|Us Ry] is as defined as in (A.48). This allows us to write the error exponent of the decoding errors
as:
Ey = inf sup inf inf Glavxy|v, R2] s (A.32)

ax|u q{x/ Ux ay|Uu avxXy|U
*
| quUX:qV\UX

We try to eliminate Ry using Fourier Motzkin elimination, we have:

R > I(px;puix) + Re (A.33)
E < ki (A.34)
E < Es(R) (A.35)
A < H(pxwzlpuz) — Re (A.36)
Ry 2 0 (A.37)

Using the fact that 5 is an increasing function in R we can write:

Ry < R—1I(px:ipuix) (A.38)
E < E (A.39)
Ry > Ey;YE) (A.40)
Ry < H(pxjuzlpuz) — A (A41)
Ry > 0 (A42)

Using the obtained upper and lower bounds on R we can write:

R > I(px;puix) (A.43)
A < H(pxwzlpuz)) — Re (A.44)
E < B (A.45)
E < Ex(R-I(px;puix)) (A.46)
E < EyH(pxzlpuz) —A) (A.47)
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In other words we can thus say that the achievable region can be now written in the following way:

R > I(px;puix) (A.50)
A < H(pxzlpuz) (A.51)
E < min{E; Ex(R - I(px;puix));

Ey(H(pxwzlpuz) — A)} (A.52)

where Fa(R — I(px;py|x)) and E2(H (px|vz|lpuz) — A) are defined in proposition 2.1.

Calculation of P/

The exponent of testing is studied under the assumption that no decoding errors have occurred, i.e., under the
assumption that the correct codeword has been found in the bin. In order to bound P/*, we can proceed similar to
the proof done to evaluate the lower bound of the error exponent in [60]. The definition of the acceptance region
in this case changes to include the two layers as seen in (A.2). Then, following similar steps with the assumption
that My + My = exp[n(I(UV; X) + n)], it is easy to check that [60]:

P < (n+ 1)HMMIXIVE pmax exp[—n(d(UVXY) —2u —1n)]

qUVXY

where:
dUVXY) =Dgysvlporsy) +9 - (A.53)

Therefore, the error exponent £ is now shown, which concludes the proof of Proposition 2.1.

A.2 Proof of Proposition 2.2

We first show the achievability and then the converse of the region provided in proposition 2.2.

Glavxyu, Ra] =

min{ D(gvxv||pxvwavivxlaw); D(avxywllpxyivavioxlar) b
+[Ry — Iqux; avivx) + I(quy; qvioy)] T Ry < I(qux;qvivx) (A.48)
0 else.

G" [QVXY|U7 PxyU, Ra, n| =

min{D(QVXYw\ |PXY|UQV\UX\QU); D(QVXY|U\ \p)’(Y|UQV\UX|QU)}
+[Re — gy px; qux) + Hgvwys quy) — 0] " Ry < I(qviux,qux) (A.49)
00 else.
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A.2. Proof of Proposition 2.2

A.2.1 Direct Part

The proof of the direct part can be derived from the region proposed in Proposition 2.1. Taking Ry = 0 is
sufficient to prove the achievability of the rate and the equivocation. Our main concern lies in proving the error
exponent D(UY ||UY') is achievable. In this case, the new codebook is generated only with one layer U without
binning and thus all decoding errors are vanished and only detecting errors are taken into considerations. Hence,

it is required to prove show:

DUXY|[UXY) > DUY||UY) (A.54)
= DUY||UY), (A.55)

where (a) follows from the fact that Pivy = puvy and hence pgy- = pyy. This yields the achievability of the
error exponent, i.e., £ < D(UY||UY).

A.2.2 Converse Part

J = f(X™) being the message sent by the encoder "Alice" to the decoder "Bob".The following Markov chain
holds for each subset G C {1,...,n}:

(J,Xg,Yg,Yg) o Xge - Yge o Yge (A.56)

By setting U; = JYi_lYi_lffzﬁl, the Markov chain U; — X; — Y; — Y; is satisfied.

Error Exponent

nkE < D(psy»|lpyyn) (A.57)
= D(pynpjjy=|lpynpjjyn) (A.58)
= nD(pyllpy) + D(py=llpsym) (A.59)
@
= D(pJ|Y"pYn|}7n|’pj|}?npyn|}7n) (A.60)
= D(@yynignllpsgnpynin) (A.61)
= I(J;Y") = I(J;Y") (A.62)
Y () S AN (A (A.63)

=1

[I(JY'"LY) — IJY L) + (YL YTV — IV LY IY)] (A6d)

S
=

.
Il
—

IJY"™Y"" WY, V) - I(JY Y YR ) (A.65)

=
M=

-
Il
—

I(UY;) = (U3 Ys) (A.66)

I

-
I
_

Where (a) follows from the fact that the marginal distributions py and py- are equal under both hypotheses. (b)

is due to chain rule and (c) is due to Csiszar and Korner’s Equality [?, Lemma 7]. (d) is due to the markov chain
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defined in (A.56).
Define a time-sharing RV ) uniformly distributed over {1,2,...,n} and X = X,Y = Yy, Y = YQ, U=
Ug. Thus, we can say that

1 . S :
E < —I(Ug;YolQ =1) — I(Ug; YolQ = i) (A.67)
= I(U;Y) - I(U;Y) (A.68)
= D(UY||UY), (A.69)
Equivocation Rate

nA < (X”|JY”) (A.70)
@ ZHX|JXZ DA AN (A71)

=1
< D CH(XIXTY YY) (A.72)

=1
Y (Pl G A E R (A.73)

=1
< S CH(X|IY YL Yy (A.74)

=1
= H(X;|U;Yy) (A.75)

Where (a) is due to chain rule and (b) uses the similar Markov chain used before. From the same definition of the

time-sharing random variable, we can conclude that A < H (X |UY’). This concludes the proof of proposition 2.2.

A.3 Proof of Proposition 2.3

In this proof, we show the achievability and the converse proof of the rate-error-equivocation region proposed in

Proposition 2.3

A.3.1 Proof of the Achievability Part

The proof of the direct part can be derived from the region proposed in Proposition 2.1. Taking R = 0 is
sufficient to prove the achievability of the rate and the equivocation. Our main concern lies in proving the error
exponent [(U;Y) is achievable. In this case, the new codebook is generated only with one layer U without
binning and thus all decoding errors are vanished and only detecting errors are taken into considerations. In the
encoding step, The encoder looks for a codeword u™(r) such that (u"(r), ™) € T (UX) and sends the message
f(X™) = r on the error free channel while the detector has access to u"(r) and the analog observation y". The

definition of the acceptance region becomes:

A, = U {u"(r)} x TT(Y|u"(r)) c TT(UY) . (A.76)
€[1:2nR]
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A.3. Proof of Proposition 2.3

It is required to prove show:

DUXY||UXY) > DUY|UY) (A.77)
Y pwy)||o7) (AT8)
© 1wy, (A.79)

where (a) follows from the fact that p; ¢ = pyyy and hence pgy = pyy., and (b) follows from the fact that

U and Y are independent, pyy = pi» and py = py-. This yields the achievability of the error exponent, i.e.,
E < I(U;Y). This concludes the proof of the achievability of Proposition 2.3.

A.3.2 Proof of the Converse Part

Let J = f(X™) be the message, the following Markov chain holds: (J, X*~!, X1 | Y=L ¥y, Z'=1 7P ) o
X;e(Y;, Z;) foralli = {1,...,n}. From the memoryless assumption of the sources, we have: J & X "1 e Yi~!
and thus by setting U; = (J, Y1) then U; - X; - (3, Z;).
Coding rate
nR > I(J;X") (A.80)
n
= > I(J; XX (A.81)
i=1
(@) = ) ) ) )
= > [HUIXTY'"h) - HJIXX Y ) (A.82)
=1
= DI XX (A.83)
i=1
b — ) )
= 2 IUXTIYTLX) (A.84)
=1
Z'I’L
> ) I(U;Xi), (A.85)
i=1

where (a) follows from the fact that J e X™ —e— Y™ and (b) follows from the memoryless assumption of the

sources. Define a time-sharing RV @ uniformly distributed over {1,2,...,n} and X = Xg,U = Ug. Then,

U- X - (Y,Z) and

(A.86)
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Equivocation rate

1 1 o
A< ZHX™JZ™ = =Y H(X;|JX"1zi7t 70 7,
s - (X"JZm) n; (X 172i)
1 A
< NH(X;|JXz, A.87
< n; (X ) (A.87)
@ 1 i—1y i1
= N H(X|lJXTlyi g, A.88
n; (Xl ) (A.88)
1 ,
< N H(X;|JYy 1z, A8
< nzzjl (XilTY'™'Z:) (A-89)
1 n
= > H(X;|U;Z;) (A.90)
i
= HX|UZ), (A.91)

where (a) follows from the fact that (.J, X;, Z;) - X'~! —e— Y?~! and the last step from the time-sharing

argument.

