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Résumé

Ce travail est consacré au problème d’estimation non paramétrique dans des modèles de re-

gression en temps continu. On considère le problème d’estimation d’une fonction inconnue S

supposée périodique. Cette estimation est basée sur des observations générées par un processus

stochastique; ces observations peuvent êtres en temps continu ou discret. Pour ce faire, nous

construisons une série d’estimateurs par projection et nous approchons la fonction inconnue

S par une série de Fourier finie. Dans cette thèse, nous considérons le problème d’estimation

dans le cadre adaptatif, c’est-à-dire le cas où la régularité de la fonction S est inconnue. Pour

ce problème, nous développons une nouvelle méthode d’adaptation basée sur la procédure de

sélection de modèle proposée par Konev et Pergamenshchikov (2012). Tout d’abord, cette

procédure nous donne une famille d’estimateurs; après nous choisissons le meilleur estimateur

possible en minimisant une fonction coût. Nous donnons également une inégalité d’Oracle pour

le risque de nos estimateurs et nous donnons la vitesse de convergence minimax.

Mots Clés : Estimation non asymptotique, sélection de modèle, inégalité d’Oracle pointue,

risque robuste , efficacitée asymptotique.
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Abstract

This thesis is devoted to the problem of non parametric estimation for continuous-time regres-

sion models. We consider the problem of estimating an unknown periodoc function S. This

estimation is based on observations generated by a stochastic process; these observations may

be in continuous or discrete time. To this end, we construct a series of estimators by projection

and thus we approximate the unknown function S by a finite Fourier series. In this thesis we

consider the estimation problem in the adaptive setting, i.e. in situation when the regularity

of the fonction S is unknown. In this way, we develop a new adaptive method based on the

model selection procedure proposed by Konev and Pergamenshchikov (2012). Firstly, this pro-

cedure give us a family of estimators, then we choose the best possible one by minimizing a

cost function. We give also an oracle inequality for the risk of our estimators and we give the

minimax convergence rate.

Key Words: Non asymptotic estimation, Robust risk, Model selection, Sharp oracle in-

equality, Assymptotic efficiency.
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Chapter 1

Introduction

The problem of non parametric estimation in regression models has an important role in theo-

rical and applied statistics. In this thesis, we consider regression models in continuous time of

the form

d yt = S(t)d t+ d ξt , 0 ≤ t ≤ n , (1.1)

where S is an unknown periodic function from L2[0, n], wich we want to estimate on the basis of

observations yt. This observations can be in continuous time or in discrete time. This problem

was considered in many frameworks, for example, in the framework of the “signal+white noise”

models (see, for example, [9] or [47]). Later, in order to study dependent observations in

continuous time, were introduced “signal+color noise” regressions based on Ornstein-Uhlenbeck

processes (cf. [11], [12], [13], [16]).

Moreover, to include jumps in such models, the papers [17] and [18] used non Gaussian

Ornstein-Uhlenbeck processes introduced in [4] for modeling the risky assets in the stochastic

volatility financial markets. Unfortunately, the dependence of the stable Ornstein-Uhlenbeck

type decreases with a geometric rate. So, asymptotically when the duration of observations

goes to infinity, we obtain very quickly the same “signal+white noise” model.

The main goal of this thesis is to develop the model (1.1) for the noise process with large

dependence. This allows us to consider the signal estimation problem for signals observed

with noises of complex structure “against-signal”. To achieve this goal, we use semi-Markov

processes to model the dependent noises, because it is well known that such processes keep the

dependence for a long time.

In our work we use the robust estimation approach introduced in [17] for such problems. To

this end, we denote by Q the distribution of (ξt)0≤t≤n in the Skorokhod space D[0, n]. We

assume that Q is unknown and belongs to some distribution family Qn wich will be specified

later. In this thesis we use the quadratic risk

RQ(S̃n, S) = EQ,S ‖S̃n − S‖2 , (1.2)

where ‖f‖2 =
∫ 1

0
f2(s)ds and EQ,S is the expectation with respect to the distribution PQ,S of

the process (1.1) corresponding to the noise distribution Q. Since the noise distribution Q is

unknown, it seems reasonable to introduce the robust risk of the form

R∗
n(S̃n, S) = sup

Q∈Qn

RQ(S̃n, S) , (1.3)
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which enables us to take into account the information that Q ∈ Qn and ensures the quality of

an estimate S̃n for all distributions in the family Qn.

In order to estimate the function S belonging to L2[0, n], one can consider a projection estimator

and thus approximate S by a finite Fourier series. Following Pinsker’s approach (1981), we use

the weighted least square estimators which provide efficient estimation, but, in order to obtain

efficient estimation, one needs to use regularity properties of the function S. Our approach is to

consider the estimation problem in the adaptive setting, i.e. in situation when the regularity of

the function S is unknown. In this way, we develop a new adaptive method based on the model

selection procedure proposed by Konev and Pergamenshchikov (2012). To show the efficiency,

one needs to obtain the corresponding sharp oracle inequality; note that this is a crucial tool

in order to be able to show the adaptive efficiency. The “sharp” oracle inequality means that

the upper bound for the risk has the coefficient of the main term close to one.

We recall that the main term is the minimal risk over the family of estimators that we consider.

To obtain the oracle inequality one needs to develop renewal theory for the model (1.1). In

our thesis we obtain a new asymptotic development for the renewal density. In fact, this result

is a version of Goldie’s theorem (1991). Unfortunately, we cannot use directly the Goldie’s

theorem, since in that result there is a singular component of the renewal distribution, which

makes the use of that result impossible for the estimation purposes. In our work we give

sufficient conditions for having an asymptotic development for the renewal density without a

singular component.

The effeciency of the estimator will be also proved. To this end, we assume that the unknown

function S in the model (1.1) belongs to the Sobolev ball

W k
r
= {f ∈ Ckper[0, 1] :

k∑

j=0

‖f (j)‖2 ≤ r} , (1.4)

where r > 0 and k ≥ 1 are some unknown parameters, Ckper[0, 1] is the set of k times continuously

differentiable functions f : [0, 1] → R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. Similarly

to [17, 18] we will show here that the asymptotic sharp lower bound for the robust risk (1.3) is

given by

r∗k = ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (1.5)

Note that this is the well-known Pinsker’s constant obtained for the nonadaptive filtration

problem in “signal + small white noise” model (see, for example, [47]), generated by the process

(1.1).

Main results of the thesis

In this thesis we study three types of regression models in continuous time, the observations

are generated mainly by a semi-Markov process and Lévy process. In this way, our model is



1.1 Semi-Markov process 5

capable to take into account “small” jumps, thanks to the Lévy process, as well as “big” jumps,

thanks to the semi-Markov process.

1.1 Semi-Markov process

In our work, we consider a pure jump process (zt)t≥ 0 as a semi-Markov process with the

following form

zt =

Nt∑

i=1

Yi, (1.6)

where (Yi)i≥ 1 is an i.i.d. sequence of random variables with

EYi = 0 , EY 2
i = 1 and EY 4

i <∞ .

Here Nt is a general counting process (see, for example, [22]) defined as

Nt =

∞∑

k=1

1{Tk≤t} and Tk =

k∑

l=1

τl , (1.7)

where (τl)l≥ 1 is an i.i.d. sequence of positive integrated random variables with distribution η

and mean τ̌ = E τ1 > 0. We assume that the processes (Nt)t≥0 and (Yi)i≥ 1 are independent.

Note that the process (zt)t≥ 0 is a special case of a semi-Markov process (see, e.g., [5] and

[20]). It should be noted that if τj are exponential random variables, then (Nt)t≥0 is a Poisson

process and, in this case, the process (ξt)t≥0 given in (1.14) is a Lévy process for which this

model has been studied in [14], [15] and [17]. But, in the general case when the process (1.6)

is not a Lévy process, this process has a memory and cannot be treated in the framework

of semi-martingales with independent increments. In this case, we need to develop new tools

based on renewal theory arguments, what we do in Chapter.5. This tools will be intensively

used in the proofs of our main results.

Let ρ be the density of the renewal measure η̌ defined as

η̌ =
∞∑

l=1

η(l) , (1.8)

where η(l) is the lth convolution power of η. To study this renewal measure we assume that

the measure η has a density g which satisfies the following conditions.

H1) Assume that, for any x ∈ R, there exist the finite limits

g(x−) = lim
z→x−

g(z) and g(x+) = lim
z→x+

g(z)
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and, for any K > 0, there exists δ = δ(K) > 0 for which

sup
|x|≤K

∫ δ

0

|g(x+ t) + g(x− t)− g(x+)− g(x−)|
t

dt < ∞.

H2) For any γ > 0,

sup
z≥0

zγ |2g(z)− g(z−)− g(z+)| < ∞.

H3) There exists β > 0 such that
∫
R
eβx g(x) dx <∞.

Remark 1.1. It should be noted that the condition H3) means that there exists an exponential

moment for the random variable (τj)j≥1, i.e. these random variables are not too large. This

is a natural constraint since these random variables define the intervals between jumps, i.e.,

the frequency of the jumps. So, to study the influence of the jumps in the model (1.13) one

needs to consider the noise process (1.14) with “small” interval between jumps or large jump

frequency.

For the next condition we need to introduce the Fourier transform of any function f from

L1(R), f : R→ R, defined as

f̂(θ) =
1

2π

∫

R

eiθx f(x) dx. (1.9)

H4) There exists t
∗ > 0 such that the function ĝ(θ−it) belongs to L1(R) for any 0 ≤ t ≤ t∗.

Remark 1.2. It is clear that Conditions H1)–H4) hold true for any continuously differentiable

function g, for example for the exponential density.

Proposition 1.1. Let τ be a positive random variable with the distribution η having a density

g which satisfies Conditions H1)–H4). Then the renewal measure (1.8) is absolutely continuous

with density ρ, for which

ρ(x) =
1

τ̌
+Υ(x) , (1.10)

where τ̌ = Eτ1 and Υ(·) is some function defined on R+ with values in R such that

sup
x≥0

xγ |Υ(x)| <∞ for all γ > 0 .

It should be noted that in view of this proposition, Conditions H1)–H4) imply

|ρ|∗ = sup
t≥0
|ρ(t)| <∞ and ‖Υ‖1 =

∫ +∞

0

|Υ(x)| dx <∞ (1.11)
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1.2 Lévy process

In this thesis we assume that the Lévy process Lt is defined as

Lt = ˇ̺wt +
√
1− ˇ̺2 Ľt , Ľt = x ∗ (µ− µ̃)t , (1.12)

where, 0 ≤ ˇ̺ ≤ 1 is an unknown constant, (wt)t≥ 0 is a standard Brownian motion, µ(ds, dx)

is the jump measure with the deterministic compensator µ̃(ds dx) = dsΠ(dx), where Π(·) is

some positive measure on R (see, for example, [10, 6] for details). In this thesis, we use the

usual notation

Π(|x|m) =

∫

R

|z|mΠ(dz) for any m > 0.

Note that Π(R) may be equal to +∞.

Remark 1.3. In this thesis, we assume that the processes (Nt)t≥0 and (Yi)i≥ 1 in (1.6) are

independent between them and are also independent of (Lt)t≥0.

1.3 Non-parametric estimation based on continuous data

We consider a regression model in continuous time

d yt = S(t)d t+ d ξt , 0 ≤ t ≤ n , (1.13)

where S is an unknown 1-periodic function from L2[0, 1] defined on R with values in R, the

noise process (ξt)t≥ 0 is defined as

ξt = ̺1Lt + ̺2zt , (1.14)

where ̺1 and ̺2 are unknown coefficients, the pure jump process (zt)t≥ 1 is the semi-Markov

process defined in (1.6) and (Lt)t≥ 0 is the Levy process defined in (1.12), for which we assume

that

Π(x2) = 1 and Π(x8) < ∞ .

The problem is to estimate the unknown function S in the model (1.13) on the basis of observa-

tions (yt)0≤t≤n. The main goal is to consider continuous time regression models with dependent

observations for which the dependence does not disappear for a sufficient large duration of ob-

servations. To this end we define the noise in the model through a semi-Markov process which

keeps the dependence for any duration n. This type of models allows, for example, to estimate

the signals observed under long impulse noise impact with a memory or “against signals”.

To estimate the function S we use here the model selection procedure for continuous time
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regression models from [17] based on the Fourrier expansion. We recall that for any function

S from L2[0, 1] we can write

S(t) =

∞∑

j=1

θj φj(t) and θj = (S, φj) =

∫ 1

0

S(t)φj(t)dt ,

where (φj)j≥ 1 is an orthonormal uniformly bounded basis in L2[0, 1], i.e., for some constant

φ∗ ≥ 1, which may be depend on n,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ .

We extend the functions φj(t) by periodicity, i.e., we set φj(t) := φj({t}), where {t} is the

fractional part of t ≥ 0. For example, we can take the trigonometric basis (Trj)j≥ 1 in L2[0, 1]

defined as Tr1 ≡ 1 and, for j ≥ 2,

Trj(x) =
√
2





cos(2π[j/2]x) for even j,

sin(2π[j/2]x) for odd j,

(1.15)

where [x] denotes the integer part of x.

Now, for obtaining efficient estimation one needs to use weighted least square estimators defined

as

Ŝλ(t) =
n∑

j=1

λ(j)θ̂j,nφj(t) ,

where the coefficients λ = (λ(j))1≤j≤n belong to some finite set Λ from [0, 1]n. In this thesis we

consider the adaptive case, i.e. we assume that the regularity of the function S is unknown. In

this case we chose the weight coefficients on the basis of the model selection procedure proposed

in [17] for the general semi-martingale regression model in continuous time.

Now, to choose a weight sequence λ in the set Λ we use the empirical quadratic risk, defined

as

Errn(λ) =‖ Ŝλ − S ‖2 .

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ . (1.16)

Now, in order to study the asymptotic effeciency for our procedure, we give the following oracle

inequality for the robust risk defined in (1.3) and through a specific distribution family.

Theorem 1.1. Assume that Conditions H1) – H4) hold and that the unknown function S is

continuously differentiable. Then, for any n ≥ 1 and 0 < δ < 1/6, the procedure (1.16) satisfy

the following oracle inequality

R∗(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
n(S)

nδ
,
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where the sequence U∗
n(S) > 0 is such that, under some conditions, for any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0.

It follows directly, by using the oracle inequality, that our procedure is efficient with the

efficient robust rate υ2k/(2k+1)
n with υn = n/ς∗(n) such that, for any ǫ̌ > 0,

lim
n→∞

ς∗(n)
nǫ̌

= 0 .

Corollary 1.1.

lim
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) = r∗k . (1.17)

We prove in this thesis that the robust minimax convergence rate may be faster or slower

than the classical one (n2k/(2k+1)) .

1.4 Non-parametric estimation based on discrete data

In this chapter we consider the regression model (1.13) with the noise (1.14). The problem is to

estimate the unknown function S in the case when continuous observation cannot be provided

and only discret time measurement are available, the observations are in the forme

(ytj )0≤j≤np, tj = j∆, ∆ =
1

p
,

where the integer p ≥ 1 is the observation frequency. We will use the trigonometric basis

defined in (1.15). By making use of this basis we consider the discrete Fourier transformation

of S

S(t) =

p∑

j=1

θj,pTrj(t), t ∈ {t1, ..., tp},

where the Fourier coefficients are defined by

θj,p = (S,Trj)p =
1

p

p∑

i=1

S(ti)Trj(ti).

Then, we estimate the function S by the weighted least squares estimator

Ŝλ(t) =
n∑

j=1

λ(j)θ̂j,pΨj,p(t) ,

where the weight vector λ = (λ(1), ....., λ(n)) belongs to some finite set Λ from [0, 1]n,

θ̂j,p =
1

n

∫ n

0

Ψj,p(t)d yt and Ψj,p(t) =

np∑

l=1

Trj(tl)1{tl−1<t≤tl} .
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In order to find a proper weight sequence λ in the set Λ one needs to specify a cost function.

When choosing an appropriate cost function one can use the following argument. Let us

consider the empirical squared error

Err(λ) = ‖Ŝλ − S‖2 .

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ . (1.18)

Now, To obtain the oracle inequality and to prove the effeciency of our procedure, we obtain

in this thesis the sufficient condition for the frequency observations p.

H5) We assume that there exists δ̌ > 0 such that for any n ≥ 3

p ≥ n5/6 .

Now, in order to study the asymptotic effeciency for our procedure, we give the following oracle

inequality for the robust risk defined in (1.3) and through a specific distribution family.

Theorem 1.2. Assume that Conditions H1) – H5) hold and that the unknown function S is

continuously differentiable. Then, for any n ≥ 1 and 0 < δ < 1/6, the procedure (1.18) satisfy

the following oracle inequality

R∗(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
n(S)

nδ
,

where the sequence U∗
n(S) > 0 is such that, under some conditions, for any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0.

1.5 Non-parametric estimation for Lévy regression models

We consider a regression model in continuous time with the Lévy noise

d yt = S(t)d t+ ε dξt , 0 ≤ t ≤ 1 , (1.19)

where S is an unknown function defined on R with values in R, (ξt)0≤t≤1 is a Lévy process and

ε > 0 is the noise intensity. The problem is to estimate the function S based on the continuous

observations (yt)0≤t≤1 when ε→ 0. We assume that

Π(x2) = 1 and Π(x4) < ∞ . (1.20)
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When constructing the sharp model selection procedures, in this model, we will use the ap-

proach close to that of the papers [14], [15], [16], [18] developed for the estimation of a 1-periodic

function in continuous time on a large time interval, i.e.

dxt = S(t)dt+ dηt , 0 ≤ t ≤ n .

Note that, for any 0 < t < 1, setting yt = n−1
∑n

j=1
(xt+j − xj), we can represent this model

as a model with small parameter of form (1.19)

dyt = S(t)dt+ ε dξt ,

where ε = n−1/2 and ξt = n−1/2
∑n

j=1
(ηt+j − ηt). The main difference between this model and

the original one is that the jumps are small, i.e.

∆ξt = O(n−1/2) = O(ε) as ε→ 0 ,

but we have not such property in the model (1.19). Therefore, unfortunately, we cannot use

directly the method developed for the estimation problem on the large time interval to the

model (1.19). So, the main goal of this chapter is to develop a new sharp model selection

method for the estimation problem of the function S as ε→ 0. Let (φj)j≥ 1 be an orthonormal

basis in L2[0, 1] with φ1 ≡ 1. We assume that this basis is uniformly bounded, i.e. for some

constant φ∗ ≥ 1, which may depend on ε > 0,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ ,

where n = nε = [1/ε2] and [x] denotes the integer part of x. To estimate the function S we use

the following Fourier series

S(t) =
∑

j≥1

θj φj(t). ,

Then, we can estimate the function S(x) for x ∈ [0, 1] by the weighted least squares estimator

Ŝλ(x) =
n∑

j=1

λ(j)θ̂j,εφj(x) ,

where n = [1/ε2], the weights λ = (λ(j))1≤j≤n belong to some finite set Λ from [0, 1]n. To

choose a weight sequence λ in the set Λ we use the empirical quadratic risk, defined as

Errε(λ) =‖ Ŝλ − S ‖2 .

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ . (1.21)
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Theorem 1.3. Assume that for the model (1.19) the condition (1.20) holds and the unknown

function S is continuously differentiable. Then, for any 0 < δ < 1/6, the procedure (1.21)

satisfy the following oracle inequality

R∗
ε(Ŝ∗, S) ≤

1 + 3δ

1− 3δ
min
λ∈Λ
R∗

ε(Ŝλ, S) + ε2
U∗

ε(S)

δ
, (1.22)

where the term U∗
ε(S) > 0 is such that under some conditions, for any r > 0 and δ̌ > 0

lim
ε→0

εδ̌ sup
‖Ṡ‖≤r

U∗
ε(S) = 0 . (1.23)

As an application of the sharp model selection method in this thesis, we consider the

estimation problem for the number of signals in the multi-path connexion channel. In the

framework of the statistical radio - physics models we study the telecommunication system in

which we observe in the multi-path channel the summarized signal with the noise on the time

interval [0, 1],

yt =

q∑

j=1

θjφj(t) + nt , 0 ≤ t ≤ 1 ,

where (nt)t≥0 is some noise, usually this “white noise”. The energetic parameters (θj)j≥1

and the number of the signals q are unknown and the signals (φj)j≥1 are known orthonormal

functions, i.e. ∫ 1

0

φi(t)φj(t) dt = 1{i 6=j} .

The problem is to estimate q, when the signal noise ratio goes to infinity. To describe this

problem in the framework of the mathematical model we use the following stochastic differential

equation

dyt =




q∑

j=1

θjφj(t)


 dt+ εdwt , (1.24)

where (wt)t≥0 is the standard Brownian motion and the parameter ε goes to zero. This means

that the ratio signal/noise goes to infinity. The logarithm of the likelihood ratio for the model

(1.24) can be represented as

lnLε =
1

ε2

q∑

j=1

θj

∫ 1

0

φj(t)dyt −
1

2ε2

q∑

j=1

θ2j .

If we will try to construct the maximum likelihood estimators for (θj)1≤j≤q and q then we

obtain that

max
1≤q≤q

∗

max
θj

lnLε =
1

2ε2

q
∗∑

j=1

(∫ 1

0

φj(t)dyt

)2

.

Therefore, the maximum likelihood estimate for q̂ = q∗. So, if q∗ =∞ we obtain that q̂ =∞.

So, this estimator does not work. For this reason we propose to study the estimation problem
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for q for the process (1.24) in the nonparametric setting and to apply the model selection

procedure (1.21).
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Chapter 2

Non-parametric estimation for semi-Markov

regression models based on continuous data

2.1 Introduction

Let us consider a regression model in continuous time

d yt = S(t)d t+ d ξt , 0 ≤ t ≤ n , (2.1)

where S is an unknown 1-periodic function from L2[0, 1] defined on R with values in R, the

noise process (ξt)t≥ 0 is defined as

ξt = ̺1Lt + ̺2zt , (2.2)

where ̺1 and ̺2 are unknown coefficients, the pure jump process (zt)t≥ 1 is the semi-Markov

process defined in (1.6) and (Lt)t≥ 0 is the Lévy process defined in (1.12), for which we assume

that

Π(x2) = 1 and Π(x8) < ∞ . (2.3)

The problem is to estimate the unknown function S in the model (2.1) on the basis of

observations (yt)0≤t≤n. Firstly, this problem was considered in the framework of the “sig-

nal+white noise” models (see, for example, [9] or [47]). Later, in order to study dependent

observations in continuous time, were introduced “signal+color noise” regressions based on

Ornstein-Uhlenbeck processes (cf. [11], [12], [13], [16]).

Moreover, to include jumps in such models, the papers [17] and [18] used non Gaussian

Ornstein-Uhlenbeck processes introduced in [4] for modeling of the risky assets in the stochastic

volatility financial markets. Unfortunately, the dependence of the stable Ornstein-Uhlenbeck

type decreases with a geometric rate. So, asymptotically when the duration of observations

goes to infinity, we obtain very quickly the same “signal+white noise” model.

The main goal of this chapter is to consider continuous time regression models with depen-

dent observations for which the dependence does not disappear for a sufficient large duration of

observations. To this end, we define the noise in the model (2.1) through a semi-Markov pro-

cess which keeps the dependence for any duration n. This type of models allows, for example,

to estimate the signals observed under long impulse noise impact with a memory or “against

signals”.
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In this chapter we use the robust estimation approach introduced in [17] for such problems.

To this end, we denote by Q the distribution of (ξt)0≤t≤n in the Skorokhod space D[0, n]. We

assume that Q is unknown and belongs to some distribution family Qn specified in Section 2.2.

In this chapter we use the quadratic risk

RQ(S̃n, S) = EQ,S ‖S̃n − S‖2 , (2.4)

where ‖f‖2 =
∫ 1

0
f2(s)ds and EQ,S is the expectation with respect to the distribution PQ,S of

the process (2.1) corresponding to the noise distribution Q. Since the noise distribution Q is

unknown, it seems reasonable to introduce the robust risk of the form

R∗
n(S̃n, S) = sup

Q∈Qn

RQ(S̃n, S) , (2.5)

which enables us to take into account the information that Q ∈ Qn and ensures the quality of

an estimate S̃n for all distributions in the family Qn.

To summarize, the goal of this chapter is to develop robust efficient model selection meth-

ods for the model (2.1) with the semi-Markov noise having unknown distribution, based on the

approach proposed by Konev and Pergamenshchikov in [17] and [18] for continuous time regres-

sion models with semi-martingale noises. Unfortunately, we cannot use directly this method

for semi-Markov regression models, since their tool essentially uses the fact that the Ornstein-

Uhlenbeck dependence decreases with geometrical rate and the “white noise” case is obtained

sufficiently quickly.

Thus in the thesis we propose new analytical tools based on renewal methods to obtain the

sharp non-asymptotic oracle inequalities. As a consequence, we obtain the robust efficiency for

the proposed model selection procedures in the adaptive setting.

2.2 Model selection

Note that for any function f from L2[0, n], f : [0, n]→ R, for the noise process (ξt)t≥ 0 defined

in (2.2), with (zt)t≥ 0 given in (1.6), the integral

In(f) =

∫ n

0

f(s)dξs (2.6)

is well defined with EQ In(f) = 0. Moreover, as it is shown in Lemma 2.2,

EQ I
2
n(f) ≤ κQ

∫ n

0

f2(s)d s , (2.7)

where κQ = ̺21 + ̺22 |ρ|∗ and |ρ|∗ = supt≥0 |ρ(t)| <∞. Let us define the family of the noise dis-

tributions for the model (2.1) which is used in the robust risk (2.5). Note that any distribution

Q from Qn is defined by the unknown parameters in (2.2) and (1.12). We assume that

σQ = ̺21 + ̺22/τ̌ ≤ ς∗, (2.8)
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where the unknown bounds ς∗ are functions of n, i.e. ς∗ = ς∗(n), such that for any ǫ̌ > 0,

lim
n→∞

nǫ̌ ς∗(n) = +∞ and lim
n→∞

ς∗(n)
nǫ̌

= 0 . (2.9)

Remark 2.1. As we will see later, the parameter σQ is the limit of the Fourier transform of the

noise process (2.2). Such limit is called variance proxy (see [17]).

Remark 2.2. Note that, generally (but it is not necessary) the parameters ̺1 and ̺2 can be

dependent on n. The conditions (2.9) mean that we consider all possible cases, i.e. these

parameters may go to infinity or be constant or go to zero as well. See, for example, the

conditions (3.32) in [18].

Now, let (φj)j≥ 1 be an orthonormal uniformly bounded basis in L2[0, 1], i.e., for some

constant φ∗ ≥ 1, which may depend on n,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ . (2.10)

We extend the functions φj(t) by periodicity, i.e., we set φj(t) := φj({t}), where {t} is the

fractional part of t ≥ 0. For example, we can take the trigonometric basis defined in (1.15).

To estimate the function S we use here the model selection procedure for continuous time

regression models from [17], based on the Fourrier expansion. We recall that, for any function

S from L2[0, 1], we can write

S(t) =
∞∑

j=1

θj φj(t) and θj = (S, φj) =

∫ 1

0

S(t)φj(t)dt . (2.11)

So, to estimate the function S it suffices to estimate the coefficients θj and to replace them

in this representation by their estimators. Using the fact that the function S and φj are 1 -

periodic, we can write that

θj =
1

n

∫ n

0

φj(t)S(t)dt .

If we replace here the differential S(t)dt by the stochastic observed differential dyt we obtain

the natural estimate for θj on the time interval [0, n]

θ̂j,n =
1

n

∫ n

0

φj(t)d yt , (2.12)

which can be represented, in view of the model (2.1), as

θ̂j,n = θj +
1√
n
ξj,n , ξj,n =

1√
n
In(φj) . (2.13)

Now (see, for example, [9]) we can estimate the function S by the projection estimators, i.e.

Ŝm(t) =

m∑

j=1

θ̂j,n φj(t) , 0 ≤ t ≤ 1 , (2.14)
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for some number m → ∞ as n → ∞. It should be noted that Pinsker in [47] shows that the

projection estimators of the form (2.14) are not efficient. For obtaining efficient estimation one

needs to use weighted least square estimators defined as

Ŝλ(t) =
n∑

j=1

λ(j)θ̂j,nφj(t) , (2.15)

where the coefficients λ = (λ(j))1≤j≤n belong to some finite set Λ from [0, 1]n. As it is shown

in [47], in order to obtain efficient estimators, the coefficients λ(j) in (2.15) need to be chosen

depending on the regularity of the unknown function S. In this thesis we consider the adaptive

case, i.e. we assume that the regularity of the function S is unknown. In this case we chose the

weight coefficients on the basis of the model selection procedure proposed in [17] for the general

semi-martingale regression model in continuous time. These coefficients will be obtained later

in (2.28). To this end, first we set

ι̌ = #(Λ) and |Λ|∗ = 1 +max
λ∈Λ

Ľ(λ) , (2.16)

where #(Λ) is the cardinal number of Λ and Ľ(λ) =
∑n

j=1
λ(j). Now, to choose a weight

sequence λ in the set Λ we use the empirical quadratic risk, defined as

Errn(λ) =‖ Ŝλ − S ‖2,

which in our case is equal to

Errn(λ) =

n∑

j=1

λ2(j)θ̂2j,n − 2

n∑

j=1

λ(j)θ̂j,nθj +

∞∑

j=1

θ2j . (2.17)

Since the Fourier coefficients (θj)j≥ 1 are unknown, we replace the terms θ̂j,nθj,n by

θ̃j,n = θ̂2j,n −
σ̂n
n
, (2.18)

where σ̂n is an estimate for the variance proxy σQ defined in (2.8). If it is known, we take

σ̂n = σQ; otherwise, we can choose it, for example, as in [17], i.e.

σ̂n =

n∑

j=[
√
n]+1

T̂2
j,n , (2.19)

where T̂j,n are the estimators for the Fourier coefficients (Tj)j≥ 1 with respect to the trigono-

metric basis (1.15), i.e.

T̂j,n =
1

n

∫ n

0

Trj(t)dyt . and Tj =

∫ 1

0

Trj(t)S(t)dt . (2.20)
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Finally, in order to choose the weights, we will minimize the following cost function

Jn(λ) =
n∑

j=1

λ2(j)θ̂2j,n − 2
n∑

j=1

λ(j)θ̃j,n + δ Pn(λ), (2.21)

where δ > 0 is some threshold which will be specified later and the penalty term is

Pn(λ) =
σ̂n|λ|2
n

. (2.22)

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ , (2.23)

where

λ̂ = argminλ∈ΛJn(λ). (2.24)

We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique, we take one

of them. Let us now specify the weight coefficients (λ(j))1≤j≤n. Consider, for some fixed

0 < ε < 1, a numerical grid of the form

A = {1, . . . , k∗} × {ε, . . . ,mε} , (2.25)

where m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and ε are functions of n, i.e.

k∗ = k∗(n) and ε = ε(n), such that





limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)
lnn

= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nδ̌ε(n) = +∞,
(2.26)

for any δ̌ > 0. One can take, for example, for n ≥ 2,

ε(n) =
1

lnn
and k∗(n) = k∗0 +

√
lnn , (2.27)

where k∗0 ≥ 0 is some fixed constant and the threshold ς∗(n) is introduced in (2.8). For each

α = (β, l) ∈ A, we introduce the weight sequence

λα = (λα(j))1≤j≤n

with the elements

λα(j) = 1{1≤j<j
∗
} +

(
1− (j/ωα)

β
)
1{j

∗
≤j≤ωα}, (2.28)

where j∗ = 1 + [ln υn], ωα = (dβ lυn)
1/(2β+1),

dβ =
(β + 1)(2β + 1)

π2ββ
and υn = n/ς∗. (2.29)
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Now we define the set Λ as

Λ = {λα , α ∈ A} . (2.30)

It will be noted that in this case the cardinal of the set Λ is

ι̌ = k∗m. (2.31)

Moreover, taking into account that dβ < 1 for β ≥ 1 we obtain for the set (2.30)

|Λ|∗ ≤ 1 + sup
α∈A

ωα ≤ 1 + (υn/ε)
1/3 . (2.32)

Remark 2.3. Note that the form (2.28) for the weight coefficients in (2.15) was proposed by

Pinsker in [47] for the efficient estimation in the nonadaptive case, i.e. when the regularity

parameters of the function S are known. In the adaptive case these weight coefficients are used

in [17, 18] to show the asymptotic efficiency for model selection procedures.

2.3 Oracle inequality

In this section we obtain in Theorem 2.2 the non-asymptotic oracle inequality for the quadratic

risk (2.4) for the model selection procedure (2.23) and in Theorem 2.3 the non-asymptotic oracle

inequality for the robust risk (2.5) for the same model selection procedure (2.23), considered

with the coefficients (2.28).

In order to prove the oracle inequality, the following conditions will be needed for the noise

(ξt)t≥ 0. Here we use the conditions introduced in [17] for the general semi-martingale model

(2.1).

C1) For all n ≥ 1 and Q there exist a variance proxy σQ > 0 and the constant C1,Q,n ≥ 0

such that, for any basis functions with the bound (2.10),

sup
x∈[−1,1]n

∣∣B1,Q,n(x)
∣∣ ≤ C1,Q,n <∞ ,

where B1,Q,n(x) =
∑n

j=1
xj

(
EQξ

2
j,n − σQ

)
.

C2) For all n ≥ 1 and Q there exists a constant C2,Q,n ≥ 1 such that, for any basis

functions with the bound (2.10),

sup
|x|≤1

EQB
2
2,Q,n(x) ≤ C2,Q,n <∞,

where |x|2 =∑n
j=1

x2j and B2,Q,n(x) =
∑n

j=1
xj

(
ξ2j,n −EQξ

2
j,n

)
.

Before stating the non-asymptotic oracle inequality, let us first introduce the following

parameters which will be used for describing the rest term in the oracle inequalities. For the
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renewal density ρ defined in (1.8) we set

Υ(x) = ρ(x)− 1

τ̌
and ‖Υ‖1 =

∫ +∞

0

|Υ(x)| dx , (2.33)

where τ̌ = E τ1. In Proposition 5.1 we show that |ρ|∗ = supt≥0 |ρ(t)| <∞ and ‖Υ‖1 <∞. So,

using this, we can introduce the following parameters

ΨQ = 4κQι̌+

(
5 +

4ι̌

σQ

) (
σQ τ̌ φ

2
max ‖Υ‖1 + φ4max(1 + σ2Q)

3 ľ
)

(2.34)

and

c∗Q = σQ + 2κQ + σQ τ̌ φ
2
max ‖Υ‖1 + φ4max(1 + σ2Q)

2 ľ , (2.35)

where ľ = (4τ̌2 + 8) ‖Υ‖1 + 5 + 13(1 + τ̌)2(1 + |ρ|2∗)(EY 4
1 ) + 4Π(x4). First, let us state the

non-asymptotic oracle inequality for the quadratic risk (2.4) for the model selection procedure

(2.23).

Theorem 2.1. Assume that Conditions C1) and C2) hold. Then, for any n ≥ 1 and 0 < δ <

1/6, the estimator of S given in (2.23) satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) +

ΨQ + 10|Λ|∗ES |σ̂n − σQ|
nδ

. (2.36)

Proof. First, note that we can rewrite the empirical squared error in (2.17) as follows

Errn(λ) = Jn(λ) + 2

∞∑

j=1

λ(j)θ̌j,n + ||S||2 − δPn(λ), (2.37)

where θ̌j,n = θ̃j,n − θj θ̂j,n. Using the definition of θ̃j,n in (2.18) we obtain that

θ̌j,n =
1√
n
θjξj,n +

1

n
ξ̃j,n +

1

n
ςj,n +

σQ − σ̂n
n

,

where ςj,n = EQξ
2
j,n − σQ and ξ̃j,n = ξ2j,n −EQξ

2
j,n. Putting

M(λ) =
1√
n

n∑

j=1

λ(j)θjξj,n and P 0
n =

σQ|λ|2
n

, (2.38)

we can rewrite (2.37) as

Errn(λ) =Jn(λ) + 2
σQ − σ̂n

n
Ľ(λ) + 2M(λ) +

2

n
B1,Q,n(λ)

+ 2
√
P 0
n(λ)

B2,Q,n(e(λ)√
σQn

+ ‖S‖2 − ρPn(λ), (2.39)
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where e(λ) = λ/|λ|, the function Ľ(·) is defined in (2.16) and the functions B1,Q,n(·) and

B2,Q,n(·) are given in conditions C1) and C2).

Let λ0 = (λ0(j))1≤j≤n be a fixed sequence in Λ and λ̂ be as in (2.24). Substituting λ0 and

λ̂ in Equation (2.39), we obtain

Errn(λ̂)− Errn(λ0) =J(λ̂)− J(λ0) + 2
σQ − σ̂Q

n
Ľ(̟) +

2

n
B1,Q,n(̟) + 2M(̟)

+ 2

√
P 0
n(λ̂)

B2,Q,n(ê)√
σQn

− 2
√
P 0
n(λ0)

B2,Q,n(e0)√
σQn

− δPn(λ̂) + δPn(λ0), (2.40)

where ̟ = λ̂− λ0, ê = e(λ̂) and e0 = e(λ0). Note that, by (2.16),

|Ľ(x̂)| ≤ Ľ(λ̂) + Ľ(λ) ≤ 2|Λ|∗.

Applying the inequality

2|ab| ≤ δa2 + δ−1b2 (2.41)

implies that, for any λ ∈ Λ,

2
√
P 0
n(λ)

|B2,Q,n(e(λ))|√
σQn

≤ δP 0
n(λ) +

B2
2,Q,n(e(λ))

δσQ n
.

Taking into account the bound (2.59), we get

Errn(λ̂) ≤Errn(λ0) + 2M(̟) +
2C1,Q,n

n
+

2B∗
2,Q,n

δσQ n

+
1

n
|σ̂ − σQ|(|λ̂|2 + |λ0|2) + 2δPn(λ0) ,

where B∗
2,Q,n = supλ∈ΛB

2
2,Q,n((e(λ)). Moreover, noting that in view of (2.16) supλ∈Λ |λ|2 ≤

|Λ|∗, we can rewrite the previous bound as

Errn(λ̂) ≤Errn(λ0) + 2M(̟) +
2C1,Q,n

n
+

2B∗
2,Q,n

δσQn

+
4|Λ|∗
n
|σ̂ − σQ|+ 2δPn(λ0). (2.42)

To estimate the second term in the right side of this inequality we set

Sx =
n∑

j=1

x(j)θjφj , x = (x(j))1≤j≤n ∈ R
n .

Thanks to (2.7) we estimate the term M(x) for any x ∈ R
n as

EQM
2(x) ≤ κQ

1

n

n∑

j=1

x2(j)θ2j = κQ

1

n
||Sx||2. (2.43)
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To estimate this function for a random vector x ∈ R
n we set

Z∗ = sup
xεΛ1

nM2(x)

||Sx||2
, Λ1 = Λ− λ0 .

So, through Inequality (2.41), we get

2|M(x)| ≤ δ||Sx||2 +
Z∗

nδ
. (2.44)

It is clear that the last term here can be estimated as

EQZ
∗ ≤

∑

x∈Λ1

nEQM
2(x)

||Sx||2
≤
∑

x∈Λ1

κQ = κQι̌ , (2.45)

where ι̌ = card(Λ). Moreover, note that, for any x ∈ Λ1,

||Sx||2 − ||Ŝx||2 =
n∑

j=1

x2(j)(θ2j − θ̂2j ) ≤ −2M1(x), (2.46)

where M1(x) = n−1/2
∑n

j=1
x2(j)θjξj,n. Taking into account that, for any x ∈ Λ1 the compo-

nents |x(j)| ≤ 1, we can estimate this term as in (2.43), i.e.,

EQM
2
1 (x) ≤ κQ

||Sx||2
n

.

Similarly to the previous reasoning we set

Z∗
1 = sup

xεΛ1

nM2
1 (x)

||Sx||2

and we get

EQ Z
∗
1 ≤ κQ ι̌ . (2.47)

Using the same type of arguments as in (2.44), we can derive

2|M1(x)| ≤ δ||Sx||2 +
Z∗
1

nδ
. (2.48)

From here and (2.46), we get

||Sx||2 ≤
||Ŝx||2
1− δ +

Z∗
1

nδ(1− δ) (2.49)

for any 0 < δ < 1. Using this bound in (2.44) yields

2M(x) ≤ δ||Ŝx||2
1− δ +

Z∗ + Z∗
1

nδ(1− δ) .

Taking into account that ‖Ŝ̟‖2 ≤ 2 (Errn(λ̂) + Errn(λ0)), we obtain

2M(̟) ≤ 2δ(Errn(λ̂) + Errn(λ0))

1− δ +
Z∗ + Z∗

1

nδ(1− δ) .
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Using this bound in (2.42) we obtain

Errn(λ̂) ≤
1 + δ

1− 3δ
Errn(λ0) +

Z∗ + Z∗
1

nδ(1− 3δ)
+

2C1,Q,n

n(1− 3δ)
+

2B∗
2,Q,n

δ(1− 3δ)σQn

+
(4|Λ|∗ + 2)

n(1− 3δ)
|σ̂ − σQ|+

2δ

(1− 3δ)
P 0
n(λ0).

Moreover, for 0 < δ < 1/6, we can rewrite this inequality as

Errn(λ̂) ≤
1 + δ

1− 3δ
Errn(λ0) +

2(Z∗ + Z∗
1 )

nδ
+

4C1,Q,n

n
+

4B∗
2,Q,n

δσQn

+
(8|Λ|∗ + 2)

n
|σ̂n − σQ|+

2δ

(1− 3δ)
P 0
n(λ0).

In view of Proposition 2.3 we estimate the expectation of the term B∗
2,Q,n in (2.42) as

EQB
∗
2,Q,n ≤

∑

λ∈Λ
EQB

2
2,Q,n(e(λ)) ≤ ι̌C2,Q,n .

Taking into account that |Λ|∗ ≥ 1, we get

R(Ŝ∗, S) ≤
1 + δ

1− 3δ
R(Ŝλ0

, S) +
4κQι̌

nδ
+

4C1,Q,n

n
+

4ι̌C2,Q,n

δσQn

+
10|Λ|∗
n

EQ |σ̂ − σQ|+
2δ

(1− 3δ)
P 0
n(λ0).

Using the upper bound for Pn(λ0) in Lemma 2.6, one obtains (2.36), that finishes the proof. ✷

Now we study the estimate (2.19).

Proposition 2.1. Assume that Conditions C1) and C2) hold and that the function S is con-

tinuously differentiable. Then, for any n ≥ 2,

EQ,S |σ̂n − σQ| ≤
6‖Ṡ‖2 + c∗Q√

n
. (2.50)

Proof. We use here the same method as in [14]. First of all note that Definition (2.20) implies

that

T̂j,n = Tj +
1√
n
ηj,n , (2.51)

where

Tj =

∫ 1

0

S(t)Trj(t)dt and ηj,n =
1√
n

∫ n

0

Trj(t) dξt .

So, we have

σ̂n =

n∑

j=[
√
n]+1

T2
j + 2Mn +

1

n

n∑

j=[
√
n]+1

η2j,n , (2.52)
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where

Mn =
1√
n

n∑

j=[
√
n]+1

Tj ηj,n .

Note that, for continuously differentiable functions (see, for example, Lemma A.6 in [14]), the

Fourier coefficients (Tj){j≥1} satisfy the following inequality, for any n ≥ 1,

∞∑

j=[
√
n]+1

T2
j ≤

4
(∫ 1

0
|Ṡ(t)|dt

)2

√
n

≤ 4‖Ṡ‖2√
n

. (2.53)

In the same way as in (2.43) we estimate the term Mn, i.e.,

EQM
2
n ≤

κQ

n

n∑

j=[
√
n]+1

T2
j ≤

4κQ‖Ṡ‖2
n
√
n

,

while the absolute value of this term for n ≥ 1 can be estimated as

|EQMn| ≤
κQ + ‖Ṡ‖2√

n
.

Moreover, using Propositions 2.2 and 2.3 we can represent the last term in (2.52) as

1

n

n∑

j=[
√
n]+1

η2j,n =
σQ(n−

√
n)

n
+
B1,Q,n(x

′)

n
+
B2,Q,n(x

′′)√
n

,

with x′j = 1{√n<j≤n} and x′′j = 1{√n<j≤n}/
√
n. Therefore,

EQ

∣∣∣∣∣∣
1

n

n∑

j=[
√
n]+1

η2j,n − σQ

∣∣∣∣∣∣
≤
σQ√
n
+

C1,Q,n

n
+

√
C2,Q,n√
n

.

Taking into account that C2,Q,n ≥ 1, we obtain the bound (2.50) and hence the desired result.

✷

Theorem 2.1 and Proposition 2.1 implies the following result.

Theorem 2.2. Assume that Conditions C1) and C2) hold and that the function S is continu-

ously differentiable. Then, for any n ≥ 1 and 0 < δ ≤ 1/6, the procedure (2.23), (2.19) satisfies

the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) +

60Λ̃n ‖Ṡ‖2 + Ψ̃Q,n

nδ
, (2.54)

where Ψ̃Q,n = 10Λ̃nc
∗
Q +ΨQ and Λ̃n = |Λ|∗/

√
n.
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Remark 2.4. Note that the coefficient κQ can be estimated as κQ ≤ (1 + τ̌ |ρ|∗)σQ. Therefore,
taking into account that φ4max ≥ 1, the remainder term in (2.54) can be estimated as

Ψ̃Q,n ≤ C∗

(
1 + σ6Q +

1

σQ

)
(1 + Λ̃n)ι̌φ

4
max , (2.55)

where C∗ > 0 is some constant which is independent of the distribution Q.

Furthermore, let us study the robust risk (2.5) for the procedure (2.23). In this case, the

distribution family Qn consists in all distributions on the Skorokhod space D[0, n] of the process
(2.2) with the parameters satisfying the conditions (2.8) and (2.9).

Moreover, we assume also that the number of the weight vectors and the upper bound for

the basis functions in (2.10) may depend on n ≥ 1, i.e. ι̌ = ι̌(n) and φ∗ = φ∗(n), such that for

any ǫ̌ > 0

lim
n→∞

ι̌(n)

nǫ̌
= 0 and lim

n→∞

φ∗(n)
nǫ̌

= 0 . (2.56)

The next result presents the non-asymptotic oracle inequality for the robust risk (2.5) for

the model selection procedure (2.23), considered with the coefficients (2.28).

Theorem 2.3. Assume that Conditions H1) – H4) hold and that the unknown function S is

continuously differentiable. Then, for the robust risk defined in (2.5) through the distribution

family (2.8) – (2.9), the procedure (2.23) with the coefficients (2.28) for any n ≥ 1 and 0 <

δ < 1/6, satisfies the following oracle inequality

R∗(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
n(S)

nδ
, (2.57)

where the sequence U∗
n(S) > 0 is such that, under the conditions (2.9), (2.26) and (2.56), for

any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0. (2.58)

Proof. First note, that in view of (2.31) and (2.26)

lim
n→∞

ι̌

nǫ̌
= lim

n→∞

k∗m
nǫ̌

= 0 for any ǫ̌ > 0 .

Furthermore, the bound (2.32) and the conditions (2.9) and (2.26) yield

lim
n→∞

|Λ|∗
n1/3+ǫ̌

= 0 for any ǫ̌ > 0 .

So, from here we obtain the convergence (2.58). ✷

Now we need to check the conditions C1) and C2) for the process (2.2)

Proposition 2.2. Assume that Conditions H1)–H4) hold. Then Condition C1) holds with

C1,Q,n = σQ τ̌ φ
2
max ‖Υ‖1. (2.59)
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Proof. First, note that from (2.93) we have

ξj,n =
̺1√
n
ILn (φj) +

̺2√
n
Izn(φj) .

So, using (2.95) we can write that

Eξ2j,n =
̺21
n

∫ n

0

φ2j (t)d t+
̺22
n
E

∞∑

l=1

φ2j (Tl)1{Tl≤n} . (2.60)

Proposition 5.1 implies

E

∞∑

l=1

φ2j (Tl)1{Tl≤n} =

∫ n

0

φ2j (x) ρ(x)dx

=
1

τ̌

∫ n

0

φ2j (x)dx +

∫ n

0

φ2j (x)Υ(x)dx .

Note that
∫ n

0
φ2j (t)d t = n. So, in view of the condition (2.10), we obtain

∣∣∣Eξ2j,n − σQ
∣∣∣ = ̺22

n

∣∣∣∣
∫ n

0

φ2j (x)Υ(x)dx

∣∣∣∣ ≤
̺22
n
φ2max ‖Υ‖1 . (2.61)

Estimating here ̺22 by σQτ̌ we obtain the inequality (2.59) and hence the conclusion follows. ✷

Proposition 2.3. Assume that Conditions H1)–H4) hold. Then Condition C2) holds with

C2,Q,n = φ4max(1 + σ2Q)
3 ľ (2.62)

and ľ is given in (2.35).

Proof. By Ito’s formula one gets

dI2t (f) = 2It−(f)dIt(f) + ̺21 ˇ̺
2 f2(t)d t+

∑

0≤s≤t

f2(s)(∆ξds )
2 , (2.63)

where ξdt = ̺3 Ľt + ̺2zt and ̺3 = ̺1
√
1− ˇ̺2. Taking into account that the processes (Ľt)t≥0

and (zt)t≥0 are independent and the time of jumps Tk defined in (1.7) has a density, we have

∆zs∆Ľs = 0 a.s. for any s ≥ 0. Therefore, we can rewrite the differential (2.63) as

dI2t (f) = 2It−(f)dIt(f) + ̺21 ˇ̺
2 f2(t)d t

+ ̺23d
∑

0≤s≤t

f2(s)(∆Ľs)
2 + ̺22d

∑

0≤s≤t

f2(s)(∆zs)
2 . (2.64)

From Lemma 2.2 it follows that

EI2t (f) = ̺21

∫ t

0
f2(s)ds+ ̺22

∫ t

0
f2(s)ρ(s)ds .
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Therefore, putting

Ĩt(f) = I2t (f)−EI2t (f) , (2.65)

we obtain

dĨt(f) = 2It−(f)f(t)dξt + f2(t)dm̃t , m̃t = ̺23m̌t + ̺22mt ,

where m̌t =
∑

0≤s≤t
(∆Ľs)

2 − t and mt =
∑

0≤s≤t
(∆zs)

2 −
∫ t

0
ρ(s)ds. For any non-random

vector x = (xj)1≤j≤n with
∑n

j=1
x2j ≤ 1, we set

Īt(x) =

n∑

j=1

xj Ĩt(φj). (2.66)

Denoting

At(x) =
n∑

j=1

xjIt(φj)φj(t) and Bt(x) =
n∑

j=1

xjφ
2
j (t) , (2.67)

we get the following stochastic differential equation for (2.66)

dĪt(x) = 2At−(x)dξt +Bt(x)dm̃t , Ī0(x) = 0 .

Applying the Ito’s formula one obtains

E Ī2n(x) =2E

∫ n

0

Īt−(x)dĪt(x) + 4̺21 ˇ̺
2E

∫ n

0

A2
t (x)d t

+ ̺23 E Ďn(x) + ̺22EDn(x) , (2.68)

where Ďn(x) =
∑

0≤t≤n

(
2At−(x)∆Ľt + ̺23Bt(x)(∆Ľt)

2
)2

and

Dn(x) =
∑+∞

k=1

(
2ATk−(x)Yk + ̺2BTk−(x)Y

2
k

)2
1{Tk≤n} . Let us now show that

∣∣∣∣E
∫ n

0

Īt−(x)dĪt(x)

∣∣∣∣ ≤ 2 ̺42φ
3
max ‖Υ‖1 n2 . (2.69)

To this end, note that
∫ n

0

Īt−(x)dĪt(x) =2
∑

1≤j,l≤n

xjxl

∫ n

0

Ĩt−(φj) It−(φl)φl(t)dξt

+

n∑

j=1

xj

∫ n

0

Ĩt−(φj)Bt(x)dm̃t .

