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Résumé

Ce travail est consacré au probleme d’estimation non paramétrique dans des modeles de re-
gression en temps continu. On considere le probleme d’estimation d’une fonction inconnue S
supposée périodique. Cette estimation est basée sur des observations générées par un processus
stochastique; ces observations peuvent étres en temps continu ou discret. Pour ce faire, nous
construisons une série d’estimateurs par projection et nous approchons la fonction inconnue
S par une série de Fourier finie. Dans cette these, nous considérons le probleme d’estimation
dans le cadre adaptatif, c’est-a-dire le cas ou la régularité de la fonction S est inconnue. Pour
ce probleme, nous développons une nouvelle méthode d’adaptation basée sur la procédure de
sélection de modele proposée par Konev et Pergamenshchikov (2012). Tout d’abord, cette
procédure nous donne une famille d’estimateurs; apres nous choisissons le meilleur estimateur
possible en minimisant une fonction coit. Nous donnons également une inégalité d’Oracle pour

le risque de nos estimateurs et nous donnons la vitesse de convergence minimax.

Mots Clés : Estimation non asymptotique, sélection de modele, inégalité d’Oracle pointue,

risque robuste , efficacitée asymptotique.
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Abstract

This thesis is devoted to the problem of non parametric estimation for continuous-time regres-
sion models. We consider the problem of estimating an unknown periodoc function S. This
estimation is based on observations generated by a stochastic process; these observations may
be in continuous or discrete time. To this end, we construct a series of estimators by projection
and thus we approximate the unknown function .S by a finite Fourier series. In this thesis we
consider the estimation problem in the adaptive setting, i.e. in situation when the regularity
of the fonction S is unknown. In this way, we develop a new adaptive method based on the
model selection procedure proposed by Konev and Pergamenshchikov (2012). Firstly, this pro-
cedure give us a family of estimators, then we choose the best possible one by minimizing a
cost function. We give also an oracle inequality for the risk of our estimators and we give the

minimax convergence rate.

Key Words: Non asymptotic estimation, Robust risk, Model selection, Sharp oracle in-

equality, Assymptotic efficiency.
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Chapter 1

Introduction

The problem of non parametric estimation in regression models has an important role in theo-
rical and applied statistics. In this thesis, we consider regression models in continuous time of

the form

dy, =S({)dt+d¢,, 0<t<mn, (1.1)

where S is an unknown periodic function from Ls[0, n], wich we want to estimate on the basis of
observations y,. This observations can be in continuous time or in discrete time. This problem
was considered in many frameworks, for example, in the framework of the “signal+white noise”
models (see, for example, [9] or [47]). Later, in order to study dependent observations in
continuous time, were introduced “signal4color noise” regressions based on Ornstein-Uhlenbeck
processes (cf. [11], [12], [13], [16]).

Moreover, to include jumps in such models, the papers [17] and [18] used non Gaussian
Ornstein-Uhlenbeck processes introduced in [4] for modeling the risky assets in the stochastic
volatility financial markets. Unfortunately, the dependence of the stable Ornstein-Uhlenbeck
type decreases with a geometric rate. So, asymptotically when the duration of observations
goes to infinity, we obtain very quickly the same “signal+white noise” model.

The main goal of this thesis is to develop the model (1.1) for the noise process with large
dependence. This allows us to consider the signal estimation problem for signals observed
with noises of complex structure “against-signal”. To achieve this goal, we use semi-Markov
processes to model the dependent noises, because it is well known that such processes keep the
dependence for a long time.

In our work we use the robust estimation approach introduced in [17] for such problems. To
this end, we denote by @ the distribution of (£;)p<;<, in the Skorokhod space D[0,n]. We
assume that ) is unknown and belongs to some distribution family O, wich will be specified

later. In this thesis we use the quadratic risk
RQ(gnv‘S) :EQ,S||§n_S||27 (1.2)

where || f||? = fol f?(s)ds and E( s is the expectation with respect to the distribution P, ¢ of
the process (1.1) corresponding to the noise distribution @. Since the noise distribution @ is
unknown, it seems reasonable to introduce the robust risk of the form

RZ(‘gn:S) = Sup RQ(gnas)v (13)
QeQ,
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which enables us to take into account the information that ) € Q,, and ensures the quality of
an estimate S, for all distributions in the family Q,,.

In order to estimate the function S belonging to L2 [0, 1], one can consider a projection estimator
and thus approximate S by a finite Fourier series. Following Pinsker’s approach (1981), we use
the weighted least square estimators which provide efficient estimation, but, in order to obtain
efficient estimation, one needs to use regularity properties of the function S. Our approach is to
consider the estimation problem in the adaptive setting, i.e. in situation when the regularity of
the function S is unknown. In this way, we develop a new adaptive method based on the model
selection procedure proposed by Konev and Pergamenshchikov (2012). To show the efficiency,
one needs to obtain the corresponding sharp oracle inequality; note that this is a crucial tool
in order to be able to show the adaptive efficiency. The “sharp” oracle inequality means that
the upper bound for the risk has the coefficient of the main term close to one.

We recall that the main term is the minimal risk over the family of estimators that we consider.
To obtain the oracle inequality one needs to develop renewal theory for the model (1.1). In
our thesis we obtain a new asymptotic development for the renewal density. In fact, this result
is a version of Goldie’s theorem (1991). Unfortunately, we cannot use directly the Goldie’s
theorem, since in that result there is a singular component of the renewal distribution, which
makes the use of that result impossible for the estimation purposes. In our work we give
sufficient conditions for having an asymptotic development for the renewal density without a
singular component.

The effeciency of the estimator will be also proved. To this end, we assume that the unknown
function S in the model (1.1) belongs to the Sobolev ball

k
WE={feck01]:> |9 <r}, (1.4)
j=0

wherer > 0 and k > 1 are some unknown parameters, Cg@r [0, 1] is the set of k times continuously
differentiable functions f : [0,1] — R such that f®(0) = f@(1) for all 0 < i < k. Similarly
to [17, 18] we will show here that the asymptotic sharp lower bound for the robust risk (1.3) is
given by

L (15)

Note that this is the well-known Pinsker’s constant obtained for the nonadaptive filtration

k/(2k
rt = ((2k + 1)r)/ @+ < k )2 A

problem in “signal + small white noise” model (see, for example, [47]), generated by the process
(1.1).
Main results of the thesis

In this thesis we study three types of regression models in continuous time, the observations

are generated mainly by a semi-Markov process and Lévy process. In this way, our model is



1.1 Semi-Markov process )

capable to take into account “small” jumps, thanks to the Lévy process, as well as “big” jumps,

thanks to the semi-Markov process.

1.1 Semi-Markov process

In our work, we consider a pure jump process (2;);>o as a semi-Markov process with the

following form
Nt
2y = Z }/ia (1'6)
i=1
where (Y;);> is an i.i.d. sequence of random variables with
EY;=0, EY’=1 and EY'<o0.

Here N, is a general counting process (see, for example, [22]) defined as

00 k
Ny=> 1l ey and T, =) 7, (1.7)
k=1 =1

where (7;);>; is an i.i.d. sequence of positive integrated random variables with distribution 7
and mean 7 = E7; > 0. We assume that the processes (N,);~o and (Y;);>1 are independent.
Note that the process (z;);>( is a special case of a semi-Markov process (see, e.g., [5] and
[20]). It should be noted that if 7; are exponential random variables, then (IV;);> is a Poisson
process and, in this case, the process (§;);>o given in (1.14) is a Lévy process for which this
model has been studied in [14], [15] and [17]. But, in the general case when the process (1.6)
is not a Lévy process, this process has a memory and cannot be treated in the framework
of semi-martingales with independent increments. In this case, we need to develop new tools
based on renewal theory arguments, what we do in Chapter.5. This tools will be intensively
used in the proofs of our main results.

Let p be the density of the renewal measure 7 defined as

i = Z n" (1.8)

=1

where n(¥) is the Ith convolution power of . To study this renewal measure we assume that

the measure n has a density g which satisfies the following conditions.
H,) Assume that, for any x € R, there exist the finite limits

g(x—) = lim g(2) and g(z+)= lim g(z)

2—=T— z—z+
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and, for any K > 0, there ezists 6 = §(K) > 0 for which

dt < oo.

gz +t)+gla—t) — glat) — g(z—)]
sup /0

|z| <K t

H,) For any v > 0,
sup 27|29(2) — g(z—) — g(z+)| < .
2>0

H;) There ezists 5 > 0 such that fR e g(x) dz < oo.

Remark 1.1. It should be noted that the condition Hj) means that there exists an exponential
moment for the random variable (7;);>, i.e. these random variables are not too large. This
is a natural constraint since these random variables define the intervals between jumps, i.e.,
the frequency of the jumps. So, to study the influence of the jumps in the model (1.13) one
needs to consider the noise process (1.14) with “small” interval between jumps or large jump

frequency.

For the next condition we need to introduce the Fourier transform of any function f from

L;(R), f:R — R, defined as

1

F6) = o /R 0% f(z) da. (1.9)

H,) There exists t* > 0 such that the function g(6—it) belongs to Ly (R) for any 0 <t < t*.

Remark 1.2. 1t is clear that Conditions H;)-H,) hold true for any continuously differentiable

function g, for example for the exponential density.

Proposition 1.1. Let 7 be a positive random variable with the distribution n having a density
g which satisfies Conditions H;)-H,). Then the renewal measure (1.8) is absolutely continuous
with density p, for which

plx) = % + Y(z), (1.10)

where T = Bty and Y(-) is some function defined on R, with values in R such that

sup 27 |Y(z)| < oo forall v>0.
>0

It should be noted that in view of this proposition, Conditions H;)-H,) imply

“+oo
lpl. = sup|p(t)] < oo and ||, = / T (2)|dz < oo (1.11)
0

t>0
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1.2 Lévy process

In this thesis we assume that the Lévy process L, is defined as

Ly=0w + V1L, Ly=xx(u—p), (1.12)

where, 0 < ¢ < 1 is an unknown constant, (w;);> is a standard Brownian motion, p(ds,dz)
is the jump measure with the deterministic compensator p(dsdx) = dsII(dx), where II(-) is
some positive measure on R (see, for example, [10, 6] for details). In this thesis, we use the

usual notation

H(\x|m)—/ " TI(dz) for any m > 0.
R

Note that II(R) may be equal to +oc.

Remark 1.3. In this thesis, we assume that the processes (N;);>o and (Y;)i>1 in (1.6) are

independent between them and are also independent of (L;);>¢-

1.3 Non-parametric estimation based on continuous data
We consider a regression model in continuous time
dy, = S(t)dt+d¢g,, 0<t<mn, (1.13)

where S is an unknown 1-periodic function from L,[0, 1] defined on R with values in R, the

noise process (&;);~( is defined as

& = 01Ly + 092, (1.14)

where p; and o, are unknown coefficients, the pure jump process (zt)t21 is the semi-Markov
process defined in (1.6) and (L,);> o is the Levy process defined in (1.12), for which we assume
that

M(z*) =1 and M(2®) < co.

The problem is to estimate the unknown function S in the model (1.13) on the basis of observa-
tions (y;)o<t<,- The main goal is to consider continuous time regression models with dependent
observations for which the dependence does not disappear for a sufficient large duration of ob-
servations. To this end we define the noise in the model through a semi-Markov process which
keeps the dependence for any duration n. This type of models allows, for example, to estimate
the signals observed under long impulse noise impact with a memory or “against signals”.

To estimate the function S we use here the model selection procedure for continuous time
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regression models from [17] based on the Fourrier expansion. We recall that for any function

S from L, [0, 1] we can write
00 1
S() =3 6;0,(t) and 6= (5.0,) = | S(t,t)t,
j=1 0

where (¢;);>; is an orthonormal uniformly bounded basis in L0, 1], i.e., for some constant
¢, > 1, which may be depend on n,

sup sup |6;(0)] < 6, < oo.
0<j<n 0<t<1

We extend the functions ¢;(t) by periodicity, i.e., we set ¢;(t) := ¢;({t}), where {t} is the
fractional part of t > 0. For example, we can take the trigonometric basis (Tr;);> in Ly[0,1]
defined as Tr; =1 and, for j > 2,

cos(2m[j/2]x) for even j,
Tr;(z) = V2 (1.15)
sin(2n[j/2]xz) for odd j,

where [z] denotes the integer part of x.
Now, for obtaining efficient estimation one needs to use weighted least square estimators defined

as

S\(t) =D NG)0;,.0;(8)
j=1

where the coefficients A = (A(j)); <<, belong to some finite set A from [0, 1]". In this thesis we
consider the adaptive case, i.e. we assume that the regularity of the function S is unknown. In
this case we chose the weight coefficients on the basis of the model selection procedure proposed
in [17] for the general semi-martingale regression model in continuous time.
Now, to choose a weight sequence A in the set A we use the empirical quadratic risk, defined
as

Err,(A) =] Sy — 512 .

We define the model selection procedure as
S.=5;. (1.16)

Now, in order to study the asymptotic effeciency for our procedure, we give the following oracle

inequality for the robust risk defined in (1.3) and through a specific distribution family.

Theorem 1.1. Assume that Conditions H;) — H,) hold and that the unknown function S is
continuously differentiable. Then, for anyn > 1 and 0 < § < 1/6, the procedure (1.16) satisfy

the following oracle inequality

~ 1+36 . ~ U*(9)
* < - * _n: 7
R*(Ss, S) 35 gﬁg}\lR (Sx,S) + >

I
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where the sequence U;(S) > 0 is such that, under some conditions, for any r > 0 and 5> 0,

. U, (5)
lim sup —2— =0.

. 0
S N EC

It follows directly, by using the oracle inequality, that our procedure is efficient with the
efficient robust rate U2k/(2k:+l) with v, = n/s*(n) such that, for any é > 0,

*
i ) g
n—oo nt

Corollary 1.1.

lim o2/CE+D nf o sup RZ(E'\ S)=r}.

1.17
n—oo " Sp€ll, SEVV;c ( )

We prove in this thesis that the robust minimax convergence rate may be faster or slower

than the classical one (n2/(2k+1))

1.4 Non-parametric estimation based on discrete data

In this chapter we consider the regression model (1.13) with the noise (1.14). The problem is to
estimate the unknown function S in the case when continuous observation cannot be provided

and only discret time measurement are available, the observations are in the forme
. 1
(ytj)ogjgnpa tj=JA, A= 1;’

where the integer p > 1 is the observation frequency. We will use the trigonometric basis
defined in (1.15). By making use of this basis we consider the discrete Fourier transformation
of S

Z 9 Tr ), te{t, ... tp},

where the Fourier coeflicients are deﬁned by
12
0;p = (5, Try), = - Z S(ti)Tr;(ts).

L

Then, we estimate the function S by the weighted least squares estimator

Z)\ Jip ]7}7 )

where the weight vector A = (A(1),....., A(n)) belongs to some finite set A from [0, 1]",

1 P

Ojp=— /0 V,(0dy, and W (0) =Y ()1, cocny

n
=1
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In order to find a proper weight sequence A in the set A one needs to specify a cost function.
When choosing an appropriate cost function one can use the following argument. Let us

consider the empirical squared error
Err(\) = ||Sy — S|I*.

We define the model selection procedure as

~

S.=5;. (1.18)

Now, To obtain the oracle inequality and to prove the effeciency of our procedure, we obtain
in this thesis the sufficient condition for the frequency observations p.
H;) We assume that there exists 0 > 0 such that for any n > 3

p>nd/s.
Now, in order to study the asymptotic effeciency for our procedure, we give the following oracle

inequality for the robust risk defined in (1.3) and through a specific distribution family.

Theorem 1.2. Assume that Conditions H;) — Hy) hold and that the unknown function S is
continuously differentiable. Then, for any n > 1 and 0 < § < 1/6, the procedure (1.18) satisfy

the following oracle inequality

) 1436 ()
e T = A T

where the sequence U (S) > 0 is such that, under some conditions, for any r >0 and 6> 0,

. U, (95)
lim sup

: 5
S LIS

=0.

1.5 Non-parametric estimation for Lévy regression models
We consider a regression model in continuous time with the Lévy noise
dy, =S(t)dt+ed§, 0<t<1, (1.19)

where S is an unknown function defined on R with values in R, (§;)y<¢<; is a Lévy process and
€ > 0 is the noise intensity. The problem is to estimate the function S based on the continuous

observations (y;)p<;<; When ¢ — 0. We assume that

M(z*) =1 and M(z') < co. (1.20)
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When constructing the sharp model selection procedures, in this model, we will use the ap-
proach close to that of the papers [14], [15], [16], [18] developed for the estimation of a 1-periodic

function in continuous time on a large time interval, i.e.
de, = S(t)dt +dn,, 0<t<n.

Note that, for any 0 < t < 1, setting y, = n~* Z;;l(xtﬂ- — z;), we can represent this model

as a model with small parameter of form (1.19)
dy, = S(t)dt + e d§,,

where e =n~'/2 and ¢, = n~1/2 Zj 1 (e — ). The main difference between this model and

the original one is that the jumps are small, i.e.
AL =0n"Y?)=0() as e—0,

but we have not such property in the model (1.19). Therefore, unfortunately, we cannot use
directly the method developed for the estimation problem on the large time interval to the
model (1.19). So, the main goal of this chapter is to develop a new sharp model selection
method for the estimation problem of the function S as e — 0. Let (¢;);>; be an orthonormal
basis in Ly[0, 1] with ¢; = 1. We assume that this basis is uniformly bounded, i.e. for some

constant ¢* > 1, which may depend on ¢ > 0,

sup sup |6, (1)] < 6" < oo,
0<j<n 0<t<1

where n = n_ = [1/£%] and [z] denotes the integer part of x. To estimate the function S we use

= 0;0;(t)

Jjz1

the following Fourier series

Then, we can estimate the function S(x) for = € [0,1] by the weighted least squares estimator

ZA 0.6, (x

where n = [1/¢?], the weights A = (A(j)),<j<, belong to some finite set A from [0,1]". To

choose a weight sequence A in the set A we use the empirical quadratic risk, defined as
Err.(\) =] Sy — S |12

We define the model selection procedure as

~ ~

S.=5;. (1.21)
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Theorem 1.3. Assume that for the model (1.19) the condition (1.20) holds and the unknown
function S is continuously differentiable. Then, for any 0 < & < 1/6, the procedure (1.21)

satisfy the following oracle inequality

~ 1+35 . a , UX(9)
(54,9) < = (S, =, 1.22
RI(S:, S5) < 1_351/{16111{1735(5)\ S)+e 5 (1.22)
where the term UX(S) > 0 is such that under some conditions, for any r > 0 and 5>0
lim & sup U*(S) =0. (1.23)

=0 5)<r

As an application of the sharp model selection method in this thesis, we consider the
estimation problem for the number of signals in the multi-path connexion channel. In the
framework of the statistical radio - physics models we study the telecommunication system in
which we observe in the multi-path channel the summarized signal with the noise on the time
interval [0, 1],

q
j=1

where (n,;);>o is some noise, usually this “white noise”. The energetic parameters (6;);-4
and the number of the signals ¢ are unknown and the signals (¢;);>, are known orthonormal

functions, i.e.
1
/ 6(t) 0,(1) dt = 111,
0

The problem is to estimate g, when the signal noise ratio goes to infinity. To describe this
problem in the framework of the mathematical model we use the following stochastic differential

equation
q
dy, = [ D 0;¢;(t) | dt + edw,, (1.24)
j=1

where (w;);> is the standard Brownian motion and the parameter ¢ goes to zero. This means
that the ratio signal/noise goes to infinity. The logarithm of the likelihood ratio for the model

(1.24) can be represented as

1 & ! 1 & o
1nL8:€229j/0 qﬁj(t)dyt—ﬁz 0.
j=1 j=1

If we will try to construct the maximum likelihood estimators for (6;);<;<, and ¢ then we

J
obtain that
1 9 1 2
InL = — (t)d .
s mxtnL =553 ([0, 00 )
J:

j
Therefore, the maximum likelihood estimate for ¢ = ¢*. So, if ¢* = co we obtain that § = co.

So, this estimator does not work. For this reason we propose to study the estimation problem
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for g for the process (1.24) in the nonparametric setting and to apply the model selection

procedure (1.21).
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Chapter 2

Non-parametric estimation for semi-Markov

regression models based on continuous data

2.1 Introduction
Let us consider a regression model in continuous time
dy, =8S(t)dt+dE, 0<t<n, (2.1)

where S is an unknown l-periodic function from L,[0, 1] defined on R with values in R, the

noise process (§;);>( is defined as
& = 011y + 007, (2.2)

where p; and o, are unknown coefficients, the pure jump process (zt)t21 is the semi-Markov
process defined in (1.6) and (L,),> is the Lévy process defined in (1.12), for which we assume
that

M(z*) =1 and MH(z%) < co. (2.3)

The problem is to estimate the unknown function S in the model (2.1) on the basis of
observations (y;)o<;<,- Firstly, this problem was considered in the framework of the “sig-
nal4+white noise” models (see, for example, [9] or [47]). Later, in order to study dependent
observations in continuous time, were introduced “signal4-color noise” regressions based on
Ornstein-Uhlenbeck processes (cf. [11], [12], [13], [16]).

Moreover, to include jumps in such models, the papers [17] and [18] used non Gaussian
Ornstein-Uhlenbeck processes introduced in [4] for modeling of the risky assets in the stochastic
volatility financial markets. Unfortunately, the dependence of the stable Ornstein-Uhlenbeck
type decreases with a geometric rate. So, asymptotically when the duration of observations
goes to infinity, we obtain very quickly the same “signal+white noise” model.

The main goal of this chapter is to consider continuous time regression models with depen-
dent observations for which the dependence does not disappear for a sufficient large duration of
observations. To this end, we define the noise in the model (2.1) through a semi-Markov pro-
cess which keeps the dependence for any duration n. This type of models allows, for example,
to estimate the signals observed under long impulse noise impact with a memory or “against

signals”.
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In this chapter we use the robust estimation approach introduced in [17] for such problems.
To this end, we denote by @ the distribution of (&;)o<;<, in the Skorokhod space D[0,n]. We
assume that () is unknown and belongs to some distribution family Q,, specified in Section 2.2.

In this chapter we use the quadratic risk
R(S.,5) =Eqg S, — S|, (2.4)

where || f|* = fol f?(s)ds and E() g is the expectation with respect to the distribution P, ¢ of
the process (2.1) corresponding to the noise distribution (. Since the noise distribution @ is
unknown, it seems reasonable to introduce the robust risk of the form
R:(S,,8) = sup Ry(S,.S), (2.5)
QEQ,
which enables us to take into account the information that () € Q,, and ensures the quality of
an estimate §n for all distributions in the family Q,,.

To summarize, the goal of this chapter is to develop robust efficient model selection meth-
ods for the model (2.1) with the semi-Markov noise having unknown distribution, based on the
approach proposed by Konev and Pergamenshchikov in [17] and [18] for continuous time regres-
sion models with semi-martingale noises. Unfortunately, we cannot use directly this method
for semi-Markov regression models, since their tool essentially uses the fact that the Ornstein-
Uhlenbeck dependence decreases with geometrical rate and the “white noise” case is obtained
sufficiently quickly.

Thus in the thesis we propose new analytical tools based on renewal methods to obtain the
sharp non-asymptotic oracle inequalities. As a consequence, we obtain the robust efficiency for

the proposed model selection procedures in the adaptive setting.

2.2 Model selection

Note that for any function f from L,[0,7], f : [0,n] — R, for the noise process (¢;);>( defined
in (2.2), with (2;);>( given in (1.6), the integral

1,(f) = /0 " f(s)ae, (2.6)

is well defined with Eg, I,(f) = 0. Moreover, as it is shown in Lemma 2.2,

BqIf) < g [ Flds, (27)

where s = 07 + 03 |pl, and |p[, = sup,~ |p(t)| < co. Let us define the family of the noise dis-
tributions for the model (2.1) which is used in the robust risk (2.5). Note that any distribution
Q from Q,, is defined by the unknown parameters in (2.2) and (1.12). We assume that

og = 0+ 05/F <<¥, (2.8)
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where the unknown bounds ¢* are functions of n, i.e. ¢* = ¢*(n), such that for any € > 0,

lim nf¢*(n) = 400 and lim ()
n—00 n—oo N

=0. (2.9)

Remark 2.1. As we will see later, the parameter o¢ 1s the limit of the Fourier transform of the

noise process (2.2). Such limit is called variance proxy (see [17]).

Remark 2.2. Note that, generally (but it is not necessary) the parameters p; and g, can be
dependent on n. The conditions (2.9) mean that we consider all possible cases, i.e. these
parameters may go to infinity or be constant or go to zero as well. See, for example, the
conditions (3.32) in [18].
Now, let (¢;);>; be an orthonormal uniformly bounded basis in L,[0, 1], i.e., for some
constant ¢, > 1, which may depend on n,
sup  sup [¢;(t)] < ¢, < oo. (2.10)
0<j<n 0<t<1
We extend the functions ¢;(t) by periodicity, i.e., we set ¢;(t) := ¢;({t}), where {t} is the
fractional part of ¢ > 0. For example, we can take the trigonometric basis defined in (1.15).
To estimate the function S we use here the model selection procedure for continuous time
regression models from [17], based on the Fourrier expansion. We recall that, for any function

S from L, [0, 1], we can write
00 1
swzzywﬁ)wd@:@mﬂ:/sw@@m. (2.11)
j=1 0

So, to estimate the function S it suffices to estimate the coefficients 6; and to replace them
in this representation by their estimators. Using the fact that the function S and ¢; are 1 -

periodic, we can write that
1 n
@:A 6,(t) S(t)dt

n

If we replace here the differential S(¢)d¢ by the stochastic observed differential dy, we obtain

the natural estimate for 6; on the time interval [0, n]

~ 1 [
Ojn = ”/0 ¢;(t)dy,, (2.12)
which can be represented, in view of the model (2.1), as

é\. pr—

1 1
in 0] + %gjm, ) gj,n = %[n(d)j) . (213)

Now (see, for example, [9]) we can estimate the function S by the projection estimators, i.e.

Su®)="0,,6;(t), 0<t<1, (2.14)
Jj=1
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for some number m — oo as n — oo. It should be noted that Pinsker in [47] shows that the
projection estimators of the form (2.14) are not efficient. For obtaining efficient estimation one

needs to use weighted least square estimators defined as

=D A8 85(0). (2.15)
j=1

where the coefficients A = (A(j));<;<, belong to some finite set A from [0,1]". As it is shown
in [47], in order to obtain efficient estimators, the coefficients A(j) in (2.15) need to be chosen
depending on the regularity of the unknown function S. In this thesis we consider the adaptive
case, i.e. we assume that the regularity of the function .S is unknown. In this case we chose the
weight coefficients on the basis of the model selection procedure proposed in [17] for the general
semi-martingale regression model in continuous time. These coefficients will be obtained later
n (2.28). To this end, first we set

I=#(A) and |A|, =1+ max L(\), (2.16)
AEA

where #(A) is the cardinal number of A and L(\) = Z;LZI A(7). Now, to choose a weight

sequence A in the set A we use the empirical quadratic risk, defined as
Err,,(A) =] Sy = S5 ||,

which in our case is equal to
Err, (A Z N()62 —2 Z X(7)0;,0; + Z 62. (2.17)

Since the Fourier coefficients (6;),- are unknown, we replace the terms Gj n0in DY

., =62 —n (2.18)

where 7, is an estimate for the variance proxy o defined in (2.8). If it is known, we take

0, = 0g; otherwise, we can choose it, for example, as in [17], i.e
Z T]n, (2.19)
j=lvn]+1

where Tj,n are the estimators for the Fourier coefficients (Tj) j>1 With respect to the trigono-
metric basis (1.15), i.e

I !
ij:n/o Tr;(t)dy,. and Tj:/o Tr;(t) S(t)dt. (2.20)

)
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Finally, in order to choose the weights, we will minimize the following cost function

n

B =S RGE, 23 NG+ 6B, (2.21)
i=1 j=1

where § > 0 is some threshold which will be specified later and the penalty term is

AL

P.(\) = 2.22
() = 2 (2.22)
We define the model selection procedure as
S, =55, (2.23)
where
A= argmin, ., Jn(A). (2.24)

We recall that the set A is finite so A exists. In the case when A is not unique, we take one
of them. Let us now specify the weight coefficients (A(j));<;<,- Consider, for some fixed

0 < € < 1, a numerical grid of the form
A={1,... k*} x{e,...,me}, (2.25)

where m = [1/2]. We assume that both parameters k* > 1 and ¢ are functions of n, i.e.
k* = k*(n) and € = e(n), such that

k;*
no (2.26)
lim, ., e(n)=0 and lim, nde(n) = +oo,
for any 6 > 0. One can take, for example, for n > 2,
1 * *
g(n) = n and  k*(n) =kj+ Vinn, (2.27)

where kj > 0 is some fixed constant and the threshold ¢*(n) is introduced in (2.8). For each
a=(8,1) € A, we introduce the weight sequence

with the elements
)\a(]) = 1{1§J<]*} + (1 — (]/wa)6> 1{]*§]§wa}’ (228)
where j, =1+ [Inv,], w, = (dﬁ lvn)l/(%“),

(B+1)(28+1)

dﬁ - 7r25ﬁ

and v, =n/s". (2.29)
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Now we define the set A as

A={\,acAl. (2.30)

It will be noted that in this case the cardinal of the set A is
[=km. (2.31)
Moreover, taking into account that dg < 1 for 8 > 1 we obtain for the set (2.30)

Al, < 14+supw, <1+ (v,/e)/3. (2.32)

acA
Remark 2.3. Note that the form (2.28) for the weight coefficients in (2.15) was proposed by
Pinsker in [47] for the efficient estimation in the nonadaptive case, i.e. when the regularity
parameters of the function S are known. In the adaptive case these weight coefficients are used

in [17, 18] to show the asymptotic efficiency for model selection procedures.

2.3 Oracle inequality

In this section we obtain in Theorem 2.2 the non-asymptotic oracle inequality for the quadratic
risk (2.4) for the model selection procedure (2.23) and in Theorem 2.3 the non-asymptotic oracle
inequality for the robust risk (2.5) for the same model selection procedure (2.23), considered
with the coefficients (2.28).
In order to prove the oracle inequality, the following conditions will be needed for the noise
(§4)1>0- Here we use the conditions introduced in [17] for the general semi-martingale model
(2.1).

C,) For alln > 1 and Q there exist a variance proxy o > 0 and the constant Cy g, > 0
such that, for any basis functions with the bound (2.10),

sup By gn(2)] < Cg, <00,
z€[—1,1]"

where By ¢ ,(x) = Z;.Lzl T (EngQ',n - O'Q).

Cy) For all n > 1 and Q there exists a constant C2,Q,n > 1 such that, for any basis
functions with the bound (2.10),

sup Eg BS,Q,n(m) < Cygpn <0,
o<1

where |z|* = 2?21 x? and By g, (7) = 2?21 T (@2” - EQ@%n)'

Before stating the non-asymptotic oracle inequality, let us first introduce the following

parameters which will be used for describing the rest term in the oracle inequalities. For the
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renewal density p defined in (1.8) we set

+o0
and \Tul-J/ X (2)] de, (2.33)
0

S| =

T(2) = plar) -

where 7 = E 7. In Proposition 5.1 we show that |p|, = sup,.[p(t)| < oo and ||T||; < co. So,

using this, we can introduce the following parameters
5 47 5 .
U, = dsgl + (5 + U@) <UQ T 0200 1T 1 + D (14 03)° z) (2.34)

and
C*Q:UQ+2%Q+UQ7:¢2 "T”1+¢4

mazx ma:(;(l + Ué)2 [7 (235)
where [ = (472 + 8) || Y[|; + 5 + 13(1 + 7)%(1 + |p|?)(EY}) + 4Il(z*). First, let us state the
non-asymptotic oracle inequality for the quadratic risk (2.4) for the model selection procedure

(2.23).

Theorem 2.1. Assume that Conditions C;) and Cy) hold. Then, for anyn > 1 and 0 < § <
1/6, the estimator of S given in (2.23) satisfies the following oracle inequality

% S) < ——— mi , ) 2.
Proof. First, note that we can rewrite the empirical squared error in (2.17) as follows
Errn(A) = Ju(A) + 2 AG)0;, + (151> = 5Pa(), (2.37)
j=1
where éjyn = gjn — ngj’n. Using the definition of gjn in (2.18) we obtain that
< 1 1~ 1 g — a-\n
Ojn = ﬁejgj,n + ng,n TS T T
where ¢; , = Eijz.n —og and Ej,n = 5]2% — EQSJQ.n. Putting
1 & . 0 UQ|)‘|2
M()\) = 7 Z;A(g)ejgjyn and P =—"—, (2.38)
J:
we can rewrite (2.37) as
O'Q — 6'\,n “ 2
Err,(\) =J,(\) + 2 - L(A) +2M(\) + =By g.n(N)
By 0., (e(A
oy g e (), (2.39)
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where e(\) = A/|A|, the function L(-) is defined in (2.16) and the functions By gn(-) and
By o.n(°) are given in conditions C;) and Cy).

Let Ao = (Ao(J))1<j<n be a fixed sequence in A and A be as in (2.24). Substituting Ao and
A in Equation (2.39), we obtain

Err, (X) — Err,, (M) =J(A) — J(Ao) + 2M L(w) + 231 on(@) +2M(w)

+2/ PO QQ”(Q —2,/PO(\ QQ”QO
Y F V

— 6P, (N) 4 6P, (o), (2.40)

o~

where w =X —\j, e = e(X) and ey = e(\g). Note that, by (2.16),

L(@)] < L(A) + L(A) < 2/Al.

Applying the inequality

2|ab| < §a® 4 6 1b? (2.41)
implies that, for any A € A,
B A B2 e(A
Pg()\)| 2,Q,n(€( ))| < 5Pr?()‘) + Q,Q,n( ( ))
VQn dogn

Taking into account the bound (2.59), we get
2Cl,Q,n + 2B>2!< Q.n

n (50Q n

Err,,(\) <Err, (M) 4+ 2M (w) +

1 ~
+ 15 = ol (AP +Ao) + 2P (M),

where Bj o = sup,., B;Q’n((e()\)). Moreover, noting that in view of (2.16) sup,, N2 <

|A|,, we can rewrite the previous bound as

2(jl,Q,n + 2B>2k ,Q,n

n (50Qn

Err,(\) <Err,(Xo) + 2M (@) +

4|A|,
+ | |*]0—0Q|+25Pn()\0). (2.42)

To estimate the second term in the right side of this inequality we set
n
Sy =D 2005, = (@()icjcn €R".
j=1
Thanks to (2.7) we estimate the term M (z) for any x € R" as

EoM*(x ) < g Zfﬂ 9—%Qf|\5|\2. (2.43)
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To estimate this function for a random vector x € R™ we set

nM?(z)
Z¥=sup ——=-, A1 =A-)X.
xel |’S€E||2
So, through Inequality (2.41), we get
2 2
2(M(2)] < 815 + 2 (2.44)

It is clear that the last term here can be estimated as
nkE M
Z QM ) Z

FISI\NY TEN

where 7 = card(A). Moreover, note that, for any = € Ay,

1Sl = 118:11% = Zx ) < —2Mi(x), (2.46)
where M, (z) = n~1/? ZJ 1 Q(j)ejﬁjvn. Taking into account that, for any x € A; the compo-
nents |z(j)| < 1, we can estimate this term as in (2.43), i.e

2 [1Sa |12
Similarly to the previous reasoning we set
M2
Z] = sup iengs| (:g
aeh; ||l
and we get

Using the same type of arguments as in (2.44), we can derive

Z*
2| M ()] < 8]18a]1* + . (2.48)
né
From here and (2.46), we get
S||? Z3
15,17 < 1=l Zi (2.49)

1—-46  né(l-9)
for any 0 < 0 < 1. Using this bound in (2.44) yields

Sal? | Z*+ 2
< .
e By S

Taking into account that ||§w||2 <2 (Errn(X) + Err,(A\o)), we obtain

26(Err,(A) + Errp (X)) Z* + Zf
< .
2M(w) < =% =)
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Using this bound in (2.42) we obtain

~ 144 Z*+27; | 2Ciq, 2B)am
Err,(\) <———Err, s 5)
1, () ST g (Ao) + né(1—30) n(l1-30) d(1—36)ogn
(1], +2) 2% o
St bl L e —P .

Moreover, for 0 < § < 1/6, we can rewrite this inequality as

146 202*+2F) 4Cio, 4Big,
E nA < E nA 1y Il
wa )_1—35 r(R0) + né * n + dogn
(SIAL +2) %,
- — ——— P’ (o).
+ n |0n 0Q|+ (1_35) n( 0)

In view of Proposition 2.3 we estimate the expectation of the term B} ,  in (2.42) as

* 2 -
Eq BZQm = Z EQBQ,Q,n(e()‘)) <iCyon-
AEA

Taking into account that |[A|, > 1, we get

R(5..9) < R(S, .S Q. Q.
( ) 1—-30 (Sr005) + nd + n + dogn
10(A], .. . 2
*E — —P .

Using the upper bound for P,,(\g) in Lemma 2.6, one obtains (2.36), that finishes the proof. O

Now we study the estimate (2.19).

Proposition 2.1. Assume that Conditions C;) and C,) hold and that the function S is con-
tinuously differentiable. Then, for anyn > 2,

R 68112 + <
Proof. We use here the same method as in [14]. First of all note that Definition (2.20) implies
that

-~ 1
where

1 n
T-:/ S(t)Tr;(t)dt and n-n:/ Tr.(t)d¢g, .
= [ somo = |
So, we have

- 1
G, = § T2 +2M, + - E s (2.52)
j=lv/nl+1 j=lv/nl+1
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where
Z Tjnjm -
=[v/n]+1
Note that, for continuously differentiable functions (see, for example, Lemma A.6 in [14]), the

Fourier coefficients (T;);>1y satisfy the following inequality, for any n > 1,

00 1 S ? 312
> it ‘\gﬂdt) s“ﬂ .

IN

(2.53)
j=lva+1

In the same way as in (2.43) we estimate the term M, i.e.,

g |IS|1?

2 _ Q 2
R

n
j=[vn]+1
while the absolute value of this term for n > 1 can be estimated as
»g + 15|17
Voo

Moreover, using Propositions 2.2 and 2.3 we can represent the last term in (2.52) as

1 En: 2 = og(n—+/n) n By g n(2) n By o .n(2")
n an n n n
j={vml+1 vn
with o = 1¢ mojcny and 2 = 1g mo;<ny/v/n. Therefore,
E, 1 En: 2 79 , Cion , VCaan

+ +
n
j=lvnl+1

T =00 = Ty NG

Taking into account that C, g, > 1, we obtain the bound (2.50) and hence the desired result.
d

Theorem 2.1 and Proposition 2.1 implies the following result.

Theorem 2.2. Assume that Conditions C;) and C,) hold and that the function S is continu-
ously differentiable. Then, for anyn > 1 and 0 < § < 1/6, the procedure (2.23), (2.19) satisfies
the following oracle inequality

1430 604, IS]2 + ¥q.,

mlnRQ(S/\,S)

S <
Rq(5::8) = 1 — 338 XeA néd ’

(2.54)

where ‘I/Q’n = 10KnC*Q + Wy and A, = AL/ v
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Remark 2.4. Note that the coefficient s, can be estimated as s, < (1 + 7|p|,)oq. Therefore,
taking into account that gbf‘nm > 1, the remainder term in (2.54) can be estimated as

~ 1 ~
Vo, <C, (1 +og + > (L+A,)ig | (2.55)
b O-Q

where C, > 0 is some constant which is independent of the distribution Q.

Furthermore, let us study the robust risk (2.5) for the procedure (2.23). In this case, the
distribution family Q,, consists in all distributions on the Skorokhod space D[0, n] of the process
(2.2) with the parameters satisfying the conditions (2.8) and (2.9).

Moreover, we assume also that the number of the weight vectors and the upper bound for
the basis functions in (2.10) may depend on n > 1, i.e. i = i(n) and ¢, = ¢,(n), such that for
any € > 0

¢

lim @ =0 and lim M =0. (2.56)
n—oo NE n—o00 n
The next result presents the non-asymptotic oracle inequality for the robust risk (2.5) for

the model selection procedure (2.23), considered with the coefficients (2.28).

Theorem 2.3. Assume that Conditions Hy) — H,) hold and that the unknown function S is
continuously differentiable. Then, for the robust risk defined in (2.5) through the distribution
family (2.8) — (2.9), the procedure (2.23) with the coefficients (2.28) for any n > 1 and 0 <
d < 1/6, satisfies the following oracle inequality

PN 1+30 - U (S)
* < . * n
RIS+ 8) S 7035 W R (5% §) + — 15—

where the sequence U’ (S) > 0 is such that, under the conditions (2.9), (2.26) and (2.56), for
any r >0 and 6 > 0,

(2.57)

: U,.(5)
lim sup —B=

e[ <

=0. (2.58)

Proof. First note, that in view of (2.31) and (2.26)

=0 for any €>0.

