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for our hikes and talks; Letizia for our intellectual connection and Jungian interests; Nina
for our lunches and her colourful personality; Raluca and Vincent for our discussions
and friendship; Sophie for her kindness; Pauline and Henri for their congeniality; my
virtual Italian sense8s Alberto, Elide, Roberto, Andrea, Mirko, Sabrina, and Xavier in
particular; my “girls only” group with Tiphaine, Angélique, Olha, and Audrey; my ASP
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Abstract

English Abstract
Source estimation and localization are a central problem in array signal processing, and
in particular in telecommunications, seismology, acoustics, biomedical engineering, and
astronomy. Sensor arrays, i.e. acquisition systems composed of multiple sensors that
receive source signals from different directions, sample the impinging wavefields in space
and time. Hence, high resolution techniques such as MUSIC make use of these two ele-
ments of diversities: space and time, in order to estimate the signal subspace generated
by impinging sources, as well as their directions of arrival. This is generally done through
the estimation of second or higher orders statistics, such as the array spatial covariance
matrix, thus requiring sufficiently large data samples. Only recently, tensor analysis has
been applied to array processing using as a third mode (or diversity), the space shift
translation of a reference subarray, with no need for the estimation of statistical quanti-
ties. Tensor decompositions consist in the analysis of multidimensional data cubes of at
least three dimensions through their decomposition into a sum of simpler constituents,
thanks to the multilinearity and low rank structure of the underlying model. Thus, ten-
sor methods provide us with an estimate of source signatures, together with directions
of arrival, in a deterministic way. This can be achieved by virtue of the separable and
low rank model followed by narrowband sources in the far field. This thesis deals with
source estimation and localization of multiple sources via these tensor methods for ar-
ray processing. Chapter 1 presents the physical model of narrowband elastic sources in
the far field, as well as the main definitions and assumptions. Chapter 2 reviews the
state of the art on direction of arrival estimation, with a particular emphasis on high-
resolution signal subspace methods. Chapter 3 introduces the tensor formalism, namely
the definition of multi-way arrays of coordinates, the main operations and multilinear
decompositions. Chapter 4 presents the subject of tensor array processing via rotational
invariance. Chapter 5 introduces a general tensor model to deal with multiple physical
diversities, such as space, time, space shift, polarization, and gain patterns of narrow-
band elastic waves. Subsequently, Chapter 6 and Chapter 8 establish a tensor model for
wideband coherent array processing. We propose a separable coherent focusing operation
through bilinear transform and through a spatial resampling, respectively, in order to
ensure the multilinearity of the interpolated data. We show via computer simulations
that the proposed estimation of signal parameters considerably improves, compared to
existing narrowband tensor processing and wideband MUSIC. Throughout the chapters
we also compare the performance of tensor estimation to the Cramér-Rao bounds of the
multilinear model, which we derive in its general formulation in Chapter 7. Moreover, in
Chapter 9 we propose a tensor model via the diversity of propagation speed for seismic
waves and illustrate an application to real seismic data from an Alpine glacier. Finally,
the last part of this thesis in Chapter 10 moves to the parallel subject of multidimensional
spectral factorization of seismic ways, and illustrates an application to the estimation of
the impulse response of the Sun for helioseismology.
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Resumé en Français
L’estimation et la localisation de sources sont des problèmes centraux en traite-
ment d’antenne, en particulier en télécommunication, sismologie, acoustique, ingénierie
médicale ou astronomie. Une antenne de capteurs est un système d’acquisition composé
par de multiples capteurs qui reçoivent des ondes en provenance de sources de direc-
tions différentes: elle échantillonne les champs incidents en espace et en temps. Pour
cette raison, des techniques haute résolution comme MUSIC utilisent ces deux éléments
de diversité, l’espace et le temps, afin d’estimer l’espace signal engendré par les sources
incidentes, ainsi que leur direction d’arrivée. Ceci est généralement atteint par une es-
timation préalable de statistiques de deuxième ordre ou d’ordre supérieur, comme la
covariance spatiale de l’antenne, qui nécessitent donc de temps d’observation suffisam-
ment longs. Seulement récemment, l’analyse tensorielle a été appliquée au traitement
d’antenne, grâce à l’introduction, comme troisième modalité (ou diversité), de la transla-
tion en espace d’une sous-antenne de référence, sans faire appel à l’estimation préalable
de quantités statistiques. Les décompositions tensorielles consistent en l’analyse de cubes
de données multidimensionnelles, au travers de leur décomposition en somme d’éléments
constitutifs plus simples, grâce à la multilinéarité et à la structure de rang faible du
modèle sous-jacent. Ainsi, les mêmes techniques tensorielles nous fournissent une estimée
des signaux eux-mêmes, ainsi que de leur direction d’arrivée, de façon déterministe. Ceci
peut se faire en vertu du modèle séparable et de rang faible vérifié par des sources en
bande étroite et en champs lointain. Cette thèse étudie l’estimation et la localisation
de sources par des méthodes tensorielles de traitement d’antenne. Le premier chapitre
présente le modèle physique de source en bande étroite et en champs lointain, ainsi que
les définitions et hypothèses fondamentales. Le deuxième chapitre passe en revue l’état
de l’art sur l’estimation des directions d’arrivée, en mettant l’accent sur les méthodes
haute résolution à sous-espace. Le troisième chapitre introduit la notation tensorielle,
à savoir la définition des tableaux de coordonnées multidimensionnels, les opérations et
décompositions principales. Le quatrième chapitre présente le sujet du traitement ten-
soriel d’antenne au moyen de l’invariance par translation. Le cinquième chapitre introduit
un modèle tensoriel général pour traiter de multiples diversités à la fois, comme l’espace,
le temps, la translation en espace, les profils de gain spatial et la polarisation des ondes
élastiques en bande étroite. Par la suite, les sixième et huitième chapitres établissent un
modèle tensoriel pour un traitement d’antenne bande large cohérent. Nous proposons
une opération de focalisation cohérente et séparable par une transformée bilinéaire et par
un ré-échantillonnage spatial, respectivement, afin d’assurer la multilinéarité des données
interpolées. Nous montrons par des simulations numériques que l’estimation proposée des
paramètres des signaux s’améliore considérablement, par rapport au traitement tensoriel
classique en bande étroite, ainsi qu’à MUSIC cohérent bande large. Egalement, tout au
long de la thèse, nous comparons les performances de l’estimation tensorielle avec la borne
de Cramér-Rao du modèle multilinéaire associé, que nous développons, dans sa forme la
plus générale, dans le septième chapitre. En outre, dans le neuvième chapitre nous illus-
trons une application à des données sismiques réelles issues d’une campagne de mesure
sur un glacier alpin, grâce à la diversité de vitesse de propagation. Enfin, le dixième et
dernier chapitre de cette thèse traite le sujet parallèle de la factorisation spectrale multi-
dimensionnelle d’ondes sismiques, et présente une application à l’estimation de la réponse
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impulsionnelle du soleil pour l’héliosismologie.

Keywords
Tenseur, Antenne, Bande Large, Séparation de Sources, Localization, Direction d’Arrivée,
Sismique

This work was supported by the ERC Grant AdG-2013-320594 “DECODA”.





Contents

Introduction 3
I.1. Space-Time Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
I.2. Main Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
I.3. Classic Approaches in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
I.4. Tensor Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
I.5. Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I. Tensor Decompositions for Source Localization: State of the
Art 9

1. Sensor Arrays: Parametric Modeling for Wave Propagation 11
1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2. Narrowband Wave Propagation for Array Processing . . . . . . . . . . . . 12

1.2.1. Far Field Approximation of Narrowband Waves . . . . . . . . . . . 12
1.2.2. Parametric Modeling for Sensor Arrays: Directions of Arrival . . . . 13
1.2.3. General Array Geometries . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4. Uniform Linear Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5. Uniform Rectangular Arrays . . . . . . . . . . . . . . . . . . . . . . 17
1.2.6. Uniform Circular Arrays . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3. The Signal Subspace and the Spatial Covariance . . . . . . . . . . . . . . . 18
1.3.1. Assumptions and Fundamental Definitions . . . . . . . . . . . . . . 18
1.3.2. Array Manifold and Signal Subspace . . . . . . . . . . . . . . . . . 19

1.4. Polarized Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.1. The 3C Sensor Response . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2. Vector Sensor Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.3. Another Polarization Model . . . . . . . . . . . . . . . . . . . . . . 24

1.5. Wideband Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1. Wideband Scalar Wavefields . . . . . . . . . . . . . . . . . . . . . . 24
1.5.2. Polarized wideband sources . . . . . . . . . . . . . . . . . . . . . . 25

1.6. Seismic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7. Parameters of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.8. The Sample Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . 29

Appendices 30
1.A. Signal Complex Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2. Signal Parameter Estimation in 2D 31
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2. Performance of an Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3. Spectral and Parametric Approaches . . . . . . . . . . . . . . . . . . . . . 33



xii Contents

2.4. Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5. Spectral MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1. Evaluation of spectral MUSIC . . . . . . . . . . . . . . . . . . . . . 36
2.6. ESPRIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1. Signal Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.2. Evaluation of ESPRIT . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7. Signal Subspace for Polarized Sources . . . . . . . . . . . . . . . . . . . . . 41
2.8. Signal Subspace for Wideband Sources . . . . . . . . . . . . . . . . . . . . 41

2.8.1. Virtual arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.8.2. Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8.3. Interpolation through Spatial Resampling . . . . . . . . . . . . . . 44
2.8.4. Wideband Polarized Waves . . . . . . . . . . . . . . . . . . . . . . 45

2.9. Dealing with Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9.1. Correlated Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9.2. Correlated Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3. Multi-Way Arrays and Tensors 49
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2. Tensor Arrays: Notations and Operations . . . . . . . . . . . . . . . . . . . 49

3.2.1. From Multilinear Operators to Multi-Way Arrays . . . . . . . . . . 49
3.2.2. Notations and Terminology . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3. Multi-Way Operations . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3. Tensor Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1. Decomposable Tensors and Tensor Rank . . . . . . . . . . . . . . . 54
3.3.2. Tucker Decomposition and Multilinear Rank . . . . . . . . . . . . . 55
3.3.3. Canonical-Polyadic Decomposition (CPD) and Tensor Rank . . . . 56
3.3.4. CPD Factors, Normalization and Scaling . . . . . . . . . . . . . . . 58
3.3.5. Uniqueness of the CPD . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.6. Advantages of the Tensor Formalism when D ≥ 3 . . . . . . . . . . 61

3.4. Multilinear Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . 61
3.5. Algorithms for Exact Decompositions . . . . . . . . . . . . . . . . . . . . . 63

3.5.1. Computation of the CPD through Joint Diagonalization . . . . . . 63
3.6. Tensor Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.1. An Approximation Problem in Additive Noise . . . . . . . . . . . . 64
3.6.2. Existence and Degeneracies . . . . . . . . . . . . . . . . . . . . . . 65
3.6.3. Algorithms for Tensor Approximation . . . . . . . . . . . . . . . . . 66

3.7. Physical Diversity and Coherence . . . . . . . . . . . . . . . . . . . . . . . 67

4. Tensor Array Processing with Multiple Rotational Invariances 71
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2. Multidimensional Subspace Methods . . . . . . . . . . . . . . . . . . . . . 71
4.3. CPD through Multiple Invariances . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1. CPD Factors, Normalization and Scaling . . . . . . . . . . . . . . . 73
4.4. Identifiability of the CPD Model . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1. Incoherent Sources Scenario . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2. Coherent Source Scenario . . . . . . . . . . . . . . . . . . . . . . . 76

4.5. Physical Meaning of Coherences . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6. DoA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1. General 3D DoA Estimation . . . . . . . . . . . . . . . . . . . . . . 79



Contents xiii

4.6.2. 2D DoA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.3. 1D DoA Estimation for ULAs . . . . . . . . . . . . . . . . . . . . . 80

4.7. Source Signature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.8. Advantages of Tensor Decomposition for Sensor Arrays . . . . . . . . . . . 81

II. Contribution: Wideband Multiple Diversity Tensor Array Pro-
cessing 83

5. Multiple Diversity Array Processing 85
5.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2. Physical Diversities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3. Tensor Decomposition of Polarized Waves . . . . . . . . . . . . . . . . . . 88

5.3.1. The Long Vector MUSIC . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.2. Tensor MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.3. Tensor CPD for Vector Sensor Arrays . . . . . . . . . . . . . . . . . 90
5.3.4. CPD Factors, Normalization and Scaling . . . . . . . . . . . . . . . 91
5.3.5. Coherent Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.6. Physical Meaning of Coherences . . . . . . . . . . . . . . . . . . . . 92
5.3.7. Estimation of Source, DoAs and Polarization Angles . . . . . . . . 92
5.3.8. Computer Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4. Directivity Gain Pattern Diversity . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.1. CPD Factors, Normalization and Scaling . . . . . . . . . . . . . . . 96
5.4.2. Diversity of Space Shift and Gain Pattern . . . . . . . . . . . . . . 97
5.4.3. Physical Meaning of Coherences . . . . . . . . . . . . . . . . . . . . 98
5.4.4. Estimation of Sources and DoA . . . . . . . . . . . . . . . . . . . . 98
5.4.5. Computer Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6. Wideband Tensor DoA Estimation 103
6.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2. Tensor Model for Wideband Waves . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1. Space Shift and Gain Pattern Diversity in Wideband . . . . . . . . 104
6.2.2. Polarization Diversity in Wideband . . . . . . . . . . . . . . . . . . 105
6.2.3. Multiple Diversity in Wideband . . . . . . . . . . . . . . . . . . . . 106

6.3. Tensor Wideband Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.1. Virtual Subarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.2. Bilinear Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.3. Bilinear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.4. Noise Correlation Induced by Interpolation . . . . . . . . . . . . . . 109
6.3.5. Interpolation in the Presence of Polarization . . . . . . . . . . . . . 110

6.4. CPD Factors, Normalisation and Scaling . . . . . . . . . . . . . . . . . . . 110
6.5. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1. Estimation of Factor Matrices . . . . . . . . . . . . . . . . . . . . . 112
6.5.2. Estimation of Signal Parameters . . . . . . . . . . . . . . . . . . . . 113

6.6. Computer Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.6.1. Space Shift in Wideband . . . . . . . . . . . . . . . . . . . . . . . . 116
6.6.2. Polarization in Wideband . . . . . . . . . . . . . . . . . . . . . . . 120

6.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



xiv Contents

7. Cramér-Rao Bound for Source Estimation and Localization 125
7.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2. Cramér-Rao Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.1. Log-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2. Fisher Information Matrix (FIM) . . . . . . . . . . . . . . . . . . . 126

7.3. Derivatives Required for the FIM . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.1. Complex Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.2. Derivatives w.r.t. sources . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3.3. Derivatives w.r.t. DoAs . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3.4. Derivatives w.r.t. polarization parameters . . . . . . . . . . . . . . 129

7.4. Interpolation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8. Tensor Wideband Estimation through Spatial Resampling 133
8.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2. Space Shift Diversity in Wideband . . . . . . . . . . . . . . . . . . . . . . 133

8.2.1. Linear Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2.2. Planar Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2.3. Tensor Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3. Polarization Diversity in Wideband . . . . . . . . . . . . . . . . . . . . . . 137
8.3.1. Tensor Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.4. Estimation of Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . 139
8.5. Computer results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.5.1. Space Shift in Wideband . . . . . . . . . . . . . . . . . . . . . . . . 140
8.5.2. Polarization in Wideband . . . . . . . . . . . . . . . . . . . . . . . 145

8.6. Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendices 148
8.A. Array 1D Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.A.1. Sinc Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.A.2. Spatial Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9. Tensor Decomposition of Seismic Volume Waves 149
9.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.3. Physical model and assumptions . . . . . . . . . . . . . . . . . . . . . . . . 150
9.4. Speed diversity in tensor format . . . . . . . . . . . . . . . . . . . . . . . . 151

9.4.1. Estimation of Signal Parameters . . . . . . . . . . . . . . . . . . . . 153
9.5. Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.6. Application to Real Seismic Data . . . . . . . . . . . . . . . . . . . . . . . 159

9.6.1. Windowing and Alignment . . . . . . . . . . . . . . . . . . . . . . . 159
9.6.2. Working Frequencies and Filtering . . . . . . . . . . . . . . . . . . 160

9.7. Application to the Argentière Glacier . . . . . . . . . . . . . . . . . . . . . 160
9.7.1. Speed Diversity - Narrowband . . . . . . . . . . . . . . . . . . . . . 162
9.7.2. Repetition Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.7.3. Space Shift Diversity - Wideband . . . . . . . . . . . . . . . . . . . 168

9.8. Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Appendices 171
9.A. Justification of Assumption A 9.3 . . . . . . . . . . . . . . . . . . . . . . . 171



Contents xv

III. Contribution: Multidimensional Spectral Factorization 173

10.Multidimensional Factorization of Seismic Waves 175
10.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.2. The Helical Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 176
10.3. Cepstral Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.4. The Effect of the Helical Transform on the Multidimensional Factorization

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.5. Helical Mapping for Wavefield Propagation . . . . . . . . . . . . . . . . . . 185
10.6. Application to Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . 186

Appendices 190
10.A.Proof for Propagative Systems . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.B.Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Conclusion and Perspectives 195
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I.1. Space-Time Processing

In the beginning of signal processing, statistics and engineering problems revolved around
parameter estimation and the corresponding performance. The parameters of interest
were mainly related to time, as recorded data was essentially a function of time. Therefore,
signals could be characterized in time domain, or, equivalently, in frequency domain.

Subsequently, following the expansion of applications, recorded signals also became a
function of sensor position, thus developing a spatial dependence. The spatial part of the
processor is an aperture (or antenna) in the continuous space domain, and it is an array in
the discrete space domain [151]. Since signals became space-time processes, spatial as well
as temporal parameters became the object of a whole new field, named sensor array signal
processing, or just array processing. Array processing is a joint space-time processing,
aimed at fusing data collected at several sensors [79]. Prior information on the acquisition
system (i.e. array geometry, sensor characteristics, etc.) is used in order to estimate signal
parameters. Since a sensor array samples the impinging wavefields in space and time, the
spatial and temporal fusion takes place in the multidimensional space-time domain. The
main issues in array processing are given by the array configuration, the characteristics of
the signals and the characteristics of the noise, and the estimation objective [151], such
as the Directions of Arrival (DoAs) of possibly simultaneous emitters.

I.2. Main Applications

Signal parameter estimation in array processing has given rise to a huge variety of appli-
cations, as listed below.

Radar
The first application of antenna arrays was provided by source localization in radar.
Most radar systems are active, in that the antenna is used for transmission and reception
of signals at the same time. Reflection of the ground is a major problem commonly
referred to as clutter, involving spatially spread interferences. Non military applications
include air-traffic control. The spatial parameters of interest may vary: active systems
can estimate velocity (Doppler frequency), range, and DoAs, whereas passive systems can
only estimate the DoAs.

Astronomy
In astronomy, antenna arrays are very long passive systems (the baseline can reach thou-
sands of kilometers) that measure and study celestial objects with very high resolution.

Sonar
Active sonar systems process the echoes of acoustic signals transmitted underwater,
whereas passive sonar systems study incoming acoustic waves, through arrays of hy-
drophones. The main difference between active sonars and radars is given by the prop-
agation conditions: the propagation of acoustic waves in the ocean is more complex and
problematic than the propagation of electromagnetic waves in the atmosphere, due to
dispersion, dissipation, and variation of propagation speed with depth. Major instances
of noise are ambient noise, self noise and reverberation. The most important application is
the detection and tracking of submarines. Deformable arrays are often towed underwater,
with a linear array structure [79].
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Communications
Another major domain for array processing is provided by telecommunications (both
terrestrial and satellite based). Communication signals are typically point-like sources,
and they generally arrive at the distant receiver as plane waves, after being reflected
several times by buildings and hills. These multiple reflections are called multipath and
can produce severe signal fading. Estimation performance can also be degraded by other
interfering signals, or inter-user interference. In this context, smart antennas refers to
adaptive arrays for wireless communications: they implement adaptive spatial processing
in addition to the adaptive temporal processing already used [151].

Seismology
Exploration or reflection seismology is another important area of array processing, aimed
at deriving an image of the earth structure and physical properties of various layers.
Active systems, measuring reflections through various layers, are designed according to
the propagation of elastic waves through an inhomogenoeus medium. On the other hand,
passive seismic makes use of several seismometers, separated by hundreds of meters, to
detect natural low frequency earth movements over periods of hours or days [151]. The
latter application is addressed in Chapter 9.

Medical technology
Medical applications have also offered a very fertile ground for array processing. Electro-
cardiography (ECG) is used to monitor heart health; electroencephalography (EEG) and
magnetoencephalography (MEG) are used to localize brain activity [79]. Tomography is
the cross-sectional imaging of objects from transmitted or reflected waves. It has had
great success for medical diagnosis [151].

I.3. Classic Approaches in 2D

At first, the original approach for space-time processing was provided by spatial filtering,
or Beamforming (BF), consisting in amplifying signals arriving from certain directions,
while attenuating all the others [152]. However, although very simple, beamforming suf-
fers from a severe limitation: its performance directly depends on the array aperture,
regardless of the number of data samples, and of the Signal to Noise Ratio (SNR). This
seriously limits its resolution, i.e. its ability to distinguish closely spaced sources. Res-
olution is intuitively easy to understand in the context of spectral methods, like BF: as
whenever two peaks are visible in correspondence with two actual emitters, the latter are
said to be resolved.

Recorded data consist of matrices, whose rows correspond to the various sensors (space)
and columns correspond to recorded time samples (time), as in Figure I.1. Since the signal
parameters of interest, such as the DoA, are spatial in nature, most 2D approaches rely
on the estimation of the cross-covariance information among the sensors, i.e. the spatial
covariance matrix, thus requiring sufficiently large data samples.

A real breakthrough in array processing was provided by subspace methods [131, 126],
when the eigen-structure of the covariance matrix was explicitly exploited through spec-
tral decomposition techniques, such as the Eigenvalue Decomposition (EVD). Thanks
to the low-rank structure of received data, the eigenvectors corresponding to the largest
eigenvalues span the signal subspace, whereas the remaining eigenvectors span the noise
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sp
ace

time

Figure I.1.: Data matrix in traditional array processing

subspace. Hence, high resolution techniques such as MUSIC [131] make use of these two
elements of diversities: space and time, in order to estimate the signal subspace generated
by impinging sources, as well as their directions of arrival. This is generally done through
the estimation of the array spatial covariance matrix. Higher order statistics can also be
used [83] to get rid of Gaussian noise, and increase the number of detectable sources.

In addition, the shift-invariant structure of the acquisition system can be exploited
whenever the global array is given by two identical subarrays, each being the translated
version of the other. This is the core idea of the ESPRIT algorithm [126].

In the absence of model mismatch, the resolution capability of subspace methods is not
limited by the array aperture, provided the data size and SNR are large enough [79].

Furthermore, if impinging wavefields are not scalar, but vector valued, wave polarization
becomes a useful property that can improve source localization, provided sensors are
sensitive to different components and these components can be calibrated separately. This
is the case of the vector-sensor, i.e. a sensor that measures all the orthogonal components
of elastic or electromagnetic waves at the same time [95, 96].

In traditional methods, the vector sensor components are generally stacked one after an-
other into a long vector, for a given observation time, thus loosing their multidimensional
structure.

At first, BF and subspace methods were conceived for narrowband waves, which can
be quite a realistic assumption in radar and telecommunications, as the signal spectral
bandwidth is often negligible, compared to the array aperture. However, in many other
applications, such as sonar and seismology, received signals are wideband in nature. The
natural extension of array processing to the wideband case is based on the Discrete Fourier
Transform (DFT), followed by an optimal or suboptimal combination of the information at
different frequency bins. An optimal solution is provided by the Coherent Signal Subspace
(CSS): all the frequency contributions are aligned to the same reference subspace at a
central frequency, through linear transformations [157].

I.4. Tensor Arrays

We note that the EVD of the estimated covariance matrix is equivalent to the Singular
Value Decomposition (SVD) of the corresponding raw data. SVD is a matrix factor-
ization deriving its uniqueness from two constraints: a diagonal core containing distinct
non-negative singular values, and orthonormal matrices containing left and right singu-
lar vectors, respectively. This orthogonality constraint is often arbitrary and physically
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unjustified.
Standard matrix factorizations, such as the SVD, are indeed effective tools for feature

selection, dimensionality reduction, signal enhancement, and data mining [22]. However,
as we mentioned in the previous section, they can deal with data having only two modes,
e.g. space-time arrays. In many applications, such as chemometrics and psychomet-
rics, but also text mining, clustering, social networks, telecommunications, etc., the data
structure is highly multidimensional, as it contains higher order modes, such as trials,
experimental conditions, subjects, and groups, in addition to the intrinsic modes given
by space and time/frequency [22]. Clearly, the flat perspective of matrix factorization
cannot describe the complex multidimensional structure, whereas tensor decompositions
are a natural way to jointly grasp the multilinear relationships between various modes,
and extract unique and physically meaningful information.

Tensor factorization consists in the analysis of multidimensional data cubes of at least
three dimensions. This is achieved through their decomposition into a sum of simpler con-
stituents, thanks to the multilinearity and low rank structure of the underlying model.
The Canonical Polyadic Decomposition (CPD), one of the most widespread decomposi-
tions of multi-way arrays, expands a multi-way array into a sum of multilinear terms.
This can be interpreted as a generalization of bilinear matrix factorizations such as the
SVD. However, unlike the SVD, the CPD does not require any orthogonality constraints,
as it is unique under mild conditions. This means that we can jointly and uniquely recover
all the factor matrices corresponding to tensor modalities, starting from the noisy data
tensor [88].

Only recently, tensor analysis has been applied to array processing of narrowband waves
in [136], as a deterministic generalization of ESPRIT [126] to more than one translation,
with no need for the estimation of statistical quantities. This means that the acquisition
system needs to be made of a reference subarray, repeated in space through multiple
translations. Hence, the third mode or diversity is provided by space shift, in addition
to space and time. Afterwards, the tensor formalism was extended to deal with polarized
waves in [57], via CPD, with polarization as a third mode instead of space shift. See
Figure I.2 for an illustration of a 3-way array.

sp
a
ce

time 3r
d
di
ve
rs
ity

Figure I.2.: 3-way array in tensor array processing

Tensor decompositions allow to jointly and uniquely recover all the modalities related
to signal parameters, i.e. DoAs, polarization angles, and received signals. Thus, tensor
methods provide us with an estimate of source signatures, together with directions of
arrival, in a deterministic way. This can be achieved by virtue of the separable and low
rank model followed by narrowband sources in the far field. Since tensor CPD methods
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do not need any estimation of data covariance or higher order statistics, they can handle
shorter data samples.

I.5. Contribution and Outline

This thesis deals with the estimation and localization of multiple sources via tensor meth-
ods for array processing, using various modalities. We include several physical diversities
into the tensor model, in addition to space and time: space shift, polarization, gain patters
of directional sensors, and propagation speed of seismic waves. At the beginning of my
PhD, I was interested in a tensor model for narrowband waves, in particular, polarized
and seismic waves. Only afterwards, I extended all our results to the study of wideband
waves using frequency diversity, further developing the corresponding tensor formulation.

The main practical difficulty of the tensor formalism is due to the requirement of mul-
tilinearity, corresponding to the separability of the underlying model. While in many
situations, such as for narrowband far-field sources, the physical model is separable, there
are still as many cases in which it is not. This thesis is an example of the possibility
to use tensors even in difficult situations, such as in the case of wideband waves, thus
overcoming this problem.

Contributions Throughout my PhD, my work gave rise to the following contributions,
which are listed below in chronological order.

• At first, we extended tensor analysis to the seismic volume waves, using the diversity
of propagation speed as a third mode. This was published in a journal article for
Signal Processing, Elsevier [117].

• We also presented our work on the tensor model for narrowband polarized elas-
tic waves, and its performance bounds, at a national French conference in Signal
Processing [115].

• Our interest for seismic waves lead us to publish a journal article for Signal Pro-
cessing, Elsevier, on multidimensional factorization of seismic data cubes for helio-
seismology [118].

• We introduced the use of directional sensors, proposing gain patterns as a physical
diversity of its own in an article for IEEE Signal Processing Letters [116].

• After realizing that the speed diversity of seismic waves in our article [117] could be
interpreted as a frequency diversity, we decided to extend the tensor formalism to
generic wideband waves. Our idea of using spatial interpolation for linear uniform
arrays was first presented at ICASSP 2016 in Shanghai [119].

• We further developed the original idea in [119] using bilinear transformations in a
journal article, published by IEEE Transactions on Signal Processing [114].

This PhD thesis is organized as follows. The presentation is divided into three parts:
Part I describes the state of the art of sensor arrays and tensor analysis; Part II and Part III
explain my contribution for tensor array processing and multidimensional factorization,
respectively.



8 Introduction

Chapter 1 presents the physical model of narrowband elastic sources in the far field,
as well as the main definitions and assumptions. Chapter 2 reviews the state of the art
on direction of arrival estimation, with a particular emphasis on high-resolution signal
subspace methods.

Chapter 3 introduces the tensor formalism, namely the definition of multi-way arrays
of coordinates, the main operations and multilinear decompositions. Chapter 4 presents
the subject of tensor array processing via rotational invariance.

Chapter 5 introduces a general tensor model for narrowband elastic waves, dealing
with multiple physical diversities, such as space, time, space shift, polarization, and gain
patterns .

Subsequently, Chapter 6 and Chapter 8 establish a tensor model for wideband coherent
array processing. We propose a separable coherent focusing operation through bilinear
transform and through a spatial resampling, respectively, in order to ensure the multi-
linearity of the interpolated data. We show via computer simulations that the proposed
estimation of signal parameters considerably improves, compared to existing narrowband
tensor processing and wideband MUSIC. Throughout the chapters we also compare the
performance of tensor estimation to the Cramér-Rao bounds of the multilinear model,
which we derive in its general formulation in Chapter 7. Moreover, in Chapter 9 we pro-
pose a tensor model via the diversity of propagation speed for seismic waves and illustrate
an application to real seismic data from an Alpine glacier.

Finally, the last part of this thesis in Chapter 10 moves to the parallel subject of
multidimensional spectral factorization of seismic ways, and illustrates an application to
the estimation of the impulse response of the Sun for helioseismology.



Part I.

Tensor Decompositions for Source
Localization: State of the Art





1. Sensor Arrays: Parametric Modeling
for Wave Propagation

1.1. Introduction

This first chapter formulates a general model for array processing of various impinging
waves (electromagnetic or acoustic signals). A sensor array is generally an acquisition
system composed of multiple sensors located at different positions. This set of sensors
receives and samples impinging sources in space and time, measuring physical quantities
such as electromagnetic field, pressure, particle displacement or velocity. An illustration
is given in Figure 1.1.

array

surface

source

z

y
x

Figure 1.1.: Acquisition system for array processing

Array processing consists in filtering signals in a space-time field, by exploiting their
spatial characteristics, in order to estimate their parameters of interest [151]. In Sec-
tion 1.2 we define and describe the narrowband model, through the introduction of the
direction of arrival as the main parameter of interest. In Section 1.3 we postulate some
simple assumptions for the acquisition configuration, and for incoming signals, such as
the far field approximation, and noise correlation structure. We state some statistical
assumptions about data collection and basic geometrical properties of the sensor array
are reviewed. Moreover, we define the concepts of array manifold, signal subspace and
noise subspace.

In Sections 1.4 and 1.5 we extend the model in Section 1.2 to polarized, wideband
and seismic waves through linear algebra tools. We parameterize polarized signals with
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respect to both their direction of arrival and their polarization parameters. In Section 1.6
we briefly describe the main properties of seismic waves.

In Section 1.7 we build a vector of parameters of interest. Finally, in Section 1.8 we
derive the sample covariance matrix as an important tool carrying spatial information on
impinging sources.

1.2. Narrowband Wave Propagation for Array Processing

1.2.1. Far Field Approximation of Narrowband Waves

Many physical phenomena can be described by wave propagation through a medium, such
as electromagnetic waves through space or acoustic waves through a guide, as described
by the homogeneous wave equation

∇2E − 1

c2

∂2E

∂t2
= 0 (1.1)

where c refers to the propagation speed in the medium of interest. If ‖η‖ = 1/c, any
function of the form f(t− pTη) is a solution to (1.1) at radius p and time t: it indicates
a wave propagating in the direction of slowness vector η with propagation speed 1/‖η‖.
At first we will only consider one of the scalar components of the vector field E(p, t),
whereas in Section 1.4 we will cover the model of the vector wavefield for elastic waves.

An emitting narrowband source E(0, t) = s(t)eωct can be seen as the boundary condi-
tion for (1.1). The corresponding far field solution is given by

E(p, t) = s(t− pTη) eωc(t−p
Tη) ≈ s(t) e(ωct−p

Tκ) (1.2)

provided s(t) is a slowly varying envelope function, compared with the carrier eωct, and
for ‖p‖ � c/Bs where Bs is the bandwidth of s(t). In (1.2) κ refers to the wave-vector,
pointing in the direction of propagation and with modulus ‖κ‖ = ωc/c = 2π/λ, where
λ indicates the wavelength [79]. Denote by ω the radial frequency: we will restrict our
interest to bandpass complex envelopes, that are limited in bandwidth to the region
|ωL| ≤ 2πBs/2 with ωL , ω − ω0. We refer to Section 1.A for the definition of complex
envelope.

In the near field the wavefront (i.e. all the points sharing equal phase) corresponds
to a sphere of radius ∆, whereas in the far field the radius is so large with respect to
the size of the array, that the field curvature becomes negligible and the wavefront can
be approximated by a plane. Therefore, spherical waves can be approximated by plane
waves in the far field.

If the medium is linear, the superposition principle allows us to model multiple waves
propagating simultaneously:

x(p, t) =
R∑
r=1

sr(t) e
(ωct−pTκr) + n(p, t) (1.3)

where n(p, t) refers to additive noise. Since (1.3) is a function of both space and time, it
is particularly adequate to model signals with different space-time parameters, as we will
see in Section 1.2.2.
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1.2.2. Parametric Modeling for Sensor Arrays: Directions of Arrival

Array processing consists in merging time and space information measured at different
sensors, in order to estimate relevant signal parameters. As much as one single sensor
samples a signal in time, an array made of multiple sensors samples a wavefield in space.
An antenna array is then a system exploiting two kinds of physical diversity: time and
space simultaneously. Since we can associate to each sensor in space a given time delay due
to finite propagation speed c (cf. (1.2)), we will need a time-space processing approach
and make full use of our knowledge on the geometry and sensor characteristics of the
acquisition system. The model in (1.3) is used in array processing for the estimation
of relevant signal parameters, such as the DoA, detailed in the present section, source
polarization, detailed in Section 1.4, source waveforms and temporal frequency.

We consider R radiating narrowband sources in the far-field, sr, 1 ≤ r ≤ R, arriving
from directions defined by unit vectors d(θr), θr being a pair of angles in 3D, or a single
angle in 2D (cf. Section 1.2.3). These sources impinge on an arbitrary array of L sensors
located at positions p` in space, 1 ≤ ` ≤ L.

We shall state the main assumptions:

A 1.1. Impinging sources are described by plane waves. This is equivalent to the far-field
configuration described in Section 1.2.1. The distance of the source from the receiving
array is much greater than the array aperture: this is equivalent to assuming a planar
wavefront at the sensor level. Moreover, sensors and sources are considered point-like,
as their size is negligible with respect to the source-to-sensor distance (point-source and
point-like sensors).

A 1.2. Complex envelopes have a band-limited spectrum: |ωL| ≤ 2πBs/2 with ωL , ω−ω0.

A 1.3. The narrowband assumption requires that

∆τmaxBs � 1 (1.4)

where Bs is the bandwidth of source envelope s and ∆τmax is the maximum travel time
between any two elements of the array.1 This is equivalent to requiring that the array
aperture ∆p = ∆τmax/c (converted into wavelengths) be much less than the inverse
relative source bandwidth Bs:

∆p� c/Bs ⇐⇒ ∆p/λ� f/Bs (1.5)

where f = ω/(2π). This allows us to represent envelope s as slowly varying: s(t−τ) ≈ s(t).

A 1.4. Narrowband in base-band. Signals of interest are the product of a varying am-
plitude (complex envelope) sr(t) and a high-frequency signal eωt (cf. Section 1.2.1). We
assume that the spectral supports of both parts do not overlap (this is sometimes referred
to as the Bedrosian condition)2. Under this condition, one can work in base-band with
the complex envelope of the low-pass signal. For this type of signal, a time delay of the
original signal is equivalent to a phase shift of the complex envelope, as expressed in (1.2).

1 For an linear array the maximum travel time refers to a source arriving along the array axis (endfire).
2We recall the Bedrosian theorem [9]: The Hilbert transform of the product of two complex valued

functions f, g : R→ L2(R) with non-overlapping Fourier spectra (F (ω) ≈ 0 for |ω| > a and G(ω) ≈
0 for |ω| < a where a is a positive constant) is given by the product of the low-frequency signal f and
the Hilbert transform of the high-frequency signal g: H{f(x)g(x)} = f(x)H{g(x)}, x ∈ R.
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A 1.5. Dissipation at the antenna scale is excluded, as the array dimensions are negligible
with respect to dissipation characteristic length.

A 1.6. Sources propagate in a non-dispersive medium i.e. their propagation speed is
independent of frequency.

A 1.7. Homogeneous and isotropic medium at the antenna level : ray-paths can be ap-
proximated by straight lines.

From (1.3), the signal received at the `-th sensor at time t can be modeled as:

x`(t) =
R∑
r=1

g`(θr) sr(t) e
−ωτ`(θr) + n`(t) (1.6)

where sr(t) is the complex envelope of the r-th source, t ∈ {1, 2, . . . T}, g`(θr) is the sensor
gain of the `-th sensor, and n`(t) is an additive noise. It is assumed that the output in (1.6)
is proportional to the wavefield (1.3) measured at its location. Notice that we dropped
the carrier term eωt, which is equivalent to converting the signal to the baseband and
reducing it to its complex envelope [79].

The delay of arrival τ`(θ) is directly related to sensor locations and DoAs via the
expression

τ`(θr) = pT` κr = pT` d(θr)/c (1.7)

c being the wave propagation speed. After introducing the notion of steering element,

a`(θr) = g`(θr) e
−ωτ`(θr) (1.8)

(1.6) simplifies to

x`(t) =
R∑
r=1

a`(θr) sr(t) + n`(t) (1.9)

The array output vector x(t) = [x1(t), . . . , xL(t)]T is then obtained by

x(t) =
R∑
r=1

ar sr(t) ∈ CL (1.10)

with steering vector ar = a(θr) = [a1(θr), . . . , aL(θr)]
T. After arranging all the steer-

ing elements into a steering matrix and the complex envelopes into a vector of signal
waveforms {

A(θ) = [a(θ1), . . . ,a(θR)] ∈ CL×R

s(t) = [s1(t), . . . , sR(t)]T ∈ CR
(1.11)

(1.10) writes

x(t) = A(θ) s(t) ∈ CL (1.12)

which constitutes the general formulation for array processing. The r-th column of A(θ),
denoted ar or a(θr) in the remainder, is the value of the array manifold taken at θ = θr
(cf. Section 1.3).
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Figure 1.2.: Direction of Arrival (DoA) in 3D

1.2.3. General Array Geometries

The DoA is defined by two angles in 3D: the azimuth θ ∈ (−π, π] and the elevation
ψ ∈ [−π/2, π/2), as illustrated in Figure 1.2. The unit vector pointing in the direction of
the source is then expressed by

d(θ, ψ) =

 cos θ cosψ
sin θ cosψ

sinψ

 (1.13)

On the other hand, in 2D the sources lie in the same plane as a planar array, i.e.
ψ = 0, as illustrated in Figure 1.3: the DoA is then defined by azimuth θ only, leading to
directional vector

d(θ) =

[
cos θ
sin θ

]
(1.14)

Hence, in a 3D space, the DoA parameter matrix Θ is an R× 2 matrix, whereas in 2D
it is a R× 1 vector (see Section 1.7 for more details).

In the remainder we will consider mostly 2D settings, as in Figure 1.3, i.e.

A 1.8. Sources and antennas are assumed coplanar, without any loss of generality. Vec-
tors p` and d(θ) are thus both in R2, and we shall use the notation p` = [px` , p

y
` ]

T and
d(θ) = [cos θ, sin θ]T. This permits to parameterize DoAs by a single angle, azimuth θr.
Therefore, unless otherwise specified, θ = [θ1, . . . , θR]T, leading to a time delay at sensor
` of the form

τ`(θr) = (px` cos θr + py` sin θr)/c (1.15)

We state an important definition of the ability of a sensor array to correctly estimate
any DoA:



16 1. Sensor Arrays: Parametric Modeling for Wave Propagation

x

y

reference sensor

`

p`

source

θ

Figure 1.3.: Acquisition system and DoA in 2D

Definition 1.1. The sensor position vectors {p1, . . . ,pL} are said to be resolvent with
respect to a direction v ∈ R2, if

∃k, ` : v = pk − p` s.t. 0 ≤ ‖v‖ ≤ λ/2 (1.16)

where λ refers to the wavelength of the impinging signal.

1.2.4. Uniform Linear Arrays

The most common array configuration is the Uniform Linear Array (ULA), with p` =
[(`− 1)p0, 0]T, i.e. there are L elements located on the x-axis with uniform spacing equal
to p0 [151], as in Figure 1.4. We have chosen the first sensor position as the origin of the
coordinate system.

1 ` L

p` x

source

d
θ

Figure 1.4.: Uniform Linear Array (ULA)

In this case, if all the sensors share the same directivity pattern g(θ), the resulting
steering vector is Vandermonde:

a(θ) = g(θ)[1 e−κ0p0 cos θ, . . . , e−κ0(L−1)p0 cos θ] (1.17)
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Figure 1.5.: Regular planar array geometries

The space-time field is band-limited in wavenumber space [151]:

|κ| ≤ 2π

λ
, κ0 (1.18)

with κ = κ0 cos θ = 2π cos θ/λ. This implies a spatial sampling condition upon inter-
sensor spacing:

p0 ≤
λ

2
(1.19)

as wavenumber and position are dual FT variables. A ULA with p0 = λ
2

is referred to as
a standard ULA.

1.2.5. Uniform Rectangular Arrays

Analogously, for Uniform Rectangular Array (URA) as in Figure 1.5a, with px` = (`x −
1)px0 , 1 ≤ `x ≤ Lx and py` = (`y − 1)py0, 1 ≤ `y ≤ Ly, we would have two conditions:{

|κx| ≤ 2π
λ

=⇒ px0 ≤ λ
2

|κy| ≤ 2π
λ

=⇒ py0 ≤ λ
2

(1.20)

1.2.6. Uniform Circular Arrays

Another array configuration in 2D is the Uniform Circular Array (UCA), as in Figure
1.5b, where

p` = ρ

[
cos (2π(`− 1)/L)
sin (2π(`− 1)/L)

]
(1.21)

A sampling theorem argument indicates [151]

L ≥ 2

(
2πρ

λ

)
+ 1 (1.22)

which ensures that the spacing between two consecutive elements is dcirc ≤ λ
2
.

In the remainder, we will use the following assumption on sensor spacing ∆p` = p`+1−
p`:

A 1.9. Two consecutive sensors are always spaced by less than λ/2: ‖∆p`‖ ≤ λ/2, ∀`.
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1.3. The Signal Subspace and the Spatial Covariance

1.3.1. Assumptions and Fundamental Definitions

We can assume the following properties, that we will use regularly throughout this thesis:

A 1.10. The number of sources, R, i.e. the model order, is known.

A 1.11. Noise spatial coherency is known. Therefore, one can always consider (thanks
to spatial prewhitening) that the noise covariance matrix Σn is proportional to identity:
Σn = E[n(t)n(t)H] = σ2I, where σ may be unknown, after whitening is applied. This
hypothesis refers to the spatial whiteness of noise: the noise processes at different sensors
are considered to be identically distributed and uncorrelated from one another.

A 1.12. Finally, noise is additive and Gaussian complex circular: E[n(t)n(t)T] = 0.

In Section 2.9 we address the case of spatially correlated noise.
Moreover, whenever we talk about the signal subspace, we use the following assump-

tions:

A 1.13. The number of sources of interest, R, is smaller than the number of sensors L:
R < L.

A 1.14. Incident signals are uncorrelated to noise.

Whenever not specified, we will assume that

A 1.15. Received sources are uncorrelated, i.e. E [sr(t)sq(t)] = 0, ∀q 6= r. Moreover,
received sources sr are assumed complex Gaussian zero mean random processes with
variance σ2

r .

As for the signal covariance matrix RS = E[s(t)s(t)H], we distinguish between a few
cases:

1. If the R sources are uncorrelated, the matrix RS is diagonal and hence full rank (or
nonsingular);

2. If the R sources are partially correlated, the matrix RS is nondiagonal and nonsin-
gular but with worse conditioning3 than the uncorrelated case;

3. If the R sources are highly correlated, the matrix RS is nondiagonal and nearly
singular (very bad conditioned).

4. If the R sources are fully correlated or coherent, the matrix RS is nondiagonal and
rank-deficient (or singular).

3 We define the condition number of a matrix A as κ(A) = ‖A‖ · ‖A−1‖. If we use the l2 norm,

κ(A) = σmax(A)
σmin(A) , where σmax and σmin are the largest and the smallest singular values of matrix A.

κ(A) ∈ [1,∞): if A is unitary (AT = A−1), κ(A) = 1; if A is singular, κ(A) = ∞. If κ(A) is close
to 1, matrix A is said to be well conditioned and its inverse can be computed with good numerical
accuracy; if it is much larger than 1, A is said to be ill conditioned and its inverse will be subject to
large numerical errors [53].
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Impinging sources are said incoherent if they are not fully correlated. In Section 2.9 we
address the case of correlated sources.

Additional hypotheses or notations are progressively introduced when needed:

A 1.16. Identical sensor responses (calibration): all sensors have the same gain: g`(θ) =
g(θ) ∀`, or they have unit gain in all directions: g`(θ) = 1 ∀`, ∀θ.
A 1.17. The number of time samples T is greater than the number of sensors L: T > L.

1.3.2. Array Manifold and Signal Subspace

The R vectors ar = a(θr) ∈ CL, i.e. the columns of steering matrix A(θ), are elements of
a set (not a subspace) named array manifold or A [126], composed of all obtained steering
vectors as θ ranges over the entire parameter space4. In order to avoid ambiguities, we
make a further assumption:

A 1.18. The map from the set of DoAs θ = [θ1, . . . , θR] to R{A(θ)}, the subspace
spanned by the columns of A(θ), is injective. This can be assured by proper array
design.

If R < L (fewer sources than sensors, Assumption A 1.13), in the absence of noise,
the array output x(t) = A(θ)s(t) =

∑R
r=1 arsr(t) is constrained into an R dimensional

subspace of CL, termed signal subspace or SX , that is spanned by the columns ar of
steering matrix A(θ):

SX = R{A(θ)} =

{
k∑
r=1

sr ar | k ∈ N,ar ∈ A, sr ∈ C

}
(1.23)

The noise subspace is defined as the orthogonal complement in CL of the signal sub-
space, S⊥X , thanks to assumptions A 1.11, A 1.13, A 1.14 and A 1.15.

Since the signal parameters of interest are related to space, the spatial covariance is
fundamental for their estimation:

RX = E
[
x(t)x(t)H

]
=

= AE
[
s(t)s(t)H

]
AH + E

[
n(t)n(t)H

]
=

= ARSA
H + σ2I

(1.24)

where we used assumption A 1.11. Let us apply a spectral factorization to the array
spatial covariance, by sorting the eigenvalues in descending order:

RX = ARSA
H + σ2I = UΛUH (1.25)

where U is unitary and Λ = Diag{λ1, λ2, . . . , λL}, with λ1 ≥ λ2 ≥ · · · ≥ λL. Hence,
(1.25) can be written as

RX = USΛSU
H
S +UNΛNU

H
N (1.26)

with ΛS = Diag{λ1, λ2, . . . , λR} and ΛN = σ2I, which is equivalent to λR+1 = λR+2 =
· · · = λL = σ2. Notice that US = [u1| . . . |uR] is formed by the R eigenvectors
corresponding to the first leading eigenvalues and spanning the signal subspace, and
UN = [uR+1| . . . |uL] is composed of the remaining eigenvectors, spanning the noise sub-
space. If matrix RX is full rank, the following facts are verified:

4For azimuth only estimation, A(θ) is a rope waving in CL; for both azimuth and elevation estimation,
A(θ) is a sheet in CL.
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1. the columns of US span the same space as the columns of A i.e. the column space
of A and US coincide: R{A} = R{US};

2. the columns of UN span its orthogonal complement (i.e. the left null space of A)5.

Even more so, the columns of US are an orthonormal basis for the column space of A,
and the columns of UN are an orthonormal basis for the left null space of A. The signal
subspace and noise subspace correspond to the column space and the left null space of A
respectively, with projectors{

ΠS = USU
H
S = A

(
AHA

)−1
AH

ΠN = UNU
H
N = I −A

(
AHA

)−1
AH

(1.27)

1.4. Polarized Waves

1.4.1. The 3C Sensor Response

Sections 1.2.1 and 1.2.2 refer to a scalar wavefield, whereas the present section will derive
a parametric modeling for elastic vector wavefields, or polarized waves [3]. For the more
general formulation of electromagnetic waves, we refer the interested reader to [96].

Let us introduce the concept of seismic vector sensor, measuring particle motion along
three orthogonal directions. The measured physical quantity is the particle displacement
recorded by the three components of a geophone, located at a given point in space, along
the direction of the x-, y-, and z- axes of its reference system. The z-axis is required to
be perpendicular to the earth’s surface.

Analogously to the scalar array output described in Section 1.2.2, the vector sensor
output excited by a single source s(t) is then expressed as:

x(t) = k(ϑ) s(t) + n(t) ∈ C3 (1.28)

where k(ϑ) refers to the response vector of the sensor and is parameterized by four angles
ϑ = [θ, ψ, α, β]: azimuth θ, elevation ψ, orientation angle α, and ellipticity angle β.

