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I N T R O D U C T I O N

Liquid fuel atomization is crucial for the performance of internal combustion engines. Through an injector, the liquid is delivered into the combustion chamber and breaks down into droplets. The finer the drops, the quicker their evaporation and the more proper their mixing with air. A proficient combustion could hence be expected, with low pollutant emissions.

Atomization quality is primarily affected by the injector design and the operating conditions which shape the internal flow structure, the turbulence level, the velocity profile at the nozzle outlet, the cavitation and so forth. All these features are determinants of the breakup of the external liquid flow. Another key parameter to optimize the atomization process is the fuel physical properties. One can think of, among others, the dynamic surface tension controlled by the diffusion of the surfactants on the liquid-gas interface or the extensional viscosity which makes a liquid more resistant to the stretching, thereby affecting the breakup.

Effects of the injector design, the operating conditions and the liquid properties on the atomization are inter-dependent. Analyses of experimental data help us to understand the involved mechanisms and their interactions. On the one hand, this is useful for the numerical developments which should be carried out depending upon the configuration. On the other hand, quantitative criterion could be established to validate the simulation results.

Following the above research methodology, we attempt to study the disintegration of planar turbulent liquid sheets produced by a triple-disk injector. Experimental measurements provide the sheet images, used as input for a multi-scale analysis.

We investigate, thanks to the latter, the behaviours of the liquid sheet, the ligaments appearing on its edges and the resulting droplets. Moreover, two immersed boundary methods are developed, aiming to simultaneously solve the nozzle flow and the breakup process. We carry out two applications, the first one on a liquid jet ejected by a cylindrical nozzle and the other a planar sheet issuing from a triple-disk injector.

presence of necks and crests. At each point on the surface there are two curvatures: κ 1 corresponds to the circle in the section perpendicular to the cylinder axis, and κ 2 the wave in the section along the cylinder axis. κ 1 is not homogeneous along the undulating stream, and neither does κ 2 . The difference of κ 1 at a neck and a crest comes from the size disparity of the circle at these two positions, while that of κ 2 lies in the fact that its positive value at a crest turns negative at a neck. The difference in κ 1 results in a pressure gradient which drives the fluid from the neck to the crest, increasing the wave amplitude. The difference in κ 2 and the relating pressure gradient, on the other hand, conducts the fluid the other way round, thus lessening the development of the disturbing undulation. Obviously, the longer the wavelength of the perturbations, the smaller the difference in κ 2 . Nevertheless, the surface tension can not be the only driving agent of the instability as it would otherwise result in the collection of the entire fluid into a single large sphere to attain the smallest surface area. As argues Rayleigh 1879 [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF], the inertia matters to the liquid thread decay, too. An internal flow, created by the pressure gradient, evokes the growth of the displacement amplitude which initiates the drop formation. When the pinched areas rupture, the bulged areas transform into droplets. This is due to the inertia which prevents the liquid from being transported from the necks to the crests since these latter are too far from each other in long-wavelength perturbations (Charru 2011 [8]). Rayleigh 1879 [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF] provides a linear analysis where disturbances over a fluid column of diameter a are represented by a series of periodic displacement sinusoids. Perturbations of long enough wavelengths will grow larger in time. It is found that the fastest perturbation has an optimal wavelength of λ opt = 4.51a

(2.1) and a growth rate of β max = 0.344

ρa 3 σ (2.2)
When its amplitude is equal to the jet radius and under the assumption that one drop is formed per optimal wavelength, the pinch-off occurs and the typical drop size is set to be

d = 1.89a (2.
3)

The existence of smaller satellite drops beside the large main ones, as noticed by

Savart 1833 [83], can only be understood by considering the non-linear dynamics of the jet breakup [START_REF] Yuen | Non-linear capillary instability of a liquid jet[END_REF] [START_REF] Risso | The mechanisms of deformation and breakup of drops and bubbles[END_REF] for instance).

2.2 disintegration of liquid sheets

Linear theory

Atomization involves, in many types of spray nozzle, the change of the flow topology into an unstable planar sheet. Like the fluid thread breakup, the onset of the disintegration of a liquid film can be investigated by the linear stability theory similar to Rayleigh 1879 [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF]. A survey of the researches following this approach is given in Sirignano & Mehring 2000 [START_REF] Sirignano | Review of theory of distortion and disintegration of liquid streams[END_REF].

Squire 1953 [START_REF] Squire | Investigation of the instability of a moving liquid film[END_REF] and Hagerty & Shea 1955 [45] assume that the disturbance upon the interface is periodic in space and grows in time everywhere at the same rate.

Squire 1953 [START_REF] Squire | Investigation of the instability of a moving liquid film[END_REF] considers a liquid sheet of constant thickness moving in a still gaseous environment. Both fluids are inviscid. The author analyses only the sinuous type of perturbation where the two surfaces of the film oscillate in phase (Fig.

2.2a).

When the perturbation wavelength is large compared to the sheet thickness and the gas-to-liquid density ratio is of the order of 10 -3 , it is proven that a plane liquid film is unstable if We is greater than unity. The liquid Weber number We is a measure of the relative importance of the fluid's inertia compared to its surface tension We = ρU 2 h σ (2.4) where ρ, U, h, and σ denote the liquid density, the velocity of the sheet, the half film thickness and the surface tension, respectively. In other words, an instability can develop on a liquid sheet if there is a certain difference in velocity between the two fluids. The sheet instability is thus driven by the Kelvin-Helmholtz instability.

Main sources of instability arise from the aerodynamics forces released by the interactions between the liquid film and the surrounding gas (Oesterlé 2006 [67]).

Contrary to the breakdown of a cylindrical jet, surface tension is the counter part of the process here. Another important finding presented in the paper of Squire

1953 [START_REF] Squire | Investigation of the instability of a moving liquid film[END_REF] is the wavelength and the growth rate of the most unstable oscillation:

λ opt = 8πh
We g and

β max = U 4h We g (2.5) 
The gaseous Weber number We g is defined in the same fashion to the liquid Weber number (2.4) except the liquid density ρ is replaced by the gas density ρ g . or they oscillate out-of-phase to generate dilatational waves, i.e. symmetric mode (Fig. 2.2b). Besides, it is demonstrated that the anti-symmetrical disturbances always grow faster than the symmetrical ones and mask the latter throughout the process.

Breakdown of liquid films in different configurations

Liquid sheets can be formed in a variety of ways: through fan nozzles, by the impingement of two cylindrical jets, by means of the impact of a jet on an obstacle or via compound nozzles among others. Concerning papers are carefully reviewed by Dumouchel 2008 [19]. Although the resultant sheets are quite different from one configuration to another, their breakup in a quiescent gas medium always occurs in three steps. First, deformations appear on the interface, their growth in time and space then creates ligaments, and finally drops are released from the rupture of these ligaments.

The disintegration of a liquid sheet, as depicted in Fig. 2.3, is described in Dombrowski & Johns 1963 [START_REF] Dombrowski | The aerodynamic instability and disintegration of viscous liquid sheets[END_REF]. On the interface, the initial perturbations give rise to unstable waves, among which a dominant one can be distinguished. It is the most rapidly amplified wave, growing at the rate of β max , whose wavelength λ opt is given by the linear stability theory developed by Squire 1953 [85] and Hagerty & Shea 1955 [START_REF] Hagerty | A study of the stability of plane fluid sheets[END_REF]. It is said that the wavy film fragments into pieces at each half wavelength λ opt /2. Due to the surface tension, the broken parts roll up to form cylindrical threads, which subsequently undergo the Rayleigh-Plateau instability and break up into droplets (refer to § 2.1). 

Fan nozzles

The formation of liquid sheets using fan nozzles is by far the most common application. Figure 2.4 illustrates the discharge orifice of a fan nozzle. It is made by the intersection of a V groove with a hemispheric cavity. Such a design provokes special approach passages which allow two streams to impinge behind the orifice (Lefebvre 1989 [51]). As the liquid spreads freely between the side walls, a thin film is generated in a plane perpendicular to the streams. A contribution to the literature of fan nozzle-generated liquid sheets should be the publication of Fraser et al. 1962 [37]. A set of single-hole fan nozzles are selected to investigate the effects of ambient atmosphere on two breakup modes namely sinuous and perforation. Flat liquid sheets are visualized by flash photography, while drops are collected in a cavity slide filled with oil and later recorded on a photomicrograph at high magnification. The authors measure the drop-size distribution from the photographic negative projected on a screen.

Only sinuous waves are observed under atmospheric pressure. When the density of the surrounding air ρ a is reduced both breakup length and drop diameter increase. In accordance with the linear theory (see § 2.2.1), the growth rate of the fastest wave β max must decrease with ρ a . In consequence, the liquid film is disrupted further downstream where it becomes thinner. One could then expect threads to be narrow and droplets to be fine. However, the experiments performed by Fraser and his colleagues offer completely opposite results recording drops of larger size. As an explanation to this outcome, the authors argue that at diminished air density, while β max decreases the optimal wavelength λ opt gets longer.

Therefore, the sheet fragments, corresponding to one-half wavelength λ opt /2 (Fig.

2.

3), contract into filaments with more liquid, offsetting the thinning of the sheet and leading to coarser spray.

Under partial vacuum conditions, the disintegration of a liquid film is switched into perforation mode. Perforation holes appear at the lower end of the sheet and extend until the disruption of the latter (Fig. 2.5b). The breakup takes place at a greater distance from the orifice than in the sinuous mode, and the sheet is thinner when it breaks down. Similar to what has been found in the experiments mentioned earlier, this results in a spray with mean drop-size higher than that of the sinuous mode. According to the authors, ligaments are derived from liquid originally included inside the large perforation holes. Without doubt, the bigger the perforation holes, the thicker the ligaments and the larger the drop diameter will be. It should be underlined that in both disintegration mechanisms, the liquid sheet always transforms into ligaments though by different manners. Fraser et al. 1962 [START_REF] Fraser | Drop formation from rapidly moving liquid sheets[END_REF] go further by putting forward an idealized fragmentation mechanism, similar to Fig. 2.3. The dominant wave is detached from the leading edge in form of a lamellae. The lamellae is parallel to the free rim and as wide as a half optimal wavelength λ opt /2. It contracts into a filament which is divided into drops of equal size. The authors use the optimum wavelength predicted by Squire 1953 [85] and assume that the volume of filament is identical to that of the lamellae. The drop diameter is deduced in accordance with Rayleigh's analysis [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF]. It is found that the drop-size depends on the average velocity U, the film thickness S b , the radial distance x b at breakup, the mass density of liquid ρ and of air ρ a and the surface tension σ as follow

d = C ρ ρ a 1/6 S b x b σ ρU 2 1/3 ∼ We -1 3 (2.6)
where C is a constant empirically obtained from the experimental dataset and We the liquid Weber number based on the film thickness.

It is worth noting that as shown in Fig. 2.5a, for most part, threads do not transversally fly off and there is no fragmentation in this direction (Brémond 2003 [5]).

The disintegration scenario indicated in Fig. 2.3 by Dombrowski & Johns 1963 [START_REF] Dombrowski | The aerodynamic instability and disintegration of viscous liquid sheets[END_REF] seems to be open for criticism.

Impact of a jet on an obstacle

Letting a circular jet hit a solid disc of finite size at normal incidence is also an interesting method to form a flat liquid sheet (see Fig. Visualization is made possible by a short exposure photograph system and a high speed camera. The sheet thickness is measured based on the light interference method. The velocity in the liquid film is studied with help of the tracking records of the ash particles scattered on the sheet surface. The drop-size is quantified thanks to the image analysis. The radial position where the transition from sheet and thus could be characterized by its thickness at the detachment point. As a result of this local force balance, the mean drop-size varies as

d ∼ D 0 We -1/3 for D 0 ≪ a d ∼ D 0 We -1/3 a for D 0 ≫ a (2.8)
where We a = ρU 2 0 a σ , a = 2σ ρg the capillary length and g the gravitational acceleration. tently detached from the periphery of the sheet. Now, the surrounding medium is proved to play a crucial role in the process interacting with the liquid sheet, in contrast to the smooth regime. On the one hand, the flag instability happens at a higher Weber number when one lessens the air density. On the other hand, not only the liquid jet but also the ambient gas determine the breakup radial position which is linked to its determinants by

R ∼ D 0 ρ ρ a 1/6
1 We

1/3
(2.9) Furthermore, Villermaux & Clanet 2002 [101] analyse the transverse cut of the sheet using planar laser illumination. The film thickness has no influence on the wavelength of the most amplified wave, in agreement with the linear theory. Yet the associated growth rate is found to be stronger than exponential. This could be accounted for, according to the authors, by the continuous thinning of the sheet while approaching the rim. Besides, the group velocity of the waves is derived from the radial displacement of the crests of the sheet disturbances which are recorded in time-resolved images. Then, the mode selection of the instability is calculated from the time interval between two crests as they reach the rim (Fig. The forces that act on a fluid particle moving in the sheet are nearly balanced.

2.8).

Two possibilities can arise. When the surrounding medium's density is close to zero, the forces are strictly balanced. This is because the sheet sustains neutrally stable waves resulting from the equilibrium between the liquid inertia and the surface tension. Otherwise, the disequilibrium induced by the depression in the ambient phase will lead the wave amplitude to increase. Due to the difference in velocity between the liquid and the waves, a fluid particle experiences transient accelerations. In particular, the component of the acceleration which is parallel to the sheet is alternately directed towards and away from the liquid. When it is directed away from the liquid and when the force balance ensured by the surface tension has broken, the drops tear off from the sheet rim. In other words, the periodic passage of the sheet undulations triggers a Rayleigh-Taylor instability which produces liquid fingers or indentations perpendicular to the free rim. The typical size of these fingers is the Rayleigh-Taylor wavelength

λ ⊥ ∼ σ γρ (2.10)
where γ stands for the acceleration of the detaching drop.

of the liquid film is much thinner than the rim size. The authors claim that there is a coupling between the rim destabilization and the sheet thickness modulation.

By tracking the trajectory of a single particle seeded on the film, it can be demonstrated that the speed at which the thickness field modulations propagate is the same as the particle velocity and thus identical to that of the fluid. The oscillation of the sheet thickness occurs at a constant atomization frequency.

The authors also find out that the rim destabilization is rather due to the capillary instability but not a signature of the wire wake. Three reasons can warrant this conclusion. First, the frequency of the rim destabilization remains unvarying irrespective of the jet velocity and the wire size. Additionally, the optimum excitation is attained when the vibration frequency corresponds to a spatial wavelength of the order of the rim radius. And finally, one drop is released per wavelength with its size proportional to the local rim diameter. Nevertheless, since the rim is fed by the liquid flowing in the sheet it bears a non-uniform, accelerated axial velocity.

The instability mechanism is therefore unlike the classical configuration. Brémond & Villermaux 2006 [6] terminate their paper by inspecting the stretching rate of the ligaments. They propose that if the variable is weak, the corrugation of a ligament is pronounced giving irregular drops. In contrast, when the ligament elongates strongly, its skin is smooth when it leaves the rim and the drop-size distribution will be narrow. The authors give a rough estimation of the stretching rate γ, which is of the order of

γ ∼ 1 α √ We (2.13)

Compound nozzles

We now consider the flat liquid sheet formation via compound nozzles which is our configuration of interest. Such atomizers are usually operated at low pressure drive in gasoline port-fuel injection. One of them could be a triple-disk injector as employed by Dumouchel et al. 2005 [22] (see Fig. 2005 [START_REF] Dumouchel | On the role of the liquid flow characteristics on low-Weber-number atomization processes[END_REF] identify an optimal geometry able to produce highest energy available for atomization, i.e. the non-axial kinetic energy and the turbulent kinetic energy. Favourable effects of the swirl on the spray formation come from two reasons.

As the swirl is stronger, the radial expansion of the sheet is more pronounced.

