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Evaluation of voxel-based analysis in stroke using 

multiparametric MR imaging 

 

Summary: 

Stroke is the leading cause of disability in adults. Beyond the narrow time window and 

possible risks of thrombolysis and mechanical thrombectomy, cell-therapies have strong 

potential. Reports showed that transplanted stem cells can enhance functional recovery 

after ischemic stroke in rodent models. 

To assess the mechanisms underlying the cell-therapy benefit after stroke, imaging is 

necessary. Multiparametric magnetic resonance imaging (MRI), including 

diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI), has become the 

gold standard to evaluate stroke characteristics. MRI also plays an important role in the 

monitoring of cerebral tissue following stroke from the acute to the chronic phase. 

However, the spatial heterogeneity of each stroke lesion and its dynamic reorganization 

over time, which may be related to the effect of a therapy, remain a challenge for 

traditional image analysis techniques. To evaluate the effect of new therapeutic strategies, 

spatial and temporal lesion heterogeneities need to be more accurately characterized and 

quantified. 

The current image analysis techniques, based on mean values obtained from regions 

of interest (ROIs), hide the intralesional heterogeneity. Histogram-based techniques 

provide an evaluation of lesion heterogeneity but fail to yield spatial information. The 

parametric response map (PRM) is an alternative, voxel-based analysis technique, which 

has been established in oncology as a promising tool to better investigate parametric 

changes over time at the voxel level which concern the therapeutic response or prognosis 

of disease. 

The PhD project was divided into two parts: a preclinical and a clinical study. The goal 

of the first study was to evaluate the PRM analysis using MRI data collected after the 

intravenous injection of human mesenchymal stem cells (hMSCs) in an experimental 

stroke model. The apparent diffusion coefficient (ADC), cerebral blood volume (CBV) and 

vessel size index (VSI) were mapped using 7T MRI. Two analytic procedures, the 

standard whole-lesion approach and the PRM, were performed on data collected at 4 time 

points in transient middle cerebral artery occlusion (MCAo) models treated with either 

hMSC or vehicle and in sham animals. During the second PhD project, 6 MR parametric 

maps (diffusion and perfusion maps) were collected in 30 stroke patients (PHRC 

NCT00875654). MRI data, analyzed with both a classic mean value and a PRM 

approaches, were correlated with the evaluation of functional recovery after stroke 

measured with the National Institutes of Health Stroke Scale (NIHSS) and the modified 

Rankin Scale (mRS) at 4 time points. 

In both studies, PRM analysis of MR parametric maps reveals fine changes of the 

lesion induced by a cell therapy (preclinical study) and correlate with long-term prognosis 

(clinical study). 

In conclusion, the PRM analysis could be used as an imaging biomarker of 



therapeutic efficacy and of prognostic biomarker of stroke patients. 
 
Key words: magnetic resonance imaging, brain, diffusion, perfusion, parametric response 
map, cerebral ischemia, cell therapy, mesenchymal stem cells, prognostic biomarker 

  



Évaluation d'une analyse voxel à voxel dans l'accident 

vasculaire cérébral à partir d'images IRM multiparamétriques 

 

Résumé: 

L'accident vasculaire cérébral (AVC) est la principale cause de handicap acquis chez 

l'adulte. Au-delà de l'étroite fenêtre thérapeutique et des risques éventuels de la 

thrombolyse et de la thrombectomie mécanique, la thérapie cellulaire par cellules souches 

présente un fort potentiel. Plusieurs études ont montré que les cellules souches 

transplantées peuvent améliorer la récupération fonctionnelle après un AVC sur des 

modèles de rongeurs. 

L’imagerie multiparamétrique par résonance magnétique (IRM), qui inclue l'imagerie 

de diffusion et de perfusion, est aujourd’hui le protocole standard pour caractériser l'AVC. 

L'imagerie permet également de suivre in vivo les mécanismes sous-jacents de la 

thérapie cellulaire après un AVC de la phase aigüe à la phase chronique. Cependant, la 

quantification de l'hétérogénéité spatiale des lésions, clairement visible par IRM, reste un 

défi à l'heure actuelle. En effet, les techniques d'analyses d'images utilisées en routine 

sont basées sur le calcul des valeurs moyennes à partir de régions d'intérêts (ROI). Cette 

technique par ROI ne peut pas refléter l'hétérogénéité intra-lésionnelle. C'est pourquoi, de 

nouvelles stratégies d'analyses d'images doivent être développées et évaluées afin de 

quantifier l'hétérogénéité des lésions ischémiques mais aussi pour suivre l'évolution de 

cette hétérogénéité au cours du temps. Des approches utilisant des analyses par 

histogramme permettent d'évaluer l'hétérogénéité des lésions mais perdent l'information 

spatiale. Une alternative est l'utilisation d'une analyse d'image à l'échelle du voxel 

appelée "Parametric Response Map (PRM)". Cet outil a été décrit comme plus sensible 

que l'analyse par ROI dans le pronostic mais aussi dans le suivi thérapeutique chez des 

patients porteurs de tumeurs cérébrales ou encore atteints d'hémorragies cérébrales. 

Mon projet de thèse est divisé en deux parties: une étude préclinique chez le rat et 

une étude clinique (PHRC NCT00875654). La première partie de ma thèse vise à évaluer 

les changements physiopathologiques mesurés par l'IRM après un traitement par cellules 

souches mésenchymateuses humaines (CSMh) sur un modèle d'AVC chez le rat. Des 

animaux présentant une occlusion transitoire de l'artère cérébrale moyenne (oACM) ou 

non (sham) ont été traités ou non par une injection de CSMh. Au cours de cette étude, 

différents paramètres IRM ont été cartographiés en utilisant une IRM 7T (4 temps 

d'imagerie): le coefficient apparent de diffusion (ADC), le volume sanguin cérébral (CBV) 

et l'indice de taille des vaisseaux (VSI). Les cartes d'ADC, CBV et VSI ont été analysées 

en utilisant l'approche classique par ROI mais aussi par PRM. L'objectif de cette étude 

était de déterminer si l'analyse par PRM était capable de détecter plus précocement l'effet 

des CSMh que l'analyse par ROI. Durant la seconde partie de ma thèse, 6 paramètres 

IRM (imagerie de diffusion et de perfusion) ont été acquis chez 30 patients AVC. Les 

données IRM, analysées par valeur moyenne classique et par PRM, ont été corrélées 

avec des évaluations de la récupération fonctionnelle : le score NIHSS (National Institutes 

of Health Stroke Score) et l'échelle de Rankin modifiée (mRS) mesurés à différents temps 



post-ischémie. L’analyse PRM des cartes paramétriques IRM révèle des changements 
fins de la lésion et corrèle avec le pronostic à long terme après l’ischémie. 

En conclusion, la PRM pourrait être utilisée comme biomarqueur d’efficacité 
thérapeutique (combinaison d’images IRM et d’outils innovants d’analyse d'images) et 
comme biomarqueur pronostique des patients AVC. 
 
Mots clés: imagerie résonance magnétique, cerveau, diffusion, perfusion, carte 
paramétrique de réponse, ischémie cérébrale, thérapie cellulaire, cellules souches 
mésenchymateuses, biomarqueur pronostique 



1 
 

Chapter 1 
 

Introduction of stroke 
 
 

1.1 Definition 
“Stroke” is termed to describe damage to the central nervous system such 

as brain and spinal cord due to abnormalities in its blood supply (ischemia) or 
bleeding. It is classified as ischemic or hemorrhagic. By far, the most common 
subtype of stroke is ischemic also called cerebral infarction [Mozaffarian et al. 
2016]. Ischemic stroke results from a transient or permanent insufficient or 
interrupted flow of cerebral blood flow that is restricted to the territory of a brain 
artery. The reduction in flow is, in most cases, typically caused by the 
occlusion of a cerebral artery either by an embolus or by local thrombosis 
[Taylor et al. 1996]. 
 

1.2 Cause of stroke 
Ischemic and hemorrhagic are the two main types of stroke. The former 

one is far more common. Ischemic stroke accounts for around 80% of strokes, 
and its origin is divided into cardiogenic, arterosclerotic, lacunar, hemodynamic 
or cryptogenic source [Adams et al. 1993]. Another 15% of strokes are related 
to disruption of a cerebral artery resulting in intracerebral hemorrhage (ICH). 
Hypertension is the main source for ICH with other reasons such as specific 
blood vessel abnormalities [Rathore et al. 2013]. The acute ischemic stroke 
(AIS) may also be complicated by a hemorrhagic transformation notably by the 
use of anticoagulation [Marsh et al. 2016]. In this thesis, we will focus on 
ischemic stroke. 
 

1.3 Consequence and symptoms of ischemic stroke 
Ischemic stroke caused by a sudden artery occlusion is one of the leading 

causes of mortality and long-term disability worldwide. Statistics from the 
American Heart Association estimate an average of one stroke occurrence 
every 40 seconds in United States, amounting to approximately 795,000 
people experiencing new or recurrent strokes per year. From the micro-aspect, 
if an appropriate therapy is not given, it is calculated that about 1.8 million 
neurons are lost every minute [Saver et al. 2006, Mijajlovic et al. 2014]. In 
view of the widespread public health impact of stroke and its profound impact 
on patients, stroke research has remained in the forefront [Go et al. 2014]. 
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The most common symptom of a stroke is sudden weakness or numbness 
of the face, arm or leg, usually on one side of the body. Other symptoms 
include aphasia, visual disorders, dizziness, impaired consciousness and 
different extent of headache. However, stroke can be occult or with slight 
symptoms which are not seriously taken for clinical observation. 
 

1.4 Etiology of ischemic stroke 
 

1.4.1 Cerebrovascular anatomy 
A good working knowledge of the brain anatomy and vascular systems is 

crucial. 
 
1.4.1.1 Cerebrovascular anatomy of human 

Arteries supplying blood to the brain are all branches of the large 
brachiocephalic arteries that stem from the aorta. The common carotid arteries 
on either side ascend the anterior neck and bifurcate around the level of the 
angle of the mandible, into the internal and external carotid arteries [Wholey et 
al. 1997]. The internal carotids enter the skull through the intracranial branches 
and supply the anterior 2 / 3 of the brain, which are more commonly involved in 
human cerebrovascular diseases. The internal carotid arteries and their 
tributaries constitute the anterior circulation [Krishnaswamy et al. 2010]. 

The posterior circulation is composed of the left and right vertebral arteries, 
which are branches of the subclavian arteries arising from the aorta 
[Krishnaswamy et al. 2010]. The vertebral arteries on both sides merge and 
form the basilar artery, which then ascends and bifurcates into left and right 
posterior cerebral arteries. The vertebral arteries, the basilar artery and their 
branches constitute the so-called vertebrobasilar system [Cereda et al. 2012]. 

At the base of the skull, shortly after the large arteries enter the cranial 
cavity, the major arteries join to form anastomoses, the Circle of Willis (CoW), 
formed by arteries which communicate between the anterior and posterior 
systems and between the left and right side of the brain [Cereda et al. 2012] 
(Fig.1.1). 
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Figure 1.1: Main structure of the cerebrovascular anatomy and the CoW (from Atlas of 
Human Anatomy Sixth Edition by Dr. Frank H. Netter) 
 

The bilateral anterior, middle and posterior cerebral arteries are the main 
supplying arteries of the brain which interconnected by two major collateral 
systems [Liebeskind et al. 2003]. Under clinical conditions, the individual 
variability of the anastomoses which interconnect these arteries is responsible 
for the vascular occlusion which may result in a wide range of volumes from 
small ischemic lesions located in the central region to large infarcts involving 
the entire vascular supplying territory. 
 
1.4.1.2 Cerebrovascular anatomy of the rat 

Human ischemic stroke usually results from middle cerebral artery 
occlusion (MCAo), so animal models which occlude the MCA are closest to the 
clinical prospect [Longa et al. 1989, Mhairi Macrae et al. 1992]. Different 
animal models for experimental stroke research have been developed with a 
number of additional techniques proposed [Kawamura et al. 1994, Ma et al. 
2006]. Models based on different species may have slightly different vascular 
brain anatomy which impacts the feasibility of operation [Scremin et al. 1982, 
Maeda et al. 1998]. Currently, the rodent MCAo models are the commonest in 
experimental stroke studies. 

The arterial blood supply of the rat brain is relatively similar with the CoW 
in human but without the anterior communicating artery [Longa et al. 1989] 
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(Fig.1.2). 
 

 
 

Figure 1.2: Diagram of cerebrovascular anatomy in rats illustrates extracranial and 
intracranial vascular relations exploited in the method of reversible MCAo. Vessel 
size is disproportionately enlarged for clarity [Longa et al. 1989]. Cervical dissection 
of common, external and internal carotid arteries with their branches is shown in red 
(experiment method mentioned in Chapter 5). 
 

1.4.2 Subtype of ischemic stroke 
 

Post-ischemic stroke outcomes including disability, fatality and recurrence 
differ according to subtypes defined by stroke mechanisms [Lovett et al. 2004]. 
Identification of the underlying cause of stroke is an important element of daily 
clinical practice including treatment and prognosis evaluation for individual 
patients. Accurate and reproducible assignment of the likely mechanism of 
ischemic stroke is also important in clinical trials investigating benefit in 
specific patient groups [Kolominsky-Rabas et al. 2001]. The potential 
etiologies of the stroke should be taken into consideration for the selection of 
therapeutic strategies, the assessment of evolution and the prediction of 
prognosis besides the basic information such as the size and site of the 
ischemic lesion. 
 
1.4.2.1 Subtype classification methods of ischemic stroke 

There are numerous causes of which ischemic strokes can occur, and the 
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various etiologies often result in different clinical presentations and 
characteristic appearance of the lesion on imaging. Several subclassification 
schemes for ischemic strokes have been proposed [Chen et al. 2012], 
including the Harvard Stroke Registry (1978) [Mohr et al. 1978], Trial of Org 
10172 in Acute Stroke Treatment (TOAST) (1992) [Adams et al. 1993], 
Oxfordshire Community Stroke Project (1993) [Lindley et al. 1993], Causative 
Classification System (CCS) of stroke [Ay et al. 2005], A-S-C-O (phenotypic) 
classification (2009) [Marnane et al. 2010] and Chinese Ischemic Stroke 
Subclassification (2011) [Gao et al. 2011]. 
 
1.4.2.1.1 TOAST 

The TOAST classification is the most widely used and denotes five 
subtypes of ischemic stroke: 1) large-artery atherosclerosis, 2) 
cardioembolism, 3) small-vessel occlusion, 4) stroke of other determined 
etiology, and 5) stroke of undetermined etiologies which includes cases 
invoking more than one primary mechanism. Differentiation of this 
classification are based on clinical features, computed tomography (CT) / 
magnetic resonance imaging (MRI) data, cardiac imaging, duplex scanning of 
extracranial arteries, arteriography and laboratory tests for a prothrombotic 
state (PTS) [Adams et al. 1993]. 

The TOAST system promotes better understanding of different potentially 
contributory mechanisms in growing stroke patients [Lee et al. 2000]. 
 