A narrowband polarized wave s(t) induces an elliptical particle motion x(t) that is
restricted to a plane [3]. This polarization plane is spanned by the vectors of a 3 × 2
matrix H , that we choose as an orthonormal basis, as in Figure 1.6.

The restriction of the particle motion within this plane is expressed through x(t) ∈
R{H}, or, equivalently,

x(t) = H(θ, ψ) ξ(α, β, t) + n(t) (1.29)

where ξ ∈ C2 describes the elliptical motion. Notice that ξ ∈ C2 is directly related to
polarization parameters and has a unique and separable representation:

ξ = W (α)w(β) s(t) (1.30)

where matrixW performs a rotation of the ellipse principal axis of angle α ∈ (−π/2, π/2],
and vector w draws the ellipse with ellipticity β ∈ [−π/4, π/4]:

W (α) =

[
cosα sinα
− sinα cosα

]
, w(β) =

[
cos β
 sin β

]
(1.31)

5 The left null space of the linear map represented as the L × R matrix A is defined as the null space
of AH: Left Null{A} = {v ∈ CL | AHv = 0} [53].
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Finally, the resulting sensor output for R impinging sources writes:

x(t) =
R∑
r=1

kr sr(t) + n(t) ∈ C3 (1.32)

with kr = H(θr, ψr)W (αr)w(βr) (1.33)

This model completely separates DoA, polarization parameters and time.
We can distinguish between two kinds of seismic waves:

1. Transverse waves : the plane of particle motion is perpendicular to the direction of
propagation. This means that the columns of matrix H are an orthonormal basis
for the plane perpendicular to d, as in Figure 1.7a:

HT = [h1,h2] =

 − sin θ − cos θ sinψ
cos θ − sin θ sinψ

0 cosψ

 (1.34)

Notice that {d,h1,h2} forms a right orthonormal triad.

2. Tilted generalized Rayleigh waves : the polarization plane spanned by the ellipse
semi-axes contains d and h2, as in Figure 1.7b. This means that

HTGR = [d,h2] =

 cos θ cosψ − cos θ sinψ
sin θ cosψ − sin θ sinψ

sinψ cosψ

 (1.35)

Particular degenerate cases are longitudinal or P -waves, where α = β = 0 (the
particles move along the direction of propagation); and Rayleigh waves, which are
elliptically polarized surface waves with ψ = α = 0. See Section 1.6 for more details
about seismic waves and polarization.

1.4.2. Vector Sensor Arrays

The present section combines results from Sections 1.4.1 and 1.2.2, deriving the parametric
model for an array composed of L vector, i.e. three-component sensors (3Cs) [3], as in
Figure 1.8.

The array output at time t is given by an L× 3 matrix

X(t) = [yT
1 , . . . ,y

T
L] (1.36)

If all previous assumptions are verified, combining (1.10) and (1.32) yields

X(t) =
R∑
r=1

ar ⊗ kr sr(t) +N (t) =

= AS(t)KT +N (t)

(1.37)

with steering vector ar = a(θr, ψr), and polarization vector kr = k(θr, ψr, αr, βr). More-
over, S(t) = Diag{s1(t), . . . , sR(t)}, K = [k1, . . . ,kR] refers to the 3×R sensor response
matrix, and A = [a1, . . . ,aR] refers to the L×R array steering matrix.
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We can vectorize the array output matrix at time t as the C3L vector x(t) = vec{X}:

x(t) =
R∑
r=1

kr � ar sr(t) + n(t) =

= K �A s(t) + n(t)

(1.38)

where s(t) = vec{S(t)} and n(t) = vec{N (t)}. Notice that the polarized signal subspace
is spanned by column vectors {k1 � a1, . . . ,kR � aR}.

1.4.3. Another Polarization Model

In many polarimetric applications, such as RADAR, the vector sensor has P components:
we can model the signal received at component p by multiplying its amplitude by ρp and
shifting its phase by φp, relative to the first (reference) component p = 1 [92, 44]:

k(ρ,φ) =
[
1, ρ1e

φ1 , . . . , ρP e
φP
]T

(1.39)

where ρ = [1, ρ1, . . . , ρP ]T, and φ = [1, φ1, . . . , φP ]T. Thus polarimetric models in (1.37)
and (1.38) attain a decoupled form{

X(t) =
∑R

r=1 ar ⊗ kr sr(t) +N (t) ∈ CL×P

x(t) =
∑R

r=1 kr � ar sr(t) + n(t) ∈ CLP
(1.40)

in which steering vector ar = a(θr, ψr), and polarization vector kr = k(ρr,φr) depend
on distinct parameters. DoA and polarization information are then decoupled.

1.5. Wideband Sources

1.5.1. Wideband Scalar Wavefields

Let us consider a wideband wavefield with carrier ωc: E(p, t) = s(t− pTκ)eωct measured
at position p and time t, and its Fourier Transform (FT)

E(p, ω) =

ˆ ∞
−∞

E(p, t)e−ωtdt (1.41)

If the spectral bandwidth Bs of the complex envelope s(·) is not negligible in (1.5), a
time delay is not equivalent to a phase shift anymore: s(t − τ) 6= s(t)e−ωτ . However,
thanks to the time shift theorem of FT F(·), a translation in time domain translates into
a phase shift in frequency domain:

s(t− τ)←→ ŝ(ω)e−ωτ (1.42)

where ŝ = F(s). Therefore, in order to use the spatial information of the acquisition
system, we need to work with Fourier transformed data.

The real wideband signal received at the `th sensor at time t can be modeled as

x`(t) =
R∑
r=1

g`(θr)sr(t− τ`(θr)) + n`(t), (1.43)

where sr(t) is the signal transmitted by the rth source, t ∈ {1, 2, . . . T}, g`(θr) is the gain
of the `th sensor, τ`(θr) was defined in (1.7) and n`(t) is an additive noise. We make one
further assumption:
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A 1.19. Sensor gains g` are a priori unknown functions unless otherwise specified, real
(which is actually equivalent to assuming that their phase is known) and independent of
frequency.

Denote by x(ω) the FT of x(t). In this framework, thanks to (1.42), model (1.43) can
be equivalently rewritten in the frequency domain:

x`(ω) =
R∑
r=1

a`(ω, θr)sr(ω) + n`(ω) (1.44)

where x`(ω) = F{x`(t)} is the FT of x`(t), and ω = ω1, . . . , ωQ if we take the Discrete
Fourier Transform (DFT); n`(ω) refers to a circular Gaussian white noise process at the
`-th sensor, thanks to Assumption 1.12. Notice that the steering element

a`(ω, θr) = g`(θr) e
−ωτ`(θr) (1.45)

is now a function of both frequency and DoA.
Alternatively, in vector form, (1.44) becomes

x(ω) =
R∑
r=1

a(ω, θr) sr(ω) + n(ω) =

= A(ω,θ) s(ω) + n(ω)

(1.46)

where matrix A(ω,θ) ∈ CL×R depends on the vector of DoAs, θ = [θ1, .., θR]T. Thanks
to Assumption 1.11, noise n(ω) is circular complex white Gaussian, with covariance σ2I.
The r-th column of A(ω,θ), denoted ar(ω) = a(ω, θr) in the remainder, is the value of
the array manifold for radial frequency ω taken at θ = θr. Therefore, the array manifold
and the signal subspace are now frequency dependent. Moreover, notice that also spatial
covariance RX in (1.24) becomes frequency dependent:

RX(ω) = E
[
x(ω)x(ω)H

]
(1.47)

1.5.2. Polarized wideband sources

This section combines the wideband scalar model in Section 1.5.1 with wave polarization
in Section 1.4. For this purpose, we will need a further assumption:

A 1.20. The polarization parameters α and β of impinging wavefronts are independent
of frequency.

Wideband output in (1.38) and polarized output (1.46) combined together yield a L×3
wideband polarized output:

X(ω) =
R∑
r=1

ar(ω)⊗ kr sr(ω) +N (ω) =

= A(ω)S(ω)KT +N (ω)

(1.48)

with steering vector ar(ω) = a(ω, θr, ψr), and polarization vector kr = k(θr, ψr, αr, βr).
Moreover, S(ω) = Diag{s1(ω), . . . , sR(ω)}, K = [k1, . . . ,kR] refers to the 3 × R sensor
response matrix, and A(ω) = [a1(ω), . . . ,aR(ω)] refers to the L×R array steering matrix.
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We can vectorize the array output matrix at frequency ω as the C3L vector x(ω) =
vec{X(ω)}

x(ω) =
R∑
r=1

kr � ar(ω) sr(ω) + n(ω) =

= K �A(ω) s(ω) + n(ω)

(1.49)

where s(ω) = vec{S(ω)} and n(ω) = vec{N (ω)}. Notice that the polarized signal
subspace at frequency ω is spanned by column vectors {k1 � a1(ω), . . . ,kR � aR(ω)}.

1.6. Seismic Waves

The importance of sensor arrays for the analysis of seismic waves was illustrated in [123].
As we briefly mentioned in Section 1.4, [3] made a simple inventory of seismic waves
according to their polarization type. More generally, we can distinguish between volume
or body waves and surface waves [133, 134] .

Volume or body waves

Two types of waves can propagate through a homogeneous isotropic solid medium, one
corresponding to changes in dilatation and the other to rotation [134].

Direction of propagation

Particle motion

(a) Particle motion of P waves

Direction of propagation

Particle motion

(b) Particle motion of S waves

Figure 1.9.: Particle motion of seismic volume waves

• P waves (or primary, dilatational, compressional, irrotational, longitudinal waves).
Since their particle motion is parallel to the direction of propagation, as in Figure
1.9a, they are linearly polarized.
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• S, SH, SV waves (or transverse, shear, rotational, secondary): their particle motion
lies in the plane perpendicular to the direction of propagation, as in Figure 1.9b.
They can be linearly or elliptically polarized.

Linear polarization refers to the fact that more coherent seismic energy is located in one
principal direction of particle motion [98].

Seismic events originating at depth, one has to deal with a double arrival of elastic
body waves: P waves and S waves. They have different propagation velocities and a
variable frequency content: the former tend to have a higher frequency content and are
characterized by higher propagation speed than the latter. Hence, the P wave arrives
first, whereas the S wave is the second arrival observed on seismic records. P waves and
S waves have theoretical velocities v1 and v2, respectively, given by Ref. [133]:v1 =

(
λ+2µ
ρ

) 1
2

v2 =
(
µ
ρ

) 1
2

(1.50)

where λ and µ are Lamé’s constants and ρ is the density of the medium. Since they are
positive constants, v1 is greater than v2. In particular, the velocity of the S wave ranges
from zero up to 70% of the velocity of the P wave. For fluids µ is zero, v2 = 0 and
therefore S waves do not propagate. Typical velocities are in the 1.5km/s (in water) to
6.5km/s range, increasing with loss of porosity, cementation, age and depth [134].

For the physical model of wave propagation, the following property is assumed:

A 1.21. P and S waves propagate at velocities v1 and v2, respectively, under the approx-
imation of non-dispersive medium A 1.6.

Surface waves

When the xy-plane separates two media with different properties, solutions decreasing
like e−κz (evanescent waves) exist under certain conditions. Their amplitude decreases
exponentially with the distance from the interface, and their energy is tied to the surface
[134].

• Rayleigh waves, surface elliptically polarized waves with the ellipse major axis cor-
responding to the direction of propagation. They propagate along a free surface of
a solid, where free means contact with vacuum or with air, as the elastic constant
and density of air are negligible compared with that of rocks. Rayleigh waves are
often referred to as ground roll. They are dispersive, low velocity, low frequency,
with a broad flat spectrum [133].

• Other examples include Stoneley waves, Love waves, Tube waves.
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1.7. Parameters of Interest

In the first part of this chapter we described the model of plane waves with unknown
wavenumber impinging into the array. The parameters of interest ϑ enter into the model in
a non linear way. The problem of estimating the source wavenumbers or angles of arrivals
of multiple plane waves is referred to as Direction of Arrival or DoA estimation. This
problem is widespread in many scientific domains, such as radar, sonar, seismic, medical
diagnosis and astronomy [151]. The narrowband model we refer to in the remainder is
developed in Section 1.2.2, whereas the wideband model can be found in Section 1.5.1.

As we explained in Section 1.2.3, in 3D for a single plane wave, the parameters of
interest form a vector: ϑ = [θ, ψ]T ∈ R2; in 2D it is a scalar ϑ = θ ∈ R. With R sources,
this corresponds to

Θ = [θ,ψ] =

 θ1 ψ1
...

...
θR ψR

 ∈ RR×2, θ =

 θ1
...
θR

 ∈ RR (1.51)

respectively. In the case of polarized waves, we might also be interested in estimating the
polarization parameters φ = [α, β]T ∈ R2, or, for R sources:

Ξ = [α,β] =

 α1 β1
...

...
αR βR

 ∈ RR×2 (1.52)

We can arrange all parameters of interest into a vector ϑ:

1. For scalar wavefields in 3D, we have:

ϑ = [θT,ψT]T =

= [θ1, . . . , θR, ψ1, . . . , ψR]T ∈ R2R
(1.53)

2. For scalar wavefields in 2D, we have:

ϑ = θ = [θ1, . . . , θR]T ∈ R (1.54)

3. For vector wavefields in 3D, we have:

ϑ = [θT,ψT,αT,βT]T =

= [θ1, . . . , θR, ψ1, . . . , ψR, α1, . . . , αR, β1, , . . . , βR]T ∈ R4R
(1.55)

4. For vector wavefields in 2D, we have:

ϑ = [θT,αT,βT]T =

= [θ1, . . . , θR, α1, . . . , αR, β1, , . . . , βR]T ∈ R3R
(1.56)

In many cases, we might also be interested in extracting the source signatures
{s1(t), . . . , sR(t)}, which can be stored in a T ×R matrix

S =

 s1(1) . . . sR(1)
...

. . .
...

s1(T ) . . . sR(T )

 = [s1, . . . , sR] (1.57)

or a vector ξ = [sT1 , . . . , s
T
R]T ∈ CTR.

Other problems, which are beyond the scope of this thesis, include the following:
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1. Array calibration, i.e. the estimation of the positions and gains of sensors:
sensor position matrix P = [p1, . . . ,pL]T ∈ RL×3;
sensor gain patterns [g1(θ), . . . , gL(θ)].

2. ARMA modeling and parameter estimation.

3. Estimation of the range of near field sources.

The next chapter will introduce high resolution DoA and polarization estimation for
both narrowband and wideband impinging wavefields. We will restrain our interest to the
signal subspace approach (cf. Section 1.3 for the definition of signal and noise subspace).

1.8. The Sample Covariance Matrix

In Section 1.2.2 we derived the spatial covariance matrix in (1.24), assuming we dispose
of an infinite observation period. However, the natural estimate of this quantity is the
sample covariance matrix. To this purpose, we can use either the narrowband snapshot
model in time domain or in frequency domain. In time domain we have:

R̂X =
1

T

T∑
t=1

x(t)x(t)H = XXH (1.58)

where appears the L× T data matrix X = [x(1), . . . ,x(T )].
If there are multiple independent and identically distributed complex Gaussian snap-

shots available, X1, . . . ,XNS , we define the sample covariance matrix as [151]

R̂X =
1

NS

NS∑
j=1

XjX
H
j (1.59)

On the other hand, after DFT with Q frequency bins, frequency dependent spatial
covariance in (1.47) is estimated as:

R̂X(ωq) =
1

NS

NS∑
j=1

xj(ωq)xj(ωq)
H (1.60)

If we do not impose our knowledge of the array manifold upon it, R̂X is the Maximum
Likelihood Estimator (MLE) of the spectral matrix, and its spectral representation is

R̂X = ÛSΛ̂SÛ
H

S + ÛNΛ̂NÛ
H

N (1.61)

The sampling process generates a sequence of Gaussian random vectors (cf. Assump-
tions A 1.12 and A 1.15), we assume that resulting vectors at different time instants t,
in different frequency bins ωq and different observation snapshots are statistically inde-
pendent [151]. Therefore, one can prove that the time domain model and the frequency
domain model, for the narrowband case, have identical spatial statistics, resulting in
identical subsequent processing [151]. This means that if the sources are narrowband, the
two equations in (1.58) and (1.60) have the same spatial structure, allowing us to work
indifferently in time or frequency domain.
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1.A. Signal Complex Envelope

A time series x(t) can be considered a pass-band signal if its spectral support is limited
and it does not include the origin:

[−f0 −W,−f0 +W ] ∪ [f0 −W, f0 +W ], with ∞ > f0 > W > 0 (1.62)

Every pass-band signal can be associated with an analytic signal x̂(t) whose support does
not contain positive frequencies:

X̂(f) =
√

2 U+(f)X(f)←→ x̂(t) =
1√
2

[x(t) + H{x(t)}] (1.63)

where U+(·) indicates the Heaviside step function, and H{x(t)} refers to the Hilbert
transform of real signal x(t). Since a real signal is characterized by even spectral symmetry,
it can be represented by its analytic signal without loss of information.

The complex envelope of x(t) around frequency f0, or base-band signal, is obtained from
the analytic signal by a mere translation in frequency:

X̌(f) = X̂(f + f0)←→ x̌(t) = x̂(t)e−2πf0t (1.64)

For a given carrier at frequency f0, a complex envelope around f0 is in bijection with a
complex number representing the modulus and the phase of the carrier.
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2.1. Introduction

After introducing in Chapter 1 the basics of the sensor array model, we dedicate the
present chapter to the problem of high resolution signal parameter estimation. In par-
ticular, the parameters of interest are represented by directions of arrival, polarization
features and source signatures. The term 2D in the title refers to traditional matrix ap-
proaches, relying on time and space information: in the time model of (1.12) data can
be described by a matrix X ∈ CL×T for the narrowband case, and a matrix X ∈ CL×Q

for the wideband case. Useful information is derived by sampling impinging wavefields in
time and space, and through the computation of the spatial covariance matrix in (1.58)
and (1.60). Whenever other physical dimensions are present, such as polarization, data
are vectorized as in (1.38) and (1.49), so that their inner structure is lost and the main
representation remains a long matrix X ∈ C3L×T in time domain, and X ∈ C3L×Q in
frequency domain.

In Section 2.2 we lay the basis for the evaluation of the performance of an estima-
tor, through the definition of the log-likelihood and the performance bound (Cramér-Rao
Bound). In Section 2.3 we introduce the two main approaches for signal parameter esti-
mation: spectral and parametric methods.

After briefly introducing beamforming in Section 2.4, we detail the main high resolution
signal subspace methods, MUSIC and ESPRIT, in Sections 2.5 and 2.6, respectively.
These algorithms are evaluated and compared with the performance bound of Section 2.2
and in terms of computational cost. Sections 2.7 and 2.8 extend the signal subspace to
the separation of polarized and wideband waves.

Finally, in Section 2.9 we discuss the case of correlated noise and correlated sources,
i.e. when Assumptions A 1.11 and A 1.15 are not verified.

2.2. Performance of an Estimator

The NS snapshots xj(t) or xj(ω) introduced in Section 1.8 are statistically independent,
so we can deal with one single snapshot and combine the results at the end.

As previously stated, thanks to Assumptions A 1.12, the observation x(t) or x(ω) is a
complex Gaussian random vector x whose mean µ(ϑ) and covariance RX(ϑ) depend on
real parameter vector ϑ. In the remainder, in the light of Section 1.7, ϑ is an arbitrary
vector of parameters, and it does not necessarily indicate an angle [151].

The variance of any unbiased estimator is bounded by the Cramér-Rao Bound (CRB):
if ϑ is modeled as deterministic, the performance of the estimator is bounded by the
classical CRB; if it is modeled as a random variable, we need a Bayesian CRB, and if it
is partially random, we need a hybrid CRB. In the remainder we will assume that ϑ is
fully deterministic.



32 2. Signal Parameter Estimation in 2D

The likelihood, i.e. the probability density for a single snapshot is then given by

p(x|ϑ) =
1

det{πRX(ϑ)} exp
{
−
(
xH − µH(ϑ)

)
R−1
X (ϑ) (x− µ(ϑ))

}
(2.1)

where x ∈ CL is a complex Gaussian random variable and ϑ ∈ RD is the real deterministic
vector we want to estimate. In Chapter 7 we will develop the subject of the estimation
of a complex parameter vector.

For i.i.d. snapshots, the likelihood is the product

p(x1, . . . ,xNS |ϑ) =

NS∏
j=1

1

det{πRX(ϑ)} exp
{
−
(
xH
j − µH(ϑ)

)
R−1
X (ϑ) (xj − µ(ϑ))

}
(2.2)

The log-likelihood corresponding to (2.2) is given by

Lx(ϑ) = L(x1, . . . ,xNS |ϑ) = log[p(x1, . . . ,xNS |ϑ)] =

= −NS log [det {RX(ϑ)}]−
NS∑
j=1

(
xH
j − µH(ϑ)

)
R−1
X (ϑ) (xj − µ(ϑ))−NSL log π

(2.3)

In many cases of interest, either µ(ϑ) orRX(ϑ) (but not both) are a function of parameter
vector ϑ.

We denote the covariance matrix of an unbiased estimator as

C(ϑ) = E
[
(ϑ̂− ϑ)(ϑ̂− ϑ)T

]
(2.4)

The multiple parameter CRB states that [151]

C(ϑ) ≥ CCRB(ϑ) , F−1 (2.5)

for any unbiased estimate of ϑ. The matrix inequality means that C(ϑ)−CCRB is a non
negative definite matrix. F denotes the Fisher Information Matrix (FIM):

F , −E
[
∇ϑ
(
∇ϑ(Lx(ϑ))T

)]
(2.6)

with elements

Fij , −E
[
∂Lx(ϑ)

∂ϑi

∂Lx(ϑ)

∂ϑj

]
= −E

[
∂2Lx(ϑ)

∂ϑiϑj

]
(2.7)

The result (2.5) also provides a bound on the variance of any unbiased estimate of scalar
element ϑi:

Var(ϑ̂i − ϑi) ≥ [CCRB(ϑ)]ii = [F−1]ii (2.8)

The effect of considering multiple snapshots with respect to the single snapshot case is
that the CRB is divided by NS.

When we generate multiple realizations of the same process, we estimate the variance
Var(ϑ̂i − ϑi) through N Monte Carlo (MC) trials, by computing the Mean Square Error
(MSE):

MSE(ϑi) =
1

N

N∑
n=1

(ϑ̂n − ϑi)2 (2.9)
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In order to assess the performance of the unbiased estimator, we are also interested in
plotting its MSE as a function of the Signal to Noise Ratio (SNR) in dB:

SNR = 10 log10

Ps
Pn

(2.10)

where Ps and Pn refer to average signal and noise power. We are interested in comparing
MSE(ϑi) with the SNR. An estimator is said efficient if it reaches the CRB, i.e. when
its variance equals the CRB: C(ϑ) = CCRB(ϑ). The Maximum Likelihood Estimator
(MLE), which maximizes the log-likelihood, is asymptotically (for NS → ∞) efficient.
Many other estimators come close to the CRB for high SNR: the value of the SNR at
which this convergence occurs is referred to as threshold. Estimators with a lower threshold
SNR are said to have a better threshold behavior.

2.3. Spectral and Parametric Approaches

Before introducing the estimation of signal parameters of interest, we need to make a
further assumption:

A 2.1. In what follows, the number of impinging sources R is supposed to be known.

In Chapter 1 we modeled the array output as a function of signal parameters such as
the Directions of Arrival (DoAs) θr, ψr and wave polarization angles αr, βr. The goal of
array processing is to estimate these parameters, starting from the the array output x(t).

We can distinguish between two main approaches [79]:

1. The spectral approach maximizes a spectrum-like scalar function of the parame-
ters of interest, looking for its R highest peaks. We can include into this class
beamforming and the most known signal subspace method, spectral MUSIC.

2. The parametric approach requires a simultaneous search for all parameters, pro-
viding more accurate but also more computationally expensive solutions. We can
include into this class both deterministic and stochastic MLEs, sub-space approxi-
mations, root-MUSIC and ESPRIT.

Subspace methods such as MUSIC, root-MUSIC and ESPRIT achieve higher resolution
than conventional beamforming techniques and are thus called high resolution methods.
We will briefly introduce beamforming, but we will detail in particular MUSIC and ES-
PRIT, as they are among the most versatile and widespread high resolution methods
for signal parameter estimation, though not implying the heavy computational burden
of MLE [79, 17]. Notice that MUSIC, ESPRIT and the deterministic ML belong to the
general class of subspace-fitting algorithms [153, 142] .

2.4. Beamforming

Beamforming (BF) builds a specific spatial response of the array (i.e. a beam pointing to
the desired source, and hopefully nulls towards other interferences) in order to estimate
the signature of the sources impinging on the array in the presence of noise. The steering
directions that result in maximum output power are the DoA estimates. An exhaustive
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search involves the presteering of the array in a given look direction θ ∈ (−π, π], by
applying a sensor dependent time delay T`(θ) = T0 + τ`(θ):

xps` (t, θ) = x`(t+ T`(θ)) ` = 0, ..., L− 1 (2.11)

where T0 is a bulk delay such that T`(θ) > 0, ∀` [51]. The BF output is then given
by y(t, θ) =

∑L
`=1 x

ps
` (t, θ). A time interpolation is then necessary for a correct imple-

mentation of presteering delays in order to extrapolate signal values at given time delays
between two original samples. The effect of presteering in a source direction θ = θr is a
spatial alignment of all the waveforms on all sensors, corresponding to a local maximum
energy output when θ = θr: x

ps
` (t, θr) ≈ sr(t+ T0), ∀`.

The steering operation of narrowband BF can be achieved through a linear combination
of spatial samples through weight vector w ∈ CL, in the same manner that a Finite
Impulse Response (FIR) filter linearly combine temporally sampled data [152]:

y(t) =
L∑
l=1

w∗` x`(t) = wHx(t) (2.12)

with associated output power

P (w) =
1

T

T∑
t=1

|y(t)|2 =
1

T

T∑
t=1

wHx(t)x(t)Hw = wH R̂X w (2.13)

where we observe the sample covariance matrix R̂X . The spatial resolution depends
on the size in wavelengths of the array aperture. However, when the signal bandwidth
increases, its performance degrades. One of the first Tapped Delay Line (TDL) time
domain solutions was provided for this purpose by [47] and involves a TDL scheme (or
FIR filters for the discrete case). A temporal filter is applied to each wideband recorded
signal to compensate for the phase difference of different frequency components; this is
equivalent to a temporal and spatial sampling of the propagating wavefield: [89, 52]

y(k) =
L∑
l=1

J−1∑
i=0

w∗lix`(k − iTs) = wHx(k) (2.14)

where J is the length of the filter corresponding to the TDL, Ts is the delay between
adjacent lags of the TDL. We also need to properly define long vectors w,x ∈ CLJ . For
the sake of simplicity, we will assume Ts equal to sampling period. Analogously to the
frequency response of a FIR filter1, when the signal is a complex plane wave with DoA θ
and frequency ω, we have:

y(k) = eωk
L∑
l=1

J−1∑
i=0

w∗lie
ω(τ`(θ)+i) = eωkγ(ω, θ) (2.15)

where the beamformer response γ is a function of steering vector a(ω, θ):

γ(ω, θ) = wHa(ω, θ) (2.16)

1The analogy of BF and FIR filtering is closest when the sensor array is a ULA and we fix a single
temporal frequency ω0, if we establish a mapping between temporal frequency for the FIR filter and
the cosine of the DoA for the beamformer: ω = ω0p0 cos(θ)/c.



2.5. Spectral MUSIC 35

The beampattern is given by its square modulus |γ(ω, θ)|2.
The type of beamformer will depend on the procedure for choosing weight vectorw: the

most common examples are Bartlett and Capon beamformers, and Linearly Constrained
Minimum Variance (LCMV) beamformer [152]. When the number of sources increases,
the performance of time domain beamforming rapidly degrades and is by far exceeded by
high resolution techniques.

2.5. Spectral MUSIC

The interest in the subspace approach is mainly due to the introduction of the Multiple
Signal Characterization (MUSIC) algorithm and its performance capability [131]: received
data are used to estimate the signal subspace described in Section 1.3, and then this
information is used to estimate signal parameters such as the DoA [79, 151]. MUSIC
parameter estimation relies on a fundamental assumption on the acquisition system:

A 2.2. The array manifold A = a(θ) is assumed to be known.

In the absence of noise, the steering vectors are the intersections between the signal
subspace SX and the array manifold A (see Section 1.3 for their definitions). However, in
the presence of noise, with probability one there are no intersections: ŜX ∩ A = ∅. The
idea behind MUSIC is to look for elements in A that are closest to ŜX .

As many spectral methods, MUSIC relies on the spectral decomposition of the covari-
ance matrix in (1.26):

RX = USΛSU
H
S +UNΛNU

H
N (2.17)

As previously mentioned in Section 1.3, the noise eigenvectors UN are orthogonal to the
array manifold A = {a(θ1), . . . ,a(θR)}:

a(θr)
HUN = 0, r = 1, . . . , R (2.18)

The projector and orthogonal projector of the signal subspace in (1.27) is derived from
the noise eigenvectors of the estimated covariance matrix R̂:{

Π̂S = ÛSÛ
H

S

Π̂N = ÛNÛ
H

N = 1− ÛSÛ
H

S

(2.19)

We can then define the normalized MUSIC spatial spectrum:

PMU(θ) =
a(θ)Ha(θ)

a(θ)HΠ̂Na(θ)
=

a(θ)Ha(θ)

a(θ)H(I − Π̂S)a(θ)
(2.20)

to be maximized. In the presence of noise ÛN 6= UN and the denominator is not zero,
but its value decreases significantly. Therefore, as suggested by (2.18), the spectrum in
(2.20) has peaks in correspondence of the true DoAs θr. Alternatively, one can minimize

PMU(θ) = a(θ)HΠ̂Na(θ) = a(θ)H(1− Π̂S)a(θ) (2.21)

The steps of the algorithm are the described in Algorithm 2.1.
Notice that MUSIC is a two-steps sub-optimal algorithm, involving an unconstrained

estimation of a set of R vectors ur and then the maximization of a 1D function PMU(θ).
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Algorithm 2.1 Spectral MUSIC

1: Compute either ÛS or ÛN :

1. either through an Eigenvalue Decomposition (EVD) on sample covariance ma-
trix R̂X ;

2. or through an Singular Value Decomposition (SVD) on raw data matrix X
(recommended for computational reasons).

2: Plot the MUSIC spectrum PMU(θ, ψ) and chose the R maxima. For 2D systems, in
particular, the azimuth is given by

θr = arg max
θ∈(−π,π]

PMU(θ) (2.22)

another version of MUSIC, named root-MUSIC was proposed by [5] for ULAs, which
exhibits a threshold for lower SNR than spectral MUSIC, but with the same asymptotic
properties. DoAs are given by the R roots of a polynomial PMU,z(z) = az(1/z)TΠ̂Naz(z),
that are inside the unit circle and closest to the unit circle, with az(z) = [1 z . . . zL−1]T

and
PMU,z(z)|z=e−ωp0 cos θ/c = PMU(θ) (2.23)

In the absence of noise, these roots would be exactly on the unit circle. Root-MUSIC can
benefit from the spatial backward-forward smoothing techniques described in Section 2.9.
The Unitary root-MUSIC algorithm implements backward-forward root-MUSIC through
a unitary transformation [108].

2.5.1. Evaluation of spectral MUSIC

The performance of MUSIC in comparison to the CRB can be found in [151, 140, 141].

Main advantages

• Arbitrary array configurations.

• Multiple parameter estimation (azimuth, elevation, range, polarization, etc.): it is
possible to estimate F parameter per source, i.e. RF signal parameters.

• Since its search assumes that one single source is present, MUSIC only looks for
F parameters, instead of RF . Hence, it is less computationally expensive than the
ML methods.

• High resolution compared to beamforming.

• Asymptotically unbiased and efficient, if the noise is white Gaussian. For uncorre-
lated signal and high SNR, spectral MUSIC is close to the CRB.

Drawbacks

• Complete knowledge of the array manifold (sensor positions and gains) is required,
i.e. array calibration is necessary.
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• The exhaustive search over the parameter space is computationally very expensive,
as it is an F -dimensional search for RF maxima.

• The 1D search for R parameters is finite-sample biased.

• Sensitive to low SNR and calibration errors; the threshold occurs at a higher SNR
than Maximum Likelihood (ML) algorithms.

• Degradation if sources are correlated. Cannot deal directly with the fully correlated
case.

2.6. ESPRIT

The Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
algorithm proposed by [126] applies whenever steering matrix A has a shift structure:
i.e. the acquisition system is composed of two identical subarrays, ZX and ZY , translated
from each other by a known displacement vector δ, as in Figure 2.1. This property is
named translational invariance.

x

y

reference subarray

δ

source

θ

(a) Planar arrays

(b) ULAs

Figure 2.1.: Illustration of space shift between two identical subarrays

Thus, in order to reduce the computational complexity of signal subspace methods,
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ESPRIT introduces a space shift constraint into the acquisition system in (1.9):{
x`(t) =

∑R
r=1 a`(θr) sr(t) + nx`(t)

y`(t) =
∑R

r=1 a`(θr) e
−ωδTdr/c sr(t) + ny`(t)

(2.24)

where a`(θr) = g`(θr) e
−ωτ`(θr). In [126] the translation δ is assumed to be collinear

with the x-axis: δ = [δ, 0, 0], leading to e−ωδ
Tdr/c = e−ωδ cos θr/c, without restricting the

generality. We also assume the problem is in 2D, with sources coplanar to the acquisition
plane. The array output in vector form in (1.12) becomes{

x(t) = As(t) = AX s(t) ∈ CL

y(t) = AΦ s(t) = AY s(t) ∈ CL
(2.25)

where x(t) and y(t) correspond to measurements recorded on the first and second subar-
rays respectively, and shift invariance

AY = AXΦ (2.26)

Diagonal R × R matrix Φ is a unitary operator that relates the measurements from
subarray ZX to those from subarray ZY :

Φ = Diag{e$1 , . . . , e$R} (2.27)

with phase shifts $r = −ωδ cos θr/c. Notice that in the complex field Φ is a simple
scaling operator, but it is isomorphic to the real 2D rotation operator (thus giving origin
to the name ESPRIT). The general idea is to exploit the rotational invariance of the signal
subspace introduced by the translational invariance of the sensor array, by estimating the
diagonal elements of Φ, without having to know A.

Then we have the acquisition system output:

z(t) =

[
x(t)
y(t)

]
= Ās(t) + nz(t) ∈ C2L (2.28)

where Ā =

[
A
AΦ

]
∈ C2L×R and nz(t) =

[
nx(t)
ny(t)

]
, and covariance matrix from (1.25)

and (1.26):

RZ = ĀRSĀ
H

+ σ2I =

= USΛSU
H
S +UNΛNU

H
N

(2.29)

As discussed in Section 1.3, R{US} = R{Ā}: there must exist a unique nonsingular
transformation T such that

US = Ā T (2.30)

Through the invariance structure of the array we can decompose US ∈ C2L×R into
UX ,UY ∈ CL×R

US =

[
UX

UY

]
=

[
AT
AΦT

]
(2.31)

from which we infer R{UX} = R{UY } = R{A}. From (2.31) we derive

UY = UX Ψ (2.32)
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with

Ψ = T−1 ΦT (2.33)

Notice that (2.32) is the equivalent relationship to shift invariance AY = AXΦ in (2.26)
in terms of signal subspace eigenvectors, and that the eigenvalues of Ψ correspond to the
diagonal elements of Φ. Since R < L, this is an overdetermined set of equations. In
practice, since we have estimates for these signal subspaces, (2.32) becomes:

ÛX Ψ̂ = ÛY (2.34)

Linear system (2.34) can be solved through a Least Squares (LS), if the whole error is
attributed to ÛY , with solution

Ψ̂LS = Û
†
XÛY (2.35)

or a Total Least Squares (TLS) approach, if both ÛX and ÛY are considered noisy:

(ÛX +EX) Ψ̂ = (ÛY +EY ) (2.36)

whereEX andEY must have minimum Frobenius norm. Linear system (2.36) has solution

Ψ̂TLS = −V 12V
−1
22 (2.37)

where V 12 and V 22 are R×R matrices defined by the eigendecomposition of the 2R×2R
matrix [

Û
H

X

Û
H

Y

] [
ÛX ÛY

]
=

[
V̂ 11 V̂ 12

V̂ 21 V̂ 22

]
ΛV

[
V̂

H

11 V̂
H

21

V̂
H

12 V̂
H

22

]
(2.38)

The steps of the algorithm are the described in Algorithm 2.2.

Algorithm 2.2 LS and TLS ESPRIT

1: Compute ÛS:

1. either through an EVD on sample covariance matrix R̂Z

2. or through an SVD on raw data matrix Z (recommended for computational
reasons).

2: Select ÛX and ÛY by decomposing ÛS from (2.31).
3: Obtain Ψ̂LS from (2.35) or Ψ̂TLS from (2.37).
4: Find the eigenvalues of Ψ̂LS or Ψ̂TLS: λ̂1, . . . , λ̂R.
5: Find the arguments of the steering complex exponentials from (2.27) as $̂r =

arg{λ̂r}, r = 1, 2, . . . , R.

LS and TLS ESPRIT have the same asymptotic behavior (for Ns → ∞), but TLS
ESPRIT has better threshold behavior, with a slight increase in computational complexity.
We inform the interested reader that another effective formulation of this approach is given
by Unitary ESPRIT [59], that we do not discuss further.
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2.6.1. Signal Copy

Estimation of signals as a function of time from a previously estimated DoA is termed
signal copy [126]. Sometimes we are not only interested in the signal parameters, but also
in signal signatures themselves.

Although the steering matrix Ā is not supposed to be known, we can exploit the
relationship US = Ā T to find it:

Ā = US T
−1 (2.39)

where T−1 is derived from (2.33) as the eigenvector matrix of Ψ.
Once we have estimated the steering matrix from (2.39), the simplest solution for the

signal copy problem consists in a linear estimator with a squared cost function in the
metric of the noise Σn.2 This is equivalent to an oblique projection of the data matrix X
on the column space of Ā, R{Ā}:

Ŝ = W HZ (2.40)

with
W = Σ−1

n Ā[Ā
H
Σ−1
n Ā]−1 =

= Σ−1
n US[UH

SΣ−1
n US]−1T−H

(2.41)

Notice that the r-th column ofW , wr, is a weight vector that enhances the signal from the
r-th DoA and reject those from other directions. This is equivalent to a spatial matched
filter.

Since we only have an estimate of the steering matrix Ā, at low SNR we may resort to
a more robust TLS approach (see [126] for details).

2.6.2. Evaluation of ESPRIT

The performance of ESPRIT in comparison with the CRB can be found in [151, 103].

Main advantages

• High resolution compared to beamforming, and comparable to that of MUSIC.

• Knowledge of the array manifold (sensor positions and gains) is not required: only
translation δ needs to be known.

• The structure of the subarray is arbitrary.

• Computationally efficient, much less expensive than the ML methods and than
MUSIC (no need for an exhaustive search).

• Computational advantage especially pronounced for high dimensional parameter
estimation: ESPRIT computational load grows linearly, whereas MUSIC load grows
exponentially.

• Can estimate other signal parameters, such as the source signatures and correlation
structure.

2When the noise is Gaussian, this estimator is ML.
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• Robust to array imperfections (e.g. nonidentical subarrays) [126].

• TLS ESPRIT delivers estimates with insignificant finite sample bias.

• With row weighting, ESPRIT is close to the CRB above threshold.

Main drawbacks

• A space shift constraint on the acquisition system.

2.7. Signal Subspace for Polarized Sources

When MUSIC was proposed in [131], the possibility of including wave polarization into the
construction of the array manifold was briefly discussed. If we consider the vectorization
of the data matrix at time t in (1.38)

x(t) =
R∑
r=1

kr � ar sr(t) + n(t) ∈ C3L (2.42)

we can derive a 3L× 3L sample covariance matrix R̂X . The array manifold is then given
by k(θ, ψ, α, β)� a(θ, ψ), leading to a vector MUSIC spectrum similar to (2.20)

PMU(θ, ψ, α, β) =

[
kH � aH

]
[k � a][

kH � aH
]
Π̂N [k � a]

(2.43)

Afterwards, the vector sensor array model described in Section 1.4 was applied by
[95, 96] to DoA estimation for acoustic and electromagnetic sources. Both ML DoA and
polarization estimation were the subject of [66], with the derivation of the CRB and an
application to remote sensing. A MUSIC-based method was proposed by [160] for DoA
and polarization estimation. On the other hand, ESPRIT was also extended to polarized
sources for DoA and polarization estimation: see [159, 86] for details. Finally, a com-
prehensive analysis and comparison of beamforming and MUSIC for polarized wavefronts
can be found in [42].

2.8. Signal Subspace for Wideband Sources

Wideband extensions have been developed for beamforming, signal subspace and para-
metric methods [34]. In this section we will only detail the signal subspace approach for
wideband sources: we will focus on high resolution methods such as MUSIC (cf. Sec-
tion 2.5) and ESPRIT (cf. Section 2.6), that are based on a partition of the observation
space into signal and noise subspaces, usually via low-rank approximations.

As introduced in Section 1.5.1, the data covariance matrix of the wideband case depends
on frequency:

RX(ω) = E
[
x(ω)x(ω)H

]
(2.44)

If NS independent snapshots, x1(ω), . . . ,xNS(ω), are available, we define the sample
spectral matrix as [151]

R̂X(ω) =
1

NS

NS∑
j=1

xj(ω)xH
j (ω) (2.45)
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In Section 1.5.1 we Fourier transformed the dynamical model (1.6) into its frequency
domain formulation (1.44), which is formally static for every fixed radial frequency ω. We
can then define and compute as many signal subspaces as there are frequency bins.

The major issue of wideband processing will be to effectively combine all these in-
dependent contributions. Two techniques can be considered, which jointly process the
information in all frequency bands:
a) Incoherent signal-subspace processing: the wide frequency range can be divided into
non-overlapping frequency bins, and the above mentioned narrowband signal subspace
methods are applied to each narrow band separately. All the individual narrowband re-
sults are then combined through a simple averaging operation [79].
b) Coherent Signal Subspace (CSS) [157, 23, 80, 46, 36] relies on an approximately coher-
ent combination of the spatial signal subspaces at different frequencies through the MUSIC
algorithm. Through the same CSS process, ESPRIT was extended to the wideband case
by [69, 102].

2.8.1. Virtual arrays

We will describe the CSS approach, as it provides better results: in order to steer all the
frequency contributions in (2.45), it is necessary to first steer the corresponding subspaces
towards a common subspace defined at a reference radial frequency ω0. For this purpose,
the steering complex exponential e−ωτ`(θr) in (1.44) needs to become constant, in order
to constitute a coherent contribution.

Since sensor gains do not depend on frequency, thanks to Assumption A 1.19, this
steering operation leads to defining a virtual array for each radial frequency ω, defined by
sensor positions p̃`(ω), related to the actual sensor positions p` by

[ωp̃`(ω)− ω0p`]
Td(θ) ≡ 0, mod 2πc, (2.46)

where ω0 is fixed. This equation is satisfied if the term within brackets is orthogonal to
d(θr) for every DoA θr, 1 ≤ r ≤ R; but this requires a prior knowledge of DoAs [157].
On the other hand, a sufficient condition is clearly that

p̃`(ω) =
ω0

ω
p` (2.47)

which this time does not depend on θ; this also corresponds to the spatial resampling
proposed in [23, 80, 46], as will be detailed in Section 2.8.3. An illustration of virtual
arrays, i.e. shrunk or stretched arrays satisfying (2.47), is provided in Figure 2.2. This
second (sufficient) condition in (2.47) will be retained is the present work.

Remark

More generally, if gains depended on frequency, the condition in (2.46) would become

exp
{ 
c

[ωp̃`(ω)− ω0p`]
T d(θ)

}
=

g`(ω, θ)

g`(ω0, θ)
(2.48)

Satisfying (2.48) would then always require prior knowledge of DoAs.
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(a) Shrunk array
ωq > ω0

(b) Nominal array
ω0

(c) Stretched array
ωq < ω0

Figure 2.2.: Illustration of virtual arrays

2.8.2. Linear Interpolation

Equation (2.46) defines virtual arrays with identical array manifolds, but does not provide
the signals that would be measured by the latter. It is hence necessary to devise an
interpolator to compute the corresponding synthetic measurements. Moreover, to preserve
the separation between noise and signal subspaces, it is suitable to map a(ω, θ) to the
same manifold a(ω0, θ) via a multiplication by some matrix U(ω, ω0, θ) ∈ CL×L, which we
call focusing matrix. It turns out that this is possible exactly only for at most L distinct
values of θ. There are thus two possibilities.

• Either the DoAs are unknown, and a focusing matrix U (ω, ω0, θ) can be computed
so as to satisfy the following relationship only approximately [46]:

U(ω, ω0,Θk)a(ω, θ) ≈ a(ω0, θ) (2.49)

in an angular sector θ ∈ Θk of limited extent, where ω0 is a fixed reference frequency.
These focusing matrices can be obtained by solving in the LS sense the linear system
U(ω, ω0,Θk)A(ω,Θk) ≈ A(ωo,Θk), where Θk contains I discrete angular values θi,
1 ≤ i ≤ I, and matrix A(ω,Θk) is built with the corresponding columns a(ω, θi);
see [45] for further details on how to assess the accuracy of an array interpolator.

• Or the R DoAs are approximately known in advance, R ≤ L, and it is possible to
satisfy (2.49) exactly for these approximate DoAs; see [157] for more details.

In the state of the art [157, 46], the previously explained interpolation method is used
as a preprocessing for subspace methods (such as MUSIC), in order to solve the problem
of coherently averaging the estimated covariance matrices. This is illustrated below, as
the covariance matrix depends on radial frequency ω:

RX(ω) = E
[
x(ω)x(ω)H

]
=

= A(ω, θ)E
[
s(ω)s(ω)H

]
A(ω, θ)H + E

[
n(ω)n(ω)H

]
=

= A(ω, θ)RS(ω)A(ω, θ) + σ2I

(2.50)

where x(ω) was derived in (1.46). As a consequence, in order to estimate the DoAs by a
coherent average over different values of ω, it is necessary to first steer all estimated R̂(ω)
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towards a subspace defined at a reference radial frequency ω0 [157, 23, 80, 46]. After this
focusing operation, in every angular sector Θk we can use contributions of all frequencies
to build an averaged estimate of the covariance matrix:

R̄(Θk) =
∑
ω

R̃X(ω) =
∑
ω

x̃(ω) x̃(ω)H =

=
∑
ω

U(ω, ω0,Θk)x(ω)x(ω)HU(ω, ω0,Θk)
H

(2.51)

where we interpolated our data: x̃(ω) = U (ω, ω0,Θk)x(ω), corresponding to a virtual
array with sensor positions p̃`(ω) in (2.47). From (1.46) and (2.49) we obtain

R̄(Θk) ≈
∑
ω

A(ω0, θ)Rs(ω)A(ω0, θ)
H + R̃n(ω) (2.52)

where Rs(ω) denotes the covariance of the sources at radial frequency ω and R̃n(ω)
the noise covariance transformed by matrix U(ω, ω0,Θk) in the considered sector, i.e.
θ ∈ Θk. These linear transformations allow to compute observations received on virtual
arrays, each being a stretched or shrunk version of the nominal reference array at radial
frequency ω0.

2.8.3. Interpolation through Spatial Resampling

As pointed out in [23], the CSS approach through focusing matrices can be replaced by a
spatial resampling of recorded data if the array is a ULA. This approach does not require
any prior approximate knowledge of the source DoAs. In fact, if the array is a ULA, the
sufficient condition in (2.47) becomes

p̃`(ω) =
ω0

ω
p`

=⇒ p̃(ω)(`− 1) =
ω0

ω
p0(`− 1)

=⇒ p̃(ω) = p0
ω0

ω
= p0

λ

λ0

(2.53)

where p0 is the nominal inter-sensor distance of the array and λ0 is the reference wave-
length of the CSS. Hence, the CSS can be built by introducing a modified sampling interval
p̃(ω) 6= p0, so that the product ωp̃(ω) is kept constant, without any prior assumption on
the position of the sources. The same idea was exploited in [80], where this approach also
implies an alignment of wideband sources in the spatial frequency domain, by treating
the output of a discrete array as the result of the spatial sampling of a continuous array.
An illustration of spatial resampling is provided in Figure 2.3.

The Fourier Transform (FT) of the wideband field incident on the ULA at position p
at frequency ω is then

x(p, ω) =
R∑
r=1

sr(ω) exp {−ωp cos θr/c}+ n(p, ω) (2.54)

which yields a discretized expression for p` = (`− 1)p0.
The result of the resampling of the sensor output with sensor spacing p̃(ω) is an align-

ment of the steering matrix, that becomes constant for all the considered frequencies
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ω0 ←→ p`

Nominal Array

ωQ > ω0 ←→ p̃`(ωQ) < p`

Shrunk Array

ω1 < ω0 ←→ p̃`(ω1) > p`

Stretched Array

Figure 2.3.: Illustration of spatial resampling

within the common bandwidth of the sources. The adjusted sensor output at virtual
position p̃`(ω) = p0

ω0

ω
(`− 1),

x̃(`, ω) =
R∑
r=1

sr(ω) exp {−ω0p0 (`− 1) cos θr/c}+ ñ (`, ω) (2.55)

leads to a constant focused steering matrix Ã(ω) = A(ω0) in the system (1.46). After
Discrete Fourier Transform (DFT) with Q frequency bins, we have

x̃(ωq) = A(ω0) s(ωq) + ñ(ωq), 1 ≤ q ≤ Q (2.56)

Note that the values that would occur at virtual positions p̃`(ωq) satisfying (2.53) are es-
timated, provided that the Nyquist criterion is satisfied: in order to avoid spatial aliasing,
the spatial period must always respect the condition p̃(ωq) ≤ πc

ωq
, ∀q, which is equivalent

to p0 ≤ λ0/2 from (2.53).
In practice, the resampling of received data at the virtual sensors can be achieved

through a simple interpolation approach, as described in Section 8.A.