Consequently, its thickness is reduced to yield further small drops. In addition, turbulence is enhanced by the wall friction. At high injection pressure or with low viscous liquid, it becomes high enough to promote initial perturbations. Hence, ligaments near the nozzle exit are more numerous, smaller in size and may disintegrate in finer droplets. 

objectives of the thesis

We have outlined, in this chapter, essential features of the breakup of liquid sheets in different configurations, showing the complexity of the liquid-gas interface evolution. Furthermore, the flow that develops inside the triple-disk injector as well as the sheet breakup are described in details thanks to the preceding works. Two remarks can be made from this literature review, explaining why we pursuit different developments in the next chapters.

Firstly, it is shown that the nozzle flow has significant effects on the sheet breakdown. In the injector exit section, the double vortex stretches the flow to form a planar liquid film. A consistent turbulence enhances the perturbations to grow until a ligament network is formed at the sheet borders. These ligaments eventu-ally break up into droplets. To numerically solve the atomization process, we aim to include both internal and external flows in a unique simulation. Hence, two relevant immersed boundary methods are developed and coupled with a levelset/volume-of-fluid/ghost-fluid method in chapter 5, taking into account the irregular form of the injector wall in a Cartesian grid. For validation purpose, the numerical results are compared with other studies available in the literature for two well-documented configurations. We apply the immersed boundary methods to numerically simulate a jet emanating from a cylindrical nozzle as well as a liquid sheet generated by a triple-disk injector.

In addition, mechanisms of interface evolution occur at the same time but at different scales throughout the breakup of the liquid film. A back-lighting optical arrangement is built in chapter 3 to record the sheet images. The latter serve as inputs for a multi-scale tool in chapter 4, with its first application on the deformation of the entire liquid system. It appears that the perturbations on the sheet edges have a significant impact on the liquid film contraction. Moreover, the dynamics of the production and breakdown of the ligaments are also analysed, showing their effects on the poly-dispersion of the resulting spray.

Conclusions and perspectives are drawn in chapter 6, summarizing principal developments and main results of the thesis and several improvements in the future.
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E X P E R I M E N TA L W O R K A N D I M A G E P R O C E S S I N G
We now introduce a home-made back-light optical set-up, constructed to visualize the atomization process. In fact, the back-lighted images of the liquid sheets emanating from a triple-disk injector are recorded. They will serve as inputs for the multi-scale tool in chapter 4.

This chapter begins with the presentation of the hydraulic circuit, followed by the injector design, the working fluids and the operating conditions. Then, some features of the visualization system are specified and the resultant back-lighting photographs are exhibited. We close the chapter with the image processing, carried out thanks to the C/C++ programs developed by Jean-Bernard Blaisot and his colleagues and the software ImageJ (https://imagej.nih.gov/ij).

hydraulic circuit

The objectives of the hydraulic circuit are twofold: transferring liquid from a supply to the triple-disk injector which throws out a planar sheet (refer to § 2.2.2.4), and controlling the pressure at the nozzle inlet. The layout of the system can be seen in Fig. 3.1.

The starting point of the system is a cylindrical reservoir, used as a source of liquid supply. We put next to it a separator tank, having its volume divided into two deconnecting parts by a piston. To transfer the working fluid from the reservoir to the lower part of the separator tank, air in the upper part is sucked out by a vacuum pump. We control the liquid amount via a level indicator. The reservoir and the separator tank have each the same height, but the volume of the former is slightly higher than that of the latter to ensure that no gas remaining beyond the top level of the liquid inside the reservoir can be transported to the separator tank.

Once the isolation valve is opened, the fluid stored in the separator tank is pressurized towards the atomizer by air coming from the compressed air network of the laboratory. Remark that the liquid and the compressed air are isolated by the piston to prevent air bubbles from being admitted inside the injected fluid.

The circuit's ending point is the triple-disk injector. It is installed on a threedimensional (3D) displacement system, suitable for visualizing the liquid flow at several distances from the nozzle in order to cover the whole disintegration process of the liquid films. A filter is placed before the atomizer to remove solid particles from the liquid. We collect the formed spray by a recovery cavity.

To fulfil the second target of the hydraulic circuit, the injection pressure is monitored over the 0 -7 MPa range by a pressure regulator. Three pressure gauges are mounted on several positions in the system for local indication of pressure and safety check. They bear the labels (1), ( 2) and (3) in Fig. 3.1. The pressure gauge

(3) indicates the injection pressure. The height and diameter of three superposed disks that constitute the nozzle are also depicted. Our device is proportional to the optimal geometry producing the highest energy available for the breakup process, i.e. the non-axial kinetic energy and the turbulence energy (refer to § 2.2.2.4). The injection system is operated in continuous mode. Liquid is pressurized to flow from the separator tank to the triple-disk injector without interruption during an experiment. It enters the nozzle by the metering orifice (disk 1 in Fig. 3.2), passes through the cavity (disk 2) and issues via the discharge orifice (disk 3). Due to the eccentricity of the latter, the flow is drastically deflected. Some fluid particles pass directly from the entrance to the exit of the nozzle whereas the others invade the cavity and reach the discharge orifice by a transversal way. Interactions of these trajectories provokes the secondary flow (Dumouchel et al. 2005 [22]). As shown in Fig. 3.3, in the plane of symmetry of the atomizer, a liquid film is formed as soon as the flow issues from the nozzle and becomes free of any parietal constraints, with perturbations developing on its edges. A ligament network is created further downstream, and eventually breaks down into droplets.

working fluids

Aiming to analyse the effects of the surface tension forces on the sheet breakup, fluids having surface tension coefficient which varies from one to another are necessary. To this end, isopropanol is blended with water in different proportions to obtain six mixtures called F0, F1, F2, F3, F5 and F10. The number indicates the mass percentage of isopropanol. F0 stands for water; and the mass fraction of isopropanol in F1, F2, F3, F5 and F10 are 1 %, 2 %, 3 %, 5 % and 10 %, respectively. Whereas their mass densities are similar, the surface tension decreases gradually while adding more isopropanol in water. Meanwhile, the tendency of the dynamic viscosity is inverse.
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operating conditions

Low injection pressure is a desirable operating condition for our experiments.

For that, three reasons can be given. First, it is expected to lessen the interactions between the liquid system and the ambient air as our objective is to study only the influence of the surface tension over the film breakdown. Second, it ensures that the ligaments are thick and the droplets are mostly on-focus for a better spatial and temporal description by the multi-scale analysis (chapter 4). Third, thicker liquid structures could be easily detected from the background. We thus maintain an injection pressure of 0.1 MPa because it is low enough and stable during all experiments.

To characterize the fluid system described in § 3.1, mass flow rate and metering velocity should be quantified. These parameters are mandatory to derive not only the discharge coefficient which indicates the performance of the system but also the non-dimension numbers which inquire into the atomization regime.

The usual measuring method is to weight the amount of the injected liquid within a controlled time interval. More precisely, it consists in a two-step procedure, repeated for three injection pressures comprising 0.07, 0.1 and 0.13 MPa. First, we set a desirable injection pressure ∆P i and put on the hydraulic system during a duration ∆t. Second, the fluid accumulated in the recovery cavity (see Fig. 

Q m = ∆m ∆t (3.1)
and the metering velocity V q is

V q = Q m ρ πD 2 ori 4 (3.2)
where D ori denotes the diameter of the discharge orifice.

One can compute the discharge coefficient C D thanks to (3.3). The discharge coefficient is a dimensionless number used to characterize the pressure losses in fluid systems. It is defined as the ratio of the measured volumetric flow rate to the ideal-ized value. The latter is traditionally inferred from Bernoulli's principle (3.3) and corresponds to an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressure without any losses.

C D = Q v πD 2 ori ∆P i 8ρ (3.3)
where ∆P i is the injection pressure and Q v the volumetric flow rate, easily derived from the mass flow rate Q m as below for all working fluids and injection pressures. As a consequence, the flow is fully developed to attain well-established conditions. The discharge coefficient varies slightly although considerable changes in terms of viscosity are observed from one liquid to another (Tab. 3.1). One can explain this result by the fact that with higher viscosity, friction losses increase; and non-axial kinetic energy and turbulence are diminished in their turn to compensate flowing energy and therefore keep the discharge coefficient at a stable value.

Q v = Q m ρ (3.4) 
Table 3.2 exhibits the metering velocity V q and the following dimensionless numbers and characteristic time which correspond to ∆P i = 0.1 MPa:

• The liquid Weber number indicates whether the kinetic or the surface tension energy is dominant.

We = ρV 2 q D ori σ (3.5)
• The gaseous Weber number compares the aerodynamic forces to the surface tension. The larger this number, the stronger the interactions between the liquid flow and the surrounding medium and the finer the droplets will be.

We g = ρ g V 2 q D ori σ (3.6) 
• The Reynolds number represents the relative importance of the inertia and the viscosity. It determines if the flow regime is laminar, transient or turbulent.

Re = ρV q D ori µ (3.7) 
• The Ohnesorge number accounts for the influence of the viscosity on the atomization by relating a viscous time to a capillary one.

Oh = µ √ ρσD ori (3.8)
• The capillary time is the characteristic time of the Rayleigh-Plateau instability.

t σ = ρD 3 ori σ (3.9)
Notice that the gaseous Weber number is very small lying between 0.56 and 1.01.

The interactions between the liquid system and the ambient air are negligible, according to Sterling & Sleicher 1975 [86]. Thus, the aerodynamic forces have negligible effects on the atomization process. 
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visualization system

A back-light optical arrangement is implemented to image the liquid sheets which issue from the triple-disk injector. Figure 3.5 shows the schematic of the optical diagnostic, similar to that of Ngô 2013 [START_REF] Ngô | Etude de la morphologie des éléments d'un spray liquide et de leur production[END_REF]. A set of back-lighted pictures is acquired, useful for the multi-scale analysis.

The straightforward approach to designing a back-light configuration is to align its two principal components, namely a light source and a detector with the liquid film. As the latter is formed in the plane of symmetry of the injector (refer to § 3.2), these instruments are mounted on the axis perpendicular to this plane, one on the left of the sheet and the other on the right. The visualization plane coincides with the plane of symmetry of the nozzle (Ozx).

We employ a HSPS NANOLITE flash lamp as the light source. It emits incoherent and wide-spectrum pulse with a short duration of 15 ns. With the aid of a 140 mm lens between the flash lamp and the liquid sheet, light is diffused and a regular intensity of illumination is concentrated on the ejecting flow near the nozzle exit.

The detector consists of a camera, a shutter and an objective with extension ring.

The CCD DALSA Panthera 11M4 camera offers a definition of 4016 × 2672 pixel 2 .

The pixel size is 9 µm. To increase the magnification of the objective, an extension ring is placed between the camera and the objective. With the magnification of the optical system, the spatial resolution of the image is 3.5 µm/pixel and its size is thus 14.06 × 9.35 mm 2 . The synchronization protocol of the visualization system is as follows. The flash lamp is synchronized with the camera and triggered by TTL signals from its control unit. The BNC pulse generator sends a synchronization signal to trigger the flash lamp and the camera. After receiving the TTL signal, the flash lamp provides a brief bright light while the camera opens its shutter and capture an image.

8bit images are transferred to the computer via an USB connection. The delays associated with the light source and the detector are adjusted so that there is enough light when the camera shutter opens.

We maximize the opening duration of the objective. The shutter is opened during 70 ms. The flash imposes the camera exposure time as its duration (15 ns) gets shorter than that of the shutter (70 ms). Remark that within a time interval of 15 ns, the displacement of the fastest fluid particle moving at a velocity of 9.14 ms -1 , as reported in Tab. 3.2, is approximately 0.14 µm. This displacement is much lower than the spatial resolution of the image (3.5 µm/pixel), proving that our imaging system is able to freeze the breakup process under consideration.

image processing

Examples of the sheet back-lighting images are shown in Fig. 3.6. The top of these pictures coincides with the exit plane of the discharge orifice. One can notice that the shape of the liquid film evolves as soon as the flow leaves the injector outlet.

Even though, the atomization is still not accomplished at the bottom of the photographs. To cover a larger part of the breakup of the system further downstream, we move the nozzle upward by a distance of 3.5 mm corresponding to a half of the height of the field of view (Fig. 3.7). Two vertical positions of the atomizer are considered hereafter, namely "up" and "down" as illustrated respectively in Figs.

3.6 and 3.7. Remind that they are separated by a 3.5 mm distance. Nevertheless, the photograph with the rolling ball algorithm offers a homogeneous background on which large structures appear more distinctive (see Figs.

I m (i, j) = α × I m (i, j) -I o (i, j) I b (i, j) -I o (i, j) × N background (3.
3.9b and 3.10b). The image will be processed by the single-threshold method in § 3.6.2.1 for the identification of the sheet and the ligaments. To localize the droplets, on the other hand, we shall employ the wavelet-transformation technique for the normalized picture without the above treatment ( § 3.6.2.2).

Localization

Localization consists in dissociating the liquid elements to the background. Two different methods are necessary depending upon the object category. We adopt one threshold in terms of grey-level to distinguish the sheet and the ligaments as described by Grout 2009 [42]. With regard to the drop finding, the wavelet transform is demonstrated to be effective in Blaisot & Yon 2005 [4] and Fdida &

Blaisot 2010 [START_REF] Fdida | Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function[END_REF].

Single-threshold method

We apply the single-threshold recipe to the normalized images undergoing the rolling ball algorithm (I 2010 [35] that when a droplet is fine or stays far from the focus plane, its image becomes blurred. Consequently, the smallest or most unfocused drops, having a poor contrast, can be lost by the classic thresholding ( § 3.6.2.1). The contrast is defined as the ratio of the luminance of the brightest pixel to that of the darkest one. A high contrast is a desired aspect of any display. To improve the detection performance, a two-stage procedure is carried out for the normalized picture (Fig.

3.12a).

Drops are localized, in the first step, by a classic thresholding. We impose for every image a cut-off grey-level I t corresponding to the minimum contrast C t of a droplet able to be recognized by the technique. To overcome this problem, in the second step, we use the wavelet transform to determine any local grey-level variation which indicates the presence of a droplet.

C t = I t -I min I max + I min
In effect, in the vicinity of the droplet the second derivative of the grey-scale is modified. This induces a concavity of the pixel intensity distribution which should be determined by the wavelet transform.

The wavelet transform can be seen as a spectral analysis, like the Fourier's transform, but spatially localized. The linear convolution of a normalized image I with a so-called wavelet function ψ is

W ψ,I - → b , a = I - → X ⊗ ψ-→ b ,a - → X (3.15)
where -→ X indicates a pixel position in the picture and W stands for the wavelet coefficients. ψ is defined as

ψ-→ b ,a - → X = 1 √ a Ψ - → X - - → b a with a > 0 (3.16)
Remark that ψ depends on two parameters, namely the shifting vector -→ b which is a pointer over a pixel; and the dilatation coefficient a which adjusts the width of the function. Ψ is the mother wavelet. This is a 2D oscillating function having its mean value equal to zero.

Owing to its ability to localize the concavity of the pixel intensity in the drop outline, the Mexican hat is chosen to analyse droplet images.

Ψ (r) = 1 -r 2 e -r 2 2 (3.17)
This function is the second derivative of a Gaussian function. Therefore, the convolution of a picture with the wavelet can be understood as the second derivative of the grey-level, which is firstly convoluted by a Gaussian filter. It corresponds to the part of the image where grey-scale concavity or convexity are found. Note that the higher the dilatation coefficient a is, the more spatial frequencies are eliminated by the filter and the larger the scales at which the concavities and the convexities can be observed. In order to identify the interface of a droplet, a should be set to approximate the width of the blurred area around the liquid element. We set a = 8 pixels and I wct = 1.1I med , as commonly suggested to identify as many droplets as possible. The localized picture by the classic thresholding (Fig.