Furthermore, the bound (2.32) and the conditions (2.9) and (2.26) yield

Al
nh—>H;o n1/3+€

=0 forany €>0.

So, from here we obtain the convergence (2.58). O

Now we need to check the conditions C;) and Cs) for the process (2.2)

Proposition 2.2. Assume that Conditions Hy)-H,) hold. Then Condition C1) holds with

Cion =00 T G, 1Tl (2.59)
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Proof. First, note that from (2.93) we have

gj,n = 5LI£(¢]) +—= f n(¢])

So, using (2.95) we can write that

2 n 2 o)
Y 0
ES, = nl/o @3 (t)dt + fE > 02T L gy<ny - (2.60)

=1

Proposition 5.1 implies

E) 0} (T)ir<n) :/ ¢2(x) p(z)dz

=1 0
[ s+ ["gerea.
0 0

S| =

Note that [ ¢2(t)dt = n. So, in view of the condition (2.10), we obtain
0 7j

[ @@ <
0

Estimating here o3 by 0T we obtain the inequality (2.59) and hence the conclusion follows. O

QQ ¢2

max

B o= 2 Il (2.61)
j7n Q - n 1- .

Proposition 2.3. Assume that Conditions Hy)-H,) hold. Then Condition Cz) holds with

Co.0m = Prmas(1+05)° 1 (2.62)
and [ is given in (2.35).
Proof. By Ito’s formula one gets
dIF(f) = 2I,_(f)aL,(f) + Hdt+ Y fA(s)(Agd)? (2.63)
0<s<t

where £ = g5 L, + 052, and o3 = p;1/1 — ¢*. Taking into account that the processes (L;),>¢
and (z;);>( are independent and the time of jumps T} defined in (1.7) has a density, we have

Az, AL, =0 as. for any s > 0. Therefore, we can rewrite the differential (2.63) as

dI7(f) =20, (H)dL(f) + af@Q FAdt
+o3d > fAs)(AL)? +o3d > f2(s) (2.64)

0<s<t 0<s<t

From Lemma 2.2 it follows that

EIZ(f) = o /0 P (s)ds + ¢ /0 F(s)p(s)ds
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Therefore, putting

L(f) = IF(f) - EI}(f), (2.65)
we obtain
dIt(f) = QIt—(f)f(t)dft =+ f2(t)dﬁ1t, mt = Q%mt + Q;mp
where mh, = Eogsgt(AJis)Q —tand my = 3 (Az) f p(s)ds. For any non-random

_ : no2
vector ¥ = (7)1 <<, With Zj:l zi < 1, we set

= ali(e)). (2.66)
j=1
Denoting
=D a;1,(6,)9;(t) and By Zx HO! (2.67)
=1

we get the following stochastic differential equation for (2.66)
dl(z) = 24, _(2)d& + By(z)dm,, Iy(z) =0.
Applying the Ito’s formula one obtains
E I2(z) =2E /n I,_(z)dI,(z) + 40} 0°E /n Al (z)dt
0 0
+Q3ED (z )—|—Q2ED (z), (2.68)
where D, (2) = 3, (24, (2)AL, + ¢2B,(2)(AL,)?)" and

2
D, (x) = 2':"‘1’ (QATF(:L‘)Y,C + QQBTk,(x)YkZ) 1(7, <n} - Let us now show that

< 20504, 1Tl 22 (2.69)

’E /0 "I (2)dl(2)

To this end, note that

/0 L@dh@ =2 Y am / (@0 (t)de,

1<4,I<n
+ z / 2)di

Using here Lemma 2.5, we get E fon I:_(gbj) I,_(¢;)9;(t)d¢, = 0. Moreover, the process
(114);>0 is a martingale, i.e. E fon E_(gzﬁj)Bt(:c)dmt = 0. Therefore,

n

E nI_t_a:d.fta:: 2N B nft_ ) By (z)dm, .
/0 (x)dI(x) 92/0 (6,) B, ()
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Taking into account here that for any non-random bounded function f

E /O F(#)dm, =0,

we obtain Efgl ftf(qu) B,(z)dm, =E fon If_(gb‘) B,(z)dm,. So, Lemma 2.4 yields

Soae [ ek,

v [ @) Baam,

IN

n
20365 40 111 D lzyIm.

=1
Therefore,

4
< 20500, Tl Dozl

1<l,j<n

n 2
= 20,850, 1Tl 7 (Z |$z|> :

=1

‘E /On I,_(z)dI(x)

Taking into account here that (37" |:vl])2 < nzlzl a7 < n, we obtain (2.69). Reminding
that II(2?) = 1 we can calculate directly that

ED, (z) = 4E/On A2(z)dt + o5 T1(2") /On B (z)dt. (2.70)

Note that, thanks to Lemma 2.1, we obtain that

/A2 dt_zx,x]/ ;(t),; () EL g, (t),0,(t)d t

=S, [ / 6,006, 0)(e + 2p(w)av

n

2
l- >¢j<t>dt) o2 Ay, ()

i </

2

n
< ?Q? + Qg Al,n($) )
where A, (z) =37, . 27, G <f é;(v ) p(v )dv) dt. This term can be estimated

through Proposition 5.1 as

At = |5z +szx] [ 60,0 ([ o010 ) a
s 111 3l < ( maxurnl) .

| /\
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So, reminding that o = Q% + Qg /7 and that ¢,,,, > 1, we obtain that

n o
E/O Ayt < (T2 4 61, 100, v

1
< <4 + IITHl) Omaz (1051 (2.71)
Taking into account that
igg BQ( — maac Z |x]’ < d)frlnaz n, (272)
that ¢,,,, > 1 and that o} < O'Q, we estimate the expectation in (2.70) as
ED, <4¢, . (1+05) (1+][T[ly +(z")) n®. (2.73)

Moreover, taking into account that the random variable Y}, is independent of AT;@* () and

of the field G = o{T}, j > 1} and that E (ATk_ () |g) =0, we get

—+00

EZ BTk T (x )Yk?’l{TkSn} = ZEE (BTk—(x) ATk, (x)Ykgl{Tkgn}|g>

k=1

=EY} EZBTk_<x>1{Tk§n} E(A;_(2)|6) =0.

Therefore,
E D, (2) = 03EY{' Dy () + 4D, , (x), (2.74)

where
Dy, (z ZEB (@)1i7,<py and Dy, (x ZEA (@)L <py -

Using the bound (2.72) we can estimate the term D, ,, as D, ,(z) < ¢t nEN,. Using here

Corollary 5.1, we obtain
Dy, (z) < |pl¢ham”- (2.75)
Now, to estimate the last term in (2.74), note that the process A,(x) can be rewritten as
/ Q(t,s)dE,, with Qu(t,s) Zx ¢;(8); (). (2.76)
J=1

Applying Lemma 2.3 again, we obtain for any k > 1

Ty,
B (4 ()6) =0} /O QX(T;. s dstQ? (T, T))
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So, we can represent the last term in (2.74) as
D,,, = ¢* DY) + 02 DY) | (2.77)
where
1 = T 2
= ZE Loz, <n} / Q, (T, s)ds
k=1 0
and

+o00 k—1
2
=Y Bl > QUTLT)).
k=1 j=1

Thanks to Proposition 5.1 we obtain

n t n n
(1) _ 2 2
Dy —/0 (/0 Q;(, s)ds) p(t)dt < |p\*/0 /0 Q%(t,s)dsdt.

In view of the definition of @, in (2.76), we can rewrite the last integral as

/On Qtrs)ds = 3w, 6,(0) /qﬁz

Since Z?Zl :c? < 1, we obtain that,

/ Q%(t,s)ds < ¢2,.n and DY) < |pl,n (2.78)

Let us estimate now the last term in (2.77). First, note that we can represent this term as

ZEl{Tk<n}ZQ (T3, T;) Zl{T<n}G / Gt

7j=1

where

ZEl{T @+ T.0 = [ QX+ 1) ple)an

/ Qzut (u—t)du.

It is clear that, for any 0 <t < n,

n—+t 2n
[ Qu-opwde <l [ Qe
t 0
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In view of the inequality (2.78) we obtain

2n 2n
Qutdu= [ Qtu)du <262, m
0

0
Therefore,

2
max G(t) < 2|p|, qﬁmaxn and D( ) < 2|p|? d)max
0<t<n

So, estimating gg by 7o and taking into account that EY14 > 1, we obtain that we obtain that
E Dy(z) <13 (1L+7)¢t  EY'(1+|p2)no, .

Using all these bounds in (2.68) we obtain (2.62) and thus the conclusion follows. O

Remark 2.5. The properties (2.59) and (2.62) are used to obtain the oracle inequalities given

in Section 2.3 (see, for example, [17]).

2.4 Efficiency

Now we study the asymptotic efficiency for the procedure (2.23) with the coefficients (2.28),
with respect to the robust risk (2.5) defined by the distribution family (2.8)—(2.9). To this end,

we assume that the unknown function S in the model (2.1) belongs to the Sobolev ball
={fec,o1] Z 1F90? <r}, (2.79)

wherer > 0 and k > 1 are some unknown parameters, C]’;er [0, 1] is the set of k times continuously
differentiable functions f : [0,1] — R such that f((0) = f@(1) for all 0 < i < k. The function

class Wf can be written as an ellipsoid in L,|0, 1], i.e.,
={feck,01] Z a;07 < (2.80)

where a; = Zf:o (2m[j/2])* and 0; = fol f(v)Tr;(v)dv. We recall that the trigonometric basis
(Tr;);>1 is defined in (1.15).
Similarly to [17, 18] we will show here that the asymptotic sharp lower bound for the robust

risk (2.5) is given by

ri = ((2k + 1)r)"/ G+ < i (2.81)

(k+1)m

Note that this is the well-known Pinsker constant obtained for the non-adaptive filtration

>2k/(2kz+1)

problem in “signal + small white noise” model (see, for example, [47]). Let II, be the set of
all estimators §n measurable with respect to the o-field o{y,, 0 < t < n} generated by the
process (2.1).

The following two results give the lower and upper bound for the robust risk in our case.
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Theorem 2.4. Under Conditions (2.8) and (2.9),

lim inf vik/(%ﬂ) _inf  sup R:L(gn,S) >r,
n—00 Snenn SEVVI{C

(2.82)

%

where v, = n/¢*.

Proof. First, we denote by @), the distribution of the noise (2.2) with the parameter o; = ¢*,
06 = 1 and gy = 0, i.e. the distribution for the “signal + white noise” model. So, we can

estimate as below the robust risk
RZ(SW S) > RQO(Sn, S).

Now Theorem 6.1 from [15] yields the lower bound (2.82). Hence this finishes the proof. O

Note that if the parameters r and k are known, i.e. for the non-adaptive estimation case,
then to obtain the efficient estimation for the “signal+white noise” model. Pinsker in [47]
proposed to use the estimate :S’\/\o defined in (2.15) with the weights (2.28) in which

where [, = [r/e]e. For the model (2.1) — (2.2) we show the same result.

Proposition 2.4. The estimator §,\0 satisfies the following asymptotic upper bound

lim Uik/(%ﬂ) sup R;(S\,\O, S) <rj.
n—oo Sewk

Proof. Putting A\y(j) = 0 for j > n we can represent the quadratic risk for the estimator
(2.15) as

. > ) 1o,
18— S IP= D001 do(i)02 —2H, + + > NI
j=1 J=1
where H,, = n~ /2 > i=1(1=20(5))X0(5)0;; .- Note that EQH,, = 0 for any Q € Qn, therefore,
. > , 1 =2,
Eq || Sy, — 5 7= (1= %0())%6; + ~Eq > M()E,.-
j=1 J=1

Proposition 2.2 and the last inequality in (2.8) imply that for any Q € Q,,

—~ o, RS ICTR = B FN 2, .
EQ Y MN()&, <o Y A0) + e =" > N (j) + Ci, -
Jj=1 j=1 j=1

7

Therefore,
o0

- , 1~ o0, Cin
Ri (83 8) < D0 (1= M(@)%65 + — D A50) + — "

— n
=0«
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where j, and v,, are defined in (2.28). Setting

Ty, (8) = /DN (1 — Xo(j))%0 and T, = @) > NG,
i=i. vn i=1

we rewrite the last inequality as

Uik/(Qk—&-l) Rz(g\)\o’ S) < T1,n(5) + Ty, + Cn )

(2.84)
where C,, = Uik/(”fH)Cin/n. Notevthat Conditions (2.9) and (2.56) imply that C} | (nf)
as n — oo for any § > 0; therefore, C,, — 0 as n — oo. Putting

u, = 02 R sup (1 — No(4))%/ay

J2Jx

with a; defined in (2.80), we estimate the first term in (2.84) as

sup 1y ,(S) < sup w, Zajé’j <wu,r.
SEWf SEWf j>1

Taking into account that a;/(w*;2%)

— las j — oo and lj — r as € — 0 and using the
definition of w,, in (2.28), we obtain that

1 Xo(5))?
limsupu, < lim V2R R+ g ( 0(7))

n—00 n—oo " J>J. (7’[’j)2k
L2k/ (2k+1) 1
= lim o = — 2k/(2k+1)
n—oo T wao ™ (dkr)
Therefore,
p1/(2k+1)
i < =TT .
h;njip Sselg/)lc T1.0(5) 2 () T @R ] (2.85)
As to the second term in (2.84), note that
1 < ! 2k?
lim — Y A3(j / 1—t7)2dt = :
He300 Wy ; o) . (1= (k+1)(2k + 1)

So, taking into account that w%/vrl/(%*l) — ()R a5 n — 00, the limit of Y5, can be
calculated as

1/(2k+1) 7.2
lim T27n:2(d’“r) LagY

=77.
Moreover, since T] + T35 =: r;, we obtain

lim vik/(%ﬂ) sup R;(gAO,S) <r;
n—oo Sewk
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and get the desired result. O
For the adaptive estimation we use the model selection procedure (2.23) with the parameter §
defined as a function of n satisfying

lim 6, =0 and limn’s, =0 (2.86)

n n

for any & > 0. For example, we can take 6, = (6 + Inn)~'.

Theorem 2.5. Assume that Conditions H;)-H,) hold true. Then the robust risk defined in
(2.5) through the distribution family (2.8)—(2.9) for the procedure (2.23) based on the trigono-
metric basis (1.15) with the coefficients (2.28) and the parameter § = §,, satisfying (2.86) has
the following asymptotic upper bound

hni sup v2F/(2H+) sup, R(S,,S) <. (2.87)
n—o0 ew}

Theorem 2.4 and Theorem 2.5 allow us to compute the optimal convergence rate.

Corollary 2.1. Under the assumptions of Theorem 2.5, we have

. 2%k/(2k+1) - a
lim v /@D i sup R (S,,S) =r. (2.88)
n—oo Snenn SEWII.Q
Remark 2.6. It is well known that the optimal (minimax) risk convergence rate for the Sobolev
ball WF is n?k/ k1) (see, for example, [47], [46]). We see here that the efficient robust rate is
vik/(%*l), i.e., if the distribution upper bound ¢* — 0 as n — oo, we obtain a faster rate with
respect to n2k/ (k1) and, if ¢* — 0o as n — 0o, we obtain a slower rate. In the case when ¢*

is constant, than the robust rate is the same as the classical non robust convergence rate.

2.5 Simulations

In this section we report the results of a Monte Carlo experiment in order to assess the perfor-
mance of the proposed model selection procedure (2.23). In (2.1) we chose a 1-periodic function
which is defined, for 0 <t <1, as

S(t) = tsin(27t) + t*(1 — t) cos(4nt). (2.89)
We simulate the model
dy, = S(t)dt + d&;
where & = 0.5dwt + 0.5dz,.

Here z; is the semi-Markov process defined in (1.6) with a Gaussian AV/(0, 1) sequence (Y;) ;>4

and (7x)r>1 used in (1.7) taken as 7 ~ X?;-
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n R R.
20 0.04430 0.235
100 0.01290 0.068
200 0.00812 0.043
1000 0.00196 0.010

Table 2.1: Empirical risks

We use the model selection procedure (2.23) with the weights (2.28) in which £* = 100 +
In(n), t; = i/In(n), m = [In?(n)] and § = (3 + In(n))~2. We define the empirical risk as

;zi:g;( (j))27 (2.90)

where the observation frequency p = 100001 and the expectation was taken as an average over
N = 10000 replications, i.e.,

B(5.0-50)" = 5 2 (310 -50)"

=1

We set the relative quadratic risk as
_ 1
R. =R/||S||2, with [|S]]) = 5 > S(ty). (2.91)

In our case ||S||2 = 0.1883601.

Table 2.1 gives the values for the sample risks (2.90) and (2.91) for different numbers of
observations n.

Figures 2.1-2.4 show the behaviour of the regression function and its estimates by the model
selection procedure (2.23) depending on the values of observation periods n. The black full line

is the regression function (2.89) and the red dotted line is the associated estimator.
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Figure 2.1: Estimator of S for n = 20
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Figure 2.2: Estimator of S for n = 100
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0.5
I

0.0
|
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Figure 2.3: Estimator of S for n = 200
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Figure 2.4: Estimator of S for n = 1000

Remark 2.7. From numerical simulations of the procedure (2.23) with various observation

numbers n we may conclude that the quality of the proposed procedure: (i) is good for practical
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needs, i.e. for reasonable (non large) number of observations; (ii) is improving as the number

of observations increases.

Now we give the algorithm of the model selection procedure given in Section 2.2
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Algorithm 1 Model selection procedure

Require: n,0<g<1land d >0

p1, p2, s*: satisfying Conditions (2.8) and (2.9)
k* > 1, e: satisfying Condition (2.26)
Output: The optimal weight vector A

{Step 1} Computation of the weights

m = [1/?]

for i +— 1to [k*] do

for j «— [¢] to [me] do

for k «+— 1ton do
Compute the wheight coefficients \; ;(k) using the formula (2.28)
end for
end for

end for
return: the vectors A = (A\y(1),..., Aa(n)),a € A={1,...,k*} x {e,...,me}
{Step 2} Computation of the Fourrier coefficients
for k «+— 1ton do

@f,n =z fon br(t)dy, -
O <— 5,2“1 -1
The observation (y;)o<;<, are given in (2.1) with the noise process (2.2) and (¢ );>1 is
the basis given in (2.10)
end for
return: the vectors 6 = (517n7 oy é\n,n) and 6 = (glyn, e anm)
{Step 3} The cost function

for i +— 1to [k*] do

for j «— [g] to [me] do
Tn(X) +— 0 A%(l)é‘j{n -2y Xij (D0, + 0 P,(N). .
where the vectors A = (A (1), ..., A j(n)) are computed in Stepl, the vectors 6 and
are given in Step2 and P, is the penalty term given in (2.22)
end for
end for

~

return: A = argmin,_, Jo(A),A = {)\,, a € A}.
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2.6 Stochastic calculus for semi-Markov processes

In this section we give some results of stochastic calculus for the process (§,);> o given in (2.2),
needed all along this paper. As the process ¢, is the combination of a Lévy process and a

semi-Markov process, these results are not standard and need to be provided.

Lemma 2.1. Let f and g be any non-random functions from Ly[0,n] and (I,(f));>o be the
process defined in (2.6). Then, for any 0 <t <n,

EL(f),(9) = 0] (f,9)¢ + & (f.90):, (2.92)
where (f, g) f f(s)g(s)ds and p is the density defined in (1.8).
Proof. First, note that we can represent the stochastic integral I,(f) as
L) = el IF () + o I7(f), (2.93)
where

1L = t s)dL. and I? = t s)dz. .
L(f) /Of() s (/) /0f<> s

Note that the mutual covariation for the martingales I(f) and I*(g) (see, for example, [21])

may be calculated as

I (f). T ), = & /0 F9)ds+(1- ) S f(9)gs) (ALY, (2.99)

0<s<t

where AL, = L, — L,_. Taking into account that E I'(f) Ik (g) = E[I*(f), I*(g)], and that
in view of the first condition in (2.3) II(z%) = 1, we obtain that

EIL(f) IX(g) = & / F(8)g(s)ds + (1 — 6% T1(2?) / £(s) g(s)ds
0 0

:/0 f(s)g(s)ds. (2.95)

EIF(f)I7(g) = E (Z f(Tl)g(Tl)YlQl{Tlﬁt}>

=1

Moreover, note that

—E(Zsz ﬂl{Tq}) /f

=1

Hence the conclusion follows. O

Lemma 2.2. Assume that Conditions H;)-H,) hold true. Then, for any n > 1 and for
any non random function f from Ly[0,n], the stochastic integral (2.6) exists and satisfies the

properties (2.7) with the coefficient s, given in (2.7).
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Proof. This lemma follows directly from Lemma 2.1 with f = g and Proposition 5.1. O

Lemma 2.3. Let f and g be bounded functions defined on [0,00) x R. Then, for any k > 1,

N

-1

E (I, (f)I5, (9)1G) =&X(f. o)r, + 3> F(T) 9(Ty),
=1

where G is the o-field generated by the sequence (T));>1, i.e., G = o{T}, 1 > 1}.

Proof. Using (2.93), (2.95) and, taking into account that the process (L;);~( is independent

of G, we obtain

E (I, (f)Ig, (9)1G) =dX(f 9, +E (I (NI, _(9)19).

Moreover,

k—1 k—1
E(f (N1 (9)19) =E< fmm) ( g<Tl>Yl> \g)

Thus we obtain the desired result. O

Lemma 2.4. Assume that Conditions H;)-H,) hold true. Then, for any measurable bounded

non-random functions f and g, we have

‘E / 12 (f) g(t) dmy | < 2621l |£12 Ty .

0

Proof. Using the definition of the process (m;);», we can represent this integral as

s am =3 1 ()00 1

k>1

- [ rs 0 ar=v,-v,. (2.96)

Note now that
EV, =EY g¢(T,)E (I%k,(f) | 9) Lt <ny -

k>1

Now, using Lemma 2.3 we can represent the last expectation as
2 2
EV, = glEVé—i—gQEVTZ’, (2.97)

where

k1
V= Z 9(T},) HfH2Tk 11, <ny and V) = Z 9(T3) 1y, <ny Z FA(T)

k>1 k>2 =1
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The first term in (2.97) can be represented as
BY, = [ o0 Iflkonar.
To estimate the last expectation in (2.97), note that
BV, =B Y S0 a0 e = [ £0)300) (o).

>1

where

90) =B Y g0+ T) Lircn vy = [ " at) plt — v)dt.
E>1 v

Moreover, using now the representation (2.92), we calculate the expectation of the last term in
(2.96)

EU, = ¢ /0 IR gt) pt) e + @2 /0 " F()g(t) p(t) .

where f(t) = fg f?(s) p(s)ds. This implies that
B [ I tdm = [ o) stat,

where §(t) = fot f?() (p(t —v) — p(t)) p(v)dv. Note that, in view of Proposition 5.1, the

function § can be estimated as
t
6] < |12 |l / 1T(t—v) = T(@)] dv < |2 ]pl, (1T, + L)) -
0

Therefore,

‘E [ 1) 9te) dmy| < 220l 17 X1

0
and this finishes the proof. O

Lemma 2.5. Assume that Conditions H,)-H,) hold true. Then, for any measurable bounded

non-random functions f and g, one has
E [ (DL (9)altdg, =
0
Proof. First, note that
/ If_(f)ft(g)g(t)d&:m/ If(f)ft(g)g(t)stJer/ 17 (/)T (9)g(t)dz.
0 0 0

Second, we will show that
B [ 1 (N ()0t =o. 299
0
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Using the notations (2.93), we set

J, = / nff(f)ff(g)g(t)st and J, = / nlf(f)ff(g)g(t)d%
0 0

we obtain that "
/ If(f)[t(g)g(t)st =01J1+0205. (2.99)
0

Now let us recall the Novikov inequalities, [44], also referred to as the Bichteler—Jacod in-
equalities (see [32, 43]) providing bound moments of supremum of purely discontinuous local

martingales for any predictable function h and any p > 2

| )
[0,t] xR

where C’; is some positive constant and

p/2
Jyn(h) = (/ h? dl/) +/ hP dv .
’ [0,n]xR [0,n]xR

By applying this inequality for the non-random function h(s,z) = g(s)z, and, recalling that
(%) < 0o, we obtain,

p

E sup < CrE J,q(h), (2.100)

0<t<n

sup E‘ItL(g)

’8
0<t<n

< 0.

Taking into account that, for any non random square integrated function f, the integral
(fg f(s)dws> is Gaussian with the parameters (O, fg f2(s)ds), we obtain

8
sup E‘ItL(g)| < 0.
0<t<n

Finally, by using the Cauchy’s inequality, we can estimate for any 0 < ¢ < n the following

expectation as

E (I () (IF(9)* < \JETE)S BT

Sup E (I (M)} (9))? < oo,

Moreover, taking into account that the processes (L;);>( and (z;),>( are independent, we obtain
that

t
E(I7(M*' I (9)* =EI())'E](9) = /0 g (s)ds E(I7(f))".
One can check directly here that, for ¢ > 0,

E|F(NI* <|f;EYEN?.
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Note that the last bound in Corollary 5.1 yields sup,,.,, E (Itz(f))4 < oo and, therefore,

sup E (L)' (I}9)? < .

It follows directly that E.J; = 0. Now we study the last term in (2.99). To this end, first note

that similarly to the previous reasoning we obtain that

E/meUD%fQM@kM%ZO and E/m@%fﬂﬂfﬂﬂmgaMLt:o-
0

0

Therefore, to show (2.98) one needs to show that

n
E [ 07921 (9)a0)dL, =o. (2.101)
0
To check this, note that, for any 0 < ¢ < n and for any bounded function f,
00 N,
=3 TVl cn =D ()Y lir <y s
k=1 k=1
ie.,
n Nn Nn Nn
JRGTDRAON F(T) (1) 9(T)) VY, Yy Iy
0 k=1 1=1 j=1
where

Ty = / Lin <o ln<pylir<pdly -
0

Taking into account that the (L,),>q is independent of the field G, = o{z,,t > 0}, we obtain
that E (I,,;]G,) = 0. Therefore,

= EZ A (T £(T) 9(T;) Y;Y, Y E (1y41G.,) = 0

So, we obtain (2.101) and hence the proof is achieved. O

Appendix

Property of the penalty term

Lemma 2.6. For anyn > 1 and A € A,

Cl n
P)(\) < EqErr,(\) + TQ

where the coefficient PY()\) was defined in (2.38).
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Proof. By the definition of Err,(\) one has

i, () = 3 (0G) - vg, + e, )
j=1

In view of Proposition 2.2, this leads to the desired result

1< ) Cion
BoErm() > = 3 X()Bog, > Pl(y) — —-".
j=1



Chapter 3

Non-parametric estimation for semi-Markov

regression models based on discrete data

3.1 Introduction
Let us consider a regression model in continuous time
dy, =S({t)dt+d¢, 0<t<mn, (3.1)

where S is an unknown 1-periodic function defined on R with values on R, (§;);>¢ is the
unobserved noise process (2.2) . The problem is to estimate the unknown function S in model

(3.1) on the basis of observations

(W, Jo<j<npr B =70, A= 21?, (3.2)
where integer p > 1 is the observation frequency. In this chapter we use the risks defined in
(2.4) and (2.5) for the distribution family Q,,.

The goal of this chapter is to develop a robust efficient model selection method for the model
(3.1) with the semi-Markov dependence having unknown distribution. We use the approach
proposed by Konev and Pergamenshchikov in [17] and [18] for continuos time regression mod-
els with non martingale noises. Unfortunately, we cannot use directly their method for the
semi-Markov regression models, since their tool essentially uses the fact that the Ornstein -
Uhlenbeck dependence decreases with geometrical rate and obtain sufficiently quickly the “white
noise” case. In this chapter we propose new analytical tools based on renewal methods, to ob-
tain the sharp non-asymptotic oracle inequalities. And, as a consequence, we obtain robust

efficiency for proposed model selection procedures.

3.2 Model selection

In this chapter we will use the trigonometric basis (Tr;);>; in Ly[0, 1] defined in (1.15). By

making use of this basis, we consider the discrete Fourier transform of S

Ze Tr;(t), t€{ti,..tp}, (3.3)
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where the Fourier coefficients are defined by

p

0;,=(S.Tr;), = ;Z S(t)Tr, (t;). (3.4)
=1

In the sequel the corresponding norm will be denoted by Ha:H2 (z,7),. These Fourier coeffi-
cients ¢, , can be estimated by

N 1 (" P

0, = ”/0 U, (tdy, and ¥, Zﬁ ) g, i<t} - (3.5)

We note that the system of functions (¥, )i<j<p is orthonormal in L, [0, 1] because

j,p)
1

In the sequel we need the Fourier coefficients for the function S with respect to the new basis

(V; )1<j<p - These coefficiens can be writen as

/s DAt =0, + hy, (3.6)

where
$)=>" [ a0 - st
I=1"t-1

From (3.1) it follows directly that these Fourier coefficients satisfy the equation

— 1

~ 1
9j7p = 6]‘717 + %éjﬁlﬁ I (\I’%p) . (37)

%n

where &, =

For any 0 <t <1 we estimate the function S by the weighted least squares estimator

Z/\ 0505 (1), (3.8)

where the weight vector A = (A(1),....., A(n)) belongs to some finite set A from [0, 1], 6?“, was

defined in (3.5). Now let us consider

i=#(A) and |A], = = max L(N), (3.9)

where #(A) is the cardinal number of A and L()\) = Z;.Lzl A(j)- In the sequel we assume that
|Al, > 1 and A(j) =0 for j > p.

In order to find a proper weight sequence A in the set A one needs to specify a cost function.
When choosing an appropriate cost function one can use the following argument. Let as consider

the empirical squared error
Err() = |5y — S|I°, (3.10)
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which in our case is equal to

Err(\) = > A()07, — 2> A5)0;,0,, + [IS]*- (3.11)
j=1 i=1

Since the Fourier coefficients (6;),- are unknown, the weight coefficients (A(j));<;<, cannot
be determined by minimizing this quality. To circumvent this difficulty, one needs to replace

the terms @},pgj’p by their estimators §j’p_ Let us set

0,p =0, — 2 (3.12)

where 7, is an estimate of the proxy variance o, defined in (2.8). For, example, we can take

it as
P
Z 6> and p=min(p,n), (3.13)

8 pu—
n Jsp

SaS

7=l
where | = [y/n], and we set g,, = 0 for | > p. For this change in the empirical squared error,

one has to pay some penalty. Thus, we obtain the cost function of the form

n

J) =SRG2 5 A, + 5B, (3.14)
i=1 j=1

where 0 > 0 is some threshold which will be specified later and the penalty term

Py = 2 (3.15)
n
Minimizing the cost function, that is
A= argmin, , Jn(A), (3.16)

and substituting the obtained weight coefficients A in (3.8), lead to the model selection proce-

dure

S.=5;. (3.17)

We recall that the set A is finite so A exists. In the case when \ is not unique we take one of
them.

3.3 Oracle inequality

In order to prove the oracle inequality, the following conditions will be needed for the noise
(§1)¢>0- Here we use the conditions introduced in [17] for the general semi-martingale model
(2.1).
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L,) For alln > 1 and Q there exist a variance prozxy og >0 and a constant Ly g > 0 such
that

sup  sup |Bl,Q(x)’ <L y<oo,
p>3 ze[-1,1]"

where By o(r) = Z?zl T; (EQgin — 0Q>.
Ly) For alln > 1 and Q there exists a constant LQ,Q > 1 such that

sup sup EB;Q(x) < Ly < oo,
p=3 |z|<1

where BQ,Q(I‘) = Z;L:1 x; &, and &, = f?,p — Eij%p .

First we set the following constant which will be used to describe the rest term in the oracle

inequalitie. We set

8np =1+ AL (éﬁ + %) : (3.18)

Firstly, we obtain the non asymptotic oracle inequality for the model selection procedure (3.17).

Theorem 3.1. Assume that Conditions Ly) and Ly) hold. Then there exists some constant
I* > 0 such that for any noise distribution Q), the weight vectors set A, for any periodic function
S foranyn > 1, p >3 and 0 < § < 1/6, the procedure (3.17), satisfies the following oracle

inequality

_ 1+30 .
< )
R(Sx, S) < 35 r/\nel[rleQ(S)\,S)
* L ~

Proof. Using the cost function given in (3.14), we can rewrite the empirical squared error in

(3.11) as follows

n

Err(A) = Ju(A) +2) A0, + 1511 = pPa(N), (3.20)
j=1
where R
. ~ - o~ 1 - 1~ 1 0Q — On
U0 = 0ip = V50050 = 5 0in%in + 80+ Sim T =
with ¢;, = Bgé? —og and &, = & —Eqg¢? . Setting
MO = - S ()6 a po— 7 3.21
()—%Z (J)jfm an n T T, 0 (3.21)
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we can rewrite (3.20) as

Err(A) = Jo()) + 229

" L)+ 2M () + 2By oV

+2/PO() BZQ +\|5H2f pPa(N), (3.22)

where e(A) = A/|A| and the function L was defined in (3.9). Let Ao = (Mo(4))1<j<, be a fixed
sequence in A and A be defined as in (3.16). Substituting A¢ and X in Equation (3.22), we

obtain

Err(A) — Err(Ao) :J(X)—J(AO)HUQ_ L(w) + BlQ( @) + 2M ()

+24/PO(X “9 —2,/PO() 2Q

— 6Py (N) + 0P (o), (3.23)
where @ = A — gy €= e()) and ey = e(Ag). Note that, by (3.9),
L(w)| < LX) + LX) < 2[4,

The inequality

2|ab| < §a® 4 6~ 1b? (3.24)
implies that, for any A € A,
B A B2 (e(\
o BT B2 o, Bl
VoQr " dogn

Taking into account that 0 < § < 1, we get

; 2L,  2Bi,
Err(A\) < Err(N\g) + 2M (w) + —= + 5
n O'QTL
116, — o0l (A2 + [ho[2) + 26, (A
4 213, = oglIRE + [3af?) + 2. (30).

where B} o = sup,_, B;Q((e(/\)). Moreover, noting that in view of (3.9) sup,_, [A]* < [A],,

we can rewrite the previous bound as

) <
Err(\) <Err(\g) 4+ 2M (w) + n 50Qn

4lA],
+ 'n’*|aaQ+25Pn(A0). (3.25)
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To estimate the second term in the right side of this inequality we set

n

Se =D w()0;,Tr;, v = (@())igjzn € R
j=1

Thanks to (2.7) we estimate the term M (z) for any x € R" as

EoM?*(z ) < Zx Jp_%Q ||S [ (3.26)

To estimate this function for a random vector x € R™, we set

nM?(z)
¥ =sup —=-, Ai=A-).
zelq HS&H2
So, through Inequality (3.24), we get
2 L7
2|M ()| < 6]|Sz]] + 5 (3.27)

It is clear that the last term here can be estimated as

nE M
E 2" < Y. ||QS H2 <3 s = i, (3.28)

rEA rEN

where v = card(A). Moreover, note that, for any = € Ay,

1217 = [181* = Zw - 03) < —2My(x), (3.29)

where M, (z) = n~1/? Z;‘L:1 z? (j)??pfjm. Taking into account now that, for any = € Aj, the

components |z(j)| < 1, we can estimate this term as in (3.26), i.e

M\ =X — -
Similarly to the previous reasoning we set
. nM?(x
Z] = sup L= (2)
vey |[Sall
and we get

Using the same type of arguments as in (3.27), we can derive

2| Mi(x)] < 8[Sa|I* + (3.31)

*
1
no
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From here and (3.29), we get

[EAR i
1-6  ndé(l1-9)
for any 0 < 6 < 1. Using this bound in (3.27) yields

oISel2 2t + 2
< .
2M@) < 34— 5+ 51 =)

I1521% <

(3.32)

Taking into account that ||S_||2 < 2 (Err()) + Err()g)), we obtain
25(Err(X) + Err()\o)) AR

< .
2M(@) < 1-5 né(1— o)
Using this bound in (3.25) we obtain
~ 146 Z*+ 7% 2L1Q 2B;‘Q
E ——FErr(\ : .
) S Bro) + oS TS A —se) T e = 38)oon
(4101, +2) 2
— g — —PJ(A
(1 —30) 7 el T G55 )
Moreover, for 0 < § < 1/6 we can rewrite this inequality as
R 16 22*+2F) 4L g 4B,
Err(\) < Err(A : :
(A = -39 r(do) + no + n + dogn
8IA[, +2) 25
+ (8Al. +2) PR (Xo)-

Fa I T T
Now, in view of Condition L,), we estimate the expectation of the term Bj on (3.25) as

< Z EQ < LL2 Q-
AEA

Now, taking into account that |A[, > 1, we get

Ra(5.8) <4 T piRa(By )+ o 4 T4 1 T2
+ 10‘3’* Eqlo —oql + a 3535)]3’9@0)'
By using the upper bound for P,()\¢) in Lemma 3.1, we obtain that
R (5*75) 1 jggRQ(@\o, S) + 4:225 + 4L;,Q n tz:;nQ
N 10\;\|* EQ|8UQ|+(125_L§;$C§7@'

Taking into account that 1 — 35 > 1/2 for 0 < ¢ < 1/3 and that kg < (14 7|pl[,)og and using
the bounds (3.38) and (3.60) we obtain the inequality (3.19). Hence we get the desired result.
O
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Corollary 3.1. Assume that Conditions Ly) and Ly) hold and the prory variance o, is known.
Then there exists some constant I* > 0 such that for any noise distribution Q, for any weight
vectors set A, for any periodic function S for anyn > 1, p >3 and 0 < § < 1/6, the procedure
(3.17) with @,, = o, satisfies the following oracle inequality

~ 1430

*9 S
Rq(5:,9) 1— 38 reA

min Rq (Sy, S) +1 S (3.33)

Now we study the model selection procedure (3.17) using the proxy estimate (3.13).

Theorem 3.2. Assume that the function S is continuously differentiable and the conditions L)
and Ly) hold true. Then there exists some constant I* > 0 such that for any noise distribution
Q, for any weight vectors set A, for any periodic function S for any n > 1, p > 3 and
0 < & <1/6, the procedure (3.17), satisfies the following oracle inequality

~ 1+36 . 5
*9 S )
Rq(Se,8) < ;s minRg(5, )

*L 3 312
+U (14 o) (1+1912) 8- (3.34)

Let us study the robust risks (3.4) for the procedure (3.17). In this case this family consists of
all distributions on the Skorokhod space D[0, n| with the parameters satisfying the conditions
(2.8) = (2.9) . Now, to obtain the efficiency property we use the weight coefficients (A(j));<;<n,
specified in (2.28).

Our goal is to bound asymptotically the term (3.18) by any power of n. To this end we
assume the following condition.

H;) Assume that there exists 6 > 0 such that for any n >3

p>ndb. (3.35)

Now Theorem 3.2 implies the following oracle inequality.

Theorem 3.3. Assume that the unknown function S is continuously differentiable. Moreover,
assume that Conditions Hy)-Hy) hold. Then for the robust risks defined in (3.4) through the
distribution family (2.8) — (2.9), the procedure (3.17) with the coefficients (2.28), for anyn > 1
and 0 < 0 < 1/6, satisfies the following oracle inequality

. 1435 . U* ()
* < : n
R*(S.,8) < 1 — 36 reA né

(3.36)

where the sequence U (S) > 0 is such that under condition (2.26), for any r > 0 and 5> 0,

. U;.(5)
lim sup —2

! 5
S N E

~0. (3.37)
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Now we need to check the conditions L) and Lg) for the process (2.2).