2.8.4. Wideband Polarized Waves

When received signals are wideband polarized waves, as described in Section 1.5.2, the
derivation of a coherent approach through MUSIC for DoA estimation is straightforward
[16].

Seismic sources, previously introduced in Section 1.6, are an important example of well
studied wideband and polarized waves [133]. In [35] ESPRIT was adapted to process
wideband seismic waves for a joint DoA and velocity estimation, using an incoherent
approach.

2.9. Dealing with Correlation

2.9.1. Correlated Noise

If Assumption A 1.11 is not verified, the noise space covariance matrix is known, but not
proportional to identity: Σn = E

[
n(t)n(t)H

]
6= σ2I.
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If the noise is not spatially white, but exhibits a covariance Σn, it is possible to
prewhiten the sensor output through multiplication by Σ−1/2

n : Σ−1/2
n x(t), where Σ−1/2

n is
the positive definite Hermitian square root factor of Σ−1

n .

Without prewhitening, the methods relying on the eigendecomposition of the data
covariance matrix RX can be adapted through the generalized eigendecomposition of
matrix pencil {R̂X ,Σn} [126]:

R̂XÛ = ΣnÛΛ̂ (2.57)

The signal subspace estimate is then given by the eigenvectors corresponding to the first
leading R eigenvalues:

ÛS = Σn[û1| . . . |ûR] (2.58)

2.9.2. Correlated Sources

If Assumption A 1.15 is not verified, the sources can be correlated:
∃ r, q | E [sr(t)sq(t)] = ρ σr σq, with ρ 6= 0. If 0 < ρ < 1, the condition num-
ber of matrix RS increases exponentially with ρ, but RS remains nonsingular or full
rank. If ρ = 1, the sources are fully correlated, or coherent, and the signal covariance
matrix RS has rank smaller than R (rank deficient), hence it is singular (see Section 1.3.1
for more details).

MUSIC and ESPRIT are known to yield high resolution and asymptotically unbiased
estimates even when the sources are partially correlated. Theoretically, these methods
encounter difficulties only when the sources are fully correlated, because subspace algo-
rithms rely on the assumption of nonsingularity of matrix RS. However, in practice, their
performance is considerably degraded even when the signals are highly correlated, for
example in the case of multipath propagation. Hence, the fully correlated case is a good
model for the highly correlated case encountered in many practical situations [151, 132].

In order to solve this problem in the context of beamforming, [50] used the particular
Toeplitz structure (i.e. the entries along each diagonal are equal) of the spatial covariance
when the array is a ULA and the sources and the noise are both uncorrelated. If the
sources are coherent, the array covariance does not have this structure anymore. The
idea proposed by [50] uses the sample covariance constrained to have this structure by
averaging each diagonal. The entries along the i-th diagonal are then replaced by their
average:

R̄
(Toeplitz)
i =

1

L− i
L−i∑
i=1

Ri,i+j, j = 0, . . . , L− 1 (2.59)

Spatial smoothing proposed by [41] is a preprocessing technique that restore the full
rank of a singular spatial covariance matrix RS. Spatial smoothing requires a regular
array geometry, such as the ULA configuration described here, with inter-sensor spacing
p0. We compose a set of M ULA subarrays of length Ls > R: each subarray is shifted by
one from the previous subarray [151, 132]. The m-th subarray is given by

xm(t) = ABm s(t) + nm(t). (2.60)

with diagonal R × R matrix Bm = Diag{eωp0(m−1) cos θ1/c, . . . , eωp0(m−1) cos θR/c}. Since
each subarray has spatial covariance

Rm = ABmRSB
H
mA

H + σ2I (2.61)
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it is possible to derive an average forward covariance

R̄
(f)

=
1

M

M∑
m=1

Rm (2.62)

The following result can be proved [132]:

Theorem 2.1. If the number of subarrays is equal or greater than the number of sources,

M ≥ R, than the average covariance R̄
(f)

is nonsingular, regardless of the number of
correlated signals.

Since R̄
(f)

is a spatial matrix with the same structure as R(f), one can easily apply the
same signal subspace algorithms such as MUSIC to this smoothed covariance.

As a result of spatial smoothing, the sensitivity to source correlation is reduced, pro-
viding a better threshold behavior. The price to pay for this increased robustness is a
reduced effective aperture of the array. If there are Rc ≤ R coherent wavefronts, the num-
ber of subarrays M must be greater than the number of sources, according to Theorem
2.1: M = L − Ls + 1 ≥ R, implying a minimum size of each subarray Ls = L + 1 − R.
In the incoherent case, from Assumption A 1.13, we only needed L ≥ R + 1 sensors.
Moreover, in order to separate R sources, each subarray must have a size Ls ≥ R + 1,
implying L ≥ 2R.

Similarly, [110] extended the forward smoothing of (2.62) and symmetrically defined
the backward smoothing, with subarrays related to (2.60) by a permutation matrix Q
inverting the order of the sensors within the array (from L to 1). For a ULA, we have

x(b)
m (t) = Qxm(t)∗ = AB(b)

m s(t)∗ +Qnm(t)∗

R(b)
m = AB(b)

m R
∗
SB

(b)H
m AH + σ2I

(2.63)

where B(b)
m = Diag{eωp0(L+m−2) cos θ1/c, . . . , eωp0(L+m−2) cos θR/c}.

This leads to the smoothed backward covariance

R̄
(b)

=
1

M

M∑
m=1

R(b)
m (2.64)

and a backward-forward smoothed covariance that is singular under mild conditions:

R̄
(bf)

=
1

2
(R̄

(b)
+ R̄

(f)
) (2.65)

Since we use each subarray twice, if we want to separate R signals regardless of their
correlation, we need M ≥ R/2 of minimum length Ls = L+ 1−R/2, with L ≥ 3

2
R.

Finally, [158] extended spatial smoothing to arbitrary array configurations, through
spatial interpolation. For weighted spatial smoothing and for rectangular arrays, see [151]
and references therein.





3. Multi-Way Arrays and Tensors

3.1. Introduction

This chapter intends to give a basic introduction on tensor formalism and tensor decom-
position techniques, as well as their physical interpretation. Section 3.2 refers to the
fundamentals of multidimensional arrays: the definition of tensor and its relation to a
multi-way array of coordinates, as well as some notations and operations. Section 3.3
presents tensor decompositions such as the CPD and their properties, and also its link to
the tensor rank. Tensor normal distributions and the separable covariance structure are
described in Section 3.4. The main algorithms for tensor decomposition and approxima-
tion are detailed in Sections 3.6 and 3.5, respectively. Finally, Section 3.7 discloses the
interesting concept of coherence of tensor modalities, and its relation to new identifiability
conditions on the tensor model.

3.2. Tensor Arrays: Notations and Operations

3.2.1. From Multilinear Operators to Multi-Way Arrays

From a practical perspective, a tensor is a multidimensional array. More formally, a D-
order tensor is an element of the tensor product of D vector spaces, each with its own
coordinate system [75, 24]. In order to define the tensor product, we need first to introduce
multilinear functions [26]:

Definition 3.1. Assume Sd are D vector spaces, 1 ≤ d ≤ D, and f is the map

f : S1 × · · · × SD 7−→ K
(x1, . . . ,xD) −→ f(x1, . . . ,xD)

(3.1)

Map f is said multilinear if it is linear w.r.t. every variable xd, 1 ≤ d ≤ D, i.e. ∀d,∀α, β ∈
K:

f(x1, . . . , αxd + βyd, . . . ,xD) = αf(x1, . . . ,xd, . . . ,xD) + βf(x1, . . . ,yd, . . . ,xD) (3.2)

The field K can coincide with the real field R or the complex field C. In the remainder,
we will always assume K = C.

Through multilinearity, we can define the following equivalence relationship and the
relative quotient space:

Definition 3.2. Given the following equivalence:

(x,y, z) ∼ (x′,y′, z′)⇐⇒ ∃α, β, γ ∈ K : (x′,y′, z′) = (αx, βy, γz) (3.3)

with αβγ = 1, a tensor of order three is an element of the quotient space by this equiva-
lence, denoted as S1 ⊗ S2 ⊗ S3 = S1 × S2 × S3/ ∼.
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Once we fix the bases of the tensor space, a tensor of order D can be represented by
an array of coordinates, where D is the number of its modes or dimensions. Real life
examples of these diversities include space, time, frequency, repetitions (cf. Section 5.2).
We will denote a D-way array by X ∈ CI1×···×ID , and its entries by Xi1...,iD . For example,
for D = 3, a tensor is an element of the vector space S1 ⊗ S2 ⊗ S3. Let us choose a basis
e

(d)
i for each of the vector spaces Sd. Then any tensor X ∈ CI×J×K has coordinates Xijk

defined by [27]

X =
I∑
i=1

J∑
j=1

K∑
k=1

Xijk e(1)
i ⊗ e(2)

j ⊗ e(3)
k (3.4)

NB: with an abuse of notation, we will often refer to tensor X through its array rep-
resentation X . However, it is important to recall that an array of coordinates does not
suffice to define a tensor: we also need to define spaces and bases.

Notice that a first-order tensor is a vector, a second-order tensor is a matrix, and tensor
of order three or higher are called higher order tensors [75].

3.2.2. Notations and Terminology

1
st

m
o
d
e

2nd mode 3r
d
m
od
e

A361

(a) Tensor elements - reproduction from [22]

i
=

1,...,I

j = 1, . . . , J k
=
1,
. .
. ,
K

(b) Tensor indices - reproduction from [75]

Figure 3.1.: A third order tensor A ∈ CI×J×K

As previously stated on page xxi, we use the following notations:

• Scalars are denoted by lowercase letters: a.

• Vectors are denoted by boldface lowercase letters: a, with elements ai.

• Matrices are denoted by boldface capital letters: A with columns a:j or simply aj
and rows ai:. Matrix elements are denoted by Aij.

• Higher order tensors are denoted by boldface Euler script letters, A, with elements
Aijk for D = 3. A third order tensor has three indices, as shown in Figure 3.1.

Subarrays are obtained when a subset of the indices is fixed.
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(a) Mode-1 fibers or rows:
a:jk

(b) Mode-2 fibers or columns:
ai:k

(c) Mode-3 fibers or tubes:
aij:

Figure 3.2.: Illustration of tensor fibers - reproduction from [75]

(a) Horizontal slices: Ai:: (b) Vertical slices: A:j: (c) Frontal slices: A::k or Ak

Figure 3.3.: Illustration of tensor slices - reproduction from [75]
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1. Fibers are obtained by fixing all indices except one: fibers are always represented
by column vectors. Rows a:jk are mode-1 fibers (in Figure 3.2a), whereas columns
ai:k are mode-2 fibers (in Figure 3.2b). Moreover, tubes aij: are mode-3 fibers (in
Figure 3.2c).

2. Slices are obtained by fixing all but two indices, i.e. slices are 2D sections of a
tensor: Ai:: (“horizontal” slices, in Figure 3.3a), A:j: (“vertical” slices, in Figure
3.3b) and A::k(“frontal” slices, in Figure 3.3c). Alternatively, the k-th “frontal”
slice can be represented by the more compact form Ak.

Definition 3.3. The inner product between two tensors of the same size: X ,Y ∈
CI1×···×ID :

< X ,Y >=

I1∑
i1=1

· · ·
ID∑
iD=1

Xi1···iD Y∗i1···iD (3.5)

with associated Frobenius norm ‖X‖ =
√
< X ,X >.

Definition 3.4. A tensor X ∈ CI1×···×ID is diagonal if Xi1···iD 6= 0⇔ i1 = i2 = · · · = iD,
i.e. it has non zero elements only on its diagonal.

It is often useful to store the elements of aD-way array into a matrix, through unfoldings
or flattenings, depending on the arbitrary order choice. The most used matricizations are
given by the mode-d unfoldings, i.e. matrices whose number of rows equals the d-th tensor
dimension [26, 75]:

Definition 3.5. The mode-d unfolding of a tensor X ∈ CI1×···×ID is denoted by X(d) and
arranges the mode-d fibers as columns of the resulting matrix.

It is easily verified that the Frobenius norm of any unfolding is equal to the tensor norm
in Definition 3.3:

‖X‖ = ‖X(d)‖, ∀d (3.6)

Reformatting of tensors in general is called reshaping. Through the reshaping operation
we can unvectorize a tensor, as the reverse of the vectorization operation [22]. For example,
in 2D we have the following vec{·} and unvec{·} operations:

Definition 3.6. The vectorization of a matrix X = [x1, . . . ,xJ ] ∈ CI×J stacks its
columns (or mode-2 fibers) xj into a vector:{

x = vec{X} = [xT
1 , . . . ,x

T
J ]T ∈ CIJ

x(i−1)J+j = Xij

(3.7)

Through the reshape operation (similar to the reshape MATLAB function) we can
recover the original matrix X:

reshape(x, I, J) = [x(1 : I),x(I + 1 : 2I), . . . ,x(IJ − I + 1 : IJ)] ∈ CI×J (3.8)

For higher order tensors, we can define a similar vectorization operation. We define it
for D = 3, but it is easily extended to higher order tensors [22]:
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Definition 3.7. The vectorization of a tensor X ∈ CI×J×K is defined as the vectorization
of the associated mode-1 unfolding X(1) ∈ CI×JK . Hence, it stacks all its mode-1 fibers
x:jk into a vector:

x = vec{X} = vec{X(1)} = [vec{X ::1}, · · · , vec{X ::K}]T

= [xT
:11,x

T
:21, . . . ,x

T
:J1, . . . ,x

T
:1K ,x

T
:2K , . . . ,x

T
:JK ]T ∈ CIJK

(3.9)

We adopt the usual definition [10] where the vec{·} operation takes indices in lexico-
graphical order. Then we have the identity [10, 75]: vec{abT} = b � a, for any pair of
vectors (a, b). More generally:

vec{a⊗ b⊗ c} = c� b� a

vec{a(1) ⊗ · · · ⊗ a(D)} = a(D) � · · ·� a(1)
(3.10)

N.B. Although there exists an objectively better definition [24], allowing to preserve the
order of the � products, it is rarely used in the literature.

3.2.3. Multi-Way Operations

We define two fundamental operations, increasing and decreasing tensor order, respec-
tively. Tensor product increases order D:

Definition 3.8. The tensor product A ⊗ B between tensor A = [Aij] ∈ S1 ⊗ S2 and
tensor B = [B`m] ∈ S3 ⊗ S4 is tensor C = [Cij`m = AijB`m] ∈ S1 ⊗ S2 ⊗ S3 ⊗ S4

An example of tensor product is the outer product of two vectors a ∈ CIa and b ∈ CIb :
a⊗ b = abT ∈ CIa×Ib . Notice that the outer product of multiple vectors is a higher order
tensor: a(1) ⊗ a(2) ⊗ · · · ⊗ a(D) ∈ CI1×···×ID , whereas the Kronecker product of multiple
vectors remains a vector: a(1) � a(2) � · · ·� a(D) ∈ CI1···ID .

Definition 3.9. The contraction or mode-d product •d between tensor A of order D and
tensor A′ of order D′ consists in a summation over a pair of indices. The result is a tensor
B = A •d A′ of order D +D′ − 2.

For (D,D′, d) = (3, 3, 2)

Bijpq =
∑
`

Ai`j A′p`q (3.11)

Matrix multiplication is an example of mode-1 product between two matrices, B =
AA′ = AT •1A

′, with Bim =
∑

`Ai`A
′
`m. When the mode-d product is between a matrix

U ∈ CJ×Id and a higher order tensor X ∈ CI1×···×ID , as a rule, we sum over the second
index of the matrix,

(X •d U)i1···id−1jid+1···iD =

Id∑
id=1

Xi1···iDUjid (3.12)

This can also be expressed in terms of unfolded tensors: Y = X •d U ⇔ Y (d) = UX(d).
As an example, the mode-3 product A •3 M between a matrix and a third order tensor
gives the third order tensor: Bipq =

∑
`Mi`Apq`.

A natural extension of the mode-d product is the following:
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Definition 3.10. The multilinear product of a tensor with each matrix of a list A =
{A(1), . . . ,A(D)}, where A(d) ∈ CJd×Id is a set of D independent mode-d products. Alter-
natively, we can express a multilinear product through unfoldings and Kronecker products:

Y = X •1 A
(1) •2 A

(2) · · · •D A(D) ⇔

Y (d) = A(d)X(d)

(
A(D) � · · ·�A(d+1) �A(d−1) � · · ·�A(1)

)T (3.13)

When a tensor defines a multilinear operator, the mode-d product with a matrix is
related to a change of basis, through multilinear product [26]. For D = 3 we have three
independent mode-d products:

Proposition 3.1. If a linear change of basis is made in S1, S2, and S3 (x′ = Ax,y′ =
By, z′ = Cz), then the array T ′ defining the multilinear map f in the new coordinate
system is a function of T :{

X ′ = (A,B,C) ·X = X •1 A •2 B •3 C

X ′ijk =
∑

pqr AipBjq Ckr Xpqr
(3.14)

We recall then the definition of a tensor in relation to multilinear changes of bases:

Definition 3.11. A tensor of order D is an element of S1 ⊗ · · · ⊗ SD, and can be rep-
resented by a D-way array once bases of spaces Sd have been fixed. Under multilinear
transformations, the array of coordinates changes according to (3.14).

3.3. Tensor Decompositions

3.3.1. Decomposable Tensors and Tensor Rank

M =

M =

a

b

c

a⊗ b⊗ c

Figure 3.4.: A decomposable third order tensor - reproduction from [75]

The tensors of order D spanning the corresponding tensor space as defined in Definition
3.2 are very characteristic: they can be decomposed into an outer product of D vectors.
Figure 3.4 illustrates a decomposable tensor of order D = 3. This leads us to the following
definition:

Definition 3.12. A decomposable tensor, or rank-1 tensor, is given by the outer product
of vectors: D = a⊗ b⊗ · · · ⊗ c, with elements Dij...k = aibj · · · ck.
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Decomposable tensors correspond to the discretization of a function of D separable
variables (see Section 3.7 for more details).

Proposition 3.2. Any tensor T can be decomposed into a linear combination of R
decomposable tensors D(r):

M =
R∑
r=1

ςrD(r) (3.15)

where coefficients ςr can be always chosen to be real positive, and decomposable tensors
D(r) to have unit norm, i.e. the product ‖a(r)‖ ‖b(r)‖ · · · ‖c(r)‖ = 1, but other choices
are possible (cf. Section 3.3.4).

Definition 3.13. The minimum value R for which (3.15) holds is called tensor rank.

Unlike matrix rank, tensor rank may exceed all dimensions and depends on the choice
for field K.

In the remainder, we will generally state results for 3-order tensor decompositions. The
generalization to D-order tensors is straightforward.

3.3.2. Tucker Decomposition and Multilinear Rank

The Tucker Decomposition (TKD) is a form of higher order principal component analysis.

Definition 3.14. The TKD M = (A,B,C) · G = G •1 A •2 B •3 C is given by a
multilinear transformation of a dense but typically small core tensor G ∈ CP×Q×R:{

M =
∑P

p=1

∑Q
q=1

∑R
r=1 Gpqr ap ⊗ bq ⊗ cr

Mijk =
∑

p

∑
q

∑
r Gpqr AipBjq Ckr

(3.16)

The columns of factor matrices A ∈ CI×P , B ∈ CJ×Q and C ∈ CK×R represent the
principal components along each mode, whereas the entries of the core tensor describe
interactions between the components. The term on the left of (3.16) refers to the i, j, k
entry of the multi-way array, so that a total number of I × J ×K terms are known. The
term on the right indicates the number of unknowns: (P × Q × R) + IP + JQ + KR.
If the number of unknowns is smaller than the number of equations, there will generally
be no solution. This is the case when both core tensor G is diagonal and factor matrices
A, B and C are orthonormal. R1 = P refers to the row rank, i.e. the dimension of the
space spanned by mode-1 fibers; R2 = Q refers to the column rank, i.e. the dimension of
the space spanned by mode-2 fibers, and so on. For D ≥ 3, R1, . . . , RD can be different.
For generic D, we have:

Definition 3.15. The d-rank of tensor M ∈ CI1×···×ID is the dimension of the vector
space spanned by its mode-d fibers:

Rd = rank
d
{M} = column rank of M (d) ≤ Id (3.17)

The D-tuple (R1, . . . , RD) is called the multilinear rank of tensor M.

If we only apply the orthonormality constraint to (3.16), we obtain HOSVD [26]. If
we only keep a diagonal core tensor, we obtain the polyadic decomposition defined in
Section 3.3.3. TKD is used to compress data or to find the D sub-spaces spanned by the
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tensor fibers. On the other hand, the polyadic decomposition is used to factorize data
into components easy to interpret. Thus, there exist two main instances of constrained
TKD, with factor orthonormality or diagonal core constraints: HOSVD of Definition 3.18
and the polyadic decomposition of Definition 3.17.

Definition 3.16. The multilinear SVD or High Order Singular Value Decomposition
(HOSVD) consists in a TKD with orthonormal factor matrices:

M = S •1 U 1 •2 U 2 •3 U 3 (3.18)

We can derive factor matrices U d via the SVD of mode-d unfoldings M (d) = U dΣdV
H
d .

The columns of factor matrices U d are interpreted as multilinear singular vectors, and the
norm of the slices of the core are multilinear singular values, these slices being mutually
orthogonal.

3.3.3. Canonical-Polyadic Decomposition (CPD) and Tensor Rank

Consider the expression in (3.15), defining the tensor rank, as any tensor can be decom-
posed into a sum of rank-1 tensors. For D = 3, it takes the form below:

M =
R∑
r=1

ςr a(r)⊗ b(r)⊗ c(r) (3.19)

We denote Air, Bjr and Ckr the coordinates of vectors a(r) in basis e
(1)
i , b(r) in basis

e
(2)
i , and c(r) in basis e

(3)
i respectively. Then, M can be expressed as

M =
R∑
r=1

ςr

(
I∑
i=1

Aire
(1)
i

)
⊗
(

J∑
j=1

Bjre
(2)
j

)
⊗
(

K∑
k=1

Ckre
(3)
k

)
=

=
∑
ijk

(
R∑
r=1

ςr Air Bjr Ckr

)
e

(1)
i ⊗ e(2)

j ⊗ e(3)
k

(3.20)

From (3.4), we derive the basis-dependent expression of array coordinates in (3.21), as
represented in Figure 3.5:

Definition 3.17. The Polyadic decomposition is indicated by M = (A,B,C) · L =
L •1 A •2 B •3 C where R×R×R core tensor L = Diag{ς} is diagonal:{

M =
∑R

r=1 ςr ar ⊗ br ⊗ cr
Mijk =

∑R
r=1 ςr Air Bjr Ckr

(3.21)

where L = Diag{ς} is diagonal, and ς = [ς1, . . . , ςR]T.

Notice that the Polyadic Decomposition in (3.21) is equivalent to (3.15) in terms of
array coordinates, thus revealing tensor rank1. If R is not too large, this decomposition
is unique (up to the equivalence relation of Definition 3.2) and is referred to as Canonical
Polyadic Decomposition (CPD) (see [135, 26] and references therein. Uniqueness, which
is the main motivation in resorting to tensors, will be treated in Section 3.3.5 .

1The problem of estimating the rank of a given tensor is NP hard. In practice, it is often determined
numerically by fitting different rank-R CPD models [75].
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M =

M =

ς1

a1

b1

c1

ς1 a1 ⊗ b1 ⊗ c1

+ [· · · ] +

+ [· · · ] +

ςR

aR

bR

cR

ςR aR ⊗ bR ⊗ cR
(a) CPD as a sum of rank-1 terms

I × J ×K

M =
A

I ×R

L

R×R×R

BT

R× J

C

K ×R

M = L •1 A •2 B •3 C
(b) CPD as a linear change of basis

Figure 3.5.: Illustration of the CPD of a 3-order tensor - reproduction from [22]
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It is often useful to express the CPD of a D-order tensor M through tensor unfoldings
and vectorization [21]:

M = (A(1), . . . ,A(D)) ·L =
∑R

r=1 ςr a
(1)
r ⊗ · · · ⊗ a(D)

r

M (n) = A(n)L(A(D) � . . .�A(n+1) �A(n−1) � . . .A(1))T

vec{M} = (A(D) � . . .�A(1))ς =
∑R

r=1 ςr a
(D)
r � · · ·� a(1)

r

(3.22)

For D = 3 and ςr = 1 ∀r, we have three mode-d unfolding representations of CPD [75]:
M (1) = A(C �B)T

M (2) = B(C �A)T

M (3) = C(B �A)T
(3.23)

Moreover, when D = 3, we can express CPD in terms of “frontal” (or “horizontal”, or
“lateral”) slices: 

M ::k = ADk(ck:)B
T where Dk(ck:) = Diag{ck:}

M :j: = ADj(bj:)C
T where Dj(bj:) = Diag{bj:}

M i:: = BDi(ai:)C
T where Di(ai:) = Diag{ai:}

(3.24)

For simplicity, “frontal” slices can be expressed merely by M k = M ::k.

3.3.4. CPD Factors, Normalization and Scaling

A CPD is said to be essentially unique if there exist a unique set {ςr, D(r), 1 ≤ r ≤ R}
such that equality holds in (3.15). However, even if the CPD is unique, there exist several
ways of writing (3.15). In fact, writing a decomposable tensor as the outer product
of vectors is subject to scaling indeterminacies, which actually stem from multilinearity
properties of tensors [26], since

αa⊗ βb⊗ γc = a⊗ b⊗ c (3.25)

if αβγ = 1. Even if the above vectors are of unit Euclidean norm, there remain two
scaling indeterminacies of unit modulus. As a consequence, attention should be paid to
the difference between CPD or essential uniqueness, and uniqueness of factor matrices
appearing in (3.21).

The trivial indeterminacies intrinsic in the array representation (3.21), M =
(A,B,C) · I, are of two orders:

1. Arbitrary scaling of components for any R × R invertible diagonal matrices
∆1,∆2,∆3 satisfying ∆1∆2∆3 = I:

M = (A∆1,B∆2,C∆3) · I (3.26)

or, equivalently,

M =
R∑
r=1

(αrar)⊗ (βrbr)⊗ (γrcr) with αrβrγr = 1 ∀r (3.27)
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2. Permutation of the rank-1 terms, for any R×R permutation matrix Π:

M = (AΠ,BΠ,CΠ) · I (3.28)

In practice, it is more convenient to fix the trivial indeterminacies of unit modulus in
(3.21). It is often common to assume that the columns of factor matrices A, B, and
C, have unit norm, with the weights absorbed into vector ς = [ς1, . . . , ςR]. As suggested
in [128], for a D-order CPD, we generally fix (D − 1)R parameters without restricting
the generality (cf. Sections 4.3.1, 5.3.4, 5.4.1, and 6.4 for examples of physics related
constraints).

3.3.5. Uniqueness of the CPD

The unconstrained TKD is not unique, as factor matrices are rotation invariant:

(A,B,C) · G = (AU−1,BV −1,CW−1)(G •1 U •2 V •3 W ) (3.29)

However, the subspaces spanned by factor vectors are unique [21], even though we might
simplify the core structure as sparse or orthogonal, thus minimizing the interactions be-
tween components.

In order to better understand the interest of tensor CPD, we illustrate the case of
rank-R tensor decompositions of order two, which are not unique. This is the model usu-
ally employed in Blind Source Separation (BSS) and Non Negative Matrix Factorization
(NMF) [21]:

M =
R∑
r=1

ςr ar ⊗ br =
R∑
r=1

ςr arb
T
r = ALBT (3.30)

where L = Diag{ς1, . . . , ςR} ∈ CR×R is a normalizing matrix, the columns of B represent
the unknown sources, and the columns of A represent the associated mixing vectors, as
represented in Figure 3.6. It is clear that, when D = 2 (the multi-way array is a matrix),
if model (3.30) is unconstrained, it admits infinite combinations of A and B: AT , BT ,
where T is orthogonal, i.e. T T = T−1. For example, if the SVD of M is UΣV T, we can
choose A = UΣT , and B = V T . Therefore, uniqueness is attained thanks to restrictive
constraints such as orthogonality (EVD and SVD) or triangularity (QR factorization),
statistical independence, nonnegativity, etc. (cf. [22] for details). For example, the SVD
is generically unique because U and V are orthonormal, and Σ is diagonal [75]. On the
other hand, the CPD of tensors of order D ≥ 3 is unique under mild conditions.

A necessary condition for uniqueness for CPD is that the number of equations be at least
as large as the number of unknowns: for a tensor of order D and dimensions I1×· · ·× ID,
we have (

D∑
d=1

Id −D + 1

)
R ≤

D∏
d=1

Id (3.31)

(3.31) induces an upper bound on tensor rank, the expected rank R0:

R ≤ R0 =


∏D

d=1 Id(∑D
d=1 Id −D + 1

)
 (3.32)

Notice that we subtract (D − 1)R degrees of freedom because, in order to fix scaling
indeterminacies, we fix (D − 1)R terms (see Section 3.3.4).
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M =

M =

ς1

a1

b1

ς1 a1 b
T
1

+ [· · · ] +

+ [· · · ] +

ςR

aRaR

bR

ςR aR b
T
R

(a) CPD as a sum of rank-1 terms

M =

I × J

A

I ×R

L

R×R

BT

R× J

M = ALBT

(b) CPD as a linear change of basis

Figure 3.6.: Illustration of the CPD of a matrix - reproduction from [22]

The typical rank is any rank that occurs with probability greater than zero (this prob-
ability is generally estimated through MC experiments that randomly draw each entry
from a continuous distribution).

For I × J matrices, the expected and typical ranks are equal to min{I, J}, whereas for
tensors they may differ, and there may be more than one typical rank in R (in C there is
only one typical rank). If only one typical rank exists, it occurs with probability one and
is called generic [27].

In general, only the weak upper bound on the rank of a third order tensor is known
[82]:

rank{M} ≤ min{IJ, JK, IK} (3.33)

A sufficient condition for the uniqueness of the CPD has been given by Kruskal for 3-way
arrays [81, 26, 21]:

2R + 2 ≤ κA + κB + κC (3.34)

and was later generalized to D-way arrays by [135]:

2R +D − 1 ≤
D∑
d=1

κd (3.35)

where κd denotes the Kruskal rank of the d-th factor matrix of the CPD. This condition
is also necessary for D = 2, 3 [75].

Definition 3.18. The Kruskal rank of a matrix A, κ(A), is the largest number κ such
that any combination of κ columns is full rank. Therefore, κ(A) ≤ rank{A}.
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A necessary condition for (3.35) to hold is that D ≥ 3 [88]. However, less stringent
conditions guaranteeing almost surely a unique solution can be found, for instance, in
[88, 26, 19]:

R(I + J +K − 2) < IJK (3.36)

i.e. if R < R0, or in [31]:

R ≤ K and R(R− 1) ≤ I(I − 1)J(J − 1)

2
(3.37)

Notice that (3.36) and (3.37) are both valid for D = 3.

Tensor uniqueness conditions are milder and more natural, compared to matrix factor-
izations, as they only require the components to be sufficiently diverse and their number
not too large. Sometimes prior knowledge of data properties, such as statistical indepen-
dence, sparsity, Vandermonde structure, non negativity and orthogonality can be used as
constraints to relax the uniqueness condition of CPD [21].

3.3.6. Advantages of the Tensor Formalism when D ≥ 3

We enumerate hereafter some of the advantages offered by multilinear algebra tools.

1. Tensors are multi-way arrays that admit a compact representation and are typi-
cally overdetermined, i.e. the number of equations is greater than the number of
unknowns. This enhances the robustness to noise and to missing data.

2. Tensor methods are able to directly operate on raw data, with no need to estimate
higher order statistics: they can be considered deterministic and can deal with data
of very short duration.

3. Flexibility in the choice of constraints, with less restrictive conditions than orthonor-
mality or triangularity.

4. Uniqueness of decompositions under milder assumptions.

3.4. Multilinear Normal Distributions

Let x be a I × 1 vector of random variables from a standard normal distribution, x ∼
N (0, I), and y = Ux its linear transformation through a non singular I × I matrix U .
Then, y ∼ N (0,Σ), where Σ = UUH.

Now let X be a I1× I2 random matrix, and Y = U 1XU
T
2 = X •1U 1 •2U 2 its bilinear

transformation through non singular matrices U 1 ∈ CI1×I1 and U 2 ∈ CI2×I2 . Then,
Cov[Y ] = Σ1 ⊗ Σ2, where Σj = U jU

H
j , j = 1, 2. This covariance is said separable, as

it can be divided into a row covariance Σ1 and a column covariance Σ2. If the elements
of X follow a standard normal distribution, then the bilinearly transformed matrix Y
follows a matrix zero mean normal distribution: Y ∼ N (0,Σ1 ⊗Σ2).

Let us increase the dimension and generalize this to random arrays. We introduce the
definition of tensor multivariate normal distribution [67]:
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Definition 3.19. We say that the multivariate random variable X ∈ CI1×I2×···×ID follows
an array Gaussian distribution of mean M and covariance C = Σ1⊗· · ·⊗ΣD ∈ CI1×I1⊗
· · · ⊗ CID×ID , a tensor of order 2D, and we write X ∼ AN (M,C)2, if

p (X |M,Σ1, . . . ,ΣD) = (2π)−I/2|C|−1/2exp

(
−
∥∥∥(X −M) • C−1/2

∥∥∥2
/2

)
(3.38)

with I =
∏D

d=1 Id, and C−1/2 = {Σ−1/2
1 , . . . ,Σ

−1/2
D }, and |C|−1/2=

∏D
d=1 |Σd|−I/(2Id).3

Definition 3.20. The covariance C of a multivariate random variable X ∈ CI1×I2×···×ID

is said separable, since it can be expressed as the outer product of matrices Σd: C =
Σ1 ⊗ · · · ⊗ΣD [67].

Definition 3.21. The I1 × I2 × · · · × ID array X ∼ AN (0, II1 ⊗ · · · ⊗ IID) is said to be
standard Gaussian.

If we apply a multilinear transformation {U 1, · · · ,UD} on tensor X =
∑R

r=1 a
(1)
r ⊗

· · · ⊗ a(D)
r , its CPD nature is not modified:

Y = (U 1, · · · ,UD) ·X =
R∑
r=1

U 1 a
(1)
r ⊗ · · · ⊗UD a

(D)
r (3.39)

Thus, the CPD is stable under multilinear transformations.

Similarly, we state the following results for the effects on the covariance structure after
multilinear transformation of a random multi-way array [67]:

Proposition 3.3. If Cov[X ] = Σ1 ⊗ · · · ⊗ΣD and Y = X •dG, then

Cov[Y ] = Σ1 ⊗ · · · ⊗Σd−1 ⊗
(
GΣdG

T
)
⊗Σd+1 ⊗ · · · ⊗ΣD (3.40)

This implies that the class of separable covariance arrays is stable under the action of
mode-d products. More generally,

Proposition 3.4. Let X ∼ AN (M, II1 ⊗· · ·⊗ IID) and {U 1, . . . ,UD} be a multilinear
transformation, and Σd = U dU

H
d . Then, the multilinear product

Y = (U 1, · · · ,UD) ·X has the following properties:

1. E[Y ] = (U 1, · · · ,UD) · E[X ]; Cov[Y ] = Σ1 ⊗ · · · ⊗ΣD

2. E[Y (d)] = U (d) E[X(d)] (U (D) � . . .�U (d+1) �U (d−1) � . . .U (1))T;
E[Y (d)Y

H
(d)] = Σd

∏
i 6=d trace{Σi}

3. E[vec{Y}] = (UD � · · ·�U 1)E[vec{X}]; Cov[vec{Y}] = ΣD � · · ·�Σ1

Moreover, the probability density of Y , vec{Y},Y (d), remain Gaussian.

2AN denotes Array Normal.
3We recall that, as in Definition 3.10, the multilinear product between a tensor X of order D and

a collection of matrices A = {A1, . . . ,AD} is defined as a set of D independent mode-d products:
X •A = X •1 A1 · · · •D AD.
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3.5. Algorithms for Exact Decompositions

We recall the expression (3.21) of the R-term trilinear model for the 3-way array M:{
M =

∑R
r=1 ςr ar ⊗ br ⊗ cr

Mijk =
∑R

r=1 ςr Air Bjr Ckr
(3.41)

We shall describe an algebraic approximate solution for the exact CPD4, though joint
diagonalization of two matrices.

3.5.1. Computation of the CPD through Joint Diagonalization

A direct decomposition algorithm has been proposed in [85]: it takes as inputs the K
matrix slabs M k = M ::k and the number of factors R, and returns the estimates of
matrices A, B and C. The uniqueness of such a solution is guaranteed provided that the
R column vectors corresponding to two of the ways are linearly independent, and the R
column vectors associated with the third way have the property that no two are collinear
(see below). The trilinear model (3.41) can be rewritten as K slices M k of size I × J ,
according to (3.24):

M k =
R∑
r=1

(ar ⊗ br)Ckr =
R∑
r=1

ar Ckr b
T
r = ADk(ck:)B

T (3.42)

where Dk(ck:) = Diag{ck:} and coefficients ςr were pulled in factor matrix B.
The following more constraining identifiability conditions are employed, which concur-

rently imply the Kruskal condition in Equation (3.34):

IC1 The columns of A are linearly independent i.e. κA = R.

IC2 The columns of B are linearly independent i.e. κB = R.

IC3 Every pair of columns of C is linearly independent i.e. κC = 2.

Each condition refers to one way of the array: the first two conditions state that there
must be at least R factors present in two ways. The third requires that no two factors
are linked by a proportional relationship along the other way.

The decomposition proposed in [85] exploits the comparison between the two following
linear combinations, for every vector of weights ρ ∈ RK :{

M (ρ) =
∑K

k=1 ρkM k

C(ρ) =
∑K

k=1 ρkDk(ck:)
(3.43)

As particular combination we denote M+ =
∑K

k=1M k and C+ =
∑K

k=1Dk(ck:). The
following result constitutes the theoretical basis of the decomposition algorithm (see [85]
for more details on its implementation):

Theorem 3.1. If conditions IC1 and IC2 hold, A and B have a left inverse and

1. the columns of matrix A are the eigenvectors of the matrix M (ρ)M †
+; the corre-

sponding eigenvalues are the diagonal entries of C(ρ)C−1
+ .

4Exact is intended as in the absence of additive noise
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2. matrix B can be obtained as B = (C−1
+ A

†M+)T;

3. the columns of matrix C can be obtained thanks to the relation Dk(ck:) =
A†M k(B

T)†.

Sketch of proof. From (3.42), we have M k = ADk(ck:)B
T, and M+ = AC+B

T. Hence
for any k, M kM

†
+A = ADk(ck:)C

−1
+ .

3.6. Tensor Approximation

3.6.1. An Approximation Problem in Additive Noise

In practice, we admit that observations X , related to the model M, are corrupted by an
additive noise N . In other words, the observation model becomes X = M+N , and the
goal is to fit (3.22) with the data. In any case, when the data are noisy, the fit alone cannot
determine the rank [75]. In practice, the presence of noise requires a fit of a multilinear
model of lower rank, i.e. with R < rank{X}, leading to an approximation problem. The
fact that the set of rank-R tensors is not closed when R > 1 may raise difficulties (see
Section 3.6.2 for the question of existence of a rank-R approximant). The reasons why
we cannot resort to an exact decomposition with R̃ = rank{X} is that generally, the real
rank R̃ is unknown and that decompositions with larger rank are not unique [27] (see
Section 3.3.5 for the question of uniqueness).

Data tensor have a normal distribution under the following assumption:

A 3.1. Additive noise follows an array normal distribution with zero mean: N ∼ N (0,C).
It follows that X ∼ N (M,C), where M has a CPD structure.

The approximation problem of a tensor X ∈ CI×J×K through a CPD with R compo-
nents is given by

min
X̂
‖X − X̂‖ = min

Â,B̂,Ĉ

∥∥∥∥∥X −
R∑
r=1

ς̂r âr ⊗ b̂r ⊗ ĉr
∥∥∥∥∥

2

C

(3.44)

where C indicates the covariance of tensor X , after defining the weighted tensor norm
‖X‖C = ‖C−1/2 •1 •2 •3 X‖.

The cost function (3.44) can be expressed via unfoldings X(1) ∈ CI×JK , X(2) ∈ CJ×IK ,
and X(3) ∈ CK×IJ :

minX̂(1)
‖X(1) − X̂(1)‖ = minÂ,B̂,Ĉ

∥∥∥X(1) − Â(Ĉ � B̂)T
∥∥∥2

C(1)
=

minX̂(2)
‖X(2) − X̂(2)‖ = minÂ,B̂,Ĉ

∥∥∥X(2) − B̂(Ĉ � Â)T
∥∥∥2

C(2)
=

minX̂(3)
‖X(3) − X̂(3)‖ = minÂ,B̂,Ĉ

∥∥∥X(3) − Ĉ(B̂ � Â)T
∥∥∥2

C(3)

(3.45)

where C(d) represents the covariance of the mode-d unfolding.
Alternatively, (3.44) can be expressed through vectorization x = vec{X}:

min
x̂
‖x− x̂‖ = min

Â,B̂,Ĉ

∥∥∥∥∥x−
R∑
r=1

ς̂r ĉr � b̂r � âr

∥∥∥∥∥
2

Σ(1)

(3.46)
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where Σ(1) represents the covariance of tensor vectorization x. Analogously, we define

the weighted matrix norm as ‖X‖Σ =
√

trace{XHΣ−1X}.
In the remainder, unless otherwise specified, we will make the following assumption:

A 3.2. Additive noise is white Gaussian, i.e. its variance C is diagonal: C = σ2II×J×K .
It follows that the noise of tensor unfoldings and vectorization also have a diagonal co-
variance: C(1) = σ2II×JK , C(2) = σ2IJ×IK , and C(3) = σ2IK×IJ ; Σ(1) = σ2IIJK .

Notice that, if Assumption A 3.2 is verified, the weighted norms ‖ · ‖C and ‖ · ‖Σ reduce

to simple Frobenius norms ‖X‖ =
√
< X ,X > and ‖X‖ =

√
trace{XHX}.

The Cramér-Rao Bound (CRB) for the CPD approximation problem in additive i.i.d.
complex circularly symmetric Gaussian noise was derived in [90, 149].

3.6.2. Existence and Degeneracies

For matrices, Eckart and Young [39] showed that a best rank-k approximation, with
k ≤ R, is given by the first k leading singular vectors of the SVD X =

∑R
r=1 ςr ur ⊗ vr.

This means that the rank-k approximation A minimizing ‖X −A‖2 is given by

A =
k∑
r=1

ςr ur ⊗ vr (3.47)

This result is not true for higher order tensors: the existence of the best rank-k ap-
proximant is not guaranteed. As a consequence, all the factors of a rank-k approximation
must be found simultaneously [75]. This problem leads to the definition of degeneracy :

Definition 3.22. A tensor is said degenerate if it may be approximated arbitrarily well
by a factorization of lower rank.

In the case of degeneracy, although reducing the approximation error, some rank-1
factors become close to proportional, and the magnitude of some terms goes to infinity,
with opposite signs. The best rank-k approximation is on the boundary of the space of
rank-k and rank-k+1 tensors. Since the space of rank-k tensors is not closed, the sequence
of arbitrarily better rank-k approximant tensors can converge to a tensor of rank k + 1.
Hence, the infimum of the approximation problem in (3.44) may never be reached; we
refer to [88, 27] for further details.

Imposing non negative constraints on the tensor model is a way to prevent degeneracy,
as cancellation of opposite diverging rank-1 tensors cannot occur when tensors have pos-
itive entries only [87]. On the other hand, if tensor entries are free and R > 1, one might
perform the minimization over a closed subset, or by adding a regularization term to the
objective function in (3.44) (see [128] for an example).

Alternatively, one might also adopt a closed superset, such as the adherence of rank-R
tensors. In light of this fact, it is useful to define the concept of border rank:

Definition 3.23. The border rank of a tensor X corresponds to the minimum number
of rank-1 tensors that approximate X with arbitrarily small nonzero error:

r̃ank{X} = min{r : ∀ε > 0 ∃ E s.t.‖E‖ < ε and rank{X + E} = r} (3.48)

We always have: r̃ank{X} ≤ rank{X}.
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3.6.3. Algorithms for Tensor Approximation

All the algorithms proposed in the literature aim at minimizing the fitting error in (3.44).
References can be found in [27]. Before resorting to tensor approximation algorithms, di-
mension reduction through HOSVD is often recommended, both for speed of convergence
and computational complexity, provided that the tensor dimensions are not smaller than
the rank R chosen for the decomposition [27]. In particular, since the core S of HOSVD
in (3.18) is all orthogonal, we can calculate the truncated HOSVD [32], which gives a
good starting point for the Alternating Least Squares (ALS). The truncation discards the
multilinear singular vectors and slices in the core tensors corresponding to the smallest
multilinear singular values.

Gradient descent

We can express the cost function in (3.44) through parameter vectorization, Υ = Υ(ϑ),
where ϑ = [vec{A}, vec{B}, vec{C}]T. Hence, the iteration is given by

ϑ(k + 1) = ϑ(k)− µ(k)∇Υ(ϑ)|ϑ=ϑ(k) (3.49)

where µ is the iteration dependent stepsize.
The gradient descent is the simplest algorithm, but with very poor convergence be-

haviour. However, it can be improved through Enhanced Line Search (ELS) or through
the Levenberg-Marquardt algorithm [27]. ELS in particular is more robust to the presence
of local minima and more efficient than simple gradient descent.

Alternating Least Squares

Alternating Least Squares (ALS) can be seen as an example of non linear LS problem,
where variables separate [27]. We present the ALS method only for D = 3 through
unfoldings (3.23). However, it is easily generalized to any D through (3.22).

The idea is to obtain a quadratic function of one factor matrix, while keeping the other
factor matrices fixed: for instance, for D = 3, we fix B and C, and we solve for A,
alternatively, until convergence of a given criterion. We have then the quadratic form

min
Â
‖X(1) − Â(C �B)T‖2 (3.50)

where we store weights in Â = ADiag{ς}. The solution to (3.50) is given by

Â = X(1)[(C �B)T]† =

X(1)(C
∗ �B∗)(CTC∗ �BTB∗)−1

(3.51)

Finally, we normalize the columns of Â to get A: ςr = ‖âr‖ and ar = âr/ςr. If (C�B)T

has full column rank, (3.51) is the LS solution of the over-determined linear system.
The ALS algorithm for generic D is described in Algorithm 3.1. The factor matrices

can be initialized through the HOSVD:

A(d) ← R leading left singular vectors of X(d) (3.52)

ALS is very easy to implement, but can take many iterations and is not guaranteed
to converge to a global minimum nor a stationary point. It may depend strongly on
initialization [75]. It has a satisfactory performance for high SNR, and for well separated
components (cf. Section 3.7 for a measure of separateness).
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Algorithm 3.1 CP ALS

1: Inputs:

• Initialize with A(d) ∈ CId×R, 1 ≤ d ≤ D.

• Data tensor X ∈ CI1×···×ID .

2: While convergence criterion not met, do k := k + 1
3: for d = 1, . . . , D do
4:

V ← A(1)TA(1)∗ � · · ·�A(d−1)TA(d−1)∗ �A(d+1)TA(d+1)∗ � · · ·�A(D)TA(D)∗

A(d) = X(d)(A
(D)∗ � · · · �A(d+1)∗ �A(d−1)∗ � · · · �A(1)∗)V −1

(3.53)
Normalize columns of A(d), storing their norms in ς

5: end for
6: Outputs:

• Factor matrices A(d), 1 ≤ d ≤ D.

• Coefficient vector ς.

7: End

Other methods

An interesting semi-algebraic solution for approximate CPD via simultaneous joint diag-
onalizations can be found in [121].

3.7. Physical Diversity and Coherence

As we will develop in Section 5.2, many physical phenomena can be modeled through two
fundamental concepts: sparsity (sum of simpler constituents) and separability (separation
of variables). The underlying model is then expressed through a D-partite target function
f : S1 × · · · × SD 7−→ C:

f(x1, ...,xD) =
R∑
r=1

ςr

D∏
d=1

φrd(xd), ςr ∈ C,∀r (3.54)

For D = 3, we have f : S1 × S2 × S3 7−→ C:

f(x,y, z) =
R∑
r=1

ςr ar(x) br(y)cr(z) (3.55)

If we discretize (3.55), we obtain a tensor array:{
M =

∑R
r=1 ςr ar ⊗ br ⊗ cr

Mijk =
∑R

r=1 ςr Air Bjr Ckr
(3.56)

with Mijk = f(xi,yj, . . . ,zk), Air = ar(xi), Bjr = br(yj) and Ckr = Cr(zk), and vectors
ar = [A1r, . . . , AIr]

T, br = [B1r, . . . , BJr]
T, and cr = [C1r, . . . , CKr]

T. Notice that the
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discretization of a sparse and separable function in (3.56) is equivalent to the CPD in
(3.21). Namely, separability of a continuous function is equivalent to the discrete concept
of rank-1 or decomposable tensor, when subsets {S1, . . . ,SD} are finite sets.

In the continuous case, the domain Ω of function f is generally constrained through
differentiability or integrability (C∞(Ω) or L2(Ω)), whereas in the discrete case Ω =
CI1×···×ID . The requirement D ≥ 3 for identifiability of CPD in (3.15) implies that our data
must be at least a 3-way array in the discrete case as in (3.56), and that the underlying
model must be a function of at least three variables in the continuous case, i.e. a D-
partite or multipartite function, where the arguments are partitioned in D blocks of
variables, as in (3.55). Therefore, we will refer to (3.55) and (3.56) as a rank-R multilinear
decomposition, i.e. the decomposition of a function into a linear combination of separable
functions.

When the domain of a function f is a Hilbert space with scalar product < ·, · >, we
can define an angular constraint that is going to ease the identification problem: the
uniqueness of the decomposition of Section 3.5 and the existence of the best rank-R
approximant of Section 3.6.