1.4.2.1.2 ASCO 

The phenotype-based classification is defined by A-S-C-O: “A” for 
atherosclerosis, “S” for small vessel disease, “C” for cardiac source and “O” for 
other cause. Each of the four phenotypes is graded “1” to “3”. “1” for definitely 
a potential cause of the index stroke, “2” for causality uncertain and “3” for 
unlikely a direct cause of the index stroke. When the disease is completely 
absent, the grade is “0”. When grading is impossible due to insufficient 
definition caused by uncertain elements, the grade is “9” [Amarenco et al. 
2009]. 

This phenotypic classification method also improves the capability to 
identify the most likely cause where multiple potential mechanisms are 
explored [Ay et al. 2007, Amarenco et al. 2009]. 
 
1.4.2.1.3 CCS 

The Causative Classification System (CCS) scheme also assigns objects 
into 5 categories according to the mechanisms: cardio-aortic, large artery 
atherosclerosis, small artery occlusion, other cause and undetermined. 
However, compared with TOAST, the CCS assigns the most likely subtype 
based on updated estimates of stroke risk associated with specific cardiac and 
vascular pathologies, clinical features or imaging parameters known to be 
more commonly associated with particular stroke mechanisms [Marnane et al. 
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2010]. 
 

Results from previous studies illustrate that the feasibility of a harmonized 
combined classification system should be improved for clinical stroke research 
based on the specific strength of each single classification system [Weimar et 
al. 2016]. 
 
1.4.2.2 TIA 

The transient ischemic attack (TIA), also as known as “mini stroke”, is a 
special type of stroke. It means a transient episode of neurological dysfunction 
caused by the blood flow interruption for a short period of time that tends to 
resolve itself quickly without acute infarction, usually within 10–20 minutes and 
less than 24 h before disappearing [Easton et al. 2009]. TIA occurs with a high 
rate, nearly 7.5 million cases worldwide each year. Although TIA is considered 
as benign by the public, it is still a strong warning sign of an ischemic stroke 
and should not be ignored to prevent a more serious attack [Giles et al. 2007, 
Merwick et al. 2010]. 

TIA is also associated with high risk of recurrent ischemic events. 
According to the guidelines, it recommends that patients with TIA should 
undergo neuroimaging evaluation within 24 h of symptom onset, by CT or MRI, 
preferably by MRI, especially diffusion-weighted imaging (DWI, technique 
mentioned in Chapter 2) because it is more sensitive than CT. However, the 
strength of CT is its availability and ability to quickly exclude ICH. Generally, a 
follow-up MRI should be performed after the emergent CT because of its 
superiority in identifying cerebral infarction. A lack of evidence of infarction on 
MRI in patients who have symptoms consistent with cerebral ischemia 
distinguishes TIA from minor stroke. The noninvasive imaging approaches of 
the intracranial and cervical arteries such as CT or MR angiography, or 
transcranial Doppler should also be performed within 48 h [Simmons et al. 
2012]. Refinement in brain imaging and better understanding of the time 
course of TIA-related lesions may lead to the further potential of the MRI 
signature associated with transient ischemia [Olivot et al. 2011, 
Souillard-Scemama et al. 2015]. 
 

1.4.3 Infarct patterns of ischemic stroke 
Infarct patterns (especially following MCAo) can be categorized into 3 

basic patterns based on DWI features, including scattered, territorial and 
lenticulostriatal. A territorial pattern defined as wedge-shaped infarctions 
involving the cortex and subcortex with clearly noticeable margins, while a 
lenticulostriatal pattern represents an infarction restricted only in MCA 
perforator artery territory. A scattered pattern is defined as infarct patterns that 
are not describable by the previous two patterns regardless of lesion location 
or infarction size. The extent of this pattern includes the cortex, subcortex of 
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the MCA territory and deep structures like internal capsule and basal ganglia 
[Lee et al. 2014] (Fig.1.3). 

 
Figure 1.3: Three basic infarct patterns of acute ischemic stroke: (A) scattered, (B) 
territorial and (C) lenticulostriatal by DWI. Infarct lesion of each pattern: white arrow 
[Lee et al. 2014]. 
 

With early identification of DWI patterns a consideration to the stroke 
cause may be provided [Wessels et al. 2006, Bang et al. 2009b]. Emboli 
originating from the cardiac chamber have a high chance of becoming large, 
leading to a sudden major artery occlusion and a larger infarct [Arboix et al. 
2010]. Furthermore, stroke caused by an embolus arising from the heart or 
aortic arch or recurrent emboli tends to occur in more than one arterial territory, 
often favors the anterior circulation and are often bilateral by neuroimaging 
[Wessels et al. 2006, Chung et al. 2010]. The criteria including imaging 
evidences indicating spontaneous recanalization and the absence of 
preceding atherosclerosis or other arteriopathy, along with proven 
cardioembolic sources can be applied to distinguish embolic occlusion from 
thrombotic occlusion [Lee et al. 2014]. 
 

1.5 Evolution of ischemic stroke 
 

1.5.1 Phase of ischemic stroke 
Temporal evolution of ischemic stroke is typically categorized into 

hyperacute (0-6 h), acute (6-24 h), subacute (24 h to approximately 2 weeks) 
and chronic phase of stroke (> 2 weeks old) [Gonzalez et al. 2002, Kloska et 
al. 2010]. During the acute phase (6-24 h), the ischemia-induced energy failure 
and the terminal depolarization of cell membranes result in the consequent 
tissue injury which established within a few minutes after the onset of ischemia. 
During the subsequent subacute phase (24 h-2 weeks), the largest increment 
of infarct volume is the expansion of the infarct core into the penumbra until, 
after another 4-6 h, it becomes congruent with the peri-infarct area. Finally, a 
delayed phase of injury evolves which may last for several days or even weeks. 
During chronic phase (> 2 weeks), secondary phenomena such as vasogenic 
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edema, inflammation and possibly cell death may contribute to a further 
progression of injury. By using multiparametric imaging techniques, evidence 
could be provided that shortly after occlusion of the MCA, the penumbra is 
approximately of the same size as the infarct core [Hata et al. 2000]. After 3 h 
more than 50% and between 6 and 8 h almost all of the penumbra has 
disappeared and is now part of the irreversibly damaged infarct core (details 
mentioned in 1.5.2.6). 
 

1.5.2 Pathophysiology of ischemic stroke 
 
1.5.2.1 The glial neurovascular unit 

The control and modulation of regional cerebral blood flow depend on 
neurovascular coupling without the condition of ischemic injury [Zonta et al. 
2003, Koehler et al. 2009]. Microvessel responses reflect the presence of 
neuronal activation, requiring the function of intact neurons. Previous studies 
reported that signal transmissions might be directed from microvessels to the 
neurons which based on the alterations in basal lamina matrix, protease 
generation, endothelial cell activation and glia astrocyte-endothelial cell 
adhesion, in view of the proximity of microvascular endothelial cells to the 
circumferential astrocyte end-feet [del Zoppo et al. 2003, del Zoppo et al. 
2006]. This coupling is accomplished by a group of cells close to each other, 
termed neurovascular unit (NVU), which composed by neurons, astrocytes, 
endothelial cells of blood-brain barrier (BBB), myocytes, pericytes and 
extracellular matrix components [Muoio et al. 2014]. These cells all work 
together in a coordinated way through their intimate anatomical and chemical 
relationship, detect the needs of neuronal supply, trigger necessary response 
for such demands and regulate the extracellular environment of brain 
parenchyma [Su et al. 2009] (Fig.1.4). 
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Figure 1.4: Neurovascular unit (NVU): (A) components of the NVU, (B) precapillary 
arteriole with intact NVU and (C) response of the NVU to focal cerebral ischemia. 
Endogenous t-PA bound to LRP activates latent PDGF-CC, and active PDGF-CC 
binds to PDGFR-ɑ. Thrombolytic t-PA in the blood can cross a compromised BBB 
and active additional PDGF-CC, which exacerbates loss of BBB integrity. Tissue 
plasminogen activator, t-PA; lipoprotein receptor-related protein, LRP; 
platelet-derived growth factor CC, PDGF-CC; platelet-derived growth factor receptor 
ɑ, PDGFR-ɑ, adapted from [Su et al. 2009]. 
 

Whereas maintenance or timely re-establishment of flow reduces 
ischemic injury of both tissue and neuron, protection of neuron function in 
human has not prevented the evolution of injury despite the inherent 
mechanisms of neurovascular coupling. However, occlusion of cerebral blood 
flow rapidly identifies regions of neuron-vascular vulnerability within the 
vascular territory-at-risk which coalesce to turn into the mature ischemic lesion. 
So far, the failure of neuroprotective agents efficacy in clinical trials for the 
detectable tissue salvage could be explained by the decompensation of the 
NVU components due to their self-maladjustment [del Zoppo et al. 2010]. 
 
1.5.2.2 Kinetics of ischemia 
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Oxidative glucose metabolism and brain energy state recover rapidly 
throughout the MCA territory, even after occlusion of as long as 1 h. After more 
than 3-6 h occlusion, recovery fails in the peripheral parts of the vascular 
territory and the volume of ischemia approaches that of permanent size [Kita 
et al. 1995]. Compared with energy metabolism, recovery of protein synthesis 
is much slower, which depends on both the duration of ischemia and the 
residual blood flow rate. After longer ischemia times, recovery fails in a 
gradually expanding core region until, after about 2 h of vascular occlusion, 
recovery disappears [Hermann et al. 2001]. 

Besides the imbalance of cerebral hemodynamics and oxygen / nutrients 
triggered by the ischemia, cellular disturbances may also contribute to the 
ischemia progression that cannot be explained by the single influence of 
impairment of blood flow or energy metabolism. The relevance of complex 
molecular mechanisms such as excitotoxicity, peri-infarct depolarizations, 
inflammation and apoptosis to delayed mechanisms of damage within the 
peri-infarct zone or penumbra which leads to permanent ischemic injury should 
be taken into consideration [Hossmann et al. 2006, Durukan et al. 2007] 
(Fig.1.5). 

 
Figure 1.5: Schematic representation of molecular ischemic injury pathways leading 
to cell death. Multiple approaches are provided for the amelioration of both necrotic 
and apoptotic tissue injury by blocking these pathways at numerous sites [Hossmann 
et al. 2006]. 
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1.5.2.3 Microcirculation 

In focal ischemia, microcirculation is progressively disturbed. This 
disturbance is caused by at least three different pathophysiological 
mechanisms: the adhesion of white blood cells to the vessel wall; the increase 
in the blood viscosity due to the aggregation of blood corpuscles, and the 
compression of the capillaries by swollen astroglia [Vogel et al. 1999]. 
 
1.5.2.4 Hypoxia 

Once the resistance vessels are completely dilated, both autoregulation 
and CO2 reactivity are abolished. Blood flow follows passively the fluctuations 
of the systemic blood pressure. The abolishment of CO2 reactivity can also 
result in an uncoupling from metabolic activity which leads to the phenomenon 
that, during peri-infarct depolarization (details mentioned in 1.5.2.6), the 
cerebral blood flow is dissociated from the metabolism. Therefore, the loss of 
CO2 reactivity is a serious predictor of impending brain ischemia that requires 
immediate therapeutic interventions [Markus et al. 2001]. 
 
1.5.2.5 Excitotoxicity 

The main excitotoxicity mechanism is the high concentration of glutamate 
which results in primary neuronal necrosis. However, following 
pharmacological inhibition of ionotropic glutamate receptors, an apoptotic 
injury mechanism develops that may prevail under certain pathophysiological 
conditions [Kohara et al. 2008]. 

Evidence indicates that activation of glutamate receptors, through the 
attendant failure of ion homeostasis and increase in intracellular calcium ions 
concentration, is a major factor involved in initiating cell death. Although 
blocking glutamate receptors protects against excitotoxicity, it still has serious 
side-effects, such as psychotomimesis, respiratory depression or 
cardiovascular dysregulation [Chuang et al. 2011]. 

Excitotoxicity is well established as an important trigger and executioner 
of tissue damage in focal cerebral ischemia. Excitotoxic mechanisms can not 
only cause acute cell death (necrosis) but also initiate molecular events that 
lead to delayed cell death (apoptosis) [Hossmann et al. 1996a]. 
 
1.5.2.6 Peri-infarct depolarizations 

In the core region of the affected brain tissue, cells can undergo an 
irreversible anoxic depolarization and without repolarization. The core area is 
surrounded by tissue in which energy failure leads to electric silence with 
function loss, but because of residual perfusion in this region, vascular, cellular 
and molecular processes may lead to a certain extent of rescue for the 
recovery of function against the ischemic core. In focal ischemia, the blood 
flow range corresponds to a crescent-shaped region intercalated between the 
necrotic and normal brain tissue, it has been termed “penumbra” in analogy to 
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the partly illuminated area around the complete shadow of the moon in full 
eclipse [Manning et al. 2014]. This concept was further developed that cortical 
spreading depolarizations propagate the expansion of the ischemic core into 
the penumbra, making them a potential therapeutic target [Hossmann et al. 
1996b]. Until recently, by using invasive electrophysiological recordings, 
spreading depolarizations of electric activity was shown in ischemic stroke of 
human beings, which in turn enlarged focal ischemic regions to the final size 
[Drenckhahn et al. 2012, Woitzik et al. 2013]. As the number of 
depolarizations increases, the infarcts grow larger [Mies et al. 1993]. In rat 
models, the drug MK-801 which can reduce the number of depolarizations was 
proved to decrease the infarct size [Iijima et al. 1992]. 

Cells can repolarize at the expense of additional energy consumption in 
penumbral regions with preserved perfusion. The same cells can depolarize 
repetitively, which termed “peri-infarct depolarizations”, in response to 
increasing glutamate or potassium ion levels, or both, by accumulating in the 
extracellular space [Hossmann et al. 1996b]. Peri-infarct depolarizations have 
been demonstrated in several animal models. They occur with a frequency of 
several events per hour and can be recorded for at least 6 to 8 h. That is why 
the penumbra is also defined as time-limited “fundamental reversibility”, which 
means the reduction in blood flow and the fundamental viability of the ischemic 
tissue. The blood supply is constrained in this region but with energy 
metabolism preserved. A direct consequence of the metabolic disturbances 
associated with focal ischemia is the rise of cell osmolality which causes a shift 
of water from the extracellular into the intracellular compartment. The resulting 
decline in the fluid volume of the extracellular space may be detected by 
measurement of electrical impedance or by DWI, both of which are sensitive to 
cell volume changes. A precise demarcation by tissue segmentation based on 
regional measures using confidence intervals (CIs) and graphic representation 
of ADC map could be obtained to provide additional quantitative information on 
the evaluation of penumbra and options of treatment [Lopez-Mejia et al. 
2015]. 
 
