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1
I N T R O D U C T I O N

Liquid fuel atomization is crucial for the performance of internal combustion en-

gines. Through an injector, the liquid is delivered into the combustion chamber

and breaks down into droplets. The finer the drops, the quicker their evaporation

and the more proper their mixing with air. A proficient combustion could hence

be expected, with low pollutant emissions.

Atomization quality is primarily affected by the injector design and the operating

conditions which shape the internal flow structure, the turbulence level, the veloc-

ity profile at the nozzle outlet, the cavitation and so forth. All these features are

determinants of the breakup of the external liquid flow. Another key parameter

to optimize the atomization process is the fuel physical properties. One can think

of, among others, the dynamic surface tension controlled by the diffusion of the

surfactants on the liquid-gas interface or the extensional viscosity which makes a

liquid more resistant to the stretching, thereby affecting the breakup.

Effects of the injector design, the operating conditions and the liquid properties

on the atomization are inter-dependent. Analyses of experimental data help us

to understand the involved mechanisms and their interactions. On the one hand,

this is useful for the numerical developments which should be carried out de-

pending upon the configuration. On the other hand, quantitative criterion could

be established to validate the simulation results.

Following the above research methodology, we attempt to study the disintegration

of planar turbulent liquid sheets produced by a triple-disk injector. Experimental

measurements provide the sheet images, used as input for a multi-scale analysis.

We investigate, thanks to the latter, the behaviours of the liquid sheet, the liga-

ments appearing on its edges and the resulting droplets. Moreover, two immersed

boundary methods are developed, aiming to simultaneously solve the nozzle flow

and the breakup process. We carry out two applications, the first one on a liq-

uid jet ejected by a cylindrical nozzle and the other a planar sheet issuing from a

triple-disk injector.
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2
L I T E R AT U R E R E V I E W O N

AT O M I Z AT I O N O F L I Q U I D S H E E T S

In this chapter, an overview on the sheet atomization based on several survey

articles is given. We briefly describe how a liquid jet breaks up under the Rayleigh-

Plateau instability. Then, four methods forming liquid films are shown, together

with the disintegration of the latter. The planar sheets issuing from a triple-disk

injector are focused on in our study. Their particular features explain why we

conduct different developments presented in the next chapters.

2.1 atomization & breakup of liquid jets

Atomization refers to the process during which a compact liquid volume breaks

up into a spray, defined as a flow of small and dispersed drops. The droplets

differ from one another in size, form, position and velocity. A well-known exam-

ple is probably the breakup of a slender jet into a train of droplets under the

Rayleigh-Plateau instability (Fig. 2.1). Exhaustive reviews on the examination of

this phenomenon are available in Eggers 1997 [31], Eggers & Villermaux 2008 [32].

Savart 1833 [83], from his pioneering experiments, remarks that a cylindrical jet

is unstable because of the disturbances applied on it at the opening of the nozzle.

Plateau 1849 [74] concludes that the surface tension, by boosting the perturbations

which reduce the liquid’s surface area, is the origin of the instability. Indeed, the

surface tension is caused by the attraction of the liquid molecules. Those on the

liquid-gas interface have no neighbours above, and are therefore pulled inwards.

This makes the liquid surface acquire the least surface area possible (Morrison

2013 [62]).

Additionally, as stated in Plateau 1849 [74] since the perturbations of long wave-

length tend to reduce the surface area, they are favoured by the surface tension. It

can be seen in Fig. 2.1 that perturbations make the cylinder surface wavy with the
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presence of necks and crests. At each point on the surface there are two curvatures:

κ1 corresponds to the circle in the section perpendicular to the cylinder axis, and

κ2 the wave in the section along the cylinder axis. κ1 is not homogeneous along

the undulating stream, and neither does κ2. The difference of κ1 at a neck and a

crest comes from the size disparity of the circle at these two positions, while that

of κ2 lies in the fact that its positive value at a crest turns negative at a neck. The

difference in κ1 results in a pressure gradient which drives the fluid from the neck

to the crest, increasing the wave amplitude. The difference in κ2 and the relating

pressure gradient, on the other hand, conducts the fluid the other way round, thus

lessening the development of the disturbing undulation. Obviously, the longer the

wavelength of the perturbations, the smaller the difference in κ2.

Figure 2.1: A decaying jet (Rutland & Jameson 1971 [82])

Nevertheless, the surface tension can not be the only driving agent of the instabil-

ity as it would otherwise result in the collection of the entire fluid into a single

large sphere to attain the smallest surface area. As argues Rayleigh 1879 [78],

the inertia matters to the liquid thread decay, too. An internal flow, created by

the pressure gradient, evokes the growth of the displacement amplitude which

initiates the drop formation. When the pinched areas rupture, the bulged areas

transform into droplets. This is due to the inertia which prevents the liquid from

being transported from the necks to the crests since these latter are too far from

each other in long-wavelength perturbations (Charru 2011 [8]). Rayleigh 1879 [78]

provides a linear analysis where disturbances over a fluid column of diameter

a are represented by a series of periodic displacement sinusoids. Perturbations

of long enough wavelengths will grow larger in time. It is found that the fastest

perturbation has an optimal wavelength of

λopt = 4.51a (2.1)

and a growth rate of

βmax =
0.344√
ρa3

σ

(2.2)
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When its amplitude is equal to the jet radius and under the assumption that one

drop is formed per optimal wavelength, the pinch-off occurs and the typical drop

size is set to be

d = 1.89a (2.3)

The existence of smaller satellite drops beside the large main ones, as noticed by

Savart 1833 [83], can only be understood by considering the non-linear dynamics

of the jet breakup (Yuen 1968 [108], Goedde & Yuen 1970 [41], Rutland & Jameson

1971 [82], Pimbley & Lee 1977 [73], Vassallo & Ashgriz 1991 [97], Papageorgiou

1995 [70], Kowalewski 1996 [50], Brenner et al. 1997 [7], Risso 2000 [80] for in-

stance).

2.2 disintegration of liquid sheets

2.2.1 Linear theory

Atomization involves, in many types of spray nozzle, the change of the flow topol-

ogy into an unstable planar sheet. Like the fluid thread breakup, the onset of the

disintegration of a liquid film can be investigated by the linear stability theory

similar to Rayleigh 1879 [78]. A survey of the researches following this approach

is given in Sirignano & Mehring 2000 [84].

Squire 1953 [85] and Hagerty & Shea 1955 [45] assume that the disturbance upon

the interface is periodic in space and grows in time everywhere at the same rate.

Squire 1953 [85] considers a liquid sheet of constant thickness moving in a still

gaseous environment. Both fluids are inviscid. The author analyses only the sinu-

ous type of perturbation where the two surfaces of the film oscillate in phase (Fig.

2.2a). When the perturbation wavelength is large compared to the sheet thickness

and the gas-to-liquid density ratio is of the order of 10−3, it is proven that a plane

liquid film is unstable if We is greater than unity. The liquid Weber number We is
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a measure of the relative importance of the fluid’s inertia compared to its surface

tension

We =
ρU2h

σ
(2.4)

where ρ, U, h, and σ denote the liquid density, the velocity of the sheet, the half

film thickness and the surface tension, respectively. In other words, an instability

can develop on a liquid sheet if there is a certain difference in velocity between the

two fluids. The sheet instability is thus driven by the Kelvin-Helmholtz instability.

Main sources of instability arise from the aerodynamics forces released by the

interactions between the liquid film and the surrounding gas (Oesterlé 2006 [67]).

Contrary to the breakdown of a cylindrical jet, surface tension is the counter part

of the process here. Another important finding presented in the paper of Squire

1953 [85] is the wavelength and the growth rate of the most unstable oscillation:

λopt =
8πh

Weg
and βmax =

U

4h

√
Weg (2.5)

The gaseous Weber number Weg is defined in the same fashion to the liquid

Weber number (2.4) except the liquid density ρ is replaced by the gas density ρg.

(a) Sinuous wave (b) Dilatational wave

Figure 2.2: Two basic wave forms

Meanwhile, Hagerty & Shea 1955 [45] conclude that only two types of instabilities

may develop on the surfaces of the liquid sheet. Either the two surfaces of the film

oscillate in-phase to produce sinuous waves, i.e. anti-symmetric mode (Fig. 2.2a),

or they oscillate out-of-phase to generate dilatational waves, i.e. symmetric mode

(Fig. 2.2b). Besides, it is demonstrated that the anti-symmetrical disturbances al-

ways grow faster than the symmetrical ones and mask the latter throughout the

process.
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2.2.2 Breakdown of liquid films in different configurations

Liquid sheets can be formed in a variety of ways: through fan nozzles, by the

impingement of two cylindrical jets, by means of the impact of a jet on an obstacle

or via compound nozzles among others. Concerning papers are carefully reviewed

by Dumouchel 2008 [19]. Although the resultant sheets are quite different from

one configuration to another, their breakup in a quiescent gas medium always

occurs in three steps. First, deformations appear on the interface, their growth in

time and space then creates ligaments, and finally drops are released from the

rupture of these ligaments.

The disintegration of a liquid sheet, as depicted in Fig. 2.3, is described in Dom-

browski & Johns 1963 [18]. On the interface, the initial perturbations give rise to

unstable waves, among which a dominant one can be distinguished. It is the most

rapidly amplified wave, growing at the rate of βmax, whose wavelength λopt is

given by the linear stability theory developed by Squire 1953 [85] and Hagerty

& Shea 1955 [45]. It is said that the wavy film fragments into pieces at each half

wavelength λopt/2. Due to the surface tension, the broken parts roll up to form

cylindrical threads, which subsequently undergo the Rayleigh-Plateau instability

and break up into droplets (refer to § 2.1).

Figure 2.3: Disintegration scenario of a liquid sheet (Dombrowski & Johns 1963 [18])

2.2.2.1 Fan nozzles

The formation of liquid sheets using fan nozzles is by far the most common ap-

plication. Figure 2.4 illustrates the discharge orifice of a fan nozzle. It is made by
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the intersection of a V groove with a hemispheric cavity. Such a design provokes

special approach passages which allow two streams to impinge behind the orifice

(Lefebvre 1989 [51]). As the liquid spreads freely between the side walls, a thin

film is generated in a plane perpendicular to the streams.

Figure 2.4: Mechanism of liquid flow through fan spray nozzles
(Dombrowski et al. 1960 [17])

A contribution to the literature of fan nozzle-generated liquid sheets should be

the publication of Fraser et al. 1962 [37]. A set of single-hole fan nozzles are se-

lected to investigate the effects of ambient atmosphere on two breakup modes

namely sinuous and perforation. Flat liquid sheets are visualized by flash photog-

raphy, while drops are collected in a cavity slide filled with oil and later recorded

on a photomicrograph at high magnification. The authors measure the drop-size

distribution from the photographic negative projected on a screen.

Only sinuous waves are observed under atmospheric pressure. When the density

of the surrounding air ρa is reduced both breakup length and drop diameter

increase. In accordance with the linear theory (see § 2.2.1), the growth rate of

the fastest wave βmax must decrease with ρa. In consequence, the liquid film is

disrupted further downstream where it becomes thinner. One could then expect

threads to be narrow and droplets to be fine. However, the experiments performed

by Fraser and his colleagues offer completely opposite results recording drops of

larger size. As an explanation to this outcome, the authors argue that at dimin-

ished air density, while βmax decreases the optimal wavelength λopt gets longer.

Therefore, the sheet fragments, corresponding to one-half wavelength λopt/2 (Fig.

2.3), contract into filaments with more liquid, offsetting the thinning of the sheet

and leading to coarser spray.
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Under partial vacuum conditions, the disintegration of a liquid film is switched

into perforation mode. Perforation holes appear at the lower end of the sheet and

extend until the disruption of the latter (Fig. 2.5b). The breakup takes place at

a greater distance from the orifice than in the sinuous mode, and the sheet is

thinner when it breaks down. Similar to what has been found in the experiments

mentioned earlier, this results in a spray with mean drop-size higher than that of

the sinuous mode. According to the authors, ligaments are derived from liquid

originally included inside the large perforation holes. Without doubt, the bigger

the perforation holes, the thicker the ligaments and the larger the drop diameter

will be. It should be underlined that in both disintegration mechanisms, the liquid

sheet always transforms into ligaments though by different manners.

(a) At atmospheric density

(b) At subatmospheric density

Figure 2.5: Fan nozzle-generated liquid sheets (Fraser et al. 1962 [37])

Fraser et al. 1962 [37] go further by putting forward an idealized fragmentation

mechanism, similar to Fig. 2.3. The dominant wave is detached from the leading

edge in form of a lamellae. The lamellae is parallel to the free rim and as wide

9



as a half optimal wavelength λopt/2. It contracts into a filament which is divided

into drops of equal size. The authors use the optimum wavelength predicted by

Squire 1953 [85] and assume that the volume of filament is identical to that of the

lamellae. The drop diameter is deduced in accordance with Rayleigh’s analysis

[78]. It is found that the drop-size depends on the average velocity U, the film

thickness Sb, the radial distance xb at breakup, the mass density of liquid ρ and

of air ρa and the surface tension σ as follow

d = C

(
ρ

ρa

)1/6(
Sbxbσ

ρU2

)1/3
∼We−

1
3 (2.6)

where C is a constant empirically obtained from the experimental dataset and We

the liquid Weber number based on the film thickness.

It is worth noting that as shown in Fig. 2.5a, for most part, threads do not transver-

sally fly off and there is no fragmentation in this direction (Brémond 2003 [5]).

The disintegration scenario indicated in Fig. 2.3 by Dombrowski & Johns 1963 [18]

seems to be open for criticism.

2.2.2.2 Impact of a jet on an obstacle

Letting a circular jet hit a solid disc of finite size at normal incidence is also

an interesting method to form a flat liquid sheet (see Fig. 2.6a). Here, U0 is the

velocity of the incoming jet and D0 its diameter. ρ and σ stand for the liquid mass

density and surface tension, respectively. Di represents the diameter of the solid

disc. It can be observed from Fig. 2.6b that a radially expanding film is shaped,

laying on the plane perpendicular to the jet axis and drops detach from the sheet

at a radial position denoted by R (Fig. 2.6a).

In a series of two research articles, Clanet & Villermaux 2002 [14] and Villermaux

& Clanet 2002 [101] examine the sheet creation under this scheme as well as its

characteristics. The experiments are carried out in the same manner in both works.

Visualization is made possible by a short exposure photograph system and a high

speed camera. The sheet thickness is measured based on the light interference

method. The velocity in the liquid film is studied with help of the tracking records

of the ash particles scattered on the sheet surface. The drop-size is quantified

thanks to the image analysis. The radial position where the transition from sheet
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and thus could be characterized by its thickness at the detachment point. As a

result of this local force balance, the mean drop-size varies as

d ∼ D0We
−1/3 for D0 ≪ a

d ∼ D0We
−1/3
a for D0 ≫ a

(2.8)

where Wea =
ρU20a

σ , a =
√
2σ
ρg the capillary length and g the gravitational accel-

eration.

(a) (b)

Figure 2.7: Close-up view of the edge of the sheet in smooth regime (a) (Clanet & Viller-
maux 2002 [14]) and in flapping regime (b) (Villermaux & Clanet 2002 [101])

When the Weber number (2.7) exceeds a critical value beyond which the radial

extent of the sheet starts to decrease, the flapping regime occurs. As shown in

Fig. 2.7b, the liquid film sustains a shear, flag-like instability under the Kelvin-

Helmholtz mechanism. Drops are ejected from the ligaments which are intermit-

tently detached from the periphery of the sheet. Now, the surrounding medium

is proved to play a crucial role in the process interacting with the liquid sheet, in

contrast to the smooth regime. On the one hand, the flag instability happens at a

higher Weber number when one lessens the air density. On the other hand, not

only the liquid jet but also the ambient gas determine the breakup radial position

which is linked to its determinants by

R ∼ D0

(
ρ

ρa

)1/6(
1

We

)1/3
(2.9)

Furthermore, Villermaux & Clanet 2002 [101] analyse the transverse cut of the

sheet using planar laser illumination. The film thickness has no influence on the

wavelength of the most amplified wave, in agreement with the linear theory. Yet

the associated growth rate is found to be stronger than exponential. This could be

accounted for, according to the authors, by the continuous thinning of the sheet
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while approaching the rim. Besides, the group velocity of the waves is derived

from the radial displacement of the crests of the sheet disturbances which are

recorded in time-resolved images. Then, the mode selection of the instability is

calculated from the time interval between two crests as they reach the rim (Fig.

2.8).

Figure 2.8: A time-resolved series of the sheet undulation waves
propagating towards the rim (Villermaux & Clanet 2002 [101])

More importantly, Villermaux & Clanet 2002 [101] advance a drop formation sce-

nario which is different to that of Dombrowski & Johns 1963 [18]. The liquid prop-

agating at constant velocity in the sheet perceives, in its own frame of reference, a

recurrent acceleration given by the periodic passage of the sheet undulations (see

Fig. 2.9).

The forces that act on a fluid particle moving in the sheet are nearly balanced.

Two possibilities can arise. When the surrounding medium’s density is close to

zero, the forces are strictly balanced. This is because the sheet sustains neutrally

stable waves resulting from the equilibrium between the liquid inertia and the

surface tension. Otherwise, the disequilibrium induced by the depression in the

ambient phase will lead the wave amplitude to increase. Due to the difference in

velocity between the liquid and the waves, a fluid particle experiences transient

accelerations. In particular, the component of the acceleration which is parallel

to the sheet is alternately directed towards and away from the liquid. When it is

directed away from the liquid and when the force balance ensured by the surface

tension has broken, the drops tear off from the sheet rim. In other words, the

periodic passage of the sheet undulations triggers a Rayleigh-Taylor instability

which produces liquid fingers or indentations perpendicular to the free rim. The

typical size of these fingers is the Rayleigh-Taylor wavelength

λ⊥ ∼

√
σ

γρ
(2.10)

where γ stands for the acceleration of the detaching drop.
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of the liquid film is much thinner than the rim size. The authors claim that there

is a coupling between the rim destabilization and the sheet thickness modulation.

By tracking the trajectory of a single particle seeded on the film, it can be demon-

strated that the speed at which the thickness field modulations propagate is the

same as the particle velocity and thus identical to that of the fluid. The oscillation

of the sheet thickness occurs at a constant atomization frequency.

The authors also find out that the rim destabilization is rather due to the capillary

instability but not a signature of the wire wake. Three reasons can warrant this

conclusion. First, the frequency of the rim destabilization remains unvarying irre-

spective of the jet velocity and the wire size. Additionally, the optimum excitation

is attained when the vibration frequency corresponds to a spatial wavelength of

the order of the rim radius. And finally, one drop is released per wavelength with

its size proportional to the local rim diameter. Nevertheless, since the rim is fed

by the liquid flowing in the sheet it bears a non-uniform, accelerated axial velocity.

The instability mechanism is therefore unlike the classical configuration.

(a) (b) (c)

Figure 2.12: A sheet rim is increasingly perturbed from left to right
by a small tungsten wire (Brémond & Villermaux 2006 [6])

Brémond & Villermaux 2006 [6] terminate their paper by inspecting the stretching

rate of the ligaments. They propose that if the variable is weak, the corrugation of

a ligament is pronounced giving irregular drops. In contrast, when the ligament

elongates strongly, its skin is smooth when it leaves the rim and the drop-size

distribution will be narrow. The authors give a rough estimation of the stretching

rate γ, which is of the order of

γ ∼
1

α
√
We

(2.13)
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2.2.2.4 Compound nozzles

We now consider the flat liquid sheet formation via compound nozzles which is

our configuration of interest. Such atomizers are usually operated at low pressure

drive in gasoline port-fuel injection. One of them could be a triple-disk injector as

employed by Dumouchel et al. 2005 [22] (see Fig. 2.13). The injector has three su-

perposed disks having each one circular hole. Specifically, the discharge orifice is

deviated from the injector axis. As a result, a complex internal flow is established:

a secondary non-axial flow which organizes as a double counter-rotating swirl at

the nozzle exit as shown in Fig. 2.14 (Heyse et al. 1997 [47], Nagasaka et al. 2000

[63]) and a consistent turbulence level (Glodowski et al. 1996 [40], Chen et al. 1998

[9]). Dumouchel et al. 2005 [22] compute internal flow by a Reynolds-averaged

Navier-Stokes (RANS) approach and a turbulence model named renormalization

group (RNG) κ− ǫ. Drop-size distributions are measured via a laser diffraction

technique.

Figure 2.13: Triple-disk injector (Dumouchel et al. 2005 [22])

Furthermore, the authors suggest an atomization scenario where the swirl stretches

the flow to form a flat sheet (Fig. 2.15). At the sheet edges, some of the turbulence-

induced perturbations grow until the liquid system rearranges as a ligament net-

work. The collapse of these ligaments eventually produces droplets. Figure 2.16

depicts a strong linear relationship between the non-axial kinetic energy and the

turbulent kinetic energy against the surface energy of the spray. Both secondary

flow and turbulence are therefore responsible for the spray formation. Meanwhile,

the aerodynamic forces have negligible effects because the gaseous Weber number

is small.
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Besides, the internal dimensions are explored by considering various compound

nozzles. The diameter of the discharge orifice is kept constant while different

thicknesses and offsets are evaluated. Like Michalek et al. 1997 [61] and Parrish &

Evers 1995 [71], it is confirmed that the cavity height and the eccentricity of the

discharge orifice are the most important geometry parameters. Dumouchel et al.

2005 [22] identify an optimal geometry able to produce highest energy available

for atomization, i.e. the non-axial kinetic energy and the turbulent kinetic energy.

20 m/s

Figure 2.14: Double counter-rotating swirl at the nozzle exit (Dumouchel et al. 2005 [22])

Favourable effects of the swirl on the spray formation come from two reasons.

As the swirl is stronger, the radial expansion of the sheet is more pronounced.

Consequently, its thickness is reduced to yield further small drops. In addition,

turbulence is enhanced by the wall friction. At high injection pressure or with low

viscous liquid, it becomes high enough to promote initial perturbations. Hence,

ligaments near the nozzle exit are more numerous, smaller in size and may disin-

tegrate in finer droplets.

Figure 2.15: Breakup of a water sheet (Grout et al. 2007 [43])

In a direct continuation of this study, Grout et al. 2007 [43] apply the fractal analy-

sis to the back-lighted images of the liquid sheet. Near the injector outlet, the tex-
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tural fractal dimension which characterizes the tortuosity of the liquid-gas inter-

face correlates with the Reynolds number. The authors claim therefore that turbu-

lence promotes perturbations on the liquid-gas interface. Further downstream, the

flow reorganizes into a ligament network and the ligaments disrupt into droplets.

Grout et al. 2007 [43] measure the structural fractal dimension which represents

the above processes and note that it scales with the Weber number. Clearly, the

reorganization of the flow and the rupture of the ligaments are dominated by the

surface tension forces.

ρ

σ

ρ

σ

Figure 2.16: Per unit volume, surface energy of the spray against non-axial kinetic energy
and turbulent kinetic energy (Dumouchel et al. 2005 [22])

2.3 objectives of the thesis

We have outlined, in this chapter, essential features of the breakup of liquid sheets

in different configurations, showing the complexity of the liquid-gas interface evo-

lution. Furthermore, the flow that develops inside the triple-disk injector as well

as the sheet breakup are described in details thanks to the preceding works. Two

remarks can be made from this literature review, explaining why we pursuit dif-

ferent developments in the next chapters.

Firstly, it is shown that the nozzle flow has significant effects on the sheet break-

down. In the injector exit section, the double vortex stretches the flow to form

a planar liquid film. A consistent turbulence enhances the perturbations to grow

until a ligament network is formed at the sheet borders. These ligaments eventu-
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ally break up into droplets. To numerically solve the atomization process, we aim

to include both internal and external flows in a unique simulation. Hence, two

relevant immersed boundary methods are developed and coupled with a level-

set/volume-of-fluid/ghost-fluid method in chapter 5, taking into account the ir-

regular form of the injector wall in a Cartesian grid. For validation purpose, the

numerical results are compared with other studies available in the literature for

two well-documented configurations. We apply the immersed boundary methods

to numerically simulate a jet emanating from a cylindrical nozzle as well as a

liquid sheet generated by a triple-disk injector.

In addition, mechanisms of interface evolution occur at the same time but at dif-

ferent scales throughout the breakup of the liquid film. A back-lighting optical

arrangement is built in chapter 3 to record the sheet images. The latter serve as in-

puts for a multi-scale tool in chapter 4, with its first application on the deformation

of the entire liquid system. It appears that the perturbations on the sheet edges

have a significant impact on the liquid film contraction. Moreover, the dynamics

of the production and breakdown of the ligaments are also analysed, showing

their effects on the poly-dispersion of the resulting spray.

Conclusions and perspectives are drawn in chapter 6, summarizing principal de-

velopments and main results of the thesis and several improvements in the future.
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3
E X P E R I M E N TA L W O R K A N D I M A G E P R O C E S S I N G

We now introduce a home-made back-light optical set-up, constructed to visual-

ize the atomization process. In fact, the back-lighted images of the liquid sheets

emanating from a triple-disk injector are recorded. They will serve as inputs for

the multi-scale tool in chapter 4.