Definition 3.24. Let H be a Hilbert space with scalar product < ·, · >, and Φ ⊆ H be
a set of elements φi with unit norm. The coherence of Φ is defined as

µ(Φ) = sup
i 6=j
| < φi, φj > | (3.57)

If Φ is a finite set, Φ = {φ1, . . . , φR}, we can write

µ(Φ) = max
i 6=j
| < φi, φj > | (3.58)

The relative incoherence of subset Φ is then defined as

χ(Φ) =
1− µ(Φ)

µ(Φ)
(3.59)

It is clear that 0 ≤ µ(Φ) ≤ 1 (0 ≤ χ(Φ) ≤ ∞), and that µ(Φ) = 0 (χ(Φ) = ∞) iif
φ1, . . . , φR are orthonormal. Also, µ(Φ) = 1 (χ(Φ) = ∞) iif contains at least a pair of
collinear elements, i.e. ∃p 6= q, λ 6= 0 : φp = λφq.

Remark. When dealing with a D-partite function f , that can be modeled through
(3.22), we can define D coherences for the D subsets Φd = [φd1, . . . , φdR]:

µd = µ(Φd) (3.60)

For instance, when D = 3, we can define three coherences for the three subsets formed
by the R columns of factor matrices in (3.56), A = [a1, . . . ,aR], B = [b1, . . . , bR], and
C = [c1, . . . , cR], and we write µA = µ(A), µB = µ(B), and µC = µ(C):

µA = maxp 6=q
|aH
paq |

‖ap‖‖aq‖

µB = maxp 6=q
|bHpbq |
‖bp‖‖bq‖

µC = maxp 6=q
|cHpcq |
‖cp‖‖cq‖

(3.61)

[88] derived two important results for the identifiability of the CPD problem, based on

the definition of coherences µd of factor matrices A(d) = [a
(d)
1 , . . . ,a

(d)
R ]:

µd = max
p 6=q

|a(d)H
p a

(d)
q |

‖a(d)
p ‖‖a(d)

q ‖
(3.62)

The first result provides a sufficient condition for the uniqueness of the CPD [88]:
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Theorem 3.2. CPD in (3.22) is essentially unique, if coherences satisfy

D∑
d=1

1

µd
≥ 2R +D − 1 (3.63)

The second result provides a sufficient condition for the existence and the uniqueness
of the CPD approximation problem constrained through coherences [88]:

Theorem 3.3. If D ≥ 3, and if coherences satisfy(
D∏
d=1

µd

)1/D

≤ D

2R +D − 1
(3.64)

the coherence-bounded approximation problem

min
Â

(d)

∥∥∥∥∥X −
R∑
r=1

ς̂r â
(1)
r ⊗ · · · ⊗ â(D)

r

∥∥∥∥∥
2

C

s.t. µ
(
â(1)
r , . . . , â(D)

r

)
≤ µ̄d (3.65)

has an essentially unique solution.

These results have been used to derive a practical algorithm in [128].
The concept of coherence presents two main advantages compared to Kruskal rank:

1. Whereas Kruskal rank is NP-hard, coherences are trivial to compute. The Kruskal
rank κd of a factor matrix A(d) can be checked in polynomial time only when its
columns a

(d)
r are linearly independent, in which case κd = rank{A(d)}.

2. As coherences of factor matrices has a straightforward physical meaning, they are
more suitable as constraints to guarantee the existence of a solution to the approx-
imation problem (3.44). In fact, other artificial constraints such as orthogonality
would not often correspond to any physical reality. We will detail the physical
meaning of coherences in the framework of sensor arrays in Sections 4.5, 5.3.6 and
5.4.2.





4. Tensor Array Processing with
Multiple Rotational Invariances

4.1. Introduction

This chapter gathers concepts from all the previous ones, showing one of the main appli-
cations of tensor decompositions: joint localization and estimation of narrowband sources
in the far field. At first, signal subspace methods described in Chapter 2 were extended
to more than one dimension, as we briefly present in Section 4.2. Then, Section 4.3 intro-
duces the deterministic approach of [136], applying the Canonical Polyadic Decomposition
(CPD) directly to sensor arrays through multiple translations in space. The main results
around the identifiability of the model are addressed in Section 4.4. A physical interpre-
tation of coherences in the light of the present application to sensor arrays is discussed in
Section 4.5. Sections 4.6 and 4.7 detail the estimation of Directions of Arrival (DoAs) and
source signatures respectively. Finally, Section 4.8 summarizes the advantages of tensor
array processing.

We use all the physical assumptions of Section 1.2.2: A 1.1 (far field), 1.3 (narrowband),
A 1.4 (baseband), A 1.2 (band limited sources), A 1.5 (no dissipation), A 1.6 and A 1.7
(homogeneous, isotropic and non-dispersive medium).

4.2. Multidimensional Subspace Methods

When received signals are multidimensional or can be parameterized as a function of
multidimensional parameters, several high resolution techniques have been adapted to
tackle the increased complexity of the problem, such as 2D ESPRIT [164], DD ESPRIT
[60], and DD MUSIC [151]. In these extensions, the DD signals are stacked into matrices,
thus losing the multilinear structure that they often carry.

Low rank approximation through SVD has been extended to deal with multidimensional
data for the harmonic retrieval problem in [61, 122, 73, 129], through HOSVD in (3.18).
This approach can be used to improve the estimate of the signal subspace of any subspace
based parameter estimation scheme, such as Multiple Signal Characterization (MUSIC)
and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT),
whenever a multidimensional structure can be exploited.

The ESPRIT algorithm as described in Section 2.6 and proposed by [126] takes advan-
tage of only a single displacement invariance in the acquisition system. However, many
configurations, such as ULAs or rectangular arrays, possess multiple such invariances.
The questions of an optimal choice of subarrays and of a unique solution that exploits
all possible invariances simultaneously are addressed in [142], as a natural extension of
the TLS ESPRIT algorithm. This led to the algorithm Multiple Invariance ESPRIT (MI
ESPRIT) with collinear displacements.

In a similar fashion, root-MUSIC of [5] was extended to multiple parallel ULAs in [109].
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4.3. CPD through Multiple Invariances

The ESPRIT algorithm involves two identical arbitrary subarrays, displaced from each
other: this structure induces a rotational invariance in the baseband data, that can be
exploited to recover DoAs, with no need for subarray calibration (see Sections 2.6 and 4.6
for details). For multiple parameter estimation, however, one needs invariances in 2D, and
ESPRIT must be applied separately to each dimension, so that the problem of pairing
azimuth and elevation estimates remains [164]. The same is true for higher dimensions
[60, 61].

[136] extended the shift invariance of the subarray to more than two displacements:
suppose that the acquisition system contains M displaced identical subarrays of L sensors
each. We denote δm ∈ R3 the location of the m-th subarray within the acquisition system,
as the subarray space shifts can be arbitrarily chosen, and not strictly collinear as in MI
ESPRIT. In this formulation, ESPRIT corresponds to M = 2 in Section 2.6. For instance,
Figure 4.1 shows M = 3 displaced identical subarrays of L = 4 sensors each.

x

y

reference subarray
δ1

δ2

source

θ

Figure 4.1.: Acquisition system for L = 4,M = 3 - space shift diversity

If we stack slices corresponding to different subarray outputs, we obtain:
X1

X2
...

XM

 =


J1

J2
...
JM

 ĀST +N =


AΦ1

AΦ2
...

AΦM

ST +N (4.1)

where S = [s1, . . . , sR] is the T ×R source signature matrix as in (1.57), whereas
A = [a(θ1), . . . ,a(θR)] is the L × R subarray steering matrix as in (1.11), and N refers
to additive noise. For more details, cf. Chapter 1 for notations and assumptions. Jm is a
L × Ltot selection matrix that extracts L rows corresponding to the m-th subarray from
the global steering matrix Ā, and Φm ia a diagonal R × R matrix depending on source
parameters:

Φm = Diag{e−ωδTmd(θ1)/c, . . . , e−ωδ
T
md(θR)/c} (4.2)
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As for MI ESPRIT, the total number of sensor Ltot is constrained by

L+M − 1 ≤ Ltot ≤ LM (4.3)

which covers the overlapping case (with L−1 shared sensors) by the left equality and the
non overlapping case by the right equality.

The inverse problem for array processing with multiple invariances becomes

Problem 4.1. Given noisy subarray slicesXm, and the number of sources R, find steering
matrix A, space shift diagonal matrices Φm, and source signatures matrix S.

If B is the M × R matrix whose m-th row bm: corresponds to the diagonal of Φm, its
elements are given by Bmr = eωδ

T
md(θr)/c. From (4.1), the m-th subarray output is then

expressed as
Xm = ADm(bm:)S

T, 1 ≤ m ≤M (4.4)

where Dm(bm:) = Diag{bm:} has bm: as its diagonal. Since (4.4) describes a trilinear
model (cf. the slice representation (3.24) in Section 3.3.3), it is straightforward to express
it through CPD, after staking all the subarray Xm as lateral slices X :m: of a L×M × T
tensor X : {

X =
∑R

r=1 ar ⊗ br ⊗ sr + N
X`mt =

∑R
r=1A`r Bmr Str +N`mt

(4.5)

where rank-R corresponds to the number of sources, supposed known, thanks to Assump-
tion A 1.10, and N refers to additive noise. The physical meaning of the three factor
matrices is given through their elements:

A`r = exp{−ωτ`(θr)} refers to space diversity

Bmr = exp{−ωζm(θr)} refers to space shift diversity

Str = sr(t) refers to time diversity

(4.6)

where τ`(θr) = pT` d(θr)/c denotes the time delay at sensor ` w.r.t. the reference sensor,
and ζm(θr) = δTmd(θr)/c denotes the time delay at subarraym with respect to the reference
subarray.

Thus, through CPD formulation, Problem 4.1 becomes

Problem 4.2. Given noisy tensor X , and the number of sources R, find steering matrix
A, space shift matrix B, and source signatures matrix S.

In the remainder, we will make the following assumption around the deterministic
nature of our model:

A 4.1. DoAs θr ∀r as well as source complex envelopes sr(t) ∀r are considered determin-
istic.

4.3.1. CPD Factors, Normalization and Scaling

After ensuring the essential uniqueness of the third order tensor, we need to fix (D− 1)R
scale and permutation ambiguities, where D = 3 (cf. Section 3.3.4 for the definition of
essential uniqueness).

As for the scale indeterminacy, we need the following hypotheses:
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A 4.2. The first sensor (` = 1) is taken as origin,
i.e. p1 = 0 and A1r = exp

{
−2π

λ
(pT1d(θr))

}
= 1.

A 4.3. The sensor gains g`(θ) are supposed nonzero and known, and then compensated
for (calibration)1, which is equivalent to the omnidirectional case g`(θ) = 1∀`. Section 5.4
will deal with generic gain sensors as a new form of physical diversity.

A 4.4. The first subarray (m = 1) is taken as origin,
i.e. δ1 = 0 and B1r = exp

{
−2π

λ
(δT1d(θr))

}
= 1.

For practical purposes and without restricting the generality, we have preferred to
impose the first row of matrices A and B to be formed of ones (in fact, as justified in
Assumptions A 4.2, 4.3 and A 4.4, p1 = 0, δ1 = 0 and g`(θ) = 1 ∀`), and to pull column-
wise the remaining scaling coefficients, {ςrA1rB1r}, into matrix S. More precisely, we fix
all scale indeterminacies through the following transformation:

(âr, b̂r, ŝr, ςr)←−
(
ar
A1r

,
br
B1r

, ςr A1r B1r sr, 1

)
(4.7)

This choice permits to compute performance bounds on the retrieval of CPD factors in
(4.5) more easily.

On the other hand, we will resolve the issue of permutation indeterminacies only for
the assessment of performance in comparison with the ground truth for the case of com-
puter simulations in the following chapters, using a greedy LS matching algorithm (cf.
Section 3.3.4). For example, for matrix estimate Â, we have

Π̂ = min
Π

(ÂΠ−A)2 for any R×R permutation matrix of the columns of Â,Π (4.8)

and for DoA estimate θ = [θ1, . . . , θR], we have

Π̂ = (θ̂Π− θ)2 for any R×R permutation matrix of the elements of θ̂,Π (4.9)

Note that after fixing the scaling indeterminacies, the number of remaining free param-
eters is now (L+M +K − 2)R [128] as stated in Section 3.3.4 for the general DD case,
and not (L+M +K − 3)R as assumed in [136].

4.4. Identifiability of the CPD Model

For identifiability, we mean uniqueness of all spatial source parameters as well as tem-
poral signatures, given a finite set of measurements in the absence of noise, up to trivial
indeterminacies of permutations and scale (see Section 3.3.4). We will show that the
uniqueness of the angular parameter estimates is closely related to that of the CPD factor
matrices. Identifiability conditions on DoAs for ESPRIT and MI ESPRIT are illustrated
and compared in [142].

[136] extended MI ESPRIT to arbitrary displacements, through tensor CPD, as we
detailed in Section 4.3, and also stated the following identifiability condition, based on
the sufficient condition for CPD uniqueness in (3.34):

1This operation may change the noise spatial distribution.
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Proposition 4.1. If

κA + κB + κS ≥ 2R + 2 (4.10)

then the CP model in (4.5) identifiable, i.e. the factorization of the model into D = 3
factor matrices is essentially unique.

The concept of Kruskal rank of steering matrices A and B is related to the concept of
rank ambiguity [136]:

Definition 4.1. A manifold A(θ) is free of rank-ν ambiguities if every ν + 1 steering
vectors corresponding to distinct DoAs drawn from the manifold are linearly independent.

As for the identifiability, we can state that

Proposition 4.2. Let ν̄ be the maximum value satisfying (4.1). Then, the associated
array can resolve up to ν̄ uncorrelated sources.

From the definition (3.18) of Kruskal rank, we have κA ≥ νA + 1 and κB ≥ νB + 1.
We will now address the question of identifiability in two distinct cases: uncorrelated

and correlated sources.

4.4.1. Incoherent Sources Scenario

Impinging sources are said incoherent if they are not fully correlated (see Section 1.3.1
for the definition of source correlation).

If S is fat (T ≥ R) and full rank (R), the sufficient condition (4.10) becomes

κA + κB ≥ R + 2 (4.11)

which is always satisfied if different sources have different DoAs, thanks to the assumption
of manifold injectivity A 1.18. Thus, we obtain the following sufficient condition for
identifiability:

νA + νB ≥ R (4.12)

that we call subarray synthesis, since the resolving powers of the reference subarray and
of the displacement subarray add up.

In the case of R linearly independent sources, κS = min{R, T}, and (4.10) becomes

κA + κB + min{R, T} ≥ 2R + 2 (4.13)

Therefore, R sources can be identified with at least T = 2 time samples, provided A and
B are both tall (L,M ≥ R) and full rank (R). This allows the tensor formulation to deal
with very short data samples, as we will state in Section 4.8.

A necessary condition for identifiability when S is full column rank is given by [90]:

Proposition 4.3. CPD is identifiable only if A�B has full column rank.

The following result ensuring the previous necessary identifiability condition is pre-
sented in [57]:

Proposition 4.4. If either rank{A}+κB ≥ R+1 or rank{B}+κA ≥ R+1, then A�B
has full column rank.
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This shows that a full rank Khatri-Rao matrix can be generated with two rank-deficient
matrices, thus offering a signal decorrelation of the same kind as spatial smoothing [132]
or the polarization smoothing algorithm in [112] (see Section 5.3.5 for details). Through
this result, [57] derived a more relaxed sufficient condition:

Theorem 4.1. If S is full column rank, and κA, κB ≥ 2, a sufficient condition for identi-
fiability is given by

rank{A}+ κB ≥ R + 2 or rank{B}+ κA ≥ R + 2 (4.14)

which reduces to Kruskal condition in (4.11) if rank{A} = κA or rank{B} = κB.

From theorem 4.1 we derive the condition for uniformly distributed subarrays, i.e. when
matrix A is Vandermonde with distinct non zero generators (given by R spatially distinct
sources):

min{L,R}+ κB ≥ R + 2 (4.15)

Analogously, if the space-shifts are uniformly distributed, matrix B is Vandermonde and

κA + min{M,R} ≥ R + 2 (4.16)

4.4.2. Coherent Source Scenario

When Rc ≤ R sources are fully correlated or coherent (see Section 1.3.1 for the definition
of source correlation), the source covariance matrix is singular. However, in the tensor
framework, through Assumption 4.1, sources signatures are deterministic. Hence, we want
to assess the link between this stochastic concept (coherent sources) and its deterministic
and algebraic counterpart:

Proposition 4.5. Through the Cauchy-Schwarz inequality, the singularity of RS implies
that with probability one the corresponding Rc columns of S are collinear [4].

Proof for R = 2. If there are R = 2 sources, covariance matrix RS is the expected
value RS = E[ŘS]:

ŘS = SHS =

[
sH1 s1 sH1 s2

sH2 s1 sH2 s2

]
(4.17)

As a covariance matrix, it is semi-definite positive: ŘS � 0 ⇐⇒ |ŘS| = (sH1 s1)(sH2 s2) −
(sH1 s2)2 ≥ 0, which coincides with the Cauchy-Schwarz inequality. If ŘS is singular, its
determinant cancels and equality holds:

|ŘS| = (sH1 s1)(sH2 s2)− (sH1 s2)2 = 0 (4.18)

This holds if and only if source are collinear: s2 = αs1.
On the other hand, if sources are not fully correlated, the covariance is positive definite:

ŘS � 0 ⇐⇒ |ŘS| > 0, and then the Cauchy-Schwarz result holds with strict inequality:
(sH1 s2)2 < (sH1 s1)(sH2 s2). �

When dealing with tensors, we find this algebraic characterization of coherence more
useful, as it is directly connected to Definition (3.18) of Kruskal rank and Definition (3.24)
of coherence. In particular, the Kruskal rank of a matrix with Rc ≥ 2 collinear columns
is always one. Hence, the sufficient condition for CPD identifiability in (4.10) is never
verified, as κS = 1:

κA + κB + 1 ≤ 2R + 1 =⇒ κA + κB + 1 < 2R + 2 (4.19)
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However, there exist solutions to the problem of coherent sources to restore the identi-
fiability of tensor CPD:

1. More strict uniqueness conditions ensure identifiability when Rc sources are coher-
ent, at the price of rotational indeterminacies affecting the corresponding columns
of A and B [11].

2. If the tensor presents a particular structure, such as Vandermonde, along one or two
modes, spatial smoothing techniques can be applied [137, 132] (cf. Section 2.9). If
sensors have multiple components, as in vector sensor arrays, we refer to [112] for a
polarization smoothing algorithm.

When sources are closely spaced or partially correlated, the coherence structure de-
scribed in Section 3.7 is strongly affected, thus impairing the problem of the existence of
a solution. In this case, if the SNR is low, working in the subspace domain with CPD
can give better results [136]. This difference is analogous to that between deterministic
and stochastic ML, to which Weighted Subspace Fitting is equivalent asymptotically for
proper weights. Weights can also be applied to the data domain formulation, and a few
initialization of the ALS can help dealing with local minima.

4.5. Physical Meaning of Coherences

In Section 3.7, we defined the concept of coherence of a factor matrix and linked it to
the identifiability of CPD. For the CPD with space, space shift and time diversities of
the current chapter, the coherences of factor matrices A and B have a very clear and
interchangeable physical meaning. From (3.61) and (4.6), we express the coherence of
factor matrix A:

µA = max
p 6=q

|aH
paq|
L

(4.20)

[88] shows the link between this angular measure and the angular separation between
DoAs, through the following theorem, based on Definition 1.1:

Theorem 4.2. If sensor position vectors {p1, . . . ,pL} are resolvent with respect to three
linearly independent directions, then ∀p, ∀q

‖aH
paq‖ = 1⇐⇒ d(θp) = d(θq) (4.21)

The condition of resolvent sensors is not very restrictive, as sensor arrays usually have
elements separated by less than half wavelength (see Section 1.2.3). Theorem 4.2 means
that the uniqueness of factor matrix A = [a1, . . . ,aR] is equivalent to the identifiability
of DoAs {d(θ1), . . . ,d(θR)}. Thus, the coherence of space factor matrix A is a measure
of the minimal angular separation between sources, viewed from the reference subarray.

Similarly, the coherence of space shift factor matrix B = [b1, . . . , bR] is a measure of
the minimal angular separation between sources, viewed from the subarray translations:

µB = max
p 6=q

|bHp bq|
M

(4.22)

The third coherence of source factor matrix S is a measure of the maximal correlation
coefficient between sources:

µS = max
p 6=q

|sHp sq|
‖sp‖‖sq‖

(4.23)
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Thus, uniqueness and existence conditions in (3.63) and (3.64) of Section 3.7 can be
interpreted in a physical sense. In particular, the best rank-R approximation exists if
sources are not too closely spaced, and their temporal signatures are not too correlated.
Thus, we can separate sources with arbitrarily high correlation provided their DoAs are
different enough [88].

As an example, coherence constraints of Theorem 3.3 ensuring the existence of a rank-R
approximation were implemented in [128], through a differentiable penalty in a descent
algorithm. The role of coherences in problem conditioning is also pointed out in [28].

4.6. DoA Estimation

The DoA estimation can be performed according to a two-step procedure: at first, factor
matricesA,B andC are estimated through one of the methods described in Section 3.6.3,
such as the ALS; then, DoAs are estimated either from A, or from B, or from both. ALS
can be initialized through the algebraic solution of [85] detailed in Section 3.5.1, or by
a standard ESPRIT algorithm when possible, or randomly: in any case, the conditional
updates of any given matrix in Algorithm 3.1 guarantees a monotonous convergence to
an at least local minimum, but it cannot worsen the fit.

Our knowledge on the acquisition system can be of three kinds:

1. Subarray manifold A(θ) unknown, displacement manifold B(θ) known. As it is
generally assumed in ESPRIT approaches [126, 142], the reference subarray is not
calibrated, i.e. sensor positions p`, ` 6= 1 are unknown. However, space shifts
δm ∀m are known. Hence, DoA estimation is derived from B. In this case, at least
one displacement must respect spatial sampling conditions: for instance, for linear
displacements in 1D, ∃m : |δm| ≤ λ/2.

2. Subarray manifold A(θ) known, displacement manifold B(θ) unknown. As it is
assumed in [128], space shifts δm,m 6= 1 are unknown. However, sensor positions
within a subarray, p` ∀` are known. Hence, DoA estimation is derived from A. In
this case, we will suppose that the distance between successive sensors is less than
or equal to λ/2.

An example of this scenario is given by sonar buoys freely floating on the surface,
but equipped with a device that maintain their orientation towards North. In this
case, the shape of each subarray is known but relative displacements are not known.
Other examples include geophysical measurements in difficult conditions, such as
on glaciers.

3. Both subarray manifold A(θ) and displacement manifold B(θ) are known. In this
case, DoAs can be recovered jointly from A and B. The full knowledge of the whole
acquisition system is also assumed by the MUSIC algorithm, although without the
space shift invariance structure.

Cases 1) and 2) are actually interchangeable, as they draw their expression from similar
kinds of space diversity, which translates into a very similar expression for matrices A and
B in (4.6). For instance, the acquisition system in Figure 4.1 can be seen as the set of 3
displaced identical subarrays of 4 sensors, or as the set of 4 displaced identical subarrays
of 3 sensors.
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Alternatively, instead of an unconstrained ALS, one could impose some knowledge
about the array configuration through parametric or non parametric constraints upon the
columns (i.e. source-wise) of any of the three matrices (A,B,S). Another strategy might
be to apply a gradient descent for a cost function, directly parameterized with respect to
the DoA, and to initialize it with the ALS two steps algorithm. However, this is known
to produce very little improvement and have a very high computational burden.

The unconstrained two-step approach that we adopt in this thesis, though suboptimal,
is very simple to implement. Its computational cost is mainly due to ALS iterations
in the first step, and, for more complex array geometries as in Section 4.6.1, to the
exhaustive search on a grid of angles in the second step. In particular, we will detail case
2) (i.e. sensor positions known within a subarray, but space shifts unknown), as it can
be generalized easily to cases 1) and 3). If we only know sensor positions p`, we will use
matrix Â, whereas if we only know subarray translations δm, we will use matrix B̂ for
DoA estimation. We will detail in particular the former case, as both cases are indeed
interchangeable.

4.6.1. General 3D DoA Estimation

The array configuration in 3D is described by the L × 3 sensor position matrix P =
[p1, . . . ,pL]T = [px,py,pz], with rows p` = [px` , p

y
` , p

z
` ]. Analogously, the space shift

structure is described by the M ×3 displacement matrix ∆ = [δ1, . . . , δM ]T = [δx, δy, δz],
with rows δm = [δxm, δ

y
m, δ

z
m]. For scalar wavefields in 3D, the parameter vector to estimate

includes the azimuth and the elevation: ϑ = [θT,ψT]T = [θ1, . . . , θR, ψ1, . . . , ψR]T ∈ R2R

(cf. Section 1.7). Once we recover factor matrices A and/or B through CPD, we estimate
DoAs column-wise, i.e. source-wise, ∀r, 1 ≤ r ≤ R:

(θ̂r, ψ̂r) = arg minθ,ψ

[
(âr − ar(θ, ψ))H(âr − ar(θ, ψ))

]
(θ̂r, ψ̂r) = arg minθ,ψ

[
(b̂r − br(θ, ψ))H(b̂r − br(θ, ψ))

]
(θ̂r, ψ̂r) = arg minθ,ψ

[
(âr − ar(θ, ψ))H(âr − ar(θ, ψ))

]
+
[
(b̂r − br(θ, ψ))H(b̂r − br(θ, ψ))

]
(4.24)

4.6.2. 2D DoA Estimation

In 2D, i.e. when sources and subarrays are coplanar, thanks to Assumption A 1.8, p` =
[px` , p

y
` ] and δm = [δxm, δ

y
m]: thus (4.6) becomes
A`r = exp

{
−ω

c
(px` cos θr + py` sin θr)

}
Bmr = exp

{
−ω

c
(δxm cos θr + δym sin θr)

}
Str = sr(t)

(4.25)

In order to avoid phase unwrapping issues, we form the quotient between two successive
subarrays, as in [128]:

A`+1,r

A`,r
= exp

{
−ω

c

[
(px`+1 − px` ) cos θr + (py`+1 − py` ) sin θr

]}
(4.26)

Taking the log, we obtain:

(px`+1 − px` ) cos θr + (py`+1 − py` ) sin θr = 
c

ω
ln

(
A`+1,r

A`,r

)
(4.27)
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Hence, for each source r, 1 ≤ r ≤ R, we obtain a linear system:

M

[
cos θr
sin θr

]
= vr (4.28)

with M = [p2:L − p1:L−1] and vr =  c
ω

ln(A2:L,r �A1:L−1,r). If the LS solution of (4.28)

wr = M †vr has norm close to 1, i.e. ‖wr‖ ∈ [0.8, 1.2], then the DoA estimation of the
r-th source is given by [

cos θ̂r
sin θ̂r

]
=

wr

‖wr‖
(4.29)

However, if the norm ‖wr‖ is not close to 1, (4.29) has revealed to be inaccurate [128],
and we must adopt an exhaustive search as in (4.24).

4.6.3. 1D DoA Estimation for ULAs

In 1D, i.e. when the array is linear and p` = p`, the steering elements take the form

A`r = exp
{
−ω

c
p` cos θr

}
(4.30)

In particular, if the reference subarray is a ULA, this becomes

A`r = exp
{
−ω

c
p0(`− 1) cos θr

}
(4.31)

Matrix A can be considered as a Vandermonde matrix in the absence of noise if the an-
tenna is ULA, with kernel ur = exp

{
−ω

c
p0 cos θr

}
. Direction of arrival is then estimated

through a LS solution or a more robust TLS solution.
Each r-th column of the Vandermonde matrix contains multiple information about the

direction of arrival θr. If two overlapping blocks are taken, a = ( 1 ur · · · uL−2
r )T

and a = ( ur u2
r · · · uL−1

r )T, the following relationship should hold in the absence of
noise:

ura = a (4.32)

The LS solution is given by

ûLS
r = (aHa)−1aHa =

aHa

‖a‖2
(4.33)

The TLS solution theoretically yields a better solution, especially for low SNR. It is given
by the minimization problem

ûTLS
r = min

α,β
‖ αa− βa ‖2, s.t. ‖ [α β] ‖ = 1 (4.34)

where αa− βa = [a| − a]

[
α
β

]
. Thus,

ûTLS
r = min

α,β
[ α∗ β∗ ]

[
‖a‖2 −aHa
−aHa ‖a‖2

] [
α
β

]
(4.35)

The corresponding solution is given by ûr = −V12V
−1

22 , where matrix V derives from the
SVD of augmented matrix [a|a] = USV T.

Once ûr is computed, another operation is necessary to estimate the r-th angle of arrival.

The latter can be obtained as θ̂r =arccos
[
− c
ωp0

angle(ûr)
]

=arccos
[
−Ω
π

angle(ûr)
]
, where

Ω = λ
2p0
≥ 1 denotes the oversampling factor, and angle(·) is the phase angle determination

in [−π, π].
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Remark If ûr is badly estimated, it may happen that | cos θ̂r| is larger than 1. This
occurs if angle(ûr) falls outside the interval [−π/Ω, π/Ω]. Should this be the case, for
large L it can be helpful to redefine a and a as:

a = ( 1 ur · · · uL−3
r )T

a = ( u2
r u3

r · · · uL−1
r )T

The relation between ûr and θ̂r then changes and angle(ûr) just needs to belong to the
interval [−2π/Ω, 2π/Ω], and the value of | cos θ̂r| will be smaller than 1 as long as Ω ≤ 2,
that is, as long as p0 ≥ λ/4.

Remark The algorithm proposed in [58], named Structured Least Squares, can also
achieve a significant improvement of the estimation accuracy by preserving the invari-
ance structure in (4.32).

4.7. Source Signature Extraction

As for source complex envelopes, we make the following assumption:

A 4.5. Signals sr,∀r are considered as deterministic.

Tensor CPD also delivers source complex envelopes for free, without any further estima-
tion step, through the third factor matrix S of (4.6). After fixing scaling indeterminacies
through transformation (4.7), the r-th source signature is given by

ŝr = ςr A1r B1r sr (4.36)

If signal copy is the main goal of the CPD, then we can fix the permutation ambiguity
by using some a priori or embedded information, such us known DoAs or user ID bits in
telecommunications, respectively [136].

4.8. Advantages of Tensor Decomposition for Sensor
Arrays

We present a short list of the advantages of the tensor formalism for array processing:

1. Tensor methods do not require the estimation of the data covariance matrix. Thus,
we can relax the assumption of stationarity over sufficiently long observation times.
According to identifiability condition in (4.13), tensor CPD can handle very short
data samples. In this context, it makes sense to consider source signatures as de-
terministic.

2. According to identifiability condition (4.11), tensor CPD can separate more sources
than sensors in a subarray.

3. Unlike MUSIC, we can relax our knowledge on the sensor response and positions of
the whole acquisition system: we can either not require the calibration information
on each subarray, or on the space shift structure (see Section 4.6 for details).



82 4. Tensor Array Processing with Multiple Rotational Invariances

4. Tensor methods jointly estimate steering matrices and source complex envelopes,
without any need for further estimation or coupling step.

However, since the CPD model must be separable in space and space shift, it cannot
handle subarrays of different size, nor subarrays rotated one from another.
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5. Multiple Diversity Array Processing

5.1. Contribution

This chapter proposes an adaptation of the tensor formalism to other physical diversities
(in addition to space shift in Chapter 4), such as polarization and directivity gains. It
is based on the ideas developed in two articles of ours: a French conference [115] for
polarization diversity and an international journal [116] for gain pattern diversity.

Section 5.2 introduces the concept of physical diversity. Polarization diversity for tensor
analysis is the subject of Section 5.3, whereas directivity gain diversity is presented in
Section 5.4.

The tensor formalism has already been extended to describe vector sensor arrays in [57,
56]. This chapter proposes and evaluates a procedure for tensor estimation of polarized
sources, and it compares related performance to the Cramér-Rao Bound (CRB) and to
the MUSIC algorithm.

On the other hand, in Section 5.4 directivity gain patterns are treated as a physical
diversity for tensor array processing, replacing space diversity, in addition to time and
space shift diversities. We show that the tensor formulation allows to estimate Directions
of Arrival (DoAs) under the assumption of unknown gain patterns, improving the perfor-
mance of the omnidirectional case. We propose a trilinear model where one dimension of
the multi-way data array is fully provided by gain patterns, allowing tensor approaches
even when space diversity is missing due to sensor overlap.

As detailed in Chapter 4, the rotational invariance of [126] was extended to multiple
space shift translations through a subspace fitting approach in [142] for collinear space
shifts, and a deterministic tensor approach in [136] for arbitrary space shifts. In this
scenario a reference subarray (representing space diversity through sensors located at
different positions) is repeated through multiple translations (representing space shift
diversity through displaced subarrays). In [136, 126, 142], gain patterns have not been
exploited to improve the estimation performance. Indeed, although they may be unknown,
gain patterns contain important spatial information about impinging sources and their
inclusion into the model may help the underlying low rank approximation problem.

5.2. Physical Diversities

In many cases, the superposition principle applies in practical problems, provided the
nonlinearity domain is not reached (turbulence, saturation, etc). This allows us to model
physical phenomena as linear combinations of a few simpler ones. In this chapter, we
are interested in the decomposition of a multivariate function into a sum of functions
whose variables separate. In particular, this simplified model is relevant in narrow-band
antenna array processing in the far-field, which we consider in the present framework, as
in Chapter 4.

The tensor model is based on the concepts of parsimony and separability [88]:
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1. Parsimony expresses a function g as a finite sum of simpler constituents:

g =
R∑
r=1

ςr hr (5.1)

2. Separability decouples a function h that depends on multiple factors into a product
of simpler constituents φd, d = 1, . . . , D, each one depending only on one factor xd:

h(x1, ...,xD) =
D∏
d=1

φd(xd) (5.2)

In the field of array processing for source separation and DoA estimation, R refers to the
number of sources impinging on an array, and D to the tensor order, i.e. the dimension
of multilinearity within the model:

g(x1, ...,xD) =
R∑
r=1

ςr

D∏
d=1

φrd(xd), ςr ∈ C,∀r (5.3)

Tensor decomposition derives from the need to solve the corresponding inverse problem,
i.e., the identification of factors φrd starting from noisy measurements of g : S1 × · · · ×
SD 7−→ C: as it was illustrated in Section 4.6 through space and space shift diversities,
the DoA can be extracted after the resolution of this problem. For this purpose, the
measurements are stored in a multidimensional array and decomposed into a sum of rank
one terms [26, 136].

The multidimensional character of tensor models requires the presence of at least D = 3
types of diversity. We review below some diversities that may be available in antenna array
processing.

1. Time diversity : Every base-band signal s is a function of time t. Moreover, it may
be stationary or transient. Thus, recorded signal g(1) is given by the sum of R
simultaneous sources:

g(t) =
R∑
r=1

sr(t) ⇐⇒ gt =
R∑
r=1

Sr[t], (5.4)

The right equation represents a discretization of the left one, i.e. Sr[t] corresponds
to impinging wave sr(t) after sampling, at discrete instants t = 1, . . . , T , as recorded
by a single sensor.

2. Space diversity. The basis of traditional array processing consists in performing a
spatial sampling, in addition to the temporal sampling, through multiple sensors
located at different positions (cf. Chapter 1). According to assumptions A 1.1, A
1.3 and A 4.2

g(p, t) =
R∑
r=1

exp

{
−2π

λ
pTdr

}
sr(t)

⇐⇒ G`t =
R∑
r=1

Ar(p`) Sr[t]

(5.5)
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where ` = 1, . . . , L refers to the sensor cardinality with respect to the reference, λ
is the observed narrowband wavelength, p ∈ R3 is the recording position within the
acquisition system and dr is the unit vector pointing to the r-th source1.

3. Space shift diversity (refer to [126] for one rotational invariance and to [136] for
multiple translations):

g(p, δ, t) =
R∑
r=1

exp

{
−2π

λ
pTdr

}
exp

{
−2π

λ
δTdr

}
sr(t)

⇐⇒ G`mt =
R∑
r=1

Ar(p`)Br(δm) Sr[t]

(5.6)

where m = 1, . . . ,M is the index of the translation with respect to the reference
subarray, and δ is the translational invariant repeating the array configuration over
space. ESPRIT may be seen as a particular case of this diversity, when translation
vector δ relates M = 2 identical subarrays, whereas the tensor model itself can be
applied to M > 2 identical configurations (cf. Chapter 4).

4. Polarization diversity. Expressions (5.4), (5.5) and (5.6) refer to one-component
(1C) sensors, but can be generalized to three-component (3C) sensors as well (cf.
Section 1.4). Moreover, in the latter case, one can take advantage of an additional
diversity related to polarization, as introduced in Section 1.4:

g(t) =
R∑
r=1

k(ϑr) sr(t) ⇐⇒ Gpt =
R∑
r=1

Kp(ϑr) Sr[t] (5.7)

where k(·) is the polarization response vector of the considered sensor and ϑr =
[θr, ψr, αr, βr]

T contains the polarization information of the r-th impinging wave-
field with respect to the sensor position: the azimuth θ, the elevation ψ, the orien-
tation angle α and the ellipticity angle β. In particular, the azimuth θ refers to the
DoA when assumption A 1.8 is made. Discrete index p ∈ {1, 2, 3} refers to one out
of three components of the 3C sensor vector k.

5. Repetition diversity is a possible extension of dimensionality whenever we deal with
multiple events describing the same physical phenomenon. The additional assump-
tion of a linear relation between events from the same cluster has to be made, so
that multiple events describing the same physical phenomenon are related to each
other by a complex coefficient:

g(j, t) =
R∑
r=1

er(j) sr(t) ⇐⇒ Gjt =
R∑
r=1

er(j) Sr[t] (5.8)

where discrete index j = 1, . . . , J is the cardinality of the event of the cluster (1 being
the first recorded occurrence and J the last one), and er(·) a (generally unknown)
complex coefficient. Repetition diversity has been already used in other contexts,
in [97] for instance.

1We remind that, for sake of simplicity, we refer to both the proper direction of arrival dr and the angle
of arrival θr with the acronym DoA (see Section 1.7).
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6. Frequency diversity. Denote by F{·} the Fourier Transform (FT) operator applied
to received signals in the time window t ∈ [0, T ]. Then, in frequency domain, we
write

g(ω) =
R∑
r=1

Sr(ω) ⇐⇒ gq =
R∑
r=1

Sr(ωq), (5.9)

where frequency 0 < ωmin ≤ ωq ≤ ωmax < π, and 1 ≤ q ≤ Q refer to the bins of the
Discrete Fourier Transform (DFT).

Traditional 2D solutions only employ the concepts of time diversity and space diversity :
base-band signals are stored in a data matrix Y of size L× T , where L is the number of
sensors and T the number of time samples, as detailed in Chapter 1.

Other sources of diversity are given by the following elements:

• scale as in [93] via multi-scale tensor array processing;

• particular structures of the sensor array, as in [62], via nested tensor array processing
for vector sensors;

• non stationarity in time or space [8, 6].

5.3. Tensor Decomposition of Polarized Waves

5.3.1. The Long Vector MUSIC

In Section 1.4 we introduced the concept of vector sensor array. After applying the
vectorization operator to multi-component data, in (1.38) we derived the long vector

x(t) =
R∑
r=1

er sr(t) + n(t) ∈ CLP (5.10)

where er = kr � ar is the 3C steering vector of the r-th source and n(t) ∼ N (0, σ2ILP ).
In the acoustic vector sensor model in [3], the steering vectors e ∈ CLP are given by the
Kronecker product

e(θ, α, β) = k(θ, α, β)� a(θ) (5.11)

where θ refers to the DoA and α and β to the orientation and ellipticity angles respectively.
In the decoupled polarimetric model of [92, 44], steering vectors are given by the Kronecker
product

e(θ,ρ,φ) = k(ρ,φ)� a(θ) (5.12)

where DoA θ and amplitude and phase polarization parameters ρ,φ are decoupled.
The covariance matrix RX = E[xxH] ∈ CLP×LP is estimated as

R̂X =
1

T

T∑
t=1

x(t)x(t)H ∈ CLP×LP (5.13)

Through EVD of the covariance, or SVD of raw data, we extract the R leading singular
vectors US as a basis for signal subspace, and the LP − R last smallest singular vectors
UN as a basis for noise subspace. Thus, we constitute the projector operator for the noise
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subspace (see Section 1.3.2 for details) as ΠN = UNU
H
N . The cost function minimizing

this projection is given by:

ΥLV (θ, α, β) =
∥∥e(θ, α, β)HUN

∥∥2
= trace{ΠN e(θ, α, β) e(θ, α, β)H} (5.14)

for the acoustic vector sensor model of Section 1.4.2, or by

ΥLV (θ,ρ,φ) =
∥∥e(θ,ρ,φ)HUN

∥∥2
= trace{ΠN e(θ,ρ,φ)e (θ,ρ,φ)H} (5.15)

for the polarimetric model of Section 1.4.3.
Notice that in both cases this is equivalent to maximizing the normalized MUSIC

spectrum

PMU =
‖e‖2

‖eHUN‖2 (5.16)

Long Vector MUSIC (LV MUSIC) does not fully exploit the multidimensional structure
of the observations. Moreover, in order to yield accurate subspace estimate through the
sample covariance, it needs more data samples, as the vec{·} operation increases the size
of the data.

5.3.2. Tensor MUSIC

Tensor MUSIC (T-MUSIC) proposed in [44] does not vectorize the array output, but
directly consider matrix X(t) ∈ CL×P in (1.37):

X(t) =
R∑
r=1

Er sr(t) +N (t) (5.17)

where vec{N (t)} ∼ N (0, σ2ILP ), and the steering matrix Er of the r-th source is given
by the outer product

Er = ar ⊗ kr = reshape(er, L, P ) (5.18)

In the acoustic vector sensor model in [3], the steering matrices E ∈ CL×P are given
by the outer product

E(θ, α, β) = a(θ)⊗ k(θ, α, β) = a(θ)k(θ, α, β)T (5.19)

where θ refers to the DoA and α and β to the orientation and ellipticity angles respectively.
In the decoupled polarimetric model of [92, 44], steering matrices are given by the outer
product

E(θ,ρ,φ) = a(θ)⊗ k(ρ,φ) = a(θ)k(ρ,φ)T (5.20)

The covariance tensor RX = E[X ⊗ X∗] ∈ CL×P×L×P is estimated as R̂X =
1
T

∑T
t=1X(t)⊗X∗(t).

As we detailed in Section 4.2, the tensor subspace estimation relies on the HOSVD of
the covariance tensor:

R = S •1 U 1 •2 U 2 •3 U
H
1 •4 U

H
2 (5.21)

where the all-orthogonal core tensor S has the same size as RX , and matrices U 1 ∈
CL×L,U 2 ∈ CP×P are orthonormal. We then extract the R leading singular vectors of U 1

andU 2 as bases for the two signal subspaces, and the L−R and P−R last smallest singular
vectors of U 1 and U 2 respectively as a basis for the two noise subspaces: U 1,N ,U 2,N . As
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mentioned in Section 3.6.2, this low mode-rank approximation of a tensor is not optimal
in the LS sense [106, 33], but is often a reasonable and easy approximation [61].

The cost function minimizing the projection of the array manifold on the noise subspaces
is given by:

ΥT (θ, α, β) =
∥∥E(θ, α, β) •1 U

H
1,N •2 U

H
2,N

∥∥2

F
(5.22)

for the acoustic vector sensor model of Section 1.4.2, or by

ΥT (θ,ρ,φ) =
∥∥E(θ,ρ,φ) •1 U

H
1,N •2 U

H
2,N

∥∥2

F
(5.23)

for the polarimetric model of Section 1.4.3. Notice that in the latter case this is equivalent
to a separable cost function:

ΥT (θ,ρ,φ) = trace{Π1,N a(θ)a(θ)H} trace{Π2,N k(ρ,φ)a(ρ,φ)H} (5.24)

Thus, for the polarimetric model of [92, 44] DoA and polarization parameters can be
estimated independently.

[44] compared T-MUSIC with LV MUSIC of [92]. LV MUSIC can estimate jointly
DoA and polarization, through the composite steering vector e. Since closely spaced
sources can have almost orthogonal steering vectors when their polarization parameters
are different enough, LV MUSIC has better performance thanks to the joint estimation.
On the other hand, T-MUSIC estimate DoA and polarization parameters separately.

The interest of T-MUSIC is that it needs fewer samples to estimate the subspace projec-
tors, as the data size reduces from LP to L for DoA and to P for polarization. Moreover,
it takes into account the separable structure of DoA and polarization steerings, unlike
classical LV MUSIC. We would like to highlight that the main non negligible limitation
of T-MUSIC is the number of resolvable sources: for instance, it cannot estimate R > 2
sources with a 3C sensor array, since it needs to extract the R leading and the last P −R
singular vectors from matrix U 2 ∈ CP×P as a basis for the signal and noise subspaces
associated to polarization. This implies as a necessary condition that P > R. Now, for a
3C sensor array, we have P = 3.

5.3.3. Tensor CPD for Vector Sensor Arrays

In the remainder, we will adopt the acoustic polarization model of [3], that we detailed
in Section 1.4. This choice is consistent with the electromagnetic polarization model of
[96] mostly used in the literature. However, in our derivation, as in Section 1.4, we will
only study elastic waves. [57] first used tensor Canonical Polyadic Decomposition (CPD)
for vector sensor arrays, for electromagnetic waves. Moreover, polarization has revealed
useful to disambiguate the DoA of closely spaced sources for tensor estimation in [56].

From Section 1.4.2, we know that the array output of a 3C vector sensor array at time
t is given by the L× 3 matrix

X(t) =
R∑
r=1

ar ⊗ kr sr(t) +N (t) =

= AS(t)KT +N (t)

(5.25)

with steering vector ar = a(θr, ψr), and polarization vector kr = k(θr, ψr, αr, βr). More-
over, S(t) = Diag{s1(t), . . . , sR(t)}, K = [k1, . . . ,kR] refers to the 3×R sensor response
matrix, and A = [a1, . . . ,aR] refers to the L × R array steering matrix. Notice that
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this expression follows a third order CPD model (discussed in Section 3.3.3): we can
reformulate it through tensor slices

X ::t = ADt(st:)K
T +N ::t where Dt(st:) = Diag{st:} (5.26)

Since (5.25) describes a trilinear model (cf. the slice representation (5.26), it is straight-
forward to express it through CPD, after staking all the time snapshotsX t as frontal slices
X ::t of a L× P × T tensor X :{

X =
∑R

r=1 ar ⊗ kr ⊗ sr + N
X`pt =

∑R
r=1A`rKpr Str +N`pt

(5.27)

where rank-R corresponds to the number of sources, supposed known, thanks to Assump-
tion A 1.10, and N refers to additive complex circular Gaussian noise. The physical
meaning of the three factor matrices is given through

A`r = exp{−ωτ`(θr)} refers to space diversity

kr = H(θr, ψr)W (αr)w(βr) refers to polarization diversity

Str = sr(t) refers to time diversity

(5.28)

where τ`(θr) = pT` dr/c refers to the time delay at sensor ` w.r.t. the reference sensor, and
H(θr, ψr),W (αr),w(βr) have been defined in Section 1.4.

Thanks to (5.27), space shift diversity is not mandatory anymore as the third mode of
the data tensor, provided that the impinging waves are polarized and that their polariza-
tion is neither linear nor circular.

5.3.4. CPD Factors, Normalization and Scaling

From [144, 145], we know that the manifold k(θ, α, β) of an electromagnetic vector sensor
array is free of rank-2 ambiguities, i.e. κK ≥ 3, but in general we have κK ≥ 4. Moreover,
a necessary condition of identifiability for an electromagnetic vector sensor array is that
R ≤ 3L.

For the CPD model of vector sensor arrays, the same uniqueness conditions of Sec-
tion 4.4 holds, and space shift matrix B is replaced by polarization matrix K in every
result. Scale indeterminacies are fixed as in Section 4.3.1, except for factor matrix K.
Thus, we impose the first row of matrix A to be formed of ones (in fact, as justified
in Assumption A 4.2, p1 = 0, and g`(θ) = 1∀`), and columns of matrix K to have
unit norm: ‖kr‖ = 1 ∀r. Then we pull column-wise the remaining scaling coefficients,
{ςrA1r‖kr‖}, into matrix S. More precisely, we fix all scale indeterminacies through the
following transformation:

(âr, k̂r, ŝr, ςr)←−
(
ar
A1r

,
kr
‖kr‖

, ςrA1r‖kr‖sr, 1

)
(5.29)

This choice permits to compute performance bounds on the retrieval of CPD factors in
(5.27) more easily.



92 5. Multiple Diversity Array Processing

5.3.5. Coherent Sources

We showed in Section 4.4.2 that if sources are coherent, matrix S is rank deficient, i.e.
rank{S} < R and κS = 1. A solution to tackle the problem of coherent sources is the
polarization smoothing algorithm proposed by [112] and revisited by [57] through the
tensor formalism: it forms a new signal matrix S̄ , K � S, which is ensured to be
full column rank thanks to Proposition 4.4. Thus, a sufficient identifiability condition
becomes

R ≤ κK + rank{S} − 1 (5.30)

The new data matrix Ȳ = AS̄
T

can then be processed by another algorithm such as
MUSIC, which also requires Assumption 1.13: L ≥ R+ 1. Combining this condition with
(5.30), we obtain

R ≤ min{L, κK + rank{S}} − 1 (5.31)

We derived the CRB for the tensor CPD model of polarized waves in [115]. For details
of the CRB of the general tensor CPD model of elastic waves, see Chapter 7 .

5.3.6. Physical Meaning of Coherences

In Section 3.7, we defined the concept of coherence of a factor matrix and linked it to the
identifiability of the CPD. We examined the physical meaning of coherences for space,
space shift and time diversities in Section 4.5. We now describe the case of polarization
diversity: from (3.61) and (5.28), we express the coherence of factor matrix K:

µK = max
p 6=q
|kH
p kq| (5.32)

[88] shows the link between this angular measure and the polarization separation be-
tween sources, through the following theorem:

Theorem 5.1. ‖kH
p kq‖ ≤ 1 ∀p, ∀q, with equality if and only if αp = αq + nπ, βp = βq,

θp = θq + n′π and ψp = ψq.

