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CHAPTER 1 INTRODUCTION

Cette thèse est consacrée à l'exploration de la précision en vision stéréo et aux méthodes de détection dites a contrario. Elle présente également une application à l'imagerie satellitaire. La première partie a été réalisée dans le cadre du projet DGA-ANR-ASTRID «STÉRÉO». Son enjeu est de définir les limites effectives des algorithmes de reconstruction stéréo quand on contrôle toute la chaîne d'acquisition à la précision maximale, que l'on acquiert les paires stéréo en rapport B/H très faible, et que les paires d'images sont sans bruit grâce à une longue exposition. Ce problème implique de faire des évaluations appropriées. Kondermann et al. [START_REF] Daniel Kondermann | On Performance Analysis of Optical Flow Algorithms[END_REF] ont dressé une analyse très complète sur la notion d'évaluations de performances des algorithmes de flux optique, et des conditions nécessaires pour les mener à bien. Bien qu'il soit question de flot optique, les auteurs affirment que leur analyse est également généralisable aux algorithmes stéréo. Ils proposent une méthodologie permettant de rationnaliser les évaluations car elles sont potentiellement confrontées à un nombre pléthorique d'algorithmes. Cette méthodologie est guidée par deux indicateurs qu'ils considèrent essentiels : la mesure moyenne de l'erreur de disparité et la complexité algorithmique (computation time, memory efficiency). Ils ont notamment souligné l'importance de la description qualitative et quantitative des données d'entrée servant aux tests ainsi que des vérités terrain disponibles. Les paires d'images devraient être décrites d'après leurs occultations, leur quantité de zones texturées et de zones plates, de changement locaux d'illumination. De plus, il devrait y avoir au moins une quantification globale de la variance du bruit et si possible une description paramétrique du noyau de flou optique. En ce qui concerne les vérités terrain, Kondermann et al. recommandent qu'elles permettent de tester les algorithmes aux limites de leur précision et s'interrogent sur les avantages et inconvénients des paires réelles et des paires synthétiques. Dans le premier cas, le risque est que les véritées terrain mesurées soient imprécises ou incomplètes, dans le second cas, que les images ne soient pas réalistes. Les auteurs concluent que: «En outre, la génération de vérité terrain est une tâche de mesure optique qui représente un défi en elle-même. Sa précision devrait idéale-11 ment être d'un ordre de grandeurs inférieur à la précision limite des algorithmes d'estimation de mouvement. Le problème classique des séquences réelles porte effectivement sur l'estimation de cette précision. [...] nous souhaitons insister sur le fait que les données simulées sont absolument nécessaires pour prouver l'exactitude et la précision potentielle des algorithmes. » Les constats dressés par Kondermann et al. sont donc tout à fait en adéquation avec le problème qui nous est posé. Pour valider le concept de stéréo sans bruit à faible B/H, et suivre autant que possible les recommandations de Kondermann et al. [START_REF] Daniel Kondermann | On Performance Analysis of Optical Flow Algorithms[END_REF], nous avons exploré une voie nouvelle pour créer des vérités terrains à haute précision, en utilisant un logiciel de génération d'images de synthèse par lancer de rayons. En modifiant ce logiciel et en tenant compte des rayons calculés durant le rendu, nous disposons d'une information très dense caractérisant la scène 3D. Nous parvenons ainsi à calculer des cartes d'occultations et de disparités dont l'erreur de précision est inférieure à 10 -6 à l'aide des connaissances géométriques et des matrices extrinsèque et intrinsèque reliant la géométrie de la scène et l'image rendue. Nous avons produit et mis à la disposition de la communauté de recherche des images de synthèse avec un SNR supérieur à 500 grâce à une durée de rendu parallélisé de plusieurs jours. Cette méthode nous a permis de générer un ensemble de 66 paires stéréoscopiques dont le B/H varie du très faible au moyen, de 1/2500 à 1/50. Pour évaluer les algorithmes de stéréo sur ce nouveau type de données, nous avons vu que les métriques traditionnelles n'étaient pas assez discriminantes. Aussi nous proposons des métriques estimant la qualité des cartes de disparités calculées par les algorithmes, combinant la précision et la densité des points dont l'erreur relative est inférieure à un certain seuil. Nous évaluons alors plusieurs algorithmes de stéréo représentatifs des méthodes de l'état de l'art, sur le jeu d'images précédemment créé. Nous avons fait la même chose sur des paires stéréo plus classiques munies de vérité terrain (les paires de Middlebury) jusqu'à leurs limites de fonctionnement. Nous confirmons par ces analyses quantitatives que les hypothèses théoriques sur le bien fondé du faible B/H en fort SNR sont valides, jusqu'à une certaine limite que nous caractérisons. Nous découvrons que dans ce cadre, de simples méthodes de flot optique pour la mise en correspondance stéréo deviennent plus performantes que des méthodes variationnelles discrètes plus élaborées. Cette conclusion n'est toutefois valide que pour des forts rapports signal à bruit.

L'exploitation des données denses de relief obtenues en même temps que le lancer de rayons nous a aussi permis de compléter les vérités terrain par une détection très précise des silhouettes, ou bords d'occlusion. Ce type d'information peut être d'un grand intérêt, par exemple dans le cas de l'analyse bas niveau d'images acquises selon la technologie «temps de vol» (cf. Nair et al. [START_REF] Nair | Ground Truth for Evaluating Time of Flight Imaging[END_REF]). Nous proposons ainsi une méthode de calcul de contours vectoriels sub-pixelliens à partir d'un nuage de points très dense obtenu par lancé de rayons. Nous utilisons pour cela des méthodes a contrario de classification de pixels appliquée aux cartes denses de profondeurs extraites des nuages de points 3D.

La seconde partie de cette thèse est dédiée à une autre application du flot optique subpixélien et des méthodes a contrario, pour détecter des nuages en imagerie satellitaire. Nous proposons une méthode qui n'exploite que l'information visible optique. Elle s'appuie sur la redondance temporelle obtenue grâce au passage répété des satellites au-dessus des mêmes zones géographiques. Nous définissons quatre critères permettant de discriminer les nuages du paysage : le mouvement apparent inter-canaux estimé par flot optique, la texture locale représentée par son descripteur SIFT, l'émergence temporelle calculée à l'aide d'un filre de nouveauté, et finalement la luminance. Ces indices partiels sont modélisés dans le cadre statistique des méthodes a contrario qui produisent un NFA (nombre de fausses alarmes pour chacun). Nous proposons une méthode pour synthétiser ces indices et calculer un NFA beaucoup plus discriminatif à partir d'eux. Nous avons confronté les cartes de nuages estimées à des vérités terrain annotées et aux cartes nuageuses produites par les algorithmes associés aux satellites Landsat-8 et Sentinel-2. Nous montrons que les performances de détection et de fausses alarmes sont supérieures à celles obtenues avec ces algorithmes, qui pourtant utilisent une dizaine de bandes multi-spectrales.

Méthodes Dans cette thèse, nous sommes amenés à effectuer des détections multiples dans les images, ce dans le cas de la détection de silhouette ou dans des séries d'images, ce dans le cas de la détection de nuages, tout en contrôlant le nombre total de faux rejets. Plusieurs approches existent pour ce problème (voir. [129, S 10.7]). Nous utiliserons la méthode de Desolneux et al. [START_REF] Desolneux | Meaningful alignments[END_REF] a contrario, qui est bien adaptée à l'analyse d'image. Dans une méthodologie inspirée de Hellier et al. [START_REF] Hellier | A contrario shot detection[END_REF], nous détectons des modes dans une carte de profondeur par une analyse a contrario d'histogrammes locaux. Dans la publication mentionnée, les histogrammes de séquences vidéo successives sont comparés et un NFA caractérise la nouveauté d'un histogramme étant donné un histogramme antérieur. La question principale des méthodes a contrario est de savoir comment modéliser le fond, au-delà de l'utilisation d'un simple bruit blanc. Ce problème est abordé dans les travaux de Grosjean et al. [START_REF] Grosjean | A-contrario detectability of spots in textured backgrounds[END_REF] et Myaskouvskey et al. [START_REF] Myaskouvskey | Beyond independence: An extension of the a contrario decision procedure[END_REF]. Nous pouvons décrire notre approche et son problème dans des termes similaires à Myaskouvskey et al. [START_REF] Myaskouvskey | Beyond independence: An extension of the a contrario decision procedure[END_REF]: «L'approche a contrario est basée sur un modèle de fond (ou d'hypothèse nulle) pour l'image ou la série d'images. Ce modèle repose sur des hypothèses d'indépendance et caractérise les images dans lesquelles aucune détection ne doit être effectuée. Il dépend souvent de l'image, en s'appuyant sur des statistiques recueillies à partir de l'image, et donc adaptable. » Dans leur article, Myaskouvskey et al. [START_REF] Myaskouvskey | Beyond independence: An extension of the a contrario decision procedure[END_REF] proposent une généralisation pour les modèles de fond qui relaxe l'hypothèse que le fond est un bruit blanc et utilise à la place des propriétés de deuxième ordre dépendant de l'image. Ils ont appliqué la technique a contrario modifiée à deux tâches: la détection de segments de lignes et la détection d'objets par morceaux. Dans Grosjean et al. [START_REF] Grosjean | A-contrario detectability of spots in textured backgrounds[END_REF], un problème similaire a été traité en modélisant le fond en tant que bruit coloré gaussien, dont la dépendance spatiale se caractérise par son spectre de puissance. Nous faisons face à un problème similaire mais différent avec la détection de nuages. En effet, nous disposons de plusieurs critères intuitifs de nuages, comme leur mouvement apparent ou leur luminosité. Nous pouvons apprendre le modèle de ces indices à partir de la série d'images elle-même pour construire un modèle de fond. Ce modèle de fond peut être appris à partir des portions sans nuages de la série d'images du sol. La question est alors de savoir comment fusionner ces indices (faibles) pour calculer un nombre fiable de fausses alarmes pour les nuages.

Algorithmes de flux optique Il est fait état des méthodes de flux optique, à la fois comme l'objet des évaluations en faible B/H des chapitres 5 et 6 et à la fois comme une des étapes dans la méthode de détection des nuages en imagerie satellitaire (chapitres 7 et 8). Le calcul du flux optique est principalement formalisé à l'aide d'équations différentielles conduisant à la minimisation d'énergies. Celles-ci peuvent être classées en deux catégories : les méthodes locales et globales. Historiquement, la première famille découle de la méthode proposée par Lucas & Kanade [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] et la seconde regroupe des extensions de la méthode de Horn & Schunk [START_REF] Berthold | Determining optical flow[END_REF]. Par la suite, d'importants travaux théoriques ont été réalisés à partir de ces méthodes : Bruhn et al. [START_REF] Bruhn | Combining the Advantages of Local and Global Optic Flow Methods[END_REF][START_REF] Bruhn | Lucas/kanade meets horn/schunck: Combining local and global optic flow methods[END_REF] ont proposé d'unifier ces deux méthodes afin de conserver l'avantage des deux : la robustesse de l'approche locale face au bruit, la densité fournie par l'approche globale. À partir de la formulation globale de Horn et Schunk, Weickert et al. [START_REF] Weickert | A theoretical framework for convex regularizers in pde-based computation of image motion[END_REF] ont établi les propriétés nécessaires que doivent posséder les termes de régularisation afin de s'assurer de l'existence et de l'unicité des solutions dans le cas de petits déplacements. Grâce à une stratégie multi-échelle, Alvarez et al. [START_REF] Alvarez | Dense Disparity Map Estimation Respecting Image Discontinuities : A PDE and Scale-Space Based Approach[END_REF] ont en outre proposé de résoudre le problème dans le cas de grands déplacements. Dans le cadre de cette thèse nous nous sommes restreints à étudier la précision de la méthode basique de Lucas & Kanade [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF], la méthode de Brox et al. [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF] et de Monzòn et al. [START_REF] Nelson Monzón López | Robust discontinuity preserving optical flow methods[END_REF]. Nous avons sélectionné celles-ci car elles sont représentatives des méthodes de flot optiques. De plus leurs descriptions théoriques et numériques sont très bien détaillées.

Nous présentons maintenant notre thèse chapitre par chapitre.

Vérités terrain synthétiques pour la stéréovision

Le chapitre 3 traite de la génération de vérités terrain par imagerie de synthèse, les images et reliefs produits étant destinés à l'évaluation d'algorithmes stéréo de haute précision. En effet les méthodes stéréoscopiques se sont considérablement développées au cours de ces vingt dernières années : la photogrammétrie satellitaire ou la navigation robotisée en sont les meilleurs exemples. Dans sa formulation la plus générale (cf. Hartley et al. [45, parties 2 à 4]), la reconstruction stéréo consiste à reconstruire à partir de deux ou plusieurs images, un modèle tridimensionnel de la scène. Cette technologie peut se diviser en deux familles d'algorithmes complémentaires (cf. Szeliski [120, p. 19]): les algorithmes estimant la position des points géométriques à partir des pixels, ce qui aboutit à des nuages de points et les algorithmes reconstruisant les formes à partir de tels nuages. L'un des besoins essentiels au développement, à l'amélioration et à la comparaison objective de tels algorithmes est de disposer de vérités terrains fiables et aussi précises que possibles. En effet, les algorithmes d'appariement sont confrontés à deux problèmes récurrents desquels les nouvelles approches cherchent à s'affranchir : l'influence du bruit dans les paires stéréo et le phénomène d'adhérence. Le bruit dû à la technologie d'acquisition est une donnée inhérente aux images. Toutefois les images servant de vérités terrain doivent contenir un bruit négligeable ou tout au moins quantifié, pour comparer raisonnablement et objectivement l'efficacité des algorithmes. Le second problème analysé notamment par Delon et al. [START_REF] Delon | Le phénomène d'adhérence en stéréoscopie dépend du critère de corrélation[END_REF][START_REF] Delon | Small baseline stereovision[END_REF] est le phénomène d'adhérence qui apparaît le long des bords contrastés de l'image comme une dilatation du modèle 3D le long de la partie supérieure ou inférieure des contours. Pour mesurer finement l'écart entre les contours induits par ce phénomène et les contours réels, il convient d'avoir une connaissance sub-pixellienne de la position de ces derniers. Les algorithmes de reconstruction du maillage 3D requièrent quant à eux des nuages de points denses.

Or l'état de l'art sur l'existence de bases de données de référence utilisables pour ces algorithmes de stéréo révèle que les bases de données en environnement réel [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF][START_REF] Scharstein | High-accuracy stereo depth maps using structured light[END_REF][START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF][START_REF] Gupta | A practical approach to 3d scanning in the presence of interreflections, subsurface scattering and defocus[END_REF][START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF][START_REF] Daniel Kondermann | On performance analysis of optical flow algorithms[END_REF][START_REF] Meister | Outdoor stereo camera system for the generation of real-world benchmark data sets[END_REF], en environnement virtuel [START_REF] Martull | Realistic cg stereo image dataset with ground truth disparity maps[END_REF][START_REF] Wulff | Lessons and insights from creating a synthetic optical flow benchmark[END_REF][START_REF] Butler | A naturalistic open source movie for optical flow evaluation[END_REF] ou destinées à la reconstruction 3D [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF][START_REF] Curless | A volumetric method for building complex models from range images[END_REF][START_REF] Berger | A benchmark for surface reconstruction[END_REF][START_REF] Digne | Farman institute 3d point sets -high precision 3d data sets[END_REF] qui sont à la disposition de la communauté scientifique, sont parfois imprécises ou incomplètes tant pour des raisons matérielles que pratiques. C'est pourquoi nous présentons dans ce chapitre une méthode de création des vérités terrain synthétiques visant à combler certains de ces manques. L'utilisation de scènes de synthèse prend ici tout son sens car elle permet de contrôler précisément de nombreux paramètres tels que la géométrie, la texture des objets de la scène, les caractéristiques optiques des caméras et de travailler sur des cas de figure de plus en plus réalistes.

Notre approche consiste à utiliser les images produites in fine par le moteur de rendu et aussi à exploiter les données produites au cours du rendu. Lors de la création d'une image, le moteur de rendu génère, pour chaque pixel p de l'image de synthèse, un certain nombre N c (p) de lancers de rayons qui vont intersecter les objets de la scène 3D aux points géométriques P(p, n) de profondeurs r n pour n ∈ {1, . . . , N c (p)}. Les caractéristiques chromatiques de cet échantillon sont ensuite moyennées pour déterminer la couleur finale de p. Ces contributions forment ainsi pour chaque pixel un nuage de points géométriques et par conséquent, dans leur totalité, un sur-échantillonnage des objets de la scène bien plus important que celui de l'image lui-même. Cet ensemble de données va ainsi nous servir à créer précisément, à partir de deux points de vue caméra, les vérités terrain suivantes :

• les images I 1 et I 2 rendues au format 16 bits PNG, égalisées entre 0 et 255 au format flottant, sorties du logiciel de rendu au format brut EXR ;

• la variance du bruit résiduel des images rendues;

• les matrices de transformation entre les vues et le repère géométrique de la scène afin de reconstruire la géométrie épipolaire;

• les deux nuages denses des points 3D dont les coordonnées sont exprimées d'aprés les deux points de vue caméra;

• les cartes de disparités D 1 et D 2 qui mesurent respectivement, pour chaque pixel de l'image I 1 (resp. I 2 ) son déplacement dans l'image I 2 (resp. I 1 );

• les cartes d'occultations O 1 et O 2 qui indiquent respectivement pour chacun des pixels de la vue I 1 (resp. I 2 ) s'il est visible ou non dans l'image I 2 (resp.

I 1 ).
Les vérités terrain de points 3D, de disparités et d'occultation sont calculées à l'aide de relations géométriques classiques entre le plan image et l'espace volumique tandis que la variance du bruit est déduite de relations statistiques sur le nombre de contributions chromatiques par pixel. Cette méthode nous a permis de créer un jeu de données de 44 images de synthèse, représentant 66 appariements possibles, accompagnées de leurs vérités terrain et de les mettre à la disposition de la communauté scientifique [START_REF] Dagobert | The production of ground truths for evaluating highly accurate stereovision algorithms[END_REF]. Quatre différentes configurations ont été envisagées dont la particularité est d'avoir un déplacement fronto-parallèle de la caméra avec un très faible rapport B/H. Ainsi les parallaxes maximales sont de l'ordre de 1, 10 et 50 pixels entre les images gauches et les images droites. Un exemple est montré sur la figure 1.1 où le décalage maximal est de 50 pixels.

DÉTECTION DE SILHOUETTES EN SYNTHÈSE D'IMAGES

Le jeu de données a été exploité dans le cadre de l'étude sur la précision des algorithmes stéréoscopiques en faible rapport B/H décrite dans les chapitres 5 et 6. En outre, le principe de sur-échantillonnage spatial de la scène synthétique a trouvé une autre application dans le domaine de l'infographie et l'extraction sub-pixellienne de silhouette. Cette technique fait l'objet du chapitre 4.

Détection de silhouettes en synthèse d'images

Le chapitre 4 est consacré à la détection de silhouettes à partir de nuages de points. En l'occurrence ces nuages de points ont été construits par la méthode de rendu que nous avons modifiée pour obtenir des nuages denses et dont le principe est étudié au chapitre 3. Cette technique est très utilisée dans le domaine de l'infographie : pour afficher les contours de pièces mécaniques, d'organes ou de squelettes radiographiés ou encore de figurines dans les bandes dessinées par exemple. Ce type de détection consiste a extraire les courbes saillantes de la projection d'un surface 3D sur le plan focal de la caméra d'après son point de vue. Une formulation mathématique de cette opération a été donnée par DeCarlo et al. [ Les contours peuvent être exprimés de deux façons : par une représentation pixellienne ou vectorielle. Alors que la première est constituée des suites de pixels coloriés contigus, la seconde possède une formulation analytique mieux adaptée aux effets de stylisation. L'état de l'art suggère que les méthodes actuelles s'appuient majoritairement sur la géométrie du maillage 3D directement connu [START_REF] Buchanan | The edge buffer: A data structure for easy silhouette rendering[END_REF][START_REF] Isenberg | A developer's guide to silhouette algorithms for polygonal models[END_REF][START_REF] Hertzmann | Illustrating smooth surfaces[END_REF][START_REF] Bénard | Computing smooth surface contours with accurate topology[END_REF][START_REF] Appel | The notion of quantitative invisibility and the machine rendering of solids[END_REF][START_REF] Markosian | Real-time nonphotorealistic rendering[END_REF][START_REF] Northrup | Artistic silhouettes: A hybrid approach[END_REF] ou obtenu après le maillage des nuages de points [START_REF] Zakaria | Interactive stylized silhouette for point-sampled geometry[END_REF][START_REF] Zakaria | Detecting and rendering silhouette in a point data set[END_REF][START_REF] Olson | Point set silhouettes via local reconstruction[END_REF] (représentant la surface). Elles nécessitent le plus souvent d'être programmées sur carte graphique, la difficulté étant ici de calculer les masquages des portions de lignes pour ne sélectionner que les portions visibles au premier plan.

Nous proposons une méthode de détection permettant d'exprimer analytiquement, dans le plan image, les contours élémentaires au sein de chaque pixel et de construire de proche en proche les silhouettes saillantes. Elle est uniquement basée sur l'exploitation des données massivement calculées pendant le lancer de rayons, c'est-à-dire les coordonnées spatiales de toutes les contributions chromatiques de tous les pixels. De plus elle ne nécessite pas d'implémentation particulière. Trois étapes composent principalement cet algorithme. La première répartit les contributions d'un pixel selon leur profondeur en imposant qu'il n'y ait qu'une, deux ou trois classes. Cette contrainte revêt un caractére empirique:

• un seul mode correspond à une région de la scène localement plate où la distance euclidienne varie peu ;

• deux modes caractérisent deux objets séparés par un contour franc ;

• trois modes correspondent à trois objets qui sont soit superposés soit présentés par une jonction en T.

Il n'est pas impossible de rencontrer plus de trois modes mais ceci caractérise une grande complexité de la scène, donc un grand nombre d'objets observés sous un même pixel. Or dans des conditions normales de configuration, la largeur de champ de la caméra et les distances des objets à celle-ci sont assez limités de sorte que l'angle solide vu par le pixel est réduit et qu'on y voit peu d'objets. La première étape nécessite de construire l'histogramme des profondeurs puis d'y localiser le ou les modes. Or généralement, les logiciels de lancer de rayons n'échantillonnent ni quantitativement ni spatialement les pixels de la même façon. Dans le cas particulier du logiciel Luxrender version 1.2, seul un seuil sur un nombre moyen minimal de contributions par pixel est configurable. Il s'ensuit que l'on ne peut fixer a priori pour chacun des pixels le nombre de classes de l'histogramme des profondeurs, nécessaire à la classification des contributions. Il convient donc d'automatiser ce calcul par l'utilisation d'un estimateur optimal de nombre de classes d'histogramme. La méthode de Shimazaki et al. [START_REF] Shimazaki | A method for selecting the bin size of a time histogram[END_REF] répond à ce besoin. D'autre part la variabilité des formes et des orientations des facettes intersectées par les rayons lancés d'un pixel, et par suite celle des profondeurs, ne permet pas de fixer un a priori sur la forme de ces histogrammes ni sur leur nombre de modes. Des méthodes de segmentation d'histogrammes en deux classes du type Otsu sont donc inappropriées. En revanche les méthodes a contrario de Desolneux et al. [START_REF] Desolneux | A grouping principle and four applications[END_REF] et Delon et al. [START_REF] Delon | A nonparametric approach for histogram segmentation[END_REF] basés sur les tests statistiques respectivement d'uniformité locale et de unimodalité locale de l'histogramme résolvent ce problème. La seconde étape segmente spatialement les différentes classes au moyen d'un classifieur linéaire de type support vector machine : les classes sont séparées deux à deux par une droite qui est ensuite réduite en un segment dont les extrémités intersectent le contour du pixel. Ce segment, qui correspond à une portion élémentaire de silhouette est donc parfaitement décrit analytiquement.

Enfin, la troisième étape rectifie au besoin la position des contours élémentaires pour les joindre continûment de proche en proche et former des silhouettes curvilignes. La question est alors de savoir si l'expression analytique des contours élémentaires estimés par ce procédé permet d'obtenir des résultats dont la qualité est similaire à celle des algorithmes existants. Bien que l'on ne puisse pas comparer objectivement les autres algorithmes pour cause d'absence de données compatibles, les résultats obtenus à partir d'une scène de synthèse très complexe, sont visuellement satisfaisants; un exemple est exposé sur la figure 1.2. Un autre exemple sur la figure 1.3 montre les silhouettes calculées par notre algorithme et le détecteur subpixellien de Devernay [START_REF] Devernay | A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy[END_REF]. L'application d'un classifieur linéaire trouve cependant ses limites dans les zones cuspides : les arêtes élémentaires sont parfois absentes ou mal orientées. L'application d'un classifieur polynomial permettant de créer des frontières courbes serait une solution envisageable pour résoudre cette situation. 

Évaluation de méthodes stéréoscopiques en faible B/H

Le chapitre 5 étudie l'efficacité d'algorithmes stéréoscopiques, et en particulier celles des méthodes de flux optique, dans le cas de rapports B/H faibles et à différents niveaux de bruits. En effet, les travaux de Delon et al. [START_REF] Delon | Small baseline stereovision[END_REF] puis de Sabater et al. [START_REF] Sabater | Reliability and accuracy in stereovision : application to aerial and satellite high res Theses[END_REF][START_REF] Sabater | How accurate can block matches be in stereo vision?[END_REF]106], ont montré théoriquement les avantages d'un telle approche dont l'imprécision ΔH, dans le cas d'algorithmes d'appariement utilisant l'approche du flux optique, est due essentiellement au niveau de bruit. L'estimation de la précision de triangulation est formulée classiquement avec l'hypothèse de caméras sténopés [105, chap. 1] et s'appuie sur le théorème de Thalès. En se basant sur les notations du schéma 1.4 on a les relations

B Δ� = H -ΔH ΔH et H f = Δ� � (1.0)
dont on tire que

� = BΔH H -ΔH • f H . (1.0)
Lorsque ΔH est petit devant H, ce qui est le cas en imagerie satellitaire, alors on a l'approximation

� � B H • f H ΔH (1.0)
statuant que la précision ΔH sur la profondeur H dépend linéairement du rapport B/H. Pour un écart Δ� donné, c'est-à-dire lorsque l'on a une idée de la précision L'objet de cette étude est donc de confronter les résultats théoriques précédents avec des cas réalistes en faibles rapports B/H pour différents niveaux de bruits à l'aide de bases d'images possédant des niveaux de bruit négligeables et dont les vérités terrains sont très précises en terme sub-pixellien. C'est pourquoi la base d'images («CMLA dataset») dont les principes de génération ont été décrits au [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF]. Ces métriques tiennent compte de la densité de points dont le ratio, erreur d'estimation de la disparité sur disparité exacte, est inférieur à un certain seuil. En faisant varier ce seuil elle permettent d'afficher les courbes de densité/précision de différents algorithmes.
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Les évaluations sont le sujet du chapitre 6. Il en résulte les observations suivantes. D'une part, les méthodes de flux optique 1D employant des termes de régularisation sur les champs de déplacement, sont plus précises que les algorithmes de stéréo, quel que soit le niveau de bruit et le rapport B/H. En absence de bruit, il est ainsi possible d'obtenir une erreur relative de 1% avec une densité de pixels de 50% pour des B/H de l'ordre de quelques dizaines de pixels (≤ 50) avec des algorithmes de flux optique. D'autre part, les résultats valident l'hypothèse du faible B/H jusqu'à un certain point. En l'absence de bruit et pour une précision donnée, il peut être plus avantageux, en terme de densité, de travailler avec un rapport B/H de l'ordre de 1/500 plutôt que 1/50. Toutefois, l'usage de paires stéréo dont les disparités sont inférieures ou égales au pixel (c.-à-d. avec un B/H d'environ 1/2500) est inefficace lorsque l'on veut obtenir des précisions élevées. En présence de bruit, seuls des B/H élevés offrent le meilleur compromis entre densité et précision.

Détection de nuages en imagerie satellitaire

Le chapitre 7 est consacré à une méthode de détection de nuages en imagerie satellitaire tandis le chapitre 8 l'est à son évaluation. À moins d'être observés à des fins météorologiques, les nuages représentent une nuisance pour l'imagerie satellitaire optique, d'autant que leur présence masque la surface de la terre la plupart du temps. Leur localisation est un enjeu majeur pour éviter les erreurs de détection et d'interprétation dans l'analyse automatique des images. De par leur nombre et leur dimension (plusieurs dizaines de millions de pixels) les images satellites nécessitent d'être analysées automatiquement. Il est donc extrêmement important de détecter automatiquement et précisément tous les nuages dans n'importe quelle image. La détection de nuages est cruciale pour les prévisions météorologiques et l'analyse de leur nature et de leurs formes. À l'inverse, les algorithmes d'observation du sol doivent pouvoir éliminer les portions d'image nuageuses pour éviter toute confusion.

Notre intention est de démontrer ici l'intérêt de la détection de nuages à partir de données temporelles accumulées par les passages répétés des satellites et des informations inter-canaux de parallaxe, lorsque les images ont été acquises par une technologie de capteur à balayage. Nous nous focalisons sur l'exploitation des bandes visibles via des critères de détection géométriques, plutôt que celle des bandes multispectrales à faible résolution nécessitant de subtils seuillages manuels. Notre étude est valable pour les images satellites à moyenne ou haute résolution, pour lesquelles les tâches de détection sont pertinentes et pour lesquelles on dispose d'images gratuites récurrentes. Une autre raison de détecter les nuages directement dans les bandes optiques haute résolution a été invoquée par Scaramuzza et al. [START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF] : la durée de vie actuelle des imageurs thermiques embarqués dans les satellites est plus courte que celle des imageurs visibles, de sorte que l'absence éventuelle de données thermiques dans la conception des algorithmes doit être prise en compte. À cette fin notre objectif est de rechercher des critères de discrimination qui soient à la fois indépendants et complémentaires les uns des autres et aussi indépendants de seuils ajustés à la main bande par bande, ce qui est le cas des algorithmes classiques [START_REF] Irish | Landsat 7 automatic cloud cover assessment[END_REF][START_REF] Irish | Characterization of the landsat-7 etm+ automated cloud-cover assessment (acca) algorithm[END_REF][START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF][START_REF] Mueller-Wilm | Sentinel-2 msi -level 2a products algorithm theoretical basis document[END_REF][START_REF] Hollstein | Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in sentinel-2 msi images[END_REF][START_REF] Mueller-Wilm | Sen2cor configuration and user manual[END_REF].

De cette façon, leur résultat sera comparé et potentiellement fusionné avec des algorithmes de seuil de bande spectrale. Plusieurs critères, n'impliquant pas de bandes spectrales dédiées à des nuages spécifiques, peuvent être retenus pour distinguer les nuages du paysage. Ce sont: leur mouvement, leur texture, leur émergence et leur luminance.

Le premier indice est le déplacement des nuages. Grâce à la parallaxe des nuages en raison du processus d'acquisition à balayage et le recalage précis inter-canaux effectué par l'algorithme de Raìs [START_REF] Rais | Fast and accurate image registration[END_REF], on peut appliquer pour chaque date n de la séquence, une méthode de flux optique sur les paires (u i,n , u j,n ) pour i � = j (i et j étant des indices de bande), pour estimer finement leur mouvement. Seules les bandes visibles (haute résolution) seront traitées de cette façon à l'aide de la méthode ROF [START_REF] Sánchez Pérez | Robust optical flow estimation[END_REF] dont on a pu mesurer l'efficacité au chapitre 6. Cet algorithme produit pour chaque instant n une carte de disparités dense

d n = (d x , d y ) n .
Le deuxième critère de détection multi-temporelle des nuages, est basé sur la texture du sol, qui doit être apparente si elle n'est pas cachée ou atténuée par un nuage ou une ombre. Nous avons choisi le descripteur SIFT dense [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF], car il est robuste pour une grande famille de perturbations d'image, telles que les changements d'éclairage, de bruit, de flou, de contraste, de déformation de scène, tout en restant assez discriminant pour de la mise en correspondance. Le descripteur SIFT, désigné par s, code la répartition du gradient spatial au voisinage d'un point d'intérêt (x, y, σ) à une échelle donnée σ, par un vecteur à 128 dimensions.

Notre troisième critère fait appel à la notion d'émergence ou nouveauté. En effet, les nuages provoquent de brusques changements dans les images. Ceux-ci peuvent être détectés par les filtres linéaire de nouveauté [START_REF] Marsland | Novelty Detection in Learning Systems[END_REF] introduits par Kohonen et al. [START_REF] Kohonen | Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron-like elements[END_REF]. Mathématiquement, les effets du filtre peuvent être décrits comme suit:

Definition 1.2. [64, §6.3] Soit une famille de vecteurs euclidiens distincts v 1 , . . . , v N -1 ∈ � |Ω| génératrice d'un sous-espace linéaire L ⊂ � |Ω| , et L ⊥ l'espace complémentaire de L. Alors tout vecteur u ∈ � |Ω| peut s'écrire de manière unique u = û + ũ (1.0) où û ∈ L et ũ ∈ L ⊥ .
Tout système qui extrait ũ à partir de la donnée d'entrée u est un filtre de nouveauté et ũ est la nouveauté.

Nous trouvons expérimentalement que cette version du filtre à tendance à sousestimer certaines nouveautés. C'est pourquoi nous employons un moyen expérimentalement plus robuste qui consiste à projeter u sur le cône convexe L c : Nous avons constaté que les performances de détection (en termes de taux de détection, et de fausses alarmes) étaient du même ordre que celles obtenues par l'algorithme Landsat-8 lequel exploite environ dix bandes spectrales. En considérant globalement l'ensemble des séquences Sentinel-2 et Landsat-8, nous avons montré que la combinaison des indices comme le mouvement, la nouveauté et le descripteur SIFT augmentent la précision tandis que l'ajout du critère de luminance en bande visible induit des résultats instables. Nous avons également montré que la contribution du critère de mouvement inter-canaux est l'une des clés de ce succès. Pour être utilisé efficacement, l'algorithme doit être appliqué deux fois: la première fois avec le critère SIFT pour éliminer les images totalement couvertes, puis une seconde fois en traitant les images restantes avec au moins deux fonctions.

Definition 1.3. Soit une famille de vecteurs euclidiens distincts v 1 , . . . , v N -1 ∈ � |Ω| génératrice du cône convexe positif L c , c'est-à-dire le sous-espace tel que ∀α, β ∈ R * + , ∀v, w ∈ L c , αv + βw ∈ L c . Alors, tout vecteur u ∈ � |Ω| peut s'écrire manière unique u = û + ũ (1.0) où û ∈ L c est
N F A(p, y p ) = |Ω|�(Y p ≥ y p |H 0 ) = |Ω|(1 -F Yp (y p )) (1.0)

CHAPTER 2

INTRODUCTION (ENGLISH)

This thesis is devoted to the exploration of precision in stereo vision and involves a contrario detection methods. It also presents an application to satellite imagery. The first part was carried out within the framework of the DGA-ANR-ASTRID "STEREO" project. Its aim is to define the effective limits of the stereo reconstruction algorithms when controlling the entire acquisition chain at maximum precision, acquire the stereo pairs in a very low B/H ratio, and that the images pairs are noise free through long exposure. This problem involves making appropriate assessments. Kondermann et al. [START_REF] Daniel Kondermann | On Performance Analysis of Optical Flow Algorithms[END_REF] provided a very comprehensive analysis of the notion of performance evaluations of optical flow algorithms, and the necessary conditions to carry out. Although it is a question of optical flow, the authors assert that their analysis is also generalizable to stereo algorithms. They propose a methodology to rationalize evaluations because they are potentially confronted with a plethora of algorithms. This methodology is guided by two indicators that they consider essential: the mean measure of the disparity error and the algorithm complexity. In particular, they stressed the importance of qualitative and quantitative description of the input data used for the tests as well as the available ground truths. Pairs of images should be described according to their occultations, their amount of textured areas and flat areas and local illumination change. In addition, there should be at least an overall quantification of the noise variance and, if possible, a parametric description of the optical point spread function. With regard to ground truths, Kondermann et al. recommend that they allow to test the algorithms to the limits of their precision and wonder about the advantages and disadvantages of real pairs and synthetic pairs. In the first case, the risk is that the measured ground truths are imprecise or incomplete, in the second case, that the images are not realistic. The authors conclude that: «Furthermore, the generation of ground truth data is a challenging optical measurement task itself. Its accuracy should ideally be magnitudes above the accuracy that can be achieved by motion estimation algorithms. The typical problem of real sequences is the estimation of this accuracy. [. . . ] we would like to stress the point that simulated data are absolutely necessary to prove the correctness and potential accuracy of algorithms. » The findings made by Kondermann et al. are therefore perfectly in line with the problem that is posed to us. To validate the concept of noise-free stereo at low baseline and to fit as much as possible with the recommandation of Kondermann et al. [START_REF] Daniel Kondermann | On Performance Analysis of Optical Flow Algorithms[END_REF] , we explored a new way to create high-precision ground truths, using synthetic image generation by ray tracing. By modifying this software and taking into account the depths of rays calculated during rendering, we obtain a very dense information characterizing the 3D scene. In this way, we can calculate occlusion and disparity maps whose precision error is less than 10 -6 using the geometric knowledge and extrinsic and intrinsic matrices linking the geometry of the scene to the rendered image. We have produced and made available to the research community synthetic images with a SNR greater than 500 thanks to a parallelized rendering of several days. This method allowed us to generate a set of 66 stereoscopic pairs whose B/H varies from very low to average, from 1/2500 to 1/50. To evaluate the stereo algorithms on this new type of data, we have seen that the traditional metrics were not discriminating enough. We also propose metrics that estimate the quality of the disparity maps computed by the algorithms, combining the precision and the density of the points whose relative error is less than a certain threshold. We then evaluate several stereo algorithms representative of the methods of the state of the art, on the previously created image set. We did the same on more conventional stereo pairs equipped with ground truth (Middlebury pairs) up to their operating limits. We confirm with these quantitative analyzes that the theoretical assumptions about the merit of the low baseline B/H in high SNR are valid, up to a certain limit that we characterize. We discover that in this framework, simple optical flow methods for stereo matching become more efficient than more sophisticated discrete variational methods. This conclusion, however, is only valid for high signal-to-noise ratios.