This chapter begins with the presentation of the hydraulic circuit, followed by

the injector design, the working fluids and the operating conditions. Then, some

features of the visualization system are specified and the resultant back-lighting

photographs are exhibited. We close the chapter with the image processing, car-

ried out thanks to the C/C++ programs developed by Jean-Bernard Blaisot and

his colleagues and the software ImageJ (https://imagej.nih.gov/ij).

3.1 hydraulic circuit

The objectives of the hydraulic circuit are twofold: transferring liquid from a sup-

ply to the triple-disk injector which throws out a planar sheet (refer to § 2.2.2.4),

and controlling the pressure at the nozzle inlet. The layout of the system can be

seen in Fig. 3.1.

The starting point of the system is a cylindrical reservoir, used as a source of liquid

supply. We put next to it a separator tank, having its volume divided into two de-

connecting parts by a piston. To transfer the working fluid from the reservoir to

the lower part of the separator tank, air in the upper part is sucked out by a

vacuum pump. We control the liquid amount via a level indicator. The reservoir

and the separator tank have each the same height, but the volume of the former

is slightly higher than that of the latter to ensure that no gas remaining beyond

the top level of the liquid inside the reservoir can be transported to the separator

tank.
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Once the isolation valve is opened, the fluid stored in the separator tank is pres-

surized towards the atomizer by air coming from the compressed air network of

the laboratory. Remark that the liquid and the compressed air are isolated by the

piston to prevent air bubbles from being admitted inside the injected fluid.

The circuit’s ending point is the triple-disk injector. It is installed on a three-

dimensional (3D) displacement system, suitable for visualizing the liquid flow

at several distances from the nozzle in order to cover the whole disintegration

process of the liquid films. A filter is placed before the atomizer to remove solid

particles from the liquid. We collect the formed spray by a recovery cavity.

To fulfil the second target of the hydraulic circuit, the injection pressure is moni-

tored over the 0 – 7 MPa range by a pressure regulator. Three pressure gauges are

mounted on several positions in the system for local indication of pressure and

safety check. They bear the labels (1), (2) and (3) in Fig. 3.1. The pressure gauge

(3) indicates the injection pressure.

Figure 3.1: Hydraulic circuit (Courtesy of Denis Lisiecki)
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3.2 triple-disk injector

Figure 3.2 shows two cutting plans of the triple-disk injector utilized in our study.

The height and diameter of three superposed disks that constitute the nozzle are

also depicted.

Figure 3.2: Geometrical characteristics of the triple-disk nozzle
(Eccentricity of the discharge orifice e = 450 µm)

Our device is proportional to the optimal geometry producing the highest energy

available for the breakup process, i.e. the non-axial kinetic energy and the turbu-

lence energy (refer to § 2.2.2.4).

Figure 3.3: Production and disintegration of a water sheet
(Injection pressure ∆Pi = 0.1 MPa)

The injection system is operated in continuous mode. Liquid is pressurized to flow

from the separator tank to the triple-disk injector without interruption during an
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experiment. It enters the nozzle by the metering orifice (disk 1 in Fig. 3.2), passes

through the cavity (disk 2) and issues via the discharge orifice (disk 3). Due to the

eccentricity of the latter, the flow is drastically deflected. Some fluid particles pass

directly from the entrance to the exit of the nozzle whereas the others invade the

cavity and reach the discharge orifice by a transversal way. Interactions of these

trajectories provokes the secondary flow (Dumouchel et al. 2005 [22]). As shown in

Fig. 3.3, in the plane of symmetry of the atomizer, a liquid film is formed as soon

as the flow issues from the nozzle and becomes free of any parietal constraints,

with perturbations developing on its edges. A ligament network is created further

downstream, and eventually breaks down into droplets.

3.3 working fluids

Aiming to analyse the effects of the surface tension forces on the sheet breakup,

fluids having surface tension coefficient which varies from one to another are

necessary. To this end, isopropanol is blended with water in different proportions

to obtain six mixtures called F0, F1, F2, F3, F5 and F10. The number indicates

the mass percentage of isopropanol. F0 stands for water; and the mass fraction of

isopropanol in F1, F2, F3, F5 and F10 are 1 %, 2 %, 3 %, 5 % and 10 %, respectively.

σ [Nm−1] ρ [kgm−3] µ [Pas−1] ν [m2s−1]

F0 69.29× 10−3 997.92 0.99× 10−3 0.99× 10−6

F1 59.09× 10−3 995.98 1.03× 10−3 1.03× 10−6

F2 53.66× 10−3 994.06 1.07× 10−3 1.08× 10−6

F3 50.47× 10−3 992.10 1.14× 10−3 1.15× 10−6

F5 46.24× 10−3 988.90 1.26× 10−3 1.27× 10−6

F10 39.79× 10−3 982.04 1.62× 10−3 1.65× 10−6

Table 3.1: Physical properties of the liquids

Physical properties of the liquids are summarized in Tab. 3.1 where σ is the surface

tension, ρ the mass density, µ the dynamic viscosity and ν the kinetic viscosity of

the fluids. Surface tension is measured by the tensiometer LAUDA TVT 2. The de-

vice Anton Paar V3000 offers liquid mass density, dynamic and kinetic viscosities.

Whereas their mass densities are similar, the surface tension decreases gradually

while adding more isopropanol in water. Meanwhile, the tendency of the dynamic

viscosity is inverse.
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3.4 operating conditions

Low injection pressure is a desirable operating condition for our experiments.

For that, three reasons can be given. First, it is expected to lessen the interactions

between the liquid system and the ambient air as our objective is to study only the

influence of the surface tension over the film breakdown. Second, it ensures that

the ligaments are thick and the droplets are mostly on-focus for a better spatial

and temporal description by the multi-scale analysis (chapter 4). Third, thicker

liquid structures could be easily detected from the background. We thus maintain

an injection pressure of 0.1 MPa because it is low enough and stable during all

experiments.

To characterize the fluid system described in § 3.1, mass flow rate and metering

velocity should be quantified. These parameters are mandatory to derive not only

the discharge coefficient which indicates the performance of the system but also

the non-dimension numbers which inquire into the atomization regime.

The usual measuring method is to weight the amount of the injected liquid within

a controlled time interval. More precisely, it consists in a two-step procedure, re-

peated for three injection pressures comprising 0.07, 0.1 and 0.13 MPa. First, we

set a desirable injection pressure ∆Pi and put on the hydraulic system during a

duration ∆t. Second, the fluid accumulated in the recovery cavity (see Fig. 3.1)

is weighted to deduce the injected mass ∆m. The mass flow rate Qm for each

injection pressure is given by

Qm =
∆m

∆t
(3.1)

and the metering velocity Vq is

Vq =
Qm

ρ

(
πD2ori
4

) (3.2)

where Dori denotes the diameter of the discharge orifice.

One can compute the discharge coefficient CD thanks to (3.3). The discharge coef-

ficient is a dimensionless number used to characterize the pressure losses in fluid

systems. It is defined as the ratio of the measured volumetric flow rate to the ideal-

25



ized value. The latter is traditionally inferred from Bernoulli’s principle (3.3) and

corresponds to an ideal nozzle which expands an identical working fluid from the

same initial conditions to the same exit pressure without any losses.

CD =
Qv

πD2ori

√
∆Pi
8ρ

(3.3)

where ∆Pi is the injection pressure andQv the volumetric flow rate, easily derived

from the mass flow rate Qm as below

Qv =
Qm

ρ
(3.4)

(a) Mass flow rate (b) Discharge coefficient

Figure 3.4: Operating conditions

Figure 3.4 indicates the mass flow rate and the discharge coefficient for all fluids

at three injection pressures. It appears that the mass flow rate increases with re-

spect to the injection pressure only (Fig. 3.4a). Moreover, it stays unvarying for

the six mixtures. These observations could be interpreted by the energy budget

recommended by Dumouchel et al. 2005 [22] wherein pressure energy brought to

the liquid is consumed as flowing energy, friction losses, non-axial kinetic energy

and turbulent kinetic energy. In case of no friction loss or when the discharge

coefficient is equal to unity, pressure energy is completely transformed into flow-

ing energy and kinetic energies. As plotted in Fig. 3.4b, CD remains around 0.65

for all working fluids and injection pressures. As a consequence, the flow is fully

developed to attain well-established conditions. The discharge coefficient varies

slightly although considerable changes in terms of viscosity are observed from
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one liquid to another (Tab. 3.1). One can explain this result by the fact that with

higher viscosity, friction losses increase; and non-axial kinetic energy and turbu-

lence are diminished in their turn to compensate flowing energy and therefore

keep the discharge coefficient at a stable value.

Table 3.2 exhibits the metering velocity Vq and the following dimensionless num-

bers and characteristic time which correspond to ∆Pi = 0.1 MPa:

• The liquid Weber number indicates whether the kinetic or the surface ten-

sion energy is dominant.

We =
ρV2qDori

σ
(3.5)

• The gaseous Weber number compares the aerodynamic forces to the surface

tension. The larger this number, the stronger the interactions between the

liquid flow and the surrounding medium and the finer the droplets will be.

Weg =
ρgV

2
qDori

σ
(3.6)

• The Reynolds number represents the relative importance of the inertia and

the viscosity. It determines if the flow regime is laminar, transient or turbu-

lent.

Re =
ρVqDori

µ
(3.7)

• The Ohnesorge number accounts for the influence of the viscosity on the

atomization by relating a viscous time to a capillary one.

Oh =
µ√

ρσDori
(3.8)

• The capillary time is the characteristic time of the Rayleigh-Plateau instabil-

ity.

tσ =

√
ρD3ori
σ

(3.9)
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Notice that the gaseous Weber number is very small lying between 0.56 and 1.01.

The interactions between the liquid system and the ambient air are negligible,

according to Sterling & Sleicher 1975 [86]. Thus, the aerodynamic forces have

negligible effects on the atomization process.

Vq [ms−1] We [−] Weg [−] Re [−] Oh [−] tσ [ms]

F0 8.96 462 0.56 3613 5.95× 10−3 0.96
F1 8.81 523 0.63 3408 6.71× 10−3 1.04
F2 8.82 576 0.70 3278 7.33× 10−3 1.09
F3 9.03 641 0.78 3143 8.06× 10−3 1.12
F5 9.04 699 0.85 2838 9.32× 10−3 1.17
F10 9.14 825 1.01 2216 12.96× 10−3 1.26

Table 3.2: Metering velocity and non-dimensional numbers
(Injection pressure ∆Pi = 0.1 MPa)

3.5 visualization system

A back-light optical arrangement is implemented to image the liquid sheets which

issue from the triple-disk injector. Figure 3.5 shows the schematic of the optical di-

agnostic, similar to that of Ngô 2013 [64]. A set of back-lighted pictures is acquired,

useful for the multi-scale analysis.

The straightforward approach to designing a back-light configuration is to align

its two principal components, namely a light source and a detector with the liquid

film. As the latter is formed in the plane of symmetry of the injector (refer to § 3.2),

these instruments are mounted on the axis perpendicular to this plane, one on the

left of the sheet and the other on the right. The visualization plane coincides with

the plane of symmetry of the nozzle (Ozx).

We employ a HSPS NANOLITE flash lamp as the light source. It emits incoherent

and wide-spectrum pulse with a short duration of 15 ns. With the aid of a 140 mm

lens between the flash lamp and the liquid sheet, light is diffused and a regular

intensity of illumination is concentrated on the ejecting flow near the nozzle exit.
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The detector consists of a camera, a shutter and an objective with extension ring.

The CCD DALSA Panthera 11M4 camera offers a definition of 4016× 2672 pixel2.

The pixel size is 9 µm. To increase the magnification of the objective, an extension

ring is placed between the camera and the objective. With the magnification of the

optical system, the spatial resolution of the image is 3.5 µm/pixel and its size is

thus 14.06× 9.35 mm2.

Figure 3.5: Visualization system

The synchronization protocol of the visualization system is as follows. The flash

lamp is synchronized with the camera and triggered by TTL signals from its con-

trol unit. The BNC pulse generator sends a synchronization signal to trigger the

flash lamp and the camera. After receiving the TTL signal, the flash lamp pro-

vides a brief bright light while the camera opens its shutter and capture an image.

8 − bit images are transferred to the computer via an USB connection. The de-

lays associated with the light source and the detector are adjusted so that there is

enough light when the camera shutter opens.

We maximize the opening duration of the objective. The shutter is opened during

70 ms. The flash imposes the camera exposure time as its duration (15 ns) gets

shorter than that of the shutter (70 ms). Remark that within a time interval of 15

ns, the displacement of the fastest fluid particle moving at a velocity of 9.14 ms−1,

as reported in Tab. 3.2, is approximately 0.14 µm. This displacement is much lower

than the spatial resolution of the image (3.5 µm/pixel), proving that our imaging

system is able to freeze the breakup process under consideration.
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3.6 image processing

Examples of the sheet back-lighting images are shown in Fig. 3.6. The top of these

pictures coincides with the exit plane of the discharge orifice. One can notice that

the shape of the liquid film evolves as soon as the flow leaves the injector outlet.

Even though, the atomization is still not accomplished at the bottom of the pho-

tographs. To cover a larger part of the breakup of the system further downstream,

we move the nozzle upward by a distance of 3.5 mm corresponding to a half of

the height of the field of view (Fig. 3.7). Two vertical positions of the atomizer are

considered hereafter, namely "up" and "down" as illustrated respectively in Figs.

3.6 and 3.7. Remind that they are separated by a 3.5 mm distance.

(a) F0 (b) F5 (c) F10

Figure 3.6: Snapshots of the liquid sheets - Position "up"

(a) F0 (b) F5 (c) F10

Figure 3.7: Snapshots of the liquid sheets - Position "down"

A grey-scale digital picture can be thought of as a 2D table (Figs. 3.6 and 3.7). We

call each smallest element of the table "pixel". Its value carries intensity informa-

tion or grey-level. Indeed, the grey-level is proportional to the illumination energy

received by the camera during the exposure time of the latter. It is said in § 3.5

that this duration is enforced by the flash lamp and equal to 15 ns. We obtain

8− bit digital photographs which refer to 28 or 256 grey-levels ranging from 0

to 255. For the sake of clarity, let’s consider an image Im (Fig. 3.6a). Im is a 2D
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matrix of 4016× 2672 pixel2. The value that a pixel contains is Im(i, j) satisfying

the conditions

0 6 Im(i, j) 6 255 with i = 1, 4016 and j = 1, 2672 (3.10)

where i and j are respectively the horizontal and vertical coordinates of the pixel

in the 2D grid Im.

From a set of water sheet images in Fig. 3.8, it is clear that the background is not

homogeneous and changes from one picture to another. The first step of the image

processing thus involves the elimination of spatial and temporal variations in the

background. Furthermore, it will be shown in the next chapters that the liquid-gas

interface is crucial to perform the multi-scale analysis. Hence, the detection of the

liquid sheet, the ligaments and the droplets, and the conversion of the images to

binary should be included in the image processing as well. Details are provided

in the following subsections.

(a) (b) (c)

Figure 3.8: Photographs of the water sheets

3.6.1 Normalization

In the current study, the purpose of the normalization is to correct inhomogeneities

on the image background as well as snapshot-to-snapshot variabilities. These

drawbacks are respectively caused by spatial and temporal fluctuations of the

illuminating source.

We need two special photographs to perform the normalization process: the ob-

scurity picture Io taken without any light, and the background Ib where the flash
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lamp is activated but not the atomizer. One can obtain the normalized image Im

(Fig. 3.9a) from the original one Im (Fig. 3.6a) via the following formulae

Im(i, j) = α× Im(i, j) − Io(i, j)
Ib(i, j) − Io(i, j)

×Nbackground (3.11)

and

α =
Ibr
Imr

(3.12)

where Ibr and Imr are the average intensities calculated over a pre-selected rect-

angular zone of the images Ib and Im, respectively. The rectangular zone in the

image Im must contain no object. Clearly, Ibr and Imr represent the average il-

lumination energy received by the camera in the rectangular zones in these two

pictures Ib and Im. If there is no temporal fluctuations, the coefficient α is equal

to unity. Otherwise, it varies around 1 and permits to correct the snapshot-to-

snapshot variations on the background. Moreover, to rigorously keep the grey-

scale of the normalized photograph in the 0 – 255 range, Nbackground is set to

be slightly lower than 255.

(a) Image Im (b) After rolling ball operation I
rb
m

Figure 3.9: Normalized images

In addition, we deal with the uneven illuminated background of the normalized

image by the rolling ball algorithm. These spatial irregularities are due to the

vibration of the spark discharge in the flash lamp. The plug-in of the software
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ImageJ is based on Sternberg 1983 [87]. In our case, it seems to be appropriate to

make the background more homogeneous.

Let’s examine the resulting images, the first one Im (Fig. 3.9a), and the second

one I
rb
m resulted from Im thanks to the rolling ball algorithm (Fig. 3.9b). The

comparison could be done by their grey-level histograms, displayed in Fig. 3.10a

for Im, and in Fig. 3.10b for I
rb
m . For both cases, the liquid film and the filaments on

its borders are made up of low value pixels. This explains why in the histograms,

numerous pixels take moderate values approximately 50 in Fig. 3.10a or within

the range of 60 to 160 in Fig. 3.10b. In contrast, the background is represented by

high grey-levels (from 200 to 255 for Im or around 250 for I
rb
m ).

(a) Image Im (b) After rolling ball operation I
rb
m

Figure 3.10: Histogram of normalized images

Nevertheless, the photograph with the rolling ball algorithm offers a homoge-

neous background on which large structures appear more distinctive (see Figs.

3.9b and 3.10b). The image will be processed by the single-threshold method

in § 3.6.2.1 for the identification of the sheet and the ligaments. To localize the

droplets, on the other hand, we shall employ the wavelet-transformation tech-

nique for the normalized picture without the above treatment (§ 3.6.2.2).
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3.6.2 Localization

Localization consists in dissociating the liquid elements to the background. Two

different methods are necessary depending upon the object category. We adopt

one threshold in terms of grey-level to distinguish the sheet and the ligaments

as described by Grout 2009 [42]. With regard to the drop finding, the wavelet

transform is demonstrated to be effective in Blaisot & Yon 2005 [4] and Fdida &

Blaisot 2010 [35].

3.6.2.1 Single-threshold method

We apply the single-threshold recipe to the normalized images undergoing the

rolling ball algorithm (I
rb
m in Fig. 3.9b for example). The pixels whose value is

lower than the threshold l change into dark, i.e. the grey-level becomes 0. The

others carrying intensities superior to the cut-off grey-level are converted into

white with its value equal to 255. The threshold l is individually determined for

each image by

l =Mode−Kb × StdDev (3.13)

Mode stands for the most representative mode of the background, given by the

principal one in the histogram (Fig. 3.10b). StdDev denotes the standard deviation

of the intensity distribution. Like Grout 2009 [42], the binary parameter Kb = 2 is

chosen. Clearly, from Fig. 3.10b l is adjusted such that its value is always smaller

than the minimum grey-level of the background which corresponds to the region

around 250. At the same time, l is superior to the maximum intensity of the pixels

constituting the objects, represented by the interval from 60 to 160. Therefore, the

cut-off grey-scale l allows to discriminate between the background and the liquid

elements.

The localized image Îm of the original one Im is displayed in Fig. 3.11a. One can

see that big structures are well detected. It remains, however, several white areas

in the center of the liquid film. They are the bright regions appearing on the sheet,

which can be attributable to the fact that some light is transmitted through the
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latter. As illustrated in Fig. 3.11b, these areas are easily deleted by the fill holes

option of the software ImageJ.

(a) Image Îm (b) After fill holes option

Figure 3.11: Localized images by single-threshold method

3.6.2.2 Wavelet-transformation technique

It is predicted by an imaging model in Blaisot & Yon 2005 [4] and Fdida & Blaisot

2010 [35] that when a droplet is fine or stays far from the focus plane, its image

becomes blurred. Consequently, the smallest or most unfocused drops, having a

poor contrast, can be lost by the classic thresholding (§ 3.6.2.1). The contrast is

defined as the ratio of the luminance of the brightest pixel to that of the darkest

one. A high contrast is a desired aspect of any display. To improve the detection

performance, a two-stage procedure is carried out for the normalized picture (Fig.

3.12a).

Drops are localized, in the first step, by a classic thresholding. We impose for

every image a cut-off grey-level It corresponding to the minimum contrast Ct of

a droplet able to be recognized by the technique.

Ct =
It − Imin
Imax + Imin

(3.14)

where Imin and Imax are the minimum and the maximum intensities of the pic-

ture, respectively. Ct ≃ 0.5 or It ≃ 0.5 (Imin + Imax) is frequently recommended
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to find as many objects as possible and to avoid unwanted signal. As shown in

Fig. 3.12b, the contrasted elements are properly localized. Yet, for most part out-

of-focus and small-size drops are lost.

(a) Normalized image (b) Localized image by clas-
sic thresholding

Figure 3.12: Image processing by combing classic thresholding and wavelet transform (1)

To overcome this problem, in the second step, we use the wavelet transform to

determine any local grey-level variation which indicates the presence of a droplet.

In effect, in the vicinity of the droplet the second derivative of the grey-scale is

modified. This induces a concavity of the pixel intensity distribution which should

be determined by the wavelet transform.

The wavelet transform can be seen as a spectral analysis, like the Fourier’s trans-

form, but spatially localized. The linear convolution of a normalized image I with

a so-called wavelet function ψ is

Wψ,I

(−→
b ,a

)
= I

(−→
X
)
⊗ψ−→

b ,a

(−→
X
)

(3.15)

where
−→
X indicates a pixel position in the picture and W stands for the wavelet

coefficients. ψ is defined as

ψ−→
b ,a

(−→
X
)
=

1√
a
Ψ

(−→
X −

−→
b

a

)
with a > 0 (3.16)

Remark that ψ depends on two parameters, namely the shifting vector
−→
b which

is a pointer over a pixel; and the dilatation coefficient a which adjusts the width

of the function. Ψ is the mother wavelet. This is a 2D oscillating function having

its mean value equal to zero.
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Owing to its ability to localize the concavity of the pixel intensity in the drop

outline, the Mexican hat is chosen to analyse droplet images.

Ψ (r) =
(
1− r2

)
e−

r2

2 (3.17)

This function is the second derivative of a Gaussian function. Therefore, the convo-

lution of a picture with the wavelet can be understood as the second derivative of

the grey-level, which is firstly convoluted by a Gaussian filter. It corresponds to the

part of the image where grey-scale concavity or convexity are found. Note that the

higher the dilatation coefficient a is, the more spatial frequencies are eliminated

by the filter and the larger the scales at which the concavities and the convexities

can be observed. In order to identify the interface of a droplet, a should be set to

approximate the width of the blurred area around the liquid element.

(a) Normalized picture
of a drop

(b) Wavelet coefficient
photograph

(c) Localized image by
wavelet transform

(d) Grey-level distribution along the horizontal
median line of the normalized picture (Fig.
3.13a)

(e) Pixel intensity distribution along the hori-
zontal median line of the wavelet coefficient
photograph (Fig. 3.13b)

Figure 3.13: Drop finding by wavelet transform

Refer to Fig. 3.13 for an illustration of the technique applied to a normalized

photograph of a droplet (Fig. 3.13a). A wavelet image is created, as shown in Fig.

3.13b, carrying wavelet coefficients W
(−→
X
)

. Negative values of W correspond to

pixels in a convex grey-level zone, typically the external side of the drop interface,
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and positive values a concave zone or the internal side. W is equal to zero in

uniform regions of the background. One should bear in mind that negative or nil

values of W are encoded between 0 and Imed, and positive values between Imed

and 2Imed to represent the wavelet coefficients by an image. Imed is the medium

wavelet coefficient of the background. For the sake of clarity, Figs 3.13d and 3.13e

plot the histogram along the median line of the normalized picture and that of

the wavelet coefficient image, respectively. Here, the scale parameter a = 3 pixels

and the threshold Iwct = 1.3Imed are applied on the wavelet picture for the drop

contour detection (Fig. 3.13c).

(a) Localized image by
wavelet transform

(b) Union of localized im-
ages in Figs. 3.12b and
3.14a

(c) After fill holes option

Figure 3.14: Image processing by combing classic thresholding and wavelet transform (2)

We set a = 8 pixels and Iwct = 1.1Imed, as commonly suggested to identify as

many droplets as possible. The localized picture by the classic thresholding (Fig.

3.12b) is combined with the one processed by the wavelet transform (Fig. 3.14a).

The treatment of the union image (Fig. 3.14b) is fulfilled by erasing remaining

white areas thanks to the fill holes option. The final result is presented in Fig.

3.14c, where almost all droplets are satisfactorily detected despite of their small

size and their out-of-focus position.
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4
M U LT I - S C A L E A N A LY S I S

As stated in chapter 2, mechanisms of the liquid-gas interface evolution occur

in a wide range of time and length scales throughout the breakup of the liquid

sheet. It is therefore appropriate to adopt a multi-scale analysis to investigate the

atomization process.