Using here Lemma 2.5, we get E
∫ n

0
Ĩt−(φj) It−(φi)φi(t)dξt = 0. Moreover, the process

(m̌t)t≥0 is a martingale, i.e. E
∫ n

0
Ĩt−(φj)Bt(x)dm̃t = 0. Therefore,

E

∫ n

0

Īt−(x)dĪt(x) = ̺22

n∑

j=1

xjE

∫ n

0

Ĩt−(φj)Bt(x)dmt .
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Taking into account here that for any non-random bounded function f

E

∫ n

0

f(t)dmt = 0,

we obtain E
∫ n

0
Ĩt−(φj)Bt(x) dmt = E

∫ n

0
I2t−(φj)Bt(x) dmt. So, Lemma 2.4 yields

∣∣∣∣E
∫ n

0

Ĩt−(φj)Bt(x)dmt

∣∣∣∣ =
∣∣∣∣∣

n∑

l=1

xlE

∫ n

0

I2t−(φj)φ
2
l (t)dmt

∣∣∣∣∣

≤ 2 ̺22φ
3
max ‖Υ‖1

n∑

l=1

|xl|n .

Therefore,
∣∣∣∣E
∫ n

0

Īt−(x)dĪt(x)

∣∣∣∣ ≤ 2 ̺42φ
3
max ‖Υ‖1 n

∑

1≤l,j≤n

|xl| |xj |

= 2 ̺42φ
3
max ‖Υ‖1 n

(
n∑

l=1

|xl|
)2

.

Taking into account here that
(∑n

l=1
|xl|
)2 ≤ n

∑
l≥ 1

x2l ≤ n, we obtain (2.69). Reminding

that Π(x2) = 1 we can calculate directly that

E Ďn(x) = 4E

∫ n

0

A2
t (x)dt+ ̺43Π(x

4)

∫ n

0

B2
t (x)dt . (2.70)

Note that, thanks to Lemma 2.1, we obtain that

E

∫ n

0

A2
t (x)d t =

∑

i,j

xixj

∫ n

0

φi(t)φj(t)EItφi(t)Itφj(t)d t

=
∑

i,j

xixj

∫ n

0

φi(t)φj(t)

∫ t

0

φi(v)φj(v)(̺
2
1 + ̺22ρ(v))dv

=
1

2
̺21

∑

i,j

xixj

(∫ n

0

φi(t)φj(t)dt

)2

+ ̺22A1,n(x)

≤ n2

2
̺21 + ̺22A1,n(x) ,

where A1,n(x) =
∑

i,j
xixj

∫ n

0
φi(t)φj(t)

(∫ t

0
φi(v)φj(v) ρ(v)dv

)
dt. This term can be estimated

through Proposition 5.1 as

∣∣A1,n(x)
∣∣ =

∣∣∣∣∣∣
n2

2τ̌
+
∑

i,j

xixj

∫ n

0

φi(t)φj(t)

(∫ t

0

φi(v)φj(v)Υ(v)dv

)
dt

∣∣∣∣∣∣

≤ n2

2τ̌
+ nφ4max ‖Υ‖1

∑

i,j

|xi||xj | ≤
(

1

2τ̌
+ φ4max ‖Υ‖1

)
n2 .
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So, reminding that σQ = ̺21 + ̺22/τ̌ and that φmax ≥ 1, we obtain that

E

∫ n

0

A2
t (x)d t ≤

(σQ
2

+ φ4max ‖Υ‖1
)
n2

≤
(
1

4
+ ‖Υ‖1

)
φ4max (1 + σ2Q)n

2 . (2.71)

Taking into account that

sup
t≥0

B2
t (x) ≤ φ4max




n∑

j=1

|xj |




2

≤ φ4max n , (2.72)

that φmax ≥ 1 and that ̺41 ≤ σ2Q, we estimate the expectation in (2.70) as

EĎn ≤ 4φ4max(1 + σ2Q)
(
1 + ‖Υ‖1 +Π(x4)

)
n2 . (2.73)

Moreover, taking into account that the random variable Yk is independent of AT
k−

(x) and

of the field G = σ{Tj , j ≥ 1} and that E
(
AT

k−
(x) |G

)
= 0, we get

E

+∞∑

k=1

BTk−(x)AT
k−

(x)Y 3
k 1{Tk≤n} =

+∞∑

k=1

EE
(
BTk−(x)AT

k−
(x)Y 3

k 1{Tk≤n}|G
)

= EY 3
1 E

+∞∑

k=1

BTk−(x)1{Tk≤n}E(AT
k−

(x)|G) = 0 .

Therefore,

EDn(x) = ̺22EY
4
1 D1,n(x) + 4D2,n(x), (2.74)

where

D1,n(x) =
+∞∑

k=1

EB2
Tk−

(x)1{Tk≤n} and D2,n(x) =
+∞∑

k=1

EA2
T
k−

(x)1{Tk≤n} .

Using the bound (2.72) we can estimate the term D1,n as D1,n(x) ≤ φ4maxnENn. Using here

Corollary 5.1, we obtain

D1,n(x) ≤ |ρ|∗φ4max n
2 . (2.75)

Now, to estimate the last term in (2.74), note that the process At(x) can be rewritten as

At(x) =

∫ t

0

Qx(t, s)dξs, with Qx(t, s) =
n∑

j=1

xjφj(s)φj(t). (2.76)

Applying Lemma 2.3 again, we obtain for any k ≥ 1

E
(
A2

T
k−

(x)|G
)
= ̺21

∫ Tk

0

Q2
x(Tk, s)ds+ ̺22

k−1∑

j=1

Q2
x(Tk, Tj) .
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So, we can represent the last term in (2.74) as

D2,n = ̺21D
(1)
2,n + ̺22D

(2)
2,n , (2.77)

where

D
(1)
2,n =

+∞∑

k=1

E1{Tk≤n}

∫ Tk

0

Q2
x(Tk, s)ds

and

D
(2)
2,n =

+∞∑

k=1

E1{Tk≤n}

k−1∑

j=1

Q2
x(Tk, Tj) .

Thanks to Proposition 5.1 we obtain

D
(1)
2,n =

∫ n

0

(∫ t

0

Q2
x(t, s)ds

)
ρ(t) dt ≤ |ρ|∗

∫ n

0

∫ n

0

Q2
x(t, s)ds dt .

In view of the definition of Qx in (2.76), we can rewrite the last integral as

∫ n

0

Q2
x(t, s)ds =

∑

1≤i,j≤n

xi xj φi(t)φj(t)

∫ n

0

φi(s)φj(s) ds

=

n∑

i=1

x2i φ
2
i (t)

∫ n

0

φ2i (s) ds = n

n∑

i=1

x2i φ
2
i (t) .

Since
∑n

j=1
x2j ≤ 1, we obtain that,

∫ n

0

Q2
x(t, s)ds ≤ φ2max n and D

(1)
2,n ≤ φ2max |ρ|∗ n2 . (2.78)

Let us estimate now the last term in (2.77). First, note that we can represent this term as

D
(2)
2,n =

+∞∑

k=1

E1{Tk≤n}

k−1∑

j=1

Q2
x(Tk, Tj) =

∞∑

j=1

1{Tj≤n}G(Tj) =
∫ n

0

G(t) ρ(t)dt ,

where

G(t) =

+∞∑

k=1

E1{Tk≤n}Q
2
x((t+ Tk), t) =

∫ n

0

Q2
x(t+ v, t) ρ(v)dv

=

∫ n+t

t

Q2
x(u, t) ρ(u− t)du .

It is clear that, for any 0 ≤ t ≤ n,
∫ n+t

t

Q2
x(u, u− t) ρ(u) du ≤ |ρ|∗

∫ 2n

0

Q2
x(v, t) dv .
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In view of the inequality (2.78) we obtain
∫ 2n

0

Q2
x(u, t) du =

∫ 2n

0

Q2
x(t, u) du ≤ 2φ2max n .

Therefore,

max
0≤t≤n

G(t) ≤ 2|ρ|∗ φ2max n and D
(2)
2,n ≤ 2|ρ|2∗ φ2max n

2 .

So, estimating ̺22 by τ̌σQ and taking into account that EY 4
1 ≥ 1, we obtain that we obtain that

EDn(x) ≤ 13 (1 + τ̌)φ4max EY 4
1 (1 + |ρ|2∗)n2σQ .

Using all these bounds in (2.68) we obtain (2.62) and thus the conclusion follows. ✷

Remark 2.5. The properties (2.59) and (2.62) are used to obtain the oracle inequalities given

in Section 2.3 (see, for example, [17]).

2.4 Efficiency

Now we study the asymptotic efficiency for the procedure (2.23) with the coefficients (2.28),

with respect to the robust risk (2.5) defined by the distribution family (2.8)–(2.9). To this end,

we assume that the unknown function S in the model (2.1) belongs to the Sobolev ball

W k
r
= {f ∈ Ckper[0, 1] :

k∑

j=0

‖f (j)‖2 ≤ r} , (2.79)

where r > 0 and k ≥ 1 are some unknown parameters, Ckper[0, 1] is the set of k times continuously

differentiable functions f : [0, 1]→ R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. The function
class W k

r
can be written as an ellipsoid in L2[0, 1], i.e.,

W k
r
= {f ∈ Ckper[0, 1] :

∞∑

j=1

aj θ
2
j ≤ r}, (2.80)

where aj =
∑k

i=0
(2π[j/2])2i and θj =

∫ 1

0
f(v)Trj(v)dv. We recall that the trigonometric basis

(Trj)j≥1 is defined in (1.15).

Similarly to [17, 18] we will show here that the asymptotic sharp lower bound for the robust

risk (2.5) is given by

r∗k = ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (2.81)

Note that this is the well-known Pinsker constant obtained for the non-adaptive filtration

problem in “signal + small white noise” model (see, for example, [47]). Let Πn be the set of

all estimators Ŝn measurable with respect to the σ-field σ{yt , 0 ≤ t ≤ n} generated by the

process (2.1).

The following two results give the lower and upper bound for the robust risk in our case.
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Theorem 2.4. Under Conditions (2.8) and (2.9),

lim inf
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) ≥ r∗k , (2.82)

where υn = n/ς∗.

Proof. First, we denote by Q0 the distribution of the noise (2.2) with the parameter ̺1 = ς∗,

ˇ̺ = 1 and ̺2 = 0, i.e. the distribution for the “signal + white noise” model. So, we can

estimate as below the robust risk

R∗
n(S̃n, S) ≥ RQ0

(S̃n, S) .

Now Theorem 6.1 from [15] yields the lower bound (2.82). Hence this finishes the proof. ✷

Note that if the parameters r and k are known, i.e. for the non-adaptive estimation case,

then to obtain the efficient estimation for the “signal+white noise” model. Pinsker in [47]

proposed to use the estimate Ŝλ0
defined in (2.15) with the weights (2.28) in which

λ0 = λα0
and α0 = (k, l0) , (2.83)

where l0 = [r/ε]ε. For the model (2.1) – (2.2) we show the same result.

Proposition 2.4. The estimator Ŝλ0
satisfies the following asymptotic upper bound

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝλ0

, S) ≤ r∗k .

Proof. Putting λ0(j) = 0 for j ≥ n we can represent the quadratic risk for the estimator

(2.15) as

‖ Ŝλ0
− S ‖2=

∞∑

j=1

(1− λ0(j))2θ2j − 2Hn +
1

n

n∑

j=1

λ20(j)ξ
2
j,n ,

where Hn = n−1/2
∑n

j=1(1−λ0(j))λ0(j)θjξj,n. Note that EQHn = 0 for any Q ∈ Qn, therefore,

EQ ‖ Ŝλ0
− S ‖2=

∞∑

j=1

(1− λ0(j))2θ2j +
1

n
EQ

n∑

j=1

λ20(j)ξ
2
j,n .

Proposition 2.2 and the last inequality in (2.8) imply that for any Q ∈ Qn

EQ

n∑

j=1

λ20(j)ξ
2
j,n ≤ ς∗

n∑

j=1

λ20(j) +
φ2maxς

∗‖Υ‖1
τ̌

:= ς∗
n∑

j=1

λ20(j) +C∗
1,n .

Therefore,

R∗
n(Ŝλ0

, S) ≤
∞∑

j=j
∗

(1− λ0(j))2θ2j +
1

υn

n∑

j=1

λ20(j) +
C∗

1,n

n
,
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where j∗ and υn are defined in (2.28). Setting

Υ1,n(S) = υ2k/(2k+1)
n

∞∑

j=j
∗

(1− λ0(j))2θ2j and Υ2,n =
1

υ
1/(2k+1)
n

n∑

j=1

λ20(j) ,

we rewrite the last inequality as

υ2k/(2k+1)
n R∗

n(Ŝλ0
, S) ≤ Υ1,n(S) + Υ2,n + Čn , (2.84)

where Čn = υ2k/(2k+1)
n C∗

1,n/n. Note that Conditions (2.9) and (2.56) imply that C∗
1,n = (nδ̌)

as n→∞ for any δ̌ > 0; therefore, Čn → 0 as n→∞. Putting

un = υ2k/(2k+1)
n sup

j≥j
∗

(1− λ0(j))2/aj ,

with aj defined in (2.80), we estimate the first term in (2.84) as

sup
S∈Wk

r

Υ1,n(S) ≤ sup
S∈Wk

r

un
∑

j≥1

ajθj ≤ unr .

Taking into account that aj/(π
2kj2k) → 1 as j → ∞ and l0 → r as ε → 0 and using the

definition of ωα0
in (2.28), we obtain that

lim sup
n→∞

un ≤ lim
n→∞

υ2k/(2k+1)
n sup

j≥j
∗

(1− λ0(j))2
(π j)2k

= lim
n→∞

υ2k/(2k+1)
n

π2kω2k
α0

=
1

π2k (dkr)
2k/(2k+1)

.

Therefore,

lim sup
n→∞

sup
S∈Wk

r

Υ1,n(S) ≤
r1/(2k+1)

π2k(dk)
2k/(2k+1)

=: Υ∗
1 . (2.85)

As to the second term in (2.84), note that

lim
n→∞

1

ωα0

n∑

j=1

λ20(j) =

∫ 1

0

(1− tk)2dt = 2k2

(k + 1)(2k + 1)
.

So, taking into account that ωα0
/υ1/(2k+1)

n → (dkr)
1/(2k+1) as n→∞, the limit of Υ2,n can be

calculated as

lim
n→∞

Υ2,n =
2(dkr)

1/(2k+1) k2

(k + 1)(2k + 1)
=: Υ∗

2 .

Moreover, since Υ∗
1 +Υ∗

2 =: r∗k, we obtain

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝλ0

, S) ≤ r∗k
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and get the desired result. ✷

For the adaptive estimation we use the model selection procedure (2.23) with the parameter δ

defined as a function of n satisfying

lim
n
δn = 0 and lim

n
nδ̌ δn = 0 (2.86)

for any δ̌ > 0. For example, we can take δn = (6 + lnn)−1.

Theorem 2.5. Assume that Conditions H1)–H4) hold true. Then the robust risk defined in

(2.5) through the distribution family (2.8)–(2.9) for the procedure (2.23) based on the trigono-

metric basis (1.15) with the coefficients (2.28) and the parameter δ = δn satisfying (2.86) has

the following asymptotic upper bound

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝ∗, S) ≤ r∗k . (2.87)

Theorem 2.4 and Theorem 2.5 allow us to compute the optimal convergence rate.

Corollary 2.1. Under the assumptions of Theorem 2.5, we have

lim
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) = r∗k . (2.88)

Remark 2.6. It is well known that the optimal (minimax) risk convergence rate for the Sobolev

ball W k
r is n2k/(2k+1) (see, for example, [47], [46]). We see here that the efficient robust rate is

υ2k/(2k+1)
n , i.e., if the distribution upper bound ς∗ → 0 as n→∞, we obtain a faster rate with

respect to n2k/(2k+1), and, if ς∗ →∞ as n→∞, we obtain a slower rate. In the case when ς∗

is constant, than the robust rate is the same as the classical non robust convergence rate.

2.5 Simulations

In this section we report the results of a Monte Carlo experiment in order to assess the perfor-

mance of the proposed model selection procedure (2.23). In (2.1) we chose a 1-periodic function

which is defined, for 0 ≤ t ≤ 1, as

S(t) = t sin(2πt) + t2(1− t) cos(4πt) . (2.89)

We simulate the model

dyt = S(t)dt+ dξt ,

where ξt = 0.5dwt+ 0.5dzt.

Here zt is the semi-Markov process defined in (1.6) with a GaussianN (0, 1) sequence (Yj)j≥1

and (τk)k≥1 used in (1.7) taken as τk ∼ χ2
3.
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n R R∗

20 0.04430 0.235

100 0.01290 0.068

200 0.00812 0.043

1000 0.00196 0.010

Table 2.1: Empirical risks

We use the model selection procedure (2.23) with the weights (2.28) in which k∗ = 100 +√
ln(n), ti = i/ ln(n), m = [ln2(n)] and δ = (3 + ln(n))−2. We define the empirical risk as

R =
1

p

p∑

j=1

Ê
(
Ŝn(tj)− S(tj)

)2
, (2.90)

where the observation frequency p = 100001 and the expectation was taken as an average over

N = 10000 replications, i.e.,

Ê
(
Ŝn(.)− S(.)

)2
=

1

N

N∑

l=1

(
Ŝl
n(.)− S(.)

)2
.

We set the relative quadratic risk as

R∗ = R/||S||2p, with ||S||2p =
1

p

p∑

j=0

S2(tj) . (2.91)

In our case ||S||2p = 0.1883601.

Table 2.1 gives the values for the sample risks (2.90) and (2.91) for different numbers of

observations n.

Figures 2.1–2.4 show the behaviour of the regression function and its estimates by the model

selection procedure (2.23) depending on the values of observation periods n. The black full line

is the regression function (2.89) and the red dotted line is the associated estimator.
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Figure 2.1: Estimator of S for n = 20
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Figure 2.2: Estimator of S for n = 100
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Figure 2.3: Estimator of S for n = 200
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Figure 2.4: Estimator of S for n = 1000

Remark 2.7. From numerical simulations of the procedure (2.23) with various observation

numbers n we may conclude that the quality of the proposed procedure: (i) is good for practical
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needs, i.e. for reasonable (non large) number of observations; (ii) is improving as the number

of observations increases.

Now we give the algorithm of the model selection procedure given in Section 2.2
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Algorithm 1 Model selection procedure

Require: n, 0 ≤ ˇ̺≤ 1 and δ > 0

ρ1, ρ2, ς
∗: satisfying Conditions (2.8) and (2.9)

k∗ ≥ 1, ε: satisfying Condition (2.26)

Output: The optimal weight vector λ̂

{Step 1} Computation of the weights

m = [1/ε2]

for i←− 1 to [k∗] do

for j ←− [ε] to [mε] do

for k ←− 1 to n do

Compute the wheight coefficients λi,j(k) using the formula (2.28)

end for

end for

end for

return: the vectors λ = (λα(1), ..., λα(n)),α ∈ A = {1, . . . , k∗} × {ε, . . . ,mε}
{Step 2} Computation of the Fourrier coefficients

for k ←− 1 to n do

θ̂k,n = 1
n

∫ n

0
φk(t)d yt .

θ̃k,n ←− θ̂2k,n − 1
n .

The observation (yt)0≤t≤n are given in (2.1) with the noise process (2.2) and (φk)k≥ 1 is

the basis given in (2.10)

end for

return: the vectors θ̂ = (θ̂1,n, ..., θ̂n,n) and θ̃ = (θ̃1,n, ..., θ̃n,n)

{Step 3} The cost function

for i←− 1 to [k∗] do

for j ←− [ε] to [mε] do

Jn(λ)←−
∑n

l=1
λ2i,j(l)θ̂

2
j,n − 2

∑n
j=1

λi,j(l)θ̃j,n + δ Pn(λ).

where the vectors λ = (λi,j(1), ..., λi,j(n)) are computed in Step1, the vectors θ̂ and θ̃

are given in Step2 and Pn is the penalty term given in (2.22)

end for

end for

return: λ̂ = argminλ∈ΛJn(λ),Λ = {λα , α ∈ A}.
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2.6 Stochastic calculus for semi-Markov processes

In this section we give some results of stochastic calculus for the process (ξt)t≥ 0 given in (2.2),

needed all along this paper. As the process ξt is the combination of a Lévy process and a

semi-Markov process, these results are not standard and need to be provided.

Lemma 2.1. Let f and g be any non-random functions from L2[0, n] and (It(f))t≥ 0 be the

process defined in (2.6). Then, for any 0 ≤ t ≤ n,

E It(f)It(g) = ̺21 (f, g)t + ̺22 (f, gρ)t , (2.92)

where (f, g)t =
∫ t

0
f(s) g(s)ds and ρ is the density defined in (1.8).

Proof. First, note that we can represent the stochastic integral It(f) as

It(f) = ̺1I
L
t (f) + ̺2I

z
t (f) , (2.93)

where

ILt (f) =

∫ t

0

f(s)dLs and Izt (f) =

∫ t

0

f(s)dzs .

Note that the mutual covariation for the martingales ILt (f) and I
L
t (g) (see, for example, [21])

may be calculated as

[IL(f), IL(g)]t = ˇ̺2
∫ t

0

f(s)g(s)ds+ (1− ˇ̺2)
∑

0≤s≤t

f(s)g(s)
(
∆Ľs

)2
, (2.94)

where ∆Ľs = Ľs − Ľs−. Taking into account that E ILt (f) I
L
t (g) = E [IL(f), IL(g)]t and that

in view of the first condition in (2.3) Π(x2) = 1, we obtain that

E ILt (f) I
L
t (g) = ˇ̺2

∫ t

0

f(s)g(s)ds+ (1− ˇ̺2)Π(x2)

∫ t

0

f(s) g(s)ds

=

∫ t

0

f(s) g(s)ds . (2.95)

Moreover, note that

EIzt (f)I
z
t (g) = E

( ∞∑

l=1

f(Tl)g(Tl)Y
2
l 1{Tl≤t}

)

= E

( ∞∑

l=1

f(Tl)g(Tl)1{Tl≤t}

)
=

∫ t

0

f(s)g(s)ρ(s)ds .

Hence the conclusion follows. ✷

Lemma 2.2. Assume that Conditions H1)–H4) hold true. Then, for any n ≥ 1 and for

any non random function f from L2[0, n], the stochastic integral (2.6) exists and satisfies the

properties (2.7) with the coefficient κQ given in (2.7).
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Proof. This lemma follows directly from Lemma 2.1 with f = g and Proposition 5.1. ✷

Lemma 2.3. Let f and g be bounded functions defined on [0,∞)× R. Then, for any k ≥ 1,

E
(
ITk−

(f) ITk−
(g) | G

)
= ̺21(f , g)Tk

+ ̺22

k−1∑

l=1

f(Tl) g(Tl),

where G is the σ-field generated by the sequence (Tl)l≥1, i.e., G = σ{Tl , l ≥ 1}.

Proof. Using (2.93), (2.95) and, taking into account that the process (Lt)t≥0 is independent

of G, we obtain

E
(
ITk−

(f) ITk−
(g) | G

)
= ̺21(f , g)Tk

+E
(
IzTk−

(f) IzTk−
(g) | G

)
.

Moreover,

E
(
IzTk−

(f) IzTk−
(g) | G

)
= E

((
k−1∑

l=1

f(Tl)Yl

)(
k−1∑

l=1

g(Tl)Yl

)
| G
)

=
k−1∑

l=1

f(Tl) g(Tl) .

Thus we obtain the desired result. ✷

Lemma 2.4. Assume that Conditions H1)–H4) hold true. Then, for any measurable bounded

non-random functions f and g, we have
∣∣∣∣E
∫ n

0

I2t−(f) g(t) dmt

∣∣∣∣ ≤ 2̺22|g|∗|f |2∗ ‖Υ‖1 n.

Proof. Using the definition of the process (mt)t≥0 we can represent this integral as

∫ n

0

I2t−(f) g(t) dmt =
∑

k≥1

I2Tk−
(f) g(Tk)Y

2
k 1{Tk≤n}

−
∫ n

0

I2t (f) g(t) ρ(t) dt =: Vn − Un . (2.96)

Note now that

EVn = E
∑

k≥1

g(Tk)E
(
I2Tk−

(f) | G
)
1{Tk≤n} .

Now, using Lemma 2.3 we can represent the last expectation as

EVn = ̺21EV
′
n + ̺22EV

′′
n , (2.97)

where

V
′

n =
∑

k≥1

g(Tk) ‖f‖2Tk
1{Tk≤n} and V

′′

n =
∑

k≥2

g(Tk)1{Tk≤n}

k−1∑

l=1

f2(Tl) .
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The first term in (2.97) can be represented as

EV
′

n =

∫ n

0

g(t) ‖f‖2tρ(t)dt .

To estimate the last expectation in (2.97), note that

EV
′′

n = E
∑

l≥1

f2(Tl) ḡ(Tl)1{Tl≤n} =
∫ n

0

f2(v) ḡ(v) ρ(v)dv ,

where

ḡ(v) = E
∑

k≥1

g(v + Tk)1{Tk≤n−v} =
∫ n

v

g(t) ρ(t− v)dt .

Moreover, using now the representation (2.92), we calculate the expectation of the last term in

(2.96)

EUn = ̺21

∫ n

0

‖f‖2t g(t) ρ(t) dt+ ̺22

∫ n

0

f̌(t) g(t) ρ(t) dt ,

where f̌(t) =
∫ t

0
f2(s) ρ(s) ds. This implies that

E

∫ n

0

I2t−(f) g(t) dmt = ̺22

∫ n

0

g(t) δ(t)dt ,

where δ(t) =
∫ t

0
f2(v) (ρ(t− v)− ρ(t)) ρ(v) dv. Note that, in view of Proposition 5.1, the

function δ can be estimated as

|δ(t)| ≤ |f |2∗ |ρ|∗
∫ t

0

|Υ(t− v)−Υ(t)| dv ≤ |f |2∗ |ρ|∗ (‖Υ‖1 + t|Υ(t)|) .

Therefore, ∣∣∣∣E
∫ n

0

I2t−(f) g(t) dmt

∣∣∣∣ ≤ 2̺22|g|∗|f |2∗ ‖Υ‖1 n

and this finishes the proof. ✷

Lemma 2.5. Assume that Conditions H1)–H4) hold true. Then, for any measurable bounded

non-random functions f and g, one has

E

∫ n

0

I2t−(f)It−(g)g(t)dξt = 0.

Proof. First, note that

∫ n

0

I2t−(f)It−(g)g(t)dξt = ̺1

∫ n

0

I2t (f)It(g)g(t)dLt + ̺2

∫ n

0

I2t−(f)It−(g)g(t)dzt.

Second, we will show that

E

∫ n

0

I2t−(f)It−(g)g(t)dLt = 0 . (2.98)
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Using the notations (2.93), we set

J1 =

∫ n

0

I2t (f)I
L
t (g)g(t)dLt and J2 =

∫ n

0

I2t (f)I
z
t (g)g(t)dLt,

we obtain that ∫ n

0

I2t (f)It(g)g(t)dLt = ̺1 J1 + ̺2 J2 . (2.99)

Now let us recall the Novikov inequalities, [44], also referred to as the Bichteler–Jacod in-

equalities (see [32, 43]) providing bound moments of supremum of purely discontinuous local

martingales for any predictable function h and any p ≥ 2

E sup
0≤t≤n

∣∣∣∣∣

∫

[0,t]×R

h d(µ− ν)
∣∣∣∣∣

p

≤ C∗
pE J̌p,n(h) , (2.100)

where C∗
p is some positive constant and

J̌p,n(h) =

(∫

[0,n]×R

h2 dν

)p/2

+

∫

[0,n]×R

hp dν .

By applying this inequality for the non-random function h(s, x) = g(s)x, and, recalling that

Π(x8) <∞, we obtain,

sup
0≤t≤n

E

∣∣∣IĽt (g)
∣∣∣
8
<∞ .

Taking into account that, for any non random square integrated function f, the integral(∫ t

0
f(s)dws

)
is Gaussian with the parameters

(
0,
∫ t

0
f2(s)ds

)
, we obtain

sup
0≤t≤n

E
∣∣ILt (g)

∣∣8 <∞.

Finally, by using the Cauchy’s inequality, we can estimate for any 0 < t ≤ n the following

expectation as

E (ILt (f))
4(ILt (g))

2 ≤
√

E (ILt (f))
8
√
E (ILt (f))

4

i.e.,

sup
0≤t≤n

E (ILt (f))
4(ILt (g))

2 <∞ .

Moreover, taking into account that the processes (Lt)t≥0 and (zt)t≥0 are independent, we obtain

that

E (Izt (f))
4(ILt (g))

2 = E (Izt (f))
4E (ILt (g))

2 =

∫ t

0

g2(s)dsE (Izt (f))
4 .

One can check directly here that, for t > 0,

E |Izt (f)|4 ≤ |f |4∗EY 4
1 EN2

t .
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Note that the last bound in Corollary 5.1 yields sup0≤t≤n E (Izt (f))
4 <∞ and, therefore,

sup
0≤t≤n

E (It(f))
4(ILt (g))

2 <∞ .

It follows directly that EJ1 = 0. Now we study the last term in (2.99). To this end, first note

that similarly to the previous reasoning we obtain that

E

∫ n

0

(ILt (f))
2Izt (g)g(t)dLt = 0 and E

∫ n

0

ILt (f)I
z
t (f)I

z
t (g)g(t)dLt = 0 .

Therefore, to show (2.98) one needs to show that

E

∫ n

0

(Izt (f))
2Izt (g)g(t) dLt = 0 . (2.101)

To check this, note that, for any 0 < t ≤ n and for any bounded function f,

Izt (f) =

∞∑

k=1

f(Tk)Yk 1{Tk≤t} =
Nn∑

k=1

f(Tk)Yk 1{Tk≤t} ,

i.e.,
∫ n

0

(Izt (f))
2Izt (g)g(t) dLt =

Nn∑

k=1

Nn∑

l=1

Nn∑

j=1

f(Tk) f(Tl) g(Tj)YjYl Yk Iklj ,

where

Iklj =

∫ n

0

1{Tk≤t}1{Tl≤t}1{Tj≤t}dLt .

Taking into account that the (Lt)t≥0 is independent of the field Gz = σ{zt , t ≥ 0}, we obtain

that E
(
Iklj |Gz

)
= 0. Therefore,

E

∫ n

0

(Izt (f))
2Izt (g)g(t) dLt

= E

Nn∑

k=1

Nn∑

l=1

Nn∑

j=1

f(Tk) f(Tl) g(Tj)YjYl Yk E
(
Iklj |Gz

)
= 0.

So, we obtain (2.101) and hence the proof is achieved. ✷

Appendix

Property of the penalty term

Lemma 2.6. For any n ≥ 1 and λ ∈ Λ,

P 0
n(λ) ≤ EQErrn(λ) +

C1,Q,n

n
,

where the coefficient P 0
n(λ) was defined in (2.38).
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Proof. By the definition of Errn(λ) one has

Errn(λ) =
n∑

j=1

(
(λ(j)− 1)θj +

λ(j)

n
ξj,n

)2

.

In view of Proposition 2.2, this leads to the desired result

EQ Errn(λ) ≥
1

n

n∑

j=1

λ2(j)EQ ξ
2
j,n ≥ P 0

n(γ)−
C1,Q,n

n
.



Chapter 3

Non-parametric estimation for semi-Markov

regression models based on discrete data

3.1 Introduction

Let us consider a regression model in continuous time

d yt = S(t)d t+ d ξt , 0 ≤ t ≤ n , (3.1)

where S is an unknown 1-periodic function defined on R with values on R, (ξt)t≥0 is the

unobserved noise process (2.2) . The problem is to estimate the unknown function S in model

(3.1) on the basis of observations

(ytj )0≤j≤np, tj = j∆, ∆ =
1

p
, (3.2)

where integer p ≥ 1 is the observation frequency. In this chapter we use the risks defined in

(2.4) and (2.5) for the distribution family Qn.

The goal of this chapter is to develop a robust efficient model selection method for the model

(3.1) with the semi-Markov dependence having unknown distribution. We use the approach

proposed by Konev and Pergamenshchikov in [17] and [18] for continuos time regression mod-

els with non martingale noises. Unfortunately, we cannot use directly their method for the

semi-Markov regression models, since their tool essentially uses the fact that the Ornstein -

Uhlenbeck dependence decreases with geometrical rate and obtain sufficiently quickly the“white

noise” case. In this chapter we propose new analytical tools based on renewal methods, to ob-

tain the sharp non-asymptotic oracle inequalities. And, as a consequence, we obtain robust

efficiency for proposed model selection procedures.

3.2 Model selection

In this chapter we will use the trigonometric basis (Trj)j≥1 in L2[0, 1] defined in (1.15). By

making use of this basis, we consider the discrete Fourier transform of S

S(t) =

p∑

j=1

θj,pTrj(t), t ∈ {t1, ..., tp}, (3.3)
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where the Fourier coefficients are defined by

θj,p = (S,Trj)p =
1

p

p∑

i=1

S(ti)Trj(ti). (3.4)

In the sequel the corresponding norm will be denoted by ‖x‖2p = (x, x)p. These Fourier coeffi-

cients θj,p can be estimated by

θ̂j,p =
1

n

∫ n

0

Ψj,p(t)d yt and Ψj,p(t) =

np∑

l=1

Trj(tl)1{tl−1<t≤tl} . (3.5)

We note that the system of functions (Ψj,p)1≤j≤p is orthonormal in L2[0, 1] because

∫ 1

0

Ψj,p(t)Ψi,p(t)d t = (Trj ,Tri)p = 1{i=j} .

In the sequel we need the Fourier coefficients for the function S with respect to the new basis

(Ψj,p)1≤j≤p . These coefficiens can be writen as

θj,p =

∫ 1

0

S(t)Ψi,p(t)d t = θj,p + hj,p, (3.6)

where

hj,p(S) =

p∑

l=1

∫ tl

tl−1

Trj(tl)(S(t)− S(tl))d t .

From (3.1) it follows directly that these Fourier coefficients satisfy the equation

θ̂j,p = θj,p +
1√
n
ξj,p, where ξj,p =

1√
n
In(Ψj,p) . (3.7)

For any 0 ≤ t ≤ 1 we estimate the function S by the weighted least squares estimator

Ŝλ(t) =
n∑

j=1

λ(j)θ̂j,pΨj,p(t) , (3.8)

where the weight vector λ = (λ(1), ....., λ(n)) belongs to some finite set Λ from [0, 1]n, θ̂j,p was

defined in (3.5). Now let us consider

ι̌ = #(Λ) and |Λ|∗ = max
λ∈Λ

L(λ) , (3.9)

where #(Λ) is the cardinal number of Λ and L(λ) =
∑n

j=1
λ(j). In the sequel we assume that

|Λ|∗ ≥ 1 and λ(j) = 0 for j ≥ p.
In order to find a proper weight sequence λ in the set Λ one needs to specify a cost function.

When choosing an appropriate cost function one can use the following argument. Let as consider

the empirical squared error

Err(λ) = ‖Ŝλ − S‖2 , (3.10)
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which in our case is equal to

Err(λ) =
n∑

j=1

λ2(j)θ̂2j,p − 2

n∑

j=1

λ(j)θ̂j,pθj,p + ‖S‖2 . (3.11)

Since the Fourier coefficients (θj)j≥ 1 are unknown, the weight coefficients (λ(j))1≤j≤p cannot

be determined by minimizing this quality. To circumvent this difficulty, one needs to replace

the terms θ̂j,pθj,p by their estimators θ̃j,p. Let us set

θ̃j,p = θ̂2j,p −
σ̂n
n
, (3.12)

where σ̂n is an estimate of the proxy variance σQ defined in (2.8). For, example, we can take

it as

σ̂n =
n

p̌

p̌∑

j=l

θ̂2j,p and p̌ = min(p, n) , (3.13)

where l = [
√
n], and we set σ̂n = 0 for l > p. For this change in the empirical squared error,

one has to pay some penalty. Thus, we obtain the cost function of the form

Jn(λ) =

n∑

j=1

λ2(j)θ̂2j,n − 2
n∑

j=1

λ(j)θ̃j,n + δ Pn(λ), (3.14)

where δ > 0 is some threshold which will be specified later and the penalty term

Pn(λ) =
σ̂n|λ|2
n

. (3.15)

Minimizing the cost function, that is

λ̂ = argminλ∈ΛJn(λ), (3.16)

and substituting the obtained weight coefficients λ̂ in (3.8), lead to the model selection proce-

dure

Ŝ∗ = Ŝλ̂. (3.17)

We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique we take one of

them.

3.3 Oracle inequality

In order to prove the oracle inequality, the following conditions will be needed for the noise

(ξt)t≥ 0. Here we use the conditions introduced in [17] for the general semi-martingale model

(2.1).
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L1) For all n ≥ 1 and Q there exist a variance proxy σQ > 0 and a constant L1,Q ≥ 0 such

that

sup
p≥3

sup
x∈[−1,1]n

∣∣B1,Q(x)
∣∣ ≤ L1,Q <∞ ,

where B1,Q(x) =
∑n

j=1
xj

(
EQξ

2
j,n − σQ

)
.

L2) For all n ≥ 1 and Q there exists a constant L2,Q ≥ 1 such that

sup
p≥3

sup
|x|≤1

EB2
2,Q(x) ≤ L2,Q <∞,

where B2,Q(x) =
∑n

j=1
xj ξ̃j,p and ξ̃j,p = ξ2j,p −EQξ

2
j,p .

First we set the following constant which will be used to describe the rest term in the oracle

inequalitie. We set

gn,p = 1 + |Λ|∗
(√

n

p̌
+

1√
p̌

)
. (3.18)

Firstly, we obtain the non asymptotic oracle inequality for the model selection procedure (3.17).

Theorem 3.1. Assume that Conditions L1) and L2) hold. Then there exists some constant

l∗ > 0 such that for any noise distribution Q, the weight vectors set Λ, for any periodic function

S for any n ≥ 1, p ≥ 3 and 0 < δ ≤ 1/6, the procedure (3.17), satisfies the following oracle

inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S)

+ l∗
ι̌

δn

(
σQ + |Λ|∗EQ|σ̂n − σQ|

)
. (3.19)

Proof. Using the cost function given in (3.14), we can rewrite the empirical squared error in

(3.11) as follows

Err(λ) = Jn(λ) + 2

n∑

j=1

λ(j)θ̌j,p + ‖S‖2 − ρP̂n(λ), (3.20)

where

θ̌j,p = θ̃j,p − θj,pθ̂j,p =
1√
n
θj,pξj,p +

1

n
ξ̃j,p +

1

n
ςj,n +

σQ − σ̂n
n

,

with ςj,p = EQξ
2
j,p − σQ and ξ̃j,p = ξ2j,p −EQξ

2
j,p. Setting

M(λ) =
1√
n

n∑

j=1

λ(j)θjξj,p and P 0
n =

σQ|λ|2
n

, (3.21)
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we can rewrite (3.20) as

Err(λ) = Jn(λ) + 2
σQ − σ̂n

n
L(λ) + 2M(λ) +

2

n
B1,Q(λ)

+ 2
√
P 0
n(λ)

B2,Q(e(λ))√
σQn

+ ‖S‖2 − ρPn(λ), (3.22)

where e(λ) = λ/|λ| and the function L was defined in (3.9). Let λ0 = (λ0(j))1≤j≤ p be a fixed

sequence in Λ and λ̂ be defined as in (3.16). Substituting λ0 and λ̂ in Equation (3.22), we

obtain

Err(λ̂)− Err(λ0) =J(λ̂)− J(λ0) + 2
σQ − σ̂n

n
L(̟) +

2

n
B1,Q(̟) + 2M(̟)

+ 2

√
P 0
n(λ̂)

B2,Q(ê)√
σQn

− 2
√
P 0
n(λ0)

B2,Q(e0)√
σQn

− δPn(λ̂) + δPn(λ0), (3.23)

where ̟ = λ̂− λ0, ê = e(λ̂) and e0 = e(λ0). Note that, by (3.9),

|L(̟)| ≤ L(λ̂) + L(λ) ≤ 2|Λ|∗ .

The inequality

2|ab| ≤ δa2 + δ−1b2 (3.24)

implies that, for any λ ∈ Λ,

2
√
P 0
n(λ)

|B2,Q(e(λ))|√
σQn

≤ δP 0
n(λ) +

B2
2,Q(e(λ))

δσQ n
.

Taking into account that 0 < δ < 1, we get

Err(λ̂) ≤ Err(λ0) + 2M(̟) +
2L1,Q

n
+

2B∗
2,Q

δσQ n

+
1

n
|σ̂n − σQ|(|λ̂|2 + |λ0|2) + 2δPn(λ0) ,

where B∗
2,Q = supλ∈ΛB

2
2,Q((e(λ)). Moreover, noting that in view of (3.9) supλ∈Λ |λ|2 ≤ |Λ|∗,

we can rewrite the previous bound as

Err(λ̂) ≤Err(λ0) + 2M(̟) +
2L1,Q

n
+

2B∗
2,Q

δσQn

+
4|Λ|∗
n
|σ̂ − σQ|+ 2δPn(λ0). (3.25)
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To estimate the second term in the right side of this inequality we set

Sx =

n∑

j=1

x(j)θj,pTrj , x = (x(j))1≤j≤n ∈ R
n .

Thanks to (2.7) we estimate the term M(x) for any x ∈ R
n as

EQM
2(x) ≤ κQ

1

n

n∑

j=1

x2(j)θ
2

j,p = κQ

1

n
‖Sx‖2. (3.26)

To estimate this function for a random vector x ∈ R
n, we set

Z∗ = sup
xεΛ1

nM2(x)

‖Sx‖2
, Λ1 = Λ− λ0 .

So, through Inequality (3.24), we get

2|M(x)| ≤ δ‖Sx‖2 +
Z∗

nδ
. (3.27)

It is clear that the last term here can be estimated as

EQZ
∗ ≤

∑

x∈Λ1

nEQM
2(x)

‖Sx‖2
≤
∑

x∈Λ1

κQ = κQι̌ , (3.28)

where ν = card(Λ). Moreover, note that, for any x ∈ Λ1,

‖Sx‖2 − ‖Ŝx‖2 =
n∑

j=1

x2(j)(θ
2

j,p − θ̂2j ) ≤ −2M1(x), (3.29)

where M1(x) = n−1/2
∑n

j=1
x2(j)θ

2

j,pξj,n. Taking into account now that, for any x ∈ Λ1, the

components |x(j)| ≤ 1, we can estimate this term as in (3.26), i.e.

EQM
2
1 (x) ≤ κQ

‖Sx‖2
n

.

Similarly to the previous reasoning we set

Z∗
1 = sup

xεΛ1

nM2
1 (x)

‖Sx‖2

and we get

EQ Z
∗
1 ≤ κQ ι̌ . (3.30)

Using the same type of arguments as in (3.27), we can derive

2|M1(x)| ≤ δ‖Sx‖2 +
Z∗
1

nδ
. (3.31)
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From here and (3.29), we get

‖Sx‖2 ≤
‖Ŝx‖2
1− δ +

Z∗
1

nδ(1− δ) (3.32)

for any 0 < δ < 1. Using this bound in (3.27) yields

2M(x) ≤ δ‖Ŝx‖2
1− δ +

Z∗ + Z∗
1

nδ(1− δ) .

Taking into account that ‖Ŝ̟‖2 ≤ 2 (Err(λ̂) + Err(λ0)), we obtain

2M(̟) ≤ 2δ(Err(λ̂) + Err(λ0))

1− δ +
Z∗ + Z∗

1

nδ(1− δ) .

Using this bound in (3.25) we obtain

Err(λ̂) ≤ 1 + δ

1− 3δ
Err(λ0) +

Z∗ + Z∗
1

nδ(1− 3δ)
+

2L1,Q

n(1− 3δ)
+

2B∗
2,Q

δ(1− 3δ)σQn

+
(4|Λ|∗ + 2)

n(1− 3δ)
|σ̂ − σQ|+

2δ

(1− 3δ)
P 0
n(λ0).

Moreover, for 0 < δ < 1/6 we can rewrite this inequality as

Err(λ̂) ≤ 1 + δ

1− 3δ
Err(λ0) +

2(Z∗ + Z∗
1 )

nδ
+

4L1,Q

n
+

4B∗
2,Q

δσQn

+
(8|Λ|∗ + 2)

n
|σ̂ − σQ|+

2δ

(1− 3δ)
P 0
n(λ0).

Now, in view of Condition L2), we estimate the expectation of the term B∗
2,Q in (3.25) as

EQB
∗
2,Q ≤

∑

λ∈Λ
EQB

2
2,Q(e(λ)) ≤ ι̌L2,Q .

Now, taking into account that |Λ|∗ ≥ 1, we get

RQ(Ŝ∗, S) ≤
1 + δ

1− 3δ
RQ(Ŝλ0

, S) +
4κQι̌

nδ
+

4L1,Q

n
+

4ι̌L2,Q

δσQn

+
10|Λ|∗
n

EQ |σ̂ − σQ|+
2δ

(1− 3δ)
P 0
n(λ0).

By using the upper bound for Pn(λ0) in Lemma 3.1, we obtain that

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
RQ(Ŝλ0

, S) +
4κQι̌

nδ
+

4L1,Q

n
+

4ι̌L2,Q

δσQn

+
10|Λ|∗
n

EQ |σ̂ − σQ|+
2δL1,Q

(1− 3δ)n
.

Taking into account that 1− 3δ ≥ 1/2 for 0 < δ < 1/3 and that κQ ≤ (1 + τ̌ |ρ|∗)σQ and using

the bounds (3.38) and (3.60) we obtain the inequality (3.19). Hence we get the desired result.

✷
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Corollary 3.1. Assume that Conditions L1) and L2) hold and the proxy variance σQ is known.

Then there exists some constant l∗ > 0 such that for any noise distribution Q, for any weight

vectors set Λ, for any periodic function S for any n ≥ 1, p ≥ 3 and 0 < δ ≤ 1/6, the procedure

(3.17) with σ̂n = σQ, satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) + l∗

σQι̌

δn
. (3.33)

Now we study the model selection procedure (3.17) using the proxy estimate (3.13).

Theorem 3.2. Assume that the function S is continuously differentiable and the conditions L1)

and L2) hold true. Then there exists some constant l∗ > 0 such that for any noise distribution

Q, for any weight vectors set Λ, for any periodic function S for any n ≥ 1, p ≥ 3 and

0 < δ ≤ 1/6, the procedure (3.17), satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S)

+ l∗
ν

δn
(1 + σQ)

3
(
1 + ‖Ṡ‖2

)
gn,p . (3.34)

Let us study the robust risks (3.4) for the procedure (3.17). In this case this family consists of

all distributions on the Skorokhod space D[0, n] with the parameters satisfying the conditions

(2.8) – (2.9) . Now, to obtain the efficiency property we use the weight coefficients (λ(j))1≤j≤n

specified in (2.28).

Our goal is to bound asymptotically the term (3.18) by any power of n. To this end we

assume the following condition.

H5) Assume that there exists δ̌ > 0 such that for any n ≥ 3

p ≥ n5/6 . (3.35)

Now Theorem 3.2 implies the following oracle inequality.

Theorem 3.3. Assume that the unknown function S is continuously differentiable. Moreover,

assume that Conditions H1)–H5) hold. Then for the robust risks defined in (3.4) through the

distribution family (2.8) – (2.9), the procedure (3.17) with the coefficients (2.28), for any n ≥ 1

and 0 < δ < 1/6, satisfies the following oracle inequality

R∗(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
n(S)

nδ
, (3.36)

where the sequence U∗
n(S) > 0 is such that under condition (2.26), for any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0 . (3.37)
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Now we need to check the conditions L1) and L2) for the process (2.2).

Proposition 3.1. Assume that Conditions H1)–H4) hold true. Then

L1,Q = 2τ̌ ‖Υ‖1 σQ . (3.38)

Proof. Firstly, we set

ILn (f) =

∫ n

0

f(t)dLt and Izn(f) =

∫ n

0

f(t)dzt . (3.39)

In view of (1.6) the last integral can be represented as

Izn(f) =
∞∑

l=1

f(Tl)Yl1{Tl≤n} . (3.40)

Therefore,

ξj,n =
̺1√
n
ILn (Ψj,p) +

̺2√
n
Izn(Ψj,p)

and

Eξ2j,n =
̺21
n

∫ n

0

Ψ2
j,p(t)d t+

̺22
n
E

∞∑

l=1

Ψ2
j,p(Tl)1{Tl≤n} . (3.41)

Using Proposition 5.1 we get

E

∞∑

l=1

Ψ2
j,p(Tl)1{Tl≤n} =

∫ n

0

Ψ2
j,p(x) ρ(x)dx

=
1

τ̌

∫ n

0

Ψ2
j,p(x)dx +

∫ n

0

Ψ2
j,p(x)Υ(x)dx ,

where ρ is the renewal density introduced in (1.8). Then we obtain,

Eξ2j,n = σQ +
̺22
n

∫ n

0

Ψ2
j,p(x)Υ(x)dx

and

sup
j≥1

∣∣∣∣
∫ n

0

Ψ2
j,p(x)Υ(x)dx

∣∣∣∣ ≤ 2‖Υ‖1 , (3.42)

where σQ = ̺21 + ̺22/τ̌ . This directly implies the desired result. ✷

To study the functionB2,Q(x), we have to analyze the correlation properties for the following

stochastic integrals

Ĩn(f) = I2n(f)−EI2n(f) . (3.43)

To do this we set

č1 = 1 + Π(x4) + ‖Υ‖21 + |ρ|∗ and č2 = 12(1 + τ̌)2 (1 + č1) . (3.44)

Now we investigate the behavior of the integrals defined in (3.43) as functions of f .
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Proposition 3.2. For any left continuous functions f, g : (0,∞) −→ R such that ‖f‖∗ ≤ 1,

‖g‖∗ ≤ 1, we have

|EĨn(f)Ĩn(g)| ≤ 12σ2Q(1 + τ̌)2
(
(f, g)2n + nč1

)
. (3.45)

Proof. By Ito’s formula one gets

dI2t (f) = 2It−(f)dIt(f) + ̺21 ˇ̺
2 f2(t)d t+

∑

0≤s≤t

f2(s)(∆ξds )
2 , (3.46)

where ξdt = ̺3 Ľt + ̺2zt and ̺3 = ̺1
√

1− ˇ̺2. Taking into account that the processes (Ľt)t≥0

and (zt)t≥0 are independent and the time of jumps Tk defined in (1.7) has a density, we have

∆zs∆Ľs = 0 a.s. for any s ≥ 0. Therefore, we can rewrite the differential (3.46) as

dI2t (f) =2It−(f)dIt(f) + ̺21 ˇ̺
2 f2(t)d t

+ ̺23d
∑

0≤s≤t

f2(s)(∆Ľs)
2 + ̺22d

∑

0≤s≤t

f2(s)(∆zs)
2 . (3.47)

Therefore, using Lemma 2.1 we obtain

EI2t (f) = ̺21 ‖f‖2t + ̺22‖f
√
ρ‖2t ,

where ‖f‖2t =
∫ t

0
f2(u)du, ρ is the density of the renewal measure

∑∞
j=1

η(j) and with η the

distribution of τ1. Therefore,

dĨt(f) = 2It−(f)f(t)dξt + f2(t)dm̃t , m̃t = ̺23m̌t + ̺22mt , (3.48)

where m̌t =
∑

0≤s≤t
(∆Ľs)

2 − t and mt =
∑

0≤s≤t
(∆zs)

2 −
∫ t

0
ρ(s)ds. By the Ito’s formula we

get

EĨn(f)Ĩn(g) =E

∫ n

0
Ĩt−(f)dĨt(g)

+E

∫ n

0
Ĩt−(g)dĨt(f) +E

[
Ĩ(f), Ĩ(g)

]

n
. (3.49)

First, note that the process (m̌t)t≥0 is a martingale and, using Lemma 2.5, we get

E

∫ n

0
Ĩt−(f)dĨt(g) = ρ22E

∫ n

0
Ĩt−(f)g

2(t)dmt = ρ22E

∫ n

0
I2t−(f)g

2(t)dmt .