Proposition 3.1. Assume that Conditions Hy)-H,) hold true. Then

Proof. Firstly, we set
n n
_ / FAL, and IE(f) = / F(t)dz, (3.39)
0 0
In view of (1.6) the last integral can be represented as
oo
= Z FI)Ylr<py - (3.40)
=1
Therefore,
9 ;L Q2
and
2 of " %
B¢, = ”/0 (Ddi+ Elz;\y (T)1 (7,2} - (3.41)
Using Proposition 5.1 we get
EZ‘I’ (TN 1<my = z)dz

Sl = s~

/ ' (r)da +/n V2 ()Y (2)dz,

0
where p is the renewal density introduced in (1.8). Then we obtain,

n

2
Egj%n =o0g+ % U2 ()Y (z)dz

Jip
and "
sup / U2 ()Y (z)dz| < 2|7, (3.42)
i1 1o P
where o = Q% + g% /7. This directly implies the desired result. O

To study the function B, g (x), we have to analyze the correlation properties for the following

stochastic integrals

L,(f) = I;(f) = EL(f). (3.43)

To do this we set
& =1+T0(z") + |7+ 1pl, and & =12(1+7)*(1+¢). (3.44)

Now we investigate the behavior of the integrals defined in (3.43) as functions of f.
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Proposition 3.2. For any left continuous functions f,g : (0,00) — R such that || f]l« < 1,

llgll« < 1, we have N
EL,(N1T,(9)] < 1205(1+7)* ((f,9) +néy) - (3.45)

Proof. By Ito’s formula one gets

dIZ(f) =21, (H)AL(f) + &id® fA(0)dt + > f2(s)(AgH)?, (3.46)

0<s<t

where €% = 95 L, + 052, and o3 = 0,1/1 — ¢*. Taking into account that the processes (f/t)tzo
and (z;);>( are independent and the time of jumps 7} defined in (1.7) has a density, we have
Az, AL, =0 as. for any s > 0. Therefore, we can rewrite the differential (3.46) as

I (f) =21, (f)dL,(f) + 01@2 fe)dt

+03d D> FP)AL) +3d D f(s) (3.47)

0<s<t 0<s<t

Therefore, using Lemma 2.1 we obtain

EIZ(f) = & IIFIIF + a3 f/Pll7

where || f]|? = f f?(u)du, p is the density of the renewal measure Z n9) and with 7 the

distribution of 7;. Therefore,

dIt(f) = QIt—(f)f(t)dft + f2(t)dmt ’ ﬁlt = ngt + ngt ’ (3‘48)

where m, = ZO<S<t(AL )2 —tand m, = ZO<s<t (Az,) f p(s)ds. By the Ito’s formula we
get,

BL(N,(0) E | "I_(f)dL()

+B [T (@dl(0) + B[1.10)] - (3.9

n

First, note that the process (mt)tzo is a martingale and, using Lemma 2.5, we get

E /0 I, (f)dl,(g) = p2E /O I ())g?(t)dm, = 2B /O 12 (f)g*(t)dm,

The last integral can be represented as

E /0 12 (f)g*(t)dm, = J, — T,

where

SEY (DT ey and = [ ER()P000r.

k>1
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By Lemma 2.3 we get

= EZ E (I%k,(fﬂg) 92(Tk)1{Tk§n} = 0111+ 0312
k>1

where

Jig = EZ ||f||T g9 Tk)l{Tk<n} and Jy, = EZ Z f? (1) g Tk)]-{T <n}
E>1 E>1 1=1

We obtain directly that

T = / 1£1262(6)plt)dlt

0
and

T2=BY @) S AT, = / e ( /0 (o + 000t plo)is

1>1 E>141

From Lemma 2.1 we obtain that
5= [t s+ & [ el oot
Therefore,
B [ 22 (g 0am, = o [ @) ([ @O0 -0 - s plaja
Taking into account that p(t —z) — p(t) = Y(t —x) — T (t) we can estimate the last integral as
B [ 12 (N 0dm| < 2630,

From this and by the symmetry arguments we obtain that

E [ L (DALl +[E [ T (@)L, < dgdnl T, (3.50)
0 0
Note now that
I(0).1(9)] =(I'(N).1'(9)) +Dy(1.9). (3.51)
where
= > AINf)AIL(g).
0<t<n

It should be noted that the continuous and the discrete parts of the processes (3.48) can be

represented as

T(f) = 20,0 /O 1(F)f(s)dw, and T4(g) =2 /0 I, (f)f(s)de? + /0 £2(s)dim,
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So, in view of Lemma 2.1,
E < °(f).J(g) >= 4p38° /0 E(L,(f)1,(9))f(Dg(t)dt
— 47 / (F.9), F(Dg(t)t + 42035 / (F.90)uf (B)g(t)dt
0 0
— 4350, (.9)° + AR R3F /0 (f.970)of (Dg(t)dt (3.52)

with (f,g), = fo g(s)ds. Taking into account that ||f||. < 1 and ||g||« < 1, we can estimate

the last integral as
/0 (f, g0, (Hg(t)dt < n T,

Therefore,

B(F().70) | <0} (o +n7T1L) (359)

To study the last term in (3.51) note that

D,(f,9)= > (2L (NIOAE + AR, ) (2L,_(9)g(AE + (1) A, )

0<t<n
Taking into account that for any ¢ > 0
A{fAﬁzt = Qg(ALt)g + Qg(Azt)S )
we obtain that

EY g P(OAE AT, = (1) + BB YY) /0 "EL() (0920t = 0.

0<t<n

So, using the symmetry arguments, we find that

Dn(f?.g) = 4ED1,n(f?g) +ED2,n(fag)7 (354)
where
Dy, (f,9)= > L_(NL_(9)fHg®)(AE)? and Dy, (f,9)= D f2(t)g*(t)(Am,)*.
0<t<n 0<t<n
Note that
Dl,n(fa g) = ng)l,n(fag) + Qgﬁl,n(fa g) )
where
D, (f9)= > L (NI (9)ft)gt)(AL,)’
0<t<n
and
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Now, similarly to (3.52) and taking into account that II(z?) = 1, we get

ED, ,(/.9) / FOg(OE L), (g) dt = o2 /"f<t>g<t><fg>tdt
0
t /0 " F@©)9(t) (f, gp)y dt

=oo(f9+ 25 [ S0a(0) (7, g),

So,
[ED,,.(f,9)] <oq ((f,9); +n7T];) - (3.55)

Moreover, taking into account that EY2 =1 we get

EDl n(f9) EZ Ip (NI —(9) [ (T)9(Th) Lig, <ny -

k>1
So, in view of Lemma 2.3
ED,,(f.9) = EY_ E (I, _(NI5,_(9)I6) F(T)9(T) Lz, <
k>1
—QlEZf 9T, Tk)l{T<n}+QQED 2(f:9)

k>1

_ 2 /O ”(f,g>tf<t> (o)t + ZED(f,9),

where
k—1
Dllm(f,g) = ZZ F(T) 9(L) f(T3)9(Ty) Lyr, <ny -
k>11=1
Noting now that
[ .0 s090p0 = (.07 + [ (o) SO0 T,
0 0

we obtain

| [ (.90 s Os(0pl0)at] < (.91 +nl T
0

Furthermore, the expectation of D/1 ,,(f,g) can be represented as

ED,, (f,9) =E Y f(T)o(T) > F(T)9(Ti) 1z, <ny

>1 E>1+1

= [Cs@ate) ([ s+ Dot pte)ar) e

1 "
= 277;(]0’ g)i + DLn(fvg) )
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where the last term in this equality can be represented as
D () = [ feate) ([ o+ ata-+ 07000 ) ol
2 / f(2)g(x) </ f(;v+t)g(:n—|—t)T(t)dt> T(x)de.
0 0
This implies
" 1
Dy (i)l < n(+ )+ ITN) -
Therefore,
[ED,,(f,9) < oq ((f.9); +n(L+H|TI}) - (3.56)
Finally we obtain that
[EDy,(f,9) <op(L+7)2((f,9)2 +nlTI3) - (3.57)
As to the last term in (3.54) we can calculate directly
ED,,(f.0) = i) [ P+ ol [* 00
0
i.e.
ED,,(f,9) < nop ((z*) +[pl,) (1+7)°.
From here we obtain that
[ED,,(f,9)] < o5,(1+7)* (4(f,9)2 +néy) (3.58)
where ¢, is given in (3.44). From this and (3.53) we find
E[I(f),1(9)l, <804 (1+7)* ((f,9)2 +néy) - (3.59)
This bound and (3.50) implies (3.45). Hence we get the desired result. O
Using these properties we can obtain the following bound.
Proposition 3.3. Assume that Conditions H,)-H,) hold true. Then, for alln > 1,
Ly o =2¢ Ué ) (3.60)

where |z|? = Z?Zl l‘]Q
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Proof. Note that
2

n n n
~ 1 - -
E() #¢,] < 2 SO el gl [BL (W)L, (V1)1
=2

j=1 I=1

Using here Proposition 3.2 and taking into account that
n
(Vs i) = [ 05,00, (00 =y,
0
we obtain the bound (3.60). Hence we obtain the desired result. O
Now we can study the estimate (3.17).

Proposition 3.4. Assume that Conditions Hy) and H,) hold true for the model (3.1) and
that S is continuously differentiable. Then, for any n > 2 and p > 3,

. . (/n 1> 112 2
E 0,— 0ol <é|—+—)1+]S 140 , 3.61
0.5l5n — 00| 3(p ) @IS+ o) (3.61)

where ¢ =6 (14 4 2|p|, + 3T+ &) (1 + 7).

Proof. It is clear that Inequality (3.61) holds true for [ > p. Let now [ < p. Setting
:c; = 1y /m<j<py and subtituting (3.7) in (3.13) yields

p — 271 /
> 0,7+ = M)+

g=l b

[l =

O'n:

S 3

p
> e, (3.62)
=1

where M (z') is defined in (3.21). Furthermore, putting a:;' =p 1/21{l<j<p}, one can write the
last term on the right hand side of (3.62) as

12’!’:52 L, (,,)+1B @)+
< L= T = € - € —
b Vb 3¢ poe )7

where the functions B, g and B, () are given in conditions L) and Ly). Using Proposition 3.1,

Proposition 3.3 and Lemma 3.3 , we come to the following upper bound

I 2 , L /L on(l —1
16051 + By M(2)| + 22 V29 el —1)
Ip P P VD p

In the same way as in (3.26), we obtain

1/2 .
P 2\1/2
: 7 S 7 A0 IS17)
j=1

Taking into account that rg < (1 + 7|p[,)og and using the bounds (3.38) and (3.60) we
obtain the inequality (3.61). Hence we obtain the desired result. O

Remark 3.1. Propositions 3.1 and 3.3 are used to obtain the oracle inequalities given in Section

4.4 (see, for example, [17]).
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3.4 Efficiency

Now we study the asymptotically efficiency properties for the procedure (3.17) with the coef-
ficients (2.28), with respect to the robust risk (3.4) defined by the distribution family (2.8) —
(2.9). To this end, we assume that the unknown function S in the model (3.1) belongs to the
Sobolev ball

(e ch 00,3 IFO <), (3.63)

§=0

where 7 > 0, k > 1 are some parameters, CS@T [0, 1] is the set of k times continuously differen-
tiable functions f : [0,1] — R such that f®(0) = f®)(1) for all 0 < i < k. The function class

Wf can be written as an ellipsoid in L, i.e.
k
={fec.[01] Z a;0? <r}, (3.64)

where a; = Zf:o (2 [j/2)*.
Similarly to [17, 18] we will show here that the asymptotic sharp lower bound for the robust

risk (3.4) is given by

(3.65)

2k/(2k+1
rt = ((2k + 1)r)"/ @D < k ) [y

(k+1)m
Note that this is the well-known Pinsker’s constant obtained for the non-adaptive filtration
problem in “signal + small white noise” model (see, for example, [47]).
Let II,, be the set of all estimators §n measurable with respect to the o-algebra o{y,, 0 <
t < n} generated by the process (3.1).

Theorem 3.4. Under the conditions (2.8) and (2.9),

liminf 02/ G+ inf sup R;(Q\n, S)>r

3.66
n—o0 " SnEHn SEVV;C ( )

>%

where v, =n/c*.

Note that if the parameters r and k£ are known, i.e. for the non-adaptive estimation case, then
to obtain the efficient estimation for the “signal+white noise”model. Pinsker in [47] proposed
to use the estimate ng defined in (3.8) with the weights (2.28) in which

)

where [, = [r/ele. For the model (3.1) — (2.2) we show the same result.

Proposition 3.5. The estimator §A0 satisfies the following asymptotic upper bound

lim Uik/(%ﬂ) sup R (SAO,S) <rp.
n—oo Sewk
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Proof. First, we note that in view of (3.8) one can represent the quadratic risk for the empiric

norm || - ||, as
1 P
3 2 2 2 . B
Eq |15y, =51, = Y NG EQE, +6,,
j=1
where ©, = j 1 (9j7p - )\O(j)éj’p)% We put here A\y(j) = 0 for j > n if p > n. The first term

can be estlmated by the bound (3.38) as

sup EQZ)\2 5 <§*Z)\2 +L1Q7
QGQ j=1

where L} = SUPe g L, . Therefore, taking into account that v, = n/o*, we get

a 1 - . Tn ray
sup E, IS, — S| < — NG +—"+96,.
Qco, Q 117 Ag P v, ; 0 n p
Note that
) 1 n ) B Q(Tk I.)l/(2k‘+1) k2
Jim Ul/(zkﬂ); o) =G DEr (3.68)
Furthermore, by Inequality (3.24) for any 0 < £ < 1 we get
6,<(1+80,+(1+e" Zh]p, (3.69)

where O, = Z§:1 (1= X(5))? 6]2.7]3. In view of Definition (2.28), we can represent this term as

[wo]
@p = Z (1 —_ )\0 + Z :: @LP + @24),
J=to J=lwol+1

where ¢y = j, (o), wy = w,, = (Tklovn)l/(%H) and [, = [r/e]e. Applying Lemma 3.5 yields

["Jo]
01, < (14+8) Y (1= X)) 67 +4r’r(1+2 ) wip®.
j=1

Similarly, through Lemma 3.4 we have
+8) Y, G +(1+eHrp
JZ[wol+1

Hence,
0, <(1+¢) @fo +(1+&") (nrwl +1) p2,
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where O} = Ej>l (1—X(5))2 02 Moreover, note that
sup max h2 < |ISIPp2 <rp2.
SEWl 1<j<p J.p
Moreover, Wf - Wr2 for any k£ > 2. From here and Lemma 3.6 we get
SSE% Z hip < r( gy + 3p_21{k22}) :
Moreover, in view of Condition Hy) we have
lim v2k/(2k+1) (p_ll{kzl} +w8p_2) =0.
n—oo
So,
lim sup U2k/(2k+1) sup @ < limsup ’U2k/(2k+1) sup ©F .
n—00 Sewk n—00 Sewk 0
To estimate the term @2‘0 we set
U, = o2M D sup (1 — Ay (7)) /a; 4
jZLo
where the sequence (a;),;>; is defined in (3.64). This leads to the inequality
sup U2k/<2k+1) @* <U, Z a; 92 <U,r.
Sew! i>1
Taking into account that lim,, , t, =r, we get
limsup U,, < 2k (T3, r)_%/(%“) ,
n—oo
where the coefficient 7, is given in (2.28). This implies immediately that
P/ (2k+1)
2k/(2k+1) o <
hg;s;ip Yn Sselgjk 0, < w2k (7, ) 2K/ (2R+1) (3.70)
Moreover, note that
. 2(m,r) /@) g2 r1/(2k+1)
kE (k 4 1)(2k‘ + 1) + 7T2k(7k)2k/(2k+1) )
So, applying (3.68) and (3.70), yields
lim ’U2k/(2k+1) sup sup Eg ||S/\ —S||2 < R;. (3.71)

n—00 Sewk QEQ

Furthermore, Lemma 3.2 yields that for any € > 0

sup R%(S),,S) < (1+8) sup sup Eq ISy, - SI2+ (1+&7"

Sewk Sewk QeQ
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So, in view of Condition Hjy), we derive the desired inequality

lim /@D sup R*(S, ,S) < Ry
n—oo SEWk 0
Hence the conclusion follows. O
For the adaptive estimation we use the model selection procedure (3.17) with the parameter
0 defined as a function of n satisfying

lim 6,=0 and lim n’ 9, =0 (3.72)

n—ao0 n—aoo

for any 6 > 0. For example, we can take §, = (6 4+ Inn)~!.

Theorem 3.5. Assume that Conditions H|)-Hjy) hold. Then the robust risk defined in (3.4)
through the distribution family (2.8) — (2.9) for the procedure (3.17) with the coefficients (2.28)
and the parameter 6 = 6,, satisfying (3.72) has the following asymptotic upper bound

lim sup Uik/(%ﬂ) sup R;(é\*,S) <r. (3.73)
n—00 Sewk

Theorem 3.4 and Theorem 3.5 imply the following result.

Corollary 3.2. Under the conditions of Theorem 3.5,

lim Uik/(2k+1) _inf  sup R:;(S'\n,S) =r,. (3.74)
nroo Sn€ll, Sewk
Remark 3.2. It is well known that the optimal (minimax) risk convergence rate for the Sobolev
ball WF is n?k/ k1) (see, for example, [47], [46]). We see here that the efficient robust rate is
vik/(%*l), i.e. if the distribution upper bound ¢* — 0 as n — oo we obtain a faster rate with
respect to n2k/(2k+1) "and if ¢* — 0o as n — oo we obtain a slower rate. In the case when ¢* is

constant the robust rate is the same as the classical non robuste convergence rate.

3.5 Simulations

In this section we report the results of a Monte Carlo experiment to assess the performance of
the proposed model selection procedure (3.17). In (3.1) we chose a 1-periodic function which
for 0 <t <1 is defined as
t—3 if $<t<3,
S(t) = (3.75)
else.

=

We simulate the model
dy, = S(t)dt +d¢; ,
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n R R.
20 0.0398 0.211
100 0.0091 0.0483
200 0.0067 0.0355
1000 0.0022 0.0116

Table 3.1: Empirical risks

where & = 0.5dwt+0.5dz,. Here z, is the semi-Markov process defined in (1.6) with a Gaussian
N(0,1) sequence (Y}),5; and (74)k>1 used in (1.7) taken as 7 ~ x3 .

We use the model selection procedure (3.17) with the weights (2.28) in which £* = 100 4
V/(In(n)), t; = i/In(n), m = [In*(n)] and § = (3 + In(n))~2. We define the empirical risk as

Zi: (8utty) - (tj))Q, (3.76)

’UM—‘

where the observation frequency p = 100001 and the expectations was taken as an average over

N = 10000 replications, i.e.

N
. 2 1 . 2
B($.()=50) =D (810 =50)) -
=1
We set the relative quadratic risk as

. 1
R.=R/[|IS|? and HSH?,:EZSz(tj). (3.77)

In our case ”SH;Q) = 0.1883601.
Table 3.1 gives the values for the sample risks (3.76) and (3.77) for different numbers of

observations n.

The Figures 3.1-3.4 show the behavior of the regression function and its estimates by the
model selection procedure (3.17) depending on the values of observation periods n. The black

full line is the regression function (3.75) and the red dotted line is the associated estimator.
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Figure 3.1: Estimator of S for n=20.
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Figure 3.2: Estimator of S for n=100.
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Figure 3.3: Estimator of S for n=200.
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Figure 3.4: Estimator of S for n=1000.
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Remark 3.3. From numerical simulations of the procedure (3.17) with various observations
numbers n we may conclude that the quality of the proposed procedure is good for practical
needs, i.e. for reasonable (non large) number of observations. We can also add that the quality

of the estimation improves as the number of observations increases.

Now we give the algorithm of the model selection procedure given in Section 3.2
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data

Algorithm 2 Model selection procedure

Require: n,0<g<1land d >0
p : satisfying Condition H;) given in (3.35)
p1, p2, s*: satisfying Conditions (2.8) and (2.9)
k* > 1, e: satisfying Condition (2.26)
Output: The optimal weight vector A
{Step 1} Computation of the weights
m = [1/&?]
for i «— 1to [k*] do

for j «— [g] to [me] do

for kK +— 1ton do

Compute the wheight coefficients \; (k) using the formula (2.28)

end for
end for

end for

return: the vectors A = (Ao (1),..., A\a(n)),a € A={1,...,k*} x {g,...,me}
{Step 2} Computation of the Fourrier coefficients

for Kk +— 1ton do

gk,p - % f()n \Pk,p<t)dyt :
1
k,p n "

The observation (y;)o<;<, are given in (2.1) with the noise process (2.2) and (¥, ,)1<k<p

is the basis given in (3.5)

end for

~

return: the vectors 6 = (5171,,. 6, )and 6 = (gl,p,.

s Unp

{Step 3} The cost function
for i +— 1to [k*] do

for j «— [g] to [me] do

Ta(A) = S0 A2, (062, = 2507 X (18, + 6 P (V).

J

where the vectors A = (A j(1),..., A j(n)) are computed in Stepl, the vectors f and 6

are given in Step2 and P, is the penalty term given in (3.15)

end for

end for

~

return: \ = argmin, _, J,(\),A = {)\,, a € A}.
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Appendix

Property of the penalty term
Lemma 3.1. For anyn > 1 and A € A,
PO < Ry(S,, 8) + 19
n = QP n
where the coefficient PY()\) is defined in (3.21) and the L, o is defined in (3.38).

Proof. By the definition of Err()) in (3.10) one has

Brr(A ZZ( )18, + ", )

In view of Proposition 3.1 we obtain that

~ 1 & . L,
Ro(Sy,S) = Eg Err(A) > EZV(;)EQ@” > PO(\) — n’Q.
j=1

Hence we otain Lemma 3.1.

Properties of the Fourier coefficients

Lemma 3.2. Let f be an absolutely continuous function, f :[0,1] — R, with || f|| < co and g

be a simple function, g : [0,1] — R of the form g(t) = Z§:1 Cj X(t;_1,t;](t), where c; are some

constants. Then for any € > 0, the function A = f — g satisfies the following inequalities

la < a+aiai+a+e )l jape < s opap+ eI

Lemma 3.3. Let the function S(t) in (3.1) be absolutly continuous and have an absolutely

integrable derivative. Then the coefficients (0. ))1<j<p defined in (3.6) satisfy the inequalities

Jip

1011 < IS][x and 212;lénj’9j,p| <2v2||5]); - (3.78)

Lemma 3.4. For anyp > 2,1 <N <p andr >0, the coefficients (0, ,)1<;<, of functions S
from the class er satisfy, for any € > 0, the following inequality

Mws

07, < (148> 67 +(1+&rp2. (3.79)

j=N j=N
Lemma 3.5. For any p > 2 and v > 0, the coefficients (0;,)1<;<, of functions S from the
class er satisfy the following inequality

0. —0.]—2 ip 1) <0. 3.80
gl%xp sseuw% (’ e ]’ Ty )_ ( )
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Lemma 3.6. For any p > 2 and r > 0 the correction coefficients (hj p) for the functions
: P

1<5<
S from the class VVT2 satisfy the following inequality

p
sup Z hip < 3rp 2. (3.81)
Sew? i

Lemmas 3.2 — 3.6 are proven in [18].



Chapter 4

Non-parametric estimation for Lévy regres-

sion models

4.1 Introduction

Let us consider a regression model in continuous time with the Levy noise
dy, = S(t)dt+ed§,, 0<t<1, (4.1)

where S is an unknown function defined on R with values in R, (§;)g<;<; is some unobserved
noise and € > 0 is the noise intensity. The problem is to estimate the function S on the basis
of observations (y;)y<;<; when € — 0. In this chapter we consider the estimation problem in
the adaptive setting, i.e. when the regularity of S is unknown and we assume that the noise
(§4)o<i<1 1s a Lévy process with unknown distribution @ on the Skorokhod space D[0, 1]. We
know only that this distribution belongs to some distribution family Q_ specified below.

Note that if (;)g<;<; is the Brownian motion, then we obtain the well known “signal+white
noise” model (see, for example, [9], [47], [41]). It should be noted also that the model (4.1) is
very popular in the statistical radio-physics. This is the estimation problem of the signal S,
observed under the white noise, when the signal/noise ratio goes to infinity.

By making use of the robust estimation approach developed for nonparametric problems in
[36, 17, 18] we set the robust risk as

RI(S.,8) = sup Ry(S..9), (4.2)
QeQ’

where §6 is an estimate, i.e. any function of (y,)y<;<; and
3 a 2 2 b e
Ro(3..5) =Eqsl8. ~ SI? and S|P = [ S(t)dt.
0

The goal of this chapter is to develop the sharp model selection method for estimating
the unknown signal S. The interest in such statistical procedures can be explained by the
fact that they provide adaptive solutions for the nonparametric estimation through the sharp
non-asymptotic oracle inequalities which give non-asymptotic upper bound for the quadratic

risk including the minimal risk over chosen family of estimators with some coefficient closed to
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one (see, for example, [37] for discrete time and [18] for continuous time). The origin of the
model selection method goes back to early seventies with the pioneering papers by Akaike [30]
and Mallows [23] who suggested to use penalization in a log-likelihood type criterion. Barron,
Birgé, Massart [31], Massart [45] and Kneip [40] developed a non-asymptotic model selection
method which enables one to derive non-asymptotic oracle inequalities for the non-parametric
regression models with Gaussian disturbances. Unfortunately, these methods cannot be applied
to the non-Gaussian regression models, since the estimators of the Fourier coefficients in such
cases are not independent random variables. For these reasons, in order to estimate the function
in non-Gaussian regression models, we use the model selection method developed by [37, 38, 39]
for non-Gaussian heteroscedastic regression models in discrete time.

When constructing the sharp model selection procedures, in this chapter, we will use the
approach close to that of the papers [14], [15], [16], [18] developed for the estimation of a

1-periodic function in continuous time on a large time interval, i.e.
de, = S(t)dt +dn,, 0<t<n.

Note that, for any 0 < ¢ < 1, setting y, = n~1 Z;L:l(xtﬂ- — z;), we can represent this model

as a model with small parameter of the form (4.1)
dy, = S(t)dt +ed¢,,

where ¢ = n~1/2 and ¢, = n~1/? 2?21(777: +; —N¢)- The main difference between this model and

the original one is that the jumps are small, i.e.
A =0 Y2 =0() as e—0,

but we have not such property in the model (4.1). Therefore, unfortunately, we cannot use
directly the method developed for the estimation problem on the large time interval to the
model (4.1). So, the main goal of this paper is to develop a new sharp model selection method
for the estimation problem of the function S as € — 0.

As an application of the sharp model selection method in this chapter we consider the
problem of the detection of the number of signals for the model (4.1). In many areas of science
and technology the problem arise how to select the number degrees of freedom for a statistical
model that describes the phenomenons under study most adequately [30]. An important class
of such problems is the detection problem of the number of signals with unknown parameters in
the noise. For example, in the signal multi-path information transmission there is a detection
problem of the number of rays in a multipath channel. This problem is often reduced to the
detection of the number of signals. As a result, effective algorithms for the detection of the
number of signals can significantly improve the noise immunity in the data transmission over a
multipath channel [34, 42, 33, 48, 50, 49, 51]. In all this chapter the problem of the detection
of the number of signals are considered only for observation with white noise. In this chapter

we consider this problem for non-Gaussian noise with jumps given by (4.3).
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4.2 Transformation of the observations

In this chapter the noise process (gt)OStSI is defined by the following Lévy process

& =o01wp+ 002 and 2=z (u— ). (4.3)

Here, o; and g, are some constants, (w;);> is a standard Brownian motion, u(dsdz) is the
jump measure with the deterministic compensator pi(dsdz) = dsII(dx), II(-) is some positive

measure on R (see, for example [10, 6] for details).
M(z?) =1 and M(z?) < . (4.4)

Note that II(R) may be equal to +00. In the sequel we will denote by @ the distribution of the
process (§;)o<¢<1 in the Skorokhod space DI0, 1] and by Q7 we denote all these distributions

for which the parameters p; and g, satisfy the condition
_ 2 2 *
xo=0,+05 <, (4.5)
where the bound g;k is such that for any 5>0

liminf e %¢* >0 and lim & ¢* = 0. (4.6)
e—0 e—0

First of all, we need to eliminate the large jumps in the observations (4.1), i.e. we transform

this model as

Ue=v— Y, Aylgay sa) - (4.7)
0<s<t

The parameter @ = @, > 0 will be chosen later. So, we obtain that
dg, = S(t)dt + ed€, — e 0, TI(h,) dt (4.8)

where
§=ow +0%5 and Z=h_x(u—f),.

The functions h.(z) = xlg, <z, and ho(z) = 21455,y where the truncated threshold is
defined by a, =@/ os¢.

Let (¢;);>1 be an orthonormal basis in Ly [0, 1] with ¢; = 1. We assume that this basis is
uniformly bounded, i.e. for some constant ¢* > 1, which may be depend on & > 0,

sup  sup [¢;(t)] < ¢" < oo, (4.9)
0<j<n 0<t<1

where n = n_ = [1/£%] and [z] denotes the integer part of z. For example, we can take the

trigonometric basis defined in (1.15)
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Moreover, note that for any function f : [0, 1] — R from L, [0, 1], the integrals

t t
L(f) = s)d nd L(f) = s)dé 4.10
A(f) /Of()fs and I,(f) /Of()ﬁs (4.10)
are well defined with EI,(f) = 0, EL(f) =0,

EI}(f) = #qlIfIlf and EI}(f) = q|IfI, (4.11)

where | f||7 = fg f?(s)ds, o = 0% + 03 and g = 07 + 0311(h?). In the sequel we denote by

t 1
(f.9) = /0 f(s)g(s)ds and (f.g) = /0 £(5)g(s) ds

To estimate the function S we use the following Fourier series

S() =3 6;0,(1), (4.12)
j=1
where

1
0, = (S,6,) = / S()6, (1)t

These coefficients can be estimated in the following way. First we estimate as

1
b= / ¢1(t)dy, = 0; + €&
0

and, for j > 2,
1
0. = / d)j(t)dgt‘ (4.13)
0
Taking into account here that for any j the integral fol ¢;(t)dt = 0 we obtain from (4.8) that
these Fourier coefficients can be represented as

Setting fl = £, we obtain that for any j > 1,

~ ~

Now, according to the model selection approach developed in [17] - [18] we need to define

for any u € R™ the following functions

3
3

B, . (u) = Z u;s; and By (u) = u]Ej, (4.15)

<
<
<

where ¢; = E ( j)2 — 3¢ and Ej = (fj)z —E( j)2'
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Proposition 4.1. The following upper bound holds.

sup !Blﬁ(u)} <. (4.16)
u€e(0,1]™

Proof. Taking into account that ¢ = 34 — 3¢5 < g and ¢; = 0 for j > 2 we immediately
have the upper bound (4.16). O

Now let us recall the Novikov inequalities, [44], also referred to as the Bichteler—Jacod
inequalities, see ([32, 43]), providing bounds of the moments of the supremum of purely dis-

continuous local martingales for p > 2,

Bsuplg + (1 —v),l” < O} (B (1ol « 1) + B (gl « 1)) . (4.17)

where C’; is some positive constant.
Now, for any u € R™ we set

n

lu|? = Zu and  #(u) = Zl{uﬁéo}. (4.18)

7=1

Proposition 4.2. For any fized truncated model parameter a > 0 and for any vector u € R"

with |u| <1, we have
a\?2 N
E ‘32 ‘ < Ug + 65 ( ) 4 (u) (6°)*, (4.19)
where Uy = 24%622 + 603 I (z4).

Proof. First note that
B (u) <28 +2B; _(u), (4.20)

where v’ = (0, uy, ..., u,) € R™. It should be noted that
E& <E¢ <8(oiEwl + oEz!) =8 (30] + 0|E2)) .

To study the last term in the right hand side of the inequality (4.20) we set for any function
f from L,]0, 1]
L(f) = I}(f) =EL(f).
Note that for j > 2 we define the random variables EJ = E((ﬁj). So,

By the Ito’s formula we can write that for any function f from L,[0, 1]

AL(f) = 2L,_(f) F(t)AI,(f) + 0} £3(t) diny,
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where 1, = h? % (u — [1),. So, taking into account that
Al (f) = o1 dw, + 05 d%

we obtain that
So, setting

we obtain that
dD, = 20, V, dw, + 20, V,_ d%, + 03 ¥, dri, .

So, we obtain that

1
D? <120} (/ thwt>
0

¢
Mt:/ V,_(u)dz,.
0

Moreover, taking into account that for any f, g from L,[0, 1]

2 1 2
+ 1205 M? + 305 </ v, dmt> : (4.21)
0

where

E1,(f) I,(9) = 5 /0 £(s)g(s) ds

we get

1 n 1 3 3 n 1 2
2/ EV7?dt =2 Z U; U / 0;i(t)o;(t) EL(¢;) I,(¢;) At = 3¢ Zuf < P2(t) dt> .
0 0 . 0

1,J=2

Thus,
2

1
2E (/ v;dwt> < .
0

Now, to estimate the second term in the inequality (4.21) note that in view of the inequality
(4.17) for any bounded function f and any 0 <t <1

EI}(f) <80 E (/Ot f(s)olws>4 +80, E (/Ot f(S—)d5t>4

1 1 2 1
< 240! /O F(H)dt + O <<H(h§) /0 f2(t)dt> L TI(hY) /O f4(t)dt>,

i.e.

sup Eff(f) < 00.
0<t<1
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Now it is easy to see that through the Holder’s inequality the term V, can be estimated as

sup EVt4 < 00.
0<t<1

From here and the inequality (4.17) it follows that

1
sup EM! < C; ((H(hg))2 + H(hg)) / EV!dt < oo
0<t<1 0

and, therefore,

1 1 1/2
/ EM2V2dt < sup (EN)Y? </ E{/;‘*dt) < .
0 0<t<1 0

This implies that
1
E / M, dM,=0.
0

Thus, the Ito’s formula implies

1
2EM; =E ) (AM,)* =201(R2) / E V2dt < T1(h?) 5,
0<t<1 0

In the same way we calculate

1 2
QgE </ \Ijtdmt> = QSE Z
0

0<t<1
! 4
= o2T1(nY) / vidt < (afe)? (¢%)" #(u).
0
So, we obtain that
E D} < 60} 52y + 305 (2?) (252 + (¢°)") < 65 + 305(¢")".

Similarly we obtain that
E& < 65, + 30, (") .

This implies the upper bound (4.19). O

4.3 Model selection

We estimate the function S(z) for x € [0, 1] by the weighted least squares estimator

Z X(5)0; b, (4.22)
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where n = [1/¢?], the weights A = (A\(j));<;<, belong to some finite set A from [0,1]", 5375 is
defined in (4.13) and ¢; in (4.9) . Now we set

I=+#(A) and |A|, = = max 1 L, >0} (4.23)
‘]_

where #(A) is the cardinal number of A. In the sequel we assume that |A|, > 1. Now we chose

the truncating parameter @, as

9
a. = 4.24
e ‘1&’* ( ? )

To choose a weight sequence A in the set A we use the empirical quadratic risk, defined as

Erro(A) =[ Sy — S |I%,

which in our case is equal to
Err.(\ Z)\Q : 22)\ )0, . J+202 (4.25)

Since the Fourier coefficients (6),- are unknown, we replace the terms «9 0; by

0, =02 — % (4.26)

2,€ J,€ €

where 3, is a some estimate for the variance parameter s from (4.11). If it is known we set

~

#. = ¥ if not this estimator will be prescribed later.

Finally, to choose the weights we will minimize the following cost function
Z)\Q : —22)\ )0, .+ P.(\), (4.27)
where & > 0 is some threshold which will be specified later and the penalty term

P,

(A) =2 A7 and AP =) A2, (4.28)

Note that, if the s is known, then the penalty is defined as

P.(\) =% 55| A1 (4.29)

£

We define the model selection procedure as

~ ~

S. =35, (4.30)

where
A= argmin, -, J.(A). (4.31)
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We recall that the set A is finite so A exists. In the case when \ is not unique we take one of
them.

Now, we specify the weight coefficients (A(j));<;<,- Consider a numerical grid of the form
A={1,.. K"} x{l1,...,lm}, (4.32)

where
l;=tw and m=[1/w].
We assume that both the parameters k* > 1 and 0 < @ < 1 are functions of ¢, i.e.k™ = £’
and w = w,_, such that

*

. * . e _
lim,_,y kI = o0, lim__ m_o,

(4.33)
lim, ,yw. =0 and lim,_, e %w, = +oo,
for any § > 0. One can take, for example, for 0 < e <1
w, and kI =k ++/|Inel, (4.34)

- |Inel
where kj > 0 is some fixed constant and the threshold ¢! is introduced in (4.5). For each

a=(B,1) € A, we introduce the weight sequence

Aa = (Aali))i<j<ps

where p = [¢72]

M) = Liyasy + (1= (/wa)’) 1 <z - (4.35)
Here j, = j.(a) = [w,/|In¢l], w, = (dg lv, )1/ @A+1)

(B+1)25+1)

v 203

= 2/¢*. and dg =

€ £

(4.36)

Now we define the set A as
A={)\,,acA}. (4.37)
Note, that these weight coefficients are used in [17, 18] for continuous time regression models
to show the asymptotic efficiency.
In the sequel we need to estimate the variance parameter sz, from (4.11). To this end we
set for any 0 < e < 1/\/§
n
zo= Y, T, n=[1/, (4.38)
j=[1/e]+1

where '/I\‘j’E are the estimators of the Fourrier coefficients with respect to the trigonometric basis

(1.15) , ie.

1
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Remark 4.1. Note that similar sharp oracle inequalities were obtained before in the papers
[37] and [17] for the nonparametric regression models in the discrete and continuous time
respectively. In this chapter we obtain these inequalities for the model selection procedures
based on any arbitrary orthogonal basis function. We use the trigonometric function only to

estimate the noise intensity .

4.4 Oracle inequality

First we set the following constant which will be used to describe the rest term in the oracle
inequalities. We set
4U, i

Vo =81 +1)+ o

, (4.40)

where
_op2 41704 - (x4
U, = 2435, + 60, I(27) + 632 (¢7)".

We start with the sharp oracle inequalities.

Theorem 4.1. Assume that for the model (4.1) the condition (4.4) holds. Then, for any
0 < d < 1/6, the estimator of S given in (4.30) satisfies the following oracle inequality

~ 14+30 . ol Q\PQ2+12‘A|*ES|2€_%Q|
e 0) < ) : . 4.41

Proof. First, note that we can rewrite the empirical squared error in (4.25) as follows

Err:(A) = J.(A) +2 ) A0, + [I1S]” = 5P-(N), (4.42)

j=1
where 9}-75 = gj’e — Hjé\j’e. Now using the definition of 53’,5 in (4.26) we obtain that
0}-75 = 59j§j + 52&;,5 + €2<j’5 + sz(kQ —.),

where ¢; . = E( Vj76)2 — 3¢ and Ej = (Ej)2 - E(fj)2. Setting

M(N) =£> A§)0;¢; and L) = A(j), (4.43)

j=1 j=1

we can rewrite (4.42) as

Errc(A) = Jo(A) + 26° (3 — 32.) L(A) + 2M_()) + 2¢B; (A)

+ 2 «/PE()\)B“\/&A) +|19]12 = 6P-(N), (4.44)
Q
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where uy, = A/|)[, the exact penalization is defined in (4.29) and the functions B; (-) and
By .(+) are defined in (4.15). It should be noted that for the truncated parameter (4.24) the
bound (4.19) implies

. (aN? «
sup B [B3,(u)] < U + 63 (2) 141, (6)* = Ui, (4.45)
S

Where ULQ = UQ + 6%@ (¢*)4
Let Ao = (Mo(j))1<j<n be a fixed sequence in A and X be as in (4.31). Substituting A\g and
X in Equation (4.44), we obtain

Err. (A) — Err.(Ao) = J(A) — J(Ao) + 262 (52, — #2.) L(w)

+262B, (@) + 2M,(w)

[~ By (u) B, ()
2 P.()\ : — 2e/ P.(\g) —=—=
+2¢ e( ) JV{Q € 5( 0) \/%

— 6P.(A) + 6P.( o), (4.46)

where @ = \ — Aos U = ug and ug = u, . Note that by (4.23)

L(w)] < LX) + LX) < 2[4,

The inequality
2|ab| < §a® 4 6 1b? (4.47)

implies that for any A € A
B, _(u B2 (u
2 PE(A)i‘ 24 DI SP.(\) + 5272’*1( N,
From the bound (4.16) it follows that for 0 < § < 1

*

. B
Err.(\) < Err.(Ao) 4 2M_(w) + 2525& +2e% 57,
7,
Q

+ 2[5 — s (A + [Xof? + 4|AL,) + 26P-(Xo) ,

where B = sup, B;n(u/\). It should be noted that through (4.45) we can estimate this
term as
Eg B, <Y EgBj (u) <ilq. (4.48)
AEA
Taking into account that sup, ., IA]2 < |Al,, we can rewrite the previous bound as

*

~ B
Errs(\) < Erre(A\o) + 2M_ (w) + 252% + 2¢2 %0
i,
Q

+

6eZ|Al, .
1L B |7z — kQ| + 20P- (o). (4.49)
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To estimate the second term in the right hand side of this inequality we introduce

n

S, = Zv(j)9j¢j, v = (U(j))1§j§n eER".
j=1

Moreover, note that

M2 () < 203(1) € + 2, (®),
where ®(t) = Z?:Q v(j)0;9;(t). Therefore, thanks to (4.11) we obtain that for any non-random
veR?