The multi-scale tool is now applied to the disintegration of the liquid films ema-

nating from the triple-disk injector. Below is the organization of this chapter. First,

we recall the concept of the multi-scale analysis, followed by two simple illus-

trations. Next, an atomization scenario is proposed thanks to the observation of

the back-lighted pictures of the turbulent planar liquid sheets. These images are

supplied by the experiments of chapter 3. They are then processed to obtain the

surface-based scale distribution, allowing us to investigate the atomization pro-

cess of the entire liquid system. In particular, the dynamics of the production and

breakdown of the ligament network are also analysed. It is shown that the above

processes have a significant impact on the poly-dispersion of the resulting spray.
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4.1 concepts and measurements

4.1.1 Concepts

The liquid-gas interface area continuously evolves during the atomization. As

noticed by Mansour & Chigier 1991 [56], the surface-to-mass ratio is increased

throughout the process. Such variation is associated with the energy exchange

between the two fluids and the interface (Evers 1994 [33]). The interface creation

requires energy; the reduction of interface inversely returns energy to the system.

For each unit mass, the interface stores an energy which is equal to the product

of the specific surface area, i.e. surface area per unit mass, and the surface tension.

Furthermore, visualizations of liquid atomization reveal that mechanisms of inter-

face evolution occur concomitantly but at different scales. The liquid flows deform

in a complex way depending on a wide range of time and length scales, as quoted

in chapter 2. Dumouchel et al. 2015 [26], while temporally pursuing an atomizing

liquid ligament, remark that the contraction of the ligament into swells is accom-

panied by a local reduction of the specific surface area; whereas its elongation into

threads locally increases the specific surface area (Fig. 4.1). Given these complex

characteristics of the interface evolution, a multi-scale approach involving the spe-

cific surface area seems to be appropriate to investigate the atomization process.

Figure 4.1: Atomizing ligaments (Dumouchel et al. 2015 [26])

One candidate method, with the notion of the surface-based scale distribution,

is introduced by Dumouchel et al. 2008 [21]. The distribution is obtained by per-
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shape can be represented by the scale distribution which is in turn linked to the

scale entropy function. Initially, Queiros-Conde 2003 [77] and Queiros-Conde et

al. 2008 [76] develop the model for turbulent interface study.

Individual atomizing ligaments which appear at the sheet borders are investigated

in Dumouchel et al. 2015 [26]. The back-lighting high speed film of the liquid

sheet ejected from a triple-disk injector are recorded by Ngô 2013 [64]. Based on

the scale distribution’s time course, the ligaments are found to experience elonga-

tion and capillary deformation at their creation. Determined by the reminiscence

of the sheet dynamics, the initial elongation may be weak or strong, which will

affect the whole subsequent rupture of the filaments. The authors introduce, for

the liquid threads, a Weber number which is the ratio between two characteristic

times representing respectively the capillary instability and the elongation. They

detect a critical Weber number Wec based on which two ligament categories can

be identified. For a Weber number inferior to Wec, the effects of initial elongation

is limited and no secondary ligaments are produced. Their subsequent decay in-

volves mainly the capillary mechanism and drops of equivalent size are formed.

In contrast, for a Weber number higher than Wec, the initial elongation favours

the development of stretched secondary ligaments. Their breakdown results in a

coarser drop size-distribution and numerous fine droplets. In this regard, it is in-

teresting to look at the experiments of Marmottant & Villermaux 2004 [58] which

deal with the fragmentation of a stretched ligament formed by the withdrawal of

a tube initially dipping at a free surface. Two concurrent phenomena, i.e. capillary

breakup and elongation, are examined by their respective characteristic times. The

authors consider two limit cases where only one small droplet is produced with

a slowly stretched bridge; and a set of droplets with distributed sizes is obtained

from the breakup of the ligament submitted to a fast extension. It seems that the

elongation is useful to the atomization since it delays the capillary breakup, caus-

ing larger drop-size distribution and enhancing the production of small droplets.

Also examining the capillary instability of a liquid cylindrical column but a recent

paper by Dumouchel et al. 2017 [27] is based on simulation results rather than

experimental ones. The authors apply several wave-numbers of initial perturba-

tions on the interface, and measure a 3D scale distribution. Two specific scales are

computed. The small one d1 is defined as in Dumouchel et al. 2015 [25] while

the large one dmax is the system’s maximum scale, as introduced above. Whereas

the large scale follows the Rayleigh linear theory, the small one exhibits three dy-
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one gets

L̇(t)D2(t) + 2D(t) Ḋ(t) L(t) = 0 and
L̇(t)

L(t)
= −

2 Ḋ(t)

D(t)
(4.8)

In addition, considering that the liquid-gas interface is composed of its two hori-

zontal edges solely, we can compute the specific length of the liquid thread which

is identical to that of the scale distribution of the rectangle (4.5).

e2(d, t) =
1

D(t)
or e2(d, t)D(t) = 1 (4.9)

Calculating the temporal derivative of both sides in (4.9) to obtain

D(t) ė2(d, t) + e2(d, t) Ḋ(t) = 0 and
Ḋ(t)

D(t)
= −

ė2(d, t)
e2(d, t)

(4.10)

Remark from (4.10) that for a rectangle, the variation rate of the scale distribution
ė2(d,t)
e2(d,t) is independent of scale d at every instant t.

The (4.11) relationship below results from the combination of (4.10) and (4.8). It

indicates how the elongation rate of the ligament’s perimeter, defined as P(t) =

2L(t) is linked to the variation rate of its specific length during the thinning of a

liquid thread.

Ṗ(t)

P(t)
= 2

ė2(0, t)
e2(0, t)

and ė2(0, t) > 0 (4.11)

(4.11) indicates that the specific length e2(0, t) increases in time since its temporal

derivative ė2(0, t) is positive. Thanks to (4.9), this is equivalent to a reduction of

the cylinder diameter or a thinning of the liquid ligament.

However, the thinning of a liquid thread is not caused systematically by the pure

stretching. Other mechanisms such as the capillary contraction can also provoke

a reduction of the ligament diameter or a growth of its specific length. This mech-

anism is driven by the surface tension forces which expel the liquid out of a

liquid bridge (Fig. 4.7). The volume of the latter decreases, unlike during the pure

stretching described in the previous paragraphs. In this case, the reduction of the
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employed to isolate the ligament network from the bulk of the sheet before using

these relationships exclusively on the liquid threads in § 4.3.2. This allows us to

study the formation of these ligaments and their rupture into droplets. It is found

that these processes play an important role on the drop-size distribution of the

resultant spray.

4.1.2 Measurements

The temporal multi-scale description of the atomization of the liquid sheets pro-

duced by the triple-disk injector are performed in two steps.

First, the EDM operator is applied for 150 binary images converted from the grey-

scale snapshots in positions "up" and 150 others from the pictures "down" (Figs.

3.6 and 3.7). We thus obtain the corresponding euclidean distance maps which

indicate for each pixel in the liquid objects of the original binary picture the dis-

tance to the nearest pixel in the background or to the liquid-gas interface (Figs.

4.9a and 4.9b). In deed, the pixels in the center of the liquid film are dark because

they stay far from the interface whereas those near the sheet border are attributed

with bright colours.

(a) Position "up" (b) Position "down"

Figure 4.9: EDM images of the water sheets

Second, to temporally follow the breakup process, one needs to measure the local

cumulative surface-based scale distribution. To this end, the total surface area and

the surface area of the eroded systems are necessary in a limited space (4.1). We
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The local surface-based scale distribution e2 (d, t) is derived as in (4.2) by a central

difference.

e2 (d, t) =
E2 (d+∆d, t) − E2 (d−∆d, t)

2∆d
(4.17)

Two preliminary tests are carried out, examining the height of the analysing win-

dow and the necessary number of images to guarantee a good statistical descrip-

tion of the atomization process under consideration.

The first test aims to justify the choice of the analysing window height hAW (Fig.

4.10). We begin by fixing its center at position z = 3497 µm in the images at

position "up" and "down". Then, three rectangular windows of different heights

are considered. The testing values are 100, 200 and 300 pixel. We measure three

cumulative scale distributions for F0 which correspond to these three values. Fig-

ures 4.11a and 4.11b show the results for the images at position "up" and "down",

respectively. Apparently, the three curves representing the cumulative scale dis-

tributions corresponding to the three window heights overlay one over another.

hAW has therefore negligible impact on the cumulative scale distribution. Like

Grout et al. 2007 [43], we adopt hAW = 200 pixel since the authors investigate

similar liquid sheets ejected from a triple-disk injector with an analogous optical

arrangement and the spatial resolution of the images obtained in this study is

close to those in our configuration.

µ

(a) Images in position "up"

µ

(b) Images in position "down"

Figure 4.11: Testing the analysing window height

Moreover, a high recovery rate τRC = 0.75 is applied in our study in order to

attain a smooth temporal description of the atomization process. Concretely, the
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analysing windows corresponding to ti is recovered by the subsequent one ti+1

(Fig. 4.10). The lower part the window ti representing 75 % of its surface area is

covered by the adjacent ti+1.

In the second test, the number of images necessary to obtain a sufficient statistic

is examined. To this end, we use the pictures at position "up" for F0, on which

we place an analysing window at position z = 3497 µm , as in the previous

test. Four cumulative scale distributions are measured, corresponding to different

numbers of snapshots used which are 10, 50, 100 and 150. Figure 4.12a displays

these cumulative scale distributions. It seems that the results are not very sensitive

to the number of images. However, at the small scale range from 200 to 400 µm, the

cumulative scale distribution converges from 100 images (Fig. 4.12b). This justifies

that for each fluid and for each position "up" or "down", 150 images available

from our experiments guarantee good statistical description of the breakup of the

liquid sheet.

µ

(a) Cumulative scale distribution

µ

(b) Cumulative scale distribution - Zoom on
the scale range from 200 to 400 µm

Figure 4.12: Testing the number of images

The scale distributions e2 (d, t) for F0 over all the scale space at several instants are

shown in Fig. 4.13a. In particular, in the small scale range, the scale distribution

oscillates when d is smaller than 50 µm and becomes too high when d = 0 (Fig.

4.13b). The fact that the surface-based scale distribution increases with d is clearly

non-physical. It is probably due to the fact that an image is constituted from

square pixels. While approaching the liquid-gas interface, the latter can not be

finely described by these pixels which contain the distance to the interface. To

correct this behaviour of e2 (d, t) near d = 0, one can make use of the quasi-

51



linearity of the scale distribution in the adjacent region. In effect, the values of

e2(d, t) at the small scales are reconstituted by a linear extrapolation from those

at larger neighbouring scales (Fig. 4.13c).

µ

µ

(a) Scale distribution before the correction

µ

µ

(b) Before the correction - Zoom on the small
scale region

µ

µ

(c) After the correction - Zoom on the small
scale region

Figure 4.13: Extrapolation of the scale distribution at small scales

4.2 description of the images

The back-lighted images collected from the experiments in chapter 3 serve as

input of the multi-scale analysis to inspect the atomization process. Before this

task can be done, observation of these images is indispensable. We thus start by a

description of the back-lighted images, resulting in a breakup scenario proposed

at the end of this section. Essential features of the disintegration of the planar

turbulent liquid sheets are summarized in the scenario.
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To enhance the representativeness of the description and facilitate the distinction

between different fluids based on their characteristics, only F0 and F10 are pre-

sented here. Figures 4.14 and 4.15 exhibit some snapshots of F0 at two positions

"up" and "down", respectively. Images for the liquid F10 are shown in Figs. 4.16

and 4.17.

The two mixtures F0 and F10 share a significant common property in their atom-

ization process. In both cases, the liquid system consists of three principal ele-

ments: (i) A large centre part surrounded by (ii) a ligament network and (iii) nu-

merous droplets. The center part which represents the bulk of the sheet increases

in size to reach a maximum width, then contracts until the end of the process.

On both sides of the sheet, one can see the ligaments develop on the borders. The

birth of several disturbances and their growth, together with the contraction of the

liquid film, especially between two perturbation extremities might be the origin

of the ligament formation. The breakup of the ligaments then produces droplets,

which are the last element of the system. Almost all drops are in-focused, which

points out that the liquid sheet is rather 2D, locating in the plane of symmetry of

the injector as the ligaments produced on its edges. One should bear in mind that

the double-counter swirl stretches the flow to form a 2D sheet with turbulence-

induced disturbances on its edges (see Dumouchel et al. 2005 [22]).

However, marked differences could be found in the sheet breakup of these two

fluids. First, the opening angle of the liquid film is larger for F10 than for F0. Since

the mass flow rate is kept constant for two fluids, one could expect that the F10

sheet is thinner, reducing the diameter of the liquid ligaments. It is clear that the

ligaments’ extremities for F10 are aligned with the initial opening angle whereas

those for F0 are not. Moreover, the ligaments existing on the sheet borders of F10

are more equitably distanced, making possible a single oscillating frequency of

the whole liquid system. Such a behaviour is not found for F0. In addition, the

F10 filaments are long and much deformed whereas those of F0 are smooth and

more numerous.

More importantly, these snapshots show that the liquid system of F0 is not as

reproducible as that of F10. This can be explained by a consistent turbulence level

for the mixture F0. Notice that the Reynolds number of F0 is higher than that of

F10 (Tab. 3.2). Finally, the F0 drops are not numerous but homogeneous in size

whereas many fine droplets are formed for F10, with larger drop-size distribution.
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Provided with these distinctions, it appears that the formation of the ligaments F10

is due to the capillary instability, explaining their regularity in space. Meanwhile,

the turbulence has a great impact on the ligament production for the liquid F0

because they are irregular in size from one image to another. Notice that the

Reynolds number for F0 is much higher than that for F10 (Tab. 3.2).

54



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.14: Snapshots of the liquid sheets F0 - Postion "up"

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.15: Snapshots of the liquid sheets F0 - Postion "down"
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.16: Snapshots of the liquid sheets F10 - Postion "up"

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.17: Snapshots of the liquid sheets F10 - Postion "down"
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4.3 analysis of the atomization process

4.3.1 Entire liquid system

4.3.1.1 General remarks

Figures 4.19 and 4.20 depict the cumulative surface-based scale distributions for

two liquids F0 and F10, respectively. E2(d, t) are plotted as a function of the scale

d. Each curve corresponds to a time or a position of the analysing window (refer

to Fig. 4.10).

µ

Figure 4.19: Cumulative surface-based scale distribution for F0

µ

Figure 4.20: Cumulative surface-based scale distribution for F10
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Remark that all curves increase with d from zero until reaching unity from the

scale dmax, as explained in the paragraph after (4.1). These functions are proven

to be the cumulative scale distributions. The scale range covered by E2(d, t) de-

pends on liquid and time. The cumulative scale distributions of two fluids differ

one from another, having distinct form even at two close instants. Seemingly, the

chosen times do not correspond to equivalent phases of F0 and F10 liquid systems.

We now turn to the surface-based scale distributions, presented in Figs. 4.21 and

4.22 for F0 and F10, respectively. e2(d, t) are drawn over the scale-space, with each

curve corresponding to an instant.

µ

µ

Figure 4.21: Surface-based scale distribution for F0

µ

µ

Figure 4.22: Surface-based scale distribution for F10
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The scale distributions diminish as the scale increases. It is equal to zero beyond

the scale dmax. Clearly, when d > dmax, the cumulative scale distribution be-

comes unity and its derivative e2(d, t) is thus unvaryingly equal to zero.

e2(d, t), at early instants, resembles to a step function over an intermediate range

(around 600 µm for F0 and 1000 µm for F10). Notice that a cylinder has similar

scale distribution (Fig. 4.5b). This demonstrates that the form of the projection

of our liquid system at such moments is close to a rectangle. However, e2(d, t)

behaves differently at small scales, indicating non-negligible influence of the per-

turbations appearing on the sheet borders (refer to § 4.2). Additionally, at large

scales, e2(d, t) is not a step function any more. Indeed, its variation from a stable

value over the intermediate scale range to zero is not abrupt but rather gradual,

signifying that the geometry of the liquid system is not a perfect rectangle. To-

wards the end of the process, the scale distribution decreases rapidly with d. Its

non-nil values cover a scale interval much smaller than at early instants.

By comparing the two fluids, one can notice that dmax for F10 is higher than that

of F0 at early moments when the scale distribution is close to a step function. The

above observation is also true for the maximum value of e2(d, t) at late instants.

Since e2(d, t) represents the contour length per unit surface, one could expect a

better atomization efficiency when the liquid F10 is used rather than F0.

The snapshot-to-snapshot fluctuations of E2(d, t) provide useful information about

the behaviour of the liquid system, especially at the beginning of its breakup. Such

fluctuations could be quantified by the root-mean-square-deviation of the cumu-

lative scale distribution as follow

rmsdE2(d, t) =

√
∑N
m=1 (E2(m,d, t) − E2(d, t))2

N
(4.18)

rmsdE2(d, t) for F0 and F10 are respectively depicted in Figs. 4.23 and 4.24. Notice

that the fluctuations of E2(d, t) for the liquid F10 is lower than that of F0. For F0,

the fluctuations of E2(d, t) grow in time over all scales. Contrarily, they increase

at first instants for F10, then decrease before staying still from 0.24 ms. These

clear dissemblances between the two fluids point out that the evolution of their

respective liquid systems are driven by different mechanisms. This is in agreement

with the observations in § 4.2, the capillary instability plays an essential role in
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the breakup process for the liquid F10 whereas F0 is influenced mainly by the

turbulence.

µ

Figure 4.23: Snapshot-to-snapshot fluctuations of the cumulative scale distribution for F0

µ

Figure 4.24: Snapshot-to-snapshot fluctuations of the cumulative scale distribution for F10

4.3.1.2 Evolution of the maximum scale

The maximum scale dmax(t) represents the large liquid structure. In practice,

we determine dmax(t) as the scale from which the cumulative scale distribution

E2(d, t) attains 0.99. This threshold is chosen to ensure a good statistical descrip-

tion of the process. It is different to unity to avoid a too important weight of the

unique event E2(d, t) = 1 requiring all instantaneous cumulative scale distribu-

tions E2(m,d, t) to be equal to one (refer to (4.16)). Figure 4.25 draws its temporal

evolution for six fluids.
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dmax(t) increases at early moments. This indicates that the sheet spreads as soon

as the liquid flow is ejected from the nozzle and becomes free of any parietal

constraint. The scale dmax reaches a maximum value and remains nearly constant

within a short duration. Then, the liquid film contracts allowing dmax to decrease

rapidly. The maximum scale becomes unvarying at the end of the process. This

constant value is the average size of biggest elements created at the end of the

process or the width of the sheet base.
µ

F0
F1
F2
F3
F5
F10

Figure 4.25: Temporal evolution of the maximum scale

The expanding of the films F5 and F10 is more pronounced than that of the other

fluids. It seems that the sheet reaches larger width when its contraction is more

delayed. The contraction starts sooner for mixtures of high surface tension coeffi-

cients such as F0, F1, F2 and F3.

F0 F1 F2 F3 F5 F10

Θ [o] 33 34 36 37 39 41

Table 4.1: Opening angle of the liquid sheet

dmax could be used in the determination of the opening angle of the liquid sheet.

Knowing the position of the first analysing window which is nearest to the dis-

charge orifice (Fig. 4.10) z1 = Vq × t1 and the corresponding maximum scale

dmax (t1), the opening angle of the liquid sheets Θ is derived from

tanΘ =
dmax(t1) −Dori

z1
≡ dmax(t1) −Dori

Vq × t1
(4.19)
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Θ for six fluids are shown in Tab. 4.1. Remark that the opening angle of the sheet

increases gradually from F0 to F10. The increment between two neighbouring

fluids is small, staying approximately 1 or 2 o.

Refer to chapter 2 where we recall the investigation of Brémond & Villermaux

2006 [6] on the liquid films formed by the oblique collision of two cylindrical jets.

At basic state (without any perturbation introduced at the sheet edges), the sheet

contour normalized by We× dj collapses in a unique shape for different liquid

Weber numbers We and incoming jet diameters dj. The authors claim that the

problem under consideration involves an equilibrium between inertia and capil-

larity. In like manner, we present the normalized maximum scale d̃max against

the normalized time t̃ in Fig. 4.26.

d̃max =
dmax

We×Dori
and t̃ =

z

We×Dori
≡ t× Vq
We×Dori

(4.20)

Remark that the six curves are almost parallel when the sheet contracts. It thus

proves that a Weber number similarity is found for the shape of the bulk of the

liquid film, even with the perturbations appearing on the borders of the latter.

F0
F1
F2
F3
F5
F10

Figure 4.26: Normalized maximum scale d̃max(t̃)

Moreover, notice that from Fig. 4.26 the peak value of the normalized maximum

scale d̃max(t̃) of F0, F1, F2 and F5 are close one to another while that of two fluids

F3 and F10 are smaller. The maximum values of d̃max for F3 and F10 are below

those of the other fluids and appear earlier.

The behaviours of the liquids and their organization can be explained by the vari-

ation of the surface tension and the opening angle. Remember that as shown in
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Brémond & Villermaux 2006 [6], the sheet contraction can be advanced and en-

hanced by the disturbances.

For the fluids F0, F1 and F2, the maximum value of d̃max(t̃) are close one to

another, showing that the sheet contraction is much alike to the one without any

disturbance in Brémond & Villermaux 2006 [6]. This can be explained by the fact

that a time scale tc representing the collapse of the liquid film is smaller than that

of the perturbations tp. Remark that tp should vary like the capillary time, similar

to Brémond & Villermaux 2006 [6].

While changing from the previous fluid group to F3, the opening angle is in-

creased (Tab. 4.1), delaying the contraction of the liquid film. It is equivalent to

an increase of tc, permitting a growth of the perturbations which in their turn,

trigger the sheet contraction. Now, we have the following inequality tc > tp.

When the mixture F5 is used, the surface tension is reduced, promoting the de-

velopment of the disturbances on the sheet edges. In this case, the characteristic

time tp of the perturbations overcomes that of the sheet contraction tc. Thus, the

collapse of the liquid film F5 is not activated by the disturbances and becomes

similar to F0, F1 and F2.

Let’s turn to F10 for which the opening angle is increased the most, causing the

characteristic time of the sheet contraction to grow and we obtain tc > tp. Again,

the perturbations have enough time to develop and active the sheet contraction.

This explains the fact that like F3, the peak of dmax for F10 is smaller than that of

F0, F1, F2 and F5.

4.3.1.3 Deformation dynamics

We analyse, in this subsection, how the liquid system evolves in time. Let’s start

with the calculation of the temporal derivative of the scale distribution.

ė2(d, t) =
∂e2(d, t)
∂t

(4.21)

To simplify the analysis, we discuss the liquid sheets F0 and F10 solely. Figure 4.27

plots three curves ė2(d, t) which correspond to three instants. Each of them cuts
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the horizontal axis at a specific scale called d1(t) which is nearest to the origin

among points of intersection. In other words, ė2(d1(t), t) is equal to zero. For the

sake of clarity, d1(0.17 ms) ≈ 200 µm for F0 (Fig. 4.27a) and d1(0.65 ms) ≈ 700

µm for F10 (Fig. 4.27b).

µ

µ

0.17 ms
0.46 ms
1.05 ms

(a) F0

µ

µ

0.26 ms
0.65 ms
1.12 ms

(b) F10

Figure 4.27: Temporal derivative of the scale distribution

When d < d1(t), ė2(d, t) is positive saying that the specific length e2(d, t) tem-

porally increases in the small scale interval. As shown in § 4.1.1, this equivalent

to the thinning of a liquid thread since e2(d, t) is the inverse of its diameter (4.9).

In contrast, ė2(d, t) is negative when d > d1(t). Hence, in the large scale interval

e2(d, t) decreases in time, indicating the thickening mechanism. In consequence,

the scale space is delimited by d1(t) into two intervals where there is an augmen-

tation of the specific length at scales lower than d1(t) and at the same moment,

a reduction of the specific length at scales higher than d1(t). In other words, the

liquid system perceives a thinning at scales lower than d1(t) whereas it suffers a

thickening at scales higher than d1(t). Clearly, in the course of time d1(t) quanti-

fies the small scale interval over which the specific length increases or a thinning

mechanism occurs. This scale is expected to inquire into the temporal evolution

of the atomization process where continuous evolution of the liquid-gas interface

area takes place.

The dynamics of the scale d1(t) is shown in Fig. 4.28 where four distinctive zones

are identified. Let’s consider F0 only. In Zone 1 (up to 0.32 ms), d1(t) rises slightly

getting low values. It then reaches the maximum at the beginning of Zone 2 (0.32

ms) and falls monotonously until the end of Zone 2 (0.64 ms). Between 0.64 and

0.82 ms, the scale stays nearly constant (Zone 3). It then decreases further and

takes small values until the end of the breakup process (Zone 4). Clearly, in Zone
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2, the specific scale d1(t) significantly increases and covers all the liquid struc-

tures that perceive the thinning mechanism, even the sheet that contracts, and not

only the ligament network. d1(t) thus distinguishes different mechanisms but not

liquid structures.

µ

(a) F0, F5 and F10

µ

(b) F1, F2 and F3

Figure 4.28: Temporal evolution of the scale d1 (Four zones Z1, Z2, Z3 and Z4 for F0)

Moreover, we calculate the variation rate of the scale distribution ė2(d,t)
e2(d,t) . Figure

4.29 shows ė2(d,t)
e2(d,t) as a function of scale. Remark that the variation rate at different

instants stays still at d approaching zero. This behaviour is similar to a rectangle

(refer to (4.10)). It thus suggests the importance of the threads at the small scale

interval. In the next subsection, we thus analyse the breakup of the liquid film by

using the relationships between two variation rates introduced in § 4.1.1.