The exploitation of the dense data of the 3D scene obtained during the ray tracing also enabled us to complete the ground truths by a very precise detection of the silhouettes, or edges of occlusion. This kind of information can be of great interest, for example, in the case of low-level examinations of time-of-flight imaging (see Nair et al. [START_REF] Nair | Ground Truth for Evaluating Time of Flight Imaging[END_REF]). We propose a method for calculating sub-pixel vector contours from a very dense cloud of points obtained by ray tracing. To do this, we use a contrario methods of pixel classification applied to the dense depth map extracted from the 3D point clouds.

The second part of this thesis is devoted to another application of the subpixel optical flow and a contrario methods, to detect clouds in satellite imagery. We propose a method which exploits only visible optical bands. It is based on the temporal redundancy obtained thanks to the repeated passages of the satellites over the same geographical zones. We define four criteria to discriminate clouds from landscape: the apparent inter-channel movement estimated by optical flow, the local texture represented by its SIFT descriptor, the temporal emergence calculated using a novelty filter, and finally the luminance. These partial indices are modeled in the statistical framework of a contrario methods which produce an NFA (number of false alarms for each). We propose a method to synthesize these indices and compute a much more discriminative NFA from them. We compared the estimated cloud maps to annotated ground truths and clouds maps produced by the algorithms associated with the Landsat-8 and Sentinel-2 satellites. We show that the performance of detection and false alarms are superior to those obtained with these algorithms, which however use a dozen multi-spectral bands.

Methods

In this dissertation, we are led to perform multiple detections in images, in the case of the silhouette detection, or in image series, in the case of cloud detection, while controlling the total number of false rejections. Several approaches exist to this problem (see. [129, § 10.7]). We shall use the Desolneux et al. [START_REF] Desolneux | Meaningful alignments[END_REF] a contrario method, which is well adapted to image analysis. In a methodology inspired from Hellier et al. [START_REF] Hellier | A contrario shot detection[END_REF], we detect modes in a depth map by an a contrario analysis of local histograms. In the mentioned paper, histograms of successive video shots are compared and an NFA characterizes the novelty of a histogram given a preceding one. The main question of a contrario methods is how to model the background, beyond using just white noise for that purpose. This problem is addressed in the works of Grosjean et al. [START_REF] Grosjean | A-contrario detectability of spots in textured backgrounds[END_REF] and Myaskouvskey et al. [START_REF] Myaskouvskey | Beyond independence: An extension of the a contrario decision procedure[END_REF]. We can describe our approach and its problematic in terms similar to Myaskouvskey et al. [START_REF] Myaskouvskey | Beyond independence: An extension of the a contrario decision procedure[END_REF]: «The a contrario approach is based on a background model (or null hypothesis) for the image or image series. This model relies on independence assumptions and characterizes images in which no detection should be made. It is often image dependent, relying on statistics gathered from the image, and therefore adaptive.»

In their paper Myaskouvskey et al. [START_REF] Myaskouvskey | Beyond independence: An extension of the a contrario decision procedure[END_REF] propose a generalization for background models which relaxes the assumption that the background is a white noise, and instead uses image dependent second order properties. They applied the modified a contrario technique to two tasks: line segment detection and part-based object detection. In Grosjean et al. [START_REF] Grosjean | A-contrario detectability of spots in textured backgrounds[END_REF] a similar problem was treated by modeling the background as a Gaussian colored noise, which spatial dependence is characterized by its power spectrum. We face a similar but different problem with cloud detection. Indeed, we dispose of several intuitive cloud clues, like their apparent motion or their brightness. We can learn the model of these cues from the image series itself to build a background model. This background model can be learned from the cloudless parts of the image series of the ground. The question then is how to fuse these (weak) clues to a compute a reliable number of false alarms for the clouds.

Optical flow algorithms

We deal with optical flow methods, both as the object of the evaluations in low baselines, in chapters 5 and 6 and both as one of the steps in the method of cloud detection in satellite imagery (chapters 7 and 8). The calculation of the optical flow is mainly formalized using differential equations leading to the minimization of energies. These can be divided into two categories: local and global methods. Historically, the first family derives from the method proposed by Lucas & Kanade [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] and the second group extends the Horn & Schunk [START_REF] Berthold | Determining optical flow[END_REF] method. Subsequently, important theoretical work was carried out of these methods: Bruhn et al. [START_REF] Bruhn | Combining the Advantages of Local and Global Optic Flow Methods[END_REF][START_REF] Bruhn | Lucas/kanade meets horn/schunck: Combining local and global optic flow methods[END_REF] proposed to unify these two methods in order to retain the advantage of both: the robustness of the local approach to noise, the density provided by the global approach. From the global formulation of Horn and Schunk, Weickert et al. [START_REF] Weickert | A theoretical framework for convex regularizers in pde-based computation of image motion[END_REF] have established the necessary properties required by the regularization terms to ensure the existence and uniqueness of solutions in the case of small displacements. Using a multi-scale strategy, Alvarez et al. [START_REF] Alvarez | Dense Disparity Map Estimation Respecting Image Discontinuities : A PDE and Scale-Space Based Approach[END_REF] also proposed to solve the problem in the case of large displacements. In the framework of this thesis, we have limited ourselves to study the precision of the Lucas & Kanade [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] basic method, the method of Brox et al. [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF] and the method of Monzòn et al. [START_REF] Nelson Monzón López | Robust discontinuity preserving optical flow methods[END_REF]. We have selected them because they are representative of optical flow methods. Furthermore their theoretical and numerical descriptions are very detailed.

We now review our thesis chapter by chapter.

Synthetic ground truth for stereovision

Chapter 3 deals with the generation of ground truth by synthetic imagery. The rendered images and relief will be used to evaluate high accurate stereo algorithms. Indeed, stereovision applications have developed considerably over the last twenty years: satellite photogrammetry and robotic navigation are the best examples. In its most general formulation (Hartley et al. [45,parts 2 to 4]), stereo reconstruction involves rebuilding a 3D model of the scene from two or more 2D views. This technology can be divided into two groups of complementary algorithms (Szeliski [120,p. 19]): the algorithms estimating the position of the geometric points from the pixels thus yielding 3D point clouds, and the algorithms reconstructing the forms from such clouds. One of the basic needs for the development, improvement and objective comparison of such algorithms is dispose of reliable ground truth, as accurate as possible. Scharstein et al. [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] were among the first to build such calibrated ground truth.

The stereo-matching algorithms are faced with two recurring problems which new approaches seek to overcome: the influence of noise in stereo pairs and the fattening effect. Noise due to sensor technology is inherent to the images. However, images used as ground truths must contain a noise which is negligible or at least quantified. This is necessary compare algorithms efficiencies objectively and reasonably. The second problem analyzed by Delon et al. [START_REF] Delon | Le phénomène d'adhérence en stéréoscopie dépend du critère de corrélation[END_REF][START_REF] Delon | Small baseline stereovision[END_REF] is the fattening effect that appears along contrasted edges of the image as a dilation of the 3D model along the upper or lower part of the edges. To precisely measure the gap between the contours induced by this and the exact edges, it is necessary to have a subpixel knowledge of the position of the latter. As for 3D mesh reconstruction algorithms, they require dense point clouds.

However, the state of the art regarding the existence of usable reference databases for these stereo algorithms shows that the datasets in real environment [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF][START_REF] Scharstein | High-accuracy stereo depth maps using structured light[END_REF][START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF][START_REF] Gupta | A practical approach to 3d scanning in the presence of interreflections, subsurface scattering and defocus[END_REF][START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF][START_REF] Daniel Kondermann | On performance analysis of optical flow algorithms[END_REF][START_REF] Meister | Outdoor stereo camera system for the generation of real-world benchmark data sets[END_REF], in virtual environment [START_REF] Martull | Realistic cg stereo image dataset with ground truth disparity maps[END_REF][START_REF] Wulff | Lessons and insights from creating a synthetic optical flow benchmark[END_REF][START_REF] Butler | A naturalistic open source movie for optical flow evaluation[END_REF] or dedicated to 3D reconstruction [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF][START_REF] Curless | A volumetric method for building complex models from range images[END_REF][START_REF] Berger | A benchmark for surface reconstruction[END_REF][START_REF] Digne | Farman institute 3d point sets -high precision 3d data sets[END_REF], available to the scientific community are sometimes inaccurate or incomplete for both physical and practical reasons. In this chapter we present a complementary approach to ground truths creation, to fill some of the accuracy gaps. The use of synthetic scenes makes sense here because it allows precise control of many parameters such as the geometry, the texture of the objects of the scene, the optical characteristics of the cameras and to work on more and more realistic scenarios.

Our approach is to use images produced by the renderer and also to exploit the data generated during rendering. When creating an image, the renderer generates, for each pixel p, a number N c (p) of rays that will intersect the objects in the scene at 3D points P(p, n) of r n depth with n ∈ {1, . . . , N c (p)}. The color characteristics of this sample are then averaged to determine the final color of p. We will return in more detail in section 3.5 on the calculation of these colors and the underlying mathematical model. These contributions thus form for each pixel a cloud of 3D points and therefore, in their entirety, an 3D oversampling of the objects in the scene much finer than the image sampling itself. This set of data is the starting point to create precisely, from two camera view points, the following ground truths:

• the rendered images I 1 and I 2 in, 16-bit PNG format, equalized between 0 and 255 in floating format, as output of the renderer in the raw format EXR;

• two dense 3D point clouds whose coordinates are expressed according the camera view points;

• the disparity maps D 1 and D 2 which measure respectively, for each pixel of image I 1 (resp. I 2 ) its displacement within image I 2 (resp. I 1 );

• the occlusion maps O 1 and O 2 which indicate respectively, for each pixel of view I 1 (resp. I 2 ) if it is visible or not within image I 2 (resp. I 1 ).

The ground truths of 3D points, of disparity and occlusion maps are calculated using classical geometric relations between the image plane and the volume space while the variance of the noise is deduced from statistical relations on the number of chromatic contributions by pixel. This method allowed us to create and publish a data set of 44 synthetic images, representing 66 possible matches, provided with their ground truths [START_REF] Dagobert | The production of ground truths for evaluating highly accurate stereovision algorithms[END_REF]. Four different configurations have been considered, the peculiarity of which is to have a fronto-parallel displacement of the camera with a very low baseline B/H. Thus the maximum parallaxes are of the order of 1, 10 and 50 pixels between the left and right images. An example is shown in figure 2.1 where the maximum shift is 50 pixels.

The dataset is used as part of the stereoscopic algorithms assessment in a low B/H ratio, described in chapters 5 and 6. In addition, the principle of spatial oversampling of the synthetic scene finds another application in computer graphics by providing sub-pixel silhouette detector. This technique is the subject of chapter 4. 

Silhouette detection in synthetic imagery

Chapter 4 is devoted to silhouette detection from 3D point clouds. These clouds are built by the rendering method we adapted to obtain dense clouds and whose the principles are studied in chapter 3. Silhouette detection is widely used in computer graphics to display the contours of mechanical parts, organs or skeletons radiographies or even figurines in cartoons for example. The goal is to extract the projecting curves from the projection of a 3D surface on the focal plane of the camera according to its point of view. A simple mathematical formulation of this operation is given by DeCarlo et al. where n(P) is the unit surface normal at P. The visible portions of these curves, once projected into the image plane R I , are called silhouettes.

These contours can be expressed in two ways : in a raster or a vector representation. While the first is encoded as sequences of contiguous pixels, the second has an analytical expression better suited to the effects of stylization. The state of the art suggests that current methods rely predominantly on the assumption that the geometry of the 3D mesh is known, or obtained after the meshing of a point cloud [START_REF] Zakaria | Interactive stylized silhouette for point-sampled geometry[END_REF][START_REF] Zakaria | Detecting and rendering silhouette in a point data set[END_REF][START_REF] Olson | Point set silhouettes via local reconstruction[END_REF] (representing the surface). They most often require the sue of a graphics card, the difficulty here being to calculate the masks of the portions of lines so as to select only the portions visible in the foreground.

We propose a detection method allowing to analytically express, in the image plane, the elementary contours within each pixel and to construct salient silhouettes. Our algorithm is based on the direct exploitation of the depth data massively calculated during the ray tracing, namely the spatial 3D coordinates of all the rays contributing to each pixel. Our method consists of three steps. The first one classifies the ray contributions to a pixel according to their depth, imposing that there will be only one, two or three depth classes. This constraint is quite empirical :

• a single mode corresponds to a region of the scene which is locally smooth, where the Euclidean distance varies little;

• two modes characterize two objects separated by a frank edge;

• three modes correspond to three objects forming a T-junction.

It is not impossible to find more than three modes but this would characterize a great complexity of the scene, thus a still larger number of objects observed in the same pixel. Under normal configuration conditions, the camera field-of-view and the distances of the objects to it are quite limited so that the solid angle seen by the pixel is reduced and there are few objects. Our first step implies constructing the depth histogram and then detecting the depth mode(s). Each ray-tracing software has its ways to sample rays in each pixel. In the particular case of the Luxrender version 1.2 software, only a threshold over a minimum average number of contributions per pixel is configurable. It follows that one can not fix a priori for each of the pixels the number of bins in the histogram of the depths necessary for the classification of the contributions. It is therefore necessary to automate this calculation by using an optimal estimator of number of histogram bins. The method of Shimazaki et al. [START_REF] Shimazaki | A method for selecting the bin size of a time histogram[END_REF] meets this need. On the other hand, the variability of the shapes and orientations of facets intersected by the rays traced from a pixel, and consequently that of the depths, does not make it possible to fix a a priori on the form of these histograms and on their number of modes. Methods of histogram segmentation into two classes, of the Otsu type, are for example inappropriate. We found that an adaptation of the Desolneux et al. [START_REF] Desolneux | A grouping principle and four applications[END_REF] and Delon et al. [START_REF] Delon | A nonparametric approach for histogram segmentation[END_REF] histogram model a contrario method solves this problem and finds correctly the depth histogram modes.

The second step of our silhouette detection proceeds to separate spatially the different depth classes by a support vector machine classifier. The classes are separated in pairs by a line which is then reduced to a segment of which the ends intersect the contour of the pixel. This segment, which is an elementary portion of a silhouette is thus perfectly described analytically.

The third and final step of our method proceeds to a vectorization. It rectifies the position of the elementary contours to form curvilinear silhouettes. The question is then whether the analytical expression of the elementary contours estimated by this method makes it possible to obtain results whose quality is similar to that of the existing algorithms. Although other algorithms cannot be objectively compared for lack of compatible data, we found that the results obtained from a very complex synthesis scene are sharp and complete when compared to different technologies. An example is shown in the figure 2.2. Another example in figure 2.3 compares the silhouettes computed by our algorithm and the subpixel detector of Devernay [START_REF] Devernay | A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy[END_REF]. The application of our linear classifier, however, attains its limits within the cusp areas: the elementary edges are sometimes absent or oriented. The application of a polynomial classifier to create boundaries would be a feasible solution to solve this problem. The subpixel contours along the plant are correctly estimated. There are, however, errors in the orientation of the elementary segments at its ends. This phenomenon is due to the use of a linear classifier.

Evaluation of stereo algorithms in short baseline

Chapter 5 studies the effectiveness of stereo algorithms, in particular those of the optical flow methods, employed in the case of short baselines and different noise levels. Indeed, the works by Delon et al. [START_REF] Delon | Small baseline stereovision[END_REF] and Sabater et al. [START_REF] Sabater | Reliability and accuracy in stereovision : application to aerial and satellite high res Theses[END_REF][START_REF] Sabater | How accurate can block matches be in stereo vision?[END_REF]106], have theoretically shown the advantages of such an approach whose imprecision ΔH, in the case of matching algorithms is mainly due to noise. The estimation of the triangulation accuracy is conventionally formulated within the assumption of the pinhole camera model [105, chap. 1] and relies on Thales' theorem. Based on the Bottom left, silhouette computed with the sub-pixel edge detector of Devernay [START_REF] Devernay | A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy[END_REF] applied to the depth buffer. Regions in red, show the limitations of the image space detection approach : the small edges are not detected between the leaves and some thick stems have dilated representations. Notice that we locally stretched the dynamics of the depth buffer to use the Devernay detector: the depth range of the full image was not compatible to a simple linear change contrast between 0 and 255. Bottom right : edges detector of Devernay applied to the luminance image. This shows the conceptual difference between silhouette and edge detection.

notation introduced in the scheme of Figure 2.4, we have the following relations:

B Δ� = H -ΔH ΔH and H f = Δ� � , (2.0) which lead to � = BΔH H -ΔH f H . (2.0)
When ΔH is small compared to H, which is the case in satellite imagery, then we have the approximation

� � B H • f H ΔH, (2.0) 
meaning that precision ΔH, on depth H, depends linearly on the ratio B/H. For a given Δ�, that is, when we have an idea of the accuracy of an algorithm, Equation (2.3) leads to choose stereo pairs acquired in long baselines (i.e. � 1) to When an estimation error � is made on x 1 by an algorithm then point P is estimated to be at Q and depth error is ΔH.
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reduce the value of ΔH. This is done at the expense of a loss of information due to occlusions, geometric deformations or even illumination changes between the two images. However, choosing short baselines (i.e. � 1/20) alleviates these problems because both images become more similar, but may increase the ΔH error. The purpose of this study is to compare the previous theoretical results with realistic cases in short baselines and for different noise levels thanks to image databases with negligible noise levels and very accurate ground truths. This is why the image database ("CMLA dataset") whose generation principles have been described in chapter 3 has been used in the evaluations. On the other hand, these precision tests require the use of metrics taking into account, in the sub-pixel context, the influence of the B/H ratios and noise on the accuracy and information density obtained. This led us to develop new metrics better suited to this study than are the metrics usually used on the Middlebury [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] evaluation platform. These metrics take into account the density of points whose ratio, error of estimation of the disparity on exact disparity, is less than a certain threshold. By varying this threshold, it is possible to display the density / accuracy curves of different algorithms.

The comparative evaluation is the subject of the chapter 6. The following observations were made. On the one hand, the 1D optical flow methods employing regularization terms on the displacement fields, are more accurate than the stereo algorithms, regardless of the noise level and the B/H ratio. In the absence of noise, it is thus possible to obtain a relative error of 1 % with a pixel density of 50 % for B/H of the order of a few tens of pixels (≤ 50 ) with optical flow algorithms.

On the other hand, the results validate the hypothesis of the low B/H up to a certain point. In the absence of noise and for a given accuracy, it may be more advantageous, in terms of density, to work with a B/H ratio in the range of 1/500 rather than 1/50. However, the use of stereo pairs whose disparities are less than or equal to the pixel (i.e., with a B/H of about 1/2500) is ineffective for high accuracy. In the presence of noise, only high B/H offer the best compromise between density and accuracy.

Cloud detection in satellite imagery

Chapter 7 is devoted to a cloud detection method in satellite imagery while the chapter 8 handles its evaluation. Unless observed for meteorological purposes, clouds represent the main nuisance in optical satellite imagery, as their presence masks the surface of the earth most of the time. Their localization is a major challenge to avoid detection and interpretation errors in automatic image analysis. Due to their size (several tens of millions of pixels) satellite images need to be analyzed automatically. It is therefore extremely important to automatically and accurately detect all clouds in any picture. Cloud detection is crucial for weather forecasts and the analysis of their nature and forms. Conversely, the algorithms must be able to eliminate the cloudy portions of images to avoid any confusion.

Our intention is to demonstrate here the advantage of the detection from temporal data accumulated by the repeated passages of the satellites and parallax inter-channel information, when the images have been acquired by pushbroom sensor technology. We focus on the exploitation of the visible bands via geometrical detection criteria, rather than low-resolution multispectral bands requiring subtle manual thresholds. Our study is valid for medium or high resolution satellite images, for which the detection tasks are relevant and for which recurrent free images are available. Another reason to detect clouds directly in the high optical bands resolution was invoked by Scaramuzza et al. [START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF] : The current lifetime of thermal imagers embedded in satellites is shorter than that of the visible imagers, so that the absence of thermal data in the design of the algorithms must be taken into account. To this end, our objective is to find discrimination clues that are both independent and complementary to one another and also independent of hand-adjusted thresholds per band, in opposition with classic algorithms [START_REF] Irish | Landsat 7 automatic cloud cover assessment[END_REF][START_REF] Irish | Characterization of the landsat-7 etm+ automated cloud-cover assessment (acca) algorithm[END_REF][START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF][START_REF] Mueller-Wilm | Sentinel-2 msi -level 2a products algorithm theoretical basis document[END_REF][START_REF] Hollstein | Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in sentinel-2 msi images[END_REF][START_REF] Mueller-Wilm | Sen2cor configuration and user manual[END_REF].

In this way, the results of our detection technique will be compared and potentially merged with spectral band threshold algorithms. Several criteria, which do not involve spectral bands dedicated to specific clouds, can be used to distinguish the clouds from the landscape. They are: their movement, their texture, their emergence and their luminance.

The first clue is the displacement of the clouds. Thanks to the parallax of the clouds due to the pushbroom acquisition process and the inter-channels accurate registration performed by Raìs' [START_REF] Rais | Fast and accurate image registration[END_REF] algorithm, one can apply for each date n of the sequence an optical flow method on the pairs (u i,n , u j,n ) for i nej (i and j are indices of band), to estimate finely their movement. Only visible bands (high resolution) will be treated in this way using the ROF [START_REF] Sánchez Pérez | Robust optical flow estimation[END_REF] method whose effectiveness can be measured in chapter 6. This algorithm produces for each instant n a dense disparity map

d n = (d x , d y ) n .
The second criterion for the multi-temporal detection of clouds is based on the landscape texture, which must be apparent if it is not hidden or attenuated by a cloud or a shadow. We chose the dense SIFT descriptor [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] because it is robust to a large family of image disturbances, such as changes in lighting, noise, blur, contrast, scene distortion, while remaining fairly discriminative. The SIFT descriptor, denoted by S, encodes the distribution of the spatial gradient in the neighborhood of a point of interest (X, y, σ) for a given scale sigma, by a 128dimensions vector.

Our third criterion calls for the notion of emergence or novelty. Clouds cause a brisk image change. These can be detected by linear novelty filters [START_REF] Marsland | Novelty Detection in Learning Systems[END_REF] introduced by Kohonen et al. [START_REF] Kohonen | Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron-like elements[END_REF]. Mathematically, the effects of the novelty filter can be described as follows.

Definition 2.2. [64, §6.3] Let v 1 , . . . , v N -1 ∈ � |Ω| be distinct Euclidean vectors spanning a linear subspace L ⊂ � |Ω| and L ⊥ the complement space of L. Then any vector u ∈ � |Ω| can be uniquely written as

u = û + ũ (2.0)
where û ∈ L and ũ ∈ L ⊥ . Any system which extracts ũ from input data u is a novelty filter and ũ is the novelty.

We found experimentally that this basic version of the novelty filter has a tendency to hide some novelties. That's why we used an approach which appears more robust, consisting in projecting u upon the convex cone L c : Definition 2.3. Let v 1 , . . . , v N -1 ∈ � |Ω| be distinct Euclidean vectors spanning the positive convex cone L c , i.e. the sub-space such that ∀α, β ∈ R * + , ∀v, w ∈ L c , αv + βw ∈ L c . Then any vector u ∈ � |Ω| can be uniquely written as

u = û + ũ (2.0)
where û ∈ L c is the closest vector to u in L c and ũ is the novelty.

This fact can be explained by the reduction of the dimensionality : the residual of the projection of an image u which does not resemble any of the vectors v i for i = 1, • • • , N -1 generating the cone L c , will generally be larger than those computed with the first approach.

Finally, the luminance criterion is based on the hypothesis, actually disputable, that clouds and shadows have respectively high and low luminance, at least in the visible channels.

Our objective is not to classify the clouds and their shadows together with other categories such as vegetation or urban, like the methods described in § 7.3 but merely to separate them from the landscape. This amounts to considering only two categories. On the other hand, the characterization of these meteors, based on the criteria described above, is far from obvious. Indeed, since clouds have extremely variable motions, shapes and textures, it seems difficult to establish models of clouds and shadows that are at once simple and robust. The difficulty of machine learning here stems from the difficulty to annotate massively the incredible variety of shapes and aspects of both clouds and landscapes. In addition, to be efficient, our intuition tells that machine learning should be applied to long enough time series learning the aspect of the ground. This is high dimensional data not prone to efficient matching learning. Thus we prefer to stick to explicit modeling. These reasons led us to favor at first an a contrario statistical method, where the data are compared to a null hypothesis H 0 . In our case H 0 is the absence of cloud and shadow, and the landscape stochastic model is expressed by

H 0 : Y p ∼ f Yp (2.0)
where Y p is the random variable associated to pixel p and f Yp is the probability density function of a random variable Y p modeling the pixel behavior in absence of cloud or shadow. We shall use the Desolneux et al. [START_REF] Desolneux | Meaningful alignments[END_REF] method, which is well adapted to image analysis. The principle of the method leads to compute a number of false alarms (NFA)

N F A(p, y p ) = |Ω|�(Y p ≥ y p |H 0 ) = |Ω|(1 -F Yp (y p )) (2.0)
where |Ω| is the number of tests (corresponding to the number of pixels) and F Yp the cumulative distribution function of Y p . The function N F A is then thresholded by a coefficient � which represents the decision parameter of the algorithm since it controls the number of false alarms expecteda priori. When using K criteria, the variable Y p becomes a combination of random variables Y k for k = 1, • • • , K, each associated with a criterion under the null hypothesis. Since it is difficult to model the law of a criterion from known analytic laws, we compute for each an empirical distribution function FX kp where X kp describes the behavior of p relative to the criterion k and the null hypothesis. As regards the combination of these criteria, we assume that they are independent and equally significant. Thus, after having made uniform the empirical laws by the relation

FX kp (X kp ) = Y kp ∼ U[0, 1],
(2.0)

we can apply the Irwin-Hall [START_REF] Hall | The Distribution of Means for Samples of Size N Drawn from a Population in which the Variate Takes Values Between 0 and 1, All Such Values Being Equally Probable[END_REF] formula for uniform and independent random variables, to define the distribution function of the random variable

Y p := K � k=1
Y kp to calculate the N F A (2.4) and threshold it.

In chapter 7, we present the results of our proposed cloud detector. The algorithm was tested on six Landsat-8 and Sentinel-2 sequences of twenty images each, acquired over a year, i.e. 240 images. The selected regions are fairly representative of the changes potentially observable over time such as seasonal landscape aspect changes, highly reflective snow, or waves on the sea. In the absence of accurate Image SIFT+mov.+nov. SIFT+mov.+nov.+lum. In mid, features SIFT, motion and novelty. On the right : features SIFT, motion, novelty and luminance. This serie contains a lot of local texture changes due to seasons and agricultural activities. The combination of the four criteria gives very good estimates.

ground truths, we have used manual binary annotations by experts of the cloud cover of these images. We used three quality metrics of detection: the detection rate, the false alarm rate and the rate of balanced accuracy that combines the previous two. Different combinations of criteria have been tested. The cloud coverage obtained by our algorithm and those of the Landsat-8 Level 1 and Sentinel-2 Level 1C products were compared quantitatively and qualitatively (see Fig. 2.5). We found that the detection performance (in terms of detection, and false alarms) were of the same order or better than the Landsat-8 algorithm which exploits about ten spectral bands. By considering all the Sentinel-2 and Landsat-8 sequences as a whole, we show that the combination of cloud clues such as movement, novelty and the SIFT descriptor increase the accuracy. Whereas the addition of the luminance in visible bands induces unstable results. We also show that the contribution of the criterion of inter-channel movement is one of the keys to this success. To be used effectively, the algorithm must be applied twice: the first time with the SIFT criterion to eliminate fully covered images, then a second time by processing the images with at least two functions.

Introduction

The field of stereo vision is vast and its applications have developed considerably over the last twenty years: satellite photogrammetry or robotic navigation are the best examples. In its most general formulation (see Hartley et al. [45,parts 2 to 4]), stereo reconstruction involves rebuilding a 3D model of the scene from two or more 2D views. This technology can be divided into two groups of complementary algorithms (cf. Szeliski [120, p. 19]): the algorithms estimating the position of the geometric points from the pixels, resulting in point clouds and algorithms reconstructing the forms from such clouds. One of the basic needs for the develop-ment, improvement and objective comparison of such algorithms is to have reliable ground truth which is as accurate as possible; Scharstein et al. [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] were among the first to make such calibrated ground truth.

The matching algorithms are faced with two recurring problems which new approaches seek to overcome: the influence of noise in stereo pairs and the fattening effect. Noise due to the sensor technology is inherent to the images. However images used as ground truths must contain a noise which is negligible or at least quantified, to compare algorithm efficiency objectively and reasonably. The second problem analyzed by Delon et al. [START_REF] Delon | Le phénomène d'adhérence en stéréoscopie dépend du critère de corrélation[END_REF][START_REF] Delon | Small baseline stereovision[END_REF] is the fattening effect that appears along contrasted edges of the image as a dilation of the 3D model along the upper or lower part of the edges. To precisely measure the gap between the contours induced by this and the exact edges, it is necessary to have a subpixel knowledge of the position of the latter. For the stereo matching algorithms computing a disparity from a pair (cf. Szeliski [120, chap. 11]), the following are added to the ground truths :

• the knowledge of the transformation matrices between the view and the 3D frame of the scene to reconstruct the epipolar geometry;

• the disparity map which, for each pixel of an image I 1 , measures its movement in the I 2 image;

• the occlusion map which, for each pixel of I 1 , indicates if it is visible or not in I 2 .

As for 3D mesh reconstruction algorithms, they require dense point clouds.

The state of the art regarding the existence of usable reference databases for these stereo algorithms shows that the datasets available to the scientific community are sometimes incomplete for both physical and practical reasons. This is why we present in this chapter a new approach of ground truths creation to fill the gap. To this aim, we use synthetic scenes produced by a renderer where the geometry of objects in the scene, the optical characteristics of cameras and the variety of scenes are controllable. We tried to make the most of the geometric information obtained by ray tracing by exploiting the spatial oversampling of this process.

This chapter is organized as follows. Section 3.2 is devoted to an analysis of the state of the art of databases widely used by the scientific community for stereo algorithm evaluation. Having motivated our approach in section 3.3 and briefly described the principle of ray tracing in section 3.5 we detail in section 3.6 the noise estimation method in image pairs, in sections 3.7, 3.8 and 3.9 the creation of point clouds, disparity maps and occlusion maps respectively. Finally, annex A.2 describes the features of the image database files.

State of the art

A large number of databases on computer vision are accessible to the scientific community. H. Riemenschneider [START_REF] Riemenschneider | Learning where to classify in multi-view semantic segmentation[END_REF] drew up an almost exhaustive list. We shall limit our study to databases relating essentially or primarily to image matching algorithms and 3D reconstruction algorithms. This has allowed us to identify types of bases, their reputation and their characteristics. Regarding matching, two types of ground truths databases were devised over recent years. The first are derived from images acquired in a real environment while the latter are produced from synthetic scenes.

Stereo ground truths in real environment

The Middlebury Dataset Scharstein et al. [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] of Middlebury College were among the first to generate stereo pairs accompanied by ground truth. They have published five datasets with disparity maps over the last 15 years. From 2003 Scharstein et al. [START_REF] Scharstein | High-accuracy stereo depth maps using structured light[END_REF] produced pairs whose disparity estimation is obtained by illuminating the scene with a coherent light. Specifically the scene was illuminated several times by a video projector projecting a different bar pattern each time. As a result each pixel of the stereo pairs was marked with a unique multi-spectral signature. Measurement of disparities using an adhoc algorithm was then reasonably accurate. The authors did not, however, describe this registration algorithm.

Until 2013 the disparity maps have a one pixel accuracy. By improving the illumination device, including by projecting colored bar patterns defined by the method of Gupta et al. [START_REF] Gupta | A practical approach to 3d scanning in the presence of interreflections, subsurface scattering and defocus[END_REF], and post-processing of the acquired images, Scharstein et al. [START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF] have provided a set of 33 scenes acquired in a real environment with maps of subpixel disparities, some of which achieve a 0.2 pixel accuracy. This methodology, however, due to the complexity of its implementation, encounters a number of problems [112, § 4.1] such as:

• some pixels have partial occlusion;

• some pixels have no signature because of shadow and reflection effects;

• the presence of aliasing or blurring in signatures;

• some signatures are inconsistent because of the illumination changes; so that it takes at least twenty steps in the treatment of acquired raw data [110, fig. 3] to obtain the disparity maps.

The KITTI Vision Benchmark Suite Geiger et al. [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF] proposed an image database acquired from a vehicle with different sensors namely two high resolution cameras, a laser scanner and a GPS location system. This database serves as a tool for benchmarking and ranking matching algorithms. They provide a training set of nearly 200 stereo pairs with their ground truths composed with disparity, occlusion and optical flow maps.

However, these ground truths were obtained from the scans of a Velodyne sensor laser, so that the laser sampling does not correspond to the pixel sampling of the image. Nearly half the pixels of the image have no associated ground truth, it must be deduced by an interpolation of the neighborhood. In addition, disparities and optical flow maps have integer values so that data cross-calibration is not ensured.

Image Sequence Analysis Test Site (EISATS)

Reinhard Klette et al. [START_REF] Klette | Performance of correspondence algorithms in vision-based driver assistance using an online image sequence database[END_REF] proposed ten stereo sequences acquired from cameras and a laser scanner mounted on vehicles. Most of these scenes are grayscale and made in a real environment. Among them lot 1 has ground truths on kinematics, lot 2 in synthetic images, has temporal optical flow between frames and lot 6 has disparity and depth maps deduced from the scan, but relatively noisy and incomplete.

HCI Robust Vision

Kondermann et al. [START_REF] Daniel Kondermann | On performance analysis of optical flow algorithms[END_REF] and Meister et al. [START_REF] Meister | Outdoor stereo camera system for the generation of real-world benchmark data sets[END_REF] of the Heidelberg Collaboratory for Image Processing project, proposed a set of stereo sequences in road urban environment. The dataset does not intentionally contain ground truths because it is primarily a project for the final evaluation of algorithms.

Stereo ground truths in a virtual environment

University of Tsukuba Stereo Flow Martull et al. [START_REF] Martull | Realistic cg stereo image dataset with ground truth disparity maps[END_REF] produced a 1800 stereo pair dataset of 640 × 480 photo-realistic images with ground truths including: disparity, occlusion and discontinuity maps as well as the position and orientation of the cameras. The pairs were extracted from a 3D synthetic scene representing an office created from the Autodesk Maya 2012 software then textured using real and synthetic textures. These maps are pixel-accurate. It is not possible to use such a database for a tenth-pixel or even a quarter-pixel benchmark because this operation would imply reducing the images size which is already small.

MPI Sintel Flow

The MPI Sintel database conceived by Wulff et al. [START_REF] Wulff | Lessons and insights from creating a synthetic optical flow benchmark[END_REF] and by Butler et al. [START_REF] Butler | A naturalistic open source movie for optical flow evaluation[END_REF] is a set of sequences and images picked from an animated film containing varied and realistic environments. Its features are: long movements, non-rigid moving objects, specular reflections, camera shake and other atmospheric effects. It is mainly dedicated to the optical flow evaluation: objects and characters are moving from one image to another. The database consists of 35 excerpts split into a training set (23 sequences) and an evaluation set (12 sequences). Optical flow, (poorly) estimated edges, occlusion maps and rendering effects are completed there. This database cannot be used for the evaluation of stereo algorithms whose purpose is to treat rigid deformations between images.

Ground truths dedicated to 3D reconstruction

The following bases cannot be used for stereo matching in itself, but for the next step which is to build surfaces from point clouds estimated by matching. Seitz et al. [115] of the Middlebury College propose two scanned objects through 395 different points of view but whose acquisition was not coupled with a camera. The laser scanner used was moved to cover a hemisphere. However, only 80% of the hemisphere of the Roman Temple object is exploitable.

Middlebury College

Stanford University

The Stanford 3D Scanning Repository database conceived by Curless et al. [START_REF] Curless | A volumetric method for building complex models from range images[END_REF] is a set of a dozen 3D scans of objects which contains the coordinates of 3D points and the triangulations of the mesh. Berger et al. [7] studied the problem of surfaces reconstruction. To this end they simulated the acquisition of data from a laser scanner to reproduce realistic clouds of points. They propose a set of 5 items scanned synthetically and for each of these, 48 point clouds. However, the views of these clouds are always the same, only the sampling changes.

University of Utah

Institut Farman Digne et al. [START_REF] Digne | Farman institute 3d point sets -high precision 3d data sets[END_REF] have produced a 3D points dataset composed of nearly 200 scenes of items that have been both scanned by a 3D high precision scanner laser and photographed by a CCD camera. Each of the 11 items presented was scanned under 18 views. The high-precision images are accompanied by 3D point coordinate files.

Our approach

As we can see, databases acquired in a real environment suffer mostly from a lack of accurate information. This is due to difficulties in handling and synchronizing acquisition devices. On the contrary, images obtained by synthesis like for Sintel or Tsukuba, provide relatively accurate and complete sets. These however do not reach subpixel precision regarding the edges and they are more oriented towards optical flow estimation. Nevertheless the use of synthetic scenes takes on its full meaning because it can precisely control many parameters and work on more realistic scenarios.

Our approach is to use images produced by the renderer and also to exploit the data generated during rendering. When creating an image, the renderer generates, for each pixel p, a number N c (p) of rays that will intersect the objects in the scene at 3D points P(p, n) of depth r n for n = 1, . . . , N c (p). The color characteristics of this sample are then averaged to determine the final color of p. We will return in more detail in section 3.5 on the calculation of these colors and the underlying mathematical model. These contributions thus form for each pixel a cloud of 3D points and therefore, in their entirety, an oversampling of the objects in the scene much more important than the oversampling of the image itself. This set of data is the starting point to create precisely all ground truths that we will need and that are the subject of the next sections. Table I summarizes the main properties of the bases previously mentioned as well as ours, entitled "CMLA dataset".

The creation of synthesized images and ground truths led us to choose the rendering engine LuxRender [START_REF] Victorino | Luxrender[END_REF]. This software presents many advantages. This is a clone of the software PBRT developed by Pharr et al. [START_REF] Pharr | Physically Based Rendering, Second Edition: From Theory To Implementation[END_REF] whose design is very detailed and whose interest is to rely on physical characteristics of materials such 
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as metals and photometric features of the light sources so that the rendering is very realistic. It also provides natively floating 16-bit EXR or 16-bit PNG image formats as well as a depth map. Finally, it may be coupled to the 3D builder software Blender [START_REF]Blender -a 3D modelling and rendering package[END_REF][START_REF] Hess | Blender Foundations: The Essential Guide to Learning Blender 2[END_REF].

Notation

Table II presents the main notation used in this chapter. The points may be indexed A, I or C depending on whether they are considered into the absolute R A , the camera R C or the R I image frame (see Figure 3.3). By convention, the parallel planes

(O I , � x I , � y I ) and (O C , � x C , � y C ) are oriented in the opposite direction (i.e. � x I = -� x C and � y I = -� y C ).