1.5.2.7 Calcium toxicity 

Following anoxic depolarization, the calcium concentration gradients 
break down, leading to a sharp rise of calcium ion activity in the cytoplasm and 
its decline in the endoplasmic reticulum. The accumulation of calcium in the 
cytoplasm results in the activation of catabolic enzymes and mitochondrial 
disturbances, and the fall of calcium in the endoplasmic reticulum evokes a 
stress response, which mediates a great number of endoplasmic 
reticulum-dependent functional disturbances. The resulting dysfunction of the 
endoplasmic reticulum exhibits correlation with various cell biological 
abnormalities such as misfoldings of proteins, expression of stress proteins 
and disturbances of global protein synthesis [Paschen et al. 2003]. 
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1.5.2.8 Inflammation 
Brain infarcts evoke a strong inflammatory response which is thought to 

contribute to the progression of ischemic brain injury [del Zoppo et al. 2000]. 
Post-ischemic inflammation could contribute to ischemic damage by many 
mechanisms. The pro-inflammatory cytokines are massively upregulated both 
during permanent and after transient focal ischemia. Whereas microvascular 
obstruction by neutrophils can lead to a worse situation of ischemia, production 
of toxic mediators by activated inflammatory cells and injured neurons also has 
important consequences [del Zoppo et al. 1991]. 

In animal models, as well as human patients with ischemic stroke, 
infiltrating neutrophils produce inducible nitric oxide synthase (iNOS), an 
enzyme that produces toxic amounts of nitric oxide (NO) [Forster et al. 1999]. 
In endothelial cells, the generation of NO leads to vascular dilation, an 
improvement of blood flow and the alleviation of hypoxic injury, whereas in 
neurons it contributes to glutamate excitotoxicity and leads to free 
radical-induced injury by formation of peroxynitrite. The pathogenic potential of 
NO produced by iNOS is underscored by the observations that 
pharmacological inhibition of iNOS reduces ischemic brain injury and that 
iNOS null mice have a reduction in ischemic damage [Iadecola et al. 1997]. 
The fact that protection exerted by iNOS inhibition or gene deletion is based on 
the mechanism that is consistent with the hypothesis that ischemic injury 
evolves over several days [Dereski et al. 1993, Baird et al. 1997]. In addition, 
ischemic neurons express cyclooxygenase 2 (COX2), an enzyme that 
mediates ischemic injury by producing superoxide and toxic prostanoids. It is 
also strongly upregulated in the penumbra and can be detected in neutrophils, 
vascular cells and neurons [Nogawa et al. 1997, Bidmon et al. 2000]. 
 
1.5.2.9 Apoptosis 

The reactive oxygen species (ROS) produce peroxidative injury of plasma 
membranes and intracellular organelles. Different causes like excessive 
glutamate receptor activation, calcium ions overload, oxygen radicals or by 
mitochondrial and deoxyribonucleic acid (DNA) damage can bring about 
compromise to death of cells by necrosis or apoptosis. Secondary 
consequences of free radical reactions are the release of biologically active 
free fatty acids, the induction of endoplasmic reticulum stress, the induction of 
mitochondrial disturbances and the fragmentation of DNA [Mitsios et al. 2007]. 
Necrosis is the predominant mechanism that follows acute, permanent 
vascular occlusion, whereas in milder injury, cell suicide becomes unmasked 
and death resembles apoptosis, particularly within the penumbral region. The 
concurrence of an increased cytosolic calcium activity with the generation of 
reactive oxygen species causes the increase in permeability of the inner 
mitochondrial membrane, which leads to delayed apoptosis. This outcome 
may be induced by impairment of the energy state and thus enhance 
molecular injury pathways [Hossmann et al. 2006]. It partly depends on the 
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nature and intensity of the stimulus, the type of cell, and the stage it has 
reached in its life-cycle or development [Leist et al. 1998]. 

The genes for caspases as well as genes that suppress or augment cell 
death are expressed at higher levels and activated in both the early and late 
stages of ischemia, and genetic manipulations or drugs that block caspase 
family members or enhance the actions of suppressed gene confer resistance 
to ischemic injury [Thornberry et al. 1998]. Caspases are aspartate-specific 
cysteine proteases and exist as zymogens in cells, while caspase 1 and 3 play 
a pivotal role in ischemia-mediated apoptosis [Sairanen et al. 2009]. 

From the beginning of recirculation to the cascading impacts, the ischemic 
lesion evolves inversely by different mechanisms following the duration of 
ischemic injury (Fig.1.6). 

 
Figure 1.6: The evolution and putative impact of each element of the cascade in focal 
cerebral ischemia [Dirnagl et al. 1999]. 
 
1.5.2.10 Edema and permeability change of blood-brain barrier 

An important modulator of focal ischemia is brain edema which can be 
differentiated into two phases: an early cytotoxic type of edema, followed by a 
late vasogenic type of edema after a period [Sakoh et al. 2003]. The cytotoxic 
type of edema is threshold dependent. The anoxic depolarization and 
equilibration of ion gradients across the cell membranes enhance intracellular 
osmolality, increase the intracellular uptake of sodium and cause cell swelling 
[Marmarou et al. 2007]. After 4-6 h from ischemia onset, the BBB breaks down 
and serum proteins start to leak from the blood into the brain parenchyma with 
the manifestation of necrosis [Gerriets et al. 2009]. This disturbance initiates a 
vasogenic type of edema which further increases the water content of the 
tissue. Vasogenic edema reaches its peak at 1-2 days after the onset of 
ischemia. Under clinical conditions, the malignant cerebral infarction (MCI) 
form, which terms a large MCA infarction, with or without involvement of the 
ipsilateral anterior and posterior cerebral artery territories, is the by far most 
dangerous complication and an indication for decompressive craniectomy due 
to the elevated intracranial pressure (ICP) or brain herniation [Walz et al. 2002, 
Simard et al. 2011]. Vasogenic edema is isosmotic and accumulates mainly in 
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the extracellular compartment influenced by multiple factors [Juenemann et al. 
2015]. It secondarily reverses the decreased extracellular space and could 
explain the pseudonormalization of the signal intensity observed in 
diffusion-weighted MRI [Lansberg et al. 2001]. 

Inhibition of aquaporin water conductance or sodium exchange across 
sodium channels may reduce the formation or severity of ischemic brain 
edema [Badaut et al. 2011, Welling et al. 2011]. The gradient of osmotic and 
ionic concentrations built up during ischemia is regarded as the driving force 
and key factor for the generation of edema after stroke. However, aquaporin 
channels may modulate the speed of edema generation, but cannot change 
the final extent of water accumulation in brain tissue [O'Donnell et al. 2004]. 
 

All these potential mechanisms mentioned before will more or less affect 
the formation and dynamic changes of penumbra, which is the premise of AIS 
treatment. The fate of the penumbra depends on the extent of reperfusion in 
the ischemic area. If persistent artery occlusion exists, the infarct will grow 
constantly and progressively replace the penumbra, as an irreversibly 
damaged lesion. Under the condition of either spontaneous or post-treatment 
recanalization, the penumbra will be reversible within the limited time frame 
(Fig.1.7). A better understanding of penumbra development which converts 
from microcosmic to macrocosmic level may help to define the time window for 
clinical therapy and the selection criteria of patients by imaging evidence with 
the consideration of stroke symptoms. 
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Figure 1.7: Stroke symptoms are reflections of the post-ischemic functional deficit in 
the early stage, but not necessarily of the structural lesion volume. Regression of the 
function occurs in some spontaneous or post-treatment reperfused areas while the 
structural lesion grows. From the onset of focal ischemia, the core and salvageable 
tissue are dynamic based on different biochemical mechanisms, adapted from 
[Dirnagl et al. 1999]. 
 

1.6 From emergent to preventive strategies for 

ischemic stroke 
 

1.6.1 Target of ischemic stroke therapies 
The fundamental objective of stroke treatment is to enable rapid 

reperfusion for maximal penumbral tissue salvation, which is also the main 
target of putative neuroprotection therapies [Ebinger et al. 2009] (details 
mentioned in 1.6.5). It is the conceptual basis not only for the progressive 
evolution of ischemia, but for the therapeutic reversal of the acute neurological 
symptomatology arising from ischemic stroke as well [Fisher et al. 2004, 
Guadagno et al. 2004]. 
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1.6.2 Demand of development in stroke therapies 
During the past decades, most major stroke trials developed worldwide 

have failed, including the following: 
(1) Large clinical trials of secondary prevention, such as the 

Warfarin-Aspirin Symptomatic Intracranial Disease Study, the Management of 
Atherothrombosis with Clopidogrel in High-Risk Patients with Recent Transient 
Ischemic Attack or Ischemic Stroke, and Clopidogrel for High Atherothrombotic 
Risk and Ischemic Stabilization, Management and Avoidance studies 
[Chimowitz et al. 2005, Bhatt et al. 2006]; 

(2) Recent randomized trials of new thrombolysis agents, such as the 
Desmoteplase In Acute Ischemic Stroke phase 2 (DIAS-2) and Abciximab in 
Emergent Stroke Treatment trials (phase 2) [Adams et al. 2008]; 

(3) Neuroprotection Therapy like the Stroke Therapy Academic Industry 
Roundtable (STAIR) criteria-guided Neuroprotection Trial (NXY-059) [Shuaib 
et al. 2007]. 

These results indicate the urgent need for measuring the heterogeneity 
and individualization of patients’ condition due to the complex mechanisms of 
ischemic stroke. Beyond this situation, alternatives or combination of the 
traditional therapeutic approaches leading to a high level of specialized care 
provided by an interdisciplinary team is required. 
 

1.6.3 Thrombolysis therapy 
Nowadays, the clinical treatment of the AIS includes two possible methods 

of therapy: medication, mainly IV thrombolysis and endovascular therapy 
(details mentioned in 1.6.4). Prompt reestablishment of effective blood flow 
with lysis of an occlusive thrombus is the goal of thrombolysis. Thrombolytic 
agents, including streptokinase, urokinase or recombinant tissue plasminogen 
activator (rt-PA), convert the proenzyme plasminogen to the enzyme active in 
thrombin lysis, plasmin [Dirks et al. 2012]. The rt-PA, which is fibrin specific 
and activating only thrombin-bound plasminogen, is the most favorable choice 
for thrombolytic therapy [Ehlers et al. 2007]. 

Substantial evidence suggests that efficacy of IV rt-PA in the first 4.5 h 
from onset of symptoms is higher compared with the efficacy outside the 
therapeutic window, but with increased risk of hemorrhagic complications as 
well [Hacke et al. 2008, Shobha et al. 2011]. However, the procedure of IV 
thrombolysis has a low percentage restoration of cerebral arteries patency so 
that is characterized by relatively low efficiency [Saqqur et al. 2007, Bhatia et 
al. 2010]. 

To balance the benefits of extended therapeutic time window and the risks 
of subsequent ischemia-reperfusion injury, it is important to select appropriate 
patients based on an assessment of individual risks and potential benefits for 
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thrombolysis [Khatri et al. 2012]. 
In contrast to rt-PA induced recanalization, and probably also to 

spontaneous recanalization in humans, both of which allow gradual restoration 
of blood flow to the ischemic area, mechanical opening of an occlusion results 
in abrupt reperfusion, and thus the mechanical thrombectomy may be the only 
clinical selection (details mentioned in 1.6.4.2). It may be speculated that this 
type of ischemia and then reperfusion produces a bias in post-ischemic 
signaling toward reperfusion-induced secondary mechanisms of injury, which 
may be amenable to pharmacological intervention even after relatively long 
time frames [Hossmann et al. 2012]. Results from previous studies provided a 
huge amount of information on the concerned intervention after stroke. 
However, some of these results were with low predictive value due to the 
existed bias which caused by the lack of control on randomization, preset 
criteria for inclusion and exclusion, blinding and universality of experimental 
units [Dirnagl et al. 2009]. 
 

1.6.4 Endovascular therapy 
Recanalization of occluded artery is strongly associated with improved 

functional recovery and reduced mortality in ischemic stroke [Rha et al. 2007]. 
Alternative recanalizing approaches, such as endovascular treatment (ET), 
have been employed for many years and have progressively gained favor 
profited from the possibility of using a multimodal approach and to the evolving 
imaging and delivery technologies that have increased safety, efficiency and 
frequency of recanalization [Ciccone et al. 2014]. 

ET can be broadly divided into the chemical dissolution of clots with 
intraarterially delivered thrombolytic agents, and clot retrieval / thrombectomy 
with mechanical devices. The main forms of endovascular approaches for AIS 
are illustrated [Asadi et al. 2015] (Fig.1.8). The move to acute intervention for 
rapid thrombus lysis in the cerebral arterial circuit was highly relevant to the 
progress by multiple approaches [Jeong H. S. et al. 2014, Zhang et al. 2015]. 

 
Figure 1.8: Diagrammatic sketches of main endovascular approaches in clinical trials, 
adapted from [Asadi et al. 2015]. The high efficiency of penumbra aspiration system 
has been confirmed in a Penumbra Pivotal Stroke Trial study for AIS patients within 8 
h of symptom onset [Penumbra Pivotal Stroke Trial et al. 2009]. MERCI is a 
corkscrew shape device with helical Nitinol loops specifically designed and tested for 
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distal placement into the thrombus for removal. The target vessels were the proximal 
segments of major cerebral arteries, predominantly M1 segments of the middle 
cerebral and vertebrobasilar arteries. Clot located more distally are not suitable for the 
removal by MERCI [Gandhi et al. 2007]. The stent retriever device is an alternative 
for patients with ischemic stroke due to large intracranial artery occlusion who are 
ineligible for or who fail IV rt-PA therapy [Ciccone et al. 2014]. 
 
1.6.4.1 Intraarterial thrombolysis and correlative clinical trials 

IV alteplase appears to be much less effective at resolving proximal 
occlusions of the major intracranial arteries, which account for more than one 
third of acute anterior-circulation stroke cases [Heldner et al. 2013]. Early 
recanalization after IV alteplase was seen in only around 30% of all patients 
with an occlusion of the internal carotid artery terminus, and the prognosis 
without revascularization was generally poor for such patients [Christou et al. 
2001, Lima et al. 2014]. As an invasive technique of AIS treatment, 
intraarterial (IA) thrombolysis is regarded as a potentially important component 
of the therapeutic armamentarium with the time window up to 6 h after stroke 
onset with the adjustment of given dose. The IA thrombolysis involves the 
direct introduction of fibrinolytics to the clot within the obstructed artery, which 
causes a local increase of the drug concentration high enough to dissolve the 
clot, while maintaining low systemic concentrations. Based on this theory, the 
dose of thrombolytic agent in IA approach is pre-defined. In a randomized trial 
of intraarterial treatment (IAT) for 500 AIS patients from 16 Dutch medical 
centers, the maximum dose of 90 mg of alteplase or 1.2×106 IU of urokinase 
was allowed for IA thrombolysis. The dose was restricted to 30 mg of alteplase 
or 4×105 IU of urokinase when IV alteplase was given [Berkhemer et al. 2015, 
Fransen et al. 2016]. 