µ

0.17 ms
0.27 ms
0.37 ms
0.46 ms
0.56 ms
0.66 ms
1.05 ms
1.15 ms
1.24 ms

(a) F0

µ

0.17 ms
0.26 ms
0.36 ms
0.45 ms
0.55 ms
0.65 ms
1.03 ms
1.12 ms
1.22 ms

(b) F10

Figure 4.29: Variation rate of the scale distribution
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0

(b) F1

F2 τe
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F2 τP
0

(c) F2

F3 τe
0

F3 τP
0

(d) F3

F5 τe
0

F5 τP
0

(e) F5

F10 τe
0

F10 τP
0

(f) F10

Figure 4.30: Variation rates based on the scale distribution and the contour length of the
liquid system at scale zero

To characterize the deformation of the liquid system, we consider the following

characteristic variation rates, similar to those of a cylindrical ligament (§ 4.1.1):

τ0P =
Ṗ(0, t)
P(0, t)

and τ0e = 2
ė2(0, t)
e2(0, t)

(4.22)
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where P(0, t) is the system’s circumference, derived from

P(0, t) = 2× ST (t)× e2(0, t) (4.23)

(4.23) is evidenced by the fact that the scale distribution is equal to the ratio be-

tween the perimeter of the eroded system and twice the total surface of the initial

liquid system (4.3).

Figure 4.30 plots τ0P and τ0e for six fluids. Remark that τ0P is always positive. The

interface is thus created throughout the process.

For each liquid, two time intervals can be distinguished during the breakup. In the

first part, τ0P > τ
0
e. This means that the ligaments are created at the sheet border,

causing a growth of the liquid-gas interface. In the second part, τ0e increases while

a reduction of τ0P is observed. We now have the inequality τ0P < τ
0
e. Seemingly, the

interface production represented by τ0P is not linked to the thinning mechanism

characterized by τ0e in both two time intervals. These two variation rates follow

one another until reaching zero at the end of the atomization process.

Notwithstanding, the information at the scale zero (Fig. 4.30) concerns the entire

liquid system which includes not only the ligaments but also the liquid sheet. It

is appropriate to isolate the threads before performing a similar analysis, as will

be described in the next subsection.

4.3.2 Analysis of the ligament network

We aim to study how the liquid threads developing on the sheet borders deform

throughout the atomization of the liquid film. To this end, a specific scale is first

detected, allowing to delimit the ligament network from the central part of the

sheet. The ligaments’ geometric properties could hence be derived with help of

this scale. To characterize the evolution of the ligaments, we use the variation rates

as in the deformation of a cylindrical liquid filament (see § 4.1.1). This analysis is

relevant at least during the first half of the sheet breakup process
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Such distributions are depicted in Figs. 4.32a and 4.32b for the liquids F0 and

F10, respectively. Notice that the perimeter distributions are similar to the scale

distributions (Figs. 4.21 and 4.22).

Several curves in Fig. 4.32 have an inflexion point corresponding to dL which can

be made visible thanks to the derivative of the contour length distribution with

respect to scale.

P′(d, t) =
∂P(d, t)
∂d

(4.25)

The scale dL (t) is then defined as the one at which the minimum of P′(d, t) over

the small scale interval is attained (Figs. 4.33a and 4.33b). dL varies lightly around

150 µm from one instant to another. Its values for F0 are higher than for F10.

µ

(a) F0

µ

(b) F10

Figure 4.33: Derivative of the perimeter of the eroded systems with respect to scale

Figure 4.31 suggests how to derive, at an instant t, the ligaments’ perimeter with

the assumption that for all ligaments, their length is much higher than their diam-

eter.

PL = P(0) − P(dL) (4.26)

Although the ligaments’ geometrical properties such as their perimeter PL(t) and

their specific scale dL(t) depend on time, t is ignored for better readability. In

fact, we suppose that the contour of the eroded system at scale dL, represented by

the dark dashed line IJ ≡ P(dL) and the blue dashed line AH are almost parallel

to one another (Fig. 4.31). Moreover, it can be seen that some parts of the liquid
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system’s circumference such as AB, DE and GH lay on AH. Clearly, the following

equality is verified, explaining (4.26).

PL = B̂CD+ ÊFG (4.27)

Also, the ligaments’ surface area in Fig. 4.31 can be estimated as

SL = E2(dL)× ST −
dL
2

× P(dL) = E2(dL)× ST − dL × e2(dL)× ST (4.28)

As previously assumed, IJ is parallel to AH permitting the surface area delimited

by these two curves to be expressed by

SAHIJ ≈ P(dL)×
dL
2

(4.29)

Since the outer surface bounded by the black dashed line IJ is the lost area after

the erosion at scale dL and by using (4.24), we obtain the following relationship,

explaining (4.28).

SL = E2(dL)× ST − SAHIJ (4.30)

µ

(a) F0, F5 and F10

µ

(b) F1, F2 and F3

Figure 4.34: Ligaments’ perimeter

The perimeter and surface area of the ligaments for six fluids are shown in Figs.

4.34 and 4.35, respectively. The ligaments’ perimeter and surface area increase to

reach their peak almost at the same moment. Additionally, one can notice great

likelihood between the surface area and the perimeter curves for each fluid. The

peak of the perimeter and surface area indicates the beginning of the breakdown
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of the liquid threads. It occurs more early for F3 and F10 than other fluids. In

particular, for F10 after the instant corresponding to the maximum value of PL

and SL, the ligaments’ length and surface tend to increase lightly. This can be

explained by the development of the threads on the left edge of the liquid film

(see Figs. 4.16 and 4.17).

µ

(a) F0, F5 and F10

µ

(b) F1, F2 and F3

Figure 4.35: Ligaments’ surface area

The previous measurement of two geometrical properties of the liquid threads

allows their specific length to be determined in the same way as the surface-based

scale distribution.

eL2 =
PL

2× SL
(4.31)

The temporal evolution of eL2 for six liquids is depicted in Fig. 4.36. Remark that

the specific length of F5 and F10 is higher than that of F0 during the whole process.

eL2 for F0 stays almost constant during the first part of the atomization, saying that

the ligaments’ diameter does not vary significantly. The evolution of the specific

length for the mixture F10 is pronounced. It increases from the beginning of the

process until reaching a peak around 0.6 ms. This indicates that the diameter of

the liquid threads is reduced. In general, the specific length at the end of the

breakup process depend on the surface tension.
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4.3.2.2 Deformation dynamics

We are now interested in how the ligaments deform during the breakup process.

Remember that they are delimited from the liquid system by the scale dL. Inspired

by the analysis of an individual liquid thread in § 4.1.1, the variation rates of the

filaments’ perimeter and specific length are computed as below.

τLP =
ṖL
PL

and τLe = 2
ėL2
eL2

(4.32)

µ

(a) F0, F5 and F10

µ

(b) F1, F2 and F3

Figure 4.36: Specific length of the ligaments

These variation rates are displayed in Fig. 4.37, from which several remarks rela-

tive to the behaviours of six fluids can be drawn.

At the beginning of the process, i.e. before 0.2 ms, the elongation rate of the lig-

aments, represented by τLP, is positive for all fluids. This means that the liquid

threads are produced at the sheet borders. At the same time, τLe is negative and

close to zero. One can explain the inequality τLe < 0 by the reduction of eL2 (Fig.

4.36). The latter happens during the formation of the ligaments where their diam-

eter grows from zero to a certain positive value. Inversely linked to the ligaments’

diameter, eL2 thus decreases and leads to negative τLe .

In the next period, the specific length variation rate τLe changes its direction, except

for F0. It increases rapidly until a maximum value then shrinks to nil. Positive

values of τLe signify a thinning of the threads. Notice that the ligaments’ length

continues to grow for all fluids but less and less rapidly since τLP, while remaining
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positive, declines to reach zero. This time interval lasts shorter for F1 and F2 than

for F5 and F10, stopping at around 0.4 ms for the former versus 0.5 ms for the

latter. On the other hand, the thinning of the F3 ligaments is delayed and τLe keeps

staying above zero even at 0.6 ms.

Later on, the two variation rates approach one another then intersect when both

of them attain zero or when the ligaments start to break down into droplets. The

duration of this period differs across liquids with the end point ranging from 0.6

ms for F3 to 1 ms for F2 and F5. The intersection between the two curves τLP and

τLe for F1 and F10, however, occurs twice because τLP starts to increase again from

0.6 ms for F1 and from 0.5 ms for F10. This is due to the existence of the ligaments

on the left edge of the liquid sheet.

Towards the end of the process, the diminution of τLP is registered together with

the escalation of τLe , suggesting an interface loss and a reduction in size of the

liquid structures, respectively. In effect, the fragmentation of the ligaments takes

place in this stage. Moreover, the peak of τLe coincides with the trough of τLP, at

the same moment as the rupture of the liquid threads (refer to Figs. 4.34 and 4.35).

Interestingly, the comparison of τLP and τLe can result in the division of the fluids

into three subgroups. The first one contains F0 whose τLe always stays around zero.

Although its ligaments increase in length while remaining constant in diameter.

Near-zero τLe implies that the threads are not stretched at all during the whole

process. In the second group, one can find F2, F3 and F5 because their behaviours

are much alike in terms of τLP and τLe . The ligaments lengthen from their formation

until their fragmentation and the liquid thread stretching is recorded as τLe > 0.

Finally, F1 and F10 are classified in the last group. Their τLP and τLe curves intersect

twice, proving that the ligaments appear on the left border of the liquid sheet.

Marmottant & Villermaux [58] and Dumouchel 2017 [27] scrutinize the resultant

sprays formed by the division of the stretched ligaments. It is claimed that if

the elongation rate is high or the characteristic time of the stretching is small

compared to that of the capillary instability, the thread breaks down into drops

with large size distribution and numerous small droplets are formed. In contrast,

sprays of narrow diameter spectrum are obtained when the capillary instability is

dominant. In the next subsection, we shall examine if there is a link between the

deformation of the ligaments on the drop-size distribution of the resulting sprays.
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Figure 4.37: Variation rates based on the perimeter and specific length of the ligaments
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4.3.3 Characteristics of the sprays

This subsection investigates the spray produced from the breakup of the ligaments,

which is presented in § 4.3.2. Remember the pronounced elongation of the F10

ligaments in opposition with those of F0 that are not stretched at all during the

whole process. We examine the effects of the liquid thread stretching on the poly-

dispersion of the resulting drops as well as the formation of the small droplets.

The analysis of the spray is carried out in two following steps.

We first extract all detached liquid objects from the binary images. Their diameter-

distribution is built, showing two distinct size-intervals. This enables a threshold

to be detected. Since we are interested only in the fine droplets formed from the

rupture of the liquid threads, drops of diameter lower than that threshold are

retained for further analysis.

In the second step, we establish for the selected droplets their scale distribution.

Indeed, the latter can be in turn fitted by the scale distribution of a set of cir-

cles. Put it differently, the droplets and these circles are equivalent in terms of

scale distribution. The diameter spectrum of these circles can be represented by

a Gamma function whose parameters allow for a quantitative comparison of the

sprays among six fluids.

4.3.3.1 Extraction of the small droplets

To extract the droplets from the entire system, we remove the liquid sheet which

is the biggest object in the binary pictures. Examples of resultant images for F0 at

postion "up" and "down" are shown in Figs. 4.38 and 4.39, respectively. It can be

seen that some large liquid structures still remain.

Thanks to different image processing programs, the size-histogram of all remain-

ing liquid elements is built as follows. The surface area Si of a drop i is first

measured, useful to calculate the diameter Di of an equivalent sphere having the

same projected area. In other words, Di satisfies the equality πD2i
4 = Si. The vol-

ume of the sphere is thus derived from its diameter as πD
3
i
6 , allowing to establish

the volume-based drop-size distribution (Fig. 4.40a). Notice that the size of the de-
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tached liquid structures is below 1300 µm. Moreover, they can be divided into two

distinct intervals by a diameter threshold of 600 µm. Aiming to choose the small

drops issued from the ligaments’ breakup, only droplets with size lower than this

limit are kept for further analysis. Their diameter-distributions are depicted in Fig.

4.40b.

It is clear from Fig. 4.40a that more small droplets are formed for F10 than other

fluids. Furthermore, it has few large liquid elements since the maximum diameter

is around 800 µm. Inversely, for the fluid F0, only few small-size drops together

with many large liquid objects are found.

(a) Liquid system (b) Droplets

Figure 4.38: Extraction of drops from a snapshot F0 - Position "up"

(a) Liquid system (b) Droplets

Figure 4.39: Extraction of drops from a snapshot F0 - Position "down"
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4.3.3.2 Drop-scale distribution

Procedures as described in § 4.1 are applied to the images of the drops having their

diameter smaller than 600 µm at position "up" and "down" to obtain the drop-scale

distributions of the sprays. The measurement of the cumulative scale distribution

is carried out in the whole euclidean distance maps. This is to say that a large

analysing window is used to completely cover each image. Figure 4.41 shows

the surface-based scale distribution for six fluids. Remark that e2 (d) decreases

gradually while the scale d increases. The scale distribution approaches zero for

the scales larger than 200 µm. Moreover, e2 (d) at the scale zero for F0 is small,

indicating lower interface created per surface unity compared to the other fluids.

A poor atomization efficiency is thus expected for F0, with few small droplets and

a narrow drop size-distribution.

µ

µ

(a) Drop-size distribution of the sprays

µ

µ

(b) Drop-size distribution with the diameter
threshold of 600 µm

Figure 4.40: Volume-based drop-size distribution

We employ the findings of Dumouchel et al. 2008 [21] who introduce the scale

distribution of a set of circles.

e2 (d) =
2ν

D10

Γ
(
ν+ 1, νdD10

)
− νd
D10

Γ
(
ν, νdD10

)

Γ (ν+ 2)
(4.33)

Γ (x,y) is the incomplete Gamma function with ν characterizing the size disper-

sion of the spray. The larger the parameter ν, the narrower the drop-size spectrum.

D10 is the arithmetic mean diameter of the spray, defined as the average diameter

of a set of equivalent spheres. Concretely, D10 can be calculated as
∑N
i=1Di/N

where N is the total number of objects (see § 4.3.3.1). The formula (4.33) is applied
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to the droplets issued from the fragmentation of the ligaments which appear dur-

ing the breakup of the liquid sheets produced by a triple-disk injector (Dumouchel

et al. 2015 [26]). It is said that when the stretched ligaments break down, they

form drops whose number-based diameter distribution can be well represented

by a Gamma function (Marmottant & Villermaux 2004 [58]).

fn (D) =
νν

Γ(ν)

Dν−1

Dν10
exp

(
−ν

D

D10

)
(4.34)

We fit the scale distributions issued from the experimental dataset to the function

(4.33), as shown in Fig. 4.41. The agreement between e2 (d) of the droplets and the

formula (4.33) is satisfactory. Remark that instead of a direct fitting by the Gamma

function of the diameter-distribution of a set of equivalent circles (Fig. 4.40), we

fit the scale distribution by the formula (4.33). The reason for this lies in the fact

that in the fitting of the drop-size spectrum by the Gamma function, the circular

objects are built based on equivalent surface; whereas for the scale distribution, a

set of circles with similar scale distribution is found, giving more importance to

the liquid-gas interface. Moreover, the shape of the liquid structures are taken into

account since the scale distribution is shape-dependent.

F0 F1 F2 F3 F5 F10

ν [−] 1.62 1.60 1.62 1.41 1.04 1.01
D10 [µm] 82 69 68 68 52 51

Table 4.2: Parameters of the Gamma function

The fitting parameters are exhibited in Tab. 4.2. Some remarks can be made from

these results.

For the F5 and F10 sprays, the arithmetic mean diameters D10 are small, mean-

ing that fine droplets are produced. Moreover, low values in their dispersion pa-

rameters ν point out broader drop-size distributions compared to other mixtures.

Remember that the ligaments of F5 and F10 undergo marked elongation which

delays their division into droplets. As stated in Marmottant & Villermaux 2004

[58] and Dumouchel et al. 2015 [26], the fragmentation of the stretched ligaments

results in wide drop-size distribution with numerous small droplets, which en-

hances the atomization efficiency.
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Note that even the behaviour of F5 is different to F10, its droplets are much dis-

persed in size, similar to those of F10. This can be explained by a high snapshot-

to-snapshot fluctuations of the liquid F5, proven by its backlit images. The F5

ligaments vary from one image to another and are continuously stretched during

the process. They thus disrupt into drops of different diameters, increasing the

poly-dispersion of the spray. A detailed analysis should be done, based on the

root-mean-square-deviation of the cumulative scale distribution (4.18). Moreover,

the specific length of the ligaments for F5 are higher than other fluids (Fig. 4.36).

These threads are more deformed and corrugated, giving irregular droplets.

As regards F0, both D10 and ν are high so the resultant drops are large and of

equal size. It is shown in § 4.3.2.2 that the F0 ligaments are not stretched and

their diameter is unvarying during the whole process. The poly-dispersion of the

drops formed by the breakup of these ligaments is rather due to their snapshot-

to-snapshot fluctuations (see Fig. 4.23). In other words, these liquid threads are

divided into droplets of different diameters due to the variations of their form

and size from one image to another.

With reference to the last three fluids F1, F2 and F3, their drop-size dispersions

are not as pronounced as F5 and F10 but more marked than F0. For each liquid,

the behaviour above can be explained differently. The F2 ligaments are stretched

during long time but at a lower elongation rate than F5 and F10. In case of F3,

its threads increase in length at a high τLP but within a short time interval of

approximately 0.6 ms. For the liquid F1, one can notice small values of τLP together

with a short duration of the elongation process. Moreover, the fact that τLP becomes

positive from 0.6 to 0.8 ms signifies the development of the ligaments of large

diameter on the left border of the liquid film. These threads are not stretched

because τLe is negative in this period. Their diameter is thus higher than those

appear earlier on the other side of the sheet. In consequence, large droplets are

formed from the breakdown of the F1 ligaments.
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Figure 4.41: Fitting of the drop-scale distribution
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5
I M M E R S E D B O U N D A RY M E T H O D

As we have seen in chapters 2 and 4, both secondary flow and turbulence are

highly influential to the spray formation. Therefore, to numerically solve the at-

omization process, including both internal and external flows is necessary.

We now present how to realize such a connection. Essential features of ARCHERTM

– our home-made 3D incompressible Navier-Stokes solver are first recalled, based

on Tanguy 2004 [93], Ménard 2007 [59], Noël 2012 [66], Duret 2013 [29] and Vau-

dor 2015 [98]. Then, the coupled level-set, volume-of-fluid and ghost-fluid method,

available in these studies is combined with two relevant immersed boundary

methods to take into account the fixed solid frontier. For validation purpose, tests

and comparisons to analytical solutions are performed. At the end of this chapter,

a numerical simulation of a liquid jet issued by a cylindrical nozzle is carried out.

We equally perform an other application on a planar film emanating from the

triple-disk injector.
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The mass conservation equation (5.1b) can be developed as

∂ρ

∂t
+ (∇ · U) ρ

︸ ︷︷ ︸
Dρ

Dt
= 0 due to the incompressibility

+(U · ∇) ρ = 0 (5.2)

to obtain

∇ · U = 0 (5.3)

We now have a set of two equations: the momentum equation (5.1a) and the con-

tinuity equation (5.3).

5.2.2 Jump conditions across the liquid-gas interface

Across the liquid-gas interface, the jump conditions for density, viscosity and pres-

sure read

[ρ]Γ = ρl − ρg

[µ]Γ = µl − µg

[n · (pI − 2µD) · n]Γ = σκ

(5.4)

where [·] the jump of the variable · across the interface, I the identity matrix, ρl,

ρg the mass density and µl, µg the dynamic viscosity of the liquid and the gas,

respectively.

5.2.3 Boundary conditions on the fixed solid frontier

Since we restrict ourself to fixed solid boundaries, the no-slip condition applied

for the velocity is given by

U|Γ ib = Us|Γ ib = O (5.5)
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and by using scale analysis inside the boundary layer, it can be shown that the

pressure gradient satisfies

(
n
ib · ∇p

)∣∣∣
Γ ib

= 0 (5.6)

5.3 projection method

So as to solve the incompressible Navier-Stokes equations, a projection method

(Chorin 1968 [13]) is adopted which proceeds in three steps.

Step 1 From the solution U
n at time tn = n∆t, where ∆t is the time step, we

calculate an intermediate velocity via the momentum equation (5.1a). The pressure

gradient is ignored here.

U
∗ = U

n +
∆t

ρn+1

[
(−U

n · ∇) ρnU
n +∇ ·

(
2µn+1D

∗

)
+ σκn+1nΓδΓ

]
(5.7)

The convection term (Un · ∇) ρnU
n and the diffusion term ∇ ·

(
2µn+1D

∗
)

are ap-

proximated by different numerical schemes depending on which approach among

the finite difference method (§ 5.6) or the finite volume method (§ 5.7). In addi-

tion, since the transport of the liquid-gas interface is performed before solving

(5.7), ρn+1, µn+1 and κn+1 are known. The treatment of the diffusion term, as

shown in (5.7), is implicit. We enforce the no-slip condition even for the interme-

diate velocity.

U
∗|Γ ib = O (5.8)

Step 2 We derive the Poisson equation for pressure by using the continuity equa-

tion (5.3).

∇ ·
(
∇pn+1
ρn+1

)
=

∇ · U
∗

∆t
(5.9)

with homogeneous and non-homogeneous Neumann boundary conditions on ∂Ω

and Γ ib, respectively.

n
ib · ∇p

n+1

ρn+1

∣∣∣∣
Γ ib

= n
ib · U

∗

∆t

∣∣∣∣
Γ ib

(5.10)
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Like the convection and diffusion terms in (5.7), (5.9) on irregular domains is

discretized differently within each of the two approaches - the finite difference

method (§ 5.6) or the finite volume method (§ 5.7).

Step 3 Once pn+1 is obtained, we compute the final solution at time tn+1.

U
n+1 = U

∗ +∆t
∇pn+1
ρn+1

(5.11)

Note that the Neumann condition (5.10) is deduced from the no-slip boundary

condition (5.5) for the final solution (5.11).

U
n+1

∣∣∣
Γ ib

= O (5.12)

Moreover, the combination of the no-slip condition for the intermediate velocity

(5.8) and the Neumann condition (5.10) fulfils the condition for the pressure gra-

dient on the solid frontier (5.13).

(
n
ib · ∇pn+1

)∣∣∣
Γ ib

= 0 (5.13)

5.4 liquid-gas interface tracking

An important part of the flow numerical study consists in tracking the liquid-

gas interface. The level-set and volume-of-fluid methods are traditionally used to

accomplish this task. Fortunately, due to their complementarity, a combination

of these two approaches is possible and has indeed proven its efficiency. In this

section, we recall some essential features of the two techniques before presenting

the joined one namely the coupled level-set, volume-of-fluid (CLSVOF) method.

5.4.1 Level-set method

The level-set method is based on the implicit definition of the interface as the zero-

level of a continuous function φ (x, t) (Osher & Sethian 1988 [69]). To guarantee

that φ (x, t) is the distance of a given point x from the interface, with positive sign
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in liquid and negative sign in gas, |∇φ (x, t) | = 1. The motion of the interface

φ (x, t) = 0 by the velocity field U is given by

∂φ (x, t)
∂t

+ (U · ∇)φ (x, t) = 0 (5.14)

The level-set function can no longer be a distance function when |∇φ (x, t) | 6= 1

due to high velocity gradients. A re-distancing algorithm is thus applied to reor-

ganize the level-set field without modification of the zero-level curve (Sussman et

al. 1998 [89]). The reinitialization equation

∂d (x, τ)
∂τ

= sign (φ (x, t)) (1− |∇d (x, τ) |) (5.15)

is iterated in virtual time τ with the sign function being smoothed in the vicinity

of the interface.

sign (φ (x, t)) =
φ (x, t)√

φ2 (x, t) +∆x2
(5.16)

In each time step, (5.14) is first solved to initialize d (x, τ = 0) = φ (x, t). Then, we

iterate (5.15) until a steady state is attained, i.e. either sign (φ (x, t)) = 0, meaning

that the interface is preserved, or |∇d
(
x, τsteady

)
| = 1 which is a distance func-

tion. Finally, the equality φ (x, t) = d
(
x, τsteady

)
is imposed. In practice, we run

three iterations by the 3th order Runge-Kutta method to solve (5.15).

5.4.2 Volume-of-fluid method

Another way to track the interface is the volume-of-fluid method (Hirt & Nichols

1981 [48]). Inside a computational grid-cell Ωij at an instant t, a color function is

defined as

c (x) =






0 if x ∈ gas

1 if x ∈ liquid
(5.17)
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The marker function F
(
Ωij, t

)
is the volume fraction of liquid.

F
(
Ωij, t

)
=

´

Ωij
c (x)dV

Vij
(5.18)

where Vij the volume of the grid-cell Ωij.

The scalar function F
(
Ωij, t

)
takes a value of 0 in a gas cell, 1 when a cell is

filled by liquid, and in-between 0 < F
(
Ωij, t

)
< 1 if an interface exists. Moreover,

F
(
Ωij, t

)
is a discontinuous function since its value jumps from 0 to 1 when the

argument moves from gas to liquid.