The last integral can be represented as

E

∫ n

0
I2t−(f)g

2(t)dmt = J1 − J2 ,

where

J1 = E
∑

k≥1

I2Tk−
(f)g2(Tk)1{Tk≤n} and J2 =

∫ n

0
E I2t (f)g

2(t)ρ(t)dt .
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By Lemma 2.3 we get

J1 = E
∑

k≥1

E
(
I2Tk−

(f)|G
)
g2(Tk)1{Tk≤n} = ̺21J1,1 + ̺22J1,2 ,

where

J1,1 = E
∑

k≥1

‖f‖2Tk
g2(Tk)1{Tk≤n} and J1,2 = E

∑

k≥1

k−1∑

l=1

f2(Tl) g
2(Tk)1{Tk≤n} .

We obtain directly that

J1,1 =

∫ n

0

‖f‖2t g2(t)ρ(t)dt

and

J1,2 = E
∑

l≥1

f2(Tl)
∑

k≥l+1

g2(Tk)1{Tk≤n} =
∫ n

0

f2(x)

(∫ n−x

0

g2(x+ t)ρ(t)dt

)
ρ(x)dx.

From Lemma 2.1 we obtain that

J2 = ̺21

∫ n

0

‖f‖2t g2(t)ρ(t)dt+ ̺22

∫ n

0

‖f√ρ‖2t g2(t)ρ(t)dt .

Therefore,

E

∫ n

0
I2t−(f)g

2(t)dmt = ̺22

∫ n

0

f2(x)

(∫ n

x

g2(t)(ρ(t− x)− ρ(t))dt
)
ρ(x)dx .

Taking into account that ρ(t− x)− ρ(t) = Υ(t− x)−Υ(t) we can estimate the last integral as

|E
∫ n

0
I2t−(f)g

2(t)dmt| ≤ 2̺22n‖Υ‖1 .

From this and by the symmetry arguments we obtain that

|E
∫ n

0
Ĩt−(f)dĨt(g)|+ |E

∫ n

0
Ĩt−(g)dĨt(f)| ≤ 4̺42n‖Υ‖1 . (3.50)

Note now that [
Ĩ(f), Ĩ(g)

]

n
=
〈
Ĩc(f), Ĩc(g)

〉

n
+Dn(f, g) , (3.51)

where

Dn(f, g) =
∑

0≤t≤n

∆Ĩdt (f)∆Ĩ
d
t (g) .

It should be noted that the continuous and the discrete parts of the processes (3.48) can be

represented as

Ĩct (f) = 2̺1 ˇ̺

∫ t

0

Is(f)f(s)dws and Ĩdt (g) = 2

∫ t

0

Is−(f)f(s)dξ
d
s +

∫ t

0

f2(s)dm̃s .
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So, in view of Lemma 2.1,

E < Ĩc(f),Ĩc(g) >n= 4ρ21 ˇ̺
2

∫ n

0
E(It(f)It(g))f(t)g(t)dt

= 4ρ41 ˇ̺
2

∫ n

0
(f, g)t f(t)g(t)dt+ 4ρ21ρ

2
2 ˇ̺

2

∫ n

0
(f, gρ)tf(t)g(t)dt

= 4ρ21 ˇ̺
2σQ (f, g)2n + 4ρ21ρ

2
2 ˇ̺

2

∫ n

0
(f, gΥ)tf(t)g(t)dt , (3.52)

with (f, g)t =
∫ t
0 f(s)g(s)ds. Taking into account that ‖f‖∗ ≤ 1 and ‖g‖∗ ≤ 1, we can estimate

the last integral as ∫ n

0
(f, gΥ)tf(t)g(t)dt ≤ n‖Υ‖1 .

Therefore, ∣∣∣∣E
〈
Ĩc(f), Ĩc(g)

〉

n

∣∣∣∣ ≤ 4σ2Q
(
(f, g)2n + nτ̌‖Υ‖1

)
. (3.53)

To study the last term in (3.51) note that

Dn(f, g) =
∑

0≤t≤n

(
2It−(f)f(t)∆ξ

d
t + f2(t)∆m̃t

)(
2It−(g)g(t)∆ξ

d
t + g2(t)∆m̃t

)
.

Taking into account that for any t > 0

∆ξdt∆m̃t = ̺33(∆Ľt)
3 + ̺32(∆zt)

3 ,

we obtain that

E
∑

0≤t≤n

It−(f)f(t)g
2(t)∆ξdt ∆m̃t =

(
̺33Π(x

3) + ̺32EY
3
1

) ∫ n

0

E It(f)f(t)g
2(t)dt = 0 .

So, using the symmetry arguments, we find that

EDn(f, g) = 4ED1,n(f, g) +ED2,n(f, g) , (3.54)

where

D1,n(f, g) =
∑

0≤t≤n

It−(f)It−(g)f(t)g(t)(∆ξ
d
t )

2 and D2,n(f, g) =
∑

0≤t≤n

f2(t) g2(t)(∆m̃t)
2 .

Note that

D1,n(f, g) = ̺23Ď1,n(f, g) + ̺22D̃1,n(f, g) ,

where

Ď1,n(f, g) =
∑

0≤t≤n

It−(f)It−(g)f(t)g(t)(∆Ľt)
2

and

D̃1,n(f, g) =
∑

0≤t≤n

It−(f)It−(g)f(t)g(t)(∆zt)
2 .
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Now, similarly to (3.52) and taking into account that Π(x2) = 1, we get

EĎ1,n(f, g) =

∫ n

0

f(t)g(t)E It(f)It(g) dt = ̺21

∫ n

0

f(t)g(t) (f, g)t dt

+ ̺22

∫ n

0

f(t)g(t) (f, gρ)t dt

=σQ(f, g)
2
n + ̺22

∫ n

0

f(t)g(t) (f, gΥ)t dt .

So,

|EĎ1,n(f, g)| ≤ σQ
(
(f, g)2n + nτ̌‖Υ‖1

)
. (3.55)

Moreover, taking into account that EY 2
1 = 1 we get

ED̃1,n(f, g) = E
∑

k≥1

ITk−(f)ITk−(g)f(Tk)g(Tk)1{Tk≤n} .

So, in view of Lemma 2.3

ED̃1,n(f, g) = E
∑

k≥1

E
(
ITk−(f)ITk−(g)|G

)
f(Tk)g(Tk)1{Tk≤n}

= ̺21E
∑

k≥1

(f , g)Tk
f(Tk)g(Tk)1{Tk≤n} + ̺22ED

′

1,n(f, g)

= ̺21

∫ n

0

(f, g)t f(t)g(t)ρ(t)dt+ ̺22ED
′

1,n(f, g) ,

where

D
′

1,n(f, g) =
∑

k≥1

k−1∑

l=1

f(Tl) g(Tl)f(Tk)g(Tk)1{Tk≤n} .

Noting now that
∫ n

0

(f, g)t f(t)g(t)ρ(t)dt =
1

2τ̌
(f, g)2n +

∫ n

0

(f, g)t f(t)g(t)Υ(t)dt ,

we obtain

|
∫ n

0

(f, g)t f(t)g(t)ρ(t)dt| ≤
1

2τ̌
(f, g)2n + n‖Υ‖1 .

Furthermore, the expectation of D
′

1,n(f, g) can be represented as

ED
′

1,n(f, g) = E
∑

l≥1

f(Tl) g(Tl)
∑

k≥l+1

f(Tk)g(Tk)1{Tk≤n}

=

∫ n

0

f(x)g(x)

(∫ n−x

0

f(x+ t)g(x+ t)ρ(t)dt

)
ρ(x)dx

=
1

2τ̌
(f, g)2n +D

′′

1,n(f, g) ,
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where the last term in this equality can be represented as

D
′′

1,n(f, g) =

∫ n

0

f(x)g(x)

(∫ n−x

0

f(x+ t)g(x+ t)Υ(t)dt

)
ρ(x)dx

+
1

τ̌

∫ n

0

f(x)g(x)

(∫ n−x

0

f(x+ t)g(x+ t)Υ(t)dt

)
Υ(x)dx .

This implies

|D′′

1,n(f, g)| ≤ n(1 +
1

τ̌
)(1 + ‖Υ‖21) .

Therefore,

|ED̃1,n(f, g)| ≤ σQ
(
(f, g)2n + n(1 + τ̌)‖Υ‖21

)
. (3.56)

Finally we obtain that

|ED1,n(f, g)| ≤ σ2Q(1 + τ̌)2
(
(f, g)2n + n‖Υ‖21

)
. (3.57)

As to the last term in (3.54) we can calculate directly

ED2,n(f, g) = ̺43Π(x
4)

∫ n

0

f2(t) g2(t)dt+ ̺42

∫ n

0

f2(t) g2(t)ρ(t)dt ,

i.e.

ED2,n(f, g) ≤ nσ2Q
(
Π(x4) + |ρ|∗

)
(1 + τ̌)2 .

From here we obtain that

|EDn(f, g)| ≤ σ2Q(1 + τ̌)2
(
4(f, g)2n + nč1

)
, (3.58)

where č1 is given in (3.44). From this and (3.53) we find

E[Ĩ(f), Ĩ(g)]n ≤ 8σ2Q(1 + τ̌)2
(
(f, g)2n + nč1

)
. (3.59)

This bound and (3.50) implies (3.45). Hence we get the desired result . ✷

Using these properties we can obtain the following bound.

Proposition 3.3. Assume that Conditions H1)–H4) hold true. Then, for all n ≥ 1,

L2,Q = č2 σ
2
Q , (3.60)

where |x|2 =∑n
j=1

x2j .
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Proof. Note that

E




n∑

j=2

xj ξ̃j,p




2

≤ 1

n2

n∑

j=1

n∑

l=1

|xj | |xl||EĨn(Ψj,p)Ĩn(Ψl,p)| .

Using here Proposition 3.2 and taking into account that

(Ψj,p , Ψl,p)n =

∫ n

0

Ψj,p(t)Ψl,p(t)dt = n1{j=l} ,

we obtain the bound (3.60). Hence we obtain the desired result. ✷

Now we can study the estimate (3.17).

Proposition 3.4. Assume that Conditions H1) and H4) hold true for the model (3.1) and

that S is continuously differentiable. Then, for any n ≥ 2 and p ≥ 3,

EQ,S |σ̂n − σQ| ≤ č3
(√

n

p̌
+

1√
p̌

)
(1 + ‖Ṡ‖2)(1 + σQ)

2 , (3.61)

where č3 = 6 (14 + 2|ρ|∗ + 3
√
1 + č1) (1 + τ̌).

Proof. It is clear that Inequality (3.61) holds true for l > p̌. Let now l 6 p̌. Setting

x
′

j = 1{[√n]6j6p̌} and subtituting (3.7) in (3.13) yields

σ̂n =
n

p̌

p̌∑

j=l

(θj,p)
2 +

2n

p̌
M(x

′

) +
1

p̌

p̌∑

j=l

ξ2j,p , (3.62)

where M(x
′

) is defined in (3.21). Furthermore, putting x
′′

j = p̌−1/21{l6j6p̌}, one can write the

last term on the right hand side of (3.62) as

1

p̌

p̌∑

j=l

ξ2j,p =
1√
p̌
B2,Q(x

′′

) +
1

p̌
B1,Q(x

′

) +
(p̌− l + 1)σQ

p̌
,

where the functions B1,Q and B2,Q are given in conditions L1) and L2). Using Proposition 3.1,

Proposition 3.3 and Lemma 3.3 , we come to the following upper bound

EQ|σ̂n − σQ| ≤
16‖Ṡ‖2n

lp
+

2n

p
EQ |M(x

′

)|+
L1,Q

p
+

√
L2,Q√
p

+
σQ(l − 1)

p
.

In the same way as in (3.26), we obtain

EQ |M(x
′

)| ≤


κQ

n

p∑

j=l

θ
2

j,p




1/2

≤
4(κQ‖Ṡ‖2)1/2

l
.

Taking into account that κQ ≤ (1 + τ̌ |ρ|∗)σQ and using the bounds (3.38) and (3.60) we

obtain the inequality (3.61). Hence we obtain the desired result. ✷

Remark 3.1. Propositions 3.1 and 3.3 are used to obtain the oracle inequalities given in Section

4.4 (see, for example, [17]).
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3.4 Efficiency

Now we study the asymptotically efficiency properties for the procedure (3.17) with the coef-

ficients (2.28), with respect to the robust risk (3.4) defined by the distribution family (2.8) –

(2.9). To this end, we assume that the unknown function S in the model (3.1) belongs to the

Sobolev ball

W k
r
= {f ∈ Ckper[0, 1] ,

k∑

j=0

‖f (j)‖2 ≤ r} , (3.63)

where r > 0 , k ≥ 1 are some parameters, Ckper[0, 1] is the set of k times continuously differen-

tiable functions f : [0, 1]→ R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. The function class

W k
r
can be written as an ellipsoid in L2, i.e.

W k
r
= {f ∈ Ckper[0, 1] :

∞∑

j=1

aj θ
2
j ≤ r}, (3.64)

where aj =
∑k

i=0
(2π[j/2])2i.

Similarly to [17, 18] we will show here that the asymptotic sharp lower bound for the robust

risk (3.4) is given by

r∗k = ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (3.65)

Note that this is the well-known Pinsker’s constant obtained for the non-adaptive filtration

problem in “signal + small white noise” model (see, for example, [47]).

Let Πn be the set of all estimators Ŝn measurable with respect to the σ-algebra σ{yt , 0 ≤
t ≤ n} generated by the process (3.1).

Theorem 3.4. Under the conditions (2.8) and (2.9),

lim inf
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) ≥ r∗k , (3.66)

where υn = n/ς∗.

Note that if the parameters r and k are known, i.e. for the non-adaptive estimation case, then

to obtain the efficient estimation for the “signal+white noise”model. Pinsker in [47] proposed

to use the estimate Ŝλ0
defined in (3.8) with the weights (2.28) in which

λ0 = λα0
and α0 = (k, l0) , (3.67)

where l0 = [r/ε]ε. For the model (3.1) – (2.2) we show the same result.

Proposition 3.5. The estimator Ŝλ0
satisfies the following asymptotic upper bound

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝλ0

, S) ≤ r∗k .
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Proof. First, we note that in view of (3.8) one can represent the quadratic risk for the empiric

norm ‖ · ‖p as

EQ ‖Ŝλ0
− S‖2p =

1

n

p̌∑

j=1

λ20(j)EQ ξ
2
j,p +Θp ,

where Θp =
∑p

j=1

(
θj,p − λ0(j) θj,p

)2
. We put here λ0(j) = 0 for j > n if p > n. The first term

can be estimated by the bound (3.38) as

sup
Q∈Qn

EQ

p̌∑

j=1

λ20(j) ξ
2
j,p ≤ ς∗

n∑

j=1

λ20(j) + L1,Q ,

where L∗
1,n = supQ∈Qn

L1,Q. Therefore, taking into account that υn = n/σ∗, we get

sup
Q∈Qn

EQ ‖Ŝλ0
− S‖2p ≤

1

υn

n∑

j=1

λ20(j) +
L∗
1,n

n
+Θp .

Note that

lim
n→∞

1

υ
1/(2k+1)
n

n∑

j=1

λ20(j) =
2(τk r)

1/(2k+1) k2

(k + 1)(2k + 1)
. (3.68)

Furthermore, by Inequality (3.24) for any 0 < ε̃ < 1 we get

Θp ≤ (1 + ε̃)Θp + (1 + ε̃−1)

p∑

j=1

h2j,p , (3.69)

where Θp =
∑p

j=1 (1− λ0(j))2 θ2j,p. In view of Definition (2.28), we can represent this term as

Θp =

[ω0]∑

j=ι0

(1− λ0(j))2 θ2j,p +
p∑

j=[ω0]+1

θ2j,p := Θ1,p +Θ2,p ,

where ι0 = j∗(α0), ω0 = ωα0
= (τkl0υn)

1/(2k+1) and l0 = [r/ε] ε. Applying Lemma 3.5 yields

Θ1,p ≤ (1 + ε̃)

[ω0]∑

j=l

(1− λ0(j))2 θ2j + 4π2r(1 + ε̃−1)ω3
0 p

−2 .

Similarly, through Lemma 3.4 we have

Θ2,p ≤ (1 + ε̃)
∑

j≥[ω0]+1

θ2j + (1 + ε̃−1) r p−2 .

Hence,

Θp ≤ (1 + ε̃)Θ∗
ι0
+ (1 + ε̃−1)

(
4π2rω3

0 + r
)
p−2 ,
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where Θ∗
l =

∑
j≥l

(1− λ0(j))2 θ2j . Moreover, note that

sup
S∈W 1

r

max
1≤j≤p

h2j,p ≤ ‖Ṡ‖2 p−2 ≤ r p−2 .

Moreover, W k
r
⊆W 2

r
for any k ≥ 2. From here and Lemma 3.6 we get

sup
S∈Wk

r

p∑

j=1

h2j,p ≤ r
(
p−1 1{k=1} + 3p−21{k≥2}

)
.

Moreover, in view of Condition H5) we have

lim
n→∞

υ2k/(2k+1)
n

(
p−11{k=1} + ω3

0p
−2
)

= 0 .

So,

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

Θp ≤ lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

Θ∗
ι0
.

To estimate the term Θ∗
ι0

we set

Un = υ2k/(2k+1)
n sup

j≥ι0

(1− λ0(j))2/aj ,

where the sequence (aj)j≥1 is defined in (3.64). This leads to the inequality

sup
S∈W 1

r

υ2k/(2k+1)
n Θ∗

ι0
≤ Un

∑

j≥1

aj θ
2
j ≤ Un r .

Taking into account that limn→∞ t0 = r, we get

lim sup
n→∞

Un ≤ π−2k (τk r)
−2k/(2k+1) ,

where the coefficient τk is given in (2.28). This implies immediately that

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

Θp ≤
r1/(2k+1)

π2k(τk)
2k/(2k+1)

. (3.70)

Moreover, note that

R∗
k =

2(τk r)
1/(2k+1) k2

(k + 1)(2k + 1)
+

r1/(2k+1)

π2k(τk)
2k/(2k+1)

.

So, applying (3.68) and (3.70), yields

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

sup
Q∈Qn

EQ ‖Ŝλ0
− S‖2p ≤ R∗

k . (3.71)

Furthermore, Lemma 3.2 yields that for any ε̃ > 0

sup
S∈Wk

r

R∗
n(Ŝλ0

, S) ≤ (1 + ε̃) sup
S∈Wk

r

sup
Q∈Qn

EQ ‖Ŝλ0
− S‖2p + (1 + ε̃−1)r p−2 .
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So, in view of Condition H5), we derive the desired inequality

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝλ0

, S) ≤ R∗
k .

Hence the conclusion follows. ✷

For the adaptive estimation we use the model selection procedure (3.17) with the parameter

δ defined as a function of n satisfying

lim
n−→∞

δn = 0 and lim
n−→∞

nδ̌ δn = 0 (3.72)

for any δ̌ > 0. For example, we can take δn = (6 + lnn)−1.

Theorem 3.5. Assume that Conditions H1)–H5) hold. Then the robust risk defined in (3.4)

through the distribution family (2.8) – (2.9) for the procedure (3.17) with the coefficients (2.28)

and the parameter δ = δn satisfying (3.72) has the following asymptotic upper bound

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝ∗, S) ≤ r∗k . (3.73)

Theorem 3.4 and Theorem 3.5 imply the following result.

Corollary 3.2. Under the conditions of Theorem 3.5,

lim
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) = r∗k . (3.74)

Remark 3.2. It is well known that the optimal (minimax) risk convergence rate for the Sobolev

ball W k
r
is n2k/(2k+1) (see, for example, [47], [46]). We see here that the efficient robust rate is

υ2k/(2k+1)
n , i.e. if the distribution upper bound ς∗ → 0 as n→∞ we obtain a faster rate with

respect to n2k/(2k+1), and if ς∗ →∞ as n→∞ we obtain a slower rate. In the case when ς∗ is

constant the robust rate is the same as the classical non robuste convergence rate.

3.5 Simulations

In this section we report the results of a Monte Carlo experiment to assess the performance of

the proposed model selection procedure (3.17). In (3.1) we chose a 1-periodic function which

for 0 ≤ t ≤ 1 is defined as

S(t) =





|t− 1
2 | if 1

4 ≤ t ≤ 3
4 ,

1
4 else.

(3.75)

We simulate the model

dyt = S(t)dt+ dξt ,
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n R R∗

20 0.0398 0.211

100 0.0091 0.0483

200 0.0067 0.0355

1000 0.0022 0.0116

Table 3.1: Empirical risks

where ξt = 0.5dwt+0.5dzt. Here zt is the semi-Markov process defined in (1.6) with a Gaussian

N (0, 1) sequence (Yj)j≥1 and (τk)k≥1 used in (1.7) taken as τk ∼ χ2
3 .

We use the model selection procedure (3.17) with the weights (2.28) in which k∗ = 100 +√
( ln(n)), ti = i/ ln(n), m = [ln2(n)] and δ = (3 + ln(n))−2. We define the empirical risk as

R =
1

p

p∑

j=1

Ê
(
Ŝn(tj)− S(tj)

)2
, (3.76)

where the observation frequency p = 100001 and the expectations was taken as an average over

N = 10000 replications, i.e.

Ê
(
Ŝn(.)− S(.)

)2
=

1

N

N∑

l=1

(
Ŝl
n(·)− S(·)

)2
.

We set the relative quadratic risk as

R∗ = R/‖S‖2p and ‖S‖2p =
1

p

p∑

j=0

S2(tj) . (3.77)

In our case ‖S‖2p = 0.1883601.

Table 3.1 gives the values for the sample risks (3.76) and (3.77) for different numbers of

observations n.

The Figures 3.1–3.4 show the behavior of the regression function and its estimates by the

model selection procedure (3.17) depending on the values of observation periods n. The black

full line is the regression function (3.75) and the red dotted line is the associated estimator.
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Remark 3.3. From numerical simulations of the procedure (3.17) with various observations

numbers n we may conclude that the quality of the proposed procedure is good for practical

needs, i.e. for reasonable (non large) number of observations. We can also add that the quality

of the estimation improves as the number of observations increases.

Now we give the algorithm of the model selection procedure given in Section 3.2
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Algorithm 2 Model selection procedure

Require: n, 0 ≤ ˇ̺≤ 1 and δ > 0

p : satisfying Condition H5) given in (3.35)

ρ1, ρ2, ς
∗: satisfying Conditions (2.8) and (2.9)

k∗ ≥ 1, ε: satisfying Condition (2.26)

Output: The optimal weight vector λ̂

{Step 1} Computation of the weights

m = [1/ε2]

for i←− 1 to [k∗] do

for j ←− [ε] to [mε] do

for k ←− 1 to n do

Compute the wheight coefficients λi,j(k) using the formula (2.28)

end for

end for

end for

return: the vectors λ = (λα(1), ..., λα(n)),α ∈ A = {1, . . . , k∗} × {ε, . . . ,mε}
{Step 2} Computation of the Fourrier coefficients

for k ←− 1 to n do

θ̂k,p =
1
n

∫ n

0
Ψk,p(t)d yt .

θ̃k,p ←− θ̂2k,p − 1
n .

The observation (yt)0≤t≤n are given in (2.1) with the noise process (2.2) and (Ψk,p)1≤k≤p

is the basis given in (3.5)

end for

return: the vectors θ̂ = (θ̂1,p, ..., θ̂n,p) and θ̃ = (θ̃1,p, ..., θ̃n,p)

{Step 3} The cost function

for i←− 1 to [k∗] do

for j ←− [ε] to [mε] do

Jn(λ)←−
∑n

l=1
λ2i,j(l)θ̂

2
j,p − 2

∑n
j=1

λi,j(l)θ̃j,p + δ Pn(λ).

where the vectors λ = (λi,j(1), ..., λi,j(n)) are computed in Step1, the vectors θ̂ and θ̃

are given in Step2 and Pn is the penalty term given in (3.15)

end for

end for

return: λ̂ = argminλ∈ΛJn(λ),Λ = {λα , α ∈ A}.
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Appendix

Property of the penalty term

Lemma 3.1. For any n ≥ 1 and λ ∈ Λ,

P 0
n(λ) ≤ RQ(Ŝλ, S) +

L1,Q

n
,

where the coefficient P 0
n(λ) is defined in (3.21) and the L1,Q is defined in (3.38).

Proof. By the definition of Err(λ) in (3.10) one has

Err(λ) ≥
p̌∑

j=1

(
(λ(j)− 1)θj,p +

λ(j)

n
ξj,p

)2

.

In view of Proposition 3.1 we obtain that

RQ(Ŝλ, S) = EQ Err(λ) ≥ 1

n

n∑

j=1

λ2(j)EQ ξ
2
j,n ≥ P 0

n(λ)−
L1,Q

n
.

Hence we otain Lemma 3.1.

Properties of the Fourier coefficients

Lemma 3.2. Let f be an absolutely continuous function, f : [0, 1]→ R, with ‖ḟ‖ <∞ and g

be a simple function, g : [0, 1] → R of the form g(t) =
∑p

j=1 cj χ(tj−1,tj ](t), where cj are some

constants. Then for any ε > 0, the function ∆ = f − g satisfies the following inequalities

‖∆‖2 ≤ (1 + ε̃)‖∆‖2p + (1 + ε̃−1)
‖ḟ‖2
p2

, ‖∆‖2p ≤ (1 + ε̃)‖∆‖2 + (1 + ε̃−1)
‖ḟ‖2
p2

.

Lemma 3.3. Let the function S(t) in (3.1) be absolutly continuous and have an absolutely

integrable derivative. Then the coefficients (θj,p)16j6p defined in (3.6) satisfy the inequalities

|θ1,p| 6 ‖S‖1 and max
26j6p

j|θj,p| 6 2
√
2‖Ṡ‖1 . (3.78)

Lemma 3.4. For any p ≥ 2, 1 ≤ N ≤ p and r > 0, the coefficients (θj,p)1≤j≤p of functions S

from the class W 1
r
satisfy, for any ε̃ > 0, the following inequality

p∑

j=N

θ2j,p ≤ (1 + ε̃)
∑

j≥N

θ2j + (1 + ε̃−1) r p−2 . (3.79)

Lemma 3.5. For any p ≥ 2 and r > 0, the coefficients (θj,p)1≤j≤p of functions S from the

class W 1
r
satisfy the following inequality

max
1≤j≤p

sup
S∈W 1

r

(
|θj,p − θj | − 2π

√
r j p−1

)
≤ 0 . (3.80)
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Lemma 3.6. For any p ≥ 2 and r > 0 the correction coefficients
(
hj,p
)
1≤j≤p

for the functions

S from the class W 2
r
satisfy the following inequality

sup
S∈W 2

r

p∑

j=1

h2j,p ≤ 3r p−2 . (3.81)

Lemmas 3.2 – 3.6 are proven in [18].



Chapter 4

Non-parametric estimation for Lévy regres-

sion models

4.1 Introduction

Let us consider a regression model in continuous time with the Levy noise

d yt = S(t)d t+ ε dξt , 0 ≤ t ≤ 1 , (4.1)

where S is an unknown function defined on R with values in R, (ξt)0≤t≤1 is some unobserved

noise and ε > 0 is the noise intensity. The problem is to estimate the function S on the basis

of observations (yt)0≤t≤1 when ε → 0. In this chapter we consider the estimation problem in

the adaptive setting, i.e. when the regularity of S is unknown and we assume that the noise

(ξt)0≤t≤1 is a Lévy process with unknown distribution Q on the Skorokhod space D[0, 1]. We

know only that this distribution belongs to some distribution family Qε specified below.

Note that if (ξt)0≤t≤1 is the Brownian motion, then we obtain the well known “signal+white

noise” model (see, for example, [9], [47], [41]). It should be noted also that the model (4.1) is

very popular in the statistical radio-physics. This is the estimation problem of the signal S,

observed under the white noise, when the signal/noise ratio goes to infinity.

By making use of the robust estimation approach developed for nonparametric problems in

[36, 17, 18] we set the robust risk as

R∗
ε(Ŝε, S) = sup

Q∈Q∗

ε

RQ(Ŝε, S), (4.2)

where Ŝε is an estimate, i.e. any function of (yt)0≤t≤1 and

RQ(Ŝε, S) := EQ,S ‖Ŝε − S‖2 and ‖S‖2 =
∫ 1

0

S2(t)dt .

The goal of this chapter is to develop the sharp model selection method for estimating

the unknown signal S. The interest in such statistical procedures can be explained by the

fact that they provide adaptive solutions for the nonparametric estimation through the sharp

non-asymptotic oracle inequalities which give non-asymptotic upper bound for the quadratic

risk including the minimal risk over chosen family of estimators with some coefficient closed to
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one (see, for example, [37] for discrete time and [18] for continuous time). The origin of the

model selection method goes back to early seventies with the pioneering papers by Akaike [30]

and Mallows [23] who suggested to use penalization in a log-likelihood type criterion. Barron,

Birgé, Massart [31], Massart [45] and Kneip [40] developed a non-asymptotic model selection

method which enables one to derive non-asymptotic oracle inequalities for the non-parametric

regression models with Gaussian disturbances. Unfortunately, these methods cannot be applied

to the non-Gaussian regression models, since the estimators of the Fourier coefficients in such

cases are not independent random variables. For these reasons, in order to estimate the function

in non-Gaussian regression models, we use the model selection method developed by [37, 38, 39]

for non-Gaussian heteroscedastic regression models in discrete time.

When constructing the sharp model selection procedures, in this chapter, we will use the

approach close to that of the papers [14], [15], [16], [18] developed for the estimation of a

1-periodic function in continuous time on a large time interval, i.e.

dxt = S(t)dt+ dηt , 0 ≤ t ≤ n .

Note that, for any 0 < t < 1, setting yt = n−1
∑n

j=1
(xt+j − xj), we can represent this model

as a model with small parameter of the form (4.1)

dyt = S(t)dt+ ε dξt ,

where ε = n−1/2 and ξt = n−1/2
∑n

j=1
(ηt+j − ηt). The main difference between this model and

the original one is that the jumps are small, i.e.

∆ξt = O(n−1/2) = O(ε) as ε→ 0 ,

but we have not such property in the model (4.1). Therefore, unfortunately, we cannot use

directly the method developed for the estimation problem on the large time interval to the

model (4.1). So, the main goal of this paper is to develop a new sharp model selection method

for the estimation problem of the function S as ε→ 0.

As an application of the sharp model selection method in this chapter we consider the

problem of the detection of the number of signals for the model (4.1). In many areas of science

and technology the problem arise how to select the number degrees of freedom for a statistical

model that describes the phenomenons under study most adequately [30]. An important class

of such problems is the detection problem of the number of signals with unknown parameters in

the noise. For example, in the signal multi-path information transmission there is a detection

problem of the number of rays in a multipath channel. This problem is often reduced to the

detection of the number of signals. As a result, effective algorithms for the detection of the

number of signals can significantly improve the noise immunity in the data transmission over a

multipath channel [34, 42, 33, 48, 50, 49, 51]. In all this chapter the problem of the detection

of the number of signals are considered only for observation with white noise. In this chapter

we consider this problem for non-Gaussian noise with jumps given by (4.3).
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4.2 Transformation of the observations

In this chapter the noise process (ξt)0≤t≤1 is defined by the following Lévy process

ξt = ̺1wt + ̺2zt and zt = x ∗ (µ− µ̃)t . (4.3)

Here, ̺1 and ̺2 are some constants, (wt)t≥ 0 is a standard Brownian motion, µ(ds dx) is the

jump measure with the deterministic compensator µ̃(ds dx) = dsΠ(dx), Π(·) is some positive

measure on R (see, for example [10, 6] for details).

Π(x2) = 1 and Π(x4) < ∞ . (4.4)

Note that Π(R) may be equal to +∞. In the sequel we will denote by Q the distribution of the

process (ξt)0≤t≤1 in the Skorokhod space D[0, 1] and by Q∗
ε we denote all these distributions

for which the parameters ̺1 and ̺2 satisfy the condition

κQ = ̺21 + ̺22 ≤ ς∗ε , (4.5)

where the bound ς∗ε is such that for any δ̌ > 0

lim inf
ε→0

ε−δ̌ ς∗ε > 0 and lim
ε→0

εδ̌ ς∗ε = 0 . (4.6)

First of all, we need to eliminate the large jumps in the observations (4.1), i.e. we transform

this model as

y̌t = yt −
∑

0≤s≤t

∆ys 1{|∆ys|>a} . (4.7)

The parameter a = aε > 0 will be chosen later. So, we obtain that

dy̌t = S(t)dt+ εdξ̌t − ε ̺2Π(hε) dt , (4.8)

where

ξ̌t = ̺1wt + ̺2 žt and žt = hε ∗ (µ− µ̃)t .

The functions hε(x) = x1{|x|≤ãε} and hε(x) = x1{|x|>ãε} where the truncated threshold is

defined by ãε = a/̺2ε.

Let (φj)j≥ 1 be an orthonormal basis in L2[0, 1] with φ1 ≡ 1. We assume that this basis is

uniformly bounded, i.e. for some constant φ∗ ≥ 1, which may be depend on ε > 0,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ , (4.9)

where n = nε = [1/ε2] and [x] denotes the integer part of x. For example, we can take the

trigonometric basis defined in (1.15)



76 Non-parametric estimation for Lévy regression models

Moreover, note that for any function f : [0, 1]→ R from L2[0, 1], the integrals

It(f) =

∫ t

0

f(s)dξs and Ǐt(f) =

∫ t

0

f(s)dξ̌s (4.10)

are well defined with E It(f) = 0, E Ǐt(f) = 0,

E I2t (f) = κQ ‖f‖2t and E Ǐ2t (f) = κ̌Q ‖f‖2t , (4.11)

where ‖f‖2t =
∫ t

0
f2(s)ds, κQ = ̺21 + ̺22 and κ̌Q = ̺21 + ̺22Π(h

2
ε). In the sequel we denote by

(f, g)t =

∫ t

0

f(s)g(s) ds and (f, g) =

∫ 1

0

f(s)g(s) ds

.

To estimate the function S we use the following Fourier series

S(t) =
∑

j≥1

θj φj(t) , (4.12)

where

θj = (S, φj) =

∫ 1

0

S(t)φj(t)d t.

These coefficients can be estimated in the following way. First we estimate as

θ̂1,ε =

∫ 1

0

φ1(t)d yt = θ1 + εξ1

and, for j ≥ 2,

θ̂j,ε =

∫ 1

0

φj(t)d y̌t . (4.13)

Taking into account here that for any j the integral
∫ 1

0
φj(t)dt = 0 we obtain from (4.8) that

these Fourier coefficients can be represented as

θ̂j,ε = θj + ε ξ̌j and ξ̌j = Ǐ1(φj) .

Setting ξ̌1 = ξ1 we obtain that for any j ≥ 1,

θ̂j,ε = θj + ε ξ̌j . (4.14)

Now, according to the model selection approach developed in [17] - [18] we need to define

for any u ∈ R
n the following functions

B1,ε(u) =

n∑

j=1

uj ςj and B2,ε(u) =

n∑

j=1

uj ξ̃j , (4.15)

where ςj = E (ξ̌j)
2 − κ̌Q and ξ̃j = (ξ̌j)

2 −E (ξ̌j)
2.
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Proposition 4.1. The following upper bound holds.

sup
u∈[0,1]n

∣∣B1,ε(u)
∣∣ ≤ κQ . (4.16)

Proof. Taking into account that ς1 = κQ − κ̌Q ≤ κQ and ςj = 0 for j ≥ 2 we immediately

have the upper bound (4.16). ✷

Now let us recall the Novikov inequalities, [44], also referred to as the Bichteler–Jacod

inequalities, see ([32, 43]), providing bounds of the moments of the supremum of purely dis-

continuous local martingales for p ≥ 2,

E sup
t≤1
|g ∗ (µ− ν)t|p ≤ C∗

p

(
E
(
|g|2 ∗ ν1

)p/2
+E

(
|g|p ∗ ν1

))
, (4.17)

where C∗
p is some positive constant.

Now, for any u ∈ R
n we set

|u|2 =
n∑

j=1

u2j and #(u) =
n∑

j=1

1{uj 6=0} . (4.18)

Proposition 4.2. For any fixed truncated model parameter a > 0 and for any vector u ∈ R
n

with |u| ≤ 1, we have

E

∣∣∣B2
2,ε(u)

∣∣∣ ≤ UQ + 6κQ

(a
ε

)2
#(u) (φ∗)4 , (4.19)

where UQ = 24κ2
Q + 6̺42Π(x

4).

Proof. First note that

B2
2,ε(u) ≤ 2 ξ̃21 + 2B2

2,ε(u
′) , (4.20)

where u′ = (0, u2, . . . , un) ∈ R
n. It should be noted that

E ξ̃21 ≤ E ξ41 ≤ 8
(
̺41Ew

4
1 + ̺41E z

4
1

)
= 8

(
3̺41 + ̺41E z

4
1

)
.

To study the last term in the right hand side of the inequality (4.20) we set for any function

f from L2[0, 1]

Ĩt(f) = Ǐ2t (f)−E Ǐ2t (f) .

Note that for j ≥ 2 we define the random variables ξ̃j = Ĩ1(φj). So,

B2
2,ε(u

′) =
n∑

j=2

uj Ĩ1(φj) =: D1(u) .

By the Ito’s formula we can write that for any function f from L2[0, 1]

dĨt(f) = 2Ǐt−(f)f(t)dǏt(f) + ̺22 f
2(t) dm̌t ,
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where m̌t = h2ε ∗ (µ− µ̃)t. So, taking into account that

dǏt(f) = ̺1 dwt + ̺2 džt ,

we obtain that

dĨt(f) = 2̺1 Ǐt(f)f(t)dwt + 2̺2 Ǐt−(f)f(t)džt + ̺22 f
2(t) dm̌t .

So, setting

Vt =

n∑

j=2

uj Ǐt(φj)φj(t) and Ψt =

n∑

j=2

uj φ
2
j (t) ,

we obtain that

dDt = 2̺1 Vt dwt + 2̺2 Vt− džt + ̺22Ψt dm̌t .

So, we obtain that

D2
1 ≤ 12̺21

(∫ 1

0

Vt dwt

)2

+ 12̺22 M̌
2
1 + 3̺42

(∫ 1

0

Ψt− dm̌t

)2

, (4.21)

where

M̌t =

∫ t

0

Vs−(u) džs.

Moreover, taking into account that for any f , g from L2[0, 1]

E Ǐt(f) Ǐt(g) = κ̌Q

∫ t

0

f(s)g(s) ds ,

we get

2

∫ 1

0

EV 2
t dt = 2

n∑

i,j=2

ui uj

∫ 1

0

φi(t)φj(t)E Ǐt(φi) Ǐt(φj) dt = κ̌Q

n∑

i=2

u2i

(∫ 1

0

φ2i (t) dt

)2

.

Thus,

2E

(∫ 1

0

Vt dwt

)2

≤ κ̌Q .

Now, to estimate the second term in the inequality (4.21) note that in view of the inequality

(4.17) for any bounded function f and any 0 ≤ t ≤ 1

E Ǐ4t (f) ≤ 8̺41E

(∫ t

0

f(s)dws

)4

+ 8̺42E

(∫ t

0

f(s−)džt
)4

≤ 24̺41

∫ 1

0

f2(t)dt+ C∗
4

((
Π(h2ε)

∫ 1

0

f2(t)dt

)2

+Π(h4ε)

∫ 1

0

f4(t)dt

)
,

i.e.

sup
0≤t≤1

E Ǐ4t (f) <∞ .
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Now it is easy to see that through the Hölder’s inequality the term Vt can be estimated as

sup
0≤t≤1

EV 4
t < ∞ .

From here and the inequality (4.17) it follows that

sup
0≤t≤1

E M̌4
t ≤ C∗

4

((
Π(h2ε)

)2
+Π(h4ε)

) ∫ 1

0

EV 4
t dt <∞

and, therefore,

∫ 1

0

E M̌2
t V

2
t dt ≤ sup

0≤t≤1

(
E M̌4

t

)1/2
(∫ 1

0

EV 4
t dt

)1/2

< ∞ .

This implies that

E

∫ 1

0

M̌t− dM̌t = 0 .

Thus, the Ito’s formula implies

2E M̌2
1 = E

∑

0≤t≤1

(∆M̌t)
2 = 2Π(h2ε)

∫ 1

0

EV 2
t dt ≤ Π(h2ε) κ̌Q .

In the same way we calculate

̺22E

(∫ 1

0

Ψt−dm̌t

)2

= ̺22E
∑

0≤t≤1

(∆m̌t)
2 Ψ2

t−

= ̺22Π(h
4
ε)

∫ 1

0

Ψ2
tdt ≤ (a/ε)2 (φ∗)4 #(u) .

So, we obtain that

ED2
1 ≤ 6̺21 κ̌Q + 3̺22Π(x

2)
(
2κ̌Q + (φ∗)4

)
≤ 6κ2

Q + 3̺22(φ
∗)4 .

Similarly we obtain that

Eξ̃21 ≤ 6κ2
Q + 3̺42Π(x

4) .

This implies the upper bound (4.19). ✷

4.3 Model selection

We estimate the function S(x) for x ∈ [0, 1] by the weighted least squares estimator

Ŝλ(x) =

n∑

j=1

λ(j)θ̂j,εφj(x) , (4.22)
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where n = [1/ε2], the weights λ = (λ(j))1≤j≤n belong to some finite set Λ from [0, 1]n, θ̂j,ε is

defined in (4.13) and φj in (4.9) . Now we set

ι̌ = #(Λ) and |Λ|∗ = max
λ∈Λ

n∑

j=1

1{λj>0} , (4.23)

where #(Λ) is the cardinal number of Λ. In the sequel we assume that |Λ|∗ ≥ 1. Now we chose

the truncating parameter aε as

aε =
ε

|Λ|∗
. (4.24)

To choose a weight sequence λ in the set Λ we use the empirical quadratic risk, defined as

Errε(λ) =‖ Ŝλ − S ‖2,

which in our case is equal to

Errε(λ) =
n∑

j=1

λ2(j)θ̂2j,ε − 2
n∑

j=1

λ(j)θ̂j,εθj +
∞∑

j=1

θ2j . (4.25)

Since the Fourier coefficients (θj)j≥ 1 are unknown, we replace the terms θ̂j,εθj by

θ̃j,ε = θ̂2j,ε − ε2κ̂ε , (4.26)

where κ̂ε is a some estimate for the variance parameter κ̌Q from (4.11). If it is known we set

κ̂ε = κ̌Q if not this estimator will be prescribed later.

Finally, to choose the weights we will minimize the following cost function

Jε(λ) =

n∑

j=1

λ2(j)θ̂2j,ε − 2
n∑

j=1

λ(j)θ̃j,ε + δ P̂ε(λ) , (4.27)

where δ > 0 is some threshold which will be specified later and the penalty term

P̂ε(λ) = ε2κ̂ε|λ|2 and |λ|2 =
n∑

j=1

λ2j . (4.28)

Note that, if the κQ is known, then the penalty is defined as

Pε(λ) = ε2 κ̌Q|λ|2 . (4.29)

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ , (4.30)

where

λ̂ = argminλ∈ΛJε(λ). (4.31)
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We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique we take one of

them.

Now, we specify the weight coefficients (λ(j))1≤j≤n. Consider a numerical grid of the form

A = {1, . . . , k∗} × {l1, . . . , lm} , (4.32)

where

li = i̟ and m = [1/̟] .

We assume that both the parameters k∗ ≥ 1 and 0 < ̟ < 1 are functions of ε, i.e.k∗ = k∗ε
and ̟ = ̟ε, such that





limε→0 k
∗
ε = +∞ , limε→0

k∗ε
| ln ε| = 0 ,

limε→0̟ε = 0 and limε→0 ε
−δ̟ε = +∞,

(4.33)

for any δ > 0. One can take, for example, for 0 < ε < 1

̟ε =
1

| ln ε| and k∗ε = k∗0 +
√
| ln ε| , (4.34)

where k∗0 ≥ 0 is some fixed constant and the threshold ς∗ε is introduced in (4.5). For each

α = (β, l) ∈ A, we introduce the weight sequence

λα = (λα(j))1≤j≤p,

where p = [ε−2],

λα(j) = 1{1≤j<j
∗
} +

(
1− (j/ωα)

β
)
1{j

∗
≤j≤ωα} . (4.35)

Here j∗ = j∗(α) = [ωα/| ln ε|] , ωα = (dβ lυε )
1/(2β+1)

υε = ε−2/ς∗ε . and dβ =
(β + 1)(2β + 1)

π2ββ
. (4.36)

Now we define the set Λ as

Λ = {λα , α ∈ A} . (4.37)

Note, that these weight coefficients are used in [17, 18] for continuous time regression models

to show the asymptotic efficiency.

In the sequel we need to estimate the variance parameter κ̌Q from (4.11). To this end we

set for any 0 < ε ≤ 1/
√
3

κ̂ε =

n∑

j=[1/ε]+1

T̂2
j,ε , n = [1/ε2] , (4.38)

where T̂j,ε are the estimators of the Fourrier coefficients with respect to the trigonometric basis

(1.15) , i.e.

T̂j,ε =

∫ 1

0

Trj(t)dy̌t . (4.39)
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Remark 4.1. Note that similar sharp oracle inequalities were obtained before in the papers

[37] and [17] for the nonparametric regression models in the discrete and continuous time

respectively. In this chapter we obtain these inequalities for the model selection procedures

based on any arbitrary orthogonal basis function. We use the trigonometric function only to

estimate the noise intensity κ̌Q.

4.4 Oracle inequality

First we set the following constant which will be used to describe the rest term in the oracle

inequalities. We set

ΨQ,ε = 8κ̌Q(1 + ι̌) +
4U1,Qι̌

κ̌Q

, (4.40)

where

U1,Q = 24κ̌2
Q + 6̺42Π(x

4) + 6κ̌Q (φ∗)4 .

We start with the sharp oracle inequalities.

Theorem 4.1. Assume that for the model (4.1) the condition (4.4) holds. Then, for any

0 < δ < 1/6, the estimator of S given in (4.30) satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) + ε2

ΨQ,ε + 12|Λ|∗ES |κ̂ε − κ̌Q|
δ

. (4.41)

Proof. First, note that we can rewrite the empirical squared error in (4.25) as follows

Errε(λ) = Jε(λ) + 2
n∑

j=1

λ(j)θ̌j,ε + ‖S‖2 − δP̂ε(λ), (4.42)

where θ̌j,ε = θ̃j,ε − θj θ̂j,ε. Now using the definition of θ̃j,ε in (4.26) we obtain that

θ̌j,ε = εθjξj + ε2ξ̃j,ε + ε2ςj,ε + ε2(κ̌Q − κ̂ε) ,

where ςj,ε = E(ξ̌j,ε)
2 − κ̌Q and ξ̃j = (ξ̌j)

2 −E(ξ̌j)
2. Setting

Mε(λ) = ε
n∑

j=1

λ(j)θj ξ̌j and L(λ) =
n∑

j=1

λ(j) , (4.43)

we can rewrite (4.42) as

Errε(λ) = Jε(λ) + 2ε2(κ̌Q − κ̂ε)L(λ) + 2Mε(λ) + 2ε2B1,ε(λ)

+ 2ε
√
Pε(λ)

B2,ε(uλ)√
κ̌Q

+ ‖S‖2 − δP̂ε(λ), (4.44)
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where uλ = λ/|λ|, the exact penalization is defined in (4.29) and the functions B1,ε(·) and

B2,ε(·) are defined in (4.15). It should be noted that for the truncated parameter (4.24) the

bound (4.19) implies

sup
λ∈Λ

EQ

∣∣∣B2
2,ε(uλ)

∣∣∣ ≤ UQ + 6κ̌Q

(a
ε

)2
|Λ|∗ (φ∗)4 = U1,Q , (4.45)

where U1,Q = UQ + 6κ̌Q (φ∗)4.

Let λ0 = (λ0(j))1≤j≤n be a fixed sequence in Λ and λ̂ be as in (4.31). Substituting λ0 and

λ̂ in Equation (4.44), we obtain

Errε(λ̂)− Errε(λ0) = J(λ̂)− J(λ0) + 2ε2(κ̌Q − κ̂ε)L(̟)

+ 2ε2B1,ε(̟) + 2Mε(̟)

+ 2ε

√
Pε(λ̂)

B2,ε(û)√
κ̌Q

− 2ε
√
Pε(λ0)

B2,ε(u0)√
κ̌Q

− δP̂ε(λ̂) + δP̂ε(λ0), (4.46)

where ̟ = λ̂− λ0, û = u
λ̂
and u0 = uλ0

. Note that by (4.23)

|L(̟)| ≤ L(λ̂) + L(λ) ≤ 2|Λ|∗ .

The inequality

2|ab| ≤ δa2 + δ−1b2 (4.47)

implies that for any λ ∈ Λ

2ε
√
Pε(λ)

|B2,ε(uλ)|√
κ̌Q

≤ δPε(λ) + ε2
B2

2,ε(uλ)

δκ̌Q

.

From the bound (4.16) it follows that for 0 < δ < 1

Errε(λ̂) ≤ Errε(λ0) + 2Mε(̟) + 2ε2
B∗

2,ε

δκ̌Q

+ 2ε2 κ̌Q

+ ε2|κ̂ − κ̌Q|(|λ̂|2 + |λ0|2 + 4|Λ|∗) + 2δPε(λ0) ,

where B∗
2,ε = supλ∈ΛB

2
2,n(uλ). It should be noted that through (4.45) we can estimate this

term as

EQB
∗
2,ε ≤

∑

λ∈Λ
EQB

2
2,ε(uλ) ≤ ι̌U1,Q . (4.48)

Taking into account that supλ∈Λ |λ|2 ≤ |Λ|∗, we can rewrite the previous bound as

Errε(λ̂) ≤ Errε(λ0) + 2Mε(̟) + 2ε2
B∗

2,ε

δκ̌Q

+ 2ε2 κ̌Q

+
6ε2|Λ|∗
n
|κ̂ − κ̌Q|+ 2δPε(λ0). (4.49)
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To estimate the second term in the right hand side of this inequality we introduce

Sυ =
n∑

j=1

υ(j)θjφj , υ = (υ(j))1≤j≤n ∈ R
n .

Moreover, note that

M2
ε (υ) ≤ 2υ2(1) ξ21 + 2 Ǐ1(Φ) ,

where Φ(t) =
∑n

j=2
υ(j)θjφj(t). Therefore, thanks to (4.11) we obtain that for any non-random

υ ∈ R
n

EM2
ε (υ) ≤ 2κ̌Qε

2
n∑

j=1

υ2(j)θ2j = 2κ̌Qε
2||Sυ||2 . (4.50)

To estimate this function for a random vector we set

M∗
ε = sup

υ∈Λ1

M2(υ)

ε2||Sυ||2
and Λ1 = Λ− λ0 .