Error exponent

Loy — N~ oryviyict
E<—I(J;Y") = n;IU,YZ\Y ) (A.92)
1 n
= EEHUZ»,Y» (A.93)
"1
= 2 1(UqiYolQ =) (A.94)
=1
= I(U;)Y). (A.95)

It is worth mentioning that another optimal choice is U; = (J, X*~1). This concludes the proof of the converse

of Proposition 2.3.

A.4 Proof of Proposition 2.5

The achievability part is a direct application of Proposition 2.3. Define the auxiliary RV U obtained as the output
of a Degraded Binary Symmetric Channel with input X and crossover probability « € [0, 1], as depicted in
Fig. A.1. The rate inequality reads:

R>I(U;X)=1- Hy(a) (A.96)

and the exponent inequality reads:
E<IU;Y)=(1-¢(1—- Hy)). (A.97)
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l-«
Figure A.1: Binary auxiliary RV.
The equivocation is given by
A < H(X|UZ) = Hy(a) + Ha(p) — Ha(axp) . (A.98)

To show the converse, i.e., the optimality of the specific choice of our previous auxiliary RV U, we need to show

that there exists an a € [0, 3] such that:

I(U;X) > 1-Hy(a), (A.99)
IU;Y) < (1—¢)(1- Hy(a), (A.100)
H(X|UZ) < H(p)+ Ha(a) — Ha(axp) . (A.101)

First, we have that I(U; X) = 1 — H(X|U). By noticing that the binary entropy function is a continuous
mapping from [0, 1/2] to [0, 1], and since 0 < H(X|U) < H(X) = 1, we have that there exists o € [0, 3] such
that H(X|U) = Hy(«). From this, we can write:

I(U; X) =1— Hy(a). (A.102)

By using the same «, i.e., Hy(a) = H(X|U), we obtain:

I(U;Y) = (1-¢(1-H(X|U)) (A.103)
= (1-¢€)(1- Hi(a)). (A.104)
Similarly,
H(X|UZ) = H(X|U)-I1(X;Z|U) (A.105)
= H(X|U)+ H(Z|X)—-H(Z|U) (A.1006)
= Hy(a)+ Ha(p) — H(Z|U) . (A.107)

Since Z is the output of a BSC with input X and and crossover probability p, then Z can be written as Z = X &2

with Z « Bern(p). Using Mrs. Gerber’s Lemma [37], we can write:
H(Z|U) > Hy(Hy “(H(X|U)) % p) . (A.108)
Since « is chosen such that Hy(a) = H(X|U), then o« = H, '(H(X|U)) and hence we can state that:
H(X|UZ) < Hy(a) + Ha(p) — Ha(a % p) . (A.109)
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A.5 Proof of Proposition 2.6

We restrict our attention to an auxiliary RV U obtained as the output of AWGN channel with input X and noise

power (1 — p?) with 0 < pyy < 1. The rate must satisfy

1
R>I1U;X) = §log27re—h(pUX—|—NU|X) (A.110)
1
= 510g27re—h(NU) (A.111)
1 1
= -1 — ] . A.112
2 % (1 - PUQ) ( )
The exponent satisfies:
E<IU;Y)==1 A.113
< 1) = 1o (—rmire ) (A113)
where
Cov(U,Y) = E{UY)-EU)EY) (A.114)
© pupyE(X?) + prE(Ny)E(X)
+ pyE(Ny)E(X) + E(Ny)E(Ny) (A.115)
= pupy . (A.116)

where (a) follows the fact that U = pyX + Ny and Y = pyY + Ny, which proves expression (2.54). The

equivocation reads as:

A<hX|UZ) = WX)-I(U;X)+I(U; Z)

— hZ)+h(Z - X|UX) (A.117)
1 1
= —log( ) lg<>
2 L= piry
1
+ 510g27re(1—p22) (A.118)
1 1—pu?)(1 - pz?
- 710g27re( Pu )(2 rz )| (A.119)
2 1 —pupz

Finally, we conclude the proof by observing that the equivocation rate must be positive.

110



PART II1

Synthese de la These, en Francais

111






CHAPTER 6

SYNTHESE DE LA THESE, EN FRANCAIS

6.1 Introduction

6.1.1 Une Revue Historique

Les débuts de ce que nous savons maintenant comme la communication numérique moderne proviennent de
I’ceuvre de Nyquist (1924) [2].

A la lumigre des travaux de Nyquist, Hartley (1928) [3] a étudié la quantité d’informations qui peuvent étre
transmises de facon fiable sur un canal a bande limitée lorsque plusieurs niveaux d’amplitude sont autorisés.
Un autre progres significatif dans le développement des communications a été le travail de Wiener (1942), qui
a examiné le probleme de 1’estimation d’une forme d’onde de signal souhaitée s(t) en présence de bruit additif
n(t), Sur la base de I’observation du signal re¢u: r(t) = s(t) + n(t).

Les résultats de Hartley et Nyquist sur le taux de transmission maximum de I’information numérique ont
été des précurseurs de 1’ceuvre de Claude Shannon; Souvent appelé le pere de 1’ére numérique. Au début de
son article, Shannon a reconnu le travail accompli avant lui par des pionniers tels que Nyquist et Hartley chez
Bell Labs. Bien que leur influence ait été profonde, c’est Shannon qui a révolutionné la communication et défini
un nouveau champ de recherche sur la communication que nous connaissons maintenant comme théorie de
I’information. L’un de ces concepts clés était sa définition de la limite de capacité de canal.

La théorie de I'information est I’un des rares domaines scientifiques a avoir un début identifiable - le papier
de Claude Shannon de 1948. L’histoire de 1’évolution de la progression d’un seul article théorique a un vaste
domaine qui a redéfini notre monde est fascinante. Peut-&tre pendant les 25 premicres années de son existence,
la théorie de I'information a servi de riche source de problemes de recherche universitaire [8, 9, 10, 11], et
comme suggestion tentante que ses approches peuvent rendre les systemes de communication plus efficaces et
plus performants. Mis a part de petites expériences et quelques systémes militaires particuliers, la théorie était
considérée comme une belle théorie et avait peu d’interaction avec la pratique. Cependant, au milieu des années
1970, les systemes de communication ont commencé a mettre en ceuvre des idées de théorie de I’information de
maniere approfondie.

Shannon a formulé le probleme fondamental de la transmission fiable de I’information en termes statistiques,
en utilisant des modeles probabilistes pour les sources d’information et les canaux de communication. Il a égale-

ment défini la notion de capacité de canal et fourni un cadre mathématique par lequel on peut le calculer.

6.1.2 Eléments des Systemes de Communication Pratique

La théorie de I’information que nous connaissons aujourd’hui n’est pas seulement 1’ceuvre de Claude Shannon,

mais le résultat de nombreuses contributions importantes faites par des individus différents, issus de milieux
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variés, qui ont pris les idées de Shannon et les ont développées. La diversité et les orientations de leurs objectifs
et de leurs intéréts formaient la forme de la théorie de I’information d’aujourd’hui.

Au sens le plus fondamental, la communication implique implicitement la transmission d’un point a un autre
a travers une succession de processus. Figure 6.1 illustre le diagramme fonctionnel et les éléments de base d’un

systeéme de communication numérique [1].

Source Channel Channel Source
Encoder Encoder Modulator  Channel Demodulator Decoder Decoder

X’n, Q X’rl,

Noise

Figure 6.1: Eléments de base d’un syst¢eme de communication numérique.

6.1.3 Codage Source et Quantification

Dans cette these, notre objectif principal sera la composante code source. Des systemes de communication op-
timum pour la transmission de la source pourraient étre construits en concevant séparément des codes sources
pour la source et des codes de correction d’erreur pour le canal. Par conséquent, une ceuvre telle que celle-ci qui
se concentre uniquement sur les aspects de codage de source ou de signal ne signifie pas intrins€quement une
perte de généralité. Un systéme global efficace peut toujours &tre construit en mettant en cascade un bon systeme
de codage de signal avec un bon systeme de contrdle d’erreur. En fait, la plupart des systemes de communication
pratiques pour la transmission de source aujourd’hui sont basés sur la séparation.

La théorie du codage source a d’abord été formulée par Shannon oll un taux minimum de compression de
données sans perte a été établi. Ce taux est le méme que le taux d’entropie H de la source qui a été définie plus
tot. La valeur exacte de ce taux dépend de la source d’information, plus spécifiquement, de la nature statistique
de la source. Il est possible de compresser la source, sans perte, avec un taux de compression proche de H.

Shannon a également développé la théorie de compression de données avec perte. Ceci est mieux connu
sous le nom de théorie de la distorsion des taux [16]. En compression de données avec perte, les données dé-
compressées ne doivent pas nécessairement étre identiques aux données d’origine. Au lieu de cela, une certaine
quantité de distorsion, D, est tolérée. Shannon a montré que pour une source donnée (avec toutes ses propriétés
statistiques connues) et une mesure de distorsion donnée, il existe une fonction, R(D), appelée fonction de dis-
torsion de débit. La théorie dit que si D est la quantité tolérable de distorsion, alors R(D) est le meilleur taux de
compression possible.