Principle of ray tracing

In its general representation, a 3D scene is described by a set of meshes to which are associated photometric properties, one or more light sources, one or more cameras characterized by their optical properties, and optionally air or dynamic characteristics. The photorealistic rendering consists in calculating within each pixel a color as accurate and realistic as possible on the basis of the above parameters.

Rendering is an attempt to solve the light transport equation as it was formulated by Kajiya [START_REF] Kajiya | The rendering equation[END_REF]. Veach [124, chap. 8] demonstrated that this equation could be reformulated by the integration problem

u(x, y) = � ω f (γ, x, y)dµ(γ) (3.0)
where u is the image, (x, y) the position expressed in image frame R I , ω is the set of paths of all possible lengths carrying the light, µ is a measure on ω and f is the function of light contribution. The function f depends on photometric parameters (scattering, absorption and reflection spectra) associated with the objects encountered on path γ. With this formulation color u(x, y) can be approximated by the equation 1

N c (x, y) Nc(x,y) � n=1 υ n (x n , y n ) (3.0)
where

υ n (x n , y n ) = f (γ n )
is the color obtained by (x n , y n ) the starting point of path γ n . Equation (3.5) is then calculated by an iterative method of the type of the Monte-Carlo integration. More precisely (see Figure 3.3) from each pixel p a number N c (p) of rays are sent that intersect the objects in the scene at 3D points P(p, n) for n = 1, . . . , N c (p). These rays originate in the focal plane at positions c n = (x n , y n ) located in a neighborhood V(p) related to pixel p and pass through the focal point O C of the camera. We define the neighborhood V(p) as the smallest square containing all the points c n and centered at (i + 0.5, j + 0.5) T where (i, j) are the integer coordinates of the upper left pixel corner. Every contribution c n is associated to a color υ n derived from the photometric parameters of the scene and to a depth r n defined as the distance

�P(p, n) -O C � 2 .
The integration process is iterative. At each iteration k, (i.e. each pass k) a non accumulated u k image is calculated and averaged with the preceding images

u k-l for l = 1, . . . , k. We have for all p, N c (p) = � K k=1 N k c (p) where N k c (p)
is the number of rays shot at k. Note that in practice, the renderers sometimes uses anti-aliasing, motion blur or defocus filters which involve neighboring pixels of p, induce a change in the final color ũ(p) and adapt the effective size of neighborhood V(p). We consider two types of distributions within the pixel: a pseudo-random distribution of the contributions (Fig. 3.1 on left) which leads in practice to the color image, and a distribution on a regular grid (Fig. 3.1 right) which is used to produce disparity and occlusion maps. In this second case, N c is an integer square fixed for all p which implies that the contribution positions into Ω(i, j) are given by

� x n y n � = � i j � + 1 √ N c � λ + 0.5 µ + 0.5 � , ∀(λ, µ) ∈ {0, . . . , � N c -1} 2 .
(3.0)

Noise estimation

We present in this section several noise estimators applied to the raw images or to the images requantized between 0 and 255. We consider the general case, that is

i i + 1 j j + 1 i i + 1 i + 2 j j + 1
Figure 3.1: On the left, an example of a pixel p with thirty contributions c n distributed according to a random process simulated by the renderer. This kind of distribution is used for the creation of the high resolution image. On the right, an example of a pixel whose contributions are evenly distributed when N c = 9. This regular distribution is used for the creation of ground truths as disparity maps, occlusion maps and points clouds.

to say when the distribution of contributions is random. If the number of passes of the rendering is insufficient, the rendering noise is still important, especially in dark areas (see Fig. 3.2). However, it is possible to quantify the average noise of the pixels and to deduce the computation time required to obtain an image with with a given average noise variance. Indeed, unbiased renderers are designed so that at the end of the last pass each pixel p has received approximately the same number of N c (p) contributions. We see the image as a random vector and define the average noise variance as follows. 

(u) Δ = 1 3N I 3N I � n=1 var(U n ). (3.0) Let v k = (X 1 , .
. . , X 3N I ) be the random vector representing the non accumulated image at the k th iteration. It is assumed that the renderer has the following statistical properties:

• iterations are homoscedastic (all random variables in the sequence have the same finite variance):

∀n, ∀k, ∀l � = k, var(X n k ) = var(X n l ), (3.0) 
• iterations are time-independent :

∀n, ∀k, ∀l � = k, cov(X n k , X n l ) = 0, (3.0) 
• iterations are spatially independent:

∀k, ∀n, ∀m � = n, cov(X n k , X m k ) = 0. (3.0)
During rendering, images v k are filtered by an anti-aliasing filter modeled by a convolution with a normalized kernel h leading to image u k , namely:

u k = v k * h, (3.0)
and denoted by the same convention

u k = (Y 1 k , . . . , Y 3N I k
). We assume that rendering is linear and unbiased, that is to say that the image ūk obtained after k passes as the output of ray tracing, is equal to the average of k images that would have been calculated independently during a single pass by k ray tracings. This leads to 

ūk = u 1 + • • • + u k k . ( 3 
(ū K ) � k K -k M SE(ū k , ūK ) (3.0)
where the mean square error (MSE) is defined by

M SE(ū k , ūK ) = 1 3N I E�ū k -ūK � 2 2 . (3.0)
Since the obtained raw image ūK is expressed directly from the spectral properties of materials, the values of its pixels are not limited to [0, 255] but belong to [0, +∞) so that the value of the empirical variance (1) is not very intuitive. We therefore propose a normalized representation of the variance with respect to the [0, 255] range based on the coefficient of variation [125, p. 22] : Definition 3.2. The normalized variance with respect to the range [0; 255], of image ūK is defined by

ς 2 (ū K ) = 127.5 • var(ū K ) µ(ū K ) (3.0)
where µ(ū K ) is the mean of ūK .

To provide stereo algorithms with images whose dynamic are contained in the range [0, 255] while avoiding saturation, we applied to the raw image ūK the histogram equalization algorithm by Lisani et al. [START_REF] Lisani | Color and contrast enhancement by controlled piecewise affine histogram equalization[END_REF] whose interest is to use only three input parameters; we note f L this transformation. We propose the following relation for the noise estimate for the new f L (ū K ) image (See the proof in Appendix A.1.2):

Proposition 2. The variance of image ūK requantized by Lisani et al.'s transformation

f L corresponds to var(f L (ū K )) = k 3N I (K -k) 3N I � n=1 α 2 n (ū k (n) -ūK (n)) 2 (3.0)
where α n is the slope of f L (denoted as m k in [72, section 2]).

Finally, we define the signal to noise ratio of the images ūK and f L (ū K ) from the definition by Gonzalez et al. [37, eq. 5.8-5], replacing the estimated variance of denominator of eq. 5.8-5 by the estimated variance (1) either: 

Definition 3.3. The signal to noise ratio (SNR) of a given image v is defined as

SN R(v) = �v� 2 � 3N I var(v) . ( 3 

Generation of the 3D point clouds

We describe in the following paragraph the geometric relationship between the point of the 3D scene P and its projection p on the image plane according to the pinhole camera model [120, chap. 22]. The relationship between these two points is given by two transformation matrices whose dimensions are 4 × 4. The matrix R AC of inverse R CA is called the rigid displacement matrix and is used to express the frame R A compared to the camera frame R C . Its coefficients depend on three rotations of the axes of the camera in the frame R A , represented by the matrix R CA and the translation

T CA = (t x , t y , t z ) T of focal point O C relatively to O A . Its homogeneous formulation is R AC = � R CA -T CA 0 1 � and its inverse is R CA = � R -1 CA 0 0 1 � � I +T CA 0 1 � . (3.0)
The second invertible matrix corresponds to the calibration matrix R CI of the camera. This matrix is upper triangular, and in its simplest formulation [120, eq. 2.59], depends only on the focal length f and the coordinates g I = (g x , g y ) T center of the image, when it originates from the top left corner O I . Its homogeneous formulation is

R CI =      f 0 g x 0 0 f g y 0 0 0 1 0 0 0 0 1      and its inverse is R IC =      1/f 0 -g x /f 0 0 1/f -g y /f 0 0 0 1 0 0 0 0 1      . (3.0) Point P A = (x A , y A , z A ) T is expressed in homogeneous coordinates as PA = (x A , y A , z A , 1) T . Similarly p I = (x I , y I ) T is associated with pI = (x I , y I , 1, α) T .
By convention [95, p. 75] 

z C R CI PC . (3.2)
To find the 3D geometric point P A related to contribution p I of which we know the position in the image and distance r = �P C � 2 , one uses Thales' theorem which applies here to the pinhole cameras that statue

z C = rf �f 2 + �p I -g I , p I -g I �� 2 . (3.2)
By inverting equation (3.7) then applying the transformation R CA (3.7) we finally obtain:

PA = rf �f 2 + �p I -g I , p I -g I �� 2 R CA R IC pI . (3.2)
The choice of the distribution of contributions to be taken into account a priori depends of the application for which point clouds are intended. The case of regular and single pixel distributions (N c = 1) seems better suited to serve as ground truth for stereovision algorithms. Indeed, the cloud of 3D points represents the ideal cloud that we can hope to rebuild from a stereoscopic pair. The cases with regular or irregular N c � 1 that result in an over-sampling of the volume of the scene seem more intended to mesh or 3D surface reconstruction algorithms tests.

O I � y I � x I focal plane g f P O A � x A � y A � z A O C � z C � x C � y C p
R A = (O A , � x A , � y A , � z A ) is the absolute coordinate frame of the 3D scene, the direct frame R C = (O C , � x C , � y C , � z C ) is
Figure 3.4 (right) shows an example of a 3D reconstruction without artifacts from the image of the depths of contributions shot from the pixel center (left). Note that the calculation of the average depths of contributions of a pixel is to be avoided and is only of interest to provide noisy data. Indeed, it induces in the 3D reconstruction significant errors for the pixels on the boundaries representing close objects placed in front of a long shot because their 3D points have no physical reality (see Fig. 3.4 center of the picture).

Construction of the disparity map

In the case of two points of views, the map of disparities D 1 on the image I 1 of the camera C 1 measures for each of its pixels p, the displacement the projection of P on I 2 , we obtain from (3.1) and then from (3.7)

D 1 (p) = (d x (p), d y (p)) T in image I 2 associated with camera C 2 (see Fig. 3.6). Frames associ- ated with I 1 , I 2 , C 1 and C 2 are noted R a = (O a , � x a , � y a , � z a ) for all a ∈ {I 1 , I 2 , C 1 , C 2 }. The knowledge of matrices R AC 1 , R C 1 I 1 , R AC 2 , R C 2 I 2
qI 2 ∝ qw I 2 = R C 2 I 2 R AC 2 PA , ( 3.3) 
= rf �f 2 + �p I 1 -g I 1 , p I 1 -g I 1 �� 2 R C 2 I 2 R AC 2 R C 1 A R I 1 C 1 pI 1 , (3.4) qI 2 = 1 w I 2 qw I 2 . (3.5)
This defines the disparity map calculated at the center of the pixel

D 1 (i, j) Δ = � 1 0 0 0 0 1 0 0 � (p I 2 -pI 1 ), ∀i, ∀j. (3.5) 
In the particular case where there is a fronto-parallel displacement of the camera, the map has no d y component. This displacement corresponds to a translation in � x C 1 of frame R C 1 thus giving frame R C 2 . In order to set a priori the disparity d x (p) of a pixel p whose associated distance r is known, one must calculate the O C 2 position. This change only affects the translation vector T C 2 A component of matrix R C 2 A since the rotation matrix R C 2 A remains unchanged. Under the Thales theorem applicable to pinhole cameras we have

x O 2 d x (p) = r �f 2 + �p I 1 -g I 1 , p I 1 -g I 1 �� 2 (3.5)
where

x O 2 is abscissa of O C 2 in R C 1 , therefore ÕC 2 C 1 = � rd x (p) �f 2 + �p I 1 -g I 1 , p I 1 -g I 1 �� 2 , 0, 0, α � T (3.5)
for α � = 0. According to the definition of T C 2 |A , the relation

T C 2 |A =    1 0 0 0 0 1 0 0 0 0 1 0    R C 1 A ÕC 2 |C 1 (3.5)
then allows to construct the appropriate matrix R C 2 A to shift d x (p).

In this case the stereo pairs were generated from a fronto-parallel movement. From a reference view, three shifted points of view were created so that the disparities d x are of maximum value of 1, 10 and 50 pixels respectively. Note that the limitations of digital precision in matrix calculations induce the appearance of tiny displacements in y. Table IV draws up the maximum amplitude of such displacement. Disparity maps in y were included in the data set although they may be neglected in a first approximation as they do not exceed 1, 722.10 -4 pixels.

For practical purposes we indicate in the ground truth the focal f and the median baseline B/H of each stereo pair, which is calculated from the Thales relationship

x O 2 z C (p) = d x (p) f (3.5)
applicable to the pinhole case with fronto-parallel displacement and the following applies: 

B H Δ = median(|D 1 |) f . ( 3.5) 

P p q

I 1 I 2 x z y r D 1 (p)

Construction of the occlusion map

The occlusion map O 1 shows for each pixel p of image I 1 if the area observed from this pixel has been occluded or not by another area in front, in the I 2 image. Knowing the disparity map D 2 of I 2 over I 1 , the occlusion map O 1 of view I 1 is classically defined (see Fig. 3.9) from the following boolean formulation: However if one is limited to using only one contribution per pixel, i.e. N c = 1, as in the case of the disparity, to compute the backward projection P on I 2 , one experimentally observes (See fig. 8) a number of I 1 pixels that are not considered as visible as they should be. The reason is that in this case spatial sampling is not dense enough : two different pixels of I 1 , p 1 and p 2 , can have the same projected integer coordinates q on I 2 . The solution to this problem is to use a spatial oversampling, i.e. N c � 1 in back-projecting exhaustively all the contributions of each of p of I 1 on I 2 then to accumulate. In this way the occlusion map is obtained

O 1 (p) =    1 if ∃q/�D 2 (q) + q� = p, 0 if p is occluded. ( 3 
I 1 I 2 D 1 D 2 O 1 O 2 3D scene
Õ1 (p) =      � q 1 ∀q/�D 2 (q) + q� = p 0 if p is occulted. (3.5) 
This formulation has the advantage of offering flexibility in how to create a Boolean occlusion map because it is sufficient to apply to it a threshold s. We propose finally the relationship

O 1 (p) =      1 if � q 1 ≥ s, ∀q/�D 2 (q) + q� = p, 0 if p is occulted. (3.5)
Note that if we limit ourselves to a s = 1 threshold, we will tend to over-estimate the visibility because it only takes one back-projected contribution reaching the pixel to be considered visible in both images. We generated the Boolean occlusion maps according to equation (3.9) setting s = �N c (p)/2� where N c (p) = 100 for any p (example Fig. 3.6).

Conclusion

The qualitative evaluation of very accurate stereoscopic algorithms requires disposing of stereo pairs with minimal and quantified noise, accompanied by ground truths as accurate as possible. We presented a new method for generating ground truths with synthetic images. This approach, which takes advantage of spatial oversampling ray tracing allows to make maps of disparities and occlusions with a never reached before accuracy level. Furthermore, the iterative image rendering process enables us to calculate accurate analytical estimates of their residual Table II: Main notation.

�.� 2 � 2 norm �.� 1 � 1 norm �.� ∞ maximum norm ∝ proportional to �x� integer part of a real x �(r)
the indicator function of relation r being worth 1 if r is true, 0 otherwise 

R A = (O A , � x A , � y A , � z A ) absolute and direct frame, of origin O A , corresponding to a 3D scene (cf. figure 3.3) R C = (O C , � x C , � y C , � z C ) direct frame
Ω(i, j) = [(i, j), (i, j + 1), (i + 1, j + 1),(i + 1, j)]
the square surface, strictly speaking the pixel p = (i, j) the pair of integer indices, appointed pixel for convenience associated with the point p = (i, j) T of image

I and to surface Ω(i, j) of image Ω N c (p)
the number of contributions associated with the pixel

p c n = (x n , y n ) T
position, expressed in the reference frame R I , of the nth contribution of p r n depth of the nth contribution of p

υ n = (υ R n , υ G n , υ B n ) color of the nth contribution of p C(p) = {c n = (x n , y n ) T , ∀n 1 ≤ n ≤ N c (p)} set of contributions coordinates of p V 0 (p)
neighborhood of p corresponding to the smallest square containing contributions and center (i+0.5, j+ 0.5) T CHAPTER 4

SILHOUETTE DETECTOR

Abstract: This chapter is devoted to the detection of highly accurate silhouettes from 3D point clouds built by the ray tracing method developed in chapter 3. We propose a detection method allowing to analytically express, in the image plane, the elementary contours within each pixel and to construct salient silhouettes. Current methods mainly rely on on the geometry of a 3D mesh, either directly known or obtained from the meshing of a point cloud (representing a surface). They most often require to be programmed on graphics unit. Our algorithm is instead based on the direct exploitation of the depth data massively calculated during the ray tracing, namely the spatial 3D coordinates of all the rays contributing to each pixel. Our method consists of three steps. The first one classifies the contributions to a pixel according to their depth, imposing that there will be only one, two or three classes. To do that it develops an a contrario method to detect the modes of the local depth histogram. The second step segments spatially the different classes by means of a linear classifier. Finally, the third one rectifies the position of the elementary contours to join them step by step and form curvilinear silhouettes. Although it is not possible to compare our results to those of other algorithms using incompatible data, we show satisfactory highly sub-pixel results obtained from very complex synthesis scenes.

Introduction

Computer graphics makes great usage of line drawings. This representation tool is part of artistic expressions such as pen-and-ink vector drawings, illustrations in medical or technical domains, or entertainment, for example in cartoons and comics. While the detection of feature lines are more oriented to scientific needs, the computation of outlines and silhouettes concerns more nonphotorealistic rendering. These techniques are based on the prior existence of a geometric model of surface or volume S whose numerical representation is either a 3D mesh or a cloud of points. The detection of such lines from S has extensively been studied. Line drawing can be rendered in two ways : by a raster or by a vector representation.

While the first is encoded as sequences of contiguous pixels, the second has an analytical expression better suited to the effects of stylization. We present in this chapter an original method for silhouette extraction from the point cloud obtained by ray-tracing, as described in the previous chapter. Once detected, contours are rendered both in pixel or vector format. We estimate the analytical expression of one or two contours, if any, within each pixel. After an exploration of the state of the art in section 4.2, we detail the principles of the algorithm in section 4.3 and then analyze results in the next section. Table II gives the main notation of this chapter.

Related work

In its general formulation (see Hildebrandt et al. [START_REF] Hildebrandt | Smooth feature lines on surface meshes[END_REF]), the feature lines of a closed surface S shape are described as local extrema of principal curvatures along the corresponding principal directions. As stated by Quan et al. [START_REF] Quan | The extraction of feature lines on 3d models: A survey[END_REF] who give a comprehensive analysis of the feature lines detection problem, silhouette contour detection can be seen as a view-dependent feature lines detection. The problem is to extract the salient contours of the projection of three-dimensional shapes over the focal plane of a camera according to its viewpoint. A mathematical definition of this task is given by DeCarlo et al. where n(P) is the unit surface normal at P. The visible portions of these curves, once projected into the image plane R I , are called silhouette.

Isenberg et al. [START_REF] Isenberg | A developer's guide to silhouette algorithms for polygonal models[END_REF] categorized the contour detection algorithms according to the numerical representation of the shapes S. The authors distinguish the object space and the image space. In the first one, the shapes correspond to their samples in 3D point clouds or in 3D meshes if connectivity between the points is known. The second space regroups the rendered image of the space, and if it exists its depth map or z-buffer. Some hybrid algorithms use both classes. In the following we adopt this taxonomy.

Mesh object space oriented algorithms

Definition 4.1 makes use of the concept of visibility. Silhouette detection algorithms dealing with a 3D mesh must solve two problems. First, they must detect the set of silhouette edges, secondly determine the visible subset thereof (by a visibility culling). The first step is quite simple : the algorithm classifies all the mesh faces as front or back facing, as seen from the camera thanks to the sign of the scalar product n(P) T (O C -P), (4.0)

where P is the center of the face. In continuation, it examines all the edges and selects only those that bound exactly one front-and one back-facing polygon. Buchanan et al. [START_REF] Buchanan | The edge buffer: A data structure for easy silhouette rendering[END_REF] introduced a data structure, the edge buffer, to rapidly access these edges. As pointed out by Isenberg et al. [START_REF] Isenberg | A developer's guide to silhouette algorithms for polygonal models[END_REF], because a polygonal mesh is usually only an approximation of a free-form object, silhouettes of polygonal meshes typically have artifacts (for example, zigzags or silhouette edge clusters). Hence, the expected silhouette of the real object can differ significantly from the silhouette that the algorithm yields. This explains why, without worrying about computation cost, it is desirable to preprocess the meshes to obtain a more exact silhouette, similar to that of the real object. Hertzmann et al. [START_REF] Hertzmann | Illustrating smooth surfaces[END_REF] considered the silhouette of a free-form surface approximated by a polygonal mesh. These points connect to yield a piecewise linear sub-polygon silhouette line. However, Bénard et al. [START_REF] Bénard | Computing smooth surface contours with accurate topology[END_REF] remark that this method induces visibility errors because the new edges are not the true contours of the tessellation. These authors try to enhance this approach, developing the theoretic concept of contour consistency : from an initial mesh, they generate a new triangle mesh with contours that are topologically equivalent and geometrically close to those of the original smooth surface.

The second task consists in solving the problem of culling visibility of the silhouette edges (see Elber et al. [START_REF] Elber | Hidden curve removal for free form surfaces[END_REF]). A trivial and fast way to determine the visibility of silhouette edges in image space is to use the z-buffer. The simplest method is to render the silhouettes and let the z-buffer remove the hidden lines. But this method as two disadvantages. First, it loses the benefit of the mesh enhancement above-mentioned technique, since the edges have a pixel accuracy; the line stylization effects is a priori degraded. Secondly, as hightlighted by Isenberg et al. [START_REF] Isenberg | A developer's guide to silhouette algorithms for polygonal models[END_REF], due to the selection of the closest edge from the focal plane, the edges seen under the same pixel are marked as hidden. It so happens that some lines might be partially occluded in the image. Important work has been done to maintain an analytical formulation of the contours projected onto the focal plane even at the cost of performance. The methods must necessarily take into account the visibility of the portions of edges. Based upon the works of Appel [START_REF] Appel | The notion of quantitative invisibility and the machine rendering of solids[END_REF] who introduced the notion of quantitative invisibility (QI), Markosian et al. [START_REF] Markosian | Real-time nonphotorealistic rendering[END_REF] defined an optimized QI-buffer to improve computation time. They redefine the QI value as the total number of faces between a point and the viewer. The QI of a point is defined as the number of surfaces that occlude the point; a point is visible if and only if it has a zero QI. However, QI propagation depends on computing image-space intersections between curves. Since this approach has a non constant and larger computational complexity than image space approaches, Northrup et al. [START_REF] Northrup | Artistic silhouettes: A hybrid approach[END_REF], in the framework of animation, proposed to use an ID buffer to determine silhouette edge visibility. A unique color identifies each triangle and silhouette edge in this ID buffer. For each frame, the ID buffer is read from the graphics hardware and all pixels of reference image of are examined to extract all silhouette edges represented by at least one pixel.

3D points object space oriented algorithms

Silhouette detection from 3D point clouds is a challenging task, compared to the above-mentioned approaches. There, points have no a priori connectivity, normal or orientation informations. Zakaria et al. [START_REF] Zakaria | Interactive stylized silhouette for point-sampled geometry[END_REF] presented an object and image space hybrid approach which identifies silhouette points in the sense of (4.1) into an image space color buffer, with a color value that uniquely identifies it in a similar way than [START_REF] Northrup | Artistic silhouettes: A hybrid approach[END_REF]. Further they extract and vectorize the image space curves from the result using a thinning process. While this method is GPU dedicated, Zakaria et al. proposed a variant using ray casting in [START_REF] Zakaria | Detecting and rendering silhouette in a point data set[END_REF]. Xu et al. [START_REF] Xu | Interactive silhouette rendering for point-based models[END_REF] proposed an imagebased method relying on depth discontinuities to render silhouette pixels visible. In a first pass, the points are rendered as enlarged opaque disks to obtain a visibility mask. In a second pass, points are rendered as regular size Gaussian splats. Edges are automatically depicted at depth discontinuities, usually at the silhouette boundaries. In [START_REF] Olson | Point set silhouettes via local reconstruction[END_REF] Olson et al. introduce the concept of silhouette-generating set (SGS) defined as the set of points on the model S whose tangent plane contains the view point. This definition remains valid for both 3D meshes and 3D point clouds. This permits local reconstructions of one-ring triangles surrounding each point sample so-called "mesh umbrellas". As they render locally a silhouette edge depending on points P and Q if and only if it exists and is a silhouette edge in the umbrellas of both P and Q, they can only draw local silhouette arcs, but not full silhouette loops. Let us finally mention the work of Schein et al. [START_REF] Schein | Adaptive extraction and visualization of silhouette curves from volumetric datasets[END_REF] who proposed an algorithm for contour extraction from volumetric data. Their approach is greatly analytic as they introduce tri-variate tensor products (resp. implicit trivariate) B-splines to describe surfaces (resp. silhouette curves). Their works are presented as silhouette extractions even though their results are in fact 3D line features.

Image space oriented algorithms

Numerous algorithms use the rendered images or the geometric maps (most of the time the z-buffer), to determine the contours or at least feature lines (see Quan et al. [START_REF] Quan | The extraction of feature lines on 3d models: A survey[END_REF]). Thus they circumvent the object spaces problem of connectivity and visibility, to the detriment of precision : edges are limited to the pixel accuracy. They are very similar to conventional edge detection algorithms. Saito et al. [START_REF] Saito | Comprehensible rendering of 3-d shapes[END_REF] pioneered the exploitation of the z-buffer, filtering it with differential operators to highlight edges. Mallat et al. [START_REF] Mallat | Characterization of signals from multiscale edges[END_REF] have proposed a more robust approach for range images based on normal changes : they threshold the faces normal vector maps. Chen et al. [START_REF] Chen | An improved edge detection algorithm for depth map inpainting[END_REF] in the context of Kinect sensors as well as Hung et al. [START_REF] Hung | Dual edge-confined inpainting of 3d depth map using color image's edges and depth image's edges[END_REF] in the context of the chroma key compositing, proposed methods to enhance the consistency between a color image and its depth map. Indeed sensors often lead to noisy or missing regions especially at object boundaries. Thanks to the color image edges and depth map edges, their methods find the areas where the edges do not match, and use a dual edge-confined inpainting technique to inpaint the edgemismatched areas. Notice to finish that, thanks to the apparition of the concept of suggestive contours by Decarlo et al. [START_REF] Decarlo | Suggestive contours for conveying shape[END_REF] whose purpose is to create an artistic rendering close to human perception, various algorithms were developed to process the "curvature maps" defined by equation (4.2.1) (see Cole et al. [START_REF] Cole | How well do line drawings depict shape?[END_REF]).

Remarks

Among the numerous articles we read about the subject of silhouette detection, few gives computation time performances. When it is the case, models often come from the Stanford 3D Scanning Repository dataset [START_REF] Curless | A volumetric method for building complex models from range images[END_REF]. Further, to our knowledge there does not exist any publication related to the benchmark of such tasks. The reasons seem to be, first, the variety of the research fields for which algorithms are conceived, implying a variety of input data. Secondly, the specificity of the software in which the algorithms are embedded, mostly GPU-dedicated.

Construction of the silhouette maps

Thanks to the ray-tracing technique described in the previous chapter, we can obtain a dense information about the 3D scenes. Indeed, by recording during the rendering process all the geometric positions of the contributions of each pixel, i.e. several hundreds per pixel, we have a priori a good enough approximation of the local shape of the surfaces S. From this, it is possible to estimate the number of regions dividing a pixel and their borders thanks to all the information contained in the set of contributions C(p). If the contributions cloud C(p) has L depth modes, then the subsets C l (p) associated with these modes characterize the objects of the scene positioned at different depths. The edges separating the C l (p) between them, then correspond to the portions of objects contours seen in the surface Ω(p). In the following, we describe the assumptions and the steps necessary to estimate these contours. In particular, one of the technique used is the a contrario method [START_REF] Desolneux | Meaningful alignments[END_REF]. Some other line detectors have used this approach: Grompone et al. [START_REF] Grompone Von Gioi | LSD: a Line Segment Detector[END_REF] as well as Ofir et al. [START_REF] Ofir | On detection of faint edges in noisy images[END_REF] in the case of blurred edges. This results in two types of maps: a gray level image indicating the number of regions per pixel and a vector image describing the location of the contours in terms of sub-pixel elementary edge coordinates. The creation of these maps involves an oversampling of the rays (N C � 1) and an enlargement of the contribution neighborhood V(p) to the neighbors of p. We shall justify this point below. The algorithm 5 describes the steps detailed below.

Assumptions

It is assumed that for a given pixel p there are at most three different distance modes, that the associated regions have no inclusion relation and are separable by straight line segments. These assumptions are based on empirical considerations related to the information content of a pixel:

• a single mode corresponds to a region of the scene which is locally flat, where the Euclidean distance varies little;

• two modes characterize two objects separated by a frank edge;

• three modes correspond to three objects that are either superimposed or joined by a T-junction.

It is not impossible to encounter more than three modes but this would characterize a great complexity of the scene, thus a large number of objects observed under a same pixel. Under normal configuration conditions, the camera field-ofview and the distances of the objects to it are quite limited so that the solid angle seen by the pixel is reduced and there are few objects. The estimation of the contours is carried out in three steps, namely the determination of the regions based on the classification of the contributions according to their depth, the geometric separation of these regions by estimated boundaries and then an adaptive correction of these boundaries according to the pixel's neighbors.

Creation of the sets C(p)

The ray tracing on an oversampled regular grid results in the creation of the C 0 (p) sets which we assume to have the same number of contributions N c whatever the pixel p, and where the initial neighborhood denoted V 0 (p) is included in Ω(p). It is quite obvious that the classification of the contributions according to modes, when there are several modes, becomes more precise if these contributions belong to sufficiently represented classes. That's why before building the depths histogram H(p), we extend the neighborhood V 0 (p) to a square window centered in p and whose half-width is l F . We therefore set

V(p) def = [j -l F ; j + l F ] × [i -l F ; i + l F ].

Determination of the subsets C l (p)

For a given pixel p, we first build the histogram H(p) of the sample (r 1 , . . . , r Nc ) of the depths of the points of C(p). This histogram is defined on the interval [r min (p);

r max (p)] divided in N s bins [ρ k ; ρ k+1 ] whose width is Δ ρ such that          ρ k = r min (p) + k r max (p) -r min (p) N s = r min (p) + kΔ ρ [r min (p); r max (p)] = � Ns-1 � k=0 [ρ k ; ρ k+1 [ � ∪ {ρ Ns }. (4.0)
The modes of H(p) are then estimated by an a contrario method [START_REF] Desolneux | Maximal meaningful events and applications to image analysis[END_REF] whose main parameter is the number of false alarms �. The modes detected by the algorithm are represented as intervals M l = [ρ l min ; ρ l max ], ∀1 ≤ l ≤ L where ρ l min et ρ l max are two of the bounds ρ k . A class is then assigned to the contributions that are located in each of the intervals found. On the contrary, contributions located outside all intervals are considered as unclassifiable and are no longer used in the remainder of the algorithm.

Construction de H(p)

The number of bins N s of an histogram determines the efficiency of the research of its modes. A common way in the literature is to define this number according to the Sturges [START_REF] Sturges | The choice of a class interval[END_REF] formula where

N s = �1 + 3.222 log 10 (N c ) + 0.5�, (4.0) 
or according to Scott's formula [START_REF] Scott | On optimal and data-based histograms[END_REF] which takes into account the empirical variance of the depths

N s = �3.5var((r 1 , . . . , r Nc ))N -1 3 c + 0.5�. (4.0)
However, Sturges' formula is only effective when the distribution is a normal law; it introduces an over-smoothing of the histogram in the other cases. Formula (4.3.3) implies the distribution has a Gaussian or a rather compact shape with a variance much greater than 0. However, in any case, the histograms are far from having this aspect: in the case of contributions projected onto a flat surface, a uniform distribution of distances and, in the case of contours, multimodal histograms can be expected. The method developed by Shimazaki et al. [START_REF] Shimazaki | A method for selecting the bin size of a time histogram[END_REF] in the context of the neural time signals processing, disregards hypotheses about the nature of the unknown function h whose support is contained in the support L h = r maxr min . The authors seek to construct its histogram ĥ in N s bins [(i -1)Δ ρ + r min , iΔ ρ + r min ] whose width is Δ ρ , assuming that the random variables κ i corresponding to the number of points contained in each of these intervals obey the Poisson law defined by

P(κ i = k) = (Δ ρ h i ) k k! e -Δρh i (4.0)
where

h i def = 1 Δ ρ � iΔρ+r min (i-1)
Δρ+r min h(ρ)dρ is the mean height of the density function h over the considered interval.

Based on the mean-squared error (MISE), averaged in length, between h and the estimator ĥ and defined by 

M ISE L h ( ĥ, h) def = 1 L h E �� rmax r min [ ĥ(ρ) -h(ρ)]
C(Δ ρ ) def = �E( ĥi -h i ) 2 � -�(h i -�h�) 2 �, (4.-1)
where

• the estimator ĥi def = κ i Δ ρ is the empirical height histogram related to [(i - 1)Δ ρ + r min , iΔ ρ + r min ]; • the scalar �a� def = 1 N s Ns � i=1
a i is the average over the N s intervals of the entity a i .

Applying the Poisson assumption leads to simplify C as

C(Δ ρ ) = 2 Δ ρ E(� ĥ�) -�E( ĥi -E(� ĥ�)) 2 �. (4.0)
The numerical method is described in algorithm 1.

Algorithm 1: Optimal bins number of a histogram by Shimazaki et al.

Input: (r 1 , . . . , r Nc ) set of depths of the contributions of pixel p, sorted in increasing order. Output: N s optimal bins number of the histogram of p.

1 C cost function 2 N min := 2 3 N max := card ({r n }) 4 L = r Nc -r 1 5 for n s ← N min to N max do 6 Δ ρ := L/n s 7 for i ← 0 to n s do 8 κ i = Nc � n=1 �(r n ∈ [iΔ ρ , (i + 1)Δ ρ )) 9 end 10 κ := 1 n s ns � i=1 κ i 11 v := 1 n s ns � i=1 (κ i -κ) 2 12 C(n s ) := 2κ -v Δ 2 ρ 13 end 14 return N s := arg min ns C(n s )

Estimation of the number of modes

We have considered two algorithms for estimating the modes of a histogram, both based on the theory of the �-meaningful events by Desolneux et al. [START_REF] Desolneux | A grouping principle and four applications[END_REF][START_REF] Desolneux | Meaningful alignments[END_REF] 

N F A(a, b) = N s (N s + 1) 2 B(N c , κ(a, b), α(a, b)) (4.1) = N s (N s + 1) 2 Nc � j=κ(a,b) � N c j � α(a, b)(1 -α(a, b)) Nc-j (4.2)
where

κ(a, b) is the contribution number is the interval [a, b]. This interval is con- sidered �-meaningful if N F A(a, b) ≤ �. Furthermore, if [a, b] is such that    ∀J ⊂ [a, b] ⇒ N F A(a, b) ≤ N F A(J), ∀J � [a, b] ⇒ N F A(a, b) < N F A(J) (4.2)
then it is called maximal �-meaningful. We develop these definitions in the appendix A.3.2. The algorithm consists of calculating for a fixed �, the NFA of each interval [a, b] in the range [1, N s ] and to test its maximum significance. Intervals checking these two properties are then considered as modes. The interest of this method is that it requires only the parameter � as input. On the other hand, when the modes are disjoint, the contributions located outside of their range are not classified.

The second algorithm (see Algorithm 3) developed by Delon et al. [START_REF] Delon | A nonparametric approach for histogram segmentation[END_REF] takes up this idea. This time, the statistical criterion concerns the unimodal nature of an interval [a, b] of the histogram such that a = s i and b = s i+j where j ≥ 2 are the abscissas of two local minima h(s i ) and h(s i+j ). This interval is considered unimodal if it is divisible into two intervals [a, t] and [t, b] that are respectively globally increasing and decreasing. These two properties are determined by calculating the Kullbach-Leibler divergence D KL between h [a,t] (resp. h [t,b] ), the restriction of h to the range [a, t] (resp. [t, b]), and its Grenander's estimator ĥ[a,t] (resp. ĥ|[t,b] ) which is a monotonous function. The a contrario method intervenes in the computation because ĥ[a,t] and ĥ[t,b] are considered, up to a normalization, as the laws of the null-hypothesis H 0 . The Delon et al. method is iterative: as long as two consecutive intervals verify the hypothesis of unimodality they are merged. It should be noted that we modified the random initialization approach of Delon et al. for the choice of the starting interval: we opted for a deterministic approach by sequentially parsing the minima s i . Contrarily to the Desolneux et al. [START_REF] Desolneux | Meaningful alignments[END_REF] approach this algorithm has the advantage of classifying all the contributions since the modes are local minima. The other side of the coin is that it is possible to find more than three modes within a pixel.

Elementary edges estimation

We now turn to the description of the algorithm for estimating sub-pixel elementary edges. This is applicable both when the distribution of the pixels is random or regular. The hypothesis according to which the regions are separable by segments of straight lines leads to consider only a set of four possible configurations for boundary segments applied to p, to which is added an impossible configuration:

• state F 0 indicates there is no edge in p;

• state F 2 indicates there are two intersection points F 1 The state of the pixel p after the segmentation is denoted by F(p). Once the modes are determined, the calculation of the edges is quite simple. This problem has traditionally arisen in the context of classifiers where we seek to define separators. We have opted for a linear support vector machine (SVM) with detailed descriptions by Cristianini et al. [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF]. It determines the dividing lines of the classes by providing for each of them its slope coefficient and its bias.