So, through the inequality (4.47)

2|Mε(υ)| ≤ δ||Sυ||2 + ε2
M∗

ε

δ
. (4.51)

It is clear that the last term here can be estimated as

EM∗
ε ≤

∑

υ∈Λ1

EM2
ε (υ)

ε2||Sυ||2
≤ 2

∑

υ∈Λ1

κ̌Q = 2κ̌Q ι̌ , (4.52)

where ν = #(Λ). Moreover, note that, for any υ ∈ Λ1,

||Sυ||2 − ||Ŝυ||2 =
n∑

j=1

υ2(j)(θ2j − θ̂2j ) ≤ 2|Mε(υ
2)| ,

where υ2 = (υ2(j))1≤j≤n. Taking into account that, for any x ∈ Λ1, the components |υ(j)| ≤ 1

, we can estimate the last term as in (4.50), i.e.

EM2
ε (υ

2) ≤ 2ε2κ̌Q ||Sυ||2 .

Similarly, setting

M∗
1,ε = sup

υεΛ1

M2
ε (υ

2)

ε2||Sυ||2
,

we obtain

EQM
∗
1,ε ≤ 2κ̌aQ ι̌ . (4.53)

In the same way we find that

2|Mε(υ
2)| ≤ δ||Sυ||2 +

M∗
1,ε

nδ
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and, for any 0 < δ < 1,

||Sυ||2 ≤
||Ŝυ||2
1− δ +

ε2M∗
1,ε

δ(1− δ) .

So, from (4.51) we get

2M(υ) ≤ δ||Ŝυ||2
1− δ +

ε2(M∗
ε +M∗

1,ε)

δ(1− δ) .

Therefore, taking into account that ‖Ŝ̟‖2 ≤ 2 (Errε(λ̂) + Errε(λ0)), the term Mε(̟) can be

estimated as

2Mε(̟) ≤ 2δ(Errε(λ̂) + Errε(λ0))

1− δ +
ε2(M∗

ε +M∗
1,ε)

δ(1− δ) .

Using this bound in (4.49) we obtain

Errn(λ̂) ≤
1 + δ

1− 3δ
Errε(λ0) +

ε2(M∗
ε +M∗

1,ε)

δ(1− 3δ)
+

2ε2B∗
2,ε

δ(1− 3δ)κ̌Q

+
2ε2 κ̌Q

1− 3δ
+

6ε2 |Λ|∗
(1− 3δ)

|κ̂ − κ̌Q|+
2δ

(1− 3δ)
Pε(λ0).

Moreover, for 0 < δ < 1/6 we can rewrite this inequality as

Errn(λ̂) ≤
1 + δ

1− 3δ
Errε(λ0) +

2ε2(M∗
ε +M∗

1,ε)

δ
+

4ε2B∗
2,ε

δκ̌Q

+ 4ε2 κ̌Q + 12ε2 |Λ|∗|κ̂ − κ̌Q|+ 4δ Pε(λ0) .

Using here the bounds (4.48), (4.52), (4.53) we obtain that

R(Ŝ∗, S) ≤
1 + δ

1− 3δ
R(Ŝλ0

, S) +
8ε2κ̌Qι̌

δ
+

4ε2U1,Qι̌

δκ̌Q

+ 4ε2 κ̌Q + 12ε2 |Λ|∗EQ |κ̂ − κ̌Q|+
2δ

1− 3δ
Pε(λ0) .

Now, Lemma 4.1 implies directly the inequality (4.1). Hence we get the desired result. ✷

Corollary 4.1. Assume that for the model (4.1) the condition (4.4) holds. If the variance

parameter κ̌Q is known, then for any 0 < δ < 1/6, the estimator of S given in (4.30), with the

truncated parameter a = ε/
√
|Λ|∗ satisfying the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) + ε2

ΨQ,ε

δ
. (4.54)

We need to study the estimate (4.38).
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Proposition 4.3. Assume that in the model (4.1) the unknown function S is continuously

differentiable. Then, for any 0 < ε ≤ 1/
√
3

EQ |κ̂ε − κ̌Q| ≤ εΥQ(S) +

√
6κ̌Q

|Λ|∗
, (4.55)

where ΥQ(S) = 4(‖Ṡ‖+ 1)2
(
1 +

√
κ̌Q + 2κ̌Q +

√
UQ

)
.

Proof. We use here the same method as in [14]. First, note that from the definitions (4.14)

and (4.39) we obtain

T̂j,ε = Tj + ε η̌j , (4.56)

where

Tj =

∫ 1

0

S(t)Trj(t)dt and η̌j =

∫ 1

0

Trj(t) dξ̌t .

So, we have

κ̂ε =
n∑

j=[1/ε]+1

T2
j + 2M̌ε + ε2

n∑

j=[1/ε]+1

(η̌j)
2 , (4.57)

where M̌ε = ε
∑n

j=[1/ε]+1
Tj η̌j . Note that for continiously differentiable functions (see, for

example, Lemma A.6 in [14]) the Fourrier coefficients (Tj) for any n ≥ 1 satisfy the following

inequality
∞∑

j=[1/ε]+1

T2
j ≤ 4ε

(∫ 1

0

|Ṡ(t)|dt
)2

≤ 4ε‖Ṡ‖2 . (4.58)

The term M̌ε can be estimated in the same way as in (4.50), i.e.

EQ M̌
2
ε ≤ κ̌Qε

2
n∑

j=[1/ε]+1

T2
j ≤ 4ε3κ̌Q‖Ṡ‖2 .

Moreover, taking into account that for j ≥ 2 the expectation E (η̌j)
2 = κ̌Q we can represent

the last term in (4.57) as

ε2
n∑

j=[1/ε]+1

(η̌j)
2 = ε2 κ̌Q(n− [1/ε]) + εB2,ε(x

′) ,

where the function B2,ε(x
′) is defined in (4.15) and x′j = ε1{1/ε<j≤1/ε2}. We remind that

n = [1/ε2]. Therefore, in view of Proposition 4.2 we obtain

EQ

∣∣∣∣∣∣∣
ε2

n∑

j=[
√

1/ε]+1

η̌2j − κ̌Q

∣∣∣∣∣∣∣
≤ 2ε κ̌Q + ε

√
UQ +

√
6κ̌Q

|Λ|∗
.

So, we obtain the bound (4.55). ✷
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It is clear that in the case when |Λ|∗ ≤ 1/ε we obtain that

EQ |κ̂ε − κ̌Q| ≤
ΥQ(S) +

√
6κ̌Q

|Λ|∗
. (4.59)

Now using this proposition we can obtain the following inequality.

Theorem 4.2. Assume that for the model (4.1) the condition (4.4) holds and the unknown

function S is continuously differentiable. Then the procedure (4.30) with |Λ|∗ ≤ 1/ε, for any

0 < δ < 1/6, satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S)

+ ε2
ΨQ,ε + (‖Ṡ‖+ 1)2g1,Q + g2,Q

δ
, (4.60)

where

g1,Q = 48
(
1 +

√
κ̌Q + 2κ̌Q +

√
UQ

)
and g2,Q = 12

√
6κ̌Q .

Now we study the robust risk defined in (4.2) for the procedure (4.30).

We assume also that the upper bound for the basis functions in (4.9) may be dependent on

n ≥ 1, i.e. φ∗ = φ∗(n), such that for any ǫ̌ > 0

lim
n→∞

φ∗(n)
nǫ̌

= 0 . (4.61)

Theorem 4.3. Assume that for the model (4.1) Condition (4.4) holds and the unknown

function S is continuously differentiable. Then the robust risk of the procedure (4.30) with

|Λ|∗ ≤ 1/ε, for any 0 < δ < 1/6, satisfy the following oracle inequality

R∗
ε(Ŝ∗, S) ≤

1 + 3δ

1− 3δ
min
λ∈Λ
R∗

ε(Ŝλ, S) + ε2
U∗

ε(S)

δ
, (4.62)

where the term U∗
ε(S) > 0 is such that under the conditions (4.61) and (4.33) for any r > 0

and δ̌ > 0

lim
ε→0

εδ̌ sup
‖Ṡ‖≤r

U∗
ε(S) = 0 . (4.63)
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4.5 Adaptive robust efficiency

Now we study the asymptotically efficiency properties for the procedure (4.30) with the coef-

ficients (4.35) with respect to the robust risks (4.12) defined by the distribution family (4.5)

– (4.6). To this end we assume that the unknown function (4.12) belongs to the following

ellipsoid in L2,

W k
r
= {S ∈ L2[0, 1] :

∞∑

j=1

aj θ
2
j ≤ r}, (4.64)

where aj =
∑k

i=0
(2π[j/2])2i.

It is easy to see that in the case when the functions (φj)j≥1 are trigonometric (1.15), then

this set coincides with the Sobolev ball

W k
r
= {f ∈ Ck

per[0, 1] :
k∑

j=0

‖f (j)‖2 ≤ r} , (4.65)

where r > 0 and k ≥ 1 are some parameters, Ck
per[0, 1] is the set of k times continuously

differentiable functions f : [0, 1]→ R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. Similarly to

[17, 18] we will show here that the asymptotic sharp lower bound for the robust risk (4.12) is

given by

l∗(r) = ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (4.66)

Note that this is the well-known Pinsker’s constant obtained for the non-adaptive filtration

problem in “signal + small white noise” model (see, for example, [47]).

Let Sε be the set of all estimators Ŝε measurable with respect to the σ-algebra σ{yt , 0 ≤
t ≤ 1} generated by the process (4.1).

Theorem 4.4. For the distribution family (4.5) – (4.6), the robust risks admit the following

lower bound

lim inf
ε→0

υ2k/(2k+1)
ε inf

Ŝε∈Sε

sup
S∈Wk

r

R∗
ε(Ŝε, S) ≥ l∗(r) , (4.67)

where υε = ε−2/ς∗ε .

We set the parameter δ in (4.27) as a function of ε, i.e. δ = δε is such that

lim
ε→0

δε = 0 and lim
ε→0

ε−δ̌ δε = 0 (4.68)

for any δ̌ > 0. For example, we can take δε = (6 + | ln ε|)−1.

Theorem 4.5. Assume that Conditions (4.33) hold. Then the model selection procedure admits

the following asymptotic upper bound

lim sup
ε→0

υ2k/(2k+1)
ε sup

S∈Wk
r

R∗
ε(Ŝ∗, S) ≤ l∗(r) . (4.69)



4.5 Adaptive robust efficiency 89

Theorem 4.4 and Theorem 4.5 imply the following result

Corollary 4.2. Under the conditions of Theorem 4.5, we have

lim
ε→0

υ2k/(2k+1)
ε inf

Ŝε∈Sε

sup
S∈Wk

r

R∗
ε(Ŝε, S) = l∗(r) . (4.70)

Remark 4.2. It is well known that the optimal (minimax) risk convergence rate for the Sobolev

ball W k
r is ε−4k/(2k+1) (see, for example, [47] ). We see here that the efficient robust rate is

υ2k/(2k+1)
ε , i.e. if the distribution upper bound ς∗ε → 0 as n→∞ we obtain a faster rate with

respect to ε−4k/(2k+1), and if ς∗ε →∞ as ε→ 0 we obtain a slower rate. In the case when ς∗ε is

constant the robust rate is the same as the classical non robust convergence rate.

4.5.1 Lower bound

Firstly, note, that for any fixed Q ∈ Q∗
ε

sup
S∈Wk

r

R∗
ε(Ŝε, S) ≥ sup

S∈Wk
r

RQ(Ŝε, S) . (4.71)

Now for any fixed 0 < γ̌ < 1 we set

d = dε =

[
k + 1

k
υ1/(2k+1)
ε l∗(r0)

]
and r0 = (1− γ̌)r . (4.72)

Using this definition we introduce the parametric family (Sz)z∈Rd as

Sz(x) =

d∑

j=1

zj φj(x) . (4.73)

To define the bayesian risk we choose a prior distribution on R
d as

κ = (κj)1≤j≤d and κj = sj ηj , (4.74)

where ηj are i.i.d. Gaussian N (0, 1) random variables and the coefficients

sj =

√
s∗j
vε

and s∗j =

(
d

j

)k

− 1 .

Denoting by µκ the distribution of the random variables (κj)1≤j≤d on R
d we introduce the

bayes risk as

R̃Q(Ŝ) =

∫

Rd

RQ(Ŝ, Sz)µκ(dz) . (4.75)

Furthermore, for any function f , we denote by p(f) its projection in L2[0, 1] onto W
k
r
, i.e.

‖f − p(f)‖ = inf
h∈Wk

r

‖f − h‖ .
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Since W k
r

is a convex and closed set in L2[0, 1], this projector exists and is unique for any

function f ∈ L2[0, 1] and, moreover,

‖f − h‖2 ≥ ‖p(f)− h‖2 for any h ∈W k
r
.

So, setting p̂ = p(Ŝ), we obtain that

sup
S∈Wk

r

R(Ŝ, S) ≥
∫

{z∈Rd :Sz∈Wk
r
}
ESz
‖p̂− Sz‖2 µκ(dz) .

Taking into account now that ‖p̂‖2 ≤ r we obtain

sup
S∈Wk

r

RQ(Ŝ, S) ≥ R̃Q(p̂)− 2∆ε (4.76)

and

∆ε =

∫

{z∈Rd :Sz /∈Wk
r
}
(r+ ‖Sz‖2)µκ(dz) .

Therefore, in view of (4.71)

sup
S∈Wk

r

R∗
ε(Ŝε, S) ≥ sup

Q∈Q∗

ε

R̃Q(p̂)− 2∆ε . (4.77)

As to the last term in this inequality, in Appendix we show that for any δ̌ > 0

lim
ε→0

ε−δ̌ ∆ε = 0 . (4.78)

Now it is easy to see that

‖p̂− Sz‖2 ≥
d∑

j=1

(ẑj − zj)2 ,

where ẑj =
∫ 1

0
p̂(t)φj(t)dt. So, in view of Lemma 4.2 and reminding that υε = ε−2/ς∗ε we

obtain

sup
Q∈Q∗

ε

R̃Q(p̂) ≥ sup
0<̺2

1
≤ς∗

ε

d∑

j=1

1

ε−2 ̺−2
1 + vε (s

∗
j )

−1

=
1

vε

d∑

j=1

s∗j
s∗j + 1

=
1

vε

d∑

j=1

(
1− jk

dkε

)
.

Therefore, using now Definition (4.72), Inequality (4.77) and the limit (4.78), we obtain that

lim inf
n→∞

inf
Ŝ∈Πε

v
2k

2k+1
ε sup

S∈Wk
r

R∗
ε(Ŝε, S) ≥ (1− γ̌) 1

2k+1 l∗(r) .

Taking here the limit as γ̌ → 0 implies the desired result . ✷
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4.5.2 Upper bound

Known smoothness

First we suppose that the parameters k ≥ 1, r > 0 in (4.65) and ς∗ε in (4.5) are known. Let the

family of admissible weighted least square estimates (Ŝλ)λ∈Λ be given by (4.37). Consider the

pair

α̌ = (k, ř) and ř = ̟ [r/̟] ,

where ς̌ε = ̟ς∗ε and ̟ satisfy the conditions in (4.33). Denote the corresponding estimate as

Š = Ŝλ̌ and λ̌ = λα̌ . (4.79)

Note that for sufficiently small ε the pair α̌ belongs to the set (4.32).

Theorem 4.6. The estimator Š admits the following asymptotic upper bound

lim sup
ε→0

υ2k/(2k+1)
ε sup

S∈Wk
r

R∗
ε (Š, S) ≤ l∗(r) . (4.80)

Proof. Substituting (4.14) and taking into account the definition (4.79) one gets

‖Š − S‖2 =
∞∑

j=1

(1− λ̌(j))2 θ2j − 2M̌ε + ε2
∞∑

j=1

λ̌2(j) ξ̌2j ,

where M̌ε = ε
∑∞

j=1 (1 − λ̌(j)) λ̌(j) θj ξ̌j . Note now that for any Q ∈ Q∗
ε the expectation

EQ,S M̌ε = 0 and, in view of the upper bound (4.12),

sup
Q∈Q∗

ε

EQ,S

∞∑

j=1

λ̌2(j) ξ̌2j ≤ ς∗ε
∞∑

j=1

λ̌2(j) .

Therefore,

R∗
ε(Š, S) ≤

∞∑

j=ι̌

(1− λ̌(j))2 θ2j +
1

υε

∞∑

j=1

λ̌2(j) , (4.81)

where ǰ∗ = j∗(α̌). Setting

uε = (υε)
2k/(2k+1) sup

j≥ǰ
∗

(1− λ̌(j))2/aj ,

we obtain that for each S ∈W k
r

Υ1,ε(S) = (υε)
2k/(2k+1)

∞∑

j=ǰ
∗

(1− λ̌(j))2 θ2j ≤ uε

∞∑

j=ǰ
∗

aj θ
2
j ≤ uε r .

Tazking into account that ř → r, we obtain that

lim sup
ε→0

sup
S∈Wk

r

Υ1,ε(S) ≤
r1/(2k+1)

π2k(dk)
2k/(2k+1)

:= Υ∗
1 ,
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where the coefficient τk is given in (4.35). To estimate the last term in the right hand of (4.81),

we set

Υ2,ε =
1

(υε)
1/(2k+1)

+∞∑

j=1

λ̌2(j) .

It is easy to check that

lim sup
ε→0

Υ2,ε ≤
2(rdk)

1/(2k+1) k2

(k + 1)(2k + 1)
:= Υ∗

2 .

Therefore, taking into account that, by the definition of the Pinsker’s constant in (4.66), Υ∗
1 +

Υ∗
2 = l∗(r), we arrive at the inequality

lim
ε→0

υ2k/(2k+1)
ε sup

S∈Wk
r

R∗
ε(Š, S) ≤ l∗(r) .

Hence we obtain the desired result. ✷

Unknown smoothness

Combining Theorem 4.6 and Theorem 4.3 yields Theorem 4.5. ✷

4.6 Detection of the number of signals

In this section we consider the estimation problem for the number of signals in the multi-

path connexion channel. In the framework of the statistical radio-physics models we study

the telecommunication system in which we observe in the multi-path channel the summarized

signal with the noise on the time interval [0, 1],

yt =

q∑

j=1

θjφj(t) + nt , 0 ≤ t ≤ 1 ,

where (nt)t≥0 is some noise, usually this “white noise”. The energetic parameters (θj)j≥1

and the number of the signals q are unknown and the signals (φj)j≥1 are known orthonormal

functions, i.e. ∫ 1

0

φi(t)φj(t) dt = 1{i 6=j} .

The problem is to estimate q, when the signal/noise ratio goes to infinity. To describe this

problem in the framework of the mathematical model we use the following stochastic differential

equation

dyt =




q∑

j=1

θjφj(t)


 dt+ εdwt , (4.82)
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where (wt)t≥0 is the standard Brownian motion and the parameter ε goes to zero. This means

tha the signal/noise ratio goes to infinity. The logarithm of the likelihood ratio for the model

(4.82) can be represented as

lnLε =
1

ε2

q∑

j=1

θj

∫ 1

0

φj(t)dyt −
1

2ε2

q∑

j=1

θ2j .

If we will try to construct the maximum likelihood estimators for (θj)1≤j≤q and q then we

obtain that

max
1≤q≤q

∗

max
θj

lnLε =
1

2ε2

q
∗∑

j=1

(∫ 1

0

φj(t)dyt

)2

.

Therefore, the maximum likelihood estimate for q̂ = q∗. So, if q∗ =∞ we obtain that q̂ =∞.

So, this estimator does not work. For these reasons we propose to study the estimation problem

for q for the process (4.82) in the nonparametric setting and to apply the model selection

procedure (4.30). To this end we consider the model (4.1) with the unknown function S

defined as

S(t) =

q∑

j=1

θj φj(t) . (4.83)

For this problem we use the LSE family (Ŝd)1≤d≤m defined as

Ŝd(x) =
d∑

j=1

θ̂j,εφj(x) . (4.84)

This estimate can be obtained from (4.22) with the weights λd(j) = χ{j ≤ d}. The number of

estimators ι is some function of ε, i.e. ι = ιε, such that

lim
ε→0

ιε =∞ and lim
ε→0

εδ̌ιε = 0 (4.85)

for any δ̌ > 0. As a risk for the signals number we use

Dε(d, q) = R∗
ε(Ŝd, S) , (4.86)

where the risk R∗
ε(Ŝ, S) is defined in (4.2) and d is some integer number (maybe random) from

the set {1, . . . , ι}. In this case the cost function (4.27) has the following form.

Jε(d) =
d∑

j=1

θ̂2j,ε − 2
d∑

j=1

θ̃j,ε + δ P̂ε(λ) . (4.87)

So, for this problem the LSE model selection procedure is defined as

q̂ε = argmin1≤d≤ιJε(d) . (4.88)
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Note that Theorem 4.3 implies that the robust risks of the procedure (4.30) with |Λ|∗ ≤ 1/ε,

for any 0 < δ < 1/6, satisfy the following oracle inequality

Dε(q̂ε , q) ≤
1 + 3δ

1− 3δ
min
1≤d≤ι

Dε(d, q) + ε2
U∗

ε(S)

δ
, (4.89)

where the last term satisfies the property (3.37).

4.7 Simulation

In this section we report the results of a Monte Carlo experiment to assess the performance of

the proposed model selection procedure (4.30). In (4.1) we chose

S(t) =

10∑

j=1

j

j + 1
φj(t) , (4.90)

with φj(t) =
√
2 sin(2πljt), lj = [

√
j]j. We simulate the model

dyt = S(t)dt+ εdwt .

The frequency of observations per period equals p = 100000. We use the weight sequence

as proposed in Galtchouk and Pergamenshchikov (2009) for a discrete-time model : k∗ =

100 +
√
| ln ε| and m = [| ln ε|2].

We calculated the empirical quadratic risk defined as

R =
1

p

p∑

j=1

Ê
(
S̃ε(tj)− S(tj)

)2
,

and the relative quadratic risk

R∗ = R/‖S‖2p .

The expectation is taken as an average over N = 10000 replications, i.e.

Ê
(
S̃ε(·)− S(·)

)2
=

1

N

N∑

l=1

(
S̃l
ε(·)− S(·)

)2
.

We used the cost function with

δ =
1

(3 + | ln ε|)2 .
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ε R R∗

1/
√
20 0.0158 0.307

1/
√
100 0.0113 0.059

1/
√
200 0.0076 0.04

1/
√
1000 0.0035 0.0185

Table 4.1: Empirical risks

In the following graphics the dashed line is the model selection procedure (4.30), the con-

tinuous line is the function (4.90) and the bold line is the corresponding observations (4.1).
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ε q̂1 q̂2

1/
√
20 6 5

1/
√
100 8 7

1/
√
200 9 7

1/
√
1000 10 9

Table 4.2: Estimation of the number of signals

To estimate the number of signals q we use two procedures. The first q̂1 is (4.89) with

ν = [ln ε−2]. The second q̂2 is defined through the shrinkage approach for the model selection

procedure (4.90),

q̂2 = inf{j ≥ 1 : |θ̂j | ≤ c∗ε} , c∗ε = ε
√
| log ε| .

Remark 4.3. It should be noted that the LSE procedure (4.89) is more appropriate than the

shrinkage method for such a number detection problem.

Now we give the algorithm of the model selection procedure given in Section 4.3
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Algorithm 3 Model selection procedure

Require: ε > 0, 0 ≤ ˇ̺≤ 1 and δ > 0

ρ1, ρ2, ς
∗
ε : satisfying Conditions (4.5) and (4.6)

k∗ ≥ 1, ̟: satisfying Condition (4.33)

Output: The optimal weight vector λ̂

{Step 1} Computation of the weights

n = [1/ε2], m = [1/̟]

for i←− 1 to [k∗] do

for j ←− [̟] to [m̟] do

for k ←− 1 to n do

Compute the wheight coefficients λi,j(k) using the formula (4.35)

end for

end for

end for

return: the vectors λ = (λα(1), ..., λα(n)),α ∈ A = {1, . . . , k∗} × {̟, . . . ,m̟}
{Step 2} Computation of the Fourrier coefficients

for k ←− 1 to n do

θ̂k,ε =
∫ 1

0
φk(t)d y̌t .

θ̃k,ε ←− θ̂2k,ε − ε2 .
The observation (y̌t)0≤t≤n are given in (4.7) and (φk)k≥ 1 is the basis given in (4.9)

end for

return: the vectors θ̂ = (θ̂1,ε, ..., θ̂n,ε) and θ̃ = (θ̃1,ε, ..., θ̃n,ε)

{Step 3} The cost function

for i←− 1 to [k∗] do

for j ←− [̟] to [m̟] do

Jε(λ)←−
∑n

l=1
λ2i,j(l)θ̂

2
j,ε − 2

∑n
j=1

λi,j(l)θ̃j,ε + δ Pε(λ).

where the vectors λ = (λi,j(1), ..., λi,j(n)) are computed in Step1, the vectors θ̂ and θ̃

are given in Step2 and Pε is the penalty term given in (4.29)

end for

end for

return: λ̂ = argminλ∈ΛJε(λ),Λ = {λα , α ∈ A}.



100 Non-parametric estimation for Lévy regression models

Appendix

Property of the penalty term

Lemma 4.1. Assume that Proposition 4.1 holds. Then for any n ≥ 1 and λ ∈ Λ,

Pε(λ) ≤ R(Ŝλ, S) + ε2 κ̌Q ,

where the coefficient Pε(λ) is defined in (4.43).

Proof. By the definition of Errε(λ) one has

Errε(λ) =
n∑

j=1

(
(λ(j)− 1)θj + ε2λ(j)ξ̌j

)2
.

Through Proposition 4.1 it is easy to see that

EQ Errε(λ) ≥ ε2
n∑

j=1

λ2(j)EQ (ξ̌j)
2 ≥ Pε(λ)− ε2κ̌Q .

Hence we obtain the desired result. ✷

Proof of the limit equality (4.78)

First, setting ζε =
∑d

j=1
κ2j aj , we obtain that

{
Sκ /∈W k

r

}
= {ζε > r} .

Moreover, note that one can check directly that

lim
ε→0

E ζε = lim
ε→0

1

vε

d∑

j=1

s∗j aj = ř = (1− γ̌)r .

So, for sufficiently small ε we obtain that
{
Sκ /∈W k

r

}
⊂
{
ζ̃ε > r1

}
,

where r1 = rγ̌/2, ζ̃ε = ζε − E ζε = v−1
ε

∑d
j=1

s∗jaj η̃j and η̃j = η2j − 1 Through the correlation

inequality (see, Proposition A.1 in [35]) we can get that for any p ≥ 2

E ζ̃pε ≤ (2p)p/2E|η̃1|p v−p
ε




d∑

j=1

(s∗j )
2a2j




p/2

= O( v
− p

4k+2
ε ) ,

as ε→ 0. Therefore, for any δ̌ > 0 using the Chebychev inequality for p > (4k+2)δ̌ we obtain

that

vδ̌εP(ζ̃ε > r1)→ 0 as ε→ 0 .

Hence we obtain the equality (4.78). ✷
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The absolute continuity of distributions for Lévy processes

In this section we study the absolute continuity for Lévy processes defined as

dyt = S(t)dt+ dξt , 0 ≤ t ≤ T , (4.91)

where S is any arbitrary non-random square integrated function, i.e. from L2[0, T ] and

(ξt)0≤t≤T is a Lévy process of the form (4.3) with nonzero constants ̺1 and ̺2. We denote by

Py and Pξ the distributions of the processes (yt)0≤t≤1 and (ξt)0≤t≤1 on the Skorokhod space

D[0, T ]. Now for any 0 ≤ t ≤ T and (xt)0≤t≤T from D[0, T ] we set

Υt(x) = exp

{∫ t

0

S(u)

̺21
dxcu −

∫ t

0

S2(u)

2̺21
du

}
, (4.92)

where (xct)0≤t≤T is the continuous part of the process (xt)0≤t≤T in D[0, T ], i.e.

xct = xt −
∫ t

0

∫

R

v (µx(ds , dv)−Π(dv)ds)

and, for any t > 0 and any measurable Γ from R \ {0},

µx([0, t],Γ) =
∑

0≤s≤t

1{∆xs∈̺2Γ} .

Now we study the measures Py and Pξ in D[0, T ].

Proposition 4.4. For any T > 0, the measure Py ≪ Pξ in D[0, T ] and the Radon-Nikodym

derivative is
dPy

dPξ

(ξ) = ΥT (ξ) .

Proof. Note that to show this proposition it suffices to check that for any 0 = t0 < . . . < tn = T

any bj ∈ R for 1 ≤ j ≤ n

E exp

{
i

n∑

l=1

bj(ytj − ytj−1
)

}
= E exp

{
i

n∑

l=1

bj(ξtj − ξtj−1
)

}
ΥT (ξ) .

Taking into account that the processes (yt)0≤t≤T and (ξt)0≤t≤T have independent homogeneous

increments, one needs to check only that for any b ∈ R and 0 ≤ s < t ≤ T

E exp {i b(yt − ys)} = E exp {i b(ξt − ξs)}
Υt(ξ)

Υs(ξ)
. (4.93)

To check this equality, note that the process

Υt(ξ) = exp

{∫ t

0

S(u)

̺1
dwu −

∫ t

0

S2(u)

2̺21
du

}

is a Gaussian martingale. From here we directly obtain Equation (4.93). ✷
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The van Trees inequality for Lévy processes

In this section we consider the following continuous time parametric regression model

dyt = S(t, θ)dt+ dξt , 0 ≤ t ≤ 1 , (4.94)

where S(t, θ) =
∑d

i=1
θi φi(t) with the unknown parameters θ = (θ1, . . . , θd)

′ and the process

(ξt)0≤t≤1 is defined in (4.3). Note now that according to Proposition 4.4 the distribution

Pθ of the process (4.94) is absolutely continuous with respect to the Pξ on D[0, 1] and the

corresponding Radon-Nikodym derivative is

f(x, θ) =
dPθ

dPξ

(x) = exp

{∫ 1

0

S(t, θ)

̺21
dxct −

∫ 1

0

S2(t, θ)

2̺21
dt

}
, (4.95)

where x = (xt)0≤t≤T is an arbitrary function from D[0, 1].

Let Φ be a prior density on R
d having the following form:

Φ(θ) = Φ(θ1, . . . , θd) =

d∏

j=1

ϕj(θj) ,

where ϕj is some continuously differentiable density in R. Moreover, let g(θ) be a continuously

differentiable function defined on R
d with values in R such that, for each 1 ≤ j ≤ d,

lim
|θj |→∞

g(θ)ϕj(θj) = 0 and

∫

Rd

|g′
j(θ)|Φ(θ) dθ <∞ , (4.96)

where

g′
j(θ) =

∂g(θ)

∂θj
.

For any B(X )× B(Rd)− measurable integrable function H = H(x, θ), we denote

ẼH =

∫

Rd

∫

X
H(x, θ) dPθ Φ(θ)dθ

=

∫

Rd

∫

X
H(x, θ) f(x, θ) Φ(θ)dPξ(x) dθ ,

where X = D[0, 1].

Lemma 4.2. For any Fy = σ{yt, 0 ≤ t ≤ 1}-measurable square integrable function ĝ and for

any 1 ≤ j ≤ d, the following inequality holds

Ẽ(ĝ − g(θ))2 ≥
Λ2
j

n‖ψj‖2̺−2
1 + Ij

,

where

Λj =

∫

Rd

g′
j(θ) Φ(θ) dθ and Ij =

∫

R

ϕ̇2
j (z)

ϕj(z)
dz .
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Proof. First of all, note that the density (4.95) of the process ξ is bounded with respect to

θj ∈ R and, for any 1 ≤ j ≤ d,

lim sup
|θj |→∞

f(ξ, θ) = 0 . a.s.

Now, we set

Φ̃j = Φ̃j(x, θ) =
∂ (f(x, θ)Φ(θ))/∂θj

f(x, θ)Φ(θ)
.

Taking into account the condition (4.96) and integrating by parts yield

Ẽ
(
(ĝ − g(θ))Φ̃j

)
=

∫

X×Rd

(ĝ(x)− g(θ))
∂

∂θj
(f(x, θ)Φ(θ)) dθPξ(dx)

=

∫

X×Rd−1

(∫

R

g′
j(θ) f(x, θ)Φ(θ)dθj

)
∏

i 6=j

dθi


 Pξ(dx) = Λj .

Now by the Cauchy’s inequality we obtain the following lower bound for the quadratic risk

Ẽ(ĝ − g(θ))2 ≥
Λ2
j

ẼΨ2
j

.

To study the denominator in the left handside of this inequality note that, in view of the

reprentation (4.95),
1

f(y, θ)

∂ f(y, θ)

∂θj
=

1

̺1

∫ 1

0

ψj(t) dwt .

Therefore, for each θ ∈ R
d,

Eθ

1

f(y, θ)

∂ f(y, θ)

∂θj
= 0

and

Eθ

(
1

f(y, θ)

∂ f(y, θ)

∂θj

)2

=
1

̺21

∫ 1

0

ψ2
j (t)dt =

1

̺21
‖ψ‖2 .

Taking into account that

Φ̃j =
1

f(x, θ)

∂ f(x, θ)

∂θj
+

1

Φ(θ)

∂ Φ(θ))

∂θj
,

we get

ẼΨ2
j =

n

̺21
‖ψ‖2 + Ij .

Hence we got the desired result. ✷
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Chapter 5

Renewal theory

5.1 Renewal density

This section is concerned with results related to the renewal measure (1.8).

Theorem 5.1. (Goldie’s theorem)

Let η be a probability law on R with finite second moment and positive first moment m, such

that η̃(β) <∞ for some β > 0. Suppose that η is spread out, so for some n0 we have

η(n0) = (1− δ)φ0 + δφ1,

where δ ∈ [0, 1[ is constant and φ0, φ1 are probability measures with φ0 absolutely continuous.

Suppose that β has been taken so small that δφ̃1(β) < 1. Suppose that η̂(θ) 6= 1 on the line

Fθ = −β. Then the renewal measure ν :=
∑∞

j=0
η(n) may be written ν = ν0 + ν1, where ν1

is a finite measure such that ν̃1(β) < ∞, and ν0 is absolutlely continuous with a continuous

bounded density p(.) such that

p(t) =
1

m
− 1

2π

∫

C
e−iθt dθ

1− η̂(θ) + o(e−βt), t −→∞.

Here C is a simple closed contour in the domain D := {θ : −β < Fθ < 0}, enclosing all

the zeroes of 1− η̂ in D, η̃(θ) =
∫
R
eθtη(dt) and η̂(θ) =

∫
R
eiθtη(dt).

The proof of this Theorem is given in [8].

Now we need to adapt this result to our framwork. We start with the following lemma.

Lemma 5.1. Let τ be a positive random variable with a density g, such that Eeβτ < ∞ for

some β > 0. Then there exists a constant β1, 0 < β1 ≤ β for which,

Ee(β1+iω)τ 6= 1 ∀ω ∈ R .

Proof. We will show this lemma by the contradiction, i.e. we assume that there exist some

sequence of positive numbers going to zero (γk)k≥1 and a sequence (wk)k≥1 such that

Ee(γk+iωk)τ = 1 (5.1)
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for any k ≥ 1. Firstly, assume that lim supk→∞ wk = +∞. Note that in this case, for any

N ≥ 1,

∣∣∣∣
∫ N

0

eγkt cos(wkt) g(t)dt

∣∣∣∣ ≤
∣∣∣∣
∫ N

0

cos(wkt) g(t)dt

∣∣∣∣

+

∣∣∣∣
∫ N

0

(eγkt − 1) cos(wkt) g(t)dt

∣∣∣∣ ,

i.e., in view of Lemma 5.2, for any fixed N ≥ 1

lim sup
k→∞

∫ N

0

eγkt cos(wkt) g(t)dt = 0 .

Since for some β > 0 the integral
∫ +∞
0

eβt g(t)dt <∞, we get

lim
k→∞

∫ +∞

0

eγkt cos(wkt) g(t)dt = 0 .

Let now assume that lim supk→∞wk = ω∞ 6= 0 and 0 < |ω∞| <∞. In this case there exists a

sequence (lk)k≥1 such that limk→∞wlk
= ω∞, i.e.

1 = lim sup
k→∞

Eeγlk τ cos(τwlk
) = E cos(τw∞) .

It is clear that, for random variables having density, the last equality is possible if and only if

w∞ = 0. In this case, i.e. when lim supk→∞wlk
= 0, the equation (5.1) implies

lim sup
k→∞

E eγlkτ
sin(τwlk

)

wlk

= E τ = 0 .

But, under our conditions, Eτ > 0. These contradictions imply the desired result. ✷

Proposition 5.1. Let τ be a positive random variable with the distribution η having a density

g which satisfies Conditions H1)–H4). Then the renewal measure (1.8) is absolutely continuous

with density ρ, for which

ρ(x) =
1

τ̌
+Υ(x) , (5.2)

where τ̌ = Eτ1 and Υ(·) is some function defined on R+ with values in R such that

sup
x≥0

xγ |Υ(x)| <∞ for all γ > 0 .

Proof. First, note that we can represent the renewal measure η̌ as η̌ = η∗η0 and η0 =
∑∞

j=0
η(j).

It is clear that in this case the density ρ of η̌ can be written as

ρ(x) =

∫ x

0

g(x− y)
∑

n≥0

g(n)(y)dy . (5.3)
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Now we use the arguments proposed in the proof of Lemma 9.5 from [8]. For any 0 < ǫ < 1

we set

ρǫ(x) =

∫ x

0

g(x− y)


∑

n≥0

(1− ǫ)n g(n)(y)− (1− ǫ)
τ̌

g0(y)


 dy − g(x) , (5.4)

where g0(y) = e−ǫy/τ̌1{y>0}. It is easy to deduce that for any x ∈ R

lim
ǫ→0

ρǫ(x) = ρ(x)− 1

τ̌

∫ x

0

g(z) dz − g(x) . (5.5)

Moreover, in view of the condition H1) we obtain that the function ρǫ(x) satisfies the condition

D) from Section 5.2. So, through Proposition 5.3 we get

ρǫ(x+) + ρǫ(x−) =
1

π

∫

R

e−ixθ ρ̂ǫ(θ) dθ ,

where ρ̂ǫ(θ) =
∫
R
eiθxρǫ(x)dx. Note that

|ĝ(θ)| =
∣∣∣∣
∫

R

eiθxg(x)dx

∣∣∣∣ ≤
∫

R

g(x)dx = 1 ,

i.e. for any 0 < ǫ < 1 we have |(1− ǫ)ĝ(θ)| < 1 and therefore

∞∑

n=0

(1− ǫ)n(ĝ(θ))n =
1

1− (1− ǫ)ĝ(θ) .

From this and, taking into account that

ĝ0(θ) =

∫

R

eiθxg0(x)dx =
τ̌

ǫ− iτ̌ θ ,

we obtain

ρ̂ǫ(θ) = ĝ(θ)
∞∑

n=0

(1− ǫ)n(ĝ(θ))n −
(
1− ǫ
τ̌

)
ĝ(θ)ĝ0(θ)− ĝ(θ)

= ĝ(θ)Gǫ(θ) and Gǫ(θ) =
1

1− (1− ǫ)ĝ(θ) −
1− iτ̌ θ
ǫ− iτ̌ θ ,

i.e.

ρǫ(x−) + ρǫ(x+) =
1

π

∫

R

e−ixθ ĝ(θ)Gǫ(θ) dθ . (5.6)

One can check directly that

sup
0<ǫ<1,θ∈R

|Gǫ(θ)| < ∞ .

Therefore, using the condition H3) and the Lebesgue’s dominated convergence theorem, we

can pass to limit as ǫ→ 0 in (5.6), i.e., we obtain that

ρ(x+) + ρ(x−)− 2

τ̌

∫ x

0

g(z) dz − g(x+)− g(x−) = 1

π

∫

R

e−ixθ ĝ(θ)G0(θ) dθ ,
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where

G0(θ) =
1

1− ĝ(θ) +
1− iτ̌ θ
iτ̌θ

.

Using here again Proposition 5.3 we deduce that

ρ(x+) + ρ(x−) = 2

τ̌

∫ x

0

g(z) dz +
1

π

∫

R

e−ixθ ĝ(θ)Ǧ(θ) dθ (5.7)

and

Ǧ(θ) =
1

1− ĝ(θ) +
1

iτ̌ θ
.

Note now that we can represent the density (5.3) as

ρ(x) = g ∗
∑

n≥0

g(n) =
∑

n≥1

g(n)(x) = g(x) +
∑

n≥2

g(n)(x) =: g(x) + ρc(x)

and the function ρc(x) is continuous for all x ∈ R. This means that

ρ̃(x) =
ρ(x+) + ρ(x−)

2
− ρ(x) = g(x+) + g(x−)

2
− g(x)

and, therefore, the condition H2) implies that, for any γ > 0,

sup
x≥0

xγ |ρ̃(x)| <∞.

Now we can rewrite (5.7) as

ρ(x) =
1

τ̌

∫ x

0

g(z) dz +
1

2π

∫

R

e−ixθ ĝ(θ)Ǧ(θ) dθ − ρ̃(x). (5.8)

Taking into account that E eβτ <∞ for some β > 0 we can obtain that

sup
x≥0

xγ
∫ +∞

x

g(z) dz <∞ .

To study the second term in (5.8) we will use Proposition 5.2. Indeed, Condition H3) implies

the first limit equality in (5.10). The second one follows directly from Lemma 5.2. Therefore,

in view of Proposition 5.2, there exists some β∗ > 0 such that, for any 0 ≤ β0 ≤ β∗,
∫

R

e−ixθ ĝ(θ)Ǧ(θ) dθ = e−β0x

∫

R

e−ixθ ĝ(θ − iβ0)Ǧ(θ − iβ0) dθ .

Note that, due to Lemma 5.1, the function 1−ĝ(θ) has no zeros on the line {z ∈ C : Im(z) = −β1}.
Moreover, one can check directly that θ = 0 is an isolated zero. So, this means that for any

N > 1 there can be only finitely many zeros in {z ∈ C : −β1 < Im(z) < 0 , |Re(z)| < N} of

the function 1− ĝ(θ). Moreover, note that in view of lemma 5.2 for any r > 0

lim
Re(θ)→∞,|Im(θ)|≤r

ĝ(θ) = 0 .
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This means that there existsN > 0 such that the function 1−ĝ(θ) 6= 0 for θ ∈ {z ∈ C : −β1 < Im(z)

< 0 , |Re(z)| ≥ N}. So, there can be only finitely many zeros of the function 1 − ĝ(θ) in

{z ∈ C : −β1 < Im(z) < 0} for some fixed 0 < β1 < β. Therefore, there exists some β0 > 0

for which the function 1 − ĝ(θ) has no zeros in {z ∈ C : −β0 < Im(z) < 0}, i.e. the function

Ǧ(θ) will be bounded in this set and we obtain that

sup
x≥0

eβ0x

∣∣∣∣
∫

R

e−ixθ ĝ(θ)Ǧ(θ) dθ

∣∣∣∣ <∞ .

Thus the conclusion follows. ✷

Using this proposition we can study the renewal process (Nt)t≥0 introduced in (1.7).

Corollary 5.1. Assume that Conditions H1)–H4) hold true. Then, for any t > 0,

ENt ≤ |ρ|∗ t and EN2
t ≤ |ρ|∗ t+ |ρ|2∗ t2 . (5.9)

Proof. First, by means of Proposition 5.1, note that we get

ENt = E
∑

k≥1

1{Tk≤t} =
∫ t

0

ρ(v) dv ≤ |ρ|∗ t .

Regarding the last bound in (5.9), we use the same reasoning as in the previous inequality, i.e.,

we obtain

EN2
t = E

∑

k≥1

1{Tk≤t} + 2E
∑

k≥1

1{Tk≤t}
∑

j=k+1

1{Tj≤t}

= ENt + 2E
∑

k≥1

1{Tk≤t}Θ(Tk) = ENt +

∫ t

0

Θ(v) ρ(v) dv ,

where, for 0 ≤ v ≤ t, we defined the function Θ(v) = ENt−v ≤ |ρ|∗(t− v). ✷

5.2 Properties of the Fourier transform

Theorem 5.2. Cauchy (1825)

Let U be a simply connected open subset of C, let g : U → C be a holomorphic function,

and let γ be a rectifiable path in U whose start point is equal to its end point. Then
∮

γ

g(z)dz = 0 .

Proposition 5.2. Let g : C→ C be a holomorphic function in U = {z ∈ C : −β1 < Imz < β2}
for some β1 > 0 and β2 > 0. Assume that, for any −β1 ≤ t ≤ 0,

∫

R

|g(θ + it)| dθ <∞ and lim
|θ|→∞

g(θ + it) = 0 . (5.10)
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Then, for any x ∈ R and for any 0 < β < β1,

∫

R

eiθxg(θ) dθ = e−βx

∫

R

eiθxg(θ − iβ) dθ. (5.11)

Proof. First note that the conditions of this theorem imply that

∫

R

eiθxg(θ) dθ = lim
N→∞

∫ N

−N

eiθxg(θ) dθ .

We fix now 0 < β < β1 and we set for any N ≥ 1

γ = {z ∈ C : −N ≤ Rez ≤ N , Imz = 0} ∪ {z ∈ C : −N ≤ Imz ≤ N , Rez = N}

∪ {z ∈ C : −N ≤ Rez ≤ N , Imz = −β} ∪ {z ∈ C : −β ≤ Imz ≤ 0 , Rez = −N} .

Now, in view of Theorem 5.2, we obtain that for any N ≥ 1

∮

γ

eizx g(z)dz =

∫ N

−N

eiθxg(θ) dθ +

∫ −β

0

ei(N+it)xg(N + it) dt

+

∫ −N

N

ei(−iβ+θ)xg(−iβ + θ)dθ +

∫ 0

−β

ei(−N+it)xg(−N + it)dt = 0 . (5.12)

Conditions (5.10) provide that

lim
N→∞

∫ −β

0

ei(N+it)xg(N + it) dt = lim
N→∞

∫ 0

−β

ei(−N+it)xg(−N + it) dt = 0 .

Therefore, letting N →∞ in (5.12) we obtain (5.11). Hence we get the desired result. ✷

The following technical lemma is also needed.

Lemma 5.2. Let g : [a, b]→ R be a function from L1[a, b]. Then, for any fixed −∞ ≤ a < b ≤
+∞,

lim
N→∞

∫ b

a

g(x) sin(Nx)dx = 0 and lim
N→∞

∫ b

a

g(x) cos(Nx)dx = 0 . (5.13)

Proof. Let first −∞ < a < b < +∞. Assume that g is continuously differentiable, i.e.

g ∈ C1[a, b]. Then integrating by parts gives us

∫ b

a

g(x) sin(Nx) dx =
1

N

(
g(b) sin(Nb) − g(a) sin(Na) −

∫ b

a

g
′

(x) cos(Nx) dx

)
.

So, from this we obtain that

∣∣∣∣
∫ b

a

g(x) sin(Nx) dx

∣∣∣∣ ≤
|g(a)|+ |g(a)|+ (b− a)maxa≤x≤b |g

′

(x)|
N

.
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This implies the first limit in (5.13) for this case. The second one is obtained similarly. Let

now g be any absolutely integrated function on [a, b], i.e. g ∈ L1[a, b]. In this case there exists

a sequence gn ∈ C1[a, b] such that

lim
n→∞

∫ b

a

|g(x)− gn(x)|dx = 0 .

Therefore, taking into account that for any n ≥ 1

lim
N→∞

∫ b

a

gn(x) sin(Nx)dx = 0 ,

we obtain that

lim sup
n→∞

|
∫ b

a

g(x) sin(Nx)dx| ≤
∫ b

a

|g(x)− gn(x)|dx .

So, letting in this inequality n → ∞ we obtain the first limit in (5.13) and, similarly, we

obtain the second one. Let now b = +∞ and a = −∞. In this case we obtain that for any

−∞ < a < b < +∞
∣∣∣∣∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣∣∣∣∣+
∫ +∞

b

|g(x) |dx

+

∫ a

−∞
|g(x) |dx .

Using here the previous results we obtain that for any −∞ < a < b < +∞

lim sup
N→∞

∣∣∣∣∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣∣∣∣∣ ≤
∫ +∞

b

|g(x) |dx+

∫ a

−∞
|g(x) |dx .

Passing here to limit as b → +∞ and a → −∞ we obtain the first limit in (5.13). Similarly,

we can obtain the second one. ✷

Let us now study the inverse Fourier transform. To this end, we need the following local

Dini condition.

D) Assume that, for some fixed x ∈ R, there exist the finite limits

g(x−) = lim
z→x−

g(z) and g(x+) = lim
z→x+

g(z)

and there exists δ = δ(x) > 0 for which

∫ δ

0

|g(x+ t) + g(x− t)− g(x+)− g(x−)|
t

dt < ∞.
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Proposition 5.3. Let g : R→ R be a function from L1(R). If, for some x ∈ R, this function

satisfies the condition D, then

g(x+) + g(x−) = 1

π

∫

R

e−iθxĝ(θ) dθ , (5.14)

where

ĝ(θ) =

∫

R

eiθt g(t) dt .

Proof. First, for any fixed N > 0 we set

JN (x) =
1

2π

∫ N

−N

e−iθxĝ(θ) dθ =
1

π

∫

R

g(z)

∫ N

0

cos(θ(z − x)) dθdz ,

i.e.,

JN (x) =
1

π

∫

R

g(z)
sin(N(z − x))

z − x dz =
1

π

∫ ∞

0

(g(x+ t) + g(x− t)) sin(Nt)
t

dt .

Taking into account that for any N > 0 the integral

2

π

∫ ∞

0

sin(Nt)

t
dt = 1 (5.15)

and denoting B(x) = (g(x+) + g(x−))/2, we obtain that

JN (x)−B(x) =
1

π

∫ ∞

0

ω(x, t) sin(Nt)

t
dt and ω(x, t) = g(x+ t) + g(x− t)− 2B(x) .

Now we represent the last integral as

∫ ∞

0

ω(x, t) sin(Nt)

t
dt = I1,N + I2,N − 2B(x)I3,N ,

where

I1,N =

∫ δ

0

ω(x, t)

t
sin(Nt)dt , I2,N =

∫ ∞

δ

G(t) sin(Nt)dt , I3,N =

∫ ∞

δ

sin(Nt)

t
dt

and G(t) = (g(x+ t)+g(x− t))/t. Condition D and Lemma 5.2 imply directly the convergence

I1,N → 0 as N → ∞. Now note that, since g ∈ L1(R), then the function G is absolutely

integrated. Therefore, in view of Lemma 5.2, I2,N → 0 as N →∞. As to the last integral we

use the property (5.15), i.e., the changing of the variables gives

I3,N =

∫ ∞

δN

sin t

t
dt→ 0 as N →∞ .

Hence we have the desired result. ✷



Conclusion

The main purpose of this work is the non-parametric estimation for regression models in con-

tinuous time. First, we consider the problem of estimation an unknown fonction S on the basis

of continuous observations, we define the noise in this model through a semi-Markov process

which keeps the dependence for any duration n. So, we are in the case of dependent observa-

tions for which the dependence does not disapear for a sufficient large duration of observation.

Second, we consider the same model when the estimation is based on discrete data and we

obtain the sufficient conditions on the frequency observations under wich the robust effecient

is shown. In the third model we consider a Lévy non-parametric regression with noise intensity

and we estimate the unknown function S in the case where the noise level goes to 0 and the

Lévy measure can go to infinity. In all of these models, we propose an adaptive model selection

for the robust risk.
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in infinite dimensions. Séminaire de Probabilités, Lect. Notes Math., XLVI, 293–315, 2014.



BIBLIOGRAPHY 117

[25] M. Nussbaum. Spline smoothing in regression models and asymptotic efficiency in L2.

Ann. Statist., 13, 984–997, 1985.

[26] A. A. Novikov. On discontinuous martingales. Theory Probab. Appl., 20 (1), 11–26, 1975.

[27] M. S. Pinsker. Optimal filtration of square integrable signals in Gaussian white noise.

Problems of Transmission Information, 17, 120–133, 1981.