3.12b

) is combined with the one processed by the wavelet transform (Fig. 3.14a).

The treatment of the union image (Fig. 3.14b) is fulfilled by erasing remaining white areas thanks to the fill holes option. The final result is presented in Fig.

3.14c

, where almost all droplets are satisfactorily detected despite of their small size and their out-of-focus position.

M U LT I -S C A L E A N A LY S I S

As stated in chapter 2, mechanisms of the liquid-gas interface evolution occur in a wide range of time and length scales throughout the breakup of the liquid sheet. It is therefore appropriate to adopt a multi-scale analysis to investigate the atomization process.

The multi-scale tool is now applied to the disintegration of the liquid films emanating from the triple-disk injector. Below is the organization of this chapter. First, we recall the concept of the multi-scale analysis, followed by two simple illustrations. Next, an atomization scenario is proposed thanks to the observation of the back-lighted pictures of the turbulent planar liquid sheets. These images are supplied by the experiments of chapter 3. They are then processed to obtain the surface-based scale distribution, allowing us to investigate the atomization process of the entire liquid system. In particular, the dynamics of the production and breakdown of the ligament network are also analysed. It is shown that the above processes have a significant impact on the poly-dispersion of the resulting spray.

concepts and measurements

Concepts

The liquid-gas interface area continuously evolves during the atomization. As noticed by Mansour & Chigier 1991 [56], the surface-to-mass ratio is increased throughout the process. Such variation is associated with the energy exchange between the two fluids and the interface (Evers 1994 [33]). The interface creation requires energy; the reduction of interface inversely returns energy to the system.

For each unit mass, the interface stores an energy which is equal to the product of the specific surface area, i.e. surface area per unit mass, and the surface tension.

Furthermore, visualizations of liquid atomization reveal that mechanisms of interface evolution occur concomitantly but at different scales. The liquid flows deform in a complex way depending on a wide range of time and length scales, as quoted in chapter 2. Dumouchel et al. 2015 [START_REF] Dumouchel | Multiscale analysis of atomizing liquid ligaments[END_REF], while temporally pursuing an atomizing liquid ligament, remark that the contraction of the ligament into swells is accompanied by a local reduction of the specific surface area; whereas its elongation into threads locally increases the specific surface area (Fig. 4.1). Given these complex characteristics of the interface evolution, a multi-scale approach involving the specific surface area seems to be appropriate to investigate the atomization process. 

L(t) D 2 (t) + 2D(t) Ḋ(t) L(t) = 0 and L(t) L(t) = - 2 Ḋ(t) D(t) (4.8)
In addition, considering that the liquid-gas interface is composed of its two horizontal edges solely, we can compute the specific length of the liquid thread which is identical to that of the scale distribution of the rectangle (4.5).

e 2 (d, t) = 1 D(t) or e 2 (d, t) D(t) = 1 (4.9)
Calculating the temporal derivative of both sides in (4.9) to obtain However, the thinning of a liquid thread is not caused systematically by the pure stretching. Other mechanisms such as the capillary contraction can also provoke a reduction of the ligament diameter or a growth of its specific length. This mechanism is driven by the surface tension forces which expel the liquid out of a liquid bridge (Fig. 4.7). The volume of the latter decreases, unlike during the pure stretching described in the previous paragraphs. In this case, the reduction of the employed to isolate the ligament network from the bulk of the sheet before using these relationships exclusively on the liquid threads in § 4.3.2. This allows us to study the formation of these ligaments and their rupture into droplets. It is found that these processes play an important role on the drop-size distribution of the resultant spray.

D(t) ė2 (d, t) + e 2 (d, t) Ḋ(t) = 0 and Ḋ(t) D(t) = -ė2 (d,

Measurements

The temporal multi-scale description of the atomization of the liquid sheets produced by the triple-disk injector are performed in two steps.

First, the EDM operator is applied for 150 binary images converted from the greyscale snapshots in positions "up" and 150 others from the pictures "down" (Figs.

3.6 and 3.7). We thus obtain the corresponding euclidean distance maps which indicate for each pixel in the liquid objects of the original binary picture the distance to the nearest pixel in the background or to the liquid-gas interface (Figs.

4.9a and 4.9b). In deed, the pixels in the center of the liquid film are dark because they stay far from the interface whereas those near the sheet border are attributed with bright colours. The first test aims to justify the choice of the analysing window height h AW (Fig. Moreover, a high recovery rate τ RC = 0.75 is applied in our study in order to attain a smooth temporal description of the atomization process. Concretely, the analysing windows corresponding to t i is recovered by the subsequent one t i+1 (Fig. 4.10). The lower part the window t i representing 75 % of its surface area is covered by the adjacent t i+1 .

In the second test, the number of images necessary to obtain a sufficient statistic is examined. To this end, we use the pictures at position "up" for F0, on which we place an analysing window at position z = 3497 µm , as in the previous test. Four cumulative scale distributions are measured, corresponding to different numbers of snapshots used which are 10, 50, 100 and 150. and 4.17.

The two mixtures F0 and F10 share a significant common property in their atomization process. In both cases, the liquid system consists of three principal elements: (i) A large centre part surrounded by (ii) a ligament network and (iii) numerous droplets. The center part which represents the bulk of the sheet increases in size to reach a maximum width, then contracts until the end of the process.

On both sides of the sheet, one can see the ligaments develop on the borders. The birth of several disturbances and their growth, together with the contraction of the liquid film, especially between two perturbation extremities might be the origin of the ligament formation. The breakup of the ligaments then produces droplets, which are the last element of the system. Almost all drops are in-focused, which points out that the liquid sheet is rather 2D, locating in the plane of symmetry of the injector as the ligaments produced on its edges. One should bear in mind that the double-counter swirl stretches the flow to form a 2D sheet with turbulenceinduced disturbances on its edges (see Dumouchel et al. 2005 [22]).

However, marked differences could be found in the sheet breakup of these two fluids. First, the opening angle of the liquid film is larger for F10 than for F0. Since the mass flow rate is kept constant for two fluids, one could expect that the F10 sheet is thinner, reducing the diameter of the liquid ligaments. It is clear that the ligaments' extremities for F10 are aligned with the initial opening angle whereas those for F0 are not. Moreover, the ligaments existing on the sheet borders of F10 are more equitably distanced, making possible a single oscillating frequency of the whole liquid system. Such a behaviour is not found for F0. In addition, the F10 filaments are long and much deformed whereas those of F0 are smooth and more numerous.

More importantly, these snapshots show that the liquid system of F0 is not as reproducible as that of F10. This can be explained by a consistent turbulence level for the mixture F0. Notice that the Reynolds number of F0 is higher than that of F10 (Tab. 3.2). Finally, the F0 drops are not numerous but homogeneous in size whereas many fine droplets are formed for F10, with larger drop-size distribution.

Provided with these distinctions, it appears that the formation of the ligaments F10 is due to the capillary instability, explaining their regularity in space. Meanwhile, the turbulence has a great impact on the ligament production for the liquid F0 because they are irregular in size from one image to another. Notice that the Reynolds number for F0 is much higher than that for F10 (Tab. 3.2).

(a) The scale distributions diminish as the scale increases. It is equal to zero beyond the scale d max . Clearly, when d d max , the cumulative scale distribution becomes unity and its derivative e 2 (d, t) is thus unvaryingly equal to zero. e 2 (d, t), at early instants, resembles to a step function over an intermediate range (around 600 µm for F0 and 1000 µm for F10). Notice that a cylinder has similar scale distribution (Fig. 4.5b). This demonstrates that the form of the projection of our liquid system at such moments is close to a rectangle. However, e 2 (d, t) behaves differently at small scales, indicating non-negligible influence of the perturbations appearing on the sheet borders (refer to § 4.2). Additionally, at large scales, e 2 (d, t) is not a step function any more. Indeed, its variation from a stable value over the intermediate scale range to zero is not abrupt but rather gradual, signifying that the geometry of the liquid system is not a perfect rectangle. Towards the end of the process, the scale distribution decreases rapidly with d. Its non-nil values cover a scale interval much smaller than at early instants.

(b) (c) (d) (e) (f) (g) (h) (i)
By comparing the two fluids, one can notice that d max for F10 is higher than that of F0 at early moments when the scale distribution is close to a step function. The above observation is also true for the maximum value of e 2 (d, t) at late instants.

Since e 2 (d, t) represents the contour length per unit surface, one could expect a better atomization efficiency when the liquid F10 is used rather than F0.

The snapshot-to-snapshot fluctuations of E 2 (d, t) provide useful information about the behaviour of the liquid system, especially at the beginning of its breakup. Such fluctuations could be quantified by the root-mean-square-deviation of the cumulative scale distribution as follow Knowing the position of the first analysing window which is nearest to the discharge orifice (Fig. 4.10) z 1 = V q × t 1 and the corresponding maximum scale d max (t 1 ), the opening angle of the liquid sheets Θ is derived from 

rmsdE 2 (d, t) = N m=1 (E 2 (m, d, t) -E 2 (d, t)) 2 N (4.18)
tanΘ = d max (t 1 ) -D ori z 1 ≡ d max (t 1 ) -D ori V q × t 1 (4.
dmax = d max We × D ori and t = z We × D ori ≡ t × V q We × D ori (4.20)
Remark that the six curves are almost parallel when the sheet contracts. It thus proves that a Weber number similarity is found for the shape of the bulk of the liquid film, even with the perturbations appearing on the borders of the latter. When the mixture F5 is used, the surface tension is reduced, promoting the development of the disturbances on the sheet edges. In this case, the characteristic time t p of the perturbations overcomes that of the sheet contraction t c . Thus, the collapse of the liquid film F5 is not activated by the disturbances and becomes similar to F0, F1 and F2.

Let's turn to F10 for which the opening angle is increased the most, causing the characteristic time of the sheet contraction to grow and we obtain t c > t p . Again, the perturbations have enough time to develop and active the sheet contraction.

This explains the fact that like F3, the peak of d max for F10 is smaller than that of F0, F1, F2 and F5.

Deformation dynamics

We analyse, in this subsection, how the liquid system evolves in time. Let's start with the calculation of the temporal derivative of the scale distribution.

ė2 (d, t) = ∂e 2 (d, t) ∂t (4.21)
To simplify the analysis, we discuss the liquid sheets F0 and F10 solely. to the thinning of a liquid thread since e 2 (d, t) is the inverse of its diameter (4.9).

In contrast, ė2 (d, t) is negative when d > d 1 (t). Hence, in the large scale interval e 2 (d, t) decreases in time, indicating the thickening mechanism. In consequence, the scale space is delimited by d 1 (t) into two intervals where there is an augmentation of the specific length at scales lower than d 1 (t) and at the same moment, a reduction of the specific length at scales higher than d 1 (t). In other words, the liquid system perceives a thinning at scales lower than d 1 (t) whereas it suffers a thickening at scales higher than d 1 (t). Clearly, in the course of time d 1 (t) quantifies the small scale interval over which the specific length increases or a thinning mechanism occurs. This scale is expected to inquire into the temporal evolution of the atomization process where continuous evolution of the liquid-gas interface area takes place.

The dynamics of the scale d 1 (t) is shown in Fig. 4 Moreover, we calculate the variation rate of the scale distribution ė2 (d,t) e 2 (d,t) . Figure 4.29 shows ė2 (d,t) e 2 (d,t) as a function of scale. Remark that the variation rate at different instants stays still at d approaching zero. This behaviour is similar to a rectangle (refer to (4.10)). It thus suggests the importance of the threads at the small scale interval. In the next subsection, we thus analyse the breakup of the liquid film by using the relationships between two variation rates introduced in § 4. [START_REF] General Remarks B I B L I O G R A P H Y [1 | Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I[END_REF] To characterize the deformation of the liquid system, we consider the following characteristic variation rates, similar to those of a cylindrical ligament ( § 4.1.1): where P(0, t) is the system's circumference, derived from P(0, t) = 2 × S T (t) × e 2 (0, t) (4.23) (4.23) is evidenced by the fact that the scale distribution is equal to the ratio between the perimeter of the eroded system and twice the total surface of the initial liquid system (4.3).

τ 0 P = Ṗ(0,
Figure 4.30 plots τ 0 P and τ 0 e for six fluids. Remark that τ 0 P is always positive. The interface is thus created throughout the process.

For each liquid, two time intervals can be distinguished during the breakup. In the first part, τ 0 P > τ 0 e . This means that the ligaments are created at the sheet border, causing a growth of the liquid-gas interface. In the second part, τ 0 e increases while a reduction of τ 0 P is observed. We now have the inequality τ 0 P < τ 0 e . Seemingly, the interface production represented by τ 0 P is not linked to the thinning mechanism characterized by τ 0 e in both two time intervals. These two variation rates follow one another until reaching zero at the end of the atomization process.

Notwithstanding, the information at the scale zero (Fig. 4.30) concerns the entire liquid system which includes not only the ligaments but also the liquid sheet. It is appropriate to isolate the threads before performing a similar analysis, as will be described in the next subsection.

Analysis of the ligament network

We aim to study how the liquid threads developing on the sheet borders deform throughout the atomization of the liquid film. To this end, a specific scale is first detected, allowing to delimit the ligament network from the central part of the sheet. The ligaments' geometric properties could hence be derived with help of this scale. To characterize the evolution of the ligaments, we use the variation rates as in the deformation of a cylindrical liquid filament (see § 4. the assumption that for all ligaments, their length is much higher than their diameter.

P L = P(0) -P(d L ) (4.26)
Although the ligaments' geometrical properties such as their perimeter P L (t) and their specific scale d L (t) depend on time, t is ignored for better readability. In fact, we suppose that the contour of the eroded system at scale d L , represented by the dark dashed line IJ ≡ P(d L ) and the blue dashed line AH are almost parallel to one another (Fig. 4.31). Moreover, it can be seen that some parts of the liquid system's circumference such as AB, DE and GH lay on AH. Clearly, the following equality is verified, explaining (4.26).

P L = BCD + EFG (4.27)
Also, the ligaments' surface area in Fig. 4.31 can be estimated as

S L = E 2 (d L ) × S T - d L 2 × P(d L ) = E 2 (d L ) × S T -d L × e 2 (d L ) × S T (4.28)
As previously assumed, IJ is parallel to AH permitting the surface area delimited by these two curves to be expressed by

S AHIJ ≈ P(d L ) × d L 2 (4.29)
Since the outer surface bounded by the black dashed line IJ is the lost area after the erosion at scale d L and by using (4.24), we obtain the following relationship, explaining (4.28). The previous measurement of two geometrical properties of the liquid threads allows their specific length to be determined in the same way as the surface-based scale distribution.

S L = E 2 (d L ) × S T -S AHIJ (4.30) 
e L 2 = P L 2 × S L (4.31)
The temporal evolution of e L 2 for six liquids is depicted in Fig. 4.36. Remark that the specific length of F5 and F10 is higher than that of F0 during the whole process. e L 2 for F0 stays almost constant during the first part of the atomization, saying that the ligaments' diameter does not vary significantly. The evolution of the specific length for the mixture F10 is pronounced. It increases from the beginning of the process until reaching a peak around 0.6 ms. This indicates that the diameter of the liquid threads is reduced. In general, the specific length at the end of the breakup process depend on the surface tension.

Deformation dynamics

We are now interested in how the ligaments deform during the breakup process.

Remember that they are delimited from the liquid system by the scale d L . Inspired by the analysis of an individual liquid thread in § 4.1.1, the variation rates of the filaments' perimeter and specific length are computed as below. At the beginning of the process, i.e. before 0.2 ms, the elongation rate of the ligaments, represented by τ L P , is positive for all fluids. This means that the liquid threads are produced at the sheet borders. At the same time, τ L e is negative and close to zero. One can explain the inequality τ L e < 0 by the reduction of e L 2 (Fig. 4.36). The latter happens during the formation of the ligaments where their diameter grows from zero to a certain positive value. Inversely linked to the ligaments' diameter, e L 2 thus decreases and leads to negative τ L e .