Several clinical applications of IA thrombolysis were studied for different 
goals and led to the conclusions which showed the superiority of IAT over IV 
thrombolysis but still remained controversial. In the Prourokinase (Prolyse) in 
Acute Cerebral Thromboembolism (PROACT) study with the follow-on phase 2 
and 3 trials, recanalization was significantly greater with IA thrombolytic agent 
than no intervention, as was the frequency of symptomatic ICH [del Zoppo et 
al. 1998, Furlan et al. 1999]. In the Interventional Management of Stroke 
phase 2 (IMS-2) trial, higher rate of symptomatic ICH but lower mortality was 
reported by comparing IV and IA a low dose t-PA [Investigators et al. 2007]. 
The IMS-3 trial focused on the effect of combined IV / IA dual therapy versus IV 
treatment only [Khatri et al. 2008]. Although successful revascularization in 
the IMS-3 trial, generally assessed as restoration of flow to more than 50% of 
the suffered brain territory, was associated with better functional outcomes with 
the combination of ET, the efficacy of ET remains to be demonstrated as 
compared with IV rt-PA alone so that the influence of improved devices is 
taken into consideration [Broderick et al. 2013]. For the patients with 
occlusion of anterior or posterior circulation, the SYNTHESIS Expansion trial 
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compared IAT with standard IV treatment without setting pre-specified 
selection criteria [Ciccone et al. 2013]. 
 
1.6.4.2 Endovascular mechanical approaches and correlative clinical 
trials 

Coincident with the evolution of directed delivery of plasminogen activator 
and its derivatives to the clot, mechanical devices designed to capture and 
retrieve thrombi or re-establish blood flow in the cerebral arterial circuit were 
devised. Mechanical treatment could involve thrombus retraction, aspiration, 
sonolysis, wire disruption or application of a retrievable stent [Fransen et al. 
2014]. The use of mechanical thrombectomy extends the therapeutic window 
up to 15 h [del Zoppo et al. 1998, Arnold et al. 2010]. In clinical trials, 
mechanical approaches using devices which work through aspiration (e.g. 
Penumbra System), entrapment and retrieval (e.g., MERCITM Retriever) or, as 
the last generation devices, through stenting and retrieval combined (e.g. 
SolitaireTM, ev3 Neurovascular, Irvine, CA and TrevoTM, Stryker, Kalamazoo, 
MI) (see Fig.1.8), have largely replaced local IA thrombolysis as first-line 
stroke strategies [Mehta et al. 2013]. 

In the Mechanical Retrieval and Recanalization of Stroke Clots Using 
Embolectomy (MR RESCUE) trial, the rate of successful revascularization was 
compared between mechanical thrombectomy using the MERCI Retriever 
(Concentic Medical, Mountain View, USA) and standard care. The main 
novelty of this trial as compared with IMS-3 trial and SYNTHESIS-Expansion 
trial was to stratify the candidates by imaging selection, which defined the 
penumbral pattern within 8 h from stroke onset [Broderick et al. 2013, 
Ciccone et al. 2013, Kidwell et al. 2013a]. 

Different generations of techniques based on different principles do affect 
the prognosis. The Multi-MERCI trial showed an increased recanalization rate 
with the MERCI retriever combined with IA t-PA compared to clot retrieval 
alone and illustrated that the new generation of devices contributed to a higher 
rate of reperfusion after treatment than the first generation of devices [Smith et 
al. 2008, Nogueira et al. 2012]. The TREVO-2 trial proved that those who 
were ineligible for or failure to respond to IV rt-PA should be treated with the 
Trevo Retriever in preference to the MERCI Retriever [Nogueira et al. 2012]. 
The Solitaire with the Intention for Thrombectomy as Primary Endovascular 
Treatment (SWIFT PRIME) trial still found a better long-term effect of ET in 
terms of reperfusion frequency and safety by Solitaire FR stent comparing with 
MERCI Set [Nogueira et al. 2012, Saver et al. 2012, Broussalis et al. 2013]. 

The Multicenter Randomized Clinical trial of Endovascular treatment for 
Acute ischemic stroke in the Netherlands (MR CLEAN) was a multicenter 
clinical trial with randomized treatment allocation, open-label treatment and 
blinded endpoint evaluation for 500 patients. The active comparison was IAT 
including IA alteplase or urokinase and / or mechanical treatment versus no 
IAT [Fransen et al. 2016]. General inclusion criteria of MR CLEAN are: a 
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clinical diagnosis of acute stroke with a deficit on the NIHSS score of at least 2, 
CT or MRI ruling out ICH, occlusion of distal intracranial carotid artery or 
middle (M1 or M2) or anterior cerebral artery (A1) demonstrated with CT 
angiography (CTA), MR angiography (MRA) or digital subtraction angiography 
(DSA), and possibility to start treatment within 6 h of onset. There is possibility 
to use several local thrombolytic agents and mechanical devices for a broad 
range of patients with AIS in the setting of a proximal thrombo-embolic 
occlusion of the intracranial artery belonging to the anterior circulation. The 
trial’s pragmatism is also apparent from the clinical situations it addresses: 
patients who have been treated unsuccessfully with IV thrombolysis, patients 
who can be treated within 6 h, but do not meet the time window requirements 
for IV thrombolysis, and patients with contraindications for IV or IA thrombolytic 
agents (thrombectomy only) [Fransen et al. 2014, Fransen et al. 2016]. 

By the analysis of a large sample of patients with AIS, ET with mechanical 
thrombectomy versus standard medical care with t-PA was associated with 
improved functional outcomes and higher rates of angiographic 
revascularization (59% in MR CLEAN and 88% in SWIFT PRIME), but no 
significant difference in symptomatic ICH (6% in MR CLEAN and 0% in SWIFT 
PRIME) or overall mortality at 90 days. Although argument remains, alteplase 
can be started immediately after non-contrast CT, before vessel occlusion 
status is known. Evidence for ET is best established for stent retrievers with 
treatment started within 6 h of stroke symptom onset. Patients with occlusion 
of the internal carotid artery (ICA) and proximal MCA clearly benefit from 
endovascular thrombectomy, but there is residual uncertainty in the case of 
more distal occlusions and in patients with clinically very mild symptoms. To 
extend the therapeutic time window, the perfusion imaging selection may help 
in some ongoing clinical trials [Badhiwala et al. 2015, Campbell et al. 2015, 
Phan et al. 2016]. 
 

1.6.5 Neuroprotection therapy 
The general concept of neuroprotection refers to pharmacological 

treatments that alleviate the molecular injury cascades leading to neuronal cell 
death. Obviously, neuroprotection is invalid for a brain region in which blood 
flow has declined below the threshold of energy failure, but it may contribute to 
the temporary preservation of the penumbra, bridging the interval between the 
onset of ischemia and the restitution of blood flow, and / or preventing 
secondary neuronal cell death during reperfusion [Wahlgren et al. 2004]. 
However, as the penumbra can be effectively treated by improvement of blood 
flow alone, neuroprotective interventions are mediated not only by interference 
with ischemic injury cascades, but also by reducing the mismatch between 
blood flow and metabolism. 

Apparently, the achievement of numerous controlled clinical trials focusing 
on neuroprotection against cerebral ischemia with compounds previously 
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found effective in animal experiments were uniformly negative to offer the 
regulatory approval of a drug for this indication [Dirnagl et al. 2014]. 

The failures of clinical neuroprotective trials to confirm clinical benefits to 
human implied by reduction of infarct volume in animal models may be 
intervened by various factors: i) pharmacological factors: irrelevance of the 
pharmacological target to human being; ii) clinical factors: insufficient dose, 
inadequate treatment duration or unfavorable pharmacokinetics and iii) design 
factors caused inappropriate consideration of trial. Deficiencies of 
pharmacology and clinical application in neuroprotective drug development 
have undoubtedly brought about the lack of trial success and possible 
remedies have been considered [Stroke Therapy Academic Industry et al. 
1999]. The impact of stroke heterogeneity on trial design could be the potential 
problem of the neuroprotective trial failure. The neuroprotective drugs for 
stroke that have been investigated can be sorted in several types [Detante et 
al. 2014] (Tab.1.1). 

 

Mechanism Neuroprotective strategy 
Single effect  

Anti-excitotoxics (targeting 
glutamate toxicity) 

[Villmann et al. 2007] 

Calcium-blocker [Xiong et al. 2004] 
Antioxidants [Shuaib et al. 2007, Nakase et al. 

2011] 
Anti-apoptotics [Yuan et al. 2009] 
Angiotensin receptor blockers [Shih et al. 2016] 
Prostaglandin receptor antagonists [Kawano et al. 2006, Abe et al. 2009] 
Anti-inflammatories / 
Immunomodulators 

[Yu et al. 2004, Macrez et al. 2011a] 

Immunotherapy (to limit the t-PA 
neurotoxicity) 

[Macrez et al. 2011b, Yu et al. 2013] 

Stimulants [Martinsson et al. 2004, Harbeck-Seu 
et al. 2011] 

Anti-edema agents [Li et al. 2013, Michinaga et al. 2015] 
Multiple effects  

Induced hypothermia [Yenari et al. 2012, Piironen et al. 
2014] 

Hyperbaric / Normobaric oxygen 
therapy 

[Poli et al. 2009] 

Albumin [Ginsberg et al. 2013] 
Magnesium [Saver et al. 2004] 
Antiaggregant cilostazol [Miyamoto et al. 2010, Nagai et al. 

2015] 
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Statins [Chen et al. 2003] 
Citicoline (cytidine 
diphosphate-choline, CDP-choline) 

[Davalos et al. 2012] 

Sildenafil [Zhang et al. 2012] 
Traditional Chinese medicine [Chen C. L. et al. 2013, 

Venketasubramanian et al. 2015] 
Table 1.1: The list of references concerning representative neuroprotective trials for 
ischemic stroke based on different mechanisms including both single and multiple 
effects [Detante et al. 2014]. 
 

Pathophysiological heterogeneity is of particular relevance to 
neuroprotection. However, as these interventions are only effective if energy 
metabolism recovers by unimpaired reperfusion, they may be of limited 
relevance for clinical stroke. There are three principal types of patients in 
whom neuroprotective therapies are probably ineffective: i) those who lack a 
biological substrate relevant to the mode of function of the drug [Yam et al. 
2000], ii) those who lack a representation of the ischemic penumbra, which 
seems likely to be of restricted volume in most patients but with wide 
interindividual variation, and is probably absent under specific conditions such 
as the primary intracerebral hematoma (PICH) and lacunar strokes, which are 
characterized by white matter (WM) ischemia, result mostly from end artery 
disease [Heiss et al. 1998, Hirano et al. 1999] and iii) those who have no 
collateral flow for reperfusion, also lack a biological substrate for 
neuroprotective drug delivery [Moustafa et al. 2008]. 
 

1.6.6 Development space and prospect of regenerative 

stroke therapy 
Following stroke, the brain cannot recover completely with endogenous 

neuroprotection and repair mechanisms. Except early IV thrombolysis, 
craniectomy for large infarctions and malignant strokes or admission to a 
stroke unit that incorporates intensive care and rehabilitation of above, no 
other treatment currently exists to efficiently enhance recovery after stroke. 
However, only a minor portion of stroke victim benefit from these therapies 
because of contraindications or lack of access. [Jauch et al. 2013, Sarraj et al. 
2014]. 

Complex pathophysiological processes are involved during the evolution 
of cerebral ischemia for the response to brain cell damage. Brain tissue 
responds to most of the noxious signals by inducing protective mechanisms 
[Dirnagl et al. 2012]. During the infarction of brain tissue, destruction 
overwhelms protection, while tissue around the ischemic core may have been 
spared by restored substrate delivery including collateral, spontaneous or 
therapeutic reperfusion and cellular mechanisms of protection [Detante et al. 
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2014] (Fig.1.9). 

 
Figure 1.9: Time course of stroke and associated therapeutic time window. B-cell 
lymphoma protein, BCL; brain derived neurotrophic factor, BDNF; blood pressure, 
BP; peri-infarct depolarization, Depol; endothelial progenitor, EP; erythropoietin, 
EPO; granulocyte-colony stimulating factor, GCSF; growth factor, GF; glutamate 
receptor 2, GluR2; hematopoietic stem cell, HSC; heat-shock protein, HSP; 
interleukin, IL; inositol tri-phosphate, IP3; intravenous, IV; mononuclear cell, MNC; 
mesenchymal stromal / stem cell, MSC; nitric oxide synthase, NOS; serotonin 
reuptake inhibitor, SRI; vascular endothelial growth factor, VEGF [Detante et al. 
2014]. 
 

The hemodynamic, metabolic and ionic changes described in previous 
sections do not affect the ischemic territory homogeneously. Although there is 
ample evidence that the penumbra exists in stroke patients, the extent and 
temporal dynamics of this area are less well defined: it might be smaller or 
exist for a shorter period in humans than that elaborated by hypothesis 
[Kaufmann et al. 1999]. Furthermore, the current guidelines neglect the fact 
that the portion of potentially salvageable ischemic tissue is not dependent on 
the time window but the individual collateral blood flow (e.g. arteriogenic 
growth of collateral vessels induced by some cytokines occurs in the brain 
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under conditions of reduced arterial blood supply, and can provide powerful 
protection against ischemic stroke [Busch et al. 2003].) 

For all these reasons, regenerative therapies based on new biological 
medium and correlative sensitive monitoring approaches are urgently 
demanded. 
 

1.6.7 Potential of biotherapies for post-stroke plasticity 

and neural repair 
With the discovery of functionally active stem cells in the hippocampus 

and the subventricular zone (SVZ) of the adult brain, the possibility of 
endogenous regeneration of brain infarcts has been evoked [Imitola et al. 
2004]. The number of spontaneously regenerating neurons is too low to 
maintain the regeneration and repair of brain infarcts. Regeneration therapy 
has also been attempted by transplantation of immortalized neuroepithelial 
cells, neural stem cells and stem cells derived from fetal brain tissue, bone 
marrow or umbilical cord blood. However, the reported functional 
improvements are probably unspecific effects which cannot be explained by 
the samples with a small number of surviving cells. It is difficult to predict the 
effects but evidence of spontaneous neurogenesis, angiogenesis and 
synaptogenesis distant from the ischemic lesion points to a remodelling of the 
surviving tissue which may promote post-ischemic brain plasticity [Roitberg et 
al. 2004]. Understanding these processes may unveil hitherto unknown 
mechanisms that may become targets of future therapeutic interventions 
[Wechsler et al. 2004]. In accordance with the concept of NVU and the role of 
several angiogenic factors in neurogenesis, the new microvasculature could 
be insufficient to prevent the premature failure of neurons [Greenberg et al. 
2013]. From a therapeutic point of view, it could be of interest to enhance the 
vascular remodeling and vessel formation during the subacute phase notably 
using cell therapy [Gutierrez et al. 2009, Onteniente et al. 2011]. 

Currently, multiple biotherapies targeting different mechanisms, mainly by 
therapeutic cells and / or growth factors, hold great promise as regenerative 
medical strategies for ischemic stroke. The improvements in host brain 
plasticity and associated functional recovery have been identified after 
injection of stem cells with mechanisms remaining uncertain. The effects of cell 
therapies on post-ischemic angio-vasculogenesis seem to be crucial in 
explaining early post-graft benefits [Gutierrez et al. 2009]. Intracerebral (IC) 
injection of endothelial cells can improve vasculogenesis linked to 
neurogenesis via vascular endothelial growth factor (VEGF) release 
mechanisms [Ishikawa et al. 2013]. Another important effect of cell therapy is 
enhanced glial remodeling and limitations in anterograde degeneration 
[Chopp et al. 2009, Li et al. 2014]. 