From the following connection between the mass density and the color function

ρ (x) = ρlc (x) + ρg (1− c (x)) (5.19)

combined with (5.1b), one can easily derive the transport equation of the color

function c as

∂c

∂t
+ (U · ∇) c = 0 (5.20)

5.4.3 Coupled level-set, volume-of-fluid method

Although the level-set function gives precisely interface position and geometries

parameters, its main drawback is the mass loss (or gain) in under-resolved regions.

In contrast, the volume-of-fluid is mass-conserving but unable to easily describe

the liquid-gas interface. A coupled level-set, volume-of-fluid method (Sussman

& Puckett 2000 [88], Ménard et al. 2007 [60] for instance) is thus integrated in

ARCHERTM. It consists of three principal elements.

Element 1 The use of the piecewise linear interface calculation (PLIC) method

(Lopez et al. 2005 [55]) is the first element. In each cell, the interface is approxi-

mated by a planar surface. Its normal vector is easily computed from the level-set

function. Then, the liquid-gas surface, originally put at the cell center, is trans-

lated so as the liquid volume fraction that it determines is equal to F
(
Ωij, t

)
. The

adjusted value of the distance is set to be φ
(
Ωij, t

)
.
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Element 2 The second element is the transport of φ and F. Let’s consider the

transport of φ by re-writing (5.14) in 2D.

∂φ

∂t
+
∂uφ

∂x
+
∂vφ

∂y
= 0 (5.21)

The Strang splitting algorithm, with improvements in Puckett et al. 1997 [75] and

Sussman & Puckett 2000 [88], avoids the transport of the same volume in both

directions.

∂φ

∂t
+
∂uφ

∂x
= φ

∂u

∂x
(5.22a)

∂φ

∂t
+
∂vφ

∂y
= φ

∂v

∂y
(5.22b)

One resolves (5.22a) explicitly for the transport in x−direction.

φ̃ij =

φnij +
∆t
∆x

(
G
φ

i−12 j
−G

φ

i+12 j

)

1− ∆t
∆x

(
u
i+12 j

− u
i−12 j

) (5.23)

where Gφ
i−12 j

, for example, is the flux from the left face of the grid-cell Ωij which

is left for the upcoming paragraph.

Then (5.22b) is considered implicitly in y−direction.

φ̂ij =

φ̃ij +
∆t
∆y

(
G̃
φ

i−12 j
− G̃

φ

i+12 j

)

1− ∆t
∆y

(
v
ij+12

− v
ij−12

) (5.24)

The level-set in the next time step becomes

φn+1ij = φ̂ij − φ̃ij
∆t

∆x

(
u
i+12 j

− u
i−12 j

)
− φ̂ij

∆t

∆y

(
v
ij+12

− v
ij−12

)
(5.25)

The algorithm is valid for zero-divergence velocity fields (Sussman & Puckett 2000

[88]). The direction switch is necessary to obtain second-order accuracy (Pilliod et

al. 2004 [72]).
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We now turn to the transport of F. Re-write (5.20) in a control volume Ωij, as

suggested by Weymouth & Yue 2010 [102].

∂

∂t

ˆ

Ωij

cdV +

ˆ

Ωij

(∇ · (cU) − c∇ · U)dV = 0 (5.26)

With help of the Ostrograski-Gauss theorem, we have

∂

∂t

ˆ

Ωij

cdV +

˛

Γij

cU · ndS =

ˆ

Ωij

c∇ · UdV (5.27)

where Γij is the surface of Ωij.

Hence, the transport equation of the volume-of-fluid function F is

∂F
(
Ωij, t

)

∂t
Vij +G

F
net =

ˆ

Ωij

c∇ · UdV =

ˆ

Γij

cU · ndS (5.28)

where GFnet is the net flux of liquid out of the grid-cell Ωij.

The split version of (5.28) is written as

∆F′ij
Vij

∆t
≡
(
F′ij − F

n
ij

) Vij
∆t

= GF
i+12 j

−GF
i−12 j

+

ˆ

Γij

cnudy (5.29a)

∆F′′ij
Vij

∆t
≡
(
Fn+1ij − F′ij

) Vij
∆t

= GF
′

ij+12
−GF

′

ij−12
+

ˆ

Γij

cnvdx (5.29b)

where GF
i−12 j

, for example, is the flux from the left face of the grid-cell Ωij. Its

calculation is discussed in the next paragraph. The integrals are approximated as

ˆ

Γij

cudy ∼= cij∆y
(
u
i+12 j

− u
i−12 j

)
(5.30a)

ˆ

Γij

cvdx ∼= cij∆x
(
v
ij+12

− v
ij−12

)
(5.30b)

where cij is the cell center value of the color function c.

cij =






0 if F
(
Ωij, t

)
< 0.5

1 otherwise
(5.31)
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Up to now, we have outlined the principal steps of a typical numerical simulation

of a two-phase flow with irregular solid boundaries. In the next sections, detailed

calculations will be displayed, especially those concerning the numerical schemes

to approximate the convection and diffusion terms, the resolution of the Poisson

equation and the transport of the liquid-gas interface inside the cut-cells, i.e. the

grid-cells intersected by the solid frontier. As previously stated, it depends on

which immersed boundary method is in use. In § 5.6, the finite difference method

is first presented (Ng et al. 2009 [65], Gibou & Min 2012 [38], Lepilliez et al. 2015

[52] for instance). Next, in § 5.7 we adapt the finite volume method (Verstappen &

Veldman 2003 [100], Cheny & Botella 2010 [10] among others) for two-phase flows

with irregular boundaries.
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[81], Vaudor et al. 2017 [99] for instance). The second approach is justified espe-

cially when the ratio between the liquid and gas mass density is high.

5.6.3 Implicit treatment of the diffusion term

As written in § 5.3, to enforce the no-slip condition even for the intermediate

velocity, the diffusion term is implicitly treated (Sussman et al. 1999 [90], Gibou

et al. 2002 [39], Lepilliez et al. 2015 [52] for instance). In effect, the intermediate

velocity U
∗ is updated by (5.7) that we re-write below.

U
∗ = U

n −
∆t

ρn+1

[
(Un · ∇) ρnU

n +∇ ·
(
2µn+1D

∗

)
+ σκn+1nδΓ

]
(5.36)

The pressure jump σκn+1nδΓ is treated using the ghost fluid method (Fedkiw et

al. 1999 [36], Liu et al. 2000 [53], Tanguy 2004 [93], Ménard 2007 [59], Lepilliez et al.

2015 [52] for instance). (5.36) is solved at each time step to obtain the intermediate

velocity U
∗. For a better readability we ignore the superscript ∗ in the following

formulae although the latter are written for the intermediate velocity U
∗. Consider

a 2D configuration, for simplicity. The viscous tensor can be expressed as

2µ (φ)D =




2µ (φ) ∂u∂x µ (φ)
(
∂v
∂x +

∂u
∂y

)

µ (φ)
(
∂v
∂x +

∂u
∂y

)
2µ (φ) ∂v∂y


 (5.37)

The projection in x-direction of the viscous term ∇ · (2µD) in (5.36) is estimated at

point i+ 1
2 j (5.38). Its projection in y-direction at point ij+ 1

2 is alike.

(∇ · (2µD)) · ex|i+12 j
=
∂

∂x

(
2µ (φ)

∂u

∂x

)∣∣∣∣
i+12 j

+

∂

∂y

(
µ (φ)

(
∂u

∂y
+
∂v

∂x

))∣∣∣∣
i+12 j

(5.38)
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(5.38) is discretized by adopting Sussman et al. 1999 [90], Vaudor 2015 [98] among

others as follows. Remark that the diffusion term is computed with help of the

level-set method in the framework of two phase flows.

(∇ · (2 µ D)) · ex|i+12 j
≈

2µ (φ)i+1j
(
∂u
∂x

)∣∣
i+1j

− 2µ (φ)ij
(
∂u
∂x

)∣∣
ij

∆x

+

µ (φ)
i+12 j+

1
2

(
∂u
∂y

)∣∣∣
i+12 j+

1
2

− µ (φ)
i+12 j−

1
2

(
∂u
∂y

)∣∣∣
i+12 j−

1
2

∆y

+
µ (φ)

i+12 j+
1
2

(
∂v
∂x

)∣∣
i+12 j+

1
2
− µ (φ)

i+12 j−
1
2

(
∂v
∂x

)∣∣
i+12 j−

1
2

∆y

≈
2µ (φ)i+1j

(
u
i+3
2
j
−u

i+1
2
j

∆x

)
− 2µ (φ)ij

(
u
i+1
2
j
−u

i−1
2
j

∆x

)

∆x

+

µ (φ)
i+12 j+

1
2

(
u
i+1
2
j+1

−u
i+1
2
j

∆y

)
− µ (φ)

i+12 j−
1
2

(
u
i+1
2
j
−u

i+1
2
j−1

∆y

)

∆y

+

µ (φ)
i+12 j+

1
2

(
v
i+1j+1

2
−v

ij+1
2

∆x

)
− µ (φ)

i+12 j−
1
2

(
v
i+1j−1

2
−v

ij−1
2

∆x

)

∆y

(5.39)

where

µ (φ)ij =
µgµl

µgξ (φ)ij + µl

(
1− ξ (φ)ij

)

with

ξ (φ)ij =






0 if φ
i−12 j

< 0 and φ
i+12 j

< 0

1 if φ
i−12 j

> 0 and φ
i+12 j

> 0

φ+

i−1
2
j
+φ+

i+1
2
j

|φij|+|φi+1j|
otherwise

a+ = max (0,a)

φ
i−12 j

=
φi−1j +φij

2

φ
i+12 j

=
φij +φi+1j

2
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and

µ (φ)
i+12 j+

1
2
=

µgµl

µgξ (φ)i+12 j+
1
2
+ µl

(
1− ξ (φ)

i+12 j+
1
2

)

with

ξ (φ)
i+12 j+

1
2
=






0 if φij < 0, φi+1j < 0, φij+1 < 0, φi+1j+1 < 0

1 if φij > 0, φi+1j > 0, φij+1 > 0, φi+1j+1 > 0

φ+
ij+φ

+
i+1j+φ

+
ij+1+φ

+
i+1j+1

|φ+
ij|+|φ+

i+1j|+|φ+
ij+1|+|φ+

i+1j+1|
otherwise

When the solid boundaries are present, the method suggested by Gibou et al. 2002

[39], Lepilliez 2015 [52] is applied to discretize each term in (5.39). Take ∂u
∂x

∣∣
ij

as

example. Three cases can be distinguished when discretize the term.

Case 1 If φs
i+12 j

< 0 and φs
i−12 j

< 0, the cell
[
i− 1

2 , i+ 1
2

]
× [j] is entirely covered

by the fluid. Thus, the approximation is

∂u

∂x

∣∣∣∣
ij

=
u
i+12 j

− u
i−12 j

∆x

Case 2 If φs
i+12 j

> 0 and φs
i−12 j

< 0, the cell point (i+ 1
2 j) is in the solid and the

cell point (i− 1
2 j) is in the fluid, so we have

u
i+12 j

= 0

Case 3 If φs
i+12 j

< 0 and φs
i−12 j

> 0, the cell point (i+ 1
2 j) is in the fluid and the

cell point (i− 1
2 j) is in the solid. We approximate the derivative by

∂u

∂x

∣∣∣∣
ij

=
u
i+12 j

θ∆x

where θ∆x the length of the cell covered by the fluid. Hence

θ =

|φs
i+12 j

|

|φs
i+12 j

|+ |φs
i−12 j

|
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Finally, we obtain a system of linear equations involving three velocity compo-

nents localized at the center of the cell faces. It should be reminded that these

variables are the components of the intermediate velocity U
∗ and the superscript

∗ is removed to improve the readability. The left-hand side of (5.36) is a 9-diagonal

matrix per velocity component, which becomes a 15-diagonal matrix per velocity

component in 3D. The linear system is solved by the Gauss-Seidel algorithm.

5.6.4 Discretization of the pressure Poisson equation on irregular domains

With the discretized convection and diffusion terms available, U
∗ is known from

(5.7), allowing the Poisson equation (5.9) for pressure can be solved. Ng et al.

2009 [65], Gibou & Min 2012 [38], Lepilliez et al. 2015 [52] discretize (5.9) for all

grid-cells, even for the cut-cells where the Neumann condition is satisfied.

By a finite volume approach, let’s integrate the left-hand side of (5.9) and apply

the divergence theorem.

‹

Ωij∪Ωf

∇ ·
(
∇p
ρ

)
dA =

˛

∂(Ωij∪Ωf)
n ·
(
∇p
ρ

)
dl (5.40)

with dA and dl are the differential area and length, respectively. Likewise, for the

right-hand side of (5.9), we have

‹

Ωij∪Ωf

∇ · U
∗dA =

˛

∂(Ωij∪Ωf)
n · U

∗dl (5.41)
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To estimate each component of ∂
(
Ωij ∩Ωf

)
in (5.40) and (5.41), the fluid fraction

function θ is required. Simply, θ is the ratio between the fluid portion over a cell

face and the cell face area (Fig. 5.5). Refer to § 5.5.2 for its approximation. We

obtain

−

˛

∂(Ωij∪Ωf)
n ·
(
∇p
ρ

)
dl ≈ −

˛

Γ ib∪Ωf

n ·
(
∇p
ρ

)
dl

+

θu
i−12 j

ρ
i−12 j

(
pij − pi−1j

∆x

)
+

θu
i+12 j

ρ
i+12 j

(
pij − pi+1j

∆x

)

+

θv
ij−12

ρ
ij−12

(
pij − pij−1

∆y

)
+

θv
ij+12

ρ
ij+12

(
pij − pij+1

∆y

)

(5.42)

where ρ
i−12 j

, for example, is the mass density of the volume which consists of the

left half of the grid-cell Ωij and the right half of the grid-cell Ωi−1j.

Similarly,

−

˛

∂(Ωij∪Ωf)
n · U

∗dl =−

˛

Γ ib∪Ωf

n · U
∗dl

+ θu
i−12 j

u∗
i−12 j

− θu
i+12 j

u∗
i+12 j

+ θv
ij−12

v∗
ij−12

− θv
ij+12

v∗
ij+12

(5.43)

We combine (5.42) and (5.43) and use the Neumann condition (5.10) to simplify

the terms in boxes.

θu
i−12 j

ρ
i−12 j

(
pij − pi−1j

∆x

)
+

θu
i+12 j

ρ
i+12 j

(
pij − pi+1j

∆x

)
+

θv
ij−12

ρ
ij−12

(
pij − pij−1

∆y

)
+

θv
ij+12

ρ
ij+12

(
pij − pij+1

∆y

)
=

θu
i−12 j

u∗
i−12 j

− θu
i+12 j

u∗
i+12 j

+ θv
ij−12

v∗
ij−12

− θv
ij+12

v∗
ij+12

(5.44)

According to Ng et al. 2009 [65], Gibou & Min 2012 [38], Lepilliez et al. 2015

[52], the above linear system is symmetric positive definite and therefore can be

inverted efficiently by classical methods.
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5.6.5 Contact angle

Section § 5.6.3 points out that the surface tension term needs to be discretized

(5.36) to deduce the intermediate velocity field. When both fluid interface and wall

boundaries are found in the same cell, a contact angle, which is the angle between

Γ and Γ ib, is enforced to calculate the value the level-set function inside the cut-

cells and in the solid media in order to know nΓ and κ. In addition, in § 5.6.6,

the level-set function is extrapolated inside the cut-cells to transport the liquid-

gas interface. Within this purpose, we extrapolate the level-set function φ into not

only the cut-cells but also the solid media, thus impose its gradient. The extension

procedure is conducted as follows. When the equilibrium state is reached, a static

contact angle θc is enforced to obtain a Neumann boundary condition on the fluid

level-set function.

n
ib · ∇φ = cos (θc) (5.45)

θc depends on the interactions between the fluid flow and the solid wall and is

supposed to be known a priori. The multidimensional extrapolation proposed in

Aslam 2004 [2] allows to extend φ into the solid and to impose a gradient of φ

near the solid boundary, i.e. to fulfil the condition (5.45).

∂φ

∂τ
+H (φs)ns · ∇φ = cos (θc) (5.46)

where τ a fictitious time step and H (φs) a Heaviside function. (5.46) is applied

only on solid cells. We implement a 3rd order Total Variation Diminishing (TVD)

Runge-Kutta for the temporal discretization. The gradient term is treated by a 2nd

order upwind scheme.

Notice that a dynamic contact angle should be imposed to account for the physics

of the contact point (in 2D) or the contact line (in 3D) between the three phases.

However, due to its dependence on the flow, the properties of liquid, gas and solid,

modelling of dynamic contact angles is complex and thus out of the scope of our

study.
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5.6.6 Transport of the liquid-gas interface inside cut-cells

Remark that within the framework of the finite difference method, the velocity

components are located in the center of the cell faces. Therefore, they do not exist

when more than a half of the cell face is covered by the solid (Fig. 5.5). Two

cases can be distinguished while transporting the liquid-gas interface inside the

cut-cells.

When the solid covers more than a half of the cell volume, we first use (5.21) to

transport only the level-set function inside the grid-cells which are adjacent to

the cut-cells. After that, the level-set function is then extrapolated to the cut-cells

following Aslam 2004 [2] (refer to § 5.6.5). Finally, the value of the volume-of-fluid

function inside the cut-cells is derived from the level-set function thanks to the

open source VOFTOOLSTM (Lopez & Hernandez 2008 [54]).

On the other hand, when the solid covers less than a half of the cell volume, the

volume-of-fluid function is transported as usual.

103



5.7 immersed boundary method for two-phase flows

finite volume method

The essential feature of the immersed boundary method presented within the

framework of the finite difference method in the previous section is the implicit

resolution of the diffusion term to ensure the no-slip boundary condition on the

solid frontier as well as the symmetric, positive and definite discretization of the

Poisson equation able to be rapidly solved by the classical methods. However,

while transporting the liquid-gas interface inside the cut-cells in x−direction, for

example, the color function or the volume-of-fluid function can not be moved by

the velocity component u if the center of the cell face which contains u is located

inside the solid region. As mentioned above, in this case, the level-set function

of the adjacent cells is first transported as usual. Then, the level-set value of the

cut-cell is derived from the Aslam’s extrapolation. And finally, the color function

and the volume-of-fluid function inside the cut-cell is computed from the level-set

value.

To enable the transport of the liquid-gas interface inside the cut-cells and more im-

portantly, to ensure good conservation properties of the numerical schemes, we

adopted the immersed boundary method introduced in Verstappen & Veldman

2003 [100], Cheny & Botella 2010 [10] among others. Note that unlike the last sec-

tion where the finite difference method is used for discretizing the Navier-Stokes,

the finite volume approach of Cheny & Botella 2010 [10] is faithfully presented

here, with some modifications for two-phase flows with irregular solid bound-

aries. It should be underlined that we also cite concerning papers as do Cheny &

Botella 2010 [10] in their article.

5.7.1 Discretization of irregular domains

While applying the finite volume method, scalar variables, i.e. the pressure, the

level-set and volume-of-fluid functions are stored everywhere inside the grid-cell.

x and y-components of the velocity are respectively sampled in the center of the

fluid part of the vertical and horizontal faces. Only one part of the cut-cell Ωij =[
i− 1

2 , i+ 1
2

]
×
[
j− 1

2 , j+ 1
2

]
is covered by the fluid, as shown in Fig. 5.6.
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5.7.3 Discretization for fixed immersed geometries

5.7.3.1 Global conservation laws for viscous incompressible flows

Solving any flow problem consists firstly in using numerical schemes to approxi-

mate continuous fluid dynamics equations. It is required that the former should

conserve the invariants of the latter to physically represent the flow (Arakawa

1966 [1]). To put it more precisely, three invariants are present in (5.47) and (5.48).

• the total mass
´

Ωf
∇ · UdV ;

• the total momentum P (t) =
´

Ωf
ρUdV ;

• and the kinetic energy Ec(t) =
´

Ωf

ρ|U|2

2 dV in the limit of one-phase inviscid

fluid flows.

The conservation equations of these invariants can be established from (5.47) and

(5.48). We have for the total mass,

ˆ

Γ ib
U · ndS = 0 (5.49a)

for the total momentum,

dP

dt
= −

ˆ

Γ ib
ρUU · ndS− F − F

ib
Γ (5.49b)

and for the kinetic energy,

dEc

dt
=

ˆ

Ωf

[(
ρ|U|2

2
+ p

)
∇ · U − µ|∇U|2

]
dV

+

ˆ

Ωf

δΓσκ nΓ · UdV

−

ˆ

Γ ib

(
ρ|U|2

2
+ p− µ∇U

)
U · ndS

(5.50)
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where F = (Fx, Fy) are the hydrodynamic force acting on the immersed boundary

Fx =

ˆ

Γ ib

[
p− 2µ

∂u

∂x

]
ex · ndS−

ˆ

Γ ib
µ

(
∂v

∂x
+
∂u

∂y

)
ey · ndS (5.51a)

Fy =

ˆ

Γ ib

[
p− 2µ

∂v

∂y

]
ey · ndS−

ˆ

Γ ib
µ

(
∂u

∂y
+
∂v

∂x

)
ex · ndS (5.51b)

and F
ib
Γ the force representing the interactions between the liquid-gas interface

and the solid wall. It is implicitly modelled by the contact angle (refer to § 5.6.5)

and ignored hereafter.

In (5.50), all terms of the first volume integral except the viscous dissipation dis-

appear because of (5.47). The total energy of the flow can thus only decrease due

to viscous effects and the surface tension. Moreover, the surface integral in (5.50)

can be discarded. While it expresses the influence of the pressure and convective

terms on the energy budget via their action on the solid frontier only, the latter is

fixed in our case.

The next subsections address the discretization of each term in (5.47) and (5.48) to

verify the conditions (5.49a), (5.49b) and (5.50).

5.7.3.2 Discretization of the continuity equation

We are first interested in the discretization of the continuity equation (5.47) is

discretized. In any fluid cell Ωij whose face is decomposed into Γij = Γwij ∪ Γeij ∪
Γsij ∪ Γnij ∪ Γ ibij , (5.47) can be regarded as the net fluxes through these faces (Fig.

5.7).

q̇ij ≡ −u
i−12 j

+ u
i+12 j

− v
ij−12

+ v
ij+12

= 0 (5.52)

The face-integrated quantity u
i+12 j

through Γeij is related to the discrete unknown

u
i+12 j

at the center the fluid part of the face via the midpoint rule.

u
i+12 j

∼= θu
i+12 j

∆y u
i+12 j

(5.53)
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With the organization of vectors U and V in mind, one can transform DU in (5.55)

into a sum of two component-wise products as

DxU +DyV = DU = O (5.56)

Dx and Dy are the matrices containing the divergence operator applying in x-

and y- velocity components. Both of them are sparse in which the divergence

coefficients are arranged along two red lines as in Figs. 5.9 and 5.10. One can

think of Dx as a set of blocks, counting from 1 to Ny. Dy has two lines of blocks

numbered from 1 to Ny − 1. In a grid-cell ij, the two divergence coefficients for

the component u result simply from the intersection of a horizontal green line

along row i of block j with the two diagonal red lines, which are −∆yθu
i−12 j

and

∆yθu
i+12 j

. The divergence coefficients for the component v can be obtained in a

similar way provided that the divergence coefficients of the discrete values v
ij+12

and v
ij−12

are located in the diagonal of block j and that of its left neighbouring,

respectively. The velocity unknowns are assembled in a unique vector U and the

divergence operator D is built from Dx and Dy.

We now examine if the above discretization of the continuity equation conserves

the total mass. Note that the discrete counterpart of the left-hand side of the total

mass conservation condition (5.49a) is equivalent to the sum across all fluid cells

of the discrete continuity equation (5.54).

q̇ ∼= q̇h ≡
∑

Control volumes Ωij

q̇ij ≡ 1
TDU (5.57)

where 1
T is the constant vector. Thanks to (5.54), the discrete total mass is

q̇h ≡
∑

Control volumes Ωij

[
∆y
(
θu
i+12 j

u
i+12 j

− θu
i−12 j

u
i−12 j

)

+ ∆x
(
θv
ij+12

v
ij+12

− θv
ij−12

v
ij−12

)]

By using the local conservation of the mass fluxes at fluid faces, it is easy to prove

that q̇h = 0, meaning that the total mass is discretely conserved through the above

discretization.
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5.7.3.3 Discretization of the momentum equation based on the conservation of kinetic

energy – Pressure gradient and convective fluxes

Let’s turn to the discretization of the momentum equation (5.48). This is equiva-

lent to dicretize three terms, i.e. the pressure gradient, the convective and viscous

fluxes. While the task for the first two terms has to be done based on the con-

servation of the kinetic energy, one has to use the total momentum conservation

condition to treat the third term. This subsection is intended to takes care of the

pressure gradient and convection terms discretization and leaves the discretiza-

tion of the diffusion term for the next part.

We begin by rewriting (5.48) in a semi-discrete matrix form.

d

dt
(MU) = −C

[
U
]
U− GP+FΓ +KU− Sib,c + Sib,ν (5.58)

where M is the diagonal mass matrix, built from the volume of the fluid cells,

C
[
U
]

the matrix representing the discretization of the convective fluxes, G the dis-

crete pressure gradient, K the matrix representing the discretization of the viscous

fluxes, FΓ the pressure jump across the liquid-gas interface, Sib,c and Sib,ν the

source terms arising from the boundary conditions of the convective and viscous

terms, respectively. These terms will be constructed such that the total momen-

tum and kinetic energy are discretely conserved. We restrict ourselves to fixed

immersed boundaries where Sib,c = O and Sib,ν = O.