In the next period, the specific length variation rate τ L e changes its direction, except for F0. It increases rapidly until a maximum value then shrinks to nil. Positive values of τ L e signify a thinning of the threads. Notice that the ligaments' length continues to grow for all fluids but less and less rapidly since τ L P , while remaining positive, declines to reach zero. This time interval lasts shorter for F1 and F2 than for F5 and F10, stopping at around 0.4 ms for the former versus 0.5 ms for the latter. On the other hand, the thinning of the F3 ligaments is delayed and τ L e keeps staying above zero even at 0.6 ms.

Later on, the two variation rates approach one another then intersect when both of them attain zero or when the ligaments start to break down into droplets. The duration of this period differs across liquids with the end point ranging from 0.6 ms for F3 to 1 ms for F2 and F5. The intersection between the two curves τ L P and τ L e for F1 and F10, however, occurs twice because τ L P starts to increase again from 0.6 ms for F1 and from 0.5 ms for F10. This is due to the existence of the ligaments on the left edge of the liquid sheet.

Towards the end of the process, the diminution of τ L P is registered together with the escalation of τ L e , suggesting an interface loss and a reduction in size of the liquid structures, respectively. In effect, the fragmentation of the ligaments takes place in this stage. Moreover, the peak of τ L e coincides with the trough of τ L P , at the same moment as the rupture of the liquid threads (refer to Figs. 4.34 and 4.35).

Interestingly, the comparison of τ L P and τ L e can result in the division of the fluids into three subgroups. The first one contains F0 whose τ L e always stays around zero. Although its ligaments increase in length while remaining constant in diameter.

Near-zero τ L e implies that the threads are not stretched at all during the whole process. In the second group, one can find F2, F3 and F5 because their behaviours are much alike in terms of τ L P and τ L e . The ligaments lengthen from their formation until their fragmentation and the liquid thread stretching is recorded as τ L e > 0. Finally, F1 and F10 are classified in the last group. Their τ L P and τ L e curves intersect twice, proving that the ligaments appear on the left border of the liquid sheet.

Marmottant & Villermaux [START_REF] Marmottant | Fragmentation of stretched liquid ligaments[END_REF] and Dumouchel 2017 [START_REF] Dumouchel | Multi-scale analysis of simulated capillary instability[END_REF] scrutinize the resultant sprays formed by the division of the stretched ligaments. It is claimed that if the elongation rate is high or the characteristic time of the stretching is small compared to that of the capillary instability, the thread breaks down into drops with large size distribution and numerous small droplets are formed. In contrast, sprays of narrow diameter spectrum are obtained when the capillary instability is dominant. In the next subsection, we shall examine if there is a link between the deformation of the ligaments on the drop-size distribution of the resulting sprays. 

Characteristics of the sprays

This subsection investigates the spray produced from the breakup of the ligaments, which is presented in § 4.3.2. Remember the pronounced elongation of the F10 ligaments in opposition with those of F0 that are not stretched at all during the whole process. We examine the effects of the liquid thread stretching on the polydispersion of the resulting drops as well as the formation of the small droplets.

The analysis of the spray is carried out in two following steps.

We first extract all detached liquid objects from the binary images. Their diameterdistribution is built, showing two distinct size-intervals. This enables a threshold to be detected. Since we are interested only in the fine droplets formed from the rupture of the liquid threads, drops of diameter lower than that threshold are retained for further analysis.

In the second step, we establish for the selected droplets their scale distribution. Indeed, the latter can be in turn fitted by the scale distribution of a set of circles. Put it differently, the droplets and these circles are equivalent in terms of scale distribution. The diameter spectrum of these circles can be represented by a Gamma function whose parameters allow for a quantitative comparison of the sprays among six fluids.

Extraction of the small droplets

To extract the droplets from the entire system, we remove the liquid sheet which is the biggest object in the binary pictures. Examples of resultant images for F0 at postion "up" and "down" are shown in Figs. 4.38 and 4.39, respectively. It can be seen that some large liquid structures still remain.

Thanks to different image processing programs, the size-histogram of all remaining liquid elements is built as follows. The surface area S i of a drop i is first measured, useful to calculate the diameter D i of an equivalent sphere having the same projected area. In other words, D i satisfies the equality πD 2 i 4 = S i . The volume of the sphere is thus derived from its diameter as πD 3 i tached liquid structures is below 1300 µm. Moreover, they can be divided into two distinct intervals by a diameter threshold of 600 µm. Aiming to choose the small drops issued from the ligaments' breakup, only droplets with size lower than this limit are kept for further analysis. Their diameter-distributions are depicted in Fig.

4.40b.

It is clear from Fig. 4.40a that more small droplets are formed for F10 than other fluids. Furthermore, it has few large liquid elements since the maximum diameter is around 800 µm. Inversely, for the fluid F0, only few small-size drops together with many large liquid objects are found. 

Drop-scale distribution

Procedures as described in § 4.1 are applied to the images of the drops having their diameter smaller than 600 µm at position "up" and "down" to obtain the drop-scale distributions of the sprays. The measurement of the cumulative scale distribution is carried out in the whole euclidean distance maps. This is to say that a large analysing window is used to completely cover each image. D 10 is the arithmetic mean diameter of the spray, defined as the average diameter of a set of equivalent spheres. Concretely, D 10 can be calculated as N i=1 D i /N where N is the total number of objects (see § 4.3.3.1). The formula (4.33) is applied to the droplets issued from the fragmentation of the ligaments which appear during the breakup of the liquid sheets produced by a triple-disk injector (Dumouchel et al. 2015 [26]). It is said that when the stretched ligaments break down, they form drops whose number-based diameter distribution can be well represented by a Gamma function (Marmottant & Villermaux 2004 [58]).

f n (D) = ν ν Γ (ν) D ν-1 D ν 10 exp -ν D D 10 (4.34)
We fit the scale distributions issued from the experimental dataset to the function With reference to the last three fluids F1, F2 and F3, their drop-size dispersions are not as pronounced as F5 and F10 but more marked than F0. For each liquid, the behaviour above can be explained differently. The F2 ligaments are stretched during long time but at a lower elongation rate than F5 and F10. In case of F3, its threads increase in length at a high τ L P but within a short time interval of approximately 0.6 ms. For the liquid F1, one can notice small values of τ L P together with a short duration of the elongation process. Moreover, the fact that τ L P becomes positive from 0.6 to 0.8 ms signifies the development of the ligaments of large diameter on the left border of the liquid film. These threads are not stretched because τ L e is negative in this period. Their diameter is thus higher than those appear earlier on the other side of the sheet. In consequence, large droplets are formed from the breakdown of the F1 ligaments.

I M M E R S E D B O U N D A R Y M E T H O D

As we have seen in chapters 2 and 4, both secondary flow and turbulence are highly influential to the spray formation. Therefore, to numerically solve the atomization process, including both internal and external flows is necessary. 

+ (U • ∇) ρ = 0 (5.2)
to obtain

∇ • U = 0 (5.3)
We now have a set of two equations: the momentum equation (5.1a) and the continuity equation (5.3).

Jump conditions across the liquid-gas interface

Across the liquid-gas interface, the jump conditions for density, viscosity and pressure read

[ρ] Γ = ρ l -ρ g [µ] Γ = µ l -µ g [n • (pI -2µD) • n] Γ = σκ (5.4)
where [•] the jump of the variable • across the interface, I the identity matrix, ρ l , ρ g the mass density and µ l , µ g the dynamic viscosity of the liquid and the gas, respectively.

Boundary conditions on the fixed solid frontier

Since we restrict ourself to fixed solid boundaries, the no-slip condition applied for the velocity is given by

U| Γ ib = U s | Γ ib = O (5.5)
and by using scale analysis inside the boundary layer, it can be shown that the pressure gradient satisfies

n ib • ∇p Γ ib = 0 (5.6)

projection method

So as to solve the incompressible Navier-Stokes equations, a projection method (Chorin 1968 [13]) is adopted which proceeds in three steps.

Step 1 From the solution U n at time t n = n∆t, where ∆t is the time step, we calculate an intermediate velocity via the momentum equation (5.1a). The pressure gradient is ignored here.

U * = U n + ∆t ρ n+1 (-U n • ∇) ρ n U n + ∇ • 2µ n+1 D * + σκ n+1 n Γ δ Γ (5.7) 
The convection term (U n • ∇) ρ n U n and the diffusion term ∇ • 2µ n+1 D * are approximated by different numerical schemes depending on which approach among the finite difference method ( § 5.6) or the finite volume method ( § 5.7). In addition, since the transport of the liquid-gas interface is performed before solving (5.7), ρ n+1 , µ n+1 and κ n+1 are known. The treatment of the diffusion term, as shown in (5.7), is implicit. We enforce the no-slip condition even for the intermediate velocity.

U * | Γ ib = O (5.8) 
Step 2 We derive the Poisson equation for pressure by using the continuity equation (5.3).

∇ • ∇p n+1 ρ n+1 = ∇ • U * ∆t (5.9)
with homogeneous and non-homogeneous Neumann boundary conditions on ∂Ω and Γ ib , respectively.

n ib • ∇p n+1 ρ n+1 Γ ib = n ib • U * ∆t Γ ib (5.10) 
Like the convection and diffusion terms in (5.7), (5.9) on irregular domains is discretized differently within each of the two approaches -the finite difference method ( § 5.6) or the finite volume method ( § 5.7).

Step 3 Once p n+1 is obtained, we compute the final solution at time t n+1 .

U n+1 = U * + ∆t ∇p n+1 ρ n+1 (5.11) 
Note that the Neumann condition (5.10) is deduced from the no-slip boundary condition (5.5) for the final solution (5.11).

U n+1 Γ ib = O (5.12)
Moreover, the combination of the no-slip condition for the intermediate velocity (5.8) and the Neumann condition (5.10) fulfils the condition for the pressure gradient on the solid frontier (5.13).

n ib • ∇p n+1 Γ ib = 0 (5.13) 

liquid-gas interface tracking

An important part of the flow numerical study consists in tracking the liquidgas interface. The level-set and volume-of-fluid methods are traditionally used to accomplish this task. Fortunately, due to their complementarity, a combination of these two approaches is possible and has indeed proven its efficiency. In this section, we recall some essential features of the two techniques before presenting the joined one namely the coupled level-set, volume-of-fluid (CLSVOF) method.

Level-set method

The level-set method is based on the implicit definition of the interface as the zerolevel of a continuous function φ (x, t) (Osher & Sethian 1988 [69]). To guarantee that φ (x, t) is the distance of a given point x from the interface, with positive sign in liquid and negative sign in gas, |∇φ (x, t) | = 1. The motion of the interface φ (x, t) = 0 by the velocity field U is given by

∂φ (x, t) ∂t + (U • ∇) φ (x, t) = 0 (5.14)
The level-set function can no longer be a distance function when |∇φ (x, t) | = 1 due to high velocity gradients. A re-distancing algorithm is thus applied to reorganize the level-set field without modification of the zero-level curve (Sussman et al. 1998 [89]). The reinitialization equation

∂d (x, τ) ∂τ = sign (φ (x, t)) (1 -|∇d (x, τ) |) (5.15)
is iterated in virtual time τ with the sign function being smoothed in the vicinity of the interface.

sign (φ (x, t)) = φ (x, t) φ 2 (x, t) + ∆x 2 (5.16) 
In each time step, (5.14) is first solved to initialize d (x, τ = 0) = φ (x, t). Then, we iterate (5.15) until a steady state is attained, i.e. either sign (φ (x, t)) = 0, meaning that the interface is preserved, or |∇d x, τ steady | = 1 which is a distance function. Finally, the equality φ (x, t) = d x, τ steady is imposed. In practice, we run three iterations by the 3 th order Runge-Kutta method to solve (5.15).

Volume-of-fluid method

Another way to track the interface is the volume-of-fluid method (Hirt & Nichols 1981 [48]). Inside a computational grid-cell Ω ij at an instant t, a color function is defined as

c (x) =        0 if x ∈ gas 1 if x ∈ liquid (5.17)
The marker function F Ω ij , t is the volume fraction of liquid.

F Ω ij , t = ´Ωij c (x) dV V ij (5.18)
where V ij the volume of the grid-cell Ω ij .

The scalar function F Ω ij , t takes a value of 0 in a gas cell, 1 when a cell is filled by liquid, and in-between 0 < F Ω ij , t < 1 if an interface exists. Moreover,

F Ω ij , t is a discontinuous function since its value jumps from 0 to 1 when the argument moves from gas to liquid.

From the following connection between the mass density and the color function

ρ (x) = ρ l c (x) + ρ g (1 -c (x)) (5.19) 
combined with (5.1b), one can easily derive the transport equation of the color function c as

∂c ∂t + (U • ∇) c = 0 (5.20) 

Coupled level-set, volume-of-fluid method

Although the level-set function gives precisely interface position and geometries parameters, its main drawback is the mass loss (or gain) in under-resolved regions.

In contrast, the volume-of-fluid is mass-conserving but unable to easily describe ) is the first element. In each cell, the interface is approximated by a planar surface. Its normal vector is easily computed from the level-set function. Then, the liquid-gas surface, originally put at the cell center, is translated so as the liquid volume fraction that it determines is equal to F Ω ij , t . The adjusted value of the distance is set to be φ Ω ij , t . One resolves (5.22a) explicitly for the transport in x-direction.

φ ij = φ n ij + ∆t ∆x G φ i-1 2 j -G φ i+ 1 2 j 1 -∆t ∆x u i+ 1 2 j -u i-1 2 j (5.23) 
where

G φ i-1 2 j
, for example, is the flux from the left face of the grid-cell Ω ij which is left for the upcoming paragraph.

Then (5.22b) is considered implicitly in y-direction.

φ ij = φ ij + ∆t ∆y G φ i-1 2 j -G φ i+ 1 2 j 1 -∆t ∆y v ij+ 1 2 -v ij-1 2 (5.24) 
The level-set in the next time step becomes

φ n+1 ij = φ ij -φ ij ∆t ∆x u i+ 1 2 j -u i-1 2 j -φ ij ∆t ∆y v ij+ 1 2 -v ij-1 2 (5.25)
The algorithm is valid for zero-divergence velocity fields (Sussman & Puckett 2000 [88]). The direction switch is necessary to obtain second-order accuracy (Pilliod et al. 2004 [72]).

We now turn to the transport of F. Re-write (5.20) in a control volume Ω ij , as suggested by Weymouth & Yue 2010 [START_REF] Weymouth | Conservative volume-of-fluid method for free-surface simulations on cartesian-grids[END_REF].

∂ ∂t ˆΩij cdV + ˆΩij (∇ • (cU) -c∇ • U) dV = 0 (5.26)
With help of the Ostrograski-Gauss theorem, we have

∂ ∂t ˆΩij cdV + ˛Γij cU • ndS = ˆΩij c∇ • UdV (5.27)
where Γ ij is the surface of Ω ij .

Hence, the transport equation of the volume-of-fluid function F is

∂F Ω ij , t ∂t V ij + G F net = ˆΩij c∇ • UdV = ˆΓij cU • ndS (5.28)
where G F net is the net flux of liquid out of the grid-cell Ω ij .