EM?(v) < 2%Q52ZU )07 = 2559 |S, |7 (4.50)

To estimate this function for a random vector we set

M2
M* — Sup (U)

% and A=A ).
° ven, E2lISI1P ' ’

So, through the inequality (4.47)

M*
2| M_(v)] géHSUH?JraQTE (4.51)
It is clear that the last term here can be estimated as
EM <) BM W) D g =251, (4.52)
SO 5 RIS
vEA, vEA
where v = #(A). Moreover, note that, for any v € Ay,
15,112 = IS, [1* = ZU <2|M( A,

where v? = (Uz(j))lgjgn. Taking into account that, for any € Ay, the components |v(j)| <1

, we can estimate the last term as in (4.50), i.e
2,2 2~ 2
E MZ(v") < 2754 [|S,[]7-

Similarly, setting
M7 _ = sup M
< pens E2lIS[1P
we obtain
E, Ml*:e < 2xagli. (4.53)

In the same way we find that

*

M, (02)] < 318, | + —%
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and, for any 0 < § < 1,
5 2
AL

ST tsa—e)

18,112

So, from (4.51) we get
O[S, |2 | S (MI+ M)
2M < C ’
W) =375 5(1—9)

Therefore, taking into account that ||§w||2 <2 (Erra(X) + Err.(\o)), the term M_(w) can be

estimated as

~

25(Err-(\) + Err.(Ag))  &2(MZ + M)

2M <
(@) = 1= T TS —9)
Using this bound in (4.49) we obtain
2 * * 2 Dx*
~ 144 e (M> + M7 ) 2e°B;5 .
Err, < E : :
(A S g B (o) + 5 Taa s 38)
2% 525 62|, 20

|52 — 5] + == P-(Mo)-

1-35 ' (1—36) (1—36)

Moreover, for 0 < § < 1/6 we can rewrite this inequality as

) 2e*(M*+ M;_) 4e°B;_
E - )\ ) )
o (Ao) + ; + 5xq

~ 1
Err,(\) < 1
+4e” 3 + 1267 |A], |32 — 5¢5| + 46 P.(Xo) -

Using here the bounds (4.48), (4.52), (4.53) we obtain that

. 146~ 8e2iepl  4e*U, ol
R(3.,5) < T oR(Sy,, 8) + —— 2+ — AL

5 552
26

+ 4% g + 1262 |A|Eq |52 — 5| + 135 P.(\o) -

Now, Lemma 4.1 implies directly the inequality (4.1). Hence we get the desired result. |

Corollary 4.1. Assume that for the model (4.1) the condition (4.4) holds. If the variance
parameter 3 is known, then for any 0 < 6 < 1/6, the estimator of S given in (4.30), with the
truncated parameter a = ¢/+/|A|, satisfying the following oracle inequality

1+36
1-36

min R, (S S)+52% (4.54)
AEA QL2 ' ’

Ro(Ss,S) < 5

We need to study the estimate (4.38).
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Proposition 4.3. Assume that in the model (4.1) the unknown function S is continuously
differentiable. Then, for any 0 < e < 1/v/3

(e
AL

Eq |7 — 50| < eTo(S) + (4.55)

where Y (S) = 4(||S|| + 1)? (1 +\/Fg + 25 + \/UQ).

Proof. We use here the same method as in [14]. First, note that from the definitions (4.14)
and (4.39) we obtain

where 1 1
Tj_/o S(t) Tr;(t)dt and ﬁj—/o Tr; (t) dg; -

So, we have

Zo= Y, TI42M 4+ > (1), (4.57)
j=[1/e]+1 j=[1/el+1
where M. = ¢ 2?2[1 Je+1 T, 1;. Note that for continiously differentiable functions (see, for

example, Lemma A.6 in [14]) the Fourrier coefficients (T;) for any n > 1 satisfy the following
inequality

o0 1 2

S TP (/ |S(t)|dt> < 42|92 (4.58)
j=[1/e+1 0

The term M, can be estimated in the same way as in (4.50), i.e.

n
2 s 2 2 35 1182
Eq M? <3ge” ) T2 <49,
j=[1/e]+1
Moreover, taking into account that for j > 2 the expectation E (17j)2 = ; we can represent
the last term in (4.57) as

n

e > (m)? =esg(n—[1/e]) +e By (),
J=[1/e]+1

where the function B, (2') is defined in (4.15) and @ = €l ;< /2y. We remind that

n = [1/&%). Therefore, in view of Proposition 4.2 we obtain

n 6,
E, |2 Z 77]2._;2@ <23 +e,/Ug + !A|Q'
j=l/1/e)+1 *

So, we obtain the bound (4.55). O
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It is clear that in the case when |A|, < 1/e we obtain that

To(S) + /6

Eq |2 — 7| < w

(4.59)
Now using this proposition we can obtain the following inequality.

Theorem 4.2. Assume that for the model (4.1) the condition (4.4) holds and the unknown
function S is continuously differentiable. Then the procedure (4.30) with |A|, < 1/e, for any
0 < d < 1/6, satisfies the following oracle inequality

14+36 . o
min R (S, )

R (S,,S) <
Q< ’ >_1—35>\6A

+e? Vo + (ISI+1)%91.0 + 920
5 bl

910 =48 (14 [rg + 225 +[Ug)  and gy =12, f65.

Now we study the robust risk defined in (4.2) for the procedure (4.30).

(4.60)

where

We assume also that the upper bound for the basis functions in (4.9) may be dependent on
n>1,ie. ¢, = ¢,(n), such that for any € > 0

im 2 g (4.61)

n—o00 ne

Theorem 4.3. Assume that for the model (4.1) Condition (4.4) holds and the unknown
function S is continuously differentiable. Then the robust risk of the procedure (4.30) with
IAl, < 1/e, for any 0 < 6 < 1/6, satisfy the following oracle inequality

G130 U(S)
* < * € )
RZ(S«,S) < 35 I/\nelile(S)\,S) +e 5 (4.62)

where the term UX(S) > 0 is such that under the conditions (4.61) and (4.33) for any r > 0
and § > 0

lim £ sup U:(S) =0. (4.63)

=0 g)<r
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4.5 Adaptive robust efficiency

Now we study the asymptotically efficiency properties for the procedure (4.30) with the coef-
ficients (4.35) with respect to the robust risks (4.12) defined by the distribution family (4.5)
— (4.6). To this end we assume that the unknown function (4.12) belongs to the following
ellipsoid in Ly,

={S € L,[0,1] Z a; 07 <r}, (4.64)

k . 23
where a; = >°" (27[5/2])"".
It is easy to see that in the case when the functions (¢;),;>; are trigonometric (1.15), then

this set coincides with the Sobolev ball

Wh={(fe CE[0,1] an |2 <}, (4.65)

where r > 0 and k > 1 are some parameters, CI;ET,[O, 1] is the set of k times continuously

differentiable functions f : [0,1] — R such that f@(0) = f@(1) for all 0 < i < k. Similarly to
[17, 18] we will show here that the asymptotic sharp lower bound for the robust risk (4.12) is

given by
2%k/(2k+1
1(r) = ((2k 4 1)r)Y/CF+D R\
* (k+1)m

Note that this is the well-known Pinsker’s constant obtained for the non-adaptive filtration

(4.66)

problem in “signal + small white noise” model (see, for example, [47]).
Let S, be the set of all estimators §€ measurable with respect to the o-algebra o{y,, 0 <
t < 1} generated by the process (4.1).

Theorem 4.4. For the distribution family (4.5) — (4.6), the robust risks admit the following
lower bound

lim inf U?k/(%ﬂ) inf  sup 72:(@.,5) > 1. (r), (4.67)
=0 SEESS SGI/VI]_C
where v, = 5_2/<*.

£

We set the parameter 0 in (4.27) as a function of ¢, i.e. § =4, is such that

lim 6, =0 and lim e %5 =0 (4.68)

e—0 e—0 €

for any 6 > 0. For example, we can take §_ = (6 4 |Ine|)~"

Theorem 4.5. Assume that Conditions (4.33) hold. Then the model selection procedure admits
the following asymptotic upper bound

limsup v/ @+ sup R*(S,,S) <1,(r). (4.69)
e—0 SeWk
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Theorem 4.4 and Theorem 4.5 imply the following result

Corollary 4.2. Under the conditions of Theorem 4.5, we have

lim v?/@HD inf - sup RX(S., S) = 1,(r). (4.70)
e—0 Ssess SEVVI{c

Remark 4.2. It is well known that the optimal (minimax) risk convergence rate for the Sobolev
ball WF is e~ 4/(k+1) (see, for example, [47] ). We see here that the efficient robust rate is

vgk/(%ﬂ), i.e. if the distribution upper bound ¢* — 0 as n — oo we obtain a faster rate with

—4k/(2k+1)

respect to e , and if ¢¥ — oo as ¢ — 0 we obtain a slower rate. In the case when ¢ is

constant the robust rate is the same as the classical non robust convergence rate.

4.5.1 Lower bound

Firstly, note, that for any fixed Q € QF

sup R:(gg,S)Z sup RQ(§6,S). (4.71)
Sewk Sewk

Now for any fixed 0 < ¥ < 1 we set
k+1 .
d=d_ = [kvg/(%ﬂ) l*(ro)} and ro=(1—79)r. (4.72)

Using this definition we introduce the parametric family (5,),cga as
d
S.(z) =) z6). (4.73)
j=1

To define the bayesian risk we choose a prior distribution on R? as

k= (Kj)i1<j<qg and K; =s;7n;, (4.74)

where 7; are i.i.d. Gaussian N(0,1) random variables and the coefficients

s* d\*
5; = L and s* = () —1.
v J j

Denoting by p,, the distribution of the random variables (#;);<;<4 on R¢ we introduce the

bayes risk as

~ ~

Ro(8) = /R R(8,5.) ) (4.75)

Furthermore, for any function f, we denote by p(f) its projection in L,[0, 1] onto Wf, ie.

If —p(f)l = it [If —hl.
hew}
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Since Wf is a convex and closed set in L,[0, 1], this projector exists and is unique for any

function f € Ly[0, 1] and, moreover,
2 2 k
|f = hlI" = [[p(f) = &l|* for any he W,

So, setting p = p(§), we obtain that

sup R(S’\, S) >

/ B B~ S 1e(d2).
Sewk {zeR?: S, eWF}

Taking into account now that ||p||> < r we obtain

sup RQ(S S) > RQ( ) —2A, (4.76)
Sewk

and

a-| (4 15.1%) g (d2).
{zGRd:Szél/Vf}

Therefore, in view of (4.71)

sup R*(Sa,5)> sup RQ( ) —2A,. (4.77)
Sewk QeQ!

As to the last term in this inequality, in Appendix we show that for any 6 > 0
lim e * A, =0. (4.78)
e—0

Now it is easy to see that

d
IIﬁ—SZHQZZ Z; = %)

where 2; = fo p(t) ¢;(t)dt. So, in view of Lemma 4.2 and reminding that v, = e72/¢r we
obtain
d 1
sup Rg(P) > sup —5
QGQ* 0<g?§<5* j=1 6_2 Ql + vs (S;)_l
d *
Ly S is (1
* k
Ve o 5 +1 v, = d;

Therefore, using now Definition (4.72), Inequality (4.77) and the limit (4.78), we obtain that

2k N
liminf inf v2* sup RI(S.,8) > (1— "y)ﬁ l,(r).
n—o00 SGH SGer

Taking here the limit as ¥ — 0 implies the desired result . O
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4.5.2 Upper bound
Known smoothness

First we suppose that the parameters £ > 1, r > 0 in (4.65) and ¢’ in (4.5) are known. Let the
family of admissible weighted least square estimates (Sy) sen be given by (4.37). Consider the
pair

a=(k,7) and 7=wlr/w|,

where ¢, = @’ and w satisfy the conditions in (4.33). Denote the corresponding estimate as

~ ~

S=8; and A=);. (4.79)
Note that for sufficiently small € the pair & belongs to the set (4.32).

Theorem 4.6. The estimator S admits the following asymptotic upper bound

lim sup U2k/(2k+1) sup R’ (S,9) <1,(r). (4.80)
e—0 Sewk

Proof. Substituting (4.14) and taking into account the definition (4.79) one gets

o

IS = SI7 = (1= A())* 67 — 201, +522>\2 2,

j=1 7j=1

where M. = ¢ doieg (1 = M) AG) 0; éj. Note now that for any @ € QF the expectation
Egs M. = 0 and, in view of the upper bound (4.12),

sup EQSZ)\Q ég i

QGQ* j=1
Therefore,
- 00 . 1 o .
RI(S,8) < Y (1=A(H)% 65 + o X0, (4.81)
j=i j=1

where j, = j,(&). Setting

= (v.)*"/ ) sup (1 - A(5))?/ay,
iz,

Ue

we obtain that for each S € Wf

T, .(5) = 2k/ 2k-+1) Z 6’2 < u, Z a; (92 < wu.r.
_.7* J ]*
Tazking into account that ¥ — r, we obtain that
p1/(2k+1)

limsup sup Y;_(5) < =177,
e=0  Sewk 1e(5) w2k (d),)2k/ (kD) !
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where the coefficient 7, is given in (4.35). To estimate the last term in the right hand of (4.81),

we set
1 =2
_ N2(5
Yoo = (0,) 1/ @+ Z A7) -
€ j=1
It is easy to check that

‘ 2(rdk)1/(2k+1) k2
1 T, < = .
P P2 = T D2k + 1) 2

Therefore, taking into account that, by the definition of the Pinsker’s constant in (4.66), Y7 +

T3 =1.(r), we arrive at the inequality

lim v?*/@F) sup R*(S,S) < 1,(r).

e—0 Sewk
Hence we obtain the desired result. O
Unknown smoothness
Combining Theorem 4.6 and Theorem 4.3 yields Theorem 4.5. O

4.6 Detection of the number of signals

In this section we consider the estimation problem for the number of signals in the multi-
path connexion channel. In the framework of the statistical radio-physics models we study
the telecommunication system in which we observe in the multi-path channel the summarized

signal with the noise on the time interval [0, 1],
q
ytzzej¢j(t)+nta 0<t<1,
j=1

where (n,);>o is some noise, usually this “white noise”. The energetic parameters (6;);>;
and the number of the signals ¢ are unknown and the signals ((;S]) j>1 are known orthonormal

functions, i.e.
1
/ bu() 6,1 dt =1y,
0

The problem is to estimate ¢, when the signal/noise ratio goes to infinity. To describe this
problem in the framework of the mathematical model we use the following stochastic differential

equation

q
dy, = [ D 0;¢;(t) | dt + edw,, (4.82)
j=1
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where (w;),> is the standard Brownian motion and the parameter ¢ goes to zero. This means
tha the signal/noise ratio goes to infinity. The logarithm of the likelihood ratio for the model
(4.82) can be represented as

q

1 o ! 1
lnLEZEQZGj/ 6,0y, — 55 >, 05
j=1 70

j=1

If we will try to construct the maximum likelihood estimators for (6,),<;<, and ¢ then we

obtain that
1 9y 1 2
b= g 2 () o0
]:

Therefore, the maximum likelihood estimate for ¢ = ¢*. So, if ¢* = oo we obtain that ¢ = co.
So, this estimator does not work. For these reasons we propose to study the estimation problem
for g for the process (4.82) in the nonparametric setting and to apply the model selection
procedure (4.30). To this end we consider the model (4.1) with the unknown function S
defined as

S(t)y=>Y_0;¢;(t). (4.83)

d
Sa(x) = 0;.6,(x). (4.84)

This estimate can be obtained from (4.22) with the weights \;(j) = x{j < d}. The number of
estimators ¢ is some function of ¢, i.e. ¢« = ¢, such that

lim ¢, =oco and lim % =0 (4.85)
e—0 e—0

for any & > 0. As a risk for the signals number we use
D.(d,q) = R(5,,5). (4.86)
where the risk R;‘(:S’\ ,S) is defined in (4.2) and d is some integer number (maybe random) from

the set {1,...,¢}. In this case the cost function (4.27) has the following form.

d
J(d) =02 -2>" 0, +3P.()). (4.87)

Jj=1 Jj=1

So, for this problem the LSE model selection procedure is defined as

q. = argmin, _,_ J_(d). (4.88)
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Note that Theorem 4.3 implies that the robust risks of the procedure (4.30) with |A], < 1/e,
for any 0 < 0 < 1/6, satisfy the following oracle inequality

1 U*(S
+30 min Ds(d,q)—l—e2 :(5)

1 — 36 1<d<. 5 (4.89)

D.(q., q) <

where the last term satisfies the property (3.37).

4.7 Simulation

In this section we report the results of a Monte Carlo experiment to assess the performance of

the proposed model selection procedure (4.30). In (4.1) we chose
J
t) = —— 0;(t 4.
S =30 5500, (4.90)

with ¢;(t) = v2sin(2nl;t), I; = [/j]j. We simulate the model
dy, = S(t)dt + edw, .

The frequency of observations per period equals p = 100000. We use the weight sequence

as proposed in Galtchouk and Pergamenshchikov (2009) for a discrete-time model : k* =

100 + /|Ing| and m = [|Ine|?].

We calculated the empirical quadratic risk defined as

R= zp: B (5.0) - S(tj))2 7
j=1

S

and the relative quadratic risk
R, =R/|IS]3.

The expectation is taken as an average over N = 10000 replications, i.e.
N
~ 2 1 ~ 2
E(S.()-50) =~ > (Sl -50)) -
=1

We used the cost function with

=
(34 |Ineg|)?
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5 R R.
1/4/20 0.0158 0.307
1/4/100 0.0113 0.059
1/4/200 0.0076 0.04
1/4/1000 0.0035 0.0185

Table 4.1: Empirical risks

In the following graphics the dashed line is the model selection procedure (4.30), the con-

tinuous line is the function (4.90) and the bold line is the corresponding observations (4.1).
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: Estimator of S for ¢ = 1/4/20

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2: Estimator of S for ¢ = 1/4/100
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Figure 4.4: Estimator of S for £ = 1/+/1000
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=N
v}

€ 0
1/v/20
1/+/100
1/+/200 9
1/4/1000 10

O[3

Table 4.2: Estimation of the number of signals

To estimate the number of signals ¢ we use two procedures. The first g is (4.89) with

v = [Ine~2]. The second §, is defined through the shrinkage approach for the model selection
procedure (4.90),

g =inf{j >1:10;| <cl}, cl=ey/[logel.

Remark 4.3. Tt should be noted that the LSE procedure (4.89) is more appropriate than the
shrinkage method for such a number detection problem.

Now we give the algorithm of the model selection procedure given in Section 4.3
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Algorithm 3 Model selection procedure

Require: ¢ >0,0<g<land § >0
p1, p2, .+ satisfying Conditions (4.5) and (4.6)
k* > 1, w: satisfying Condition (4.33)
Output: The optimal weight vector A
{Step 1} Computation of the weights
n=[1/e%, m=[1/w]
for i +— 1to [k*] do

for j «— [w] to [mw] do

for k +— 1ton do
Compute the wheight coefficients \; ;(k) using the formula (4.35)
end for
end for
end for
return: the vectors A = (A\y(1),..., A\a(n)),a € A={1,...,k*} x {w,...,mw}
{Step 2} Computation of the Fourrier coefficients

for k +— 1ton do
O = Jy ox(1)d 7, .
gk’g — %’8 — &2,
The observation ()<<, are given in (4.7) and (@), is the basis given in (4.9)
end for
return: the vectors f = (51,57 ...,(9\”’6) and 6 = (51,5, N
{Step 3} The cost function

for i «— 1to [k*] do

for j «— [w] to [mw] do
Je(N) = X A2, (082 = 2507 Xij (D8, + 5 P.(N). )
where the vectors A = (\; (1), ..., A j(n)) are computed in Stepl, the vectors 6 and 6
are given in Step2 and P, is the penalty term given in (4.29)
end for
end for

~

return: A = argmin,_, J-(A),A = {)\,, a € A}.
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Appendix

Property of the penalty term

Lemma 4.1. Assume that Proposition 4.1 holds. Then for anyn > 1 and A € A,
P.(A) < R(8), 8) +&% 5,

where the coefficient P.(\) is defined in (4.43).

Proof. By the definition of Err.(\) one has

Err.(\) = Z - 1)0; +&2\(j )fj)z .
7j=1
Through Proposition 4.1 it is easy to see that
n
EQErre(\) > 2> N()Eq (§)° = P(N) — %5 .

j=1

Hence we obtain the desired result. O

Proof of the limit equality (4.78)

First, setting ¢, = Zd k2 a;, we obtain that

j=1 "5 7>
{Scgwi} = >}

Moreover, note that one can check directly that

hmEC —hm—ZSj a;=t=(1-9)r.

e—=0 U,

So, for sufficiently small ¢ we obtain that

{SﬁgéWf} C {Eg>r1},

<o X 1 —d ~ ~ .
where r; =r¥/2, ({ = —E( =v! ijl s;a;n; and 1); = 77]2 — 1 Through the correlation
inequality (see, Proposition A.1 in [35]) we can get that for any p > 2

d p/2
~ P
EX < (2p) Bl [ o |3 ()22 = 0(ur 7).
j=1
as € — 0. Therefore, for any 6 > 0 using the Chebychev inequality for p > (4k + 2)d we obtain
that
viP(Za >r;) =0 as €—0.

Hence we obtain the equality (4.78). O
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The absolute continuity of distributions for Lévy processes

In this section we study the absolute continuity for Lévy processes defined as

dy: = S(t)dt +d&, 0<t<T, (491)

where S is any arbitrary non-random square integrated function, i.e. from L,[0,7] and
(§1)o<t<r 18 a Lévy process of the form (4.3) with nonzero constants o; and g,. We denote by
P, and P, the distributions of the processes (y;)o<;<1 and (§;)o<;<; on the Skorokhod space
DI[0,T]. Now for any 0 <t < T and (;)y<;<p from DI[0,T] we set

T, (z) = eXp{ /0 t S;;‘) dat — /0 t S;()?) du} , (4.92)

1

where (27)y<;<7 is the continuous part of the process (z;)q<;<7 in D[0,T], i.e.

t
T =1z, — / / v (pp(ds,dv) — II(dv)ds)
0 R
and, for any ¢ > 0 and any measurable I" from R\ {0},
M:v([()?t]ar) = Z 1{A:vs€g21‘} :
0<s<t
Now we study the measures P, and P, in D[0,T7.

Proposition 4.4. For any T > 0, the measure P, < P, in D[0,T] and the Radon-Nikodym

derivative 1s

P,
ap, )= Tr()-

Proof. Note that to show this proposition it suffices to check that forany 0 =¢t; < ... <t, =T
any b e Rfor1<j<n

E exp {ZZ bj(yt]. - ytjl)} =E exp {Z ij(gtj - 5tj1)} Tr(8)-
=1 =1

Taking into account that the processes (y,)o<;< and (§;)o<¢<r have independent homogeneous

increments, one needs to check only that foranybe Rand 0 < s <t < T

1:(6)

E exp {Z b(yt - ys)} =E exp {Z b(ft - és)} T (6) :

(4.93)

To check this equality, note that the process

is a Gaussian martingale. From here we directly obtain Equation (4.93). O
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The van Trees inequality for Lévy processes

In this section we consider the following continuous time parametric regression model
dy; = S(t, Q)dt +d&, 0<t<1, (494)

where S(t,0) = Z?Zl 0, ¢;(t) with the unknown parameters § = (6,,...,0;)" and the process
(§¢)o<t<1 is defined in (4.3). Note now that according to Proposition 4.4 the distribution
P, of the process (4.94) is absolutely continuous with respect to the P, on DI0, 1] and the

corresponding Radon-Nikodym derivative is

_dPy, LS(t,0) ., 1 S2(t,0)
Se.0) = Rt —exp{/o B - /0 2Q%dt} , (4.95)

where x = (7;)<;<r is an arbitrary function from DI0, 1].

Let ® be a prior density on R? having the following form:
d
P(0) = @(b1,...,04) = H Soj(ej),
j=1

where ¢, is some continuously differentiable density in R. Moreover, let g(0) be a continuously
differentiable function defined on R? with values in R such that, for each 1 < j < d,

lim g(6),(6,) =0 and / ()] B(0) df < o0, (4.96)
6] —o00 RE J
where da(0)
/ _og

For any B(X) x B(R?)— measurable integrable function H = H(x,#), we denote

EH = / H(x,0)dP, ®(0)do

R
:/ / H(z,0) f(z,0) ®(0)dP¢(x) do,
Rd Jyx
where X = D|0, 1].

Lemma 4.2. For any FY = o{y;,0 < t < 1}-measurable square integrable function g and for

any 1 < j <d, the following inequality holds

- A?
E(g—g(0)” > - :
;)20 + 1
where .
A —/ ¢ (0)D(0)d0 and T —/ 7 4.
/ R J / R ‘Pj(z) '
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Proof. First of all, note that the density (4.95) of the process £ is bounded with respect to
0; € R and, for any 1 < j <d,

limsup f(£,6) = 0. a.s.

\9j|ﬁoo

Now, we set
9 (f (x,0)2(0))/09;
[z, 0)2(0)

Taking into account the condition (4.96) and integrating by parts yield

B(&-s0)%;) = [ @)~ 50) 55 (S 0#(0) d0P(a)

:/XXRM </R g/(0) f(z,0)® > (Hd@) P,(dz) = A, .

i#]
Now by the Cauchy’s inequality we obtain the following lower bound for the quadratic risk

_ A2
E(@ —g(6))? > =L .
(g g())_m?

To study the denominator in the left handside of this inequality note that, in view of the

1 af y, /
= t)d
91 T/f Wy -

reprentation (4.95),

f(y.0)
Therefore, for each 6 € RY,
0 =
[y, 0) 09,
and )
1 9f(y,0) 1 2 2
E -

Taking into account that

~ 1 Of(z,0) 1 0®(9)
(I)j_f(a:,é) 90, +<I>(9) 20,

we get
Bp2 2
BYS = 5wl + 1.
1

Hence we got the desired result. O
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Chapter 5

Renewal theory

5.1 Renewal density
This section is concerned with results related to the renewal measure (1.8).

Theorem 5.1. (Goldie’s theorem)
Let i be a probability law on R with finite second moment and positive first moment m, such

that 1(8) < oo for some 3 > 0. Suppose that n is spread out, so for some ng we have
77(no) = (1—68)¢o + 0,

where § € [0, 1] is constant and ¢g, ¢1 are probability measures with ¢g absolutely continuous.
Suppose that B has been taken so small that 5(]31(6) < 1. Suppose that 11() # 1 on the line
$0 = —pB. Then the renewal measure v := Z]o.io n(") may be written v = vy + v, where vy
is a finite measure such that 7 (B) < 0o, and vy is absolutlely continuous with a continuous
bounded density p(.) such that

1 1 - df
p(t) = — — / e”gtil — + o(e*m), t — oo.

m 27 —1(0)
Here C' is a simple closed contour in the domain D := {0 : —ﬂ < §0 < 0}, enclosing all
the zeroes of 1 — 7 in D, 7(0) = [ e?n(dt) and 7(0) = [, e"n

The proof of this Theorem is given in [8]

Now we need to adapt this result to our framwork. We start with the following lemma.

Lemma 5.1. Let 7 be a positive random variable with a density g, such that EeP™ < oo for
some 3 > 0. Then there exists a constant 51, 0 < By < B for which,

Eell1+t)7 £ 1wy eR.

Proof. We will show this lemma by the contradiction, i.e. we assume that there exist some

sequence of positive numbers going to zero (7;),>1 and a sequence (wy),>1 such that

B Hiwr)™ — 1 (5.1)
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for any k > 1. Firstly, assume that limsup, , = w; = +oo. Note that in this case, for any
N >1,

/ON ekt cos(wkt)g(t)dt‘ <

| " cos(uy) o

+

N
/ (€7 — 1) cos(wyt) g(t)dt' ,
0
i.e., in view of Lemma 5.2, for any fixed N > 1

N
lim sup/ ™! cos(wyt) g(t)dt = 0.
0

k—o0
Since for some 8 > 0 the integral f0+oo Pt g(t)dt < oo, we get
+oo

lim et cos(wyt) g(t)dt = 0.

k—o00 0

Let now assume that limsup, , w;, =w,, # 0 and 0 < |w,| < co. In this case there exists a

sequence (li);>; such that lim,_,  w, =w,, i.e.

1 = limsup Ee"" cos(tw;, ) = E cos(Tw,,) .
k—o00

It is clear that, for random variables having density, the last equality is possible if and only if

Ws, = 0. In this case, i.e. when limsup, , w; =0, the equation (5.1) implies
. o7 TSin(Twl )
limsupEe’s" ——* =E71=0.
k—00 wy,
But, under our conditions, E7 > 0. These contradictions imply the desired result. O

Proposition 5.1. Let 7 be a positive random variable with the distribution n having a density
g which satisfies Conditions H;)-H,). Then the renewal measure (1.8) is absolutely continuous

with density p, for which
1
plx) = p +Y(z), (5.2)

where T = Bty and Y(-) is some function defined on R, with values in R such that

sup 27 |Y(z)| < oo forall v>0.
x>0

Proof. First, note that we can represent the renewal measure 7 as 17 = 7*7, and n, = Z;io nt.

It is clear that in this case the density p of 77 can be written as

plx) = /x glz—y) > g™ (y)dy. (5.3)

0 n>0
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Now we use the arguments proposed in the proof of Lemma 9.5 from [8]. For any 0 < e < 1

we set
¢ n (n) (1 — 6)
pl)= | gle—y) | Y_(1="g"(y) = ——0(v) | dy —g(x), (5.4)
0 n>0

where go(y) = e*Ey/fl{wO}. It is easy to deduce that for any z € R
: 1 [*
i p() = pla) = 3 [ gl2)dz— gla). (55)
e—0 T Jo

Moreover, in view of the condition H;) we obtain that the function p, () satisfies the condition

D) from Section 5.2. So, through Proposition 5.3 we get
1 Cinh o~
plat) 4 pla) =+ [ 0 a0)0,
R
where p_(0) = fR e p (x)dz. Note that

/ e g(z)dx
R

i.e. for any 0 < e < 1 we have |(1 —€)g(0)| < 1 and therefore

9(0)] =

< /R g(z)dz =1,

o0

1

nz:;)(l —€)"(9(0)" = W
From this and, taking into account that
Go(0) = | €%%gy(x)dz = T ,
n(0) = [ Pgoan = g
we obtain
. > . 1—€\ o .
P6) =30 Y (1 - "GO - (F5) 30 - 56)
n=0
—GOG0) wd C0) = T i

ple=) + pilat) = /R e~ G(0)G, (6) do. (5.6)

One can check directly that

sup  |G.(0)] < oo.
0<e<1,0eR

Therefore, using the condition H3) and the Lebesgue’s dominated convergence theorem, we

can pass to limit as e — 0 in (5.6), i.e., we obtain that

) 4 pa=) = 5 [T o)z oo —ge) = - [ G016, 0) 0.

s
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where
B 1 i 1—476
1-3(9) i70

Using here again Proposition 5.3 we deduce that

Go(0)

2 [* 1 - .
x z—) == 2)dz+— [ e 0G(0)G(9)do :
pen) oo =2 [ gtz [ e g060) (57)
and . .
O =150 "o

Note now that we can represent the density (5.3) as

px)=gxY g™ =" g"@)=g@)+> g™ () = g(x)+ p.(2)

n>0 n>1 n>2

and the function p.(z) is continuous for all z € R. This means that

sy Pat) bple) o get) foleo)

2 P 2
and, therefore, the condition H,) implies that, for any v > 0,

sup =7 |p(z)] < oo.
x>0

Now we can rewrite (5.7) as

p(z) =

S| =

T 1 o . _

/ o(2)dz + o / =10 G(0)C(0) df — j(). (5.8)
0 T Jr

Taking into account that Ee’” < oo for some > 0 we can obtain that

+o0
sup z” / g(z)dz < 0.

To study the second term in (5.8) we will use Proposition 5.2. Indeed, Condition Hj) implies
the first limit equality in (5.10). The second one follows directly from Lemma 5.2. Therefore,
in view of Proposition 5.2, there exists some $* > 0 such that, for any 0 < 3, < %,

/ e~ G(0)G(0) df = e Po® / TG0 — ifio)G(8 — ifly) A6 .
R R

Note that, due to Lemma 5.1, the function 1—g(#) has no zeros on the line {z € C : Im(z) = —f, }.
Moreover, one can check directly that § = 0 is an isolated zero. So, this means that for any
N > 1 there can be only finitely many zeros in {z € C : —f; <Im(z) <0, |Re(z)| < N} of
the function 1 — g(#). Moreover, note that in view of lemma 5.2 for any r > 0

lim g(0) =0.
Re(6)— oo,/ Im(0)|<r 900)
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This means that there exists N > 0 such that the function 1—g(0) # Oforf € {z € C: —3; < Im(z)
< 0, |Re(z)] > N}. So, there can be only finitely many zeros of the function 1 — g(6) in
{ze C: —B; <Im(z) <0} for some fixed 0 < B; < . Therefore, there exists some 5, > 0
for which the function 1 — g(f) has no zeros in {z € C : —f, < Im(z) < 0}, i.e. the function
G(#) will be bounded in this set and we obtain that

sup eo®

x>0

/ e 0 G(0)G(0) df| < co.
R

Thus the conclusion follows. O

Using this proposition we can study the renewal process (N;);»( introduced in (1.7).

Corollary 5.1. Assume that Conditions H,)-H,) hold true. Then, for anyt > 0,
EN, <|p|,t and EN} < |p|.t+ |pf2t*. (5.9)

Proof. First, by means of Proposition 5.1, note that we get

t
EN, =E Z Y <y = / p(v)dv < |p|, t.
E>1 0

Regarding the last bound in (5.9), we use the same reasoning as in the previous inequality, i.e.,

we obtain
2 _
EN/=E) lgren+2B) U<y D Yrey
k>1 k>1 j=k+1
t
=EN, +2E Z Lir, <i O(T;) = EN, +/ O(v) p(v)dv,
k>1 0
where, for 0 < v <, we defined the function O(v) = EN,_, <|p|.(t —v). a

5.2 Properties of the Fourier transform

Theorem 5.2. Cauchy (1825)
Let U be a simply connected open subset of C, let g : U — C be a holomorphic function,
and let v be a rectifiable path in U whose start point is equal to its end point. Then

é g(z)dz =0.

Proposition 5.2. Let g : C — C be a holomorphic function inU = {z € C : —f; < Imz < (35}
for some By >0 and By > 0. Assume that, for any —p; <t <0,

/ lg(0+it)|df < oo and lim g(6+it) =0. (5.10)
R

|| =00
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Then, for any x € R and for any 0 < B < By,

/ e g(0) df = e_ﬁx/ e q(0 — ip) de. (5.11)
R

R

Proof. First note that the conditions of this theorem imply that

N .
/ewxg(H) df = lim % g(0)de.
R N—oo J_ N

We fix now 0 < 8 < f; and we set for any N > 1

y={2€C:=-N<Rez<N,Imz=0}U{z€C:—-N <Imz <N, Rez= N}

U{zeC:—-N<Rez< N,Imz=—-p}U{z€C:—-3<Imz<0,Rez=—-N}.

Now, in view of Theorem 5.2, we obtain that for any N > 1

. N B8 ‘
% pRER g(z)dz _ / ezeocg(e) d6 + / el(N-i-zt)xg(N + it) dt
g -N 0

—-N 0
- / e T (B 4 0)d + / e NFNT (N 4 it)dt = 0. (5.12)
N -B

Conditions (5.10) provide that

B o .
lim e WNFNT (N 4 it)dt = lim HNF TGN ity dt = 0.
N—o0 0 N—o00 -8

Therefore, letting N — oo in (5.12) we obtain (5.11). Hence we get the desired result. O

The following technical lemma is also needed.

Lemma 5.2. Let g : [a,b] — R be a function from Ly[a,b]. Then, for any fized —co < a < b <

+o00,
b b

lim g(z) sin(Nz)de =0 and lim g(z) cos(Nx)dz =0. (5.13)

N—o0 a N—oo a

Proof. Let first —co < a < b < +00. Assume that ¢ is continuously differentiable, i.e.

g € Cl[a,b]. Then integrating by parts gives us

b b
/ g(z) sin(Nzx)dx = % (g(b) sin(Nb) — g(a) sin(Na) —/ g (%) cos(Nz) dm) .
So, from this we obtain that

’ a a —a)maxX, . .« "(x
/ o(z) sin(Nz) da| < lg(a)] + lg( )H(bN ) max, <, <p |9 (2)]
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This implies the first limit in (5.13) for this case. The second one is obtained similarly. Let
now g be any absolutely integrated function on [a,b], i.e. g € L[a,b]. In this case there exists

a sequence g,, € C'[a, b] such that

b
lim [ |g(@) — g, (@)ldz = 0.

n—o0 a

Therefore, taking into account that for any n > 1

b
lim g, (x) sin(Nz)de =0,

N—oc0 a

we obtain that ,

b
limsup | [ g(x) sin(Nz)dz| < / lg(x) — g, (x)|dx .

n—00 a
So, letting in this inequality n — oo we obtain the first limit in (5.13) and, similarly, we
obtain the second one. Let now b = 400 and a = —oo. In this case we obtain that for any
—o00o<a<b<+oo
+00
< / g(z) sin(Nzx)dz
—00

‘ /_ j o(z) sin(Nz)dz 4 /b @) lda

+ /_io lg(z) |dz .

Using here the previous results we obtain that for any —co < a < b < +00

</ @l [ ot .

—00

lim sup
N—oo

/;OO g(z) sin(Nz)dx

Passing here to limit as b — 400 and @ — —oo we obtain the first limit in (5.13). Similarly,

we can obtain the second one. O

Let us now study the inverse Fourier transform. To this end, we need the following local
Dini condition.
D) Assume that, for some fized x € R, there exist the finite limits
g(z—) = lim g(z) and g(z+)= lim g(2)

2—T— z—x+

and there exists 6 = §(x) > 0 for which

dt < oo.

/5 lg(z +1) + g(x — t) — g(a+) — g(z—))|
/
0
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Proposition 5.3. Let g : R — R be a function from Ly (R). If, for some x € R, this function
satisfies the condition D, then

g(z+) + g(xz—) = 71T/R e~07G(0) db, (5.14)

g9(0) = /R e g(t) dt

Proof. First, for any fixed NV > 0 we set

where

N N
Iy(z) = & / e_wxﬁ(@)d9:% /R o(2) /0 cos(0(z — x)) dfdz,

27 J_N
ie.,
1 sin(N(z — )) 1 /°° sm(Nt)
J =— d = - t) det.
v = [ o™ = - [ o)+ 0)

Taking into account that for any N > 0 the integral
2 ™ sin(Nt
bl / sin(Nt) 4 4 (5.15)
T Jo t

and denoting B(z) = (g(z+) + g(z—))/2, we obtain that

JN(x)—B(x)—}T/OO Mdt and w(x,t) =g(z+1t)+g(x —1t) —2B(x).

0 t

Now we represent the last integral as

* w(x,t)sin(Nt
/ @z, 8) sn(VE) dt =I) x + I v — 2B(2)I3 v,
0

sin(N't) &t

4 o9 [eS)
t
Iy = / “(i’ ) sin(N)dt, Iy = / G(t) sin(Nt)dt, Iy = /
0 § é

and G(t) = (g(z+t)+g(x—1t))/t. Condition D and Lemma 5.2 imply directly the convergence
I y = 0as N — oo. Now note that, since g € L,(R), then the function G is absolutely
integrated. Therefore, in view of Lemma 5.2, I, ;y — 0 as N — co. As to the last integral we

use the property (5.15), i.e., the changing of the variables gives

o0

t

I3N:/ ML 50 as N - oo

! /
ON

Hence we have the desired result. O



Conclusion

The main purpose of this work is the non-parametric estimation for regression models in con-
tinuous time. First, we consider the problem of estimation an unknown fonction S on the basis
of continuous observations, we define the noise in this model through a semi-Markov process
which keeps the dependence for any duration n. So, we are in the case of dependent observa-
tions for which the dependence does not disapear for a sufficient large duration of observation.
Second, we consider the same model when the estimation is based on discrete data and we
obtain the sufficient conditions on the frequency observations under wich the robust effecient
is shown. In the third model we consider a Lévy non-parametric regression with noise intensity
and we estimate the unknown function .S in the case where the noise level goes to 0 and the
Lévy measure can go to infinity. In all of these models, we propose an adaptive model selection

for the robust risk.
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Résumé

Ce travail est consacré au probleme d’estimation non paramétrique dans des modeles de re-
gression en temps continu. On considere le probleme d’estimation d’une fonction inconnue S
supposée périodique. Cette estimation est basée sur des observations générées par un processus
stochastique; ces observations peuvent étres en temps continu ou discret. Pour ce faire, nous
construisons une série d’estimateurs par projection et nous approchons la fonction inconnue
S par une série de Fourier finie. Dans cette these, nous considérons le probleme d’estimation
dans le cadre adaptatif, c’est-a-dire le cas ou la régularité de la fonction S est inconnue. Pour
ce probleme, nous développons une nouvelle méthode d’adaptation basée sur la procédure de
sélection de modele proposée par Konev et Pergamenshchikov (2012). Tout d’abord, cette
procédure nous donne une famille d’estimateurs; apres nous choisissons le meilleur estimateur
possible en minimisant une fonction coit. Nous donnons également une inégalité d’Oracle pour

le risque de nos estimateurs et nous donnons la vitesse de convergence minimax.