The first step is to build M. Applying the trapezoidal rule to each line of (5.58),

one gets the diagonal coefficients in the horizontal and vertical directions.

[Mx]P

(
i+

1

2
j

)
=
1

2
ρijVij +

1

2
ρi+1jVi+1j (5.59a)

[My]P

(
ij+

1

2

)
=
1

2
ρijVij +

1

2
ρij+1Vij+1 (5.59b)

where the subscript P refers to the main diagonal elements. Remark that from

(5.59), in the cut-cells at least, the mass matrix for u
i+12 j

and v
ij+12

is not con-

structed from the actual areas of Ωu
i+12 j

and Ωv
ij+12

.
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Next, we establish the constrains on C
[
U
]
, G and K based on the conservation of

the kinetic energy Ec (t) =
´

Ωf

ρ|U|2

2 dV . The latter is discretized by the trapezoidal

rule in each fluid cell Ωij.

Ec (t) ≡
1

2

∑

Control volumes Ωij

ˆ

Ωij

ρ|U|2dV

∼=
1

2

∑

Control volumes Ωij

[
1

2

(
ρiju

2
i+12 j

Vij + ρi−1ju
2
i−12 j

Vi−1j

)

+
1

2

(
ρij+1v

2
ij+12

Vij+1 + ρij−1v
2
ij−12

Vij−1

)]

(5.60)

In matrix form, (5.60) reads

Ec (t) ∼= Ehc (t) =
1

2
UTMU (5.61)

To obtain the conservation equation for Ehc (t), one first multiply on the left-hand-

side of (5.58) by UT to have

UT
d

dt
(MU) = −UTC

[
U
]
U−UTGP+UTFΓ −UTKU (5.62)

Remark that the transpose of a product of two matrices equals the product of their

transposes in reverse order. The transpose of (5.58) thus becomes

d

dt

(
UTMT

)
= −UTC

[
U
]T

−PTGT +FTΓ −UTKT (5.63)

Multiplying U on the right-hand-side of (5.63), we get

d

dt

(
UTMT

)
U = −UTC

[
U
]T

U−PTGTU+FTΓ U−UTKTU (5.64)

The above-mentioned property of transposed matrices applies once again to give

us

UTGP = UT
[
(GP)T

]T
= UT

[
PTGT

]T
= PTGTU (5.65)

Adding (5.62) to (5.64) and using (5.65), we obtain at last

dEhc
dt

=−UT
C
[
U
]T

+ C
[
U
]

2
U−PTGTU

+
FTΓ U+UTFΓ

2
−UT

KT +K

2
U

(5.66)
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(5.66) must be similar to (5.50) to conserve the kinetic energy. To this end, two

requirements should be satisfied. First, the viscous term −UT
(
KT +K

)
U should

mimic the viscous dissipation of the kinetic energy budget. Thus, it must be neg-

ative and the matrix KT +K positive definite. In the finite-volume method frame-

work, this can be obtained if the discrete diffusive flux is stable and consistent

(Eymard et al. 2000 [34]). Note that the symmetry of K is not necessary. The sec-

ond condition imposes the discretized convective terms to be a skew-symmetric

matrix.

C
[
U
]
= −C

[
U
]T ⇒ −UT

C
[
U
]T

+ C
[
U
]

2
U = 0 (5.67)

and the pressure gradient to be dual to the divergence operator (5.55).

G = −DT ⇒ −PTGTU = PTDU = 0 (5.68)

Under these constrains and when the viscosity and the surface tension disappear,

the kinetic energy budget (5.66) becomes

dEhc
dt

=
FTΓ U+UTFΓ

2
−UT

KT +K

2
U

µ→0−−−→
FTΓ U+UTFΓ

2

σ→0−−−→ 0

(5.69)

It will be seen that the constrains established here enable the discretization of the

pressure gradient and the convective fluxes in the next paragraphs.

Discretization of the pressure gradient

Thanks to (5.54) and (5.55), one can write the divergence operator in x-contribution

as in Fig 5.9. (5.68) indicates that the x- and y-components of the discrete pressure

gradient in Ωu
i+12 j

and in Ωv
ij+12

should be

ˆ

Γu
i+1
2
j

pex · ndS ∼= [GxP]
i+12 j

= θu
i+12 j

∆y
(
pi+1j − pij

)
(5.70a)

ˆ

Γv
ij+1

2

pey · ndS ∼= [GyP]
ij+12

= θv
ij+12

∆x
(
pij+1 − pij

)
(5.70b)

Two cases should be distinguished while examining (5.70a).
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In a Cartesian fluid cell far from the immersed boundary (θu
i+12 j

= 1), one could

find again the finite-difference gradient of the MAC method.

[GxP]
i+12 j

=
pi+1j − pij

∆x
[Mx]P

(
i+

1

2
j

)

where [Mx]P
(
i+ 1

2 j
)
= ∆x×∆y for the Cartesian control volume Ωu

i+12 j
.

Meanwhile, in a cut-cell, it is not possible to interpret (5.70) as finite-difference

quotients for pij located at the centroids of the cut-cells. Instead, pij is an approx-

imation of the pressure everywhere inside the control volume Ωij, even on its

solid face. This is equivalent to the zero pressure gradient boundary condition on

solid frontier. We shall see later that the normal viscous stresses are discretized in

the same manner (§ 5.7.3.4).

As with discrete velocity components, the discrete values pij are stored in a vector

P. Like U for the x− velocity components, P is built by sweeping the MAC grid

in 5.8 horizontally followed by vertically. In consequence, one gets the discrete

pressure gradient expressed by the matrix GP. Similar to DU, it can be rewritten

as the sum of GxP and GyP with Gx and Gy in comparable structure to that of Dx

and Dy.

Skew-symmetric discretization of the convective fluxes

We have stated lately that the discretized convective term should be a skew-

symmetric matrix so as to satisfy (5.72). For this to be done, we first discretize

the momentum equation, then impose a skew-symmetric properties to the dis-

cretization of the convective term.

The first step is carried out by the five-point scheme, chosen because of its simplic-

ity. We present hereafter the discretization of (5.48a) in the x-direction but that in

y-direction should be analogous. Cartesian fluid cells are also distinguished from

cut-cells.
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consists in decomposing the convective term into net fluxes through four elemen-

tary faces of the cell.

ˆ

Γu
i+1
2
j

(U · n) ρudS = −

ˆ

Γu,w
i+1
2
j

(U · ex) ρudy+

ˆ

Γu,e
i+1
2
j

(U · ex) ρudy

−

ˆ

Γs,e
ij ∪Γs,w

i+1j

(U · ey) ρudx+

ˆ

Γn,e
ij ∪Γn,w

i+1j

(U · ey) ρudx

(5.73)

Each term in (5.73) is discretized with help of the discrete fluxes (5.53). Through

the east face, for example, it reads

ˆ

Γu,e
i+1
2
j

(U · ex) ρudy ∼=
ρ
i+12 j

u
i+12 j

+ ρ
i+32 j

u
i+32 j

2
ue (5.74)

where ue is a characteristic value of u on Γu,e
i+12 j

, derived from the interpolation

of the discrete velocity unknowns. Verstappen & Veldman [100] cite that the only

possible way to verify the skew-symmetric conditions of (5.72) is the central inter-

polation with equal weighting as

ue =
u
i+12 j

+ u
i+32 j

2
(5.75)

Proceeding in the same way for the other faces, one should get for instance on the

south face

ˆ

Γs,e
ij ∪Γs,w

i+1j

(U · ey) ρudx ∼=
ρ
ij−12

v
ij−12

+ ρ
i+1j−12

v
i+1j−12

2
us (5.76)

with us =
u
i+1
2
j−1

+u
i+1
2
j

2 . The local conservation of the fluxes through fluid faces

leads to

ˆ

Γu,w
i+1
2
j

(U · ex) ρudy =

ˆ

Γu,e
i−1
2
j

(U · ex) ρudy (5.77a)

ˆ

Γn,e
ij

(U · ey) ρudx =

ˆ

Γs,e
ij+1

(U · ey) ρudx (5.77b)
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By comparing (5.77) to (5.71), we have

C
[
U
]
P

(
i+

1

2
j

)
=
1

4
ρijq̇ij +

1

4
ρi+jq̇i+1j (5.78a)

C
[
U
]
E

(
i+

1

2
j

)
=
1

4
ρ
i+12 j

u
i+12 j

+
1

4
ρ
i+32 j

u
i+32 j

(5.78b)

C
[
U
]
W

(
i+

1

2
j

)
= −

1

4
ρ
i−12 j

u
i−12 j

−
1

4
ρ
i+12 j

u
i+12 j

(5.78c)

C
[
U
]
N

(
i+

1

2
j

)
=
1

4
ρ
ij+12

v
ij+12

+
1

4
ρ
i+32 j

v
i+32 j

(5.78d)

C
[
U
]
S

(
i+

1

2
j

)
= −

1

4
ρ
ij−12

v
ij−12

−
1

4
ρ
i+1j−12

v
i+1j−12

(5.78e)

The above discretization coefficients satisfy the skew-symmetry conditions (5.72)

because the discrete continuity equation is verified in Ωij and Ωi+1j, i.e. q̇ij = 0

and q̇i+1j = 0, respectively (refer to (5.52) or (5.54)).

The skew-symmetry discretization (5.71) and (5.78) are for the Cartesian control

volume Ωu
i+12 j

in Fig. 5.11. With regard to a cut-cell, attention needs to be paid to

the boundary conditions on the solid frontier. Unlike the pressure gradient where

a unique formula is valid for all cut-cells (5.70), the discretization here should be

constructed in each of the half generic control volumes such as (5.67) be verified

for any combinations of these half control volumes.

Let’s consider, for example, the control volume Ωu
i+12 j

in Fig. 5.7, whose north

solid boundary Γ ib,e
ij ∪ Γ ib,w

i+1j is built from two halves of trapezoidal cut-cells. The

discretization of the convective term in Ωu
i+12 j

is

ˆ

Γu
i+1
2
j

(U · n) ρudS ∼= C
[
U
]
W

(
i+

1

2
j

)
u
i−12 j

+ C
[
U
]
E

(
i+

1

2
j

)
u
i+32 j

+ C
[
U
]
S

(
i+

1

2
j

)
u
i+12 j−1

+ C
[
U
]
P

(
i+

1

2
j

)
u
i+12 j

(5.79)

where C
[
U
]
N

(
i+ 1

2 j
)

is discarded since the velocity unknown u
i+12 j+1

does not

exist. In this case, (5.67) becomes

C
[
U
]
P

(
i+

1

2
j

)
= 0, C

[
U
]
E

(
i+

1

2
j

)
= −C

[
U
]
W

(
i+

3

2
j

)
(5.80)
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To obtain the discretization satisfying (5.80), we decompose the boundary of the

control volume as

Γu
i+12 j

= Γu,w
i+12 j

∪ Γu,e
i+12 j

∪
(
Γs,e
ij ∪ Γs,w

i+1j

)
∪
(
Γ ib,e
ij ∪ Γ ib,w

i+1j

)
(5.81)

and write the convective term as the net flux through each of these faces.

ˆ

Γu
i+1
2
j

(U · n) ρudS = −

ˆ

Γu,w
i+1
2
j

(U · ex) ρudy+

ˆ

Γu,e
i+1
2
j

(U · ex) ρudy

−

ˆ

Γs,e
ij ∪Γs,w

i+1j

(U · ey) ρudx+

ˆ

Γ ib,e
ij ∪Γ ib,w

i+1j

(
U · n

ib
)
ρudS

(5.82)

The fluxes through each of the fluid faces are given by (5.74), (5.76) and (5.77),

whereas those through each half of solid face Γ ib,e
ij and Γ ib,w

i+1j are nil. We thus

have

ˆ

Γ ib,e
ij

(
U · n

ib
ij

)
ρudS = 0,

ˆ

Γ ib,w
i+1j

(
U · n

ib
i+1j

)
ρudS = 0 (5.83)

The discretization of the convective term in this control volume is also given by

(5.78), with the exception that

C
[
U
]
N

(
i+

1

2
j

)
= 0 (5.84)

The skew-symmetry conditions (5.80) for cut-cells are therefore verified. Similar

processes are applied for the other types of half control volumes.

5.7.3.4 Discretization of the momentum equation based on the conservation of total mo-

mentum – Viscous fluxes

The third term of the momentum equation (5.48) to be discretized is the viscous

fluxes. Unlike the discretization of the pressure gradient and the convection term

which is based on the kinetic energy conservation, that of the viscous fluxes is

carried out thanks to the conservation of the total momentum.
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From Fig. 5.13, we have

ˆ

Γu,w
i+1
2
j

2µ
∂u

∂x
ex · ndS ∼= 2µ ∆y

u,w
i+12 j

u
i+12 j

− u
i−12 j

∆x
(5.88)

where the area ∆yu,w
i+12 j

is yet to be defined. According to Cheny & Botella 2010 [10]

and Eymard et al. 2000 [34], since the line joining the location of u
i−12 j

and u
i+12 j

is not orthogonal to the west face Γu,w
i+12 j

in the trapezoidal cut-cell of Fig. 5.13, our

mesh is not admissible for the normal stresses in the cut-cells and therefore make

(5.88) inconsistent and yields large numerical errors.

Based on the requirement that the discrete normal stresses should be consistent

with the discrete pressure, one can improve the consistency of the discretization

of
´

Γu
i+1
2
j

2µ∂u∂x ex · ndS by discretizing the normal stress fluxes in a similar way

to the pressure gradient as in (5.70a). We then have

ˆ

Γu
i+1
2
j

2µ
∂u

∂x
ex ·ndS ∼= θu

i+12 j
∆y

(
2µ (φ)i+1j

∂u

∂x

∣∣∣∣
i+1j

− 2µ (φ)ij
∂u

∂x

∣∣∣∣
ij

)
(5.89)

All terms in (5.89) are directly available except a differential quotient for ∂u
∂x

∣∣
ij

which need to be calculated. To this end, the Green’s theorem has to be valid at

the discrete level in a cut-cell.

ˆ

Ωij

(
∂u

∂x
+
∂v

∂y

)
dV =

ˆ

Γij

U · ndS (5.90)

Next, we discretize the left-hand side of (5.90) to get

ˆ

Ωij

(
∂u

∂x
+
∂v

∂y

)
dV =

(
∂u

∂x

∣∣∣∣
ij

+
∂v

∂y

∣∣∣∣
ij

)
Vij (5.91)

Finally, by combining (5.91) with the continuity equations (5.47), (5.52) and (5.54),

we obtain

∂u

∂x

∣∣∣∣
ij

∼=

θu
i+12 j

u
i+12 j

− θu
i−12 j

u
i−12 j

Vij/∆y
(5.92a)

121



An analogous expression holds for ∂v
∂y

∣∣∣
ij

.

∂v

∂y

∣∣∣∣
ij

∼=

θv
ij+12

v
ij+12

− θv
ij−12

v
ij−12

Vij/∆x
(5.92b)

(5.92) formulae are valid for any cut-cells, with the boundary conditions natu-

rally embedded. They also become the standard finite-difference quotients for all

Cartesian fluid cells (Okajima 1982 [68]).

A first discretization of the shear stress fluxes

As stated by Cheny & Botella 2010 [10], unlike the normal stress flux, our mesh

is admissible for the shear stress flux
´

Γu
i+1
2
j

µ
(
∂v
∂x +

∂u
∂y

)
ey · ndS (see Fig. 5.7),

allowing to write its discretization as the net flux through the north and south

faces. Again, we separate fluid cells from cut-cells in our consideration.

For a Cartesian fluid cell far from the immersed boundary, we have

ˆ

Γu
i+1
2
j

µ

(
∂v

∂x
+
∂u

∂y

)
ey · ndS =

ˆ

Γn,e
ij ∪Γn,w

i+1j

µ

(
∂v

∂x
+
∂u

∂y

)
dx

−

ˆ

Γs,e
ij ∪Γs,w

i+1j

µ

(
∂v

∂x
+
∂u

∂y

)
dx

(5.93)

Applying the midpoint rule for the north face, for instance, one gets

ˆ

Γn,e
ij ∪Γn,w

i+1j

µ

(
∂v

∂x
+
∂u

∂y

)
dx ∼=

(
∆xn,e
ij +∆xn,w

i+1j

)
µ (φ)

i+12 j+
1
2

(
∂v

∂x

∣∣∣∣
i+12 j+

1
2

+
∂u

∂y

∣∣∣∣
i+12 j+

1
2

) (5.94)

where the areas ∆xn,e
ij and ∆xn,w

i+1j represent only the fluid part of the faces to

ensure the local conservation of the fluxes.

∆xn,e
ij =

1

2
θv
ij+12

∆x, ∆xn,w
i+1j =

1

2
θv
i+1j+12

∆x (5.95)

The quotients ∂v∂x
∣∣
i+12 j+

1
2

and ∂u
∂y

∣∣∣
i+12 j+

1
2

, located at the upper right corner of cell

Ωij (see Fig. 5.12), are computed by differentiating the interpolation polynomial
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of v
(
·,y
j+12

)
and u

(
x
i+12

, ·
)

in the horizontal and vertical directions, respectively.

This results in

∂v

∂x

∣∣∣∣
i+12 j+

1
2

=
v
i+1j+12

− v
ij+12

1
2θ
v
i+1j+12

∆x+ 1
2θ
v
ij+12

∆x

∂u

∂y

∣∣∣∣
i+12 j+

1
2

=
u
i+12 j+1

− u
i+12 j

1
2θ
u
i+12 j+1

∆y+ 1
2θ
u
i+12 j

∆y

(5.96)

which is similar to the usual one (5.87). The last three expressions (5.94), (5.95)

and (5.96) are for the Cartesian cell of Fig. 5.12, but still valid when u
i+12 j+1

is

present in the fluid domain or when θu
i+12 j+1

> 0.

The properties of a cut-cell like the one in Fig. 5.13, having its solid north face

or u
i+12 j+1

does not exist or θu
i+12 j+1

= 0, requires us to take into account the

boundary conditions. (5.94), (5.95) and (5.96) are thus adapted based on the ghost

fluid method for elliptic equations (Gibou et al. 2002 [39]). On the north face of

the above cut-cell, one should get

ˆ

Γ ib,e
ij ∪Γ ib,w

i+1j

µ

(
∂v

∂x
+
∂u

∂y

)
dx ∼=

(
∆xib,e
ij +∆xib,w

i+1j

)
µ (φ)

i+12 j+
1
2

(
∂v

∂x

∣∣∣∣
i+12 j+

1
2

+
∂u

∂y

∣∣∣∣
i+12 j+

1
2

) (5.97)

with ∂v
∂x

∣∣
i+12 j+

1
2

as in (5.96) and ∂u
∂y

∣∣∣
i+12 j+

1
2

calculated by the one-sided differen-

tial quotient as

∂u

∂y

∣∣∣∣
i+12 j+

1
2

=
−u

i+12 j

1
2θ
u
i+12 j

∆y
(5.98)

Note that in (5.97), the integration areas ∆xib,e
ij and ∆xib,w

i+1j on the solid face are

yet to be defined.

The discretization of the viscous term has a nine-point structure. For the cut-cell

in Fig. 5.14 whose north face is solid or u
i+12 j+1

does not exist or θu
i+12 j+1

= 0,
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with

KW

(
i+

1

2
j

)
= 2µ (φ)ij

θu
i+12 j

θu
i−12 j

∆y

Vij/∆y
(5.100a)

KE

(
i+

1

2
j

)
= 2µ (φ)i+1j

θu
i+12 j

θu
i+32 j

∆y

Vi+1j/∆y
(5.100b)

KS

(
i+

1

2
j

)
= µ (φ)

i+12 j−
1
2

2∆x

θu
i+12 j

∆y+ θu
i+12 j−1

∆y
(5.100c)

KP

(
i+

1

2
j

)
= −2µ (φ)ij

(
θu
i+12 j

)2
∆y

Vij/∆y
− 2µ (φ)i+1j

(
θu
i+12 j

)2
∆y

Vi+1j/∆y

−KS

(
i+

1

2
j

)

− µ (φ)
i+12 j+

1
2

∆xib,e
ij +∆xib,w

i+1j

1
2θ
u
i+12 j

∆y
(5.100d)

KSW

(
i+

1

2
j

)
= µ (φ)

i+12 j−
1
2

(5.100e)

KSE

(
i+

1

2
j

)
= −KSW

(
i+

1

2
j

)
(5.100f)

KNW

(
i+

1

2
j

)
= 0 (5.100g)

KNE

(
i+

1

2
j

)
= −KNW

(
i+

1

2
j

)
(5.100h)

Remark that the discretization is symmetric, i.e. KW
(
i+ 3

2 j
)
= KE

(
i+ 1

2 j
)
, simi-

lar to the MAC method.

We finish the discretization of the shear stresses in cut-cells by the determination

of the integration areas ∆xib,e
ij and ∆xib,w

i+1j in (5.97). Remember that their determi-

nation is based on the fact that the shear stress fluxes at the immersed boundary

must correspond to the discretization of the shear part of the hydrodynamic forces

(5.51). More specifically, this is equivalent to the discrete conservation of the total

momentum. Detail to follow.
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Discrete conservation of total momentum and computation of hydrodynamic forces

Like the kinetic energy (refer to § 5.7.3.3), the total momentum P (t) =
´

Ωf
ρUdV

is discretized under the trapezoidal rule as

P (t) ∼= P
h (t) = 1

TMU (5.101)

where 1 is the constant vector. Multiplying the semi-discrete scheme (5.58) with

vector 1 to obtain the conservation equation for P
h (t) as

dP
h

dt
= −1

TC
[
U
]
U−

[
1
TGP− 1

TKU
]
− 1

TFΓ (5.102)

which indeed is the semi-discrete version of (5.49b). Its quadratic terms in the

right-hand side correspond to the summation of the convective, pressure, pres-

sure jump and viscous fluxes across all control volumes. Since the flux local con-

servation holds at every fluid faces, all terms cancel out except those appearing at

solid boundary faces of the cut-cells. As previously mentioned, these remaining

terms should correspond to the forces acting on the immersed boundary. There-

fore, the non-zero terms in the sum
[
1
TGP− 1

TKU
]

must be consistent with the

discretization of the hydrodynamic force (5.51). Let’s examine this condition in

two steps.

First, the discretization of the hydrodynamic force is obtained by approximating

the surface integrals in (5.51a) and (5.51b), respectively as

Fhx =
∑

Cut-cells Ωij

[nx∆S]
ib
ij

(
pij − 2µ

∂u

∂x

∣∣∣∣
ij

)

− Quadibij

(
µ

(
∂v

∂x
+
∂u

∂y

)
ey · n

)
(5.103a)

Fhy =
∑

Cut-cells Ωij

[ny∆S]
ib
ij

(
pij − 2µ

∂v

∂y

∣∣∣∣
ij

)

− Quadibij

(
µ

(
∂u

∂y
+
∂v

∂x

)
ex · n

)
(5.103b)

Here, the quadrature of the pressure and normal stress term is obtained by using

the midpoint rule and based on the fact that these terms are constant in the cut-

cells. As a result, the same formula is valid for all types of cut-cells. Meanwhile,
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the quadrature of the shear stresses (denoted by Quadibij ) has to be adapted to

each type of cut-cells. This quadrature, based on the location of the shear stresses

in Fig. 5.14 and the trapezoidal rule. For example, the portion of drag and lift

acting on the solid part of the trapezoidal cut-cell of Fig. 5.14 is, respectively

Fhx

∣∣∣
ij

=
∑

Cut-cells Ωij

(
θu
i−12 j

− θu
i+12 j

)
∆y

[
pij − 2µ (φ)ij

∂u

∂x

∣∣∣∣
ij

]

−
∆x

2

[
µ (φ)

i−12 j+
1
2

∂v

∂x

∣∣∣∣
i−12 j+

1
2

+ µ (φ)
i+12 j+

1
2

∂v

∂x

∣∣∣∣
i+12 j+

1
2

]
(5.104a)

−
∆x

2

[
µ (φ)

i−12 j+
1
2

∂u

∂y

∣∣∣∣
i−12 j+

1
2

+ µ (φ)
i+12 j+

1
2

∂u

∂y

∣∣∣∣
i+12 j+

1
2

]

Fhy

∣∣∣
ij

=
∑

Cut-cells Ωij

∆x

[
pij − 2µ (φ)ij

∂v

∂y

∣∣∣∣
ij

]
(5.104b)

−

(
θu
i−12 j

− θu
i+12 j

)
∆y

2

[
µ (φ)

i−12 j+
1
2

∂u

∂y

∣∣∣∣
i−12 j+

1
2

+ µ (φ)
i+12 j+

1
2

∂u

∂y

∣∣∣∣
i+12 j+

1
2

]

−

(
θu
i−12 j

− θu
i+12 j

)
∆y

2

[
µ (φ)

i−12 j+
1
2

∂v

∂x

∣∣∣∣
i−12 j+

1
2

+ µ (φ)
i+12 j+

1
2

∂v

∂x

∣∣∣∣
i+12 j+

1
2

]

Second, return to the quadratic terms in the right-hand side of (5.102) that need

to be discretized. These terms correspond to the summation of the convective,

pressure and viscous fluxes from all control volumes. Their contribution in the

x-direction is

[
1
TGP− 1

TKU
]∣∣∣
x
=

∑

Control volumes Ωu
i+1
2
j

ˆ

Γu
i+1
2
j

[
p− 2µ

∂u

∂x

]
ex · ndS

−

ˆ

Γu
i+1
2
j

µ

(
∂v

∂x
+
∂u

∂y

)
ey · ndS

(5.105)

which should certainly match the drag force Fhx coming from (5.103a). We will

inspect separately the normal stresses and the shear stresses.
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Let’s put it in more detail. Since a unique formula (5.70) and (5.92) is valid in all

computational cells, the contribution of the normal stresses is

∑

Control volumes Ωu
i+1
2
j

θu
i+12 j

∆y

[
pi+1j − pij

−

(
2µ (φ)i+1j

∂u

∂x

∣∣∣∣
i+1j

− 2µ (φ)ij
∂u

∂x

∣∣∣∣
ij

)] (5.106)

Re-indexing (5.106) to layout a sum across all cells, one has the pressure and

normal stresses cancelled out in fluid cells such that θu
i+12 j

= θu
i−12 j

= 1, while

keeping only the following terms in cut-cells

∑

Cut-cells Ωij

(
θu
i−12 j

− θu
i+12 j

)
∆y

(
pij − 2µ (φ)ij

∂u

∂x

∣∣∣∣
ij

)
(5.107)

This is exactly the contribution of the normal stresses to the discrete drag force

(5.103a). A similar inspection holds for the lift component (5.103b). Altogether, the

total momentum budget is proved to be recovered.