Thus, uniqueness and existence conditions of (3.63) and (3.64) of Section 3.7 can be
interpreted in a physical sense. In particular, the best rank-R approximation exists if
sources are not too closely spaced, not too similarly polarized and their temporal sig-
natures are not too correlated. Thus, we can separate sources with arbitrarily similar
polarization, provided that their DoAs are different enough [88]. This result is consistent
with [56], where polarization is used to disambiguate the DoAs of closely spaced sources.

5.3.7. Estimation of Source, DoAs and Polarization Angles

The tensor model in (5.27) can be expressed in vector form as

x = vec{X} =
R∑
r=1

sr � kr � ar + n (5.33)

where � denotes the Kronecker product, as defined in [26, 75] (cf. (3.22) for generic
tensor order D). Since, thanks to Assumption A 1.11, the measurement noise vector,
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n = vec{N }, is circular white Gaussian and isotropic, i.e. with zero mean and covariance
Σ = σ2I, the log-likelihood takes the form:

Υ(ϑ) = −(x− µ)H Σ−1 (x− µ) + constant (5.34)

where µ =
∑R

r=1 sr � kr � ar is unknown and constrained by its parameterization
ϑ = [θ,α,β, vec{S}]. For the CRB of the tensor DoA and polarization estimation,
see Chapter 7, and in particular Section 7.3.4.

Although the optimal solution is given by the global maximum of Υ(ϑ), we propose
a suboptimal two-step procedure in the same spirit as [128], with smaller computational
burden: first Υ is maximized with respect to parameter ξ = [vec{A}, vec{K}, vec{S}]
through a CPD routine, such as ALS [27]; then DoAs and polarization angles can be
estimated as follows.

1. For one single polarization parameter βr, we perform an exhaustive search over a
2D grid of DoA θ ∈ [−π, π] and polarization angle β ∈ [−π/4, π/4], by searching
[−π, π] ∪ [−π/4, π/4] for:

(θ̂r, β̂r) = arg min
θ,β

∥∥∥( âr − ar(θ)
k̂r − kr(θ, β)

)∥∥∥2

(5.35)

2. For two polarization angles, αr and βr, a suboptimal solution consists in first es-
timating DoAs θ from factor matrix A, and then estimating polarization angles
α ∈ (−π/2, π/2] and β ∈ [−π/4, π/4] separately from factor matrix K:θ̂

A
r = arg minθ ‖âr − ar(θ)‖2

(α̂r, β̂r) = arg minα,β

∥∥∥k̂r − kr(θ̂A, α, β)
∥∥∥2 (5.36)

Notice that there are in general better (i.e. less computationally expensive) ways
than brute force exhaustive search to estimate θr from âr, as detailed in Section 4.6,
in particular if the reference subarray has a specific structure.

Remark : the above mentioned minimization procedures are performed in a limited
domain: θ ∈ [−π, π], α ∈ (−π/2, π/2], β ∈ [−π/4, π/4]. In order to prevent this search
from becoming too costly, we apply an iterative progressive refinement of the grid, where
each iteration is a zoomed version of the previous one.

This solution can then, if necessary, be refined by a local ascent of Υ(ϑ). However, this
improvement has revealed to be negligible in subsequent computer experiments.

5.3.8. Computer Results

Thanks to Assumption A 1.8, impinging sources are assumed coplanar with respect to the
array: only azimuth is to be estimated, and not elevation, without any loss of generality,
as described in Section 4.6.2. We simulated R = 2 sources, at sampling frequency fs =
1 kHz, for an observation time of 64 ms and propagating at c = 1800 m s−1, which is
approximately the propagation speed of seismic S-waves through ice [117]. Hence, T = 64
time samples are available. Sources in time domain are white Gaussian processes with
unit variance. Impinging signals are supposed to be elliptically polarized seismic sources,
recorded by one 3C sensor array, or vector-sensor array, as defined in Section 1.4.2.

We assume:
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Figure 5.1.: 3C sensor position matrix - polarization diversity

1. an array of L = 5 sensors, as in Figure 5.1;

2. the distance between two sensors is ≈ λ0/2;

3. R = 2 uncorrelated polarized sources arrive from angles θ1 = 30◦ and θ2 = 60◦,
respectively.

4. Rayleigh waves, i.e. α = 0, ψ = 0 (coplanar with the array), β 6= 0. In particular,
β1 = −20◦, β2 = 10◦.

Estimation efficiency is also evaluated in comparison to the multilinear CRB derived
in Section 7.2. The performance criterion is the relative total MSE of the DoA estimates
and of the polarization ellipticity estimates:{

MSE(θ) = 1
π2

1
NR

∑N
n=1

∑R
r=1(θ̂rn − θr)2

MSE(β) = 1
π2

1
NR

∑N
n=1

∑R
r=1(β̂rn − βr)2

(5.37)

where θ̂rn and β̂rn are the estimated DoA and ellipticity angle, respectively, of source r
in the n-th MC trial, N = 2500 being the number of trials. As in [90, 128], the SNR
definition below is assumed:

SNR = 10 log10

E
[
µHµ

]
E [nHn]

= 10 log10

‖ µ ‖2

LPTσ2
(5.38)

We compare the following estimation algorithms:

CPD: CPD model as detailed in Section 5.3.3 and parameter estimation using (5.35).
The tensor CPD approximation is achieved via a randomly initialized ALS. In partic-
ular, initial estimates are drawn from unit variance complex Gaussian distributions.

Scalar MUSIC: via an incoherent average of P covariances.

Vector MUSIC in Section 5.3.1, where the array manifold takes into account wave
polarization parameters, via a long covariance matrix of size PL× PL.

Figures 5.2a and 5.2b show the MSE with respect to the SNR for DoA estimation
and for polarization estimation, respectively. Vector MUSIC slightly outperforms tensor
estimation, both nearly overlapping each other in the proximity of the CRB. On the
contrary, Scalar MUSIC presents a severe saturation.
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Figure 5.2.: MSE vs SNR - polarization diversity - seismic Rayleigh waves
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5.4. Directivity Gain Pattern Diversity

In our article [116] we proposed a new type of physical feature as a dimension of the data
tensor, by considering the diversity induced by anisotropic sensor gains. We refer to the
latter as gain pattern diversity. Directional sensor arrays have been used in the context
of smart antennas, through beamforming techniques [113] and null-steering (see [20, 72]
for a list of examples). Several studies have investigated directional elements for DoA
estimation, such as [107, 13], both with UCAs High resolution DoA estimation through
the MUSIC algorithm [131] with known sensor gains has been further studied in [72],
where the effects and advantages of different directivity patterns have been considered, as
well as a realistic dipole array implementation. A derivation of the CRB for directional
elements of a UCA can be found in [72].

If sensors are omnidirectional (as in most of the literature in array processing), only rel-
ative phase differences between sensors are needed to extract DoA information. However,
if the antenna elements are directional, one may jointly exploit gain and phase differences
in every direction of interest. Existing studies on DoA estimation in the presence of di-
rectional elements mostly cover the case of known directivity gains; on the contrary, our
aim is to treat the case of DoA estimation using sensors with unknown gain patterns.

In fact, contrary to more standard approaches, e.g. MUSIC [79, 131], tensor approaches
can handle unknown gains, as subsequently demonstrated. On the other hand, ESPRIT
[12] can be seen as a particular tensor approach and can solve the localization problem if
two identical translated subarrays are available. However, in [126], gain patterns have not
been explicitly taken into account as a pure source of diversity (i.e. when all sensors are
co-located within each subarray, and only differ in their directivity). The same observation
applies to multidimensional extensions of ESPRIT [142, 136]. We show that even when
directional sensors completely overlap within a subarray, thus canceling space diversity,
their gain patterns allow a trilinear tensor model, fully replacing the space diversity of
[136].

Hence, we propose a trilinear model, where one dimension of the multi-way data array
is fully provided by gain patterns, allowing tensor approaches even when space diversity
is missing due to sensor overlap. Computer results are reported as a function of SNR,
sensor directivity, and sensor overlap, in comparison to CRBs. The effect of directivity
patterns is also studied with respect to the equivalent omnidirectional case. We think
that sensor gain patterns have considerable potential in the context of small electronic
devices with limited space available.

5.4.1. CPD Factors, Normalization and Scaling

In the present section we introduce the gain pattern into the tensor model, thus allowing
to exploit directional elements even when their gain patterns are not known. For this
purpose, we relax Assumption A 4.3, in order to include gain patterns as a further source
of diversity into the model. We then make this alternative assumption:

A 5.1. a) Sensors within a subarray have different gain patterns.

b) Sensor gains g`(θ), ` > 1, are unknown, real (which is actually equivalent to assum-
ing that their phase is known) and frequency-flat.

c) The first sensor (` = 1) is taken as origin, i.e., p1 = 0, and has unit gain in all
directions, i.e. g1(θ) = 1, ∀θ.
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A 5.2. Space shifts ∆ = [δ1, . . . , δM ]T are known, whereas sensor positions P =
[p2, . . . ,pL]T are unknown.2

Moreover, Assumptions A 4.4 and A 1.12 are still valid, so that scaling indeterminacies
are fixed through (4.7). Notice that Assumptions 5.1 b) and 5.1 c) are not restrictive, and
permit to fix the scale indeterminacies in model (5.39), as pointed out in Section 5.4.2.
Assumption 5.1 b) means that L continuous real functions are unknown. However, they
appear in the model only at values θr, so that we may consider only the (L − 1) × R
matrix, G, with G`r = g`+1(θr), 1 ≤ ` ≤ L− 1, as unknown.

Now, following the configuration in Section 4.3 of multiple translations, assume we have
at our disposal a set of M subarrays, each containing L directional sensors, and deducible
from each other by a translation (see Figure 5.3). The delay of arrival of the r-th source
to reach sensor ` of subarray m is then τ`(θr) + ζm(θr), where τ`(θr) = pT` d(θr)/c and
ζm(θr) = δTmd(θr)/c. Then, we slightly generalize the tensor formulation in (4.6) so as to
include gain patterns into factor matrix A.

5.4.2. Diversity of Space Shift and Gain Pattern

Thus, at fixed radial frequency ω0, the complex envelope of the signals received at the
`-th sensor of the m-th subarray can be written as X`mt =Mfull

`mt +N`mt, where

Mfull
`mt =

R∑
r=1

Afull
`r Bmr Str ∈ CL×M×T

with


Afull
`r = g`(θr) e

−ω0τ`(θr)

Bmr = e−ω0ζm(θr)

Str = sr(t)

(5.39)

Notice that if sensors within a sub-array do not overlap, p` = 0 ⇐⇒ ` = 1 and we obtain
the full model in (5.39). In any case, scale indeterminacies of the CPD model are fixed
as in Section 4.3.1 with the addition of A 5.1. See Section 4.3.1 for more details on fixing
the scaling indeterminacies.

Again, if the acquisition system is composed of M = 2 subarrays, deduced from each
other by a single translation δ = δ2, the tensor approach based on model (5.39) reduces
to ESPRIT [126]: {

x1(t) = As(t) + n1(t)

x2(t) = ΦAs(t) + n2(t)
(5.40)

where Φ = Diag{e−ω0ζ(θ1), · · · , e−ω0ζ(θR)} is a unitary operator that relates both subar-
rays, and ζ(θr) = δTd(θr)/c.

3

Diversity of Gain Pattern Only

On the other hand, if sensors within a subarray do overlap, i.e. are located at the same
place, and differ only through their directivity, then p` = 0, ∀`, and matrix A only
contains information about gain patterns: A`r = g`(θr). Therefore, in this degenerate

2This is the standard assumption of ESPRIT approaches [79, 126, 142, 136], i.e. uncalibrated subarrays.
However, with unknown space shifts and known sensor positions, the mathematical problem is the
same [128]. See Section 4.6 for details.

3If M = 2, we also need to fix a rotation ambiguity with respect to the translation axis.
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case, the approaches of [142, 136] do not apply and the only space information is carried
by space-shift matrix B:

Mgain
`mt =

R∑
r=1

Again
`r Bmr Str ∈ CL×M×T

with

 Again
`r = g`(θr)

Bmr = e−ω0ζm(θr)

Str = sr(t)

(5.41)

Notice that in this way we managed to decouple space information (that we know through
shifts δm) from gain pattern information (that we do not know). Model (5.41) is the
starting point of our contribution.

Diversity of Space Shift Only

In this case, g`(θ) = 1 ∀θ, ∀`, and we end up with the classic omnidirectional model
described in [136]: Ashift

`r = e−ω0τ`(θr) (see Section 4.3 for details).

5.4.3. Physical Meaning of Coherences

In Section 3.7, we defined the concept of coherence of a factor matrix and linked it to
the identifiability of CPD, with angular conditions easy to compute and interpret. We
examined the physical meaning of coherences for space, space shift and time diversities
in Section 4.5. We recall that for space shift B, coherence µB is a measure of the angular
separation between sources, similarly to Ashift, whereas the coherence µS of signal matrix
S is the largest correlation coefficient between sources. We now describe the case of gain
pattern diversity: from (3.61) and (5.41), we express the coherence of factor matrix Again

as

µgain
A = max

p 6=q

|aT
paq|

‖ap‖‖aq‖
(5.42)

For pure gain pattern diversity embedded in Again of (5.41), coherence µgain
A is a measure

of similarity among pattern responses to impinging sources.

Since aT
paq =

∑L
`=1 g`(θp)g`(θq),

|aT
paq |

‖ap‖‖aq‖ ≤ 1, with equality if and only if g`(θp) = g`(θq)∀`.
Thus, uniqueness and existence conditions in (3.63) and (3.64) of Section 3.7 can be

interpreted in a physical sense. The tensor model of (5.41) is unique if sources are not too
closely spaced, if their directivity response is not too similar, and if their time signatures
are not too correlated.

5.4.4. Estimation of Sources and DoA

The tensor model in (3.21) can be expressed in vector form as

x = vec{X} =
R∑
r=1

sr � br � ar + n (5.43)

where � denotes the Kronecker product, as defined in [26, 75] (cf. (3.22) for generic tensor
order D). Since the measurement noise vector, n = vec{N }, is circular white Gaussian
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and isotropic, i.e. with zero mean and covariance Σ = σ2I, the log-likelihood takes the
form:

Υ(ϑ) = −(x− µ)H Σ−1 (x− µ) + constant (5.44)

where µ =
∑R

r=1 sr � br � ar is unknown and constrained by its actual parameterization
ϑ = [θ, vec{G}, vec{P }, vec{S}]. Similarly to [128], the CRB is computed assuming that
ar and sr are nuisance parameters, i.e. with parameter vector χ composed of DoAs and
factor matrices: χ = [θ, vec{A}, vec{S}]. For the CRB of the tensor DoA estimation,
see Chapter 7, and in particular Section 7.3.3.

Although the optimal solution is given by the global maximum of Υ(ϑ), we propose
a suboptimal two-step procedure in the same spirit as [128], with smaller computational
burden: first Υ is maximized with respect to parameter ξ = [vec{A}, vec{B}, vec{S}]
through a CPD routine, such as ALS [27]; then DoAs can be estimated by

θ̂r = arg min
θ∈Θ

[
(b̂r − br(θ))H(b̂r − br(θ))

]
. (5.45)

This solution can then, if necessary, be refined by a local ascent of Υ(ϑ). However, this
improvement has revealed to be negligible in subsequent computer experiments. Notice
that there are in general better (i.e. less computationally expensive) ways than brute
force exhaustive search to estimate θr from b̂r, as detailed in Section 4.6, in particular if
the subarray translations δm have a specific structure.

θ = 0θ = π

x axis

y
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is

Figure 5.3.: Acquisition system for L = M = 4, ρA > 0 - gain pattern diversity

5.4.5. Computer Results

For the sake of simplicity, sources and the acquisition system are assumed to be coplanar,
thanks to Assumption A 1.8. Sensor and subarray positions then become p` = [px` , p

y
` ],

1 ≤ ` ≤ L and δm = [δxm, δ
y
m], 1 ≤ m ≤ M , and delays become τ`(θr) = [px` cos(θr) +

py` sin(θr)]/c and ζm(θr) = [δxm cos(θr) + δym sin(θr)]/c, both functions of azimuth only.
This amounts to considering elevation ψr = 0 ∀r. We work with UCAs of radius ρ, with
px` = ρ cos(2π`/L) and py` = ρ sin(2π`/L), as in [72]. We choose a directivity pattern g(·)
with maximum gain in the radial directions from the center of the array, 2π`/L. Hence,
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the response of sensor ` to source r amounts to g`(θr) = g(θr − 2π`/L). Function g(θ) is
chosen to be a simple nonnegative, smooth and 2π-periodical function, with

g(θ)2 =
D(γ)

2γ
(1 + cos(θ))γ (5.46)

and parameter γ controls directivity D(γ) = 2γ2π´ 2π
0 (1+cos(θ))γdθ

exponentially.

We simulated R = 4 uncorrelated narrowband sources arriving from θ1 = 25◦, θ2 = 65◦,
θ3 = 105◦, and θ4 = 345◦, with T = 64 time samples. Each subarray is a UCA of radius
ρA = λ/(20

√
2) with L = 4 sensors, whereas gain patterns have D(γ) = 4 (i.e. γ = 5).

M = 4 subarrays with the aforementioned structure are located around a UCA of radius
ρB = λ/(2

√
2) (see Figure 5.3). As in [90, 128], SNR is defined as:

SNR = 10 log10

E
[
µHµ

]
E [nHn]

= 10 log10

‖ µ ‖2
2

LMTσ2
(5.47)

and estimated MSE is defined as

MSE(θ) =
1

π2

1

NR

N∑
n=1

R∑
r=1

(θ̂rn − θr)2 (5.48)

Results are obtained by averaging over N = 200 noise realizations.
The three approaches compared in Figures 5.4, 5.5, 5.6 refer to tensor DoA estimation,

with the same equivalent SNR:

ALS Full refers to tensor Mfull in (5.39), when sensors are non overlapping (ρA > 0)

and directional: Afull
`r = g`(θr) e

−ω0τ`(θr) and σ2 full =
‖µfull‖22
LMT

10−SNR/10.

ALS Gain refers to tensor Mgain in (5.41), when sensors are overlapping (ρA = 0) and

directional: Again
`r = g`(θr) and σ2 gain =

‖µgain‖22
LMT

10−SNR/10.

ALS Shift refers to tensor Mshift as in [136], when sensors are non overlapping and

omnidirectional: Ashift
`r = e−ω0τ`(θr) and σ2 shift =

‖µshift‖22
LMT

10−SNR/10.

The tensor CPD approximation is achieved via a randomly initialized ALS. In particular,
initial estimates are drawn from unit variance complex Gaussian distributions.

Figure 5.4 shows MSE as a function of SNR: when sensor positions within the reference
subarray are not known, the introduction of unknown directional elements improves the
estimation (ALS Full), even when sensors overlap (ALS Gain).

Figure 5.5 illustrates the dependence of the MSE on sensor directivity D, showing an
optimum at D ≈ 4 (i.e. γ ≈ 5) for the present configuration. The large value of the MSE
for small and large directivity is due to bad conditioning of factor matrix Again. Indeed
as D grows, gain patterns g`(θr) become elongated along one direction, thus attenuating
all the others. In this configuration, pattern coherence µA approaches 1.

Figure 5.6 shows the dependence of the MSE on the inter-sensor distance within the
reference subarray, for ALS Shift (omnidirectional non overlapping sensors, ρA > 0) in
comparison with ALS Gain (directional overlapping sensors, null inter-sensor distance,
ρA = 0). The former is a decreasing function of inter-sensor distance, hence intersecting
the latter at a critical distance where the presence of directional elements is not essential
for tensor modeling.
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Figure 5.4.: MSE vs SNR, D = 4
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We already knew from [136] that space, time, and translation in space induced ex-
ploitable diversities, when omnidirectional sensors are used. This remains true if sensors
have known nonzero gain patterns, because they can be compensated. But the question
of whether sensor gain patterns could induce a diversity of their own was still open. We
showed that it can indeed be the case, even when sensors are co-located within each sub-
array. In this case, there is no space diversity anymore, but tensor approaches, which
need at least three diversities, can still be applied thanks to gain pattern diversity.



6. Wideband Tensor DoA Estimation

6.1. Contribution

In traditional matrix approaches described in Chapter 2, space and time/frequency diver-
sities have been taken into account. Yet, DoA estimation can be significantly improved
if other modalities are considered, such as space shift, polarization and gain patterns,
thanks to the tensor formalism, as discussed in Chapter 4 and Chapter 5.

A major contribution of our work relies on the extension of the tensor formalism to
wideband DoA estimation, i.e. when the signals of interest are wideband (see Section 1.5.1
for the definition of wideband sources).

MUSIC in Section 2.5, ESPRIT in Section 2.6, and CPD tensor decompositions for
array processing in Chapter 4 and Chapter 5 originally addressed the narrowband case.
In fact, in wideband, signal subspace and steering matrices vary with frequency, thus
requiring a focusing operation on the same reference subspace. This approach, named
Coherent Signal Subspace (CSS), described in Section 2.8, may require an approximate
prior estimate of DoAs to form focusing matrices [157, 102], or virtual arrays obtained
by spatial interpolation [23, 80]. The latter proposes a wideband formulation of the
MUSIC algorithm for ULAs. To our knowledge, only recently coherent tensor analysis
was extended to process wideband waves for ULAs in our contribution [119], where a
spatial interpolation technique was adopted.

The present chapter aims at establishing a tensor model for high resolution wideband
array processing with multiple antenna diversities (space, space shift, polarization and
gain patterns), under the assumption of plane waves in the far field. The multilinear
coherent subspace preprocessing, required in the wideband case, introduces a correlation
into the noise structure. An algorithm for tensor decomposition taking into account the
noise covariance is proposed, and the performance is evaluated via the Cramér-Rao Bound
(CRB).

For the sake of clarity, Table 6.1 illustrates the state of the art and our contributions:
rows refer to different theoretical approaches along with their corresponding references,
whereas columns indicate the physical diversities jointly taken into account in each ap-
proach. Approaches related to wideband (frequency diversity) are indicated by WB,
whereas contributions using statistics by averaging the covariance matrix through multi-
ple snapshots are indicated by s.

This chapter is organized as follows: Section 6.2 illustrates the main antenna diversities
that can be exploited in tensor processing of wideband waves; Section 6.3 explains the
effect of wideband coherent processing on the tensor formulation; tensor decomposition
problems are treated in Section 6.4; Section 6.5 addresses algorithmic issues; Section 6.6
reports computer results for the particular case of space shift and polarization diversities,
in comparison with wideband MUSIC and with the multilinear CRB.

Our work was published by IEEE Transactions on Signal Processing [114].
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Table 6.1.: Diversities that can be taken into account in array processing;
× = what exists in the literature; ⊗ = our contribution;
s = estimation of spatial covariance is required

Diversity Time Space Freq.
Space
Shift

Polar.
Gain
Pat-
terns

MUSIC [131, 140] s, × ×
Vector Sensor MUSIC [131, 95, 96] s, × × ×
WB MUSIC [46, 157, 68, 23, 80, 36] s × ×
WB Vector Sensor MUSIC [16] s × × ×
ESPRIT (M = 2) [126] s, × × ×
WB ESPRIT [102, 69] s × × ×
NB Tensor CP [136, 90, 128] × × ×
Vector Sensor CP [57, 56, 115] × × ×
WB Tensor CP [119] ⊗ ⊗ ⊗
Gain Pattern CP [116] ⊗ ⊗ ⊗ ⊗
WB Vector Sensor CP ⊗ ⊗ ⊗

6.2. Tensor Model for Wideband Waves

In this section, a multi-way formulation including multiple diversities is presented: Sec-
tion 6.2.1 introduces space shift diversity, Section 6.2.2 polarization diversity, and Sec-
tion 6.2.3 combines them together.

6.2.1. Space Shift and Gain Pattern Diversity in Wideband

Space shift diversity was initially exploited by the ESPRIT algorithm for two subarrays
deduced from each other by a translation [126], as detailed in Section 2.6. It has been
extended to more than two subarrays in [136], giving rise to a third order tensor decom-
position for array processing, detailed in Chapter 4. The diversities involved are space,
time, and space shift. It is also possible to consider diversity induced by anisotropic sensor
gains, as proposed in Section 5.4 for the narrowband case. We refer to Section 5.4 for
further details about gain pattern diversity.

In this chapter, we make use of the following models, introduced in the previous chap-
ters, that we merge into a new tensor wideband formulation:

• Section 1.5.1: the wideband matrix formulation for scalar wavefields, expressed by
(1.46);

• Section 1.5.2: the wideband matrix formulation for polarized wavefields, expressed
by (1.49);

• Section 4.3: the narrowband tensor model with space shift diversity, expressed by
(4.5).

• Section 5.3.3: the narrowband tensor model with polarization diversity, expressed
by (5.27).
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Denote by F{·} the Fourier Transform (FT) operator applied to received signals X`m(t)
in the time window t ∈ [0, T ]. Then, in the presence of additive noise N (ω), the narrow-
band formulation of (5.39) is replaced by its wideband counterpart:

X`m(ω) = M`m(ω) +N`m(ω)

M`m(ω) =
R∑
r=1

A`r(ω)Bmr(ω) sr(ω)
(6.1)

with


X`m(ω) = F{X`m(t)}
A`r(ω) = g`(θr) e

−ωτ`(θr)

Bmr(ω) = e−ωζm(θr)

sr(ω) = F{sr(t)}.
(6.2)

where τ`(θ) + ζm(θ) = pT` d(θ)/c+ δTmd(θ)/c is the delay of arrival on sensor ` of subarray
m, with p` the location of the `-th sensor and δm the location of the m-th subarray, as
in (4.6).

In the remainder, since received signals X`m(t) are real, we consider only positive fre-
quencies (without any loss of information). After discretization, we have

X`m(ωq) =
R∑
r=1

A`r(ωq)Bmr(ωq)Sqr +N`m(ωq) (6.3)

where frequency 0 < ωmin ≤ ωq ≤ ωmax < π, 1 ≤ q ≤ Q, and Sqr = sr(ωq). In the
remainder of this chapter, we will assume omnidirectional sensors, i.e. we resort again to
Assumption A 4.3: gain patterns are known with g`(θ) = 1, ∀θ, ∀`.

However, the derivation of the CRB in Chapter 7 also addresses the case of unknown
gain patterns. The presence of anisotropic gain patterns is therein treated as a nuisance,
but could be exploited as a plain diversity as shown in Section 5.4.

6.2.2. Polarization Diversity in Wideband

It is also possible to consider diversities induced by polarized sensors, as wee discussed
in Section 5.3 for the narrowband case. If we have at our disposal a single antenna
(M = 1) array of polarized elements, or 3-components (3C) sensors, each capable of
recording 3 orthogonal components1, the observation model is similar to (6.1). If we omit
measurement noise, it takes the form:

M`p(ωq) =
R∑
r=1

A`r(ωq)Kpr Sqr, 1 ≤ p ≤ P = 3 (6.4)

where the R columns of the 3×R factor matrix K are detailed in [3, 88]:

kr = H(θr)W (αr)w(βr) (6.5)

Both angles αr ∈ (−π/2, π/2] and βr ∈ [−π/4, π/4] characterize the polarization of the
r-th source; see [3, 96] for general expressions of H(θ), W (α) and w(β). For instance,

1For electromagnetic waves, two 3-component sensors can be used, leading to an observation of dimension
6 [57].
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Rayleigh waves considered in Section 6.6 belong to the model characterized by

H(θr) =

 cosφr cosψr − cosφr sinψr
sinφr cosψr − sinφr sinψr

sinψr cosψr

 (6.6)

W (αr) =

[
cosαr sinαr
− sinαr cosαr

]
(6.7)

w(βr) =

[
cos βr
 sin βr

]
(6.8)

where it is reminded that in 3D the DoA θr = (φr, ψr) is formed by a pair of angles:
azimuth φr ∈ (−π, π] and elevation ψr ∈ [−π/2, π/2]. Without restricting too much
the generality, we assume that polarization does not depend on ω over the bandwidth of
interest, thanks to Assumption A 1.20. The main difference between (6.3) and (6.4) is that
the second factor matrix, K, now depends on extraneous unknown angular parameters
(αr, βr), instead of the subarray space shifts δm.

6.2.3. Multiple Diversity in Wideband

It is clear that the aforementioned diversities (space shift in Section 6.2.1 and polarization
in Section 6.2.2) can be modeled all together, at the price of an increased notational
complexity. If frequency, space, space shift, and polarization diversities are considered
simultaneously, the data measurements depend on 4 variables, the data array is of size
L×M × P ×Q, with P = 3. Therefore, discretizing and merging models (6.3) and (6.4)
yields

X`mp(ωq) =
R∑
r=1

A`r(ωq)Bmr(ωq)Kpr Sqr +N`mp(ωq) (6.9)

Traditional subspace processing usually breaks the multidimensionality of the multiple
diversity model through a vectorization of the entire array manifold (including space,
polarization and/or space shift) [131].

The tensor approach through Canonical Polyadic Decomposition (CPD) fully takes
advantage of the multilinearity of a model with at least three diversities [88]. However,
in order to have a totally multilinear model in (6.9), we need to remove the dependency
on ωq from factor matrices A and B, e.g. through a bilinear interpolation. This matter
will be addressed in Section 6.3, whereas tensor model and notations will be discussed in
Section 6.4.

6.3. Tensor Wideband Processing

Equation (6.3), as a matrix equation for a given frequency, cannot yield a unique factor-
ization if A(ωq) and B(ωq) have not a particular structure that can be taken into account.
Hence, such equations need to be treated simultaneously for all frequencies, through the
tensor formalism. The bilinear interpolation we propose is precisely a means to coherently
combine them in a manner that has a physical meaning. In this section, we aim at jointly
exploiting models (6.3), (6.4) and (6.9) for several angular frequencies. As mentioned in
Section 6.2.3, the difficulty comes from the fact that these models are obviously not mul-
tilinear w.r.t. ωq, because exponentials in A(ωq) and B(ωq) are a function of frequency.
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Section 6.3.1 extends the definition of virtual arrays to the rotational invariant structure
of space shift diversity, whereas Sections 6.3.2 and 6.3.3 propose a bilinear interpolation
to be applied to two tensor modes separately. The effect of this preprocessing on the
noise structure is studied in Section 6.3.4, whereas bilinear interpolation in the presence
of polarization diversity is addressed in Section 6.3.5.

6.3.1. Virtual Subarrays

The idea is to build virtual arrays, as described in (2.49) of Section 2.8.1; but we have
now a second condition to satisfy, in addition to (2.46):

[ωqδ̃m(ωq)− ω0δm]Td(θ) ≡ 0, mod 2πc (6.10)

It is clear that it is sufficient to define the locations of virtual sensors and virtual subarrays
by:

p̃`(ωq) =
ω0

ωq
p`, δ̃m(ωq) =

ω0

ωq
δm (6.11)

to satisfy both (2.46) and (6.10). An illustration of virtual subarrays is provided
in Figure 6.1. With these virtual arrays, one can associate time delays τ̃`(ωq, θ) =

p̃`(ωq)
Td(θ) and ζ̃m(ωq, θ) = δ̃m(ωq)

Td(θ), and corresponding steering vectors ã(ωq, θ) =

exp{−ωqτ̃ (ωq, θ)} and b̃(ωq, θ) = exp{−ωqζ̃(ωq, θ)}. Once virtual arrays are defined, it
is necessary to compute the virtual data these array would receive, and this is done by
interpolation as explained in the next two sections.

6.3.2. Bilinear Transform

This section extends the linear transform of (2.49) in Section 2.8.2 to two dimensions (the
former at the sensor level and the latter at the subarray level). Space is first partitioned
into K angular sectors of limited extent, Θk, 1 ≤ k ≤ K. Then each sector is discretized
into I angular values: Θk = {θk1, . . . , θkI}. In each sector Θk and for every discretized
frequency ωq, we define matrices A and B of size L× I and M × I, respectively:

A(ωq,Θk) = [a(ωq, θk1), . . . ,a(ωq, θkI)]

B(ωq,Θk) = [b(ωq, θk1), . . . , b(ωq, θkI)]

We also build Ã and B̃ in the same manner with vectors ã(ωq, θki) and b̃(ωq, θki), re-
spectively. For a fixed reference frequency ω0 (generally chosen to be inside of the band
of interest [80]), two focusing matrix families can then be defined, by solving for square
matrices U ∈ CL×L and V ∈ CM×M the linear systems below in the LS sense:

U(ωq, ω0,Θk)A(ωq,Θk) ≈ Ã(ω0,Θk) (6.12)

V (ωq, ω0,Θk)B(ωq,Θk) ≈ B̃(ω0,Θk) (6.13)

for every angular sector Θk and every frequency ωq. In what follows we only consider one
angular sector Θ, and we hence refer to U(ωq, ω0,Θ) and V (ωq, ω0,Θ) with U q and V q,
respectively. As for the detection of the most relevant sectors Θk, the angular field of
view of the array can be scanned and sectors of largest power can be detected through a
simple optimum beamforming technique [152, 89].
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(a) Nominal subarrays
ω0

(b) Shrunk subarrays
ωq > ω0

(c) Stretched subarrays
ωq < ω0

Figure 6.1.: Illustration of virtual subarrays
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6.3.3. Bilinear Interpolation

Measurements recorded on actual arrays with sensors located at p`+δm at frequency ωq are

interpolated to yield virtual measurements recorded by sensors located at p̃`(ωq)+δ̃m(ωq),
as defined in (6.11). More precisely, applying the bilinear interpolation (6.12-6.13) to
model (6.3) leads to

M̃`mq ≈
R∑
r=1

Ã`r(ω0) B̃mr(ω0)Sqr (6.14)

where the slice M̃ q of tensor M̃ is obtained through the bilinear transformation of slice
M q:

M̃ q = M q •1 U q •2 V q

= U qM q V
T
q

(6.15)

Now, M̃ may be seen as a tensor of order 3, since frequency ωq only affects the third
mode, and (6.14) is actually a CPD model.

However, a new difficulty appears, due to the fact that the bilinear transformation
in (6.15) affects the color of the noise. This must be taken into account into the CPD
identification algorithm (cf. Section 6.5) and the computation of the performance bounds
(cf. Chapter 7).

6.3.4. Noise Correlation Induced by Interpolation

The observation model (6.14) can be expressed through Q matrix slices, 1 ≤ q ≤ Q:

X̃q = M̃ q + Ñ q (6.16)

where Ñ q is colored by the transform:

Ñ q = U q N q V
T
q (6.17)

Yet from [10], we have vec{UNV T} = (V � U) vec{N}. This leads to the following
noise vectorization:

vec{Ñ q} =
(
V q �U q

)
vec{N q} (6.18)

Hence, for every frequency ωq, the noise vector vec{Ñ q} is circular complex Gaussian
with covariance

Σq = σ2 V qV
H
q �U qU

H
q (6.19)

If we stack all vectors vec{Ñ q} in a single vector ñ, then the latter has a covariance Σ(1)

that is block-diagonal2 with diagonal blocks Σq in (6.19):

Σ(1) =

Σ1 0 0

0
. . . 0

0 0 ΣQ

 (6.20)

This change in covariance structure will be taken into account for calculating the Fisher
Information Matrix (FIM) in Chapter 7, and in the CPD identification algorithm in
Section 6.5.

2Notice that Σ(1) also corresponds to the covariance matrix of the vectorization of the mode-1 tensor
unfolding of N , vec{N (1)}. See (3.9) in Definition 3.7 for more details.
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6.3.5. Interpolation in the Presence of Polarization

Instead of space shift, if we consider polarization as the second diversity as in (6.4), the
bilinear transformation (6.15) becomes

M̃ q = U qM q I
T
P , (6.21)

as polarization matrix K does not depend on frequency by assumption:

M̃`pq ≈
R∑
r=1

Ã`r(ω0)Kpr Sqr (6.22)

Moreover, the diagonal blocks of the vectorized noise covariance Σ(1) are simplified to

Σq = σ2 IP �U qU
H
q (6.23)

If we now include all the diversities as in model (6.9), then interpolation is given by the
following multilinear transformation:

M̃q = Mq •1 U q •2 V q •3 IP (6.24)

where index q may be seen as denoting the q-th slice of a fourth order tensor. The mode-
d product indicated as •d refers to the multiplication of a tensor and a matrix along its
d-th mode (see Section 3.2.3 for details on this contraction product)3. This yields to
interpolated elements

M̃`mpq ≈
R∑
r=1

Ã`r(ω0) B̃mr(ω0)Kpr Sqr (6.25)

Similarly, the noise covariance of the q-th vectorized slice vec{Ñ q} becomes

Σq = σ2 IP � V qV
H
q �U qU

H
q (6.26)

6.4. CPD Factors, Normalisation and Scaling

Consider the case of a tensor of order D = 4, which is sufficient for our purposes. Once
the bases of the linear spaces involved are fixed, a fourth order tensor M is defined by its
coordinates, denotedM`mpq. If its dimensions are L×M × P ×Q, then the CPD (3.22)
becomes

M =
R∑
r=1

ςr ar ⊗ br ⊗ kr ⊗ sr (6.27)

and can be rewritten in terms of array of coordinates:

M`mpq =
R∑
r=1

ςr A`r BmrKpr Sqr (6.28)

where matrices A, B, K and S, are of dimensions L × R, M × R, P × R and Q ×
R, respectively. For practical purposes and without restricting the generality, we have
preferred to impose the following constraints:

3Notice that for matrices X •1 A •2 B = AXBT, as in (6.15) and (6.21)
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• the first row of matrices A and B to be formed of ones (in fact, as assumed in A
4.2, A 4.4, and A 5.1 b), p1 = 0, δ1 = 0 and g1(θ) = 1,∀θ); cf. Section 4.3.1 for the
narrowband case.

• unit norm columns in matrix K; cf. Section 5.3.4 for the narrowband case.

• and to pull the remaining R × R scaling matrix, Diag{ςrA1rB1r‖kr‖}, into matrix
S.

Thus, we fix all scale indeterminacies through the following transformation (see (4.7) and
(5.29) for its narrowband counterpart):

(âr, b̂r, k̂r, ŝr, ςr)←−
(
ar
A1r

,
br
B1r

,
kr
‖kr‖

, ςrA1rB1r‖kr‖sr, 1

)
(6.29)

This choice permits to compute performance bounds on the retrieval of CPD factors in
(6.27) more easily. To conclude, in the rest of the chapter, we shall use a CPD model of
the form: {

X =
∑R

r=1 ar ⊗ br ⊗ kr ⊗ sr + N
X`mpq =

∑R
r=1 A`r BmrKpr Sqr +N`mpq

(6.30)

with the normalizations mentioned above.
Note that after fixing the scaling indeterminacies, the number of remaining free param-

eters is now given by R(L + M + P + Q − 3), as stated in Section 3.3.4 for the general
DD case.

As introduced in Section 3.3.5, there exist sufficient conditions ensuring uniqueness of
the exact CPD [136], establishing the maximum number of sources that can be estimated.
Again, less stringent conditions guaranteeing almost surely a unique solution can be found
in [88, 19]:

R(L+M + P +Q− 3) < LMPQ (6.31)

This holds true when data are not corrupted by noise. As explained in Section 3.7, in the
presence of noise, the existence of a best approximant to the low-rank problem can be
inferred through physical quantities named coherences, related to the maximum degree of
correlation between any two sources along each mode [88]. For the physical interpretation
of coherences, see Section 4.5 for space, time, and space shift diversities; Section 5.3.6 for
polarization diversity; Section 5.4.2 for pattern diversity.

6.5. Algorithms

The goal of the two remaining sections is to illustrate the performance of tensor wideband
processing and to compare it to the CRB. The ALSCOLOR algorithm described in this
section is meant to take into account the noise covariance structure.

Tensor wideband processing will be executed in two stages: we first recover factor
matrices through CPD model fitting (assuming they are uncoupled), and then estimate
the DoAs or polarization parameters from the estimated factor matrices. A refinement
could also be executed as a post-processing, e.g. by a local ascent maximizing the log-
likelihood in (7.2), but it generally brings negligible improvement. We first describe both
steps of this procedure, in their respective order: retrieval of the CPD factors taking into
account the noise correlation structure in Section 6.5.1, and the estimation of DoAs and
polarization parameters in Section 6.5.2.
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Notice that interpolated slices X q have now a separable covariance structure, as in
Definition 3.20. A multidimensional noise N ∈ CI1×I2×···×ID is said to be a Kronecker
colored noise if it has a separable covariance structure:

Cov[N ] = Σ1 ⊗Σ2 ⊗ · · · ⊗ΣD (6.32)

or, equivalently, thanks to Proposition 3.4, if its vectorization n = vec{N } ∈ CI1I2···ID

has a Kronecker covariance structure

Cov[n] = Σ1 �Σ2 � · · ·�ΣD (6.33)

A deterministic prewhitening for tensor data in additive noise with Kronecker structure
was proposed in [29]. However, if we directly applied this kind of deterministic prewhiten-
ing to our interpolated data X̃ q, this would result not only in a whitening of the noise

Ñ , but also in a cancellation of the previous interpolation:

X̃ q = M̃q + Ñ q =

= X q •1 U q •2 V q + N q •1 U q •2 V q

(6.34)

In fact, prewhitening as in [29] would give

X̂ q = X̃ q •1 Û
−1

q •2 V̂
−1

q ≈ X q (6.35)

which is equal to the data before the interpolation step. Hence, we are required to deal
with the Kronecker structure in (6.19), (6.23), and (6.26) not as a preprocessing step,
but directly within the very estimation of factor matrices. Section 6.5.1 develops this
particular problem.

6.5.1. Estimation of Factor Matrices

CPD fitting corresponds to minimizing the tensor approximation error for model (6.14).
Notice that similar considerations can be made for models (6.22) and (6.25). Supposing
that the interpolation error is negligible compared to the error introduced by measurement
noise, we are interested in minimizing the following cost function with respect to ãr, b̃r
and sr:

Υ =

∥∥∥∥∥vec{X̃(1)} −
R∑
r=1

sr � b̃r � ãr

∥∥∥∥∥
2

Σ(1)

=

=

∥∥∥∥∥vec{X̃(2)} −
R∑
r=1

sr � ãr � b̃r

∥∥∥∥∥
2

P 12Σ(1)P
T
12

=

=

∥∥∥∥∥vec{X̃(3)} −
R∑
r=1

b̃r � ãr � sr

∥∥∥∥∥
2

P 13Σ(1)P
T
13

(6.36)

where we define the weighted matrix norm ‖X‖2
Σ = trace{XHΣ−1X}. Expression X(d)

refers to the mode-d unfolding of tensor X (see Definition 3.5 for the definition of ten-
sor unfolding). Notice that Σ(1) is the covariance matrix of x̃, the vectorization of the

first unfolding X̃(1), and permutation matrix P ij denotes the transfer matrix from the
covariance of the mode-i unfolding to that of the mode-j unfolding.
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Algorithm 6.1 ALSCOLOR : ALS for correlated noise

1: Inputs: Â
0
, B̂

0
, Ŝ

0
, the covariance matrix Σ(1) given by (6.20), the interpolated data

tensor X̃ .
2: Initialize with Â

0
, B̂

0
, Ŝ

0
. Denote for all i:

âi = vec{Âi}, b̂i = vec{B̂i}, ŝi = vec{Ŝi}.
3: While convergence criterion not met, do i := i+ 1Z = (Ŝ

i � B̂i
)� IL

âi =
(
ZHΣ−1

(1)Z
)−1

ZHΣ−1
(1) vec{X̃(1)}

(6.37)

Proceed similarly for b̂
i

and ŝi, with Σ(2) = P 12Σ(1)P
T
12 and Σ(3) = P 13Σ(1)P

T
13,

respectively.

4: Unvectorize estimates: Â
i

= unvec{âi}, B̂i
= unvec{b̂i} and Ŝ

i
= unvec{ŝi}; nor-

malize columns of Â
i

and B̂
i

by their first element:{
âir := âir/Â

i
1r

b̂
i

r := b̂
i

r/B̂
i
1r

(6.38)

and normalize Ŝ
i

accordingly: ŝir := Âi1rB̂
i
1r ŝ

i
r.

NB: When dealing with model (6.22), where the third diversity is given by polariza-
tion instead of space-shift, Bi is replaced by Ki is the steps above, and normalization
is achieved as: 

âir := âir/Â
i
1r

k̂
i

r := k̂
i

r/ ‖ k̂
i

r ‖
ŝir := Âi1r ‖ k̂

i

r ‖ ŝir
(6.39)

5: End

The above mentioned minimization corresponds to maximum likelihood estimation and
can be performed in several ways: gradient descent, conjugate gradient, Newton methods
and coordinate descent methods [27]. For ease of implementation, we choose to mini-
mize (6.36) using block coordinate descent, with blocks corresponding to factor matrices
themselves. This is commonly known as ALS [27], as each block coordinate update cor-
responds to the solution of a LS problem (cf. Section 3.6.3). Initializations for the ALS
are randomly drawn from complex normal distributions with unit variance. The proposed
algorithm, which we name ALSCOLOR, is detailed in Algorithm 6.1.

6.5.2. Estimation of Signal Parameters

Once column vectors âr, b̂r and/or k̂r are recovered from the tensor approximation al-
gorithm, we can estimate DoA θr through an exhaustive search within the considered
angular sector Θ and/or polarization parameters βr and/or αr.
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Space Shift Diversity

If there are space, space shift and frequency diversities (cf. Section 6.6.1), DoAs are
estimated by minimizing a weighted LS criterion of the form:

θ̂Dr = arg min
θ∈Θi

∥∥∥( âr − ãr(θ)
b̂r − b̃r(θ)

)∥∥∥2

D
(6.40)

where D is a positive definite matrix and ‖u‖2
D = uHD−1u. We have experimented sev-

eral choices for D−1: (i) the FIM4 Fr related to vector [aT
r , b

T
r ]T computed at [âr, b̂r, ŝr],

(ii) its approximation by its two main diagonal blocks, (iii) D = I. The two diagonal
blocks are not diagonal, so that the parameter estimation θ̂Ir assuming that all compo-
nents of âr and b̂r have the same variance is less accurate. On the other hand, since the
correlation between âr and b̂r has revealed to be small, estimates obtained with (i) and
(ii) are very similar, and will be both denoted by θ̂Fr .

Objective (6.40) is arbitrary and suboptimal, but permits to find an acceptable solution,
as will be demonstrated in Section 6.6. In fact, a refinement by gradient ascent does not
bring any significant improvement.

Polarization Diversity

If there are space, polarization and frequency diversities (cf Section 6.6.2), we can also
estimate polarization parameters. For one single polarization parameter βr, we perform
an exhaustive search over a 2D grid of DoA θ ∈ Θ and polarization angle β ∈ [−π/4, π/4].
We proceed analogously, by searching Θ ∪ [−π/4, π/4] for:

(θ̂Dr , β̂
D
r ) = arg min

θ,β

∥∥∥( âr − ãr(θ)
k̂r − kr(θ, β)

)∥∥∥2

D
(6.41)

The same choices of matrix D have been experimented (see Section 6.6).

Remark : the above mentioned minimization procedures are performed in a limited
domain: θ ∈ Θ, β ∈ [−π/4, π/4]. In order to prevent this search from becoming too
costly, we apply an iterative progressive refinement of the grid, where each iteration is a
zoomed version of the previous one.

6.6. Computer Results

This section is meant to illustrate the advantage of wideband tensor processing for the
problem of DoA and/or polarization estimation.

MC simulations make use of multiple diversities, throughout the section (in addition
to space and frequency):

1. Section 6.6.2: space shifts of a reference subarray, as described in Section 6.2.1.

2. Section 6.6.2: polarization diversity, as described in Section 6.2.2.

4See Chapter 7, and references [128, 90] for further details on the computation of CRB for factor
matrices.
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Thanks to Assumption A 1.8, impinging sources are assumed coplanar with respect
to the array: only azimuth is to be estimated, and not elevation, without any loss of
generality, as described in Section 4.6.2. We simulated R = 2 sources, at sampling
frequency fs = 1 kHz, for an observation time of 64 ms and propagating at c = 1800 m s−1,
which is approximately the propagation speed of seismic S-waves through ice [117]. Hence,
T = 64 time samples are available. Sources in time domain are white Gaussian processes
with unit variance. The number of working frequency bins is Q = 14 (within the selected
frequency range from fmin = 0.25 fs to fmax = 0.45 fs). As for the distance dij between
two neighboring sensors (` = i and ` = j) of the same subarray, we set dij ≤ λ0/2, where
λ0 is the reference wavelength, λ0 = 2πc/ω0. The reference frequency f0 = ω0/2π is
chosen to be the central bin f0 = (fmin + fmax)/2 = 0.35fs. Correlation between sources,
when present, is ρ = 0.9.

Wideband processing is performed in a single sector Θ, assuming interesting sectors
(i.e. sectors containing most of the signal power) have been previously detected through
a former low resolution beamforming technique. Former detection of relevant sectors is
beyond the scope of this chapter and can be found in the literature [89, 152]. Interpolation
is then performed within the angular sector Θ = [0, 25◦], with a discretization of 0.1◦.

In order to understand the relevance of tensor wideband processing, we also present
a narrowband alternative for comparison (referred to as NB-ALS): received signals are
filtered around central frequency f0 = ω0/2π with narrowband filter bandwidth BW =
0.015fs, and then directly processed through tensor CPD approximation [136, 128], as
in Chapter 4. Estimation efficiency is also evaluated in comparison to the wideband
MUSIC approach [157], and to the wideband multilinear CRB derived in Section 7.2.
The performance criterion is the relative total MSE of the DoA estimates and, whenever
present, of the polarization ellipticity estimates:{

MSE(θ) = 1
π2

1
NR

∑N
n=1

∑R
r=1(θ̂rn − θr)2

MSE(β) = 1
π2

1
NR

∑N
n=1

∑R
r=1(β̂rn − βr)2

(6.42)

where θ̂rn and β̂rn are the estimated DoA and ellipticity angle, respectively, of source r
in the n-th MC trial, N = 2500 being the number of trials. As in [90, 128], the SNR
definition below is assumed:

SNR = 10 log10

E
[
µHµ

]
E [nHn]

= 10 log10

‖ µ ‖2

LMPQσ2
(6.43)

We compare the following estimation algorithms:

NB-ALS: standard narrowband ALS in time domain as in Chapter 4, after narrowband
filtering around f0, and simple parameter estimation: parameters are estimated by
taking the identity matrix for D in (6.40) and (6.41).