Mots Clés : Estimation non asymptotique, sélection de modele, inégalité d’Oracle pointue,

risque robuste , efficacitée asymptotique.
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Abstract

This thesis is devoted to the problem of non parametric estimation for continuous-time regres-
sion models. We consider the problem of estimating an unknown periodoc function S. This
estimation is based on observations generated by a stochastic process; these observations may
be in continuous or discrete time. To this end, we construct a series of estimators by projection
and thus we approximate the unknown function .S by a finite Fourier series. In this thesis we
consider the estimation problem in the adaptive setting, i.e. in situation when the regularity
of the fonction S is unknown. In this way, we develop a new adaptive method based on the
model selection procedure proposed by Konev and Pergamenshchikov (2012). Firstly, this pro-
cedure give us a family of estimators, then we choose the best possible one by minimizing a
cost function. We give also an oracle inequality for the risk of our estimators and we give the

minimax convergence rate.

Key Words: Non asymptotic estimation, Robust risk, Model selection, Sharp oracle in-

equality, Assymptotic efficiency.
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Chapter 1

Introduction

The problem of non parametric estimation in regression models has an important role in theo-
rical and applied statistics. In this thesis, we consider regression models in continuous time of

the form

dy, =S({)dt+d¢,, 0<t<mn, (1.1)

where S is an unknown periodic function from Ls[0, n], wich we want to estimate on the basis of
observations y,. This observations can be in continuous time or in discrete time. This problem
was considered in many frameworks, for example, in the framework of the “signal+white noise”
models (see, for example, [9] or [47]). Later, in order to study dependent observations in
continuous time, were introduced “signal4color noise” regressions based on Ornstein-Uhlenbeck
processes (cf. [11], [12], [13], [16]).

Moreover, to include jumps in such models, the papers [17] and [18] used non Gaussian
Ornstein-Uhlenbeck processes introduced in [4] for modeling the risky assets in the stochastic
volatility financial markets. Unfortunately, the dependence of the stable Ornstein-Uhlenbeck
type decreases with a geometric rate. So, asymptotically when the duration of observations
goes to infinity, we obtain very quickly the same “signal+white noise” model.

The main goal of this thesis is to develop the model (1.1) for the noise process with large
dependence. This allows us to consider the signal estimation problem for signals observed
with noises of complex structure “against-signal”. To achieve this goal, we use semi-Markov
processes to model the dependent noises, because it is well known that such processes keep the
dependence for a long time.

In our work we use the robust estimation approach introduced in [17] for such problems. To
this end, we denote by @ the distribution of (£;)p<;<, in the Skorokhod space D[0,n]. We
assume that ) is unknown and belongs to some distribution family O, wich will be specified

later. In this thesis we use the quadratic risk
RQ(gnv‘S) :EQ,S||§n_S||27 (1.2)

where || f||? = fol f?(s)ds and E( s is the expectation with respect to the distribution P, ¢ of
the process (1.1) corresponding to the noise distribution @. Since the noise distribution @ is
unknown, it seems reasonable to introduce the robust risk of the form

RZ(‘gn:S) = Sup RQ(gnas)v (13)
QeQ,
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which enables us to take into account the information that ) € Q,, and ensures the quality of
an estimate S, for all distributions in the family Q,,.

In order to estimate the function S belonging to L2 [0, 1], one can consider a projection estimator
and thus approximate S by a finite Fourier series. Following Pinsker’s approach (1981), we use
the weighted least square estimators which provide efficient estimation, but, in order to obtain
efficient estimation, one needs to use regularity properties of the function S. Our approach is to
consider the estimation problem in the adaptive setting, i.e. in situation when the regularity of
the function S is unknown. In this way, we develop a new adaptive method based on the model
selection procedure proposed by Konev and Pergamenshchikov (2012). To show the efficiency,
one needs to obtain the corresponding sharp oracle inequality; note that this is a crucial tool
in order to be able to show the adaptive efficiency. The “sharp” oracle inequality means that
the upper bound for the risk has the coefficient of the main term close to one.

We recall that the main term is the minimal risk over the family of estimators that we consider.
To obtain the oracle inequality one needs to develop renewal theory for the model (1.1). In
our thesis we obtain a new asymptotic development for the renewal density. In fact, this result
is a version of Goldie’s theorem (1991). Unfortunately, we cannot use directly the Goldie’s
theorem, since in that result there is a singular component of the renewal distribution, which
makes the use of that result impossible for the estimation purposes. In our work we give
sufficient conditions for having an asymptotic development for the renewal density without a
singular component.

The effeciency of the estimator will be also proved. To this end, we assume that the unknown
function S in the model (1.1) belongs to the Sobolev ball

k
WE={feck01]:> |9 <r}, (1.4)
j=0

wherer > 0 and k > 1 are some unknown parameters, Cg@r [0, 1] is the set of k times continuously
differentiable functions f : [0,1] — R such that f®(0) = f@(1) for all 0 < i < k. Similarly
to [17, 18] we will show here that the asymptotic sharp lower bound for the robust risk (1.3) is
given by

L (15)

Note that this is the well-known Pinsker’s constant obtained for the nonadaptive filtration

k/(2k
rt = ((2k + 1)r)/ @+ < k )2 A

problem in “signal + small white noise” model (see, for example, [47]), generated by the process
(1.1).
Main results of the thesis

In this thesis we study three types of regression models in continuous time, the observations

are generated mainly by a semi-Markov process and Lévy process. In this way, our model is
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capable to take into account “small” jumps, thanks to the Lévy process, as well as “big” jumps,

thanks to the semi-Markov process.

1.1 Semi-Markov process

In our work, we consider a pure jump process (2;);>o as a semi-Markov process with the

following form
Nt
2y = Z }/ia (1'6)
i=1
where (Y;);> is an i.i.d. sequence of random variables with
EY;=0, EY’=1 and EY'<o0.

Here N, is a general counting process (see, for example, [22]) defined as

00 k
Ny=> 1l ey and T, =) 7, (1.7)
k=1 =1

where (7;);>; is an i.i.d. sequence of positive integrated random variables with distribution 7
and mean 7 = E7; > 0. We assume that the processes (N,);~o and (Y;);>1 are independent.
Note that the process (z;);>( is a special case of a semi-Markov process (see, e.g., [5] and
[20]). It should be noted that if 7; are exponential random variables, then (IV;);> is a Poisson
process and, in this case, the process (§;);>o given in (1.14) is a Lévy process for which this
model has been studied in [14], [15] and [17]. But, in the general case when the process (1.6)
is not a Lévy process, this process has a memory and cannot be treated in the framework
of semi-martingales with independent increments. In this case, we need to develop new tools
based on renewal theory arguments, what we do in Chapter.5. This tools will be intensively
used in the proofs of our main results.

Let p be the density of the renewal measure 7 defined as

i = Z n" (1.8)

=1

where n(¥) is the Ith convolution power of . To study this renewal measure we assume that

the measure n has a density g which satisfies the following conditions.
H,) Assume that, for any x € R, there exist the finite limits

g(x—) = lim g(2) and g(z+)= lim g(z)

2—=T— z—z+
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and, for any K > 0, there ezists 6 = §(K) > 0 for which

dt < oo.

gz +t)+gla—t) — glat) — g(z—)]
sup /0

|z| <K t

H,) For any v > 0,
sup 27|29(2) — g(z—) — g(z+)| < .
2>0

H;) There ezists 5 > 0 such that fR e g(x) dz < oo.

Remark 1.1. It should be noted that the condition Hj) means that there exists an exponential
moment for the random variable (7;);>, i.e. these random variables are not too large. This
is a natural constraint since these random variables define the intervals between jumps, i.e.,
the frequency of the jumps. So, to study the influence of the jumps in the model (1.13) one
needs to consider the noise process (1.14) with “small” interval between jumps or large jump

frequency.

For the next condition we need to introduce the Fourier transform of any function f from

L;(R), f:R — R, defined as

1

F6) = o /R 0% f(z) da. (1.9)

H,) There exists t* > 0 such that the function g(6—it) belongs to Ly (R) for any 0 <t < t*.

Remark 1.2. 1t is clear that Conditions H;)-H,) hold true for any continuously differentiable

function g, for example for the exponential density.

Proposition 1.1. Let 7 be a positive random variable with the distribution n having a density
g which satisfies Conditions H;)-H,). Then the renewal measure (1.8) is absolutely continuous
with density p, for which

plx) = % + Y(z), (1.10)

where T = Bty and Y(-) is some function defined on R, with values in R such that

sup 27 |Y(z)| < oo forall v>0.
>0

It should be noted that in view of this proposition, Conditions H;)-H,) imply

“+oo
lpl. = sup|p(t)] < oo and ||, = / T (2)|dz < oo (1.11)
0

t>0
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1.2 Lévy process

In this thesis we assume that the Lévy process L, is defined as

Ly=0w + V1L, Ly=xx(u—p), (1.12)

where, 0 < ¢ < 1 is an unknown constant, (w;);> is a standard Brownian motion, p(ds,dz)
is the jump measure with the deterministic compensator p(dsdx) = dsII(dx), where II(-) is
some positive measure on R (see, for example, [10, 6] for details). In this thesis, we use the

usual notation

H(\x|m)—/ " TI(dz) for any m > 0.
R

Note that II(R) may be equal to +oc.

Remark 1.3. In this thesis, we assume that the processes (N;);>o and (Y;)i>1 in (1.6) are

independent between them and are also independent of (L;);>¢-

1.3 Non-parametric estimation based on continuous data
We consider a regression model in continuous time
dy, = S(t)dt+d¢g,, 0<t<mn, (1.13)

where S is an unknown 1-periodic function from L,[0, 1] defined on R with values in R, the

noise process (&;);~( is defined as

& = 01Ly + 092, (1.14)

where p; and o, are unknown coefficients, the pure jump process (zt)t21 is the semi-Markov
process defined in (1.6) and (L,);> o is the Levy process defined in (1.12), for which we assume
that

M(z*) =1 and M(2®) < co.

The problem is to estimate the unknown function S in the model (1.13) on the basis of observa-
tions (y;)o<t<,- The main goal is to consider continuous time regression models with dependent
observations for which the dependence does not disappear for a sufficient large duration of ob-
servations. To this end we define the noise in the model through a semi-Markov process which
keeps the dependence for any duration n. This type of models allows, for example, to estimate
the signals observed under long impulse noise impact with a memory or “against signals”.

To estimate the function S we use here the model selection procedure for continuous time



8 Introduction

regression models from [17] based on the Fourrier expansion. We recall that for any function

S from L, [0, 1] we can write
00 1
S() =3 6;0,(t) and 6= (5.0,) = | S(t,t)t,
j=1 0

where (¢;);>; is an orthonormal uniformly bounded basis in L0, 1], i.e., for some constant
¢, > 1, which may be depend on n,

sup sup |6;(0)] < 6, < oo.
0<j<n 0<t<1

We extend the functions ¢;(t) by periodicity, i.e., we set ¢;(t) := ¢;({t}), where {t} is the
fractional part of t > 0. For example, we can take the trigonometric basis (Tr;);> in Ly[0,1]
defined as Tr; =1 and, for j > 2,

cos(2m[j/2]x) for even j,
Tr;(z) = V2 (1.15)
sin(2n[j/2]xz) for odd j,

where [z] denotes the integer part of x.
Now, for obtaining efficient estimation one needs to use weighted least square estimators defined

as

S\(t) =D NG)0;,.0;(8)
j=1

where the coefficients A = (A(j)); <<, belong to some finite set A from [0, 1]". In this thesis we
consider the adaptive case, i.e. we assume that the regularity of the function S is unknown. In
this case we chose the weight coefficients on the basis of the model selection procedure proposed
in [17] for the general semi-martingale regression model in continuous time.
Now, to choose a weight sequence A in the set A we use the empirical quadratic risk, defined
as

Err,(A) =] Sy — 512 .

We define the model selection procedure as
S.=5;. (1.16)

Now, in order to study the asymptotic effeciency for our procedure, we give the following oracle

inequality for the robust risk defined in (1.3) and through a specific distribution family.

Theorem 1.1. Assume that Conditions H;) — H,) hold and that the unknown function S is
continuously differentiable. Then, for anyn > 1 and 0 < § < 1/6, the procedure (1.16) satisfy

the following oracle inequality

~ 1+36 . ~ U*(9)
* < - * _n: 7
R*(Ss, S) 35 gﬁg}\lR (Sx,S) + >

I
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where the sequence U;(S) > 0 is such that, under some conditions, for any r > 0 and 5> 0,

. U, (5)
lim sup —2— =0.

. 0
S N EC

It follows directly, by using the oracle inequality, that our procedure is efficient with the
efficient robust rate U2k/(2k:+l) with v, = n/s*(n) such that, for any é > 0,

*
i ) g
n—oo nt

Corollary 1.1.

lim o2/CE+D nf o sup RZ(E'\ S)=r}.

1.17
n—oo " Sp€ll, SEVV;c ( )

We prove in this thesis that the robust minimax convergence rate may be faster or slower

than the classical one (n2/(2k+1))

1.4 Non-parametric estimation based on discrete data

In this chapter we consider the regression model (1.13) with the noise (1.14). The problem is to
estimate the unknown function S in the case when continuous observation cannot be provided

and only discret time measurement are available, the observations are in the forme
. 1
(ytj)ogjgnpa tj=JA, A= 1;’

where the integer p > 1 is the observation frequency. We will use the trigonometric basis
defined in (1.15). By making use of this basis we consider the discrete Fourier transformation
of S

Z 9 Tr ), te{t, ... tp},

where the Fourier coeflicients are deﬁned by
12
0;p = (5, Try), = - Z S(ti)Tr;(ts).

L

Then, we estimate the function S by the weighted least squares estimator

Z)\ Jip ]7}7 )

where the weight vector A = (A(1),....., A(n)) belongs to some finite set A from [0, 1]",

1 P

Ojp=— /0 V,(0dy, and W (0) =Y ()1, cocny

n
=1
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In order to find a proper weight sequence A in the set A one needs to specify a cost function.
When choosing an appropriate cost function one can use the following argument. Let us

consider the empirical squared error
Err(\) = ||Sy — S|I*.

We define the model selection procedure as

~

S.=5;. (1.18)

Now, To obtain the oracle inequality and to prove the effeciency of our procedure, we obtain
in this thesis the sufficient condition for the frequency observations p.
H;) We assume that there exists 0 > 0 such that for any n > 3

p>nd/s.
Now, in order to study the asymptotic effeciency for our procedure, we give the following oracle

inequality for the robust risk defined in (1.3) and through a specific distribution family.

Theorem 1.2. Assume that Conditions H;) — Hy) hold and that the unknown function S is
continuously differentiable. Then, for any n > 1 and 0 < § < 1/6, the procedure (1.18) satisfy

the following oracle inequality

) 1436 ()
e T = A T

where the sequence U (S) > 0 is such that, under some conditions, for any r >0 and 6> 0,

. U, (95)
lim sup

: 5
S LIS

=0.

1.5 Non-parametric estimation for Lévy regression models
We consider a regression model in continuous time with the Lévy noise
dy, =S(t)dt+ed§, 0<t<1, (1.19)

where S is an unknown function defined on R with values in R, (§;)y<¢<; is a Lévy process and
€ > 0 is the noise intensity. The problem is to estimate the function S based on the continuous

observations (y;)p<;<; When ¢ — 0. We assume that

M(z*) =1 and M(z') < co. (1.20)
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When constructing the sharp model selection procedures, in this model, we will use the ap-
proach close to that of the papers [14], [15], [16], [18] developed for the estimation of a 1-periodic

function in continuous time on a large time interval, i.e.
de, = S(t)dt +dn,, 0<t<n.

Note that, for any 0 < t < 1, setting y, = n~* Z;;l(xtﬂ- — z;), we can represent this model

as a model with small parameter of form (1.19)
dy, = S(t)dt + e d§,,

where e =n~'/2 and ¢, = n~1/2 Zj 1 (e — ). The main difference between this model and

the original one is that the jumps are small, i.e.
AL =0n"Y?)=0() as e—0,

but we have not such property in the model (1.19). Therefore, unfortunately, we cannot use
directly the method developed for the estimation problem on the large time interval to the
model (1.19). So, the main goal of this chapter is to develop a new sharp model selection
method for the estimation problem of the function S as e — 0. Let (¢;);>; be an orthonormal
basis in Ly[0, 1] with ¢; = 1. We assume that this basis is uniformly bounded, i.e. for some

constant ¢* > 1, which may depend on ¢ > 0,

sup sup |6, (1)] < 6" < oo,
0<j<n 0<t<1

where n = n_ = [1/£%] and [z] denotes the integer part of x. To estimate the function S we use

= 0;0;(t)

Jjz1

the following Fourier series

Then, we can estimate the function S(x) for = € [0,1] by the weighted least squares estimator

ZA 0.6, (x

where n = [1/¢?], the weights A = (A(j)),<j<, belong to some finite set A from [0,1]". To

choose a weight sequence A in the set A we use the empirical quadratic risk, defined as
Err.(\) =] Sy — S |12

We define the model selection procedure as

~ ~

S.=5;. (1.21)
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Theorem 1.3. Assume that for the model (1.19) the condition (1.20) holds and the unknown
function S is continuously differentiable. Then, for any 0 < & < 1/6, the procedure (1.21)

satisfy the following oracle inequality

~ 1+35 . a , UX(9)
(54,9) < = (S, =, 1.22
RI(S:, S5) < 1_351/{16111{1735(5)\ S)+e 5 (1.22)
where the term UX(S) > 0 is such that under some conditions, for any r > 0 and 5>0
lim & sup U*(S) =0. (1.23)

=0 5)<r

As an application of the sharp model selection method in this thesis, we consider the
estimation problem for the number of signals in the multi-path connexion channel. In the
framework of the statistical radio - physics models we study the telecommunication system in
which we observe in the multi-path channel the summarized signal with the noise on the time
interval [0, 1],

q
j=1

where (n,;);>o is some noise, usually this “white noise”. The energetic parameters (6;);-4
and the number of the signals ¢ are unknown and the signals (¢;);>, are known orthonormal

functions, i.e.
1
/ 6(t) 0,(1) dt = 111,
0

The problem is to estimate g, when the signal noise ratio goes to infinity. To describe this
problem in the framework of the mathematical model we use the following stochastic differential

equation
q
dy, = [ D 0;¢;(t) | dt + edw,, (1.24)
j=1

where (w;);> is the standard Brownian motion and the parameter ¢ goes to zero. This means
that the ratio signal/noise goes to infinity. The logarithm of the likelihood ratio for the model

(1.24) can be represented as

1 & ! 1 & o
1nL8:€229j/0 qﬁj(t)dyt—ﬁz 0.
j=1 j=1

If we will try to construct the maximum likelihood estimators for (6;);<;<, and ¢ then we

J
obtain that
1 9 1 2
InL = — (t)d .
s mxtnL =553 ([0, 00 )
J:

j
Therefore, the maximum likelihood estimate for ¢ = ¢*. So, if ¢* = co we obtain that § = co.

So, this estimator does not work. For this reason we propose to study the estimation problem
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for g for the process (1.24) in the nonparametric setting and to apply the model selection

procedure (1.21).
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Introduction




Chapter 2

Non-parametric estimation for semi-Markov

regression models based on continuous data

2.1 Introduction
Let us consider a regression model in continuous time
dy, =8S(t)dt+dE, 0<t<n, (2.1)

where S is an unknown l-periodic function from L,[0, 1] defined on R with values in R, the

noise process (§;);>( is defined as
& = 011y + 007, (2.2)

where p; and o, are unknown coefficients, the pure jump process (zt)t21 is the semi-Markov
process defined in (1.6) and (L,),> is the Lévy process defined in (1.12), for which we assume
that

M(z*) =1 and MH(z%) < co. (2.3)

The problem is to estimate the unknown function S in the model (2.1) on the basis of
observations (y;)o<;<,- Firstly, this problem was considered in the framework of the “sig-
nal4+white noise” models (see, for example, [9] or [47]). Later, in order to study dependent
observations in continuous time, were introduced “signal4-color noise” regressions based on
Ornstein-Uhlenbeck processes (cf. [11], [12], [13], [16]).

Moreover, to include jumps in such models, the papers [17] and [18] used non Gaussian
Ornstein-Uhlenbeck processes introduced in [4] for modeling of the risky assets in the stochastic
volatility financial markets. Unfortunately, the dependence of the stable Ornstein-Uhlenbeck
type decreases with a geometric rate. So, asymptotically when the duration of observations
goes to infinity, we obtain very quickly the same “signal+white noise” model.

The main goal of this chapter is to consider continuous time regression models with depen-
dent observations for which the dependence does not disappear for a sufficient large duration of
observations. To this end, we define the noise in the model (2.1) through a semi-Markov pro-
cess which keeps the dependence for any duration n. This type of models allows, for example,
to estimate the signals observed under long impulse noise impact with a memory or “against

signals”.
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In this chapter we use the robust estimation approach introduced in [17] for such problems.
To this end, we denote by @ the distribution of (&;)o<;<, in the Skorokhod space D[0,n]. We
assume that () is unknown and belongs to some distribution family Q,, specified in Section 2.2.

In this chapter we use the quadratic risk
R(S.,5) =Eqg S, — S|, (2.4)

where || f|* = fol f?(s)ds and E() g is the expectation with respect to the distribution P, ¢ of
the process (2.1) corresponding to the noise distribution (. Since the noise distribution @ is
unknown, it seems reasonable to introduce the robust risk of the form
R:(S,,8) = sup Ry(S,.S), (2.5)
QEQ,
which enables us to take into account the information that () € Q,, and ensures the quality of
an estimate §n for all distributions in the family Q,,.

To summarize, the goal of this chapter is to develop robust efficient model selection meth-
ods for the model (2.1) with the semi-Markov noise having unknown distribution, based on the
approach proposed by Konev and Pergamenshchikov in [17] and [18] for continuous time regres-
sion models with semi-martingale noises. Unfortunately, we cannot use directly this method
for semi-Markov regression models, since their tool essentially uses the fact that the Ornstein-
Uhlenbeck dependence decreases with geometrical rate and the “white noise” case is obtained
sufficiently quickly.

Thus in the thesis we propose new analytical tools based on renewal methods to obtain the
sharp non-asymptotic oracle inequalities. As a consequence, we obtain the robust efficiency for

the proposed model selection procedures in the adaptive setting.

2.2 Model selection

Note that for any function f from L,[0,7], f : [0,n] — R, for the noise process (¢;);>( defined
in (2.2), with (2;);>( given in (1.6), the integral

1,(f) = /0 " f(s)ae, (2.6)

is well defined with Eg, I,(f) = 0. Moreover, as it is shown in Lemma 2.2,

BqIf) < g [ Flds, (27)

where s = 07 + 03 |pl, and |p[, = sup,~ |p(t)| < co. Let us define the family of the noise dis-
tributions for the model (2.1) which is used in the robust risk (2.5). Note that any distribution
Q from Q,, is defined by the unknown parameters in (2.2) and (1.12). We assume that

og = 0+ 05/F <<¥, (2.8)
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where the unknown bounds ¢* are functions of n, i.e. ¢* = ¢*(n), such that for any € > 0,

lim nf¢*(n) = 400 and lim ()
n—00 n—oo N

=0. (2.9)

Remark 2.1. As we will see later, the parameter o¢ 1s the limit of the Fourier transform of the

noise process (2.2). Such limit is called variance proxy (see [17]).

Remark 2.2. Note that, generally (but it is not necessary) the parameters p; and g, can be
dependent on n. The conditions (2.9) mean that we consider all possible cases, i.e. these
parameters may go to infinity or be constant or go to zero as well. See, for example, the
conditions (3.32) in [18].
Now, let (¢;);>; be an orthonormal uniformly bounded basis in L,[0, 1], i.e., for some
constant ¢, > 1, which may depend on n,
sup  sup [¢;(t)] < ¢, < oo. (2.10)
0<j<n 0<t<1
We extend the functions ¢;(t) by periodicity, i.e., we set ¢;(t) := ¢;({t}), where {t} is the
fractional part of ¢ > 0. For example, we can take the trigonometric basis defined in (1.15).
To estimate the function S we use here the model selection procedure for continuous time
regression models from [17], based on the Fourrier expansion. We recall that, for any function

S from L, [0, 1], we can write
00 1
swzzywﬁ)wd@:@mﬂ:/sw@@m. (2.11)
j=1 0

So, to estimate the function S it suffices to estimate the coefficients 6; and to replace them
in this representation by their estimators. Using the fact that the function S and ¢; are 1 -

periodic, we can write that
1 n
@:A 6,(t) S(t)dt

n

If we replace here the differential S(¢)d¢ by the stochastic observed differential dy, we obtain

the natural estimate for 6; on the time interval [0, n]

~ 1 [
Ojn = ”/0 ¢;(t)dy,, (2.12)
which can be represented, in view of the model (2.1), as

é\. pr—

1 1
in 0] + %gjm, ) gj,n = %[n(d)j) . (213)

Now (see, for example, [9]) we can estimate the function S by the projection estimators, i.e.

Su®)="0,,6;(t), 0<t<1, (2.14)
Jj=1
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for some number m — oo as n — oo. It should be noted that Pinsker in [47] shows that the
projection estimators of the form (2.14) are not efficient. For obtaining efficient estimation one

needs to use weighted least square estimators defined as

=D A8 85(0). (2.15)
j=1

where the coefficients A = (A(j));<;<, belong to some finite set A from [0,1]". As it is shown
in [47], in order to obtain efficient estimators, the coefficients A(j) in (2.15) need to be chosen
depending on the regularity of the unknown function S. In this thesis we consider the adaptive
case, i.e. we assume that the regularity of the function .S is unknown. In this case we chose the
weight coefficients on the basis of the model selection procedure proposed in [17] for the general
semi-martingale regression model in continuous time. These coefficients will be obtained later
n (2.28). To this end, first we set

I=#(A) and |A|, =1+ max L(\), (2.16)
AEA

where #(A) is the cardinal number of A and L(\) = Z;LZI A(7). Now, to choose a weight

sequence A in the set A we use the empirical quadratic risk, defined as
Err,,(A) =] Sy = S5 ||,

which in our case is equal to
Err, (A Z N()62 —2 Z X(7)0;,0; + Z 62. (2.17)

Since the Fourier coefficients (6;),- are unknown, we replace the terms Gj n0in DY

., =62 —n (2.18)

where 7, is an estimate for the variance proxy o defined in (2.8). If it is known, we take

0, = 0g; otherwise, we can choose it, for example, as in [17], i.e
Z T]n, (2.19)
j=lvn]+1

where Tj,n are the estimators for the Fourier coefficients (Tj) j>1 With respect to the trigono-
metric basis (1.15), i.e

I !
ij:n/o Tr;(t)dy,. and Tj:/o Tr;(t) S(t)dt. (2.20)

)
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Finally, in order to choose the weights, we will minimize the following cost function

n

B =S RGE, 23 NG+ 6B, (2.21)
i=1 j=1

where § > 0 is some threshold which will be specified later and the penalty term is

AL

P.(\) = 2.22
() = 2 (2.22)
We define the model selection procedure as
S, =55, (2.23)
where
A= argmin, ., Jn(A). (2.24)

We recall that the set A is finite so A exists. In the case when A is not unique, we take one
of them. Let us now specify the weight coefficients (A(j));<;<,- Consider, for some fixed

0 < € < 1, a numerical grid of the form
A={1,... k*} x{e,...,me}, (2.25)

where m = [1/2]. We assume that both parameters k* > 1 and ¢ are functions of n, i.e.
k* = k*(n) and € = e(n), such that

k;*
no (2.26)
lim, ., e(n)=0 and lim, nde(n) = +oo,
for any 6 > 0. One can take, for example, for n > 2,
1 * *
g(n) = n and  k*(n) =kj+ Vinn, (2.27)

where kj > 0 is some fixed constant and the threshold ¢*(n) is introduced in (2.8). For each
a=(8,1) € A, we introduce the weight sequence

with the elements
)\a(]) = 1{1§J<]*} + (1 — (]/wa)6> 1{]*§]§wa}’ (228)
where j, =1+ [Inv,], w, = (dﬁ lvn)l/(%“),

(B+1)(28+1)

dﬁ - 7r25ﬁ

and v, =n/s". (2.29)
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Now we define the set A as

A={\,acAl. (2.30)

It will be noted that in this case the cardinal of the set A is
[=km. (2.31)
Moreover, taking into account that dg < 1 for 8 > 1 we obtain for the set (2.30)

Al, < 14+supw, <1+ (v,/e)/3. (2.32)

acA
Remark 2.3. Note that the form (2.28) for the weight coefficients in (2.15) was proposed by
Pinsker in [47] for the efficient estimation in the nonadaptive case, i.e. when the regularity
parameters of the function S are known. In the adaptive case these weight coefficients are used

in [17, 18] to show the asymptotic efficiency for model selection procedures.

2.3 Oracle inequality

In this section we obtain in Theorem 2.2 the non-asymptotic oracle inequality for the quadratic
risk (2.4) for the model selection procedure (2.23) and in Theorem 2.3 the non-asymptotic oracle
inequality for the robust risk (2.5) for the same model selection procedure (2.23), considered
with the coefficients (2.28).
In order to prove the oracle inequality, the following conditions will be needed for the noise
(§4)1>0- Here we use the conditions introduced in [17] for the general semi-martingale model
(2.1).

C,) For alln > 1 and Q there exist a variance proxy o > 0 and the constant Cy g, > 0
such that, for any basis functions with the bound (2.10),

sup By gn(2)] < Cg, <00,
z€[—1,1]"

where By ¢ ,(x) = Z;.Lzl T (EngQ',n - O'Q).

Cy) For all n > 1 and Q there exists a constant C2,Q,n > 1 such that, for any basis
functions with the bound (2.10),

sup Eg BS,Q,n(m) < Cygpn <0,
o<1

where |z|* = 2?21 x? and By g, (7) = 2?21 T (@2” - EQ@%n)'

Before stating the non-asymptotic oracle inequality, let us first introduce the following

parameters which will be used for describing the rest term in the oracle inequalities. For the
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renewal density p defined in (1.8) we set

+o0
and \Tul-J/ X (2)] de, (2.33)
0

S| =

T(2) = plar) -

where 7 = E 7. In Proposition 5.1 we show that |p|, = sup,.[p(t)| < oo and ||T||; < co. So,

using this, we can introduce the following parameters
5 47 5 .
U, = dsgl + (5 + U@) <UQ T 0200 1T 1 + D (14 03)° z) (2.34)

and
C*Q:UQ+2%Q+UQ7:¢2 "T”1+¢4

mazx ma:(;(l + Ué)2 [7 (235)
where [ = (472 + 8) || Y[|; + 5 + 13(1 + 7)%(1 + |p|?)(EY}) + 4Il(z*). First, let us state the
non-asymptotic oracle inequality for the quadratic risk (2.4) for the model selection procedure

(2.23).

Theorem 2.1. Assume that Conditions C;) and Cy) hold. Then, for anyn > 1 and 0 < § <
1/6, the estimator of S given in (2.23) satisfies the following oracle inequality

% S) < ——— mi , ) 2.
Proof. First, note that we can rewrite the empirical squared error in (2.17) as follows
Errn(A) = Ju(A) + 2 AG)0;, + (151> = 5Pa(), (2.37)
j=1
where éjyn = gjn — ngj’n. Using the definition of gjn in (2.18) we obtain that
< 1 1~ 1 g — a-\n
Ojn = ﬁejgj,n + ng,n TS T T
where ¢; , = Eijz.n —og and Ej,n = 5]2% — EQSJQ.n. Putting
1 & . 0 UQ|)‘|2
M()\) = 7 Z;A(g)ejgjyn and P =—"—, (2.38)
J:
we can rewrite (2.37) as
O'Q — 6'\,n “ 2
Err,(\) =J,(\) + 2 - L(A) +2M(\) + =By g.n(N)
By 0., (e(A
oy g e (), (2.39)
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where e(\) = A/|A|, the function L(-) is defined in (2.16) and the functions By gn(-) and
By o.n(°) are given in conditions C;) and Cy).

Let Ao = (Ao(J))1<j<n be a fixed sequence in A and A be as in (2.24). Substituting Ao and
A in Equation (2.39), we obtain

Err, (X) — Err,, (M) =J(A) — J(Ao) + 2M L(w) + 231 on(@) +2M(w)

+2/ PO QQ”(Q —2,/PO(\ QQ”QO
Y F V

— 6P, (N) 4 6P, (o), (2.40)

o~

where w =X —\j, e = e(X) and ey = e(\g). Note that, by (2.16),

L(@)] < L(A) + L(A) < 2/Al.

Applying the inequality

2|ab| < §a® 4 6 1b? (2.41)
implies that, for any A € A,
B A B2 e(A
Pg()\)| 2,Q,n(€( ))| < 5Pr?()‘) + Q,Q,n( ( ))
VQn dogn

Taking into account the bound (2.59), we get
2Cl,Q,n + 2B>2!< Q.n

n (50Q n

Err,,(\) <Err, (M) 4+ 2M (w) +

1 ~
+ 15 = ol (AP +Ao) + 2P (M),

where Bj o = sup,., B;Q’n((e()\)). Moreover, noting that in view of (2.16) sup,, N2 <

|A|,, we can rewrite the previous bound as

2(jl,Q,n + 2B>2k ,Q,n

n (50Qn

Err,(\) <Err,(Xo) + 2M (@) +

4|A|,
+ | |*]0—0Q|+25Pn()\0). (2.42)

To estimate the second term in the right side of this inequality we set
n
Sy =D 2005, = (@()icjcn €R".
j=1
Thanks to (2.7) we estimate the term M (z) for any x € R" as

EoM*(x ) < g Zfﬂ 9—%Qf|\5|\2. (2.43)
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To estimate this function for a random vector x € R™ we set

nM?(z)
Z¥=sup ——=-, A1 =A-)X.
xel |’S€E||2
So, through Inequality (2.41), we get
2 2
2(M(2)] < 815 + 2 (2.44)

It is clear that the last term here can be estimated as
nkE M
Z QM ) Z

FISI\NY TEN

where 7 = card(A). Moreover, note that, for any = € Ay,

1Sl = 118:11% = Zx ) < —2Mi(x), (2.46)
where M, (z) = n~1/? ZJ 1 Q(j)ejﬁjvn. Taking into account that, for any x € A; the compo-
nents |z(j)| < 1, we can estimate this term as in (2.43), i.e

2 [1Sa |12
Similarly to the previous reasoning we set
M2
Z] = sup iengs| (:g
aeh; ||l
and we get

Using the same type of arguments as in (2.44), we can derive

Z*
2| M ()] < 8]18a]1* + . (2.48)
né
From here and (2.46), we get
S||? Z3
15,17 < 1=l Zi (2.49)

1—-46  né(l-9)
for any 0 < 0 < 1. Using this bound in (2.44) yields

Sal? | Z*+ 2
< .
e By S

Taking into account that ||§w||2 <2 (Errn(X) + Err,(A\o)), we obtain

26(Err,(A) + Errp (X)) Z* + Zf
< .
2M(w) < =% =)
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Using this bound in (2.42) we obtain

~ 144 Z*+27; | 2Ciq, 2B)am
Err,(\) <———Err, s 5)
1, () ST g (Ao) + né(1—30) n(l1-30) d(1—36)ogn
(1], +2) 2% o
St bl L e —P .

Moreover, for 0 < § < 1/6, we can rewrite this inequality as

146 202*+2F) 4Cio, 4Big,
E nA < E nA 1y Il
wa )_1—35 r(R0) + né * n + dogn
(SIAL +2) %,
- — ——— P’ (o).
+ n |0n 0Q|+ (1_35) n( 0)

In view of Proposition 2.3 we estimate the expectation of the term B} ,  in (2.42) as

* 2 -
Eq BZQm = Z EQBQ,Q,n(e()‘)) <iCyon-
AEA

Taking into account that |[A|, > 1, we get

R(5..9) < R(S, .S Q. Q.
( ) 1—-30 (Sr005) + nd + n + dogn
10(A], .. . 2
*E — —P .

Using the upper bound for P,,(\g) in Lemma 2.6, one obtains (2.36), that finishes the proof. O

Now we study the estimate (2.19).

Proposition 2.1. Assume that Conditions C;) and C,) hold and that the function S is con-
tinuously differentiable. Then, for anyn > 2,

R 68112 + <
Proof. We use here the same method as in [14]. First of all note that Definition (2.20) implies
that

-~ 1
where

1 n
T-:/ S(t)Tr;(t)dt and n-n:/ Tr.(t)d¢g, .
= [ somo = |
So, we have

- 1
G, = § T2 +2M, + - E s (2.52)
j=lv/nl+1 j=lv/nl+1
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where
Z Tjnjm -
=[v/n]+1
Note that, for continuously differentiable functions (see, for example, Lemma A.6 in [14]), the

Fourier coefficients (T;);>1y satisfy the following inequality, for any n > 1,

00 1 S ? 312
> it ‘\gﬂdt) s“ﬂ .

IN

(2.53)
j=lva+1

In the same way as in (2.43) we estimate the term M, i.e.,

g |IS|1?

2 _ Q 2
R

n
j=[vn]+1
while the absolute value of this term for n > 1 can be estimated as
»g + 15|17
Voo

Moreover, using Propositions 2.2 and 2.3 we can represent the last term in (2.52) as

1 En: 2 = og(n—+/n) n By g n(2) n By o .n(2")
n an n n n
j={vml+1 vn
with o = 1¢ mojcny and 2 = 1g mo;<ny/v/n. Therefore,
E, 1 En: 2 79 , Cion , VCaan

+ +
n
j=lvnl+1

T =00 = Ty NG

Taking into account that C, g, > 1, we obtain the bound (2.50) and hence the desired result.
d

Theorem 2.1 and Proposition 2.1 implies the following result.

Theorem 2.2. Assume that Conditions C;) and C,) hold and that the function S is continu-
ously differentiable. Then, for anyn > 1 and 0 < § < 1/6, the procedure (2.23), (2.19) satisfies
the following oracle inequality

1430 604, IS]2 + ¥q.,

mlnRQ(S/\,S)

S <
Rq(5::8) = 1 — 338 XeA néd ’

(2.54)

where ‘I/Q’n = 10KnC*Q + Wy and A, = AL/ v
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Remark 2.4. Note that the coefficient s, can be estimated as s, < (1 + 7|p|,)oq. Therefore,
taking into account that gbf‘nm > 1, the remainder term in (2.54) can be estimated as

~ 1 ~
Vo, <C, (1 +og + > (L+A,)ig | (2.55)
b O-Q

where C, > 0 is some constant which is independent of the distribution Q.

Furthermore, let us study the robust risk (2.5) for the procedure (2.23). In this case, the
distribution family Q,, consists in all distributions on the Skorokhod space D[0, n] of the process
(2.2) with the parameters satisfying the conditions (2.8) and (2.9).

Moreover, we assume also that the number of the weight vectors and the upper bound for
the basis functions in (2.10) may depend on n > 1, i.e. i = i(n) and ¢, = ¢,(n), such that for
any € > 0

¢

lim @ =0 and lim M =0. (2.56)
n—oo NE n—o00 n
The next result presents the non-asymptotic oracle inequality for the robust risk (2.5) for

the model selection procedure (2.23), considered with the coefficients (2.28).

Theorem 2.3. Assume that Conditions Hy) — H,) hold and that the unknown function S is
continuously differentiable. Then, for the robust risk defined in (2.5) through the distribution
family (2.8) — (2.9), the procedure (2.23) with the coefficients (2.28) for any n > 1 and 0 <
d < 1/6, satisfies the following oracle inequality

PN 1+30 - U (S)
* < . * n
RIS+ 8) S 7035 W R (5% §) + — 15—

where the sequence U’ (S) > 0 is such that, under the conditions (2.9), (2.26) and (2.56), for
any r >0 and 6 > 0,

(2.57)

: U,.(5)
lim sup —B=

e[ <

=0. (2.58)

Proof. First note, that in view of (2.31) and (2.26)

=0 for any €>0.