F ∅ � ∈ {F 0 , F 2 , F 3 , F 4 }. F 1 F 2 F 1 F 2 F 3 C F 1 F 2 C F 3 F 4
The boundary line (D k/l ) is computed for each pair of sets (C k , C l ), ∀k � = l ∈ {1, . . . , L} once the following set has been built,

S kl = {(c n , e n ) ∀c n ∈ (C k ∪ C l )} with    e n = -1 if c n ∈ C l , e n = +1 if c n ∈ C k . (4.2)
The linear separator defined as f w,b (x, y) = �w, (x, y) T � + b where w is the vector normal to the level lines generated by f and b its bias is optimal for the problem

           (w * , b * , ξ * ) = arg min 1 2 �w, w� + C card (S kl ) � n ξ n s.t.    e n (�w, c n � + b) ≥ 1 -ξ n , ∀(c n , e n ) ∈ S kl ξ n ≥ 0, ∀n 1 ≤ n ≤ card (S kl )
where C is an error penalty term and the terms ξ n are slack variables. The line (D k/l ), which corresponds to the optimal separator, then intersects the boundary ∂p and provides, strictly speaking, the boundary segment of the pixel. In the case of three classes of depth, obtaining boundary segments involves eliminating first some of the intersection points

F k A and/or F B k/l of {F A k/l , F B k/l } déf = {(D k/l ) ∩ ∂p}.
The uncertainty vanishes by studying the position of C:

• if C ∈ p then we are in the configuration F 3 . For each line (D k/l ), we only keep the point whose class is one of the both that the line separates.

• if C � ∈ p then we are in the configuration F 4 . We drop the two points belonging to the same line and which do not verify the preceding property.

Estimation of the boundary line needs to set only the penalty term C. Thus, the terms ξ n are computed during the solve of the dual problem of (4.3.4)(see Frezza [34, § 3.2]). However, it is experimentally observed that the value C = 1 is sufficient.

Rectifications

In practice, in the case of three classes, configurations of the type illustrated in the figure 4.2 are obtained, namely, the impossible configurations F ∅ . Indeed, the linear separation is computed on the C l classes taken in pairs, so the line boundaries are never concurrent exactly at a point C. On the other hand, it is possible that certain line boundaries have been deduced from the set C l of which the population is predominantly or exclusively outside the domain p. In this case we can see boundaries that are not relevant.

In order to be in one of the configurations of the figure 4.1 we modify the bias of each line (D k/l ) so as to make it pass through the incircle center C of the triangle formed by their intersections (fig. 4.3). The points of unnecessary intersections are then eliminated as seen above. 

(D b/v ) (D r/v ) (D b/r ) j j + 1 i i + 1

Iteration of the process

In spite of this rectification, it is still possible not to fall into one of the two configurations F 3 or F 4 , either because the boundary lines all intersect the pixel, or because there are more than three classes or other reasons. In this case, it seems necessary to reduce the size of the neighborhood V(p) in order to reduce the useful information. This approach leads to iterate step 4.3.2 to step 4.3.5 until a satisfactory F(p) configuration is obtained or V(p) = {p} is obtained (steps and 17 of algorithm 5). The tests we carried out show that this procedure leads to the resolution of practically all the unforeseen cases.

Elementary edges junction

In order to make the vector representation of the elementary contours more coherent, we join the extrema of the segment boundaries of adjacent pixels two by two, when these appear to correspond to a contour that extends through several pixels. This link is made by comparing the distance of the abscissa or the ordinate between two points situated on the same side with a fixed threshold β, while taking into account the configuration of the adjacent pixels p and q (fig. 4.4). This method is described, in the case of horizontal jointness, in algorithm 4. Suppose the case of the pixels p(i, j) and q(i, j + 1) which share the segment S = [(i, j + 1), (i + 1, j + 1)] (vertical adjacence operates from the same reasoning). By denoting N F (p) (resp. N F (q)) the number of points of p (resp. Q) located on S, apart from the symmetry, we have 6 possible adjacency configurations :(N F (p), N F (q)) ∈ {(0, 0), (1, 0), (2, 0), (1, 1), (2, 2)}. The first three need no processing. The fourth is obvious: denoting respectively (X 1 p , y 1 p ) T and F 1 q = (x 1 q , y 1 q ) T the points of pixels p and q sharing the side S , we construct the bipoint (fig. 4.4 left) which replaces the two preceding, according to the relation

|y 1 p -y 1 q | ≤ β ⇒ F 1 p = F 1 q = � x 1 p , y 1 p + y 1 q 2 � T . (4.2)
The cases (2, 1) and (2, 2) involve taking into account various configurations in the order of the positions of the points F 1 p , F 2 p , F 1 q and F 2 q along S. For (2, 2) it is necessary to avoid the cross-connections. In the case (N F (p), N F (q)) = (2, 1) we can have the triplets of sorted points : 

{(F 1 p , F 1 p , F 1 p , F 1 q , F 2 p ), (F 1 q , F 1 p , F 2 
|y a p -y 1 q | ≤ β ⇒ F a p = F 1 q = � x a p , y a p + y 1 q 2 � T . (4.2)
In the case (N F (p), N F (q)) = (2, 2) (fig. 4.4 right) the number of point configurations along S still increases. We can have, apart from the symmetry, the three quadruplets of sorted points:

{(F 1 p , F 2 p , F 1 q , F 2 q ), (F 1 p , F 1 q , F 2 p , F 2 q ), (F 1 q , F 1 p , F 2 p , F 2 
q )}. The bipoints are built according to ∀b, ∀a (∀c

F a p � = F c q ) ∧ ( min a∈{1,2} |y a p -y b q | ≤ β) ⇒ F a p = F b q = � x a p , y a p + y b q 2 � T . (4.2)
Figure 4.5 shows an example after the junction step. 

i i + 1 j j + 1 β F 1 p F 1 q i i + 1 j j + 1 F 1 p F 1 q F 2 q F 2 p p q p q

Discussion

We opted for a linear separation of sub-pixel regions. The usage of polynomial classifiers would be more accurate for point clouds. But this would imply for each pixel p, to finely tune the parameters of such a classifier and then to retain the coordinates of the calculated curvilinear boundaries in analytical or vector form. Moreover, in the merging step of the neighboring segments (see § 4.3.7), where the number of configurations is already large, a much greater number of possible configurations should be taken into consideration. This would explode the algorithmic complexity. The only disadvantage that we have identified for the use of linear separators is in the particular case where the boundary between two regions is square or pointed (fig. 4.6). Moreover, the algorithm performs the junction of segments of neighboring pixels according to the 4-connectivity, that is to say horizontally and vertically but not diagonally, which gives a visual impression of contour discontinuity. To handle this case, given two neighboring pixels p(i, j) and p(i + 1, j + 1) it would be necessary to create a new join segment in the p(i, j + 1) or p(i + 1, j) pixel. However, this refinement would necessitate an exhaustive management of a large number of configurations, which is higher than in the described approach, in particular in order to avoid segment crossing problems and to make the right pairings between neighboring pixel segments. 

Experiments

Parametric analysis

The parameters influencing the sub-pixel segmentation are the parameters used to classify the contributions. There are four of them, namely:

• the method used to construct the histogram;

• the size of the neighborhood l F ;

• the mode detector;

• the NFA threshold �.

In order to study the influence of these parameters on the detection quality of the sub-pixel contours we carried out a series of tests on the image of the bamboo chamber (see Fig. 4.9) with a resolution of N I = 800 × 1600 pixels. This image is particularly representative of the variety of depth histograms that can be encountered. The portions of images corresponding to the ground and to the walls provide contributions whose depths vary uniformly within a pixel: one should not locate contours. On the contrary, the zone containing the bamboos has many depth configurations with variances of low depths (leaves / leaves) and higher variances (leaves / wall). In this zone one can expect to find many pixels having two or more modes.

As quality criteria we use the detection rates and the false alarm rates formulated as follows. The detection rate is defined as the ratio between the number of pixels having contours confirmed because they are connected to the contour of the neighboring pixels and the number of pixels of the image. The rate of false alarms is defined as the ratio between the number of pixels with isolated contours in relation to the others and the number N I . We justify these choices for the following reason. If an elementary contour is detected, it must necessarily continue in at least one of the neighboring pixels. If the contour is isolated, it does not really exist and it is a bad estimate of the modes, or it exists but is such that the neighboring contours have not been detected. This last case reflects a lack of regularity of the method for the analysis of histograms whose densities are a priori close.

We carried out various tests with the following parametric values: the number of contributions per pixel was fixed at N c = 100 according to a regular distribution, The junction threshold was β = 0.2, l F ∈ {0.5; 0.75; 1.00}, H ∈ { Sturges rule; (Shimazaki et al. [START_REF] Shimazaki | A method for selecting the bin size of a time histogram[END_REF]}, C ∈ { method of Delon et al. [START_REF] Delon | A nonparametric approach for histogram segmentation[END_REF]; The range of values associated with the neighborhood was intended to be consistent with the hypotheses of the section 4.3.1; by exceeding l F = 1.0 we risked estimating more than three modes with a surplus of information. The NFA values we used are in line with the value proposed by Delon et al. [START_REF] Delon | A nonparametric approach for histogram segmentation[END_REF] and Desolneux et al. [START_REF] Desolneux | Meaningful alignments[END_REF] for the segmentation of a histogram and which simply is N F A = 1. In our case, we want to have the same proportion of errors but with respect to N I segmentations of histograms, N I being of the order of 10 6 .

Figure 4.7 shows the 36 results. These allow to establish a hierarchy in the influence of the parameters. First, all other things being equal: the detection rates are both higher and the false alarm rates are lower. The second parameter corresponds to the size of the neighborhood. Alarms decrease and detections increase significantly with this size. This situation reflects the fact that on a window reduced to the pixel itself (i.e. l F = 0.5) the algorithm finds modes where there is none. This phenomenon can be explained by the presence of digital noise in the values of the depths. When a pixel corresponds to a flat surface portion viewed from the front or from the skew, such as the ground or the walls, the depth variance is very small and the amplitude [d min ; d max ] is of the same order as the standard deviation of the digital noise. The most influential parameter is then the size of the window. Without taking into account a certain neighborhood i.e. l F = 0.5, the rates of false alarms are very important. This situation corresponds to the estimation of several modes when there is not actually one. This phenomenon can be explained by the fact that digital noise is in the same order of magnitude as the depth values. It might occurs when a pixel corresponds to a surfaces assumed to be smooth enough to be disturbed by digital noise, like floors or walls. By enlarging the neighborhood, one naturally increases the variance of the depths, which attenuates the influence of digital noise. The Delon et al. [START_REF] Delon | A nonparametric approach for histogram segmentation[END_REF] method for the estimation of the modes is better than the Desolneux et al. [START_REF] Desolneux | Meaningful alignments[END_REF] method, whatever the fixed NFAs: each color group is split according to these two methods into clearly distinct subgroups. This confirms that assigning a class to each contribution brings more information. The results on the influence of the NFA parameter do not allow us to establish a systematic rule: the position of the different red or green dots within their respective groups does not show any particular order. However, it seems logical that the lower the NFA, the lower the false alarms and detections.

This parametric analysis allows us to conclude that the effective parameter sets for contour detection are the combination of the methods of Shimazaki et al., of Delon et al. applied to a neighborhood of size l F ∈ [0.75; 1.00] and a N F A less than 1/N I .

Examples

We present three results (Fig. 4.10) obtained from the complex 3D scene of the bamboo room (Fig. 4.9) where all kinds of elementary edge configurations appear. First we see that when the surface is flat, as it is the case at the center of the top image, very few false edges appear. The single depth modes are correctly estimated. In the middle image we obtain a good edge continuity even if the leaves are tangled. The bottom image shows the limitations of the linear separator as evoked in § 4.3.8 : while the contours are correctly estimated along the leaves, their cusps are represented by perpendicular edges.

Examples of figure 4.8 shows the contours computed by our algorithm and the sub-pixel edge detector of Devernay [START_REF] Devernay | A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy[END_REF]. In this last case, contours are estimated from the depth map within an image space approach. Results show that short edges are not detected and that thin shapes, like stems, are dilated. In contrast, our algorithm conserves thickness of boundaries.

Conclusion

We presented a silhouette detector that is directly applicable on the cloud of points produced during the ray tracing process. This method yields an analytical expression of the elementary segments forming the contours without a priori knowledge about the connectivity of the 3D point cloud. Our method consists mainly of two steps: first a classification step for the depths of the pixel contributions using the statistical framework of the NFA, then a second step performing a spatial segmentation of the different classes by a linear classifier. A post-processing step rectifies and ensures the continuity of the elementary edges. Parametric tests allowed us to see which parameters were more sensitive and the most suitable values for a compromise between false alarms and a complete edge detection. Since this technique relies only on the exploitation of massive data calculated during the rendering, it is not dependent on any software. Its low complexity makes it possible to envisage integrating it directly in such software. Its algorithmic complexity is mainly due to the linear classifier which could be replaced by a polynomial classifier for more accurate results.

Algorithm 2: Desolneux et al.'s histogram modes localization.

Input: h depths histogram of pixel p contributions, N s bins number of h, � NFA threshold. Output: C l subsets of pixel p contributions η ← 1 between ĥ[a,t] and h [a,t] compared to η 

N c log N s (N s + 1) � for a ← 1 to N s do for b ← a to N s do κ ← 1 Nc � b n=a κ n α ← (b -a + 1)/N c H(a, b) ← κ log κ α + (1 -r) log 1-κ 1-α if κ ≤ α then G(a, b) ← H(a, b) else G(a, b) ← 0 end end end for a ← 1 to N s do for b ← a to N s do G int (a, b) ← arg max J�[a,b] G if G int (a, b) > � then H(a, b) ← 0 end end end l ← 0 for a ← 1 to N s do for b ← a to N s do H int (a, b) ← arg max J⊆[a,b] H(J) H ext (a, b) ← arg max J⊇[a,b] H(J) if H(a, b) > η ∧ H int (a, b) = H(a, b) = H ext (a, b) then M l ← [a, b] l ← l + 1 end end end L ← l for l ← 1 to L do C l (p) ← {∀n c n /r n ∈ M l } end
3 i ← 0 4 j ← 2 5 S ← (1,
M l ← [s l , s l+1 -1]
Algorithm 4: Junction of elementary contours according horizontal direction.

Input: G vector contours image Output: G new vector contours image Output: F scalar contours image Output: G vector contours image CHAPTER 5

for i ← 0 à H I -1 do for j ← 0 à L I -2 do S = [(i, j + 1), (i + 1, j + 1)] p ← (i, j) q ← (i, j + 1) (B p ) ← G(p) ∩ S (B q ) ← G(q) ∩ S (N F (p), N F (q)) ← (card (B p ), card (B q )) if (N F (p), N F (q)) = (1, 1) then F 1 p ← (B p ) F 1 q ← (B q ) if |y 1 p -y 1 q | ≤ β then F 1 p ← F 1 q ← � x 1 p , y 1 p + y 1 q 2 � T end end if (N F (p), N F (q)) = (2, 1) then if N F (p) = 2 then (F 1 p , F 2 p ) ← (B p ) F 1 q ← (B q ) else (F 1 p , F 2 p ) ← (B q ) F 1 q ← (B p ) end a ← arg min c∈{1,2} |y c p -y 1 q | ≤ β F a p = F 1 q = � x a p , y a p + y 1 q 2 � T end if (N F (p), N F (q)) = (2, 2) then ((F 1 p , F 2 p ), (F 1 q , F 2 q )) ← ((B p ), (B q )) for b ← 1 à 2 do for a ← 1 à 2 do if F a p � = F b q ∧ |y a p -y b q | ≤ β then F a p ← F b q ← � x a p ,
1 for p ← (0, 0) T to (L I -1, H I -1) T do 2 F(p) ← F ∅ 3 repeat 5 5 V(p) ← [j -l F ; j + l F ] × [i -l F ; i + l F ] 6 C(p) ← {c n ∈ C ∩ V(p)} 7 (r n ) ← {r n (c n )/c n ∈ C(p)}
{F k A , F k B } ← compute intersections {(D k ) ∩ ∂p} 14 F(p) ← compute configuration according {F k A , F k B } 15 G(p) ← {F k A , F k B } 17 

SHORT BASELINE AND STEREO ALGORITHMS

Abstract: This chapter studies the effectiveness of optical flow methods employed in the case of short baselines and different noise levels. We explore the validity of the assumption that, in the absence of noise, it would more advantageous to exploit stereoscopic pairs acquired in low B/H by using optical flow algorithms. This study is made possible by the existence of very accurate datasets of stereo pairs whose construction was the subject of chapter 3. Furthermore, we develop new metrics to analyze the evaluation results, as the usual metrics are inadequate in a sub-pixel context. We then test 1D optical flow and stereo algorithms on the Middlebury 2014 and CMLA datasets, in their operating limits. The results validate the use of a short baseline, up to a certain limit. In the absence of noise, and for a given accuracy, it may be more beneficial in terms of density, to work with a baseline of the order of 1/250 rather than 1/50. This work was partially made in collaboration with Nelson Monzòn Lòpez and Javier Sanchez Pérez.

Introduction

There are two families of stereoscopic algorithms. The first is limited to rigid deformations and deals with relatively static scenes where only the acquisition system is moved, like, for instance, in satellite imagery. Szeliski [START_REF] Szeliski | Algorithms and Applications, chapter Geometric primitives and transformations[END_REF] and Seitz et al. [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF] have identified and classified many of these algorithms. The second group deals with the estimation of the motion of all or part of the points between two images taken at two different instants. It does not necessarily imply that the sensor has been moved, but typically only some objects in the scene. These algorithms calculate non-rigid motions assuming that the optical flows are smooth enough.

In the case of fronto-parallel displacements, which is the setting that we will use in the sequel, all of these methods are simplified to the estimation of movements along the � x axis, observed in each pixel between two images u l and u r . The estimate of the triangulation accuracy is conventionally formulated with the assumption of the pinhole camera model [105, chap. 1] and relies on Thales' theorem. Based on the notation introduced in the scheme of Figure 5.1, we have 

f ΔH Δ� P Q x 1 x 2 C 1 C 2 � B H 0 0 F 2 F 1 Figure 5
� = BΔH H -ΔH f H . (5.0)
When ΔH is small compared to H, which is the case in satellite imagery, then we have the approximation

� � B H • f H ΔH, (5.0) 
meaning that precision ΔH, on depth H, depends linearly on the ratio B/H. For a given Δ�, that is, when we have an idea of the accuracy of an algorithm, equation (5.1) leads to choose stereo pairs acquired in long baselines (i.e. � 1) to reduce the value of ΔH. This is done at the expense of a loss of information due to occlusions, geometric deformations or even illumination changes between the two images. However, choosing short baselines (i.e. � 1/20) alleviates these problems because both images become more similar, but may increase the ΔH error. The works by Delon et al. [START_REF] Delon | Small baseline stereovision[END_REF] and Sabater et al. [START_REF] Sabater | Reliability and accuracy in stereovision : application to aerial and satellite high res Theses[END_REF][START_REF] Sabater | How accurate can block matches be in stereo vision?[END_REF]106] have theoretically shown the advantages of such an approach: the imprecision ΔH of matching algorithms is mainly due to noise.

The purpose of this study is to compare the previous theoretical results with realistic cases in short baselines and for different noise levels. We first compare several algorithms from the two aforementioned families and then test the limits of their precision. On the one hand, this study implies the use of image databases with negligible noise levels and very accurate ground truths. In chapter 3 we found that commonly used bases poorly met this need and proposed a new one, the CMLA dataset. This database has the advantage of providing pairs of images created in different baselines, which have virtually no residual noise and dense exact disparity maps, with an accuracy much lower than 10 -3 pixel. On the other hand, the comparisons require the use of metrics taking into account, in the subpixel context, the influence of different baselines and noise levels, as well as the amount of estimated density. That is why we have used new metrics better suited to this study instead of the metrics used by other evaluation platforms, e.g., the Middlebury [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] benchmark.

This chapter is organized as follows: section 5.3 deals briefly with the rigid motion stereo-matching algorithms evaluated for this study. Section 5.4 detailled optical flow algorithms developed or adapted for this study, in particular, the methods of Lucas-Kanade [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF], Brox et al. [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF] and Monzón et al. [START_REF] Nelson Monzón López | Robust discontinuity preserving optical flow methods[END_REF]. We describe and justify our assessment methodology and the new metrics employed in section 5.5.

Notation

The main notation is summarized on table I. We denote by D the exact dense disparity map, O the occlusion map defined by O(p) = 0 if the pixel p = (x, y) is visible in both images and O(p) = 1, otherwise. The exact sparse disparity map is then defined by 

D(p) =    D(p) ⇔ O(p) = 0 N aN ⇔ O(p) = 1, ( 5 
Õ(p) =    1 ⇔ D(p) � ∈ R 0 ⇔ D(p) ∈ R.
(5.0)

Rigid motion stereo-matching algorithms

Among the numerous rigid motion stereo-matching algorithms, we selected those with representative and reproducible properties and whose theoretical descriptions and digital implementations are very well detailed. We briefly describe four of them in the following sections.

Table I: Main notations used in this chapter.

�a, b�

The range of discrete values between a ∈ N and b ∈ N 

Graph Cuts Stereo Matching

Kolmogorov et al. [START_REF] Kolmogorov | Kolmogorov and zabih's graph cuts stereo matching algorithm[END_REF] deal with the problem of matching in the framework of the graph theory. They seek to minimize an overall pixel-to-pixel matching energy rather than block-to-block in order to avoid, on the one hand, the fattening effects along the contours and on the other hand to take into account the occluded pixels. This energy is defined by

E(f ) = E data (f ) + E occ (f ) + E reg (f ) + E uni (f ) (5.0)
where the four terms are functionals combining binary relations f . More precisely, the matching is modeled by the assignment a between a pixel p of the left image I l and a pixel q of the right image I l formalized by

a : I l × I r → A ⊂ I l × I r (5.1) (p, q) � → a = (p, q).
(5.2)

A configuration f is a binary function such that

f : A → {0; 1} (5.3) a = (p, q) � → f (a) =    1 i.e.
assignment is active according the configuration f, 0 i.e. assignment is inactive.

(5.4)

Two assignments a 1 and a 2 considered as neighbors i.e. a 1 = (p 1 , q 1 ) ∼ a 2 = (p 2 , q 2 ) if p 2 is in a spatial neighborhood of p 1 and d(a 1 ) = d(a 2 ) where d = pq is the disparity. The data fidelity term is

E data (f ) = � a D(a).�(f (a) = 1) (5.4) 
with D(a) an appropriate chromatic distance like L 1 or L 2 between I(p) and I(q). The term controlling the quantity of occluded pixels is

E occ (f ) = K. � a �(f(a) = 0) = K.card (A) - � a �(f(a) = 1) (5.4)
where K is a positive coefficient. A pixel p is considered occluded if there exists no active assignment whatever q. The regularity energy E reg expresses the idea that two assignments spatially close a 1 and a 2 , shall have the same configuration, thus

E reg (f ) = λ � a 1 ∼a 2 �(f(a 1 ) � = f (a 2 )).
(5.4)

Finally the configuration uniqueness is imposed by the energy

E uni (f ) = � a 1 =(p,q 1 ) a 2 =(p,q 2 ) q 1 � =q 2 ∞ • �(f(a 1 ) = f (a 2 ) = 1) + � a 1 =(p 1 ,q) a 2 =(p 2 ,q) p 1 � =p 2 ∞ • �(f(a 1 ) = f (a 2 ) = 1).
(5.4) The authors show that the minimization of the energy (5.3.1) is equivalent to the resolution of an optimal graph-cut of type max-flow min-cut (see [66, Appendix A]) The calculation of the disparities according to this method results in a pixel precision. The influencing parameters are the coefficient K playing on the number of hidden pixels and λ the coefficient weighting the regularity. The numerical method implemented by Kolmogorov et al. uses discretized RGB images in �0.255�.

Bilaterally weighted patches matching

The method by Yoon & Kweon [START_REF] Yoon | Adaptive support-weight approach for correspondence search[END_REF] is an adaptation of the non-local means applied to the matching of pixels. Given a disparity search range �d min , d max �, the algorithm consists in finding the pixel q(d) of the right image, with d ∈ �d min d max �, which minimizes the energy locally defined on a neighborhood V around the p pixel of the left image by

E d (p, q(d)) = � p∈V(p) � q∈V(q) w spa (p, p) • w col (p, p) • e(p, q) � p∈V(p) � q∈V(q) w spa (p, p) • w col (p, p) (5.4) 
The neighborhoods V(p) and V(q) are respectively the block centered in p and q of radius γ col . The weighting functions w spa and w col caracterize respectively the spatial and chromatic closeness of neighbors p to p; they are defined by

w spa (p, p) = exp � - �p -p� 1 γ spa � , ( 5.5 
)

w col (p, p) = exp � - 1 card C �u l (p) -u l (p)� 1 γ col � (5.6)
where γ spa ∈ R + is a weight. The elementary pixel-to-pixel energy is described, for all p, q ∈ I, by e(p, q) = (1-θ) min Notice that in the algorithm implemented by Fernandez et al. [START_REF] Fernández | Bilaterally weighted patches for disparity map computation[END_REF], the input images are RGB with discret values in �0, 255�, that it plays on the validity range of the parameters τ col and τ ∇ , both in �0, 255�. Further, occlusions are indicated into the disparity map.

� 1 card C �u l (p) -u r (q)� 1 , τ col � +θ min �� � � � � ∂ů l ∂x (p) - ∂ů r ∂x (q) � � � � � , τ ∇ � ( 5 

Cost aggregation with guided filter matching

Given a disparity search range �d min , d max �, the algorithm developped by Tan et al. [START_REF] Tan | Stereo disparity through cost aggregation with guided filter[END_REF], consists in finding the pixel q(d) of the right image, with d ∈ �d min d max �, which minimizes the energy defined for each pixel p of the left image and the pixel q(d) of the right image. This energy, so-called "cost volume function" is denoted C and is based on the definition of the elementary energy previously described by (5.3.2) that one can rewrite as e(p, q(d)). The function C is then the map

C : N × N × Z → R (p, d) � → C(p, d) = e(p, q(d)). (5.6)
Since the pixel-to-pixel comparison is sensitive to noise, it follows that the functional C is also sensitive to noise. Rhemann et al. [START_REF] Rhemann | Fast costvolume filtering for visual correspondence and beyond[END_REF] proposed to denoise it by slice C(p, d), d being fixed. Tan et al. then apply the method of the guided filter designed by He et al. [START_REF] He | Guided image filtering[END_REF] to regularize the functional, by making u l the guided filter image. Introducing the chromatic local means

µ c p = 1 |V(p)| � p∈V(p) u l,c (p), for all c ∈ C, (5.6) 
as well as the local chromatic covariance matrices Σ c p ∈ M card C (R) whose terms are defined by

σ c 1 c 2 p = 1 |V(p)| � p∈V(p) u l,c 1 (p)u l,c 2 (p) -µ c 1 p µ c 2 p , pour tout c 1 , c 2 ∈ C, (5.6) 
He et al. [START_REF] He | Guided image filtering[END_REF] showed in the general case that their guided filtering could be expressed by a convolution of the form

C f ilt (p, d) = � r∈I 1 |V(p)||V(r)| � k∈V(p)∩V(r) � 1 + (u l (p) -µ k ) T (Σ k + �I C ) -1 (u l (r) -µ k )) � • C(r, d)
where (5.6)

µ k = (µ 1 k , • • • , µ card C k ), Σ k = (Σ 1 k , • • • , Σ card C k ) T ,
We do not detail more the optimization processes implemented by Tan et al. [START_REF] Tan | Stereo disparity through cost aggregation with guided filter[END_REF]. These include the rapid computation of the values µ k by box filtering, the location of occultations and the densification of the map of disparities when there are occultations.

Semi-global and more-global matching

Hirschmüller et al. [START_REF] Hirschmuller | Stereo processing by semiglobal matching and mutual information[END_REF] considered the matching problem in the random Markov fields framework. This corresponds to estimate the disparity D defined on the graph G(I, E) of the left image with I the set of nodes (i.e. pixels) and E the set of edges connecting the nodes according a 4-(or 8-) connectivity such that it minimizes the energy

E(D) = � p∈I C(p, D(p))) + � (p,q)∈E V (D(p), D(q)) (5.7) subject to D(p) ∈ �d min , d max �.
The fidelity data functional is expressed as C(p, D(p)) = �u l (p)u r (p + d)� 1 and the regularization as (5.6)

V (d, d � ) =        0 if d = d � , w 1 if |d -d � | ≤ 1,
Facciolo et al. [START_REF] Facciolo | Mgm: A significantly more global matching for stereovision[END_REF] showed that the effects of streaks observable on the disparity maps were due to the lack of information shared between two adjacent pixels p and q of the left image, located on the same line. Indeed, in this case only the matrix L r of the horizontal direction is common to the two nodes while the matrices of the 3 (or 7) other directions are not. If the information provided by L r is small, the 3 (or 7) others are preponderant, which independently modifies the estimates D(p) and D(q). In order to further regularize the cost matrices, Facciolo et al. proposed to replace (5.3.4) by

L r (p, d) = C(p, d) + � x∈{r,r ⊥ } 1 2 min d � ∈D (L r ((p -x), d � ) + V (d, d � )) (5.6)
where r ⊥ is the direction perpendicular to r. This formulation amounts to taking into account the information carried by all the nodes located in the section of the image delimited by the half-lines of directions r and r ⊥ , of origin the current node p. The results obtained by Facciolo et al. show that this method densifies and further regularizes the disparity maps.

Description of optical flow algorithms

The algorithms of this family calculate non-rigid motions assumed that the optical flows are fairly regular. The optical flow methods build on two general assumptions: the luminance is conserved between the two images and their digital versions are correctly sampled in the sense of Shannon. It follows that, in the case of only horizontal displacements between two images u l and u r , we have

∀(x, y) ∈ Ω, ∃d, u l (x, y) = u r (x + d, y). (5.6)
Applying first order Taylor expansions to the second member, and neglecting its residue because of the second assumption, the gradient equation is obtained as

d � u l (x, y) -u r (x, y) ∂ x u r (x, y) . (5.6)
Raudies [START_REF] Raudies | Optic flow[END_REF] has compiled a fairly comprehensive overview of optical flow resolution methods -accompanied by their numeric code -that rely on this constraint by possibly adding others.

Lucas-Kanade optical flow

The Lucas-Kanade algorithm [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] presents, besides its historic interest, a technical interest: in its original version its authors do not introduce any regularization functional. In addition to the constraint in (5.4), they add the supplementary assumption that movement d(p) is constant in a neighborhood V of p. They define an energy based on the quadratic error between the images, as

E(d) = � p∈V(p) (u r (x + d, y) -u l (x, y)) 2 , ( 5.6) 
where p = (x, y) T . By differentiating this functional, they get the following relation:

d � � p∈V(p) ∂ x u r (p)(u l (p) -u r (p)) � p∈V(p) (∂ x u r (p)) 2 . (5.6)
Over the decades, many contributions have appeared to improve the estimation of d. Baker et al. [START_REF] Baker | Lucas-Kanade 20 years on: A unifying framework[END_REF], for instance, compile many of these variants. The algorithm proposed in the evaluation is primarily used as a reference algorithm due to its simplicity. This is a 1D multiscale version similar to the one designed by Bouguet [START_REF] Bouguet | Pyramidal implementation of the Lucas-Kanade feature tracker[END_REF]. A Gaussian filter, G σ 1 , is applied at each scale to reduce image noise, as advocated by Rais et al. [START_REF] Rais | Corrélateur et interpolateur à faible complexité[END_REF]. The algorithm, however, differs from these methods in the consideration of the chromatic channels. In both previous cases, the input color images are converted to grayscale before being processed. The argument is that the averaging, possibly weighted, of the RGB channels resulting in the grayscale image reduces noise and increases the accuracy of the displacements estimate. Nevertheless, in the presence of very low noise, this averaging mitigates the signal and uniformizes it. Our algorithm retains the three channels to calculate displacements. Regarding the iterative process to estimate d, we opted for the method of Hager et al. [START_REF] Hager | Efficient region tracking with parametric models of geometry and illumination[END_REF], called the inverse additive algorithm [5, Section 3.3], which accelerates calculations. The algorithm is detailed in pseudo-codes 6, 7 and 8. We explain the main numerical schemes in the next section.

Numerical schemes

Given S, the number of scales, we denote by

u s i = (u s i,R , u s i,G , u s i,B
), for all i ∈ {l, r}, the color image at scale s. These images have a size of L s × H s pixels at scale s. We denote by I s = {0, . . . , L s -1} × {0, . . . , H s -1} the discretized digital image.

Neighborhood The neighborhood V(p) consists of pixels p = (x, y) such that

V(p) = {p/∀x ∈ �0; L s �, ∀y ∈ �0; H s �, |x -x| ≤ v x ∧ |y -y| ≤ v y },
where v x and v y are the half-width and half-height respectively. The size of the neighborhood is fixed regardless of the considered scale.

Multiscale structure

The scaling of color images u l and u r from s to s + 1 is done by blurring the images with a Gaussian kernel, G σ 2 , of standard deviation σ 2 = 1.2, to reduce aliasing, and by subsampling them using bicubic interpolation. This is formulated as ∀i ∈ {l, r}, ∀c, ∀(x, y) ∈ I s+1 , u s+1 i,c (x, y) = (K 1 * G σ 2 * u s i,c )(x/ρ x , y/ρ y ), (5.6) where K 1 is the bicubic interpolation kernel and ρ x , ρ y the scale factors, set at �Ls/2�-1

Ls-1

and �Hs/2�-1 Hs-1 , respectively. Each image u s i,c is then blurred by G σ 1 , with σ 1 = 0.4, as ∀i ∈ {l, r}, ∀c, ∀(x, y) ∈ I s , ȗs i,c (x, y)

Δ = G σ 1 * u s i,c (x, y). (5.6)
This convolution is performed in the Fourier domain. The conversion from the disparity map Ds+1 l , estimated at scale s + 1, to the disparity map Ds init of scale s, is performed by bilinear interpolation as

∀(x, y) ∈ I s , Ds init (x, y) = 1 ρ x (K 2 * Ds+1 l )(ρ x x, ρ y y), ( 5.6) 
where K 2 is the bilinear interpolation kernel. This is used to prevent the change of displacement direction.

Differentiation As images u s r,c are blurred at each scale s, the derivative

∂ x ȗs r,c is calculated using ∂ x G σ 1 as ∀c, ∀(x, y) ∈ I s , ∂ x ȗs r,c (x, y) = (∂ x G σ 1 * u s r,c )(x, y), ( 5.6) 
where

∂ x G σ 1 (x, y) = - x 2πσ 4 1 exp - � x 2 2σ 2 1 + y 2 2σ 2 1 � .
This convolution is performed in the Fourier domain.

Iterative estimation of displacement

In the original article [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF], the resolution of (5.4.1) is performed iteratively according to the Newton-Raphson scheme, which, in our case, is expressed at every scale as

d 0 = 0, d k+1 = d k + A 1 B 1 ,
with

A 1 = � p∈V(p) c∈{R,G,B} (K 1 * ∂ x ȗs d,c )(x + Ds init (p) + d k , y), ×[ȗ s g,c (x, y) -(K 1 * ȗs d,c )(x + Ds init (p) + d k , y)], B 1 = � p∈V(p) c∈{R,G,B} ((K 1 * ∂ x ȗs d,c )(x + Ds init (p) + d k , y)) 2 .
This method has the disadvantage of having to calculate the interpolated values of ∂ x u s r (x + Ds init (p) + d k , y) at each iteration k and for p in V(p). Hager et al. [START_REF] Hager | Efficient region tracking with parametric models of geometry and illumination[END_REF] proposed an improvement: they reformulated the energy (5.4.1) from the point of view of elementary displacements d k [43, eq. ( 7)] and showed that, in the particular case of translation along x [43, eq. ( 26)], the scheme is

d 0 = 0, d k+1 = d k + A 2 B 2 , ( 5.1) 
with

A 2 = � p∈V(p) c∈{R,G,B} ∂ x ȗs g,c (x, y)[ȗ s g,c (x, y) -(K 1 * ȗs d,c )(x + Dinit (p) + d k , y)],(5.2) B 2 = � p∈V(p) c∈{R,G,B} (∂ x ȗs g,c (x, y)) 2 .
(5.3)

Robust 1D optical flow

The Brox et al. method [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF] poses the problem of optical flow estimation as a continuous optimization problem. A global energy functional includes several con-straints for computing piecewise-continuous optical flow fields. In the case of disparity maps, this energy is given by

E(d) = � Ω Ψ � (u r (x + d, y) -u l (x, y)) 2 � dx + γ � Ω Ψ � |∇u r (x + d, y) -∇u l (x, y)| 2 � dx + α � Ω Ψ � |∇d| 2 � dx, with Ψ(s 2 ) = √ s 2 + � 2
and � := 0.001 a small constant. The first term can be seen as a continuous formulation of the Lucas-Kanade matching function. The second term allows to find a solution where the gradients of both images are similar. This is interesting if there exists constant brightness changes among the two images. The last term is a regularization constraint that enforces the solution to be smooth. The use of robust functions, Ψ, allows to deal with problems like image noise, occlusions and brightness changes, and, in the case of the regularization term, to create piecewise-continuous motions with sharp edges. Parameters γ and α weigh the gradient and the smoothness terms, respectively.

The minimum of the previous energy function can be found by solving the associated Euler-Lagrange equations, given by

0 =Ψ � D • (u r (x + d, y) -u l (x, y)) • u r,x (x + d, y) + γ Ψ � G • [ (u r,x (x + d, y) -u l,x (x, y)) • u r,xx (x + d, y) + (u r,y (x + d, y) -u l,y (x, y)) • u r,xy (x + d, y)] -α div (Ψ � S • ∇d) , with Ψ � (s 2 ) = 1 2 √ s 2 +� 2 and Ψ � D :=Ψ � � (u r (x + d, y) -u l (x, y)) 2 � , Ψ � G :=Ψ � � |∇u r (x + d, y) -∇u l (x, y)| 2 � , Ψ � S :=Ψ � � |∇d| 2 � .
First order Taylor expansions are used to linearize u r (x + d, y) and its derivatives in the following way:

u r (x + d k+1 , y) ≈u r (x + d k , y) + u r,x (x + d k , y)Δd k , u r,x (x + d k+1 , y) ≈u r,x (x + d k , y) + u r,xx (x + d k , y)Δd k , u r,y (x + d k+1 , y) ≈u r,y (x + d k , y) + u r,xy (x + d k , y)Δd k , with Δd k = d k+1 -d k .
We assume that d k is a close approximation to our unknown d k+1 . The disparity map is incrementally updated as

d k+1 = d k + Δd k .