WB-ALS: Wideband (WB) preprocessing and standard ALS in frequency domain not
taking into account the correlation structure of noise, and simple DoA estimation taking
D = I in (6.40) and (6.41).

WB-ALSCOLOR: WB preprocessing and ALS Algorithm 6.1 for correlated noise,
and simple DoA estimation taking D = I in (6.40) and (6.41).

WB-W-ALSCOLOR: WB preprocessing and ALS Algorithm 6.1 for correlated noise
and weighted DoA estimation: parameters are estimated through (6.40) and (6.41) with
FIM weighting D = F r.
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WB-MUSIC with covariance matrix expressed in (2.51) and, for polarized sensors,
WB Vector MUSIC in Section 5.3.1, where the array manifold takes into account
wave polarization parameters.

Notice that WB preprocessing refers to the multilinear interpolation described in Sec-
tion 6.3.

6.6.1. Space Shift in Wideband

As described in Section 6.2.1, the same sub-array is repeated in space through M trans-
lations (cf. Figure 6.2):

λ0/2

x axis

y
ax

is

Figure 6.2.: Sensor position matrix - space shift diversity

1. M = 5 sub-arrays;

2. each sub-array is a square 2D array of L = 4 sensors;

3. the distance between two neighboring sensors is λ0/2;

4. the distance between two neighboring sub-arrays is ≈ 4 ∗ λ0/2.

Interpolation of the data tensor is bilinear, which means it is performed for matrices
A and B separately, as described in Section 6.3.3. Therefore, both sensor positions in
P = [p1, . . . ,pL]T and space shifts in ∆ = [δ1, . . . , δM ]T need to be known, and DoA
can be estimated from both A and B, as explained in Section 4.6. On the other hand,
the linear interpolation of wideband MUSIC is performed on the global LM × 2 matrix
P tot = [p1 + δ1, . . . ,pL + δ1, . . . ,p1 + δM , . . . ,pL + δM ]T of the whole acquisition system
(cf. Figure 6.2), without taking into account the bilinearity of the tensor model.

Figure 6.3 shows the dependence of the narrowband tensor CPD method, NB-ALS, on
the number of available time samples, T : the MSE drastically drops for increasing data
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samples, because a larger data window allows a narrowband filtering of higher quality.
In what follows, we fix the number of time samples to T = 64: we expect then that
narrowband tensor CPD, NB ALS, will show a saturation starting from a certain SNR.

Figure 6.4a shows the MSE on DoA estimation with respect to the SNR when R =
2 uncorrelated sources arrive from angles θ1 = 5◦ and θ2 = 20◦, respectively; Figure
6.4b refers to a correlation coefficient of ρ = 0.9 between sources. Notice that values of
correlation coefficient ρ around 0.9 are very high for wideband sources, because dissipation
is different at various frequencies. In addition, this decorrelation effect is even accentuated
in actual propagation media because of dispersion. Proposed ALS algorithm for correlated
noise (ALSCOLOR) (i.e. Algorithm 6.1) significantly improves the standard ALS, since
it takes into account the noise correlation structure introduced by interpolation. The
reliability information contained in the FIM weighting D = F r on factor vectors in
(6.40) also helps the estimation performance. In the present experimental conditions,
wideband tensor methods outperform both MUSIC and narrowband CPD. If the sources
are correlated, the performance of all the algorithms slightly deteriorates correspondingly,
and the gap w.r.t. the CRB increases (cf. Figure 6.4b). Further simulations showed this
gap to be a monotonically increasing function of the source correlation coefficient ρ.
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Figure 6.3.: MSE vs T - NB ALS - narrowband Tensor CP

Figure 6.5 qualitatively shows the effect that the bilinear interpolation has on the noise
covariance in the present numerical experiment, Σ(1), as described in Section 6.3.4. In
particular, one can easily observe the diagonal blocks Σq = σ2 V qV

H
q �U qU

H
q , 1 ≤ q ≤

Q = 14, of size LM = 20 each. We can quantify the deviation of this new covariance
structure from the original diagonal matrix as follows:

εΣ =
‖Σ(1) − σ2ILMQ‖2

LMQσ2
=

1

Q

Q∑
q=1

‖Σq − σ2ILM‖2

LMσ2
(6.44)
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(a) DoA estimation - Uncorrelated sources
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Figure 6.4.: MSE vs SNR - space shift diversity
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We find εΣ = 1.1121.
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Figure 6.5.: Structure of the noise covariance matrix Σ(1) after interpolation
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6.6.2. Polarization in Wideband

Impinging signals are supposed to be elliptically polarized seismic sources, recorded by
one 3C sensor array, or vector-sensor array, as defined in Section 1.4.2 (cf. Figure 6.6).
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Figure 6.6.: 3C sensor position matrix - polarization diversity

We assume:

1. an array of L = 5 sensors;

2. the distance between two sensors is ≈ λ0/2;

3. R = 2 uncorrelated polarized sources arrive from angles θ1 = 5◦ and θ2 = 20◦,
respectively.

4. Rayleigh waves, i.e. α = 0, ψ = 0 (coplanar with the array), β 6= 0. In particular,
β1 = −20◦, β2 = 10◦.

Interpolation is linear, i.e. only for matrix A, because polarization factor matrix K
is independent of frequency, as described in Section 6.3.5. We compare tensor methods
with WB Scalar MUSIC, via an incoherent average of P covariances, and WB Vector
MUSIC, via a coherently averaged covariance matrix of size PL×PL. Figures 6.7a and
6.7b show the MSE with respect to the SNR for DoA estimation and for polarization
estimation, respectively. The overall performance of the compared algorithms is similar
to the space-shift case of Section 6.6.1. However, the gain granted by FIM weighting
D = F r is less significant, especially for β.

Figure 6.8 qualitatively shows the effect that the bilinear interpolation has on the noise
covariance in the present numerical experiment, Σ(1), as described in Section 6.3.5. In
particular, one can easily observe the diagonal blocks Σq = σ2IP�U qU

H
q , 1 ≤ q ≤ Q = 14,

of size LP = 15 each. We can quantify the deviation of this new covariance structure
from the original diagonal matrix as follows:

εΣ =
‖Σ(1) − σ2ILPQ‖2

LPQσ2
=

1

Q

Q∑
q=1

‖Σq − σ2ILP‖2

LPσ2
(6.45)
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Figure 6.7.: MSE vs SNR - polarization diversity - seismic Rayleigh waves
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We find εΣ = 0.2376.
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Figure 6.8.: Structure of the noise covariance matrix Σ(1) after interpolation
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6.7. Conclusion

The crucial difficulty of the tensor wideband approach for source estimation and local-
ization stems from the need to focus every frequency contribution on the same subspace.
We show that multilinear interpolation can solve this issue: it allows to have a multi-
linear model and thus to apply tensor decomposition techniques to wideband data. An
important side effect is that the latter interpolation correlates the noise, which needs to
be taken into account in the optimization process. In simulations, both with space shift
diversity and polarization diversity, the proposed approach improves narrowband tensor
processing and outperforms traditional subspace methods such as wideband MUSIC of
Section 2.8. We also show that, in addition to space and frequency, polarization can be
used instead of space shift diversity, even in the wideband case.





7. Cramér-Rao Bound for Source
Estimation and Localization

7.1. Contribution

This chapter addresses the derivation of the Cramér-Rao Bound (CRB) for tensor DoA
and polarization estimation. It refers to the general fourth order tensor model in (6.30)
with multiple diversities, i.e. time or frequency, space and/or gain patterns, space shift
and polarization. For further details about tensor CRB on factor matrices, see [149];
for details about the general CRB for multidimensional sensor arrays with space shift
diversity, we refer to [90], and, for white non circular complex noise, to [128].

Our work was presented at a French conference [115] and accepted for publication with
minor revisions by IEEE Transactions on Signal Processing [114].

7.2. Cramér-Rao Bounds

In order to assess the performance of the approaches proposed in Chapter 5 and Chapter 6,
we can compare obtained estimation errors with the CRB, e.g. for DoA and polarization
parameters. The CRB, which is the lower bound on the covariance Γ of any unbiased
estimator, is given by the inverse of the Fisher Information Matrix (FIM); in other words1,
Γ � F−1 (cf. Section 2.2 for the general definition).

The evaluation of the FIM requires the partial derivatives of the log-likelihood w.r.t.
the unknown parameters, ϑ, given the tensor models previously described. We state the
general expression of the log-likelihood in Section 7.2.1, whereas we compute its derivatives
and the general expression of the FIM in Section 7.2.2.

The derivation of the CRB addresses both cases of unknown and known gain patterns.
The presence of unknown anisotropic gain patterns is herein treated as a nuisance, but
could be exploited as a plain diversity as shown in Section 5.4. Alternatively, if gain
patterns are known, they are no longer nuisance parameters. Up to a calibration operation,
this case is equivalent to assuming g`(θ) = 1,∀θ, ∀`, as in Assumption A 1.16.

7.2.1. Log-Likelihood

The general tensor model in additive noise for multiple diversities is given in (6.30). First,
the multidimensional L ×M × P × Q array X is stored in a vector x of size LMPQ,
following the bijective map: x = vec{X} of Definition 3.7. We remind that we adopt
the usual definition [10] where the vec{·} operation takes indices in lexicographical order.

1This inequality means that matrix Γ− F−1 is semi-definite positive.
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Thus, applying the vec{·} operator to equation (6.30), thanks to identity (3.10), leads to

x =
R∑
r=1

sr � kr � br � ar + n (7.1)

with x = vec{X} and n = vec{N }. In narrowband, the column sr contains the time
samples of the r-th source complex envelope, whereas in wideband sr refers to the Fourier
coefficients of the r-th source. In both cases, we assume in this chapter that S ∈ CQ×R.

Now since the noise vector n is circular Gaussian, with zero mean and covariance Σ,
the log-likelihood then takes the form, up to a constant additive term:

Υ(ϑ) = −(x− µ)H Σ−1 (x− µ) (7.2)

where µ =
∑R

r=1 sr � kr � br � ar. We shall assume an isotropic measurement noise.
However, in wideband, as we explained in Section 6.3, the noise covariance is affected by
wideband interpolation so that Σ 6= σ2I. The circularity Assumption A 1.12 could be
relaxed to the price of an increased notational complexity, as in [128].

7.2.2. Fisher Information Matrix (FIM)

Two cases need to be distinguished, namely known and unknown gain patterns:

1) If gains g`(θr) are unknown, the (L− 1)R entries G`r = g`(θr), 2 ≤ ` ≤ L, are real
nuisance parameters related to gain patterns in Section 5.4. For every r, we store
them in a vector ḡr of size L− 1 (as stated in Assumption A 5.1, g1(θr) = 1,∀r). In
turn, we stack all these vectors ḡr in a (L− 1)R-dimensional vector denoted by γ.

Define then v = [θT,αT,βT,γT]T, a real parameter vector of size R(L+ 2).

2) If gains g`(θr) are known, define v = [θT,αT,βT]T, a real parameter vector of size
3R.

Next, define ξ = [sT1 , . . . , s
T
R]T, a complex parameter vector of size RQ. Notice that,

thanks to Assumption A 4.5, source vector ξ is deterministic. Consequently, for each
source, there are three real parameters, θr, αr and βr, and two complex parameters, sr
and s∗r; if gain patterns are unknown, there are L− 1 additional real parameters ḡ`r.

When computing the FIM with respect to complex parameters, it is also necessary to
include the complex conjugate parameter, in order to avoid a loss in information [65]. This
means just appending ∂f/∂z∗, which is nothing else but (∂f/∂z)∗. Now, following [65],
real and complex parameters must be treated differently. From (7.2), the FIM contains
nine blocks [128]:

F =

 2<{G11} G12 G∗12

GH
12 G22 0

GT
12 0 G∗22

 , (7.3)

where G11 is related to the real parameters, and G22 is related to the complex ones. More
precisely, blocks Gij are defined by:

G11 =

(
∂µ

∂v

)H

Σ−1

(
∂µ

∂v

)
G22 =

(
∂µ

∂ξ

)H

Σ−1

(
∂µ

∂ξ

)
G12 =

(
∂µ

∂v

)H

Σ−1

(
∂µ

∂ξ

)
,
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where Σ is the covariance of noise n. If all diversities are present, the total dimensions
of the FIM F are hence R(L + 2 + 2Q) if gain patterns are treated as nuisances, and
R(3 + 2Q) if gain patterns are known. With these definitions, the covariance matrix Γ of
any unbiased estimator of ϑ = [vT, ξT, ξH]T satisfies Γ � F−1.

Note that in G11, we obtain the derivative w.r.t. the DoAs using the chain rule below:

∂µ

∂θr
=

∂µ

∂ār

∂ār
∂θr

+
∂µ

∂b̄r

∂b̄r
∂θr

+
∂µ

∂kr

∂kr
∂θr

. (7.4)

The scalar factor 2 in (7.3) is justified by (7.6), because chain rules used to calculate G11

involve complex variables when computing real derivatives. The derivatives required to
evaluate (7.3) and (7.4) are given in Section 7.3.

7.3. Derivatives Required for the FIM

In order to evaluate the derivatives required for the computation of the FIM, and conse-
quently of the CRB, we have to introduce the concept of complex derivatives.

7.3.1. Complex Derivatives

A real function of a complex variable is never holomorphic, unless it is constant [25]. It
is hence necessary to specify which convention is assumed. Even if a convention has been
proposed much earlier in [25], we assume the definition proposed in [65], as it is now more
widely used. Let f(z) be a real function from CP to RN . Its complex derivative with
respect to z ∈ CP is defined by

∂f

∂z
=

1

2

∂f

∂x
− 

2

∂f

∂y
(7.5)

where x and y denote the real and imaginary parts of z, respectively. This definition
is consistent with [65, 128, 90]. This derivative is stored in a complex N × P matrix,
regardless of the fact that f and z are row or column vectors, which allows easy-writing
chain rules of the form: ∂f

∂z
= ∂f

∂a
∂a
∂z

, with compatible matrix sizes.

Next, it is often convenient to compute some derivatives by the chain rule, which means
that derivatives of a complex quantity w.r.t. a complex variable are needed. It turns out
that quantities involved are holomorphic, so that this differential is meant in the usual
sense of complex analysis.

If a real function f is to be derived w.r.t. a real variable θ, but using a chain rule
involving a complex variable z, then for consistency with (7.5) the following relation
must apply [65, 128, 115]:

∂f

∂θ
= 2<

{
∂f

∂z

∂z

∂θ

}
(7.6)

In what follows, we calculate the derivatives required for the evaluation of the FIM in
(7.3) and (7.4).
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7.3.2. Derivatives w.r.t. S

The matricesA andB depend on the DoAs θr, whereasK depends on angles2 (θr, αr, βr),
1 ≤ r ≤ R. Let us start with matrix S, which is unconstrained. Thanks to Assumption
A 4.5, the source signals are indeed treated as deterministic parameters, which allows to
extract them. The derivative w.r.t sr is given by

∂µ

∂sr
= IQ � kr � br � ar ∈ CLMPQ×Q (7.7)

7.3.3. Derivatives w.r.t. A and B, and their Parameters

Since the first row of A and B contains only ones, only the remaining rows need to be
estimated. The submatrices formed of the remaining rows are denoted by A and B, and
their columns by ār and b̄r, respectively. In other words, A = JLA, where JL is the
L−1× L line-selection matrix JL = [0, IL−1]. This is necessary to reduce the size of the
FIM (otherwise it would be always rank deficient).

For space steering vectors, we have

∂µ

∂ār
= sr � kr � br � J

T
L ∈ CLMPQ×L−1 (7.8)

As in Section 7.2.2, we distinguish between two cases: unknown and known gain patterns.

Unknown Gain Patterns

Since functions g`(θ) are unknown, but needed only at R points θr, G`r = g`(θr) are
treated as extraneous fixed nuisance (unknown) parameters; this approach avoids the
need for derivatives ∂g`(θ)/∂θ. For convenience, we denote by gr the L-dimensional
vector with entries g`(θr), 1 ≤ ` ≤ L, and ḡr the vector obtained by removing the first
entry of gr (which is equal to 1 by definition, thanks to Assumption A 5.1). The following
derivative can be readily obtained:

∂ār
∂ḡr

= JL exp{−ωτ r}JT
L ∈ CL−1×L−1 (7.9)

where τ r ∈ CL is the vector containing entries τ`(θr).

Known Gain Patterns

In this case (7.9) is not used, as gain patterns are not nuisance parameters anymore.

In both cases, the derivative of the steering vectors with respect to DoAs is readily
obtained:

∂ār
∂θr

= −ω
c
JL

(
gr � P ḋ(θr)� exp{−ωτ r}

)
∈ CL−1 (7.10)

where the exponential is taken entry-wise, and P is the L × 2 sensor position matrix
with rows p`. The case of known omnidirectional gain patterns is equivalent to assuming
g`(θ) = 1,∀θ, ∀`.
2In a 3D space, θr = (φr, ψr), as two angles are necessary. In a 2D space, we shall just use notation θr,

thanks to Assumption A 1.8.
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Similarly, for space shift steering vectors we have

∂µ

∂b̄r
= sr � kr � J

T
M � ar ∈ CLMPQ×M−1 (7.11)

The following derivative is readily obtained:

∂b̄r
∂θr

= −ω
c
JM

(
∆ḋ(θr)� exp{−ωζr}

)
∈ CM−1 (7.12)

where ζr ∈ CM is the vector containing entries ζm(θr), and ∆ is the M × 2 subarray
position matrix with rows δm.

The Case of Pattern Diversity

If time, space shift and gain pattern diversities are available, as in Section 5.4, but not
space and polarization, then expressions are simpler. It is worth detailing this scenario
because it has not been reported in the literature. In this case, matrix A only contains
gains G`r and matrix B only contains delays ζm(θr), and one can prove that

(
∂µ

∂sr

)H(
∂µ

∂sk

)
= (bHr bk)(a

H
r ak) IQ(

∂µ

∂ar

)H(
∂µ

∂ak

)
= (sHr sk)(b

H
r bk) IL (7.13)(

∂µ

∂θr

)H(
∂µ

∂θk

)
= ω2(sHr sk)(a

H
r ak)(b

∗
r � bk)

T(ζ̇r� ζ̇k)

The effects of anisotropic gain patterns was addressed in more detail in Section 5.4.

7.3.4. Derivatives w.r.t. K and its Parameters

From (7.1) and (6.7), we have [115]

∂µ

∂kr
= sr � I3 � br � ar

∂µ

∂αr
= sr �

∂kr
∂αr
� br � ar (7.14)

∂µ

∂βr
= sr �

∂kr
∂βr
� br � ar
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TGR Waves

For Tilted Generalized Rayleigh (TGR) waves (cf. (1.35) in Section 1.4), partial deriva-
tives are given by

∂kr
∂θr

=

 − sin θr cosψr sin θr sinψr
cos θr cosψr − cos θr sinψr

0 0

 W (αr)w(βr)

∂kr
∂ψr

=

 − cos θr sinψr − cos θr cosψr
− sin θr sinψr − sin θr cosψr

cosψr − sinψr

 W (αr)w(βr)

∂kr
∂αr

= HTGR(θr)

[
− sinαr cosαr
− cosαr − sinαr

]
w(βr)

∂kr
∂βr

= HTGR(θr)W (αr)

[
− sin βr
 cos βr

]
In the 2D case when elevation ψ = 0, we have

∂kr
∂θr

=

 − sin θr 0
cos θr 0

0 0

 W (αr)w(βr) (7.15)

TR Waves

For Transverse (TR) waves (cf. (1.34) in Section 1.4), partial derivatives are given by

∂kr
∂θr

=

 cos θr sin θr sinψr
− sin θr − cos θr sinψr

0 0

 W (αr)w(βr)

∂kr
∂ψr

=

 0 − cos θr cosψr
0 − sin θr cosψr
0 − sinψr

 W (αr)w(βr)

∂kr
∂αr

= HTR(θr)

[
− sinαr cosαr
− cosαr − sinαr

]
w(βr)

∂kr
∂βr

= HTR(θr)W (αr)

[
− sin βr
 cos βr

]
In the 2D case when elevation ψ = 0, we have

∂kr
∂θr

=

 cos θr 0
− sin θr 0

0 0

 W (αr)w(βr) (7.16)

7.4. Interpolation errors

Notice that as for the wideband model in frequency domain, the CRBs derived in this
chapter refer to the interpolated model in (6.25) and (6.27). These bounds then represent
a good approximation if the interpolation bias and errors are negligible compared to
additive measurement noise.
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However, if this is not the case, the interpolation bias and errors should be taken into
account, in the same spirit as [70, 71]. Alternatively, the CRB of the original model in
(6.9) before interpolation should be derived. Model (6.9) can be rewritten in tensor form
as

M(ωq) =
R∑
r=1

ar(ωq)⊗ br(ωq)⊗ kr Sqr, 1 ≤ q ≤ Q (7.17)

or in vector form as µ(ωq) = vec{M(ωq)}:

µ(ωq) =
R∑
r=1

kr � br(ωq)� ar(ωq) Sqr, 1 ≤ q ≤ Q (7.18)

Hence, since the frequency slices are independent from one another, the resulting log-
likelihood is the sum of Q individual contributions (up to an additive constant):

Υ(ϑ) = −
Q∑
q=1

[x (ωq)− µ (ωq)]
H Σ−1 [x (ωq)− µ (ωq)] (7.19)

where x(ωq) = vec{X (ωq)}, 1 ≤ q ≤ Q, are the vectorized frontal slices of the data tensor.





8. Tensor Wideband Estimation
through Spatial Resampling

8.1. Contribution

This chapter aims at achieving a tensor method for wideband source estimation and
localization through spatial resampling.

The core of Chapter 6 lay in the combination of several elements: introduction of
the frequency diversity into the tensor model, a coherent preprocessing through focusing
matrices of each narrow band so as to align (focus) their respective contributions, and
finally a joint tensor processing leading to the estimation of DoA and polarization angles.
However, this approach needs a prior knowledge of relevant angular sectors, through a
former BF technique (as explained in Sections 2.8.2 and 6.3.2).

We saw in Section 2.8.3 that, when the array has a regular structure such as a ULA,
spatial interpolation can replace the linear transformations of Section 2.8.2, with no need
for a division of the angular range into sectors. Similarly, this chapter intends to solve the
focusing operation for wideband tensor processing through spatial interpolation of regular
arrays, such as ULAs and rectangular arrays, which are widespread in many applications
[151].

Similarly to Chapter 6, space shift and polarization diversities are the subjects of Sec-
tions 8.2 and 8.3, respectively. The bilinear interpolation of the data tensor in Section 6.3.2
is replaced by a spatial resampling, thus allowing us to simultaneously scan the whole an-
gular range, with no need for its division into angular sectors. Section 8.4 describes the
estimation of signal parameters, whereas Section 8.5 presents results based on computer
simulations.

This chapter further develops the main idea of our 2016 ICASSP paper [119], which
was also source of inspiration for another 2017 ICASSP paper on MIMO radars and
telecomunications [163].

8.2. Space Shift Diversity in Wideband

We rewrite the model in (6.1) for space and space shift in frequency domain with omni-
directional sensors:

M`m(ω) =
R∑
r=1

A`r(ω)Bmr(ω) sr(ω)

with


X`m(ω) = F{X`m(t)}
A`r(ω) = e−ωτ`(θr)

Bmr(ω) = e−ωζm(θr)

sr(ω) = F{sr(t)}

(8.1)
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where τ`(θ) + ζm(θ) = pT` d(θ)/c+ δTmd(θ)/c is the delay of arrival on sensor ` of subarray
m, with p` the location of the `-th sensor and δm the location of the m-th subarray (cf.
(4.6)). In Section 6.3.1, the wideband preprocessing operation consists in interpolating
received data at virtual positions corresponding to virtual sensors and subarrays:

p̃`(ωq) =
ω0

ωq
p`, δ̃m(ωq) =

ω0

ωq
δm (8.2)

We refer to Section 2.8.3 for spatial resampling for wideband DoA estimation using
the MUSIC and ESPRIT algorithms, whereas we refer to Section 1.2.3 for generalities on
the array geometry. We shall now extend Section 2.8.3 to separable array configurations
(embodying space shift diversity), and to 3C sensors (embodying polarization diversity),
for regular linear and planar array geometries.

8.2.1. Linear Arrays

If the array is linear as in Figure 8.1, the delay at one of its elements becomes

τ`(θ) + ζm(θ) = p` cos θ/c+ δm cos θ/c (8.3)

From (8.2), we deduce that spatial interpolation involves the following virtual positions:

(p̃` + δ̃m)(ω) =
ω0

ω
(p` + δm) (8.4)

Figure 8.1.: Example of linear acquisition system

In this case, we can perform a unique 1D spatial interpolation on the whole linear array
of LM sensors, from nominal positions ptot to virtual positions p̃tot(ω):ptot = [p1 + δ1, . . . , pL + δ1, . . . , p1 + δM , . . . , pL + δM ]T

p̃tot(ω) =
[
(p̃1 + δ̃1)(ω), . . . , (p̃L + δ̃1)(ω), . . . , (p̃1 + δ̃M)(ω), . . . , (p̃L + δ̃M)(ω)

]T
(8.5)

Since, in general, the linear structure of this array is non uniform, we should rely on
non uniform interpolation techniques. However, we shall just detail two common cases,
which only require a simple uniform interpolation.

Uniform Sensor and Subarray Spacing

If the separable structure of the acquisition system is uniform at the sensor level and at
the subarray level, as in Figure 8.2, we can apply a uniform interpolation to both scales
independently.

Figure 8.2.: Example of uniform linear acquisition system

In this case, nominal positions are given by p` = (`− 1)p0 and δm = (m− 1)δ0, whereas
virtual positions can be derived independently through two 1D uniform interpolators:{

p̃`(ω) = (`− 1)p̃0(ω), with p̃0(ω) = ω0

ω
p0

δ̃m(ω) = (m− 1)δ̃0(ω), with δ̃0(ω) = ω0

ω
δ0

(8.6)
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Long ULA

(a) M = 3 ULA subarrays of L = 6 sensors each

(b) M = 4 ULA subarrays of L = 6 sensors each

Figure 8.3.: Example of Long ULA

If the global array is a ULA, as in Figures 8.3a and 8.3b, global positions are given by
p` = (`− 1)p0, 1 ≤ ` ≤ Ltot, whereas 1D virtual positions become

p̃`(ω) = (`− 1)p̃0(ω), 1 ≤ ` ≤ Ltot, with p̃0(ω) =
ω0

ω
p0 (8.7)

We can then achieve a global uniform interpolation of the long array ptot. In our simu-
lations in Section 8.5, we shall choose this global ULA configuration. Indeed, if the long
array is a ULA of Ltot = L+M −1 sensors, it can be considered as the combination of M
displaced subarrays of L sensors each. Similarly to Section 2.8.3, we need to state one spa-
tial sampling condition on inter-sensor spacing, p0 ≤ λ0/2, and another on inter-subarray
spacing, δ0 ≤ λ0/2.

8.2.2. Planar Arrays

If the array is planar, as in Figure 8.4, thanks to Assumption A 1.8, the delay at one of
its elements becomes

τ`(θ) + ζm(θ) = px` cos θ/c+ py` sin θ/c+ δxm cos θ/c+ δym sin θ/c (8.8)

From (8.2) we derive {
(p̃x` + δ̃xm)(ω) = ω0

ω
(px` + δxm)

(p̃y` + δ̃ym)(ω) = ω0

ω
(py` + δym)

(8.9)

Thus, in order to perform the alignment of a planar array, a 2D non uniform spatial
interpolation is required. This can be achieved through two independent non uniform 1D
interpolators.
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Figure 8.4.: Example of planar acquisition system

Long URA

If the global array is a URA , as in Figure 8.5, nominal positions are given by px` =
(`x− 1)px0 , 1 ≤ `x ≤ Lxtot and py` = (`y− 1)py0, 1 ≤ `y ≤ Lytot, whereas virtual positions can
be derived independently through two uniform interpolators:

{
p̃x` (ω) = (`x − 1)p̃x0(ω), 1 ≤ `x ≤ Lxtot, with p̃x0(ω) = ω0

ω
px0

p̃y` (ω) = (`y − 1)p̃y0(ω), 1 ≤ `x ≤ Lxtot, with p̃y0(ω) = ω0

ω
py0

(8.10)

In this case, the global array of Lxtot×Lytot = (Lx +Mx−1)× (Ly +My−1) sensors can
be seen as the combination of Mx + My subarrays of Lx × Ly sensors each. Similarly to
Section 2.8.3, , we need to impose two spatial sampling conditions on inter-sensor spacing:
px0 ≤ λ0

2
and py0 ≤ λ0

2
.

px0

py0

Figure 8.5.: Example of Long URA
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8.2.3. Tensor Resampling

After discretization, model (8.1) becomes

M`m(ωq) =
R∑
r=1

A`r(ωq)Bmr(ωq)Sqr, 1 ≤ q ≤ Q (8.11)

For each q-th frequency bin, we need to interpolate the q-th row of the mode-3 unfolding
of the data tensor X ,

X(3)q: = sq:[B(ωq)�A(ωq)]
T +N (3)q: ∈ C1×LM (8.12)

at positions p̃tot(ωq) = ptot
ω0

ωq
. Thanks to (8.2), interpolated slices write

X̃(3)q: ≈ sq:[B̃(ω0)� Ã(ω0)]T + Ñ (3)q: ∈ C1×LM (8.13)

We then recompose the interpolated tensor unfolding X̃(3), by stacking all the interpo-

lated rows X̃(3)q:. This unfolding corresponds to a tensor{
M̃ ≈∑R

r=1 ãr(ω0)⊗ b̃r(ω0)⊗ sr
M`mq ≈

∑R
r=1 Ã`r(ω0) B̃mr(ω0)Sqr

(8.14)

We choose to study the simplest configuration of a ULA of L sensors, with M linear
translations, as in Section 8.2.1. However, all that follows can be generalized to the planar
arrays through 2D spatial interpolation.

After 1D sinc spatial interpolation as described in Section 8.2.1, the factor matrices of
resulting tensor X are given by

1. Ã`r = exp
{
−1

c
ω0p0(`− 1) cos(θr)

}
is the steering element of the `-th sensor.

2. B̃mr = exp
{
−1

c
ω0p0(m− 1) cos(θr)

}
is the steering element of the m-th subarray.

3. Sqr = sr(ωq) is the q-th Fourier Transform (FT) coefficient of the r-th signal.

We remind that the distance p0 between two successive sensors must be less than or
equal to λ0/2, so as to avoid spatial aliasing.

8.3. Polarization Diversity in Wideband

On the other hand, we rewrite the model (6.4) for polarization diversity:

M`p(ω) =
R∑
r=1

A`r(ω)Kpr sr(ω), 1 ≤ p ≤ P = 3 (8.15)

where polarization vectors kr are defined in (6.5). In this case, as described in Sec-
tion 6.3.5, since polarization matrix K does not depend on frequency ω, only space
matrix A(ω) needs to be interpolated at sensor positions

p̃`(ωq) =
ω0

ωq
p` (8.16)

Thus, for regular configurations, the required interpolation is simpler:
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1. For a linear array of L sensors located at p`, (8.16) becomes

p̃`(ω) =
ω0

ω
p` (8.17)

Spatial resampling can then be achieved through a 1D non uniform interpolator.

2. For a ULA of L sensors located at p` = (`− 1)p0, (8.16) becomes

p̃`(ω) = (`− 1)p̃0(ω), with p̃0(ω) =
ω0

ω
p0 (8.18)

as described in Section 2.8.3. Spatial resampling can then be achieved through a
1D uniform interpolator.

3. For a planar array of L sensors located at (px` , p
y
` ), (8.16) becomes{

p̃x` (ωq) = ω0

ωq
px`

p̃y` (ωq) = ω0

ωq
py`

(8.19)

Spatial resampling can then be achieved through two independent 1D non uniform
interpolators.

4. For a URA of Lx×Ly sensors, with nominal positions given by px` = (`x− 1)px0 and
py` = (`y − 1)py0, (8.16) becomes{

p̃x` (ω) = (`x − 1)p̃x0(ω), with p̃x0(ω) = ω0

ω
px0

p̃y` (ω) = (`y − 1)p̃y0(ω), with p̃y0(ω) = ω0

ω
py0

(8.20)

Spatial resampling can then be achieved through two independent 1D uniform in-
terpolators.

8.3.1. Tensor Resampling

After discretization, model (8.15) becomes

M`p(ωq) =
R∑
r=1

A`r(ωq)Kpr Sqr, 1 ≤ q ≤ Q (8.21)

For each q-th frequency bin, we need to interpolate all the P = 3 fibers of data tensor X :

x:pq = ADk(sq:)k
T
p: + n:pq ∈ CL, p = 1, . . . , 3 (8.22)

at positions p̃(ωq) = pω0

ωq
, given by (8.16). Then, interpolated fibers write

x̃:pq = Ã(ω0)Dk(sq:)k
T
p: + ñ:pq ∈ CL, p = 1, . . . , 3 (8.23)

We then recompose the interpolated tensor X̃ , by stacking all the interpolated fibers
x̃:pq, leading to the trilinear model{

M̃ ≈∑R
r=1 ãr(ω0)⊗ kr ⊗ sr

M`pq ≈
∑R

r=1 Ã`r(ω0)Kpr Sqr, p = 1, . . . , 3
(8.24)

For a ULA of L sensors, after 1D spatial interpolation of tensor fibers x:pq as described

in Section 2.8.3, the factor matrices of resulting tensor X̃ are given by
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1. Ã`r = exp
{
−1

c
ω0p0(`− 1) cos(θr)

}
is the steering element of the `-th sensor.

2. kr = H(θr)W (αr)w(βr) is the vector sensor response.

3. Sqr = sr(ωq) is the q-th FT coefficient of the r-th signal.

As pointed out in Section 2.8.3, the distance p0 between two successive sensors must be
less than or equal to λ0/2, so as to avoid spatial aliasing.

8.4. Estimation of Signal Parameters

The factor matrices of the two Canonical Polyadic Decompositions (CPDs) in (8.14) and
(8.24), A ∈ CL×R, S ∈ CQ×R, and B ∈ CM×R or K ∈ C3×R, are extracted through an
ALS (see Section 3.6.3 for details on tensor approximation algorithms). Initial estimates
are here given by the tensor decomposition technique [85] detailed in Section 3.5. However,
unlike in Section 6.5, the noise correlation structure induced by spatial resampling is herein
not taken into account.

Once column vectors âr, b̂r and/or k̂r are extracted from ALS estimates Â, B̂, and/or
K̂, we can estimate DoA θr and polarization angle βr as follows.

1. DoAs θr can be estimated through a TLS algorithm1, thanks to the Vandermonde
structure of the factor vector ar, as in Section 4.6.3. We refer to these estimates as

θ̂TLS
r = TLS estimate of θr as in Section 4.6.3 (8.25)

2. Polarization angle βr can be estimated through a 1D exhaustive search:

β̂TLS
r = arg min

β
‖k̂r − kr(θ̂TLS

r , β)‖2 (8.26)

If there are two polarization angles, αr and βr, they can be estimated trough a 2D
exhaustive search:

(α̂TLS
r , β̂TLS

r ) = arg min
α,β
‖k̂r − kr(θ̂TLS

r , α, β)‖2 (8.27)

3. Alternatively, or as a refinement step, both DoA and polarization angles can be
recovered through a joint 2D exhaustive search, as in Section 6.5.2:

θ̂joint
r = arg min

θ

∥∥∥( âr − ãr(θ)
b̂r − b̃r(θ)

)∥∥∥2

(8.28)

for space shift diversity, and

(θ̂joint
r , β̂joint

r ) = arg min
θ,β

∥∥∥( âr − ãr(θ)
k̂r − kr(θ, β)

)∥∥∥2

(8.29)

for polarization diversity.

However, (8.25) and (8.26), though suboptimal, have a smaller computational burden,
compared to both exhaustive searches (8.28) and (8.29). Moreover, if there are two
polarization angles, αr and βr, (8.27) allows us to estimate them through a 2D search,
whereas the MUSIC algorithm would need a 3D search over the parameter space (θ, α, β).
Notice that the estimation of the DoA θr could be further improved using both ar and
br in (8.25).

1The TLS could also be replaced by the Structured Least Squares of [58] for further improvement.



140 8. Tensor Wideband Estimation through Spatial Resampling

8.5. Computer results

Experimental conditions are very similar to those of Section 6.6. We simulated R = 2
white Gaussian unit-variance sources, at the sampling frequency fS = 1 kHz, during an
observation time of 64 ms and propagating at c = 1800 ms−1, which is approximately the
propagation speed of seismic S-waves through ice [117]. The number of frequency bins
is Q = 17 (from fmin = 0.2 fS to fmax = 0.5 fS), whereas Spatial Nyquist condition is
ensured by d0 = λmin/4, where λmin = c/fmax (cf. Section 2.8.3). For every frequency
bin ωq within the band [ω1, ωQ] = [2πfmin, 2πfmax], tensor interpolation of Sections 8.2.3
and 8.3.1 is performed using the sinc function, as detailed in Section 8.A.

The reference frequency is chosen to be ω0 = 2πfmin, such that d(ωq) ≤ d0,∀q (i.e. the
virtual subarrays are a shrunk version of the nominal reference subarray). The estimation
accuracy of the proposed tensor method is evaluated in comparison to wideband MUSIC
and to the multilinear Cramér-Rao Bound (CRB), as in Chapter 6. The performance
criterion is the relative total MSE of the DoA estimates and, whenever present, of the
polarization ellipticity estimates:{

MSE(θ) = 1
π2

1
NR

∑N
n=1

∑R
r=1(θ̂rn − θr)2

MSE(β) = 1
π2

1
NR

∑N
n=1

∑R
r=1(β̂rn − βr)2

(8.30)

where θ̂rn and β̂rn are the estimated DoA and ellipticity angle, respectively, of source r
in the n-th MC trial, N = 2500 being the number of trials. The SNR definition below is
assumed:

SNR = 10 log10

‖ X ‖2
F

LMPQσ2
(8.31)

8.5.1. Space Shift in Wideband

The two impinging sources arrive from the broadside: θ1 = 80◦ and θ2 = 100◦. The
acquisition system is given by a ULA of L sensors, where the following space invariances
are considered:

NB CP 3: CPD with M = 3 ULA subarrays of L − 2 sensors each: standard nar-
rowband CPD (4.5) in time domain as in Chapter 4, after narrowband filtering around
f0.

WB CP 2: WB preprocessing and CPD (8.14) with M = 2 ULA subarrays of L − 1
sensors each.

WB CP 3: WB preprocessing and CPD (8.14) with M = 3 ULA subarrays of L − 2
sensors each.

WB CP 4: WB preprocessing and CPD (8.14) with M = 4 ULA subarrays of L − 3
sensors each.

The CRB, calculated as in Chapter 7, refers to the model in WB CP 3.

Notice that WB preprocessing refers to the tensor spatial interpolation described in Sec-
tion 8.2, in particular in Section 8.2.1. Source DoAs where estimated using (8.25), im-
plying a negligible computational complexity, compared to the exhaustive search of the
MUSIC algorithm.

In particular, as for the MUSIC algorithm,
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WB MUSIC refers to the wideband MUSIC algorithm with covariance matrix ex-
pressed in (2.51).

The label WB MUSIC SS specifies that spatial smoothing (2.62) has been performed
with M = 3.

Figures 8.6a and 8.6b show the MSE as a function of SNR, for uncorrelated and corre-
lated sources, respectively, received by a ULA of L = 20 sensors.

Figures 8.7a and 8.7b show the MSE as a function of the angular separation between
R = 2 sources, for uncorrelated and correlated sources, respectively, received by a ULA
of L = 20 sensors. In this case, DoAs are given by θ1 = 90◦−∆θ/2 and θ2 = 90◦+ ∆θ/2.

Similarly, Figures 8.8a and 8.8b show the MSE as a function of the number of sensors,
L, for uncorrelated and correlated sources, respectively, at a SNR of 20 dB.

The tensor decomposition with M ∈ {3, 4} space shifts yields better results when the
number of sensors or the SNR increase. The WB preprocessing significantly improves
the performance of the narrowband tensor estimation, NB CP 3. Moreover, tensor-based
wideband DoA estimation appears to outperform the wideband MUSIC algorithm, in the
present experimental conditions.

In Figures 8.6b and especially 8.6a at high SNR, we notice a saturation of the MSE,
due to the interpolation error, resulting in a progressively significant gap from the CRB.

A slight saturation or deterioration of the performance of the DoA algorithms takes
place when the two sources move away from the broadside (θr ≈ 0◦), as demonstrated in
Figures 8.7a and 8.7b.
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(a) DoA estimation - Uncorrelated sources, L = 20 sensors
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(b) DoA estimation - Correlated sources: ρ = 0.9, L = 20 sensors

Figure 8.6.: MSE vs SNR - space shift diversity
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(a) DoA estimation - Uncorrelated sources, L = 20 sensors
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(b) DoA estimation - Correlated sources: ρ = 0.9, L = 20 sensors

Figure 8.7.: MSE vs angular separation - space shift diversity
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(b) DoA estimation - Correlated sources: ρ = 0.9, SNR = 20 dB

Figure 8.8.: MSE vs L - space shift diversity
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8.5.2. Polarization in Wideband

We now replace space shift diversity of Section 8.5.1 with polarization diversity, as in
Section 8.3. The two impinging sources are Rayleigh waves, i.e. α = 0, ψ = 0 (coplanar
with the array), arriving from the broadside: θ1 = 80◦ and θ2 = 100◦, and differently
polarized: β1 = −20◦ and β2 = 10◦. This configuration is similar to that of Section 6.6.2.
The acquisition system is given by a ULA of L = 20 sensors, with P = 3 polarization
components. Hereafter, we compare the following methods:

NB CP TLS: standard narrowband CPD (5.27) in time domain as in Section 5.3,
after narrowband filtering around f0. Signal parameters are estimated using (8.25) and
(8.26).

WB CP TLS: WB preprocessing is applied and, after CPD (8.24), signal parameters
are estimated using (8.25) and (8.26).

WB CP Joint: WB preprocessing is applied and, after CPD (8.24), signal parameters
are estimated using (8.29).

WB Scalar MUSIC, via an incoherent average of P covariances.

WB Vector MUSIC in Section 5.3.1, where the array manifold takes into account
wave polarization parameters, via a coherently averaged covariance matrix of size PL×
PL.

Notice that WB preprocessing refers to the spatial interpolation described in Section 8.3.

Figures 8.9a and 8.9b show the MSE as a function of SNR, for DoA and polarization es-
timation, respectively. As for space shift diversity in Section 8.5.1, the proposed wideband
tensor method significantly improve its narrowband counterpart, and outperform the WB
Vector MUSIC algorithm, as for both DoA and polarization estimation. We notice that
WB CP Joint is slightly better than WB CP TLS, as it achieves a joint estimation from
factor matrices A and K.

However, the advantage of WB CP TLS lies in its lightest computational cost, as a
TLS followed by a 1D search are less demanding than a 2D search. Finally, in Figure
8.9a we can observe an estimation bias of the DoA estimates of all the wideband methods
for high SNR, due to the interpolation error. A similar bias also affects the WB MUSIC
polarization estimation in Figure 8.9b.
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Figure 8.9.: MSE vs SNR - polarization diversity
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8.6. Conclusions and Perspectives

Space and frequency smoothing have been realized in a deterministic framework, and we
showed that polarization can replace space shift diversity in the tensor formulation, as in
Chapter 6.

In this chapter, we extended the spatial interpolation technique of Section 2.8.3 to
wideband tensor-based algorithms. This development can be seen as an alternative to
the multilinear interpolation of Chapter 6, whenever the acquisition system has a regular
structure, such as the ULA structure. In this case, the division into angular sectors is no
longer necessary.

However, we studied so far only the ULA configuration, as spatial interpolation is easier
to handle. The interest of the ULA configuration is also related to the large number
of applications that resort to such arrays. For instance, in multidimensional harmonic
retrieval, data tensors have a Vandermonde structure in multiple dimensions. In this
case, multiple interpolations can be applied independently, as a generalization of (8.6)
and (8.10). This was the object of [163], who extended our idea in [119] to MIMO radars,
through multiple subsequent linear interpolations. In particular, [163] showed that linear
interpolation performed better for their purpose, compared to the sinc interpolation.

Similarly, as a perspective, the results in the last two chapters could be extended to the
design of wideband preprocessing routines for 2D ESRPIT [164] and DD ESPRIT [60],
as well as for multidimensional harmonic retrieval [61], as in [163].

The wideband tensor estimation through spatial resampling could also be improved if
the noise covariance structure induced by interpolation were taken into account within
the tensor CPD approximation, as in Section 6.5.

In the end of next chapter, the proposed method is applied to real seismic data recorded
by a ULA for DoA estimation.
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8.A. Array 1D Interpolation

8.A.1. Sinc Interpolation

Interpolation is related to signal resampling as follows:

1. Thanks to the Shannon sampling theorem [100], the continuous signal x(t) can be
reconstructed from its samples x(nTs):

x̃(t) =
+∞∑

k=−∞

x(kTs) g(t− kTs) (8.32)

2. Only once the interpolating process has been expressed, the signal can be resampled
at a new rate T ′s as follows:

x̃(t)|t=nT ′s =
+∞∑

k=−∞

x(kTs) g(nT ′s − kTs) (8.33)

The most common interpolating function is generally the sinc function:

g(t− kTs) = sinc

(
t− kTs
Ts

)
(8.34)

leading to

x̃(t) =

[
+∞∑

k=−∞

x(kTs)δ(t− kTs)
]
∗ sinc

(
t

T

)
(8.35)

Since in practice only a finite number of samples is available, it is advisable to truncate
the sinc function with a window of length ∆T enhancing the central samples and related
to the signal frequency behavior. This action is named apodization. As for our implemen-
tation, we chose a rectangular window W with a support of ∆T = 5 time samples:

sincW (t) =
sin(πtf̄)

πtf̄
1W (t) (8.36)

where 1W (t) is the indicator function of the window W . The parameter f̄ that we fixed
to 0.4 controls the smoothness of the sinc interpolation.

8.A.2. Spatial Interpolation

Analogously, we define a spatial interpolator to reconstruct the signal at frequency ωq at
any point p in space, x(ωq, p), from its samples at nominal sensor positions p` = `p0:

x̃(ωq, p) =
+∞∑
`=−∞

x(ωq, kp0) g(p− kp0) (8.37)



9. Tensor Decomposition of Seismic
Volume Waves

9.1. Contribution

In this chapter, we consider the problem of DoA estimation of seismic plane waves imping-
ing on an array of sensors from a new deterministic perspective using tensor decomposition
techniques. In addition to temporal and spatial sampling of Chapter 1, we take into ac-
count further information, based on the different propagation speeds of body waves (P
and S) through solid media. We evaluate performance through simulated data in terms
of the Cramér-Rao Bound (CRB) and in comparison with other reference methods such
as ESPRIT and MUSIC, in the presence of additive Gaussian circular noise (Assump-
tion A 1.12). We then apply the proposed approach to real seismic data recorded at the
Argentière glacier, occurring at the interface between the ice mass and the underlying
bedrock. Information about propagation speed diversity is not taken into account by
existing models in array processing. The discovered advantage in terms of the average
error in estimating the direction of arrival of body waves is noteworthy, especially for a
low number of sensors, and in separating closely located sources. Additionally, we observe
an improvement of precision in processing real seismic data.

Our work was published in the journal article [117], and was source of inspiration for the
more general development of the wideband tensor DoA estimation described in Chapter 6
and Chapter 8. Our work was cited by a review article on cryoseismology [111] and by a
journal article on non-negative tensor decompositions for large datasets [154].

9.2. Context

In the context of seismic monitoring, seismology aims at studying waves generated by
rupture phenomena taking place within a volume of interest (rock, ice, etc.). Although
the most interesting events take place at a certain depth - mostly unknown - within the
analyzed volume, acquisition systems and sensor arrays are most often located close to
the surface. The main quantity to be measured is ground displacement (in the form of
its derivative - velocity - or its second derivative - acceleration), produced by impinging
elastic waves. The localization of the sources forms the first requirement of data analysis,
in order to prevent damage provoked by seismic events, and to monitor the activity of
complex structures such as glaciers or volcanoes. Seismic arrays, after being introduced
in the 1960s, have made essential contributions to this problem. These arrays consist of
numerous seismometers placed at discrete points in space in a well-defined configuration
[123]: apart from an improvement of SNR by combining individual sensor recordings, they
have been used to refine models of the Earth’s interior, through classical tools such as
beamforming, slant stacking techniques and frequency-wave number analysis.
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This chapter exploits another type of diversity, in addition to spatial and temporal
sampling traditionally employed in array processing (cf. Section 5.2 for a detailed ex-
planation of the concept of diversity): the propagation speed diversity1 of body waves
through solids, namely pressure (P) and shear (S) waves. Current array processing meth-
ods like [131, 126] only focus on information conveyed by a single body wave, like the
P wave, whereas the contents delivered by the other is somehow wasted. Our approach
intends to exploit this information as a whole, whereas translational invariance used in
[136] and detailed in Chapter 4 is no longer necessary.

This chapter is organized as follows. Section 9.3 presents the physical model and some
assumptions. Our tensor deterministic method for DoA estimation, exploiting the propa-
gation speed diversity of body waves, is presented in Section 9.4. Simulated data and real
seismic data are treated in Sections 9.5 and 9.6 respectively. Computer results in Sections
Section 9.5 are compared with 2D subspace methods of Chapter 2 and with the CRB of
Chapter 7. An application to icequakes recorded at the Argentière glacier in 2012 is the
object of Section 9.7.