The split version of (5.28) is written as

∆F ′ ij V ij ∆t ≡ F ′ ij -F n ij V ij ∆t = G F i+ 1 2 j -G F i-1 2 j + ˆΓij c n udy (5.29a) ∆F ′′ ij V ij ∆t ≡ F n+1 ij -F ′ ij V ij ∆t = G F ′ ij+ 1 2 -G F ′ ij-1 2 + ˆΓij c n vdx (5.29b)
where

G F i-1 2 j
, for example, is the flux from the left face of the grid-cell Ω ij . Its calculation is discussed in the next paragraph. The integrals are approximated as

ˆΓij cudy ∼ = c ij ∆y u i+ 1 2 j -u i-1 2 j
(5.30a)

ˆΓij cvdx ∼ = c ij ∆x v ij+ 1 2 -v ij-1 2 (5.30b)
where c ij is the cell center value of the color function c.

c ij =        0 if F Ω ij , t < 0.5 1 otherwise (5.31) 
[81], Vaudor et al. 2017 [START_REF] Vaudor | A consistent mass and momentum flux computation method for two phase flows. Application to atomization process[END_REF] for instance). The second approach is justified especially when the ratio between the liquid and gas mass density is high.

Implicit treatment of the diffusion term

As written in § 5. 

U * = U n - ∆t ρ n+1 (U n • ∇) ρ n U n + ∇ • 2µ n+1 D * + σκ n+1 nδ Γ (5.36)
The pressure jump σκ n+1 nδ Γ is treated using the ghost fluid method (Fedkiw et The projection in x-direction of the viscous term ∇ • (2µD) in (5.36) is estimated at point i + 1 2 j (5.38). Its projection in y-direction at point ij + 1 2 is alike. 

(∇ • (2µD)) • e x | i+ 1 2 j = ∂ ∂x 2µ (φ) ∂u ∂x i+ 1 2 j + ∂ ∂y µ (φ) ∂u ∂y + ∂v ∂x
(∇ • (2 µ D)) • e x | i+ 1 2 j ≈ 2µ (φ) i+1j ∂u ∂x i+1j -2µ (φ) ij ∂u ∂x ij ∆x + µ (φ) i+ 1 2 j+ 1 2 ∂u ∂y i+ 1 2 j+ 1 2 -µ (φ) i+ 1 2 j-1 2 ∂u ∂y i+ 1 2 j-1 2 ∆y + µ (φ) i+ 1 2 j+ 1 2 ∂v ∂x i+ 1 2 j+ 1 2 -µ (φ) i+ 1 2 j-1 2 ∂v ∂x i+ 1 2 j-1 2 ∆y ≈ 2µ (φ) i+1j u i+ 3 2 j -u i+ 1 2 j ∆x -2µ (φ) ij u i+ 1 2 j -u i-1 2 j ∆x ∆x + µ (φ) i+ 1 2 j+ 1 2 u i+ 1 2 j+1 -u i+ 1 2 j ∆y -µ (φ) i+ 1 2 j-1 2 u i+ 1 2 j -u i+ 1 2 j-1 ∆y ∆y + µ (φ) i+ 1 2 j+ 1 2 v i+1j+ 1 2 -v ij+ 1 2 ∆x -µ (φ) i+ 1 2 j-1 2 v i+1j-1 2 -v ij-1 2 ∆x ∆y (5.39) 
where

µ (φ) ij = µ g µ l µ g ξ (φ) ij + µ l 1 -ξ (φ) ij with ξ (φ) ij =                0 if φ i-1 2 j < 0 and φ i+ 1 2 j < 0 1 if φ i-1 2 j > 0 and φ i+ 1 2 j > 0 φ + i-1 2 j +φ + i+ 1 2 j |φ ij |+|φ i+1j | otherwise a + = max (0, a) φ i-1 2 j = φ i-1j + φ ij 2 φ i+ 1 2 j = φ ij + φ i+1j 2 and µ (φ) i+ 1 2 j+ 1 2 = µ g µ l µ g ξ (φ) i+ 1 2 j+ 1 2 + µ l 1 -ξ (φ) i+ 1 2 j+ 1 2 with ξ (φ) i+ 1 2 j+ 1 2 =                0 if φ ij < 0, φ i+1j < 0, φ ij+1 < 0, φ i+1j+1 < 0 1 if φ ij > 0, φ i+1j > 0, φ ij+1 > 0, φ i+1j+1 > 0 φ + ij +φ + i+1j +φ + ij+1 +φ + i+1j+1 |φ + ij |+|φ + i+1j |+|φ + ij+1 |+|φ + i+1j+1 | otherwise
When the solid boundaries are present, the method suggested by Gibou et al. 2002

[39], Lepilliez 2015 [52] is applied to discretize each term in (5.39). Take ∂u ∂x ij as example. Three cases can be distinguished when discretize the term.

Case 1 If φ s i+ 1 2 j < 0 and φ s i-1 2 j < 0, the cell i -1 2 , i + 1 2 × [j]
is entirely covered by the fluid. Thus, the approximation is

∂u ∂x ij = u i+ 1 2 j -u i-1 2 j ∆x Case 2 If φ s i+ 1 2 j > 0 and φ s i-1 2 j
< 0, the cell point (i + 1 2 j) is in the solid and the cell point (i -1 2 j) is in the fluid, so we have

u i+ 1 2 j = 0 Case 3 If φ s i+ 1 2 j < 0 and φ s i-1 2 j
> 0, the cell point (i + 1 2 j) is in the fluid and the cell point (i -1 2 j) is in the solid. We approximate the derivative by

∂u ∂x ij = u i+ 1 2 j
θ∆x where θ∆x the length of the cell covered by the fluid. Hence

θ = |φ s i+ 1 2 j | |φ s i+ 1 2 j | + |φ s i-1 2 j
| Finally, we obtain a system of linear equations involving three velocity components localized at the center of the cell faces. It should be reminded that these variables are the components of the intermediate velocity U * and the superscript * is removed to improve the readability. The left-hand side of (5.36) is a 9-diagonal matrix per velocity component, which becomes a 15-diagonal matrix per velocity component in 3D. The linear system is solved by the Gauss-Seidel algorithm. By a finite volume approach, let's integrate the left-hand side of (5.9) and apply the divergence theorem.

‹

Ω ij ∪Ω f ∇ • ∇p ρ dA = ˛∂(Ω ij ∪Ω f ) n • ∇p ρ dl (5.40)
with dA and dl are the differential area and length, respectively. Likewise, for the right-hand side of (5.9), we have

‹ Ω ij ∪Ω f ∇ • U * dA = ˛∂(Ω ij ∪Ω f ) n • U * dl (5.41)
To estimate each component of ∂ Ω ij ∩ Ω f in (5.40) and (5.41), the fluid fraction function θ is required. Simply, θ is the ratio between the fluid portion over a cell face and the cell face area (Fig. 5.5). Refer to § 5.5.2 for its approximation. We obtain

- ˛∂(Ω ij ∪Ω f ) n • ∇p ρ dl ≈ - ˛Γib ∪Ω f n • ∇p ρ dl + θ u i-1 2 j ρ i-1 2 j p ij -p i-1j ∆x + θ u i+ 1 2 j ρ i+ 1 2 j p ij -p i+1j ∆x + θ v ij-1 2 ρ ij-1 2 p ij -p ij-1 ∆y + θ v ij+ 1 2 ρ ij+ 1 2 p ij -p ij+1 ∆y (5.42)
where ρ i-1 2 j , for example, is the mass density of the volume which consists of the left half of the grid-cell Ω ij and the right half of the grid-cell Ω i-1j .

Similarly,

- ˛∂(Ω ij ∪Ω f ) n • U * dl = - ˛Γib ∪Ω f n • U * dl + θ u i-1 2 j u * i-1 2 j -θ u i+ 1 2 j u * i+ 1 2 j + θ v ij-1 2 v * ij-1 2 -θ v ij+ 1 2 v * ij+ 1 2 (5.43) 
We combine (5.42) and (5.43) and use the Neumann condition (5.10) to simplify the terms in boxes. [52], the above linear system is symmetric positive definite and therefore can be inverted efficiently by classical methods.

θ u i-1 2 j ρ i-1 2 j p ij -p i-1j ∆x + θ u i+ 1 2 j ρ i+ 1 2 j p ij -p i+1j ∆x + θ v ij-1 2 ρ ij-1 2 p ij -p ij-1 ∆y + θ v ij+ 1 2 ρ ij+ 1 2 p ij -p ij+1 ∆y = θ u i-1 2 j u * i-1 2 j -θ u i+ 1 2 j u * i+ 1 2 j + θ v ij-1 2 v * ij-1 2 -θ v ij+ 1 2 v *

Contact angle

Section § 5.6.3 points out that the surface tension term needs to be discretized (5.36) to deduce the intermediate velocity field. When both fluid interface and wall boundaries are found in the same cell, a contact angle, which is the angle between Γ and Γ ib , is enforced to calculate the value the level-set function inside the cutcells and in the solid media in order to know n Γ and κ. In addition, in § 5.6.6, the level-set function is extrapolated inside the cut-cells to transport the liquidgas interface. Within this purpose, we extrapolate the level-set function φ into not only the cut-cells but also the solid media, thus impose its gradient. The extension procedure is conducted as follows. When the equilibrium state is reached, a static contact angle θ c is enforced to obtain a Neumann boundary condition on the fluid level-set function.

n ib • ∇φ = cos (θ c ) (5.45) 
θ c depends on the interactions between the fluid flow and the solid wall and is supposed to be known a priori. The multidimensional extrapolation proposed in Aslam 2004 [2] allows to extend φ into the solid and to impose a gradient of φ near the solid boundary, i.e. to fulfil the condition (5.45).

∂φ ∂τ + H (φ s ) n s • ∇φ = cos (θ c ) (5.46)
where τ a fictitious time step and H (φ s ) a Heaviside function. (5.46) is applied only on solid cells. We implement a 3 rd order Total Variation Diminishing (TVD)

Runge-Kutta for the temporal discretization. The gradient term is treated by a 2 nd order upwind scheme.

Notice that a dynamic contact angle should be imposed to account for the physics of the contact point (in 2D) or the contact line (in 3D) between the three phases.

However, due to its dependence on the flow, the properties of liquid, gas and solid, modelling of dynamic contact angles is complex and thus out of the scope of our study.

immersed boundary method for two-phase flows finite volume method

The essential feature of the immersed boundary method presented within the framework of the finite difference method in the previous section is the implicit Botella 2010 [START_REF] Cheny | The LS-STAG method: A new immersed boundary/level set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties[END_REF] in their article.

Discretization of irregular domains

While applying the finite volume method, scalar variables, i.e. the pressure, the level-set and volume-of-fluid functions are stored everywhere inside the grid-cell.

x and y-components of the velocity are respectively sampled in the center of the fluid part of the vertical and horizontal faces. Only one part of the cut-cell ). To put it more precisely, three invariants are present in (5.47) and (5.48).

Ω ij = i -1 2 , i + 1 2 × j -1 2 , j +
• the total mass ´Ωf ∇ • UdV;

• the total momentum P (t) = ´Ωf ρUdV;

• and the kinetic energy E c (t) = ´Ωf ρ|U| 2

2 dV in the limit of one-phase inviscid fluid flows.

The conservation equations of these invariants can be established from (5.47) and (5.48). We have for the total mass, ˆΓib U • ndS = 0 (5.49a)

for the total momentum,

dP dt = - ˆΓib ρUU • ndS -F -F ib Γ (5.49b)
and for the kinetic energy,

dE c dt = ˆΩf ρ|U| 2 2 + p ∇ • U -µ|∇U| 2 dV + ˆΩf δ Γ σκ n Γ • UdV - ˆΓib ρ|U| 2 2 + p -µ∇U U • ndS (5.50)
where F = (F x , F y ) are the hydrodynamic force acting on the immersed boundary and F ib Γ the force representing the interactions between the liquid-gas interface and the solid wall. It is implicitly modelled by the contact angle (refer to § 5.6.5) and ignored hereafter.

F x = ˆΓib p -
In (5.50), all terms of the first volume integral except the viscous dissipation disappear because of (5.47). The total energy of the flow can thus only decrease due to viscous effects and the surface tension. Moreover, the surface integral in (5.50) can be discarded. While it expresses the influence of the pressure and convective terms on the energy budget via their action on the solid frontier only, the latter is fixed in our case.

The next subsections address the discretization of each term in (5.47) and (5.48) to verify the conditions (5.49a), (5.49b) and (5.50).

Discretization of the continuity equation

We are first interested in the discretization of the continuity equation (5.47) is discretized. In any fluid cell Ω ij whose face is decomposed into (5.47) can be regarded as the net fluxes through these faces (Fig.

Γ ij = Γ w ij ∪ Γ e ij ∪ Γ s ij ∪ Γ n ij ∪ Γ ib ij ,
5.7). qij ≡ -u i-1 2 j + u i+ 1 2 j -v ij-1 2 + v ij+ 1 2 = 0 (5.52)
The face-integrated quantity u i+ 1 2 j through Γ e ij is related to the discrete unknown u i+ 1 2 j at the center the fluid part of the face via the midpoint rule. q

u i+ 1 2 j ∼ = θ u
∼ = qh ≡ Control volumes Ω ij qij ≡ 1 T DU (5.57)
where 1 T is the constant vector. Thanks to (5.54), the discrete total mass is qh ≡

Control volumes Ω ij ∆y θ u i+ 1 2 j u i+ 1 2 j -θ u i-1 2 j u i-1 2 j + ∆x θ v ij+ 1 2 v ij+ 1 2 -θ v ij-1 2 v ij-1 2 
By using the local conservation of the mass fluxes at fluid faces, it is easy to prove that qh = 0, meaning that the total mass is discretely conserved through the above discretization.

Discretization of the momentum equation based on the conservation of kinetic energy -Pressure gradient and convective fluxes

Let's turn to the discretization of the momentum equation (5.48). This is equivalent to dicretize three terms, i.e. the pressure gradient, the convective and viscous fluxes. While the task for the first two terms has to be done based on the conservation of the kinetic energy, one has to use the total momentum conservation condition to treat the third term. This subsection is intended to takes care of the pressure gradient and convection terms discretization and leaves the discretization of the diffusion term for the next part.

We begin by rewriting (5.48) in a semi-discrete matrix form.

d dt (MU) = -C U U -GP + F Γ + KU -S ib,c + S ib,ν (5.58) 
where M is the diagonal mass matrix, built from the volume of the fluid cells, C U the matrix representing the discretization of the convective fluxes, G the discrete pressure gradient, K the matrix representing the discretization of the viscous fluxes, F Γ the pressure jump across the liquid-gas interface, S ib,c and S ib,ν the source terms arising from the boundary conditions of the convective and viscous terms, respectively. These terms will be constructed such that the total momentum and kinetic energy are discretely conserved. We restrict ourselves to fixed immersed boundaries where S ib,c = O and S ib,ν = O.

The first step is to build M. Applying the trapezoidal rule to each line of (5.58), one gets the diagonal coefficients in the horizontal and vertical directions.

[M x ] P i + 1 2 j = 1 2 ρ ij V ij + 1 2 ρ i+1j V i+1j (5.59a) [M y ] P ij + 1 2 = 1 2 ρ ij V ij + 1 2 ρ ij+1 V ij+1 (5.59b)
where the subscript P refers to the main diagonal elements. Remark that from (5.59), in the cut-cells at least, the mass matrix for u i+ 1 2 j and v ij+ 1 2 is not constructed from the actual areas of Ω u i+ 1 2 j

and Ω v ij+ 1 2 .

(5.66) must be similar to (5.50) to conserve the kinetic energy. To this end, two requirements should be satisfied. First, the viscous term -U T K T + K U should mimic the viscous dissipation of the kinetic energy budget. Thus, it must be negative and the matrix K T + K positive definite. In the finite-volume method framework, this can be obtained if the discrete diffusive flux is stable and consistent (Eymard et al. 2000 [34]). Note that the symmetry of K is not necessary. The second condition imposes the discretized convective terms to be a skew-symmetric matrix.

C U = -C U T ⇒ -U T C U T + C U 2 U = 0 (5.67)
and the pressure gradient to be dual to the divergence operator (5.55).