Numerical scheme

An efficient way to solve (5.4.2) is through an iterative scheme like the Gauss-Seidel or SOR methods. The Brox method is implemented by two fixed point iterations: a set of outer-iterations is used to account for the Taylor expansions (index k), and a set of inner-iterations for the nolinearities of the robust functions Ψ � (u r (x + d, y)u l (x, y)) 2 � (index l). Using another index, s, to represent the iterations of the SOR method, the numerical scheme is given by

d k,l,s+1 := (1 -w) d k,l,s + w � A + α div(Δd) k,l,s i±1,j±1 � D , ( 5.-7) 
with w ∈ (0, 2) the SOR relaxation parameter (w := 1.9 by default). In this equation, A and D are given by

A := -(Ψ � D ) k,l (u r (x + d, y) -u l (x, y)) u r,x (x + d, y) + α div(d) k,l i±1,j±1 -γ (Ψ � G ) k,l [ (u r,x (x + d, y) -u l,x (x, y)) u r,xx (x + d, y) + (u r,y (x + d, y) -u l,y (x, y)) u r,xy (x + d, y)], D :=(Ψ � D ) k,l u 2 r,x (x + d, y) + γ (Ψ � G ) k,l � u 2 r,xx (x + d, y) + u 2 r,xy (x + d, y) � + α C k,l i,j
. Partial derivatives are approximated using central differences and expressions like u r (x + d k,l ) are computed using bicubic interpolation. The discretization of the divergence can be separated in three parts by div ((

Ψ � S ) • ∇(d + Δd)) =div ((Ψ � S ) • ∇d) + div ((Ψ � S ) • ∇Δd) ≈ div(d) k,l i,j + div(Δd) k,l+1 i±1,j±1 -C k,l i,j • Δd k,l+1 i,j where div(d) k,l i,j := (Ψ � S ) k,l i+1,j + (Ψ � S ) k,l i,j 2 � d k,l i+1,j -d k,l i,j � + (Ψ � S ) k,l i-1,j + (Ψ � S ) k,l i,j 2 � d k,l i-1,j -d k,l i,j � + (Ψ � S ) k,l i,j+1 + (Ψ � S ) k,l i,j 2 � d k,l i,j+1 -d k,l i,j � + (Ψ � S ) k,l i,j-1 + (Ψ � S ) k,l i,j 2 � d k,l i,j-1 -d k,l i,j � , div(Δd) k,l+1 i±1,j±1 := (Ψ � S ) k,l i+1,j + (Ψ � S ) k,l i,j 2 Δd k,l+1 i+1,j + (Ψ � S ) k,l i-1,j + (Ψ � S ) k,l i,j 2 Δd k,l+1 i-1,j + (Ψ � S ) k,l i,j+1 + (Ψ � S ) k,l i,j 2 Δd k,l+1 i,j+1 + (Ψ � S ) k,l i,j-1 + (Ψ � S ) k,l i,j 2 Δd k,l+1 i,j-1 ,
and

C k,l i,j := (Ψ � S ) i+1,j + (Ψ � S ) k,l i,j 2 + (Ψ � S ) i-1,j + (Ψ � S ) k,l i,j 2 + (Ψ � S ) i,j+1 + (Ψ � S ) k,l i,j 2 + (Ψ � S ) i,j-1 + (Ψ � S ) k,l i,j 2 .
The numerical approximation in (5.4.2) is calculated until the method converges to a steady state solution or exceeds a maximum number of iterations. The stopping criterion is 1

N � i,j,k � du s+1 i.j,k -du s i.j,k � 2 + � dv s+1 i.j,k -dv s i.j,k � 2 < ε 2 , (5.-17)
with N the number of pixels and ε the stopping criterion threshold. Upon convergence, the method passes to the next inner iteration, l + 1, and recompute the variables in (5.4.

2).

A coarse-to-fine approach, similar to the one explained in Section 5.4.1 or in [START_REF] Meinhardt-Llopis | Horn-Schunck Optical Flow with a Multi-Scale Strategy[END_REF][START_REF] Sánchez Pérez | Robust optical flow estimation[END_REF], can be used to estimate large displacements. At the coarsest scale, the disparity map is initialized to zero and this numerical scheme is solved to find a solution for that scale. The disparity map is then upgraded and solved at each finer scale.

The work in [START_REF] Sánchez Pérez | Robust optical flow estimation[END_REF] explains this method and its implementation in detail and analyzes its performance with respect to the parameters.

Discontinuity-preserving robust 1D optical flow

One of the problems of the Brox et al. method is that it often produces motion contours that do not coincide with the objects' contours. A standard approach to overcome this problem is to include a scalar decreasing function [START_REF] Monzón | Regularization strategies for discontinuity-preserving optical flow methods[END_REF] in the regularization term in order to mitigate the smoothing when the gradient of the image is high.

The energy functional is

E(d) = � Ω Ψ � (u r (x + d, y) -u l (x, y)) 2 � + γ � Ω Ψ � |∇u r (x + d, y) -∇u l (x, y)| 2 � + α � Ω Ψ � Φ(∇u l ) • |∇d| 2 � dx,
with Ψ (s 2 ) and � defined as in the previous section. The scalar decreasing function, Φ(∇u r ), is the only difference with respect to the previous model. It can be chosen as Φ(∇u l ) = e -λ(x,y)|∇u l | .

(5.-18)

The associated Euler-Lagrange equation is

0 = Ψ � D • (u r (x + d, y) -u l (x, y)) • u r,x (x + d, y) + γ Ψ � G • [ (u r,x (x + d, y) -u l,x (x, y)) u r,xx (x + d, y) + (u r,y (x + d, y) -u l,y (x, y)) u r,xy (x + d, y)] -α div (Ψ � S • ∇d) , with Ψ � D :=Ψ � � (u r (x + d, y) -u l (x, y)) 2 � , Ψ � G :=Ψ � � |∇I c 2 (x + w) -∇I c 1 (x)| 2 � , Ψ � S :=Φ(∇u l ) • Ψ � (Φ(∇u l ) • |∇d|) . Provided that Ψ �
S is the only place where the discontinuity-preserving function is used, we note that the numerical scheme for this method can be very similar to the Brox method. Therefore, the numerical scheme in (5.4.2) and the discretizations in (5.4.2) and (5.4.2) can be replicated.

As shown in [START_REF] Monzón | Regularization strategies for discontinuity-preserving optical flow methods[END_REF], and implemented in [START_REF] Nelson Monzón López | Robust discontinuity preserving optical flow methods[END_REF], a good choice for λ(x, y) is given by

λ(x, y) := -ln(ξ) + ln(α) |∇u l (x, y)| .
with ξ a small constant and α the regularization parameter. This choice allows us to avoid some instabilities that appear when the function approaches zero and adapts the smoothing strength based on local information. However, when the gradient of the image is close to zero, λ tends to ∞. Thus, this formulation must discriminate whether a pixel belongs to a homogeneous regions or not. The value of λ is calculated in each pixel as

λ f (x, y) := min{λ Ω , λ(x, y)}, with λ Ω := -ln(ξ) + ln(α) |∇u l (x � , y � )| , (5.-23)
where (x � , y � ) is such that |∇u l (x � , y � )| is the rank τ ×|Ω| among the image gradients, with τ := 0.94 a suitable value; see [START_REF] Monzón | Regularization strategies for discontinuity-preserving optical flow methods[END_REF].

Evaluation methodology

The definition of objective metrics to evaluate and rank the effectiveness of a particular stereo algorithm is a complex problem. The methodology consists in exploiting and/or classifying the results of these metrics according to objective and more general principles. On the first topic, it is clear that there are almost as many metrics as benchmark databases. The example of the Middlebury evaluation platform, developed by Scharstein et al. [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF][START_REF] Scharstein | High-accuracy stereo depth maps using structured light[END_REF][START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF], which is the de facto standard in the evaluation of stereo algorithms, is very representative. It offers no less than forty metrics:

• ten formulas, such as success rates with four precision thresholds, RMSE, mean error and four quantiles of percentage of error;

• two algorithmic properties. The first one based on density: the algorithm indicates, for each pixel, an estimate disparity, i.e., Dl (p) ∈ R. The second one based on sparsity: the algorithm indicates a non numeric value at pixels where it can not evaluate the disparity, i.e., Dl (p) � ∈ R;

• two configurations, depending on whether or not visibility or occlusion of pixels are taken into account in both views.

Among these metrics, as noted by Kostlivá et al. [START_REF] Kostlivá | Roc based evaluation of stereo algorithms[END_REF], the first family associated with a precision threshold of one pixel and the two aforementioned configurations are typically the most used. These precision criteria are very simple to use and give a relatively good idea about what an algorithm must do: to accurately estimate displacements, or disparities in the stereo context, and provide dense data.

Our goal is to compare several algorithms about the density and accuracy of disparity maps with respect to varying baselines, from small to large values. Furthermore, we seek to penalize the lack of information, i.e., occlusions in a large baseline, and the ability of algorithms to detect the occluded area. A drawback of this approach is that we will compare success criteria obtained by the same algorithm but with different input data. Indeed, if we denote by u l a left reference image and B 1 and B 2 two shifts between two optical centers for the production of the respective right images u r (B 1 ) and u r (B 2 ), test pairs (u l , u r (B 1 )) and (u l , u r (B 2 )) have a different informational content. This criticism is legitimate but must be relativized: we do not only seek to assess algorithmic qualities but also two types of stereoscopic acquisition systems, namely pairs with a small or a large baseline. In what follows, we present these metrics and their suitability to this specific problem, together with the available ground truths.

Existing metrics

Among the existing metrics, the success rate (or the mismatch rate) with a fixed a priori accuracy threshold s is widely adopted. Two categories of pixels are taken into account. Scharstein et al. [START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF] consider the number of visible pixels, given by

N vis = � p �(O l (p) = 0). (5.-23)
Then, by convention, they consider that a disparity with a non numeric value (Nan) represents either an occlusion or the impossibility for the algorithm to accurately estimate the disparity. It is thus possible to define the valid number of pixels as

N val = � p �(O l (p) = 0) • �( Dl (p) ∈ R). (5.-23)
Finally, the total number of pixels, with mismatch error below s, is

S a (D l , Dl ) = � p �(O l (p) = 0) • �( Dl (p) ∈ R) • �(�D l (p) -Dl (p)� 2 < s). (5.-23)
Additionally, Scharstein et al. [START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF] define two success rates: dense S a /N vis and non dense S a /N val , respectively. The second ratio is necessarily higher than the first one.

Reconstruction of point clouds from a disparity map D l , in the hypothesis of a pinhole camera, is made under the Thales theorem stating that [START_REF] Cabezas | A measure for accuracy disparity maps evaluation[END_REF] identified two elements that lack in the definition of metric (5.5.1). The first is that it does not take into account the a priori error made on the depth z C

z C (p) = f B D l (p) , ( 5 
during the 3D reconstruction. The precision error �(|D l (p) -Dl (p)| < s) implies that disparity maps having similar success rate after equation (5.5.1), and using the same threshold s, can produce 3D reconstructions of very different qualities.

The second shortcoming is that the metric (5.5.1) is a function that depends on a threshold s whose value can impact the results.

To overcome these problems, Cabezas et al. [START_REF] Cabezas | A measure for accuracy disparity maps evaluation[END_REF] derived from (5.5.1) the following metric, called SZE (Sigma-Z-Error), that sums the difference between the estimated and exact depths on the entire disparity map:

SZE = � p � � � � � f B D l (p) + µ - f B Dl (p) + µ � � � � � , (5.- 23 
)
where µ is a constant that avoids numerical instabilities due to missing disparity estimates. According to the authors, this metric has the advantage of measuring the impact of the disparity error upon the error depth and does not resort to any threshold that could introduce a bias. However, they do not specify the value they attach to µ. Cabezas et al. [START_REF] Cabezas | A measure for accuracy disparity maps evaluation[END_REF] show, from tests performed on the Middlebury and Tsukuba databases, that the SZE metric is more efficient and more accurate than metric (5.5.1) in that it reflects the observed reconstruction errors more. The drawback of measure (5.5.1) is that it is absolute and depends on the scene itself. In fact, it represents a kind of volume since the difference of depths is integrated over the entire surface of the image. This makes it difficult to compare the results obtained from the same scene with various baselines, or to average the results of different scenes to make statistics. Furthermore, this metric requires the use of an unspecified smoothing term µ.

Proposed methodology and metrics

Regarding an evaluation metric, we do not think, unlike Cabezas et al. [START_REF] Cabezas | A measure for accuracy disparity maps evaluation[END_REF], that the use of a threshold is a drawback. More exactly, when a range S = [s min , s max ] for the threshold is explored rather than a fixed threshold s in particular, the general behavior of an algorithm is better described. As a consequence, the evaluation should be represented in the less condensed form of ROC curves where success rate is expressed in terms of accuracy thresholds. The metrics we propose in what follows take into account a criterion precision incorporated into a density measurement.

Precision criteria

From equation (5.5.1), we introduce the measure of the relative error on the depth defined by -23) with the convention that the ratio is zero if the terms D l (p) and Dl (p) are zero simultaneously. These relative precision criteria allow us to get rid of the considered baseline and to express it as a percentage.

|z C (p) -z C (p)| |z C (p)| = � � � � � D l (p) -Dl (p) D l (p) � � � � � , ( 5 
� �� � � � � D l (p) -Dl (p) D l (p) � � � � � < s � , ∀s, (5. 

Density criteria

The definitions of the metrics are based on the assumption that the area under the pixel can only have two states: being visible on both images or hidden in one.

It follows that the exact and estimated occlusion maps have only four possible Boolean relationships r, namely (5.-23)

r kl (p) Δ = (O l (p) = k) ∧ ( Õl (p) = l), ∀(k, l) ∈ {0, 1} × {0, 1}, ( 5 
State r 00 is associated to disparities that, if they exist, are estimated in nonoccluded areas by a matching process specific to the algorithm. On the other hand, state r 10 corresponds to disparities that, if they exist, are estimated by an inference process. More specifically, it is possible that, in order to calculate the disparities of pixels visible in both images, the algorithm involves an interpolation process, for example on a constant color area, and not only a matching process. In contrast, to compute disparities of occluded pixels, the algorithm can proceed only from inference or interpolation. This leads us to define three metrics:

Definition 5.1. The average density precision metric, relating to precision threshold s, comparing the estimate disparity Dl with the exact dense disparity D l is the success rate

T M ( Dl , D l , s) = 1 N I � p �   � � � � � � D l (p) -Dl (p) D l (p) � � � � � � < s   , ∀s, (5.-23)
with the convention 

�   � � � � � � D l (p) -Dl (p) D l (p) � � � � � � < s   Δ = 0, if Dl (p) � ∈ R
T A ( Dl , D l , s) = 1 � p �(O l = 0) � p �(O l = 0) • �   � � � � � � D l (p) -Dl (p) D l (p) � � � � � � < s   , ∀s, (5.-23)
with the same convention as definition 5.1.

Definition 5.3. The inference density precision metric, relating to the precision threshold s, comparing the estimate disparity

Dl with the exact dense disparity D l and knowing the exact occlusions O l is the success rate

T B ( Dl , D l , s) = 1 � p �(O l = 1) � p �(O l = 1) • �   � � � � � � D l (p) -Dl (p) D l (p) � � � � � � < s   , ∀s, (5.-23)
with the same conventions as in definition 5.1.

Remark 1. To our knowledge, the assumption of the two-state visibility is valid in all current academic test databases, that is to say that there is no concept of transparency. However, the notion of occlusion becomes quite unclear if there is an attempt to take the transparency phenomenon into account in the description of scenes. The formalization of this problem was deemed too complex to be treated here.

Remark 2. Some stereoscopic algorithms discriminate against non-assessed pixels in two categories: occluded pixels and non-assessable pixels, the latter property to indicate that information is lacking to estimate their disparity. The proposed metrics do not differentiate these algorithms from algorithms which make no discrimination, since in both cases they consider that Dl (p) � ∈ R.

Remark 3. Metrics (5.1) and (5.2) apply equally to dense or sparse algorithms. Unlike formulation (5.5.1) of Scharstein et al. [START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF], the metric (5.2) includes all the pixels of the images and not only the visible or valid pixels. This is consistent with our goal to penalize the lack of information. The metric (5.3) only makes sense vis-à-vis algorithms providing dense maps and should only be used, to have a certain statistical validity, in that cases where the hidden pixels are numerous.

Optical flow algorithms consistency criteria

In order to compare all the algorithms objectively, we should work on similar disparity maps, that is to say dense or non-dense. Purely stereoscopic algorithms provide non-dense maps, which is not the case of the optical flow algorithms that we have described in the previous section. To avoid penalizing them, we added a post-processing consistency criterion to create the Dl (p) maps. Typically [START_REF] Fua | A parallel stereo algorithm that produces dense depth maps and preserves image features[END_REF], this aberrant disparity rejection criterion is based on the comparison between disparities estimated from the pairs (u l , u r ) and (u r , u l ). Specifically, we have for all p the condition

Dl (p) � ∈ R if          p + Dl (p) < 0, p + Dl (p) > L I �(| Dl (p) + Dr (p + Dl (p))| > θ) , (5.- 23 
)
where Dr is the map of estimated and interpolated disparities, the values p + Dl (p) not being necessarily integers.

In the case of the Middlebury or Tsukuba [START_REF] Martull | Realistic cg stereo image dataset with ground truth disparity maps[END_REF] datasets for example, this consistency threshold is usually set to 0 or 1, because the disparity maps used take their values in [a, b], with 1 < a and b � 300. The choice of a θ threshold is more difficult in the subpixel context, especially as the CMLA dataset provides disparity maps such that 0 ≤ a � 1 and b ≤ 50. The orders of magnitude are thus very variable. In order to have a moderate rejection criterion, we propose to use the relative error defined by

�   2 | Dl (p) + Dr (p + Dl (p))| | Dl (p) -Dr (p + Dl (p))| > θ   , (5.-23)
where the ratio is set to zero if Dl (p) and Dr (p + Dl (p)) are zero simultaneously.

Conclusion

Evaluation of stereo algorithms in low baselines requires appropriate databases and performance criteria. For the first point, we will use the database "CMLA dataset" described in chapter 3. For this second point we proposed here several measures that take into account the precision and the density of the disparity maps. We have detailed various algorithms belonging to categories that are fairly representative of the domain, which we will evaluate in the next chapter.

Algorithm 6: Multiscale Lucas-Kanade optical flow algorithm associated to 

u 1 l . Input: (u 1 l , u 1 r , σ 1 , v x ,
for k ← 0 to T do 25 d ← � c∈{R,G,B} � (x,y) ∂ x v l,c (x, y)[v l,c (x, y) -(K 1 * v r,c )(x + d init + d k , y)] � c∈{R,G,B} � (x,y) (∂ x v l,c (x, y)) 2 26 d k+1 = d k + d
G σ v ← Blur (u, G σ=1.0 ) ρ x ← �L I /2�-1 L I -1 ρ y ← �H I /2�-1 H I -1 bicubic interpolation of kernel K 1 w(x, y) ← (K 1 * v)(x/ρ x ,
U (Δm + m, Δn + n) ← u(m, n) ∀0 ≤ m < L I , 0 ≤ n < H I U (Δm + m, Δn -n) ← u(m, n) ∀0 ≤ m < L I , 0 ≤ n < H I U (Δm -m, Δn + n) ← u(m, n) ∀0 ≤ m < L I , 0 ≤ n < H I U (Δm -m, Δn -n) ← u(m, n) ∀0 ≤ m < L I , 0 ≤ n < H I convolution using Fourier transform T F Û ← T F(U ) Ĝ ← T F(G) Û ← Ĝ × Û U ← Re(T F -1 ( Û )) suitable part of the image u(m, n) ← U (Δm + m, Δn + n) ∀0 ≤ m < L I , 0 ≤ n < H I CHAPTER 6

EVALUATION OF STEREO METHODS IN SHORT BASELINE

Abstract: This chapter is devoted to the evaluation of the stereo algorithms described in chapter 5. To this end, we lead experiments on the CMLA dataset built in chapter 3 and several scenes extracted from the Middlebury dataset. The stereo pairs are split according to three baseline classes, say 1/50, 1/250 and 1/2500. The results seem to support the hypothesis that, in the absence of noise, it is more advantageous to use stereoscopic pairs acquired in a shorter baseline. They therefore validate the use of a short baseline in accordance to the theory, up to a certain limit.

Experimental protocol

The tested methods are the rigid motion stereo-matching algorithms described in section 5.3 and the optical flow methods described in section 5.4. By convention, we will use the following acronyms:

• LKM: Lucas-Kanade 1D multiscale method;

• ROF1D: Robust Optical Flow 1D method;

• RDPOF1D: Robust Discontinuity Preserving Optical Flow 1D method;

• KZ: Kolmogorov-Zabih method [START_REF] Kolmogorov | Kolmogorov and zabih's graph cuts stereo matching algorithm[END_REF];

• GF: Guided filter method [START_REF] Tan | Stereo disparity through cost aggregation with guided filter[END_REF];

• BWP: Bilaterally Weighted Patches method [START_REF] Yoon | Adaptive support-weight approach for correspondence search[END_REF][START_REF] Fernández | Bilaterally weighted patches for disparity map computation[END_REF];

• MGM: More Global Matching method [START_REF] Facciolo | Mgm: A significantly more global matching for stereovision[END_REF].

We tested these algorithms with the CMLA dataset [START_REF] Dagobert | The production of ground truths for evaluating highly accurate stereovision algorithms[END_REF] whose conception is described in chapter 3. This dataset was produced by simulating a fronto-parallel camera motion. The produced images have near-zero noise and their disparity accuracy is of the order of 10 -6 . This dataset includes particularly four scenes with and without light reflections. We will call these two configurations "case A" and "case B", respectively (see figure A.1). From this dataset, we have extracted three groups of pairs, each consisting of the 11 synthetic scenes:

• the group of pairs in "large" baseline, composed of viewpoints +000 and +050, where the maximum disparity is 50 pixels and the baseline is about 1/50;

• the group of pairs in "moderate" baseline, composed of viewpoints +000 and +010, where the maximum disparity is 10 pixels and the baseline is about 1/250;

• the group of pairs in "short" baseline, composed of viewpoints +000 and +001, where the maximum disparity is 1 pixel and the baseline is about 1/2500.

We also compared the algorithms for seven stereo pairs (see figure 6.1) from the Middlebury 2014 dataset [START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF], which we previously rectified and corrected (cf. § 6.1.1).

Preprocessing of Middlebury 2014 pairs

The stereo pairs of the Middlebury 2014 dataset [START_REF] Daniel Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF] have the following characteristics:

• size of about 2800 × 2000 pixels;

• disparities varying from 30 to 250 pixels;

• maximal disparity precisions of about 0.2 pixel;

• unknown but weak noise values.

We selected the seven stereo pairs presented on figure 6.1. The pre-processing chain applied to these pairs is shown in algorithm 9 and diagram 6.2. To compare the results from this database with those of the synthetic pairs, we reduced the size of the images by a factor of 5 (steps 1-6 of algorithm 9), thereby obtaining less noisy pairs (u ×0.2 l , u ×0.2 r ), whose left disparity maps D ×0.2 l have a precision error of 0.04 consistent with a 0.075 precision limit (1/16th pixel), and whose 50 pixel maximal disparities are comparable with those of the large baseline pairs of the CMLA dataset.

The raw disparity maps D 0 l and D 0 r provided by Middlebury 2014 needed to be rectified before use, because they contained invalid values that made it difficult downscaling the images and computing the occlusion maps (steps 7 to 12 of algorithm 9). Taking into account invalid disparities in the success rate computation implies rewriting relation (5.1) as

(u 0 l , u 0 d ) (D 0 l , D 0 r ) (D 1 l , D 1 r ) V 1 l O 1 l D 1 l (u 1 l , u 1 d ) V 2 l , O 2 l , D 2 l (u ×0.2 l , u ×0.2 d ) V ×0.2 l , O ×0.2 l , D ×0.2 l V ×0.2 l , O ×0.2
T � M ( Dl , D l , s) Δ = 1 N V � p V l (p)�   � � � � � � D l (p) -Dl (p) D l (p) � � � � � � < s   , ∀s, (6.0) 
where

N V := � p V l (p)
is the number of valid pixels.

Algorithms parameterization

Stereo algorithms were tested with their default settings. While GF, BWP and KZ have pixel accuracy, MGM was adapted to reach a 1/4th pixel accuracy. The optical flow algorithms also had fixed parameters. The specifically developed LKM was configured with a 5 × 5 pixel neighborhood and a Gaussian blur kernel of standard deviation σ = 0.4. ROF1D was used with α ROF = 2 and γ ROF = 2 (respectively corresponding to parameters α and γ in [121, eq. ( 3)]) from observations made by Sánchez et al., while other parameters take default settings. RDPOF1D was used with parameters α RDP = 25 and γ RDP = 1 in automatic mode, the other parameters take the default values. The consistency threshold θ of (5.5.2) applied to LKM, ROF1D and RDPOF1D was set to 0.2.

Numerical results

We tested the robustness of the algorithms against the influence of a growing additive Gaussian noise from σ = 0 to σ = 10. The metric used is given in definition 5.1 and has a fixed accuracy threshold s = 1. This choice must be explained. The relation (5.5.2) defining the relative precision can be reformulated as |D l (p) -Dl (p)| < s|D l (p)|, but the short baseline CMLA pairs have disparities of approximatively one pixel, that is to say

|D l | ≈ 1.
On the one hand, since discrete and pixel precise algorithms have no precision below one pixel, the minimal errors |D l (p) -Dl (p)| are larger than 1. It is therefore not appropriate to set a precision threshold s below 1. On the other hand, this threshold corresponds to a relative error of 100%. In the case of the long baselines CMLA pairs, there is no reason to increase the threshold. Therefore, this choice is a compromise that allows to compare pixel and subpixel algorithms together and under different baselines configurations. The results are shown in figures 6.3, for the CMLA dataset, and 6.6, for the Middlebury dataset.

Globally, according to the graphs in figure 6.3, we can observe behaviors depending on the noise level. For σ in [0, 2], the results are in descending order from low to large baselines. Indeed, for low noise levels the error caused by occlusions dominate, and this error is bigger for larger baselines. When σ exceeds 2, the larger baselines become more robust. Thus, moderate baselines represent the best compromise. The Middlebury 2014 and CMLA databases give, for large baselines, almost the same algorithm ranking (see 6.3 and 6.6 top lines). In descending order, we have: KZ, RDPOF1D, ROF1D, MGM, LKM, BWP and GF. All baselines combined, RDPOF1D, ROF1D and MGM are better than the others. The RD-POF1D rates are never lower than 90% on the CMLA dataset and are at 85% on Middlebury, regardless of noise and baseline.

We did the same tests for the sub-pixel algorithms LKM, ROF1D, RDPOF1D and MGM, with an accuracy threshold s = 0.25. The results are shown in figures 6.4, for the CMLA dataset, and 6.6, for the Middlebury base. We observe the same phenomena as above: moderate baselines perform better than the low and large ones, for a noise smaller than σ = 2. For higher values, high and moderate baselines are similar, while in low baselines, only RDPOF1D is robust. ROF1D and RDPOF1D are better than MGM and the LKM, on both datasets.

We investigated the accuracy limits of the optical flow algorithms, LKM, ROF1D and RDPOF1D, with and without noise, by varying the threshold s from 1 to 10 -4 , combined with the metric definitions 5.1, 5.2 and 5.3. The results are shown in figures 6.5 and 6.7.

Concerning the results of the latter, they must however be taken with some caution, because the disparity errors of the "exact" disparity maps are about 0.04 pixel. Figure 6.5: in the absence of noise, we clearly observe a threshold effect s e , whatever the algorithm we choose. For precision values s ≥ s e , moderate baselines dominate whereas, for precision values s ≤ s e , large baselines dominate. This corresponds to the occlusion effects of the large baselines penalizing information density in the first case, and to the triangulation improvement by these same baselines, in the second. According to definition 5.1, the thresholds of s e of ROF1D, RDPOF1D and LKM are about 0.012, 0.01 and 0.1 respectively. The low baselines here may have little interest because they decrease very rapidly whatever the algorithms and the noise level. In the absence of noise, optical flow methods get around 75% success at precision s = 0.1 and around 45% at s = 0.01 for large and medium baselines. The best rate is obtained by ROF1D with 85% and 55% for the previously mentioned thresholds.

In the case of a noise with σ = 10, large baselines globally dominate, whatever the algorithms. The effect of threshold is observable only for RDPOF1D and is worth more than 0.1. ROF1D and RDPOF1D are ahead but they do not exceed 70% to 25% success at s = 1/10 and s = 1/100, respectively. In addition, RD-POF1D is very robust. Regardless of the baseline considered, the drop in rates is much lower than the drop observed for the LKM and ROF1D.

Bottom row, the success rate according to definition 5.3 averaged over the simulated pairs. On the left, with no added noise and, on the right, with a Gaussian noise of σ = 10. The rates are very low because the algorithms do not use any inference method. However it is reasonable to think that if this were the case, they would not exceed the visible pixel rate. Figure 6.3: Top line, success rates of each algorithm according to definition 5.1, averaged on the 11 CMLA scenes, expressed as functions of an additive Gaussian blur σ and for a precision threshold of s = 1.00. This threshold is the smallest to allow simultaneous comparison of pixel and sub-pixel algorithms. The settings for ROF1D, RDPOF1D and LKM were set to identical values for the three baselines. Moderate baselines globally outweigh the large and low ones: occlusions in large baselines are penalizing, while noise rapidly degrades the short baselines. The three best algorithms are ROF1D, RDPOF1D and MGM whose success rates decrease more slowly than others depending on the noise. The bottom line shows the average of the 4 scenes of the hotel without reflections (case A) on the left, with reflection on the right (case B). We could have expected the results of case B to be worse than A, in large baselines, due to the areas of reflection that do not follow, in appearance, the real geometric displacements. However, this behavior does not apply to all algorithms. Figure 6.4: Top line, success rates of each algorithm according to definition 5.1, averaged on the 11 CMLA scenes, expressed as functions of an additive Gaussian noise σ and for a precision threshold of s = 1.00. This threshold is the smallest to compare simultaneously all sub-pixel algorithms. The settings for ROF1D, RD-POF1D and LKM were set to identical values for the three baselines. Moderate and large baselines globally outweigh the short ones. The decay in their success rate is quite slow. They only fall by 10 points between σ = 0 and σ = 10, while in the short baseline case, success rates of LKM, MGM and ROF1D drop by more than 50 points. For a given baseline, ROF1D and RDPOF1D algorithms are more robust to noise than MGM. Middlebury 2014 scenes, expressed as functions of an additive Gaussian noise and for a precision threshold of s = 1.00. This threshold is the smallest that allows to compare simultaneously pixel and sub-pixel algorithms. The baselines of these scenes are comparable to the large baselines of the CMLA dataset. Algorithms ROF1D, RDPOF1D, LKM and MGM remain very stable against increasing levels of noise, while KZ slightly decreases and the BWP and GF decrease very rapidly. Bottom line, averaged success rates on the set of Middlebury 2014, of the four sub-pixel algorithms. RDPOF1D won with around 7 points more than ROF1D and almost 15 points higher than the MGM. Figure 6.7: Top row, success rates of optical flow algorithms according to definition 5.2, averaged on the 7 Middlebury 2014 scenes, expressed as functions of the precision threshold s. On the left, with no added noise, and, on the right, with a Gaussian noise of σ = 10. In the absence of noise, ROF1D and RDPOF1D methods get around 70% of success at precision s = 0.1 and around 30% at s = 0.01. The best rate is obtained by the ROF1D with 75% and 40% respectively, for the previously mentioned thresholds. In the case of a noise with σ = 10, large baselines win whatever the method. ROF1D and RDPOF1D are ahead but they do not exceed 70% to 20% success at s = 1/10 and s = 1/100, respectively. Bottom row, the success rate according to definition 5.3 averaged over the scenes. On the left, with no added noise, and, on the right, with Gaussian noise of σ = 10. The observed rates are higher than those of the synthetic scenes (cf. 6.5). This could be explained by the fact that disparities in the occluded areas, for ground truths, are obtained after an interpolation process.

Comparison

Next, we compare some disparity maps obtained from the LKM, ROF1D and RD-POF1D methods using some sequences from the moderate baseline of the CMLA dataset. Figures 6.8, 6.9 and 6.10 show the shiny versions of "bastet", "saloon" and "shrub" sequences, while figures 6.11 and 6.12 depict the "oranges" and "corridor" scenes. In each figure, the top row shows the original pair of images and the ground truth. The bottom row depicts, from left to right, the results for the LKM, ROF1D and RDPOF1D methods, respectively. The parameters have been set as in the previous experiments.

According to these results, LKM correctly detects the objects but it fails in several homogeneous areas. In contrast, the other two approaches achieve good results. On the one hand, the contour of the objects are better preserved by the RDPOF1D method, although it introduces some flow discontinuities in continuous regions that contain salient textures; on the other hand, ROF1D tends to obtain smoother solutions but with rounding shapes at the borders. Figure 6.8 is a good example of this behavior. RDPOF1D properly detects several details like the diadem, the pedestal, the nose and the arms of the bastet. Besides, the lamp is well preserved while the other approaches fail. However, this method has more problems distinguishing the contours and the textures of the objects. This is more aggressive in the floor of figure 6.12. The smoothing behavior of the ROF1D method is better with textures. We also note that the leaves of the shrub (figure 6.9) are better detected with ROF1D than with the other approaches. Nevertheless, the flowerpot is more similar to the ground truth using the RDPOF1D method and the regularization in the floor is more satisfactory. Unfortunately, the problems with specular lights appear again in this solution in front of the flowerpot.

In figure 6.10, the details preserved with RDPOF1D are accurate, especially for the lamp and the arm-chairs. However, the motion of the center table is not completely correct and there are also some problems with the colored areas of the floor. This happens with the three methods. Interestingly, the solutions of the oranges sequence in figure 6.11 are quite precise and the estimated motion in the background is very accurate for the RDPOF1D solution. Here, the LKM solution has conflicts dealing with the textured areas of the background.

From these experiments, we conclude that the RDPOF1D method is usually the best for preserving the contours of the objects, but it also detects motion discontinuities inside some objects with prominent textures. The solutions of the ROF1D method tend to be smoother, but it tends to round the shapes at the contours and loses some detail where the RDPOF1D method is successful. The lack of a regularization strategy in the LKM method causes this technique to fail in several situations, especially in homogeneous regions. Figure 6.12: Results of the "corridor" scene. Upper row: Left and right images using the "moderate" baseline and the ground truth. Bottom row: Disparity maps using LKM, ROF1D and RDPOF1D with default parameters, respectively.

Conclusion

This study seems to support the hypothesis that, in the absence of noise, it is more advantageous to use stereoscopic pairs acquired in short baseline, and to apply optical flow algorithms on them. To this end, we proposed metrics to study the accuracy and density of stereo algorithms with pixel and sub-pixel accuracy.

We then tested 1D optical flow and stereo algorithms on the Middlebury 2014 and CMLA datasets, up to their operating limits. On the one hand, 1D optical flow methods using a regularization terms on the displacement field appear to be more accurate than stereo algorithms, regardless of the noise level and the baseline. In the absence of noise, it is possible to obtain a relative error of 1% with a pixel density of 50% for baselines around a few tens of pixels (≤ 50) with optical flow algorithms.

Moreover, the results validate the use of a short baseline, up to a certain limit. In the absence of noise, and for a given accuracy, it may be more beneficial in terms of density, to work with a baseline of the order of 1/250 rather than 1/50. However, the use of stereo pairs, whose disparities are less than, or equal to, the pixel (i.e., with baseline of about 1/2500), is ineffective when we want to get high accuracy. In the presence of noise, only medium baselines (1/50) offer the best compromise between density and precision.

CHAPTER 7 CLOUD DETECTION IN SATELLITE IMAGERY

Abstract: In this chapter we develop a cloud detection method applicable to medium to high resolution recurrent Earth observation satellites. Contrarily to the methods currently in operation for the Landsat8 and Sentinel2 satellites, our method uses exclusively the visible channels and takes full advantage of the regular passages of the satellites to build long time series. These time series are used to build a background stochastic model that is then used to perform a contrario detection. We consider four different clues that can help detect clouds, each of which will be shown to be insufficient alone. The first one is the cloud's apparent motion in parallax, that can be caught by interchannel optical flow. The second one builds on SIFT descriptors, that provide an estimation of stable geometric ground features. The third one is the image's luminance that would be higher on clouds and lower on shadows that the reference luminance. The fourth feature is given by a novelty detector applied to each image of the whole series. The question then arises of how to fuse results of these four detectors. We propose a solution based on a contrario detection theory and prove that a number of false alarms (NFA) can be defined that fuses the four background models into one. The question then was: does cloud detection based on optical channels and a time series perform better than the current dominant methodology, which involves physical considerations leading to clever thresholds between the hyperspectral lower resolution channels? The answer seems to be positive, as we obtain lower false negative and false positive detection rates on manually annotated ground truths. This also means that a fusion of all detectors is of course possible and might perhaps still gain accuracy. This work was partially made in collaboration with Axel Davy.

Introduction

Unless observed for meteorological purposes, clouds are an overwhelming nuisance for optical satellite imagery. Not only their presence hides the surface of the earth most of the time, but their detection is also a major issue to avoid detection and interpretation errors in automatic image analysis. Being so numerous and so large, 129 satellite images nevertheless require an automatic analysis. Hence it is of uttermost importance to detect automatically and accurately all clouds in any image. Cloud detection is crucial for weather forecast, and for analyzing the nature and shapes of the clouds. Conversely, ground observation algorithms need to discard automatically cloudy image parts to avoid confusions. Our intention here is to demonstrate the value for cloud detection of the temporal information accumulated through repeated satellite passages and of the parallax inter-channel information when the images have been acquired by push-broom technology. Our focus is on the exploitation of the visible bands and their geometric detection cues rather than on multispectral low resolution data which require subtle hand-fitted thresholding. Our study is valid for medium to high satellite imagery for which detection tasks are indeed relevant, and for which recurrent free imagery is available. Another reason for detecting clouds directly in high resolution optical bands was pointed out by Scaramuzza et al. [START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF]. The current lifetime of the thermal imagers embedded in the satellites is shorter than for the visible imagers, so that the potential absence of thermal data in the design of the algorithms must be taken into account.

In section 7.2 we first describe the satellite missions we shall focus on; namely free optical satellites providing recurrent imagery everywhere (which is not the case of high resolution commercial satellites like Pleiades or Worldview). In section 7.3 we give an overview of the existing cloud detection algorithms. Section 7.4 is dedicated to the theoretical and algorithmic description of our algorithm. Section 8.4 provides an evaluation of our algorithm on ground truths, together with a comparison with more classical multispectral detection processes.