Furthermore, the bound (2.32) and the conditions (2.9) and (2.26) yield

Al
nh—>H;o n1/3+€

=0 forany €>0.

So, from here we obtain the convergence (2.58). O

Now we need to check the conditions C;) and Cs) for the process (2.2)

Proposition 2.2. Assume that Conditions Hy)-H,) hold. Then Condition C1) holds with

Cion =00 T G, 1Tl (2.59)
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Proof. First, note that from (2.93) we have

gj,n = 5LI£(¢]) +—= f n(¢])

So, using (2.95) we can write that

2 n 2 o)
Y 0
ES, = nl/o @3 (t)dt + fE > 02T L gy<ny - (2.60)

=1

Proposition 5.1 implies

E) 0} (T)ir<n) :/ ¢2(x) p(z)dz

=1 0
[ s+ ["gerea.
0 0

S| =

Note that [ ¢2(t)dt = n. So, in view of the condition (2.10), we obtain
0 7j

[ @@ <
0

Estimating here o3 by 0T we obtain the inequality (2.59) and hence the conclusion follows. O

QQ ¢2

max

B o= 2 Il (2.61)
j7n Q - n 1- .

Proposition 2.3. Assume that Conditions Hy)-H,) hold. Then Condition Cz) holds with

Co.0m = Prmas(1+05)° 1 (2.62)
and [ is given in (2.35).
Proof. By Ito’s formula one gets
dIF(f) = 2I,_(f)aL,(f) + Hdt+ Y fA(s)(Agd)? (2.63)
0<s<t

where £ = g5 L, + 052, and o3 = p;1/1 — ¢*. Taking into account that the processes (L;),>¢
and (z;);>( are independent and the time of jumps T} defined in (1.7) has a density, we have

Az, AL, =0 as. for any s > 0. Therefore, we can rewrite the differential (2.63) as

dI7(f) =20, (H)dL(f) + af@Q FAdt
+o3d > fAs)(AL)? +o3d > f2(s) (2.64)

0<s<t 0<s<t

From Lemma 2.2 it follows that

EIZ(f) = o /0 P (s)ds + ¢ /0 F(s)p(s)ds
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Therefore, putting

L(f) = IF(f) - EI}(f), (2.65)
we obtain
dIt(f) = QIt—(f)f(t)dft =+ f2(t)dﬁ1t, mt = Q%mt + Q;mp
where mh, = Eogsgt(AJis)Q —tand my = 3 (Az) f p(s)ds. For any non-random

_ : no2
vector ¥ = (7)1 <<, With Zj:l zi < 1, we set

= ali(e)). (2.66)
j=1
Denoting
=D a;1,(6,)9;(t) and By Zx HO! (2.67)
=1

we get the following stochastic differential equation for (2.66)
dl(z) = 24, _(2)d& + By(z)dm,, Iy(z) =0.
Applying the Ito’s formula one obtains
E I2(z) =2E /n I,_(z)dI,(z) + 40} 0°E /n Al (z)dt
0 0
+Q3ED (z )—|—Q2ED (z), (2.68)
where D, (2) = 3, (24, (2)AL, + ¢2B,(2)(AL,)?)" and

2
D, (x) = 2':"‘1’ (QATF(:L‘)Y,C + QQBTk,(x)YkZ) 1(7, <n} - Let us now show that

< 20504, 1Tl 22 (2.69)

’E /0 "I (2)dl(2)

To this end, note that

/0 L@dh@ =2 Y am / (@0 (t)de,

1<4,I<n
+ z / 2)di

Using here Lemma 2.5, we get E fon I:_(gbj) I,_(¢;)9;(t)d¢, = 0. Moreover, the process
(114);>0 is a martingale, i.e. E fon E_(gzﬁj)Bt(:c)dmt = 0. Therefore,

n

E nI_t_a:d.fta:: 2N B nft_ ) By (z)dm, .
/0 (x)dI(x) 92/0 (6,) B, ()
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Taking into account here that for any non-random bounded function f

E /O F(#)dm, =0,

we obtain Efgl ftf(qu) B,(z)dm, =E fon If_(gb‘) B,(z)dm,. So, Lemma 2.4 yields

Soae [ ek,

v [ @) Baam,

IN

n
20365 40 111 D lzyIm.

=1
Therefore,

4
< 20500, Tl Dozl

1<l,j<n

n 2
= 20,850, 1Tl 7 (Z |$z|> :

=1

‘E /On I,_(z)dI(x)

Taking into account here that (37" |:vl])2 < nzlzl a7 < n, we obtain (2.69). Reminding
that II(2?) = 1 we can calculate directly that

ED, (z) = 4E/On A2(z)dt + o5 T1(2") /On B (z)dt. (2.70)

Note that, thanks to Lemma 2.1, we obtain that

/A2 dt_zx,x]/ ;(t),; () EL g, (t),0,(t)d t

=S, [ / 6,006, 0)(e + 2p(w)av

n

2
l- >¢j<t>dt) o2 Ay, ()

i </

2

n
< ?Q? + Qg Al,n($) )
where A, (z) =37, . 27, G <f é;(v ) p(v )dv) dt. This term can be estimated

through Proposition 5.1 as

At = |5z +szx] [ 60,0 ([ o010 ) a
s 111 3l < ( maxurnl) .

| /\
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So, reminding that o = Q% + Qg /7 and that ¢,,,, > 1, we obtain that

n o
E/O Ayt < (T2 4 61, 100, v

1
< <4 + IITHl) Omaz (1051 (2.71)
Taking into account that
igg BQ( — maac Z |x]’ < d)frlnaz n, (272)
that ¢,,,, > 1 and that o} < O'Q, we estimate the expectation in (2.70) as
ED, <4¢, . (1+05) (1+][T[ly +(z")) n®. (2.73)

Moreover, taking into account that the random variable Y}, is independent of AT;@* () and

of the field G = o{T}, j > 1} and that E (ATk_ () |g) =0, we get

—+00

EZ BTk T (x )Yk?’l{TkSn} = ZEE (BTk—(x) ATk, (x)Ykgl{Tkgn}|g>

k=1

=EY} EZBTk_<x>1{Tk§n} E(A;_(2)|6) =0.

Therefore,
E D, (2) = 03EY{' Dy () + 4D, , (x), (2.74)

where
Dy, (z ZEB (@)1i7,<py and Dy, (x ZEA (@)L <py -

Using the bound (2.72) we can estimate the term D, ,, as D, ,(z) < ¢t nEN,. Using here

Corollary 5.1, we obtain
Dy, (z) < |pl¢ham”- (2.75)
Now, to estimate the last term in (2.74), note that the process A,(x) can be rewritten as
/ Q(t,s)dE,, with Qu(t,s) Zx ¢;(8); (). (2.76)
J=1

Applying Lemma 2.3 again, we obtain for any k > 1

Ty,
B (4 ()6) =0} /O QX(T;. s dstQ? (T, T))
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So, we can represent the last term in (2.74) as
D,,, = ¢* DY) + 02 DY) | (2.77)
where
1 = T 2
= ZE Loz, <n} / Q, (T, s)ds
k=1 0
and

+o00 k—1
2
=Y Bl > QUTLT)).
k=1 j=1

Thanks to Proposition 5.1 we obtain

n t n n
(1) _ 2 2
Dy —/0 (/0 Q;(, s)ds) p(t)dt < |p\*/0 /0 Q%(t,s)dsdt.

In view of the definition of @, in (2.76), we can rewrite the last integral as

/On Qtrs)ds = 3w, 6,(0) /qﬁz

Since Z?Zl :c? < 1, we obtain that,

/ Q%(t,s)ds < ¢2,.n and DY) < |pl,n (2.78)

Let us estimate now the last term in (2.77). First, note that we can represent this term as

ZEl{Tk<n}ZQ (T3, T;) Zl{T<n}G / Gt

7j=1

where

ZEl{T @+ T.0 = [ QX+ 1) ple)an

/ Qzut (u—t)du.

It is clear that, for any 0 <t < n,

n—+t 2n
[ Qu-opwde <l [ Qe
t 0
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In view of the inequality (2.78) we obtain

2n 2n
Qutdu= [ Qtu)du <262, m
0

0
Therefore,

2
max G(t) < 2|p|, qﬁmaxn and D( ) < 2|p|? d)max
0<t<n

So, estimating gg by 7o and taking into account that EY14 > 1, we obtain that we obtain that
E Dy(z) <13 (1L+7)¢t  EY'(1+|p2)no, .

Using all these bounds in (2.68) we obtain (2.62) and thus the conclusion follows. O

Remark 2.5. The properties (2.59) and (2.62) are used to obtain the oracle inequalities given

in Section 2.3 (see, for example, [17]).

2.4 Efficiency

Now we study the asymptotic efficiency for the procedure (2.23) with the coefficients (2.28),
with respect to the robust risk (2.5) defined by the distribution family (2.8)—(2.9). To this end,

we assume that the unknown function S in the model (2.1) belongs to the Sobolev ball
={fec,o1] Z 1F90? <r}, (2.79)

wherer > 0 and k > 1 are some unknown parameters, C]’;er [0, 1] is the set of k times continuously
differentiable functions f : [0,1] — R such that f((0) = f@(1) for all 0 < i < k. The function

class Wf can be written as an ellipsoid in L,|0, 1], i.e.,
={feck,01] Z a;07 < (2.80)

where a; = Zf:o (2m[j/2])* and 0; = fol f(v)Tr;(v)dv. We recall that the trigonometric basis
(Tr;);>1 is defined in (1.15).
Similarly to [17, 18] we will show here that the asymptotic sharp lower bound for the robust

risk (2.5) is given by

ri = ((2k + 1)r)"/ G+ < i (2.81)

(k+1)m

Note that this is the well-known Pinsker constant obtained for the non-adaptive filtration

>2k/(2kz+1)

problem in “signal + small white noise” model (see, for example, [47]). Let II, be the set of
all estimators §n measurable with respect to the o-field o{y,, 0 < t < n} generated by the
process (2.1).

The following two results give the lower and upper bound for the robust risk in our case.



2.4 Efficiency 33

Theorem 2.4. Under Conditions (2.8) and (2.9),

lim inf vik/(%ﬂ) _inf  sup R:L(gn,S) >r,
n—00 Snenn SEVVI{C

(2.82)

%

where v, = n/¢*.

Proof. First, we denote by @), the distribution of the noise (2.2) with the parameter o; = ¢*,
06 = 1 and gy = 0, i.e. the distribution for the “signal + white noise” model. So, we can

estimate as below the robust risk
RZ(SW S) > RQO(Sn, S).

Now Theorem 6.1 from [15] yields the lower bound (2.82). Hence this finishes the proof. O

Note that if the parameters r and k are known, i.e. for the non-adaptive estimation case,
then to obtain the efficient estimation for the “signal+white noise” model. Pinsker in [47]
proposed to use the estimate :S’\/\o defined in (2.15) with the weights (2.28) in which

where [, = [r/e]e. For the model (2.1) — (2.2) we show the same result.

Proposition 2.4. The estimator §,\0 satisfies the following asymptotic upper bound

lim Uik/(%ﬂ) sup R;(S\,\O, S) <rj.
n—oo Sewk

Proof. Putting A\y(j) = 0 for j > n we can represent the quadratic risk for the estimator
(2.15) as

. > ) 1o,
18— S IP= D001 do(i)02 —2H, + + > NI
j=1 J=1
where H,, = n~ /2 > i=1(1=20(5))X0(5)0;; .- Note that EQH,, = 0 for any Q € Qn, therefore,
. > , 1 =2,
Eq || Sy, — 5 7= (1= %0())%6; + ~Eq > M()E,.-
j=1 J=1

Proposition 2.2 and the last inequality in (2.8) imply that for any Q € Q,,

—~ o, RS ICTR = B FN 2, .
EQ Y MN()&, <o Y A0) + e =" > N (j) + Ci, -
Jj=1 j=1 j=1

7

Therefore,
o0

- , 1~ o0, Cin
Ri (83 8) < D0 (1= M(@)%65 + — D A50) + — "

— n
=0«
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where j, and v,, are defined in (2.28). Setting

Ty, (8) = /DN (1 — Xo(j))%0 and T, = @) > NG,
i=i. vn i=1

we rewrite the last inequality as

Uik/(Qk—&-l) Rz(g\)\o’ S) < T1,n(5) + Ty, + Cn )

(2.84)
where C,, = Uik/(”fH)Cin/n. Notevthat Conditions (2.9) and (2.56) imply that C} | (nf)
as n — oo for any § > 0; therefore, C,, — 0 as n — oo. Putting

u, = 02 R sup (1 — No(4))%/ay

J2Jx

with a; defined in (2.80), we estimate the first term in (2.84) as

sup 1y ,(S) < sup w, Zajé’j <wu,r.
SEWf SEWf j>1

Taking into account that a;/(w*;2%)

— las j — oo and lj — r as € — 0 and using the
definition of w,, in (2.28), we obtain that

1 Xo(5))?
limsupu, < lim V2R R+ g ( 0(7))

n—00 n—oo " J>J. (7’[’j)2k
L2k/ (2k+1) 1
= lim o = — 2k/(2k+1)
n—oo T wao ™ (dkr)
Therefore,
p1/(2k+1)
i < =TT .
h;njip Sselg/)lc T1.0(5) 2 () T @R ] (2.85)
As to the second term in (2.84), note that
1 < ! 2k?
lim — Y A3(j / 1—t7)2dt = :
He300 Wy ; o) . (1= (k+1)(2k + 1)

So, taking into account that w%/vrl/(%*l) — ()R a5 n — 00, the limit of Y5, can be
calculated as

1/(2k+1) 7.2
lim T27n:2(d’“r) LagY

=77.
Moreover, since T] + T35 =: r;, we obtain

lim vik/(%ﬂ) sup R;(gAO,S) <r;
n—oo Sewk
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and get the desired result. O
For the adaptive estimation we use the model selection procedure (2.23) with the parameter §
defined as a function of n satisfying

lim 6, =0 and limn’s, =0 (2.86)

n n

for any & > 0. For example, we can take 6, = (6 + Inn)~'.

Theorem 2.5. Assume that Conditions H;)-H,) hold true. Then the robust risk defined in
(2.5) through the distribution family (2.8)—(2.9) for the procedure (2.23) based on the trigono-
metric basis (1.15) with the coefficients (2.28) and the parameter § = §,, satisfying (2.86) has
the following asymptotic upper bound

hni sup v2F/(2H+) sup, R(S,,S) <. (2.87)
n—o0 ew}

Theorem 2.4 and Theorem 2.5 allow us to compute the optimal convergence rate.

Corollary 2.1. Under the assumptions of Theorem 2.5, we have

. 2%k/(2k+1) - a
lim v /@D i sup R (S,,S) =r. (2.88)
n—oo Snenn SEWII.Q
Remark 2.6. It is well known that the optimal (minimax) risk convergence rate for the Sobolev
ball WF is n?k/ k1) (see, for example, [47], [46]). We see here that the efficient robust rate is
vik/(%*l), i.e., if the distribution upper bound ¢* — 0 as n — oo, we obtain a faster rate with
respect to n2k/ (k1) and, if ¢* — 0o as n — 0o, we obtain a slower rate. In the case when ¢*

is constant, than the robust rate is the same as the classical non robust convergence rate.

2.5 Simulations

In this section we report the results of a Monte Carlo experiment in order to assess the perfor-
mance of the proposed model selection procedure (2.23). In (2.1) we chose a 1-periodic function
which is defined, for 0 <t <1, as

S(t) = tsin(27t) + t*(1 — t) cos(4nt). (2.89)
We simulate the model
dy, = S(t)dt + d&;
where & = 0.5dwt + 0.5dz,.

Here z; is the semi-Markov process defined in (1.6) with a Gaussian AV/(0, 1) sequence (Y;) ;>4

and (7x)r>1 used in (1.7) taken as 7 ~ X?;-
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n R R.
20 0.04430 0.235
100 0.01290 0.068
200 0.00812 0.043
1000 0.00196 0.010

Table 2.1: Empirical risks

We use the model selection procedure (2.23) with the weights (2.28) in which £* = 100 +
In(n), t; = i/In(n), m = [In?(n)] and § = (3 + In(n))~2. We define the empirical risk as

;zi:g;( (j))27 (2.90)

where the observation frequency p = 100001 and the expectation was taken as an average over
N = 10000 replications, i.e.,

B(5.0-50)" = 5 2 (310 -50)"

=1

We set the relative quadratic risk as
_ 1
R. =R/||S||2, with [|S]]) = 5 > S(ty). (2.91)

In our case ||S||2 = 0.1883601.

Table 2.1 gives the values for the sample risks (2.90) and (2.91) for different numbers of
observations n.

Figures 2.1-2.4 show the behaviour of the regression function and its estimates by the model
selection procedure (2.23) depending on the values of observation periods n. The black full line

is the regression function (2.89) and the red dotted line is the associated estimator.
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Figure 2.1: Estimator of S for n = 20
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Figure 2.2: Estimator of S for n = 100
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0.5
I
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|
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Figure 2.3: Estimator of S for n = 200
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Figure 2.4: Estimator of S for n = 1000

Remark 2.7. From numerical simulations of the procedure (2.23) with various observation

numbers n we may conclude that the quality of the proposed procedure: (i) is good for practical
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needs, i.e. for reasonable (non large) number of observations; (ii) is improving as the number

of observations increases.

Now we give the algorithm of the model selection procedure given in Section 2.2
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Algorithm 1 Model selection procedure

Require: n,0<g<1land d >0

p1, p2, s*: satisfying Conditions (2.8) and (2.9)
k* > 1, e: satisfying Condition (2.26)
Output: The optimal weight vector A

{Step 1} Computation of the weights

m = [1/?]

for i +— 1to [k*] do

for j «— [¢] to [me] do

for k «+— 1ton do
Compute the wheight coefficients \; ;(k) using the formula (2.28)
end for
end for

end for
return: the vectors A = (A\y(1),..., Aa(n)),a € A={1,...,k*} x {e,...,me}
{Step 2} Computation of the Fourrier coefficients
for k «+— 1ton do

@f,n =z fon br(t)dy, -
O <— 5,2“1 -1
The observation (y;)o<;<, are given in (2.1) with the noise process (2.2) and (¢ );>1 is
the basis given in (2.10)
end for
return: the vectors 6 = (517n7 oy é\n,n) and 6 = (glyn, e anm)
{Step 3} The cost function

for i +— 1to [k*] do

for j «— [g] to [me] do
Tn(X) +— 0 A%(l)é‘j{n -2y Xij (D0, + 0 P,(N). .
where the vectors A = (A (1), ..., A j(n)) are computed in Stepl, the vectors 6 and
are given in Step2 and P, is the penalty term given in (2.22)
end for
end for

~

return: A = argmin,_, Jo(A),A = {)\,, a € A}.
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2.6 Stochastic calculus for semi-Markov processes

In this section we give some results of stochastic calculus for the process (§,);> o given in (2.2),
needed all along this paper. As the process ¢, is the combination of a Lévy process and a

semi-Markov process, these results are not standard and need to be provided.

Lemma 2.1. Let f and g be any non-random functions from Ly[0,n] and (I,(f));>o be the
process defined in (2.6). Then, for any 0 <t <n,

EL(f),(9) = 0] (f,9)¢ + & (f.90):, (2.92)
where (f, g) f f(s)g(s)ds and p is the density defined in (1.8).
Proof. First, note that we can represent the stochastic integral I,(f) as
L) = el IF () + o I7(f), (2.93)
where

1L = t s)dL. and I? = t s)dz. .
L(f) /Of() s (/) /0f<> s

Note that the mutual covariation for the martingales I(f) and I*(g) (see, for example, [21])

may be calculated as

I (f). T ), = & /0 F9)ds+(1- ) S f(9)gs) (ALY, (2.99)

0<s<t

where AL, = L, — L,_. Taking into account that E I'(f) Ik (g) = E[I*(f), I*(g)], and that
in view of the first condition in (2.3) II(z%) = 1, we obtain that

EIL(f) IX(g) = & / F(8)g(s)ds + (1 — 6% T1(2?) / £(s) g(s)ds
0 0

:/0 f(s)g(s)ds. (2.95)

EIF(f)I7(g) = E (Z f(Tl)g(Tl)YlQl{Tlﬁt}>

=1

Moreover, note that

—E(Zsz ﬂl{Tq}) /f

=1

Hence the conclusion follows. O

Lemma 2.2. Assume that Conditions H;)-H,) hold true. Then, for any n > 1 and for
any non random function f from Ly[0,n], the stochastic integral (2.6) exists and satisfies the

properties (2.7) with the coefficient s, given in (2.7).
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Proof. This lemma follows directly from Lemma 2.1 with f = g and Proposition 5.1. O

Lemma 2.3. Let f and g be bounded functions defined on [0,00) x R. Then, for any k > 1,

N

-1

E (I, (f)I5, (9)1G) =&X(f. o)r, + 3> F(T) 9(Ty),
=1

where G is the o-field generated by the sequence (T));>1, i.e., G = o{T}, 1 > 1}.

Proof. Using (2.93), (2.95) and, taking into account that the process (L;);~( is independent

of G, we obtain

E (I, (f)Ig, (9)1G) =dX(f 9, +E (I (NI, _(9)19).

Moreover,

k—1 k—1
E(f (N1 (9)19) =E< fmm) ( g<Tl>Yl> \g)

Thus we obtain the desired result. O

Lemma 2.4. Assume that Conditions H;)-H,) hold true. Then, for any measurable bounded

non-random functions f and g, we have

‘E / 12 (f) g(t) dmy | < 2621l |£12 Ty .

0

Proof. Using the definition of the process (m;);», we can represent this integral as

s am =3 1 ()00 1

k>1

- [ rs 0 ar=v,-v,. (2.96)

Note now that
EV, =EY g¢(T,)E (I%k,(f) | 9) Lt <ny -

k>1

Now, using Lemma 2.3 we can represent the last expectation as
2 2
EV, = glEVé—i—gQEVTZ’, (2.97)

where

k1
V= Z 9(T},) HfH2Tk 11, <ny and V) = Z 9(T3) 1y, <ny Z FA(T)

k>1 k>2 =1
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The first term in (2.97) can be represented as
BY, = [ o0 Iflkonar.
To estimate the last expectation in (2.97), note that
BV, =B Y S0 a0 e = [ £0)300) (o).

>1

where

90) =B Y g0+ T) Lircn vy = [ " at) plt — v)dt.
E>1 v

Moreover, using now the representation (2.92), we calculate the expectation of the last term in
(2.96)

EU, = ¢ /0 IR gt) pt) e + @2 /0 " F()g(t) p(t) .

where f(t) = fg f?(s) p(s)ds. This implies that
B [ I tdm = [ o) stat,

where §(t) = fot f?() (p(t —v) — p(t)) p(v)dv. Note that, in view of Proposition 5.1, the

function § can be estimated as
t
6] < |12 |l / 1T(t—v) = T(@)] dv < |2 ]pl, (1T, + L)) -
0

Therefore,

‘E [ 1) 9te) dmy| < 220l 17 X1

0
and this finishes the proof. O

Lemma 2.5. Assume that Conditions H,)-H,) hold true. Then, for any measurable bounded

non-random functions f and g, one has
E [ (DL (9)altdg, =
0
Proof. First, note that
/ If_(f)ft(g)g(t)d&:m/ If(f)ft(g)g(t)stJer/ 17 (/)T (9)g(t)dz.
0 0 0

Second, we will show that
B [ 1 (N ()0t =o. 299
0
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Using the notations (2.93), we set

J, = / nff(f)ff(g)g(t)st and J, = / nlf(f)ff(g)g(t)d%
0 0

we obtain that "
/ If(f)[t(g)g(t)st =01J1+0205. (2.99)
0

Now let us recall the Novikov inequalities, [44], also referred to as the Bichteler—Jacod in-
equalities (see [32, 43]) providing bound moments of supremum of purely discontinuous local

martingales for any predictable function h and any p > 2

| )
[0,t] xR

where C’; is some positive constant and

p/2
Jyn(h) = (/ h? dl/) +/ hP dv .
’ [0,n]xR [0,n]xR

By applying this inequality for the non-random function h(s,z) = g(s)z, and, recalling that
(%) < 0o, we obtain,

p

E sup < CrE J,q(h), (2.100)

0<t<n

sup E‘ItL(g)

’8
0<t<n

< 0.

Taking into account that, for any non random square integrated function f, the integral
(fg f(s)dws> is Gaussian with the parameters (O, fg f2(s)ds), we obtain

8
sup E‘ItL(g)| < 0.
0<t<n

Finally, by using the Cauchy’s inequality, we can estimate for any 0 < ¢ < n the following

expectation as

E (I () (IF(9)* < \JETE)S BT

Sup E (I (M)} (9))? < oo,

Moreover, taking into account that the processes (L;);>( and (z;),>( are independent, we obtain
that

t
E(I7(M*' I (9)* =EI())'E](9) = /0 g (s)ds E(I7(f))".
One can check directly here that, for ¢ > 0,

E|F(NI* <|f;EYEN?.
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Note that the last bound in Corollary 5.1 yields sup,,.,, E (Itz(f))4 < oo and, therefore,

sup E (L)' (I}9)? < .

It follows directly that E.J; = 0. Now we study the last term in (2.99). To this end, first note

that similarly to the previous reasoning we obtain that

E/meUD%fQM@kM%ZO and E/m@%fﬂﬂfﬂﬂmgaMLt:o-
0

0

Therefore, to show (2.98) one needs to show that

n
E [ 07921 (9)a0)dL, =o. (2.101)
0
To check this, note that, for any 0 < ¢ < n and for any bounded function f,
00 N,
=3 TVl cn =D ()Y lir <y s
k=1 k=1
ie.,
n Nn Nn Nn
JRGTDRAON F(T) (1) 9(T)) VY, Yy Iy
0 k=1 1=1 j=1
where

Ty = / Lin <o ln<pylir<pdly -
0

Taking into account that the (L,),>q is independent of the field G, = o{z,,t > 0}, we obtain
that E (I,,;]G,) = 0. Therefore,

= EZ A (T £(T) 9(T;) Y;Y, Y E (1y41G.,) = 0

So, we obtain (2.101) and hence the proof is achieved. O

Appendix

Property of the penalty term

Lemma 2.6. For anyn > 1 and A € A,

Cl n
P)(\) < EqErr,(\) + TQ

where the coefficient PY()\) was defined in (2.38).
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Proof. By the definition of Err,(\) one has

i, () = 3 (0G) - vg, + e, )
j=1

In view of Proposition 2.2, this leads to the desired result

1< ) Cion
BoErm() > = 3 X()Bog, > Pl(y) — —-".
j=1



Chapter 3

Non-parametric estimation for semi-Markov

regression models based on discrete data

3.1 Introduction
Let us consider a regression model in continuous time
dy, =S({t)dt+d¢, 0<t<mn, (3.1)

where S is an unknown 1-periodic function defined on R with values on R, (§;);>¢ is the
unobserved noise process (2.2) . The problem is to estimate the unknown function S in model

(3.1) on the basis of observations

(W, Jo<j<npr B =70, A= 21?, (3.2)
where integer p > 1 is the observation frequency. In this chapter we use the risks defined in
(2.4) and (2.5) for the distribution family Q,,.

The goal of this chapter is to develop a robust efficient model selection method for the model
(3.1) with the semi-Markov dependence having unknown distribution. We use the approach
proposed by Konev and Pergamenshchikov in [17] and [18] for continuos time regression mod-
els with non martingale noises. Unfortunately, we cannot use directly their method for the
semi-Markov regression models, since their tool essentially uses the fact that the Ornstein -
Uhlenbeck dependence decreases with geometrical rate and obtain sufficiently quickly the “white
noise” case. In this chapter we propose new analytical tools based on renewal methods, to ob-
tain the sharp non-asymptotic oracle inequalities. And, as a consequence, we obtain robust

efficiency for proposed model selection procedures.

3.2 Model selection

In this chapter we will use the trigonometric basis (Tr;);>; in Ly[0, 1] defined in (1.15). By

making use of this basis, we consider the discrete Fourier transform of S

Ze Tr;(t), t€{ti,..tp}, (3.3)
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where the Fourier coefficients are defined by

p

0;,=(S.Tr;), = ;Z S(t)Tr, (t;). (3.4)
=1

In the sequel the corresponding norm will be denoted by Ha:H2 (z,7),. These Fourier coeffi-
cients ¢, , can be estimated by

N 1 (" P

0, = ”/0 U, (tdy, and ¥, Zﬁ ) g, i<t} - (3.5)

We note that the system of functions (¥, )i<j<p is orthonormal in L, [0, 1] because

j,p)
1

In the sequel we need the Fourier coefficients for the function S with respect to the new basis

(V; )1<j<p - These coefficiens can be writen as

/s DAt =0, + hy, (3.6)

where
$)=>" [ a0 - st
I=1"t-1

From (3.1) it follows directly that these Fourier coefficients satisfy the equation

— 1

~ 1
9j7p = 6]‘717 + %éjﬁlﬁ I (\I’%p) . (37)

%n

where &, =

For any 0 <t <1 we estimate the function S by the weighted least squares estimator

Z/\ 0505 (1), (3.8)

where the weight vector A = (A(1),....., A(n)) belongs to some finite set A from [0, 1], 6?“, was

defined in (3.5). Now let us consider

i=#(A) and |A], = = max L(N), (3.9)

where #(A) is the cardinal number of A and L()\) = Z;.Lzl A(j)- In the sequel we assume that
|Al, > 1 and A(j) =0 for j > p.

In order to find a proper weight sequence A in the set A one needs to specify a cost function.
When choosing an appropriate cost function one can use the following argument. Let as consider

the empirical squared error
Err() = |5y — S|I°, (3.10)
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which in our case is equal to

Err(\) = > A()07, — 2> A5)0;,0,, + [IS]*- (3.11)
j=1 i=1

Since the Fourier coefficients (6;),- are unknown, the weight coefficients (A(j));<;<, cannot
be determined by minimizing this quality. To circumvent this difficulty, one needs to replace

the terms @},pgj’p by their estimators §j’p_ Let us set

0,p =0, — 2 (3.12)

where 7, is an estimate of the proxy variance o, defined in (2.8). For, example, we can take

it as
P
Z 6> and p=min(p,n), (3.13)

8 pu—
n Jsp

SaS

7=l
where | = [y/n], and we set g,, = 0 for | > p. For this change in the empirical squared error,

one has to pay some penalty. Thus, we obtain the cost function of the form

n

J) =SRG2 5 A, + 5B, (3.14)
i=1 j=1

where 0 > 0 is some threshold which will be specified later and the penalty term

Py = 2 (3.15)
n
Minimizing the cost function, that is
A= argmin, , Jn(A), (3.16)

and substituting the obtained weight coefficients A in (3.8), lead to the model selection proce-

dure

S.=5;. (3.17)

We recall that the set A is finite so A exists. In the case when \ is not unique we take one of
them.

3.3 Oracle inequality

In order to prove the oracle inequality, the following conditions will be needed for the noise
(§1)¢>0- Here we use the conditions introduced in [17] for the general semi-martingale model
(2.1).
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L,) For alln > 1 and Q there exist a variance prozxy og >0 and a constant Ly g > 0 such
that

sup  sup |Bl,Q(x)’ <L y<oo,
p>3 ze[-1,1]"

where By o(r) = Z?zl T; (EQgin — 0Q>.
Ly) For alln > 1 and Q there exists a constant LQ,Q > 1 such that

sup sup EB;Q(x) < Ly < oo,
p=3 |z|<1

where BQ,Q(I‘) = Z;L:1 x; &, and &, = f?,p — Eij%p .

First we set the following constant which will be used to describe the rest term in the oracle

inequalitie. We set

8np =1+ AL (éﬁ + %) : (3.18)

Firstly, we obtain the non asymptotic oracle inequality for the model selection procedure (3.17).

Theorem 3.1. Assume that Conditions Ly) and Ly) hold. Then there exists some constant
I* > 0 such that for any noise distribution Q), the weight vectors set A, for any periodic function
S foranyn > 1, p >3 and 0 < § < 1/6, the procedure (3.17), satisfies the following oracle

inequality

_ 1+30 .
< )
R(Sx, S) < 35 r/\nel[rleQ(S)\,S)
* L ~

Proof. Using the cost function given in (3.14), we can rewrite the empirical squared error in

(3.11) as follows

n

Err(A) = Ju(A) +2) A0, + 1511 = pPa(N), (3.20)
j=1
where R
. ~ - o~ 1 - 1~ 1 0Q — On
U0 = 0ip = V50050 = 5 0in%in + 80+ Sim T =
with ¢;, = Bgé? —og and &, = & —Eqg¢? . Setting
MO = - S ()6 a po— 7 3.21
()—%Z (J)jfm an n T T, 0 (3.21)
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we can rewrite (3.20) as

Err(A) = Jo()) + 229

" L)+ 2M () + 2By oV

+2/PO() BZQ +\|5H2f pPa(N), (3.22)

where e(A) = A/|A| and the function L was defined in (3.9). Let Ao = (Mo(4))1<j<, be a fixed
sequence in A and A be defined as in (3.16). Substituting A¢ and X in Equation (3.22), we

obtain

Err(A) — Err(Ao) :J(X)—J(AO)HUQ_ L(w) + BlQ( @) + 2M ()

+24/PO(X “9 —2,/PO() 2Q

— 6Py (N) + 0P (o), (3.23)
where @ = A — gy €= e()) and ey = e(Ag). Note that, by (3.9),
L(w)| < LX) + LX) < 2[4,

The inequality

2|ab| < §a® 4 6~ 1b? (3.24)
implies that, for any A € A,
B A B2 (e(\
o BT B2 o, Bl
VoQr " dogn

Taking into account that 0 < § < 1, we get

; 2L,  2Bi,
Err(A\) < Err(N\g) + 2M (w) + —= + 5
n O'QTL
116, — o0l (A2 + [ho[2) + 26, (A
4 213, = oglIRE + [3af?) + 2. (30).

where B} o = sup,_, B;Q((e(/\)). Moreover, noting that in view of (3.9) sup,_, [A]* < [A],,

we can rewrite the previous bound as

) <
Err(\) <Err(\g) 4+ 2M (w) + n 50Qn

4lA],
+ 'n’*|aaQ+25Pn(A0). (3.25)
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To estimate the second term in the right side of this inequality we set

n

Se =D w()0;,Tr;, v = (@())igjzn € R
j=1

Thanks to (2.7) we estimate the term M (z) for any x € R" as

EoM?*(z ) < Zx Jp_%Q ||S [ (3.26)

To estimate this function for a random vector x € R™, we set

nM?(z)
¥ =sup —=-, Ai=A-).
zelq HS&H2
So, through Inequality (3.24), we get
2 L7
2|M ()| < 6]|Sz]] + 5 (3.27)

It is clear that the last term here can be estimated as

nE M
E 2" < Y. ||QS H2 <3 s = i, (3.28)

rEA rEN

where v = card(A). Moreover, note that, for any = € Ay,

1217 = [181* = Zw - 03) < —2My(x), (3.29)

where M, (z) = n~1/? Z;‘L:1 z? (j)??pfjm. Taking into account now that, for any = € Aj, the

components |z(j)| < 1, we can estimate this term as in (3.26), i.e

M\ =X — -
Similarly to the previous reasoning we set
. nM?(x
Z] = sup L= (2)
vey |[Sall
and we get

Using the same type of arguments as in (3.27), we can derive

2| Mi(x)] < 8[Sa|I* + (3.31)

*
1
no
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From here and (3.29), we get

[EAR i
1-6  ndé(l1-9)
for any 0 < 6 < 1. Using this bound in (3.27) yields

oISel2 2t + 2
< .
2M@) < 34— 5+ 51 =)

I1521% <

(3.32)

Taking into account that ||S_||2 < 2 (Err()) + Err()g)), we obtain
25(Err(X) + Err()\o)) AR

< .
2M(@) < 1-5 né(1— o)
Using this bound in (3.25) we obtain
~ 146 Z*+ 7% 2L1Q 2B;‘Q
E ——FErr(\ : .
) S Bro) + oS TS A —se) T e = 38)oon
(4101, +2) 2
— g — —PJ(A
(1 —30) 7 el T G55 )
Moreover, for 0 < § < 1/6 we can rewrite this inequality as
R 16 22*+2F) 4L g 4B,
Err(\) < Err(A : :
(A = -39 r(do) + no + n + dogn
8IA[, +2) 25
+ (8Al. +2) PR (Xo)-

Fa I T T
Now, in view of Condition L,), we estimate the expectation of the term Bj on (3.25) as

< Z EQ < LL2 Q-
AEA

Now, taking into account that |A[, > 1, we get

Ra(5.8) <4 T piRa(By )+ o 4 T4 1 T2
+ 10‘3’* Eqlo —oql + a 3535)]3’9@0)'
By using the upper bound for P,()\¢) in Lemma 3.1, we obtain that
R (5*75) 1 jggRQ(@\o, S) + 4:225 + 4L;,Q n tz:;nQ
N 10\;\|* EQ|8UQ|+(125_L§;$C§7@'

Taking into account that 1 — 35 > 1/2 for 0 < ¢ < 1/3 and that kg < (14 7|pl[,)og and using
the bounds (3.38) and (3.60) we obtain the inequality (3.19). Hence we get the desired result.
O
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Corollary 3.1. Assume that Conditions Ly) and Ly) hold and the prory variance o, is known.
Then there exists some constant I* > 0 such that for any noise distribution Q, for any weight
vectors set A, for any periodic function S for anyn > 1, p >3 and 0 < § < 1/6, the procedure
(3.17) with @,, = o, satisfies the following oracle inequality

~ 1430

*9 S
Rq(5:,9) 1— 38 reA

min Rq (Sy, S) +1 S (3.33)

Now we study the model selection procedure (3.17) using the proxy estimate (3.13).

Theorem 3.2. Assume that the function S is continuously differentiable and the conditions L)
and Ly) hold true. Then there exists some constant I* > 0 such that for any noise distribution
Q, for any weight vectors set A, for any periodic function S for any n > 1, p > 3 and
0 < & <1/6, the procedure (3.17), satisfies the following oracle inequality

~ 1+36 . 5
*9 S )
Rq(Se,8) < ;s minRg(5, )

*L 3 312
+U (14 o) (1+1912) 8- (3.34)

Let us study the robust risks (3.4) for the procedure (3.17). In this case this family consists of
all distributions on the Skorokhod space D[0, n| with the parameters satisfying the conditions
(2.8) = (2.9) . Now, to obtain the efficiency property we use the weight coefficients (A(j));<;<n,
specified in (2.28).

Our goal is to bound asymptotically the term (3.18) by any power of n. To this end we
assume the following condition.

H;) Assume that there exists 6 > 0 such that for any n >3

p>ndb. (3.35)

Now Theorem 3.2 implies the following oracle inequality.

Theorem 3.3. Assume that the unknown function S is continuously differentiable. Moreover,
assume that Conditions Hy)-Hy) hold. Then for the robust risks defined in (3.4) through the
distribution family (2.8) — (2.9), the procedure (3.17) with the coefficients (2.28), for anyn > 1
and 0 < 0 < 1/6, satisfies the following oracle inequality

. 1435 . U* ()
* < : n
R*(S.,8) < 1 — 36 reA né

(3.36)

where the sequence U (S) > 0 is such that under condition (2.26), for any r > 0 and 5> 0,

. U;.(5)
lim sup —2

! 5
S N E

~0. (3.37)
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Now we need to check the conditions L) and Lg) for the process (2.2).