During stroke recovery, the structural brain plasticity based on the 
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surviving tissue participates in reorganization of damaged networks and 
exhibits neuro-synaptogenesis with axonal sprouting for several month 
[Darsalia et al. 2005, Carmichael et al. 2006, Thored et al. 2006, Murphy et 
al. 2009]. Stroke increases neurogenesis from neural stem cells (NSCs) of the 
SVZ and hippocampal dentate gyrus, generating neuroblasts that migrate to 
the lesion and differentiate into mature neurons [Parent et al. 2002]. Stroke 
damage is not limited to neurons but involve all brain cell type including the 
extracellular matrix in a “glio-neurovascular niche”, which linked 
angio-vasculogenesis and glial function during the stem cells work [Shen et al. 
2008, Arai et al. 2009, Walker et al. 2009]. Endothelial cells release factors 
that both stimulate the self-renewal of NSC and also enhance the production of 
neuron [Shen et al. 2004]. As a consequence, microvessels size and density 
changes are supposed to help stimulate the neuronal plasticity [Ergul et al. 
2012, Boehm-Sturm et al. 2013]. 

Additionally, glial cells play a key role during post-ischemia recovery, with 
astrocytes removing excitatory neurotransmitters and K+ and thereby limiting 
excitotoxic damage. These cells also modulate synaptogenesis by enhancing 
the formation of functional synapse [Pannasch et al. 2011]. Microglia is 
thought to contribute to the post-stroke remodeling process, both acting as an 
inflammation modulator and also by releasing trophic factors that encourage 
synaptogenesis and neurite outgrowth [Madinier et al. 2009]. 

However, neurogenesis from endogenous NSCs is relatively weak and 
many new neurons die, resulting in incomplete and disappointing long-term 
functional recovery after stroke [Arvidsson et al. 2002]. The effects of these 
complex processes comprising post-stroke plasticity are still reinforced by 
exercise and rehabilitation [Langhorne et al. 2011, Pekna et al. 2012, 
Schmidt et al. 2014]. 

Guidelines for selecting the optimal time window, and ideal delivery routes 
and doses are still debated and the answers may depend on the chosen cell 
type and its hypothesized mechanism including early neuroprotection, delayed 
neural repair, trophic systemic transient effects or graft survival and integration 
[Detante et al. 2014]. 
 

1.6.8 Cell sources and cell therapy products 
 
1.6.8.1 Cell types selection 

Today, the great variety of available stem cell types and sources form a 
rich therapeutic arsenal for ischemic stroke which requires careful 
consideration regarding their respective preclinical safety and efficacy profiles, 
cell characterization, mechanisms of action, delivery routes and in vivo 
distribution properties prior to the clinical application [Onteniente et al. 2013, 
Shinozuka et al. 2013]. Currently, among many available cell types, bone 
marrow-derived cell populations such as mesenchymal stromal / stem cells 
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(MSC), umbilical cord stem cell and NSC are the most commonly investigated 
for clinical use [Detante et al. 2014]. 

In clinical trials, stromal / stem cells isolated from autologous bone marrow 
[Honmou et al. 2012, Eckert et al. 2013], peripheral blood [Kim et al. 2006, 
Paczkowska et al. 2009] or adipose tissue [Gutierrez-Fernandez et al. 2013, 
Gao et al. 2014] are the most widely used. Besides sources of adult, fetal 
sources such as umbilical cord are relatively available for banking and 
production of clinical grade stem cells from either the cord itself or from 
samples of cord blood [Park et al. 2009, Kim D. W. et al. 2013]. 

There are three main categories of therapeutic cells for the biotherapies, 
which distinguished by different characteristics [Detante et al. 2014]. 
Application of MSC must take precautions when using ex vivo cultures 
because excessive MSC expansion with different passages could affect their 
therapeutic features and subsequently modify the final phenotype 
[Shahdadfar et al. 2005, Li et al. 2008]. NSC grafts usually require 
immunosuppressant treatment during the process of cell therapy [Mack et al. 
2011]. The third category of therapeutic cells includes the hematopoietic stem 
cells and endothelial progenitors [Chen et al. 2008, Schwarting et al. 2008], 
which are feasibly harvested from autologous / allogeneic cord blood, bone 
marrow or peripheral blood after mobilization and represent a type of 
mononuclear cell (MNC) usable without amplification to enhance 
microvascular repair [Brenneman et al. 2010, Yang et al. 2011]. 
 
1.6.8.2 The ideal route for cell delivery 

The best delivery route for cell therapy after stroke still remains debated, 
depending strongly on the expected therapeutic effects. Theoretically, IC 
delivery would be preferred for cell replacement while IV or IA injection would 
be better for systemic and trophic support [Detante et al. 2014]. 

Compared to surgical implantation, systemic IV injections are less 
invasive and easier to implement in the relevant operation [Guzman et al. 
2008]. Other graft routes such as IA or IC, could avoid the lung entrapment 
problem and thereby increase the number of grafted cells for the concentration 
in target [Seyfried et al. 2008, Kawabori et al. 2012]. 

The comparisons of neuroprotection in the acute phase and delayed 
neural repair / trophic systemic transient effects and grafts survival or 
integration revealed that the optimal therapeutic timing after stroke onset 
remains debated, depending on the cell type and specific mechanism [Detante 
et al. 2014]. For example, IA injection of NSCs leads to greater differentiation 
into astrocytes about 6-24 h after stroke, whereas injection at 7-14 days 
post-stroke leads to greater differentiation into neurons [Guzman et al. 2008, 
Rosenblum et al. 2012]. 
 
1.6.8.3 Comprehensive evaluation of cell therapy for stroke 

Whereas results from publications suggested that early IV injection of 
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MSCs within 24 h could be effective [Wang et al. 2014], evidence has been 
reported that treatment delays up to one month after stroke can also result in 
improvements in functional recovery [Shen et al. 2007, Komatsu et al. 2010]. 
A great advantage of clinical cell therapies would be the feasibility to delay the 
treatment until the subacute or chronic phase, which benefits a majority of 
stroke patients. So the evaluation of therapeutic effects should be carried out 
both soon after the stroke onset and at a later stage. 

To define a clinical strategy of cell therapy for ischemic stroke, the 
individual condition of patients should be taken into account. Several aspects 
of factors will impact the feasibility of neurorestorative therapies development 
including the influences related to the stroke type, localization, infarct size, 
basic neurovascular risk factors such as hypertension, diabetes mellitus, 
dyslipidemia, cerebral small vessel diseases and concomitant treatments like 
thrombolysis or statins [Luitse et al. 2012]. Some of these factors will be 
crucial to determine the selection of objects of the trial and the final efficacy of 
the treatment [Lee et al. 2010]. 

Beside the feasibility for the operation, safety issues should also be 
emphasized to reach the success of clinical trials. Due to the multivariate 
characteristics and uncertain mechanisms concerning the application of 
therapeutic cells, the tumorigenicity must be taken seriously for all clinical 
grade cell products by using long-term surveys. As for the immunogenicity, the 
immunomodulation properties of MSCs from all sources should be regarded 
with respect [Li et al. 2006]. Although MSCs or MNCs harvested from human 
sources are generally used in animal models of experimental stroke without 
immunosuppression. For medical grade allogenic NSCs, the use of 
concomitant immunosuppression should be taken into consideration to avoid 
severe inflammatory reaction notably after local delivery [Kondziolka et al. 
2005, Hurst et al. 2013]. 

To realize an efficient transfer of the regenerative approach for the 
development of stroke therapies in the future, all translational concerns from 
the bench to the bedside should be thought through [Detante et al. 2014]. 
Actually, still a number of crucial problems remain unsolved both at the bench 
and at the bedside in this field. The new imaging methods by MRI may hold the 
key to a better understanding of stroke therapies and to a quantitative 
assessment of stroke evolution in clinical trials. 
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Chapter 2 
 

Magnetic resonance imaging in ischemic stroke 
 
 

Magnetic resonance imaging (MRI), as a versatile and non-invasive 
modality, has been performed in a crucial and efficient manner to provide 
accurate information in both preclinical and clinical stroke studies [Karki et al. 
2010, Rymner et al. 2010, Vidale et al. 2013]. In routine clinic, besides the 
clinical information including the onset of symptoms, the relevant individual 
history and the indices involving severity and recovery (e.g. the NIHSS score), 
imaging strategies based on multiparametric MRI approaches have been 
widely used to assess the evolution of cerebral ischemic injury in stroke 
patients [Kidwell et al. 2013b, Kim Y. W. et al. 2013]. The main goals of such 
imaging strategies are supposed to rule out intracerebral hemorrhage (ICH), to 
define the extent of the ischemic injury, to differentiate between the infarct core 
and the salvageable penumbral tissue and to visualize the vessel status 
[El-Koussy et al. 2014]. Multiparametric MRI is nowadays widely available 
and frequently applied in most stroke centers. In particular, diffusion-weighted 
imaging (DWI) and perfusion-weighted imaging (PWI) have become important 
tools for current diagnosis and treatment decision making in patients with 
acute ischemic stroke (AIS) [Thomalla et al. 2011]. Although imaging of brain 
anatomy historically has been done by computed tomography (CT), but 
ever-increasingly is supplanted by the superb soft tissue contrast provided by 
MRI [Bryan et al. 1991]. Besides, the versatility of MRI methods also enables 
much more detailed biophysical information on pathophysiological changes 
after stroke, above and beyond lesion structure. 
 

2.1 Clinical standard MRI sequences for acute 

ischemic stroke 
 

Different types of tissue contrasts can be exhibited markedly by various 
MRI sequence characteristics. In CHU Grenoble Alpes, basic MR sequences 
including fluid attenuated inversion recovery (FLAIR), two-dimensional 
gradient recalled echo (T2*)-weighted imaging, three-dimensional time-of-flight 
magnetic resonance angiography (3D-TOF MRA) and DWI are used for the 
regular diagnosis of stroke in daily clinical work (Fig.2.1). Data from basic MR 
sequences will be viewed or postprocessed on the work station of IMPAX 
(Fig.2.2). 
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Figure 2.1: An example of the basic MR sequences for stroke identification in routine 
clinical work in CHU Grenoble Alpes. The stroke lesion appears as a hyperintense 
region on DWI and a corresponding hypointense region on ADC map (white arrows). 
FLAIR and T2*WI are not sensitive to provide a clear profile of the stroke lesion. The 
feature of right middle cerebral artery (MCA) is invisible on both transverse section 
of TOF MRA and 3D reconstruction images (blue arrows). An old infarction or 
malacia is found with similar signal intensity to cerebrospinal fluid (CSF) on DWI, 
ADC, FLAIR and T2*WI (yellow arrows). L, left hemisphere; R, right hemisphere. 
 

 

 
 
 
 
 
 
 
Figure 2.2: The interface 
of the work station based 
on IMPAX in CHU 
Grenoble Alpes. 
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2.1.1 Fluid attenuated inversion recovery imaging 
Recovery of longitudinal magnetization is characterized by the time 

constant T1, whereas decay of transverse magnetization is characterized by 
the time constant T2. On T2-weighted imaging (T2WI) and FLAIR imaging, 
ischemic lesion appears as a mass of hyperintense seen at the early 3-6 h 
after stroke onset. FLAIR images can be used to assess for old cerebral 
infarction and the extent of small vessel disease. Moreover, FLAIR images are 
also highly sensitive to subarachnoid hemorrhage (SAH) as well as acute 
cerebral venous sinus thrombosis. However, conventional MRI sequences like 
T2WI or FLAIR do not have a high sensitivity to depict early infarction 
compared with CT [Fiebach et al. 2004]. 

The signal changes in FLAIR proportionately increase with a rise in water 
content inside the infarcted brain tissue. The volume of water content 
increases due to the secondary vasogenic edema after the blood brain barrier 
(BBB) disruption, and occurs within 1-4 h of stroke onset [Eastwood et al. 
2003]. Hyperintense vessels sign (HVS) on FLAIR image has been supposed 
to be an indicator of slow flow and early ischemia as a result of large vessel 
occlusion or stenosis as well as inadequacy of collateral circulation. HVS is not 
equivalent to the occurred infarction but indicates tissue-at-risk (TAR) of 
infarction. It should prompt consideration of revascularization and flow 
augmentation strategies [Kamran et al. 2000]. However, the detection of the 
HVS has been proved to be weakened by Gadolinium in ischemic stroke. 
Therefore, both pre- and post-contrast FLAIR sequences are suggested [Dani 
et al. 2012]. Typically, single FLAIR imaging can help to detect the presence of 
ischemia approximately 3 h after stroke onset [Thomalla et al. 2009]. Under 
emergent clinical conditions, stroke patients with the exact time of symptom 
onset unknown remain questions of criteria on accurate evaluation of ischemia 
and suitable selection of treatment. FLAIR imaging has been attempted to help 
identify time window of tissue fate [Thomalla et al. 2010, Kang et al. 2012a]. A 
recent research suggests that using regional FLAIR relative signal intensity 
ratios of damaged and contralateral healthy tissue may be better than visual 
inspection alone for predicting the phase of stroke [Cheng et al. 2013]. 
 

2.1.2 Three-dimensional time-of-flight magnetic resonance 

angiography 
Magnetic resonance angiography (MRA) provides a non-invasive 

technique to screen for pathological changes of intracranial arteries such as 
occlusions, stenosis, malformations or aneurysms [Azuma et al. 2015, Lin Z. 
et al. 2016, Wrede et al. 2016]. There are two approaches, unenhanced 
three-dimensional time-of-flight (3D-TOF) MRA and contrast-enhanced MRA 
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(CE-MRA), available to reach this goal, each performing slightly less 
sensitively than the gold standard, digital subtraction angiography (DSA). With 
most recent hardware, image quality of optimized four-dimensional 
time-of-flight (4D-TOF) MRA or 7T-MRA, was comparable with DSA 
considering both sequences [Shibukawa et al. 2015, Wrede et al. 2016]. 

MRA enables the non-invasive assessment of vascular patency of the 
intracranial circulation. When blood flows into the imaging plane, its 
magnetization is at equilibrium and thus exhibits positive image contrast with 
respect to the background static tissues. This effect enables imaging of the 
vascular lumen, but only for through-plane flow [Davis et al. 1993]. Images can 
be generated on which flow within the vessel yielding increased signal intensity 
(bright blood) or on which the lumen is depicted as decreased signal intensity 
(black blood). TOF is regarded as the most frequently used bright-blood MR 
angiographic technique for current applications [Naveen et al. 2015]. 

By using recent technical improvements like parallel imaging and higher 
magnetic fields, high spatial isotropic resolution, fast acquisition times and 
reduced artifacts can be achieved by 3D-TOF MRA [Kloska et al. 2010, 
Gonzalez et al. 2012]. As a rapid diagnosis tool, 3D-TOF MRA can be used to 
detect intravascular occlusion due to thrombus and to evaluate the stenosis of 
vessels in patients with AIS, especially in uncooperative patients [Mezzapesa 
et al. 2006, Lin Z. et al. 2016]. 