With reference to the shear stresses, since only fluxes at the immersed boundary

are maintained in (5.105) as those at all fluid faces counterbalance one another, one

might write their exact expression depending on the type of cut-cell. For example,

on the solid part Γ ib,w
ij ∪ Γ ib,e

ij of the cut-cell Ωij in Fig. 5.14, we use (5.97) for

writing the shear stress contribution as

−

[
∆xib,w
ij µ (φ)

i−12 j+
1
2

∂u

∂y

∣∣∣∣
i−12 j+

1
2

+∆xib,e
ij µ (φ)

i+12 j+
1
2

∂u

∂y

∣∣∣∣
i+12 j+

1
2

]

−

[
∆xib,w
ij µ (φ)

i−12 j+
1
2

∂v

∂x

∣∣∣∣
i−12 j+

1
2

+∆xib,e
ij µ (φ)

i+12 j+
1
2

∂v

∂x

∣∣∣∣
i+12 j+

1
2

] (5.108)

A comparison with the drag force (5.104a) is enough to deduce the integration

areas of the shear stress as

∆xib,w
ij = ∆xib,e

ij =
∆x

2
(5.109)

A similar inspection is possible for the other type of cut-cells for the shear stress

flux
´

Γ ib,e
ij ∪Γ ib,w

i+1j

∂u
∂ydx and

´

Γ ib,n
ij ∪Γ ib,s

ij+1

∂v
∂xdy.
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5.7.3.5 Pressure Poisson equation

According to Cheny & Botella 2010 [10], the Poisson equation for pressure is:

AP = DU∗ (5.110)

where U∗ is a vector containing the intermediate velocities and A a pentagonal

and symmetric matrix with

AE(i, j) =

(
θu
i+12 j

∆y

)2

1
2ρijVij +

1
2ρi+1jVi+1j

, AW(i, j) = AE(i− 1, j) (5.111a)

AN(i, j) =

(
θv
ij+12

∆x

)2

1
2ρijVij +

1
2ρij+1Vij+1

, AS(i, j) = AN(i, j− 1) (5.111b)

AP(i, j) = −AE(i, j) −AW(i, j) −AN(i, j) −AS(i, j) (5.111c)

Like the linear system (5.44) of the finite difference method in § 5.6, (5.111) can

easily be solved by classical methods.

5.7.4 Transport of the liquid-gas interface inside cut-cells

The transport of the liquid-gas interface, as described in § 5.4.3, is not applicable

for cut-cells and thus need to be modified.

To transport the level-set function φ, the divergence operator in (5.22) is similar

to the one applied on the pressure. Hence, the transport in x−direction (5.22a)

becomes

φ̃ij =

φnij +
∆t
∆x

(
G
φ

i−12 j
−G

φ

i+12 j

)

1− ∆t
∆x

(
θu
i+12 j

u
i+12 j

− θu
i−12 j

u
i−12 j

) (5.112)

where Gφ
i−12 j

, for example, is the flux from the left face of the grid-cell Ωij being

calculated in the same manner as in § 5.4.3.
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In y−direction, the transport equation (5.22b) evolves into

φ̂ij =

φ̃ij +
∆t
∆y

(
G̃
φ

i−12 j
− G̃

φ

i+12 j

)

1− ∆t
∆y

(
θv
ij+12

v
ij+12

− θv
ij−12

v
ij−12

) (5.113)

The level-set in the next time step is thus

φn+1ij = φ̂ij − φ̃ij
∆t

∆x

(
θu
i+12 j

u
i+12 j

− θu
i−12 j

u
i−12 j

)

− φ̂ij
∆t

∆y

(
θv
ij+12

v
ij+12

− θv
ij−12

v
ij−12

) (5.114)

The advection of the volume-of-fluid function F inside the cut-cells is made possi-

ble with help of some modifications. The integrals of (5.29) are now approximated

differently, containing the divergence operator similar to that of the pressure gra-

dient, as follow

ˆ

Γij

cudy ∼= cij∆y
(
θu
i+12 j

u
i+12 j

− θu
i−12 j

u
i−12 j

)
(5.115a)

ˆ

Γij

cvdx ∼= cij∆x
(
θv
ij+12

v
ij+12

− θv
ij−12

v
ij−12

)
(5.115b)

Changes involve the flux computation as well. For instance, let’s consider the

liquid flux GF
i−12 j

(5.29a) coming from the adjacent cell on the left when u
i−12 j

> 0

(Fig. 5.15). The liquid of the cell i − 1j is marked by the spotted surface. The

part limited by the dotted rectangular of is solely taken into account. Its area is

assumed to be A. The rectangular size is θu
i−12 j

∆y × u
i−12 j

∆t where ∆y is the

spatial resolution in y−axis and u
i−12 j

∆t corresponds to the travelling path of a

fluid particle of a velocity u
i−12 j

during a time interval ∆t. However, we determine

a trapeze so as its area is equal to that of the rectangular thanks to the secant

algorithm. The liquid area is now Â. This results in the flux GF
i−12 j

given by the

following formula

GF
i−12 j

= θu
i−12 j

∆y× u
i−12 j


 Â

|θu
i−12 j

∆y× u
i−12 j

∆t|


 (5.116)
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5.8 validations

We aim to validate the immersed boundary methods by using two well-documented

configurations. First, simulations of the flow passing a cylinder are performed to

evaluate the one-phase flow solver. Second, for a two-phase flow problem, we

analyse a liquid drop placed on a slanted wall. Comparisons are made with other

studies found in the literature, collected from Noël 2012 [66].

5.8.1 Flow passing a circular cylinder

5.8.1.1 Description of the flow

The flow pattern around a still circular solid body is only affected by the Reynolds

number, defined from three parameters: the upstream velocity U∞, the diameter

D of the obstacle, the mass density ρ and the dynamic viscosity µ of the fluid.

Re =
ρU∞D

µ
(5.117)

The Reynolds number increases when one carries out each of these four actions:

accelerating the flow, amplifying the fluid mass density, reducing the fluid viscos-

ity, or using a larger body size. The change in the flow field due to such a hike

in Reynolds number signifies that the latter represents a dimensionless number.

Three regimes can be observed.

Figure 5.16: Flow passing a circular cylinder at Re = 1.54. Streamlines made visible by
aluminium powder in water. Photograph by S. Taneda [30]

Regime A corresponds to the described flow at a very low Reynolds number (Fig.

5.16). The symmetry of the streamlines is clear not only around the cylinder’s
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upper to lower side but also between its front to rear. The flow does not separate

at its rear.

Figure 5.17: Steady vortices at the rear of the cylinder at a higher Reynolds number. Pho-
tograph from Rensselaer Polytechnic Institute [79]

Regime B As the Reynolds number increases, the front to rear symmetry disap-

pears, and the interval of the streamlines of the cylinder’s rear flow widens. Be-

yond a critical value of the Reynolds number, a closed region of the streamlines

is generated behind the obstacle (see Figure 5.17). The fluid in the upper half of

this region rotates clock-wisely while that in the lower half moves in the opposite

direction. Twin-vortices are thus created and attach stably to the solid body.

Figure 5.18: Von Karman vortex street behind a circular cylinder at Re = 140. Water flow-
ing at 1.4 cm s−1 past a cylinder of diameter 1 cm. Integrated streamlines
shown by electrolytic precipitation of a white colloidal smoke, illuminated by
a sheet of light. Photograph by S. Taneda [92]

Regime C The vortex length grows when the Reynolds number is raised further.

When the latter exceeds a certain limit, the rear flow becomes unstable and the

vortex begins to oscillate up and down (Fig. 5.18). The fully formed vortex is

carried away, then expands on the main flow before finally dissipating and leaving

the cylinder. In addition, every pair of upper and lower vortices is stored in an

alternative regular array to form twin rows of vortices, usually called the von

Karman vortex street.
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other authors. Furthermore, the drag and lift coefficients of two regimes B and

C are close to values found in the literature (Tab. 5.3). For illustration purpose,

CD and CL are plotted over time in Fig. 5.23. Remark that the drag coefficient

at Re = 100 reach a stable value after a certain duration while the lift coefficient

oscillates around zero.

Figure 5.21: Vortices behind the cylinder at Re = 40 (FVM M1)

Figure 5.22: Velocity field at Re = 100 (FVM M1)

(a) CL (b) CD

Figure 5.23: Drag and lift coefficients at Re = 100 (FVM M2)
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Re = 20 L [m] a [m] b [m] θ [o]

Xu 2008 [105] 0.93 0.36 0.43 44

Ye et al. 1999 [107] 0.92 − − −

Xie & Desjardin 2008 [104] 1 − − 43.9
Coutanceau & Bouard 1977 [16] † 0.93 0.33 0.46 45

Xu & Wang 2006 [106] 0.92 − − 44.2
Choi et al. 2007 [12] 0.90 − − 40.8

Noël 2012 [66] 0.91 0.336 0.428 45.5
FDM M1 0.90 0.21 0.35 44

FDM M2 0.91 0.25 0.38 42

FDM M3 0.90 0.31 0.40 43

FVM M1 0.90 0.33 0.39 43

FVM M2 0.94 0.32 0.43 48

FVM M3 0.92 0.34 0.42 47

Table 5.1: Flow structure at Re = 20 († experimental results)

Re = 40 L [m] a [m] b [m] θ [o]

Tseng & Ferziger 2003 [96] 2.21 − − −

Ye et al. 1999 [107] 2.27 − − −

Xu 2008 [105] 2.24 0.72 0.60 53.8
Choi et al. 2007 [12] 2.25 − − 51

Coutanceau & Bouard 1977 [16] † 2.13 0.76 0.59 53.8
Xie & Desjardin 2008 [104] 2.26 − − 54.5

Xu & Wang 2006 [106] 2.21 − − 53.5
Marella et al. 2005 [57] 2.3 − − −

Noël 2012 [66] 2.22 0.7 0.6 50

FDM M1 2.35 0.54 0.53 56

FDM M2 2.25 0.58 0.65 54

FDM M3 2.26 0.57 0.64 52

FVM M1 2.32 0.57 0.66 53

FVM M2 2.34 0.72 0.57 57

FVM M3 2.31 0.69 0.59 57

Table 5.2: Flow structure at Re = 40 († experimental results)
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Re = 20 Re = 40 Re=100

CD CD CD CL

Xu 2008 [105] 2.23 1.66 1.42± 0.010 ±0.353
Chiu et al. 2010 [11] − 1.52 1.35± 0.012 ±0.303

Xie & Desjardin 2008 [104] 2.19 1.60 − −

Wieselsberger 1922 [103] † 2.05 1.70 − −

Taira & Colonius 2007 [91] 2.06 1.54 − −

Cheny & Botella 2010 [10] − 1.50 − −

Ye et al. 1999 [107] 2.03 1.52 − −

Choi et al. 2007 [12] − − 1.34± 0.011 ±0.315
Noël 2012 [66] 2.08 1.54 1.355± 0.008 ±0.335

FDM M1 1.69 1.24 1.022± 0.003 ±0.2
FDM M2 2.33 1.55 1.255± 0.011 ±0.35
FDM M3 2.17 1.57 1.275± 0.010 ±0.32
FVM M1 2.12 1.57 1.244± 0.004 ±0.17
FVM M2 2.23 1.64 1.391± 0.010 ±0.32
FVM M3 2.22 1.62 1.382± 0.011 ±0.34

Table 5.3: Lift and drag coefficients at Re = 20, 40 and 100 († experimental results)
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The geometrical properties of the liquid drop at its equilibrium state, i.e. its rela-

tive depth and width, are plotted with the contact angle in Fig. 5.25. The continu-

ous and dashed lines are the analytical solutions of Dupont & Legendre 2010 [28].

Remark that the finite volume method gives better results than the finite difference

method, reproducing drop geometries closer to the theoretical calculations. This

can be explained by the fact that the finite volume method is mass-conserving and

the theoretical calculations are based on the mass conservation.

θ

α
α
α
α

(a) FDM

θ

α
α
α
α

(b) FVM

Figure 5.25: Geometrical properties of a liquid drop deposited on a horizontal and on a
slanted solid wall at equilibrium state
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5.9 applications

The application of the developed methods concerns two complex configurations.

The first one is performed on a liquid jet which issued by a cylindrical injector. In

the second application, the planar turbulent liquid film produced the triple-disk

injector is the object of our simulation.

5.9.1 Liquid jet emanating from a cylindrical nozzle

Consider a liquid jet ejected by a cylindrical nozzle. The nozzle has both length

and diameter equal to 2.54 mm. At the injector inlet, we impose an uniform ve-

locity profile of 1 ms−1. An outflow condition is set on the other boundaries of

the domain. Unlike the treatment of the convection term in § 5.7, we use a dif-

ferent method able to ensure the consistence between the transport of mass and

momentum in two-phase flows (Rudman 1998 [81], Vaudor et al. 2017 [99] for

instance). The physical properties of the two fluids are summarized in Tab. 5.4. A

12× 12× 72 mm2 box is used as computational domain, which is discretized by

a coarse mesh 64× 64× 384. An identical spatial resolution in three directions is

thus obtained ∆x = ∆y = ∆z = 0.1875 10−3 m.

σ [Nm−1] ρ [kgm−3] µ [Pas−1]

air − 1.17 1.78× 10−5

liquid 68.51× 10−3 1028.54 11× 10−3

Table 5.4: Physical properties of the liquid and air

The results of the two methods FDM and FVM are shown in Figs. 5.26 and 5.27, re-

spectively. In these images, the zero-level of the solid level-set function is coloured

in grey, that of the liquid-gas interface in blue. The former represents the injector

outer wall and the latter the jet surface. We can observe the beginning of the break

up of the liquid jet where some perturbations develop on its surface. It appears

that a big drop is almost formed at the end of the jet. However, the breakup does

not occur at the end of our simulation due to too small computational domain.

Several profiles of the z− velocity component inside and outside the injector are

drawn in Figs. 5.28 and 5.29 for the FD and FV methods, respectively. In both
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cases, one can notice that the velocity profile at the injector inlet is nearly flat. The

value of z− velocity component is very small near the solid wall. In the center of

the jet, it keeps almost similar form while moving far from the injector outlet. In

the vicinity of the liquid-gas interface, the z− velocity component is reduced. The

gas velocity at this location is increased, in particular in front of the jet tip. Notice

that the results of the FD and FV methods are close one to another.
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(a) 4 ms (b) 12 ms (c) 25 ms

(d) 34 ms (e) 44 ms (f) 53 ms

(g) 63 ms (h) 75 ms (i) 84 ms

Figure 5.26: Liquid jet issuing from a cylindrical injector - Finite difference method
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(a) 5 ms (b) 12 ms (c) 24 ms

(d) 33 ms (e) 43 ms (f) 53 ms

(g) 62 ms (h) 74 ms (i) 84 ms

Figure 5.27: Liquid jet issuing from a cylindrical injector - Finite volume method
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(a) 4.08 ms (b) 7.94 ms

Figure 5.28: Velocity profiles - Liquid jet issuing from a cylindrical injector - FDM

(a) 0.87 ms (b) 1.89 ms (c) 3.36 ms

(d) 5.02 ms (e) 6.73 ms

Figure 5.29: Velocity profiles - Liquid jet issuing from a cylindrical injector - FVM
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5.9.2 Liquid sheet produced by a triple-disk injector

An other numerical simulation is carried out for the turbulent planar liquid sheet

issuing from the triple-disk injector. The injector wall is represented by the zero-

contour of the solid level-set function (Fig. 5.30).

Figure 5.30: Geometry of the triple-disk injector

A difficulty is encountered while transporting the liquid-gas interface across the

two borders which connect disk 2 to disk 3; and disk 3 to the outside of the nozzle.

In fact, a jump in the normal to the solid boundaries occurs on these borders,

provoking an obstacle while imposing the contact angle. These borders are thus

rounded, as shown in Fig. 5.31.

Figure 5.31: Rounded borders of the triple-disk injector

Figure 5.31 also illustrates the mesh used to compute the two-phase flow in this

configuration. To put it more precisely, the computational domain is a box mea-

suring 4.52 10−3 m. We employ a moderate uniform mesh of 512 × 512 × 512,
corresponding to a unique spatial resolution of ∆x = ∆y = ∆z = 8.83 10−6 m

in all directions. The number of grid points across the injector outlet is approxi-

mately 45. Remark that the resolution is higher than the cell-size near the solid

wall in Cousin et al. 2013 [15] who perform a large-eddy simulation for the flow
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developing inside a smaller triple-disk injector. We execute a parallel computation

with 512 processors. At the injector inlet, we impose an inflow condition with an

uniform velocity which gradually increases in time as follow.

Uinlet(t) = min(0.9 Vinletq t+ 0.1 Vinletq , Vinletq ) (5.120)

where t ms is time, Vinletq = 3.98 m s−1 the average inlet velocity of the liquid

F0 (refer to Tab. 3.2 for the metering velocity at the injector outlet). The objective

of this setting is to slowly increase the velocity so that the internal and external

flows are well established. We set an outflow condition on the other borders of the

computational domain.

Figures 5.32 and 5.33 present how the liquid-gas interface evolves at the beginning

of the breakup process. A 2D sheet is formed near the outlet section. At the early

instants, the liquid film is smooth, having a thin center part bounded by a thick

border. Remember that the inlet velocity is kept small at these moments. Later

on, the sheet spreads and some perturbations develop at both edges. The sheet is

lightly deviated, similar to the experimental results (Fig. 3.6). Also, it has a rim

thicker than another. Yet, holes appears in the center of the liquid film, unlike the

experimental results of chapter 3. Seemingly, the sheet breaks up in the perforation

mode because of the growth of these holes.

In Fig. 5.34, the velocity fields inside the discharge orifice are shown at three

cutting planes. The velocity magnitude is drawn on the left-hand side whereas

the non-axial velocity vectors on the right-hand side. The lowest cutting plane

corresponds to the entrance of disk 3 from disk 2; and the highest one a position

close to the injector outlet. The intermediate section is located in the middle of

these two planes. At an early moment 0.37 ms, the double vortices can be noticed

from Fig. 5.34a, in agreement with the literature in § 2.2.2.4. The boundary layer

develops from the entrance of disk 3 to the injector exit. One can observe, at a later

instant 0.71 ms, the liquid-gas interface (Fig. 5.34b). This indicates that gas enters

into disk 3. The interface is large near the injector outlet. At the entrance of disk 3,

its size is reduced. Notice a diminution of the boundary layer when the interface

appears at this moment.

For the sake of clarity, we plot the shape of the liquid-gas interface inside the

injector in Fig. 5.35a. Clearly, the interface even penetrates into disk 2 and almost
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is in contact with the upper wall of the latter at 0.71 ms. Remark that at this

time, a double hollow sheet is formed in two sides of a principal planar liquid

film. This suggests that the swirl at the outlet section is very strong. In Fig. 5.35b,

the z− velocity component is plotted together with the liquid-gas interface in a

cutting plane. The latter is perpendicular to the plane of symmetry of the injector

and can be seen from Fig. 5.35a. The velocity of the gas which goes into the

nozzle is of the same order as that of the ejected liquid moving in the opposite

direction. The penetration of the gas inside the triple-disk injector, as reported

by our numerical results, seems to be open for discussion as no previous study

reports such behaviours.

In Fig. 5.36, we depict the velocity fields and the interface in the plane of symmetry

of the triple-disk injector at two instants. Notice that the boundary layer is thin

and complex, requiring an appropriate treatment of the near-wall flow.
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(a) 0.37 ms (b) 0.43 ms

(c) 0.51 ms (d) 0.54 ms

Figure 5.32: Temporal evolution of the liquid-gas interface (1)
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(a) 0.58 ms (b) 0.62 ms

(c) 0.67 ms (d) 0.71 ms

Figure 5.33: Temporal evolution of the liquid-gas interface (2)
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(a) 0.37 ms

(b) 0.71 ms

Figure 5.34: Velocity field and liquid-gas interface in disk 3
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(a) Liquid-gas interface and a cutting plane

(b) Liquid-gas interface and velocity field at the cutting plane

Figure 5.35: Gas penetration inside the triple-disk injector at 0.71 ms
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(a) 0.37 ms

(b) 0.54 ms

Figure 5.36: Velocity field and liquid-gas interface in a cutting plane
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6
C O N C L U S I O N S & P E R S P E C T I V E S

This present study gathers some experimental analyses and numerical develop-

ments which aim to investigate the atomization process of the planar turbulent

liquid sheets emanating from a triple-disk injector. The atomizer consists of three

superposed disks having each a circular orifice hole. Moreover, the discharge ori-

fice is deviated from the injector axis. Given this particular design, a complex

internal flow is created. In effect, a double counter-rotating vortex is formed at

the injector outlet, together with a consistent turbulence level. The double counter

swirl stretches the flow to create a 2D film in the plane of symmetry of the injector.

Meanwhile, the turbulence induces some perturbations that develop at the sheet

edges. A ligament network appear and eventually breaks down into droplets.

As the very first step, to understand the disintegration of the liquid film, a back-

light optical set-up is built to record the sheet images. These visual results are

then processed under a multi-scale tool which enables the atomization analysis

to be carried out. The use of the multi-scale approach is justified by the finding

in the literature that mechanisms of liquid-gas interface evolution occur in a wide

range of time and length scales. The main results of our experimental analyses are

twofold and can be summarized as follows.

First, the contraction of the liquid film is affected by the perturbations appear-

ing on its borders. This interaction could be inspected by two characteristic time

scales - one representing the sheet contraction, the other specifying the develop-

ment of the disturbances. While the first time scale depends on the sheet opening

angle, the second scale varies with the surface tension coefficient. According to

the relationship between these characteristic times, the perturbations more or less

strongly influence the contraction of the liquid sheet.

Second, the multi-scale analysis allows an estimation of the ligaments’ geometrical

properties to be made. As for an individual ligament whose geometry changes in

time, three involved mechanisms, i.e. stretching, capillary contraction and produc-

155



tion, are proposed for analysing the deformation of the ligament network. These

mechanisms can be identified thanks to the variation rates of the specific length

and the perimeter of the liquid threads. It is found that the stretching of the liga-

ments favours the poly-dispersion of the spray and the formation of fine droplets.

Additionally, the fact that the drops are dispersed in diameter can be due to a

high turbulence level which causes the snapshot-to-snapshot fluctuations or the

elongation of the ligaments.

Interesting results not withstanding, some further explorations should be brought

to the analysis to derive more benefits. First of all, for each image and each

analysing window, cumulative scale distribution should be used to compute the

corresponding scale distribution. The latter, together with the total surface area,

enables the perimeter distribution of the eroded systems to be found. It can be

expected that the temporal variations of the perimeter distribution give useful

information about the snapshot-to-snapshot fluctuations of the liquid structures.

Next, based on the calculation of a maximum scale dmax for each image and

each analysing window via the instantaneous cumulative scale distributions, the

average value and the standard deviation of these maximum scales reflect the

behaviours of the bulk of the liquid film.

Furthermore, isolating the ligament network from the liquid system could be done

directly by the image processing. Thanks to the specific scale dL, statistically de-

tected or image by image, the ligaments can be easily erased by an opening oper-

ator at the very scale. The initial system is then subtracted by the resulting one to

obtain only the liquid threads. Therefore, with the images of the latter available,

the deformation of the ligaments could be examined in detail.

The other major part of the thesis involves the numerical works to simultaneously

compute the nozzle flow and the film breakup in a unique simulation. As men-

tioned above, the internal flow has a significant impact on the sheet disintegration.

It is claimed in the previous studies that the stronger the double swirl, the larger

the liquid film. The thickness of the latter is thus reduced to yield small drops.