[28] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Vol.1, Springer,

New York, 1987.

[29] C. Mallows. Some comments on Cp. Technometrics 15, 661–675, 1973.

[30] Akaike H. A new look at the statistical model identification. IEEE Trans. on Automatic

Control 19, 716–723, 1974.
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Résumé

Ce travail est consacré au problème d’estimation non paramétrique dans des modèles de re-

gression en temps continu. On considère le problème d’estimation d’une fonction inconnue S

supposée périodique. Cette estimation est basée sur des observations générées par un processus

stochastique; ces observations peuvent êtres en temps continu ou discret. Pour ce faire, nous

construisons une série d’estimateurs par projection et nous approchons la fonction inconnue

S par une série de Fourier finie. Dans cette thèse, nous considérons le problème d’estimation

dans le cadre adaptatif, c’est-à-dire le cas où la régularité de la fonction S est inconnue. Pour

ce problème, nous développons une nouvelle méthode d’adaptation basée sur la procédure de

sélection de modèle proposée par Konev et Pergamenshchikov (2012). Tout d’abord, cette

procédure nous donne une famille d’estimateurs; après nous choisissons le meilleur estimateur

possible en minimisant une fonction coût. Nous donnons également une inégalité d’Oracle pour

le risque de nos estimateurs et nous donnons la vitesse de convergence minimax.

Mots Clés : Estimation non asymptotique, sélection de modèle, inégalité d’Oracle pointue,

risque robuste , efficacitée asymptotique.
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Abstract

This thesis is devoted to the problem of non parametric estimation for continuous-time regres-

sion models. We consider the problem of estimating an unknown periodoc function S. This

estimation is based on observations generated by a stochastic process; these observations may

be in continuous or discrete time. To this end, we construct a series of estimators by projection

and thus we approximate the unknown function S by a finite Fourier series. In this thesis we

consider the estimation problem in the adaptive setting, i.e. in situation when the regularity

of the fonction S is unknown. In this way, we develop a new adaptive method based on the

model selection procedure proposed by Konev and Pergamenshchikov (2012). Firstly, this pro-

cedure give us a family of estimators, then we choose the best possible one by minimizing a

cost function. We give also an oracle inequality for the risk of our estimators and we give the

minimax convergence rate.

Key Words: Non asymptotic estimation, Robust risk, Model selection, Sharp oracle in-

equality, Assymptotic efficiency.
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Chapter 1

Introduction

The problem of non parametric estimation in regression models has an important role in theo-

rical and applied statistics. In this thesis, we consider regression models in continuous time of

the form

d yt = S(t)d t+ d ξt , 0 ≤ t ≤ n , (1.1)

where S is an unknown periodic function from L2[0, n], wich we want to estimate on the basis of

observations yt. This observations can be in continuous time or in discrete time. This problem

was considered in many frameworks, for example, in the framework of the “signal+white noise”

models (see, for example, [9] or [47]). Later, in order to study dependent observations in

continuous time, were introduced “signal+color noise” regressions based on Ornstein-Uhlenbeck

processes (cf. [11], [12], [13], [16]).

Moreover, to include jumps in such models, the papers [17] and [18] used non Gaussian

Ornstein-Uhlenbeck processes introduced in [4] for modeling the risky assets in the stochastic

volatility financial markets. Unfortunately, the dependence of the stable Ornstein-Uhlenbeck

type decreases with a geometric rate. So, asymptotically when the duration of observations

goes to infinity, we obtain very quickly the same “signal+white noise” model.

The main goal of this thesis is to develop the model (1.1) for the noise process with large

dependence. This allows us to consider the signal estimation problem for signals observed

with noises of complex structure “against-signal”. To achieve this goal, we use semi-Markov

processes to model the dependent noises, because it is well known that such processes keep the

dependence for a long time.

In our work we use the robust estimation approach introduced in [17] for such problems. To

this end, we denote by Q the distribution of (ξt)0≤t≤n in the Skorokhod space D[0, n]. We

assume that Q is unknown and belongs to some distribution family Qn wich will be specified

later. In this thesis we use the quadratic risk

RQ(S̃n, S) = EQ,S ‖S̃n − S‖2 , (1.2)

where ‖f‖2 =
∫ 1

0
f2(s)ds and EQ,S is the expectation with respect to the distribution PQ,S of

the process (1.1) corresponding to the noise distribution Q. Since the noise distribution Q is

unknown, it seems reasonable to introduce the robust risk of the form

R∗
n(S̃n, S) = sup

Q∈Qn

RQ(S̃n, S) , (1.3)
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which enables us to take into account the information that Q ∈ Qn and ensures the quality of

an estimate S̃n for all distributions in the family Qn.

In order to estimate the function S belonging to L2[0, n], one can consider a projection estimator

and thus approximate S by a finite Fourier series. Following Pinsker’s approach (1981), we use

the weighted least square estimators which provide efficient estimation, but, in order to obtain

efficient estimation, one needs to use regularity properties of the function S. Our approach is to

consider the estimation problem in the adaptive setting, i.e. in situation when the regularity of

the function S is unknown. In this way, we develop a new adaptive method based on the model

selection procedure proposed by Konev and Pergamenshchikov (2012). To show the efficiency,

one needs to obtain the corresponding sharp oracle inequality; note that this is a crucial tool

in order to be able to show the adaptive efficiency. The “sharp” oracle inequality means that

the upper bound for the risk has the coefficient of the main term close to one.

We recall that the main term is the minimal risk over the family of estimators that we consider.

To obtain the oracle inequality one needs to develop renewal theory for the model (1.1). In

our thesis we obtain a new asymptotic development for the renewal density. In fact, this result

is a version of Goldie’s theorem (1991). Unfortunately, we cannot use directly the Goldie’s

theorem, since in that result there is a singular component of the renewal distribution, which

makes the use of that result impossible for the estimation purposes. In our work we give

sufficient conditions for having an asymptotic development for the renewal density without a

singular component.

The effeciency of the estimator will be also proved. To this end, we assume that the unknown

function S in the model (1.1) belongs to the Sobolev ball

W k
r
= {f ∈ Ckper[0, 1] :

k∑

j=0

‖f (j)‖2 ≤ r} , (1.4)

where r > 0 and k ≥ 1 are some unknown parameters, Ckper[0, 1] is the set of k times continuously

differentiable functions f : [0, 1] → R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. Similarly

to [17, 18] we will show here that the asymptotic sharp lower bound for the robust risk (1.3) is

given by

r∗k = ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (1.5)

Note that this is the well-known Pinsker’s constant obtained for the nonadaptive filtration

problem in “signal + small white noise” model (see, for example, [47]), generated by the process

(1.1).

Main results of the thesis

In this thesis we study three types of regression models in continuous time, the observations

are generated mainly by a semi-Markov process and Lévy process. In this way, our model is
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capable to take into account “small” jumps, thanks to the Lévy process, as well as “big” jumps,

thanks to the semi-Markov process.

1.1 Semi-Markov process

In our work, we consider a pure jump process (zt)t≥ 0 as a semi-Markov process with the

following form

zt =

Nt∑

i=1

Yi, (1.6)

where (Yi)i≥ 1 is an i.i.d. sequence of random variables with

EYi = 0 , EY 2
i = 1 and EY 4

i <∞ .

Here Nt is a general counting process (see, for example, [22]) defined as

Nt =

∞∑

k=1

1{Tk≤t} and Tk =

k∑

l=1

τl , (1.7)

where (τl)l≥ 1 is an i.i.d. sequence of positive integrated random variables with distribution η

and mean τ̌ = E τ1 > 0. We assume that the processes (Nt)t≥0 and (Yi)i≥ 1 are independent.

Note that the process (zt)t≥ 0 is a special case of a semi-Markov process (see, e.g., [5] and

[20]). It should be noted that if τj are exponential random variables, then (Nt)t≥0 is a Poisson

process and, in this case, the process (ξt)t≥0 given in (1.14) is a Lévy process for which this

model has been studied in [14], [15] and [17]. But, in the general case when the process (1.6)

is not a Lévy process, this process has a memory and cannot be treated in the framework

of semi-martingales with independent increments. In this case, we need to develop new tools

based on renewal theory arguments, what we do in Chapter.5. This tools will be intensively

used in the proofs of our main results.

Let ρ be the density of the renewal measure η̌ defined as

η̌ =
∞∑

l=1

η(l) , (1.8)

where η(l) is the lth convolution power of η. To study this renewal measure we assume that

the measure η has a density g which satisfies the following conditions.

H1) Assume that, for any x ∈ R, there exist the finite limits

g(x−) = lim
z→x−

g(z) and g(x+) = lim
z→x+

g(z)
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and, for any K > 0, there exists δ = δ(K) > 0 for which

sup
|x|≤K

∫ δ

0

|g(x+ t) + g(x− t)− g(x+)− g(x−)|
t

dt < ∞.

H2) For any γ > 0,

sup
z≥0

zγ |2g(z)− g(z−)− g(z+)| < ∞.

H3) There exists β > 0 such that
∫
R
eβx g(x) dx <∞.

Remark 1.1. It should be noted that the condition H3) means that there exists an exponential

moment for the random variable (τj)j≥1, i.e. these random variables are not too large. This

is a natural constraint since these random variables define the intervals between jumps, i.e.,

the frequency of the jumps. So, to study the influence of the jumps in the model (1.13) one

needs to consider the noise process (1.14) with “small” interval between jumps or large jump

frequency.

For the next condition we need to introduce the Fourier transform of any function f from

L1(R), f : R→ R, defined as

f̂(θ) =
1

2π

∫

R

eiθx f(x) dx. (1.9)

H4) There exists t
∗ > 0 such that the function ĝ(θ−it) belongs to L1(R) for any 0 ≤ t ≤ t∗.

Remark 1.2. It is clear that Conditions H1)–H4) hold true for any continuously differentiable

function g, for example for the exponential density.

Proposition 1.1. Let τ be a positive random variable with the distribution η having a density

g which satisfies Conditions H1)–H4). Then the renewal measure (1.8) is absolutely continuous

with density ρ, for which

ρ(x) =
1

τ̌
+Υ(x) , (1.10)

where τ̌ = Eτ1 and Υ(·) is some function defined on R+ with values in R such that

sup
x≥0

xγ |Υ(x)| <∞ for all γ > 0 .

It should be noted that in view of this proposition, Conditions H1)–H4) imply

|ρ|∗ = sup
t≥0
|ρ(t)| <∞ and ‖Υ‖1 =

∫ +∞

0

|Υ(x)| dx <∞ (1.11)
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1.2 Lévy process

In this thesis we assume that the Lévy process Lt is defined as

Lt = ˇ̺wt +
√
1− ˇ̺2 Ľt , Ľt = x ∗ (µ− µ̃)t , (1.12)

where, 0 ≤ ˇ̺ ≤ 1 is an unknown constant, (wt)t≥ 0 is a standard Brownian motion, µ(ds, dx)

is the jump measure with the deterministic compensator µ̃(ds dx) = dsΠ(dx), where Π(·) is

some positive measure on R (see, for example, [10, 6] for details). In this thesis, we use the

usual notation

Π(|x|m) =

∫

R

|z|mΠ(dz) for any m > 0.

Note that Π(R) may be equal to +∞.

Remark 1.3. In this thesis, we assume that the processes (Nt)t≥0 and (Yi)i≥ 1 in (1.6) are

independent between them and are also independent of (Lt)t≥0.

1.3 Non-parametric estimation based on continuous data

We consider a regression model in continuous time

d yt = S(t)d t+ d ξt , 0 ≤ t ≤ n , (1.13)

where S is an unknown 1-periodic function from L2[0, 1] defined on R with values in R, the

noise process (ξt)t≥ 0 is defined as

ξt = ̺1Lt + ̺2zt , (1.14)

where ̺1 and ̺2 are unknown coefficients, the pure jump process (zt)t≥ 1 is the semi-Markov

process defined in (1.6) and (Lt)t≥ 0 is the Levy process defined in (1.12), for which we assume

that

Π(x2) = 1 and Π(x8) < ∞ .

The problem is to estimate the unknown function S in the model (1.13) on the basis of observa-

tions (yt)0≤t≤n. The main goal is to consider continuous time regression models with dependent

observations for which the dependence does not disappear for a sufficient large duration of ob-

servations. To this end we define the noise in the model through a semi-Markov process which

keeps the dependence for any duration n. This type of models allows, for example, to estimate

the signals observed under long impulse noise impact with a memory or “against signals”.

To estimate the function S we use here the model selection procedure for continuous time
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regression models from [17] based on the Fourrier expansion. We recall that for any function

S from L2[0, 1] we can write

S(t) =

∞∑

j=1

θj φj(t) and θj = (S, φj) =

∫ 1

0

S(t)φj(t)dt ,

where (φj)j≥ 1 is an orthonormal uniformly bounded basis in L2[0, 1], i.e., for some constant

φ∗ ≥ 1, which may be depend on n,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ .

We extend the functions φj(t) by periodicity, i.e., we set φj(t) := φj({t}), where {t} is the

fractional part of t ≥ 0. For example, we can take the trigonometric basis (Trj)j≥ 1 in L2[0, 1]

defined as Tr1 ≡ 1 and, for j ≥ 2,

Trj(x) =
√
2





cos(2π[j/2]x) for even j,

sin(2π[j/2]x) for odd j,

(1.15)

where [x] denotes the integer part of x.

Now, for obtaining efficient estimation one needs to use weighted least square estimators defined

as

Ŝλ(t) =
n∑

j=1

λ(j)θ̂j,nφj(t) ,

where the coefficients λ = (λ(j))1≤j≤n belong to some finite set Λ from [0, 1]n. In this thesis we

consider the adaptive case, i.e. we assume that the regularity of the function S is unknown. In

this case we chose the weight coefficients on the basis of the model selection procedure proposed

in [17] for the general semi-martingale regression model in continuous time.

Now, to choose a weight sequence λ in the set Λ we use the empirical quadratic risk, defined

as

Errn(λ) =‖ Ŝλ − S ‖2 .

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ . (1.16)

Now, in order to study the asymptotic effeciency for our procedure, we give the following oracle

inequality for the robust risk defined in (1.3) and through a specific distribution family.

Theorem 1.1. Assume that Conditions H1) – H4) hold and that the unknown function S is

continuously differentiable. Then, for any n ≥ 1 and 0 < δ < 1/6, the procedure (1.16) satisfy

the following oracle inequality

R∗(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
n(S)

nδ
,
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where the sequence U∗
n(S) > 0 is such that, under some conditions, for any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0.

It follows directly, by using the oracle inequality, that our procedure is efficient with the

efficient robust rate υ2k/(2k+1)
n with υn = n/ς∗(n) such that, for any ǫ̌ > 0,

lim
n→∞

ς∗(n)
nǫ̌

= 0 .

Corollary 1.1.

lim
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) = r∗k . (1.17)

We prove in this thesis that the robust minimax convergence rate may be faster or slower

than the classical one (n2k/(2k+1)) .

1.4 Non-parametric estimation based on discrete data

In this chapter we consider the regression model (1.13) with the noise (1.14). The problem is to

estimate the unknown function S in the case when continuous observation cannot be provided

and only discret time measurement are available, the observations are in the forme

(ytj )0≤j≤np, tj = j∆, ∆ =
1

p
,

where the integer p ≥ 1 is the observation frequency. We will use the trigonometric basis

defined in (1.15). By making use of this basis we consider the discrete Fourier transformation

of S

S(t) =

p∑

j=1

θj,pTrj(t), t ∈ {t1, ..., tp},

where the Fourier coefficients are defined by

θj,p = (S,Trj)p =
1

p

p∑

i=1

S(ti)Trj(ti).

Then, we estimate the function S by the weighted least squares estimator

Ŝλ(t) =
n∑

j=1

λ(j)θ̂j,pΨj,p(t) ,

where the weight vector λ = (λ(1), ....., λ(n)) belongs to some finite set Λ from [0, 1]n,

θ̂j,p =
1

n

∫ n

0

Ψj,p(t)d yt and Ψj,p(t) =

np∑

l=1

Trj(tl)1{tl−1<t≤tl} .
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In order to find a proper weight sequence λ in the set Λ one needs to specify a cost function.

When choosing an appropriate cost function one can use the following argument. Let us

consider the empirical squared error

Err(λ) = ‖Ŝλ − S‖2 .

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ . (1.18)

Now, To obtain the oracle inequality and to prove the effeciency of our procedure, we obtain

in this thesis the sufficient condition for the frequency observations p.

H5) We assume that there exists δ̌ > 0 such that for any n ≥ 3

p ≥ n5/6 .

Now, in order to study the asymptotic effeciency for our procedure, we give the following oracle

inequality for the robust risk defined in (1.3) and through a specific distribution family.

Theorem 1.2. Assume that Conditions H1) – H5) hold and that the unknown function S is

continuously differentiable. Then, for any n ≥ 1 and 0 < δ < 1/6, the procedure (1.18) satisfy

the following oracle inequality

R∗(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
n(S)

nδ
,

where the sequence U∗
n(S) > 0 is such that, under some conditions, for any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0.

1.5 Non-parametric estimation for Lévy regression models

We consider a regression model in continuous time with the Lévy noise

d yt = S(t)d t+ ε dξt , 0 ≤ t ≤ 1 , (1.19)

where S is an unknown function defined on R with values in R, (ξt)0≤t≤1 is a Lévy process and

ε > 0 is the noise intensity. The problem is to estimate the function S based on the continuous

observations (yt)0≤t≤1 when ε→ 0. We assume that

Π(x2) = 1 and Π(x4) < ∞ . (1.20)



1.5 Non-parametric estimation for Lévy regression models 11

When constructing the sharp model selection procedures, in this model, we will use the ap-

proach close to that of the papers [14], [15], [16], [18] developed for the estimation of a 1-periodic

function in continuous time on a large time interval, i.e.

dxt = S(t)dt+ dηt , 0 ≤ t ≤ n .

Note that, for any 0 < t < 1, setting yt = n−1
∑n

j=1
(xt+j − xj), we can represent this model

as a model with small parameter of form (1.19)

dyt = S(t)dt+ ε dξt ,

where ε = n−1/2 and ξt = n−1/2
∑n

j=1
(ηt+j − ηt). The main difference between this model and

the original one is that the jumps are small, i.e.

∆ξt = O(n−1/2) = O(ε) as ε→ 0 ,

but we have not such property in the model (1.19). Therefore, unfortunately, we cannot use

directly the method developed for the estimation problem on the large time interval to the

model (1.19). So, the main goal of this chapter is to develop a new sharp model selection

method for the estimation problem of the function S as ε→ 0. Let (φj)j≥ 1 be an orthonormal

basis in L2[0, 1] with φ1 ≡ 1. We assume that this basis is uniformly bounded, i.e. for some

constant φ∗ ≥ 1, which may depend on ε > 0,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ ,

where n = nε = [1/ε2] and [x] denotes the integer part of x. To estimate the function S we use

the following Fourier series

S(t) =
∑

j≥1

θj φj(t). ,

Then, we can estimate the function S(x) for x ∈ [0, 1] by the weighted least squares estimator

Ŝλ(x) =
n∑

j=1

λ(j)θ̂j,εφj(x) ,

where n = [1/ε2], the weights λ = (λ(j))1≤j≤n belong to some finite set Λ from [0, 1]n. To

choose a weight sequence λ in the set Λ we use the empirical quadratic risk, defined as

Errε(λ) =‖ Ŝλ − S ‖2 .

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ . (1.21)
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Theorem 1.3. Assume that for the model (1.19) the condition (1.20) holds and the unknown

function S is continuously differentiable. Then, for any 0 < δ < 1/6, the procedure (1.21)

satisfy the following oracle inequality

R∗
ε(Ŝ∗, S) ≤

1 + 3δ

1− 3δ
min
λ∈Λ
R∗

ε(Ŝλ, S) + ε2
U∗

ε(S)

δ
, (1.22)

where the term U∗
ε(S) > 0 is such that under some conditions, for any r > 0 and δ̌ > 0

lim
ε→0

εδ̌ sup
‖Ṡ‖≤r

U∗
ε(S) = 0 . (1.23)

As an application of the sharp model selection method in this thesis, we consider the

estimation problem for the number of signals in the multi-path connexion channel. In the

framework of the statistical radio - physics models we study the telecommunication system in

which we observe in the multi-path channel the summarized signal with the noise on the time

interval [0, 1],

yt =

q∑

j=1

θjφj(t) + nt , 0 ≤ t ≤ 1 ,

where (nt)t≥0 is some noise, usually this “white noise”. The energetic parameters (θj)j≥1

and the number of the signals q are unknown and the signals (φj)j≥1 are known orthonormal

functions, i.e. ∫ 1

0

φi(t)φj(t) dt = 1{i 6=j} .

The problem is to estimate q, when the signal noise ratio goes to infinity. To describe this

problem in the framework of the mathematical model we use the following stochastic differential

equation

dyt =




q∑

j=1

θjφj(t)


 dt+ εdwt , (1.24)

where (wt)t≥0 is the standard Brownian motion and the parameter ε goes to zero. This means

that the ratio signal/noise goes to infinity. The logarithm of the likelihood ratio for the model

(1.24) can be represented as

lnLε =
1

ε2

q∑

j=1

θj

∫ 1

0

φj(t)dyt −
1

2ε2

q∑

j=1

θ2j .

If we will try to construct the maximum likelihood estimators for (θj)1≤j≤q and q then we

obtain that

max
1≤q≤q

∗

max
θj

lnLε =
1

2ε2

q
∗∑

j=1

(∫ 1

0

φj(t)dyt

)2

.

Therefore, the maximum likelihood estimate for q̂ = q∗. So, if q∗ =∞ we obtain that q̂ =∞.

So, this estimator does not work. For this reason we propose to study the estimation problem
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for q for the process (1.24) in the nonparametric setting and to apply the model selection

procedure (1.21).
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Chapter 2

Non-parametric estimation for semi-Markov

regression models based on continuous data

2.1 Introduction

Let us consider a regression model in continuous time

d yt = S(t)d t+ d ξt , 0 ≤ t ≤ n , (2.1)

where S is an unknown 1-periodic function from L2[0, 1] defined on R with values in R, the

noise process (ξt)t≥ 0 is defined as

ξt = ̺1Lt + ̺2zt , (2.2)

where ̺1 and ̺2 are unknown coefficients, the pure jump process (zt)t≥ 1 is the semi-Markov

process defined in (1.6) and (Lt)t≥ 0 is the Lévy process defined in (1.12), for which we assume

that

Π(x2) = 1 and Π(x8) < ∞ . (2.3)

The problem is to estimate the unknown function S in the model (2.1) on the basis of

observations (yt)0≤t≤n. Firstly, this problem was considered in the framework of the “sig-

nal+white noise” models (see, for example, [9] or [47]). Later, in order to study dependent

observations in continuous time, were introduced “signal+color noise” regressions based on

Ornstein-Uhlenbeck processes (cf. [11], [12], [13], [16]).

Moreover, to include jumps in such models, the papers [17] and [18] used non Gaussian

Ornstein-Uhlenbeck processes introduced in [4] for modeling of the risky assets in the stochastic

volatility financial markets. Unfortunately, the dependence of the stable Ornstein-Uhlenbeck

type decreases with a geometric rate. So, asymptotically when the duration of observations

goes to infinity, we obtain very quickly the same “signal+white noise” model.

The main goal of this chapter is to consider continuous time regression models with depen-

dent observations for which the dependence does not disappear for a sufficient large duration of

observations. To this end, we define the noise in the model (2.1) through a semi-Markov pro-

cess which keeps the dependence for any duration n. This type of models allows, for example,

to estimate the signals observed under long impulse noise impact with a memory or “against

signals”.
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In this chapter we use the robust estimation approach introduced in [17] for such problems.

To this end, we denote by Q the distribution of (ξt)0≤t≤n in the Skorokhod space D[0, n]. We

assume that Q is unknown and belongs to some distribution family Qn specified in Section 2.2.

In this chapter we use the quadratic risk

RQ(S̃n, S) = EQ,S ‖S̃n − S‖2 , (2.4)

where ‖f‖2 =
∫ 1

0
f2(s)ds and EQ,S is the expectation with respect to the distribution PQ,S of

the process (2.1) corresponding to the noise distribution Q. Since the noise distribution Q is

unknown, it seems reasonable to introduce the robust risk of the form

R∗
n(S̃n, S) = sup

Q∈Qn

RQ(S̃n, S) , (2.5)

which enables us to take into account the information that Q ∈ Qn and ensures the quality of

an estimate S̃n for all distributions in the family Qn.

To summarize, the goal of this chapter is to develop robust efficient model selection meth-

ods for the model (2.1) with the semi-Markov noise having unknown distribution, based on the

approach proposed by Konev and Pergamenshchikov in [17] and [18] for continuous time regres-

sion models with semi-martingale noises. Unfortunately, we cannot use directly this method

for semi-Markov regression models, since their tool essentially uses the fact that the Ornstein-

Uhlenbeck dependence decreases with geometrical rate and the “white noise” case is obtained

sufficiently quickly.

Thus in the thesis we propose new analytical tools based on renewal methods to obtain the

sharp non-asymptotic oracle inequalities. As a consequence, we obtain the robust efficiency for

the proposed model selection procedures in the adaptive setting.

2.2 Model selection

Note that for any function f from L2[0, n], f : [0, n]→ R, for the noise process (ξt)t≥ 0 defined

in (2.2), with (zt)t≥ 0 given in (1.6), the integral

In(f) =

∫ n

0

f(s)dξs (2.6)

is well defined with EQ In(f) = 0. Moreover, as it is shown in Lemma 2.2,

EQ I
2
n(f) ≤ κQ

∫ n

0

f2(s)d s , (2.7)

where κQ = ̺21 + ̺22 |ρ|∗ and |ρ|∗ = supt≥0 |ρ(t)| <∞. Let us define the family of the noise dis-

tributions for the model (2.1) which is used in the robust risk (2.5). Note that any distribution

Q from Qn is defined by the unknown parameters in (2.2) and (1.12). We assume that

σQ = ̺21 + ̺22/τ̌ ≤ ς∗, (2.8)
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where the unknown bounds ς∗ are functions of n, i.e. ς∗ = ς∗(n), such that for any ǫ̌ > 0,

lim
n→∞

nǫ̌ ς∗(n) = +∞ and lim
n→∞

ς∗(n)
nǫ̌

= 0 . (2.9)

Remark 2.1. As we will see later, the parameter σQ is the limit of the Fourier transform of the

noise process (2.2). Such limit is called variance proxy (see [17]).

Remark 2.2. Note that, generally (but it is not necessary) the parameters ̺1 and ̺2 can be

dependent on n. The conditions (2.9) mean that we consider all possible cases, i.e. these

parameters may go to infinity or be constant or go to zero as well. See, for example, the

conditions (3.32) in [18].

Now, let (φj)j≥ 1 be an orthonormal uniformly bounded basis in L2[0, 1], i.e., for some

constant φ∗ ≥ 1, which may depend on n,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ . (2.10)

We extend the functions φj(t) by periodicity, i.e., we set φj(t) := φj({t}), where {t} is the

fractional part of t ≥ 0. For example, we can take the trigonometric basis defined in (1.15).

To estimate the function S we use here the model selection procedure for continuous time

regression models from [17], based on the Fourrier expansion. We recall that, for any function

S from L2[0, 1], we can write

S(t) =
∞∑

j=1

θj φj(t) and θj = (S, φj) =

∫ 1

0

S(t)φj(t)dt . (2.11)

So, to estimate the function S it suffices to estimate the coefficients θj and to replace them

in this representation by their estimators. Using the fact that the function S and φj are 1 -

periodic, we can write that

θj =
1

n

∫ n

0

φj(t)S(t)dt .

If we replace here the differential S(t)dt by the stochastic observed differential dyt we obtain

the natural estimate for θj on the time interval [0, n]

θ̂j,n =
1

n

∫ n

0

φj(t)d yt , (2.12)

which can be represented, in view of the model (2.1), as

θ̂j,n = θj +
1√
n
ξj,n , ξj,n =

1√
n
In(φj) . (2.13)

Now (see, for example, [9]) we can estimate the function S by the projection estimators, i.e.

Ŝm(t) =

m∑

j=1

θ̂j,n φj(t) , 0 ≤ t ≤ 1 , (2.14)
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for some number m → ∞ as n → ∞. It should be noted that Pinsker in [47] shows that the

projection estimators of the form (2.14) are not efficient. For obtaining efficient estimation one

needs to use weighted least square estimators defined as

Ŝλ(t) =
n∑

j=1

λ(j)θ̂j,nφj(t) , (2.15)

where the coefficients λ = (λ(j))1≤j≤n belong to some finite set Λ from [0, 1]n. As it is shown

in [47], in order to obtain efficient estimators, the coefficients λ(j) in (2.15) need to be chosen

depending on the regularity of the unknown function S. In this thesis we consider the adaptive

case, i.e. we assume that the regularity of the function S is unknown. In this case we chose the

weight coefficients on the basis of the model selection procedure proposed in [17] for the general

semi-martingale regression model in continuous time. These coefficients will be obtained later

in (2.28). To this end, first we set

ι̌ = #(Λ) and |Λ|∗ = 1 +max
λ∈Λ

Ľ(λ) , (2.16)

where #(Λ) is the cardinal number of Λ and Ľ(λ) =
∑n

j=1
λ(j). Now, to choose a weight

sequence λ in the set Λ we use the empirical quadratic risk, defined as

Errn(λ) =‖ Ŝλ − S ‖2,

which in our case is equal to

Errn(λ) =

n∑

j=1

λ2(j)θ̂2j,n − 2

n∑

j=1

λ(j)θ̂j,nθj +

∞∑

j=1

θ2j . (2.17)

Since the Fourier coefficients (θj)j≥ 1 are unknown, we replace the terms θ̂j,nθj,n by

θ̃j,n = θ̂2j,n −
σ̂n
n
, (2.18)

where σ̂n is an estimate for the variance proxy σQ defined in (2.8). If it is known, we take

σ̂n = σQ; otherwise, we can choose it, for example, as in [17], i.e.

σ̂n =

n∑

j=[
√
n]+1

T̂2
j,n , (2.19)

where T̂j,n are the estimators for the Fourier coefficients (Tj)j≥ 1 with respect to the trigono-

metric basis (1.15), i.e.

T̂j,n =
1

n

∫ n

0

Trj(t)dyt . and Tj =

∫ 1

0

Trj(t)S(t)dt . (2.20)
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Finally, in order to choose the weights, we will minimize the following cost function

Jn(λ) =
n∑

j=1

λ2(j)θ̂2j,n − 2
n∑

j=1

λ(j)θ̃j,n + δ Pn(λ), (2.21)

where δ > 0 is some threshold which will be specified later and the penalty term is

Pn(λ) =
σ̂n|λ|2
n

. (2.22)

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ , (2.23)

where

λ̂ = argminλ∈ΛJn(λ). (2.24)

We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique, we take one

of them. Let us now specify the weight coefficients (λ(j))1≤j≤n. Consider, for some fixed

0 < ε < 1, a numerical grid of the form

A = {1, . . . , k∗} × {ε, . . . ,mε} , (2.25)

where m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and ε are functions of n, i.e.

k∗ = k∗(n) and ε = ε(n), such that





limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)
lnn

= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nδ̌ε(n) = +∞,
(2.26)

for any δ̌ > 0. One can take, for example, for n ≥ 2,

ε(n) =
1

lnn
and k∗(n) = k∗0 +

√
lnn , (2.27)

where k∗0 ≥ 0 is some fixed constant and the threshold ς∗(n) is introduced in (2.8). For each

α = (β, l) ∈ A, we introduce the weight sequence

λα = (λα(j))1≤j≤n

with the elements

λα(j) = 1{1≤j<j
∗
} +

(
1− (j/ωα)

β
)
1{j

∗
≤j≤ωα}, (2.28)

where j∗ = 1 + [ln υn], ωα = (dβ lυn)
1/(2β+1),

dβ =
(β + 1)(2β + 1)

π2ββ
and υn = n/ς∗. (2.29)
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Now we define the set Λ as

Λ = {λα , α ∈ A} . (2.30)

It will be noted that in this case the cardinal of the set Λ is

ι̌ = k∗m. (2.31)

Moreover, taking into account that dβ < 1 for β ≥ 1 we obtain for the set (2.30)

|Λ|∗ ≤ 1 + sup
α∈A

ωα ≤ 1 + (υn/ε)
1/3 . (2.32)

Remark 2.3. Note that the form (2.28) for the weight coefficients in (2.15) was proposed by

Pinsker in [47] for the efficient estimation in the nonadaptive case, i.e. when the regularity

parameters of the function S are known. In the adaptive case these weight coefficients are used

in [17, 18] to show the asymptotic efficiency for model selection procedures.

2.3 Oracle inequality

In this section we obtain in Theorem 2.2 the non-asymptotic oracle inequality for the quadratic

risk (2.4) for the model selection procedure (2.23) and in Theorem 2.3 the non-asymptotic oracle

inequality for the robust risk (2.5) for the same model selection procedure (2.23), considered

with the coefficients (2.28).

In order to prove the oracle inequality, the following conditions will be needed for the noise

(ξt)t≥ 0. Here we use the conditions introduced in [17] for the general semi-martingale model

(2.1).

C1) For all n ≥ 1 and Q there exist a variance proxy σQ > 0 and the constant C1,Q,n ≥ 0

such that, for any basis functions with the bound (2.10),

sup
x∈[−1,1]n

∣∣B1,Q,n(x)
∣∣ ≤ C1,Q,n <∞ ,

where B1,Q,n(x) =
∑n

j=1
xj

(
EQξ

2
j,n − σQ

)
.

C2) For all n ≥ 1 and Q there exists a constant C2,Q,n ≥ 1 such that, for any basis

functions with the bound (2.10),

sup
|x|≤1

EQB
2
2,Q,n(x) ≤ C2,Q,n <∞,

where |x|2 =∑n
j=1

x2j and B2,Q,n(x) =
∑n

j=1
xj

(
ξ2j,n −EQξ

2
j,n

)
.

Before stating the non-asymptotic oracle inequality, let us first introduce the following

parameters which will be used for describing the rest term in the oracle inequalities. For the
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renewal density ρ defined in (1.8) we set

Υ(x) = ρ(x)− 1

τ̌
and ‖Υ‖1 =

∫ +∞

0

|Υ(x)| dx , (2.33)

where τ̌ = E τ1. In Proposition 5.1 we show that |ρ|∗ = supt≥0 |ρ(t)| <∞ and ‖Υ‖1 <∞. So,

using this, we can introduce the following parameters

ΨQ = 4κQι̌+

(
5 +

4ι̌

σQ

) (
σQ τ̌ φ

2
max ‖Υ‖1 + φ4max(1 + σ2Q)

3 ľ
)

(2.34)

and

c∗Q = σQ + 2κQ + σQ τ̌ φ
2
max ‖Υ‖1 + φ4max(1 + σ2Q)

2 ľ , (2.35)

where ľ = (4τ̌2 + 8) ‖Υ‖1 + 5 + 13(1 + τ̌)2(1 + |ρ|2∗)(EY 4
1 ) + 4Π(x4). First, let us state the

non-asymptotic oracle inequality for the quadratic risk (2.4) for the model selection procedure

(2.23).

Theorem 2.1. Assume that Conditions C1) and C2) hold. Then, for any n ≥ 1 and 0 < δ <

1/6, the estimator of S given in (2.23) satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) +

ΨQ + 10|Λ|∗ES |σ̂n − σQ|
nδ

. (2.36)

Proof. First, note that we can rewrite the empirical squared error in (2.17) as follows

Errn(λ) = Jn(λ) + 2

∞∑

j=1

λ(j)θ̌j,n + ||S||2 − δPn(λ), (2.37)

where θ̌j,n = θ̃j,n − θj θ̂j,n. Using the definition of θ̃j,n in (2.18) we obtain that

θ̌j,n =
1√
n
θjξj,n +

1

n
ξ̃j,n +

1

n
ςj,n +

σQ − σ̂n
n

,

where ςj,n = EQξ
2
j,n − σQ and ξ̃j,n = ξ2j,n −EQξ

2
j,n. Putting

M(λ) =
1√
n

n∑

j=1

λ(j)θjξj,n and P 0
n =

σQ|λ|2
n

, (2.38)

we can rewrite (2.37) as

Errn(λ) =Jn(λ) + 2
σQ − σ̂n

n
Ľ(λ) + 2M(λ) +

2

n
B1,Q,n(λ)

+ 2
√
P 0
n(λ)

B2,Q,n(e(λ)√
σQn

+ ‖S‖2 − ρPn(λ), (2.39)
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where e(λ) = λ/|λ|, the function Ľ(·) is defined in (2.16) and the functions B1,Q,n(·) and

B2,Q,n(·) are given in conditions C1) and C2).

Let λ0 = (λ0(j))1≤j≤n be a fixed sequence in Λ and λ̂ be as in (2.24). Substituting λ0 and

λ̂ in Equation (2.39), we obtain

Errn(λ̂)− Errn(λ0) =J(λ̂)− J(λ0) + 2
σQ − σ̂Q

n
Ľ(̟) +

2

n
B1,Q,n(̟) + 2M(̟)

+ 2

√
P 0
n(λ̂)

B2,Q,n(ê)√
σQn

− 2
√
P 0
n(λ0)

B2,Q,n(e0)√
σQn

− δPn(λ̂) + δPn(λ0), (2.40)

where ̟ = λ̂− λ0, ê = e(λ̂) and e0 = e(λ0). Note that, by (2.16),

|Ľ(x̂)| ≤ Ľ(λ̂) + Ľ(λ) ≤ 2|Λ|∗.

Applying the inequality

2|ab| ≤ δa2 + δ−1b2 (2.41)

implies that, for any λ ∈ Λ,

2
√
P 0
n(λ)

|B2,Q,n(e(λ))|√
σQn

≤ δP 0
n(λ) +

B2
2,Q,n(e(λ))

δσQ n
.

Taking into account the bound (2.59), we get

Errn(λ̂) ≤Errn(λ0) + 2M(̟) +
2C1,Q,n

n
+

2B∗
2,Q,n

δσQ n

+
1

n
|σ̂ − σQ|(|λ̂|2 + |λ0|2) + 2δPn(λ0) ,

where B∗
2,Q,n = supλ∈ΛB

2
2,Q,n((e(λ)). Moreover, noting that in view of (2.16) supλ∈Λ |λ|2 ≤

|Λ|∗, we can rewrite the previous bound as

Errn(λ̂) ≤Errn(λ0) + 2M(̟) +
2C1,Q,n

n
+

2B∗
2,Q,n

δσQn

+
4|Λ|∗
n
|σ̂ − σQ|+ 2δPn(λ0). (2.42)

To estimate the second term in the right side of this inequality we set

Sx =
n∑

j=1

x(j)θjφj , x = (x(j))1≤j≤n ∈ R
n .

Thanks to (2.7) we estimate the term M(x) for any x ∈ R
n as

EQM
2(x) ≤ κQ

1

n

n∑

j=1

x2(j)θ2j = κQ

1

n
||Sx||2. (2.43)
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To estimate this function for a random vector x ∈ R
n we set

Z∗ = sup
xεΛ1

nM2(x)

||Sx||2
, Λ1 = Λ− λ0 .

So, through Inequality (2.41), we get

2|M(x)| ≤ δ||Sx||2 +
Z∗

nδ
. (2.44)

It is clear that the last term here can be estimated as

EQZ
∗ ≤

∑

x∈Λ1

nEQM
2(x)

||Sx||2
≤
∑

x∈Λ1

κQ = κQι̌ , (2.45)

where ι̌ = card(Λ). Moreover, note that, for any x ∈ Λ1,

||Sx||2 − ||Ŝx||2 =
n∑

j=1

x2(j)(θ2j − θ̂2j ) ≤ −2M1(x), (2.46)

where M1(x) = n−1/2
∑n

j=1
x2(j)θjξj,n. Taking into account that, for any x ∈ Λ1 the compo-

nents |x(j)| ≤ 1, we can estimate this term as in (2.43), i.e.,

EQM
2
1 (x) ≤ κQ

||Sx||2
n

.

Similarly to the previous reasoning we set

Z∗
1 = sup

xεΛ1

nM2
1 (x)

||Sx||2

and we get

EQ Z
∗
1 ≤ κQ ι̌ . (2.47)

Using the same type of arguments as in (2.44), we can derive

2|M1(x)| ≤ δ||Sx||2 +
Z∗
1

nδ
. (2.48)

From here and (2.46), we get

||Sx||2 ≤
||Ŝx||2
1− δ +

Z∗
1

nδ(1− δ) (2.49)

for any 0 < δ < 1. Using this bound in (2.44) yields

2M(x) ≤ δ||Ŝx||2
1− δ +

Z∗ + Z∗
1

nδ(1− δ) .

Taking into account that ‖Ŝ̟‖2 ≤ 2 (Errn(λ̂) + Errn(λ0)), we obtain

2M(̟) ≤ 2δ(Errn(λ̂) + Errn(λ0))

1− δ +
Z∗ + Z∗

1

nδ(1− δ) .
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Using this bound in (2.42) we obtain

Errn(λ̂) ≤
1 + δ

1− 3δ
Errn(λ0) +

Z∗ + Z∗
1

nδ(1− 3δ)
+

2C1,Q,n

n(1− 3δ)
+

2B∗
2,Q,n

δ(1− 3δ)σQn

+
(4|Λ|∗ + 2)

n(1− 3δ)
|σ̂ − σQ|+

2δ

(1− 3δ)
P 0
n(λ0).

Moreover, for 0 < δ < 1/6, we can rewrite this inequality as

Errn(λ̂) ≤
1 + δ

1− 3δ
Errn(λ0) +

2(Z∗ + Z∗
1 )

nδ
+

4C1,Q,n

n
+

4B∗
2,Q,n

δσQn

+
(8|Λ|∗ + 2)

n
|σ̂n − σQ|+

2δ

(1− 3δ)
P 0
n(λ0).

In view of Proposition 2.3 we estimate the expectation of the term B∗
2,Q,n in (2.42) as

EQB
∗
2,Q,n ≤

∑

λ∈Λ
EQB

2
2,Q,n(e(λ)) ≤ ι̌C2,Q,n .

Taking into account that |Λ|∗ ≥ 1, we get

R(Ŝ∗, S) ≤
1 + δ

1− 3δ
R(Ŝλ0

, S) +
4κQι̌

nδ
+

4C1,Q,n

n
+

4ι̌C2,Q,n

δσQn

+
10|Λ|∗
n

EQ |σ̂ − σQ|+
2δ

(1− 3δ)
P 0
n(λ0).

Using the upper bound for Pn(λ0) in Lemma 2.6, one obtains (2.36), that finishes the proof. ✷

Now we study the estimate (2.19).

Proposition 2.1. Assume that Conditions C1) and C2) hold and that the function S is con-

tinuously differentiable. Then, for any n ≥ 2,

EQ,S |σ̂n − σQ| ≤
6‖Ṡ‖2 + c∗Q√

n
. (2.50)

Proof. We use here the same method as in [14]. First of all note that Definition (2.20) implies

that

T̂j,n = Tj +
1√
n
ηj,n , (2.51)

where

Tj =

∫ 1

0

S(t)Trj(t)dt and ηj,n =
1√
n

∫ n

0

Trj(t) dξt .

So, we have

σ̂n =

n∑

j=[
√
n]+1

T2
j + 2Mn +

1

n

n∑

j=[
√
n]+1

η2j,n , (2.52)
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where

Mn =
1√
n

n∑

j=[
√
n]+1

Tj ηj,n .

Note that, for continuously differentiable functions (see, for example, Lemma A.6 in [14]), the

Fourier coefficients (Tj){j≥1} satisfy the following inequality, for any n ≥ 1,

∞∑

j=[
√
n]+1

T2
j ≤

4
(∫ 1

0
|Ṡ(t)|dt

)2

√
n

≤ 4‖Ṡ‖2√
n

. (2.53)

In the same way as in (2.43) we estimate the term Mn, i.e.,

EQM
2
n ≤

κQ

n

n∑

j=[
√
n]+1

T2
j ≤

4κQ‖Ṡ‖2
n
√
n

,

while the absolute value of this term for n ≥ 1 can be estimated as

|EQMn| ≤
κQ + ‖Ṡ‖2√

n
.

Moreover, using Propositions 2.2 and 2.3 we can represent the last term in (2.52) as

1

n

n∑

j=[
√
n]+1

η2j,n =
σQ(n−

√
n)

n
+
B1,Q,n(x

′)

n
+
B2,Q,n(x

′′)√
n

,

with x′j = 1{√n<j≤n} and x′′j = 1{√n<j≤n}/
√
n. Therefore,

EQ

∣∣∣∣∣∣
1

n

n∑

j=[
√
n]+1

η2j,n − σQ

∣∣∣∣∣∣
≤
σQ√
n
+

C1,Q,n

n
+

√
C2,Q,n√
n

.

Taking into account that C2,Q,n ≥ 1, we obtain the bound (2.50) and hence the desired result.

✷

Theorem 2.1 and Proposition 2.1 implies the following result.

Theorem 2.2. Assume that Conditions C1) and C2) hold and that the function S is continu-

ously differentiable. Then, for any n ≥ 1 and 0 < δ ≤ 1/6, the procedure (2.23), (2.19) satisfies

the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) +

60Λ̃n ‖Ṡ‖2 + Ψ̃Q,n

nδ
, (2.54)

where Ψ̃Q,n = 10Λ̃nc
∗
Q +ΨQ and Λ̃n = |Λ|∗/

√
n.
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Remark 2.4. Note that the coefficient κQ can be estimated as κQ ≤ (1 + τ̌ |ρ|∗)σQ. Therefore,
taking into account that φ4max ≥ 1, the remainder term in (2.54) can be estimated as

Ψ̃Q,n ≤ C∗

(
1 + σ6Q +

1

σQ

)
(1 + Λ̃n)ι̌φ

4
max , (2.55)

where C∗ > 0 is some constant which is independent of the distribution Q.

Furthermore, let us study the robust risk (2.5) for the procedure (2.23). In this case, the

distribution family Qn consists in all distributions on the Skorokhod space D[0, n] of the process
(2.2) with the parameters satisfying the conditions (2.8) and (2.9).

Moreover, we assume also that the number of the weight vectors and the upper bound for

the basis functions in (2.10) may depend on n ≥ 1, i.e. ι̌ = ι̌(n) and φ∗ = φ∗(n), such that for

any ǫ̌ > 0

lim
n→∞

ι̌(n)

nǫ̌
= 0 and lim

n→∞

φ∗(n)
nǫ̌

= 0 . (2.56)

The next result presents the non-asymptotic oracle inequality for the robust risk (2.5) for

the model selection procedure (2.23), considered with the coefficients (2.28).

Theorem 2.3. Assume that Conditions H1) – H4) hold and that the unknown function S is

continuously differentiable. Then, for the robust risk defined in (2.5) through the distribution

family (2.8) – (2.9), the procedure (2.23) with the coefficients (2.28) for any n ≥ 1 and 0 <

δ < 1/6, satisfies the following oracle inequality

R∗(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
n(S)

nδ
, (2.57)

where the sequence U∗
n(S) > 0 is such that, under the conditions (2.9), (2.26) and (2.56), for

any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0. (2.58)

Proof. First note, that in view of (2.31) and (2.26)

lim
n→∞

ι̌

nǫ̌
= lim

n→∞

k∗m
nǫ̌

= 0 for any ǫ̌ > 0 .

Furthermore, the bound (2.32) and the conditions (2.9) and (2.26) yield

lim
n→∞

|Λ|∗
n1/3+ǫ̌

= 0 for any ǫ̌ > 0 .

So, from here we obtain the convergence (2.58). ✷

Now we need to check the conditions C1) and C2) for the process (2.2)

Proposition 2.2. Assume that Conditions H1)–H4) hold. Then Condition C1) holds with

C1,Q,n = σQ τ̌ φ
2
max ‖Υ‖1. (2.59)
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Proof. First, note that from (2.93) we have

ξj,n =
̺1√
n
ILn (φj) +

̺2√
n
Izn(φj) .

So, using (2.95) we can write that

Eξ2j,n =
̺21
n

∫ n

0

φ2j (t)d t+
̺22
n
E

∞∑

l=1

φ2j (Tl)1{Tl≤n} . (2.60)

Proposition 5.1 implies

E

∞∑

l=1

φ2j (Tl)1{Tl≤n} =

∫ n

0

φ2j (x) ρ(x)dx

=
1

τ̌

∫ n

0

φ2j (x)dx +

∫ n

0

φ2j (x)Υ(x)dx .

Note that
∫ n

0
φ2j (t)d t = n. So, in view of the condition (2.10), we obtain

∣∣∣Eξ2j,n − σQ
∣∣∣ = ̺22

n

∣∣∣∣
∫ n

0

φ2j (x)Υ(x)dx

∣∣∣∣ ≤
̺22
n
φ2max ‖Υ‖1 . (2.61)

Estimating here ̺22 by σQτ̌ we obtain the inequality (2.59) and hence the conclusion follows. ✷

Proposition 2.3. Assume that Conditions H1)–H4) hold. Then Condition C2) holds with

C2,Q,n = φ4max(1 + σ2Q)
3 ľ (2.62)

and ľ is given in (2.35).

Proof. By Ito’s formula one gets

dI2t (f) = 2It−(f)dIt(f) + ̺21 ˇ̺
2 f2(t)d t+

∑

0≤s≤t

f2(s)(∆ξds )
2 , (2.63)

where ξdt = ̺3 Ľt + ̺2zt and ̺3 = ̺1
√
1− ˇ̺2. Taking into account that the processes (Ľt)t≥0

and (zt)t≥0 are independent and the time of jumps Tk defined in (1.7) has a density, we have

∆zs∆Ľs = 0 a.s. for any s ≥ 0. Therefore, we can rewrite the differential (2.63) as

dI2t (f) = 2It−(f)dIt(f) + ̺21 ˇ̺
2 f2(t)d t

+ ̺23d
∑

0≤s≤t

f2(s)(∆Ľs)
2 + ̺22d

∑

0≤s≤t

f2(s)(∆zs)
2 . (2.64)

From Lemma 2.2 it follows that

EI2t (f) = ̺21

∫ t

0
f2(s)ds+ ̺22

∫ t

0
f2(s)ρ(s)ds .
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Therefore, putting

Ĩt(f) = I2t (f)−EI2t (f) , (2.65)

we obtain

dĨt(f) = 2It−(f)f(t)dξt + f2(t)dm̃t , m̃t = ̺23m̌t + ̺22mt ,

where m̌t =
∑

0≤s≤t
(∆Ľs)

2 − t and mt =
∑

0≤s≤t
(∆zs)

2 −
∫ t

0
ρ(s)ds. For any non-random

vector x = (xj)1≤j≤n with
∑n

j=1
x2j ≤ 1, we set

Īt(x) =

n∑

j=1

xj Ĩt(φj). (2.66)

Denoting

At(x) =
n∑

j=1

xjIt(φj)φj(t) and Bt(x) =
n∑

j=1

xjφ
2
j (t) , (2.67)

we get the following stochastic differential equation for (2.66)

dĪt(x) = 2At−(x)dξt +Bt(x)dm̃t , Ī0(x) = 0 .

Applying the Ito’s formula one obtains

E Ī2n(x) =2E

∫ n

0

Īt−(x)dĪt(x) + 4̺21 ˇ̺
2E

∫ n

0

A2
t (x)d t

+ ̺23 E Ďn(x) + ̺22EDn(x) , (2.68)

where Ďn(x) =
∑

0≤t≤n

(
2At−(x)∆Ľt + ̺23Bt(x)(∆Ľt)

2
)2

and

Dn(x) =
∑+∞

k=1

(
2ATk−(x)Yk + ̺2BTk−(x)Y

2
k

)2
1{Tk≤n} . Let us now show that

∣∣∣∣E
∫ n

0

Īt−(x)dĪt(x)

∣∣∣∣ ≤ 2 ̺42φ
3
max ‖Υ‖1 n2 . (2.69)

To this end, note that
∫ n

0

Īt−(x)dĪt(x) =2
∑

1≤j,l≤n

xjxl

∫ n

0

Ĩt−(φj) It−(φl)φl(t)dξt

+

n∑

j=1

xj

∫ n

0

Ĩt−(φj)Bt(x)dm̃t .