An alternative to 3D-TOF MRA is CE-MRA, typically involving the 
intravenous injection of a paramagnetic contrast agent such as Gadolinium 
Diethyl-Triamine-Penta-Acetic acid (Gd-DTPA), which enhances T1 relaxation 
by increasing the signal intensity of blood on appropriately T1-weighted images, 
with respect to the signal from static tissues. CE-MRA provides more contrast 
than 3D-TOF and is much less sensitive to flow dynamics. Consequently, 
CE-MRA can be used more effectively to show both extracranial and 
intracranial vessels [Runge et al. 1993, Sohn et al. 2003]. Accumulating 
evidences also illustrate that CE-MRA can be used to scrutinize 
characterization of vulnerable plaque in the carotid arteries, which is a 
potential imaging marker of stroke risk [Wasserman et al. 2010, Yamada et al. 
2016]. One disadvantage of CE-MRA is that Gadolinium contrast agent 
administration is contraindicated to those who with poor renal function [Morita 
et al. 2011]. 

However, an image similar to a conventional arteriogram can be 
reconstructed from the intravascular signals that are sensitive to a large vessel 
occlusion or a narrowing in the internal carotid, vertebral, basilar and first and 
second segments of the anterior, middle and posterior cerebral arteries. It was 
reported that unenhanced 3D-TOF MRA at 3T cannot replace DSA, and 
evaluation of intraluminal structure remained difficult with MRA regardless 
3D-TOF or CE-MRA at 3T [Azuma et al. 2015, Attali et al. 2016]. Although 
3D-TOF MRA has yet been the preferred approach in a large-scale clinical trial, 
the need for differentiating which patients have lesions amenable to 
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thrombolysis seems clear given the potential risks of treatment [Nour et al. 
2014]. 
 

2.1.3 Two-dimensional gradient recalled echo (T2*)- 

weighted imaging 
In hyperacute / acute phase of stroke, especially in populations with 

relevant risk factors such as hypertension, the first task is to differentiate 
ischemic stroke from ICH, which is impossible to confirm by clinical findings 
only. Generally, as a fast imaging technique, CT is demanded as the standard 
method for the clinical diagnosis of ICH [Alobeidi et al. 2015, Fink et al. 2015]. 

T2* reflects decay of transverse magnetization which is measured in the 
absence of compensation for all macroscopic sources of magnetic field 
inhomogeneity in space and is typically smaller than corresponding T2 value 
[Macintosh et al. 2013]. T2* provides an additional mechanism to achieve 
tissue-specific MR signal contrast by reducing the phase coherence of 
magnetization in the transverse plane and resulting in a rapider decay of 
transverse magnetization than is measured by the T2 parameter [Kidambi et al. 
2014]. 

T2*-weighted imaging contributes to multiple clinical applications, which 
stem from the fact that the T2* signals of blood vary with oxygenation content, 
based on the magnetic susceptibility characteristics of the oxygenated / 
deoxygenated hemoglobin and increase the local magnetic field 
inhomogeneities with iron deposition, separately [Anderson et al. 2001, 
Mokhtar et al. 2016]. Abnormal accumulation of deoxygenated blood provides 
hypointensity on T2*-weighted images, which is supposed to be an indicator of 
vascular pathological situation. It has been reported that T2*-weighted images 
are capable of detecting acute ICH, with equivalent accuracy to CT [Chalela et 
al. 2007]. Microbleeds, indicative of multiple types of micro-angiopathy can 
also be detected by T2*-weighted imaging, but not on CT, because of 
insufficient density contrast and spatial resolution. T2*-weighted images are 
also capable of depicting hemorrhagic transformation (HT) of ischemic stroke, 
and provide indications for ruling out primary intracerebral hematoma (PICH) 
as well as depicting thrombosed veins or sinuses [Fazekas et al. 1999]. On 
T2*-weighted images, hyperintensity is rarely visible in the infarct core, which is 
surrounded by a hypointense rim. If there is a surrounding hyperintensity on 
T2-weighted and T2*-weighted images with a hypointensity on T1-weighted 
images, it possibly represents perifocal vasogenic edema. In addition, a 
susceptibility reduced T2*-weighted signal of the M1 segment of the MCA by 
T2*-weighted imaging is a strong predictor for no early recanalization after 
intravenous thrombolysis in AIS patients with ICA or proximal MCA occlusion 
(MCAo) [Kimura et al. 2009]. 
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2.1.4 Diffusion associated imaging approaches 
 
2.1.4.1 Diffusion-weighted imaging and apparent diffusion coefficient 

The normal motion of water molecules within living biological tissues is 
random (Brownian motion). After focal occlusion of a cerebral artery occurs, 
brain parenchyma can compensate a hypoperfusion up to a cerebral blood 
flow threshold of approximately 20 mL / 100 g tissue / min by increased oxygen 
extraction with intact cellular membrane. If the cerebral blood flow falls below 
this threshold, the neuronal cells remain viable down to a minimum cerebral 
blood flow of approximately 12 mL / 100 g tissue / min. However, the neuronal 
function starts to be impaired at this phase. After normalization of the cerebral 
blood flow, neuronal cells can recover without any defect. If the cerebral blood 
flow falls below 12 mL / 100 g tissue / min, deficit of metabolites occurs, 
causing a sodium-potassium adenosine triphosphatase (Na+ / K+-ATPase) 
pump failure in each ischemic cell [Decanniere et al. 1995, Kohno et al. 1995]. 
The failure of this membrane channel results in subsequent uncontrolled net 
shift of extracellular water into the intracellular space with the consequence of 
cytotoxic edema initiation and irreversible damage to the neuronal cells 
[Sorensen et al. 1999, Liu et al. 2001]. Depending on the extent of cerebral 
blood flow reduction and cell integrity status, a central area of irreversibly 
damaged brain parenchyma, the infarct core, and a surrounding area of acute 
ischemic but potentially salvageable tissue, the penumbra, can be 
differentiated. The portions of these two types of ischemic tissue are highly 
dependent preexisting cerebral arterial collaterals [Helgason et al. 2001, 
Famakin et al. 2009]. 

The reduction of Brownian molecular motion in the extracellular space can 
be measured with diffusion-weighted imaging (DWI), in which the anatomical 
site can be partially recognized based on spatial encoding and is measured as 
a signal attenuation providing diffusion-weighted contrast. Compared to 
standard MR sequences based on proton density or relaxation time, which are 
known to be insensitive to the immediate effects of cerebral ischemia, DWI is 
highly sensitive for the detection of ischemic stroke, even as early as 11 
minutes after stroke onset [Hjort et al. 2005b, Mascalchi et al. 2005]. 
Evidence-based guidelines proposed by the Therapeutics and Technology 
Assessment subcommittee of the American Academy of Neurology, endorses 
the role of DWI in accurate diagnosis of acute ischemic stroke particularly in 
the first 12 h as being superior to non-enhanced CT (NECT) [Edlow et al. 
2011]. Since brain regions with a strong water diffusion restriction more or less 
are assumed to represent the infarct core, the DWI infarct volume may have 
predictive ability towards final infarct volume and overall clinical outcomes 
[Campbell et al. 2012]. Stroke lesions can also be measured quantitatively 
with the apparent diffusion coefficient (ADC) map by a corresponding 
automatical mathematical modeling if the degree of diffusion weighting is 
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manipulated in a series of (at least two) DWI trials [Srinivasan et al. 2006] 
(formula seen in Chapter 5). 

Stroke lesions appear as hyperintense areas on DWI and as correlative 
hypointense areas on ADC maps [Kim et al. 2014]. Acute ischemic lesions can 
be divided into hyperacute lesions with DWI-positive and low ADC value, and 
subacute lesions with normalized ADC value. Chronic lesions can be 
differentiated from acute lesions by normalization of both DWI and ADC. The 
presence of multiple DWI lesions of varying ages suggests active early 
recurrences over time and portends a higher early risk of ischemic events in 
the future [Seitz et al. 2005, Sylaja et al. 2007]. Moreover, small cortical or 
subcortical lesions in AIS, especially in the posterior fossa or brain stem, are 
more easily detected by DWI than CT. DWI also enables the identification of 
small lacunar infarcts that had previously been undetectable on CT [Nah et al. 
2010]. 

In the normal white matter, ADC ranges are 600-1050 × 10−6 mm2 / s and 
the mean ADC value is 840 ± 110 × 10−6 mm2 / s [Sener et al. 2001]. If the 
estimated duration from focal ischemia onset is short enough, reperfusion 
leads to a restoration of normal ADC value [Silva et al. 2002]. If ischemia is 
prolonged, ADC may not recover fully, depending on the time length of 
ischemia and the value of ADC immediately before reperfusion. Studies of 
fixed ischemic duration (45 minutes) revealed that only ischemic tissue with a 
change in ADC ≤ 250 × 10-6 mm2 / s recovered after reperfusion [Hasegawa et 
al. 1994, Rudin et al. 2001]. It was also reported that an ADC ≤ 620 × 10-6 mm2 
/ s was proposed as the threshold for identification of infarct core (IC[2]) with a 
sensitivity of 69% and a specificity of 78% [Purushotham et al. 2015]. 
Generally, it is accepted that a single measure of ADC alone cannot distinguish 
reversible from irreversible ischemic damage. The duration of ischemia is an 
essential factor to be taken into consideration with the reduction in ADC value 
to determine the reversibility of stroke lesion. However, the former usually 
cannot readily be confirmed in clinical cases [Engelter et al. 2008]. 

DWI allows the detection of silent infarctions at different sites from the 
symptomatic, small, deep infarction and concomitant small lesions outside the 
striatocapsular distribution could be identified. It was reported that proximal 
MCA lesions were a common cause of small deep infarcts, and that patients 
with parental arterial disease by branch atherosclerosis were more likely to 
have recurrent strokes and a poor long-term prognosis [Bang et al. 2002, 
Bang et al. 2004]. 

Most lesions on DWI do correspond to brain ischemia. The mean ADC 
value of DWI-positive lesions is typically less decreased in patients with 
transient deficit than in patients with sustained deficit, which due to the 
inaccuracy of ADC measurements in small DWI-positive lesions that are often 
not detectable on ADC map [Lamy et al. 2006] (Fig.2.3). Some ischemic 
lesions vanish rapidly and may no longer be visible 48 hours after transient 
ischemic attack (TIA) onset suggesting that delayed MRI after TIA reduces the 
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diagnostic yield [Carpentier et al. 2012, Moreau et al. 2013]. On the contrary, 
lesion visibility is delayed in other cases, so the rate of DWI positivity might be 
underestimated if the first MRI is performed soon after the onset of symptoms 
[Morita et al. 2013, Brazzelli et al. 2014]. Better understanding of the time 
course of lesions on DWI after TIA may help improving the accuracy of MRI 
diagnosis. However, patients suspected of recent TIA should be imaged as 
quickly as possible after the onset of TIA, and in any case in the first 24 hours, 
according to guidelines [Easton et al. 2009]. In TIA patients with baseline 
perfusion deficits, MRI performed one week later documents the development 
of new lesions on DWI in the regions of initial perfusion deficit [Asdaghi et al. 
2011]. 

 
Figure 2.3: An imaging example of a 71-year-old man of TIA with transient left 
hemiparesis. MRI was performed 3 hours after the onset of symptoms. (A) A focal 
hyperintensity lesion of right motor cortex (white arrow) on DWI. (B) The lesion is 
invisible on ADC map [Lamy et al. 2006]. 
 

Numerous technical challenges remain for brain DWI. The most difficult 
problem is the elimination of motion artifacts on the heavily diffusion-weighted 
images. Large phase errors can occur during application of the diffusion 
gradients as the result of macroscopic sample motion. To measure and correct 
for the phase error on each line of k space by recording a second, 
non-phase-encoded echo, which called “navigator echo” is one approach to 
address this problem [Warach et al. 1995, Ozsunar et al. 2000]. However, 
adequate correction with “navigator echo” is only possible for relatively simple 
and small amplitude motions. It is less favorable than fast imaging methods 
which minimize potential motions, particularly for non-compliant patients, and / 
or when multiple b values and gradient directions are required. As a result, 
rapid imaging (echo planar diffusion) is the most practical and commonly used 
approach for current stroke imaging [Beauchamp et al. 1998]. 
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2.1.4.2 Diffusion-based structural connectivity 

The fact that Brownian motion of water molecules has a preferred 
direction is proved in WM tracts with preferentially occurring along the length of 
axonal fibers and comparatively restricted in the orthogonal directions, which is 
referred to as diffusion anisotropy. The myelination of axons, the axonal 
membrane and microtubules within axons are all considered to contribute to 
the diffusion anisotropy. With such property, WM fiber tracts and corresponding 
directions can be exploited noninvasively by MRI techniques [Nucifora et al. 
2007]. If a series of DWI scans are conducted with diffusion weighting in a 
variety of different orientations, the direction and magnitude of diffusion and 
the correlations between motions in different directions can be potentially 
estimated to define the anisotropic diffusion tensor imaging, termed DTI [Goto 
et al. 2016]. 

DTI is the most common method for the demonstration of changes in 
anatomical connectivity in vivo [Le Bihan et al. 2003]. Besides the 
reconstructed visualization of fiber tracts, the anatomical connectivity changes 
can also be assessed by evaluating diffusion characteristics, such as fractional 
anisotropy (FA) and mean diffusivity (MD), the two most commonly used 
measures. FA is a summary measure of microstructural integrity, which 
represents the degree of directionality of molecular displacement by diffusion 
and describes the extent of a preferred diffusion direction within a particular 
voxel. It varies between 0 and 1, which refers to the value of isotropic diffusion 
and infinite anisotropic diffusion. MD is an inverse measure of the membrane 
density, which reflects the average diffusion amplitude of molecular 
displacement in three orthogonal directions [Qin et al. 2012] (Fig.2.4). 

 
Figure 2.4: DTI quantitative parametric maps including (A) T2-weighted imaging 
(T2WI, b = 0) based on DTI data as reference, (B) mean diffusivity (MD) which is 
similar to T2W image, (C) fractional anisotropy (FA) with white matter (WM) 
appearing hyperintense and (D) the major eigenvector direction indicated by color 
with red = R / L, green = A / P and blue = S / I, weighted by FA, adapted from 
[Alexander et al. 2007]. 
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The differences in biological influence and pattern of changes of two 
diffusivity measurements are clarified in Tab.2.1 [Feldman et al. 2010, 
Alexander et al. 2011]. 
 

Table 2.1: Summary of differences between MD and FA 
 MD FA 

White matter - ↑ 
Grey matter - ↓ 

CSF ↑ ↓ 
Dense myelination ↓ ↑ 

Dense axonal packing ↓ ↑ 
White matter maturation ↓ ↑ 

Demyelination ↑ ↓ 
Axonal degeneration ↑ ↓ 
Signal-to-noise ratio ↑ ↓ 

 
DTI measures can be analyzed by either data-driven methods such as 

voxel-based analysis and tract-based spatial statistics or hypothesis-driven 
methods such as region of interest (ROI) analysis and tractography-based 
analysis [Le Bihan et al. 2001, Giannelli et al. 2010, Madden et al. 2012] 
(Fig.2.5). 