Quantification; Une forme de méthode de compression avec perte; Cartographie les valeurs d’amplitude en
une plage discrete, de sorte que le signal quantifié ne prend qu’un ensemble de valeurs discret, généralement fini.
Par conséquent, la quantification entraine une perte d’information en introduisant une distorsion dans le signal
quantifié qui ne peut étre éliminée. L’ augmentation du nombre de sorties discrétes d’un quantificateur réduit
généralement la distorsion, mais ne peut pas I’éliminer. Le compromis fondamental dans ce choix est la qualité

du signal résultant par rapport a la quantité de données nécessaires pour représenter chaque entrée.
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L’ensemble des entrées d’un quantificateur peut €tre des scalaires ou des vecteurs. S’ils sont des scalaires,
on appelle les quantificateurs scalaires quantificateurs. S’ils sont des vecteurs, nous les appelons quantificateurs
vectoriels. Les quantificateurs scalaires et vectoriels jouent un role important dans la compression des données
et ont donc fait I’objet d’études approfondies. Alors que la quantification scalaire est utilisée principalement
pour la conversion analogique-numérique, la quantification vectorielle est utilisée avec un traitement de signal
numérique sophistiqué, ot dans la plupart des cas le signal d’entrée a déja une certaine forme de représentation
numérique et la sortie souhaitée est une version compressée du signal numérique . La quantification vectorielle
est habituellement, mais non exclusivement, utilisée a des fins de compression de données.

Un vecteur peut étre utilisé pour décrire presque n’importe quel type de motif, tel qu'un segment d’une
forme d’onde de parole ou une image, simplement en formant un vecteur d’échantillons a partir de la forme
d’onde ou de I'image. La quantification vectorielle peut étre considérée comme une forme de reconnaissance de
motif dans laquelle un motif d’entrée est approché par I'un d’un ensemble prédéterminé de motifs standard, ou
dans une autre langue, le motif d’entrée est apparié a I’un d’un ensemble stocké de modeles ou de mots de code.
La quantification vectorielle est beaucoup plus qu’une généralisation formelle de la quantification scalaire. Ces
dernieres années, il est devenu une technique importante dans la reconnaissance de la parole ainsi que dans la
compression de la parole et de I’'image, et son importance et I’application sont de plus en plus.

Le but de la quantification est de fournir une description de précision limitée d’un vecteur d’entrée précédem-
ment inconnu. C’est seulement parce que 1’entrée n’est pas connue a 1’avance qu’il est nécessaire de quanti-
fier. Ainsi, I’entrée doit &tre modélisée comme une variable aléatoire, ayant un caracteére statistique spécifique,
habituellement spécifié par sa fonction de densité de probabilité. Par conséquent, 1’erreur introduite dans la
quantification de cette entrée sera également aléatoire. Pour évaluer commodément les performances d’un quan-
tificateur particulier, nous avons besoin d’un seul chiffre qui indique la dégradation globale de la qualité ou la
distorsion survenue pendant la durée de vie de son utilisation avec une entrée statistiquement spécifiée. En outre,
une certaine mesure globale de la performance, habituellement basée sur la moyenne statistique, est requise qui

prend en compte le pdf d’entrée ainsi que la caractéristique de quantificateur spécifique.

Codage Source Distribué

Le probleme du codage source devient beaucoup plus intéressant et difficile dans un contexte de réseau. Plusieurs

nouveaux scénarios se présentent:

* Des informations différentes de I’information source peuvent étre disponibles pour des terminaux de

codage séparés qui ne peuvent pas coopérer.

* Les décodeurs peuvent avoir acces a des informations supplémentaires sur les informations source.

Les problemes de codage source avec des informations c6té décodeur sont un cas particulier de problemes
de codage de source distribuée. Le role et les avantages potentiels de Side Information (S.1.) dans la compression
des données sans perte et avec perte sont un theme central dans la théorie de I’information. D’une maniere qui
est bien comprise pour divers systeémes de codage source, S.I. peut étre une ressource précieuse, entrainant des

augmentations de performances significatives par rapport au cas ou il est absent.
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Codage Source Orienté Détection

La conception du codeur / décodeur source dépend de I’objectif du systtme de communication. Lloyd, par ex-
emple, visant a concevoir des systémes pour 1’application particuliere de la récupération de la source. Dans de
nombreuses autres applications, I’objectif est de détecter une source plutdt que de I’estimer. Par exemple, un
opérateur de radar doit décider si ce qu’il voit sur 1’écran radar indique la présence d’un plan (le signal) ou la
présence de parasites (le bruit). Ce type d’applications Etait le cadre original de Signal Detection Theory (voir le
travail fondateur de Green & Swets, 1966) [35].

La détection, la prise de décision et le test d’hypotheése (TH) peuvent parfois se référer a la méme chose.
La signification a été étendue dans le champ de la communication pour détecter laquelle, parmi un ensemble
d’alternatives mutuellement exclusives, est correcte. Ces alternatives mutuellement exclusives sont habituelle-
ment appelées hypotheses. Le probleme principal que nous considérons dans cette these est le probleme du test
d’hypothese binaire dans lequel nous supposons qu’il existe deux hypotheses possibles, I’hypothese nulle Hy et
I’hypothese alternative H.

Un TH peut étre erroné de deux manieres différentes. Soit le détecteur décide H; lorsque Hy est I’hypothese
vraie, soit décide Hy quand H; est ’hypothese correcte. Les probabilités de ces deux erreurs, respectivement
notées « et 5, donnent ensemble la performance d’un détecteur (ou d’un test) [36].

Le test des hypotheses distribuées (TH) a d’abord été étudié par Berger [39] et Ahlswede & Csiszar in [40].
Il s’agissait d’une premiere étape pour combiner deux problemes apparemment différents qui ont été étudiés
séparément dans les domaines de 1’inférence statistique standard et de la théorie de I'information. Ce scénario se
compose d’un décodeur (détecteur) qui est nécessaire pour effectuer une décision binaire basée sur des données
collectées a distance envoyées par le codeur.

Dans ces problemes, 1’objectif est donc de définir une mesure de distorsion appropriée permettant de con-
cevoir un quantificateur adapté au test d’hypothese. Le critere MSE est approprié lorsque 1’objectif est de recon-
stituer la source. Toutefois, il peut étre déraisonnable lorsque d’autres applications sont concernées. Un quan-
tificateur concu pour minimiser 1’erreur quadratique moyenne peut perdre de fagcon imprudente les informations
nécessaires a une bonne performance de détection. Dans les problemes de détection, la principale mesure de
dégradation devrait étre les deux types d’erreur. Cependant, la minimisation des probabilités d’erreur est dif-
ficile et incommode a effectuer a de nombreuses reprises. Par conséquent, plusieurs mesures de performance

sous-optimales telles que les mesures de dissimilarité qui sont plus faciles a manipuler sont étudiées.

Codage Source Orienté par le Secret

De nos jours, une énorme quantité de flux d’informations dans le réseau. Avec cette énorme quantité d’informations,
la principale tiche des concepteurs de réseau est de s’ assurer que les données peuvent €tre transmises de maniere
fiable et sécurisée a travers le réseau. Cette dernicre exigence devient de plus en plus aigu&, surtout lorsque des
informations sensibles sont impliquées. Imaginons un réseau dans lequel les informations circulent d’un noeud
a un autre a travers un certain nombre de noeuds intermédiaires. La conception du systeme utilise généralement
ces nceuds intermédiaires pour faciliter la transmission. Cependant, ces noeuds peuvent étre des terminaux ou des
terminaux publics dont nous ne pouvons pas nous fier pleinement pour accéder a des quantités importantes de
nos informations. Ce scénario conduit 2 un compromis naturel entre la coopération et le secret dans le systeme et
motive I’étude de la communication et de la compression sécurisées.

Au début de I’¢re de la théorie de I’information, la majorité des études ne portaient que sur les problémes de
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communication fiable. Récemment, des recherches approfondies se concentrent sur la communication sécurisée,
c’est-a-dire lorsque 1’objectif est de concevoir un systéme de communication a la fois fiable et sécurisé. Les
techniques conventionnelles pour assurer la confidentialité et les réseaux de communication sont basées sur le
chiffrement cryptographique ol la sécurité n’était prise en compte que dans la couche d’application du mod-
¢le OSI. En cryptage, I’émetteur utilise une clé pour chiffrer des informations de source, c’est-a-dire en clair,
converties en texte chiffré. Le récepteur souhaité extrait le texte en clair d’un texte chiffré a 1’aide d’une clé
correspondante. Si une a acces au texte chiffré, mais qu’elle ne connait pas la clé de décryptage correspondante,
elle ne peut pas obtenir les informations sources. Les principales faiblesses de cette notion de sécurité sont les
hypotheses mises sur I’attaquant. En pratique, 1’attaquant est habituellement supposé avoir un temps limité ou
des ressources informatiques calculées limitées a ce qu’il ne peut pas tester toutes les clés possibles pour extraire

I’information source.