Origin of the processed images

The Landsat-8 satellites The Landsat program [START_REF]Landsat 8 Data Users Handbook[END_REF] provides repetitive acquisitions of moderate-resolution (15 meters) multispectral images of the Earth's surface on a global basis. The continuation of the Landsat Program is an integral component of the U.S. Global Change Research Program (USGCRP): Landsat-8 satellites is its 8 th generation. The L8 observatory is designed for a 705 km, sunsynchronous orbit, with a 16-day repeat cycle, completely orbiting the Earth every 98.9 minutes. Observation instruments are constituted by long linear detector arrays, one per spectral band. The detectors aligned across the instrument focal planes collect imagery by the "push-broom" technique. Thanks to the electronic architecture of the imager focal plane [89, fig. 2.4], there is one redundant detector per pixel in each Visible and Near Infrared (VNIR) band and two redundant detectors per pixel in each Short Wavelength Infrared (SWIR) band.

Raw images are recorded and then transmitted using a variable Rice Compression algorithm. Images are released to the public domain after a Level-1 processing which is quite similar to the one applied with Sentinel-2. Inputs from both the sensors and the spacecraft are used, as well as GCPs and DEMs. The result is a geometrically rectified product free from distortions related to the sensor (e.g., view angle effects), satellite (e.g., attitude deviations from nominal), and Earth (e.g., rotation, curvature, relief). The image is also radiometrically corrected to remove relative detector differences, dark current bias, and some artifacts. Each L8 band is presented as a 16-bit grayscale image.

Sentinel-2 satellites Sentinel-2A and -2B are a pair of multi-spectral Earth observation satellites realized by a consortium led by the European Space Agency (ESA) [START_REF] Mueller-Wilm | Sentinel-2 msi -level 2a products algorithm theoretical basis document[END_REF][START_REF] Mueller-Wilm | Sen2cor configuration and user manual[END_REF]. They were launched into a sun-synchronous orbit at 786 km from ground in June 2015 and March 2017 respectively. Each instrument covers a 290 km swath allowing a revisit time of 10 days, meaning 5 days for the couple. The Sentinel-2 Multi-Spectral Instrument (MSI) consists of 13 spectral bands with three different resolutions. Table II presents the different band properties. The raw images acquired by the satellites are preprocessed by ESA before being freely delivered to the public. The set of preprocessing levels is split into work-flows called «Levels». According to the ESA website1 , the processing levels are as follows.

• « Level-0 is compressed raw data. The Level-0 product contains all the information required to generate the Level-1 (and upper) product levels.

• Level-1A is uncompressed raw data with spectral bands coarsely co-registered and ancillary data appended.

• Level-1B data is radiometrically corrected radiance data. The physical geometric model is refined using available ground control points and appended to the product, but not applied. Note: Level-0, Level-1A and Level-1B products are not disseminated to users. • The Level-1C provides orthorectified Top-Of-Atmosphere (TOA) reflectance, with sub-pixel multispectral registration. Cloud and land/water masks are included in the product. Level-1C products are made available to users via the SciHub.»

The process leading to Level-1C images is applied on series of tiles, each a square with 100 km side. Each tile consists of 13 compressed JPEG-2000 images, each image representing one single band. Data encoding at Level-1C is 12 bits/pixel.

Cloud and shadow detection : an overview

Clouds and their shadows obstruct the view of the ground and cause outliers in reflectance observations over time. This can lead to confusion in detecting land surface changes and analyzing reflectance trends. Cloud detection has long been limited to the spatial analysis of a limited number of spectral bands on a single acquisition. In recent years the use of new spectral bands in the satellites and the analysis of time series have led to notable improvements. Chandran et al. [START_REF] Chandran | A survey of cloud detection techniques for satellite images[END_REF] have published a interesting overview of this problematic. Meteor2 discrimination is a classification problem. In its simplest form it consists of segmenting them from the ground to provide Boolean maps [START_REF] Panem | Automatic cloud detection on high resolution images[END_REF]. In its more complete form it provides probability maps of the presence of meteors together with other entities such as water, forest, agricultural, urban zones, etc [START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF][START_REF] Mueller-Wilm | Sentinel-2 msi -level 2a products algorithm theoretical basis document[END_REF]. This classification involves the prior definition of features mainly based on spectral or texture information. In the first case, these are simple functions connecting the spectral bands of each pixel independently [START_REF] Hollstein | Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in sentinel-2 msi images[END_REF]; given (a n ) such bands are used :

            
differences as a ia j , ratio as a i /a j , depth as (a i + a j )/a k , index as (a i + a j )/(a k + a l ) for i, j, k, l = 1, . . . , n.

(7.0)

In the second case, more specific texture criteria like a gray level co-occurrence matrix [START_REF] Welch | Cloud field classification based upon high spatial resolution textural features: 1. gray level cooccurrence matrix approach[END_REF] or a gray level difference vector have been developed to discriminate cloud categories themselves [START_REF] Kuo | Structural and textural characteristics of cirrus clouds observed using high spatial resolution landsat imagery[END_REF]. Another issue in the cloud data analysis is the choice of an appropriate classifier. There are mainly two types of classifiers. The traditional classifiers which include Support Vector Machines [START_REF] Rossi | Techniques based on support vector machines for cloud detection on quickbird satellite imagery[END_REF], Bayesian classification [START_REF] Hollstein | Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in sentinel-2 msi images[END_REF] and maximum likelihood [START_REF] Wielicki | Cloud identification for erbe radiative flux retrieval[END_REF], and neural-network classifiers like multilayer back-propagation neural networks [START_REF] Taravat | Multilayer perceptron neural networks model for meteosat second generation seviri daytime cloud masking[END_REF], self organizing maps [START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF] and probabilistic neural networks [START_REF] Zhang | Cloud detection using probabilistic neural networks[END_REF].

Among algorithms processing spatial information, two deserve a special mention. The so-called «Cloud cover assessment» (CCA), developed initially by Irish et al. [START_REF] Irish | Landsat 7 automatic cloud cover assessment[END_REF][START_REF] Irish | Characterization of the landsat-7 etm+ automated cloud-cover assessment (acca) algorithm[END_REF], then by Scaramuzza et al. [START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF] is the method integrated in the process flow of image Level-1 products of Landsat missions. The Landsat-8 CCA system uses multiple algorithms to detect clouds in scene data. Each CCA algorithm creates its own pixel mask that labels clouds, cirrus, and other classification types. The separate pixel masks are then merged into the final Level-1 quality band via a weighted voting mechanism. An interesting point is that each weight indicates how accurate that algorithm is expected to be when classifying that type of target. However, these weights seem to have been defined empirically. An example of such quality band, the so called «Band of Quality Assessment» (BQA), is shown in figure 7.1; its labeling convention is shown in table III. The second mainstream method is the one integrated into the software Sen2cor [START_REF] Mueller-Wilm | Sen2cor configuration and user manual[END_REF] and processing raw data of satellites Sentinel-2. «Sen2cor detects clouds, snow and cloud shadows and generates a classification map, which consists of four different classes for clouds (including cirrus), together with six different classifications for shadows, cloud shadows, vegetation, soils, deserts, water and snow. The algorithm is based on a series of threshold tests that use as input top-of-atmosphere reflectance from the Sentinel-2 spectral bands. [. . . ] For each of these threshold tests, a confidence level is associated. At the end of the processing chain, a probabilistic cloud mask quality map and a snow mask quality map are produced.» Cloud detection is split into two processes depending on the nature of the clouds. The search for cirrus clouds, which particularity is to be semi-transparent in visible bands, relies on the reflectance band 10 (1375 nm), while other types of clouds are detected using thresholds on the visible red band 4 (665 nm) (cf. [84, § 3.2]). Figure 7.2 shows the interest of using a specific band for cirrus detection. Mueller-Wilm [START_REF] Mueller-Wilm | Sentinel-2 msi -level 2a products algorithm theoretical basis document[END_REF] notes that the search for cloud shadows is a more complex problem than cloud detection itself. Indeed low luminance can derive from hills, building shadows or water areas as well. This explains the fact that Sen2cor relies on both radiometric and geo-Table III: Landsat-8 Band of Quality Assessment nomenclature. metric properties of the landscape. This second criterion, based on the estimated projection of cloud shadows implies a knowledge of the position and altitude of the clouds and of the sun. In addition, a self-organizing map process is applied to generate dark areas (cf. [84, § 3.4]).

In more robust algorithms, spatially and temporally varying thresholds, which better capture local atmospheric and surface effects, are used to improve their performance [START_REF] Jedlovec | Spatial and temporal varying thresholds for cloud detection in satellite imagery[END_REF]. The idea of these algorithms is that meteors will cause sudden changes to the reflectance. Thus by comparison with a reference image without such meteors, the ones present in the observed image are more easily detected. These algorithms are reported to have higher accuracies in detecting clouds and their shadows [START_REF] Zhu | Automated cloud, cloud shadow, and snow detection in multitemporal landsat data: An algorithm designed specifically for monitoring land cover change[END_REF]. However, as pointed out by Goodwin et al. [START_REF] Nicholas | Cloud and cloud shadow screening across queensland, australia: An automated method for landsat tm/etm + time series[END_REF], the main limitation to multi-temporal cloud detection is that these algorithms rely on the assumption that between the time of the reference image and the observed image there is no significant land cover change, so that differences in reflectance would only result from meteors. A range of non-cloud related variations in brightness over time may easily be confused with changes due to clouds or shadows. Nevertheless, several approaches have been proposed for limiting these undesirable effects. The Goodwin et al. method [START_REF] Nicholas | Cloud and cloud shadow screening across queensland, australia: An automated method for landsat tm/etm + time series[END_REF] uses a hierarchical and iterative approach where four passes are necessary to discriminate finely clouds and shadows. At each iteration and for each pixel, spectral bands are mixed together according to relations (7.3) and thresholded with adequate coefficients, after what temporal windows using minimum and median filters highlight the outliers. Regions considered as clouds are then dilated by a morphological filter and so on.

Zhu et al. [START_REF] Zhu | Automated cloud, cloud shadow, and snow detection in multitemporal landsat data: An algorithm designed specifically for monitoring land cover change[END_REF] have proposed an algorithm called Tmask (multi-Temporal mask) for automated masking of cloud, cloud shadow, and snow from multitemporal Landsat images. This algorithm consists of two steps. The first step is based on a single-date algorithm that initially screens, for each image, most Goodwin et al. [START_REF] Nicholas | Cloud and cloud shadow screening across queensland, australia: An automated method for landsat tm/etm + time series[END_REF] as well as Zhu et al. [START_REF] Zhu | Automated cloud, cloud shadow, and snow detection in multitemporal landsat data: An algorithm designed specifically for monitoring land cover change[END_REF], processed images from Landsat-7 whose acquisition periodicity was not inferior to two weeks. This is not the case for the next algorithm we examine, which has a far shorter periodicity. According to Chadran et al. [START_REF] Chandran | A survey of cloud detection techniques for satellite images[END_REF], the cloud detector of Vivone et al. [START_REF] Hall | The Distribution of Means for Samples of Size N Drawn from a Population in which the Variate Takes Values Between 0 and 1, All Such Values Being Equally Probable[END_REF] using maximum a posteriori and Markov random field statistical framework from both spatial information and cloud motion estimation is one of the most efficient and best methods for cloud classification. In that instance, cloud motion has been estimated from temporal sequences acquired by the satellite SEVIRI of the Meteosat-8 project. Images are recorded each 15 minutes, so this approach overcomes the problems of landscape changes.

A third category of algorithms, using a stereoscopic approach, have been developed since the middle of the 90's [START_REF] Shin | Cloud height determination from satellite stereo images[END_REF] to detect clouds. Given a series of satellite images in quick succession, a parallax is generally perceptible, caused by the clouds relative altitude with respect to the landscape. Given the geometrical properties and positions of the satellite it is possible to estimate the clouds' top height with stereo-matching algorithms. Manizade et al. [START_REF] Manizade | Stereo cloud heights from multispectral ir imagery via region-of-interest segmentation[END_REF] apply a discrete correlator to binary series obtained by the slicing of the 8-12µm infrared band into 18 temper-ature ranges. This permits to refine cloud altitude estimation up to ±390 m. Wu et al. [START_REF] Wu | Automatic cloud detection for high resolution satellite stereo images and its application in terrain extraction[END_REF] proposed to merge stereo-matching results with external information coming from a digital elevation model acquired by the shuttle radar topography mission (SRTM). As shown by these authors, the wind speed cannot be neglected when working with high resolution images : the diffusion of the cloud layers during the series acquisition can lead to bad estimations of the clouds' altitudes. A significant enhancement has been presented by Panem et al. [START_REF] Panem | Automatic cloud detection on high resolution images[END_REF], using SPOT5 images which remedies to this temporal sampling problem. The parallax of images is obtained by dense matching after aligning panchromatic and multispectral images with SRTM. As parallax changes are significant at the edges of cloudy areas, these areas can be automatically extracted. This means that given multi-spectral data recorded by a satellite at a single time t, it is possible to estimate the clouds' apparent motion. The authors notice however, that given the short baseline between panchromatic and multispectral images, this method can extract only clouds higher than 600 m.

From this overview, we can conclude first that mixing spatial and temporal information is essential to obtain a good classification of clouds and shadows. Second, that the key to the success of most algorithms lies in the selection of the relations (7.3) and the subtle choice of the thresholds for various spectral tests.

A statistical and algorithmic framework

Our mathematical notation in this section is summarized in Table IV.

Mixing temporal and spatial intra-channel information

We consider a multi-spectral sequence

(U n ) = (u n,1 , • • • , u n,b
) made of b bands where (u n,i ) is the sequence related to the band i, representing the same region at different times n (with intervals from several days to several weeks), acquired by a satellite push-broom satellite. We suppose that all of its images have a same size |Ω|. The estimated localization of the clouds and of their shadows, is formalized by the production of a Boolean maps series (B n ) indicating if there is (value 1) or not (value 0) a cloud at each pixel position p (cf. algorithm 11). This segmentation approach is based on two hypotheses:

(H 1 ) the images of (U n ) and their inter-channels (u n,i ) for i = 1, . . . , b, have been precisely co-registered;

(H 2 ) a majority of the images (U n ) contains no cloud or only local clouds.

The first hypothesis is not necessarily true. For example when exploiting directly Level-1C sequences of Sentinel-2, we often observed that frames present mis-registrations of up to several pixels shifts. Registration must be enforced by preprocessing the series (U n ) with a fine sub-pixel method. An efficient algorithm has for example been proposed recently by Raìs [START_REF] Rais | Fast and accurate image registration[END_REF]. The second hypothesis is acceptable if we consider that a coarse processing has detected the big clouds and removed from the list the impacted images. This is the case for the Level-1 images of Sentinel-2 and Landsat-8. Whenever this does not lead to an ambiguity, we shall omit the i index of an image series (u n ) extracted from (U n ) for a given channel i. 

Higher level cloud/ground discrimination features

Our goal is to search for discrimination criteria which are both independent and complementary to each other and also independent from the band per band handfitted thresholding provided by classic algorithms. In that way their result will be compared, and potentially fused with spectral band thresholding algorithms. Several characteristics, which do not involve the specific cloud detection bands can be retained to discriminate clouds from landscape: their movement, their texture, their emergence and their spatial luminance.

Synchronous multispectral optical flow Thanks to the parallax of the clouds due to the pushbroom aquisition process and the precise inter-frames registration made by Raìs' algorithm [START_REF] Rais | Fast and accurate image registration[END_REF], one can apply an optical flow method on pairs (u i,n , u j,n ) for i � = j, to estimate finely their motion. Only (high resolution) visible bands will be processed in that way. Before applying an optical flow algorithm, such bands must be reprocessed to have their dynamics equalized as much as possible. Indeed optical flow algorithms assume a motion which maintains grey level constancy. Thus we decided to apply to the bands the so-called Midway algorithm [START_REF] Guillemot | Implementation of the Midway Image Equalization[END_REF] as histogram equalizer, and finally to apply the Robust Optical Flow [START_REF] Sánchez Pérez | Robust optical flow estimation[END_REF]. This algorithm yields for each time n a dense disparity map d n = (d x , d y ) n . Other pairs of bands could be used, provided they are spectrally similar and that their images have the same resolution. Remark that such a motion (caused by parallax) estimation cannot generally discriminate a priori the cloud shadows, as these are projected on the ground. Notice in addition that a frame which would be fully cloudy, would be considered paradoxally cloudless because the parallax would not be apparent.

Dense SIFT descriptors as geometric cues for the ground Our second cue to multi-temporal cloud detection is the ground texture, which must be apparent if not hidden or attenuated by a cloud or a shadow. We decided to use the dense SIFT descriptor [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF], as it is robust to a wide family of image perturbations, such as changes of lighting, noise, blur, contrast changes, scene deformation, while remaining discriminative enough for matching purposes. The SIFT descriptor, denoted by s, encodes the spatial gradient distribution in the neighborhood of a key point (x, y, σ) at a given scale σ, by a 128-dimensional vector (i.e an array h of histograms h i,j where i, j indicate the positions around the key point). While in the SIFT method this descriptor is computed only at extrema in the image scale space, the dense usage computes it at all points to characterize the ground's invariant aspect. To reinforce robustness of this descriptor to contrast inversion (which is common between two images taken at different dates), the gradient directions can be recorded modulo π before filling the HOGs (histograms of orientation of gradients) (see Kelman et al. [62]). Hence the equation in [100, (28)] which defines the filling of the HOG by

h i,j k ← h i,j k � 1 - n hist 2λ descr |x i -xm,n | � × � 1 - n hist 2λ descr |ŷ j -ŷm,n | � � 1 - n ori π |θ k -θm,n mod 2π| � c descr m,n ,
is replaced by

h i,j k ← h i,j k � 1 - n hist 2λ descr |x i -xm,n | � � 1 - n hist 2λ descr |ŷ j -ŷm,n | � � 1 - n ori π |θ k -θm,n mod π| � c descr m,n
where

• n hist × n hist is the number of orientation histograms h i,j ;

• n ori the number of bin per orientation histogram;

• h i,j k the k th bin of the orientation histogram h i,j for every (i,

j, k) ∈ {1, • • • , n hist } 2 × {1, • • • , η ori };
• θ k = 2π(k -1)/n ori the angle associated to the k th bin of h i,j ;

• θm,n the gradient orientation normalized with respect to the keypoint (x, y, σ) and orientation θ;

• (x i , ŷj ) the position associated to h i,j with respect to the keypoint (x, y, σ);

• (x m,n , ŷm,n ) the normalized coordinates with respect to keypoint (x, y, σ) of position (m, n) considered at scale σ;

• λ descr a factor related to the width of the keypoint neighborhood;

• c descr m,n the Gaussian-weighted contribution of the gradient norm.

Since the images to compare have been precisely registered, the SIFT descriptors are computed only at their first scale and octave. This means that a scale space strategy is not needed.

Novelty filters Clouds cause a brisk image change. These can be detected by linear novelty filters [START_REF] Marsland | Novelty Detection in Learning Systems[END_REF] introduced by Kohonen et al. [START_REF] Kohonen | Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron-like elements[END_REF]. Mathematically, the effects of the novelty filter can be described as follows.

Definition 7.1. [64, §6.3] Let v 1 , . . . , v N -1 ∈ � |Ω| be distinct Euclidean vectors spanning a linear subspace L ⊂ � |Ω| and L ⊥ the complement space of L. Then any vector u ∈ � |Ω| can be uniquely written as

u = û + ũ (7.0)
where û ∈ L and ũ ∈ L ⊥ . Any system which extracts ũ from input data u is a novelty filter and ũ is the novelty.

The Gram-Schmidt process can be used to compute the orthogonal projections of vectors. A new vector basis is defined by the following recursion for the subspace L spanned by training vectors {v i }, i = 1, . . . , N -1. The component ũ is the residual � ∈ L, i.e., the part of u that is independent from the vectors {v i }. This is the amount of u that is «maximally new», the novelty in u. We found experimentally that this basic version of the novelty filter has a tendency to hide some novelties. That's why we used an approach which appears more robust, consisting in projecting u upon the convex cone L c : where û ∈ L c is the closest vector to u in L c and ũ is the novelty.

Definition 7.2. Let v 1 , . . . , v N -1 ∈ � |Ω| be distinct
This fact can be explained by the reduction of the dimensionnality : the residual of the projection of an image u which does not resemble any of the vectors v i for i = 1, • • • , N -1 generating the cone L c , will generally be larger than those computed with the first approach. The computation of the component ũ corresponds to the non-negative least-square problem :

ũ := u - N -1 � i=1 α * i v i such that (7.1) (α * 1 , . . . , α * N -1 ) := arg min α 1 ,...,α N -1 � � � � � u - N -1 � i=1 α i v i � � � � � 2 2 (7.2)
subject to α i ≥ 0, ∀i ∈ �1, N -1�. (7.3) whose resolution can be made with the Lawson et. al [START_REF] Lawson | Solving Least Squares Problems[END_REF] numerical method.

Applying the novelty filter to each monochromatic frame u n yields the series (ũ n ).

Luminance feature Finally, the luminance criterion is based on the hypothesis, actually disputable, that clouds and shadows have respectively high and low luminance, at least in the visible channels.

A statistical detection framework

Our objective is not to classify the clouds and their shadows together with other categories such as vegetation or urban, like the methods described in § 7.3 but merely to separate them from the landscape. This amounts to considering only two categories. On the other hand, the characterization of these meteors, based on the criteria described above, is far from obvious. Indeed, since clouds have extremely variable motions, shapes and textures, it seems difficult to establish models of clouds and shadows that are at once simple and robust. The difficulty of machine learning here stems from the difficulty to annotate massively the incredible variety of shapes and aspects of both clouds and landscapes. In addition, to be efficient, our intuition tells that machine learning should be applied to long enough time series learning the aspect of the ground. This is high dimensional data not prone to efficient matching learning. Thus we prefer to stick to explicit modeling. These reasons led us to favor at first an a contrario statistical method, where the data are compared to a null hypothesis H 0 . In our case H 0 is the absence of cloud and shadow.

For each pixel p of an image we shall consider an a contrario ground stochastic model

H 0 : Y p ∼ f Yp (7.3)
where Y p is the random variable associated to pixel p and f Yp is the probability density function of a random variable Y p modeling the pixel behavior in absence of cloud or shadow. In the case of a simple binary decision, hypothesis testing would lead to threshold the p-value defined by

�(Y p ≥ y p |H 0 ) (7.3)
where y p is the observed value of Y p . However, as this test is applied separately on each pixel, i.e. more than 100,000 of times per image, chances that false rejections of H 0 appear are huge. To overcome this situation by controlling the total number of false rejections several approaches exist (see. [129, § 10.7]). We shall use the Desolneux et al. [START_REF] Desolneux | Meaningful alignments[END_REF] method, which is well adapted to image analysis. In particular, the modelisation of the background within this a contrario framework can be in seen in the works of Grosjean et al. [START_REF] Grosjean | A-contrario detectability of spots in textured backgrounds[END_REF] and Myaskouvskey et al. [START_REF] Myaskouvskey | Beyond independence: An extension of the a contrario decision procedure[END_REF].

An approach very similar to ours, including several clues, was proposed by Hellier et al. [START_REF] Hellier | A contrario shot detection[END_REF] in the domain of the video shot detection. The principle of the method leads to compute a number of false alarms (NFA)

N F A(p, y p ) = |Ω|�(Y p ≥ y p |H 0 ) = |Ω|(1 -F Yp (y p )) (7.3)
where 

∀�, �   |Ω| � p �(G(p, y p ) ≤ �)   ≤ �. (7.
3)

The threshold � becomes then the input decision parameter of our algorithm. Its value is often set to 1, which would mean allowing for an average of only one pixel wrong for the cloud/no cloud classification in the image. The image being large, this threshold can of course be slackened.

As we shall use K detection criteria, Y p will be a combination of random variables Y k for k = 1, . . . , K. For each one of these random variables, a probability density or equivalently a cumulative distribution function must be estimated. Since in a temporal sequence the textures and luminance of the ground may vary from one image to another, it is difficult to define a priori PDF and CDF with classical and well-known distributions. This is why we shall privilege the computation of empirical CDFs as landscape models under the null hypothesis H 0 of no cloud. In the following paragraphs, we describe the construction of the K different laws under H 0 , as well as the way to combine them.

The motion model

In the case of motion, represented by the disparity series (d n ), our measurement is the disparity modulus |d(p)|, ∀p ∈ Ω. To draw into account that the landscape model contains rarely a cloud at each given pixel, we define the empirical CDF FX from a rank approach; we choose the median of the modulus of the series (d n ) for all p:

FX (x) = 1 |Ω| � p∈Ω �(median n (|d n (p)|) < x). (7.
3)

The choice of the median is justified by the fact that the majority of the ground objects are not supposed to move according to our hypotheses. Most detected motions are actually caused by noise and errors in the optical flow method. Other real motions can be caused by vehicles, but are tiny at the considered spatial scales, which exceed 10 meters. Remark that we could use more sophisticated approaches to find the gap splitting roughly the modulus into landscape model or cloud model. An example is Jenks' method [START_REF] George | The data model concept in statistical mapping[END_REF] dedicated to 1D values classification or the spectral clustering method [START_REF] Luxburg | Consistency of spectral clustering[END_REF]. However not only do these methods increase calculation times, but preliminary tests have not shown convincing results anyway.

We could have defined separately a law for each component d x and d y . However, this approach would not be satisfactory because, if the cloud motion happens to take a canonical direction, say d x , then a statistical test taking equally into account both components, might have an ambiguous result. Note in addition, that the use of the direction of the disparity vectors as an additional criterion is unsatisfactory. Indeed, as shown in figure 7.3 representing the histograms of their directions in different cases, there are no clear direction modes associated with the displacement of clouds that could be easily discriminated from other modes. The reason is that the angular estimation of the motion by an optical flow algorithm is not sufficiently precise. Indeed, the matched images are not in the same band and therefore have local variations despite the application of the midway algorithm [START_REF] Guillemot | Implementation of the Midway Image Equalization[END_REF]. In addition, the sub-pixel registration is not exact and induces residual shifts.

The texture model

The construction of an a contrario distribution function FX for the texture model is more intricate, as the model must be learned by implicitly discarding pixels that have been altered by clouds. We determine first for each pixel p the SIFT descriptor s ref (p) in the temporal series (s n (p)) which is the likeliest to represent the landscape. In so far as clouds vary over time, the SIFT texture descriptors at p should be closer to each other than any pair containing at least one cloud descriptor at p. Given a similarity measure d SIF T , we therefore define s ref (p) as the descriptor realizing The empirical cumulative distribution function of the landscape model is then defined by FX (x) = 1

s ref (p) = arg min i� =j j� =k i� =k [d SIF T (s i (p), s j (p)) + d SIF T (s i (p), s k (p))], ∀i, j, k ∈ {l, m, n}
|Ω| � p∈Ω �(Q 1 (C n (p)) < x), ∀p (7.3) 
where Q 1 is the first quartile of the series (C n (p)) n to ensure that only non-cloudy detectors are involved. Notice that another rank value like the median would be feasible but might still include cloudy pixels. Preliminary tests showed that using the median entailed some under-detection. We considered several variants for the histogram distance d SIF T . In addition to "classical" distances like the L 1 norm, the correlation or the χ 1 distances, distances more specific to SIFT descriptors have been proposed. Pene et al. [START_REF] Pele | A linear time histogram metric for improved sift matching[END_REF] have introduced a distance which takes into account the cross-bin relationships. It represents a thresholded variation of the Earth Mover's Distance (EMD) by Rubner et al. [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF] which requires the application of a max-flow-min-cost algorithm to be solved. Pele et al. [START_REF] Pele | The quadratic-chi histogram distance family[END_REF] have also presented a quadratic-χ distance which is a variation of the χ 2 distance and which goal is to reduce the impact of large bins having undue influence. This distance is computed after solving a linear system. A simpler method, RootSIFT, was proposed by Arandjelović et al. [START_REF] Arandjelovic | Three things everyone should know to improve object retrieval[END_REF]. According to the authors and their results this metric is stable and higthly discriminant. They define this metric as ). Taking into account its efficiency and its weak complexity, we adopted this metric.

d SIF T (s n (p), s ref (p)) := � (s n (p) -sn (p)) T (s ref (p) -sref (p) (7.3) 

The emergence model

From definition 7.2 and given the input monochromatic series (u n ), we build the novelty series (ũ n ) by considering for each time n the sub-space L n = span{(u n ) \ {u n }} then by computing ũn according to relation (7.2). Once created the novelty series (ũ n ), we select the frame used to build the probability distribution of the model H 0 as the one with the lowest norm:

FX (x) = 1 |Ω| � p∈Ω �(ũ m (p) < x), such that m = arg min n �ũ n � 2 . (7.3)
This choice translates the idea that the smaller the norm of ũn , the less likely it is that ũn presents new features compared to the spanning images of L which are predominantly cloudless.

The spatial luminance model

In the case of the luminance, it is arguably impossible to define a landscape model based on another image or on the average of the series. Indeed, the solar lighting and the meteorological and atmospheric variations entail a strongly varying image dynamic. We indeed observed that the luminance of the cloudy and shadow areas of a given image u n are not necessarily situated in the tails of the distribution built from the series (u n ), particularly because they do contain shadows and clouds. However, we could overcome this last problem by considering as reference model for testing pixels of the image u n the image u n itself deprived of its zones previously detected as clouds or shadows by the other features. We shall denote this resulting image part by

ω n = {p/ NFA(p, g(d n (p), C n (p), ũn (p))) > �}, ( 7.3) 
where g is the function indicating the use of such-and-such feature among the motions (d n ), the SIFT distances (C n ) and the novelty (ũ n ). Our implicit assumption here, is that cloudy and shadowy areas have respectively anomalously large and low luminance. To build the a contrario cumulative distribution function, we first have to distinguish between the bright and dark pixels of ω n . Given X the random variable associated to the luminance, we first compute the median luminance given by

µ = arg min p∈ωn � q∈ωn |u n (p) -u n (q)|. (7.3) 
Then the random variables X + and X -respectively associated to the bright and dark classes of the pixels are defined by

X + = �(X -µ ≥ 0)(X -µ), (7.4) X -= �(X -µ < 0)(µ -X). ( 7.5) 
Their cumulative distribution functions are defined respectively by

FX + (x) = 1 |ω + n | � p∈ω + n �(X -µ < x), such that ω + n = {p ∈ ω n /u n (p) -µ ≥ 0} (7.5) and FX -(x) = 1 |ω - n | � p∈ω - n �(µ -X < x), such that ω - n = {p ∈ ω n /u n (p) -µ < 0}. ( 7 
.5) Remark that we compute µ as the median and not the average to ensure we have enough pixels to construct empirically both FX + and FX -. We could have formulated a cumulative distribution function FX directly related to X in a more natural way, from the distance to the median. For example:

FX (x) = 1 |ω n | � p∈ωn �(|u n (p) -µ| < x). (7.5)
However in this case we cannot ensure than one of the distribution's tail is not folded among the values located between 0 and the second tail. So that we could not well discriminate both tails. From a numerical point of view, as the sets of dark and bright pixels are complementary, the computation of FXand FX+ is made independently and in parallel. So we shall denote indifferently in what follows, by a slight abuse of notation, the empirical cumulative distribution FX as FXor FX+ .

Combining detection features

To clarify the notation, we shall index by k the random variables X associated to the aforementioned K features. As the shapes of the distributions FX k of the preceding criteria are all different we cannot apply directly the NFA test. We first transform each of them into a uniform distribution according to the property

FX k (X k ) = Y k ∼ U[0, 1]. ( 7.5) 
There exist numerous ways to combine the random variables Y k into the r.v. Y of equation (7.4.3). However, we shall limit our choice to the summation of independent random variables whose analytical formulation is well-known and easy to implement. Notice that we could use the product as an alternative to the summation of random variables or the weigthed summation as a generalization. Yet the first formula induces the multiplicative propagation of the numerical errors; its equation is given in appendix ( § A.4.1). The second one requires to set for each weight an ad hoc value (see § A.4.2). The sum of K independent uniform random variables follows the Irwin-Hall law (see Hall [START_REF] Hall | The Distribution of Means for Samples of Size N Drawn from a Population in which the Variate Takes Values Between 0 and 1, All Such Values Being Equally Probable[END_REF]) formulated in the next proposition.

Proposition 3. Let Y k be independent uniform random variables on the interval

[0, 1] and k = 1, 2, . . . , K with K ≥ 2. Then the PDF of Y = � K k=1 Y k is f Y (x) =        1 (K -1)! �x� � j=0 (-1) j � K j � (x -j) K-1 , ∀x ∈ [0, K], 0, otherwise (7.5)
and its cumulative distribution function is

F Y (x) =            1 K! �x� � j=0 (-1) j � K j � (x -j) K , ∀x ∈ [0, K], 1, K ≤ x, 0, x ≤ 0. (7.5)
The cumulative distribution function defined in (3) is the one used into the formula (7.4.3). The above model assumes that the different criteria are independent. From a practical point of view, there is no direct strong relationship between luminance, texture changes and motion: a forest landscape changes its texture over time without producing coherent movement. Similarly, a high or low level of luminance can be created by snow, water or buildings. This statement is less true regarding SIFT and emergence features: the novelty criterion is, in a way, an indicator of texture change. In addition, mathematically, we have conditioned the computation of CDF of the luminance (7.4.7), (7.4.7) to the results of the other criteria through the definition of the regions ω r (7.4.7). The hypothesis of the full independence of the random variables Y k is therefore objectionable. We might therefore expect some overdetection while combining novelty and SIFT. But this simplification makes it possible to avoid estimating conditional probabilities whose effective empirical calculation would be hard to realize.

The region based approach

Since luminance or landscape can vary sharply on a same image (by presence of sea, relief. . . ), using global reference estimators for the H 0 model would lead to some bias. We have therefore expanded the above methodology to a multi-shifted region-based approach. Given an image u, we first partition its support Ω into R square disjoint regions (Ω r ) of side W for r = 1, . . . , R so that

W = � �Ω� r , (7.6) R � r Ω r = Ω, Ω r ∪ Ω p = ∅ ∀r � = p. (7.7) (7.8) 
Secondly to build overlapping regions we consider S shift vectors � v s for s = 1, . . . , S applied to (Ω r ), which gives a double indexed series (Ω r,s ). These shifts require to extend u to ũ defined on Z 2 ; we use a toric extension so that

∀p = (p x , p y ) ∈ Z 2 , ũ(p) = u � p x mod W p y mod H � . ( 7.8) 
We use this extension in order to ensure that each pixel p belongs to the same number S of overlapping regions (Ω r,s ) whose sizes are identical. Both properties are necessary to compute further the statistics per pixel in the same way. In addition we want to preserve the same luminance on the regions ∪ R r Ω r,s , whatever We then explicitly denote the r.v. formulated by (7.4.8) related to the K criteria on each region Ω r,s of each n indexed image, as Y n,k,r,s . This approach leads to take into account both features and regions into the statistical tests. We saw in § 7.4.8 that it is possible to mix the K features, to construct for all n, r, s the random variables Y n,r,s . However we cannot combine in the same way the shift-dependent r.v.s Y n,r,s , into an r.v. Y n,r . Indeed, due to the patch overlap, there exist some shift vectors � v s and � v t for which Ω r,s ∩ Ω r,t � = ∅. Consequently, the empirical cumulative distribution functions computed on these domains are correlated and lead to dependent r.v.s Y n,r,s for which the analytic summation formula (3) is not applicable. To overcome this problem, we can sum over the S shifts, by defining a global NFA denoted N F A sum based upon the local NFA function, denoted N F A s , given by ∀n, ∀r, ∀s N F A s (p, x p ) = |Ω r |(1 -FYn,r,s (x p )) (7.8) where the FYn,r,s is the CDF of the r.v. Y n,r,s corresponding to the sum (3) over the K criteria of the independent r.v. Y n,k,r,s . Secondly, we have

� v s (cf. figure 7.4). p Ω Ω s=2 Ω s=1 Ω r,s=1 Ω r,s=2
∀�, �   |Ω| � p �(NFA sum (p, Y n,r,s ) ≤ S�)   = |Ω| � p � �� S � s=1 N F A s (p, Y n,r,s ) � ≤ S� � .
(7.11) Let (A s ) be the set of events such that A s = {N F A s (p, Y n,r,s ) ≤ �} for all s and the event

A = �� S � s=1 N F A s (p, Y n,r,s ) � ≤ S� � . As the event A means that there is at least one s verifying A s , then A ⊂ � � s A s � and �(A) ≤ � � � s A s � ≤ S � s=1 �(A s ).
Remark that we could have simply defined a global NFA according to equation (7.9). However, in this case, we would have obtained, after the thresholding of the relation (N F A s (p, Y n,r,s ) ≤ �), the sum of S binary maps. From an operational point of view this would imply to introduce and set a new threshold η to obtain a final unique binary map.

Another global NFA can be defined as the median over S of the N F A s . Its consistency can be proved in the same way as above: 

s verifying A s , then A ⊂ � � s A s � and �(A) ≤ � � � s A s � ≤ S � s=1 �(A s ).
For the sake of clarity we have supposed above (relation (7.6)), that the regions Ω r have the same size whatever the features. However it is more interesting to partition the domain Ω in regions whose sizes depend on the feature while keeping constant the number of shifts S. That's why we can replace the constant side size W of (7.6) by the terms W k , for all k. The consequence is that, once the observations of Y n,k,r,s have be computed, for all n, k, r, s upon the regions Ω r,s , we add a concatenation step, over r, which makes that all these observations are finally defined upon the domain Ω s . This does not change the validity of equation (7.4.9).

Parameters

The full algorithm needs the following parameters:

• for all k, the series of frames associated to the feature;

• for all k, the side sizes W k in � x and � y of the partitions Ω r(k) of Ω;

• S the number of shifts in the direction � x and in the direction � x. The shifts ΔS k of the blocks are then computed according to side length R k of the square patches:ΔS k = R k /S;

• � the threshold applied to the NFA;

• L the type of combination of the shifts NFA: summation (4) or median (5).

Numerical schemes

We detail here some of the numerical schemes and singular cases. First, due to the integer partition of the domain Ω by regions Ω r(k) parameterized by their length side W k , the regions situated on the last column and line of the partition, might have a residual length W last smaller than the others. This can imply inhomogeneity of precision when building empirical distributions. In order to preserve a certain similary of size for the Ω r(k) , we have to adjust W k and W last in an optimal way. Algorithm 12 computes this adjustement.

The empirical probability density function f X for the null-hypothesis, corresponds to the histogram of the measure function h over the pixels p of region Ω r,s . When dealing with the spatial luminance criterion (cf. § 7.4.7) we have seen that this region is replaced by a sub-region ω r,s whose size depends on the intermediate NFA results of other criteria (cf. equation (7.4.7)). So it might happen that ω r,s is an empty set. In this particular case we consider that the empirical CDF FX (x) = 1 ∀x, meaning that the NFA test will be always positive. This is wanted to be coherent with the intermediate test.