 
Figure 2.5: Methods for representing DTI measures. (A) ROI in different colors 
placed directly on DTI image, (B) voxel-based morphometry (VBM), (C) white 
matter (WM) tracts in mean skeleton pattern form track-based spatial statistics (TBSS) 
and (D) fiber tracking of WM pathways, adapted from [Madden et al. 2012]. 
 

Diffusion anisotropy may rest confusions for identification in applications 
based on orientation-independent ADCs because it is difficult to distinguish the 
observed hyperintensity in densely myelinated regions within WM from the 
ischemia-induced regions. The combined application of ADC map and DTI can 
help to solve this problem. DTI is more reliable for measuring tracing changes 
in ADCs and may avoid interpretation errors due to the intrinsic anisotropy of 
the brain and has potential in accurate imaging analysis of various cerebral 
diseases [Beaulieu et al. 2002]. 

Analyses by DTI provide important information on brain structural 
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connectivity, which has been proven to get improvement after rehabilitative 
therapies beyond spontaneous recovery of function in the population of stroke 
patients by clinical evidence [Maulden et al. 2005, Hummel et al. 2006]. 
Studies have reported the extensive uses of DTI technique in evaluating the 
extent of WM damage and reorganization in stroke patients [Assaf et al. 2008, 
Schlaug et al. 2009]. DTI is sensitive to detect not only ischemic impairments 
but also modifications in anatomical connectivity after stroke [Mukherjee et al. 
2005]. In different post-stroke phases, alterations of DTI measures represent 
different pathological process. At acute stage of stroke, decreased MD 
represents cell swelling referring to the early sign of cytotoxic edema, while 
increased MD and decreased FA at subacute stage denote cell lysis, 
demyelination or axonal loss. The initial decrease of FA may be gradually 
followed by normalization or elevation from the lesion border. It was reported 
that this effect could be enhanced under treatments with neural progenitor 
cells, sildenafil or erythropoietin [Jiang et al. 2006, Ding et al. 2008, Li L. et al. 
2009]. At chronic stage, increased FA suggests axonal regeneration or 
remyelination, which reflects the irreversible function impairments [van der 
Zijden et al. 2008, Jiang et al. 2010]. 

The recovery of stroke-induced sequelae can also be monitored by DTI 
technique. The motor-related pathways contribute to the post-stroke functional 
recovery, which are thought to be the targets in imaging assessment. For 
example, the enhanced connectivity of the corticospinal tract (CST) at the 
cortical regions within the affected hemisphere is regarded as an indicator 
which correlated with stroke recovery [Pannek et al. 2009]. Furthermore, the 
rearrangement of WM in the perilesional areas of ischemia with preservation or 
restoration of connectivity may predict post-stroke motor outcome and be 
manipulated by rehabilitative therapies, which can also be evaluated by DTI 
[Kwon et al. 2007, Jang et al. 2009]. 
 

2.1.5 Perfusion imaging 
Multiparametric MRI including perfusion sequences has been 

hypothesized to offer a visual presence of penumbral tissue of ischemia 
prompting strong potential in this technique for implementation in the 
evaluation and management of AIS. In the following sections, I will focus on 
the introduction of bolus perfusion-weighted imaging (PWI), which is a 
semi-quantitative technique for evaluating cerebral microvasculature in the 
capillary network [Tatlisumak et al. 2004]. When the gadolinium-based 
contrast agent passes through cerebral capillaries, it alters the local magnetic 
field resulting in the rapid decrease of signal intensity in the surrounding brain 
tissue by the paramagnetic effect of the contrast. The variation of signal 
intensity is generally measured during 1 min, serially with intervals shorter than 
1.5 s by the echo-planar image technique. Under the pathological condition, a 
longer variation is recommended. From dynamic susceptibility contrast (DSC) 
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MRI data, so-called summary parameters such as time to peak (TTP) which 
derived from the tissue concentration time-course can be calculated without 
deconvolution [Meijs et al. 2016]. After deconvolution with an arterial input 
function (AIF) for the tissue-level voxel-based time-concentration curve, a 
deconvolved curve can be obtained. Thus, various perfusion parameters 
including cerebral blood flow (CBF), cerebral blood volume (CBV) and 
time-to-maximum (Tmax) of the tissue residue function can be calculated by the 
perfusion software package [Wintermark et al. 2013, Kim et al. 2014] 
(Fig.2.6). 

 
Figure 2.6: (A) Time-concentration curves at voxel-wise tissue level and (B) 
deconvolved with arterial input functions (AIF). FWHM: full width at half maximum 
[Kim et al. 2014]. 
 

However, bolus PWI technique requires intravenous contrast agent, which 
is contraindicated in patients with poor renal function or prior allergic reaction. 
The arterial spin labeling (ASL) is a non-contrast, repeatable alternative that 
utilizes the spins of endogenous water protons as a tracer instead of the 
exogenous contrast agent [Zaharchuk et al. 2012b]. It can also be used in 
pregnant woman with suspected stroke [Grangeon et al. 2016]. Although 
limitations exist, the potential of ASL in acute stroke application will be 
thoroughly realized with optimization of the technique and careful interpretation 
of the imaging findings [Zaharchuk et al. 2012a, Nael et al. 2013, Harston et 
al. 2016]. 
 
2.1.5.1 The fundamental of dynamic susceptibility contrast MRI perfusion 
technique 

DSC is a common MRI perfusion technique to measure cerebral 
hemodynamics, which needs to be performed by injecting a bolus of 
paramagnetic contrast agent, normally a chelate of gadolinium. It is also the 
method we use in our clinical research (in Chapter 6). In healthy brain, this 
contrast agent remains enclosed within the cerebral vasculature which 
shortens the longitudinal relaxation time of blood on T1WI. This effect results in 
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a paramagnetic frequency shift within the brain vessel, and creates local 
magnetic field inhomogeneities in surrounding tissues, which shorten the 
transverse relaxation time constant T2* [Tsuchiya et al. 2013]. During the 
acquisition of images, each one of these effects is linearly proportional to the 
arterial concentration of the contrast agent within each pixel in time. Therefore, 
by using the theory of tracer kinetics, rapid tissue signal changes acquired 
during the first pass of the contrast agent through the cerebral capillaries can 
be applied to produce the time-to-signal intensity curve, which may then be 
used to create color-coded or intensity-coded hemodynamic maps based on 
relative ratio value of regional perfusion parameters [Grandin et al. 2003]. If 
the AIF, which is often estimated from both MCAs, branches adjacent to the 
largest DWI abnormality and the contralateral area to the DWI-positive lesion, 
is available, the regional cerebral blood volume (rCBV) and regional cerebral 
blood flow (rCBF) can also be estimated based on the formula “rCBF = rCBV / 
rMTT” [Rempp et al. 1994, Thijs et al. 2004, Zaro-Weber et al. 2012]. 

The regional blood supply perfusion parameters are derived during the 
translation from preclinical to clinical research, with a complicated theory of 
calculation from datasets. A series of assumptions are essential for the 
performance of the process, including such factors as estimation of capillary 
hematocrit, the assumption that the change in R2* (∆R2* = -ln[S/S0] / TE; TE: 
echo time; S: the signal intensity in related TE; S0: the signal intensity at 
equilibrium with TE = 0) signal intensity changes follows the same dependency 
in the microvasculature and major vessels, and the difficulty of performing the 
appropriate mathematical deconvolution on rather coarsely digitized and noisy 
data. In a given situation with available input function unknown or it is 
debatable as to where the input function should be determined in advance for 
those who suffering from ischemic stroke due to major vessels occlusion. In 
such situations, all studies on perfusion MRI of human stroke currently have 
used relative measurements of rCBV, rCBF and other non-quantitative 
perfusion-related MR parameters [Mukherjee et al. 2003, Newman et al. 2006] 
(Fig.2.7). 
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Figure 2.7: Simulated gamma-variate functions at constant blood volume for three 
different kinds of relative blood flow. (a) The bolus delay is depicted. The shaded 
gamma variant function depicts the values of the interest including (b) TTP and (c) 
peak height. The shaded area is proportional to rCBV [Beauchamp et al. 1999]. 
 
2.1.5.2 Blood supply relative perfusion parameters 

Cerebral blood flow (CBF) is a parameter of blood flowing per brain mass 
and per unit of time, usually taken at the height of deconvolved curve 
(Fig.2.6-B). It reflects the blood supply to the brain tissue in a given time and is 
most directly related to the viability of the infarction. CBF is determined by 
cerebral perfusion pressure, the dilation of blood vessels and blood viscosity. 
Cerebral blood volume (CBV) per unit of brain is measured by the whole blood 
quantity within the target area (area under the deconvolved curve, Fig.2.6-B). 
An area suffering from ischemia with normal CBF and delayed arrival time 
indices (mentioned in 2.1.5.3) generally demonstrates that regional blood flow 
is maintained by blood vessel dilation with an increased CBV, but this effect 
occurs late in the potential infarct core area which temporarily sustained by 
collaterals (Fig.2.8). Normally areas with decreased CBV correlate well with 
the final size of a cerebral infarction [Chamorro et al. 2007]. Especially in the 
situation that delayed arrival time (e.g. mean transit time) is found in such 
areas, which represents the insufficient collateral circulation of this focal brain 
tissue and may eventually evolve into the infarction [Kim et al. 2014]. 
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Figure 2.8: Pathophysiology of stroke. The occlusion of the artery leads to 
hypoperfusion of the tissue segment with insufficient blood supply. The affected brain 
parenchyma usually consists of a severely hypoperfused (CBF ≤ 10 mL / 100g / min) 
central IC[2] where the damage is irreversible. It is bordered by the critically 
hypoperfused (CBF 10-20 mL / 100g / min) TAR, where the salvageable tissue can be 
preserved by collaterals if reperfusion offered in time. The IC[2] expands into the 
penumbral tissue with the prolongation of ischemia duration, which is also aggravated 
by corresponding mass effect on the neighboring arteries. The penumbra is 
surrounded by tissues which are not at risk of infarction, the so-called benign oligemia 
(CBF > 20 mL / 100g / min) [El-Koussy et al. 2014]. 
 
2.1.5.3 Arrival time relative perfusion parameters 

Mean transit time (MTT) is the average time required for blood flow to 
enter, maintain and cross in the capillary network. MTT is calculated by CBV / 
CBF and is used to estimate vulnerable brain tissue which may evolve from the 
infarction [Copen et al. 2011]. MTT represents the widest range of perfusion 
deficits with inclusion of benign oligemia, and is therefore likely to overestimate 
areas with risk and final infarct size [Calamante et al. 2002, Calamante et al. 
2007]. It may prove that an area has received sufficient collateral circulation or 
current recanalization in which delayed MTT but increased CBV is shown [Kim 
et al. 2014]. 

Time to peak (TTP) describes the time it takes CBF to reach the highest 
concentration value of contrast agent at the target tissue location (Fig.2.6-A). 
Among all the perfusion parameters, TTP was thought to provide minimum 
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information because it is an indirect measurement of brain perfusion. Like MTT, 
a delay in TTP in patients with chronic carotid artery stenosis cannot indicate 
acute infarction only by showing prolonged arrival time. Therefore, TTP may 
also overestimate the hypoperfused area in an acute infarction [Kim et al. 
2014]. Still, TTP is much more sensitive than CBV map in detecting 
abnormalities in AIS. Two reasons may get involved to the increased TTP: i) 
blood flow may decrease with increased MTT at constant blood volume, or ii) 
blood flow may be collateral or contralateral with the consequence that the 
bolus has to traverse a longer path to reach the ischemic region finally. 
Furthermore, it is also possible that both mechanisms occur [Soher et al. 1998, 
Helenius et al. 2003]. 

Time-to-maximum (Tmax) is the time that tissue residue function takes to 
reach its maximum value. Tmax is sensitive to reflect dynamic changes of brain 
tissue into an infarction and changes in the perfusion state. It can also predict 
tissue viability, as a non-physiological parameter of the capability of brain 
tissue to survive. Since this parameter is not influenced by scan duration, Tmax 
has the merit that sufficient scanning for a long time is possible, so that 
contrast agent is well-distributed [Copen et al. 2011]. Thus, Tmax is the most 
widely accepted reliable parameter to assess the penumbra, but with the exact 
value remaining controversial. In previous studies, different thresholds for Tmax 
were set to represent the accurate penumbra in the Diffusion and Perfusion 
Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) trial 
[Albers et al. 2006a], whereas in the evaluation of alteplase effects beyond 3 h 
after stroke onset in the Echoplanar Imaging Thrombolytic Evaluation Trial 
(EPITHET) cohort, a Tmax of 4-6 s delay was used [Donnan et al. 2009]. A 
study reported that a Tmax > 8 s with a core volume of approximately 100 mL 
(lesion size on DWI) as an adequate threshold for identification of patients with 
malignant profile of infarction who would have unfavorable outcomes despite 
reperfusion therapy [Mlynash et al. 2011], while another study suggested that 
Tmax ≥ 10 s delay best predicts the final infarction [Nagakane et al. 2012]. 
 