Shannon a présenté la notion théorique d’information de la sécurité considérée a la couche physique, ol
le secret a I’eavesdropper est mesuré par I’incertitude conditionnelle de la source donnée le message en tenant
compte des différentes caractéristiques possédées par I’eavesdropper et le récepteur 1égitime . Un systeme est
théoriquement sécurisé en termes d’information si sa sécurité dérive purement de la théorie de I’information
[42]. Autrement dit, il ne peut pas &tre rompu méme lorsque 1’adversaire dispose d’une puissance de calcul
illimitée. L’ adversaire n’a tout simplement pas assez d’informations pour briser le cryptage. Par conséquent, la
sécurité théorique de I’information ne fait aucune hypothése de calcul sur I’attaquant, et est acceptée comme la

forme la plus stricte de sécurité [43].

Cette these (dans Chapters 2 et 3) fournit quelques nouveaux résultats fondamentaux sur la détection et le

codage de la source orientée sur le secret en présence d’informations latérales aux terminaux de réception.

Plus précisément, nous étudions le probleme du TH multiterminal sécurisé avec des informations secondaires

a la fois au détecteur et a 1’eavesdropper. Ce scénario se compose de trois nceuds:

* Un codeur principal (appelé Alice), qui observe une source locale,

* Un récepteur 1égitime (appelé Bob), qui souhaite estimer la distribution conjointe de la source d’Alice et
les informations latérales directement disponibles a partir d’une version compressée recue par un canal
(public) a débit limité,

* Un eavesdropper (appelé Eve), qui observe parfaitement les bits d’information envoyés par Alice a Bob,

et a également acces a une source corrélée qui peut étre utilisée comme information latérale.

Dans le chapitre 2, nous étudions les limites fondamentales du probleme, c’est-a-dire le compromis entre
I’exposant maximal d’erreur réalisable au détecteur (c’est-a-dire la probabilité d’erreur minimale de type II pour
une probabilité fixe d’erreur de type I) , La vitesse de codage au codeur et le taux de fuite & I’eavesdropper.
Alors que dans le chapitre 3, nous proposons des algorithmes pratiques pour obtenir des solutions aussi proches
que possible de 1’optimal, ce qui nécessite la conception d’une quantification optimale (scalaire et vectorielle) en

présence d’un eavesdropper.
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6.1.4 Codage Sécurisé des Sources Distribuées avec Application aux Compteurs

Intelligents

Le Smart Grid nécessite une transmission fiable et sécurisée des informations en temps réel. Par conséquent,
la protection de I’ensemble du systeme de communication qui est au coeur du réseau intelligent est I'un des
principaux objectifs.

Contrairement a la cyber-sécurité, la sécurité des couches physiques a été a peine abordée dans la littérature
du réseau intelligent a ce jour. Dans [57], I’auteur a proposé un moyen de coder la mesure redondante a un débit
inférieur a son entropie, de sorte qu’il ne peut pas étre décodé a partir des bits codés seuls. De cette facon, il
garantit la confidentialité théorique de I’information, quel que soit le pouvoir de calcul d’un eavesdropper. Le
comptage redondant est fréquemment utilisé pour vérifier ’intégrité des données de facturation rapportées par
I’infrastructure de comptage avancée, mais la mesure redondante introduit une fuite potentielle de confidentialité.

L’idée clé est de compresser la mesure redondante a un taux inférieur a son entropie, de sorte qu’elle ne
peut pas étre récupérée a partir des bits codés seulement. Mais la mesure redondante peut étre récupérée en
conjonction avec la mesure rapportée, tant que le taux de compression est supérieur a 1’entropie conditionnelle
de la mesure redondante compte tenu de la mesure rapportée. Contrairement au cryptage, cette méthode garantit
la confidentialité indépendamment de la capacité de calcul de I’eavesdropper

Le cryptage semble étre I’approche typique [58, 59]; Cependant, une telle approche n’a pas une base théorique
solide a la fois pour la protection de la vie privée et la performance de détection / estimation. Une telle base est
importante pour plusieurs raisons. Tout d’abord, une abstraction théorique nous permet de refondre le probleme
d’une maniere indépendante de la technologie - nous avons besoin d’un cadre de confidentialité qui non seule-
ment traite les capacités des techniques actuelles, mais est également extensible aux futures. Deuxiemement, un
cadre théorique nous permet d’examiner les coflits de la vie privée perdue par rapport aux avantages de la diffusion
des données, a savoir le compromis entre la confidentialité et la performance du décodeur. Il serait souhaitable
d’avoir la capacité de décider de ce compromis. Enfin, un cadre théorique pour la protection de la vie privée et la

performance peut exposer des points de compromis qui sont inattendus.

6.2 Test d’Hypothése avec Contraintes de Communication et de

Sécurité

6.2.1 Introduction

Ce chapitre étudie le probleme du test d’hypotheses (TH) dans lequel les données sont compressées et envoyées
a un détecteur qui cherche a choisir entre deux distributions possibles. L’ objectif est de caractériser tous les taux
de données réalisables et I’équivocation et I’exposant maximal de la probabilité d’erreur de type II lorsque la
probabilité d’erreur de type I est au plus une valeur fixe. Le probleme conventionnel TH est de décider entre deux
distributions alternatives a partir des données observées qui sont disponibles au statisticien, c’est-a-dire Hy : px
versus Hy :pg.

Le probleme de test d’hypothese multiterminales (TH) sous contraintes de communication a d’abord été
étudié par Berger [39]. Le TH distribué a été introduit dans [40] ou les auteurs ont étudié ce probleme en

présence de contraintes de communication. Une caractérisation d’une seule lettre est donnée pour le test con-
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tre ’indépendance tandis que des résultats partiels sont obtenus pour le probleme TH général. Plus tard, [60],
une limite inférieure sur I’exposant d’erreur optimal a été proposée sur la base de I’exposant de Wyner- Codage
de Ziv [61]. D’autres résultats sont rapportés dans [62], ou, sur la base d’un schéma de binning sophistiqué, une
nouvelle borne inférieure est dérivée. Bien que pour les problemes de codage source apparentés les schémas
basés sur le binning aléatoire fonctionnent bien et souvent optimal, I’utilisation du binning dans TH est plus im-
pliquée du fait que la probabilité globale d’erreur peut étre dominée par des erreurs dans le décodage des indices
bin. Plus récemment, Les auteurs de [63] ont étudié TH sans contraintes de sécurité et ont montré que le binning
est optimal pour le type de problemes dont le but principal est de tester I’indépendance conditionnelle.

Le compromis optimal entre la distorsion et 1’équivocation est bien connu dans la configuration classique de
distorsion de débit [69], mais n’est pas lorsque la fonction cible est I’exposant d’erreur au lieu d’une distorsion
moyenne par lettre. Plus récemment dans [70], ils établissent des limites internes et externes sur la région de
distorsion-distorsion-équivocation pour le probléme de codage source avec perte avec des contraintes de secret
dans lesquelles une source d’information distante doit étre transmise a une destination.

Ce chapitre traite du scénario de TH sous les contraintes de communication et de confidentialité. Le modele
correspondant est montré dans la figure 6.2 ol Alice maximise non seulement 1’exposant mais aussi le taux
d’équivocation - une incertitude moyenne - a un eavesdropper, noté Eve. Eve est supposée observer parfaitement
les bits d’information envoyés par Alice et a acceés a un i.i.d. String Z" = (Z1,...,Zy,) (peut-étre le méme
que Bob). Nous étudions le minimum de données que Alice doit communiquer a Bob pour garantir 1’exposant
souhaité tout en satisfaisant a I’exigence d’incertitude moyenne a Eve. Le compromis optimal entre la distorsion
et I’équivocation est bien connu dans la configuration conventionnelle de distorsion de débit [78], mais n’est pas
lorsque la fonction cible est I’exposant d’erreur au lieu d’une distorsion. Le probleme de codage source standard
et le probleme TH sans contraintes de confidentialité semblent tre fondamentalement différents 1’un de 1’autre.

Le chapitre est divisé en deux parties. Dans la premiere partie, nous étudions le probleme TH général et
dérivons une région réalisable. La région que nous proposons utilise un schéma a double couche basé sur le
binning et généralise celui fourni dans [60] en prenant en considération a la fois les erreurs de test et de décodage
qui ont lieu pendant le processus de binning. L’ utilisation de la double couche basée sur le binning a rendu le
probléme trés compliqué mais a fourni un meilleur exposant d’erreur globale et était nécessaire pour améliorer
la sécurité dans la région. Dans [62], une limite inférieure similaire mais non équivalente sur I’exposant d’erreur
a été proposée mais malheureusement la preuve n’est pas disponible. Dans la deuxieéme partie, nous étudions le
cas particulier du test contre I’indépendance ol 1’on suppose que, dans les deux hypotheses, les distributions de
probabilité ont des margaux égaux. Dans ce cas, une seule couche a été utilisée sans binning et une caractérisation
optimale d’une seule lettre de la région d’équation de taux-exposant est fournie. Les applications de nos résultats
se posent dans le contexte dans lequel les données doivent rester privées méme du statisticien (voir [75] et les

références qui y figurent), la région est également évaluée pour les sources gaussiennes et binaire.