Using here Lemma 2.5, we get E
∫ n

0
Ĩt−(φj) It−(φi)φi(t)dξt = 0. Moreover, the process

(m̌t)t≥0 is a martingale, i.e. E
∫ n

0
Ĩt−(φj)Bt(x)dm̃t = 0. Therefore,

E

∫ n

0

Īt−(x)dĪt(x) = ̺22

n∑

j=1

xjE

∫ n

0

Ĩt−(φj)Bt(x)dmt .
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Taking into account here that for any non-random bounded function f

E

∫ n

0

f(t)dmt = 0,

we obtain E
∫ n

0
Ĩt−(φj)Bt(x) dmt = E

∫ n

0
I2t−(φj)Bt(x) dmt. So, Lemma 2.4 yields

∣∣∣∣E
∫ n

0

Ĩt−(φj)Bt(x)dmt

∣∣∣∣ =
∣∣∣∣∣

n∑

l=1

xlE

∫ n

0

I2t−(φj)φ
2
l (t)dmt

∣∣∣∣∣

≤ 2 ̺22φ
3
max ‖Υ‖1

n∑

l=1

|xl|n .

Therefore,
∣∣∣∣E
∫ n

0

Īt−(x)dĪt(x)

∣∣∣∣ ≤ 2 ̺42φ
3
max ‖Υ‖1 n

∑

1≤l,j≤n

|xl| |xj |

= 2 ̺42φ
3
max ‖Υ‖1 n

(
n∑

l=1

|xl|
)2

.

Taking into account here that
(∑n

l=1
|xl|
)2 ≤ n

∑
l≥ 1

x2l ≤ n, we obtain (2.69). Reminding

that Π(x2) = 1 we can calculate directly that

E Ďn(x) = 4E

∫ n

0

A2
t (x)dt+ ̺43Π(x

4)

∫ n

0

B2
t (x)dt . (2.70)

Note that, thanks to Lemma 2.1, we obtain that

E

∫ n

0

A2
t (x)d t =

∑

i,j

xixj

∫ n

0

φi(t)φj(t)EItφi(t)Itφj(t)d t

=
∑

i,j

xixj

∫ n

0

φi(t)φj(t)

∫ t

0

φi(v)φj(v)(̺
2
1 + ̺22ρ(v))dv

=
1

2
̺21

∑

i,j

xixj

(∫ n

0

φi(t)φj(t)dt

)2

+ ̺22A1,n(x)

≤ n2

2
̺21 + ̺22A1,n(x) ,

where A1,n(x) =
∑

i,j
xixj

∫ n

0
φi(t)φj(t)

(∫ t

0
φi(v)φj(v) ρ(v)dv

)
dt. This term can be estimated

through Proposition 5.1 as

∣∣A1,n(x)
∣∣ =

∣∣∣∣∣∣
n2

2τ̌
+
∑

i,j

xixj

∫ n

0

φi(t)φj(t)

(∫ t

0

φi(v)φj(v)Υ(v)dv

)
dt

∣∣∣∣∣∣

≤ n2

2τ̌
+ nφ4max ‖Υ‖1

∑

i,j

|xi||xj | ≤
(

1

2τ̌
+ φ4max ‖Υ‖1

)
n2 .
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So, reminding that σQ = ̺21 + ̺22/τ̌ and that φmax ≥ 1, we obtain that

E

∫ n

0

A2
t (x)d t ≤

(σQ
2

+ φ4max ‖Υ‖1
)
n2

≤
(
1

4
+ ‖Υ‖1

)
φ4max (1 + σ2Q)n

2 . (2.71)

Taking into account that

sup
t≥0

B2
t (x) ≤ φ4max




n∑

j=1

|xj |




2

≤ φ4max n , (2.72)

that φmax ≥ 1 and that ̺41 ≤ σ2Q, we estimate the expectation in (2.70) as

EĎn ≤ 4φ4max(1 + σ2Q)
(
1 + ‖Υ‖1 +Π(x4)

)
n2 . (2.73)

Moreover, taking into account that the random variable Yk is independent of AT
k−

(x) and

of the field G = σ{Tj , j ≥ 1} and that E
(
AT

k−
(x) |G

)
= 0, we get

E

+∞∑

k=1

BTk−(x)AT
k−

(x)Y 3
k 1{Tk≤n} =

+∞∑

k=1

EE
(
BTk−(x)AT

k−
(x)Y 3

k 1{Tk≤n}|G
)

= EY 3
1 E

+∞∑

k=1

BTk−(x)1{Tk≤n}E(AT
k−

(x)|G) = 0 .

Therefore,

EDn(x) = ̺22EY
4
1 D1,n(x) + 4D2,n(x), (2.74)

where

D1,n(x) =
+∞∑

k=1

EB2
Tk−

(x)1{Tk≤n} and D2,n(x) =
+∞∑

k=1

EA2
T
k−

(x)1{Tk≤n} .

Using the bound (2.72) we can estimate the term D1,n as D1,n(x) ≤ φ4maxnENn. Using here

Corollary 5.1, we obtain

D1,n(x) ≤ |ρ|∗φ4max n
2 . (2.75)

Now, to estimate the last term in (2.74), note that the process At(x) can be rewritten as

At(x) =

∫ t

0

Qx(t, s)dξs, with Qx(t, s) =
n∑

j=1

xjφj(s)φj(t). (2.76)

Applying Lemma 2.3 again, we obtain for any k ≥ 1

E
(
A2

T
k−

(x)|G
)
= ̺21

∫ Tk

0

Q2
x(Tk, s)ds+ ̺22

k−1∑

j=1

Q2
x(Tk, Tj) .
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So, we can represent the last term in (2.74) as

D2,n = ̺21D
(1)
2,n + ̺22D

(2)
2,n , (2.77)

where

D
(1)
2,n =

+∞∑

k=1

E1{Tk≤n}

∫ Tk

0

Q2
x(Tk, s)ds

and

D
(2)
2,n =

+∞∑

k=1

E1{Tk≤n}

k−1∑

j=1

Q2
x(Tk, Tj) .

Thanks to Proposition 5.1 we obtain

D
(1)
2,n =

∫ n

0

(∫ t

0

Q2
x(t, s)ds

)
ρ(t) dt ≤ |ρ|∗

∫ n

0

∫ n

0

Q2
x(t, s)ds dt .

In view of the definition of Qx in (2.76), we can rewrite the last integral as

∫ n

0

Q2
x(t, s)ds =

∑

1≤i,j≤n

xi xj φi(t)φj(t)

∫ n

0

φi(s)φj(s) ds

=

n∑

i=1

x2i φ
2
i (t)

∫ n

0

φ2i (s) ds = n

n∑

i=1

x2i φ
2
i (t) .

Since
∑n

j=1
x2j ≤ 1, we obtain that,

∫ n

0

Q2
x(t, s)ds ≤ φ2max n and D

(1)
2,n ≤ φ2max |ρ|∗ n2 . (2.78)

Let us estimate now the last term in (2.77). First, note that we can represent this term as

D
(2)
2,n =

+∞∑

k=1

E1{Tk≤n}

k−1∑

j=1

Q2
x(Tk, Tj) =

∞∑

j=1

1{Tj≤n}G(Tj) =
∫ n

0

G(t) ρ(t)dt ,

where

G(t) =

+∞∑

k=1

E1{Tk≤n}Q
2
x((t+ Tk), t) =

∫ n

0

Q2
x(t+ v, t) ρ(v)dv

=

∫ n+t

t

Q2
x(u, t) ρ(u− t)du .

It is clear that, for any 0 ≤ t ≤ n,
∫ n+t

t

Q2
x(u, u− t) ρ(u) du ≤ |ρ|∗

∫ 2n

0

Q2
x(v, t) dv .
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In view of the inequality (2.78) we obtain
∫ 2n

0

Q2
x(u, t) du =

∫ 2n

0

Q2
x(t, u) du ≤ 2φ2max n .

Therefore,

max
0≤t≤n

G(t) ≤ 2|ρ|∗ φ2max n and D
(2)
2,n ≤ 2|ρ|2∗ φ2max n

2 .

So, estimating ̺22 by τ̌σQ and taking into account that EY 4
1 ≥ 1, we obtain that we obtain that

EDn(x) ≤ 13 (1 + τ̌)φ4max EY 4
1 (1 + |ρ|2∗)n2σQ .

Using all these bounds in (2.68) we obtain (2.62) and thus the conclusion follows. ✷

Remark 2.5. The properties (2.59) and (2.62) are used to obtain the oracle inequalities given

in Section 2.3 (see, for example, [17]).

2.4 Efficiency

Now we study the asymptotic efficiency for the procedure (2.23) with the coefficients (2.28),

with respect to the robust risk (2.5) defined by the distribution family (2.8)–(2.9). To this end,

we assume that the unknown function S in the model (2.1) belongs to the Sobolev ball

W k
r
= {f ∈ Ckper[0, 1] :

k∑

j=0

‖f (j)‖2 ≤ r} , (2.79)

where r > 0 and k ≥ 1 are some unknown parameters, Ckper[0, 1] is the set of k times continuously

differentiable functions f : [0, 1]→ R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. The function
class W k

r
can be written as an ellipsoid in L2[0, 1], i.e.,

W k
r
= {f ∈ Ckper[0, 1] :

∞∑

j=1

aj θ
2
j ≤ r}, (2.80)

where aj =
∑k

i=0
(2π[j/2])2i and θj =

∫ 1

0
f(v)Trj(v)dv. We recall that the trigonometric basis

(Trj)j≥1 is defined in (1.15).

Similarly to [17, 18] we will show here that the asymptotic sharp lower bound for the robust

risk (2.5) is given by

r∗k = ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (2.81)

Note that this is the well-known Pinsker constant obtained for the non-adaptive filtration

problem in “signal + small white noise” model (see, for example, [47]). Let Πn be the set of

all estimators Ŝn measurable with respect to the σ-field σ{yt , 0 ≤ t ≤ n} generated by the

process (2.1).

The following two results give the lower and upper bound for the robust risk in our case.
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Theorem 2.4. Under Conditions (2.8) and (2.9),

lim inf
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) ≥ r∗k , (2.82)

where υn = n/ς∗.

Proof. First, we denote by Q0 the distribution of the noise (2.2) with the parameter ̺1 = ς∗,

ˇ̺ = 1 and ̺2 = 0, i.e. the distribution for the “signal + white noise” model. So, we can

estimate as below the robust risk

R∗
n(S̃n, S) ≥ RQ0

(S̃n, S) .

Now Theorem 6.1 from [15] yields the lower bound (2.82). Hence this finishes the proof. ✷

Note that if the parameters r and k are known, i.e. for the non-adaptive estimation case,

then to obtain the efficient estimation for the “signal+white noise” model. Pinsker in [47]

proposed to use the estimate Ŝλ0
defined in (2.15) with the weights (2.28) in which

λ0 = λα0
and α0 = (k, l0) , (2.83)

where l0 = [r/ε]ε. For the model (2.1) – (2.2) we show the same result.

Proposition 2.4. The estimator Ŝλ0
satisfies the following asymptotic upper bound

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝλ0

, S) ≤ r∗k .

Proof. Putting λ0(j) = 0 for j ≥ n we can represent the quadratic risk for the estimator

(2.15) as

‖ Ŝλ0
− S ‖2=

∞∑

j=1

(1− λ0(j))2θ2j − 2Hn +
1

n

n∑

j=1

λ20(j)ξ
2
j,n ,

where Hn = n−1/2
∑n

j=1(1−λ0(j))λ0(j)θjξj,n. Note that EQHn = 0 for any Q ∈ Qn, therefore,

EQ ‖ Ŝλ0
− S ‖2=

∞∑

j=1

(1− λ0(j))2θ2j +
1

n
EQ

n∑

j=1

λ20(j)ξ
2
j,n .

Proposition 2.2 and the last inequality in (2.8) imply that for any Q ∈ Qn

EQ

n∑

j=1

λ20(j)ξ
2
j,n ≤ ς∗

n∑

j=1

λ20(j) +
φ2maxς

∗‖Υ‖1
τ̌

:= ς∗
n∑

j=1

λ20(j) +C∗
1,n .

Therefore,

R∗
n(Ŝλ0

, S) ≤
∞∑

j=j
∗

(1− λ0(j))2θ2j +
1

υn

n∑

j=1

λ20(j) +
C∗

1,n

n
,
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where j∗ and υn are defined in (2.28). Setting

Υ1,n(S) = υ2k/(2k+1)
n

∞∑

j=j
∗

(1− λ0(j))2θ2j and Υ2,n =
1

υ
1/(2k+1)
n

n∑

j=1

λ20(j) ,

we rewrite the last inequality as

υ2k/(2k+1)
n R∗

n(Ŝλ0
, S) ≤ Υ1,n(S) + Υ2,n + Čn , (2.84)

where Čn = υ2k/(2k+1)
n C∗

1,n/n. Note that Conditions (2.9) and (2.56) imply that C∗
1,n = (nδ̌)

as n→∞ for any δ̌ > 0; therefore, Čn → 0 as n→∞. Putting

un = υ2k/(2k+1)
n sup

j≥j
∗

(1− λ0(j))2/aj ,

with aj defined in (2.80), we estimate the first term in (2.84) as

sup
S∈Wk

r

Υ1,n(S) ≤ sup
S∈Wk

r

un
∑

j≥1

ajθj ≤ unr .

Taking into account that aj/(π
2kj2k) → 1 as j → ∞ and l0 → r as ε → 0 and using the

definition of ωα0
in (2.28), we obtain that

lim sup
n→∞

un ≤ lim
n→∞

υ2k/(2k+1)
n sup

j≥j
∗

(1− λ0(j))2
(π j)2k

= lim
n→∞

υ2k/(2k+1)
n

π2kω2k
α0

=
1

π2k (dkr)
2k/(2k+1)

.

Therefore,

lim sup
n→∞

sup
S∈Wk

r

Υ1,n(S) ≤
r1/(2k+1)

π2k(dk)
2k/(2k+1)

=: Υ∗
1 . (2.85)

As to the second term in (2.84), note that

lim
n→∞

1

ωα0

n∑

j=1

λ20(j) =

∫ 1

0

(1− tk)2dt = 2k2

(k + 1)(2k + 1)
.

So, taking into account that ωα0
/υ1/(2k+1)

n → (dkr)
1/(2k+1) as n→∞, the limit of Υ2,n can be

calculated as

lim
n→∞

Υ2,n =
2(dkr)

1/(2k+1) k2

(k + 1)(2k + 1)
=: Υ∗

2 .

Moreover, since Υ∗
1 +Υ∗

2 =: r∗k, we obtain

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝλ0

, S) ≤ r∗k
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and get the desired result. ✷

For the adaptive estimation we use the model selection procedure (2.23) with the parameter δ

defined as a function of n satisfying

lim
n
δn = 0 and lim

n
nδ̌ δn = 0 (2.86)

for any δ̌ > 0. For example, we can take δn = (6 + lnn)−1.

Theorem 2.5. Assume that Conditions H1)–H4) hold true. Then the robust risk defined in

(2.5) through the distribution family (2.8)–(2.9) for the procedure (2.23) based on the trigono-

metric basis (1.15) with the coefficients (2.28) and the parameter δ = δn satisfying (2.86) has

the following asymptotic upper bound

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝ∗, S) ≤ r∗k . (2.87)

Theorem 2.4 and Theorem 2.5 allow us to compute the optimal convergence rate.

Corollary 2.1. Under the assumptions of Theorem 2.5, we have

lim
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) = r∗k . (2.88)

Remark 2.6. It is well known that the optimal (minimax) risk convergence rate for the Sobolev

ball W k
r is n2k/(2k+1) (see, for example, [47], [46]). We see here that the efficient robust rate is

υ2k/(2k+1)
n , i.e., if the distribution upper bound ς∗ → 0 as n→∞, we obtain a faster rate with

respect to n2k/(2k+1), and, if ς∗ →∞ as n→∞, we obtain a slower rate. In the case when ς∗

is constant, than the robust rate is the same as the classical non robust convergence rate.

2.5 Simulations

In this section we report the results of a Monte Carlo experiment in order to assess the perfor-

mance of the proposed model selection procedure (2.23). In (2.1) we chose a 1-periodic function

which is defined, for 0 ≤ t ≤ 1, as

S(t) = t sin(2πt) + t2(1− t) cos(4πt) . (2.89)

We simulate the model

dyt = S(t)dt+ dξt ,

where ξt = 0.5dwt+ 0.5dzt.

Here zt is the semi-Markov process defined in (1.6) with a GaussianN (0, 1) sequence (Yj)j≥1

and (τk)k≥1 used in (1.7) taken as τk ∼ χ2
3.
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n R R∗

20 0.04430 0.235

100 0.01290 0.068

200 0.00812 0.043

1000 0.00196 0.010

Table 2.1: Empirical risks

We use the model selection procedure (2.23) with the weights (2.28) in which k∗ = 100 +√
ln(n), ti = i/ ln(n), m = [ln2(n)] and δ = (3 + ln(n))−2. We define the empirical risk as

R =
1

p

p∑

j=1

Ê
(
Ŝn(tj)− S(tj)

)2
, (2.90)

where the observation frequency p = 100001 and the expectation was taken as an average over

N = 10000 replications, i.e.,

Ê
(
Ŝn(.)− S(.)

)2
=

1

N

N∑

l=1

(
Ŝl
n(.)− S(.)

)2
.

We set the relative quadratic risk as

R∗ = R/||S||2p, with ||S||2p =
1

p

p∑

j=0

S2(tj) . (2.91)

In our case ||S||2p = 0.1883601.

Table 2.1 gives the values for the sample risks (2.90) and (2.91) for different numbers of

observations n.

Figures 2.1–2.4 show the behaviour of the regression function and its estimates by the model

selection procedure (2.23) depending on the values of observation periods n. The black full line

is the regression function (2.89) and the red dotted line is the associated estimator.
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Figure 2.1: Estimator of S for n = 20
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Figure 2.2: Estimator of S for n = 100
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Figure 2.3: Estimator of S for n = 200
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Figure 2.4: Estimator of S for n = 1000

Remark 2.7. From numerical simulations of the procedure (2.23) with various observation

numbers n we may conclude that the quality of the proposed procedure: (i) is good for practical
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needs, i.e. for reasonable (non large) number of observations; (ii) is improving as the number

of observations increases.

Now we give the algorithm of the model selection procedure given in Section 2.2
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Algorithm 1 Model selection procedure

Require: n, 0 ≤ ˇ̺≤ 1 and δ > 0

ρ1, ρ2, ς
∗: satisfying Conditions (2.8) and (2.9)

k∗ ≥ 1, ε: satisfying Condition (2.26)

Output: The optimal weight vector λ̂

{Step 1} Computation of the weights

m = [1/ε2]

for i←− 1 to [k∗] do

for j ←− [ε] to [mε] do

for k ←− 1 to n do

Compute the wheight coefficients λi,j(k) using the formula (2.28)

end for

end for

end for

return: the vectors λ = (λα(1), ..., λα(n)),α ∈ A = {1, . . . , k∗} × {ε, . . . ,mε}
{Step 2} Computation of the Fourrier coefficients

for k ←− 1 to n do

θ̂k,n = 1
n

∫ n

0
φk(t)d yt .

θ̃k,n ←− θ̂2k,n − 1
n .

The observation (yt)0≤t≤n are given in (2.1) with the noise process (2.2) and (φk)k≥ 1 is

the basis given in (2.10)

end for

return: the vectors θ̂ = (θ̂1,n, ..., θ̂n,n) and θ̃ = (θ̃1,n, ..., θ̃n,n)

{Step 3} The cost function

for i←− 1 to [k∗] do

for j ←− [ε] to [mε] do

Jn(λ)←−
∑n

l=1
λ2i,j(l)θ̂

2
j,n − 2

∑n
j=1

λi,j(l)θ̃j,n + δ Pn(λ).

where the vectors λ = (λi,j(1), ..., λi,j(n)) are computed in Step1, the vectors θ̂ and θ̃

are given in Step2 and Pn is the penalty term given in (2.22)

end for

end for

return: λ̂ = argminλ∈ΛJn(λ),Λ = {λα , α ∈ A}.
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2.6 Stochastic calculus for semi-Markov processes

In this section we give some results of stochastic calculus for the process (ξt)t≥ 0 given in (2.2),

needed all along this paper. As the process ξt is the combination of a Lévy process and a

semi-Markov process, these results are not standard and need to be provided.

Lemma 2.1. Let f and g be any non-random functions from L2[0, n] and (It(f))t≥ 0 be the

process defined in (2.6). Then, for any 0 ≤ t ≤ n,

E It(f)It(g) = ̺21 (f, g)t + ̺22 (f, gρ)t , (2.92)

where (f, g)t =
∫ t

0
f(s) g(s)ds and ρ is the density defined in (1.8).

Proof. First, note that we can represent the stochastic integral It(f) as

It(f) = ̺1I
L
t (f) + ̺2I

z
t (f) , (2.93)

where

ILt (f) =

∫ t

0

f(s)dLs and Izt (f) =

∫ t

0

f(s)dzs .

Note that the mutual covariation for the martingales ILt (f) and I
L
t (g) (see, for example, [21])

may be calculated as

[IL(f), IL(g)]t = ˇ̺2
∫ t

0

f(s)g(s)ds+ (1− ˇ̺2)
∑

0≤s≤t

f(s)g(s)
(
∆Ľs

)2
, (2.94)

where ∆Ľs = Ľs − Ľs−. Taking into account that E ILt (f) I
L
t (g) = E [IL(f), IL(g)]t and that

in view of the first condition in (2.3) Π(x2) = 1, we obtain that

E ILt (f) I
L
t (g) = ˇ̺2

∫ t

0

f(s)g(s)ds+ (1− ˇ̺2)Π(x2)

∫ t

0

f(s) g(s)ds

=

∫ t

0

f(s) g(s)ds . (2.95)

Moreover, note that

EIzt (f)I
z
t (g) = E

( ∞∑

l=1

f(Tl)g(Tl)Y
2
l 1{Tl≤t}

)

= E

( ∞∑

l=1

f(Tl)g(Tl)1{Tl≤t}

)
=

∫ t

0

f(s)g(s)ρ(s)ds .

Hence the conclusion follows. ✷

Lemma 2.2. Assume that Conditions H1)–H4) hold true. Then, for any n ≥ 1 and for

any non random function f from L2[0, n], the stochastic integral (2.6) exists and satisfies the

properties (2.7) with the coefficient κQ given in (2.7).
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Proof. This lemma follows directly from Lemma 2.1 with f = g and Proposition 5.1. ✷

Lemma 2.3. Let f and g be bounded functions defined on [0,∞)× R. Then, for any k ≥ 1,

E
(
ITk−

(f) ITk−
(g) | G

)
= ̺21(f , g)Tk

+ ̺22

k−1∑

l=1

f(Tl) g(Tl),

where G is the σ-field generated by the sequence (Tl)l≥1, i.e., G = σ{Tl , l ≥ 1}.

Proof. Using (2.93), (2.95) and, taking into account that the process (Lt)t≥0 is independent

of G, we obtain

E
(
ITk−

(f) ITk−
(g) | G

)
= ̺21(f , g)Tk

+E
(
IzTk−

(f) IzTk−
(g) | G

)
.

Moreover,

E
(
IzTk−

(f) IzTk−
(g) | G

)
= E

((
k−1∑

l=1

f(Tl)Yl

)(
k−1∑

l=1

g(Tl)Yl

)
| G
)

=
k−1∑

l=1

f(Tl) g(Tl) .

Thus we obtain the desired result. ✷

Lemma 2.4. Assume that Conditions H1)–H4) hold true. Then, for any measurable bounded

non-random functions f and g, we have
∣∣∣∣E
∫ n

0

I2t−(f) g(t) dmt

∣∣∣∣ ≤ 2̺22|g|∗|f |2∗ ‖Υ‖1 n.

Proof. Using the definition of the process (mt)t≥0 we can represent this integral as

∫ n

0

I2t−(f) g(t) dmt =
∑

k≥1

I2Tk−
(f) g(Tk)Y

2
k 1{Tk≤n}

−
∫ n

0

I2t (f) g(t) ρ(t) dt =: Vn − Un . (2.96)

Note now that

EVn = E
∑

k≥1

g(Tk)E
(
I2Tk−

(f) | G
)
1{Tk≤n} .

Now, using Lemma 2.3 we can represent the last expectation as

EVn = ̺21EV
′
n + ̺22EV

′′
n , (2.97)

where

V
′

n =
∑

k≥1

g(Tk) ‖f‖2Tk
1{Tk≤n} and V

′′

n =
∑

k≥2

g(Tk)1{Tk≤n}

k−1∑

l=1

f2(Tl) .
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The first term in (2.97) can be represented as

EV
′

n =

∫ n

0

g(t) ‖f‖2tρ(t)dt .

To estimate the last expectation in (2.97), note that

EV
′′

n = E
∑

l≥1

f2(Tl) ḡ(Tl)1{Tl≤n} =
∫ n

0

f2(v) ḡ(v) ρ(v)dv ,

where

ḡ(v) = E
∑

k≥1

g(v + Tk)1{Tk≤n−v} =
∫ n

v

g(t) ρ(t− v)dt .

Moreover, using now the representation (2.92), we calculate the expectation of the last term in

(2.96)

EUn = ̺21

∫ n

0

‖f‖2t g(t) ρ(t) dt+ ̺22

∫ n

0

f̌(t) g(t) ρ(t) dt ,

where f̌(t) =
∫ t

0
f2(s) ρ(s) ds. This implies that

E

∫ n

0

I2t−(f) g(t) dmt = ̺22

∫ n

0

g(t) δ(t)dt ,

where δ(t) =
∫ t

0
f2(v) (ρ(t− v)− ρ(t)) ρ(v) dv. Note that, in view of Proposition 5.1, the

function δ can be estimated as

|δ(t)| ≤ |f |2∗ |ρ|∗
∫ t

0

|Υ(t− v)−Υ(t)| dv ≤ |f |2∗ |ρ|∗ (‖Υ‖1 + t|Υ(t)|) .

Therefore, ∣∣∣∣E
∫ n

0

I2t−(f) g(t) dmt

∣∣∣∣ ≤ 2̺22|g|∗|f |2∗ ‖Υ‖1 n

and this finishes the proof. ✷

Lemma 2.5. Assume that Conditions H1)–H4) hold true. Then, for any measurable bounded

non-random functions f and g, one has

E

∫ n

0

I2t−(f)It−(g)g(t)dξt = 0.

Proof. First, note that

∫ n

0

I2t−(f)It−(g)g(t)dξt = ̺1

∫ n

0

I2t (f)It(g)g(t)dLt + ̺2

∫ n

0

I2t−(f)It−(g)g(t)dzt.

Second, we will show that

E

∫ n

0

I2t−(f)It−(g)g(t)dLt = 0 . (2.98)
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Using the notations (2.93), we set

J1 =

∫ n

0

I2t (f)I
L
t (g)g(t)dLt and J2 =

∫ n

0

I2t (f)I
z
t (g)g(t)dLt,

we obtain that ∫ n

0

I2t (f)It(g)g(t)dLt = ̺1 J1 + ̺2 J2 . (2.99)

Now let us recall the Novikov inequalities, [44], also referred to as the Bichteler–Jacod in-

equalities (see [32, 43]) providing bound moments of supremum of purely discontinuous local

martingales for any predictable function h and any p ≥ 2

E sup
0≤t≤n

∣∣∣∣∣

∫

[0,t]×R

h d(µ− ν)
∣∣∣∣∣

p

≤ C∗
pE J̌p,n(h) , (2.100)

where C∗
p is some positive constant and

J̌p,n(h) =

(∫

[0,n]×R

h2 dν

)p/2

+

∫

[0,n]×R

hp dν .

By applying this inequality for the non-random function h(s, x) = g(s)x, and, recalling that

Π(x8) <∞, we obtain,

sup
0≤t≤n

E

∣∣∣IĽt (g)
∣∣∣
8
<∞ .

Taking into account that, for any non random square integrated function f, the integral(∫ t

0
f(s)dws

)
is Gaussian with the parameters

(
0,
∫ t

0
f2(s)ds

)
, we obtain

sup
0≤t≤n

E
∣∣ILt (g)

∣∣8 <∞.

Finally, by using the Cauchy’s inequality, we can estimate for any 0 < t ≤ n the following

expectation as

E (ILt (f))
4(ILt (g))

2 ≤
√

E (ILt (f))
8
√
E (ILt (f))

4

i.e.,

sup
0≤t≤n

E (ILt (f))
4(ILt (g))

2 <∞ .

Moreover, taking into account that the processes (Lt)t≥0 and (zt)t≥0 are independent, we obtain

that

E (Izt (f))
4(ILt (g))

2 = E (Izt (f))
4E (ILt (g))

2 =

∫ t

0

g2(s)dsE (Izt (f))
4 .

One can check directly here that, for t > 0,

E |Izt (f)|4 ≤ |f |4∗EY 4
1 EN2

t .
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Note that the last bound in Corollary 5.1 yields sup0≤t≤n E (Izt (f))
4 <∞ and, therefore,

sup
0≤t≤n

E (It(f))
4(ILt (g))

2 <∞ .

It follows directly that EJ1 = 0. Now we study the last term in (2.99). To this end, first note

that similarly to the previous reasoning we obtain that

E

∫ n

0

(ILt (f))
2Izt (g)g(t)dLt = 0 and E

∫ n

0

ILt (f)I
z
t (f)I

z
t (g)g(t)dLt = 0 .

Therefore, to show (2.98) one needs to show that

E

∫ n

0

(Izt (f))
2Izt (g)g(t) dLt = 0 . (2.101)

To check this, note that, for any 0 < t ≤ n and for any bounded function f,

Izt (f) =

∞∑

k=1

f(Tk)Yk 1{Tk≤t} =
Nn∑

k=1

f(Tk)Yk 1{Tk≤t} ,

i.e.,
∫ n

0

(Izt (f))
2Izt (g)g(t) dLt =

Nn∑

k=1

Nn∑

l=1

Nn∑

j=1

f(Tk) f(Tl) g(Tj)YjYl Yk Iklj ,

where

Iklj =

∫ n

0

1{Tk≤t}1{Tl≤t}1{Tj≤t}dLt .

Taking into account that the (Lt)t≥0 is independent of the field Gz = σ{zt , t ≥ 0}, we obtain

that E
(
Iklj |Gz

)
= 0. Therefore,

E

∫ n

0

(Izt (f))
2Izt (g)g(t) dLt

= E

Nn∑

k=1

Nn∑

l=1

Nn∑

j=1

f(Tk) f(Tl) g(Tj)YjYl Yk E
(
Iklj |Gz

)
= 0.

So, we obtain (2.101) and hence the proof is achieved. ✷

Appendix

Property of the penalty term

Lemma 2.6. For any n ≥ 1 and λ ∈ Λ,

P 0
n(λ) ≤ EQErrn(λ) +

C1,Q,n

n
,

where the coefficient P 0
n(λ) was defined in (2.38).
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Proof. By the definition of Errn(λ) one has

Errn(λ) =
n∑

j=1

(
(λ(j)− 1)θj +

λ(j)

n
ξj,n

)2

.

In view of Proposition 2.2, this leads to the desired result

EQ Errn(λ) ≥
1

n

n∑

j=1

λ2(j)EQ ξ
2
j,n ≥ P 0

n(γ)−
C1,Q,n

n
.



Chapter 3

Non-parametric estimation for semi-Markov

regression models based on discrete data

3.1 Introduction

Let us consider a regression model in continuous time

d yt = S(t)d t+ d ξt , 0 ≤ t ≤ n , (3.1)

where S is an unknown 1-periodic function defined on R with values on R, (ξt)t≥0 is the

unobserved noise process (2.2) . The problem is to estimate the unknown function S in model

(3.1) on the basis of observations

(ytj )0≤j≤np, tj = j∆, ∆ =
1

p
, (3.2)

where integer p ≥ 1 is the observation frequency. In this chapter we use the risks defined in

(2.4) and (2.5) for the distribution family Qn.

The goal of this chapter is to develop a robust efficient model selection method for the model

(3.1) with the semi-Markov dependence having unknown distribution. We use the approach

proposed by Konev and Pergamenshchikov in [17] and [18] for continuos time regression mod-

els with non martingale noises. Unfortunately, we cannot use directly their method for the

semi-Markov regression models, since their tool essentially uses the fact that the Ornstein -

Uhlenbeck dependence decreases with geometrical rate and obtain sufficiently quickly the“white

noise” case. In this chapter we propose new analytical tools based on renewal methods, to ob-

tain the sharp non-asymptotic oracle inequalities. And, as a consequence, we obtain robust

efficiency for proposed model selection procedures.

3.2 Model selection

In this chapter we will use the trigonometric basis (Trj)j≥1 in L2[0, 1] defined in (1.15). By

making use of this basis, we consider the discrete Fourier transform of S

S(t) =

p∑

j=1

θj,pTrj(t), t ∈ {t1, ..., tp}, (3.3)



48
Non-parametric estimation for semi-Markov regression models based on discrete

data

where the Fourier coefficients are defined by

θj,p = (S,Trj)p =
1

p

p∑

i=1

S(ti)Trj(ti). (3.4)

In the sequel the corresponding norm will be denoted by ‖x‖2p = (x, x)p. These Fourier coeffi-

cients θj,p can be estimated by

θ̂j,p =
1

n

∫ n

0

Ψj,p(t)d yt and Ψj,p(t) =

np∑

l=1

Trj(tl)1{tl−1<t≤tl} . (3.5)

We note that the system of functions (Ψj,p)1≤j≤p is orthonormal in L2[0, 1] because

∫ 1

0

Ψj,p(t)Ψi,p(t)d t = (Trj ,Tri)p = 1{i=j} .

In the sequel we need the Fourier coefficients for the function S with respect to the new basis

(Ψj,p)1≤j≤p . These coefficiens can be writen as

θj,p =

∫ 1

0

S(t)Ψi,p(t)d t = θj,p + hj,p, (3.6)

where

hj,p(S) =

p∑

l=1

∫ tl

tl−1

Trj(tl)(S(t)− S(tl))d t .

From (3.1) it follows directly that these Fourier coefficients satisfy the equation

θ̂j,p = θj,p +
1√
n
ξj,p, where ξj,p =

1√
n
In(Ψj,p) . (3.7)

For any 0 ≤ t ≤ 1 we estimate the function S by the weighted least squares estimator

Ŝλ(t) =
n∑

j=1

λ(j)θ̂j,pΨj,p(t) , (3.8)

where the weight vector λ = (λ(1), ....., λ(n)) belongs to some finite set Λ from [0, 1]n, θ̂j,p was

defined in (3.5). Now let us consider

ι̌ = #(Λ) and |Λ|∗ = max
λ∈Λ

L(λ) , (3.9)

where #(Λ) is the cardinal number of Λ and L(λ) =
∑n

j=1
λ(j). In the sequel we assume that

|Λ|∗ ≥ 1 and λ(j) = 0 for j ≥ p.
In order to find a proper weight sequence λ in the set Λ one needs to specify a cost function.

When choosing an appropriate cost function one can use the following argument. Let as consider

the empirical squared error

Err(λ) = ‖Ŝλ − S‖2 , (3.10)
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which in our case is equal to

Err(λ) =
n∑

j=1

λ2(j)θ̂2j,p − 2

n∑

j=1

λ(j)θ̂j,pθj,p + ‖S‖2 . (3.11)

Since the Fourier coefficients (θj)j≥ 1 are unknown, the weight coefficients (λ(j))1≤j≤p cannot

be determined by minimizing this quality. To circumvent this difficulty, one needs to replace

the terms θ̂j,pθj,p by their estimators θ̃j,p. Let us set

θ̃j,p = θ̂2j,p −
σ̂n
n
, (3.12)

where σ̂n is an estimate of the proxy variance σQ defined in (2.8). For, example, we can take

it as

σ̂n =
n

p̌

p̌∑

j=l

θ̂2j,p and p̌ = min(p, n) , (3.13)

where l = [
√
n], and we set σ̂n = 0 for l > p. For this change in the empirical squared error,

one has to pay some penalty. Thus, we obtain the cost function of the form

Jn(λ) =

n∑

j=1

λ2(j)θ̂2j,n − 2
n∑

j=1

λ(j)θ̃j,n + δ Pn(λ), (3.14)

where δ > 0 is some threshold which will be specified later and the penalty term

Pn(λ) =
σ̂n|λ|2
n

. (3.15)

Minimizing the cost function, that is

λ̂ = argminλ∈ΛJn(λ), (3.16)

and substituting the obtained weight coefficients λ̂ in (3.8), lead to the model selection proce-

dure

Ŝ∗ = Ŝλ̂. (3.17)

We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique we take one of

them.

3.3 Oracle inequality

In order to prove the oracle inequality, the following conditions will be needed for the noise

(ξt)t≥ 0. Here we use the conditions introduced in [17] for the general semi-martingale model

(2.1).
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L1) For all n ≥ 1 and Q there exist a variance proxy σQ > 0 and a constant L1,Q ≥ 0 such

that

sup
p≥3

sup
x∈[−1,1]n

∣∣B1,Q(x)
∣∣ ≤ L1,Q <∞ ,

where B1,Q(x) =
∑n

j=1
xj

(
EQξ

2
j,n − σQ

)
.

L2) For all n ≥ 1 and Q there exists a constant L2,Q ≥ 1 such that

sup
p≥3

sup
|x|≤1

EB2
2,Q(x) ≤ L2,Q <∞,

where B2,Q(x) =
∑n

j=1
xj ξ̃j,p and ξ̃j,p = ξ2j,p −EQξ

2
j,p .

First we set the following constant which will be used to describe the rest term in the oracle

inequalitie. We set

gn,p = 1 + |Λ|∗
(√

n

p̌
+

1√
p̌

)
. (3.18)

Firstly, we obtain the non asymptotic oracle inequality for the model selection procedure (3.17).

Theorem 3.1. Assume that Conditions L1) and L2) hold. Then there exists some constant

l∗ > 0 such that for any noise distribution Q, the weight vectors set Λ, for any periodic function

S for any n ≥ 1, p ≥ 3 and 0 < δ ≤ 1/6, the procedure (3.17), satisfies the following oracle

inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S)

+ l∗
ι̌

δn

(
σQ + |Λ|∗EQ|σ̂n − σQ|

)
. (3.19)

Proof. Using the cost function given in (3.14), we can rewrite the empirical squared error in

(3.11) as follows

Err(λ) = Jn(λ) + 2

n∑

j=1

λ(j)θ̌j,p + ‖S‖2 − ρP̂n(λ), (3.20)

where

θ̌j,p = θ̃j,p − θj,pθ̂j,p =
1√
n
θj,pξj,p +

1

n
ξ̃j,p +

1

n
ςj,n +

σQ − σ̂n
n

,

with ςj,p = EQξ
2
j,p − σQ and ξ̃j,p = ξ2j,p −EQξ

2
j,p. Setting

M(λ) =
1√
n

n∑

j=1

λ(j)θjξj,p and P 0
n =

σQ|λ|2
n

, (3.21)
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we can rewrite (3.20) as

Err(λ) = Jn(λ) + 2
σQ − σ̂n

n
L(λ) + 2M(λ) +

2

n
B1,Q(λ)

+ 2
√
P 0
n(λ)

B2,Q(e(λ))√
σQn

+ ‖S‖2 − ρPn(λ), (3.22)

where e(λ) = λ/|λ| and the function L was defined in (3.9). Let λ0 = (λ0(j))1≤j≤ p be a fixed

sequence in Λ and λ̂ be defined as in (3.16). Substituting λ0 and λ̂ in Equation (3.22), we

obtain

Err(λ̂)− Err(λ0) =J(λ̂)− J(λ0) + 2
σQ − σ̂n

n
L(̟) +

2

n
B1,Q(̟) + 2M(̟)

+ 2

√
P 0
n(λ̂)

B2,Q(ê)√
σQn

− 2
√
P 0
n(λ0)

B2,Q(e0)√
σQn

− δPn(λ̂) + δPn(λ0), (3.23)

where ̟ = λ̂− λ0, ê = e(λ̂) and e0 = e(λ0). Note that, by (3.9),

|L(̟)| ≤ L(λ̂) + L(λ) ≤ 2|Λ|∗ .

The inequality

2|ab| ≤ δa2 + δ−1b2 (3.24)

implies that, for any λ ∈ Λ,

2
√
P 0
n(λ)

|B2,Q(e(λ))|√
σQn

≤ δP 0
n(λ) +

B2
2,Q(e(λ))

δσQ n
.

Taking into account that 0 < δ < 1, we get

Err(λ̂) ≤ Err(λ0) + 2M(̟) +
2L1,Q

n
+

2B∗
2,Q

δσQ n

+
1

n
|σ̂n − σQ|(|λ̂|2 + |λ0|2) + 2δPn(λ0) ,

where B∗
2,Q = supλ∈ΛB

2
2,Q((e(λ)). Moreover, noting that in view of (3.9) supλ∈Λ |λ|2 ≤ |Λ|∗,

we can rewrite the previous bound as

Err(λ̂) ≤Err(λ0) + 2M(̟) +
2L1,Q

n
+

2B∗
2,Q

δσQn

+
4|Λ|∗
n
|σ̂ − σQ|+ 2δPn(λ0). (3.25)
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To estimate the second term in the right side of this inequality we set

Sx =

n∑

j=1

x(j)θj,pTrj , x = (x(j))1≤j≤n ∈ R
n .

Thanks to (2.7) we estimate the term M(x) for any x ∈ R
n as

EQM
2(x) ≤ κQ

1

n

n∑

j=1

x2(j)θ
2

j,p = κQ

1

n
‖Sx‖2. (3.26)

To estimate this function for a random vector x ∈ R
n, we set

Z∗ = sup
xεΛ1

nM2(x)

‖Sx‖2
, Λ1 = Λ− λ0 .

So, through Inequality (3.24), we get

2|M(x)| ≤ δ‖Sx‖2 +
Z∗

nδ
. (3.27)

It is clear that the last term here can be estimated as

EQZ
∗ ≤

∑

x∈Λ1

nEQM
2(x)

‖Sx‖2
≤
∑

x∈Λ1

κQ = κQι̌ , (3.28)

where ν = card(Λ). Moreover, note that, for any x ∈ Λ1,

‖Sx‖2 − ‖Ŝx‖2 =
n∑

j=1

x2(j)(θ
2

j,p − θ̂2j ) ≤ −2M1(x), (3.29)

where M1(x) = n−1/2
∑n

j=1
x2(j)θ

2

j,pξj,n. Taking into account now that, for any x ∈ Λ1, the

components |x(j)| ≤ 1, we can estimate this term as in (3.26), i.e.

EQM
2
1 (x) ≤ κQ

‖Sx‖2
n

.

Similarly to the previous reasoning we set

Z∗
1 = sup

xεΛ1

nM2
1 (x)

‖Sx‖2

and we get

EQ Z
∗
1 ≤ κQ ι̌ . (3.30)

Using the same type of arguments as in (3.27), we can derive

2|M1(x)| ≤ δ‖Sx‖2 +
Z∗
1

nδ
. (3.31)
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From here and (3.29), we get

‖Sx‖2 ≤
‖Ŝx‖2
1− δ +

Z∗
1

nδ(1− δ) (3.32)

for any 0 < δ < 1. Using this bound in (3.27) yields

2M(x) ≤ δ‖Ŝx‖2
1− δ +

Z∗ + Z∗
1

nδ(1− δ) .

Taking into account that ‖Ŝ̟‖2 ≤ 2 (Err(λ̂) + Err(λ0)), we obtain

2M(̟) ≤ 2δ(Err(λ̂) + Err(λ0))

1− δ +
Z∗ + Z∗

1

nδ(1− δ) .

Using this bound in (3.25) we obtain

Err(λ̂) ≤ 1 + δ

1− 3δ
Err(λ0) +

Z∗ + Z∗
1

nδ(1− 3δ)
+

2L1,Q

n(1− 3δ)
+

2B∗
2,Q

δ(1− 3δ)σQn

+
(4|Λ|∗ + 2)

n(1− 3δ)
|σ̂ − σQ|+

2δ

(1− 3δ)
P 0
n(λ0).

Moreover, for 0 < δ < 1/6 we can rewrite this inequality as

Err(λ̂) ≤ 1 + δ

1− 3δ
Err(λ0) +

2(Z∗ + Z∗
1 )

nδ
+

4L1,Q

n
+

4B∗
2,Q

δσQn

+
(8|Λ|∗ + 2)

n
|σ̂ − σQ|+

2δ

(1− 3δ)
P 0
n(λ0).

Now, in view of Condition L2), we estimate the expectation of the term B∗
2,Q in (3.25) as

EQB
∗
2,Q ≤

∑

λ∈Λ
EQB

2
2,Q(e(λ)) ≤ ι̌L2,Q .

Now, taking into account that |Λ|∗ ≥ 1, we get

RQ(Ŝ∗, S) ≤
1 + δ

1− 3δ
RQ(Ŝλ0

, S) +
4κQι̌

nδ
+

4L1,Q

n
+

4ι̌L2,Q

δσQn

+
10|Λ|∗
n

EQ |σ̂ − σQ|+
2δ

(1− 3δ)
P 0
n(λ0).

By using the upper bound for Pn(λ0) in Lemma 3.1, we obtain that

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
RQ(Ŝλ0

, S) +
4κQι̌

nδ
+

4L1,Q

n
+

4ι̌L2,Q

δσQn

+
10|Λ|∗
n

EQ |σ̂ − σQ|+
2δL1,Q

(1− 3δ)n
.

Taking into account that 1− 3δ ≥ 1/2 for 0 < δ < 1/3 and that κQ ≤ (1 + τ̌ |ρ|∗)σQ and using

the bounds (3.38) and (3.60) we obtain the inequality (3.19). Hence we get the desired result.

✷
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Corollary 3.1. Assume that Conditions L1) and L2) hold and the proxy variance σQ is known.

Then there exists some constant l∗ > 0 such that for any noise distribution Q, for any weight

vectors set Λ, for any periodic function S for any n ≥ 1, p ≥ 3 and 0 < δ ≤ 1/6, the procedure

(3.17) with σ̂n = σQ, satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) + l∗

σQι̌

δn
. (3.33)

Now we study the model selection procedure (3.17) using the proxy estimate (3.13).

Theorem 3.2. Assume that the function S is continuously differentiable and the conditions L1)

and L2) hold true. Then there exists some constant l∗ > 0 such that for any noise distribution

Q, for any weight vectors set Λ, for any periodic function S for any n ≥ 1, p ≥ 3 and

0 < δ ≤ 1/6, the procedure (3.17), satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S)

+ l∗
ν

δn
(1 + σQ)

3
(
1 + ‖Ṡ‖2

)
gn,p . (3.34)

Let us study the robust risks (3.4) for the procedure (3.17). In this case this family consists of

all distributions on the Skorokhod space D[0, n] with the parameters satisfying the conditions

(2.8) – (2.9) . Now, to obtain the efficiency property we use the weight coefficients (λ(j))1≤j≤n

specified in (2.28).

Our goal is to bound asymptotically the term (3.18) by any power of n. To this end we

assume the following condition.

H5) Assume that there exists δ̌ > 0 such that for any n ≥ 3

p ≥ n5/6 . (3.35)

Now Theorem 3.2 implies the following oracle inequality.

Theorem 3.3. Assume that the unknown function S is continuously differentiable. Moreover,

assume that Conditions H1)–H5) hold. Then for the robust risks defined in (3.4) through the

distribution family (2.8) – (2.9), the procedure (3.17) with the coefficients (2.28), for any n ≥ 1

and 0 < δ < 1/6, satisfies the following oracle inequality

R∗(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
n(S)

nδ
, (3.36)

where the sequence U∗
n(S) > 0 is such that under condition (2.26), for any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0 . (3.37)
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Now we need to check the conditions L1) and L2) for the process (2.2).

Proposition 3.1. Assume that Conditions H1)–H4) hold true. Then

L1,Q = 2τ̌ ‖Υ‖1 σQ . (3.38)

Proof. Firstly, we set

ILn (f) =

∫ n

0

f(t)dLt and Izn(f) =

∫ n

0

f(t)dzt . (3.39)

In view of (1.6) the last integral can be represented as

Izn(f) =
∞∑

l=1

f(Tl)Yl1{Tl≤n} . (3.40)

Therefore,

ξj,n =
̺1√
n
ILn (Ψj,p) +

̺2√
n
Izn(Ψj,p)

and

Eξ2j,n =
̺21
n

∫ n

0

Ψ2
j,p(t)d t+

̺22
n
E

∞∑

l=1

Ψ2
j,p(Tl)1{Tl≤n} . (3.41)

Using Proposition 5.1 we get

E

∞∑

l=1

Ψ2
j,p(Tl)1{Tl≤n} =

∫ n

0

Ψ2
j,p(x) ρ(x)dx

=
1

τ̌

∫ n

0

Ψ2
j,p(x)dx +

∫ n

0

Ψ2
j,p(x)Υ(x)dx ,

where ρ is the renewal density introduced in (1.8). Then we obtain,

Eξ2j,n = σQ +
̺22
n

∫ n

0

Ψ2
j,p(x)Υ(x)dx

and

sup
j≥1

∣∣∣∣
∫ n

0

Ψ2
j,p(x)Υ(x)dx

∣∣∣∣ ≤ 2‖Υ‖1 , (3.42)

where σQ = ̺21 + ̺22/τ̌ . This directly implies the desired result. ✷

To study the functionB2,Q(x), we have to analyze the correlation properties for the following

stochastic integrals

Ĩn(f) = I2n(f)−EI2n(f) . (3.43)

To do this we set

č1 = 1 + Π(x4) + ‖Υ‖21 + |ρ|∗ and č2 = 12(1 + τ̌)2 (1 + č1) . (3.44)

Now we investigate the behavior of the integrals defined in (3.43) as functions of f .
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Proposition 3.2. For any left continuous functions f, g : (0,∞) −→ R such that ‖f‖∗ ≤ 1,

‖g‖∗ ≤ 1, we have

|EĨn(f)Ĩn(g)| ≤ 12σ2Q(1 + τ̌)2
(
(f, g)2n + nč1

)
. (3.45)

Proof. By Ito’s formula one gets

dI2t (f) = 2It−(f)dIt(f) + ̺21 ˇ̺
2 f2(t)d t+

∑

0≤s≤t

f2(s)(∆ξds )
2 , (3.46)

where ξdt = ̺3 Ľt + ̺2zt and ̺3 = ̺1
√

1− ˇ̺2. Taking into account that the processes (Ľt)t≥0

and (zt)t≥0 are independent and the time of jumps Tk defined in (1.7) has a density, we have

∆zs∆Ľs = 0 a.s. for any s ≥ 0. Therefore, we can rewrite the differential (3.46) as

dI2t (f) =2It−(f)dIt(f) + ̺21 ˇ̺
2 f2(t)d t

+ ̺23d
∑

0≤s≤t

f2(s)(∆Ľs)
2 + ̺22d

∑

0≤s≤t

f2(s)(∆zs)
2 . (3.47)

Therefore, using Lemma 2.1 we obtain

EI2t (f) = ̺21 ‖f‖2t + ̺22‖f
√
ρ‖2t ,

where ‖f‖2t =
∫ t

0
f2(u)du, ρ is the density of the renewal measure

∑∞
j=1

η(j) and with η the

distribution of τ1. Therefore,

dĨt(f) = 2It−(f)f(t)dξt + f2(t)dm̃t , m̃t = ̺23m̌t + ̺22mt , (3.48)

where m̌t =
∑

0≤s≤t
(∆Ľs)

2 − t and mt =
∑

0≤s≤t
(∆zs)

2 −
∫ t

0
ρ(s)ds. By the Ito’s formula we

get

EĨn(f)Ĩn(g) =E

∫ n

0
Ĩt−(f)dĨt(g)

+E

∫ n

0
Ĩt−(g)dĨt(f) +E

[
Ĩ(f), Ĩ(g)

]

n
. (3.49)

First, note that the process (m̌t)t≥0 is a martingale and, using Lemma 2.5, we get

E

∫ n

0
Ĩt−(f)dĨt(g) = ρ22E

∫ n

0
Ĩt−(f)g

2(t)dmt = ρ22E

∫ n

0
I2t−(f)g

2(t)dmt .