Proposition 3.1. Assume that Conditions Hy)-H,) hold true. Then

Proof. Firstly, we set
n n
_ / FAL, and IE(f) = / F(t)dz, (3.39)
0 0
In view of (1.6) the last integral can be represented as
oo
= Z FI)Ylr<py - (3.40)
=1
Therefore,
9 ;L Q2
and
2 of " %
B¢, = ”/0 (Ddi+ Elz;\y (T)1 (7,2} - (3.41)
Using Proposition 5.1 we get
EZ‘I’ (TN 1<my = z)dz

Sl = s~

/ ' (r)da +/n V2 ()Y (2)dz,

0
where p is the renewal density introduced in (1.8). Then we obtain,

n

2
Egj%n =o0g+ % U2 ()Y (z)dz

Jip
and "
sup / U2 ()Y (z)dz| < 2|7, (3.42)
i1 1o P
where o = Q% + g% /7. This directly implies the desired result. O

To study the function B, g (x), we have to analyze the correlation properties for the following

stochastic integrals

L,(f) = I;(f) = EL(f). (3.43)

To do this we set
& =1+T0(z") + |7+ 1pl, and & =12(1+7)*(1+¢). (3.44)

Now we investigate the behavior of the integrals defined in (3.43) as functions of f.
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Proposition 3.2. For any left continuous functions f,g : (0,00) — R such that || f]l« < 1,

llgll« < 1, we have N
EL,(N1T,(9)] < 1205(1+7)* ((f,9) +néy) - (3.45)

Proof. By Ito’s formula one gets

dIZ(f) =21, (H)AL(f) + &id® fA(0)dt + > f2(s)(AgH)?, (3.46)

0<s<t

where €% = 95 L, + 052, and o3 = 0,1/1 — ¢*. Taking into account that the processes (f/t)tzo
and (z;);>( are independent and the time of jumps 7} defined in (1.7) has a density, we have
Az, AL, =0 as. for any s > 0. Therefore, we can rewrite the differential (3.46) as

I (f) =21, (f)dL,(f) + 01@2 fe)dt

+03d D> FP)AL) +3d D f(s) (3.47)

0<s<t 0<s<t

Therefore, using Lemma 2.1 we obtain

EIZ(f) = & IIFIIF + a3 f/Pll7

where || f]|? = f f?(u)du, p is the density of the renewal measure Z n9) and with 7 the

distribution of 7;. Therefore,

dIt(f) = QIt—(f)f(t)dft + f2(t)dmt ’ ﬁlt = ngt + ngt ’ (3‘48)

where m, = ZO<S<t(AL )2 —tand m, = ZO<s<t (Az,) f p(s)ds. By the Ito’s formula we
get,

BL(N,(0) E | "I_(f)dL()

+B [T (@dl(0) + B[1.10)] - (3.9

n

First, note that the process (mt)tzo is a martingale and, using Lemma 2.5, we get

E /0 I, (f)dl,(g) = p2E /O I ())g?(t)dm, = 2B /O 12 (f)g*(t)dm,

The last integral can be represented as

E /0 12 (f)g*(t)dm, = J, — T,

where

SEY (DT ey and = [ ER()P000r.

k>1
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By Lemma 2.3 we get

= EZ E (I%k,(fﬂg) 92(Tk)1{Tk§n} = 0111+ 0312
k>1

where

Jig = EZ ||f||T g9 Tk)l{Tk<n} and Jy, = EZ Z f? (1) g Tk)]-{T <n}
E>1 E>1 1=1

We obtain directly that

T = / 1£1262(6)plt)dlt

0
and

T2=BY @) S AT, = / e ( /0 (o + 000t plo)is

1>1 E>141

From Lemma 2.1 we obtain that
5= [t s+ & [ el oot
Therefore,
B [ 22 (g 0am, = o [ @) ([ @O0 -0 - s plaja
Taking into account that p(t —z) — p(t) = Y(t —x) — T (t) we can estimate the last integral as
B [ 12 (N 0dm| < 2630,

From this and by the symmetry arguments we obtain that

E [ L (DALl +[E [ T (@)L, < dgdnl T, (3.50)
0 0
Note now that
I(0).1(9)] =(I'(N).1'(9)) +Dy(1.9). (3.51)
where
= > AINf)AIL(g).
0<t<n

It should be noted that the continuous and the discrete parts of the processes (3.48) can be

represented as

T(f) = 20,0 /O 1(F)f(s)dw, and T4(g) =2 /0 I, (f)f(s)de? + /0 £2(s)dim,
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So, in view of Lemma 2.1,
E < °(f).J(g) >= 4p38° /0 E(L,(f)1,(9))f(Dg(t)dt
— 47 / (F.9), F(Dg(t)t + 42035 / (F.90)uf (B)g(t)dt
0 0
— 4350, (.9)° + AR R3F /0 (f.970)of (Dg(t)dt (3.52)

with (f,g), = fo g(s)ds. Taking into account that ||f||. < 1 and ||g||« < 1, we can estimate

the last integral as
/0 (f, g0, (Hg(t)dt < n T,

Therefore,

B(F().70) | <0} (o +n7T1L) (359)

To study the last term in (3.51) note that

D,(f,9)= > (2L (NIOAE + AR, ) (2L,_(9)g(AE + (1) A, )

0<t<n
Taking into account that for any ¢ > 0
A{fAﬁzt = Qg(ALt)g + Qg(Azt)S )
we obtain that

EY g P(OAE AT, = (1) + BB YY) /0 "EL() (0920t = 0.

0<t<n

So, using the symmetry arguments, we find that

Dn(f?.g) = 4ED1,n(f?g) +ED2,n(fag)7 (354)
where
Dy, (f,9)= > L_(NL_(9)fHg®)(AE)? and Dy, (f,9)= D f2(t)g*(t)(Am,)*.
0<t<n 0<t<n
Note that
Dl,n(fa g) = ng)l,n(fag) + Qgﬁl,n(fa g) )
where
D, (f9)= > L (NI (9)ft)gt)(AL,)’
0<t<n
and
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Now, similarly to (3.52) and taking into account that II(z?) = 1, we get

ED, ,(/.9) / FOg(OE L), (g) dt = o2 /"f<t>g<t><fg>tdt
0
t /0 " F@©)9(t) (f, gp)y dt

=oo(f9+ 25 [ S0a(0) (7, g),

So,
[ED,,.(f,9)] <oq ((f,9); +n7T];) - (3.55)

Moreover, taking into account that EY2 =1 we get

EDl n(f9) EZ Ip (NI —(9) [ (T)9(Th) Lig, <ny -

k>1
So, in view of Lemma 2.3
ED,,(f.9) = EY_ E (I, _(NI5,_(9)I6) F(T)9(T) Lz, <
k>1
—QlEZf 9T, Tk)l{T<n}+QQED 2(f:9)

k>1

_ 2 /O ”(f,g>tf<t> (o)t + ZED(f,9),

where
k—1
Dllm(f,g) = ZZ F(T) 9(L) f(T3)9(Ty) Lyr, <ny -
k>11=1
Noting now that
[ .0 s090p0 = (.07 + [ (o) SO0 T,
0 0

we obtain

| [ (.90 s Os(0pl0)at] < (.91 +nl T
0

Furthermore, the expectation of D/1 ,,(f,g) can be represented as

ED,, (f,9) =E Y f(T)o(T) > F(T)9(Ti) 1z, <ny

>1 E>1+1

= [Cs@ate) ([ s+ Dot pte)ar) e

1 "
= 277;(]0’ g)i + DLn(fvg) )
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where the last term in this equality can be represented as
D () = [ feate) ([ o+ ata-+ 07000 ) ol
2 / f(2)g(x) </ f(;v+t)g(:n—|—t)T(t)dt> T(x)de.
0 0
This implies
" 1
Dy (i)l < n(+ )+ ITN) -
Therefore,
[ED,,(f,9) < oq ((f.9); +n(L+H|TI}) - (3.56)
Finally we obtain that
[EDy,(f,9) <op(L+7)2((f,9)2 +nlTI3) - (3.57)
As to the last term in (3.54) we can calculate directly
ED,,(f.0) = i) [ P+ ol [* 00
0
i.e.
ED,,(f,9) < nop ((z*) +[pl,) (1+7)°.
From here we obtain that
[ED,,(f,9)] < o5,(1+7)* (4(f,9)2 +néy) (3.58)
where ¢, is given in (3.44). From this and (3.53) we find
E[I(f),1(9)l, <804 (1+7)* ((f,9)2 +néy) - (3.59)
This bound and (3.50) implies (3.45). Hence we get the desired result. O
Using these properties we can obtain the following bound.
Proposition 3.3. Assume that Conditions H,)-H,) hold true. Then, for alln > 1,
Ly o =2¢ Ué ) (3.60)

where |z|? = Z?Zl l‘]Q
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Proof. Note that
2

n n n
~ 1 - -
E() #¢,] < 2 SO el gl [BL (W)L, (V1)1
=2

j=1 I=1

Using here Proposition 3.2 and taking into account that
n
(Vs i) = [ 05,00, (00 =y,
0
we obtain the bound (3.60). Hence we obtain the desired result. O
Now we can study the estimate (3.17).

Proposition 3.4. Assume that Conditions Hy) and H,) hold true for the model (3.1) and
that S is continuously differentiable. Then, for any n > 2 and p > 3,

. . (/n 1> 112 2
E 0,— 0ol <é|—+—)1+]S 140 , 3.61
0.5l5n — 00| 3(p ) @IS+ o) (3.61)

where ¢ =6 (14 4 2|p|, + 3T+ &) (1 + 7).

Proof. It is clear that Inequality (3.61) holds true for [ > p. Let now [ < p. Setting
:c; = 1y /m<j<py and subtituting (3.7) in (3.13) yields

p — 271 /
> 0,7+ = M)+

g=l b

[l =

O'n:

S 3

p
> e, (3.62)
=1

where M (z') is defined in (3.21). Furthermore, putting a:;' =p 1/21{l<j<p}, one can write the
last term on the right hand side of (3.62) as

12’!’:52 L, (,,)+1B @)+
< L= T = € - € —
b Vb 3¢ poe )7

where the functions B, g and B, () are given in conditions L) and Ly). Using Proposition 3.1,

Proposition 3.3 and Lemma 3.3 , we come to the following upper bound

I 2 , L /L on(l —1
16051 + By M(2)| + 22 V29 el —1)
Ip P P VD p

In the same way as in (3.26), we obtain

1/2 .
P 2\1/2
: 7 S 7 A0 IS17)
j=1

Taking into account that rg < (1 + 7|p[,)og and using the bounds (3.38) and (3.60) we
obtain the inequality (3.61). Hence we obtain the desired result. O

Remark 3.1. Propositions 3.1 and 3.3 are used to obtain the oracle inequalities given in Section

4.4 (see, for example, [17]).
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3.4 Efficiency

Now we study the asymptotically efficiency properties for the procedure (3.17) with the coef-
ficients (2.28), with respect to the robust risk (3.4) defined by the distribution family (2.8) —
(2.9). To this end, we assume that the unknown function S in the model (3.1) belongs to the
Sobolev ball

(e ch 00,3 IFO <), (3.63)

§=0

where 7 > 0, k > 1 are some parameters, CS@T [0, 1] is the set of k times continuously differen-
tiable functions f : [0,1] — R such that f®(0) = f®)(1) for all 0 < i < k. The function class

Wf can be written as an ellipsoid in L, i.e.
k
={fec.[01] Z a;0? <r}, (3.64)

where a; = Zf:o (2 [j/2)*.
Similarly to [17, 18] we will show here that the asymptotic sharp lower bound for the robust

risk (3.4) is given by

(3.65)

2k/(2k+1
rt = ((2k + 1)r)"/ @D < k ) [y

(k+1)m
Note that this is the well-known Pinsker’s constant obtained for the non-adaptive filtration
problem in “signal + small white noise” model (see, for example, [47]).
Let II,, be the set of all estimators §n measurable with respect to the o-algebra o{y,, 0 <
t < n} generated by the process (3.1).

Theorem 3.4. Under the conditions (2.8) and (2.9),

liminf 02/ G+ inf sup R;(Q\n, S)>r

3.66
n—o0 " SnEHn SEVV;C ( )

>%

where v, =n/c*.

Note that if the parameters r and k£ are known, i.e. for the non-adaptive estimation case, then
to obtain the efficient estimation for the “signal+white noise”model. Pinsker in [47] proposed
to use the estimate ng defined in (3.8) with the weights (2.28) in which

)

where [, = [r/ele. For the model (3.1) — (2.2) we show the same result.

Proposition 3.5. The estimator §A0 satisfies the following asymptotic upper bound

lim Uik/(%ﬂ) sup R (SAO,S) <rp.
n—oo Sewk



3.4 Efficiency 63

Proof. First, we note that in view of (3.8) one can represent the quadratic risk for the empiric

norm || - ||, as
1 P
3 2 2 2 . B
Eq |15y, =51, = Y NG EQE, +6,,
j=1
where ©, = j 1 (9j7p - )\O(j)éj’p)% We put here A\y(j) = 0 for j > n if p > n. The first term

can be estlmated by the bound (3.38) as

sup EQZ)\2 5 <§*Z)\2 +L1Q7
QGQ j=1

where L} = SUPe g L, . Therefore, taking into account that v, = n/o*, we get

a 1 - . Tn ray
sup E, IS, — S| < — NG +—"+96,.
Qco, Q 117 Ag P v, ; 0 n p
Note that
) 1 n ) B Q(Tk I.)l/(2k‘+1) k2
Jim Ul/(zkﬂ); o) =G DEr (3.68)
Furthermore, by Inequality (3.24) for any 0 < £ < 1 we get
6,<(1+80,+(1+e" Zh]p, (3.69)

where O, = Z§:1 (1= X(5))? 6]2.7]3. In view of Definition (2.28), we can represent this term as

[wo]
@p = Z (1 —_ )\0 + Z :: @LP + @24),
J=to J=lwol+1

where ¢y = j, (o), wy = w,, = (Tklovn)l/(%H) and [, = [r/e]e. Applying Lemma 3.5 yields

["Jo]
01, < (14+8) Y (1= X)) 67 +4r’r(1+2 ) wip®.
j=1

Similarly, through Lemma 3.4 we have
+8) Y, G +(1+eHrp
JZ[wol+1

Hence,
0, <(1+¢) @fo +(1+&") (nrwl +1) p2,
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where O} = Ej>l (1—X(5))2 02 Moreover, note that
sup max h2 < |ISIPp2 <rp2.
SEWl 1<j<p J.p
Moreover, Wf - Wr2 for any k£ > 2. From here and Lemma 3.6 we get
SSE% Z hip < r( gy + 3p_21{k22}) :
Moreover, in view of Condition Hy) we have
lim v2k/(2k+1) (p_ll{kzl} +w8p_2) =0.
n—oo
So,
lim sup U2k/(2k+1) sup @ < limsup ’U2k/(2k+1) sup ©F .
n—00 Sewk n—00 Sewk 0
To estimate the term @2‘0 we set
U, = o2M D sup (1 — Ay (7)) /a; 4
jZLo
where the sequence (a;),;>; is defined in (3.64). This leads to the inequality
sup U2k/<2k+1) @* <U, Z a; 92 <U,r.
Sew! i>1
Taking into account that lim,, , t, =r, we get
limsup U,, < 2k (T3, r)_%/(%“) ,
n—oo
where the coefficient 7, is given in (2.28). This implies immediately that
P/ (2k+1)
2k/(2k+1) o <
hg;s;ip Yn Sselgjk 0, < w2k (7, ) 2K/ (2R+1) (3.70)
Moreover, note that
. 2(m,r) /@) g2 r1/(2k+1)
kE (k 4 1)(2k‘ + 1) + 7T2k(7k)2k/(2k+1) )
So, applying (3.68) and (3.70), yields
lim ’U2k/(2k+1) sup sup Eg ||S/\ —S||2 < R;. (3.71)

n—00 Sewk QEQ

Furthermore, Lemma 3.2 yields that for any € > 0

sup R%(S),,S) < (1+8) sup sup Eq ISy, - SI2+ (1+&7"

Sewk Sewk QeQ
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So, in view of Condition Hjy), we derive the desired inequality

lim /@D sup R*(S, ,S) < Ry
n—oo SEWk 0
Hence the conclusion follows. O
For the adaptive estimation we use the model selection procedure (3.17) with the parameter
0 defined as a function of n satisfying

lim 6,=0 and lim n’ 9, =0 (3.72)

n—ao0 n—aoo

for any 6 > 0. For example, we can take §, = (6 4+ Inn)~!.

Theorem 3.5. Assume that Conditions H|)-Hjy) hold. Then the robust risk defined in (3.4)
through the distribution family (2.8) — (2.9) for the procedure (3.17) with the coefficients (2.28)
and the parameter 6 = 6,, satisfying (3.72) has the following asymptotic upper bound

lim sup Uik/(%ﬂ) sup R;(é\*,S) <r. (3.73)
n—00 Sewk

Theorem 3.4 and Theorem 3.5 imply the following result.

Corollary 3.2. Under the conditions of Theorem 3.5,

lim Uik/(2k+1) _inf  sup R:;(S'\n,S) =r,. (3.74)
nroo Sn€ll, Sewk
Remark 3.2. It is well known that the optimal (minimax) risk convergence rate for the Sobolev
ball WF is n?k/ k1) (see, for example, [47], [46]). We see here that the efficient robust rate is
vik/(%*l), i.e. if the distribution upper bound ¢* — 0 as n — oo we obtain a faster rate with
respect to n2k/(2k+1) "and if ¢* — 0o as n — oo we obtain a slower rate. In the case when ¢* is

constant the robust rate is the same as the classical non robuste convergence rate.

3.5 Simulations

In this section we report the results of a Monte Carlo experiment to assess the performance of
the proposed model selection procedure (3.17). In (3.1) we chose a 1-periodic function which
for 0 <t <1 is defined as
t—3 if $<t<3,
S(t) = (3.75)
else.

=

We simulate the model
dy, = S(t)dt +d¢; ,
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n R R.
20 0.0398 0.211
100 0.0091 0.0483
200 0.0067 0.0355
1000 0.0022 0.0116

Table 3.1: Empirical risks

where & = 0.5dwt+0.5dz,. Here z, is the semi-Markov process defined in (1.6) with a Gaussian
N(0,1) sequence (Y}),5; and (74)k>1 used in (1.7) taken as 7 ~ x3 .

We use the model selection procedure (3.17) with the weights (2.28) in which £* = 100 4
V/(In(n)), t; = i/In(n), m = [In*(n)] and § = (3 + In(n))~2. We define the empirical risk as

Zi: (8utty) - (tj))Q, (3.76)

’UM—‘

where the observation frequency p = 100001 and the expectations was taken as an average over

N = 10000 replications, i.e.

N
. 2 1 . 2
B($.()=50) =D (810 =50)) -
=1
We set the relative quadratic risk as

. 1
R.=R/[|IS|? and HSH?,:EZSz(tj). (3.77)

In our case ”SH;Q) = 0.1883601.
Table 3.1 gives the values for the sample risks (3.76) and (3.77) for different numbers of

observations n.

The Figures 3.1-3.4 show the behavior of the regression function and its estimates by the
model selection procedure (3.17) depending on the values of observation periods n. The black

full line is the regression function (3.75) and the red dotted line is the associated estimator.
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Figure 3.1: Estimator of S for n=20.

0.0

-0.5
1

-1.0

Figure 3.2: Estimator of S for n=100.
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Figure 3.3: Estimator of S for n=200.
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Figure 3.4: Estimator of S for n=1000.
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Remark 3.3. From numerical simulations of the procedure (3.17) with various observations
numbers n we may conclude that the quality of the proposed procedure is good for practical
needs, i.e. for reasonable (non large) number of observations. We can also add that the quality

of the estimation improves as the number of observations increases.

Now we give the algorithm of the model selection procedure given in Section 3.2
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data

Algorithm 2 Model selection procedure

Require: n,0<g<1land d >0
p : satisfying Condition H;) given in (3.35)
p1, p2, s*: satisfying Conditions (2.8) and (2.9)
k* > 1, e: satisfying Condition (2.26)
Output: The optimal weight vector A
{Step 1} Computation of the weights
m = [1/&?]
for i «— 1to [k*] do

for j «— [g] to [me] do

for kK +— 1ton do

Compute the wheight coefficients \; (k) using the formula (2.28)

end for
end for

end for

return: the vectors A = (Ao (1),..., A\a(n)),a € A={1,...,k*} x {g,...,me}
{Step 2} Computation of the Fourrier coefficients

for Kk +— 1ton do

gk,p - % f()n \Pk,p<t)dyt :
1
k,p n "

The observation (y;)o<;<, are given in (2.1) with the noise process (2.2) and (¥, ,)1<k<p

is the basis given in (3.5)

end for

~

return: the vectors 6 = (5171,,. 6, )and 6 = (gl,p,.

s Unp

{Step 3} The cost function
for i +— 1to [k*] do

for j «— [g] to [me] do

Ta(A) = S0 A2, (062, = 2507 X (18, + 6 P (V).

J

where the vectors A = (A j(1),..., A j(n)) are computed in Stepl, the vectors f and 6

are given in Step2 and P, is the penalty term given in (3.15)

end for

end for

~

return: \ = argmin, _, J,(\),A = {)\,, a € A}.
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Appendix

Property of the penalty term
Lemma 3.1. For anyn > 1 and A € A,
PO < Ry(S,, 8) + 19
n = QP n
where the coefficient PY()\) is defined in (3.21) and the L, o is defined in (3.38).

Proof. By the definition of Err()) in (3.10) one has

Brr(A ZZ( )18, + ", )

In view of Proposition 3.1 we obtain that

~ 1 & . L,
Ro(Sy,S) = Eg Err(A) > EZV(;)EQ@” > PO(\) — n’Q.
j=1

Hence we otain Lemma 3.1.

Properties of the Fourier coefficients

Lemma 3.2. Let f be an absolutely continuous function, f :[0,1] — R, with || f|| < co and g

be a simple function, g : [0,1] — R of the form g(t) = Z§:1 Cj X(t;_1,t;](t), where c; are some

constants. Then for any € > 0, the function A = f — g satisfies the following inequalities

la < a+aiai+a+e )l jape < s opap+ eI

Lemma 3.3. Let the function S(t) in (3.1) be absolutly continuous and have an absolutely

integrable derivative. Then the coefficients (0. ))1<j<p defined in (3.6) satisfy the inequalities

Jip

1011 < IS][x and 212;lénj’9j,p| <2v2||5]); - (3.78)

Lemma 3.4. For anyp > 2,1 <N <p andr >0, the coefficients (0, ,)1<;<, of functions S
from the class er satisfy, for any € > 0, the following inequality

Mws

07, < (148> 67 +(1+&rp2. (3.79)

j=N j=N
Lemma 3.5. For any p > 2 and v > 0, the coefficients (0;,)1<;<, of functions S from the
class er satisfy the following inequality

0. —0.]—2 ip 1) <0. 3.80
gl%xp sseuw% (’ e ]’ Ty )_ ( )
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Lemma 3.6. For any p > 2 and r > 0 the correction coefficients (hj p) for the functions
: P

1<5<
S from the class VVT2 satisfy the following inequality

p
sup Z hip < 3rp 2. (3.81)
Sew? i

Lemmas 3.2 — 3.6 are proven in [18].



Chapter 4

Non-parametric estimation for Lévy regres-

sion models

4.1 Introduction

Let us consider a regression model in continuous time with the Levy noise
dy, = S(t)dt+ed§,, 0<t<1, (4.1)

where S is an unknown function defined on R with values in R, (§;)g<;<; is some unobserved
noise and € > 0 is the noise intensity. The problem is to estimate the function S on the basis
of observations (y;)y<;<; when € — 0. In this chapter we consider the estimation problem in
the adaptive setting, i.e. when the regularity of S is unknown and we assume that the noise
(§4)o<i<1 1s a Lévy process with unknown distribution @ on the Skorokhod space D[0, 1]. We
know only that this distribution belongs to some distribution family Q_ specified below.

Note that if (;)g<;<; is the Brownian motion, then we obtain the well known “signal+white
noise” model (see, for example, [9], [47], [41]). It should be noted also that the model (4.1) is
very popular in the statistical radio-physics. This is the estimation problem of the signal S,
observed under the white noise, when the signal/noise ratio goes to infinity.

By making use of the robust estimation approach developed for nonparametric problems in
[36, 17, 18] we set the robust risk as

RI(S.,8) = sup Ry(S..9), (4.2)
QeQ’

where §6 is an estimate, i.e. any function of (y,)y<;<; and
3 a 2 2 b e
Ro(3..5) =Eqsl8. ~ SI? and S|P = [ S(t)dt.
0

The goal of this chapter is to develop the sharp model selection method for estimating
the unknown signal S. The interest in such statistical procedures can be explained by the
fact that they provide adaptive solutions for the nonparametric estimation through the sharp
non-asymptotic oracle inequalities which give non-asymptotic upper bound for the quadratic

risk including the minimal risk over chosen family of estimators with some coefficient closed to
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one (see, for example, [37] for discrete time and [18] for continuous time). The origin of the
model selection method goes back to early seventies with the pioneering papers by Akaike [30]
and Mallows [23] who suggested to use penalization in a log-likelihood type criterion. Barron,
Birgé, Massart [31], Massart [45] and Kneip [40] developed a non-asymptotic model selection
method which enables one to derive non-asymptotic oracle inequalities for the non-parametric
regression models with Gaussian disturbances. Unfortunately, these methods cannot be applied
to the non-Gaussian regression models, since the estimators of the Fourier coefficients in such
cases are not independent random variables. For these reasons, in order to estimate the function
in non-Gaussian regression models, we use the model selection method developed by [37, 38, 39]
for non-Gaussian heteroscedastic regression models in discrete time.

When constructing the sharp model selection procedures, in this chapter, we will use the
approach close to that of the papers [14], [15], [16], [18] developed for the estimation of a

1-periodic function in continuous time on a large time interval, i.e.
de, = S(t)dt +dn,, 0<t<n.

Note that, for any 0 < ¢ < 1, setting y, = n~1 Z;L:l(xtﬂ- — z;), we can represent this model

as a model with small parameter of the form (4.1)
dy, = S(t)dt +ed¢,,

where ¢ = n~1/2 and ¢, = n~1/? 2?21(777: +; —N¢)- The main difference between this model and

the original one is that the jumps are small, i.e.
A =0 Y2 =0() as e—0,

but we have not such property in the model (4.1). Therefore, unfortunately, we cannot use
directly the method developed for the estimation problem on the large time interval to the
model (4.1). So, the main goal of this paper is to develop a new sharp model selection method
for the estimation problem of the function S as € — 0.

As an application of the sharp model selection method in this chapter we consider the
problem of the detection of the number of signals for the model (4.1). In many areas of science
and technology the problem arise how to select the number degrees of freedom for a statistical
model that describes the phenomenons under study most adequately [30]. An important class
of such problems is the detection problem of the number of signals with unknown parameters in
the noise. For example, in the signal multi-path information transmission there is a detection
problem of the number of rays in a multipath channel. This problem is often reduced to the
detection of the number of signals. As a result, effective algorithms for the detection of the
number of signals can significantly improve the noise immunity in the data transmission over a
multipath channel [34, 42, 33, 48, 50, 49, 51]. In all this chapter the problem of the detection
of the number of signals are considered only for observation with white noise. In this chapter

we consider this problem for non-Gaussian noise with jumps given by (4.3).
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4.2 Transformation of the observations

In this chapter the noise process (gt)OStSI is defined by the following Lévy process

& =o01wp+ 002 and 2=z (u— ). (4.3)

Here, o; and g, are some constants, (w;);> is a standard Brownian motion, u(dsdz) is the
jump measure with the deterministic compensator pi(dsdz) = dsII(dx), II(-) is some positive

measure on R (see, for example [10, 6] for details).
M(z?) =1 and M(z?) < . (4.4)

Note that II(R) may be equal to +00. In the sequel we will denote by @ the distribution of the
process (§;)o<¢<1 in the Skorokhod space DI0, 1] and by Q7 we denote all these distributions

for which the parameters p; and g, satisfy the condition
_ 2 2 *
xo=0,+05 <, (4.5)
where the bound g;k is such that for any 5>0

liminf e %¢* >0 and lim & ¢* = 0. (4.6)
e—0 e—0

First of all, we need to eliminate the large jumps in the observations (4.1), i.e. we transform

this model as

Ue=v— Y, Aylgay sa) - (4.7)
0<s<t

The parameter @ = @, > 0 will be chosen later. So, we obtain that
dg, = S(t)dt + ed€, — e 0, TI(h,) dt (4.8)

where
§=ow +0%5 and Z=h_x(u—f),.

The functions h.(z) = xlg, <z, and ho(z) = 21455,y where the truncated threshold is
defined by a, =@/ os¢.

Let (¢;);>1 be an orthonormal basis in Ly [0, 1] with ¢; = 1. We assume that this basis is
uniformly bounded, i.e. for some constant ¢* > 1, which may be depend on & > 0,

sup  sup [¢;(t)] < ¢" < oo, (4.9)
0<j<n 0<t<1

where n = n_ = [1/£%] and [z] denotes the integer part of z. For example, we can take the

trigonometric basis defined in (1.15)
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Moreover, note that for any function f : [0, 1] — R from L, [0, 1], the integrals

t t
L(f) = s)d nd L(f) = s)dé 4.10
A(f) /Of()fs and I,(f) /Of()ﬁs (4.10)
are well defined with EI,(f) = 0, EL(f) =0,

EI}(f) = #qlIfIlf and EI}(f) = q|IfI, (4.11)

where | f||7 = fg f?(s)ds, o = 0% + 03 and g = 07 + 0311(h?). In the sequel we denote by

t 1
(f.9) = /0 f(s)g(s)ds and (f.g) = /0 £(5)g(s) ds

To estimate the function S we use the following Fourier series

S() =3 6;0,(1), (4.12)
j=1
where

1
0, = (S,6,) = / S()6, (1)t

These coefficients can be estimated in the following way. First we estimate as

1
b= / ¢1(t)dy, = 0; + €&
0

and, for j > 2,
1
0. = / d)j(t)dgt‘ (4.13)
0
Taking into account here that for any j the integral fol ¢;(t)dt = 0 we obtain from (4.8) that
these Fourier coefficients can be represented as

Setting fl = £, we obtain that for any j > 1,

~ ~

Now, according to the model selection approach developed in [17] - [18] we need to define

for any u € R™ the following functions

3
3

B, . (u) = Z u;s; and By (u) = u]Ej, (4.15)

<
<
<

where ¢; = E ( j)2 — 3¢ and Ej = (fj)z —E( j)2'



4.2 Transformation of the observations 77

Proposition 4.1. The following upper bound holds.

sup !Blﬁ(u)} <. (4.16)
u€e(0,1]™

Proof. Taking into account that ¢ = 34 — 3¢5 < g and ¢; = 0 for j > 2 we immediately
have the upper bound (4.16). O

Now let us recall the Novikov inequalities, [44], also referred to as the Bichteler—Jacod
inequalities, see ([32, 43]), providing bounds of the moments of the supremum of purely dis-

continuous local martingales for p > 2,

Bsuplg + (1 —v),l” < O} (B (1ol « 1) + B (gl « 1)) . (4.17)

where C’; is some positive constant.
Now, for any u € R™ we set

n

lu|? = Zu and  #(u) = Zl{uﬁéo}. (4.18)

7=1

Proposition 4.2. For any fized truncated model parameter a > 0 and for any vector u € R"

with |u| <1, we have
a\?2 N
E ‘32 ‘ < Ug + 65 ( ) 4 (u) (6°)*, (4.19)
where Uy = 24%622 + 603 I (z4).

Proof. First note that
B (u) <28 +2B; _(u), (4.20)

where v’ = (0, uy, ..., u,) € R™. It should be noted that
E& <E¢ <8(oiEwl + oEz!) =8 (30] + 0|E2)) .

To study the last term in the right hand side of the inequality (4.20) we set for any function
f from L,]0, 1]
L(f) = I}(f) =EL(f).
Note that for j > 2 we define the random variables EJ = E((ﬁj). So,

By the Ito’s formula we can write that for any function f from L,[0, 1]

AL(f) = 2L,_(f) F(t)AI,(f) + 0} £3(t) diny,
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where 1, = h? % (u — [1),. So, taking into account that
Al (f) = o1 dw, + 05 d%

we obtain that
So, setting

we obtain that
dD, = 20, V, dw, + 20, V,_ d%, + 03 ¥, dri, .

So, we obtain that

1
D? <120} (/ thwt>
0

¢
Mt:/ V,_(u)dz,.
0

Moreover, taking into account that for any f, g from L,[0, 1]

2 1 2
+ 1205 M? + 305 </ v, dmt> : (4.21)
0

where

E1,(f) I,(9) = 5 /0 £(s)g(s) ds

we get

1 n 1 3 3 n 1 2
2/ EV7?dt =2 Z U; U / 0;i(t)o;(t) EL(¢;) I,(¢;) At = 3¢ Zuf < P2(t) dt> .
0 0 . 0

1,J=2

Thus,
2

1
2E (/ v;dwt> < .
0

Now, to estimate the second term in the inequality (4.21) note that in view of the inequality
(4.17) for any bounded function f and any 0 <t <1

EI}(f) <80 E (/Ot f(s)olws>4 +80, E (/Ot f(S—)d5t>4

1 1 2 1
< 240! /O F(H)dt + O <<H(h§) /0 f2(t)dt> L TI(hY) /O f4(t)dt>,

i.e.

sup Eff(f) < 00.
0<t<1
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Now it is easy to see that through the Holder’s inequality the term V, can be estimated as

sup EVt4 < 00.
0<t<1

From here and the inequality (4.17) it follows that

1
sup EM! < C; ((H(hg))2 + H(hg)) / EV!dt < oo
0<t<1 0

and, therefore,

1 1 1/2
/ EM2V2dt < sup (EN)Y? </ E{/;‘*dt) < .
0 0<t<1 0

This implies that
1
E / M, dM,=0.
0

Thus, the Ito’s formula implies

1
2EM; =E ) (AM,)* =201(R2) / E V2dt < T1(h?) 5,
0<t<1 0

In the same way we calculate

1 2
QgE </ \Ijtdmt> = QSE Z
0

0<t<1
! 4
= o2T1(nY) / vidt < (afe)? (¢%)" #(u).
0
So, we obtain that
E D} < 60} 52y + 305 (2?) (252 + (¢°)") < 65 + 305(¢")".

Similarly we obtain that
E& < 65, + 30, (") .

This implies the upper bound (4.19). O

4.3 Model selection

We estimate the function S(z) for x € [0, 1] by the weighted least squares estimator

Z X(5)0; b, (4.22)
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where n = [1/¢?], the weights A = (A\(j));<;<, belong to some finite set A from [0,1]", 5375 is
defined in (4.13) and ¢; in (4.9) . Now we set

I=+#(A) and |A|, = = max 1 L, >0} (4.23)
‘]_

where #(A) is the cardinal number of A. In the sequel we assume that |A|, > 1. Now we chose

the truncating parameter @, as

9
a. = 4.24
e ‘1&’* ( ? )

To choose a weight sequence A in the set A we use the empirical quadratic risk, defined as

Erro(A) =[ Sy — S |I%,

which in our case is equal to
Err.(\ Z)\Q : 22)\ )0, . J+202 (4.25)

Since the Fourier coefficients (6),- are unknown, we replace the terms «9 0; by

0, =02 — % (4.26)

2,€ J,€ €

where 3, is a some estimate for the variance parameter s from (4.11). If it is known we set

~

#. = ¥ if not this estimator will be prescribed later.

Finally, to choose the weights we will minimize the following cost function
Z)\Q : —22)\ )0, .+ P.(\), (4.27)
where & > 0 is some threshold which will be specified later and the penalty term

P,

(A) =2 A7 and AP =) A2, (4.28)

Note that, if the s is known, then the penalty is defined as

P.(\) =% 55| A1 (4.29)

£

We define the model selection procedure as

~ ~

S. =35, (4.30)

where
A= argmin, -, J.(A). (4.31)
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We recall that the set A is finite so A exists. In the case when \ is not unique we take one of
them.

Now, we specify the weight coefficients (A(j));<;<,- Consider a numerical grid of the form
A={1,.. K"} x{l1,...,lm}, (4.32)

where
l;=tw and m=[1/w].
We assume that both the parameters k* > 1 and 0 < @ < 1 are functions of ¢, i.e.k™ = £’
and w = w,_, such that

*

. * . e _
lim,_,y kI = o0, lim__ m_o,

(4.33)
lim, ,yw. =0 and lim,_, e %w, = +oo,
for any § > 0. One can take, for example, for 0 < e <1
w, and kI =k ++/|Inel, (4.34)

- |Inel
where kj > 0 is some fixed constant and the threshold ¢! is introduced in (4.5). For each

a=(B,1) € A, we introduce the weight sequence

Aa = (Aali))i<j<ps

where p = [¢72]

M) = Liyasy + (1= (/wa)’) 1 <z - (4.35)
Here j, = j.(a) = [w,/|In¢l], w, = (dg lv, )1/ @A+1)

(B+1)25+1)

v 203

= 2/¢*. and dg =

€ £

(4.36)

Now we define the set A as
A={)\,,acA}. (4.37)
Note, that these weight coefficients are used in [17, 18] for continuous time regression models
to show the asymptotic efficiency.
In the sequel we need to estimate the variance parameter sz, from (4.11). To this end we
set for any 0 < e < 1/\/§
n
zo= Y, T, n=[1/, (4.38)
j=[1/e]+1

where '/I\‘j’E are the estimators of the Fourrier coefficients with respect to the trigonometric basis

(1.15) , ie.

1



82 Non-parametric estimation for Lévy regression models

Remark 4.1. Note that similar sharp oracle inequalities were obtained before in the papers
[37] and [17] for the nonparametric regression models in the discrete and continuous time
respectively. In this chapter we obtain these inequalities for the model selection procedures
based on any arbitrary orthogonal basis function. We use the trigonometric function only to

estimate the noise intensity .

4.4 Oracle inequality

First we set the following constant which will be used to describe the rest term in the oracle
inequalities. We set
4U, i

Vo =81 +1)+ o

, (4.40)

where
_op2 41704 - (x4
U, = 2435, + 60, I(27) + 632 (¢7)".

We start with the sharp oracle inequalities.

Theorem 4.1. Assume that for the model (4.1) the condition (4.4) holds. Then, for any
0 < d < 1/6, the estimator of S given in (4.30) satisfies the following oracle inequality

~ 14+30 . ol Q\PQ2+12‘A|*ES|2€_%Q|
e 0) < ) : . 4.41

Proof. First, note that we can rewrite the empirical squared error in (4.25) as follows

Err:(A) = J.(A) +2 ) A0, + [I1S]” = 5P-(N), (4.42)

j=1
where 9}-75 = gj’e — Hjé\j’e. Now using the definition of 53’,5 in (4.26) we obtain that
0}-75 = 59j§j + 52&;,5 + €2<j’5 + sz(kQ —.),

where ¢; . = E( Vj76)2 — 3¢ and Ej = (Ej)2 - E(fj)2. Setting

M(N) =£> A§)0;¢; and L) = A(j), (4.43)

j=1 j=1

we can rewrite (4.42) as

Errc(A) = Jo(A) + 26° (3 — 32.) L(A) + 2M_()) + 2¢B; (A)

+ 2 «/PE()\)B“\/&A) +|19]12 = 6P-(N), (4.44)
Q
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where uy, = A/|)[, the exact penalization is defined in (4.29) and the functions B; (-) and
By .(+) are defined in (4.15). It should be noted that for the truncated parameter (4.24) the
bound (4.19) implies

. (aN? «
sup B [B3,(u)] < U + 63 (2) 141, (6)* = Ui, (4.45)
S

Where ULQ = UQ + 6%@ (¢*)4
Let Ao = (Mo(j))1<j<n be a fixed sequence in A and X be as in (4.31). Substituting A\g and
X in Equation (4.44), we obtain

Err. (A) — Err.(Ao) = J(A) — J(Ao) + 262 (52, — #2.) L(w)

+262B, (@) + 2M,(w)

[~ By (u) B, ()
2 P.()\ : — 2e/ P.(\g) —=—=
+2¢ e( ) JV{Q € 5( 0) \/%

— 6P.(A) + 6P.( o), (4.46)

where @ = \ — Aos U = ug and ug = u, . Note that by (4.23)

L(w)] < LX) + LX) < 2[4,

The inequality
2|ab| < §a® 4 6 1b? (4.47)

implies that for any A € A
B, _(u B2 (u
2 PE(A)i‘ 24 DI SP.(\) + 5272’*1( N,
From the bound (4.16) it follows that for 0 < § < 1

*

. B
Err.(\) < Err.(Ao) 4 2M_(w) + 2525& +2e% 57,
7,
Q

+ 2[5 — s (A + [Xof? + 4|AL,) + 26P-(Xo) ,

where B = sup, B;n(u/\). It should be noted that through (4.45) we can estimate this
term as
Eg B, <Y EgBj (u) <ilq. (4.48)
AEA
Taking into account that sup, ., IA]2 < |Al,, we can rewrite the previous bound as

*

~ B
Errs(\) < Erre(A\o) + 2M_ (w) + 252% + 2¢2 %0
i,
Q

+

6eZ|Al, .
1L B |7z — kQ| + 20P- (o). (4.49)
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To estimate the second term in the right hand side of this inequality we introduce

n

S, = Zv(j)9j¢j, v = (U(j))1§j§n eER".
j=1

Moreover, note that

M2 () < 203(1) € + 2, (®),
where ®(t) = Z?:Q v(j)0;9;(t). Therefore, thanks to (4.11) we obtain that for any non-random
veR?