9.3. Physical model and assumptions

When one wants to estimate and localize seismic events originating at depth, one has to
deal with a double arrival of elastic body waves: P waves and S waves, which are detailed
in Section 1.6. For the physical model of wave propagation, the following properties are
assumed, in addition to all the assumptions of Sections 1.2.2 and 1.6:

A 9.1. The impulse responses of particle motion is the only source of variability between
impinging P and S waves.

and in order to allow the multilinearity and separability of the final model:

A 9.2. We filter P and S signals in a narrow-band around f1 = ω1/2π and f2 = ω2/2π,
respectively, such that v1

f1
= v2

f2
= λ is constant, where λ refers to the wavelength of

impinging waves.

A 9.3. Base-band P and S signals propagating from the same source event and received
in two different narrow bands around f1 and f2 are proportional:

w
{2}
bf (t) = α(f1, f2) w

{1}
bf (t) (9.1)

See (9.38) in Section 9.A for more details.

Furthermore, we state the following notation, which will be subsequently used:

A 9.4. In order to avoid scale indeterminacies in tensor decomposition, the P wave w
{1}
bf (t)

is fixed up to a scale factor (see Section 9.A for more details).

1Since the focus is on narrow-band processing, the distinction between group and phase propagation
velocities is irrelevant.
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9.4. Speed diversity in tensor format

The advantage of the tensor formalism lies in its ability to restore the identifiability of sig-
nal parameters: impinging sources, their directions of arrival, and the related connection
between P and S waves.

Propagation speed diversity may be seen as equivalent to a frequency diversity between
P and S waves, under Assumption A 1.3 and properties A 1.21, A 9.2 and A 9.3. The
proposed model for propagation speed diversity will be subsequently developed on the
basis of the linear relation below:

g(t, f) =
R∑
r=1

wr(t) αr(f) ⇐⇒ Gtk =
R∑
r=1

Sr[t] Cr(fk) (9.2)

where the latter equation represents the discretization of the former. fk denotes the
working frequency for P and S waves (k = 1 for the P wave and k = 2 for the S wave), as
defined in A 9.2; it is chosen by the user as a function of propagation speed vk; αr(·) is a
complex unknown coefficient.

The focus of our work consists in integrating at the same time the spatial, temporal
and speed diversities, respectively embodied by matrices A ∈ CL×R, S ∈ CT×R and
C ∈ C2×R.

P and S waves are generated by the same physical source but propagate at two differ-
ent velocities, v1 and v2 respectively, and correspond to different propagation modalities
(compression and share waves respectively). Thus, P and S signals received at position p
and at time t are respectively given by{

yP (p, t) =
∑R

r=1w
P
r (t− τPr (p)) + nP (t,p)

yS(p, t) =
∑R

r=1w
S
r (t− τSr (p)) + nS(t,p)

(9.3)

where {τPr , τSr } express the respective delays for P and S signals recorded at position
p. The signal received at a point p in space contains R sources of interest plus an
additive noise: under assumptions A 1.1 and A 1.3, the time delays of P and S waves
correspond to the phase shifts exp

{
−$P

r (p)
}

and exp
{
−$S

r (p)
}

respectively, with
$P
r (p) = ω1

v1
pTd(θr), $

S
r (p) = ω2

v2
pTd(θr).

With properties A 9.2, A 9.3 and A 9.4, records produced by the r-th source contain
two delayed narrowband waves propagating at frequencies f1, f2 at velocities v1 and v2,
yielding two resulting waves with the same wavelength λ. After windowing, filtering and
aligning the two waves (cf Section 9.6 for details), we can model them as a separable
function of 3 variables:

x(p, t, f) =
R∑
r=1

exp {−$r(p)} wr(t)αr(f) + n(p, t, f) (9.4)

where coefficient αr(f) is the same as in (9.2) and $r(p) = 2π
λ
pTd(θr). Thus, in the

absence of noise n(p, t, f), function x(p, t, f) decomposes into a sum of R functions whose
variables separate. Discretization of (9.4) corresponds to a 3-way array of finite dimensions
L×T × 2 (L sensors located at p`, T time samples and K = 2 propagation velocities vk):

X`tk =
R∑
r=1

exp {−$r(p`)} wr(t) αr(fk) +N`tk (9.5)



152 9. Tensor Decomposition of Seismic Volume Waves

where frequency fk, k = 1, 2 is fixed according to property A 9.2
(
λ = v1

f1
= v2

f2

)
. Notice

that, thanks to convention A 9.4, the complex envelopes of the P and S waves are expressed
in (9.5) as {

w
{1}
bf (t) = w(t) P wave complex envelope

w
{2}
bf (t) = α(f2) w(t) S wave complex envelope

(9.6)

Thus, the tensor Canonical Polyadic Decomposition (CPD) model X = M+N is the
result of stacking the two matrix slices M ::1 and M ::2, corresponding to P and S waves
respectively, as in Figure 9.1:

S wave

P wave

sp
a
ce

time
pr
op
ag
at
io
n
sp
ee
d

Figure 9.1.: P and S slices, M ::1 and M ::2

{
X =

∑R
r=1 ar ⊗ sr ⊗ cr + N

X`tk =
∑R

r A`r Str Ckr +N`tk

(9.7)

where rank-R corresponds to the number of sources, supposed known, thanks to Assump-
tion A 1.10, and N refers to additive noise. The physical meaning of the three factor
matrices is as follows:

A`r = exp{−ωτ`(θr)} refers to space diversity

Str = wr(t) refers to time diversity

Ckr = αr(fk) refers to speed diversity

(9.8)

where τ`(θr) = pT` d(θr)/c refers to the time delay at sensor ` w.r.t. the reference sensor.

Therefore, as in Section 4.3.1, we fix 2R parameters without restricting the generality.
More precisely, based on properties described in Section 9.3, we assume the following:

1. From property A 4.2 we refer to the first sensor by index 1, with p1 = 0:

A1r = exp{−$1r} = exp

{
−2π

λ
pT1d(θr)

}
= 1 ∀r (9.9)
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2. From property A 9.3 we refer to the P wave by index 1:

αr(f1) = 1, ∀r =⇒ C1r = 1, ∀r (9.10)

Thus, we impose the first rows of matrices A and C to be formed of ones. Then we
pull column-wise the remaining scaling coefficients, {ςr A1r C1r}, into matrix S. More
precisely, we fix all scale indeterminacies through the following transformation:

(âr, ŝr, ĉr, ςr)←−
(
ar
A1r

, ςr A1r C1r sr,
cr
C1r

, 1

)
(9.11)

This choice permits to compute performance bounds on the retrieval of CPD factors in
(9.7) more easily.

In the present chapter, we deal with simpler examples when R = 1 as for glacier data
(Section 9.6) and R = 2 relative to simulated data (cf. Section 9.5), so that essential
uniqueness of a decomposition is always guaranteed (see Section 3.3.5 for details).

9.4.1. Estimation of Signal Parameters

The tensor model in (9.7) can be expressed in vector form as

x = vec{X} =
R∑
r=1

cr � sr � ar + n (9.12)

where � denotes the Kronecker product, as defined in [26, 75] (cf. (3.22) for generic
tensor order D). Since, thanks to Assumption A 1.11, the measurement noise vector,
n = vec{N }, is circular white Gaussian and isotropic, i.e. with zero mean and covariance
Σ = σ2I, the log-likelihood takes the form:

Υ(ϑ) = −(x− µ)H Σ−1 (x− µ) + constant (9.13)

where µ =
∑R

r=1 cr � sr � ar is unknown and constrained by its parameterization ϑ =
[θ, vec{S}, vec{C}]. For the CRB of the tensor DoA estimation, see Chapter 7.

Although the optimal solution is given by the global maximum of Υ(ϑ), we propose
a suboptimal two-step procedure in the same spirit as [128], with smaller computational
burden: first Υ is maximized with respect to parameter ξ = [vec{A}, vec{S}, vec{C}]
through the decomposition algorithm of [85] detailed in Section 3.5; then DoAs and the
other signal parameters can be estimated as follows.

1. Direction of arrival θr of the r-th source impinging on the array is calculated from
A`r = exp

{
−2π

λ
pT` d(θr)

}
as in Section 4.6, and, for ULAs, in Section 4.6.3.

2. The signal sr(t) of the r-th source is extracted up to a scaling factor directly from
matrix S, as in Section 4.7.

ŵr(t) ∝ Str, t = 1, ..., T (9.14)

3. The complex multiplicative coefficient αr(fk) is extracted directly from matrix C:

α̂r(fk) = Ckr (9.15)
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9.5. Numerical simulations

Signals were simulated according to sampling conditions, that are typically those selected
for experiments at Argentière (cf. [63, 64]) and emulate the normal seismic activity of
a glacier. Estimation efficiency was evaluated in comparison with two other narrowband
algorithms, ESPRIT [126] and MUSIC [131, 140], and with deterministic CRB as a
benchmark. In the following figures, CRB-2D indicates the CRB of the MUSIC algorithm
[140], whereas CRB-3D indicates the CRB of the tensor CPD.

The performance criterion is the Root Mean Square Error (RMSE) on the DoA:

RMSE(θ) =

√√√√ 1

NR

N∑
n=1

R∑
r=1

(θ̂rn − θr)2, (9.16)

where θ̂rn is the estimated DoA of source r in the n-th MC trial, N being the number of
trials. The number of simultaneous sources was chosen to be R = 2. The SNR definition
for P wave was:

SNR = 10 log10

‖ µP ‖2

LTσ2
n

(9.17)

where µP = vec{M ::1} refers to the P wave. This is consistent with previous works, where
the S wave data is traditionally thrown away even if received. In fact, in our simulations
we applied MUSIC and ESPRIT on the P wave only.

We have the following values:

1. We use values for P and S wave velocities through ice, as in [63, 150]: v1 = 3600 m s−1

and v2 = 1610 m s−1.

2. v1
v2

= f1
f2
≈ 2.24.

3. f1 = 193 Hz, f2 = 86 Hz.

4. Time duration of simulated records: 201 ms.

5. Configuration of the array: ULA with inter-sensor distance p0 = 10 m. Three arrays
were simulated, each with a different number of sensors: L ∈ {3, 10, 30}.

6. Simulated directions of arrivals:
Figure 1: endfire θ1 = 30◦, θ2 = 50◦

Figure 2: broadside θ1 = 80◦, θ2 = 100◦

Figure 3a: endfire θ1 = 45◦ −∆θ/2, θ2 = 45◦ + ∆θ/2

Figure 3b: broadside θ1 = 90◦ −∆θ/2, θ2 = 90◦ + ∆θ/2

(9.18)

where ∆θ refers to the x-axis of Figure 9.5 (the overall angular separation between the

two sources).

A simple source was simulated as approximately narrowband: a signal carried by a
sinusoid modulated by a Kaiser window of envelope ar(t):

skr(t) = akr(t) exp{φkr(t)} exp{ωkt} (9.19)
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where φkr(t) are independently drawn in [0, 2π) for every t. Since narrowband ωk is
known for P and S waves, simulated signal skr(t) is brought to the baseband through
demodulation:

skr(t) = akr(t) exp{φkr(t)} (9.20)

MC simulations (N = 200 trials) show a superior performance of the CPD with respect
to MUSIC and ESPRIT algorithms, in the sense of the RMSE defined in (8.30), especially
for a low number of sensors composing the array. For larger number of sensors, the
performance of MUSIC and CPD becomes comparable. In particular, Figures 9.2 and
9.3 illustrate computer simulations for a variable number of sensors, L ∈ {3, 10, 30},
composing the array and for different configurations of sources impinging from a broadside
(perpendicular to the array) or endfire (laterally to the array) perspective.

The following observations can be made.

• For low SNR values, the RMSE does not increase anymore at some point, as SNR
decreases. This can be observed in particular for L = 3 in Figures 9.2a and 9.3a.
This is a known saturation phenomenon [151], which is due to the fact that estimated
angles are bounded. For such low values of SNR, the CRB becomes meaningless.

• For larger numbers of sensors, e.g. L = 10 or L = 30, the latter saturation phe-
nomenon is not yet observed at SNR = 5 dB, and one can observe a take-off of the
RMSEs from their CRBs. This threshold effect is well known and expected at low
SNR values [15].

• The performance of CPD and ESPRIT methods does not reach the CRB for L = 10
or L = 30. This loss can be explained by the 2-step nature of the estimation process,
which consists of estimating first steering vectors, and then corresponding DoAs in
a second stage (cf. Section 4.6).

• For L = 10 and L = 30, MUSIC seems to perform better than ESPRIT. This is due
to the fact that MUSIC finds the DoA by executing an exhaustive search, which is
hence a one-stage procedure.

Figures 9.4 and 9.5 represent the evolution of the RMSE (obtained with N = 300
trials) with respect to the angular separation of the two simultaneous sources, for a fixed
SNR of 20 dB: the tendency is an evident predominance in the performance of the CPD
algorithm, especially for closely spaced sources.

To conclude, the advantage of CPD over ESPRIT is always present, whereas CPD
outperforms MUSIC substantially when the number of sensors remains limited or when
sources are close to each other (less than 15 degrees).
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(a) array of L = 3 sensors
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(b) array of L = 10 sensors
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(c) array of L = 30 sensors

Figure 9.2.: DoA RMSE [rad] vs SNR [dB] for various numbers of sensors and T = 20
time samples. Broadside perspective: DoAs = [80◦, 100◦].
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(a) Array of L = 3 sensors
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(b) Array of L = 10 sensors

0 10 20 30 40 50
10−5

10−4

10−3

10−2

10−1

100

101

SNR [dB]

R
M

SE
[r

ad
]

CPD
MUSIC
ESPRIT
CRB-3D
CRB-2D

(c) Array of L = 30 sensors

Figure 9.3.: DoA RMSE [rad] vs SNR [dB] for various numbers of sensors and T = 20
time samples. Endfire perspective: DoAs = [30◦, 50◦].
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Figure 9.4.: RMSE [rad] vs angular separation [deg] - broadside perspective
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Figure 9.5.: RMSE [rad] vs angular separation [deg] - endfire perspective
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9.6. Application to Real Seismic Data

We propose a procedure for real seismic data, according to the following order:

1. Detection of an event.

2. Windowing of P and S waves.

3. Alignment of P and S waves.

4. Choice of working frequencies f1 and f2, satisfying assumption A 9.2 and respecting
the signal spectral content.

5. Narrowband filtering of P waves around f1 and of S waves around f2.

6. Constitution of the data tensor X from the two slicesX ::1 = X{P} andX ::2 = X{S}.

7. Tensor decomposition of X , according to CPD model in (9.7).

Points 1) – 5) constitute a preprocessing stage. Points 6) – 7) are at the core of the tensor
approach proposed in Section 9.4. In the present section, we detail some preprocessing
steps: windowing, alignment, choice of the working frequencies and filtering.

9.6.1. Windowing and Alignment

Since recorded P and S waves are usually consecutive and distinct in time, they need to
be selected and cropped, so as to form two T × L slices, where T is the number of time
samples, and L the number of sensors: X ::1 and X ::2. The additive model consists in a
deterministic component and random noise:{

x{P}(t− t{P}` ) = wP (t− t{P}` ) + n`(t− t{P}` )

x{S}(t− t{S}` + ξPS) = wS(t− t{S}` + ξPS) + n`(t− t{S}` + ξPS)
(9.21)

where ` = 1, ..., L, and ξPS is the alignment error between P and S slices. The narrowband
approximation A 1.3 at a given ostensible wavelength λ = v1

f1
= v2

f2
gives{

x{P}(t− t{P}` ) ' αP w(t) exp{−$`}+ n`(t− t{P}` )

x{S}(t− t{S}` + ξPS) ' αS w(t+ ξPS) exp{−$`}+ n`(t− t{S}` + ξPS)
(9.22)

where $` = 2π
λ
pT` d(θ), and coefficients αP and αS directly derive from property A 9.3.

Alignment is pursued through cross-correlation between P and S narrowband complex
envelopes after the detection process, which is theoretically justified provided signals are
jointly stationary and uncorrelated to noise n`(t) (Assumption A 1.14):

RPS
` (τ, ξPS) = RPS

` (τ + ξPS) =

= E{x{P}(t− t{P}` ) x{S}(t− t{S}` + τ + ξPS)} =

= αP αS exp{−2$`}Rww(τ + ξPS)

(9.23)

where Rww(τ + ξPS) = E{w(t)w∗(t+ τ + ξPS)}.
If the alignment is fulfilled on the reference sensor (` = 1), we seek to maximize

RPS
1 (τ + ξPS) = αP αS R

ww(τ + ξPS) (9.24)

which attains its maximum for τmax = −ξPS. Once τmax is determined, P and S waves
can be aligned.
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9.6.2. Working Frequencies and Filtering

In order to maintain a constant wavelength λ, which is necessary for the separability of the
multilinear model in (9.7), a compromise needs to be reached in extracting the dominant
frequencies, so as to match the ideal condition λ = v1

f1
= v2

f2
in property A 9.2. Within

the set of four parameters determining the wavelength λ, {v1, v2, f1, f2}, one only needs 3
degrees of freedom to determine optimal working conditions. P and S wave propagation
velocities v1 and v2 are given by geophysical active analysis of known waves reflecting from
the surface to the glacier bed [63], [156]. The only parameter subject to optimization is
then P or S wave frequency f1 or f2. If f1 is chosen as the free parameter and optimized,
then f2 directly derives from property A 9.2

f2 =
v2

v1

f1 =
v2

λ
(9.25)

The optimization for f1 is fulfilled by minimizing the square norm of the CPD tensor
decomposition error:

f̂1 = arg min
f1

∣∣∣∣∣∣∣∣x(f1) −
R∑
r=1

ςr â
(f1)
r � ŝ(f1)

r � ĉ(f1)
r

∣∣∣∣∣∣∣∣2 (9.26)

where x(f1) = vec{X (f1)} refers to the data array after narrowband filtering around
f1 ∈ (0, fS/2), given sampling frequency fS; see (3.46) for the definition of tensor approx-
imation. Then, from Equation (9.25), we have f̂2 = v2

v1
f̂1.

Recorded P and S waves have to be filtered around f̂1 and f̂2 respectively, in order to
satisfy the narrowband assumption A 1.3. Moreover, a tradeoff has to be sought with
respect to the signal spectral content, in case the ratio of the dominant frequencies does
not reflect the ratio of the velocities of P and S waves, according to property A 9.2.

9.7. Application to the Argentière Glacier

The Argentière glacier is a 10 km long glacier located in the French side of the Mont Blanc
massif, covering a 19 km2 surface (see pictures in Figure 9.6).

Figure 9.6.: Pictures of the Argentière glacier
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It is characterized by high seismic activity, as stated in [124, 125]. Temperate Alpine
glaciers are characterized by ice remaining at melting point, deformed by two main mech-
anisms: plastic deformation of ice and basal sliding. The underneath flow of water plays
an important role in basal sliding, because it modifies the water pressure. Furthermore,
brittle behavior of ice is the reason of the sudden openings of crevasses and falls of seracs
on the surface of a glacier, with indirect effects on glacial hydrology by means of water
transfer from the surface to greater depth zones.

An array composed of 9 velocimeters (model is Sismob IHR1C in Figure 9.7, 1 com-
ponent, 2 Hz eigenfrequency, 1 kHz sampling frequency) pointing in the direction perpen-
dicular to the glacier motion was placed on the glacier surface at 2400 m above sea level
(see Figure 9.8).

Figure 9.7.: Pictures of the geophone used for our experiment

Figure 9.8.: Glacier structure and experimental set
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The sensors within the array were spaced out at 10 m intervals, and the thickness of
the glacier under the array is about 190 m [63, 155]. Deep events of interest took place at
450 m from the array, at a depth of about 190 m from the surface [63]. The general case
involves R far field sources impinging on the array, at a large unknown distance [63], in
the presence of noise, thus allowing us to use the plane wave approximation A 1.1.

Real data from the glacier are processed via speed diversity in Section 9.7.1, repeti-
tion diversity in Section 9.7.2, and through the proposed wideband tensor approach in
Section 9.7.3.

9.7.1. Speed Diversity - Narrowband

The tensor DoA estimation via speed diversity proposed in Section 9.4 was applied to
the 27 deep events recorded by the array during November 2012. These events were
associated with the same cluster of deep events [63], on the basis of their waveform
similarities, through cross-correlation. We use values for P and S wave velocities through
ice, as in [150, 63]: v1 = 3600 m s−1 and v2 = 1610 m s−1, according to Property A 1.21.
An example of one deep event recorded by the 9 sensors with distinct P and S waves is
provided in Figure 9.9.

The frequency optimization (i.e. the choice of the working frequencies f1 and f2) was
achieved throughout the dataset from the same cluster of events, after preprocessing of
recorded signals (see Section 9.6.2 for details). Results are shown in Figure 9.10.

The median dominant frequency f̄1 of the P wave was then calculated. Thus, all the
P waves from the cluster are filtered around f̄1 = 229 Hz, whereas all the S waves are
filtered around f̄2 = v2

v1
f̄1 = 102 Hz. Then, tensor CPD estimation in Section 9.4.1 was

applied. The narrowband filter bandwidth was BW = 0.015fs. The derivation of f̄1 and
f̄2 is coherent with the spectral content of P and S waves, as shown in Figure 9.13.

Beside filtering, we did not deconvolve the signals from any instrument response, be-
cause the frequency content of the icequakes is much higher than the resonance frequency
of the velocimeters (2 Hz). We thus consider that the instrument response is flat.

DoA estimation is performed over the dataset with the following methods:

MUSIC over P and S waves separately.

ESPRIT over P and S waves separately.

CP PS: joint tensor CPD with speed diversity.

Results are shown in Figure 9.11: the dispersion of the DoA estimates through the
joint CPD of P and S waves (CP PS) is smaller than that of MUSIC and ESPRIT for
P and S waves separately. ESPRIT yields better results than MUSIC, perhaps because
it is more robust to array imperfections, as stated in Section 2.6.2. However, ESPRIT
requires two identical subarrays deducible from each other via a translation, whereas the
proposed tensor method has no such requirement.
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Figure 9.9.: Example of an event at the Argentière glacier - November 2012
Record from the array with distinct P and S waves - vertical component
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Figure 9.10.: Optimized working frequency for P wave, f1
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Figure 9.11.: DoA estimation throughout the cluster of deep events - propagation speed
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9.7.2. Repetition Diversity

Since we deal with multiple events from the same seismic cluster in the depths of the
glacier, we can also make use of repetition diversity, as explained in (5.8). Notice that
after detection all the events have been previously centered around zero, divided by their
standard deviation, and aligned through cross-correlation (see Figure 9.12 for received
signals and Figure 9.13 for the estimate of their power spectral density).
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Figure 9.12.: P and S waves from the same seismic cluster - sensor ` = 6
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Figure 9.13.: Welch periodogram of P and S waves from the same seismic cluster -
sensor ` = 6
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After filtering P waves around f1 = 229 Hz and S waves around f2 = 102 Hz, as in
Section 9.7.1, the corresponding narrowband tensor model is the following:

g(p, j, t) =
R∑
r=1

exp

{
−2π

λ
pTdr

}
er(j) sr(t) (9.27)

where er(j) is a complex coefficient relying all the events to one another, j = 1, . . . , J
being the cardinality of each event within its cluster. The resulting tensor model writes{

X =
∑R

r=1 ar ⊗ er ⊗ sr + N
X`jt =

∑R
r=1A`r Ejr Str +N`jt

(9.28)

where 
A`r = exp{−ωτ`(θr)} refers to space diversity

Ejr = er(j) refers to repetition diversity

Str = sr(t) refers to time diversity

(9.29)

In order to fix scaling indeterminacies, in addition to (9.9), we need another condition:

er(1) = 1, ∀r =⇒ E1r = 1, ∀r (9.30)

This means that we take the first occurrence of each cluster as the reference event equal
to sr(t).

Thus, we impose the first rows of matrices A and E to be formed of ones. Then we
pull column-wise the remaining scaling coefficients, {ςr A1r E1r}, into matrix S. More
precisely, we fix all scale indeterminacies through the following transformation:

(âr, êr, ŝr, ςr)←−
(
ar
A1r

,
er
E1r

, ςr A1r E1r sr, 1

)
(9.31)

This choice permits to compute performance bounds on the retrieval of CPD factors in
(9.28) more easily.

Since the sources recorded at the glacier are sequential, i.e they are not simultaneous,
and they arise from the same deep cluster, we have R = 1. Notice that since P and S
waves originate from the same deep source, their DoAs should coincide, i.e. θP ≡ θS.

After tensor DoA estimation, we found the following overall DoAs:

• P wave: θ̂P = 70◦;

• S wave: θ̂S = 76◦;

These results are consistent with those in Figure 9.11 of Section 9.7.1.
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9.7.3. Space Shift Diversity - Wideband

The wideband tensor DoA estimation through spatial resampling proposed in Section 8.2.3
was also applied to the same cluster of deep events. P and S waves were processed
separately. The frequency range for P wave was [f1, fQ] = [50 Hz, 350 Hz], whereas the
frequency range for S waves was [f1, fQ] = [50 Hz, 150 Hz] (cf. Figure 9.13).

We compare the following techniques:

BF: narrowband time domain beamforming, as described in Section 2.4.

BF TDL: wideband TDL beamforming in time domain, as described in Section 2.4.

WB MUSIC: the wideband MUSIC algorithm with covariance matrix expressed in
(2.51).

NB CP 3: CPD with M = 3 ULA subarrays of L − 2 = 7 sensors each: standard
narrowband CPD (4.5) in time domain as in Chapter 4, after narrowband filtering
around f̄1 = 229 Hz for P waves and f̄2 = 102 Hz for S waves, as in Section 9.7.1.

WB CP 2: WB preprocessing and CPD (8.14) with M = 2 ULA subarrays of L−1 = 8
sensors each.

WB CP 3: WB preprocessing and CPD (8.14) with M = 3 ULA subarrays of L−2 = 7
sensors each.

WB CP 4: WB preprocessing and CPD (8.14) with M = 4 ULA subarrays of L−3 = 6
sensors each.

Aside from the excellent focalization of beamforming for both P and S waves, let us
analyze high resolution methods of Figures 9.14a and 9.14b.

Narrowband tensor estimation of P and S waves separately (NB CP) has a lesser focal-
ization strength compared to the joint narrowband processing (CP PS) of Section 9.7.1
via the diversity of propagation speed in Figure 9.11.

Tensor wideband (WB CP) methods are all equivalent and outperform the wideband
MUSIC algorithm as well as tensor narrowband estimation (NB CP). This is probably
due to the small size of the P and S events, lasting only few milliseconds (T = 56 time
samples), leading to a bad estimate of the covariance matrix.

Finally, tensor wideband estimation (WB CP) outperforms all the other high resolution
methods, even tensor narrowband estimation via propagation speed (CP PS). However,
WB CP requires quite a regular array geometry, compared to CP PS with propagation
speed, which has no such requirement.

Notice that as we do not know the ground truth, we can only evaluate different methods
on the basis of the dispersion of their estimates within a cluster. This does not correspond
to any actual error on the corresponding estimates, nor does this consider any estimation
bias.



9.7. Application to the Argentière Glacier 169

40

60

80

100

120

140

160

180

BF TDL BF WB MUSIC NB CP 3 WB CP 2 WB CP 3 WB CP 4

E
st

im
at

ed
D

oA
[d

eg
]

(a) P wave

40

50

60

70

80

90

100

110

120

130

140

BF TDL BF WB MUSIC NB CP 3 WB CP 2 WB CP 3 WB CP 4

E
st

im
at

ed
D

oA
[d

eg
]

(b) S wave

Figure 9.14.: DoA estimation throughout the cluster of deep events - wideband
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9.8. Conclusion and perspectives

In this chapter, we developed a tensor decomposition model for seismic data exploiting
propagation speed diversity of P and S waves. A physical model was traced, followed by
simulations and statistical comparisons with ESPRIT and MUSIC, and theoretical CRBs.
Our approach was also tested on real data from the seismic activity of an Alpine glacier,
and different techniques were compared in terms of localization efficacy.

The strength of our method lies in the integration of the double information conveyed
by P and S waves of distant events, impinging in succession on the array: to the traditional
dimensions of array processing (recording samples for time and sensor locations for space),
we added the dual content transmitted by the P and S waves, temporally distinct by
virtue of the diversity of propagation speed. The effect of adding a way to the data array
is evident in terms of estimation performance, especially for short data samples and for
arrays composed of a small number of sensors. It also increases the localization precision
of a cluster of real events originating from the same source.

In the matter of adaptation to real data, since assumption A 1.7 may become, unfor-
tunately, unrealistic, a phase velocity heterogeneity among sensors may be another factor
hindering the performance of practical applications.

High resolution methods become essential when the array receives more than one source,
especially for closely spaced sources. In this case, beamforming methods are no more
suitable. It would be of great interest to evaluate the effectiveness of the proposed methods
in this more general scenario.

Another interesting perspective would consist in joining speed diversity at a particular
narrow-band with wideband diversity over the whole frequency range of interest. Also,
we could possibly extend repetition diversity to the wideband case, and include it into
the overall model.



Appendix

9.A. Justification of Assumption A 9.3

The signal propagating from a given source r and impinging on a given sensor of the array
is composed of two contributions before addition to background and instrument noise: the
P phenomenon, generally followed by the S phenomenon. If the source is deep enough,
these two records are temporally separated (see Section 1.6 for details). The additional
assumption A 9.1 identifies the impulse responses of particle motion as the only source of
variability between received P and S waves:

w{1}(t) ≈ h{1}(t) ∗ w(t)m(t)

w{2}(t) ≈ h{2}(t) ∗ w(t)m(t)

where h{1}(t) is the impulse response of the given medium to the P wave and h{2}(t) to
the S wave. The symbol ∗ indicates convolution. In particular, notice that the source
signal can be decomposed into a product of a low-frequency part (the source complex
envelope w(t)) and a high-frequency contribution m(t):

w{i}(t) ≈ h{i}(t) ∗ w(t)m(t) (9.32)

This corresponds to the base-band complex signal

w
{i}
b (t) ≈ h

{i}
b (t) ∗ w(t)M+ exp {−j 2π∆fi t} (9.33)

where exp {− 2π∆fi t} is a frequency shift due to different demodulation for P and S
waves from working frequency f1 and f2 respectively, and M+ is the complex amplitude
of m(t). In the frequency domain, we have then

W
{i}
b (f) = F{w{i}b (t)}(f) = H

{i}
b (f)M+

(
W (f) ∗ δ∆fi

(f)
)

(9.34)

For a generally low-pass transfer function, H
{i}
b (f) can be considered as a constant H

{i}
b

in the band of interest,
W
{i}
b (f) = H

{i}
b M+W (f −∆fi) (9.35)

Since band-pass filtering around frequency fi and a joint base-band translation are equiv-
alent to a base-band translation from frequency fi followed by a low-pass filtering with
window Π(f), we have

W
{i}
bf (f) ≈ Π(f)H

{i}
b M+W (f −∆fi) (9.36)

Then we have in time domain, for ideal low-pass filtering Π(f) ≈ Π in the low-pass
support of interest [−fc,+fc]

w
{i}
bf (t) ∝

(
ΠH

{i}
b M+

)
[w(t) ∗ 2fc sinc(2fct)] (9.37)
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provided that the source complex envelope has a smooth spectrum (almost constant in
the narrow band of interest), i.e. W (f −∆f1) ∝ W (f −∆f2) ∝ W (f).

Finally, resulting P wave and S wave complex envelopes, after base-band translation
and filtering, are related by a proportionality relationship:

w
{2}
bf (t) ∝ H

{2}
b

H
{1}
b

w
{1}
bf (t) (9.38)
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Contribution: Multidimensional
Spectral Factorization





10. Multidimensional Factorization of
Seismic Waves

10.1. Contribution

The first part of this thesis deal with multilinear decompositions for array processing of
wideband elastic waves. Chapter 9 in particular involved the tensor decomposition of
seismic waves, with an application to the estimation and localization of icequakes within
a glacier.

On the other hand, this chapter moves to the subject of multidimensional spectral
factorization of seismic images, illustrating an application to the estimation of the impulse
response of the Sun.

Wavefield processing has been applied to several fields of physical sciences. Inverse
problems include the estimation of the impulse response of a physical system, such as
the earth response to an ideal impulse-like seismic source. On the other hand, seismic
migration consists in inferring the signal that would be measured at any depth, starting
from data recorded on the surface [48]. More generally, multidimensional digital filters are
extensively used in remote sensing, image processing, medical imaging and geophysics. In
array processing, multidimensional filters have been used to separate seismic waves based
on their polarization or propagation velocity differences [35].

Physical filters are mostly ruled by Partial Differential Equationss (PDEs) that can be
studied, in some cases, as linear operators through Fourier Transform (FT). Wavefield
propagation through an homogeneous medium can be represented by a linear PDE with
constant coefficients, and hence the inverse problem is reduced to a dD deconvolution
(and then, to multidimensional linear filtering). If we assume a minimum phase impulse
response, and if the source is white in all its dimensions, blind deconvolution is equivalent
to spectral factorization [120], which can be tackled through homomorphic deconvolu-
tion [146, 147]. This approach has been extended to parametric autoregressive processes
through linear prediction (predictive deconvolution) [143], and cepstral analysis [130, 74].

In particular, spectral factorization consists in separating causal and anti-causal com-
ponents in physical systems through decomposition of spectral density functions as the
product of minimum phase and maximum phase terms [38]. Cepstrum analysis eases
the design of causal filters [101, 99]. The latter have been extended to two dimensions
[38, 40, 14, 162, 105], and generalized to the multidimensional case [54], through the def-
inition of dD semi-causality. When dealing with dD spectral factorization with d ≥ 2,
problems arise from the lack of a unique definition of dD minimum phase, leading to
the existence of multiple possible solutions [40]. Mersereau and Dudgeon [91] propose an
alternative approach to describe 2D signals, based on a transformation of 2D sequences
into 1D vectors, such that linear convolution becomes helical (cf. Section 10.2). Helical
coordinates were applied later in [120] to blind deconvolution in helioseismology, through
spectral factorization, and to other problems in geophysics [43].

The purpose of this chapter is to prove that helical mapping and spectral factorization
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are asymptotically equivalent. We will show that the 1D causal solution after helical
mapping is not only recursively computable and stable, but asymptotically convergent to
the semi-causal dD solution, after inverse remapping.

Sections 10.2 and 10.3 introduce helical mapping, and spectral factorization, respec-
tively. Section 10.4 proves the asymptotic equivalence of helical spectral factorization
with its dD counterpart, whereas Section 10.5 shows how it applies to the case of wave-
field propagation. Finally, Section 10.6 presents an example of causal physical filters (the
anti-causal component representing the reversed time solution in propagating systems),
and an application to helioseismology.

Our work was published in a journal article by Signal Processing, Elsevier [118].

10.2. The Helical Coordinate System

Physical fields are generally sampled through space (in a domain Ω ⊂ R3) and time (in
a domain U ⊂ R+), resulting in a dD data cube, where d ≤ 4. Under certain condi-
tions (translational invariance through homogeneous and linear media), the underlying
processes of propagation can be modeled as Linear Shift Invariant (LSI) filters (including
Linear Time Invariant (LTI) and space invariant systems). Moreover, thanks to multilin-
earity, the measured data cube can be represented as a tensor.

Let us remind some generalities of the tensor formalism that we will employ thorughout
this chapter. We refer the reader to Chapter 3 for more details. A tensor of order d is an
element of the outer product of vector spaces S1 ⊗ · · · ⊗ Sd, and can be represented by
a multi-way array (or multidimensional matrix), once bases of spaces Si have been fixed.
The order d of a tensor corresponds to the number of dimensions of the physical system.
The mode-i fiber of a tensor is a vector obtained when all indices are fixed except the i-th.
It is often useful to represent a tensor in matrix form [26]: the mode-i unfolding of a tensor
Y ∈ RI1×I2×···×Id reorders its elements, through arranging the mode-i fibers into columns
of a matrix denoted Y (i). Furthermore, it is convenient to represent tensors as vectors:
the vectorization of a tensor Y is generally defined as a vectorization of the associated
mode-1 unfolding matrix, that stacks the columns of Y (1) into a vector y ∈ RI1I2···Id .
Unfolding and then vectorizing a tensor are equivalent to gradually reducing its order:
for instance, a 3D data cube is at first transformed into a matrix and then into a vector.
It is clear that there exist potentially multiple ways of unfolding and vectorizing tensors,
thus reducing their order, all related to the definition of a particular ordering relation.

Since causality of a LTI filter is related to the implicit order of the computation in
convolution, dD causality is associated with the existence of an ordering relation organiz-
ing the elements of the multidimensional data cube. For 1D systems, there is only the
natural (or reversed) ordering (i.e. fully ordered computation of a linear transformation
such as convolution). For dD systems, the computation is only partially ordered, as there
are multiple possible ordering relations [38]. In order to implement any dD linear trans-
formation (dD convolution, dD filtering, etc.), there is a need to define an ordering map
p = I(n1, n2, . . . , nd). Thus, if p′ = I(n′1, n

′
2, . . . , n

′
d), p < p′ implies that the output at

(n1, n2, . . . , nd) will be computed before the output at (n′1, n
′
2, . . . , n

′
d).

One of the simplest ordering relations is the helical transformation of a tensor Y , that
stacks all the elements of any mode-i unfolding, either row-wise or column-wise. Thus, the
helix is a form of vectorization. Therefore, there exist several possible helical transforms of
a tensor, corresponding to a progressive reduction of the order. For instance, the helical
transform of a 2D sequence f(m,n), m ∈ N, 0 ≤ n ≤ N − 1 can be represented as a
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row-wise invertible mapping:

φ2 : N× [0 : N − 1] −→ N, (m,n) 7−→ p = Nm+ n (10.1)

which corresponds to concatenating the rows of the matrix f(m,n), with condition of
invertibility N < ∞. Alternatively, the column-wise invertible mapping of a sequence
f(m,n), 0 ≤ m ≤M − 1, n ∈ N can be written as

φ2 : [0 : M − 1]× N −→ N, (m,n) 7−→ p = m+Mn (10.2)

which corresponds to concatenating the columns of matrix f(m,n), with condition of
invertibility M <∞. Equivalently, one 3D helical mapping of a data cube f(`,m, n) for
0 ≤ ` ≤ L− 1, 0 ≤ m ≤M − 1, n ∈ N is given by

φ3 :[0 : L− 1]× [0 : M − 1]× N −→ N
(`,m, n) 7−→ p = L(Mn+m) + `

(10.3)

with condition of invertibility L,M < ∞. In the seventies, Mersereau and Dudgeon [91]
defined a helical convolution that transforms 2D convolution through helical periodicity,
showing that helical convolution is numerically equal to its 2D counterpart.

10.3. Cepstral Factorization

One-dimensional case A 1D sequence s(n) is causal if s(n) = 0, for n < 0, and min-
imum phase if all the poles and zeros of the Z-transform S(z) = Z{s(n)} are inside the
unit circle {|z|< 1}. If a sequence is minimum phase, it is also causal. Moreover, mini-
mum phase sequences are also minimum-delay (all their energy is concentrated close to
time origin n = 0), they are absolutely summable, and their inverses are both causal and
absolutely summable [38].

A means to investigate the question of causality and minimum phase in relation to
spectral factorization is homomorphic analysis. The homomorphic transform H = Z−1◦
log ◦Z (i.e. the inverse Z-transform of the complex logarithm of the Z-transform), with
inverse H−1 = Z−1 ◦ exp ◦Z, has the advantage of converting convolutions into sums:
H{s1 ∗ s2} = H{s1}+H{s2}.

The stability condition for a system with impulse response s is that its transfer function
S converges on a region containing the unit circle {z = eiω}, or, equivalently, its domain
of convergence includes the locus {|z|= 1}. In this case, the FT, F{·}, of a sequence can
be defined as the restriction of its Z-transform on the unit circle. H is then defined as the
Inverse Fourier Transform (IFT) of the complex logarithm of its FT, H = F−1◦ log ◦F ,
after phase unwrapping of the complex logarithm [37]. The complex cepstrum of a limited
sequence s(n), 0 ≤ n ≤ N , can be calculated through the Discrete Fourier Transform
(DFT), as an aliased version of the true cepstrum [101].

If s(n) is the autocorrelation of a sequence x(n) assumed stationary, its homomorphic
transform ŝ = H{s} is called complex cepstrum and corresponds to the IFT of the loga-
rithm of the spectrum, ŝ = F−1{log(|X(ω)|2)}. In what follows we will refer to positive
definite or autocorrelation sequences s(n). The complex cepstrum is useful to characterize
causality: a sequence s(n) is minimum phase if its cepstrum is causal [139, 104]: ŝ(n) = 0
for n < 0.
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Inversely, maximum phase sequences can be defined as minimum phase sequences re-
versed in time1, and any absolutely summable signal, if conveniently shifted in time, can
be expressed as the convolution between minimum and maximum phase parts [38]. As
a result, its complex cepstrum is the sum of causal and anti-causal parts, and it is abso-
lutely summable: s(n) = s+(n)∗ s−(n) corresponds to a product in the frequency domain
S(ω) = S+(ω)S−(ω), and to a sum in the cepstrum domain ŝ(n) = ŝ+(n) + ŝ−(n). In
particular, the poles zi of S(z) such that |zi|< 1 are associated with the causal part of the
cepstrum, whereas the poles such that |zi|> 1 correspond to the anti-causal part of the
cepstrum [139]. The 1D factorization problem consists in decomposing a real (or zero-
phase) sequence (such as a power spectral density) into minimum and maximum phase
terms.

Higher-dimensional case The concept of minimum phase solutions of the spectral fac-
torization problem was extended to 2D signals in [40]. However, the derivation of the
concepts of 2D causality and minimum phase from the 1D equivalent is not straightfor-
ward, due to the existence of several ordering relations in the (x, y) plane. From the 2D
Z-transform

S(z1, z2) =
∞∑

m=−∞

∞∑
n=−∞

s(n1, n2) z−n1
1 z−n2

2 , (10.4)

the stability condition for a system with impulse response s is that its transfer function S
converges on a region containing the unit bicircle (z1 = eiω1 , z2 = eiω2), or, equivalently,
its domain of convergence includes the locus {|z1|= 1, |z2|= 1}. Thus, the 2D FT, F{·},
of a 2D sequence is defined as the restriction of its Z-transform on the unit bicircle. In
what follows, we shall consider spectral density functions S(z1, z2) as the 2D Z-transform
of autocorrelations s(n1, n2). The 2D spectral factorization is a decomposition of the 2D
Z-transform S(z1, z2) into factors that are free of poles and zeros in certain regions of C2.
In particular, a sequence s(n1, n2) is said to be min-min phase, if none of the poles and
zeros of S(z1, z2) lie in the closed domain {|z1| ≥ 1, |z2| ≥ 1}; min-mix phase if none of
its poles or zeros lie in {|z1| ≥ 1, |z2| = 1}. See [40] for further details. We refer to the
min-min phase as a strict 2D minimum phase.

Analogously, in the 3D case, a sequence s(n1, n2, n3) is defined as min-min-min phase
if poles and zeros of its Z-transform F (z1, z2, z3) do not lie in {|z1| ≥ 1, |z2| ≥ 1, |z3| ≥ 1}.

2D causality can be studied through the 2D complex cepstrum [38], which is defined
through 2D homomorphic transform H = Z−1 ◦ log ◦Z:

ŝ(n1, n2) = − 1

4π2

‰
|z1|=1

‰
|z2|=1

log[S(z1, z2)] · zn1−1
1 zn2−1

2 dz1dz2 (10.5)

Then, provided that the unit bicircle is confined in the definition domain of the 2D
Z-transform S(z1, z2), that |S(eiω1 , eiω2)|6= 0 for − π ≤ ω1, ω2 ≤ π and that the phase of
the signal has been adjusted to be continuous and periodic in both frequency variables
ω1 and ω2 (i.e. 2D phase unwrapping), we can write2

ŝ(n1, n2) =
1

4π2

ˆ π

−π

ˆ π

−π
log[S(eiω1 , eiω2)] · eiω1n1+iω2n2dω1dω2 (10.6)

1 A maximum phase sequence is anticausal with an anticausal inverse and anticausal complex cepstrum:
ŝ(n) = 0 for n > 0.

2The complex cepstrum of a time limited sequence s(n1, n2), 0 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2 can then be
calculated through the 2D DFT [37], as a spatially aliased version of the cepstrum [38].
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Based on the definition of Non-Symmetric Half Plane (NSHP) as a region of the form
{n1 ≥ 0, n2 ≥ 0} ∪ {n1 > 0, n2 < 0} or {n1 ≥ 0, n2 ≤ 0} ∪ {n1 > 0, n2 > 0} or their
rotations, an admissible region is the Cartesian product of a sector 3 and a NSHP. Before
introducing the subject of multidimensional spectral factorization, we must restate some
preliminary results from [40].

Definition 10.1. Given a sequence x(n1, n2), a projector operator P is defined as the
multiplication by a window wP (n1, n2) with support Rw ⊂ R2.

Proposition 10.1. Let s(n1, n2) be an autocorrelation, or a non negative definite se-
quence, and its Z-transform be the spectral function S(z1, z2). The 2D spectral fac-
torization of s results in a decomposition of the range of its cepstrum ŝ into ad-
missible regions, through a set of projections operators Pk whose sum is the identity
(
∏

k wk = 0,
∑

k wk = 1).

Proposition 10.1 is based on a result stated by the theorem below, whose proof can be
found in [40]:

Theorem 10.1. Let ŝ be the cepstrum of a sequence s (assuming s is absolutely
summable), and let P (ŝ) be its projection on an admissible region, then sP = H−1{P (ŝ)}
is recursively computable and stable.

In particular, a sequence s(n1, n2) is min-min phase if its cepstrum is causal, i.e. with
support Sŝ included in the first quadrant: Sŝ ⊂ R++, with R++ := {n1 ≥ 0, n2 ≥ 0};
and semi-minimum phase if its cepstrum is semi-causal, i.e. with support included in
the upper NSHP: Sŝ ⊂ R⊕+, with R⊕+ := {n1 ≥ 0, n2 ≥ 0} ∪ {n1 < 0, n2 > 0}. In the
latter case, s(n1, n2) is minimum-phase only with respect to the variable n2, as depicted
in Figure 10.1.

Recursive computability is equivalent to the existence of an ordering relation. If the
admissible regions coincide with the 4 quadrants, the four projections of the cepstrum on
R++,R+−,R−+,R−− give a four factor decomposition and involve a strong definition of
2D causality (cf. Figure 10.1a). If the admissible regions coincide with the upper and
the lower NSHPs, the two projections of the cepstrum on R⊕+,R	− yield a two factor
decomposition and involve a weaker definition of 2D semi-causality (cf. Figure 10.1b)
[40]4. Through the projection on R⊕+ and R	−, the cepstrum of the autocorrelation is
decomposed into ŝ = ŝ⊕+ + ŝ	− corresponding, after inverse homomorphic transform, to
s = H−1(ŝ) = s⊕+∗s	−. The two-factor decomposition, based on the definition of NSHPs,
is less restrictive than the four factor decomposition, as it can describe the general class of
positive definite magnitude functions. A magnitude function, such as the power spectral
density in the spectral factorization problem, can be expressed by a limited number of
factors, omitting those with conjugate symmetry. Then, for the two factor decomposition
we have |s(m,n)|2= |s⊕+(m,n)|2 .

Spectral factorization was extended in [54] to multiple dimensions so as to process data
cubes. It is based on multidimensional homomorphic transform, and on the definition of
dD Non-Symmetric Half Spaces (NSHSs), such as the 3D upper NSHS R⊕⊕+. Thus, all
the results presented in this section are easily generalized to the dD case.

3A sector S(α, β) is defined in polar form as S(α, β) = {(r, θ)|r > 0, α < θ < β}.
4 with R+− := {n1 ≥ 0, n2 ≤ 0}, R−+ := {n1 ≤ 0, n2 ≥ 0}, R−− := {n1 ≤ 0, n2 ≤ 0}, and
R	− := {n1 ≤ 0, n2 ≤ 0} ∪ {n1 > 0, n2 < 0}.
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n1

n2

(a) R++ - 2D causality

n1

n2

(b) R⊕+ - 2D semi-causality

Figure 10.1.: Examples of admissible regions related to 2D causality
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10.4. The Effect of the Helical Transform on the
Multidimensional Factorization Problem

This section investigates the effects of the helical ordering relation on the multidimensional
homomorphic analysis. We can initially state the following fact, which can be easily
generalized to dD systems:

Proposition 10.2. Let f(m,n) define an absolutely summable 2D sequence, from which
we want to extract the 2D semi-minimum phase component. Let f (1)(p) be the helical

transform of f(m,n), after column-wise mapping p = m+Mn, and f
(1)
+ (p) its 1D minimum

phase projection, corresponding to causal cepstrum f̂
(1)
+ (p). Then, after inverse helical

mapping of f
(1)
+ (p), the solution fhel+ (m,n) is recursively computable and stable, and it

tends to be, for large M , the semi-minimum phase solution corresponding to semi-causal
cepstrum f̂+(m,n) described in Section 10.3.

Proof. If we consider the discrete variable m bounded by M < ∞ and we allow the
variable n to be unbounded (n ∈ N), the helical transformation of the dataset f(m,n),
f (1)(p), is equivalent to a periodization of f(m,n) with respect to the bounded variable
m. After helical transform, the causal component of the 1D cepstrum f̂ (1)(p) is given
by the contribution for positive p. Through the projection operator in Proposition 10.1,
the 1D complex cepstrum f̂ (1) = f̂

(1)
+ + f̂

(1)
− is decomposed into its causal and anti-causal

components, so that f (1) = f
(1)
+ ∗ f (1)

− and f̂
(1)
+ (p) 6= 0 for p ≥ 0. Now, p ≥ 0 is equivalent

to m + Mn ≥ 0 after helical transform, and then to the NSHP n > −m/M on the 2D
plane (m,n):

f̂hel+ (m,n) 6= 0 for n > −m/M (10.7)

Thus, the helical transformation fixes one particular instance among all the possible canon-
ical factorizations. This means that after inverse mapping of the helical minimum phase
solution, the support of the 2D cepstrum becomes an upper NSHP rotated of an angle
θ = arctan(−1/M). Since any rotated NSHP is an admissible region, according to Theo-
rem 10.1, the resulting 2D filter fhel+ (m,n) = H−1{f̂hel+ (m,n)} is recursively computable
and stable. If M → ∞, the rotation becomes irrelevant (as θ → 0), and the support of
the solution fhel+ (m,n) and of its cepstrum coincides with the upper NSHP R⊕+ defined
in Section 10.3 (cf. Figure 10.2).