The last integral can be represented as

E

∫ n

0
I2t−(f)g

2(t)dmt = J1 − J2 ,

where

J1 = E
∑

k≥1

I2Tk−
(f)g2(Tk)1{Tk≤n} and J2 =

∫ n

0
E I2t (f)g

2(t)ρ(t)dt .
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By Lemma 2.3 we get

J1 = E
∑

k≥1

E
(
I2Tk−

(f)|G
)
g2(Tk)1{Tk≤n} = ̺21J1,1 + ̺22J1,2 ,

where

J1,1 = E
∑

k≥1

‖f‖2Tk
g2(Tk)1{Tk≤n} and J1,2 = E

∑

k≥1

k−1∑

l=1

f2(Tl) g
2(Tk)1{Tk≤n} .

We obtain directly that

J1,1 =

∫ n

0

‖f‖2t g2(t)ρ(t)dt

and

J1,2 = E
∑

l≥1

f2(Tl)
∑

k≥l+1

g2(Tk)1{Tk≤n} =
∫ n

0

f2(x)

(∫ n−x

0

g2(x+ t)ρ(t)dt

)
ρ(x)dx.

From Lemma 2.1 we obtain that

J2 = ̺21

∫ n

0

‖f‖2t g2(t)ρ(t)dt+ ̺22

∫ n

0

‖f√ρ‖2t g2(t)ρ(t)dt .

Therefore,

E

∫ n

0
I2t−(f)g

2(t)dmt = ̺22

∫ n

0

f2(x)

(∫ n

x

g2(t)(ρ(t− x)− ρ(t))dt
)
ρ(x)dx .

Taking into account that ρ(t− x)− ρ(t) = Υ(t− x)−Υ(t) we can estimate the last integral as

|E
∫ n

0
I2t−(f)g

2(t)dmt| ≤ 2̺22n‖Υ‖1 .

From this and by the symmetry arguments we obtain that

|E
∫ n

0
Ĩt−(f)dĨt(g)|+ |E

∫ n

0
Ĩt−(g)dĨt(f)| ≤ 4̺42n‖Υ‖1 . (3.50)

Note now that [
Ĩ(f), Ĩ(g)

]

n
=
〈
Ĩc(f), Ĩc(g)

〉

n
+Dn(f, g) , (3.51)

where

Dn(f, g) =
∑

0≤t≤n

∆Ĩdt (f)∆Ĩ
d
t (g) .

It should be noted that the continuous and the discrete parts of the processes (3.48) can be

represented as

Ĩct (f) = 2̺1 ˇ̺

∫ t

0

Is(f)f(s)dws and Ĩdt (g) = 2

∫ t

0

Is−(f)f(s)dξ
d
s +

∫ t

0

f2(s)dm̃s .
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So, in view of Lemma 2.1,

E < Ĩc(f),Ĩc(g) >n= 4ρ21 ˇ̺
2

∫ n

0
E(It(f)It(g))f(t)g(t)dt

= 4ρ41 ˇ̺
2

∫ n

0
(f, g)t f(t)g(t)dt+ 4ρ21ρ

2
2 ˇ̺

2

∫ n

0
(f, gρ)tf(t)g(t)dt

= 4ρ21 ˇ̺
2σQ (f, g)2n + 4ρ21ρ

2
2 ˇ̺

2

∫ n

0
(f, gΥ)tf(t)g(t)dt , (3.52)

with (f, g)t =
∫ t
0 f(s)g(s)ds. Taking into account that ‖f‖∗ ≤ 1 and ‖g‖∗ ≤ 1, we can estimate

the last integral as ∫ n

0
(f, gΥ)tf(t)g(t)dt ≤ n‖Υ‖1 .

Therefore, ∣∣∣∣E
〈
Ĩc(f), Ĩc(g)

〉

n

∣∣∣∣ ≤ 4σ2Q
(
(f, g)2n + nτ̌‖Υ‖1

)
. (3.53)

To study the last term in (3.51) note that

Dn(f, g) =
∑

0≤t≤n

(
2It−(f)f(t)∆ξ

d
t + f2(t)∆m̃t

)(
2It−(g)g(t)∆ξ

d
t + g2(t)∆m̃t

)
.

Taking into account that for any t > 0

∆ξdt∆m̃t = ̺33(∆Ľt)
3 + ̺32(∆zt)

3 ,

we obtain that

E
∑

0≤t≤n

It−(f)f(t)g
2(t)∆ξdt ∆m̃t =

(
̺33Π(x

3) + ̺32EY
3
1

) ∫ n

0

E It(f)f(t)g
2(t)dt = 0 .

So, using the symmetry arguments, we find that

EDn(f, g) = 4ED1,n(f, g) +ED2,n(f, g) , (3.54)

where

D1,n(f, g) =
∑

0≤t≤n

It−(f)It−(g)f(t)g(t)(∆ξ
d
t )

2 and D2,n(f, g) =
∑

0≤t≤n

f2(t) g2(t)(∆m̃t)
2 .

Note that

D1,n(f, g) = ̺23Ď1,n(f, g) + ̺22D̃1,n(f, g) ,

where

Ď1,n(f, g) =
∑

0≤t≤n

It−(f)It−(g)f(t)g(t)(∆Ľt)
2

and

D̃1,n(f, g) =
∑

0≤t≤n

It−(f)It−(g)f(t)g(t)(∆zt)
2 .
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Now, similarly to (3.52) and taking into account that Π(x2) = 1, we get

EĎ1,n(f, g) =

∫ n

0

f(t)g(t)E It(f)It(g) dt = ̺21

∫ n

0

f(t)g(t) (f, g)t dt

+ ̺22

∫ n

0

f(t)g(t) (f, gρ)t dt

=σQ(f, g)
2
n + ̺22

∫ n

0

f(t)g(t) (f, gΥ)t dt .

So,

|EĎ1,n(f, g)| ≤ σQ
(
(f, g)2n + nτ̌‖Υ‖1

)
. (3.55)

Moreover, taking into account that EY 2
1 = 1 we get

ED̃1,n(f, g) = E
∑

k≥1

ITk−(f)ITk−(g)f(Tk)g(Tk)1{Tk≤n} .

So, in view of Lemma 2.3

ED̃1,n(f, g) = E
∑

k≥1

E
(
ITk−(f)ITk−(g)|G

)
f(Tk)g(Tk)1{Tk≤n}

= ̺21E
∑

k≥1

(f , g)Tk
f(Tk)g(Tk)1{Tk≤n} + ̺22ED

′

1,n(f, g)

= ̺21

∫ n

0

(f, g)t f(t)g(t)ρ(t)dt+ ̺22ED
′

1,n(f, g) ,

where

D
′

1,n(f, g) =
∑

k≥1

k−1∑

l=1

f(Tl) g(Tl)f(Tk)g(Tk)1{Tk≤n} .

Noting now that
∫ n

0

(f, g)t f(t)g(t)ρ(t)dt =
1

2τ̌
(f, g)2n +

∫ n

0

(f, g)t f(t)g(t)Υ(t)dt ,

we obtain

|
∫ n

0

(f, g)t f(t)g(t)ρ(t)dt| ≤
1

2τ̌
(f, g)2n + n‖Υ‖1 .

Furthermore, the expectation of D
′

1,n(f, g) can be represented as

ED
′

1,n(f, g) = E
∑

l≥1

f(Tl) g(Tl)
∑

k≥l+1

f(Tk)g(Tk)1{Tk≤n}

=

∫ n

0

f(x)g(x)

(∫ n−x

0

f(x+ t)g(x+ t)ρ(t)dt

)
ρ(x)dx

=
1

2τ̌
(f, g)2n +D

′′

1,n(f, g) ,
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where the last term in this equality can be represented as

D
′′

1,n(f, g) =

∫ n

0

f(x)g(x)

(∫ n−x

0

f(x+ t)g(x+ t)Υ(t)dt

)
ρ(x)dx

+
1

τ̌

∫ n

0

f(x)g(x)

(∫ n−x

0

f(x+ t)g(x+ t)Υ(t)dt

)
Υ(x)dx .

This implies

|D′′

1,n(f, g)| ≤ n(1 +
1

τ̌
)(1 + ‖Υ‖21) .

Therefore,

|ED̃1,n(f, g)| ≤ σQ
(
(f, g)2n + n(1 + τ̌)‖Υ‖21

)
. (3.56)

Finally we obtain that

|ED1,n(f, g)| ≤ σ2Q(1 + τ̌)2
(
(f, g)2n + n‖Υ‖21

)
. (3.57)

As to the last term in (3.54) we can calculate directly

ED2,n(f, g) = ̺43Π(x
4)

∫ n

0

f2(t) g2(t)dt+ ̺42

∫ n

0

f2(t) g2(t)ρ(t)dt ,

i.e.

ED2,n(f, g) ≤ nσ2Q
(
Π(x4) + |ρ|∗

)
(1 + τ̌)2 .

From here we obtain that

|EDn(f, g)| ≤ σ2Q(1 + τ̌)2
(
4(f, g)2n + nč1

)
, (3.58)

where č1 is given in (3.44). From this and (3.53) we find

E[Ĩ(f), Ĩ(g)]n ≤ 8σ2Q(1 + τ̌)2
(
(f, g)2n + nč1

)
. (3.59)

This bound and (3.50) implies (3.45). Hence we get the desired result . ✷

Using these properties we can obtain the following bound.

Proposition 3.3. Assume that Conditions H1)–H4) hold true. Then, for all n ≥ 1,

L2,Q = č2 σ
2
Q , (3.60)

where |x|2 =∑n
j=1

x2j .
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Proof. Note that

E




n∑

j=2

xj ξ̃j,p




2

≤ 1

n2

n∑

j=1

n∑

l=1

|xj | |xl||EĨn(Ψj,p)Ĩn(Ψl,p)| .

Using here Proposition 3.2 and taking into account that

(Ψj,p , Ψl,p)n =

∫ n

0

Ψj,p(t)Ψl,p(t)dt = n1{j=l} ,

we obtain the bound (3.60). Hence we obtain the desired result. ✷

Now we can study the estimate (3.17).

Proposition 3.4. Assume that Conditions H1) and H4) hold true for the model (3.1) and

that S is continuously differentiable. Then, for any n ≥ 2 and p ≥ 3,

EQ,S |σ̂n − σQ| ≤ č3
(√

n

p̌
+

1√
p̌

)
(1 + ‖Ṡ‖2)(1 + σQ)

2 , (3.61)

where č3 = 6 (14 + 2|ρ|∗ + 3
√
1 + č1) (1 + τ̌).

Proof. It is clear that Inequality (3.61) holds true for l > p̌. Let now l 6 p̌. Setting

x
′

j = 1{[√n]6j6p̌} and subtituting (3.7) in (3.13) yields

σ̂n =
n

p̌

p̌∑

j=l

(θj,p)
2 +

2n

p̌
M(x

′

) +
1

p̌

p̌∑

j=l

ξ2j,p , (3.62)

where M(x
′

) is defined in (3.21). Furthermore, putting x
′′

j = p̌−1/21{l6j6p̌}, one can write the

last term on the right hand side of (3.62) as

1

p̌

p̌∑

j=l

ξ2j,p =
1√
p̌
B2,Q(x

′′

) +
1

p̌
B1,Q(x

′

) +
(p̌− l + 1)σQ

p̌
,

where the functions B1,Q and B2,Q are given in conditions L1) and L2). Using Proposition 3.1,

Proposition 3.3 and Lemma 3.3 , we come to the following upper bound

EQ|σ̂n − σQ| ≤
16‖Ṡ‖2n

lp
+

2n

p
EQ |M(x

′

)|+
L1,Q

p
+

√
L2,Q√
p

+
σQ(l − 1)

p
.

In the same way as in (3.26), we obtain

EQ |M(x
′

)| ≤


κQ

n

p∑

j=l

θ
2

j,p




1/2

≤
4(κQ‖Ṡ‖2)1/2

l
.

Taking into account that κQ ≤ (1 + τ̌ |ρ|∗)σQ and using the bounds (3.38) and (3.60) we

obtain the inequality (3.61). Hence we obtain the desired result. ✷

Remark 3.1. Propositions 3.1 and 3.3 are used to obtain the oracle inequalities given in Section

4.4 (see, for example, [17]).
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3.4 Efficiency

Now we study the asymptotically efficiency properties for the procedure (3.17) with the coef-

ficients (2.28), with respect to the robust risk (3.4) defined by the distribution family (2.8) –

(2.9). To this end, we assume that the unknown function S in the model (3.1) belongs to the

Sobolev ball

W k
r
= {f ∈ Ckper[0, 1] ,

k∑

j=0

‖f (j)‖2 ≤ r} , (3.63)

where r > 0 , k ≥ 1 are some parameters, Ckper[0, 1] is the set of k times continuously differen-

tiable functions f : [0, 1]→ R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. The function class

W k
r
can be written as an ellipsoid in L2, i.e.

W k
r
= {f ∈ Ckper[0, 1] :

∞∑

j=1

aj θ
2
j ≤ r}, (3.64)

where aj =
∑k

i=0
(2π[j/2])2i.

Similarly to [17, 18] we will show here that the asymptotic sharp lower bound for the robust

risk (3.4) is given by

r∗k = ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (3.65)

Note that this is the well-known Pinsker’s constant obtained for the non-adaptive filtration

problem in “signal + small white noise” model (see, for example, [47]).

Let Πn be the set of all estimators Ŝn measurable with respect to the σ-algebra σ{yt , 0 ≤
t ≤ n} generated by the process (3.1).

Theorem 3.4. Under the conditions (2.8) and (2.9),

lim inf
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) ≥ r∗k , (3.66)

where υn = n/ς∗.

Note that if the parameters r and k are known, i.e. for the non-adaptive estimation case, then

to obtain the efficient estimation for the “signal+white noise”model. Pinsker in [47] proposed

to use the estimate Ŝλ0
defined in (3.8) with the weights (2.28) in which

λ0 = λα0
and α0 = (k, l0) , (3.67)

where l0 = [r/ε]ε. For the model (3.1) – (2.2) we show the same result.

Proposition 3.5. The estimator Ŝλ0
satisfies the following asymptotic upper bound

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝλ0

, S) ≤ r∗k .
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Proof. First, we note that in view of (3.8) one can represent the quadratic risk for the empiric

norm ‖ · ‖p as

EQ ‖Ŝλ0
− S‖2p =

1

n

p̌∑

j=1

λ20(j)EQ ξ
2
j,p +Θp ,

where Θp =
∑p

j=1

(
θj,p − λ0(j) θj,p

)2
. We put here λ0(j) = 0 for j > n if p > n. The first term

can be estimated by the bound (3.38) as

sup
Q∈Qn

EQ

p̌∑

j=1

λ20(j) ξ
2
j,p ≤ ς∗

n∑

j=1

λ20(j) + L1,Q ,

where L∗
1,n = supQ∈Qn

L1,Q. Therefore, taking into account that υn = n/σ∗, we get

sup
Q∈Qn

EQ ‖Ŝλ0
− S‖2p ≤

1

υn

n∑

j=1

λ20(j) +
L∗
1,n

n
+Θp .

Note that

lim
n→∞

1

υ
1/(2k+1)
n

n∑

j=1

λ20(j) =
2(τk r)

1/(2k+1) k2

(k + 1)(2k + 1)
. (3.68)

Furthermore, by Inequality (3.24) for any 0 < ε̃ < 1 we get

Θp ≤ (1 + ε̃)Θp + (1 + ε̃−1)

p∑

j=1

h2j,p , (3.69)

where Θp =
∑p

j=1 (1− λ0(j))2 θ2j,p. In view of Definition (2.28), we can represent this term as

Θp =

[ω0]∑

j=ι0

(1− λ0(j))2 θ2j,p +
p∑

j=[ω0]+1

θ2j,p := Θ1,p +Θ2,p ,

where ι0 = j∗(α0), ω0 = ωα0
= (τkl0υn)

1/(2k+1) and l0 = [r/ε] ε. Applying Lemma 3.5 yields

Θ1,p ≤ (1 + ε̃)

[ω0]∑

j=l

(1− λ0(j))2 θ2j + 4π2r(1 + ε̃−1)ω3
0 p

−2 .

Similarly, through Lemma 3.4 we have

Θ2,p ≤ (1 + ε̃)
∑

j≥[ω0]+1

θ2j + (1 + ε̃−1) r p−2 .

Hence,

Θp ≤ (1 + ε̃)Θ∗
ι0
+ (1 + ε̃−1)

(
4π2rω3

0 + r
)
p−2 ,
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where Θ∗
l =

∑
j≥l

(1− λ0(j))2 θ2j . Moreover, note that

sup
S∈W 1

r

max
1≤j≤p

h2j,p ≤ ‖Ṡ‖2 p−2 ≤ r p−2 .

Moreover, W k
r
⊆W 2

r
for any k ≥ 2. From here and Lemma 3.6 we get

sup
S∈Wk

r

p∑

j=1

h2j,p ≤ r
(
p−1 1{k=1} + 3p−21{k≥2}

)
.

Moreover, in view of Condition H5) we have

lim
n→∞

υ2k/(2k+1)
n

(
p−11{k=1} + ω3

0p
−2
)

= 0 .

So,

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

Θp ≤ lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

Θ∗
ι0
.

To estimate the term Θ∗
ι0

we set

Un = υ2k/(2k+1)
n sup

j≥ι0

(1− λ0(j))2/aj ,

where the sequence (aj)j≥1 is defined in (3.64). This leads to the inequality

sup
S∈W 1

r

υ2k/(2k+1)
n Θ∗

ι0
≤ Un

∑

j≥1

aj θ
2
j ≤ Un r .

Taking into account that limn→∞ t0 = r, we get

lim sup
n→∞

Un ≤ π−2k (τk r)
−2k/(2k+1) ,

where the coefficient τk is given in (2.28). This implies immediately that

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

Θp ≤
r1/(2k+1)

π2k(τk)
2k/(2k+1)

. (3.70)

Moreover, note that

R∗
k =

2(τk r)
1/(2k+1) k2

(k + 1)(2k + 1)
+

r1/(2k+1)

π2k(τk)
2k/(2k+1)

.

So, applying (3.68) and (3.70), yields

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

sup
Q∈Qn

EQ ‖Ŝλ0
− S‖2p ≤ R∗

k . (3.71)

Furthermore, Lemma 3.2 yields that for any ε̃ > 0

sup
S∈Wk

r

R∗
n(Ŝλ0

, S) ≤ (1 + ε̃) sup
S∈Wk

r

sup
Q∈Qn

EQ ‖Ŝλ0
− S‖2p + (1 + ε̃−1)r p−2 .
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So, in view of Condition H5), we derive the desired inequality

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝλ0

, S) ≤ R∗
k .

Hence the conclusion follows. ✷

For the adaptive estimation we use the model selection procedure (3.17) with the parameter

δ defined as a function of n satisfying

lim
n−→∞

δn = 0 and lim
n−→∞

nδ̌ δn = 0 (3.72)

for any δ̌ > 0. For example, we can take δn = (6 + lnn)−1.

Theorem 3.5. Assume that Conditions H1)–H5) hold. Then the robust risk defined in (3.4)

through the distribution family (2.8) – (2.9) for the procedure (3.17) with the coefficients (2.28)

and the parameter δ = δn satisfying (3.72) has the following asymptotic upper bound

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(Ŝ∗, S) ≤ r∗k . (3.73)

Theorem 3.4 and Theorem 3.5 imply the following result.

Corollary 3.2. Under the conditions of Theorem 3.5,

lim
n→∞

υ2k/(2k+1)
n inf

Ŝn∈Πn

sup
S∈Wk

r

R∗
n(Ŝn, S) = r∗k . (3.74)

Remark 3.2. It is well known that the optimal (minimax) risk convergence rate for the Sobolev

ball W k
r
is n2k/(2k+1) (see, for example, [47], [46]). We see here that the efficient robust rate is

υ2k/(2k+1)
n , i.e. if the distribution upper bound ς∗ → 0 as n→∞ we obtain a faster rate with

respect to n2k/(2k+1), and if ς∗ →∞ as n→∞ we obtain a slower rate. In the case when ς∗ is

constant the robust rate is the same as the classical non robuste convergence rate.

3.5 Simulations

In this section we report the results of a Monte Carlo experiment to assess the performance of

the proposed model selection procedure (3.17). In (3.1) we chose a 1-periodic function which

for 0 ≤ t ≤ 1 is defined as

S(t) =





|t− 1
2 | if 1

4 ≤ t ≤ 3
4 ,

1
4 else.

(3.75)

We simulate the model

dyt = S(t)dt+ dξt ,
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n R R∗

20 0.0398 0.211

100 0.0091 0.0483

200 0.0067 0.0355

1000 0.0022 0.0116

Table 3.1: Empirical risks

where ξt = 0.5dwt+0.5dzt. Here zt is the semi-Markov process defined in (1.6) with a Gaussian

N (0, 1) sequence (Yj)j≥1 and (τk)k≥1 used in (1.7) taken as τk ∼ χ2
3 .

We use the model selection procedure (3.17) with the weights (2.28) in which k∗ = 100 +√
( ln(n)), ti = i/ ln(n), m = [ln2(n)] and δ = (3 + ln(n))−2. We define the empirical risk as

R =
1

p

p∑

j=1

Ê
(
Ŝn(tj)− S(tj)

)2
, (3.76)

where the observation frequency p = 100001 and the expectations was taken as an average over

N = 10000 replications, i.e.

Ê
(
Ŝn(.)− S(.)

)2
=

1

N

N∑

l=1

(
Ŝl
n(·)− S(·)

)2
.

We set the relative quadratic risk as

R∗ = R/‖S‖2p and ‖S‖2p =
1

p

p∑

j=0

S2(tj) . (3.77)

In our case ‖S‖2p = 0.1883601.

Table 3.1 gives the values for the sample risks (3.76) and (3.77) for different numbers of

observations n.

The Figures 3.1–3.4 show the behavior of the regression function and its estimates by the

model selection procedure (3.17) depending on the values of observation periods n. The black

full line is the regression function (3.75) and the red dotted line is the associated estimator.
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Remark 3.3. From numerical simulations of the procedure (3.17) with various observations

numbers n we may conclude that the quality of the proposed procedure is good for practical

needs, i.e. for reasonable (non large) number of observations. We can also add that the quality

of the estimation improves as the number of observations increases.

Now we give the algorithm of the model selection procedure given in Section 3.2
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Algorithm 2 Model selection procedure

Require: n, 0 ≤ ˇ̺≤ 1 and δ > 0

p : satisfying Condition H5) given in (3.35)

ρ1, ρ2, ς
∗: satisfying Conditions (2.8) and (2.9)

k∗ ≥ 1, ε: satisfying Condition (2.26)

Output: The optimal weight vector λ̂

{Step 1} Computation of the weights

m = [1/ε2]

for i←− 1 to [k∗] do

for j ←− [ε] to [mε] do

for k ←− 1 to n do

Compute the wheight coefficients λi,j(k) using the formula (2.28)

end for

end for

end for

return: the vectors λ = (λα(1), ..., λα(n)),α ∈ A = {1, . . . , k∗} × {ε, . . . ,mε}
{Step 2} Computation of the Fourrier coefficients

for k ←− 1 to n do

θ̂k,p =
1
n

∫ n

0
Ψk,p(t)d yt .

θ̃k,p ←− θ̂2k,p − 1
n .

The observation (yt)0≤t≤n are given in (2.1) with the noise process (2.2) and (Ψk,p)1≤k≤p

is the basis given in (3.5)

end for

return: the vectors θ̂ = (θ̂1,p, ..., θ̂n,p) and θ̃ = (θ̃1,p, ..., θ̃n,p)

{Step 3} The cost function

for i←− 1 to [k∗] do

for j ←− [ε] to [mε] do

Jn(λ)←−
∑n

l=1
λ2i,j(l)θ̂

2
j,p − 2

∑n
j=1

λi,j(l)θ̃j,p + δ Pn(λ).

where the vectors λ = (λi,j(1), ..., λi,j(n)) are computed in Step1, the vectors θ̂ and θ̃

are given in Step2 and Pn is the penalty term given in (3.15)

end for

end for

return: λ̂ = argminλ∈ΛJn(λ),Λ = {λα , α ∈ A}.
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Appendix

Property of the penalty term

Lemma 3.1. For any n ≥ 1 and λ ∈ Λ,

P 0
n(λ) ≤ RQ(Ŝλ, S) +

L1,Q

n
,

where the coefficient P 0
n(λ) is defined in (3.21) and the L1,Q is defined in (3.38).

Proof. By the definition of Err(λ) in (3.10) one has

Err(λ) ≥
p̌∑

j=1

(
(λ(j)− 1)θj,p +

λ(j)

n
ξj,p

)2

.

In view of Proposition 3.1 we obtain that

RQ(Ŝλ, S) = EQ Err(λ) ≥ 1

n

n∑

j=1

λ2(j)EQ ξ
2
j,n ≥ P 0

n(λ)−
L1,Q

n
.

Hence we otain Lemma 3.1.

Properties of the Fourier coefficients

Lemma 3.2. Let f be an absolutely continuous function, f : [0, 1]→ R, with ‖ḟ‖ <∞ and g

be a simple function, g : [0, 1] → R of the form g(t) =
∑p

j=1 cj χ(tj−1,tj ](t), where cj are some

constants. Then for any ε > 0, the function ∆ = f − g satisfies the following inequalities

‖∆‖2 ≤ (1 + ε̃)‖∆‖2p + (1 + ε̃−1)
‖ḟ‖2
p2

, ‖∆‖2p ≤ (1 + ε̃)‖∆‖2 + (1 + ε̃−1)
‖ḟ‖2
p2

.

Lemma 3.3. Let the function S(t) in (3.1) be absolutly continuous and have an absolutely

integrable derivative. Then the coefficients (θj,p)16j6p defined in (3.6) satisfy the inequalities

|θ1,p| 6 ‖S‖1 and max
26j6p

j|θj,p| 6 2
√
2‖Ṡ‖1 . (3.78)

Lemma 3.4. For any p ≥ 2, 1 ≤ N ≤ p and r > 0, the coefficients (θj,p)1≤j≤p of functions S

from the class W 1
r
satisfy, for any ε̃ > 0, the following inequality

p∑

j=N

θ2j,p ≤ (1 + ε̃)
∑

j≥N

θ2j + (1 + ε̃−1) r p−2 . (3.79)

Lemma 3.5. For any p ≥ 2 and r > 0, the coefficients (θj,p)1≤j≤p of functions S from the

class W 1
r
satisfy the following inequality

max
1≤j≤p

sup
S∈W 1

r

(
|θj,p − θj | − 2π

√
r j p−1

)
≤ 0 . (3.80)
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Lemma 3.6. For any p ≥ 2 and r > 0 the correction coefficients
(
hj,p
)
1≤j≤p

for the functions

S from the class W 2
r
satisfy the following inequality

sup
S∈W 2

r

p∑

j=1

h2j,p ≤ 3r p−2 . (3.81)

Lemmas 3.2 – 3.6 are proven in [18].



Chapter 4

Non-parametric estimation for Lévy regres-

sion models

4.1 Introduction

Let us consider a regression model in continuous time with the Levy noise

d yt = S(t)d t+ ε dξt , 0 ≤ t ≤ 1 , (4.1)

where S is an unknown function defined on R with values in R, (ξt)0≤t≤1 is some unobserved

noise and ε > 0 is the noise intensity. The problem is to estimate the function S on the basis

of observations (yt)0≤t≤1 when ε → 0. In this chapter we consider the estimation problem in

the adaptive setting, i.e. when the regularity of S is unknown and we assume that the noise

(ξt)0≤t≤1 is a Lévy process with unknown distribution Q on the Skorokhod space D[0, 1]. We

know only that this distribution belongs to some distribution family Qε specified below.

Note that if (ξt)0≤t≤1 is the Brownian motion, then we obtain the well known “signal+white

noise” model (see, for example, [9], [47], [41]). It should be noted also that the model (4.1) is

very popular in the statistical radio-physics. This is the estimation problem of the signal S,

observed under the white noise, when the signal/noise ratio goes to infinity.

By making use of the robust estimation approach developed for nonparametric problems in

[36, 17, 18] we set the robust risk as

R∗
ε(Ŝε, S) = sup

Q∈Q∗

ε

RQ(Ŝε, S), (4.2)

where Ŝε is an estimate, i.e. any function of (yt)0≤t≤1 and

RQ(Ŝε, S) := EQ,S ‖Ŝε − S‖2 and ‖S‖2 =
∫ 1

0

S2(t)dt .

The goal of this chapter is to develop the sharp model selection method for estimating

the unknown signal S. The interest in such statistical procedures can be explained by the

fact that they provide adaptive solutions for the nonparametric estimation through the sharp

non-asymptotic oracle inequalities which give non-asymptotic upper bound for the quadratic

risk including the minimal risk over chosen family of estimators with some coefficient closed to
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one (see, for example, [37] for discrete time and [18] for continuous time). The origin of the

model selection method goes back to early seventies with the pioneering papers by Akaike [30]

and Mallows [23] who suggested to use penalization in a log-likelihood type criterion. Barron,

Birgé, Massart [31], Massart [45] and Kneip [40] developed a non-asymptotic model selection

method which enables one to derive non-asymptotic oracle inequalities for the non-parametric

regression models with Gaussian disturbances. Unfortunately, these methods cannot be applied

to the non-Gaussian regression models, since the estimators of the Fourier coefficients in such

cases are not independent random variables. For these reasons, in order to estimate the function

in non-Gaussian regression models, we use the model selection method developed by [37, 38, 39]

for non-Gaussian heteroscedastic regression models in discrete time.

When constructing the sharp model selection procedures, in this chapter, we will use the

approach close to that of the papers [14], [15], [16], [18] developed for the estimation of a

1-periodic function in continuous time on a large time interval, i.e.

dxt = S(t)dt+ dηt , 0 ≤ t ≤ n .

Note that, for any 0 < t < 1, setting yt = n−1
∑n

j=1
(xt+j − xj), we can represent this model

as a model with small parameter of the form (4.1)

dyt = S(t)dt+ ε dξt ,

where ε = n−1/2 and ξt = n−1/2
∑n

j=1
(ηt+j − ηt). The main difference between this model and

the original one is that the jumps are small, i.e.

∆ξt = O(n−1/2) = O(ε) as ε→ 0 ,

but we have not such property in the model (4.1). Therefore, unfortunately, we cannot use

directly the method developed for the estimation problem on the large time interval to the

model (4.1). So, the main goal of this paper is to develop a new sharp model selection method

for the estimation problem of the function S as ε→ 0.

As an application of the sharp model selection method in this chapter we consider the

problem of the detection of the number of signals for the model (4.1). In many areas of science

and technology the problem arise how to select the number degrees of freedom for a statistical

model that describes the phenomenons under study most adequately [30]. An important class

of such problems is the detection problem of the number of signals with unknown parameters in

the noise. For example, in the signal multi-path information transmission there is a detection

problem of the number of rays in a multipath channel. This problem is often reduced to the

detection of the number of signals. As a result, effective algorithms for the detection of the

number of signals can significantly improve the noise immunity in the data transmission over a

multipath channel [34, 42, 33, 48, 50, 49, 51]. In all this chapter the problem of the detection

of the number of signals are considered only for observation with white noise. In this chapter

we consider this problem for non-Gaussian noise with jumps given by (4.3).
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4.2 Transformation of the observations

In this chapter the noise process (ξt)0≤t≤1 is defined by the following Lévy process

ξt = ̺1wt + ̺2zt and zt = x ∗ (µ− µ̃)t . (4.3)

Here, ̺1 and ̺2 are some constants, (wt)t≥ 0 is a standard Brownian motion, µ(ds dx) is the

jump measure with the deterministic compensator µ̃(ds dx) = dsΠ(dx), Π(·) is some positive

measure on R (see, for example [10, 6] for details).

Π(x2) = 1 and Π(x4) < ∞ . (4.4)

Note that Π(R) may be equal to +∞. In the sequel we will denote by Q the distribution of the

process (ξt)0≤t≤1 in the Skorokhod space D[0, 1] and by Q∗
ε we denote all these distributions

for which the parameters ̺1 and ̺2 satisfy the condition

κQ = ̺21 + ̺22 ≤ ς∗ε , (4.5)

where the bound ς∗ε is such that for any δ̌ > 0

lim inf
ε→0

ε−δ̌ ς∗ε > 0 and lim
ε→0

εδ̌ ς∗ε = 0 . (4.6)

First of all, we need to eliminate the large jumps in the observations (4.1), i.e. we transform

this model as

y̌t = yt −
∑

0≤s≤t

∆ys 1{|∆ys|>a} . (4.7)

The parameter a = aε > 0 will be chosen later. So, we obtain that

dy̌t = S(t)dt+ εdξ̌t − ε ̺2Π(hε) dt , (4.8)

where

ξ̌t = ̺1wt + ̺2 žt and žt = hε ∗ (µ− µ̃)t .

The functions hε(x) = x1{|x|≤ãε} and hε(x) = x1{|x|>ãε} where the truncated threshold is

defined by ãε = a/̺2ε.

Let (φj)j≥ 1 be an orthonormal basis in L2[0, 1] with φ1 ≡ 1. We assume that this basis is

uniformly bounded, i.e. for some constant φ∗ ≥ 1, which may be depend on ε > 0,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ , (4.9)

where n = nε = [1/ε2] and [x] denotes the integer part of x. For example, we can take the

trigonometric basis defined in (1.15)
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Moreover, note that for any function f : [0, 1]→ R from L2[0, 1], the integrals

It(f) =

∫ t

0

f(s)dξs and Ǐt(f) =

∫ t

0

f(s)dξ̌s (4.10)

are well defined with E It(f) = 0, E Ǐt(f) = 0,

E I2t (f) = κQ ‖f‖2t and E Ǐ2t (f) = κ̌Q ‖f‖2t , (4.11)

where ‖f‖2t =
∫ t

0
f2(s)ds, κQ = ̺21 + ̺22 and κ̌Q = ̺21 + ̺22Π(h

2
ε). In the sequel we denote by

(f, g)t =

∫ t

0

f(s)g(s) ds and (f, g) =

∫ 1

0

f(s)g(s) ds

.

To estimate the function S we use the following Fourier series

S(t) =
∑

j≥1

θj φj(t) , (4.12)

where

θj = (S, φj) =

∫ 1

0

S(t)φj(t)d t.

These coefficients can be estimated in the following way. First we estimate as

θ̂1,ε =

∫ 1

0

φ1(t)d yt = θ1 + εξ1

and, for j ≥ 2,

θ̂j,ε =

∫ 1

0

φj(t)d y̌t . (4.13)

Taking into account here that for any j the integral
∫ 1

0
φj(t)dt = 0 we obtain from (4.8) that

these Fourier coefficients can be represented as

θ̂j,ε = θj + ε ξ̌j and ξ̌j = Ǐ1(φj) .

Setting ξ̌1 = ξ1 we obtain that for any j ≥ 1,

θ̂j,ε = θj + ε ξ̌j . (4.14)

Now, according to the model selection approach developed in [17] - [18] we need to define

for any u ∈ R
n the following functions

B1,ε(u) =

n∑

j=1

uj ςj and B2,ε(u) =

n∑

j=1

uj ξ̃j , (4.15)

where ςj = E (ξ̌j)
2 − κ̌Q and ξ̃j = (ξ̌j)

2 −E (ξ̌j)
2.
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Proposition 4.1. The following upper bound holds.

sup
u∈[0,1]n

∣∣B1,ε(u)
∣∣ ≤ κQ . (4.16)

Proof. Taking into account that ς1 = κQ − κ̌Q ≤ κQ and ςj = 0 for j ≥ 2 we immediately

have the upper bound (4.16). ✷

Now let us recall the Novikov inequalities, [44], also referred to as the Bichteler–Jacod

inequalities, see ([32, 43]), providing bounds of the moments of the supremum of purely dis-

continuous local martingales for p ≥ 2,

E sup
t≤1
|g ∗ (µ− ν)t|p ≤ C∗

p

(
E
(
|g|2 ∗ ν1

)p/2
+E

(
|g|p ∗ ν1

))
, (4.17)

where C∗
p is some positive constant.

Now, for any u ∈ R
n we set

|u|2 =
n∑

j=1

u2j and #(u) =
n∑

j=1

1{uj 6=0} . (4.18)

Proposition 4.2. For any fixed truncated model parameter a > 0 and for any vector u ∈ R
n

with |u| ≤ 1, we have

E

∣∣∣B2
2,ε(u)

∣∣∣ ≤ UQ + 6κQ

(a
ε

)2
#(u) (φ∗)4 , (4.19)

where UQ = 24κ2
Q + 6̺42Π(x

4).

Proof. First note that

B2
2,ε(u) ≤ 2 ξ̃21 + 2B2

2,ε(u
′) , (4.20)

where u′ = (0, u2, . . . , un) ∈ R
n. It should be noted that

E ξ̃21 ≤ E ξ41 ≤ 8
(
̺41Ew

4
1 + ̺41E z

4
1

)
= 8

(
3̺41 + ̺41E z

4
1

)
.

To study the last term in the right hand side of the inequality (4.20) we set for any function

f from L2[0, 1]

Ĩt(f) = Ǐ2t (f)−E Ǐ2t (f) .

Note that for j ≥ 2 we define the random variables ξ̃j = Ĩ1(φj). So,

B2
2,ε(u

′) =
n∑

j=2

uj Ĩ1(φj) =: D1(u) .

By the Ito’s formula we can write that for any function f from L2[0, 1]

dĨt(f) = 2Ǐt−(f)f(t)dǏt(f) + ̺22 f
2(t) dm̌t ,
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where m̌t = h2ε ∗ (µ− µ̃)t. So, taking into account that

dǏt(f) = ̺1 dwt + ̺2 džt ,

we obtain that

dĨt(f) = 2̺1 Ǐt(f)f(t)dwt + 2̺2 Ǐt−(f)f(t)džt + ̺22 f
2(t) dm̌t .

So, setting

Vt =

n∑

j=2

uj Ǐt(φj)φj(t) and Ψt =

n∑

j=2

uj φ
2
j (t) ,

we obtain that

dDt = 2̺1 Vt dwt + 2̺2 Vt− džt + ̺22Ψt dm̌t .

So, we obtain that

D2
1 ≤ 12̺21

(∫ 1

0

Vt dwt

)2

+ 12̺22 M̌
2
1 + 3̺42

(∫ 1

0

Ψt− dm̌t

)2

, (4.21)

where

M̌t =

∫ t

0

Vs−(u) džs.

Moreover, taking into account that for any f , g from L2[0, 1]

E Ǐt(f) Ǐt(g) = κ̌Q

∫ t

0

f(s)g(s) ds ,

we get

2

∫ 1

0

EV 2
t dt = 2

n∑

i,j=2

ui uj

∫ 1

0

φi(t)φj(t)E Ǐt(φi) Ǐt(φj) dt = κ̌Q

n∑

i=2

u2i

(∫ 1

0

φ2i (t) dt

)2

.

Thus,

2E

(∫ 1

0

Vt dwt

)2

≤ κ̌Q .

Now, to estimate the second term in the inequality (4.21) note that in view of the inequality

(4.17) for any bounded function f and any 0 ≤ t ≤ 1

E Ǐ4t (f) ≤ 8̺41E

(∫ t

0

f(s)dws

)4

+ 8̺42E

(∫ t

0

f(s−)džt
)4

≤ 24̺41

∫ 1

0

f2(t)dt+ C∗
4

((
Π(h2ε)

∫ 1

0

f2(t)dt

)2

+Π(h4ε)

∫ 1

0

f4(t)dt

)
,

i.e.

sup
0≤t≤1

E Ǐ4t (f) <∞ .
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Now it is easy to see that through the Hölder’s inequality the term Vt can be estimated as

sup
0≤t≤1

EV 4
t < ∞ .

From here and the inequality (4.17) it follows that

sup
0≤t≤1

E M̌4
t ≤ C∗

4

((
Π(h2ε)

)2
+Π(h4ε)

) ∫ 1

0

EV 4
t dt <∞

and, therefore,

∫ 1

0

E M̌2
t V

2
t dt ≤ sup

0≤t≤1

(
E M̌4

t

)1/2
(∫ 1

0

EV 4
t dt

)1/2

< ∞ .

This implies that

E

∫ 1

0

M̌t− dM̌t = 0 .

Thus, the Ito’s formula implies

2E M̌2
1 = E

∑

0≤t≤1

(∆M̌t)
2 = 2Π(h2ε)

∫ 1

0

EV 2
t dt ≤ Π(h2ε) κ̌Q .

In the same way we calculate

̺22E

(∫ 1

0

Ψt−dm̌t

)2

= ̺22E
∑

0≤t≤1

(∆m̌t)
2 Ψ2

t−

= ̺22Π(h
4
ε)

∫ 1

0

Ψ2
tdt ≤ (a/ε)2 (φ∗)4 #(u) .

So, we obtain that

ED2
1 ≤ 6̺21 κ̌Q + 3̺22Π(x

2)
(
2κ̌Q + (φ∗)4

)
≤ 6κ2

Q + 3̺22(φ
∗)4 .

Similarly we obtain that

Eξ̃21 ≤ 6κ2
Q + 3̺42Π(x

4) .

This implies the upper bound (4.19). ✷

4.3 Model selection

We estimate the function S(x) for x ∈ [0, 1] by the weighted least squares estimator

Ŝλ(x) =

n∑

j=1

λ(j)θ̂j,εφj(x) , (4.22)
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where n = [1/ε2], the weights λ = (λ(j))1≤j≤n belong to some finite set Λ from [0, 1]n, θ̂j,ε is

defined in (4.13) and φj in (4.9) . Now we set

ι̌ = #(Λ) and |Λ|∗ = max
λ∈Λ

n∑

j=1

1{λj>0} , (4.23)

where #(Λ) is the cardinal number of Λ. In the sequel we assume that |Λ|∗ ≥ 1. Now we chose

the truncating parameter aε as

aε =
ε

|Λ|∗
. (4.24)

To choose a weight sequence λ in the set Λ we use the empirical quadratic risk, defined as

Errε(λ) =‖ Ŝλ − S ‖2,

which in our case is equal to

Errε(λ) =
n∑

j=1

λ2(j)θ̂2j,ε − 2
n∑

j=1

λ(j)θ̂j,εθj +
∞∑

j=1

θ2j . (4.25)

Since the Fourier coefficients (θj)j≥ 1 are unknown, we replace the terms θ̂j,εθj by

θ̃j,ε = θ̂2j,ε − ε2κ̂ε , (4.26)

where κ̂ε is a some estimate for the variance parameter κ̌Q from (4.11). If it is known we set

κ̂ε = κ̌Q if not this estimator will be prescribed later.

Finally, to choose the weights we will minimize the following cost function

Jε(λ) =

n∑

j=1

λ2(j)θ̂2j,ε − 2
n∑

j=1

λ(j)θ̃j,ε + δ P̂ε(λ) , (4.27)

where δ > 0 is some threshold which will be specified later and the penalty term

P̂ε(λ) = ε2κ̂ε|λ|2 and |λ|2 =
n∑

j=1

λ2j . (4.28)

Note that, if the κQ is known, then the penalty is defined as

Pε(λ) = ε2 κ̌Q|λ|2 . (4.29)

We define the model selection procedure as

Ŝ∗ = Ŝλ̂ , (4.30)

where

λ̂ = argminλ∈ΛJε(λ). (4.31)
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We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique we take one of

them.

Now, we specify the weight coefficients (λ(j))1≤j≤n. Consider a numerical grid of the form

A = {1, . . . , k∗} × {l1, . . . , lm} , (4.32)

where

li = i̟ and m = [1/̟] .

We assume that both the parameters k∗ ≥ 1 and 0 < ̟ < 1 are functions of ε, i.e.k∗ = k∗ε
and ̟ = ̟ε, such that





limε→0 k
∗
ε = +∞ , limε→0

k∗ε
| ln ε| = 0 ,

limε→0̟ε = 0 and limε→0 ε
−δ̟ε = +∞,

(4.33)

for any δ > 0. One can take, for example, for 0 < ε < 1

̟ε =
1

| ln ε| and k∗ε = k∗0 +
√
| ln ε| , (4.34)

where k∗0 ≥ 0 is some fixed constant and the threshold ς∗ε is introduced in (4.5). For each

α = (β, l) ∈ A, we introduce the weight sequence

λα = (λα(j))1≤j≤p,

where p = [ε−2],

λα(j) = 1{1≤j<j
∗
} +

(
1− (j/ωα)

β
)
1{j

∗
≤j≤ωα} . (4.35)

Here j∗ = j∗(α) = [ωα/| ln ε|] , ωα = (dβ lυε )
1/(2β+1)

υε = ε−2/ς∗ε . and dβ =
(β + 1)(2β + 1)

π2ββ
. (4.36)

Now we define the set Λ as

Λ = {λα , α ∈ A} . (4.37)

Note, that these weight coefficients are used in [17, 18] for continuous time regression models

to show the asymptotic efficiency.

In the sequel we need to estimate the variance parameter κ̌Q from (4.11). To this end we

set for any 0 < ε ≤ 1/
√
3

κ̂ε =

n∑

j=[1/ε]+1

T̂2
j,ε , n = [1/ε2] , (4.38)

where T̂j,ε are the estimators of the Fourrier coefficients with respect to the trigonometric basis

(1.15) , i.e.

T̂j,ε =

∫ 1

0

Trj(t)dy̌t . (4.39)
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Remark 4.1. Note that similar sharp oracle inequalities were obtained before in the papers

[37] and [17] for the nonparametric regression models in the discrete and continuous time

respectively. In this chapter we obtain these inequalities for the model selection procedures

based on any arbitrary orthogonal basis function. We use the trigonometric function only to

estimate the noise intensity κ̌Q.

4.4 Oracle inequality

First we set the following constant which will be used to describe the rest term in the oracle

inequalities. We set

ΨQ,ε = 8κ̌Q(1 + ι̌) +
4U1,Qι̌

κ̌Q

, (4.40)

where

U1,Q = 24κ̌2
Q + 6̺42Π(x

4) + 6κ̌Q (φ∗)4 .

We start with the sharp oracle inequalities.

Theorem 4.1. Assume that for the model (4.1) the condition (4.4) holds. Then, for any

0 < δ < 1/6, the estimator of S given in (4.30) satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) + ε2

ΨQ,ε + 12|Λ|∗ES |κ̂ε − κ̌Q|
δ

. (4.41)

Proof. First, note that we can rewrite the empirical squared error in (4.25) as follows

Errε(λ) = Jε(λ) + 2
n∑

j=1

λ(j)θ̌j,ε + ‖S‖2 − δP̂ε(λ), (4.42)

where θ̌j,ε = θ̃j,ε − θj θ̂j,ε. Now using the definition of θ̃j,ε in (4.26) we obtain that

θ̌j,ε = εθjξj + ε2ξ̃j,ε + ε2ςj,ε + ε2(κ̌Q − κ̂ε) ,

where ςj,ε = E(ξ̌j,ε)
2 − κ̌Q and ξ̃j = (ξ̌j)

2 −E(ξ̌j)
2. Setting

Mε(λ) = ε
n∑

j=1

λ(j)θj ξ̌j and L(λ) =
n∑

j=1

λ(j) , (4.43)

we can rewrite (4.42) as

Errε(λ) = Jε(λ) + 2ε2(κ̌Q − κ̂ε)L(λ) + 2Mε(λ) + 2ε2B1,ε(λ)

+ 2ε
√
Pε(λ)

B2,ε(uλ)√
κ̌Q

+ ‖S‖2 − δP̂ε(λ), (4.44)
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where uλ = λ/|λ|, the exact penalization is defined in (4.29) and the functions B1,ε(·) and

B2,ε(·) are defined in (4.15). It should be noted that for the truncated parameter (4.24) the

bound (4.19) implies

sup
λ∈Λ

EQ

∣∣∣B2
2,ε(uλ)

∣∣∣ ≤ UQ + 6κ̌Q

(a
ε

)2
|Λ|∗ (φ∗)4 = U1,Q , (4.45)

where U1,Q = UQ + 6κ̌Q (φ∗)4.

Let λ0 = (λ0(j))1≤j≤n be a fixed sequence in Λ and λ̂ be as in (4.31). Substituting λ0 and

λ̂ in Equation (4.44), we obtain

Errε(λ̂)− Errε(λ0) = J(λ̂)− J(λ0) + 2ε2(κ̌Q − κ̂ε)L(̟)

+ 2ε2B1,ε(̟) + 2Mε(̟)

+ 2ε

√
Pε(λ̂)

B2,ε(û)√
κ̌Q

− 2ε
√
Pε(λ0)

B2,ε(u0)√
κ̌Q

− δP̂ε(λ̂) + δP̂ε(λ0), (4.46)

where ̟ = λ̂− λ0, û = u
λ̂
and u0 = uλ0

. Note that by (4.23)

|L(̟)| ≤ L(λ̂) + L(λ) ≤ 2|Λ|∗ .

The inequality

2|ab| ≤ δa2 + δ−1b2 (4.47)

implies that for any λ ∈ Λ

2ε
√
Pε(λ)

|B2,ε(uλ)|√
κ̌Q

≤ δPε(λ) + ε2
B2

2,ε(uλ)

δκ̌Q

.

From the bound (4.16) it follows that for 0 < δ < 1

Errε(λ̂) ≤ Errε(λ0) + 2Mε(̟) + 2ε2
B∗

2,ε

δκ̌Q

+ 2ε2 κ̌Q

+ ε2|κ̂ − κ̌Q|(|λ̂|2 + |λ0|2 + 4|Λ|∗) + 2δPε(λ0) ,

where B∗
2,ε = supλ∈ΛB

2
2,n(uλ). It should be noted that through (4.45) we can estimate this

term as

EQB
∗
2,ε ≤

∑

λ∈Λ
EQB

2
2,ε(uλ) ≤ ι̌U1,Q . (4.48)

Taking into account that supλ∈Λ |λ|2 ≤ |Λ|∗, we can rewrite the previous bound as

Errε(λ̂) ≤ Errε(λ0) + 2Mε(̟) + 2ε2
B∗

2,ε

δκ̌Q

+ 2ε2 κ̌Q

+
6ε2|Λ|∗
n
|κ̂ − κ̌Q|+ 2δPε(λ0). (4.49)
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To estimate the second term in the right hand side of this inequality we introduce

Sυ =
n∑

j=1

υ(j)θjφj , υ = (υ(j))1≤j≤n ∈ R
n .

Moreover, note that

M2
ε (υ) ≤ 2υ2(1) ξ21 + 2 Ǐ1(Φ) ,

where Φ(t) =
∑n

j=2
υ(j)θjφj(t). Therefore, thanks to (4.11) we obtain that for any non-random

υ ∈ R
n

EM2
ε (υ) ≤ 2κ̌Qε

2
n∑

j=1

υ2(j)θ2j = 2κ̌Qε
2||Sυ||2 . (4.50)

To estimate this function for a random vector we set

M∗
ε = sup

υ∈Λ1

M2(υ)

ε2||Sυ||2
and Λ1 = Λ− λ0 .