6.2.2 Définition du Probleme
Modeéele de Systéme

Le modele est représenté sur la figure 6.2, ot un codeur Alice observe des réalisations i.i.d d’une variable aléatoire
vectorielle X, et code a un taux R. Un statisticien Bob (le détecteur) observe la version encodée f(X™) de X" =

(X1,...,X,) etdes réalisations i.i.d d’un vecteur Y directement disponible, Qui est arbitrairement dépendante
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de X" sans mémoire. Un eavesdropper (appelé Eve) a acces a J = f(X™) et une autre information latérale Z",
également composée de i.i.d. Echantillons arbitraires dépendants de (X™ Y™). Alice souhaite communiquer la

source en utilisant un mappage d’encodage:

Fram e (LD 6.1)

Avec le taux de codage log || f|| < nR. Le détecteur Bob doit prendre une décision entre deux hypothéses:
(6.2)

On suppose également que les distributions marginales de X et Y sont les mémes dans les deux hypotheses,
c’est-a-dire px = py et py = py qui ne permet pas a Bob de prendre la décision sans les informations envoyées
par Alice. Dans ce contexte, Bob doit décider a partir de 1’échantillon Y™ et du message f(X™) entre Hy et Hy,

dont un seul est vrai. Pour simplifier, on note les distributions de probabilité correspondantes par P = pyxn)yn

etP = Dyxmyy-

yn
|
. Bob -+ *D(P|[P) > F
xn ﬁ Rd;‘:ff n
f( ) lH Xn|f Xn)zn) A
]
gn

Figure 6.2: Tests d’hypotheses avec contraintes de communication et de confidentialité.

Soite € (0,1), A, C {1,...,||F||} x Y™ soit la région d’acceptation pour le détecteur chez Bob. Les deux

types de probabilités d’erreur sont définis comme suit:

Typel: an(f,A,) = P(A) <e, (6.3)
TypeIl: Bu(f,A,) = P(A,) . (6.4)

Le but du détecteur Bob est de trouver une fonction de codage f et une région d’acceptation .4,, qui minimisent la
probabilité (6.4) pour une probabilité prescrite (6.3), et garantir le taux d’équivocation (ou incertitude moyenne)

a Eve tel que: .
~H(X"[f(X")Z") 2 A, (6.5)

ou une définition équivalente est le de fuite d’information:

LI(X™ (XM 27 < H(X) - A (6.6)

Notre objectif est d’obtenir une représentation d’une seule lettre réalisable de cette région.
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6.2.3 Test d’Hypothese Générale

Dans cette section, nous nous concentrerons sur le cas ou, dans les deux hypotheses, les deux distributions sont

générales, en d’autres termes, les deux hypotheses sont Hy : pxy et Hy : pgy.

Région de Taux-Erreur-Equivocation pour le TH Général

Notre résultat principal pour le test général d’hypothese est une région de taux-erreur-équivocation réalisable et

peut donc étre résumée par la proposition suivante:

Proposition 6.1 (Région taux-erreur-équivocation réalisable) Un ensemble de tous les uplets (R, E,A) est

réalisable si les inégalités suivantes sont satisfaites:

R > I(px;puix) (6.7)
E < min{Ey; E2(R— I(px;puix));

Eqy(H(pxjvzlpuz) — A)} (6.8)
A < H(pxwzlpuz) (6.9)

Ou U etV sont des variables aléatoires auxiliaires définies sur certains ensembles finis U et V tels que U —o—
V e X o (Y,Y, Z) former une chaine de Markov. U et V sont également définis tels que (U,V) o X Y
et PU\7|X = puv|x; E1 et Ey sont définis par:

Ei=  min  Dppoeollproes) 6.10
L= sy 2vesmv) (rgvxvllPovxy) (6.10)
2UV)={ UVXY:PUVX)=PUVX), 6.11)
(UVY) PUVY)},
Ey(R— I(px;puix)) =
inf sup inf inf Glayvxyw, B — I(px;puix)] (6.12)
QX\Uq* ay|u VXY |U
vivx W ux =0y rx
Ey(H(pxwzlpuz) —A) =
inf sup inf  inf  Glevxyiu, H(pxjuzlpuz) — Al (6.13)
QX\U,R/‘UX ay|\u VXY|U

—a*
qV\UX_quUX

Glav xyiv, R(px;puix)] et Glay xyiv, H(px|uz|puz) — A] sont définis dans (6.14) et (6.15) au bas de la page

suivante.
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6.2.4 Test contre I’Indépendance

Dans ce cas particulier, I’objectif est de se concentrer sur le test d’indépendance, c’est-a-dire entre:

Hy :
0: DXy, (6.16)
Hy: px Xpy,
Ot les deux types de probabilités d’erreur sont dans ce cas définis comme suit:
Typel: «a, = Pr(Hi|X"Y" ~p%y), (6.17)
Typell: B, = Pr(HoX"Y" ~p% xpy) . (6.18)
Limiter I’exposant erreur dans ce cas est beaucoup plus facile en raison du fait que:
1 1 n

Ainsi, une caractérisation multi-lettres de la région taux-exposant-équivocation R* est donnée par I’ensemble

de tous les uples (R, E, A) € Ri De telle sorte qu’il existe une fonction de codage f satisfaisant:

1
EIOngH < R, (6.20)
LIGYT) 2 B, 621
%H(X”Lf(X”)Z”) > AL 6.22)

Région de Taux-Erreur-Equivocation de Lettre Unique

Nous énongons maintenant la région optimale de taux-erreur-distorsion pour tester contre I’'indépendance qui

fournit une expression d’une seule lettre.

Proposition 6.2 (Caractérisation d’une seule lettre) Soir R* I’ensemble de tous les uples réalisables (R, E, A),

Glovxviv, B — I(px;puix)] =

min{D(qv xywllpxywavixla); Dlavxywllpsywavivxlar)}

+[R = I(px; puix) — Iqux; aviox) + Iquy; avioy )T R < I(px;puix) + I{qux;aviux)
00 else.

(6.14)
Glovxviv, H(pxjwzlpvz) — Al =

min{D(QVXYlU | \PXY|UQV|UX lqu); D(QVXY\U‘ ’p)_(f/|UQV|UX lqu)}

+H (pxwzlpvz) — Haux; aviox) + Iquy; qvioy) — Al A > H(pxwzlpvz) — Iqux; avivx)
o) else.

(6.15)
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alors il existe une variable aléatoire U sur un ensemble fini U satisfaisant :

R > I(U;X), (6.23)
E < IUY), (6.24)
A < H(X|UZ), (6.25)

OuU - X —e (Y, Z) forment une chaine de Markov.

Notez que I’équivocation est indépendante des différences statistiques entre Y et Z. Contrairement au parametre
de distorsion-distorsion-équivocation précédemment étudié dans [78], dans le contexte actuel de test contre
I’indépendance, I’'information analogique Y disponible & Bob ne peut pas aider a améliorer le taux d’équivocation
a ’Eavesdropper. Cette observation peut simplement s’expliquer par le fait que dans les deux cas ou Y est in-
dépendant de X ou non, Alice doit encoder pour le pire cas et ne peut pas 1’utiliser pour effectuer le binning (par

exemple le codage de Wyner-Ziv).

6.2.5 Conclusion

Dans ce chapitre, nous nous sommes concentrés sur le probleme de test d’hypothese avec des contraintes de com-
munication et de confidentialité. Bob doit choisir entre deux hypotheses basées sur les informations disponibles
et sur les informations communiquées a distance par Alice. En effet, Alice communique sur un canal public
sans erreur mais limité. L’ objectif est de garantir un exposant d’erreur voulu a Bob pour un débit donné tout en
satisfaisant un taux d’équivocation moyen a Eve.
En testant I’'indépendance, nous avons pu caractériser le compromis optimal entre le taux, I’exigence d’exposant

d’erreur et les garanties de confidentialité. Une seule couche de codage sans binning était nécessaire. Dans le cas
d’essais généraux d’hypotheses, une approche basée sur la méthode des types a été utilisée afin de dériver une

région de taux-erreur-équivocation réalisable sans pouvoir prouver son optimalité.

6.3 Apprentissage de Quantification pour une Décision Binaire

Distribuée avec Contraintes de Confidentialité

6.3.1 Introduction

De nombreuses applications nécessitent qu’un message soit transmis d’une source d’information a une destina-
tion souhaitée, ol les décisions sont prises sur la source sur la base des données recues. Par exemple, des données
peuvent étre envoyées par un radar de détection d’objet ou une caméra de surveillance vidéo a une station de
surveillance intéressée a détecter une cible ou un objet spécifique dans la plage de vision du radar. Dans une
telle application, il est souvent crucial de diminuer la vitesse des données transmises en codant la source avant la
transmission.

De toute évidence, la quantification est 1’outil de choix pour réduire la vitesse, mais, contrairement a la
situation classique, la distorsion est le criteére de conception pour optimiser la quantification. Dans notre cas,Nous
sommes intéressés par la meilleure performance possible pour le test tout en veillant a ce que les données brutes

restent sécurisées par rapport a un eavesdropper éventuel.
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yn :
xn f(X”) —> Hy OrHl:%ﬁn(f;an)S—E
2 1 V
Jlog|fl <R HEve b LI(X": f(X7), 2) < A
zn |

Figure 6.3: Distributed detection under privacy constraints.