Moreover, we can state the following corollary:

Corollary 10.1. Since the two factor decomposition of [40] leads to a semi-minimum
phase term which is minimum phase only in one variable, M → ∞ implies that the
helical solution fhel+ (m,n) is minimum phase with respect to the variable n.

Separable functions have noteworthy properties. We can state the following proposi-
tion for 2D functions (we choose to describe the 2D case for sake of simplicity, without
restricting the generality):

Proposition 10.3. If the 2D function f(m,n) is separable, i.e. if f(m,n) = u(m) v(n),
the following two facts hold:

1. The 2D cepstrum of a separable function is given by f̂(m,n) = û(m)δ(n)+v̂(n)δ(m),
that is non zero only on the axes of the (m,n) plane. Therefore, 2D semi-causality
of the cepstrum f̂ is equivalent to strict 2D causality (i.e. the half-plane support
reduces to two lines in the plane (m,n): cf. Figure 10.3.
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m

n

θ = arctan(− 1
M )

Figure 10.2.: Semi-causal cepstrum after inverse helix transform

2. The 1D cepstrum of the vectorized data f (1)(p) is given by f̂ (1)(p) = û(p)+ 1
M
v̂
(
p
M

)
.

Helical cepstrum f̂ (1) is then causal if and only if 1D cepstra û and v̂ are both causal,
and thus, from 1) if and only if 2D cepstrum f̂ is strictly causal. Therefore, the
equivalence between strict 2D minimum phase of f and 1D minimum phase of its
helix f (1) is always verified, not only asymptotically.

Proof. Let us define a function f(m,n), 0 ≤ m ≤ M − 1, n ∈ N, that is separable with
respect to its two variables:

f(m,n) = u(m) v(n) (10.8)

Then, its Z-transform is also separable in the frequency domain:

F (z1, z2) =

M−1∑
m=0

∞∑
n=0

f(m,n) z−m1 z−n2 =

=

M−1∑
m=0

∞∑
n=0

u(m) v(n) z−m1 z−n2 =

= U(z1) V (z2)

(10.9)
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Since log[F (z1, z2)] = logU(z1) + log V (z2), the cepstrum becomes

f̂(m,n) = − 1

4π2

‰
|z1|=1

‰
|z2|=1

log[F (z1, z2)] zn1−1
1 zn2−1

2 dz1dz2 =

=
1

4π2

ˆ π

−π

ˆ π

−π
log[F (eiω1 , eiω2)] eiω1meiω2ndω1dω2 =

=
1

4π2

ˆ π

−π

ˆ π

−π

[
logU(eiω1) + log V (eiω2)

]
eiω1meiω2ndω1dω2 =

= û(m) δ(n) + v̂(n) δ(m)

(10.10)

We calculate then 1D log cepstrum of f (1)(p), the helical transform of f :

log[F (1)(z)] = log

 ∞∑
p=0

f (1)(p)z−p

 = log[F (z, zM )] =

= log

[
M−1∑
m=0

u(m)z−m
∞∑
n=0

v(n)z−Mn

]
=

= log

[
M−1∑
m=0

u(m)z−m

]
+ log

[ ∞∑
n=0

v(n)z−Mn

]
=

= log[U(z)] + log[V (zM )]

(10.11)

Thus the cepstrum of a separable function is given by

f̂ (1)(p) =
1

2πi

‰
|z|=1

log
[
F (1)(z)

]
zp−1dz =

=
1

2π

ˆ π

−π
log
[
F (1)(eiω)

]
eiωpdω =

=
1

2π

ˆ π

−π

{
log
[
U(eiω)

]
+ log

[
V (eiωM )

]}
eiωpdω =

= û(p) +
1

M
v̂
( p
M

)
(10.12)

The same conclusions hold for a separable function of three or more variables.

We also give an alternative proof of these facts in the Z-domain, in the case of separable
functions of three variables: the periodization along one dimension corresponds to a re-
mapping and increase in number of poles and zeros of the Z-transform, that nevertheless
maintain the same modulus.

Proof. Let us calculate the Z-transform of a finite sequence of three variables,
f(nx, ny, nt), with 0 ≤ nx ≤ Nx, 0 ≤ ny ≤ Ny and nt ∈ N:

F (zx, zy, zt) =

Nx−1∑
nx=0

Ny−1∑
ny=0

∞∑
nt=0

f(nx, ny, nt) · z−nxx z
−ny
y z−ntt (10.13)

Helical boundary conditions are defined through the helical bijection

φ :[0 : Nx − 1]× [0 : Ny − 1]× N −→ N
(nx, ny, nt) 7−→ nz = Nx(Nynt + ny) + nx

(10.14)
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m

n

θ = arctan(− 1
M )

Figure 10.3.: Semi-causal cepstrum for a separable function

Starting from the original 3D function, we can thus define the 1D helical vectorization
(or helix ) as f (1) = f ◦ φ, with Z-transform

F (1)(z) =

∞∑
nz=0

f (1)(nz) z
−nz (10.15)

We can then express F (1) in relation to F as

F (1)(z) =

Nx−1∑
nx=0

Ny−1∑
ny=0

∞∑
nt=0

f (1) (Nx(Nynt + ny) + nx) · z−(Nx(Nynt+ny)+nx) =

=

Nx−1∑
nx=0

Ny−1∑
ny=0

∞∑
nt=0

f(nx, ny, nt) z
−nx (zNx)−ny (zNxNy)−nt

(10.16)

Therefore,
F (1)(z) = F (z, zNx , zNxNy) (10.17)

Let us consider the polynomial expression of F , in the case of a separable function f . For
sake of simplicity, the polynomial function is assumed to be an all-zeros function, with a
finite number of roots:

F (zx, zy, zt) = A

Nα,x∏
ix=1

(zx − αix)

Nα,y∏
iy=1

(
zy − αiy

)Nα,t∏
it=1

(zt − αit) (10.18)

On the other hand, from (10.17) we derive the polynomial expression of F (1):

F (1)(z) = A

Nα,x∏
ix=1

(z − αix)

Nα,y∏
iy=1

(
zNx − αiy

)Nα,t∏
it=1

(
zNxNy − αit

)
(10.19)
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The following remarks can be made:

1. F (1) shares its zeros αix with F .

2. For each zero αiy of F , F (1) has Nx corresponding new zeros,

α
(1)
iy ,k

=
∣∣αiy ∣∣1/Nx ei2πk/Nx

3. For each zero αit of F , F (1) has NxNy corresponding new zeros,

α
(1)
iy ,l

=
∣∣αiy ∣∣1/(NxNy)

ei2πl/(NxNy)

Consequently, the zeros of F (1) lie inside the unit circle if and only if the zeros of F are
inside the unit circle. The same considerations can be made for a rational function F
with poles at the denominator.

Thus, this result can be easily generalized to dD and leads to the following statement:

Proposition 10.4. If the variables of f(n1, n2, ..., nd) separate, 1D minimum phase of
its helical transform f (1) is equivalent to strict dD minimum phase of the dD sequence f .
This equivalence is always verified, not only asymptotically.

10.5. Helical Mapping for Wavefield Propagation

PDEs describing wave propagation generally have two possible solutions: f+ is forward
propagating and then causal, whereas f− is back propagating and then anti-causal; see
Eq. (10.20) for an example. Let f(x, t) be the general solution of a PDE describing wave
propagation, sampled in space xm = m∆ and time tn = nT . We want to recover the
causal solution of the wave equation through spectral factorization with helical mapping,
on the basis of the following result:

Proposition 10.5. The helical processing of the data matrix f(m,n) can lead to the
cancellation of the back propagating solution of the PDE, if the helical vectorization
f (1)(p) is performed column-wise, i.e. p = m+Mn (thus periodizing f(m,n) with respect
to space).

Proof. Since the back-propagating term coincides with the forward (causal) propagating
solution f⊕+ reversed in time, it represents the semi-maximum phase component of the
power spectral density, f	−. Now, thanks to Proposition 10.2, if the helix is constructed

through periodization with respect to space, the minimum-phase term f
(1)
+ will asymptoti-

cally correspond (for large M and after remapping to the 2D space), to the semi-minimum
phase term of the two factor decomposition, f⊕+. Thus, according to Corollary 10.1, it
will be minimum phase with respect to time and approximate the forward propagating
solution.

In the frequency domain, the extraction of the semi-minimum phase solution f⊕+ is
equivalent to applying an all-pass phase-only filter to the data. This is consistent with
[48], where the boundary condition (at the surface) of the wave equation needs to cancel
the back propagating solution through convolution with a semi-causal filter.

In order to illustrate Proposition 10.5 with a straightforward example, we make the
assumption of an homogeneous medium, with constant propagation speed c. However, we
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want to integrate the viscosity α and the absorbance β of the medium into the 1D wave
equation (this translates into attenuation of waves in space and time):

c2∂
2Φ

∂x2
=
∂2Φ

∂t2
+ α

∂Φ

∂x
+ β

∂Φ

∂t
(10.20)

The general solution of (10.20) is expressed by

Φ(x, t) = F(x− ct) + G(x+ ct) (10.21)

For a plane wave equation corresponding to eigenmode ω, this yields

fω(x, t) = A0e
i(kx−ωt)e−αxe−βt +B0e

i(kx+ωt)e−αxeβt (10.22)

The causal solution is embedded in the first term (B0 = 0). After sampling with periods
∆ for space and T for time, the continuous and discrete causal solutions of (10.20) take
the expressions {

f(x, t) = A0e
−αxe−βteikxe−iωt

f(m,n) = A0e
−αm∆e−βnT eikm∆e−iωnT

(10.23)

The attenuated propagating wave in (10.23) can be considered as the impulse response
of the propagative system: f(m,n) = δ(m,n) ∗ h(m,n) = h(m,n). Section 10.A details
the computation of the poles and zeros of the Z-transform of the causal solution of the
wave equation, and discusses the effects of the helical mapping in the Z domain. Further-
more, Section 10.A shows how the back-propagating solution of (10.20) corresponds to
the minimum phase term, reversed in time.

10.6. Application to Physical Systems

Helical coordinates have been used in helioseismology [120] for the estimation of a mini-
mum phase impulse response. More generally, physical environments involving the prop-
agation of waves, like the interior of the sun for helioseismology or the Earth volume for
passive seismic, can be represented as convolutive systems [143]. Simulated data are gen-
erated by a convolutive propagative system d(x, t) = s(x, t)∗h(x, t) where s(x, t) refers to
the excitation signature and h(x, t) to the impulse response. The FT of the data matrix
is then expressed as the product D(kx, ω) = S(kx, ω)H(kx, ω). In the examples presented
in this chapter, we aim at estimating the acoustic impulse response of the Sun, h(x, t), in-
cluding internal reverberations. We make the assumptions that seismic excitation s(x, t),
generated by small sunquakes, is uncorrelated in space and time, so that the power spec-
tral density of d(x, t), |Sd(ωx, ω)|2, equals |H(ωx, ω)|2 up to a scale factor, and that h
is semi-minimum phase. In 10.B we detail the two algorithms used for comparison: on
one hand the dD spectral factorization (Algorithm 10.1), on the other hand the helical
spectral factorization (Algorithm 10.2).

Figure 10.4 (a) and (b) show simulated data for M = N = 1024 and the impulse
response of the system, modeled as a Ricker wavelet [49]:

h(x, t) ∝ 1√
2πσ2

{
1− [t− τ(x)]2

σ2

}
e−

[t−τ(x)]2

2σ2 , (10.24)

where τ(x) =
√
x2 +R2/v, and R and v indicate the distance and the propagation speed

of the source, respectively. Temporal and spatial sampling periods are fixed at 20 ms and
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5 m, and σ = 0.01. The random excitation is modeled as a Gaussian white noise with
unit variance, in both dimensions: s ∼ N (0, I).

Figures 10.5 (a) and 10.6 (a) show the estimated impulse responses ĥ through the
helical procedure described in Algorithm 10.2, for a Dirac source and a random source,
respectively. Correspondingly, Figures 10.5 (b) and 10.6 (b) show the distribution of the
estimation error with respect to the true impulse response h.

Figure 10.7 (a) shows the total approximation error etot = ||f (1)
+ (p)−f+(m,n)(1)||2 of the

helical minimum phase solution (Algorithm 10.2) with respect to the 2D semi-minimum
phase solution (Algorithm 10.1), as a decreasing function of the number of space samples
M . This can be interpreted as a confirmation of the asymptotic equivalence of the two
solutions stated in Proposition 10.2. Another measure of the quality of the approximation
is expressed by the correlation coefficient R between the two solutions, illustrated in Figure
10.7 (b) as an increasing function of the number of space samples M .

The algorithm was then applied to 3D solar data in Figure 10.8 (for more information
about the experimental setup, cf. [138]), and the Sun impulse response was estimated
through helical spectral factorization: in Figure 10.9 (a) and (b), we present our results
for a given time instant and space location. Figure 10.10 shows the correlation coefficient
between the helical and the 3D solutions, as a function of the number of samples along
the x and y-axes, and along the time axis. The estimated impulse response with multiple
reflections is consistent with results in [120] and it seems to be related to a propagative
system where seismic waves are reverberated at least three times within the Sun (cf.
Figure 10.9 (b)).

Conclusion

This chapter gives a theoretical foundation to the relevance of helical boundary conditions,
i.e. a generalization of the vectorization of a multidimensional array, for the spectral
factorization problem. Effects of this representation are detailed in the cepstral domain
and in the Z domain, and the proposed technique is then illustrated through an example
of blind deconvolution for a propagative system, and an application to helioseismology.
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Figure 10.4.: Simulated 2D data and impulse response in the plane (x, t)
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Figure 10.5.: Estimation of the impulse response - only one Dirac source δ(x, t)
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Figure 10.6.: Estimation of the impulse response - random excitation s(x, t)
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Figure 10.8.: Solar Data Volume (Courtesy by Jon Claerbout, Stanford University)
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Figure 10.9.: Estimation of the impulse response of the reverberations of the Sun
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Figure 10.10.: Pearson correlation between the helical and the 3D solutions vs M.



Appendix

10.A. Proof for Propagative Systems

We calculate the Z-transform of the forward propagating solution in (10.23), f(m,n) =
A0e

−αm∆e−βnT eikm∆e−iωnT . If we have m,n ∈ N, the result is simple:

F (z1, z2) =
∞∑
m=0

∞∑
n=0

f(m,n) z−m1 z−n2 =

= A0

∞∑
m=0

e−αm∆eikm∆z−m1

∞∑
n=0

e−βnT e−iωnT z−n2

= A0
1

1− e−α∆eik∆z−1
1

1

1− e−βT e−iωT z−1
2

(10.25)

The convergence zone is given by{
|e−α∆eik∆z−1

1 |< 1⇒ |z1|> e−α∆

|e−βT e−iωT z−1
2 |< 1⇒ |z2|> e−βT

(10.26)

The poles of f(m,n) are given by {
z1 = e−α∆eik∆

z2 = e−βT e−iωT
(10.27)

If 0 ≤ m ≤M − 1, numerator has supplementary zeros:

z1k = e−α∆eik∆+k 2π/M , 0 ≤ k ≤M (10.28)

If 0 ≤ n ≤ N − 1, numerator has supplementary zeros:

z2k = e−βT e−iωT+k 2π/N , 0 ≤ k ≤ N (10.29)

Notice that f(m,n) is strictly 2D minimum phase, as its poles and zeros lie inside the unit
bicircle. The back-propagating term would not be minimum phase with respect to time,
due to poles z−2 = eβT eiωT with |z−2 |> 1, and zeros z2

−
k = eβT eiωT+k2π/N with |z2

−
k |> 1,∀k.

On the other hand, provided 0 ≤ m ≤ M − 1, after the helical mapping in (10.2), the
1D Z-transform of the helix f (1)(p) is given by

F (1)(z) =
∞∑
p=0

f (1)(p)z−p = F (z, zM) =

=
M−1∑
m=0

∞∑
n=1

f(m,n)z−mz−Mn =

= A0

M−1∑
m=0

e−αm∆eikm∆z−m
∞∑
n=1

e−βnT e−iωnT z−Mn

= A0
1− e−α∆Meik∆Mz−M

1− e−α∆eik∆z−1

1

1− e−βT e−iωT z−M

(10.30)
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The convergence zone for the Z-transform is {|z|> e−α∆, |z|> M
√
e−βT}. The poles are

given by {
z = e−α∆eik∆

zk =
M
√
e−βT e−iωT/M+k 2π/M , 0 ≤ k ≤M

(10.31)

and the zeros by
zk = e−α∆eik∆+k 2π/M , 0 ≤ k ≤M (10.32)

If 0 ≤ n ≤ N − 1, numerator has supplementary zeros:

zk =
M
√
e−βT e−iωT/M+k 2π/(MN), 0 ≤ k ≤MN (10.33)

Notice that f (1)(p) is minimum phase, as its poles and zeros lie inside the unit circle.
After helical mapping, the back-propagating term would not be minimum phase with
respect to time, due to poles z−k =

M
√
eβT eiωT/M+k 2π/M with |z−k |> 1, and zeros z−k =

M
√
eβT eiωT/M+k 2π/(MN) with |z−k |> 1,∀k.
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10.B. Algorithms

Algorithm 10.1 2D spectral factorization

1: Calculate 2D spectrum S(k, l), 0 ≤ k ≤M − 1, 0 ≤ l ≤ N − 1:

S(k, l) =

∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

s(m,n) e−2πmk/M e−2πnl/N

∣∣∣∣∣
2

(10.34)

2: Calculate 2D complex cepstrum

ŝ(m,n) =
1

MN

M−1∑
k=0

N−1∑
l=0

logS(k, l) e2πmk/M e2πnl/N (10.35)

3: Project the cepstrum on the upper NSHP
R⊕+ = {m ≥ 0, n ≥ 0} ∪ {m < 0, n > 0}:

ŝ⊕+(m,n) = 0 for (m,n) ∈ R	− := {m ≤ 0, n ≤ 0} ∪ {m > 0, n < 0} (10.36)

4: Perform the inverse homomorphic transform on the semi-causal cepstrum to find the
2D semi-minimum phase component: s⊕+(m,n) = H−1[ŝ⊕+(m,n))]

Algorithm 10.2 Helical spectral factorization

1: Vectorize data s(1)(p) = f(m,n) column-wise,
with p = m+Mn, 0 ≤ p ≤MN − 1

2: Calculate 1D spectrum S(1)(k), 0 ≤ k ≤MN − 1:

S(1)(k) =

∣∣∣∣∣
MN−1∑
p=0

s(1)(p) e−2πpk/(MN)

∣∣∣∣∣
2

(10.37)

3: Calculate 1D complex cepstrum

ŝ(1)(p) =
1

MN

MN−1∑
k=0

logS(k) e2πpk/(MN) (10.38)

4: Project the cepstrum on the 1D causal admissible region {p ≥ 0}: ŝ(1)
+ (p) = 0 for p < 0

5: Perform the inverse homomorphic transform on the causal cepstrum to find the 1D
minimum phase component: s

(1)
+ (p) = H−1[ŝ

(1)
+ (p)]

6: Back project the helical minimum phase solution to the 2D domain: shelix+ (m,n) =

s
(1)
+ (m+Mn)
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Conclusion and Perspectives

During my PhD, I took a particular interest in the combination of two elements: the
physics of wave propagation and sensor arrays on one hand, and the mathematical for-
malism for their interpretation on the other hand, in the context of source estimation and
localization. Tensor analysis has been a natural way to integrate multiple dimensions into
array processing, in addition to space and time of traditional techniques. In particular,
while array processing added space as a relevant variable to the estimation problem, ten-
sors are now able to extend the estimation problem to a multidimensional space, where
each dimension corresponds to a physical variable.

In Part I, I introduced the basics of sensor arrays and of the tensor formalism in a
simple and gradual way, from the signal reception to its processing for source localiza-
tion. I explained how tensors can be an important tool to grasp the multidimensional
relationships between variables of multi-way arrays.

The physical dimensions that I studied in Part II were polarization, directional gain
patterns, propagation speed, and frequency diversity. In particular, gain patterns and
propagation speed had never been used before in any tensor approach as sources of useful
information on wave propagation. I also showed how tensor decompositions can be ap-
plied to the estimation of wideband sources, which are very common in many applications,
such as sonar or seismology. In particular, we developed a coherent tensor preprocess-
ing allowing to multi-linearize our data tensor directly in the frequency domain. The
main practical difficulty of the tensor formalism is the requirement of multilinearity, cor-
responding to the separability of the underlying model. While in many situations, such
as for narrowband polarized far-field sources, the physical model is separable, there are
still many cases in which it is not. This thesis gives a major example on the possibility
to use tensors in non standard situations, such as in the case of wideband processing.

Finally, in Part III, I explored the factorization of multidimensional data cubes, for the
estimation of the impulse-response of the Sun.

I would be pleased if this thesis could provide a starting point to understand the basics
and the benefits of the multi-way analysis of wave propagation. In the same vein, Table
10.1 summarizes the requirements and the advantages of various physical diversities in
the tensor formulation.

Table 10.1.: Main diversities in array processing

Diversities Requirements Information

Time

/Frequency

One sensor (pressure, electromagnetic, ve-
locity, displacement)



196 Conclusion and Perspectives

Time

Space

One array of L sensors.

The estimation of spatial statistics
(e.g. the spatial covariance).

Sensor positions must be known.

Sources must be narrowband.

Directions of Arrival (DoAs) can be esti-
mated.

Scalar source signatures can be estimated.

Frequency

Space

One array of L sensors.

Sources are wideband.

Linear interpolation for a coherent array
processing.

Sensor positions must be known.

DoAs can be estimated.

Source Fourier coefficients can be jointly es-
timated.

Possible estimation bias due to interpola-
tion at high SNR.

Interpolation induces a correlation error,
that is to be taken into account into the
estimation.

Time

Space

Space Shift

M identical subarrays.

Sources must be narrowband.

Either sensor positions or subarray posi-
tions must be known.

DoAs and source signatures can be jointly
estimated.

Time

Space

Polarization

One vector sensor array,
i.e. L 3C sensors.

Sensor positions must be known for DoA
estimation; they can be unknown for po-
larization estimation.

Sources must be narrowband.

DoAs, polarization parameters, and source
signatures can be jointly estimated.

Polarization is useful to disambiguate
closely spaced sources.

Information on the type of elastic or elec-
tromagnetic wave.

Time

Gain Patterns

Space Shift

M identical (almost) overlapping subar-
rays with possibly unknown directional el-
ements.

Space shifts must be known.

Sources must be narrowband.

DoAs and source signatures can be jointly
estimated.

Frequency

Space

Space Shift

M identical subarrays.

Sources are wideband.

Bilinear interpolation for a coherent tensor
processing.

Sensor and subarray positions must be
known.

DoAs and source Fourier coefficients can be
jointly estimated.

Possible estimation bias due to interpola-
tion at high SNR.

Interpolation induces a correlation error,
that is to be taken into account into the
tensor approximation routine.



Conclusion and Perspectives 197

Frequency

Space

Polarization

One vector sensor array,
i.e. L 3C sensors.

Linear interpolation for a coherent tensor
processing.

Sensor positions must be known.

DoAs, polarization parameters, and source
Fourier coefficients can be jointly esti-
mated.

Information on the type of elastic or elec-
tromagnetic wave.

Possible estimation bias due to interpola-
tion at high SNR.

Interpolation induces a correlation error,
that is to be taken into account into the
tensor approximation routine.

Time

Space

Propagation
Speed

One sensors array - L sensors.

Sensor positions must be known.

Impinging sources are seismic volume
waves (P and S waves).

Narrowband filtering at frequencies ensur-
ing constant wavelength.

DoAs can be estimated.

Information on the type of seismic wave.

Loss of information due to narrowband fil-
tering.

Other combinations are also possible, such as the overall model developed in Chapter 6,
using frequency, space, space shift, and polarization diversity. This only requires a slightly
more complex notation, as it results in a fourth order tensor.

Time diversity is sufficient when signals are narrowband. This is often the case of
electromagnetic waves for telecommunications. Frequency diversity needs to be taken
into account when impinging waves are wideband, i.e. when the array aperture is not
negligible compared with the signal spectral bandwidth. This is often the case of elastic
or acoustic waves. If we filter these signals and treat them as narrowband, we lose most
of the information on their propagation.

Polarization is another interesting property of waves that concerns the geometric orien-
tation of particle motion, in the form of the polarization ellipse. Polarization can then be
very useful to identify the kind of impinging waves, e.g. different types of seismic waves
are also differently polarized.

Gain patterns offer an additional diversity allowing uniqueness when spatial invariance
is not allowed, in the case of very small sub arrays.

The perspectives for future work are listed below. I would have liked to study all these
subjects in more depth, but three years is a very short time.

• As for space and space shift diversities addressed in Chapter 4, an acquisition sys-
tem might possess several space invariant structures, as in [142]. In this case, could
the tensor formalism be exploited to determine the optimal combination of trans-
lated (and possibly overlapping) subarrays to include into the Canonical Polyadic
Decomposition (CPD) model?

• It would be of interest to extend the simulations of Chapter 5 to more closely
spaced sources. In particular, polarization diversity has a good potential to help
distinguishing sources with similar DoAs. Comparisons of the proposed tensor CPD
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and the algorithm proposed in [42] would be relevant in the context of polarization
diversity.

• More generally, polarization diversity could be advantageous to use not only with
vector sensor arrays as in Chapter 5, but also with differently polarized subarrays
as in [42]. The latter configuration has the benefit of being less restrictive.

• Polarization diversity for vector sensor arrays could be seen as a particularly extreme
case of gain pattern diversity. Connections between the two representations are
promising to investigate.

• As for the computational aspects, major convergence issues of the ALS algorithm
arise when the overall product of the coherences approaches one. This is not surpris-
ing, especially in the light of Section 3.7 on the existence of a solution to the tensor
CPD approximation problem. From this perspective, the case of closely spaced
sources or highly correlated sources have very similar numerical consequences.

• Spatial smoothing traditionally improve the estimation in the case of correlated
sources [61]. Furthermore, a tensor-based spatial smoothing that creates a new
dimension of the tensor has been introduced in [148]. The latter solution could be
further studied in relation to the proposed tensor models.

• Other diversities that could be included into the tensor formulation of Chapter 5
are given by doppler shifts and path delays [163].

• The performance of the algorithms proposed in Chapter 6 could be compared to the
exact Cramér-Rao Bound (CRB) of the wideband model, as explained in Section 7.4.

• The noise covariance structure induced by interpolation should be taken into ac-
count in Chapter 8, in a similar fashion as in Chapter 6, thanks to the algorithm
ALSCOLOR in Section 6.5.

• Furthermore, the noise covariance structure induced by interpolation could be fur-
ther studied. In Section 6.6 I only presented a qualitative analysis and a simple
measure of this correlation strength. The same could be done for the sinc inter-
polation of regular array geometries in Chapter 8. It would be of great interest to
compare both interpolations and their resulting noise correlation strengths.

• Closely related to source localization, we could address the problem of estimating
the model order, i.e. the number of simultaneously impinging sources, via tensor
tools. An example of multidimensional model order estimation can be found in [30].
An open question is whether it is helpful to use the tensor formalism to determine
the number of sources.

• In the context of model order estimation, model order mismatch is also of great
interest. We have such a mismatch whenever we fit a R̂-rank CPD model with data
originating from R 6= R̂ sources. See Sections 3.6 and 3.6.2 for details on the issues
of tensor CPD approximation.

• An interesting perspective could be to conceive a multidimensional beamforming
and interference rejection exploiting multiple diversities.
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• Interpolation as a preprocessing step to study wideband waves induces an estimation
bias, that is visible as a saturation of the MSE for high SNR. We did not take it
into account in the proposed estimation algorithms in Chapters 6 and 8 nor in the
derivation of the CRB in Chapter 7. A perspective of our work would be to take it
into account in the same spirit as [70, 71].

• Calibration issues of the tensor formulation could be investigated, and sensor po-
sition errors could be introduced into the tensor model and into the performance
bounds. Errors on sensor configuration can involve their position (translation er-
rors) or orientation (rotation errors). The latter are significant in the case of vector
sensors that are sensitive to wave polarization [35]. Calibration errors are typical
of settings such as the glacier experimental setup described in Section 9.7, where
the surface profile is not known in advance and may be difficult to measure. If we
have some prior statistical knowledge on position and orientation errors available,
we could derive hybrid CRBs including this information.

• This PhD thesis was about using several physical diversities. However, each diversity
carries its uncertainty due to model errors. How do these errors combine into the
tensor formulation? Which is the maximum number of diversities that we can add
together without propagating too much uncertainty into the estimation problem?
These questions are important in the context of data fusion: sometimes it might be
better to separate two sets of diversities forming two tensors respectively, than to
include them all into the same big tensor.

• Only recently, coupled tensor decompositions [2, 1] have been developed and applied
to sensor arrays. This is the case when two data tensors can be coupled through
one of their modes, because they share approximately the same factor matrix along
that mode. In [12] this coupling is defined in a statistical sense, with corresponding
Bayesian bounds. This subject is still open and full of potential in the context of
data fusion [84, 94].

• A very interesting perspective is Bayesian tracking of moving sources through the
tensor formulation of a Kalman filter. This could also involve signals whose param-
eters in general (e.g. DoA, polarization) vary over time.

An interesting challenge would be to solve this problem using coupled tensor de-
compositions. If signal parameters can be considered constant in a certain lapse of
time, at each snapshot we can measure a data tensor. This would result in several
data tensors that can be coupled through the parameters that do not vary, while
the others are allowed to change and be dependent on the snapshot number.

As an example, we refer to [18] for time-varying multidimensional harmonic retrieval
via a tensor subspace tracking algorithm based on Kronecker-structured projections
and including forward-backward averaging.

• More generally, it would be of great interest to include into the tensor model some
a priori information we might have on impinging sources. Also, the structure of
factor matrices could be included into the estimation problem, for instance the
Vandermonde structure of ULAs [55]. Finally, the coupling between factor matrices
depending on the DoAs could be taken into account. For instance, space and space
shift matrices, or space and polarization matrices both depend on DoAs.
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• We could extend our results, in particular our tensor analysis of wideband waves,
to multidimensional harmonic retrieval, as proposed in [163].

• In our simulations, we considered non-dispersive and non-dissipative media. In
actual propagation media, dissipation is generally higher at higher frequencies, and
dispersion takes place as well, i.e. propagation speed may depend on frequency. All
these elements could be taken into account into the model or estimated in active
experimental settings.

• Tensor decompositions could be applied to the estimation and localization of spread
sources. In this thesis, we only tackled the problem of point-like sources in the far-
field. However, in many scenarios, sources are spatially spread and are the result of
an integral of an infinite number of spatially related point-like sources [7].

• Tensor analysis could be applied to the active multidimensional characterization of
heterogeneous propagation media, in the context of exploration seismology. Some
example of such an application are given by [76, 78, 77, 127].

• A great challenge would be to generalize tensor methods to process more complex
waves, such as spherical waves in the near field [161]. A major issue of this kind
of sources is the non separability of the corresponding physical model, due to the
wavefront curvature.

• As a further step, an interesting perspective could involve a post-processing of es-
timated signal parameters for the classification of sources and propagation media.
This information could then be used for dictionary learning.

• Finally, the helical coordinate system studied in Chapter 10 could be of interest for
on-line applications, where the sequential order of data acquisition matters.



Résumé en Français

Traitement Spatio-Temporel

Au début du traitement du signal, les problèmes de statistiques et d’ingénierie étaient
axés sur l’estimation de paramètres et sur la performance associée à cette estimation.
Les paramètres d’intérêt était surtout liés au temps, car les données mesurées était essen-
tiellement des fonctions du temps. Par conséquent, les signaux pouvaient être caractérisés
dans le domaine du temps, ou de façon équivalente, dans le domaine des fréquences.

Par la suite, suivant l’expansion des applications, les signaux mesurés devinrent aussi
fonction de la position des capteurs, ajoutant ainsi une dépendance spatiale. La com-
posante spatiale du processeur est une aperture (ou antenne) dans le domaine continu de
l’espace, tandis qu’elle est un réseau de capteurs dans l’espace discret de l’espace [151].
Depuis que les signaux devinrent des processus dans le temps et l’espace, les paramètres
à la fois spatiaux et temporels devinrent l’objet d’un véritable nouveau domaine, nommé
traitement d’antenne. Le traitement d’antenne est un traitement couplé dans l’espace et
le temps, avec pour objectif de combiner les données récoltées par plusieur capteurs [79].
L’information a priori sur le système d’acquisition (c.a.d. la géométrie d’antenne, les
caractéristiques des capteurs, etc.) est utilisée afin d’estimer les paramètres des signaux.
Puisque un réseau de capteurs échantillonne les champs incidents dans l’espace et le temps,
la fusion spatio-temporel a lieu dans le domaine multidimensionnel de l’espace-temps. Les
problèmes principaux du traitement d’antennes sont donnés par la configuration des cap-
teurs, les caractéristiques des signaux et du bruits, et l’objectif de l’estimation [151],
comme la direction d’arrivée (DoA) de sources potentiellement simultanées.

Applications principales

L’estimation des paramètres des signaux en traitement d’antenne a donné lieu à une
immense variété d’applications, comme mentionné dans la liste ci dessous.

Radar
La première application des réseaux de capteurs fût fournie par la localisation de sources
en radar. La plupart des systèmes radar sont actifs, dans la mesure où le réseau est utilisé
pour la transmission ainsi que la réception des signaux en même temps. La réflectivité
du sol est un problème majeur que l’on appelle communément clutter, impliquant des
interférences spatialement distribuées. Les applications non militaires du radar incluent le
contrôle du trafic aérien. Les paramètres spatiaux d’intérêt peuvent varier : les systèmes
actifs peuvent estimer la vitesse (la fréquence Doppler), la distance, et les directions
d’arrivée, tandis que les systèmes passifs ne peuvent estimer que les directions d’arrivée
(DoAs).
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Astronomie
En astronomie, les réseaux d’antenne sont constitués par des systèmes passifs très grands
(la base peut rejoindre de milliers de kilomètres) qui mesure et étudie des objets célestes
avec une résolution très élevée.

Sonar
Les systèmes sonar actifs traitent les échos de signaux acoustiques transmis sous l’eau,
alors que les systèmes sonar passifs étudient les ondes acoustiques incidentes par un
réseau d’hydrophones. La différence principale entre le sonar actif et le radar réside
dans les conditions de propagation : la propagation des ondes acoustiques dans l’océan
est plus complexe et problématique que la propagation des ondes électromagnétiques dans
l’atmosphère, à cause de la dispersion, de la dissipation, et de la variation de la vitesse
de propagation avec la profondeur. Les raisons majeurs de bruits sont constituées par
l’environnement, le système et la réverbération. L’application la plus importante est
donnée par la détection et le repérage des sous-marins. Les réseaux déformables sont
souvent remorqués sous l’eau et ont une structure linéaire [79].

Communications
Un autre domaine majeur du traitement d’antenne est offert par les télécommunications (à
la fois terrestres et satéllitaires). Les signaux des communications sont typiquement des
sources ponctuelles, et ils arrivent généralement au receveur distant sous forme d’onde
planes, après avoir été réfléchies plusieurs fois par les bâtiment et les collines. Ces
réflexions multiples, aussi appelées multipath, peuvent produire une atténuation sévère
du signal. La performance d’estimation peut aussi être dégradée par d’autres signaux
interférant, ou des interférences entre utilisateurs. Dans ce contexte, les smart antennas
consistent en des réseaux adaptatifs pour les communications sans fils : elles implémentent
un traitement spatial adaptatif en complément au traitement temporel adaptatif déjà
utilisé [151].

Sismologie
La sismologie d’exploration ou de réflexion est un autre domaine important du traite-
ment d’antenne, destiné à dériver une image de la structure de la terre et des propriétés
physiques de ses différentes couches. Les systèmes actifs, qui mesurent les réflexions à
travers les diverses couches, sont conçus en fonction de la propagation des ondes élastiques
à travers un milieu inhomogène. D’un autre côté, la sismique passive utilise plusieurs sis-
momètres, séparés par de centaine de mètres, afin de détecter les mouvements naturels de
la terre sur des périodes d’heures ou de jours [151]. Cette dernière application est adressée
dans le Chapitre 9.

Génie biomédicale
Les applications biomédicales ont aussi offert un terrain très fertil pour le traitement
d’antenne. L’électrocardiographie (ECG) est utilisée pour surveiller la santé du cœur ;
l’électroencéphalographie (EEG) et la magnétoencéphalographie (MEG) sont utilisée pour
localiser l’activité cérébrale [79]. La tomographie est la reconstruction par tranches du
volume d’un objet par des ondes transmises ou réfléchies. Cette dernière a eu un succès
considérable pour les diagnostics médicaux [151].
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Les Approches Classiques en 2D

Au début, l’approche original pour le traitement spatio-temporel fût offert par le filtrage
spatial, ou formation de voies, ou beamforming en anglais, consistant à amplifier les sig-
naux provenant de certaines directions, tout en atténuant tous les autres [152]. Cependant,
bien que très simple, la formation de voie souffre d’une limitation sévère : sa performance
dépend directement de l’aperture d’antenne,indépendamment du nombre d’échantillons,
et du rapport signal sur bruit (SNR). Cela limite sérieusement sa résolution, c.a.d. sa ca-
pacité à distinguer de sources spatialement rapprochées. La résolution est intuitivement
facile à comprendre dans le contexte des méthodes spectrales, comme la formation de
voies : lorsque deux pics sont visibles en correspondance de deux vraies sources, ils sont
dits résolus.

Les données mesurées consistent en matrices, dont les lignes correspondent aux divers
capteurs (espace) et les colonnes correspondent aux échantillons mesurés (temps), comme
en Figure 10.11. Puisque les paramètres des signaux d’intérêt, comme les directions

sp
ace

time

Figure 10.11.: Matrice de données en traitement d’antenne traditionnel

d’arrivée, ont une nature spatiale, la plupart des approches 2D sont fondés sur l’estimation
de l’information d’inter-corrélation entre capteurs, c.a.d. la matrice de covariance spatiale.
Cette estimation requiert donc des échantillons de très longue durée.

Une véritable percée dans le traitement d’antenne fût apportée par les méthodes à
sous-espaces [131, 126]. La structure à valeurs propres de la matrice de covariance fût
alors explicitement exploitée via des techniques de décomposition spectrale, comme la
décomposition en éléments propres (EVD). Grâce à la structure de rang faible des données
reçues, les vecteurs propres correspondant aux plus grand valeurs propres engendrent
l’espace signal, tandis que les vecteurs propres restants engendrent l’espace bruit. En
conséquence, les techniques haute résolution comme MUSIC [131] font appel à ces deux
éléments de diversité : l’espace et le temps, afin d’estimer l’espace signal engendré par
les sources incidentes, ainsi que leur directions d’arrivée. Cela est généralement accompli
par l’estimation de la matrice de covariance d’antenne. Des statistiques d’ordre supérieur
peuvent aussi être employées [83] pour supprimer le bruit gaussien et augmenter le nombre
de sources détectables.

En outre, la structure invariante par translation du système d’acquisition peut être
exploité lorsque l’antenne globale est constituée par deux sous-antennes identiques, l’une
étant une version translatée de l’autre. Ceci est l’essence de l’algorithme ESPRIT [126].

En l’absence d’erreur de modèle, la capacité de résolution des méthodes à sous-espaces
n’est pas limitée par l’aperture d’antenne, pourvu que la taille des données et le rapport
signal sur bruit soient suffisamment grands [79].
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De plus, si les champs incidents ne sont pas scalaires, mais vectoriels, la polarisation
des ondes dévient une propriété utile qui peut améliorer la localisation des sources, sous
réserve que les capteurs soient sensibles à des composantes différentes et que ces dernières
puissent être calibrées séparément. Cela est le cas du capteur vectoriel (vector-sensor),
c.a.d. un capteur qui mesure toutes les composantes orthogonales des ondes élastiques ou
électromagnétiques en même temps [95, 96].

Dans les méthodes traditionnelles, les composantes du capteur vectoriel sont
généralement empilées l’une après l’autre dans un long vecteur, pour un instant donné,
perdant ainsi leur structure multidimensionnelle.

Au début, la formation de voie et les méthodes à sous-espaces furent conçus pour
les onde à bande étroite, ce qui correspond à une hypothèse assez réaliste en radar et
télécommunications, car la bande spectrale du signal est souvent négligeable, par rapport
à l’aperture de l’antenne. Néanmoins, dans de nombreuses applications, comme en sonar
et en sismologie, les signaux reçus sont intrinsèquement à bande large. L’extension naturel
du traitement d’antenne au cas large bande est basée sur la Transformée de Fourier
Discrète (TFD), suivie par une combinaison optimale ou sous-optimale de l’information
sur les différents canaux de fréquence. Une solution optimale est apportée par le Coherent
Signal Subspace (CSS) : toutes les contributions en fréquence sont alignées vers le même
sous-espace de référence à une fréquence centrale, par des transformations linéaires [157].

Les Méthodes Tensoriels

Nous remarquons que la décompositions en valeurs propres (EVD) de la matrice de co-
variance estimée est équivalente à la décomposition en valeurs singulières (SVD) des
données brutes correspondantes. La SVD est une factorisation matricielle qui tire son
unicité de deux contraintes : un noyau diagonal contenant des valeurs singulières non
négatives distinctes, et des matrices orthogonales contenant les vecteurs singulières de
gauche et de droite, respectivement. Cette contrainte d’orthogonalité est souvent arbi-
traire et physiquement injustifiée.

Les factorisations matricielles standard, comme la SVD, sont des outils très efficaces
pour la sélection de caractéristiques, la réduction dimensionnelle, l’amélioration du sig-
nal, et la fouille des données (ou data mining) [22]. Toutefois, comme mentionné dans
la section précédente, elles ne peuvent s’adresser qu’à deux modes seulement, c.a.d. les
matrices d’espace et temps. Dans de nombreuses applications, comme la chimiométrie
et la psychométrie, mais aussi la fouille de textes, le clustering, les réseaux sociaux,
les télécommunications, etc., la structure des données est extrêmement multidimen-
sionnelle, car elle contient modes d’ordre supérieur, comme les tests, les conditions
expérimentales, les sujets, les groupes, en plus des modes intrinsèques données par l’espace
et le temps/fréquence [22]. Manifestement, la perspective plate de la factorisation ma-
tricielle ne peut pas décrire une structure multidimensionnelle complexe. En revanche,
les décompositions tensorielles sont une façon naturelle de saisir conjointement les rela-
tions multilinéaires entre les différents modes, et en extraire une information unique et
physiquement significative.

La factorisation tensoriel consiste en l’analyse de cubes multidimensionnels d’au moins
trois dimensions. Ceci est accompli par leur décomposition en une somme de com-
posantes élémentaires, grâce à la multilinéarité et au rang faible du modèle sous-jacent. La
Décomposition Canonique Polyadique (CPD), une des décompositions les plus répandues,
développe un tenseur en une sommes de termes multilinéaires. Ceci peut être interprété
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comme une généralisation des factorisations matricielles bilinéaires comme la SVD.
Néanmoins, contrairement à la SVD, la CPD n’a pas besoin de contraintes d’orthogonalité,
puisqu’elle est unique à des conditions légères. Cela veut dire que nous pouvons récupérer
toutes les matrices facteurs qui correspondent aux différentes modalités du tenseur, à
partir du tenseur de données bruitées [88].

Seulement récemment l’analyse tensorielle a-t-elle été appliquée au traitement d’antenne
d’ondes à bande étroite en [136], en tant que généralisation déterministe d’ESPRIT [126]
à plus qu’une translation, sans aucune nécessité d’estimer de quantités statistiques. Cela
veut dire que le système d’acquisition doit se constituer d’une sous-antenne de référence,
répétée dans l’espace par de translations multiples. Donc, le troisième mode ou diversité
est fourni par la translation en espace, en plus de l’espace et du temps. Ensuite, le
formalisme tensoriel a été étendu pour étudier les ondes polarisées en [57], via CPD, avec
la polarisation comme troisième mode au lieu de la translation en espace. Voir Figure
10.12 pour une illustration d’un cube de données de dimension 3.
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Figure 10.12.: Cube de données de dimension 3 en traitement d’antenne tensoriel

Les décompositions tensorielles permettent de récupérer conjointement et uniquement
toutes les modalités reliées aux paramètres des signaux, c.a.d. les directions d’arrivée,
les angles de polarisation, et les formes d’onde reçues. Ainsi, les méthodes tensorielles
nous offrent une estimée des signaux des sources, avec leur directions d’arrivée, de façon
déterministe. Ceci peut être accompli en vertu du modèle séparable et de rang faible suivi
par les sources à bande étroite et en champ lointain. Puisque les méthodes tensorielles
ne nécessitent ni d’estimation de la covariance des données ni de statistiques d’ordre
supérieur, elles peuvent gérer des échantillons de données plus courtes.

Contribution et Plan

Cette thèse a pour sujets l’estimation et la localisation de multiples sources par des
méthodes tensorielles pour le traitement d’antenne, en exploitant plusieurs modalités.
Nous incluons plusieurs diversités physiques dans le modèle tensoriel, outre l’espace et
le temps : la translation en espace, les patterns de gains de capteurs directionnels, et la
célérité ou vitesse de propagation des ondes sismiques. Au début de mon doctorat, j’étais
intéressée au modèle tensoriel pour les ondes à bande étroite, en particulier les ondes
polarisées et sismiques. Par la suite j’ai étendu tous nos résultats à l’étude des ondes à
bande large en exploitant la diversité de fréquence, et en développant ultérieurement la
formulation tensorielle correspondante.
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La difficulté pratique principale du formalisme tensoriel est due à la condition de multi-
linéarité, correspondant à la séparabilité du modèle sous-jacent. Bien que, dans certaines
situations, comme dans le cas de sources à bande étroite et en champ lointain, le modèle
physique est séparable, il est toutefois de nombreux cas où il ne l’est pas. Cette thèse
est un exemple de la possibilité d’utiliser les tenseurs même dans des situations difficiles,
comme dans le cas des ondes à bande large, surmontant ainsi ce problème.

Contributions Tout au long de mon doctorat, mon travail a donné lieu aux contributions
énumérées ci-dessous en ordre chronologique.

• Au début, nous avons étendu l’analyse tensorielle aux ondes de volume sismiques,
en employant la diversité de leur vitesse de propagation comme troisième mode. Ce
travail a été publié dans un article de journal pour Signal Processing, Elsevier [117].

• Nous avons aussi présenté notre travail sur le modèle tensoriel des ondes élastiques
polarisées et à bande étroite, ainsi que les bornes sur sa performance, à une
conférence national française en traitement du signal [115].

• Notre intérêt pour les ondes sismiques nous a conduit à publier un article de journal
pour Signal Processing, Elsevier sur la factorisation multidimensionnelle de cubes
de données sismiques pour l’héliosismologie [118].

• Nous avons introduit l’emploi de capteurs directionnels, en proposant les patterns
de gain comme une véritable diversité physique dans un article pour IEEE Signal
Processing Letters [116].

• Après s’être aperçus que la diversité de célérité des ondes sismiques dans notre article
[117] pourrait être interprétée comme une diversité de fréquence, nous avons décidés
d’étendre le formalisme tensoriel à des ondes à bande large génériques. Notre idée
d’utiliser l’interpolation spatial pour des antennes linéaires uniformes a été présenté
pour la première fois à ICASSP 2016 à Shanghai [119].

• Nous avons ultérieurement développé l’idée originale de [119] en utilisant des trans-
formations bilinéaires dans un article de journal, publié par IEEE Transactions on
Signal Processing [114].

Cette thèse de doctorat est structurée comme détaillé ci-dessous. La présentation est
divisée en trois parties : La Partie I décrit l’état de l’art du traitement d’antenne et de
l’analyse tensorielle ; les Partie II et III expliquent ma contribution pour respectivement
le traitement d’antenne tensoriel et la factorisation multidimensionnelle.

Le Chapitre 1 présente le modèle physique des sources élastiques à bande étroite et en
champ lointain, ainsi que les définitions et hypothèses principales. Le Chapitre 2 passe en
revue l’état de l’art sur l’estimation de la direction d’arrivée, avec un accent particulier
sur les méthodes à haute résolution et à sous-espaces.

Le Chapitre 3 introduit le formalisme tensoriel, à savoir la définition d’hypercubes de
coordonnées, les opération et les décompositions multilinéaires principales. Le Chapitre
4 présente le sujet de traitement d’antenne tensoriel via invariance rotationnelle.

Le Chapitre 5 introduit un modèle tensoriel général pour les ondes élastiques à bande
étroite, impliquant de multiples diversités physiques, comme l’espace, le temps, la trans-
lation en espace, la polarisation, et les patterns de gain de directivité.
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Dès lors, les Chapitres 6 et 8 établissent un modèle tensoriel pour un traitement
d’antenne large bande cohérent. Nous proposons une opération de focalisation cohérente
séparable par des transformations bilinéaires et par un ré-échantillonnage spatial, afin
d’assurer la multilinéarité des données interpolées. Nous montrons par des simula-
tions numériques que l’estimation proposée des paramètres des signaux s’améliore con-
sidérablement, par rapport au traitement tensoriel bande étroite existant et à MUSIC
bande large. Tout au long des chapitres nous comparons aussi les performances de
l’estimation tensorielle avec la borne de Cramér-Rao du modèle multilinéaire, que nous
dérivons dans sa formulation plus générale dans le Chapitre 7. En outre, dans le Chapitre
9 nous proposons un modèle tensoriel via la diversité de célérité des ondes sismiques et
nous illustrons une applications aux données sismiques réelles d’un glacier alpin.

Dernièrement, la partie finale de cette thèse dans le Chapitre 10 passe au sujet parallèle
de la factorisation spectrale multidimensionnelle des ondes sismiques, et en illustre une
application à l’estimation de la réponse impulsionnelle du Soleil pour l’héliosismologie.
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