So, through the inequality (4.47)

2|Mε(υ)| ≤ δ||Sυ||2 + ε2
M∗

ε

δ
. (4.51)

It is clear that the last term here can be estimated as

EM∗
ε ≤

∑

υ∈Λ1

EM2
ε (υ)

ε2||Sυ||2
≤ 2

∑

υ∈Λ1

κ̌Q = 2κ̌Q ι̌ , (4.52)

where ν = #(Λ). Moreover, note that, for any υ ∈ Λ1,

||Sυ||2 − ||Ŝυ||2 =
n∑

j=1

υ2(j)(θ2j − θ̂2j ) ≤ 2|Mε(υ
2)| ,

where υ2 = (υ2(j))1≤j≤n. Taking into account that, for any x ∈ Λ1, the components |υ(j)| ≤ 1

, we can estimate the last term as in (4.50), i.e.

EM2
ε (υ

2) ≤ 2ε2κ̌Q ||Sυ||2 .

Similarly, setting

M∗
1,ε = sup

υεΛ1

M2
ε (υ

2)

ε2||Sυ||2
,

we obtain

EQM
∗
1,ε ≤ 2κ̌aQ ι̌ . (4.53)

In the same way we find that

2|Mε(υ
2)| ≤ δ||Sυ||2 +

M∗
1,ε

nδ
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and, for any 0 < δ < 1,

||Sυ||2 ≤
||Ŝυ||2
1− δ +

ε2M∗
1,ε

δ(1− δ) .

So, from (4.51) we get

2M(υ) ≤ δ||Ŝυ||2
1− δ +

ε2(M∗
ε +M∗

1,ε)

δ(1− δ) .

Therefore, taking into account that ‖Ŝ̟‖2 ≤ 2 (Errε(λ̂) + Errε(λ0)), the term Mε(̟) can be

estimated as

2Mε(̟) ≤ 2δ(Errε(λ̂) + Errε(λ0))

1− δ +
ε2(M∗

ε +M∗
1,ε)

δ(1− δ) .

Using this bound in (4.49) we obtain

Errn(λ̂) ≤
1 + δ

1− 3δ
Errε(λ0) +

ε2(M∗
ε +M∗

1,ε)

δ(1− 3δ)
+

2ε2B∗
2,ε

δ(1− 3δ)κ̌Q

+
2ε2 κ̌Q

1− 3δ
+

6ε2 |Λ|∗
(1− 3δ)

|κ̂ − κ̌Q|+
2δ

(1− 3δ)
Pε(λ0).

Moreover, for 0 < δ < 1/6 we can rewrite this inequality as

Errn(λ̂) ≤
1 + δ

1− 3δ
Errε(λ0) +

2ε2(M∗
ε +M∗

1,ε)

δ
+

4ε2B∗
2,ε

δκ̌Q

+ 4ε2 κ̌Q + 12ε2 |Λ|∗|κ̂ − κ̌Q|+ 4δ Pε(λ0) .

Using here the bounds (4.48), (4.52), (4.53) we obtain that

R(Ŝ∗, S) ≤
1 + δ

1− 3δ
R(Ŝλ0

, S) +
8ε2κ̌Qι̌

δ
+

4ε2U1,Qι̌

δκ̌Q

+ 4ε2 κ̌Q + 12ε2 |Λ|∗EQ |κ̂ − κ̌Q|+
2δ

1− 3δ
Pε(λ0) .

Now, Lemma 4.1 implies directly the inequality (4.1). Hence we get the desired result. ✷

Corollary 4.1. Assume that for the model (4.1) the condition (4.4) holds. If the variance

parameter κ̌Q is known, then for any 0 < δ < 1/6, the estimator of S given in (4.30), with the

truncated parameter a = ε/
√
|Λ|∗ satisfying the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) + ε2

ΨQ,ε

δ
. (4.54)

We need to study the estimate (4.38).
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Proposition 4.3. Assume that in the model (4.1) the unknown function S is continuously

differentiable. Then, for any 0 < ε ≤ 1/
√
3

EQ |κ̂ε − κ̌Q| ≤ εΥQ(S) +

√
6κ̌Q

|Λ|∗
, (4.55)

where ΥQ(S) = 4(‖Ṡ‖+ 1)2
(
1 +

√
κ̌Q + 2κ̌Q +

√
UQ

)
.

Proof. We use here the same method as in [14]. First, note that from the definitions (4.14)

and (4.39) we obtain

T̂j,ε = Tj + ε η̌j , (4.56)

where

Tj =

∫ 1

0

S(t)Trj(t)dt and η̌j =

∫ 1

0

Trj(t) dξ̌t .

So, we have

κ̂ε =
n∑

j=[1/ε]+1

T2
j + 2M̌ε + ε2

n∑

j=[1/ε]+1

(η̌j)
2 , (4.57)

where M̌ε = ε
∑n

j=[1/ε]+1
Tj η̌j . Note that for continiously differentiable functions (see, for

example, Lemma A.6 in [14]) the Fourrier coefficients (Tj) for any n ≥ 1 satisfy the following

inequality
∞∑

j=[1/ε]+1

T2
j ≤ 4ε

(∫ 1

0

|Ṡ(t)|dt
)2

≤ 4ε‖Ṡ‖2 . (4.58)

The term M̌ε can be estimated in the same way as in (4.50), i.e.

EQ M̌
2
ε ≤ κ̌Qε

2
n∑

j=[1/ε]+1

T2
j ≤ 4ε3κ̌Q‖Ṡ‖2 .

Moreover, taking into account that for j ≥ 2 the expectation E (η̌j)
2 = κ̌Q we can represent

the last term in (4.57) as

ε2
n∑

j=[1/ε]+1

(η̌j)
2 = ε2 κ̌Q(n− [1/ε]) + εB2,ε(x

′) ,

where the function B2,ε(x
′) is defined in (4.15) and x′j = ε1{1/ε<j≤1/ε2}. We remind that

n = [1/ε2]. Therefore, in view of Proposition 4.2 we obtain

EQ

∣∣∣∣∣∣∣
ε2

n∑

j=[
√

1/ε]+1

η̌2j − κ̌Q

∣∣∣∣∣∣∣
≤ 2ε κ̌Q + ε

√
UQ +

√
6κ̌Q

|Λ|∗
.

So, we obtain the bound (4.55). ✷
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It is clear that in the case when |Λ|∗ ≤ 1/ε we obtain that

EQ |κ̂ε − κ̌Q| ≤
ΥQ(S) +

√
6κ̌Q

|Λ|∗
. (4.59)

Now using this proposition we can obtain the following inequality.

Theorem 4.2. Assume that for the model (4.1) the condition (4.4) holds and the unknown

function S is continuously differentiable. Then the procedure (4.30) with |Λ|∗ ≤ 1/ε, for any

0 < δ < 1/6, satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤
1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S)

+ ε2
ΨQ,ε + (‖Ṡ‖+ 1)2g1,Q + g2,Q

δ
, (4.60)

where

g1,Q = 48
(
1 +

√
κ̌Q + 2κ̌Q +

√
UQ

)
and g2,Q = 12

√
6κ̌Q .

Now we study the robust risk defined in (4.2) for the procedure (4.30).

We assume also that the upper bound for the basis functions in (4.9) may be dependent on

n ≥ 1, i.e. φ∗ = φ∗(n), such that for any ǫ̌ > 0

lim
n→∞

φ∗(n)
nǫ̌

= 0 . (4.61)

Theorem 4.3. Assume that for the model (4.1) Condition (4.4) holds and the unknown

function S is continuously differentiable. Then the robust risk of the procedure (4.30) with

|Λ|∗ ≤ 1/ε, for any 0 < δ < 1/6, satisfy the following oracle inequality

R∗
ε(Ŝ∗, S) ≤

1 + 3δ

1− 3δ
min
λ∈Λ
R∗

ε(Ŝλ, S) + ε2
U∗

ε(S)

δ
, (4.62)

where the term U∗
ε(S) > 0 is such that under the conditions (4.61) and (4.33) for any r > 0

and δ̌ > 0

lim
ε→0

εδ̌ sup
‖Ṡ‖≤r

U∗
ε(S) = 0 . (4.63)
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4.5 Adaptive robust efficiency

Now we study the asymptotically efficiency properties for the procedure (4.30) with the coef-

ficients (4.35) with respect to the robust risks (4.12) defined by the distribution family (4.5)

– (4.6). To this end we assume that the unknown function (4.12) belongs to the following

ellipsoid in L2,

W k
r
= {S ∈ L2[0, 1] :

∞∑

j=1

aj θ
2
j ≤ r}, (4.64)

where aj =
∑k

i=0
(2π[j/2])2i.

It is easy to see that in the case when the functions (φj)j≥1 are trigonometric (1.15), then

this set coincides with the Sobolev ball

W k
r
= {f ∈ Ck

per[0, 1] :
k∑

j=0

‖f (j)‖2 ≤ r} , (4.65)

where r > 0 and k ≥ 1 are some parameters, Ck
per[0, 1] is the set of k times continuously

differentiable functions f : [0, 1]→ R such that f (i)(0) = f (i)(1) for all 0 ≤ i ≤ k. Similarly to

[17, 18] we will show here that the asymptotic sharp lower bound for the robust risk (4.12) is

given by

l∗(r) = ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (4.66)

Note that this is the well-known Pinsker’s constant obtained for the non-adaptive filtration

problem in “signal + small white noise” model (see, for example, [47]).

Let Sε be the set of all estimators Ŝε measurable with respect to the σ-algebra σ{yt , 0 ≤
t ≤ 1} generated by the process (4.1).

Theorem 4.4. For the distribution family (4.5) – (4.6), the robust risks admit the following

lower bound

lim inf
ε→0

υ2k/(2k+1)
ε inf

Ŝε∈Sε

sup
S∈Wk

r

R∗
ε(Ŝε, S) ≥ l∗(r) , (4.67)

where υε = ε−2/ς∗ε .

We set the parameter δ in (4.27) as a function of ε, i.e. δ = δε is such that

lim
ε→0

δε = 0 and lim
ε→0

ε−δ̌ δε = 0 (4.68)

for any δ̌ > 0. For example, we can take δε = (6 + | ln ε|)−1.

Theorem 4.5. Assume that Conditions (4.33) hold. Then the model selection procedure admits

the following asymptotic upper bound

lim sup
ε→0

υ2k/(2k+1)
ε sup

S∈Wk
r

R∗
ε(Ŝ∗, S) ≤ l∗(r) . (4.69)
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Theorem 4.4 and Theorem 4.5 imply the following result

Corollary 4.2. Under the conditions of Theorem 4.5, we have

lim
ε→0

υ2k/(2k+1)
ε inf

Ŝε∈Sε

sup
S∈Wk

r

R∗
ε(Ŝε, S) = l∗(r) . (4.70)

Remark 4.2. It is well known that the optimal (minimax) risk convergence rate for the Sobolev

ball W k
r is ε−4k/(2k+1) (see, for example, [47] ). We see here that the efficient robust rate is

υ2k/(2k+1)
ε , i.e. if the distribution upper bound ς∗ε → 0 as n→∞ we obtain a faster rate with

respect to ε−4k/(2k+1), and if ς∗ε →∞ as ε→ 0 we obtain a slower rate. In the case when ς∗ε is

constant the robust rate is the same as the classical non robust convergence rate.

4.5.1 Lower bound

Firstly, note, that for any fixed Q ∈ Q∗
ε

sup
S∈Wk

r

R∗
ε(Ŝε, S) ≥ sup

S∈Wk
r

RQ(Ŝε, S) . (4.71)

Now for any fixed 0 < γ̌ < 1 we set

d = dε =

[
k + 1

k
υ1/(2k+1)
ε l∗(r0)

]
and r0 = (1− γ̌)r . (4.72)

Using this definition we introduce the parametric family (Sz)z∈Rd as

Sz(x) =

d∑

j=1

zj φj(x) . (4.73)

To define the bayesian risk we choose a prior distribution on R
d as

κ = (κj)1≤j≤d and κj = sj ηj , (4.74)

where ηj are i.i.d. Gaussian N (0, 1) random variables and the coefficients

sj =

√
s∗j
vε

and s∗j =

(
d

j

)k

− 1 .

Denoting by µκ the distribution of the random variables (κj)1≤j≤d on R
d we introduce the

bayes risk as

R̃Q(Ŝ) =

∫

Rd

RQ(Ŝ, Sz)µκ(dz) . (4.75)

Furthermore, for any function f , we denote by p(f) its projection in L2[0, 1] onto W
k
r
, i.e.

‖f − p(f)‖ = inf
h∈Wk

r

‖f − h‖ .
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Since W k
r

is a convex and closed set in L2[0, 1], this projector exists and is unique for any

function f ∈ L2[0, 1] and, moreover,

‖f − h‖2 ≥ ‖p(f)− h‖2 for any h ∈W k
r
.

So, setting p̂ = p(Ŝ), we obtain that

sup
S∈Wk

r

R(Ŝ, S) ≥
∫

{z∈Rd :Sz∈Wk
r
}
ESz
‖p̂− Sz‖2 µκ(dz) .

Taking into account now that ‖p̂‖2 ≤ r we obtain

sup
S∈Wk

r

RQ(Ŝ, S) ≥ R̃Q(p̂)− 2∆ε (4.76)

and

∆ε =

∫

{z∈Rd :Sz /∈Wk
r
}
(r+ ‖Sz‖2)µκ(dz) .

Therefore, in view of (4.71)

sup
S∈Wk

r

R∗
ε(Ŝε, S) ≥ sup

Q∈Q∗

ε

R̃Q(p̂)− 2∆ε . (4.77)

As to the last term in this inequality, in Appendix we show that for any δ̌ > 0

lim
ε→0

ε−δ̌ ∆ε = 0 . (4.78)

Now it is easy to see that

‖p̂− Sz‖2 ≥
d∑

j=1

(ẑj − zj)2 ,

where ẑj =
∫ 1

0
p̂(t)φj(t)dt. So, in view of Lemma 4.2 and reminding that υε = ε−2/ς∗ε we

obtain

sup
Q∈Q∗

ε

R̃Q(p̂) ≥ sup
0<̺2

1
≤ς∗

ε

d∑

j=1

1

ε−2 ̺−2
1 + vε (s

∗
j )

−1

=
1

vε

d∑

j=1

s∗j
s∗j + 1

=
1

vε

d∑

j=1

(
1− jk

dkε

)
.

Therefore, using now Definition (4.72), Inequality (4.77) and the limit (4.78), we obtain that

lim inf
n→∞

inf
Ŝ∈Πε

v
2k

2k+1
ε sup

S∈Wk
r

R∗
ε(Ŝε, S) ≥ (1− γ̌) 1

2k+1 l∗(r) .

Taking here the limit as γ̌ → 0 implies the desired result . ✷
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4.5.2 Upper bound

Known smoothness

First we suppose that the parameters k ≥ 1, r > 0 in (4.65) and ς∗ε in (4.5) are known. Let the

family of admissible weighted least square estimates (Ŝλ)λ∈Λ be given by (4.37). Consider the

pair

α̌ = (k, ř) and ř = ̟ [r/̟] ,

where ς̌ε = ̟ς∗ε and ̟ satisfy the conditions in (4.33). Denote the corresponding estimate as

Š = Ŝλ̌ and λ̌ = λα̌ . (4.79)

Note that for sufficiently small ε the pair α̌ belongs to the set (4.32).

Theorem 4.6. The estimator Š admits the following asymptotic upper bound

lim sup
ε→0

υ2k/(2k+1)
ε sup

S∈Wk
r

R∗
ε (Š, S) ≤ l∗(r) . (4.80)

Proof. Substituting (4.14) and taking into account the definition (4.79) one gets

‖Š − S‖2 =
∞∑

j=1

(1− λ̌(j))2 θ2j − 2M̌ε + ε2
∞∑

j=1

λ̌2(j) ξ̌2j ,

where M̌ε = ε
∑∞

j=1 (1 − λ̌(j)) λ̌(j) θj ξ̌j . Note now that for any Q ∈ Q∗
ε the expectation

EQ,S M̌ε = 0 and, in view of the upper bound (4.12),

sup
Q∈Q∗

ε

EQ,S

∞∑

j=1

λ̌2(j) ξ̌2j ≤ ς∗ε
∞∑

j=1

λ̌2(j) .

Therefore,

R∗
ε(Š, S) ≤

∞∑

j=ι̌

(1− λ̌(j))2 θ2j +
1

υε

∞∑

j=1

λ̌2(j) , (4.81)

where ǰ∗ = j∗(α̌). Setting

uε = (υε)
2k/(2k+1) sup

j≥ǰ
∗

(1− λ̌(j))2/aj ,

we obtain that for each S ∈W k
r

Υ1,ε(S) = (υε)
2k/(2k+1)

∞∑

j=ǰ
∗

(1− λ̌(j))2 θ2j ≤ uε

∞∑

j=ǰ
∗

aj θ
2
j ≤ uε r .

Tazking into account that ř → r, we obtain that

lim sup
ε→0

sup
S∈Wk

r

Υ1,ε(S) ≤
r1/(2k+1)

π2k(dk)
2k/(2k+1)

:= Υ∗
1 ,
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where the coefficient τk is given in (4.35). To estimate the last term in the right hand of (4.81),

we set

Υ2,ε =
1

(υε)
1/(2k+1)

+∞∑

j=1

λ̌2(j) .

It is easy to check that

lim sup
ε→0

Υ2,ε ≤
2(rdk)

1/(2k+1) k2

(k + 1)(2k + 1)
:= Υ∗

2 .

Therefore, taking into account that, by the definition of the Pinsker’s constant in (4.66), Υ∗
1 +

Υ∗
2 = l∗(r), we arrive at the inequality

lim
ε→0

υ2k/(2k+1)
ε sup

S∈Wk
r

R∗
ε(Š, S) ≤ l∗(r) .

Hence we obtain the desired result. ✷

Unknown smoothness

Combining Theorem 4.6 and Theorem 4.3 yields Theorem 4.5. ✷

4.6 Detection of the number of signals

In this section we consider the estimation problem for the number of signals in the multi-

path connexion channel. In the framework of the statistical radio-physics models we study

the telecommunication system in which we observe in the multi-path channel the summarized

signal with the noise on the time interval [0, 1],

yt =

q∑

j=1

θjφj(t) + nt , 0 ≤ t ≤ 1 ,

where (nt)t≥0 is some noise, usually this “white noise”. The energetic parameters (θj)j≥1

and the number of the signals q are unknown and the signals (φj)j≥1 are known orthonormal

functions, i.e. ∫ 1

0

φi(t)φj(t) dt = 1{i 6=j} .

The problem is to estimate q, when the signal/noise ratio goes to infinity. To describe this

problem in the framework of the mathematical model we use the following stochastic differential

equation

dyt =




q∑

j=1

θjφj(t)


 dt+ εdwt , (4.82)
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where (wt)t≥0 is the standard Brownian motion and the parameter ε goes to zero. This means

tha the signal/noise ratio goes to infinity. The logarithm of the likelihood ratio for the model

(4.82) can be represented as

lnLε =
1

ε2

q∑

j=1

θj

∫ 1

0

φj(t)dyt −
1

2ε2

q∑

j=1

θ2j .

If we will try to construct the maximum likelihood estimators for (θj)1≤j≤q and q then we

obtain that

max
1≤q≤q

∗

max
θj

lnLε =
1

2ε2

q
∗∑

j=1

(∫ 1

0

φj(t)dyt

)2

.

Therefore, the maximum likelihood estimate for q̂ = q∗. So, if q∗ =∞ we obtain that q̂ =∞.

So, this estimator does not work. For these reasons we propose to study the estimation problem

for q for the process (4.82) in the nonparametric setting and to apply the model selection

procedure (4.30). To this end we consider the model (4.1) with the unknown function S

defined as

S(t) =

q∑

j=1

θj φj(t) . (4.83)

For this problem we use the LSE family (Ŝd)1≤d≤m defined as

Ŝd(x) =
d∑

j=1

θ̂j,εφj(x) . (4.84)

This estimate can be obtained from (4.22) with the weights λd(j) = χ{j ≤ d}. The number of

estimators ι is some function of ε, i.e. ι = ιε, such that

lim
ε→0

ιε =∞ and lim
ε→0

εδ̌ιε = 0 (4.85)

for any δ̌ > 0. As a risk for the signals number we use

Dε(d, q) = R∗
ε(Ŝd, S) , (4.86)

where the risk R∗
ε(Ŝ, S) is defined in (4.2) and d is some integer number (maybe random) from

the set {1, . . . , ι}. In this case the cost function (4.27) has the following form.

Jε(d) =
d∑

j=1

θ̂2j,ε − 2
d∑

j=1

θ̃j,ε + δ P̂ε(λ) . (4.87)

So, for this problem the LSE model selection procedure is defined as

q̂ε = argmin1≤d≤ιJε(d) . (4.88)
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Note that Theorem 4.3 implies that the robust risks of the procedure (4.30) with |Λ|∗ ≤ 1/ε,

for any 0 < δ < 1/6, satisfy the following oracle inequality

Dε(q̂ε , q) ≤
1 + 3δ

1− 3δ
min
1≤d≤ι

Dε(d, q) + ε2
U∗

ε(S)

δ
, (4.89)

where the last term satisfies the property (3.37).

4.7 Simulation

In this section we report the results of a Monte Carlo experiment to assess the performance of

the proposed model selection procedure (4.30). In (4.1) we chose

S(t) =

10∑

j=1

j

j + 1
φj(t) , (4.90)

with φj(t) =
√
2 sin(2πljt), lj = [

√
j]j. We simulate the model

dyt = S(t)dt+ εdwt .

The frequency of observations per period equals p = 100000. We use the weight sequence

as proposed in Galtchouk and Pergamenshchikov (2009) for a discrete-time model : k∗ =

100 +
√
| ln ε| and m = [| ln ε|2].

We calculated the empirical quadratic risk defined as

R =
1

p

p∑

j=1

Ê
(
S̃ε(tj)− S(tj)

)2
,

and the relative quadratic risk

R∗ = R/‖S‖2p .

The expectation is taken as an average over N = 10000 replications, i.e.

Ê
(
S̃ε(·)− S(·)

)2
=

1

N

N∑

l=1

(
S̃l
ε(·)− S(·)

)2
.

We used the cost function with

δ =
1

(3 + | ln ε|)2 .
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ε R R∗

1/
√
20 0.0158 0.307

1/
√
100 0.0113 0.059

1/
√
200 0.0076 0.04

1/
√
1000 0.0035 0.0185

Table 4.1: Empirical risks

In the following graphics the dashed line is the model selection procedure (4.30), the con-

tinuous line is the function (4.90) and the bold line is the corresponding observations (4.1).
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ε q̂1 q̂2

1/
√
20 6 5

1/
√
100 8 7

1/
√
200 9 7

1/
√
1000 10 9

Table 4.2: Estimation of the number of signals

To estimate the number of signals q we use two procedures. The first q̂1 is (4.89) with

ν = [ln ε−2]. The second q̂2 is defined through the shrinkage approach for the model selection

procedure (4.90),

q̂2 = inf{j ≥ 1 : |θ̂j | ≤ c∗ε} , c∗ε = ε
√
| log ε| .

Remark 4.3. It should be noted that the LSE procedure (4.89) is more appropriate than the

shrinkage method for such a number detection problem.

Now we give the algorithm of the model selection procedure given in Section 4.3
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Algorithm 3 Model selection procedure

Require: ε > 0, 0 ≤ ˇ̺≤ 1 and δ > 0

ρ1, ρ2, ς
∗
ε : satisfying Conditions (4.5) and (4.6)

k∗ ≥ 1, ̟: satisfying Condition (4.33)

Output: The optimal weight vector λ̂

{Step 1} Computation of the weights

n = [1/ε2], m = [1/̟]

for i←− 1 to [k∗] do

for j ←− [̟] to [m̟] do

for k ←− 1 to n do

Compute the wheight coefficients λi,j(k) using the formula (4.35)

end for

end for

end for

return: the vectors λ = (λα(1), ..., λα(n)),α ∈ A = {1, . . . , k∗} × {̟, . . . ,m̟}
{Step 2} Computation of the Fourrier coefficients

for k ←− 1 to n do

θ̂k,ε =
∫ 1

0
φk(t)d y̌t .

θ̃k,ε ←− θ̂2k,ε − ε2 .
The observation (y̌t)0≤t≤n are given in (4.7) and (φk)k≥ 1 is the basis given in (4.9)

end for

return: the vectors θ̂ = (θ̂1,ε, ..., θ̂n,ε) and θ̃ = (θ̃1,ε, ..., θ̃n,ε)

{Step 3} The cost function

for i←− 1 to [k∗] do

for j ←− [̟] to [m̟] do

Jε(λ)←−
∑n

l=1
λ2i,j(l)θ̂

2
j,ε − 2

∑n
j=1

λi,j(l)θ̃j,ε + δ Pε(λ).

where the vectors λ = (λi,j(1), ..., λi,j(n)) are computed in Step1, the vectors θ̂ and θ̃

are given in Step2 and Pε is the penalty term given in (4.29)

end for

end for

return: λ̂ = argminλ∈ΛJε(λ),Λ = {λα , α ∈ A}.
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Appendix

Property of the penalty term

Lemma 4.1. Assume that Proposition 4.1 holds. Then for any n ≥ 1 and λ ∈ Λ,

Pε(λ) ≤ R(Ŝλ, S) + ε2 κ̌Q ,

where the coefficient Pε(λ) is defined in (4.43).

Proof. By the definition of Errε(λ) one has

Errε(λ) =
n∑

j=1

(
(λ(j)− 1)θj + ε2λ(j)ξ̌j

)2
.

Through Proposition 4.1 it is easy to see that

EQ Errε(λ) ≥ ε2
n∑

j=1

λ2(j)EQ (ξ̌j)
2 ≥ Pε(λ)− ε2κ̌Q .

Hence we obtain the desired result. ✷

Proof of the limit equality (4.78)

First, setting ζε =
∑d

j=1
κ2j aj , we obtain that

{
Sκ /∈W k

r

}
= {ζε > r} .

Moreover, note that one can check directly that

lim
ε→0

E ζε = lim
ε→0

1

vε

d∑

j=1

s∗j aj = ř = (1− γ̌)r .

So, for sufficiently small ε we obtain that
{
Sκ /∈W k

r

}
⊂
{
ζ̃ε > r1

}
,

where r1 = rγ̌/2, ζ̃ε = ζε − E ζε = v−1
ε

∑d
j=1

s∗jaj η̃j and η̃j = η2j − 1 Through the correlation

inequality (see, Proposition A.1 in [35]) we can get that for any p ≥ 2

E ζ̃pε ≤ (2p)p/2E|η̃1|p v−p
ε




d∑

j=1

(s∗j )
2a2j




p/2

= O( v
− p

4k+2
ε ) ,

as ε→ 0. Therefore, for any δ̌ > 0 using the Chebychev inequality for p > (4k+2)δ̌ we obtain

that

vδ̌εP(ζ̃ε > r1)→ 0 as ε→ 0 .

Hence we obtain the equality (4.78). ✷
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The absolute continuity of distributions for Lévy processes

In this section we study the absolute continuity for Lévy processes defined as

dyt = S(t)dt+ dξt , 0 ≤ t ≤ T , (4.91)

where S is any arbitrary non-random square integrated function, i.e. from L2[0, T ] and

(ξt)0≤t≤T is a Lévy process of the form (4.3) with nonzero constants ̺1 and ̺2. We denote by

Py and Pξ the distributions of the processes (yt)0≤t≤1 and (ξt)0≤t≤1 on the Skorokhod space

D[0, T ]. Now for any 0 ≤ t ≤ T and (xt)0≤t≤T from D[0, T ] we set

Υt(x) = exp

{∫ t

0

S(u)

̺21
dxcu −

∫ t

0

S2(u)

2̺21
du

}
, (4.92)

where (xct)0≤t≤T is the continuous part of the process (xt)0≤t≤T in D[0, T ], i.e.

xct = xt −
∫ t

0

∫

R

v (µx(ds , dv)−Π(dv)ds)

and, for any t > 0 and any measurable Γ from R \ {0},

µx([0, t],Γ) =
∑

0≤s≤t

1{∆xs∈̺2Γ} .

Now we study the measures Py and Pξ in D[0, T ].

Proposition 4.4. For any T > 0, the measure Py ≪ Pξ in D[0, T ] and the Radon-Nikodym

derivative is
dPy

dPξ

(ξ) = ΥT (ξ) .

Proof. Note that to show this proposition it suffices to check that for any 0 = t0 < . . . < tn = T

any bj ∈ R for 1 ≤ j ≤ n

E exp

{
i

n∑

l=1

bj(ytj − ytj−1
)

}
= E exp

{
i

n∑

l=1

bj(ξtj − ξtj−1
)

}
ΥT (ξ) .

Taking into account that the processes (yt)0≤t≤T and (ξt)0≤t≤T have independent homogeneous

increments, one needs to check only that for any b ∈ R and 0 ≤ s < t ≤ T

E exp {i b(yt − ys)} = E exp {i b(ξt − ξs)}
Υt(ξ)

Υs(ξ)
. (4.93)

To check this equality, note that the process

Υt(ξ) = exp

{∫ t

0

S(u)

̺1
dwu −

∫ t

0

S2(u)

2̺21
du

}

is a Gaussian martingale. From here we directly obtain Equation (4.93). ✷
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The van Trees inequality for Lévy processes

In this section we consider the following continuous time parametric regression model

dyt = S(t, θ)dt+ dξt , 0 ≤ t ≤ 1 , (4.94)

where S(t, θ) =
∑d

i=1
θi φi(t) with the unknown parameters θ = (θ1, . . . , θd)

′ and the process

(ξt)0≤t≤1 is defined in (4.3). Note now that according to Proposition 4.4 the distribution

Pθ of the process (4.94) is absolutely continuous with respect to the Pξ on D[0, 1] and the

corresponding Radon-Nikodym derivative is

f(x, θ) =
dPθ

dPξ

(x) = exp

{∫ 1

0

S(t, θ)

̺21
dxct −

∫ 1

0

S2(t, θ)

2̺21
dt

}
, (4.95)

where x = (xt)0≤t≤T is an arbitrary function from D[0, 1].

Let Φ be a prior density on R
d having the following form:

Φ(θ) = Φ(θ1, . . . , θd) =

d∏

j=1

ϕj(θj) ,

where ϕj is some continuously differentiable density in R. Moreover, let g(θ) be a continuously

differentiable function defined on R
d with values in R such that, for each 1 ≤ j ≤ d,

lim
|θj |→∞

g(θ)ϕj(θj) = 0 and

∫

Rd

|g′
j(θ)|Φ(θ) dθ <∞ , (4.96)

where

g′
j(θ) =

∂g(θ)

∂θj
.

For any B(X )× B(Rd)− measurable integrable function H = H(x, θ), we denote

ẼH =

∫

Rd

∫

X
H(x, θ) dPθ Φ(θ)dθ

=

∫

Rd

∫

X
H(x, θ) f(x, θ) Φ(θ)dPξ(x) dθ ,

where X = D[0, 1].

Lemma 4.2. For any Fy = σ{yt, 0 ≤ t ≤ 1}-measurable square integrable function ĝ and for

any 1 ≤ j ≤ d, the following inequality holds

Ẽ(ĝ − g(θ))2 ≥
Λ2
j

n‖ψj‖2̺−2
1 + Ij

,

where

Λj =

∫

Rd

g′
j(θ) Φ(θ) dθ and Ij =

∫

R

ϕ̇2
j (z)

ϕj(z)
dz .
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Proof. First of all, note that the density (4.95) of the process ξ is bounded with respect to

θj ∈ R and, for any 1 ≤ j ≤ d,

lim sup
|θj |→∞

f(ξ, θ) = 0 . a.s.

Now, we set

Φ̃j = Φ̃j(x, θ) =
∂ (f(x, θ)Φ(θ))/∂θj

f(x, θ)Φ(θ)
.

Taking into account the condition (4.96) and integrating by parts yield

Ẽ
(
(ĝ − g(θ))Φ̃j

)
=

∫

X×Rd

(ĝ(x)− g(θ))
∂

∂θj
(f(x, θ)Φ(θ)) dθPξ(dx)

=

∫

X×Rd−1

(∫

R

g′
j(θ) f(x, θ)Φ(θ)dθj

)
∏

i 6=j

dθi


 Pξ(dx) = Λj .

Now by the Cauchy’s inequality we obtain the following lower bound for the quadratic risk

Ẽ(ĝ − g(θ))2 ≥
Λ2
j

ẼΨ2
j

.

To study the denominator in the left handside of this inequality note that, in view of the

reprentation (4.95),
1

f(y, θ)

∂ f(y, θ)

∂θj
=

1

̺1

∫ 1

0

ψj(t) dwt .

Therefore, for each θ ∈ R
d,

Eθ

1

f(y, θ)

∂ f(y, θ)

∂θj
= 0

and

Eθ

(
1

f(y, θ)

∂ f(y, θ)

∂θj

)2

=
1

̺21

∫ 1

0

ψ2
j (t)dt =

1

̺21
‖ψ‖2 .

Taking into account that

Φ̃j =
1

f(x, θ)

∂ f(x, θ)

∂θj
+

1

Φ(θ)

∂ Φ(θ))

∂θj
,

we get

ẼΨ2
j =

n

̺21
‖ψ‖2 + Ij .

Hence we got the desired result. ✷
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Chapter 5

Renewal theory

5.1 Renewal density

This section is concerned with results related to the renewal measure (1.8).

Theorem 5.1. (Goldie’s theorem)

Let η be a probability law on R with finite second moment and positive first moment m, such

that η̃(β) <∞ for some β > 0. Suppose that η is spread out, so for some n0 we have

η(n0) = (1− δ)φ0 + δφ1,

where δ ∈ [0, 1[ is constant and φ0, φ1 are probability measures with φ0 absolutely continuous.

Suppose that β has been taken so small that δφ̃1(β) < 1. Suppose that η̂(θ) 6= 1 on the line

Fθ = −β. Then the renewal measure ν :=
∑∞

j=0
η(n) may be written ν = ν0 + ν1, where ν1

is a finite measure such that ν̃1(β) < ∞, and ν0 is absolutlely continuous with a continuous

bounded density p(.) such that

p(t) =
1

m
− 1

2π

∫

C
e−iθt dθ

1− η̂(θ) + o(e−βt), t −→∞.

Here C is a simple closed contour in the domain D := {θ : −β < Fθ < 0}, enclosing all

the zeroes of 1− η̂ in D, η̃(θ) =
∫
R
eθtη(dt) and η̂(θ) =

∫
R
eiθtη(dt).

The proof of this Theorem is given in [8].

Now we need to adapt this result to our framwork. We start with the following lemma.

Lemma 5.1. Let τ be a positive random variable with a density g, such that Eeβτ < ∞ for

some β > 0. Then there exists a constant β1, 0 < β1 ≤ β for which,

Ee(β1+iω)τ 6= 1 ∀ω ∈ R .

Proof. We will show this lemma by the contradiction, i.e. we assume that there exist some

sequence of positive numbers going to zero (γk)k≥1 and a sequence (wk)k≥1 such that

Ee(γk+iωk)τ = 1 (5.1)
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for any k ≥ 1. Firstly, assume that lim supk→∞ wk = +∞. Note that in this case, for any

N ≥ 1,

∣∣∣∣
∫ N

0

eγkt cos(wkt) g(t)dt

∣∣∣∣ ≤
∣∣∣∣
∫ N

0

cos(wkt) g(t)dt

∣∣∣∣

+

∣∣∣∣
∫ N

0

(eγkt − 1) cos(wkt) g(t)dt

∣∣∣∣ ,

i.e., in view of Lemma 5.2, for any fixed N ≥ 1

lim sup
k→∞

∫ N

0

eγkt cos(wkt) g(t)dt = 0 .

Since for some β > 0 the integral
∫ +∞
0

eβt g(t)dt <∞, we get

lim
k→∞

∫ +∞

0

eγkt cos(wkt) g(t)dt = 0 .

Let now assume that lim supk→∞wk = ω∞ 6= 0 and 0 < |ω∞| <∞. In this case there exists a

sequence (lk)k≥1 such that limk→∞wlk
= ω∞, i.e.

1 = lim sup
k→∞

Eeγlk τ cos(τwlk
) = E cos(τw∞) .

It is clear that, for random variables having density, the last equality is possible if and only if

w∞ = 0. In this case, i.e. when lim supk→∞wlk
= 0, the equation (5.1) implies

lim sup
k→∞

E eγlkτ
sin(τwlk

)

wlk

= E τ = 0 .

But, under our conditions, Eτ > 0. These contradictions imply the desired result. ✷

Proposition 5.1. Let τ be a positive random variable with the distribution η having a density

g which satisfies Conditions H1)–H4). Then the renewal measure (1.8) is absolutely continuous

with density ρ, for which

ρ(x) =
1

τ̌
+Υ(x) , (5.2)

where τ̌ = Eτ1 and Υ(·) is some function defined on R+ with values in R such that

sup
x≥0

xγ |Υ(x)| <∞ for all γ > 0 .

Proof. First, note that we can represent the renewal measure η̌ as η̌ = η∗η0 and η0 =
∑∞

j=0
η(j).

It is clear that in this case the density ρ of η̌ can be written as

ρ(x) =

∫ x

0

g(x− y)
∑

n≥0

g(n)(y)dy . (5.3)
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Now we use the arguments proposed in the proof of Lemma 9.5 from [8]. For any 0 < ǫ < 1

we set

ρǫ(x) =

∫ x

0

g(x− y)


∑

n≥0

(1− ǫ)n g(n)(y)− (1− ǫ)
τ̌

g0(y)


 dy − g(x) , (5.4)

where g0(y) = e−ǫy/τ̌1{y>0}. It is easy to deduce that for any x ∈ R

lim
ǫ→0

ρǫ(x) = ρ(x)− 1

τ̌

∫ x

0

g(z) dz − g(x) . (5.5)

Moreover, in view of the condition H1) we obtain that the function ρǫ(x) satisfies the condition

D) from Section 5.2. So, through Proposition 5.3 we get

ρǫ(x+) + ρǫ(x−) =
1

π

∫

R

e−ixθ ρ̂ǫ(θ) dθ ,

where ρ̂ǫ(θ) =
∫
R
eiθxρǫ(x)dx. Note that

|ĝ(θ)| =
∣∣∣∣
∫

R

eiθxg(x)dx

∣∣∣∣ ≤
∫

R

g(x)dx = 1 ,

i.e. for any 0 < ǫ < 1 we have |(1− ǫ)ĝ(θ)| < 1 and therefore

∞∑

n=0

(1− ǫ)n(ĝ(θ))n =
1

1− (1− ǫ)ĝ(θ) .

From this and, taking into account that

ĝ0(θ) =

∫

R

eiθxg0(x)dx =
τ̌

ǫ− iτ̌ θ ,

we obtain

ρ̂ǫ(θ) = ĝ(θ)
∞∑

n=0

(1− ǫ)n(ĝ(θ))n −
(
1− ǫ
τ̌

)
ĝ(θ)ĝ0(θ)− ĝ(θ)

= ĝ(θ)Gǫ(θ) and Gǫ(θ) =
1

1− (1− ǫ)ĝ(θ) −
1− iτ̌ θ
ǫ− iτ̌ θ ,

i.e.

ρǫ(x−) + ρǫ(x+) =
1

π

∫

R

e−ixθ ĝ(θ)Gǫ(θ) dθ . (5.6)

One can check directly that

sup
0<ǫ<1,θ∈R

|Gǫ(θ)| < ∞ .

Therefore, using the condition H3) and the Lebesgue’s dominated convergence theorem, we

can pass to limit as ǫ→ 0 in (5.6), i.e., we obtain that

ρ(x+) + ρ(x−)− 2

τ̌

∫ x

0

g(z) dz − g(x+)− g(x−) = 1

π

∫

R

e−ixθ ĝ(θ)G0(θ) dθ ,
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where

G0(θ) =
1

1− ĝ(θ) +
1− iτ̌ θ
iτ̌θ

.

Using here again Proposition 5.3 we deduce that

ρ(x+) + ρ(x−) = 2

τ̌

∫ x

0

g(z) dz +
1

π

∫

R

e−ixθ ĝ(θ)Ǧ(θ) dθ (5.7)

and

Ǧ(θ) =
1

1− ĝ(θ) +
1

iτ̌ θ
.

Note now that we can represent the density (5.3) as

ρ(x) = g ∗
∑

n≥0

g(n) =
∑

n≥1

g(n)(x) = g(x) +
∑

n≥2

g(n)(x) =: g(x) + ρc(x)

and the function ρc(x) is continuous for all x ∈ R. This means that

ρ̃(x) =
ρ(x+) + ρ(x−)

2
− ρ(x) = g(x+) + g(x−)

2
− g(x)

and, therefore, the condition H2) implies that, for any γ > 0,

sup
x≥0

xγ |ρ̃(x)| <∞.

Now we can rewrite (5.7) as

ρ(x) =
1

τ̌

∫ x

0

g(z) dz +
1

2π

∫

R

e−ixθ ĝ(θ)Ǧ(θ) dθ − ρ̃(x). (5.8)

Taking into account that E eβτ <∞ for some β > 0 we can obtain that

sup
x≥0

xγ
∫ +∞

x

g(z) dz <∞ .

To study the second term in (5.8) we will use Proposition 5.2. Indeed, Condition H3) implies

the first limit equality in (5.10). The second one follows directly from Lemma 5.2. Therefore,

in view of Proposition 5.2, there exists some β∗ > 0 such that, for any 0 ≤ β0 ≤ β∗,
∫

R

e−ixθ ĝ(θ)Ǧ(θ) dθ = e−β0x

∫

R

e−ixθ ĝ(θ − iβ0)Ǧ(θ − iβ0) dθ .

Note that, due to Lemma 5.1, the function 1−ĝ(θ) has no zeros on the line {z ∈ C : Im(z) = −β1}.
Moreover, one can check directly that θ = 0 is an isolated zero. So, this means that for any

N > 1 there can be only finitely many zeros in {z ∈ C : −β1 < Im(z) < 0 , |Re(z)| < N} of

the function 1− ĝ(θ). Moreover, note that in view of lemma 5.2 for any r > 0

lim
Re(θ)→∞,|Im(θ)|≤r

ĝ(θ) = 0 .
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This means that there existsN > 0 such that the function 1−ĝ(θ) 6= 0 for θ ∈ {z ∈ C : −β1 < Im(z)

< 0 , |Re(z)| ≥ N}. So, there can be only finitely many zeros of the function 1 − ĝ(θ) in

{z ∈ C : −β1 < Im(z) < 0} for some fixed 0 < β1 < β. Therefore, there exists some β0 > 0

for which the function 1 − ĝ(θ) has no zeros in {z ∈ C : −β0 < Im(z) < 0}, i.e. the function

Ǧ(θ) will be bounded in this set and we obtain that

sup
x≥0

eβ0x

∣∣∣∣
∫

R

e−ixθ ĝ(θ)Ǧ(θ) dθ

∣∣∣∣ <∞ .

Thus the conclusion follows. ✷

Using this proposition we can study the renewal process (Nt)t≥0 introduced in (1.7).

Corollary 5.1. Assume that Conditions H1)–H4) hold true. Then, for any t > 0,

ENt ≤ |ρ|∗ t and EN2
t ≤ |ρ|∗ t+ |ρ|2∗ t2 . (5.9)

Proof. First, by means of Proposition 5.1, note that we get

ENt = E
∑

k≥1

1{Tk≤t} =
∫ t

0

ρ(v) dv ≤ |ρ|∗ t .

Regarding the last bound in (5.9), we use the same reasoning as in the previous inequality, i.e.,

we obtain

EN2
t = E

∑

k≥1

1{Tk≤t} + 2E
∑

k≥1

1{Tk≤t}
∑

j=k+1

1{Tj≤t}

= ENt + 2E
∑

k≥1

1{Tk≤t}Θ(Tk) = ENt +

∫ t

0

Θ(v) ρ(v) dv ,

where, for 0 ≤ v ≤ t, we defined the function Θ(v) = ENt−v ≤ |ρ|∗(t− v). ✷

5.2 Properties of the Fourier transform

Theorem 5.2. Cauchy (1825)

Let U be a simply connected open subset of C, let g : U → C be a holomorphic function,

and let γ be a rectifiable path in U whose start point is equal to its end point. Then
∮

γ

g(z)dz = 0 .

Proposition 5.2. Let g : C→ C be a holomorphic function in U = {z ∈ C : −β1 < Imz < β2}
for some β1 > 0 and β2 > 0. Assume that, for any −β1 ≤ t ≤ 0,

∫

R

|g(θ + it)| dθ <∞ and lim
|θ|→∞

g(θ + it) = 0 . (5.10)
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Then, for any x ∈ R and for any 0 < β < β1,

∫

R

eiθxg(θ) dθ = e−βx

∫

R

eiθxg(θ − iβ) dθ. (5.11)

Proof. First note that the conditions of this theorem imply that

∫

R

eiθxg(θ) dθ = lim
N→∞

∫ N

−N

eiθxg(θ) dθ .

We fix now 0 < β < β1 and we set for any N ≥ 1

γ = {z ∈ C : −N ≤ Rez ≤ N , Imz = 0} ∪ {z ∈ C : −N ≤ Imz ≤ N , Rez = N}

∪ {z ∈ C : −N ≤ Rez ≤ N , Imz = −β} ∪ {z ∈ C : −β ≤ Imz ≤ 0 , Rez = −N} .

Now, in view of Theorem 5.2, we obtain that for any N ≥ 1

∮

γ

eizx g(z)dz =

∫ N

−N

eiθxg(θ) dθ +

∫ −β

0

ei(N+it)xg(N + it) dt

+

∫ −N

N

ei(−iβ+θ)xg(−iβ + θ)dθ +

∫ 0

−β

ei(−N+it)xg(−N + it)dt = 0 . (5.12)

Conditions (5.10) provide that

lim
N→∞

∫ −β

0

ei(N+it)xg(N + it) dt = lim
N→∞

∫ 0

−β

ei(−N+it)xg(−N + it) dt = 0 .

Therefore, letting N →∞ in (5.12) we obtain (5.11). Hence we get the desired result. ✷

The following technical lemma is also needed.

Lemma 5.2. Let g : [a, b]→ R be a function from L1[a, b]. Then, for any fixed −∞ ≤ a < b ≤
+∞,

lim
N→∞

∫ b

a

g(x) sin(Nx)dx = 0 and lim
N→∞

∫ b

a

g(x) cos(Nx)dx = 0 . (5.13)

Proof. Let first −∞ < a < b < +∞. Assume that g is continuously differentiable, i.e.

g ∈ C1[a, b]. Then integrating by parts gives us

∫ b

a

g(x) sin(Nx) dx =
1

N

(
g(b) sin(Nb) − g(a) sin(Na) −

∫ b

a

g
′

(x) cos(Nx) dx

)
.

So, from this we obtain that

∣∣∣∣
∫ b

a

g(x) sin(Nx) dx

∣∣∣∣ ≤
|g(a)|+ |g(a)|+ (b− a)maxa≤x≤b |g

′

(x)|
N

.
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This implies the first limit in (5.13) for this case. The second one is obtained similarly. Let

now g be any absolutely integrated function on [a, b], i.e. g ∈ L1[a, b]. In this case there exists

a sequence gn ∈ C1[a, b] such that

lim
n→∞

∫ b

a

|g(x)− gn(x)|dx = 0 .

Therefore, taking into account that for any n ≥ 1

lim
N→∞

∫ b

a

gn(x) sin(Nx)dx = 0 ,

we obtain that

lim sup
n→∞

|
∫ b

a

g(x) sin(Nx)dx| ≤
∫ b

a

|g(x)− gn(x)|dx .

So, letting in this inequality n → ∞ we obtain the first limit in (5.13) and, similarly, we

obtain the second one. Let now b = +∞ and a = −∞. In this case we obtain that for any

−∞ < a < b < +∞
∣∣∣∣∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣∣∣∣∣+
∫ +∞

b

|g(x) |dx

+

∫ a

−∞
|g(x) |dx .

Using here the previous results we obtain that for any −∞ < a < b < +∞

lim sup
N→∞

∣∣∣∣∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣∣∣∣∣ ≤
∫ +∞

b

|g(x) |dx+

∫ a

−∞
|g(x) |dx .

Passing here to limit as b → +∞ and a → −∞ we obtain the first limit in (5.13). Similarly,

we can obtain the second one. ✷

Let us now study the inverse Fourier transform. To this end, we need the following local

Dini condition.

D) Assume that, for some fixed x ∈ R, there exist the finite limits

g(x−) = lim
z→x−

g(z) and g(x+) = lim
z→x+

g(z)

and there exists δ = δ(x) > 0 for which

∫ δ

0

|g(x+ t) + g(x− t)− g(x+)− g(x−)|
t

dt < ∞.
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Proposition 5.3. Let g : R→ R be a function from L1(R). If, for some x ∈ R, this function

satisfies the condition D, then

g(x+) + g(x−) = 1

π

∫

R

e−iθxĝ(θ) dθ , (5.14)

where

ĝ(θ) =

∫

R

eiθt g(t) dt .

Proof. First, for any fixed N > 0 we set

JN (x) =
1

2π

∫ N

−N

e−iθxĝ(θ) dθ =
1

π

∫

R

g(z)

∫ N

0

cos(θ(z − x)) dθdz ,

i.e.,

JN (x) =
1

π

∫

R

g(z)
sin(N(z − x))

z − x dz =
1

π

∫ ∞

0

(g(x+ t) + g(x− t)) sin(Nt)
t

dt .

Taking into account that for any N > 0 the integral

2

π

∫ ∞

0

sin(Nt)

t
dt = 1 (5.15)

and denoting B(x) = (g(x+) + g(x−))/2, we obtain that

JN (x)−B(x) =
1

π

∫ ∞

0

ω(x, t) sin(Nt)

t
dt and ω(x, t) = g(x+ t) + g(x− t)− 2B(x) .

Now we represent the last integral as

∫ ∞

0

ω(x, t) sin(Nt)

t
dt = I1,N + I2,N − 2B(x)I3,N ,

where

I1,N =

∫ δ

0

ω(x, t)

t
sin(Nt)dt , I2,N =

∫ ∞

δ

G(t) sin(Nt)dt , I3,N =

∫ ∞

δ

sin(Nt)

t
dt

and G(t) = (g(x+ t)+g(x− t))/t. Condition D and Lemma 5.2 imply directly the convergence

I1,N → 0 as N → ∞. Now note that, since g ∈ L1(R), then the function G is absolutely

integrated. Therefore, in view of Lemma 5.2, I2,N → 0 as N →∞. As to the last integral we

use the property (5.15), i.e., the changing of the variables gives

I3,N =

∫ ∞

δN

sin t

t
dt→ 0 as N →∞ .

Hence we have the desired result. ✷



Conclusion

The main purpose of this work is the non-parametric estimation for regression models in con-

tinuous time. First, we consider the problem of estimation an unknown fonction S on the basis

of continuous observations, we define the noise in this model through a semi-Markov process

which keeps the dependence for any duration n. So, we are in the case of dependent observa-

tions for which the dependence does not disapear for a sufficient large duration of observation.

Second, we consider the same model when the estimation is based on discrete data and we

obtain the sufficient conditions on the frequency observations under wich the robust effecient

is shown. In the third model we consider a Lévy non-parametric regression with noise intensity

and we estimate the unknown function S in the case where the noise level goes to 0 and the

Lévy measure can go to infinity. In all of these models, we propose an adaptive model selection

for the robust risk.
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