G = -D T ⇒ -P T G T U = P T DU = 0 (5.68)
Under these constrains and when the viscosity and the surface tension disappear, the kinetic energy budget (5.66) becomes and in To obtain the discretization satisfying (5.80), we decompose the boundary of the control volume as

dE h c dt = F T Γ U + U T F Γ 2 -U T K T + K 2 U µ→0 ---→ F T Γ U + U T F Γ 2 
Ω v ij+ 1 2 should be ˆΓu i+ 1 2 j pe x • ndS ∼ = [G x P] i+ 1 2 j = θ u i+ 1 2 j ∆y p i+1j -p ij (5.70a) ˆΓv ij+ 1 2 pe y • ndS ∼ = [G y P] ij+ 1 2 = θ v ij+ 1 2 ∆x p ij+1 -p ij ( 5 
(U • e y ) ρudx ∼ = ρ ij-1 2 v ij-1 2 + ρ i+1j-1 2 v i+1j-1 2 2 u s ( 5 
Γ u i+ 1 2 j = Γ u,w i+ 1 2 j ∪ Γ u,e i+ 1 2 j ∪ Γ s,e ij ∪ Γ s,w i+1j ∪ Γ ib,e ij ∪ Γ ib,w i+1j (5.81)
and write the convective term as the net flux through each of these faces. The discretization of the convective term in this control volume is also given by (5.78), with the exception that

C U N i + 1 2 j = 0 (5.84)
The skew-symmetry conditions (5.80) for cut-cells are therefore verified. Similar processes are applied for the other types of half control volumes. where the area ∆y u,w i+ 1 2 j is yet to be defined. According to Cheny & Botella 2010 [START_REF] Cheny | The LS-STAG method: A new immersed boundary/level set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties[END_REF] and Eymard et al. 2000 [34], since the line joining the location of u i-1 2 j and u i+ 1 2 j

is not orthogonal to the west face Γ u,w i+ 1 2 j

in the trapezoidal cut-cell of Fig. 5.13, our mesh is not admissible for the normal stresses in the cut-cells and therefore make (5.88) inconsistent and yields large numerical errors.

Based on the requirement that the discrete normal stresses should be consistent with the discrete pressure, one can improve the consistency of the discretization of ´Γu i+ 1 2 j 2µ ∂u ∂x e x • ndS by discretizing the normal stress fluxes in a similar way to the pressure gradient as in (5.70a). We then have

ˆΓu i+ 1 2 j 2µ ∂u ∂x e x • ndS ∼ = θ u i+ 1 2 j ∆y 2µ (φ) i+1j ∂u ∂x i+1j -2µ (φ) ij ∂u ∂x ij (5.89) 
All terms in (5.89) are directly available except a differential quotient for ∂u ∂x ij which need to be calculated. To this end, the Green's theorem has to be valid at the discrete level in a cut-cell. 

∂u ∂x ij ∼ = θ u i+ 1 2 j u i+ 1 2 j -θ u i-1 2 j u i-1 2 j
V ij /∆y (5.92a)

An analogous expression holds for ∂v ∂y ij

. where the areas ∆x n,e ij and ∆x n,w i+1j represent only the fluid part of the faces to ensure the local conservation of the fluxes. This results in

∂v ∂y ij ∼ = θ v ij+ 1 2 v ij+ 1 2 -θ v ij-1 2 v ij-1 2 V ij /∆x ( 
∆x n,e ij = 1 2 θ v ij+ 1 2 ∆x, ∆x n,w i+1j = 1 2 θ v
∂v ∂x i+ 1 2 j+ 1 2 = v i+1j+ 1 2 -v ij+ 1 2 1 2 θ v i+1j+ 1 2 ∆x + 1 2 θ v ij+ 1 2 ∆x ∂u ∂y i+ 1 2 j+ 1 2 = u i+ 1 2 j+1 -u i+ 1 2 j 1 2 θ u i+ 1 2 j+1 ∆y + 1 2 θ u i+ 1 2 j ∆y (5.96)
which is similar to the usual one (5.87). The last three expressions (5.94), (5.95) and (5.96) are for the Cartesian cell of Fig. 5.12, but still valid when u i+ 1 2 j+1 is present in the fluid domain or when θ u i+ 1 2 j+1

> 0.

The properties of a cut-cell like the one in Fig. Note that in (5.97), the integration areas ∆x ib,e ij and ∆x ib,w i+1j on the solid face are yet to be defined.

The discretization of the viscous term has a nine-point structure. For the cut-cell in Fig. 5.14 whose north face is solid or u i+ 1 2 j+1 does not exist or θ u where U * is a vector containing the intermediate velocities and A a pentagonal and symmetric matrix with

A E (i, j) = θ u i+ 1 2 j ∆y 2 1 2 ρ ij V ij + 1 2 ρ i+1j V i+1j , A W (i, j) = A E (i -1, j) (5.111a) A N (i, j) = θ v ij+ 1 2 ∆x 2 1 2 ρ ij V ij + 1 2 ρ ij+1 V ij+1 , A S (i, j) = A N (i, j -1) (5.111b) A P (i, j) = -A E (i, j) -A W (i, j) -A N (i, j) -A S (i, j) (5.111c) 
Like the linear system (5.44) of the finite difference method in § 5.6, (5.111) can easily be solved by classical methods.

Transport of the liquid-gas interface inside cut-cells

The transport of the liquid-gas interface, as described in § 5.4.3, is not applicable for cut-cells and thus need to be modified.

To transport the level-set function φ, the divergence operator in (5.22) is similar to the one applied on the pressure. Hence, the transport in x-direction (5.22a) becomes

φ ij = φ n ij + ∆t ∆x G φ i-1 2 j -G φ i+ 1 2 j 1 -∆t ∆x θ u i+ 1 2 j u i+ 1 2 j -θ u i-1 2 j u i-1 2 j
(5.112)

where

G φ i-1 2 j
, for example, is the flux from the left face of the grid-cell Ω ij being calculated in the same manner as in § 5.4.3.

In y-direction, the transport equation (5.22b) evolves into

φ ij = φ ij + ∆t ∆y G φ i-1 2 j -G φ i+ 1 2 j 1 -∆t ∆y θ v ij+ 1 2 v ij+ 1 2 -θ v ij-1 2 v ij-1 2 
(5.113)

The level-set in the next time step is thus

φ n+1 ij = φ ij -φ ij ∆t ∆x θ u i+ 1 2 j u i+ 1 2 j -θ u i-1 2 j u i-1 2 j -φ ij ∆t ∆y θ v ij+ 1 2 v ij+ 1 2 -θ v ij-1 2 v ij-1 2 
(5.114)

The advection of the volume-of-fluid function F inside the cut-cells is made possible with help of some modifications. The integrals of (5.29) are now approximated differently, containing the divergence operator similar to that of the pressure gradient, as follow

ˆΓij cudy ∼ = c ij ∆y θ u i+ 1 2 j u i+ 1 2 j -θ u i-1 2 j u i-1 2 j
(5.115a)

ˆΓij cvdx ∼ = c ij ∆x θ v ij+ 1 2 v ij+ 1 2 -θ v ij-1 2 v ij-1 2 
(5.115b)

Changes involve the flux computation as well. For instance, let's consider the liquid flux G F i-1 2 j

(5.29a) coming from the adjacent cell on the left when u i-1 2 j > 0 (Fig. 5.15). The liquid of the cell i -1j is marked by the spotted surface. The part limited by the dotted rectangular of is solely taken into account. Its area is assumed to be A. The rectangular size is θ u i-1 2 j

∆y × u i-1 2 j ∆t where ∆y is the spatial resolution in y-axis and u i-1 2 j ∆t corresponds to the travelling path of a fluid particle of a velocity u i-1 2 j during a time interval ∆t. However, we determine a trapeze so as its area is equal to that of the rectangular thanks to the secant algorithm. The liquid area is now A. This results in the flux G F i- 1 2 j

given by the following formula Regime A corresponds to the described flow at a very low Reynolds number (Fig. The geometrical properties of the liquid drop at its equilibrium state, i.e. its relative depth and width, are plotted with the contact angle in Fig. 5.25. The continuous and dashed lines are the analytical solutions of Dupont & Legendre 2010 [START_REF] Dupont | Numerical simulation of static and sliding drop with contact angle hysteresis[END_REF].

G F i-1 2 j = θ u i-1 2 j ∆y × u i-1 2 j   A |θ u i-1 2 j ∆y × u i-1 2 j ∆t|   ( 
Remark that the finite volume method gives better results than the finite difference method, reproducing drop geometries closer to the theoretical calculations. This can be explained by the fact that the finite volume method is mass-conserving and the theoretical calculations are based on the mass conservation. This present study gathers some experimental analyses and numerical developments which aim to investigate the atomization process of the planar turbulent liquid sheets emanating from a triple-disk injector. The atomizer consists of three superposed disks having each a circular orifice hole. Moreover, the discharge orifice is deviated from the injector axis. Given this particular design, a complex internal flow is created. In effect, a double counter-rotating vortex is formed at the injector outlet, together with a consistent turbulence level. The double counter swirl stretches the flow to create a 2D film in the plane of symmetry of the injector.

Meanwhile, the turbulence induces some perturbations that develop at the sheet edges. A ligament network appear and eventually breaks down into droplets.

As the very first step, to understand the disintegration of the liquid film, a backlight optical set-up is built to record the sheet images. These visual results are then processed under a multi-scale tool which enables the atomization analysis to be carried out. The use of the multi-scale approach is justified by the finding in the literature that mechanisms of liquid-gas interface evolution occur in a wide range of time and length scales. The main results of our experimental analyses are twofold and can be summarized as follows.

First, the contraction of the liquid film is affected by the perturbations appearing on its borders. This interaction could be inspected by two characteristic time scales -one representing the sheet contraction, the other specifying the development of the disturbances. While the first time scale depends on the sheet opening angle, the second scale varies with the surface tension coefficient. According to the relationship between these characteristic times, the perturbations more or less strongly influence the contraction of the liquid sheet.

Second, the multi-scale analysis allows an estimation of the ligaments' geometrical properties to be made. As for an individual ligament whose geometry changes in time, three involved mechanisms, i.e. stretching, capillary contraction and produc-tion, are proposed for analysing the deformation of the ligament network. These mechanisms can be identified thanks to the variation rates of the specific length and the perimeter of the liquid threads. It is found that the stretching of the ligaments favours the poly-dispersion of the spray and the formation of fine droplets.

Additionally, the fact that the drops are dispersed in diameter can be due to a high turbulence level which causes the snapshot-to-snapshot fluctuations or the elongation of the ligaments.

Interesting results not withstanding, some further explorations should be brought to the analysis to derive more benefits. First of all, for each image and each analysing window, cumulative scale distribution should be used to compute the corresponding scale distribution. The latter, together with the total surface area, enables the perimeter distribution of the eroded systems to be found. It can be expected that the temporal variations of the perimeter distribution give useful information about the snapshot-to-snapshot fluctuations of the liquid structures.

Next, based on the calculation of a maximum scale d max for each image and each analysing window via the instantaneous cumulative scale distributions, the average value and the standard deviation of these maximum scales reflect the behaviours of the bulk of the liquid film.

Furthermore, isolating the ligament network from the liquid system could be done directly by the image processing. Thanks to the specific scale d L , statistically detected or image by image, the ligaments can be easily erased by an opening operator at the very scale. The initial system is then subtracted by the resulting one to obtain only the liquid threads. Therefore, with the images of the latter available, the deformation of the ligaments could be examined in detail.

The other major part of the thesis involves the numerical works to simultaneously compute the nozzle flow and the film breakup in a unique simulation. As mentioned above, the internal flow has a significant impact on the sheet disintegration.

It is claimed in the previous studies that the stronger the double swirl, the larger the liquid film. The thickness of the latter is thus reduced to yield small drops.

Moreover, turbulence intensity is increased by the wall friction to promote the perturbations on the sheet edges. Near the nozzle exit, ligaments are more numerous, smaller in size and may divide into finer droplets.

The connection between the internal and external flows is implemented through two immersed boundary methods. The first one is based on the finite difference method and the second the finite volume method. In the Cartesian grid framework, these approaches are able to account for the irregular solid frontier. Moreover, when combined with a coupled level-set/volume-of-fluid method, these two immersed boundary methods can compute two-phase flows. Specifically, to avoid the constraint on the time step, the diffusion term is implicitly calculated in both cases. It is seen that the finite volume method is more suitable to track the liquidgas interface inside the cut-cells by the volume-of-fluid method and thus massconserving. For validation purpose, numerical results are compared to the previous works in the literature and the analytical solutions.

The application of the developed methods concerns two complex configurations.

The first one is performed on a liquid jet which issued by a cylindrical injector.

Both finite difference and finite volume methods give similar results, reproducing the beginning of the instability of the jet. However, the rupture of the latter is not observed due to insufficient computational domain. In the second application, the planar turbulent liquid film produced by the triple-disk injector is the object of our simulation. It is shown that the implemented code is able to simultaneously take into consideration the internal and external flows. Nevertheless, the numerical results are still unsatisfactory, showing differences from the experimental ones.

This suggests that further developments should be done in the future, concerning in particular turbulence modelling and specific treatment of the wall boundary layer. Furthermore, a detailed comparison could be made for the two-phase flow in the same injector geometry and operating conditions as those of Cousin et al.

2013 [START_REF] Cousin | Primary breakup simulation of a liquid jet discharged by a low-pressure compound nozzle[END_REF].
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 21 Figure 2.1: A decaying jet (Rutland & Jameson 1971 [82])

Figure 2 . 2 :

 22 Figure 2.2: Two basic wave forms

Figure 2 . 3 :

 23 Figure 2.3: Disintegration scenario of a liquid sheet (Dombrowski & Johns 1963 [18])

Figure 2 . 4 :

 24 Figure 2.4: Mechanism of liquid flow through fan spray nozzles (Dombrowski et al. 1960 [17])

Figure 2 . 5 :

 25 Figure 2.5: Fan nozzle-generated liquid sheets (Fraser et al. 1962 [37])

  2.6a).Here, U 0 is the velocity of the incoming jet and D 0 its diameter. ρ and σ stand for the liquid mass density and surface tension, respectively. D i represents the diameter of the solid disc. It can be observed from Fig.2.6b that a radially expanding film is shaped, laying on the plane perpendicular to the jet axis and drops detach from the sheet at a radial position denoted by R (Fig. 2.6a). In a series of two research articles, Clanet & Villermaux 2002 [14] and Villermaux & Clanet 2002 [101] examine the sheet creation under this scheme as well as its characteristics. The experiments are carried out in the same manner in both works.
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 272 Figure 2.7: Close-up view of the edge of the sheet in smooth regime (a) (Clanet & Villermaux 2002 [14]) and in flapping regime (b) (Villermaux & Clanet 2002 [101])

Figure 2 . 8 :

 28 Figure 2.8: A time-resolved series of the sheet undulation waves propagating towards the rim (Villermaux & Clanet 2002 [101])

Figure 2 . 12 :

 212 Figure 2.12: A sheet rim is increasingly perturbed from left to right by a small tungsten wire (Brémond & Villermaux 2006 [6])

  2.13). The injector has three superposed disks having each one circular hole. Specifically, the discharge orifice is deviated from the injector axis. As a result, a complex internal flow is established: a secondary non-axial flow which organizes as a double counter-rotating swirl at the nozzle exit as shown in Fig.2.14(Heyse et al. 1997 [47], Nagasaka et al. 2000[START_REF] Nagasaka | The development of fine atomization injector[END_REF]) and a consistent turbulence level(Glodowski et al. 1996 [40], Chen et al. 1998 [9]). Dumouchel et al. 2005 [22] compute internal flow by a Reynolds-averaged Navier-Stokes (RANS) approach and a turbulence model named renormalization group (RNG) κǫ. Drop-size distributions are measured via a laser diffraction technique.
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 213 Figure 2.13: Triple-disk injector (Dumouchel et al. 2005 [22])
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 214 Figure 2.14: Double counter-rotating swirl at the nozzle exit (Dumouchel et al. 2005 [22])
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 215216 Figure 2.15: Breakup of a water sheet (Grout et al. 2007 [43])
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 3132 Figure 3.1: Hydraulic circuit (Courtesy of Denis Lisiecki)