Méme sans contrainte de confidentialité, un premier probléme consiste a définir une mesure de distorsion
appropriée permettant de concevoir un quantificateur adapté au test d’hypothese. L’erreur quadratique moyenne
(MSE) est la mesure de distorsion appropriée lorsque I’objectif est d’estimer la source a partir des valeurs quan-
tifiées correspondantes. Cependant, dans les problémes de détection, la principale mesure de dégradation devrait
étre la probabilité d’erreur de type II (échec de rejet d’une fausse hypothéese nulle) pour une probabilité d’erreur
de type I prescrite (rejet incorrect d’une hypotheése nulle vraie). Minimiser la probabilité d’erreur pour déter-
miner le schéma de quantification optimal est difficile et incommode a effectuer & de nombreuses reprises. En
conséquence, plusieurs critéres sous-optimaux qui sont plus souples a estimer et a manipuler ont été utilisés dans

cette situation.

Dans notre probleme, on suppose que la distribution de probabilité conjointe de deux sources éloignées est
connue a la fois sous ’hypothese nulle Hy et I’hypothese alternative H; et le test d’hypothese de Neyman-

Pearson le plus puissant est utilisé comme regle de décision [38].

Dans ce chapitre, nous considérons le probleme de la détection binaire distribuée opérant sur des liens non
sécurisés. Ceci consiste principalement a tester la probabilité conjointe de deux sources distribuées en présence

d’un eavesdropper, comme décrit dans la figure 3.1.

Ce chapitre fait deux contributions: La premiere partie se concentrera principalement sur la quantification
scalaire ou le test se situe entre deux distributions générales de probabilité [101]. Dans ce cas, le coefficient
Bhattacharyya est utilisé comme mesure de distorsion car il est beaucoup plus facile a manipuler que la diver-
gence et les garanties standard. La deuxiéme partie se concentre sur la quantification vectorielle pour le test de
I’indépendance. Un algorithme général d’optimisation est donné dans les deux cas, et la performance pour les

sources Gaussiennes est évaluée.

Ces résultats théoriques pour ce scénario viendraient vraiment dans la pratique de beaucoup de fagons dif-
férentes. Dans ce chapitre, I’application aux compteurs intelligents montrera comment tester 1’indépendance peut
étre utilisé pour tester 1’intégrité des appareils intelligents présents dans les maisons. La distribution conjointe
de certaines données collectées au compteur intelligent et d’autres données disponibles aupres du fournisseur
permet au collecteur de vérifier si le compteur intelligent se comporte correctement. Les applications de nos
résultats apparaissent dans ces contextes ou les données doivent rester privées méme du statisticien (voir [102]
et références 1a) ou toute absence de corrélation peut indiquer une déficience de compteur intelligent et donc une

détection de défaut.
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6.3.2 Définition du Probleme
Modé¢le de Systeme

Notre modele est défini par trois noeuds comme décrit dans la figure 6.3. Alice (le quantificateur) observe une
suite de vecteurs X" = (xy,...,x,) dei.i.d. Echantillons alors que Bob (le détecteur) observe une autre séquence

de i.i.d. Echantillons y™ = (¥1,--.,¥r). Ces vecteurs sont n-dimensionnels, ¢’est-a-dire,
Xt = (xt’l;l't,Q;...;wt,n), t= 1,2,...,7’. (626)

T sera désigné par le nombre de vecteurs échantillons disponibles a la fois au codeur et au décodeur. Bien que
les vecteurs échantillons soient considérés comme i.i.d. I’un par rapport a I’autre, chaque vecteur peut impliquer
des échantillons avec mémoire.

Alice veut coder ses données avec un taux maximum R [bits par dimension] qui est accompli en cartographi-
ant les entrées dans les valeurs quantifiées ;7 = (f(x1),...,F(x;)), en utilisant un quantificateur vecteur
n-dimensionnel:

f: X" —T={1,....M}. (6.27)

La transformation se fait 4 1’aide d’un codebook de taille || 7|| = M = 2"f. Chaque vecteur est encodé par un
index qui pointe vers un mot de code a partir d’un ensemble fini de vecteurs, appelé codebook. Chaque mot de
code; également appelé vecteur de reproduction est n-dimensionnel.

J est I’ensemble de tous les mots binaires possibles envoyés par le canal pour représenter le vecteur original
x € X", Puisque I’ensemble des indices 7 est discret et I’ensemble X est continu, la fonction de mappage est
non-injective. L’ensemble des différents vecteurs d’entrée produisant la méme valeur de sortie sera désigné sous
le nom de région de quantification. Soit R; la région de codage associée a I’index j.

R = {R1,Ra,..., Ry} indique la partition de 1’espace. Autrement dit, les régions sont disjointes et com-
plet. Si le vecteur source x est dans la région de codage R ;, alors sa représentation est ’indice j de code dans le
codebook:

f(x)=4j, if xeR;. (6.28)

Le détecteur Bob recoit le message 77 communiqué par Alice et la séquence y”. Son but est de prendre une
décision entre deux possibilités de la loi de probabilité conjointe de (X™,Y™) car elle ne peut étre qu’une des
deux hypotheses:

Ho: (X" Y") ~pxnyn(X,y),

(6.29)
H1 : (Xn,Yn) Nanf/n(X7Y) .

On suppose en outre que les distributions marginales de X" et Y™ sont les mémes sous les deux hypotheses, soit
pxn = Pgn €t pyn = py».Ce qui ne permet pas a Bob de prendre la décision sans les informations envoyées
par Alice. Soit Hy et H; les résultats possibles du processus décisionnel. Les deux types de probabilités d’erreur

associés au probléme de détection sont donnés par:

lI>

TypeI: U Pr (H1|X"Y" ~ pxnyn(X,y)) ,

A . (6.30)
TypeII : Bn = Pr(Ho|X"Y" ~ pgnyn(X,y)

Le message f(x”) est envoyé a Bob via un lien public qui est parfaitement entendu par Eve (1’eavesdropper)
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qui peut avoir acces a une autre séquence de vecteurs z”. La variable aléatoire Z™ est arbitrairement cor-
rélée a (X", Y™). L’objectif de ce systeme est alors de trouver une fonction de quantification f et une région
d’acceptation qui minimisent la probabilité de type II pour une probabilité de type I prescrite et s’assure que la

fuite d’information a Eve est limitée, ¢’est-a-dire

LIXT (X, 2N <A (6.31)

6.3.3 Quantification Scalaire

Dans cette section, le cas de la quantification scalaire est considéré, c’est-a-dire le cas de n = 1. Comme il
est indiqué dans la définition du probléme, nous supposerons qu’apres le processus d’échantillonnage, nous
avons obtenu 7 série de scalaires disponibles au niveau du quantificateur. Puisque nous utilisons un quantifica-
teur scalaire, chaque scalaire d’entrée est traité séparément en produisant la sortie, c’est-a-dire que les entrées

a;,’T

= (z1,...,x,) sont mappées aux valeurs quantifiées j~ = (f(z1),..., f(x;)), en utilisant un quantificateur
scalaire:

fiX—g=1{1,....M}, (6.32)

avec un taux de codage || 7|| < 2%.

Conception de Quantification

Des difficultés surgissent du fait du critére naturel de décision a optimiser. Dans ce cas, 1’optimisation de ces
probabilités ne donne pas une procédure de conception traitable. Pour cette raison, nous remplagons le critere
naturel par une mesure de dissimilarité (ou distance de répartition) entre les distributions sous les hypotheses.
Le KLD est une mesure non symétrique de la différence entre deux distributions de probabilité. Une autre classe
assez large de distances distributives appelées distances Ali-Silvey qui sont les plus fréquemment utilisées et qui
ont trouvé une application réussie dans 1’optimisation statistique. Dans ce qui suit, nous allons nous concentrer

sur la Bhattacharyya distance définie comme:
Dp = —log [Eo (\/K)} . (6.33)

Avec A étant le LLR, Ej est la moyenne par rapport a la distribution py. Nous choisissons d’optimiser f selon la

Bhattacharyya distance.

6.3.4 Quantification Vectorielle

En combinant les entrées sources et en les codant comme un seul bloc, nous pouvons obtenir des algorithmes
de compression plus efficaces. Bien que les quantificateurs vectoriels soient généralement plus complexes et
passent plus de temps de traitement, I’adoption de la quantification vectorielle pour une vitesse donnée obtiendra
tres probablement des erreurs plus faibles que lorsque la quantification scalaire est utilisée au méme taux. Dans ce

cas particulier, I’objectif est de se concentrer sur le test d’indépendance, ¢’est-a-dire entre la distribution bivariée
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donnée pxnyn par rapport a I’alternative d’indépendance donnée par:

HO : (Xn,Yn) ~ PXnyn (X>Y) 3

(6.34)
Hy: (X™Y"™) ~pxn(x) X pyn(y) .

Algorithme QV pour la Détection

La conception du quantificateur est généralement considérée comme une tache ol la fonction objectif standard
est de minimiser une distorsion attendue. Nous visons a prédire la meilleure distorsion qui convient le mieux a
notre probleme.