Histograms associated to the empirical PDFs and CDFs have a fixed number of bins N H whatever the considered criterion. Their boundaries values are defined as x 0 = min(h(p)) and x N H -1 = max(h(p)) for all p ∈ Ω r,s , so that their bins correspond to the intervals [x m ;

x m + ΔH] for m = 0, • • • , N -2 with ΔH = x N -1 -x 0 N -1 .
When testing the random variables through the empirical CDF we interpolate linearly histogram so that

FX (h(p)) =        0 if h(p) ≤ x 0 -ΔH, 1 if h(p) ≥ x 0 , θ FX (x m+1 ) + (1 -θ) FX (x m ) otherwise (7.16)
where m and θ are respectively the integer and the fractional parts of number (N -1)(h(p)x 0 )/(x N -1x 0 ).

Algorithm

The pseudo-code of the multi-shifted region-based clouds detector algorithm is presented in algorithms 10 and 11. For the sake of clarity, we have presented simple and understandable procedures. In particular, we have not detailled, in algorithm 10 line 33 the way to compute the cloud free regions (ω n ). Concretely, these Boolean regions are computed by executing line 16 to line 39 of algorithm 10 only with the features SIFT, motion and novelty, before calling algorithm 11 at line 9 of algorithm 10 with the luminance as parameter.

Conclusion

In this chapter, we proposed a new method for cloud detection. Unlike other classical approaches, we do not use the multispectral information. The only required information comes from visible bands. We based our algorithm upon four criteria, chosen to be fairly independent from each other. This criteria were the apparent motion, estimated with the optical flow from multispectral bands, the texture, represented by the SIFT descriptor, the emergence, computed thanks to the novelty filter and finally the luminance. These four clues intuitively catch the main aspects of the cloud phenomenon. We embedded them in the statistical framework of a contrario methods which provides a reliable way to control the false positive. We present in the next chapter an experimental validation of this approach. 

if W > I then 2 W ← I 3 end 4 N ← �I/W � 5 r 1 ← I mod W 6 r 2 ← I -W (N + 1) 7 if |r 1 | > |r 2 | then 8 W ← �W + r 2 /(N + 1)� 9 Wlast ← I -N W 10 end 11 else 12 W ← �W + r 1 /N � 13 Wlast ← I -(N -1) W 14 N ← N + 1 15 end 16 return ( W , Wlast , N )
download process as a black box. In the following we present the datasets implied in the benchmark, the metrics used to evaluate, then the qualitative and quantitative results.

Series and ground truth datasets

Sentinel-2 series Evaluations have been made with the band 2 series while disparity series have been computed from the pairs of bands 2, 3 (see table II). Size of images is 500 × 500. In the present case, the cloud maps level 2-A computed by Sen2cor cannot be exploited for several reasons. First, these maps are provided in an embedded product easily readable only by the Sen2cor software. Further, Sen2cor imposes to process, for a given date, a whole tile of data (about 30000 × 30000 pixels), and not a crop of a region of interest. In addition, Sen2cor has not been designed to register temporal series. So we have exploited the cloud coverage of Sentinel-2 level 1-C series. As stated in section 7.2, they are provided as vector data. Cloudy areas consist in rough vector images of polygons split in two classes : opaque clouds and cirrus. We only retained the first one. These data have been rasterized into binary images thanks to the GDAL library [START_REF] Warmerdam | The Geospatial Data Abstraction Library[END_REF]. 

Landsat-8 series

The sequences used for these evaluations correspond to the same locations of interest as those of Sentinel-2. The overflight frequency of the satellites being different, the same is true of their dates. Evaluations have been made with the panchromatic series of size 340 × 340. Disparity maps have been computed from the pairs of bands 2 and 3 (size 170 × 170) (see table I), then zoomed in with a bilinear filter to obtain frames of size the panchromatics. To compare the quality of the obtained Boolean cloud cover maps (B n ), we adapted the raw BQA maps, giving BQA n series. The value of the pixels considered in the raw BQA band, denoted BQA raw n , as cloudy with strong (or low) probability, was set to 1 (respectively to 0) and 0 elsewhere. In the particular case of cirrus, its value was set to 0. According to the nomenclature (see table III), it follows that Ground truths It has not been possible to obtain existing datasets with their ground truths which could be pre-processed for inter-frames registration and motion estimation. Hand-made ground truth maps (as precise as possible) were created by two independent spatial image photo-interpreters. They consist in binary masks (B truth n ) for clouds and binary masks for clouds together with shadows. Figure 8.2 shows an example of such maps. One of the difficulties encountered during the ground truths creation, was the consideration of the cirrus effect. As these clouds are semi-transparent, the interpreters were instructed to mark pixels as cloudy only when the ground texture faded out. This explains why the ground truth may greatly underestimate the observations of the cirrus spectral band.

BQA n (p) :=    1 if BQA raw n (p) ∈ {61440,

Preprocessing

The cloud cover frequency of each pixel is similar to the condition imposed by Zhu et al. [140, § 3.2.2] requiring that each pixel might be cloud-free at least 15 times per sequence. As stated in section 7.4.2, to be significant the movement estimation may be done with frames which are not totally cloudy. That's why, to respect this statement, we discarded before the assessment the frames whose cloud cover is larger than 90%. The percentage was computed by a first pass of our algorithm with the SIFT feature used alone (with the same parameters as below). After this process Sentinel-2 series got an average 19.7% cloudy pixels while Landsat-8 series had 12.3%.

Assessment metrics

Numerous metrics can be used for binary mask evaluations. We decided to follow the Scaramuzza et al. methodology [START_REF] Scaramuzza | Development of the landsat data continuity mission cloud-cover assessment algorithms[END_REF]III] where the false alarms rate and the detection rate are combined into a balanced accuracy [START_REF] Sokolova | Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation[END_REF] metric. As our dataset is small, these metric is more intended to indicate the tendencies of the parameters and their desirable fitted value, than to furnish a final optimal set of parameters. We now detail the formulation of the metrics. Given a chosen set of parameters The balanced accuracy which can be seen as a trade-off between precision and recall, corresponds to

τ F A (θ) = F P θ (B) N (B) = � B∈B � p∈Ω �(B truth (p) = 0) • �(B θ (p) = 1) � B∈B � p∈Ω �(B truth (p) = 0) , ( 8 
τ (θ) = (1 -τ F A (θ) + τ D (θ))/2. (8.0)
To avoid combinatory complexity when mixing features, we first found an optimal set of parameters θ * for each feature separately, namely 

θ * = arg max θ [(1 -τ F A (θ) + τ D (θ))/2]. ( 8 

Parametric influence

We tested several feature combinations. The parameters used for this experiment were, in both Sentinel-2 and Landsat-8 cases :

• patch side : W SIF T = 64, W move = 64, W nov = 32, W lum = 32;

• number of shifts : S = 81

• method of accumulation : L = median;

• NFA threshold � = 0.005%.

We shall first analyze the cloud masks qualitatively. Some of the cloud masks estimated on the Sentinel-2 series are shown on figures 8.3 to 8.9. Overall, combinations using at least two criteria give satisfactory results, even on a priori difficult scenes such as Maritime and Mountain. The contours of clouds localized with SIFT are sometimes coarse. The novelty criterion induces small sparse false alarms. The addition of the luminance criterion refines the contours. The contribution of the motion criterion is undeniable when it is used in a pair. On the other hand, the SIFT criterion has blurry detections and therefore a weaker contribution: thus the combination "move.+nov." is better than "move.+SIFT+nov.". This SIFT defect becomes paradoxically an advantage when introducing the luminance criterion, since the combination "SIFT+nov.+lum." is better than the combination "move.+SIFT+nov.+lum.". This is explained by the eroding role of this last Quantitative statistics over the scenes are presented on the tables IV, V and VI regarding the Sentinel-2 results, on the tables VII, VIII and IX regarding Landsat-8. Finally table X considers globally the two datasets. This table demonstrates that the combination of the different criteria makes it possible to gain precision. While the balanced accuracies of single features is globally inferior to 80%, these rates reach 3 additional points more when combining two or three criteria. Contrariwise, the addition of the luminance does not yields stable results : globally the rates are middling around 68% (see X), even if qualitatively some masks fit greatly with the reality (see figures. 8.5, 8.6).

The results obtained with the Sentinel-2 and Landsat-8 datasets appear to be inconsistent, both in their precision and in rankings (see table X). The difference is mainly due to the fact that the motion criterion does not correctly evaluate the clouds of the Landsat-8 sequences (see tables IV and VII). Our interpretation, based on visual observations, is that the low resolution of visible Landsat-8 images (30 m per pixel) makes the parallax of the clouds less perceptible. It follows that the modulus of the displacements computed by the optical flow is closer to the residual registration errors than those of Sentinel-2 maps. A possible solution would be to weigh the criteria, in particular the motion, by replacing the law of the sum of independent uniform variables 3 by the law of the sum of independent weighted uniform variables 7. This would require controlling the weighting of the criteria. Another probable cause is the sparse cloudiness in the Landsat-8 series. As there are only 12.3% cloudy pixels compared to 19.3% for the Sentinel-2's, errors have more influence in the error rate calculations. The detection scores on Landsat-8 are slightly inferior to the BQA bands except for the combinations SIFT and "SIFT+nov" which are superior. Combinations including the luminance are greatly inferior. As for the Sentinel-2 series, the results over-perform the QI bands estimations.

Conclusion

We proposed and studied an algorithm for cloud detection in satellite imagery, limited to the exploitation of visible bands. It is based on the spatial information of the inter-channel movement, the local luminance and diachronic information such as the changes in texture and the emergence of novelties. The classification process uses the NFA statistical methodology. Evaluations were carried out on Sentinel-2 and Landsat-8 sequences representing quite varied geographical environments. We found that the detection performance (in terms of false positive and false negative detection rates) was slightly superior to the one obtained by the Landsat-8 algorithm with the BQA maps, which exploits about ten spectral bands. Our false negative and positive detection rates are significantly smaller in the case of very strong changes like those observed in the mountains. Considering globally the Sentinel-2 and Landsat-8 series, we showed that mixing features such as motion, novelty and SIFT together increase accuracy, while instead adding the luminance feature of a visible band leads to instable results. We showed that the contribution of inter-channel movement is one of the keys to this success. In order to be used efficiently, the algorithm must be applied twice: the first time with the SIFT criterion to remove the images that are totally cloudy, the second one by processing the remaining images with at least two features.
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A.2 Constitution of the «CMLA dataset»

We used seven different synthetic scenes observed from four points of views and named v +000 , v +001 , v +010 and v +050 . Four of these scenes were considered with two different color characteristics: with and without reflective materials. In the end, the base is formed of 66 stereo pairs. The images of this illustration reflect the views v +000 in PNG 16 bits created by the renderer. Scenes "bastet matte", "shrub matte", "pillar matte" and "saloon matte" correspond to case A.

Scenes "bastet shiny", "shrub shiny", "pillar shiny" and "saloon shiny" correspond to case B. bastet_shiny bastet_matte shrub_shiny shrub_matte corridor pillar_shiny saloon_shiny watch pillar_matte saloon_matte oranges [START_REF] Alvarez | Dense Disparity Map Estimation Respecting Image Discontinuities : A PDE and Scale-Space Based Approach[END_REF]. To apply the same contrast change to all images v of a same scene, we created the image union V = v +000 ∪v +001 ∪v +010 ∪v +050 then dealt with V using the modified algorithm. The result Ṽ is then split to retrieve images TIF ṽ+000 , ṽ+001 , ṽ+010 and ṽ+050 . The three parameters of the equalization method, applied to the different scenes are shown in Table II.

A.2.1 Designers scenes

A.2.4 Noise estimates file

The text file scene_+000.txt contains the various noise estimates described in section 3.6 in the following format (Tab. 3.6). 

A.2.5 Disparity maps in the vertical direction

Table IV shows the maximum amplitude of disparity maps along the y axis. They do not exceed 1.722.10 -4 pixels. 

A.2.6 Binary file content

Contribution file The file contains information about the image dimensions, then for each pixel its coordinates, the number N c of its contributions c n , finally their x n and y n coordinates and d n = �P(p, n)-O C �. The x n and y n coordinates are already expressed in the image reference frame and not in the camera frame, so it is not necessary to apply the inverse transformation R -1 IC to them. Both coordinates are decimal because they are subpixel. The format of data in the binary file is the following, knowing that i and j correspond respectively to the i th line and j th column of nlig × ncol size image and ncbs represents the maximum number of contributions in the area of the pixel: 

� �� � R IC [0][0] f loat � �� � R IC [0][1] f loat � �� � R IC [0][2] f loat � �� � R IC [0][3] f loat � �� � R IC [1][0] . . . f loat � �� � R IC [3][3] int � �� � nrow int � �� � ncol f loat � �� � R CA [0][0] . . .
where int and f loat have a size of 4 bytes.

A.3 Silhouette detector

A.3.1 Optimization of the number of classes of a histogram

Be h the positive unknown function of support contained in L h = [r min ; r max ], that we wish to represent as a histogram of N s classes of width Δ ρ . Shimazaki et al. [START_REF] Shimazaki | A method for selecting the bin size of a time histogram[END_REF] define the mean integrated squared error (MISE) averaged in length, between h and its estimator ĥ which is the histogram to build, by M ISE( ĥ, h) The estimator ĥi def = κ i /Δ ρ corresponds to the empirical height of the histogram ĥ on the ith interval [(i -1)Δ ρ + r min , iΔ ρ + r min ] and is such that the random variable κ i representing the number of points obeys a Poisson distribution defined by One deduces that M ISE( ĥ, h) L h = �E( ĥih i ) 2 � -�(h i -�h�) 2 � + 1 

L h def = 1 L h E �� rmax
P(κ i = k) = (Δ ρ h i ) k k! e -
L h � rmax

Title : Evaluation of high precision low baseline stereo vision algorithms

Keywords : stereo algorithm, low baseline, optical flow, a contrario method, cloud detection, ray tracing Abstract : This thesis studies the accuracy in stereo vision, detection methods called a contrario and presents an application to satellite imagery. The first part was carried out within the framework of the project DGA-ANR-ASTRID "STEREO". His The aim is to define the effective limits of stereo reconstruction when controlling the entire acquisition chain at the maximum precision, that one acquires stereo pairs in very low baseline and noise-free. To validate this concept, we create very precise ground truths using a renderer. By keeping the rays computed during rendering, we have very dense information on the 3D scene. Thus we create occultation and disparity maps whose precision error is less than 10 -6 .

We have made synthetic images available to the research community with an SNR greater than 500: a set of 66 stereo pairs whose B/H varies from 1/2500 to 1/50. To evaluate stereo methods on this new type of data, we propose metrics computing the quality of the estimated disparity maps, combining the precision and the density of the points whose relative error is less than a certain threshold. We evaluate several algorithms representative of the state of the art, on the pairs thus created and on the Middlebury pairs, up to their operating limits. We confirm by these analyzes that the theoretical assumptions about the merit of the low B/H in high SNR are valid, up to a certain limit that we characterize. We thus discover that simple optical flow methods for stereo matching become more efficient than more sophisticated discrete variational methods. This conclusion, however, is only valid for high signal-to-noise ratios. The use of the dense data allows us to complete the ground truths a subpixel detection of the occlusion edges. We propose a method to compute subpixel vector contours from a very dense cloud of points, based on pixel classification a contrario methods. The second part of the thesis is devoted to an application of the subpixel optical flow and a contrario methods to detect clouds in satellite imagery. We propose a method that exploits only visible optical information. It is based on the temporal redundancy obtained by the repeated passages of the satellites over the same geographical zones. We define four clues to separate the clouds from the landscape: the apparent inter-channel movement, local texture, temporal emergence and luminance. These indices are modeled in the statistical framework of a contrario methods which produce an NFA (number of false alarms for each). We propose a method for combining these indices and computing a much more discriminating NFA. We compare the estimated cloud maps to annotated ground truths and the cloud maps produced by the algorithms related to the Landsat-8 and Sentinel-2 satellites. We show that the detection and false alarms scores are higher than those obtained with these algorithms, which however use a dozen multi-spectral bands.
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 1111 Figure 1.1: Exemple de vérité terrain obtenue après un déplacement fronto-parallèle de la caméra d'au plus 50 pixels.
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 11 21, § 1.2]: Soit R C (O C , � x C , � y C , � z C ) le repère direct associé à la vue caméra, R I (O I , � x I , � y I ) le repère direct associé au plan focal image et S une surface fermée et régulière. Le générateur de contours est défini comme l'ensemble des courbes formées des points P ∈ S vérifiant n(P).(O C -P) = 0 (1.0) où n(P) est le vecteur unitaire normal à la surface au point P. Le sous-ensemble des portions visibles de ces courbes, projeté sur le plan image R I est nommé silhouette.

Figure 1 . 2 :

 12 Figure 1.2: Exemple de scène montrant des livres clairs et une plante cuspide placés devant une vitre réfléchissante. Aucun faux contour n'apparaît sur la surface plane de la vitre. Les contours subpixelliens le long de la plante sont correctement estimés. On observe toutefois des erreurs dans l'orientation des segments élémentaires à ces extrémités. Ce phénomène est dû au choix d'un classifieur linéaire.

Figure 1 . 3 :

 13 Figure 1.3: En haut à gauche, silhouette calculée par notre algorithme. En haut à droite, carte exacte des profondeurs. En bas à gauche, silhouette calculée par le détecteur subpixellien de contours de Devernay [29] à l'aide de la carte exacte des profondeurs. Les régions circonscrites en rouge montrent les limitations de la détection basée espace image : les petits contours ne sont pas détectés entre les feuilles et quelques tiges très fines ont une représentation dilatée. Précisons que nous avons localement étiré la dynamique de la carte des profondeurs pour pouvoir utiliser le détecteur de Devernay : l'intervalle des profondeurs de l'image complète n'était pas compatible avec un simple changement linéaire de contraste entre 0 et 255. En bas à droite : le détecteur de Devernay appliqué à l'image de luminance. Ceci montre la différence conceptuelle entre la détection de silhouette et de contours.
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 21 Figure 2.1: Example of ground truth computed after a fronto-parallel displacement of the camera at most 50 pixels.
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 21 [21, § 1.2]: Let R C (O C , � x C , � y C , � z C )be the direct frame representing the view of a perspective camera, R I (O I , � x I , � y I ) the direct frame linked to the image and S a smooth and closed surface. The so-called contour generator is defined as the set of curves formed by the points P ∈ S satisfying n(P).(O C -P) = 0, (2.0)

Figure 2 . 2 :

 22 Figure 2.2: Example of scene showing books and a cusp plant placed in front of a reflective window. No false contours appear on the flat surface of the glass.The subpixel contours along the plant are correctly estimated. There are, however, errors in the orientation of the elementary segments at its ends. This phenomenon is due to the use of a linear classifier.
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 23 Figure 2.3: Top left, silhouette computed by our algorithm. Top right, depth buffer.Bottom left, silhouette computed with the sub-pixel edge detector of Devernay[START_REF] Devernay | A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy[END_REF] applied to the depth buffer. Regions in red, show the limitations of the image space detection approach : the small edges are not detected between the leaves and some thick stems have dilated representations. Notice that we locally stretched the dynamics of the depth buffer to use the Devernay detector: the depth range of the full image was not compatible to a simple linear change contrast between 0 and 255. Bottom right : edges detector of Devernay applied to the luminance image. This shows the conceptual difference between silhouette and edge detection.
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 25 Figure 2.5: Cloud maps of an agricultural area estimated for two combinations. In mid, features SIFT, motion and novelty. On the right : features SIFT, motion, novelty and luminance. This serie contains a lot of local texture changes due to seasons and agricultural activities. The combination of the four criteria gives very good estimates.
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 31 The average noise variance for image u Δ = (U 1 , . . . , U 3N I ) T where U n are the random variables associated with the channels pixels is var

. 0 ) 1 : 1 .

 011 By the variance additivity of temporally independent random variable we deduce that each pixel n of ūk = ( Ȳ1 k , . . . , Ȳ3N I k ) is subjected to a noise variance var( Ȳn k ) = var(Y n k ) k (3.0) and at infinite time, by the law of large numbers, ūk converges towards the non noisy image u. The noiseless image being inaccessible over time, one can nevertheless estimate the noise variance of the final image ūK from the mean squared error (MSE) compared to an intermediate image ūk under the following proposition whose proof is given in Appendix A.1.Proposition Let ūk and ūK be two images rendered respectively after k and K iterations, k < K. The estimated average variance of noise for the rendered image ūK corresponds to var

Figure 3 . 2 :

 32 Figure 3.2: Example of residual noise in a shaded portion of scene made for different durations. From left to right, the images were generated respectively for the periods T = 1, T = 4 and T = 16. Between two successive images the noise standard deviation is divided by a factor of 2.

  the point pI has a weighted homogeneous coordinates representation denoted pw I = (w I x I , w I y I , w I , w I α) T where w I and α are not zero (the term α does not play a direct role in the transformations below). Calculating pI knowing PA is as follows. Denoting PC = (x C , y C , z C , 1) T = R AC PA yields pI ∝ pw I = R CI R AC PA , (3.1) = R CI PC . (3.2) Developing (3.2) from the definition of R CI (3.7) allows us to see that w I = z C and to deduce that pI = 1

Figure 3 . 3 :

 33 Figure 3.3: Schematic diagram of the formation of an image by a pinhole camera.

  linked to the camera and R I = (O I , � x I , � y I ) to the image. The red line, perpendicular to both the focal plane (O I , � x I , � y I ) and plane (O I , � x C , � y C ) is the focal length f connecting focal point O C with the image center g. The camera's line of sight is (O C , � z C ). The 3D geometric point P is projected on the image point p.

  and of the distance r = �P C 1 � 2 of the 3D point P associated to p I 1 allows to precisely calculate D 1 (p) by back-projecting P on I 2 (see Fig.3.5). Considering the ray shot from the center of Ω(p) that is to say p I 1 = (i + 0.5, j + 0.5) T and denoting qI 2 = (x I 2 , y I 2 , w I 2 , α I 2 ) T
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 34 Figure 3.4: Example of 3D reconstruction of a scene from the image depths (left). Rebuilding from the average of the depths of a pixel produces artifacts (middle image). Using regular ray tracing in each pixel defined by the equation (3.5) eliminates these artifacts (right).
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 35 Figure 3.5: Computation of the disparity of p from the back-projection of P on I 2 .
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 512136 Figure 3.6: Example of disparity map obtained with a stereo pair (I 1 , I 2 ) for which the camera made a maximal fronto-parallel displacement of 50 pixels.
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 37 Figure 3.7: Creation of the occlusion map from the disparity map .The values shown in the line I 1 (resp. I 2 ) correspond to the scene positions of objects projected on image I 1 (resp. I 2 ), those below the line D 1 (resp. D 2 ) to their position in D 2 (resp. D 1 ). Boolean values of the image O 1 (resp. O 2 ) indicate whether the objects in I 1 (resp. I 2 ) are seen or not in I 2 (resp. I 1 ).
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 38 Figure 3.8: Example of occlusion map obtained for a stereo pair (I 1 , I 2 ) for which the camera made a maximum fronto-parallel displacement of 50 pixels. The left map obtained with N c = 1 is not dense enough because level lines of occluded pixels appear. The middle map obtained by summation from the relation (3.9) and N c = 100, allows the creation of a dense Boolean map, right after thresholding with s = 50.

  related to the camera, whose origin O C is its focal point R I = (O I , � x I , � y I ) direct frame related to image Ω whose origin O I is the image upper left corner P = (x, y, z) T 3D geometric point p = (x, y) T point belonging to an image Ω the digital image considered as a matrix of pixels (in the electronic sense), that is to say, the rectangular surface of width L I = L I Δl and height H I = H I Δl with Δl = 1 by convention I = {0, . . . , L I -1} × {0, . . . , H I -1} the discretized digital image regarded as the matrix of the sampling points of Ω L I number of columns of the image H I number of rows of the image N I = L I × H I image size i index along � x I axis j index along � y I axis u the ideal digital image considered in terms of RGB colors defined on I with values in R 3 + ũ u estimate obtained by ray tracing
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 41 [21, § 1.2]: Let R C (O C , � x C , � y C , � z C )be the direct frame representing the view of a perspective camera, R I (O I , � x I , � y I ) the direct frame linked to the image and S a smooth and closed surface. The so-called contour generator is defined as the set of curves formed by the points P ∈ S satisfying n(P).(O C -P) = 0, (4.0)

  . The first algorithm (see Algorithm 2) is a direct application of this theory [26, chap. 7]. Given the hypothesis H 0 assuming that the N c points of the histogram are randomly distributed according a uniform law U whose parameter is α(a, b) = (ba + 1)/N s where a < b are discrete values, one defines the number of false alarms, related to the range [a, b] as

  and F 2 between the line separating two regions and the contour ∂p of the pixel (fig. 4.1 left); • state F 3 indicates there are three intersection points F 1 , F 2 and F 3 . This corresponds to the situation where three regions lay around the intersection point C which belongs to p (fig. 4.1 in mid); • state F 4 indicates four intersection points denoted F 1 to F 4 . This corresponds to the segmentation of p into three regions more or less superimposed so that the C point is outside the pixel p (fig. 4.1 right). The state F ∅ indicates an impossible configuration such that
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 41 Figure 4.1: Categories of allowed boundaries: 2-, 3-or 4-intersection with the contour ∂p of the pixel.

Figure 4 . 2 :

 42 Figure 4.2: Example of a case observed experimentally with the boundary lines obtained for three modes (red, green, blue) characterized by their clouds of regularly sampled points.

Figure 4 . 3 :

 43 Figure 4.3: Shift of the boundary lines to make them converge at the incircle center of the triangle of intersection.

  p )}. The bipoint is then constructed according to the relation min a∈{1,2}

Figure 4 . 4 :

 44 Figure 4.4: Examples of boundary junctions for the pixels p and q sharing the side S = [(i, j + 1), (i + 1, j + 1)] according adjacency configurations (1, 1) at left, (2, 2) at right.
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 45 Figure 4.5: Example of vector image obtained before (left) and after (right) the junction step of the sub-pixel boundaries.
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 46 Figure 4.6: Example of bad contour estimation.

Algorithm 3 :

 3 Delon et al.'s histogram modes localization. Input: h depths histogram of pixel p contributions, N s bins number of h, � NFA threshold. Output: C l subsets of pixel p contributions 1 η ← 1 N c log N s (N s + 1) � threshold; G(h [a,b] ) Grenander estimator of a function h restricted to range [a, b]2 H 0 ( ĥ[a,b] , h [a,b] , η) def = �(D KL < η) indicatrice function of the Kullbach-Leibler divergence

5 :

 5 Construction of the estimate sub-pixel silhouette. Input: C set of contributions of the N I = L I × H I pixels. Input: l F half-width of neighborhood. Input: � NFA threshold.

8 N 9 h 10 ( 11 ( 12 (

 89101112 s ← compute optimal bin number according algorithm 1[(r n )] ← build histogram of (r n ) into N s classes C l ) ← classify contribution according algorithm 2[h, �] or algorithm 3[h, �] D k ) ← compute classe separators (C l ) solving (4.3.4) D k ) ← rectify (D k ) according description § 4.3.5 13

17 lF

 17 ← l F -0.1 18 until F(p) = F ∅ ∧ 0.5 ≤ l F 19 end 20 G ← join horizontal neighbor pixels according algorithm 4[G] 21 G ← join vertical neighbor pixels according algorithm 4[G]
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 47 Figure 4.7: Evolution of false alarms rate vs. the detection rate of the contours according to four parameters: the representation of the histogram by the rule of Sturges (top graph) or by the method of Shimazaki et al. (Bottom graph), the half-width d L of the pixel neighborhood (denoted v), the method of localization of modes (Delon et al., denoted 'D', Desolneux et al. denoted 'S') and the NFA threshold �. Colors vary depending on the neighborhood used.
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 48 Figure 4.8: Top left, silhouette computed by our algorithm. Top right, depth buffer.Bottom left, silhouette computed with the sub-pixel edge detector of Devernay applied to the depth buffer. Regions in red, show the limitations of the image space detection approach : the small edges are not detected between the leaves and some thick stems have dilated representations. Notice that we locally stretched the dynamics of the depth buffer to use the Devernay-Canny detector[START_REF] Devernay | A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy[END_REF]: the depth range of the full image was not compatible to a simple linear change contrast between 0 and 255. Bottom right : edges detector of Devernay applied to the luminance image of 4.9. This shows the conceptual difference between silhouette and edge detection.
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 49 Figure 4.9: Test image from which three patches were exploited. The patch at the top right contains very heterogeneous pixels in terms of depth because the leaves are numerous. The pixels of the middle and bottom patches have fairly homogeneous depths but straddle several leaves. The estimates of the contours of these three patches are shown in figure 4.10.

Figure 4 . 10 :

 410 Figure 4.10: Examples of estimated contours (right column) from the patches (left column) taken from the image 4.9. These contours are represented in their vector form deduced from the linear separator. Despite the complexity of the scenes underlying the top and middle images, the outlines are well estimated. The bottom image illustrates the limits of the linear separator described in section 4.3.8, where the leaves spikes are rounded.

  .0) with the convention D(p) = N aN ⇔ D(p) � ∈ R. Equivalently, we denote by D the estimated dense disparity map, D the sparse estimated disparity and Õ the estimated occlusion map obtained from the previous map by the following relation:

R

  I := (O I , � x I , � y I ) The direct reference associated to the image Ω L I Number of columns of the pixel matrix H I Number of rows of the pixel matrix N I = L I × H I Number of pixels Δl Height and width of one pixel, equal to 1 by convention i index according abscissa axis � x I j index according ordinates axis � y I Ω The image considered as a matrix of detectors (in the electronic sens), i.e. the rectangular surface, width L I = L I Δl and height H I = H I Δl I = {0, . . . , L I -1} × {0, . . . , H I -1} The discretized image considered as the matrix of points sampled over Ω p = (i, j) The index pair so-called pixel associated to the point p = (i, j) T of the image I and the elementary surface Ω(i, j) of Ω V(p) neighborhood of p C set of channels of the image i.e. {R, G, B} or {luminance} u The image considered as the function mapping from R 2 to R card C (u l , u r ) pair of left, right images used in the stereo context, mathematically defined like u (I l , I r ) pair of left, right images used in the stereo context, mathematically defined like I D estimate disparity map, considered as the function mapping from R 2 to R

. 6 )

 6 where τ col , τ ∇ and τ ∈ [0, 1] are weights and ů is the luminance image converted from the image u. The search for a minimal cost at each pixel is exhaustive et corresponds to D(p) = arg min d∈�d min ,dmax� E d (p, q(d)).(5.6)

  � is a coefficient of regularization and I C the identity matrix of M card C (R). The disparity map D is estimated from the relation D(p) = arg min d∈�d min ,dmax� (C f ilt (p, d)).

w 2 else. ( 5 . 6 )

 56 Since the resolution of (5.7) is an NP-complex problem, Hirschmüller et al. decomposed it into 1D problems on each of the lines of the graph considered according to the 4 (or 8) cardinal directions. They introduced the cost matrices (L r ) where r represents one of the 4 (or 8) directions. These matrices are calculated iteratively according toL r (p, d) = C(p, d) + min d � ∈�d min ,dmax� (L r ((pr), d � ) + V (d, d � )) for all r (5.6) then used to estimate the disparities thanks to the relation D(p) = arg min d∈�d min ,dmax� � r L r (p, d).

  .-23) with zC (p) = f B/| Dl (p)| = f B/|D l (p) + η|, the term η being the error. This leads us to define the indicator function of accuracy as

  r 00 (p)) + �(r 10 (p)) + �(r 01 (p)) + �(r 11 (p))] = N I .

Algorithm 7 :

 7 init (x, y) ← γ x (K 2 * Ds l )(x/γ x , y/γ y ) 33 end 34 return D1 l Function of reduction used for multiscale construction. Input: u image of dimension L I × H I Output: w reduced image by factor 4 aliasing attenuation by Gaussian blur

Figure 6 . 1 :

 61 Figure 6.1: The above seven scenes of the Middlebury 2014 dataset were used for the benchmark. Their disparity maps were obtained by laser scanning. They have a maximal precision of about 0.2 pixel.

Figure 6 . 2 : 2 ll

 622 Figure 6.2: Processing applied to stereo pairs (u 0 l , u 0 r ) and disparity maps (D 0 l , D 0 r ) of the Middlebury 2014 dataset to compute ground truths (u ×0.2 l

Figure 6 . 5 :

 65 Figure 6.5: Top, middle and bottom rows, success rates of optical flow algorithms according to the definitions 5.1, 5.2 and 5.3 respectively, averaged on the 11 CMLA scenes, expressed as functions of the precision threshold s. On the left, with no added noise, on the right, with a Gaussian noise of σ = 10.

Figure 6 . 6 :

 66 Figure 6.6: Top row, success rates of each algorithm according to definition 5.1, averaged on the 7Middlebury 2014 scenes, expressed as functions of an additive Gaussian noise and for a precision threshold of s = 1.00. This threshold is the smallest that allows to compare simultaneously pixel and sub-pixel algorithms. The baselines of these scenes are comparable to the large baselines of the CMLA dataset. Algorithms ROF1D, RDPOF1D, LKM and MGM remain very stable against increasing levels of noise, while KZ slightly decreases and the BWP and GF decrease very rapidly. Bottom line, averaged success rates on the set of Middlebury 2014, of the four sub-pixel algorithms. RDPOF1D won with around 7 points more than ROF1D and almost 15 points higher than the MGM.

Left image I 1 Figure 6 . 8 : 2 Figure 6 . 9 :Figure 6 . 10 :Figure 6 . 11 :

 168269610611 Figure 6.8: Results of the "bastet shiny" scene. Upper row: Left and right images using the "moderate" baseline and the ground truth. Bottom row: Disparity maps using LKM, ROF1D and RDPOF1D with their default parameters, respectively.

Figure 7 . 1 :

 71 Figure 7.1: Left, Landsat-8 band 2 (482 nm). Right, associated map of quality assessment : no cloud (black), cirrus clouds (light gray), mid-confidence of clouds (dark gray), high-confidence of clouds (white).

Figure 7 . 2 :

 72 Figure 7.2: Left, Sentinel-2 scene acquired with the visible band 4 (λ = 665 nm). Presence of cirrus induces a slight texture loss. Right, same scene with the cirrus band 10 (λ = 1375 nm). Band 10 highlights the presence of cirrus with high luminance values, while keeping landscape into low and homogeneous values.

  Euclidean vectors spanning the positive convex cone L c , i.e. the sub-space such that ∀α, β ∈ R * + , ∀v, w ∈ L c , αv + βw ∈ L c . Then any vector u ∈ � |Ω| can be uniquely written as u = û + ũ (7.0)

(7. 3 )

 3 where the descriptors s l (p), s m (p) and s n (p) verify for all l, m, n ∈ {1, . . . , N }:(s l (p), s m (p), s n (p)) = arg min[d SIF T (s l (p), s m (p)) + d SIF T (s m (p), s n (p)) + d SIF T (s l (p), s n (p))]This two-step selection aims at reinforcing the confidence level that s ref (p) is a landscape descriptor. The price to pay is a numerical complexity in O(n 2 ). Once the reference SIFT descriptor is selected, we compute for each p and time n the similarity measure C n (p) = d SIF T (s n (p), s ref (p)).(7.3) 

Figure 7 . 4 :

 74 Figure 7.4: The support Ω of image u is extended to Z 2 following a toric expansion. Tiling of Ω is constituted by the (Ω r,s ) regions. Regions (Ω r,s=2 ) are shifted.

Proposition 4 .

 4 Let (Y n,r,s ) 1≤s≤S be a set of random variables. Then the functionN F A sum defined by N F A sum = S � s=1 N F A s isa number of false alarms function for the random variables (Y n,r,s ) in the sense of definition 7.3. In more precise terms it satisfies sum (p, Y n,r,s ) ≤ S�)   ≤ S�. (7.8) Proof. First, from definition 7.3, the property of additivity holds, so that for all s, for all � s (p, Y n,r,s ) ≤ �) NFA s (p, Y n,r,s ) ≤ �)) s (p, Y n,r,s ) ≤ �) (7.10)

Proposition 5 .�

 5 Let (Y n,r,s ) 1≤s≤S be a set of random variables. Then the function N F A med defined by N F A med = S.median 1≤s≤S (N F A s ) is a number of false alarms function for the random variables (Y n,r,s ) in the sense of definition 7.3 satisfying med (p, Y n,r,s ) ≤ S�)   ≤ S�. (7.11)Proof. First, from definition 7.3, the property of additivity holds, so that for all s and for all� s (p, Y n,r,s ) ≤ �) NFA s (p, Y n,r,s ) ≤ �)) s (p, Y n,r,s ) ≤ �) (7.13) med (p, Y n,r,s ) ≤ S�) (N F A med (p, Y n,r,s ) ≤ S�) A s (p, Y n,r,s )) ≤ � s )be the set of events such that A s = {N F A s (p, Y n,r,s ) ≤ �} for all s, and the event A = � median 1≤s≤S (N F A s ) ≤ � � . As event A means there is at least 1 2 indices

Figure 7 . 3 :

 73 Figure 7.3: Bottom, distributions of the directions of the vectors of the disparity maps, according to the presence or not of clouds in images (visible band 2Landsat-8). The residual registration error between the images used to calculate the disparity maps (middle line) and the variation of their contrasts due to their spectral difference (band 2 vs. band 3) induce directional errors in the estimation of the motion. These directional errors do not make it possible to accurately characterize the displacement of the clouds: no particular mode is distinguished in the histograms. The use of an angular criterion is thus not judicious.
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 81 Figure 8.1: Dataset consisting of sequences from six zones observed by Sentinel-2 during one year. Each sequence contains 20 images in bands 2, 3, 4, 8 and 10. These zones are quite representative of changes observable over several months : landscape changes, snowfalls, new buildings, etc.
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 82 Figure 8.2: Left: original scene, middle: cloud map. Right: cloud + shadow map.The segmentation was performed manually with the software Gimp. During this process, the original scenes were saturated to highlight the cloud regions that are quite translucent. This sometimes lead to overestimating cloud and shadow regions. Shadow + cloud ground truth have been made so that (cloud + shadow) mapcloud map = shadow map strictly.

  .0) and the global detection rate by τ D (θ) = T P θ (B) P (B) = � B∈B � p∈Ω �(B truth (p) = 1) • �(B θ (p) = 1) � B∈B � p∈Ω �(B truth (p) = 1) . (8.0)

  . SIFT+move.+nov.+lum.