Figure 3 . 2 :

 32 Figure 3.2: Geometrical characteristics of the triple-disk nozzle (Eccentricity of the discharge orifice e = 450 µm)
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 33 Figure 3.3: Production and disintegration of a water sheet (Injection pressure ∆P i = 0.1 MPa)

3 . 1

 31 where σ is the surface tension, ρ the mass density, µ the dynamic viscosity and ν the kinetic viscosity of the fluids. Surface tension is measured by the tensiometer LAUDA TVT 2. The device Anton Paar V3000 offers liquid mass density, dynamic and kinetic viscosities.
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 31 is weighted to deduce the injected mass ∆m. The mass flow rate Q m for each injection pressure is given by

Figure 3 . 4 :Figure 3 . 4

 3434 Figure 3.4: Operating conditions
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 35 Figure 3.5: Visualization system
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 363738 Figure 3.6: Snapshots of the liquid sheets -Position "up"

  I br and I mr are the average intensities calculated over a pre-selected rectangular zone of the images I b and I m , respectively. The rectangular zone in the image I m must contain no object. Clearly, I br and I mr represent the average illumination energy received by the camera in the rectangular zones in these two pictures I b and I m . If there is no temporal fluctuations, the coefficient α is equal to unity. Otherwise, it varies around 1 and permits to correct the snapshot-tosnapshot variations on the background. Moreover, to rigorously keep the greyscale of the normalized photograph in the 0 -255 range, N background is set to be slightly lower than 255.
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 39 Figure 3.9: Normalized images
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 310 Figure 3.10: Histogram of normalized images
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 3311 Figure 3.11: Localized images by single-threshold method
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 14312 Fig. 3.12b, the contrasted elements are properly localized. Yet, for most part outof-focus and small-size drops are lost.
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 313 Figure 3.13: Drop finding by wavelet transform
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 314 Figure 3.14: Image processing by combing classic thresholding and wavelet transform (2)
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 41 Figure 4.1: Atomizing ligaments (Dumouchel et al. 2015 [26])

Figure 4 . 9 :

 49 Figure 4.9: EDM images of the water sheets

4. 10 )

 10 . We begin by fixing its center at position z = 3497 µm in the images at position "up" and "down". Then, three rectangular windows of different heights are considered. The testing values are 100, 200 and 300 pixel. We measure three cumulative scale distributions for F0 which correspond to these three values. Figures 4.11a and 4.11b show the results for the images at position "up" and "down", respectively. Apparently, the three curves representing the cumulative scale distributions corresponding to the three window heights overlay one over another. h AW has therefore negligible impact on the cumulative scale distribution. Like Grout et al. 2007 [43], we adopt h AW = 200 pixel since the authors investigate similar liquid sheets ejected from a triple-disk injector with an analogous optical arrangement and the spatial resolution of the images obtained in this study is close to those in our configuration.
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 411 Figure 4.11: Testing the analysing window height

Figure 4 .

 4 12a displays these cumulative scale distributions. It seems that the results are not very sensitive to the number of images. However, at the small scale range from 200 to 400 µm, the cumulative scale distribution converges from 100 images (Fig.4.12b). This justifies that for each fluid and for each position "up" or "down", 150 images available from our experiments guarantee good statistical description of the breakup of the liquid sheet. µ (a) Cumulative scale distribution µ (b) Cumulative scale distribution -Zoom on the scale range from 200 to 400 µm
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 412 Figure 4.12: Testing the number of images
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 4144154164174419420 Figure 4.14: Snapshots of the liquid sheets F0 -Postion "up"
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 2423424312 Figure 4.23: Snapshot-to-snapshot fluctuations of the cumulative scale distribution for F0
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 4 [START_REF] Dumouchel | Towards an interpretation of the scale diffusivity in liquid atomization process: An experimental approach[END_REF] draws its temporal evolution for six fluids.

dFigure 4 . 25 :

 425 Figure 4.25: Temporal evolution of the maximum scale
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 19 for six fluids are shown in Tab. 4.1. Remark that the opening angle of the sheet increases gradually from F0 to F10. The increment between two neighbouring fluids is small, staying approximately 1 or 2 o . Refer to chapter 2 where we recall the investigation of Brémond & Villermaux 2006 [6] on the liquid films formed by the oblique collision of two cylindrical jets. At basic state (without any perturbation introduced at the sheet edges), the sheet contour normalized by We × d j collapses in a unique shape for different liquid Weber numbers We and incoming jet diameters d j . The authors claim that the problem under consideration involves an equilibrium between inertia and capillarity. In like manner, we present the normalized maximum scale dmax against the normalized time t in Fig. 4.26.
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 426 Figure 4.26: Normalized maximum scale dmax ( t)
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 427427 Figure 4.27: Temporal derivative of the scale distribution

Figure 4 . 28 :

 428 Figure 4.28: Temporal evolution of the scale d 1 (Four zones Z1, Z2, Z3 and Z4 for F0)
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 429 Figure 4.29: Variation rate of the scale distribution
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 430 Figure 4.30: Variation rates based on the scale distribution and the contour length of the liquid system at scale zero
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 4334 Figure 4.33: Derivative of the perimeter of the eroded systems with respect to scale

Figure 4 . 34 :Figure 4 . 35 :

 434435 Figure 4.34: Ligaments' perimeter
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 436 Figure 4.36: Specific length of the ligaments These variation rates are displayed in Fig. 4.37, from which several remarks relative to the behaviours of six fluids can be drawn.
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 437 Figure 4.37: Variation rates based on the perimeter and specific length of the ligaments
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 438 Figure 4.38: Extraction of drops from a snapshot F0 -Position "up"
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 439 Figure 4.39: Extraction of drops from a snapshot F0 -Position "down"

Figure 4 .

 4 41 shows the surface-based scale distribution for six fluids. Remark that e 2 (d) decreases gradually while the scale d increases. The scale distribution approaches zero for the scales larger than 200 µm. Moreover, e 2 (d) at the scale zero for F0 is small, indicating lower interface created per surface unity compared to the other fluids. A poor atomization efficiency is thus expected for F0, with few small droplets and a narrow drop size-distribution. µ µ (a) Drop-size distribution of the sprays µ µ (b) Drop-size distribution with the diameter threshold of 600 µm
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 440 Figure 4.40: Volume-based drop-size distribution
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 442 [START_REF] Evers | Analogy between atomization and vaporization based on the conservation of energy[END_REF], as shown in Fig.4.41. The agreement between e 2 (d) of the droplets and the formula (4.33) is satisfactory. Remark that instead of a direct fitting by the Gamma function of the diameter-distribution of a set of equivalent circles (Fig.4.40), we fit the scale distribution by the formula(4.33). The reason for this lies in the fact that in the fitting of the drop-size spectrum by the Gamma function, the circular objects are built based on equivalent surface; whereas for the scale distribution, a set of circles with similar scale distribution is found, giving more importance to the liquid-gas interface. Moreover, the shape of the liquid structures are taken into account since the scale distribution is shape-dependent. Parameters of the Gamma functionThe fitting parameters are exhibited in Tab. 4.2. Some remarks can be made from these results.For the F5 and F10 sprays, the arithmetic mean diameters D 10 are small, meaning that fine droplets are produced. Moreover, low values in their dispersion parameters ν point out broader drop-size distributions compared to other mixtures.Remember that the ligaments of F5 and F10 undergo marked elongation which delays their division into droplets. As stated in[START_REF] Marmottant | Fragmentation of stretched liquid ligaments[END_REF] [58] and Dumouchel et al. 2015[START_REF] Dumouchel | Multiscale analysis of atomizing liquid ligaments[END_REF], the fragmentation of the stretched ligaments results in wide drop-size distribution with numerous small droplets, which enhances the atomization efficiency.Note that even the behaviour of F5 is different to F10, its droplets are much dispersed in size, similar to those of F10. This can be explained by a high snapshotto-snapshot fluctuations of the liquid F5, proven by its backlit images. The F5 ligaments vary from one image to another and are continuously stretched during the process. They thus disrupt into drops of different diameters, increasing the poly-dispersion of the spray. A detailed analysis should be done, based on the root-mean-square-deviation of the cumulative scale distribution (4.18). Moreover, the specific length of the ligaments for F5 are higher than other fluids (Fig.4.36).These threads are more deformed and corrugated, giving irregular droplets.As regards F0, both D 10 and ν are high so the resultant drops are large and of equal size. It is shown in § 4.3.2.2 that the F0 ligaments are not stretched and their diameter is unvarying during the whole process. The poly-dispersion of the drops formed by the breakup of these ligaments is rather due to their snapshotto-snapshot fluctuations (see Fig. 4.23). In other words, these liquid threads are divided into droplets of different diameters due to the variations of their form and size from one image to another.

  We now present how to realize such a connection. Essential features of ARCHER TM -our home-made 3D incompressible Navier-Stokes solver are first recalled, based on Tanguy 2004 [93], Ménard 2007 [59], Noël 2012 [66], Duret 2013 [29] and Vaudor 2015 [98]. Then, the coupled level-set, volume-of-fluid and ghost-fluid method, available in these studies is combined with two relevant immersed boundary methods to take into account the fixed solid frontier. For validation purpose, tests and comparisons to analytical solutions are performed. At the end of this chapter, a numerical simulation of a liquid jet issued by a cylindrical nozzle is carried out. We equally perform an other application on a planar film emanating from the triple-disk injector. The mass conservation equation (5.1b) can be developed as ∂ρ ∂t + (∇ • U) ρ Dρ Dt = 0 due to the incompressibility

Element 1

 1 the liquid-gas interface. A coupled level-set, volume-of-fluid method (Sussman & Puckett 2000 [88], Ménard et al. 2007 [60] for instance) is thus integrated in ARCHER TM . It consists of three principal elements. The use of the piecewise linear interface calculation (PLIC) method (Lopez et al. 2005 [55]

Element 2

 2 The second element is the transport of φ and F. Let's consider the transport of φ by re-writing (5.14) in 2D. algorithm, with improvements in Puckett et al. 1997[START_REF] Puckett | A high-order projection method for tracking fluid interfaces in variable density incompressible flows[END_REF] andSussman & Puckett 2000 [88], avoids the transport of the same volume in both directions.

  al. 1999 [36], Liu et al. 2000 [53], Tanguy 2004 [93], Ménard 2007 [59], Lepilliez et al. 2015 [52] for instance). (5.36) is solved at each time step to obtain the intermediate velocity U * . For a better readability we ignore the superscript * in the following formulae although the latter are written for the intermediate velocity U * . Consider a 2D configuration, for simplicity. The viscous tensor can be expressed as 2µ (φ) D =

  [START_REF] Gibou | Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions[END_REF]) is discretized by adoptingSussman et al. 1999 [90],Vaudor 2015 [98] among others as follows. Remark that the diffusion term is computed with help of the level-set method in the framework of two phase flows.

5. 6 . 4

 64 Discretization of the pressure Poisson equation on irregular domains With the discretized convection and diffusion terms available, U * is known from (5.7), allowing the Poisson equation (5.9) for pressure can be solved. Ng et al. 2009 [65], Gibou & Min 2012 [38], Lepilliez et al. 2015 [52] discretize (5.9) for all grid-cells, even for the cut-cells where the Neumann condition is satisfied.

ij+ 1 2 ( 5 . 44 )

 2544 According to Ng et al. 2009 [65], Gibou & Min 2012 [38], Lepilliez et al. 2015

  resolution of the diffusion term to ensure the no-slip boundary condition on the solid frontier as well as the symmetric, positive and definite discretization of the Poisson equation able to be rapidly solved by the classical methods. However, while transporting the liquid-gas interface inside the cut-cells in x-direction, for example, the color function or the volume-of-fluid function can not be moved by the velocity component u if the center of the cell face which contains u is located inside the solid region. As mentioned above, in this case, the level-set function of the adjacent cells is first transported as usual. Then, the level-set value of the cut-cell is derived from the Aslam's extrapolation. And finally, the color function and the volume-of-fluid function inside the cut-cell is computed from the level-set value.To enable the transport of the liquid-gas interface inside the cut-cells and more importantly, to ensure good conservation properties of the numerical schemes, we adopted the immersed boundary method introduced in Verstappen & Veldman 2003[START_REF] Verstappen | Symmetry-preserving discretization of turbulent flow[END_REF], Cheny & Botella 2010[START_REF] Cheny | The LS-STAG method: A new immersed boundary/level set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties[END_REF] among others. Note that unlike the last section where the finite difference method is used for discretizing the Navier-Stokes, the finite volume approach of Cheny & Botella 2010[START_REF] Cheny | The LS-STAG method: A new immersed boundary/level set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties[END_REF] is faithfully presented here, with some modifications for two-phase flows with irregular solid boundaries. It should be underlined that we also cite concerning papers as doCheny & 
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 15735731 is covered by the fluid, as shown in Fig.5.6. Discretization for fixed immersed geometries Global conservation laws for viscous incompressible flows Solving any flow problem consists firstly in using numerical schemes to approximate continuous fluid dynamics equations. It is required that the former should conserve the invariants of the latter to physically represent the flow (Arakawa 1966[START_REF] General Remarks B I B L I O G R A P H Y [1 | Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I[END_REF]

i+ 1 2 j ∆y u i+ 1 2 j( 5 . 53 ). 2 and v ij- 1 2

 1255321 With the organization of vectors U and V in mind, one can transform DU in(5.55) into a sum of two component-wise products asD x U + D y V = DU = O (5.56) D x and D y are the matrices containing the divergence operator applying in xand y-velocity components. Both of them are sparse in which the divergence coefficients are arranged along two red lines as in Figs. 5.9 and 5.10. One can think of D x as a set of blocks, counting from 1 to N y . D y has two lines of blocks numbered from 1 to N y -1. In a grid-cell ij, the two divergence coefficients for the component u result simply from the intersection of a horizontal green line along row i of block j with the two diagonal red lines, which are -∆yθ u The divergence coefficients for the component v can be obtained in a similar way provided that the divergence coefficients of the discrete values v ij+ 1 are located in the diagonal of block j and that of its left neighbouring, respectively. The velocity unknowns are assembled in a unique vector U and the divergence operator D is built from D x and D y . We now examine if the above discretization of the continuity equation conserves the total mass. Note that the discrete counterpart of the left-hand side of the total mass conservation condition (5.49a) is equivalent to the sum across all fluid cells of the discrete continuity equation (5.54).

σ→0---→ 0 ( 5 . 69 )

 0569 It will be seen that the constrains established here enable the discretization of the pressure gradient and the convective fluxes in the next paragraphs. Discretization of the pressure gradient Thanks to (5.54) and (5.55), one can write the divergence operator in x-contribution as in Fig 5.9. (5.68) indicates that the x-and y-components of the discrete pressure gradient in Ω u i+ 1 2 j

2 .

 2 The local conservation of the fluxes through fluid faces leads to

U • n ib ρudS ( 5 . 82 )

 582 The fluxes through each of the fluid faces are given by (5.74), (5.76) and (5.77), whereas those through each half of solid face Γ ib,e ij and Γ ib,w i+1j are nil. We thus haveˆΓib,e ij U • n ib ij ρudS = 0,
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 734 Discretization of the momentum equation based on the conservation of total momentum -Viscous fluxes The third term of the momentum equation (5.48) to be discretized is the viscous fluxes. Unlike the discretization of the pressure gradient and the convection term which is based on the kinetic energy conservation, that of the viscous fluxes is carried out thanks to the conservation of the total momentum. From Fig. 5.13, we have

2 , 2 and u x i+ 1 2 ,

 222 located at the upper right corner of cell Ω ij (see Fig. 5.12), are computed by differentiating the interpolation polynomial of v •, y j+ 1 • in the horizontal and vertical directions, respectively.