EM?(v) < 2%Q52ZU )07 = 2559 |S, |7 (4.50)

To estimate this function for a random vector we set

M2
M* — Sup (U)

% and A=A ).
° ven, E2lISI1P ' ’

So, through the inequality (4.47)

M*
2| M_(v)] géHSUH?JraQTE (4.51)
It is clear that the last term here can be estimated as
EM <) BM W) D g =251, (4.52)
SO 5 RIS
vEA, vEA
where v = #(A). Moreover, note that, for any v € Ay,
15,112 = IS, [1* = ZU <2|M( A,

where v? = (Uz(j))lgjgn. Taking into account that, for any € Ay, the components |v(j)| <1

, we can estimate the last term as in (4.50), i.e
2,2 2~ 2
E MZ(v") < 2754 [|S,[]7-

Similarly, setting
M7 _ = sup M
< pens E2lIS[1P
we obtain
E, Ml*:e < 2xagli. (4.53)

In the same way we find that

*

M, (02)] < 318, | + —%
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and, for any 0 < § < 1,
5 2
AL

ST tsa—e)

18,112

So, from (4.51) we get
O[S, |2 | S (MI+ M)
2M < C ’
W) =375 5(1—9)

Therefore, taking into account that ||§w||2 <2 (Erra(X) + Err.(\o)), the term M_(w) can be

estimated as

~

25(Err-(\) + Err.(Ag))  &2(MZ + M)

2M <
(@) = 1= T TS —9)
Using this bound in (4.49) we obtain
2 * * 2 Dx*
~ 144 e (M> + M7 ) 2e°B;5 .
Err, < E : :
(A S g B (o) + 5 Taa s 38)
2% 525 62|, 20

|52 — 5] + == P-(Mo)-

1-35 ' (1—36) (1—36)

Moreover, for 0 < § < 1/6 we can rewrite this inequality as

) 2e*(M*+ M;_) 4e°B;_
E - )\ ) )
o (Ao) + ; + 5xq

~ 1
Err,(\) < 1
+4e” 3 + 1267 |A], |32 — 5¢5| + 46 P.(Xo) -

Using here the bounds (4.48), (4.52), (4.53) we obtain that

. 146~ 8e2iepl  4e*U, ol
R(3.,5) < T oR(Sy,, 8) + —— 2+ — AL

5 552
26

+ 4% g + 1262 |A|Eq |52 — 5| + 135 P.(\o) -

Now, Lemma 4.1 implies directly the inequality (4.1). Hence we get the desired result. |

Corollary 4.1. Assume that for the model (4.1) the condition (4.4) holds. If the variance
parameter 3 is known, then for any 0 < 6 < 1/6, the estimator of S given in (4.30), with the
truncated parameter a = ¢/+/|A|, satisfying the following oracle inequality

1+36
1-36

min R, (S S)+52% (4.54)
AEA QL2 ' ’

Ro(Ss,S) < 5

We need to study the estimate (4.38).
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Proposition 4.3. Assume that in the model (4.1) the unknown function S is continuously
differentiable. Then, for any 0 < e < 1/v/3

(e
AL

Eq |7 — 50| < eTo(S) + (4.55)

where Y (S) = 4(||S|| + 1)? (1 +\/Fg + 25 + \/UQ).

Proof. We use here the same method as in [14]. First, note that from the definitions (4.14)
and (4.39) we obtain

where 1 1
Tj_/o S(t) Tr;(t)dt and ﬁj—/o Tr; (t) dg; -

So, we have

Zo= Y, TI42M 4+ > (1), (4.57)
j=[1/e]+1 j=[1/el+1
where M. = ¢ 2?2[1 Je+1 T, 1;. Note that for continiously differentiable functions (see, for

example, Lemma A.6 in [14]) the Fourrier coefficients (T;) for any n > 1 satisfy the following
inequality

o0 1 2

S TP (/ |S(t)|dt> < 42|92 (4.58)
j=[1/e+1 0

The term M, can be estimated in the same way as in (4.50), i.e.

n
2 s 2 2 35 1182
Eq M? <3ge” ) T2 <49,
j=[1/e]+1
Moreover, taking into account that for j > 2 the expectation E (17j)2 = ; we can represent
the last term in (4.57) as

n

e > (m)? =esg(n—[1/e]) +e By (),
J=[1/e]+1

where the function B, (2') is defined in (4.15) and @ = €l ;< /2y. We remind that

n = [1/&%). Therefore, in view of Proposition 4.2 we obtain

n 6,
E, |2 Z 77]2._;2@ <23 +e,/Ug + !A|Q'
j=l/1/e)+1 *

So, we obtain the bound (4.55). O
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It is clear that in the case when |A|, < 1/e we obtain that

To(S) + /6

Eq |2 — 7| < w

(4.59)
Now using this proposition we can obtain the following inequality.

Theorem 4.2. Assume that for the model (4.1) the condition (4.4) holds and the unknown
function S is continuously differentiable. Then the procedure (4.30) with |A|, < 1/e, for any
0 < d < 1/6, satisfies the following oracle inequality

14+36 . o
min R (S, )

R (S,,S) <
Q< ’ >_1—35>\6A

+e? Vo + (ISI+1)%91.0 + 920
5 bl

910 =48 (14 [rg + 225 +[Ug)  and gy =12, f65.

Now we study the robust risk defined in (4.2) for the procedure (4.30).

(4.60)

where

We assume also that the upper bound for the basis functions in (4.9) may be dependent on
n>1,ie. ¢, = ¢,(n), such that for any € > 0

im 2 g (4.61)

n—o00 ne

Theorem 4.3. Assume that for the model (4.1) Condition (4.4) holds and the unknown
function S is continuously differentiable. Then the robust risk of the procedure (4.30) with
IAl, < 1/e, for any 0 < 6 < 1/6, satisfy the following oracle inequality

G130 U(S)
* < * € )
RZ(S«,S) < 35 I/\nelile(S)\,S) +e 5 (4.62)

where the term UX(S) > 0 is such that under the conditions (4.61) and (4.33) for any r > 0
and § > 0

lim £ sup U:(S) =0. (4.63)

=0 g)<r
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4.5 Adaptive robust efficiency

Now we study the asymptotically efficiency properties for the procedure (4.30) with the coef-
ficients (4.35) with respect to the robust risks (4.12) defined by the distribution family (4.5)
— (4.6). To this end we assume that the unknown function (4.12) belongs to the following
ellipsoid in Ly,

={S € L,[0,1] Z a; 07 <r}, (4.64)

k . 23
where a; = >°" (27[5/2])"".
It is easy to see that in the case when the functions (¢;),;>; are trigonometric (1.15), then

this set coincides with the Sobolev ball

Wh={(fe CE[0,1] an |2 <}, (4.65)

where r > 0 and k > 1 are some parameters, CI;ET,[O, 1] is the set of k times continuously

differentiable functions f : [0,1] — R such that f@(0) = f@(1) for all 0 < i < k. Similarly to
[17, 18] we will show here that the asymptotic sharp lower bound for the robust risk (4.12) is

given by
2%k/(2k+1
1(r) = ((2k 4 1)r)Y/CF+D R\
* (k+1)m

Note that this is the well-known Pinsker’s constant obtained for the non-adaptive filtration

(4.66)

problem in “signal + small white noise” model (see, for example, [47]).
Let S, be the set of all estimators §€ measurable with respect to the o-algebra o{y,, 0 <
t < 1} generated by the process (4.1).

Theorem 4.4. For the distribution family (4.5) — (4.6), the robust risks admit the following
lower bound

lim inf U?k/(%ﬂ) inf  sup 72:(@.,5) > 1. (r), (4.67)
=0 SEESS SGI/VI]_C
where v, = 5_2/<*.

£

We set the parameter 0 in (4.27) as a function of ¢, i.e. § =4, is such that

lim 6, =0 and lim e %5 =0 (4.68)

e—0 e—0 €

for any 6 > 0. For example, we can take §_ = (6 4 |Ine|)~"

Theorem 4.5. Assume that Conditions (4.33) hold. Then the model selection procedure admits
the following asymptotic upper bound

limsup v/ @+ sup R*(S,,S) <1,(r). (4.69)
e—0 SeWk
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Theorem 4.4 and Theorem 4.5 imply the following result

Corollary 4.2. Under the conditions of Theorem 4.5, we have

lim v?/@HD inf - sup RX(S., S) = 1,(r). (4.70)
e—0 Ssess SEVVI{c

Remark 4.2. It is well known that the optimal (minimax) risk convergence rate for the Sobolev
ball WF is e~ 4/(k+1) (see, for example, [47] ). We see here that the efficient robust rate is

vgk/(%ﬂ), i.e. if the distribution upper bound ¢* — 0 as n — oo we obtain a faster rate with

—4k/(2k+1)

respect to e , and if ¢¥ — oo as ¢ — 0 we obtain a slower rate. In the case when ¢ is

constant the robust rate is the same as the classical non robust convergence rate.

4.5.1 Lower bound

Firstly, note, that for any fixed Q € QF

sup R:(gg,S)Z sup RQ(§6,S). (4.71)
Sewk Sewk

Now for any fixed 0 < ¥ < 1 we set
k+1 .
d=d_ = [kvg/(%ﬂ) l*(ro)} and ro=(1—79)r. (4.72)

Using this definition we introduce the parametric family (5,),cga as
d
S.(z) =) z6). (4.73)
j=1

To define the bayesian risk we choose a prior distribution on R? as

k= (Kj)i1<j<qg and K; =s;7n;, (4.74)

where 7; are i.i.d. Gaussian N(0,1) random variables and the coefficients

s* d\*
5; = L and s* = () —1.
v J j

Denoting by p,, the distribution of the random variables (#;);<;<4 on R¢ we introduce the

bayes risk as

~ ~

Ro(8) = /R R(8,5.) ) (4.75)

Furthermore, for any function f, we denote by p(f) its projection in L,[0, 1] onto Wf, ie.

If —p(f)l = it [If —hl.
hew}
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Since Wf is a convex and closed set in L,[0, 1], this projector exists and is unique for any

function f € Ly[0, 1] and, moreover,
2 2 k
|f = hlI" = [[p(f) = &l|* for any he W,

So, setting p = p(§), we obtain that

sup R(S’\, S) >

/ B B~ S 1e(d2).
Sewk {zeR?: S, eWF}

Taking into account now that ||p||> < r we obtain

sup RQ(S S) > RQ( ) —2A, (4.76)
Sewk

and

a-| (4 15.1%) g (d2).
{zGRd:Szél/Vf}

Therefore, in view of (4.71)

sup R*(Sa,5)> sup RQ( ) —2A,. (4.77)
Sewk QeQ!

As to the last term in this inequality, in Appendix we show that for any 6 > 0
lim e * A, =0. (4.78)
e—0

Now it is easy to see that

d
IIﬁ—SZHQZZ Z; = %)

where 2; = fo p(t) ¢;(t)dt. So, in view of Lemma 4.2 and reminding that v, = e72/¢r we
obtain
d 1
sup Rg(P) > sup —5
QGQ* 0<g?§<5* j=1 6_2 Ql + vs (S;)_l
d *
Ly S is (1
* k
Ve o 5 +1 v, = d;

Therefore, using now Definition (4.72), Inequality (4.77) and the limit (4.78), we obtain that

2k N
liminf inf v2* sup RI(S.,8) > (1— "y)ﬁ l,(r).
n—o00 SGH SGer

Taking here the limit as ¥ — 0 implies the desired result . O
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4.5.2 Upper bound
Known smoothness

First we suppose that the parameters £ > 1, r > 0 in (4.65) and ¢’ in (4.5) are known. Let the
family of admissible weighted least square estimates (Sy) sen be given by (4.37). Consider the
pair

a=(k,7) and 7=wlr/w|,

where ¢, = @’ and w satisfy the conditions in (4.33). Denote the corresponding estimate as

~ ~

S=8; and A=);. (4.79)
Note that for sufficiently small € the pair & belongs to the set (4.32).

Theorem 4.6. The estimator S admits the following asymptotic upper bound

lim sup U2k/(2k+1) sup R’ (S,9) <1,(r). (4.80)
e—0 Sewk

Proof. Substituting (4.14) and taking into account the definition (4.79) one gets

o

IS = SI7 = (1= A())* 67 — 201, +522>\2 2,

j=1 7j=1

where M. = ¢ doieg (1 = M) AG) 0; éj. Note now that for any @ € QF the expectation
Egs M. = 0 and, in view of the upper bound (4.12),

sup EQSZ)\Q ég i

QGQ* j=1
Therefore,
- 00 . 1 o .
RI(S,8) < Y (1=A(H)% 65 + o X0, (4.81)
j=i j=1

where j, = j,(&). Setting

= (v.)*"/ ) sup (1 - A(5))?/ay,
iz,

Ue

we obtain that for each S € Wf

T, .(5) = 2k/ 2k-+1) Z 6’2 < u, Z a; (92 < wu.r.
_.7* J ]*
Tazking into account that ¥ — r, we obtain that
p1/(2k+1)

limsup sup Y;_(5) < =177,
e=0  Sewk 1e(5) w2k (d),)2k/ (kD) !
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where the coefficient 7, is given in (4.35). To estimate the last term in the right hand of (4.81),

we set
1 =2
_ N2(5
Yoo = (0,) 1/ @+ Z A7) -
€ j=1
It is easy to check that

‘ 2(rdk)1/(2k+1) k2
1 T, < = .
P P2 = T D2k + 1) 2

Therefore, taking into account that, by the definition of the Pinsker’s constant in (4.66), Y7 +

T3 =1.(r), we arrive at the inequality

lim v?*/@F) sup R*(S,S) < 1,(r).

e—0 Sewk
Hence we obtain the desired result. O
Unknown smoothness
Combining Theorem 4.6 and Theorem 4.3 yields Theorem 4.5. O

4.6 Detection of the number of signals

In this section we consider the estimation problem for the number of signals in the multi-
path connexion channel. In the framework of the statistical radio-physics models we study
the telecommunication system in which we observe in the multi-path channel the summarized

signal with the noise on the time interval [0, 1],
q
ytzzej¢j(t)+nta 0<t<1,
j=1

where (n,);>o is some noise, usually this “white noise”. The energetic parameters (6;);>;
and the number of the signals ¢ are unknown and the signals ((;S]) j>1 are known orthonormal

functions, i.e.
1
/ bu() 6,1 dt =1y,
0

The problem is to estimate ¢, when the signal/noise ratio goes to infinity. To describe this
problem in the framework of the mathematical model we use the following stochastic differential

equation

q
dy, = [ D 0;¢;(t) | dt + edw,, (4.82)
j=1
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where (w;),> is the standard Brownian motion and the parameter ¢ goes to zero. This means
tha the signal/noise ratio goes to infinity. The logarithm of the likelihood ratio for the model
(4.82) can be represented as

q

1 o ! 1
lnLEZEQZGj/ 6,0y, — 55 >, 05
j=1 70

j=1

If we will try to construct the maximum likelihood estimators for (6,),<;<, and ¢ then we

obtain that
1 9y 1 2
b= g 2 () o0
]:

Therefore, the maximum likelihood estimate for ¢ = ¢*. So, if ¢* = oo we obtain that ¢ = co.
So, this estimator does not work. For these reasons we propose to study the estimation problem
for g for the process (4.82) in the nonparametric setting and to apply the model selection
procedure (4.30). To this end we consider the model (4.1) with the unknown function S
defined as

S(t)y=>Y_0;¢;(t). (4.83)

d
Sa(x) = 0;.6,(x). (4.84)

This estimate can be obtained from (4.22) with the weights \;(j) = x{j < d}. The number of
estimators ¢ is some function of ¢, i.e. ¢« = ¢, such that

lim ¢, =oco and lim % =0 (4.85)
e—0 e—0

for any & > 0. As a risk for the signals number we use
D.(d,q) = R(5,,5). (4.86)
where the risk R;‘(:S’\ ,S) is defined in (4.2) and d is some integer number (maybe random) from

the set {1,...,¢}. In this case the cost function (4.27) has the following form.

d
J(d) =02 -2>" 0, +3P.()). (4.87)

Jj=1 Jj=1

So, for this problem the LSE model selection procedure is defined as

q. = argmin, _,_ J_(d). (4.88)
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Note that Theorem 4.3 implies that the robust risks of the procedure (4.30) with |A], < 1/e,
for any 0 < 0 < 1/6, satisfy the following oracle inequality

1 U*(S
+30 min Ds(d,q)—l—e2 :(5)

1 — 36 1<d<. 5 (4.89)

D.(q., q) <

where the last term satisfies the property (3.37).

4.7 Simulation

In this section we report the results of a Monte Carlo experiment to assess the performance of

the proposed model selection procedure (4.30). In (4.1) we chose
J
t) = —— 0;(t 4.
S =30 5500, (4.90)

with ¢;(t) = v2sin(2nl;t), I; = [/j]j. We simulate the model
dy, = S(t)dt + edw, .

The frequency of observations per period equals p = 100000. We use the weight sequence

as proposed in Galtchouk and Pergamenshchikov (2009) for a discrete-time model : k* =

100 + /|Ing| and m = [|Ine|?].

We calculated the empirical quadratic risk defined as

R= zp: B (5.0) - S(tj))2 7
j=1

S

and the relative quadratic risk
R, =R/|IS]3.

The expectation is taken as an average over N = 10000 replications, i.e.
N
~ 2 1 ~ 2
E(S.()-50) =~ > (Sl -50)) -
=1

We used the cost function with

=
(34 |Ineg|)?
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5 R R.
1/4/20 0.0158 0.307
1/4/100 0.0113 0.059
1/4/200 0.0076 0.04
1/4/1000 0.0035 0.0185

Table 4.1: Empirical risks

In the following graphics the dashed line is the model selection procedure (4.30), the con-

tinuous line is the function (4.90) and the bold line is the corresponding observations (4.1).
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: Estimator of S for ¢ = 1/4/20

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2: Estimator of S for ¢ = 1/4/100
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Figure 4.4: Estimator of S for £ = 1/+/1000
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=N
v}

€ 0
1/v/20
1/+/100
1/+/200 9
1/4/1000 10

O[3

Table 4.2: Estimation of the number of signals

To estimate the number of signals ¢ we use two procedures. The first g is (4.89) with

v = [Ine~2]. The second §, is defined through the shrinkage approach for the model selection
procedure (4.90),

g =inf{j >1:10;| <cl}, cl=ey/[logel.

Remark 4.3. Tt should be noted that the LSE procedure (4.89) is more appropriate than the
shrinkage method for such a number detection problem.

Now we give the algorithm of the model selection procedure given in Section 4.3
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Algorithm 3 Model selection procedure

Require: ¢ >0,0<g<land § >0
p1, p2, .+ satisfying Conditions (4.5) and (4.6)
k* > 1, w: satisfying Condition (4.33)
Output: The optimal weight vector A
{Step 1} Computation of the weights
n=[1/e%, m=[1/w]
for i +— 1to [k*] do

for j «— [w] to [mw] do

for k +— 1ton do
Compute the wheight coefficients \; ;(k) using the formula (4.35)
end for
end for
end for
return: the vectors A = (A\y(1),..., A\a(n)),a € A={1,...,k*} x {w,...,mw}
{Step 2} Computation of the Fourrier coefficients

for k +— 1ton do
O = Jy ox(1)d 7, .
gk’g — %’8 — &2,
The observation ()<<, are given in (4.7) and (@), is the basis given in (4.9)
end for
return: the vectors f = (51,57 ...,(9\”’6) and 6 = (51,5, N
{Step 3} The cost function

for i «— 1to [k*] do

for j «— [w] to [mw] do
Je(N) = X A2, (082 = 2507 Xij (D8, + 5 P.(N). )
where the vectors A = (\; (1), ..., A j(n)) are computed in Stepl, the vectors 6 and 6
are given in Step2 and P, is the penalty term given in (4.29)
end for
end for

~

return: A = argmin,_, J-(A),A = {)\,, a € A}.
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Appendix

Property of the penalty term

Lemma 4.1. Assume that Proposition 4.1 holds. Then for anyn > 1 and A € A,
P.(A) < R(8), 8) +&% 5,

where the coefficient P.(\) is defined in (4.43).

Proof. By the definition of Err.(\) one has

Err.(\) = Z - 1)0; +&2\(j )fj)z .
7j=1
Through Proposition 4.1 it is easy to see that
n
EQErre(\) > 2> N()Eq (§)° = P(N) — %5 .

j=1

Hence we obtain the desired result. O

Proof of the limit equality (4.78)

First, setting ¢, = Zd k2 a;, we obtain that

j=1 "5 7>
{Scgwi} = >}

Moreover, note that one can check directly that

hmEC —hm—ZSj a;=t=(1-9)r.

e—=0 U,

So, for sufficiently small ¢ we obtain that

{SﬁgéWf} C {Eg>r1},

<o X 1 —d ~ ~ .
where r; =r¥/2, ({ = —E( =v! ijl s;a;n; and 1); = 77]2 — 1 Through the correlation
inequality (see, Proposition A.1 in [35]) we can get that for any p > 2

d p/2
~ P
EX < (2p) Bl [ o |3 ()22 = 0(ur 7).
j=1
as € — 0. Therefore, for any 6 > 0 using the Chebychev inequality for p > (4k + 2)d we obtain
that
viP(Za >r;) =0 as €—0.

Hence we obtain the equality (4.78). O
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The absolute continuity of distributions for Lévy processes

In this section we study the absolute continuity for Lévy processes defined as

dy: = S(t)dt +d&, 0<t<T, (491)

where S is any arbitrary non-random square integrated function, i.e. from L,[0,7] and
(§1)o<t<r 18 a Lévy process of the form (4.3) with nonzero constants o; and g,. We denote by
P, and P, the distributions of the processes (y;)o<;<1 and (§;)o<;<; on the Skorokhod space
DI[0,T]. Now for any 0 <t < T and (;)y<;<p from DI[0,T] we set

T, (z) = eXp{ /0 t S;;‘) dat — /0 t S;()?) du} , (4.92)

1

where (27)y<;<7 is the continuous part of the process (z;)q<;<7 in D[0,T], i.e.

t
T =1z, — / / v (pp(ds,dv) — II(dv)ds)
0 R
and, for any ¢ > 0 and any measurable I" from R\ {0},
M:v([()?t]ar) = Z 1{A:vs€g21‘} :
0<s<t
Now we study the measures P, and P, in D[0,T7.

Proposition 4.4. For any T > 0, the measure P, < P, in D[0,T] and the Radon-Nikodym

derivative 1s

P,
ap, )= Tr()-

Proof. Note that to show this proposition it suffices to check that forany 0 =¢t; < ... <t, =T
any b e Rfor1<j<n

E exp {ZZ bj(yt]. - ytjl)} =E exp {Z ij(gtj - 5tj1)} Tr(8)-
=1 =1

Taking into account that the processes (y,)o<;< and (§;)o<¢<r have independent homogeneous

increments, one needs to check only that foranybe Rand 0 < s <t < T

1:(6)

E exp {Z b(yt - ys)} =E exp {Z b(ft - és)} T (6) :

(4.93)

To check this equality, note that the process

is a Gaussian martingale. From here we directly obtain Equation (4.93). O
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The van Trees inequality for Lévy processes

In this section we consider the following continuous time parametric regression model
dy; = S(t, Q)dt +d&, 0<t<1, (494)

where S(t,0) = Z?Zl 0, ¢;(t) with the unknown parameters § = (6,,...,0;)" and the process
(§¢)o<t<1 is defined in (4.3). Note now that according to Proposition 4.4 the distribution
P, of the process (4.94) is absolutely continuous with respect to the P, on DI0, 1] and the

corresponding Radon-Nikodym derivative is

_dPy, LS(t,0) ., 1 S2(t,0)
Se.0) = Rt —exp{/o B - /0 2Q%dt} , (4.95)

where x = (7;)<;<r is an arbitrary function from DI0, 1].

Let ® be a prior density on R? having the following form:
d
P(0) = @(b1,...,04) = H Soj(ej),
j=1

where ¢, is some continuously differentiable density in R. Moreover, let g(0) be a continuously
differentiable function defined on R? with values in R such that, for each 1 < j < d,

lim g(6),(6,) =0 and / ()] B(0) df < o0, (4.96)
6] —o00 RE J
where da(0)
/ _og

For any B(X) x B(R?)— measurable integrable function H = H(x,#), we denote

EH = / H(x,0)dP, ®(0)do

R
:/ / H(z,0) f(z,0) ®(0)dP¢(x) do,
Rd Jyx
where X = D|0, 1].

Lemma 4.2. For any FY = o{y;,0 < t < 1}-measurable square integrable function g and for

any 1 < j <d, the following inequality holds

- A?
E(g—g(0)” > - :
;)20 + 1
where .
A —/ ¢ (0)D(0)d0 and T —/ 7 4.
/ R J / R ‘Pj(z) '
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Proof. First of all, note that the density (4.95) of the process £ is bounded with respect to
0; € R and, for any 1 < j <d,

limsup f(£,6) = 0. a.s.

\9j|ﬁoo

Now, we set
9 (f (x,0)2(0))/09;
[z, 0)2(0)

Taking into account the condition (4.96) and integrating by parts yield

B(&-s0)%;) = [ @)~ 50) 55 (S 0#(0) d0P(a)

:/XXRM </R g/(0) f(z,0)® > (Hd@) P,(dz) = A, .

i#]
Now by the Cauchy’s inequality we obtain the following lower bound for the quadratic risk

_ A2
E(@ —g(6))? > =L .
(g g())_m?

To study the denominator in the left handside of this inequality note that, in view of the

1 af y, /
= t)d
91 T/f Wy -

reprentation (4.95),

f(y.0)
Therefore, for each 6 € RY,
0 =
[y, 0) 09,
and )
1 9f(y,0) 1 2 2
E -

Taking into account that

~ 1 Of(z,0) 1 0®(9)
(I)j_f(a:,é) 90, +<I>(9) 20,

we get
Bp2 2
BYS = 5wl + 1.
1

Hence we got the desired result. O
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Chapter 5

Renewal theory

5.1 Renewal density
This section is concerned with results related to the renewal measure (1.8).

Theorem 5.1. (Goldie’s theorem)
Let i be a probability law on R with finite second moment and positive first moment m, such

that 1(8) < oo for some 3 > 0. Suppose that n is spread out, so for some ng we have
77(no) = (1—68)¢o + 0,

where § € [0, 1] is constant and ¢g, ¢1 are probability measures with ¢g absolutely continuous.
Suppose that B has been taken so small that 5(]31(6) < 1. Suppose that 11() # 1 on the line
$0 = —pB. Then the renewal measure v := Z]o.io n(") may be written v = vy + v, where vy
is a finite measure such that 7 (B) < 0o, and vy is absolutlely continuous with a continuous
bounded density p(.) such that

1 1 - df
p(t) = — — / e”gtil — + o(e*m), t — oo.

m 27 —1(0)
Here C' is a simple closed contour in the domain D := {0 : —ﬂ < §0 < 0}, enclosing all
the zeroes of 1 — 7 in D, 7(0) = [ e?n(dt) and 7(0) = [, e"n

The proof of this Theorem is given in [8]

Now we need to adapt this result to our framwork. We start with the following lemma.

Lemma 5.1. Let 7 be a positive random variable with a density g, such that EeP™ < oo for
some 3 > 0. Then there exists a constant 51, 0 < By < B for which,

Eell1+t)7 £ 1wy eR.

Proof. We will show this lemma by the contradiction, i.e. we assume that there exist some

sequence of positive numbers going to zero (7;),>1 and a sequence (wy),>1 such that

B Hiwr)™ — 1 (5.1)
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for any k > 1. Firstly, assume that limsup, , = w; = +oo. Note that in this case, for any
N >1,

/ON ekt cos(wkt)g(t)dt‘ <

| " cos(uy) o

+

N
/ (€7 — 1) cos(wyt) g(t)dt' ,
0
i.e., in view of Lemma 5.2, for any fixed N > 1

N
lim sup/ ™! cos(wyt) g(t)dt = 0.
0

k—o0
Since for some 8 > 0 the integral f0+oo Pt g(t)dt < oo, we get
+oo

lim et cos(wyt) g(t)dt = 0.

k—o00 0

Let now assume that limsup, , w;, =w,, # 0 and 0 < |w,| < co. In this case there exists a

sequence (li);>; such that lim,_,  w, =w,, i.e.

1 = limsup Ee"" cos(tw;, ) = E cos(Tw,,) .
k—o00

It is clear that, for random variables having density, the last equality is possible if and only if

Ws, = 0. In this case, i.e. when limsup, , w; =0, the equation (5.1) implies
. o7 TSin(Twl )
limsupEe’s" ——* =E71=0.
k—00 wy,
But, under our conditions, E7 > 0. These contradictions imply the desired result. O

Proposition 5.1. Let 7 be a positive random variable with the distribution n having a density
g which satisfies Conditions H;)-H,). Then the renewal measure (1.8) is absolutely continuous

with density p, for which
1
plx) = p +Y(z), (5.2)

where T = Bty and Y(-) is some function defined on R, with values in R such that

sup 27 |Y(z)| < oo forall v>0.
x>0

Proof. First, note that we can represent the renewal measure 7 as 17 = 7*7, and n, = Z;io nt.

It is clear that in this case the density p of 77 can be written as

plx) = /x glz—y) > g™ (y)dy. (5.3)

0 n>0
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Now we use the arguments proposed in the proof of Lemma 9.5 from [8]. For any 0 < e < 1

we set
¢ n (n) (1 — 6)
pl)= | gle—y) | Y_(1="g"(y) = ——0(v) | dy —g(x), (5.4)
0 n>0

where go(y) = e*Ey/fl{wO}. It is easy to deduce that for any z € R
: 1 [*
i p() = pla) = 3 [ gl2)dz— gla). (55)
e—0 T Jo

Moreover, in view of the condition H;) we obtain that the function p, () satisfies the condition

D) from Section 5.2. So, through Proposition 5.3 we get
1 Cinh o~
plat) 4 pla) =+ [ 0 a0)0,
R
where p_(0) = fR e p (x)dz. Note that

/ e g(z)dx
R

i.e. for any 0 < e < 1 we have |(1 —€)g(0)| < 1 and therefore

9(0)] =

< /R g(z)dz =1,

o0

1

nz:;)(l —€)"(9(0)" = W
From this and, taking into account that
Go(0) = | €%%gy(x)dz = T ,
n(0) = [ Pgoan = g
we obtain
. > . 1—€\ o .
P6) =30 Y (1 - "GO - (F5) 30 - 56)
n=0
—GOG0) wd C0) = T i

ple=) + pilat) = /R e~ G(0)G, (6) do. (5.6)

One can check directly that

sup  |G.(0)] < oo.
0<e<1,0eR

Therefore, using the condition H3) and the Lebesgue’s dominated convergence theorem, we

can pass to limit as e — 0 in (5.6), i.e., we obtain that

) 4 pa=) = 5 [T o)z oo —ge) = - [ G016, 0) 0.

s
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where
B 1 i 1—476
1-3(9) i70

Using here again Proposition 5.3 we deduce that

Go(0)

2 [* 1 - .
x z—) == 2)dz+— [ e 0G(0)G(9)do :
pen) oo =2 [ gtz [ e g060) (57)
and . .
O =150 "o

Note now that we can represent the density (5.3) as

px)=gxY g™ =" g"@)=g@)+> g™ () = g(x)+ p.(2)

n>0 n>1 n>2

and the function p.(z) is continuous for all z € R. This means that

sy Pat) bple) o get) foleo)

2 P 2
and, therefore, the condition H,) implies that, for any v > 0,

sup =7 |p(z)] < oo.
x>0

Now we can rewrite (5.7) as

p(z) =

S| =

T 1 o . _

/ o(2)dz + o / =10 G(0)C(0) df — j(). (5.8)
0 T Jr

Taking into account that Ee’” < oo for some > 0 we can obtain that

+o0
sup z” / g(z)dz < 0.

To study the second term in (5.8) we will use Proposition 5.2. Indeed, Condition Hj) implies
the first limit equality in (5.10). The second one follows directly from Lemma 5.2. Therefore,
in view of Proposition 5.2, there exists some $* > 0 such that, for any 0 < 3, < %,

/ e~ G(0)G(0) df = e Po® / TG0 — ifio)G(8 — ifly) A6 .
R R

Note that, due to Lemma 5.1, the function 1—g(#) has no zeros on the line {z € C : Im(z) = —f, }.
Moreover, one can check directly that § = 0 is an isolated zero. So, this means that for any
N > 1 there can be only finitely many zeros in {z € C : —f; <Im(z) <0, |Re(z)| < N} of
the function 1 — g(#). Moreover, note that in view of lemma 5.2 for any r > 0

lim g(0) =0.
Re(6)— oo,/ Im(0)|<r 900)
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This means that there exists N > 0 such that the function 1—g(0) # Oforf € {z € C: —3; < Im(z)
< 0, |Re(z)] > N}. So, there can be only finitely many zeros of the function 1 — g(6) in
{ze C: —B; <Im(z) <0} for some fixed 0 < B; < . Therefore, there exists some 5, > 0
for which the function 1 — g(f) has no zeros in {z € C : —f, < Im(z) < 0}, i.e. the function
G(#) will be bounded in this set and we obtain that

sup eo®

x>0

/ e 0 G(0)G(0) df| < co.
R

Thus the conclusion follows. O

Using this proposition we can study the renewal process (N;);»( introduced in (1.7).

Corollary 5.1. Assume that Conditions H,)-H,) hold true. Then, for anyt > 0,
EN, <|p|,t and EN} < |p|.t+ |pf2t*. (5.9)

Proof. First, by means of Proposition 5.1, note that we get

t
EN, =E Z Y <y = / p(v)dv < |p|, t.
E>1 0

Regarding the last bound in (5.9), we use the same reasoning as in the previous inequality, i.e.,

we obtain
2 _
EN/=E) lgren+2B) U<y D Yrey
k>1 k>1 j=k+1
t
=EN, +2E Z Lir, <i O(T;) = EN, +/ O(v) p(v)dv,
k>1 0
where, for 0 < v <, we defined the function O(v) = EN,_, <|p|.(t —v). a

5.2 Properties of the Fourier transform

Theorem 5.2. Cauchy (1825)
Let U be a simply connected open subset of C, let g : U — C be a holomorphic function,
and let v be a rectifiable path in U whose start point is equal to its end point. Then

é g(z)dz =0.

Proposition 5.2. Let g : C — C be a holomorphic function inU = {z € C : —f; < Imz < (35}
for some By >0 and By > 0. Assume that, for any —p; <t <0,

/ lg(0+it)|df < oo and lim g(6+it) =0. (5.10)
R

|| =00
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Then, for any x € R and for any 0 < B < By,

/ e g(0) df = e_ﬁx/ e q(0 — ip) de. (5.11)
R

R

Proof. First note that the conditions of this theorem imply that

N .
/ewxg(H) df = lim % g(0)de.
R N—oo J_ N

We fix now 0 < 8 < f; and we set for any N > 1

y={2€C:=-N<Rez<N,Imz=0}U{z€C:—-N <Imz <N, Rez= N}

U{zeC:—-N<Rez< N,Imz=—-p}U{z€C:—-3<Imz<0,Rez=—-N}.

Now, in view of Theorem 5.2, we obtain that for any N > 1

. N B8 ‘
% pRER g(z)dz _ / ezeocg(e) d6 + / el(N-i-zt)xg(N + it) dt
g -N 0

—-N 0
- / e T (B 4 0)d + / e NFNT (N 4 it)dt = 0. (5.12)
N -B

Conditions (5.10) provide that

B o .
lim e WNFNT (N 4 it)dt = lim HNF TGN ity dt = 0.
N—o0 0 N—o00 -8

Therefore, letting N — oo in (5.12) we obtain (5.11). Hence we get the desired result. O

The following technical lemma is also needed.

Lemma 5.2. Let g : [a,b] — R be a function from Ly[a,b]. Then, for any fized —co < a < b <

+o00,
b b

lim g(z) sin(Nz)de =0 and lim g(z) cos(Nx)dz =0. (5.13)

N—o0 a N—oo a

Proof. Let first —co < a < b < +00. Assume that ¢ is continuously differentiable, i.e.

g € Cl[a,b]. Then integrating by parts gives us

b b
/ g(z) sin(Nzx)dx = % (g(b) sin(Nb) — g(a) sin(Na) —/ g (%) cos(Nz) dm) .
So, from this we obtain that

’ a a —a)maxX, . .« "(x
/ o(z) sin(Nz) da| < lg(a)] + lg( )H(bN ) max, <, <p |9 (2)]
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This implies the first limit in (5.13) for this case. The second one is obtained similarly. Let
now g be any absolutely integrated function on [a,b], i.e. g € L[a,b]. In this case there exists

a sequence g,, € C'[a, b] such that

b
lim [ |g(@) — g, (@)ldz = 0.

n—o0 a

Therefore, taking into account that for any n > 1

b
lim g, (x) sin(Nz)de =0,

N—oc0 a

we obtain that ,

b
limsup | [ g(x) sin(Nz)dz| < / lg(x) — g, (x)|dx .

n—00 a
So, letting in this inequality n — oo we obtain the first limit in (5.13) and, similarly, we
obtain the second one. Let now b = 400 and a = —oo. In this case we obtain that for any
—o00o<a<b<+oo
+00
< / g(z) sin(Nzx)dz
—00

‘ /_ j o(z) sin(Nz)dz 4 /b @) lda

+ /_io lg(z) |dz .

Using here the previous results we obtain that for any —co < a < b < +00

</ @l [ ot .

—00

lim sup
N—oo

/;OO g(z) sin(Nz)dx

Passing here to limit as b — 400 and @ — —oo we obtain the first limit in (5.13). Similarly,

we can obtain the second one. O

Let us now study the inverse Fourier transform. To this end, we need the following local
Dini condition.
D) Assume that, for some fized x € R, there exist the finite limits
g(z—) = lim g(z) and g(z+)= lim g(2)

2—T— z—x+

and there exists 6 = §(x) > 0 for which

dt < oo.

/5 lg(z +1) + g(x — t) — g(a+) — g(z—))|
/
0
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Proposition 5.3. Let g : R — R be a function from Ly (R). If, for some x € R, this function
satisfies the condition D, then

g(z+) + g(xz—) = 71T/R e~07G(0) db, (5.14)

g9(0) = /R e g(t) dt

Proof. First, for any fixed NV > 0 we set

where

N N
Iy(z) = & / e_wxﬁ(@)d9:% /R o(2) /0 cos(0(z — x)) dfdz,

27 J_N
ie.,
1 sin(N(z — )) 1 /°° sm(Nt)
J =— d = - t) det.
v = [ o™ = - [ o)+ 0)

Taking into account that for any N > 0 the integral
2 ™ sin(Nt
bl / sin(Nt) 4 4 (5.15)
T Jo t

and denoting B(z) = (g(z+) + g(z—))/2, we obtain that

JN(x)—B(x)—}T/OO Mdt and w(x,t) =g(z+1t)+g(x —1t) —2B(x).

0 t

Now we represent the last integral as

* w(x,t)sin(Nt
/ @z, 8) sn(VE) dt =I) x + I v — 2B(2)I3 v,
0

sin(N't) &t

4 o9 [eS)
t
Iy = / “(i’ ) sin(N)dt, Iy = / G(t) sin(Nt)dt, Iy = /
0 § é

and G(t) = (g(z+t)+g(x—1t))/t. Condition D and Lemma 5.2 imply directly the convergence
I y = 0as N — oo. Now note that, since g € L,(R), then the function G is absolutely
integrated. Therefore, in view of Lemma 5.2, I, ;y — 0 as N — co. As to the last integral we

use the property (5.15), i.e., the changing of the variables gives

o0

t

I3N:/ ML 50 as N - oo

! /
ON

Hence we have the desired result. O



Conclusion

The main purpose of this work is the non-parametric estimation for regression models in con-
tinuous time. First, we consider the problem of estimation an unknown fonction S on the basis
of continuous observations, we define the noise in this model through a semi-Markov process
which keeps the dependence for any duration n. So, we are in the case of dependent observa-
tions for which the dependence does not disapear for a sufficient large duration of observation.
Second, we consider the same model when the estimation is based on discrete data and we
obtain the sufficient conditions on the frequency observations under wich the robust effecient
is shown. In the third model we consider a Lévy non-parametric regression with noise intensity
and we estimate the unknown function .S in the case where the noise level goes to 0 and the
Lévy measure can go to infinity. In all of these models, we propose an adaptive model selection

for the robust risk.
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