Moreover, turbulence intensity is increased by the wall friction to promote the

perturbations on the sheet edges. Near the nozzle exit, ligaments are more numer-

ous, smaller in size and may divide into finer droplets.
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The connection between the internal and external flows is implemented through

two immersed boundary methods. The first one is based on the finite difference

method and the second the finite volume method. In the Cartesian grid frame-

work, these approaches are able to account for the irregular solid frontier. More-

over, when combined with a coupled level-set/volume-of-fluid method, these two

immersed boundary methods can compute two-phase flows. Specifically, to avoid

the constraint on the time step, the diffusion term is implicitly calculated in both

cases. It is seen that the finite volume method is more suitable to track the liquid-

gas interface inside the cut-cells by the volume-of-fluid method and thus mass-

conserving. For validation purpose, numerical results are compared to the previ-

ous works in the literature and the analytical solutions.

The application of the developed methods concerns two complex configurations.

The first one is performed on a liquid jet which issued by a cylindrical injector.

Both finite difference and finite volume methods give similar results, reproducing

the beginning of the instability of the jet. However, the rupture of the latter is not

observed due to insufficient computational domain. In the second application, the

planar turbulent liquid film produced by the triple-disk injector is the object of our

simulation. It is shown that the implemented code is able to simultaneously take

into consideration the internal and external flows. Nevertheless, the numerical

results are still unsatisfactory, showing differences from the experimental ones.

This suggests that further developments should be done in the future, concerning

in particular turbulence modelling and specific treatment of the wall boundary

layer. Furthermore, a detailed comparison could be made for the two-phase flow

in the same injector geometry and operating conditions as those of Cousin et al.

2013 [15].

157





B I B L I O G R A P H Y

[1] A. Arakawa. “Computational design for long-term numerical integration

of the equations of fluid motion: Two-dimensional incompressible flow.

Part I.” In: J. Comput. Phys. 1.1 (1966), pp. 119–143.

[2] T. D. Aslam. “A partial differential equation approach to multidimensional

extrapolation.” In: J. Comput. Phys. 193.1 (2004), pp. 349–355.

[3] D. Bérubé and M. Jébrak. “High precision boundary fractal analysis for

shape characterization.” In: Comput. Geosci. 25.9 (1999), pp. 1059–1071.

[4] J. B. Blaisot and J. Yon. “Droplet size and morphology characterization for

dense sprays by image processing: application to the Diesel spray.” In: Exp.

Fluids 39.6 (2005), pp. 977–994.

[5] N. Brémond. “Stabilité et atomisation des nappes liquides.” PhD thesis.

Université de Provence, 2003.

[6] N. Brémond and E. Villermaux. “Atomization by jet impact.” In: J. Fluid

Mech. 549 (2006), pp. 273–306.

[7] M. P. Brenner, J. Eggers, K. Joseph, S. R. Nagel, and X. D. Shi. “Breakdown

of scaling in droplet fission at high Reynolds number.” In: Phys. Fluids 9

(1997).

[8] F. Charru. Hydrodynamic instabilities. Cambridge University Press, 2011.

[9] J. L. Chen, M. Wells, and J. Creehan. “Primary atomization and spray anal-

ysis of compound nozzle gasoline injectors.” In: J. Eng. Gas Turbines Power

120.1 (1998), pp. 237–243.

[10] Y. Cheny and O. Botella. “The LS-STAG method: A new immersed bound-

ary/level set method for the computation of incompressible viscous flows

in complex moving geometries with good conservation properties.” In: J.

Comput. Phys. 229.4 (2010), pp. 1043–1076.

159



[11] P. H. Chiu, R. K. Lin, and T. W. H. Sheu. “A differentially interpolated

direct forcing immersed boundary method for predicting incompressible

Navier–Stokes equations in time-varying complex geometries.” In: J. Com-

put. Phys. 229.12 (2010), pp. 4476–4500.

[12] J. I. Choi, R. C. Oberoi, J. R. Edwards, and J. A. Rosati. “An immersed

boundary method for complex incompressible flows.” In: J. Comput. Phys.

224.2 (2007), pp. 757–784.

[13] A. J. Chorin. “Numerical solution of the Navier-Stokes equations.” In: Math.

Comput. 22.104 (1968), pp. 745–762.

[14] C. Clanet and E. Villermaux. “Life of a smooth liquid sheet.” In: J. Fluid

Mech. 462 (2002), pp. 307–340.

[15] J. Cousin, A. Berlemont, T. Ménard, and S. Grout. “Primary breakup simu-

lation of a liquid jet discharged by a low-pressure compound nozzle.” In:

Comput. Fluids 63 (2012), pp. 165–173.

[16] M. Coutanceau and R. Bouard. “Experimental determination of the main

features of the viscous flow in the wake of a circular cylinder in uniform

translation. Part 1. Steady flow.” In: J. Fluid Mech. 79.02 (1977), p. 231.

[17] N. Dombrowski, D. Hasson, and D. E. Ward. “Some aspects of liquid flow

through fan spray nozzles.” In: Chem. Eng. Sci. 12.1 (1960), pp. 35–50.

[18] N. Dombrowski and W. R. Johns. “The aerodynamic instability and disin-

tegration of viscous liquid sheets.” In: Chem. Eng. Sci. 18.3 (1963), pp. 203–

214.

[19] C. Dumouchel. “On the experimental investigation on primary atomization

of liquid streams.” In: Exp. Fluids 45.3 (2008), pp. 371–422.

[20] C. Dumouchel. “Liquid atomization and spray: a multi-scale description.”

In: Hawaii, USA, 2017.

[21] C. Dumouchel, J. Cousin, and S. Grout. “Analysis of two-dimensional liq-

uid spray images: the surface-based scale distribution.” In: J. Flow Vis. Im-

age Process 15.1 (2008), pp. 59–83.

[22] C. Dumouchel, J. Cousin, and K. Triballier. “On the role of the liquid flow

characteristics on low-Weber-number atomization processes.” In: Exp. Flu-

ids 38.5 (2005), pp. 637–647.

160



[23] C. Dumouchel and S. Grout. “Application of the scale entropy diffusion

model to describe a liquid atomization process.” In: Int. J. Multiph. Flow

35.10 (2009), pp. 952–962.

[24] C. Dumouchel and S. Grout. “On the scale diffusivity of a 2D liquid at-

omization process analysis.” In: Physica A: Phys. Stat. Mech. Its Appl. 390.10

(2011), pp. 1811–1825.

[25] C. Dumouchel, T. Ménard, and W. Aniszewski. “Towards an interpreta-

tion of the scale diffusivity in liquid atomization process: An experimental

approach.” In: Physica A: Phys. Stat. Mech. Its Appl. 438 (2015), pp. 612–624.

[26] C. Dumouchel, J. B. Blaisot, E. Bouche, T. Ménard, and T. T. Vu. “Multi-

scale analysis of atomizing liquid ligaments.” In: Int. J. Multiph. Flow 73

(2015), pp. 251–263.

[27] C. Dumouchel, W. Aniszewski, T. T. Vu, and T. Ménard. “Multi-scale anal-

ysis of simulated capillary instability.” In: Int. J. Multiph. Flow 92 (2017),

pp. 181–192.

[28] J. B. Dupont and D. Legendre. “Numerical simulation of static and slid-

ing drop with contact angle hysteresis.” In: J. Comput. Phys. 229.7 (2010),

pp. 2453–2478.

[29] B. Duret. “Simulation numérique directe des écoulements liquide-gaz avec

évaporation: Application à l’atomisation.” PhD thesis. Institut national des

sciences appliquées de Rouen, 2013.

[30] M. V. Dyke. Album of fluid motion. 14th edition. Stanford, California: Parabolic

Press, Inc., 2012.

[31] J. Eggers. “Nonlinear dynamics and breakup of free-surface flows.” In: Rev.

Mod. Phys. 69.3 (1997), pp. 865–930.

[32] J. Eggers and E. Villermaux. “Physics of liquid jets.” In: Rep. Prog. Phys.

71.3 (2008), p. 036601.

[33] L. W. Evers. “Analogy between atomization and vaporization based on the

conservation of energy.” In: SAE 940190 (1994).

[34] R. Eymard, T. Gallouet, and R. Herbin. Finite volume methods. Vol. 7. Else-

vier, 2000.

[35] N. Fdida and J. B. Blaisot. “Drop size distribution measured by imaging:

determination of the measurement volume by the calibration of the point

spread function.” In: Meas. Sci. Technol. 21.2 (2010), p. 025501.

161



[36] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. “A non-oscillatory

eulerian approach to interfaces in multimaterial flows (the ghost fluid

method).” In: J. Comput. Phys. 152.2 (1999), pp. 457–492.

[37] R. P. Fraser, P. Eisenklam, N. Dombrowski, and D. Hasson. “Drop forma-

tion from rapidly moving liquid sheets.” In: AIChE J. 8.5 (1962), pp. 672–

680.

[38] F. Gibou and C. Min. “Efficient symmetric positive definite second-order

accurate monolithic solver for fluid/solid interactions.” In: J. Comput. Phys.

231.8 (2012), pp. 3246–3263.

[39] F. Gibou, R. P. Fedkiw, L. T. Cheng, and M. Kang. “A second-order-accurate

symmetric discretization of the Poisson equation on irregular domains.” In:

J. Comput. Phys. 176.1 (2002), pp. 205–227.

[40] M. L. Glodowski, D. J. Michalek, and L. W. Evers. “The use of results from

computational fluid dynamic fuel injector modeling to predict spray char-

acteristics.” In: SAE 961191 (1996).

[41] E. F. Goedde and M. C. Yuen. “Experiments on liquid jet instability.” In: J.

Fluid Mech. 40.03 (1970), pp. 495–511.

[42] S. Grout. “Analyse multi-échelle des processus d’atomisation et des sprays.

Application aux injecteurs triple disque.” PhD thesis. Université de Rouen,

2009.

[43] S. Grout, C. Dumouchel, J. Cousin, and H. Nuglisch. “Fractal analysis of

atomizing liquid flows.” In: Int. J. Multiph. Flow 33.9 (2007), pp. 1023–1044.

[44] A. S. Grove, F. H. Shair, and E. E. Petersen. “An experimental investigation

of the steady separated flow past a circular cylinder.” In: J. Fluid Mech. 19.1

(1964), p. 60.

[45] W. W. Hagerty and J. F. Shea. “A study of the stability of plane fluid

sheets.” In: J. Appl. Mech. 22 (1955), pp. 509–514.

[46] F. H. Harlow and J. E. Welch. “Numerical calculation of time-dependent

viscous incompressible flow of fluid with free surface.” In: Phys. Fluids

8.12 (1965), pp. 2182–2189.

[47] J. Heyse, F. Schatz, B. Ader, J. Schlerfer, and S. Haubold. “Electroformed

multilayer orifice plate for improved fuel injection characteristics.” In: SAE

971070 (1997).

162



[48] C. W. Hirt and B. D. Nichols. “Volume-of-fluid (VOF) method for the dy-

namics of free boundaries.” In: J. Comput. Phys. 39.1 (1981), pp. 201–225.

[49] J. C. P. Huang. “The break-up of axisymmetric liquid sheets.” In: J. Fluid

Mech. 43.02 (1970), pp. 305–319.

[50] T. A. Kowalewski. “On the separation of droplets from a liquid jet.” In:

Fluid Dyn. Res. 17.3 (1996), pp. 121–145.

[51] A. H. Lefebvre. Atomization and sprays. New York, USA: Hemisphere Pub-

lishing Corporation, 1989.

[52] M. Lepilliez, E. R. Popescu, F. Gibou, and S. Tanguy. “An efficient two-

phase flow solver in irregular domains.” In: Prepr. Submitt. J. Comput. Phys.

(2015), pp. 1–45.

[53] X. D. Liu, R. P. Fedkiw, and M. Kang. “A boundary condition capturing

method for Poisson’s equation on irregular domains.” In: J. Comput. Phys.

160.1 (2000), pp. 151–178.

[54] J. López and J. Hernández. “Analytical and geometrical tools for 3D vol-

ume of fluid methods in general grids.” In: J. Comput. Phys. 227.12 (2008),

pp. 5939–5948.

[55] J. López, J. Hernández, P. Gómez, and F. Faura. “An improved PLIC-VOF

method for tracking thin fluid structures in incompressible two-phase flows.”

In: J. Comput. Phys. 208.1 (2005), pp. 51–74.

[56] A. Mansour and N. Chigier. “Dynamic behavior of liquid sheets.” In: Phys.

Fluids A: Fluid Dynamics 3.12 (1991), pp. 2971–2980.

[57] S. Marella, S. Krishnan, H. Liu, and H. S. Udaykumar. “Sharp interface

Cartesian grid method I: An easily implemented technique for 3D moving

boundary computations.” In: J. Comput. Phys. 210.1 (2005), pp. 1–31.

[58] P. Marmottant and E. Villermaux. “Fragmentation of stretched liquid liga-

ments.” In: Phys. Fluids 16.8 (2004), pp. 2732–2741.

[59] T. Ménard. “Développement d’une méthode level-set pour le suivi d’interface.

Application à la rupture de jet liquide.” PhD thesis. Université de Rouen,

2007.

[60] T. Ménard, S. Tanguy, and A. Berlemont. “Coupling level-set/VOF/ghost-

fluid method: validation and applications to 3D simulations of jet primary

break-up.” In: Int. J. Multiph. Flow. 33 (2007), pp. 511–524.

163



[61] D. J. Michalek, B. D. Peschke, and L. W. Evers. “Computational design of

experiments for compound fuel injector nozzles.” In: SAE 971617 (1997).

[62] F. A. Morrison. An introduction to fluid mechanics. Cambridge University

Press, 2013.

[63] K. Nagasaka, T. Takagi, K. Koyanagi, and T. Yamauchi. “The development

of fine atomization injector.” In: JSAE Rev. 21.3 (2000), pp. 309–313.

[64] V. D. Ngô. “Etude de la morphologie des éléments d’un spray liquide et

de leur production.” PhD thesis. Université de Rouen, 2013.

[65] Y. T. Ng, C. Min, and F. Gibou. “An efficient fluid–solid coupling algorithm

for single-phase flows.” In: J. Comput. Phys. 228.23 (2009), pp. 8807–8829.

[66] E. Noël. “Simulation numérique directe d’écoulements à l’aide d’une méth-

ode de frontière immergée.” PhD thesis. Université de Rouen, 2012.

[67] B. Oesterlé. Ecoulements multiphasiques: Des fondements aux méthodes d’ingénierie.

Hermes Science Publications, 2006.

[68] A. Okajima. “Strouhal numbers of rectangular cylinders.” In: J. Fluid Mech.

123 (1982), pp. 379–398.

[69] S. Osher and J. A. Sethian. “Fronts propagating with curvature-dependent

speed: Algorithms based on Hamilton-Jacobi formulations.” In: J. Comput.

Phys. 79.1 (1988), pp. 12–49.

[70] D. T. Papageorgiou. “On the breakup of viscous liquid threads.” In: Phys.

Fluids 7.7 (1995), pp. 1529–1544.

[71] S. Parrish and L. Evers. “Spray characteristics of compound silicon micro

machined port fuel injector orifices.” In: SAE 950510 (1995).

[72] J. E. Pilliod Jr. and E. G. Puckett. “Second-order accurate volume-of-fluid al-

gorithms for tracking material interfaces.” In: J. Comput. Phys. 199.2 (2004),

pp. 465–502.

[73] W. T. Pimbley and H. C. Lee. “Satellite droplet formation in a liquid jet.”

In: IBM J. Res. Dev. 21.1 (1977), pp. 21–30.

[74] J. Plateau. In: Acad. Sci. Bruxelles Mém. 23 (1849), p. 5.

[75] E. G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus, and W. J. Rider.

“A high-order projection method for tracking fluid interfaces in variable

density incompressible flows.” In: J. Comput. Phys. 130.2 (1997), pp. 269–

282. (Visited on 2015).

164



[76] D. Queiros-Conde, F. Foucher, C. Mounaïm-Rousselle, H. Kassem, and M.

Feidt. “A scale-entropy diffusion equation to describe the multi-scale fea-

tures of turbulent flames near a wall.” In: Phys. Stat. Mech. Its Appl. 387.27

(2008), pp. 6712–6724.

[77] D. Queiros–Conde. “A diffusion equation to describe scale– and time–dependent

dimensions of turbulent interfaces.” In: Proc. R. Soc. Lond. A 459.2040 (2003),

pp. 3043–3059.

[78] L. Rayleigh. “On the capillary phenomena of jets.” In: Proc. R. Soc. Lond.

29.196-199 (1879), pp. 71–97.

[79] USA Rensselaer Polytechnic Institute New York. Flow past a cylinder. url:

http://www.rpi.edu.

[80] F. Risso. “The mechanisms of deformation and breakup of drops and bub-

bles.” In: Multiphas. Sci. Tech. 12 (2000), pp. 1–50.

[81] M. Rudman. “A volume-tracking method for incompressible multifluid

flows with large density variations.” In: Int. J. Numer. Meth. Fluids 28.2

(1998), pp. 357–378.

[82] D. F. Rutland and G. J. Jameson. “A non-linear effect in the capillary insta-

bility of liquid jets.” In: J. Fluid Mech. 46.2 (1971), pp. 267–271.

[83] F. Savart. In: Ann. Chem. 53 (1833), p. 337.

[84] W. A Sirignano and C Mehring. “Review of theory of distortion and dis-

integration of liquid streams.” In: Prog. Energy Combust. Sci. 26.4–6 (2000),

pp. 609–655.

[85] H. B. Squire. “Investigation of the instability of a moving liquid film.” In:

Br. J. Appl. Phys. 4.6 (1953), pp. 167–169.

[86] A. M. Sterling and C. A. Sleicher. “The instability of capillary jets.” In: J.

Fluid Mech. 68.03 (1975), pp. 477–495.

[87] S. R. Sternberg. “Biomedical image processing.” In: IEEE Computer 1 (1983),

pp. 22–34.

[88] M. Sussman and E. G. Puckett. “A coupled level-set and volume-of-fluid

method for computing 3D and axisymmetric incompressible two-phase

flows.” In: J. Comput. Phys. 162.2 (2000), pp. 301–337.

[89] M. Sussman, E. Fatemi, P. Smereka, and S. Osher. “An improved level

set method for incompressible two-phase flows.” In: Comput. Fluids 27.5–6

(1998), pp. 663–680.

165

http://www.rpi.edu


[90] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L.

Welcome. “An adaptive level set approach for incompressible two-phase

flows.” In: J. Comput. Phys. 148.1 (1999), pp. 81–124.

[91] K. Taira and T. Colonius. “The immersed boundary method: A projection

approach.” In: J. Comput. Phys. 225.2 (2007), pp. 2118–2137.

[92] S. Taneda. von Karman vortex street behind a cylinder. url: http://lfmi.epfl.

ch.

[93] S. Tanguy. “Développement d’une méthode de suivi d’interface. Appli-

cations aux écoulements diphasiques.” PhD thesis. Université de Rouen,

2004.

[94] G. Taylor. “The dynamics of thin sheets of fluid. III. Disintegration of fluid

sheets.” In: Proc. R. Soc. A 253.1274 (1959), pp. 313–321.

[95] G. Tryggvason, R. Scardovelli, and S. Zaleski. Direct numerical simulations of

gas-liquid multiphase flows. Cambridge University Press. 2011.

[96] Y. H. Tseng and J. H. Ferziger. “A ghost-cell immersed boundary method

for flow in complex geometry.” In: J. Comput. Phys. 192.2 (2003), pp. 593–

623.

[97] P. Vassallo and N. Ashgriz. “Satellite formation and merging in liquid jet

breakup.” In: Pro. Math. Phys. Sci. 433.1888 (1991), pp. 269–286.

[98] G. Vaudor. “Atomisation assistée par un cisaillement de l’écoulement gazeux.

Développement et validation.” PhD thesis. Université de Rouen, 2015.

[99] G. Vaudor, T. Ménard, W. Aniszewski, M. Doring, and A. Berlemont. “A

consistent mass and momentum flux computation method for two phase

flows. Application to atomization process.” In: Comput. Fluids (2017).

[100] R. W. C. P. Verstappen and A. E. P. Veldman. “Symmetry-preserving dis-

cretization of turbulent flow.” In: J. Comput. Phys. 187.1 (2003), pp. 343–

368.

[101] E. Villermaux and C. Clanet. “Life of a flapping liquid sheet.” In: J. Fluid

Mech. 462 (2002), pp. 341–363.

[102] G. D. Weymouth and D. K. P. Yue. “Conservative volume-of-fluid method

for free-surface simulations on cartesian-grids.” In: J. Comput. Phys. 229.8

(2010), pp. 2853–2865.

[103] C. Wieselsberger. “New data on the laws of fluid resistance.” In: Technical

report, National advisory committee for aeronautics (1922).

166

http://lfmi.epfl.ch
http://lfmi.epfl.ch


[104] W. Xie and P. E. Desjardins. “A level set embedded interface method for

conjugate heat transfer simulations of low speed 2D flows.” In: Comput.

Fluids 37.10 (2008), pp. 1262–1275.

[105] S. Xu. “The immersed interface method for simulating prescribed motion

of rigid objects in an incompressible viscous flow.” In: J. Comput. Phys.

227.10 (2008), pp. 5045–5071.

[106] S. Xu and Z. J. Wang. “An immersed interface method for simulating the

interaction of a fluid with moving boundaries.” In: J. Comput. Phys. 216.2

(2006), pp. 454–493.

[107] T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy. “An accurate cartesian grid

method for viscous incompressible flows with complex immersed bound-

aries.” In: J. Comput. Phys. 156.2 (1999), pp. 209–240.

[108] M. C. Yuen. “Non-linear capillary instability of a liquid jet.” In: J. Fluid

Mech. 33.1 (1968), pp. 151–163.

167



1.4

168


	Dedication
	Contents
	1 Introduction
	2 Literature review on atomization of liquid sheets
	2.1 Atomization & Breakup of liquid jets
	2.2 Disintegration of liquid sheets
	2.2.1 Linear theory
	2.2.2 Breakdown of liquid films in different configurations
	2.2.2.1 Fan nozzles
	2.2.2.2 Impact of a jet on an obstacle
	2.2.2.3 Impingement of two cylindrical jets
	2.2.2.4 Compound nozzles


	2.3 Objectives of the thesis

	3 Experimental work and image processing
	3.1 Hydraulic circuit
	3.2 Triple-disk injector
	3.3 Working fluids
	3.4 Operating conditions
	3.5 Visualization system
	3.6 Image processing
	3.6.1 Normalization
	3.6.2 Localization
	3.6.2.1 Single-threshold method
	3.6.2.2 Wavelet-transformation technique



	4 Multi-scale analysis
	4.1 Concepts and measurements
	4.1.1 Concepts
	4.1.2 Measurements

	4.2 Description of the images
	4.3 Analysis of the atomization process
	4.3.1 Entire liquid system
	4.3.1.1 General remarks
	4.3.1.2 Evolution of the maximum scale
	4.3.1.3 Deformation dynamics

	4.3.2 Analysis of the ligament network
	4.3.2.1 Geometrical properties
	4.3.2.2 Deformation dynamics

	4.3.3 Characteristics of the sprays
	4.3.3.1 Extraction of the small droplets
	4.3.3.2 Drop-scale distribution



	5 Immersed boundary method
	5.1 Discretization of the computational domain
	5.2 Navier-Stokes equations, jump conditions across the liquid-gas interface and boundary conditions on the solid frontier
	5.2.1 Navier-Stokes equations
	5.2.2 Jump conditions across the liquid-gas interface
	5.2.3 Boundary conditions on the fixed solid frontier

	5.3 Projection method
	5.4 Liquid-gas interface tracking
	5.4.1 Level-set method
	5.4.2 Volume-of-fluid method
	5.4.3 Coupled level-set, volume-of-fluid method

	5.5 Solid frontier tracking
	5.5.1 Representation of the solid frontier by a coupled level-set, volume-of-fluid method
	5.5.2 Fluid-fraction function over cell face

	5.6 Immersed boundary method for two-phase flows Finite difference method
	5.6.1 Discretization of irregular domains
	5.6.2 Approximation of the convection term
	5.6.3 Implicit treatment of the diffusion term
	5.6.4 Discretization of the pressure Poisson equation on irregular domains
	5.6.5 Contact angle
	5.6.6 Transport of the liquid-gas interface inside cut-cells

	5.7 Immersed boundary method for two-phase flows Finite volume method
	5.7.1 Discretization of irregular domains
	5.7.2 Navier-Stokes equations
	5.7.3 Discretization for fixed immersed geometries
	5.7.3.1 Global conservation laws for viscous incompressible flows
	5.7.3.2 Discretization of the continuity equation
	5.7.3.3 Discretization of the momentum equation based on the conservation of kinetic energy – Pressure gradient and convective fluxes
	5.7.3.4 Discretization of the momentum equation based on the conservation of total momentum – Viscous fluxes
	5.7.3.5 Pressure Poisson equation

	5.7.4 Transport of the liquid-gas interface inside cut-cells

	5.8 Validations
	5.8.1 Flow passing a circular cylinder
	5.8.1.1 Description of the flow
	5.8.1.2 Characteristics of the flow
	5.8.1.3 Set-up and results of the test cases

	5.8.2 Drop on a slanted wall

	5.9 Applications
	5.9.1 Liquid jet emanating from a cylindrical nozzle
	5.9.2 Liquid sheet produced by a triple-disk injector


	6 Conclusions & Perspectives
	Bibliography