5

 5 Pressure Poisson equation According to Cheny & Botella 2010 [10], the Poisson equation for pressure is: AP = DU * (5.110)

5 .116) 5 . 8 validations 5 . 8 . 1

 558581 We aim to validate the immersed boundary methods by using two well-documented configurations. First, simulations of the flow passing a cylinder are performed to evaluate the one-phase flow solver. Second, for a two-phase flow problem, we analyse a liquid drop placed on a slanted wall. Comparisons are made with other studies found in the literature, collected from Noël 2012[START_REF] Noël | Simulation numérique directe d'écoulements à l'aide d'une méthode de frontière immergée[END_REF]. Flow passing a circular cylinder 5.8.1.1 Description of the flow The flow pattern around a still circular solid body is only affected by the Reynolds number, defined from three parameters: the upstream velocity U ∞ , the diameter D of the obstacle, the mass density ρ and the dynamic viscosity µ of the fluid. Re = ρU ∞ D µ (5.117) The Reynolds number increases when one carries out each of these four actions: accelerating the flow, amplifying the fluid mass density, reducing the fluid viscosity, or using a larger body size. The change in the flow field due to such a hike in Reynolds number signifies that the latter represents a dimensionless number.Three regimes can be observed.

Figure 5 . 16 :

 516 Figure 5.16: Flow passing a circular cylinder at Re = 1.54. Streamlines made visible byaluminium powder in water. Photograph by S. Taneda[START_REF] Dyke | Album of fluid motion[END_REF] 

5. 16 )

 16 . The symmetry of the streamlines is clear not only around the cylinder's other authors. Furthermore, the drag and lift coefficients of two regimes B and C are close to values found in the literature (Tab. 5.3). For illustration purpose, C D and C L are plotted over time in Fig. 5.23. Remark that the drag coefficient at Re = 100 reach a stable value after a certain duration while the lift coefficient oscillates around zero.
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 521522523 Figure 5.21: Vortices behind the cylinder at Re = 40 (FVM M1)

Figure 5 . 25 :

 525 Figure 5.25: Geometrical properties of a liquid drop deposited on a horizontal and on a slanted solid wall at equilibrium state

  34 ms (e) 44 ms (f) 53 ms (g) 63 ms (h) 75 ms (i) 84 ms

Figure 5 . 26 :

 526 Figure 5.26: Liquid jet issuing from a cylindrical injector -Finite difference method

Figure 5 . 27 :Figure 5 . 28 :Figure 5 . 29 :

 527528529 Figure 5.27: Liquid jet issuing from a cylindrical injector -Finite volume method

Figure 5 . 30 :

 530 Figure 5.30: Geometry of the triple-disk injector

Figure 5 . 31 :Figure 5 .

 5315 Figure 5.31: Rounded borders of the triple-disk injector

Figure 5 . 32 :

 532 Figure 5.32: Temporal evolution of the liquid-gas interface (1)

Figure 5 . 33 :Figure 5 . 34 :Figure 5 . 35 :

 533534535 Figure 5.33: Temporal evolution of the liquid-gas interface (2)

Figure 5 . 36 : 6 C

 5366 Figure 5.36: Velocity field and liquid-gas interface in a cutting plane

  

  

  

  

  [START_REF] Yuen | Non-linear capillary instability of a liquid jet[END_REF],Goedde & Yuen 1970 [41], Rutland & Jameson 1971 [82], Pimbley & Lee 1977 [73], Vassallo & Ashgriz 1991 [97], Papageorgiou 1995 [70], Kowalewski 1996 [50], Brenner et al. 1997 [7], Risso 2000

Table 3 . 1 :

 31 Physical properties of the liquidsPhysical properties of the liquids are summarized in Tab.

Table 3 .

 3 

	2: Metering velocity and non-dimensional numbers
	(Injection pressure ∆P i = 0.1 MPa)

  The local surface-based scale distribution e 2 (d, t) is derived as in (4.2) by a central difference.

	e 2 (d, t) =	E 2 (d + ∆d, t) -E 2 (d -∆d, t) 2∆d	(4.17)
	Two preliminary tests are carried out, examining the height of the analysing win-
	dow and the necessary number of images to guarantee a good statistical descrip-
	tion of the atomization process under consideration.	

Table 4 . 1 :

 41 Opening angle of the liquid sheet d max could be used in the determination of the opening angle of the liquid sheet.

  the specific scale d 1 (t) significantly increases and covers all the liquid structures that perceive the thinning mechanism, even the sheet that contracts, and not only the ligament network. d 1 (t) thus distinguishes different mechanisms but not liquid structures.

	.28 where four distinctive zones
	are identified. Let's consider F0 only. In Zone 1 (up to 0.32 ms), d 1 (t) rises slightly
	getting low values. It then reaches the maximum at the beginning of Zone 2 (0.32

ms) and falls monotonously until the end of Zone 2 (0.64 ms). Between 0.64 and 0.82 ms, the scale stays nearly constant (Zone 3). It then decreases further and takes small values until the end of the breakup process (Zone 4). Clearly, in Zone 2,

17 ms 0.27 ms 0.37 ms 0.46 ms 0.56 ms 0.66 ms 1.05 ms 1.15 ms 1.24 ms

  .1.

	0.
	µ
	(a) F0

µ 0.

17 ms 0.26 ms 0.36 ms 0.45 ms 0.55 ms 0.65 ms 1.03 ms 1.12 ms 1.22 ms

  

	(b) F10

  3, to enforce the no-slip condition even for the intermediate velocity, the diffusion term is implicitly treated (Sussman et al. 1999 [90], Gibou et al. 2002 [39], Lepilliez et al. 2015 [52] for instance). In effect, the intermediate velocity U * is updated by (5.7) that we re-write below.

Table 5 . 3 :

 53 Lift and drag coefficients at Re = 20, 40 and 100 ( † experimental results)

, allowing to establish the volume-based drop-size distribution (Fig.4.40a). Notice that the size of the de-

linearity of the scale distribution in the adjacent region. In effect, the values of e 2 (d, t) at the small scales are reconstituted by a linear extrapolation from those at larger neighbouring scales (Fig. 

description of the images

The back-lighted images collected from the experiments in chapter 3 serve as input of the multi-scale analysis to inspect the atomization process. Before this task can be done, observation of these images is indispensable. We thus start by a description of the back-lighted images, resulting in a breakup scenario proposed at the end of this section. Essential features of the disintegration of the planar turbulent liquid sheets are summarized in the scenario.

Remark that all curves increase with d from zero until reaching unity from the scale d max , as explained in the paragraph after (4.1). These functions are proven to be the cumulative scale distributions. The scale range covered by E 2 (d, t) depends on liquid and time. The cumulative scale distributions of two fluids differ one from another, having distinct form even at two close instants. Seemingly, the chosen times do not correspond to equivalent phases of F0 and F10 liquid systems.

We now turn to the surface-based scale distributions, presented in Figs. 

Transport of the liquid-gas interface inside cut-cells

Remark that within the framework of the finite difference method, the velocity components are located in the center of the cell faces. Therefore, they do not exist when more than a half of the cell face is covered by the solid (Fig. On the other hand, when the solid covers less than a half of the cell volume, the volume-of-fluid function is transported as usual.

Next, we establish the constrains on C U , G and K based on the conservation of the kinetic energy E c (t) = ´Ωf ρ|U| 2 2 dV. The latter is discretized by the trapezoidal rule in each fluid cell Ω ij .

(5.60)

In matrix form, (5.60) reads

To obtain the conservation equation for E h c (t), one first multiply on the left-handside of (5.58) by U T to have

Remark that the transpose of a product of two matrices equals the product of their transposes in reverse order. The transpose of (5.58) thus becomes

Multiplying U on the right-hand-side of (5.63), we get

The above-mentioned property of transposed matrices applies once again to give us

Adding (5.62) to (5.64) and using (5.65), we obtain at last

(5.66)

In a Cartesian fluid cell far from the immersed boundary (θ u i+ 1 2 j

= 1), one could find again the finite-difference gradient of the MAC method.

[

where [M x ] P i + 1 2 j = ∆x × ∆y for the Cartesian control volume Ω u i+ 1 2 j

.

Meanwhile, in a cut-cell, it is not possible to interpret (5.70) as finite-difference quotients for p ij located at the centroids of the cut-cells. Instead, p ij is an approximation of the pressure everywhere inside the control volume Ω ij , even on its solid face. This is equivalent to the zero pressure gradient boundary condition on solid frontier. We shall see later that the normal viscous stresses are discretized in the same manner ( § 5.7.3.4).

As with discrete velocity components, the discrete values p ij are stored in a vector P. Like U for the x-velocity components, P is built by sweeping the MAC grid in 5.8 horizontally followed by vertically. In consequence, one gets the discrete pressure gradient expressed by the matrix GP. Similar to DU, it can be rewritten as the sum of G x P and G y P with G x and G y in comparable structure to that of D x and D y .

Skew-symmetric discretization of the convective fluxes

We have stated lately that the discretized convective term should be a skewsymmetric matrix so as to satisfy (5.72). For this to be done, we first discretize the momentum equation, then impose a skew-symmetric properties to the discretization of the convective term.

The first step is carried out by the five-point scheme, chosen because of its simplicity. We present hereafter the discretization of (5.48a) in the x-direction but that in y-direction should be analogous. Cartesian fluid cells are also distinguished from cut-cells.

By comparing (5.77) to (5.71), we have

(5.78b)

(5.78c)

(5.78d)

(5.78e)

The above discretization coefficients satisfy the skew-symmetry conditions (5.72) because the discrete continuity equation is verified in Ω ij and Ω i+1j , i.e. qij = 0 and qi+1j = 0, respectively (refer to (5.52) or (5.54)).

The skew-symmetry discretization (5.71) and (5.78) are for the Cartesian control

in Fig. 5.11. With regard to a cut-cell, attention needs to be paid to the boundary conditions on the solid frontier. Unlike the pressure gradient where a unique formula is valid for all cut-cells (5.70), the discretization here should be constructed in each of the half generic control volumes such as (5.67) be verified for any combinations of these half control volumes.

Let's consider, for example, the control volume Ω u i+ 1 2 j in Fig. 5.7, whose north solid boundary Γ ib,e ij ∪ Γ ib,w i+1j is built from two halves of trapezoidal cut-cells. The discretization of the convective term in Ω u i+ 1 2 j is ˆΓu

(5.79)

where C U N i + 1 2 j is discarded since the velocity unknown u i+ 1 2 j+1 does not exist. In this case, (5.67) becomes

with

)

∆y V i+1j /∆y (5.100b)

∆y + θ u i+ 1 2 j-1 ∆y (5.100c)

∆y (5.100d)

(5.100e)

(5.100f)

Remark that the discretization is symmetric, i.e.

We finish the discretization of the shear stresses in cut-cells by the determination of the integration areas ∆x ib,e ij and ∆x ib,w i+1j in (5.97). Remember that their determination is based on the fact that the shear stress fluxes at the immersed boundary must correspond to the discretization of the shear part of the hydrodynamic forces (5.51). More specifically, this is equivalent to the discrete conservation of the total momentum. Detail to follow.

Discrete conservation of total momentum and computation of hydrodynamic forces

Like the kinetic energy (refer to § 5.7.3.3), the total momentum P (t) = ´Ωf ρUdV is discretized under the trapezoidal rule as

where 1 is the constant vector. Multiplying the semi-discrete scheme (5.58) with vector 1 to obtain the conservation equation for P h (t) as First, the discretization of the hydrodynamic force is obtained by approximating the surface integrals in (5.51a) and (5.51b), respectively as

Here, the quadrature of the pressure and normal stress term is obtained by using the midpoint rule and based on the fact that these terms are constant in the cutcells. As a result, the same formula is valid for all types of cut-cells. Meanwhile, the quadrature of the shear stresses (denoted by Quad ib ij ) has to be adapted to each type of cut-cells. This quadrature, based on the location of the shear stresses in Fig. 5.14 and the trapezoidal rule. For example, the portion of drag and lift acting on the solid part of the trapezoidal cut-cell of Fig. 5.14 is, respectively

Second, return to the quadratic terms in the right-hand side of (5.102) that need to be discretized. These terms correspond to the summation of the convective, pressure and viscous fluxes from all control volumes. Their contribution in the

which should certainly match the drag force F h x coming from (5.103a). We will inspect separately the normal stresses and the shear stresses.

Let's put it in more detail. Since a unique formula (5.70) and (5.92) is valid in all computational cells, the contribution of the normal stresses is

Re-indexing (5.106) to layout a sum across all cells, one has the pressure and normal stresses cancelled out in fluid cells such that θ u

= 1, while keeping only the following terms in cut-cells

This is exactly the contribution of the normal stresses to the discrete drag force (5.103a). A similar inspection holds for the lift component (5.103b). Altogether, the total momentum budget is proved to be recovered. upper to lower side but also between its front to rear. The flow does not separate at its rear. Regime C The vortex length grows when the Reynolds number is raised further.

When the latter exceeds a certain limit, the rear flow becomes unstable and the vortex begins to oscillate up and down (Fig. 5.18). The fully formed vortex is carried away, then expands on the main flow before finally dissipating and leaving the cylinder. In addition, every pair of upper and lower vortices is stored in an alternative regular array to form twin rows of vortices, usually called the von Karman vortex street. 

applications

The application of the developed methods concerns two complex configurations.

The first one is performed on a liquid jet which issued by a cylindrical injector. In the second application, the planar turbulent liquid film produced the triple-disk injector is the object of our simulation. The results of the two methods FDM and FVM are shown in Figs. 5.26 and 5.27, respectively. In these images, the zero-level of the solid level-set function is coloured in grey, that of the liquid-gas interface in blue. The former represents the injector outer wall and the latter the jet surface. We can observe the beginning of the break up of the liquid jet where some perturbations develop on its surface. It appears that a big drop is almost formed at the end of the jet. However, the breakup does not occur at the end of our simulation due to too small computational domain.

Several profiles of the z-velocity component inside and outside the injector are drawn in Figs. 5.28 and 5.29 for the FD and FV methods, respectively. In both developing inside a smaller triple-disk injector. We execute a parallel computation with 512 processors. At the injector inlet, we impose an inflow condition with an uniform velocity which gradually increases in time as follow.

U inlet (t) = min(0.9

where t ms is time, V inlet q = 3.98 m s -1 the average inlet velocity of the liquid F0 (refer to Tab. 3.2 for the metering velocity at the injector outlet). The objective of this setting is to slowly increase the velocity so that the internal and external flows are well established. We set an outflow condition on the other borders of the computational domain. For the sake of clarity, we plot the shape of the liquid-gas interface inside the injector in Fig. 5.35a. Clearly, the interface even penetrates into disk 2 and almost is in contact with the upper wall of the latter at 0.71 ms. Remark that at this time, a double hollow sheet is formed in two sides of a principal planar liquid film. This suggests that the swirl at the outlet section is very strong. In Fig. 5.35b, the z-velocity component is plotted together with the liquid-gas interface in a cutting plane. The latter is perpendicular to the plane of symmetry of the injector and can be seen from Fig. 5.35a. The velocity of the gas which goes into the nozzle is of the same order as that of the ejected liquid moving in the opposite direction. The penetration of the gas inside the triple-disk injector, as reported by our numerical results, seems to be open for discussion as no previous study reports such behaviours.

In Fig. 5.36, we depict the velocity fields and the interface in the plane of symmetry of the triple-disk injector at two instants. Notice that the boundary layer is thin and complex, requiring an appropriate treatment of the near-wall flow.

1.4