Une caractéristique clé de tout quantificateur est sa dimension n, un entier positif. Dans notre contexte,
x = 2",y = y" sont les vecteurs de dimension n disponibles respectivement chez Alice et Bob et définis sur
un alphabet X, Y™ C IR". Par conséquent, f : X" — J = {1,..., M} est le quantificateur vectorielle de M-
points n-dimensionnel sans mémoire, Fonctionnant indépendamment sur des vecteurs successifs. Notre objectif
est de trouver une fonction d’encodage f et une région d’acceptation qui minimise les erreurs 3, (a,,) comme
o, — 0, notre fonction objective devient:

D(F) = lim “log fufan, 1) <~ I(¥™ F(X™)) (639)

an—0

La derniere inégalité est prouvée par [40]. Cette derniere information mutuelle représente I’exposant de I’erreur

pour tester I’indépendance. La fonction objectif peut &tre réduite a:
1 1
D(f) < hOIF(X™) < 5 log(2me) B([Y™ — (Y F(X™)?), (6.36)

La derniére inégalité est le résultat du Lemme maximum d’entropie différentielle [37]. E(||[Y"—E(Y™|f(X™))||?)
est la matrice de covariance de vecteur d’erreur de I’estimation de I’erreur quadratique moyenne minimale
(MMSE) de Y™. Notre probleme peut étre considéré comme équivalent a minimiser la distorsion entre Y™
disponible au niveau du détecteur et I’information portée par les sorties de quantification. Un décodeur de re-

production peut donc étre considéré comme un mappage g : J — Y™ dont I’alphabet de reproduction est

)AJ” ={¥1,¥2,...,¥m} C IR™. En conséquence, la fonction objective peut étre finalement
BV =TI = [ [ pxovebey)lly = g0 f0|Paxdy (637)
M
A 2
— Z/ pxcn () By o [lly — 311 (6.38)
j=1"Ri
§; € Y™ est appelé le représentant de la région/cellule R;. ||v|| = X7 v? indique la norme euclidienne carrée

habituelle d’un vecteur v. € R" et Q(x) = g o f(x) = g(f(x)) est la fonction qui mappe X™ a V™. Le
probleme de trouver le quantificateur optimal devient ainsi trouver 1’ensemble des régions optimales R et des
représentants )" qui minimisent la distorsion attendue E(||[Y"™ — Y™(f)||?) sous la condition que les régions

forment une partition de 1’espace.

M
(Ropt, Vipe) = argmin Y- | pxo() Eyappenllly = 31)dx (639
RY" —=17Ri
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Algorithme QV sous Contraintes de Confidentialité

Le nouvel objectif devient de minimiser les erreurs (3, (cv,) ainsi que les fuites d’informations a Eve. Notre

nouvelle fonction objective que nous avons hate de minimiser devient donc:

DU €~ I F(X) 4+ A T(X F(X7), 27) (6.40)

I" est maintenant une fonction de cofit lagrangienne formée de la maniere d’incorporer les cofits séparés des deux
colits; La distorsion de détection et la fuite d’information. A est une variable représentant un compromis entre le

niveau de confidentialité et les erreurs de détection.

6.3.5 Application Pratique: Détection de Pannes Smart Meter sous Contraintes
de Confidentialité

Considérons un réseau de quartier composé d’un certain nombre d’utilisateurs résidentiels ou chaque utilisateur
est équipé d’un compteur intelligent qui enregistre les données en temps réel sur I’utilisation de I’électricité. Le
réseau d’utilisateurs d’électricité effectue 1’agrégation de données par I’intermédiaire d’autres utilisateurs, par
exemple, et rapporte les données agrégées en temps réel a I’Unité Centrale (UC) par I’intermédiaire de 1’unité
d’agrégation de données (DAU) comme le montre la figure 6.4. A la réception des rapports de la DAU, I'UC peut

estimer I’utilisation moyenne en temps réel de 1’électricité de la zone.

Local Gateway / DAU

&

|

E

Figure 6.4: Une illustration du modele étudié.

Central Unit

Les données agrégées moyennes de la zone résidentielle seront appelées Y™ . D’autre part, une autre donnée
X™ provenant d’une maison séparée dans le réseau de quartier est codée avec un taux R et envoyée via un canal
public a débit limité a I’unité centrale qui cherche a détecter une faute ou fraude au compteur intelligent de cette
maison particuliere. La détection des défauts peut alors étre effectuée en testant si ces deux séries de données
X™ et Y™ sont corrélées ou non. Une non corrélation pourrait signifier que les lectures de données du compteur
intelligent sont erronées ou manipulées. Par conséquent, nous aimerions prendre une décision entre 1’'une des

deux hypotheses suivantes

Hy: Compteurs intelligents qui transmettent des données sans faille , 6.41)

H, : Compteurs intelligents envoyant des données erronées .
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Notre modele peut donc étre vu exactement comme le probleme décrit dans la figure 6.3. Comme pour le
probléme de test contre I’'indépendance définie précédemment, 1’objectif est de prendre une décision entre deux

possibilités de la loi de probabilité de (X", Y™) car elle ne peut étre qu’une sur deux hypotheses:

HO : (Xn7Yn) ~ PpxXnyn (X7Y) )

~ (6.42)
Hy: (X™,Y") ~pxn(x) X pyn(y) .

Pxn est une distribution arbitraire, et py~ est la distribution marginale de Y™ sous Hy. En d’autres termes, le
probléme est considéré comme suit, Hy représente le cas ol le compteur intelligent fonctionne correctement et la
distribution conjointe de X" et Y™ a I’état normal serait p xnyn~ qui pourrait étre construit en utilisant des données
historiques. Sous Hy, X™ pourrait provenir de toute distribution inconnue et c’est pourquoi la distribution de X"
sous H; est une distribution arbitraire. H; représente 1’hypothese ol un défaut doit €tre détecté au niveau du

compteur intelligent. Pour ce scénario particulier, notre fonction d’optimisation devient donc:

DA = Jim log fu(an, )+ AL (X" f(X7)) (643)

1 _ Lo on n
< *EDKL(pf(X")Y”pr(X")pY”)+)‘EI(X  f(XTM) (6.44)

La derniere inégalité est également prouvée par [40]. Cependant, cette derniere expression peut étre décomposée

comme suit:

Drr(ppxryynllPpxmypyn) = Drr(ppxryynllpsxnypyn) + Drr(ppxmllbpxn))  (6.45)
= I(f(X");Y") + D(prxnllprxm) (6.46)

Pxn étant la distribution marginale de X™ sous Hy. L’ancienne fonction de cofit reste donc faisable.

6.3.6 Conclusion

Dans ce chapitre, nous avons dérivé un algorithme de détection binaire avec des échantillons quantifiés entre une
source distante et une source directement disponible en présence de contraintes de confidentialité pour la quan-
tification scalaire et vectorielle. Dans la partie QV, nous n’avons considéré que le cas particulier du test contre
I’indépendance. Dans QS, notre algorithme utilise la distance de Bhattacharyya comme mesure de distorsion et
un critére d’optimisation. Alors que dans QV, nous avons pu utiliser I’exposant d’erreur asymptotique comme il
se réduit a I’information mutuelle entre la sortie codeur et la source a distance, un algorithme itératif qui calcule

les régions de quantification et les représentants correspondants a ensuite été dérivé.

Le chapitre a également abordé une application importante dans le contexte des réseaux intelligents ou TH
peut étre utilisé par les collectionneurs (le statisticien) pour tester I’intégrité des dispositifs intelligents présents

dans les maisons tout en gardant privé les mesures des compteurs.

L’'un des aspects les plus importants de cette application est 1’adaptation a des statistiques d’observation
inconnues ou variables. Quand aucun modele d’observation n’est disponible, nous avons étendu 1’algorithme de

conception a utiliser avec les séquences d’apprentissage développées dans chaque hypothese.
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6.4 Apprentissage de la Quantification pour un cadre de Utilité-
Confidentialité

6.4.1 Introduction

Dans ce chapitre, nous étudions deux scénarios. Le probleme général du codage source sécurisé avec perte en
présence d’un eavesdropper, qui observe les bits d’information et cherche a révéler une séquence privée non
codée et corrélée. Dans le deuxieme scénario, le cas contraire est considéré. Le décodeur souhaite récupérer la
séquence corrélée non codée; Egalement appelée utilité pertinente en I’espece; Tandis que I’ eavesdropper cherche
a révéler des informations sur la source codée elle-méme. Il est supposé que tous les liens entre encodeurs et
décodeurs sont publics de sorte qu’ils ne peuvent fournir aucun avantage pour accroitre le secret. L’aspect clé de
ce modele est que le message J produit par I’encodeur pourrait jouer un double réle en fonction du réglage désiré.
Dans le premier réglage, il doit porter la description de la source X lui-mé&me tout en conservant la confidentialité
d’une donnée pertinente Y indisponible a I’encodeur. Dans 1’autre parametre, il doit porter des informations sur
les données pertinentes Y visant a permettre au décodeur de reproduire ces données corrélées de la meilleure
facon possible tout en gardant les données sur la source X privées d’un éventuel eavesdropper.