Figure 8 . 3 :

 83 Figure 8.3: Cloud maps of the St Pierre & Miquelon Sentinel-2 series (which cannot be disclosed). Upper left, ground truth with clouds. Upper right, ground truth with clouds and shadows. Due to the flat relief there are no other shadows than those of the clouds. This makes the scene analysis easy. The results are quite precise whatever the features combination. The best combination uses the four criteria.
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 84 Figure 8.4: Cloud maps of the Agricultural 1 Sentinel-2 series. This series contains many local landscape contrast changes. The SIFT and novelty features used alone are sensitive to these changes. The contribution of the movement feature reduces their false alarms, but it leads to miss detections up right and up left, leaving large clouds undetected.
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 85 Figure 8.5: Cloud maps of the Agricultural 2 Sentinel-2 series. This series contains many local landscape contrast changes. The SIFT and novelty features, used alone, are sensitive to these changes, while the cloud motion diffuses too much. However, a combination of the three is quite good, and the addition of the luminance criterion yields an excellent result.
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 86 Figure 8.6: Cloud maps of the Urban Sentinel-2 series. This series contains frames with brisk illuminations changes and high frequency textures. SIFT and novelty alone partially detect shadows. The combination of the SIFT, novelty and movement features or of pair among the three is satisfying, while involving the luminance feature exceedingly erodes the clouds contours.
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 87 Figure 8.7: Cloud maps of the Maritime Sentinel-2 series. This series contains two distinct regions : a landscape with small texture variations and the sea with systematic texture changes over time. SIFT and novelty are sensitive to this last. Introduction of movement reduces dramatically these false alarms. The fact that the three criteria SIFT, novelty and movement estimate badly the cloud bottom, leads the luminance feature to over-erode this region.

Figure 8 . 8 :

 88 Figure 8.8: Cloud maps of Mountain 1 Sentinel-2 series. Due to the relief and the varying frame acquisition dates, this series contains large variations of shadows over time, and therefore strong texture variations. This frame is cloud free. While SIFT and the novelty criterion estimate poorly this scene, the movement features performs very well. Its combination with the other features decreases drastically the false alarms.

Figure 8 . 9 :

 89 Figure 8.9: Cloud maps of Mountain 2 Sentinel-2 series. Due to the relief and the varying dates frame acquisitions, this series contains large variations of shadows over time, and therefore strong texture variations. This frame contains both clouds and snow with high luminance. The combination of SIFT and of the novelty is quite precise while the movement feature underestimates the cloud cover. The luminance feature deteriorates the detection.

Figure 8 . 10 :

 810 Figure 8.10: Two main reasons justify the large deviations, between the (BQA n ) maps and the estimated (B n ) maps. At the top, a great majority of clouds are considered as cirrus (in grey) in the BQA image while they are strongly detected by our algorithm (SIFT + novelty features used). At the bottom, there is a significant underestimation of cloud cover in the BQA band.

  t ). (A.-10) As u t = v t * h and from property (3.6), we havevar(Y n ) = var )h(l)cov(X n-m , X n-l ) = ∞ � m=-∞ var(X n-m )h 2 (m) + 0. (A.-11)Introducing var(v t ) from definition (3.1) and using (A.-11) then

2 1 K � - 1 EQMA. 1 . 2 From ( 3 . 6 )

 2111236 var(v t ). (A.-12) According to the definition of the statistics(3.6) and to the equivalence between (A.-10) and (A.-12) we havevar(ū K ) = var � u 1 + • • • + u K (ū k , ūK ) = k Kk EQM (ū k , ūK ). Proof of proposition (2)Proof. According to the definition (3.1), and since the histogram modification corresponds to an affine transformation of slope α n and bias β n , applied in each pixel, we havevar(f L (ū K )) and relationship E[( Ȳn k -Ȳn K ) 2 ] = ( 1 k -1 K )var( Ȳn ) seen in A.1.1 we have var( Ȳn K ) = k K-k E[( Ȳn k -Ȳn K ) 2] which is then estimated by k K-k (ū k (n)-ūK (n)) 2 .

Figure A. 1

 1 shows the different scenes for view v +000 . The images produced have a size of 960 × 540 in portrait mode and of 540 × 960 in landscape mode. They are offered in three formats namely: EXR 16-bit, 16-bit PNG and TIF 16 bit float. The first two mentionned formats come directly from the rendering engine LuxRender while the third was obtained by a post-processing of EXR images detailed in section A.2.3. Each pixel received an average of over 2 million contributions. The noise estimate was made by creating for each of the 11 scenes u K a identical u k scene but with a rendering duration k much lower by around 100 000 contributions per pixel and then by applying formula[START_REF] Chandran | A survey of cloud detection techniques for satellite images[END_REF]. In practice the rendering duration is the number of contributions per pixel.

Figure A. 1 :

 1 Figure A.1: All scenes constituting the images dataset.The images of this illustration reflect the views v +000 in PNG 16 bits created by the renderer. Scenes "bastet matte", "shrub matte", "pillar matte" and "saloon matte" correspond to case A. Scenes "bastet shiny", "shrub shiny", "pillar shiny" and "saloon shiny" correspond to case B.bastet_shiny bastet_matte shrub_shiny shrub_matte corridor

  Transformation matrices file The binary file contains two matrices R IC and R CA stored one after the other in the format:

(i- 1 )

 1 Δρ+r min (h(ρ) -�h�) 2 dρ -(h i -�h�) 2 .

  r min (h(ρ) -�h�) 2 dρ. (A.-30) Titre : Évaluation d'algorithmes stéréoscopiques de haute précision en faible B/H Mots clés : stéréoscopie, rapport B/H, flux optique, méthode a contrario, détection de nuages, lancer de rayon Résumé : Cette thèse étudie la précision en vision stéréo, les méthodes de détection dites a contrario et en présente une application à l'imagerie satellitaire. La première partie a été réalisée dans le cadre du projet DGA-ANR-ASTRID «STÉRÉO». Son but est de définir les limites effectives des méthodes de reconstruction stéréo quand on contrôle toute la chaîne d'acquisition à la précision maximale, que l'on acquiert des paires stéréo en rapport B/H très faible et sans bruit. Pour valider ce concept, nous créons des vérités terrains très précises en utilisant un rendeur. En gardant les rayons calculés durant le rendu, nous avons une information très dense sur la scène 3D. Ainsi nous créons des cartes d'occultations, de disparités dont l'erreur de précision est inférieure à 10 -6 . Nous avons mis à la disposition de la communauté de recherche des images de synthèse avec un SNR supérieur à 500 : un ensemble de 66 paires stéréo dont le B/H varie de 1/2500 à 1/50. Pour évaluer les méthodes de stéréo sur ce nouveau type de données, nous proposons des métriques calculant la qualité des cartes de disparités estimées, combinant la précision et la densité des points dont l'erreur relative est inférieure à un certain seuil. Nous évaluons plusieurs algorithmes représentatifs de l'état de l'art, sur les paires créées ainsi sur les paires de Middlebury, jusqu'à leurs limites de fonctionnement. Nous confirmons par ces analyses, que les hypothèses théoriques sur le bien fondé du faible B/H en fort SNR sont valides, jusqu'à une certaine limite que nous caractérisons. Nous découvrons ainsi que de simples méthodes de flux optique pour l'appariement stéréo deviennent plus performantes que des méthodes variationnelles discrètes plus élaborées. Cette conclusion n'est toutefois valide que pour des forts rapports signal à bruit. L'exploitation des données denses nous permet de compléter les vérités terrain par une détection très précise des bords d'occultation. Nous proposons une méthode de calcul de contours vectoriels sub-pixelliens à partir d'un nuage de points très dense, basée sur des méthodes a contrario de classification de pixels. La seconde partie de la thèse est dédiée à une application du flot optique sub-pixellien et des méthodes a contrario pour détecter des nuages en imagerie satellitaire. Nous proposons une méthode qui n'exploite que l'information visible optique. Elle repose sur la redondance temporelle obtenue grâce au passage répété des satellites au-dessus des mêmes zones géographiques. Nous définissons quatre indices pour séparer les nuages du paysage : le mouvement apparent inter-canaux, la texture locale, l'émergence temporelle et la luminance. Ces indices sont modélisés dans le cadre statistique des méthodes a contrario qui produisent un NFA (nombre de fausses alarmes pour chacun). Nous proposons une méthode pour combiner ces indices et calculer un NFA beaucoup plus discriminant. Nous comparons les cartes de nuages estimées à des vérités terrain annotées et aux cartes nuageuses produites par les algorithmes liés aux satellites Landsat-8 et Sentinel-2. Nous montrons que les scores de détection et de fausses alarmes sont supérieures à ceux obtenus avec ces algorithmes, qui pourtant utilisent une dizaine de bandes multi-spectrales.

  

  

  

  

  

  

  

  Ce fait peut s'expliquer par la réduction de la dimensionnalité : le résidu de la projection d'une image u ne ressemblant à aucun des vecteurs v i pour i = 1, • • • , N -1 générant le cône L c , est généralement plus grand que celui calculé selon la première définition.Enfin, le quatrième indice est le critère de luminance qui repose sur l'hypothèse, certes discutable, que les nuages et les ombres ont respectivement une luminance élevée et faible, au moins dans les canaux visibles.Notre objectif n'est pas de classer les nuages et leurs ombres avec d'autres catégories comme la végétation ou l'urbanisme mais simplement de les séparer du paysage. Ceci revient à ne considérer que deux catégories. D'autre part, la caractérisation de ces météores selon les critères sus-mentionnés est loin d'être évidente. En effet, comme les nuages ont des mouvements, des formes et des textures extrêmement variables, il semble difficile d'établir des modèles de nuages et d'ombres qui soient à la fois simples à modéliser et robustes. L'inadéquation de l'apprentissage automatique à notre problème, résulte ici de la difficulté à annoter massivement cette diversité. De plus, pour être efficace, notre intuition nous dit que l'apprentissage automatique devrait être appliqué sur une période assez longue pour apprendre l'aspect du sol. C'est pourquoi nous préférons adopter une modélisation explicite et choisissons d'utiliser une méthode statistique a contrario où les données sont comparées à une hypothèse nulle H 0 . Dans notre cas, H 0 correspond à l'absence de nuage et d'ombre et le modèle stochastique du paysage qui en découle est formalisé par H

le vecteur le plus proche de u dans L c et ũ est la nouveauté. 0 : Y p ∼ f Yp (1.0) où Y p est la variable aléatoire modélisant le comportement du pixel p en l'absence de nuage et d'ombre et f Yp est sa densité de probabilité. La méthode de Desolneux et al. [26] est particulièrement adaptée à l'analyse d'image. Elle conduit à calculer un nombre de fausses alarmes (NFA)

  Dans le chapitre 7, nous présentons les résultats du détecteur de nuages. L'algorithme a été testé sur six séquences Landsat-8 et Sentinel-2 de vingt images chacune, acquises au cours d'une années, soit 240 images. Les régions sélectionnées sont assez représentatives des changements potentiellement observables au cours du temps (le changement de paysage, la présence de neige fortement réfléchissante ou de vagues sur la mer). En l'absence de vérités terrain exactes, nous avons recouru à

où |Ω| est le nombre de tests (correspondant au nombre de pixels) et F Yp est la fonction de répartition de Y p . Cette fonction N F A est alors seuillée par un coefficient � qui représente le paramètre de décision de l'algorithme puisqu'il contrôle le nombre de fausses alarmes attendues a priori. Lorsque l'on utilise K critères, la variable Y p devient une combinaison des variables aléatoires Y k pour k = 1, • • • K, chacune associée à un critère sous l'hypothèse nulle. Comme il est difficile de modéliser la loi d'un critère à partir de lois analytiques connues, nous calculons pour chacun une fonction de répartition FX kp empirique où X kp décrit le comportement de p relativement au critère k et l'hypothèse nulle. En ce qui concerne la combinaison de ces critères entre eux, nous supposons qu'ils sont indépendants et qu'il ne sont pas moins significatifs les uns les autres, de sorte qu'après avoir rendu uniformes les lois empiriques par la relation

FX kp (X kp ) = Y kp ∼ U[0, 1], (

1

.0) nous pouvons appliquer la formule de Irwin-Hall [44] relative à la sommation de variable aléatoires uniformes et indépendantes, pour définir la fonction de répartition de la variable aléatoire Y p := K � k=1 Y kp pour calculer le N F A (1.4) et le seuiller. image SIFT+mouv.+nouv. SIFT+mouv.+nouv.+lum.

Figure 1.5: Cartes de nuages d'une zone agricole estimées pour deux combinaisons. Au milieu : critères SIFT, mouvement et nouveauté. À droite : critères SIFT, mouvement, nouveauté et luminance. Cette série contient de nombreux changements locaux de textures dus aux aux saisons et aux activités agricoles. L'association des quatre critères donne de très bonnes estimations. des annotations manuelles par des experts de la couverture nuageuse de ces images, d'une façon booléenne. Nous avons utilisé trois métriques de qualité de détection: le taux de détection, le taux de fausses alarmes et le taux de précision équilibrée qui combine les deux précédents. Différentes combinaisons de critères ont été testées. Les couvertures nuageuses obtenues par notre algorithme et celles des produits Landsat-8 Level 1 et Sentinel-2 Level 1C ont été comparées quantitativement et qualitativement (cf. Fig. 1.5).

  .4: Scheme of a point P depth estimate H from two cameras C 1 and C 2 , fronto-parallely shifted by a distance B. The knowledge of focal length f and the projections of P on focal planes F 1 of C 1 and F 2 of C 2 respectively at points x 1 and x 2 , allows this estimate thanks to Thales' theorem applied to pinhole cameras.

Table I :

 I Comparison of ground truths present in the bases described above, including ours (CMLA) for the evaluation of stereovision algorithms.

	images resolution rigid deforma-tions	Middlebury KITTI EISATS 8 bits 8 bits 8 bits	HCI 12 bits	Tsukuba Sintel Institut Farman 8 bits 8 bits 8 bits	CMLA floatting 16 bits

29 end 30 end 31

  s 1 , . . . , s N , N s ) set of the local minima of h 6 while j ≤ card (S) do

	7 8	repeat merge_done_at_least_once ← FALSE
	23 24	if H + 0 ∧ H -0 then merge_done_at_rigth ← TRUE
	33 34 35 36 37 38 end until merge_done_at_least_once ∧ i ≤ card (S) -2 end i ← 0 j ← j + 1 i ← 0 39 for l ← 1 to card (S) -1 do 40

9 while i ≤ card (S) -1 do 10 repeat 11 merge_done_at_rigth ← FALSE 12 t ← a ← s i 13 b ← s i+j 14 while merge_done_at_rigth = FALSE ∧ t ≤ b do 15 /* ĥ+ [a,t] increasing Grenander estimator */ 16 ĥ+ [a,t] ← G(h [a,t] ) 17 /* H + 0 Boolean variable */ 18 H + 0 ← H 0 ( ĥ+ [a,t] , h [a,t] , �) 19 /* ĥ-[t,b] decreasing Grenander estimator */ 20 ĥ-[t,b] ← -G(-h [t,b] ) 21 /* H - 0 Boolean variable */ 22 H - 0 ← H 0 ( ĥ-[t,b] , h [t,b] , �) 25 merge_done_at_least_once ← TRUE 26 S ← (1, . . . , s i , s i+j , . . . , s card (S)-2 , N s ) 27 else 28 t ← t + 1 until merge_done_at_rigth = FALSE 32 i ← i + 1

  .-23) where z C (p) is the distance, in meters, from the geometric point P C to the plane (O C , � x C , � y C ), containing the focal point O C . f is the focal length in meters. Cabezas et al.

  The matching density precision metric, relating to precision threshold s, comparing the estimated disparity Dl with the exact dense disparity D l and knowning the exact occlusions O l is the success rate

or if Dl (p) and D l (p) are null simultaneously. Definition 5.2.

  v y , T, S) with : u 1 l reference image; u 1 r shifted image; σ 1 standard deviation of Gaussian blur kernel G σ 1 ; v x , v y dimensions of neighborhood in x resp. in y; T maximum number of iterations; S number of scales. Output: Dl estimated disparity map of u 1 l 1 computation of (u l , u r ) s at different scales s 2 for s ← 2 to S do , H u ← width and height of image u s

	3 4 5 end u s l ← algorithm 7(u s-1 l u s r ← algorithm 7(u s-1 r ) ) 6 L S , H S ← width and height of image u S l 7 initial disparity 8 DS	
	11	images blurring	l
	20 21 22	∂ x displacement estimation vs l ← {∂ x ȗs l (p)/p ∈ V(p)} d 0 ← 0	

g ← M (L S ×H S ) (0) 9 for s ← S to 1 do 10 L u 12 ȗs l ← Blur(u s l , G σ 1 ) 13 ȗs r ← Blur(u s r , G σ 1 ) 14 computation of derivative in x of reference image 15 ∂ x ȗs l ← Blur(ȗ s l , ∂ x G σ 1 ) 16 for p ← (0, 0) to [0, L s ] × [0, H s ] do 17 neighborhood selection 18 v l ← {ȗ s l (p)/p ∈ V(p)} 19 v r ← {ȗ s r (p)/p ∈ V(p)} 23 d init ← Ds init 24

Table I :

 I Radiometric characteristics of imagers of the Landsat-8 satellites.

	Band 1 2 3 4 5 6 7 8 9 10 11	Center λ(nm) 443 482 561 655 865 1608 2200 590 1375 10895 12005	Spectral Width Δλ(nm) 16 60 57 37 28 85 187 173 21 590 1010	Spatial Resolution (m) 30 aerosol Purpose 30 blue 30 green 30 red 30 NIR 30 SWIR-1 30 SWIR-2 15 panchromatic 30 cirrus 100 TIR-1 100 TIR-2

Table II :

 II Radiometric characteristics of imagers integrated into the Sentinel-2 satellites. Visible bands 2, 3 and 4 and near infrared 8 have a maximal resolution of 10 m per pixel while short-wavelength infrared (SWIR) bands 8a 9, 10, 11 and 12 have resolution egal to 20 or 60 m.

	Band 1 2 3 4 5 6 7 8 8a 9 10 11 12	Center λ(nm)	Spectral Width Δλ(nm) 20 65 35 30 15 15 20 115 20 20 30 90 180	Spatial Resolution (m) 60 Atmospheric Correction Purpose 10 Sensitive to Vegetation Aerosol Scattering 10 Green peak, sensitive to total chlorophyll in veg-etation 10 Max Chlorophyll ab-sorption 20 Not used in L2A context 20 Not used in L2A context 20 Not used in L2A context 10 Leaf Area Index (LAI) 20 Used for water vapor ab-sorption reference 60 Water Vapor absorption atmospheric correction 60 Detection of thin cirrus for atmospheric correc-tion 20 Soils detection 20 AOT determination

Table IV :

 IV Notations.

	(u n ) satellite image series Ω set of coordinates of an image u n p a pixel |Ω| number of pixels p N number of frames of (u n ) K number of features (s n ) series of SIFT descriptors related to (u n ) X, Y random variables f X probability density function of r.v. X FX empirical cumulative distribution function of r.v. X

  |Ω| is the number of tests (corresponding to the number of pixels) and F Yp the cumulative distribution function of Y p . The NFA method verifies the consistency requirement, under the null hypothesis[START_REF] Grosjean | A-contrario detectability of spots in textured backgrounds[END_REF] :

	Definition 7.3. (Number of false alarms) Let (Y p ) 1≤p≤|Ω| be a set of random vari-ables. A function G(p, y) is an NFA (number of false alarms) for the random variables (Y p ) if

  (p) i (resp. s ref (p) i ) being those of the i th bin of the descriptor s n (p) (resp. s ref (p)

	where	sn (p) =	1 128	128 � i=1	s n (p) i , sref (p) =	1 128	i=1 128 �	s ref (p) i ,	(7.3)
	the values s n								

Algorithm 10 :

 10 The multi-shifted region-based clouds detector algorithm. Input: (u n ) SIF T , (u n ) move. , (u n ) nov. , (u n ) lum. series respectively related to the SIFT, motion, luminance, novelty features Input: W SIF T , W move. , W nov. , W lum. sizes of side patches partitioning respectively the SIFT, motion, luminance, novelty frames Input: S number of shifts Input: L type of accumulation of the shifts NFA (sum or median) Input: � threshold of the accumulated NFA Output: (B n ) Boolean cloud maps 1 for k ∈ {SIF T, move, nov., lum.} do 2 (Ω r,s ) ←compute the partionning regions (Ω r,s ) according W k and S

	3 4 5 6 7 9 9	for s ← 1 to S do for r ← 1 to R do crop frames (u n ) k according Ω r,s (u n ) k r,s ← (u n ) k |Ωr,s compute the series of arrays of observed values upon Ω r,s associated to the feature k (y n ) k r,s ←Algorithm 11[(u n ) k r,s , k]
	12 13	(y n ) k s ←	� R r=1 (y n ) k r,s

10 end 11 concatenation over r, of the arrays of observed values

end 14 end 16 16 for

  

	19 20	compute the multi-features observed values y n,s (p) ← y SIF T n,s (p) + y move. n,s (p) + y nov. n,s (p) + y lum. n,s (p)

s ← 1 to S do 17 for n ← 1 to N do 18 for p ← 1 to |Ω| do 21 N F A n,s (p, y n,s (p)) ← |Ω r,s |(1 -F Y SIF T +Y disp +Ynov+Y lum (y n,s (p))

22 end 23 end 24 end 25

  

	27 28 29 30 31	compute the median or sum of the N F A s if L = median then N F A n (p) ← Smedian N F A n,s (p, y n,s (p)) s end else if L = sum then
	32	N F A n (p) ←	S � s=1	N F A n,s (p, y n,s (p))

for n ← 1 to N do 26 for p ← 1 to |Ω| do 33 end 34 compute the cloud maps 35 B n (p) ← �(NFA n (p) ≤ S�)

36 end 37 end 39 39

  

return (B n ) Algorithm 12: Region size fitting algorithm. Input: W length of the regions side, I length of the image side Output: W fitted length of the regions side Output: Wlast fitted length of the last region side Output: N number of regions of side length fitted W 1

  We considered here, for a given feature k, the influence of the side length W k of the patches, supposed square, and the number S of shifts, as defined in §7.4.9. We measured performance for the ranges W k × S = {16, 32, 48, 64, 96, 128, 500} × {1, 9, 25, 49, 81} for the Sentinel-2 series only. Tables I, II and III indicate the average balanced accuracies τ of the different scenes respectively for the motion, SIFT and novelty features. Overall, the SIFT and motion criteria are of the same order of precision, while the novelty filter is less efficient by about 10 points. In addition, SIFT and motion accuracies remain fairly stable for a patch size ranging from 32 × 32 to 128 × 128. The novelty filter is more sensitive to these variations and finds its optimum around 32 × 32.

	.0)
	8.4 Experiments
	Parametric stability

Table IV :

 IV Balanced accuracy(8.3) between the cloud maps estimated by our algorithm for different combinations, those of the Sentinel-2 (QI) and the handfitted clouds ground truths. .[START_REF] Fua | A parallel stereo algorithm that produces dense depth maps and preserves image features[END_REF] 70.95 80.12 80.40 83.79 87.48 83.72 61.89 66.59 62.27 Agricultural 2 80.93 73.08 78.73 80.53 86.76 83.44 85.94 63.78 70.40 66.40 Maritime 79.93 63.33 76.42 86.75 87.00 88.84 88.67 73.74 79.49 63.38 Miquelon 88.08 78.47 95.46 94.79 94.63 95.47 95.73 83.72 86.75 65.56 Mountain 81.40 63.67 62.91 80.11 84.74 76.47 84.20 60.63 67.51 78.46 Urban 93.52 54.59 79.80 84.72 90.89 83.49 88.06 68.12 75.54 63.56

	Scenes Combinations Agricultural 1 78move. nov. SIFT move. + nov.	move. + SIFT	SIFT + nov.	move. + SIFT + nov.	SIFT + nov. + lum	move. + SIFT + nov. + lum.	QI

Table V :

 V Detection rate(8.3) between the cloud maps estimated by our algorithm for different combinations, those of the Sentinel-2 (QI) and the hand-fitted clouds ground truths. .[START_REF] Martull | Realistic cg stereo image dataset with ground truth disparity maps[END_REF] 43.74 66.11 66.19 78.24 81.32 74.34 24.73 34.85 24.54 Agricultural 2 69.97 64.94 63.33 64.95 80.58 73.81 77.03 28.59 42.14 32.81 Maritime 71.35 27.53 55.93 77.67 81.83 88.15 81.78 49.73 60.46 26.77 Miquelon 77.07 59.36 96.70 92.87 93.88 98.01 96.53 69.37 75.61 31.13 Mountain 69.15 34.82 27.40 68.54 78.00 74.69 78.86 24.97 36.60 59.05 Urban 94.58 9.29 61.78 76.45 93.00 74.44 83.40 37.43 53.00 28.64

	Scenes Combinations Agricultural 1 65move. nov. SIFT move. + nov.	move. + SIFT	SIFT + nov.	move. + SIFT + nov.	SIFT + nov. + lum	move. + SIFT + nov. + lum.	QI

Table VI :

 VI False alarm rate(8.3) between the cloud maps estimated by our algorithm for different combinations, those of the Sentinel-2 (QI) and the hand-fitted clouds ground truths. .[START_REF] Northrup | Artistic silhouettes: A hybrid approach[END_REF] 5.39 10.67 6.36 6.89 0.94 1.66 0.00 Agricultural 2 8.12 18.78 5.88 3.89 7.06 6.94 5.16 1.03 1.33 0.01 Maritime 11.49 0.88 3.10 4.17 7.84 10.47 4.45 2.26 1.47 0.00 Miquelon 0.91 2.43 5.79 3.29 4.62 7.07 5.08 1.93 2.12 0.00 Mountain 6.35 7.48 1.58 8.32 8.52 21.74 10.46 3.71 1.59 2.13 Urban 7.55 0.12 2.17 7.02 11.21 7.46 7.29 1.18 1.93 1.5

	Scenes Combinations Agricultural 1 9.09 move. nov. SIFT move. + nov. 1.84 5	move. + SIFT	SIFT + nov.	move. + SIFT + nov.	SIFT + nov. + lum	move. + SIFT + nov. + lum.	QI

Table VII :

 VII Balanced accuracy(8.3) between the cloud maps estimated by our algorithm for different combinations, those of the Landsat-8 (BQA) and the handfitted clouds ground truths. The imprecision of the motion feature in the 4 first scenes reduces the accuracy of its combinations, but its advantage over the novelty and SIFT features on the difficult scene Mountain is clear. .[START_REF] Devernay | A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy[END_REF] 79.01 80.53 61.58 64.38 82.09 67.32 67.85 55.26 82.59 Agricultural 2 47.92 82.54 89.45 55.75 55.81 91.32 64.91 93.16 53.67 84.50 Maritime 58.80 68.28 70.89 62.03 62.66 71.83 64.64 55.81 54.41 60.11 Miquelon 78.54 94.81 90.14 87.13 85.88 95.85 92.14 78.95 80.85 72.95 Mountain 85.99 38.77 75.16 56.61 82.02 53.47 61.93 51.16 53.00 64.72 Urban 90.38 91.07 91.09 93.06 93.97 94.06 94.18 89.45 91.68 87.29

	Scenes Combinations Agricultural 1 59move. nov. SIFT move. + nov.	move. + SIFT	SIFT + nov.	move. + SIFT + nov.	SIFT + nov. + lum	move. + SIFT + nov. + lum.	BQA

Table VIII :

 VIII Detection rate(8.3) between the cloud maps estimated by our algorithm for different combinations, those of the Landsat-8 (BQA) and the hand-fitted clouds ground truths. .[START_REF] Isenberg | A developer's guide to silhouette algorithms for polygonal models[END_REF] 75.87 81.72 32.60 40.20 77.83 44.39 36.91 11.97 67.61 Agricultural 2 9.90 97.24 96.42 17.93 18.76 97.33 36.28 87.31 8.44 70.70 Maritime 40.40 60.30 55.63 30.51 33.38 54.58 35.57 12.99 9.69 23.42 Miquelon 63.81 96.70 99.46 76.70 77.52 99.04 89.69 59.65 62.89 45.96 Mountain 78.78 22.40 66.80 18.63 67.45 22.09 29.31 3.66 6.84 38.30 Urban 93.60 95.47 96.96 93.95 94.20 97.12 95.97 80.36 85.51 77.02

	Scenes Combinations Agricultural 1 41move. nov. SIFT move. + nov.	move. + SIFT	SIFT + nov.	move. + SIFT + nov.	SIFT + nov. + lum	move. + SIFT + nov. + lum.	BQA

Table IX :

 IX False alarm rate(8.3) between the cloud maps estimated by our algorithm for different combinations, those of the Landsat-8 (BQA) and the hand-fitted clouds ground truths. .[START_REF] Rais | Corrélateur et interpolateur à faible complexité[END_REF] 17.85 20.67 9.43 11.45 13.65 9.76 1.22 1.44 2.43 Agricultural 2 14.06 32.16 17.53 6.43 7.14 14.68 6.46 1.00 1.11 1.70 Maritime 22.79 23.73 13.86 6.46 8.06 10.93 6.29 1.38 0.87 3.21 Miquelon 6.73 7.07 19.19 2.45 5.76 7.34 5.40 1.74 1.20 0.05 Mountain 6.81 44.86 16.47 5.41 3.42 15.15 5.45 1.34 0.85 8.86 Urban 12.85 13.33 14.79 7.83 6.26 9.00 7.61 1.45 2.15 2.45

	Scenes Combinations Agricultural 1 22move. nov. SIFT move. + nov.	move. + SIFT	SIFT + nov.	move. + SIFT + nov.	SIFT + nov. + lum	move. + SIFT + nov. + lum.	BQA

Table X :

 X Global statistics(8.3),(8.3) and (8.3) computed over the dataset B defined respectively as the Sentinel-2 dataset, the Landsat-8 dataset and their union. While global results on the Sentinel-2 series over-perform the QI band, the scores of Landsat-8 are inferior to the BQA bands except for combinations SIFT and "SIFT+nov". as well as to images (u k ) k . They imply that

	M SE(ū k , ūK ) =	1 3N I	n=1 3N I �	var

Table A .

 A 2.1 lists the scene designers who must be credited when using the CMLA database.

Table I :

 I 3D scenes designers.

	Designers	Scenes
	Peter Sandbacka Hotel Lobby
	Simon Wendsche school corridor
	Tahseen Jamal sketch watch	, oranges

Table II :

 II Parameter values used by the modified version of histogram equalization algorithm by Lisani et al., applied to different EXR images.

	Scene bastet_matte bastet_shiny corridor oranges pillar_matte pillar_shiny saloon_matte saloon_shiny shrub_matte shrub_shiny watch	minimum slope maximum slope number of control points 0 20 1000 0 100 1000 0 5 10 0 2 10 0 20 1000 0 40 1000 0 20 1000 0 40 1000 0 20 1000 0 40 1000 0 5 1000
	transformation in computing

Table III :

 III Content of text file scene_+000.txt.

	Field nlin ncol fov baseline_with_+001 baseline according to (3.8) between v +000 and v +001 etc. Meaning image rows number image column number image field of view expressed in degrees var_uk variance according to (1) sigma2 normalized variance according to (3.2) var_fluk variance of the quantified image on [0; 255] according to (2) snr_uk SNR of ūK according to (3.3) snr_fluk SNR of f

L (ū K ) according to

(3.3) 

Table IV :

 IV Maximum amplitude of disparity maps along the y axis. .10 -5 3.958.10 -5 1.122.10 -4 bastet_matte,bastet_shiny 1.331.10 -4 2.602.10 -5 1.722.10 -4 corridor 2.810.10 -5 2.816.10 -5 2.992.10 -5 watch 1.518.10 -16 1.527.10 -16 1.485.10 -16 oranges 4.836.10 -6 7.254.10 -6 4.836.10 -6 pillar_matte,pillar_shiny 4.807.10 -6 1.421.10 -7 4.246.10 -6 saloon_matte,saloon_shiny 4.383.10 -6 5.707.10 -5 1.001.10 -4

	Scene shrub_matte,shrub_shiny	v +001 3.197	v +010	v +050

  the mean of the entity X i over the N s intervals, the second terms B i decompose according to -�h�) 2 + 2(h(ρ) -�h�)(�h�h i ) + (�h�h i ) 2 dr -�h�) 2 dρ + 2(h i -�h�)(�h�h i ) + (�h�h i ) 2

								Δρh i	(A.-23)
	with				h i	def =	1 Δ ρ	� iΔρ+r min (i-1)Δρ+r min	h(ρ)dρ.	(A.-23)
	=	1 Δ ρ	� iΔρ+r min (i-1)Δρ+r min		
								.
					�			��	�
								B i
	Denoting �X�	def =	N s 1	Ns �		
	∀i, B i = = (h(ρ) = 1 Δ ρ � iΔρ+r min (i-1)Δρ+r min (h(ρ) -�h� + �h� -h i ) 2 dρ 1 Δ ρ � iΔρ+r min (i-1)Δρ+r min 1 Δ ρ � iΔρ+r min (i-1)Δρ+r min (h(ρ) = Δ ρ 1 � iΔρ+r min

Remarking that E( ĥi ) = h i , the integrals A i decompose according to

∀i, A i = 1 Δ ρ � iΔρ+r min (i-1)Δρ+r min E( ĥih i -(h(ρ)h i )) 2 dρ E( ĥih i ) 2 -2E[( ĥih i )(h(ρ)h i )] + E(h(ρ)h i ) 2 dρ = E( ĥih i ) 2 + 1 Δ ρ � iΔρ+r min (i-1)Δρ+r min (h(ρ)h i ) 2 dρ i=1 X i

Precision is only limited by the numbers representation in single-precision floating-point format.

https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/ products-algorithms

The term is used here in its meteorological sense, to aggregate compactly the «clouds, clouds shadows and snow» terms.

The occlusion map, denoted by O 1 l , is calculated according to the formula

where the threshold α is set to 0.2, to be consistent with the precision disparity maps provided by Middlebury 2014. The value of D1 r to the non-integer (p+D In the absence of ground truths, we annotated the cloud cover of these images by hand, in a Boolean manner. We used three quality metrics : the detection rate, the false alarm rate and the balanced accuracy rate that combines the previous two. Different combinations of features have been tested. The cloud coverage obtained by our algorithm and those of the Landsat-8 Level 1 and Sentinel-2 Level 1C products were compared quantitatively and qualitatively. We found that the detection performance (in terms of false positive and false negative detection rates) was of the same order as the one obtained by the Landsat-8 algorithm with the BQA maps, which exploits about ten spectral bands.

Considering globally the Sentinel-2 and Landsat-8 series, we showed that mixing features as motion, novelty and SIFT together increase accuracy, while adding the luminance feature of a visible band lead to instable results. We showed too that the contribution of inter-channel movement is one of the keys to this success. In order to be used efficiently, the algorithm must be applied twice: the first time with the SIFT criterion to remove the images that are totally cloudy, the second one by processing the remaining images with at least two features.

Introduction

We have evaluated the clouds detector both on Sentinel-2 and Landsat-8 series and confronted its results to the Quality Indicators (QI) series Level 1-C of Sentinel-2 and the Band Quality Assessment (BQA) series of Landsat-8 respectively. To this end, we have conceived a dataset of six temporal series about 20 frames each, acquired by the two satellites in the course of one year. They represent various locations such as agricultural areas, mountain, city and sea. Figure 8.1 shows the different scenes. The sub-pixel registration process comes during the series criterion and the way it is calculated. Whereas the SIFT detection is coarse, the ω regions defined by (7.4.7) are less likely to contain undetected clouds. Consequently, the empirical CDFs expressed by (7.4.7) and (7.4.7) are more accurate and consequently the erosion by luminance is better. Conversely, the "move.+SIFT+nov." combination may under-detect clouds or shadows, which are then found in the ω region. The cases where the algorithm gives great deviations, whatever the combination are interesting. Figure 8.10 presents such situations compared to the bands (BQA n ) in the Landsat-8 case. The discrepancies are due either to the inclusion of very transparent cirrus in the BQA (but which are not quite visible on the (B n ) maps), or to cloud under-detections in the BQA band. These results prompted us to consider with caution the good scores obtained by the addition of the luminance criterion when the BQA estimate is distorted. 

In the following, we denote respectively X n and Y n the parent random variables of the random variables X n k and Y n k for k = 1, . . . , K.

Proof. From definition (1) of MSE we have

The hypothesis of an unbiased rendering and relation (3.6) Occlusion map obtained from (3.9) after regular sampling N c = 100

Occlusion map obtained from (3.9) after thresholding s = 50 of the previous map

A.2.3 TIF format images

The images produced natively by LuxRender are either EXR, or PNG format. But in the first case the color values are not necessarily limited to [0, 255] and the dynamic is not updated, in the second case values are discretized in �0; 65535� and possibly saturated. In order to best preserve all chromatic information and to offer stereo algorithms the range [0, 255] conventionally used, we adapted the dynamics of EXR images using a piecewise affine histogram adjustment [START_REF] Lisani | Color and contrast enhancement by controlled piecewise affine histogram equalization[END_REF]. It originally processes only input PNG images on �0; 255�. Changes to this algorithm concern the addition of the library iio.h allowing image processing in floating point format and normalization in [0, 255] of the EXR input image. More specifically, the linear transformation applies

to the input image EXR v, where max RGB (v) is the maximum of the three channels, then image v is treated with the original algorithm. We take into account this

The first term �E( ĥi -h i ) 2 � of this equation corresponds to the mean of the stochastic fluctuations of the estimators ĥi around the respective parameters h i i.e. to the mean of the mean square error. The second term �(h i -�h�) 2 � = �(h i -h) 2 � corresponds to the mean of the fluctuations of the h i around the value h which is the average of the function h over the interval [r min , r max ]. As the third term is independent of the support size of h, one defines the cost function to minimize C according the first two terms of the MISE. Thus,

The transition from A.-29 to A.-28 is due to the decomposition

The 

A.4 Combination of features in cloud detection

A.4.1 Product of K independent uniform random variables

The formula for the product of K independent uniform random variables (see Dettmann [START_REF] Dettmann | Product of independent uniform random variables[END_REF]) is given in the next proposition. and its cumulative distribution function is

1, 1 ≤ x, 0, x ≤ 0. 

Demonstration of equation ( 7) is due to Kamgar-Parsi et al. [START_REF] Behzad | Distribution and moments of the weighted sum of uniforms random variables, with applications in reducing monte carlo simulations[END_REF].