Extraire les aspects pertinents des données complexes comme dans le deuxieme scénario est une tache fon-
damentale dans le traitement du signal et les statistiques. Le probleéme est souvent que les données contiennent
de nombreuses structures dans lesquelles une ou plusieurs d’entre elles pourraient étre pertinentes. Par exemple,
les signaux de parole peuvent étre caractérisés par leur niveau de volume, leur hauteur ou leur contenu; Les
images peuvent étre représentées par leur niveau de luminosité, leur saturation en couleur, etc. Etant donné la
distribution conjointe d’une variable source X et d’une autre variable de pertinence Y, on opere pour compresser
X, tout en conservant des informations maximales sur Y. Une application pratique impliquant des données de

consommation électrique mesurées a partir de maisons réelles est enfin étudiée.

6.4.2 Codage de Source a Perte avec une Contrainte de Confidentialité

Définition du Probleme

F(X7):  HBobj— X": IE[(X",X")] <D

X™ — Alice
%longH <R % %I(Y";f(Xn)) <A

Figure 6.5: Codage de source a perte avec une contrainte de confidentialité.

Dans cette section, nous donnons une formulation plus rigoureuse du contexte représenté dans la figure 6.5.
Le principal défi a relever pour caractériser le compromis entre la vie privée et I’utilité est de trouver les mesures
quantitatives appropriées a la fois de ’utilité retenue et de la quantité d’information divulguée.

Alice (le quantificateur) observe une source de X™ = (X1,..., X,,) avec la mémoire. Alice veut coder ses
données avec un taux maximum R [bits par dimension] qui est accompli en cartographiant chaque vecteur a

I'index j = f(z™) € J en utilisant un quantificateur vectoriel d’une dimension n:
f: X" —JTJ=A{1,...,M} (6.47)
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M < 2" Bob cherche a récupérer la source X" a partir de la version compressée recue. Le but d’ Alice est
de transmettre la source a Bob de telle maniere résultant en une distorsion minimale attendue a Bob. Bob calcule

A

ensuite une séquence de sortie Xn = (X 1,--.,Xp) en utilisant la fonction de décodage
gx i J — X" (6.48)

Le codeur est choisi de telle sorte que les séquences d’entrée et de sortie atteignent une utilité souhaitée donnée

par une contrainte de distorsion attendue

1 1 A
Dx = LE(X", gx (F(X"))] = - E[d(X", ") (649)
X" = {%&y,..., %y} est aussi désigné comme I’alphabet de reproduction tel que gx (j) = %;. E est I’espérance

etd: X" x X" — IR est une mesure de distorsion.

Le message f(x) est envoyé a Bob via un lien public qui est parfaitement entendu par Eve (pourrait étre
le collectionneur lui-mé&me). 11 est supposé que 1’eavesdropper a une connaissance complete de toutes les pro-
priétés du systeme: les statistiques de la source, le codeur f et le décodeur 1égitime gx. Nous supposons un taux
d’information mutuelle comme une métrique pour la fuite de confidentialité; cependant, nous permettons le fait
qu’une inférence peut étre faite a partir de la source X" sur une autre séquence. Nous modélisons les données
inférées comme une variable aléatoire Y corrélée a la variable de mesure X" selon la distribution conjointe

pxnyn. Ainsi, la fuite de confidentialité est I'information mutuelle entre Y et le message f(X™).

1
Ly = —I(Y"™ f(X")) . (6.50)

Conception de Quantification

Pour un taux R, le codeur optimal f est obtenu a partir de I’optimisation de 2 types de problemes de compression
avec perte sécurisée. Compte tenu d’une fuite maximale d’information Ly < A, minimiser la distorsion Dy.
Ou, étant donné une distorsion a Bob Dx < D, minimiser les fuites d’informations a Eve Ly-.

Au lieu d’utiliser une fonction de colt D x, avec une contrainte Ly, ou Ly, avec une contrainte D x, nous

utilisons la fonction de cofit lagrangienne non contrainte

I'(f,9x,\) = Dx + ALy , 6.51)

Ou A > 0 est le multiplicateur de Lagrange. La distorsion d(x,X) entre une entrée x et la sortie du décodeur
% = gx(f(x)) est supposée étre la distorsion d’erreur au carré. Le MSE est une mesure de distorsion bien connue
qui est habituellement utilisée pour estimer la source a partir des valeurs quantifiées correspondantes.
L’ensemble des différents vecteurs d’entrée produisant la méme valeur de sortie sera désigné sous le nom de
région de quantification. Soit R; la région de codage associée a I'index j. R = {R1,R2,..., Ry} indique la

partition de I’espace définissant le mappage f(x) = j, if x € R;.La distorsion attendue peut étre ainsi

1
Dy = ﬁ/anXn(x)Hx—gXof(x)szx (6.52)
1 .
_ 72/ P (x)]|x — %;]|2dx (6.53)
" jeg /R
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L Bob[— Y7 : LE[d(Y™,¥™)] < D
HEve | LI F(XM) < A

Figure 6.6: Codage Source avec Perte d’une information Corrélée Pertinente avec une Contrainte de
Confidentialité.

e FX7)
X Liog||f| < R

La fuite de I'information peut étre écrite

Ly = 10" J(X™) = TH(F(X™) = TH(F(X")Y™) (6:54)

6.4.3 Codage Source avec Perte d’une Information Corrélée Pertinente avec
une Contrainte de Confidentialité
Problem Definition

Dans cette section, nous étudions le cas représenté dans la figure 6.6. Le décodeur n’est pas concerné par la
récupération de X", mais les informations corrélées pertinentes Y du message recu f(X"), tout en gardant la

source privée de 1’eavesdropper. Pour cela, nous définissons la fonction de décodage suivante:

gy T = " (6.55)
ou Y = {¥1,...,¥m} estI’alphabet de reproduction dans ce cadre de telle sorte que gy (j) = ¥;. La distorsion
moyenne du code est donnée par

1 n n 1 n \n
Dy = ~E[d(Y", gy (f(X"))] = — E[d(Y",¥™)] (6.56)

Oud: V" x V" — IR" est une mesure de distorsion. D’autre part, la fuite d’information a I’eavesdropper
devient: )
Lx = =I(X"; f(X")). (6.57)
n
Conception de Quantification

De méme, la fonction objective a optimiser peut étre écrite
I'(f.gv,A) = Dy + ALx (6.58)

La mesure de distorsion d(y", ™) entre y™ et la sortie du décodeur §"™ = gy (f(x™)) est également supposée étre

la distorsion d’erreur au carré.

6.4.4 Application Pratique: Récupération de Consommation de Dispositif Smart

Meter sous Contraintes de Confidentialité

Le scénario de cette expérience implique un compteur intelligent dans un ménage et un fournisseur de services.

Le compteur intelligent lit la consommation globale et communique les données au fournisseur de services.
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Exactement comme auparavant, deux scénarios peuvent étre étudiés. Dans le premier scénario, le fournisseur
de services cherche a récupérer la consommation totale X dans le ménage. Le ménage est disposé a donner
la charge globale X™ au fournisseur de services, mais souhaite conserver la fuite d’information concernant un
certain appareil Y"; dire la machine a laver; délimité. Dans le deuxieéme scénario, le fournisseur de services
cherche a récupérer la consommation d’un certain appareil Y dans le ménage; dire aussi la machine a laver;
pour fournir une utilité a ’utilisateur, par exemple une commande automatisée de la laveuse / sécheuse. Le
ménage est également disposé a donner la version encodée de la charge globale X™ au fournisseur de service,

mais souhaite conserver la fuite d’information concernant la source X" bornée.

6.4.5 Conclusion

Le cadre théorique que nous avons développé ici nous permet de quantifier avec précision le probleme de
I’arbitrage entre 1’utilité et la confidentialité dans deux cas. En considérant une série de mesures X", nous
révélons une perturbation Xn qui nous permet de garantir une mesure de la vie privée sur une séquence cor-
rélée Y et I'utilité dans X" dans le premier cas. Dans le second scénario, nous révélons une perturbation ¥
qui nous permet de garantir une mesure de la vie privée sur la source X" et I'utilité sur la séquence corrélée Y.
La garantie d’utilité vient de la limite supérieure sur la distance de MSE tandis que la garantie de confidentialité
vient de la fuite d’information liée.

Le chapitre a également abordé une application importante dans le contexte des réseaux intelligents ol les
deux scénarios peuvent étre utilisés en fonction de 1’utilité nécessaire. Les deux expériences; réalisé sur un
véritable ensemble de données de compteurs intelligents; montrent que les fuites d’information peuvent étre
limitées dans le temps tout en maintenant 1’ utilité. L’ importance d’une telle application est la capacité de s’adapter
a une statistique d’observation inconnue ou variable. Lorsque le modele d’ observation n’était pas disponible, nous

avons pu étendre 1’algorithme de conception a utiliser avec les séquences d’entrainement disponibles.
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extract relevant aspects of complex data or hide
them from a potential eavesdropper.

The objective is mainly centered on the
development of a general framework that
combines information theory with
communication theory, aiming to provide a
novel and powerful tool for security in Smart
Grids. From a theoretical perspective, this
research was able to quantify fundamental
limits and thus the tradeoff between security
and performance (estimation/detection).

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France