The features of conventional MRI techniques for stroke are summarized in 
Tab.2.2. 
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Table 2.2: Summary of conventional MRI techniques for stroke 
MRI 

technique 
Quantitative Morphological Clinical detection Limitation Threshold 

FLAIR no yes old cerebral infarction; 
small vessel disease; 
SAH; venous sinus 
thrombosis 

low sensitivity for early 
infarction 

- 

MRA no yes vascular patency of 
intracranial circulation; 
occlusion location; 
stenosis extent; carotid 
artery plaque (CE-MRA) 

low sensitivity for 
intraluminal structure 

- 

T2* yes yes acute ICH; HT in ischemic 
stroke; microbleeding; 
form the basis of functional 
MRI (mentioned in 2.2.1) 

relative rather than 
absolute measurements; 
high specificity but low 
sensitivity of diagnostic 
capability for HT 
subtypes; affected by the 
variation in the 
heterogeneity of the 
magnetic field intensity 

- 

DWI no no highly sensitive for the 
early detection of ischemia 
(including lesion in special 

lose details of 
anatomical structures 

- 
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anatomical site, lacunar 
infarct, silent infarction); 
measurement of infarct 
volume 

ADC yes no ADC values help identify 
stroke phases; the extent 
of IC[2] 

inaccuracy in small 
DWI-positive lesion 
measurement (TIA); the 
prediction of tissue fate 
is affected by 
heterogeneous ADC 
values in the lesion 

one example of IC[2] 
identification: ADC ≤ 620 × 
10-6 mm2 / s (a sensitivity of 
69% and a specificity of 
78%) [Purushotham et al. 
2015]; while the fate of 
brain tissue within and 
around the DWI lesion has 
been proven to be variable 
and not to be predicted 
based on the ADC alone 
[Loh et al. 2005] 

DTI yes yes tracing changes with 
diffusion direction and 
amplitude of molecular 
displacement; structural 
(anatomical) connectivity; 
post-stroke WM damage 
and reorganization 

- - 

  MD sensitive to cellularity, 
edema and necrosis 

- mean of the largest, 
medium and smallest 
eigenvalue of diffusion 
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tensor, of which the 
threshold is similar to the 
corresponding ADC 
threshold [Giannelli et al. 
2010] 

  FA highly sensitive to 
microstructural changes; 
help define acute stroke 
age [Puig et al. 2013] 

less specific to the type 
of change 

between 0 and 1 

PWI 
(DSC) 

yes (semi- 
quantitative) 

no the hypoperfused tissue in 
ischemic area 

contraindication for 
patients with poor renal 
function 

- 

  MTT play a role in the 
identification of penumbra 
(increased MTT) with other 
MR perfusion parameters 

overestimation of lesion 
volume based on the 
range of perfusion 
deficits 

- 

  TTP help estimate the MR 
perfusion / diffusion 
mismatch quantification in 
acute stroke 

not based on the arterial 
indicator-dilution theory; 
indirect measurement; 
overestimation of the 
hypoperfused area in an 
acute infarction 

high variations in TAR 
volumetric measurements 
with different delay 
thresholds [Forkert et al. 
2013] 

  Tmax prediction of tissue viability 
without MR scanning 
effect 

- EPITHET trial: Tmax = 4-6 s 
[Donnan et al. 2009]; poor 
outcomes despite 
reperfusion therapy: Tmax > 
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8 s with core volume ≈ 100 
mL [Mlynash et al. 2011]; 
prediction of final infarction: 
Tmax ≥ 10 s [Nagakane et 
al. 2012]; however, no 
standard of the delay 
threshold has been 
established by unified 
opinion 

  CBF play an important role in 
delineating hypoperfused 
brain tissue; decrease 
moderately in penumbra; 
help identify the infarct 
core with restricted 
diffusion apart from 
decreased CBF 

difficult to measure in 
absolute terms (normally 
relative measurement to 
an internal control is 
applied instead) 

IC[2]: CBF ≤ 10 mL / 100g / 
min; TAR: CBF 10-20 mL / 
100g / min; benign 
oligemia: CBF ≥ 20 mL / 
100g / min [El-Koussy et 
al. 2014]; still, differences 
of the threshold exist 
between quantification 
techniques and researches 

  CBV remain normal or increase 
in penumbra; reflect 
auto-regulatory 
mechanisms in ischemia; 
help evaluate the capillary 
perfusion by collaterals 

absolute measurement 
is influenced by the 
permeability of 
microvasculature 
(normally relative 
measurement is 
calculated instead) 
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2.2 Advanced MRI techniques for clinical ischemic 

stroke 
 

2.2.1 Functional connectivity MRI application after 

ischemic stroke 
As mentioned in Section 2.1.4.2, structural damage from ischemic stroke 

onset is associated with both local and global changes in brain function. Since 
the evolution of stroke is generally static after the initial damage, subsequent 
functional changes of victims are more likely to represent the brain responses 
to ischemic injury than just to represent ongoing pathological processes. 
Challenges and opportunities are brought out based on such stroke features 
by means of functional MRI (fMRI) to analyze the consequence of focal 
ischemia on brain function and recovery, as well as the reorganization in brain 
[Carter et al. 2012b]. 

However, knowledge of brain functional alteration in a particular region 
cannot contribute to the mechanisms of interactions among all regions which 
modulate behavior in concert by a single brain activation [Stephan et al. 2007]. 
Great insight into neural network dysfunction and functional reorganization 
based on a system perspective can be provided by functional connectivity 
analyses [van Meer et al. 2010, Carter et al. 2012b]. Connectivity changes 
may contribute to a better prediction of stroke outcomes and an inspiration for 
new therapeutic intervention development [Carter et al. 2012a]. Besides 
structural connectivity by DTI mentioned before, fMRI-based functional 
connectivity describes how anatomically connected areas physiologically 
interact with each other, which is defined as temporal dependency between 
spatially remote neurophysiological events with a non-directional and 
extensively correlative nature [Stephan et al. 2007] (Fig.2.9). 
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Figure 2.9: Connectivity analysis methods implemented for brain networks can be 
acquired with different monitoring modalities. The functional organization of the 
brain is characterized by segregation and integration of imaging data processing. 
Brain connectivity analysis can be divided into three different but related forms 
including structural, functional and effective connectivity. Effective connectivity 
refers to the causal interactions between different activated brain areas which 
described by the influence one neuronal system exerts upon another under the 
assumptions of a given mechanistic model [Stephan et al. 2007] (from multimodal 
connectivity brain network project of cognitive engineering in Singapore Institute for 
Neurotechnology, SINAPSE) 
From the website: http://www.sinapseinstitute.org/projects/cognitiveengr/connectivity 
 

In acute stroke settings, the application of fMRI based on the blood 
oxygenation level dependent (BOLD) signal helps to define the penumbra 
condition, which is identified as an area of hypoperfusion with remaining 
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metabolic activity evaluated by indices such as the oxygen extraction fraction 
(OEF) and the cerebral metabolic rate of oxygen (CMRO2) [Heiss et al. 2000a]. 
Compared with positron emission tomography (PET), BOLD-fMRI is feasible to 
measure these metrics in human in vivo non-invasively and without ionizing 
radiation [Bulte et al. 2012]. The imaging principle of BOLD-fMRI is that 
metabolic events triggered by neuronal activity generated by sensory stimuli or 
behavior of memory, cognition, action or emotion, result in increased CBV and 
decreased deoxyhemoglobin content subsequently, which lead to increases in 
BOLD signal by reducing local magnetic inhomogeneities in activated region 
[Heeger et al. 2002]. This technique enables the investigation of brain 
reorganization processes with spatial resolution of millimeters and provides 
information of neural activity at the macroscale level [Hyde et al. 2001, Rehme 
et al. 2013]. 

Based on a theoretical perspective which is different from structural 
connectivity, fMRI allows a direct and fairly straightforward measure of 
interaction between different brain regions. Thus, the signal provides a large 
scale view of functional systems across the entire brain network and the 
correlative regional interaction which not depends on simple mono-synaptic 
connections [Honey et al. 2009]. Therefore, it is regarded as a promising tool 
to study the remote physiological effects of lesions distributed on distant areas. 

The main advantage of this approach is that the measures of data are not 
only at the group level but also for individual objects. And it can be easily 
obtained even in severe patients that cannot cooperate in cognitive testing 
during scanning. Furthermore, it is possible to obtain a survey of multiple 
networks in time in a single scan [Tambini et al. 2010, Grefkes et al. 2011, 
Westlake et al. 2011, Van Essen et al. 2012]. 

Beyond the affect area suffered from an ischemic lesion, the intact 
functional network architecture of remote cortical areas can also be affected 
due to this structural damage [Nomura et al. 2010, Wang et al. 2010]. The 
functional interactions between these distinct areas constituting a network can 
be described by functional connectivity evaluation which based on the 
statistical association, generally the temporal correlation or covariance, 
between spatially remote neurophysiological processes [Marrelec et al. 2009]. 
By neuroimaging series, resting-state functional connectivity illustrates intrinsic, 
spontaneous networks that elucidate the functional architecture of the human 
brain under task-independent condition [Biswal et al. 2010, Friston et al. 
2011]. A ROI can be selected as a reference to define voxels in the brain 
image which correlated with network activity in a region over time [Pugh et al. 
2000]. The coherence across the whole brain with such ROIs is analyzed from 
imaging data [Lewis et al. 2009]. The identification of the processes that 
induce functional improvement in the brain network may reveal appropriate 
therapeutic targets for rehabilitation strategies and help develop novel 
interventions [Kolb et al. 2010, Bajaj et al. 2015]. 

Immediately after stroke onset, resting-state functional connectivity of the 
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ipsilesional primary sensorimotor cortex, especially the interhemispheric 
connectivity, decreases significantly. In acute phase of stroke, disruption of the 
interhemispheric functional connectivity within the attention network was 
significantly correlated with abnormal detection of visual stimuli. In the 
somatomotor network, disruption of the interhemispheric functional 
connectivity was significantly correlated with upper extremity impairment 
[Bannister et al. 2015]. In subacute phase, the interhemispheric functional 
connectivity was negatively correlated with the extent of corticospinal 
impairment [Carter et al. 2012a]. In chronic phase, disunity in outcomes are 
found to be associated with different change patterns of the resting-state 
functional connectivity [Yin et al. 2012]. 

Analyses of connectivity can also be used to investigate the therapeutic 
effects on network aiming at restoring physiological patterns of 
interhemispheric interactions in order to promote recovery of single motor 
functions [Hummel et al. 2006]. The recovery of motor function depends on 
reorganization processes within both hemispheres resulting in enhanced 
interhemispheric connectivity which may occur, but is often paralleled by a cost 
of reduced network efficiency even in patients with good clinical recovery 
[Wang et al. 2010, Rehme et al. 2013, Kobayashi et al. 2015]. Analyses of 
functional connectivity may offer new insights into the decision on the selection 
of interventions targeting to enhance motor recovery in stroke patients 
including motor movement, coordination and balance [Butler et al. 2006, 
Grefkes et al. 2011]. 
 

2.2.2 Cerebral vasoreactivity in ischemic stroke 
The brain is supported by nutrients and oxygen through CBF which is 

maintained when cerebral perfusion pressure changes [Attwell et al. 2010, 
Lucas et al. 2010, Paulson et al. 2010]. The distribution of CBF is based on 
the metabolic mechanisms with an increase in the active brain areas. By 
challenging the brain system with a vasodilatory stimulus, the response to the 
CBF regulation can be observed, which termed cerebral vasoreactivity (CVR) 
[Fierstra et al. 2016]. 

CVR for each vascular reacting voxel is derived from the formula 
according to the following: 

CVRvoxel = ∆S / ∆pCO2, 
where ∆S is the change in MR signal intensity for a given voxel that occurs 
between peak and trough CO2 levels and ∆pCO2 is the change in end-tidal 
CO2 in the unit “mmHg” [Golestani et al. 2016]. In healthy brain, positive CVR 
reflects an increase in CBF in response to increasing pCO2. Negative CVR 
appears in brain regions with reduced CBF under the same condition of pCO2. 
Areas of negative CVR are generally considered as the result of the vascular 
“steal” phenomenon, whereby hypercapnea leads to diversion of blood from 
brain areas of brain where arterioles are maximally vasodilated and vascular 
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resistance is already minimized to areas of the brain capable of decreasing 
vascular resistance in response to a CO2 stimulus [Mandell et al. 2008, Heyn 
et al. 2010]. Measuring variations of CVR between different brain regions has 
the potential to not only better understanding of how the cerebral vasculature 
controls the distribution of blood flow but also to detect cerebrovascular 
pathophysiological processes [Mandell et al. 2011, Fierstra et al. 2013]. 

CVR measurement has potential to assess the risk factors of ischemic 
stroke. Carotid artery stenosis is one of the factors which cannot be 
underestimated in the prediction of stroke occurrence because it has been 
reported that 20% of the 2-year incidence rate with symptomatic disease after 
intracranial arterial stenosis [Famakin et al. 2009]. BOLD-fMRI measurement 
of CVR has been proved to be highly correlated with CBF in patients with 
intracranial steno-occlusive disease caused by atherosclerosis [van der 
Zande et al. 2005, Mandell et al. 2008]. Bouvier et al. reported that decreased 
cerebrovascular reserve (CVR[2]) is spatially associated with decreased 
CMRO2 in grey matter (GM) of patients with severe intracranial arterial 
stenosis (SIAS). The degree of ipsilateral CVR[2] reduction was well-correlated 
with the amplitude of the CMRO2 deficit. The observation of the relationship 
between impaired CVR[2] and oxygen parameters in patients with chronic low 
grade ischemia may be helpful in the selection of candidates for medical 
therapy or percutaneous transluminal angioplasty-stenting [Bouvier et al. 
2015]. The results of CO2-stimulated CVR by BOLD-fMRI were suggested to 
help provide additional information on the identification of a subset in such 
patients who are most likely to have a hemodynamic improvement following 
revascularization by the same session as routine MRI (MRA) [Mandell et al. 
2011]. An impaired CVR is usually predictive of the occurrence of 
ischemia-related events in patients with carotid stenosis / occlusion [Lam et al. 
2000, Markus et al. 2001]. As reported, the hemispheric asymmetry CVR 
derived from CO2-stimulated BOLD-fMRI reveals that hemodynamic 
impairment in a larger percentage of patients with carotid occlusion who have 
a higher risk of stroke recurrence [Goode et al. 2016] (Fig.2.10). 
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Figure 2.10: An example of CBF and CVR maps in a patient with severe intracranial 
arterial stenosis (SIAS) in CHU Grenoble Alpes. Results of CVR measured by 
BOLD-fMRI are highly correlated with CBF changes. The CVR impairments shown 
in the right hemisphere correspond to the significant decreases on CBF map. 
 

2.3 Multiparametric MRI application in ischemic stroke 
 

2.3.1 Mismatch of diffusion-weighted imaging / perfusion- 

weighted imaging 
Decreases of water molecules self-diffusion can be detected by DWI 

within just a few minutes of ischemia onset, which probably concerned the 
physiologic consequences of ischemic injury such as metabolism failure and 
cytotoxic edema sign. PWI provides hemodynamic parameters reflecting 
stroke evolution by multiple semi-quantitative perfusion maps. These created 
maps may permit the identification of hypoperfused tissue, which assumed to 
be replaced gradually by the infarct core with the development of ischemia 
[Saver et al. 2006]. In routine clinical practice, the concept “penumbra” 
delineating salvageable and irreversibly infarcted brain tissue in stroke patients, 
can be defined by the DWI / PWI mismatch, which shares a similar degree of 
reliability to PET, the gold standard [Heiss et al. 2000b] (Fig.2.11). The 
presence of a DWI / PWI mismatch could help justify the candidates for 
recanalization therapy beyond 3 h [von Kummer et al. 2012]. A significant 
DWI / PWI mismatch may be present up to 24 h or more after symptom onset 
with the volume progressively decreasing over time [Darby et al. 1999]. 
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Figure 2.11: Different lesion volumes in AIS are shown with (A) DWI (red arrow) 
and (B) PWI (yellow arrows). (C) The 3D-TOF MRA proves the occlusion of the 
right MCA (white arrows). (D) DWI / PWI mismatch is mapped to show the 
penumbra, adapted from [Kim et al. 2014]. 
 

It was originally thought that the difference between the spatial extent of 
DWI hyperintensity and perfusion deficit reflected the penumbra area. This 
volumetric difference is widely used in clinical setting as a surrogate for TAR. 
TAR is the general therapeutic target for reperfusion, which derived from the 
combination of DWI and various perfusion-weighted parametric maps [Forkert 
et al. 2013] (Fig.2.12). However, now it has already realized that DWI-positive 
region in imaging findings can reverse in some stroke cases, so that the extent 
of deficits observed by PWI may not accurately reflect the true extent of the 
penumbra [Labeyrie et al. 2012]. 

 
Figure 2.12: Selected slice from a DWI dataset and corresponding ADC parameter 
used for definition of the area with diffusion restriction (red area), as well as 
corresponding perfusion parameter maps including CBF (mL / 100g tissue / s), CBV 
(mL / 100g tissue), MTT (s) and Tmax (s). Finally the TAR (green area) was brought 
out based on the DWI / PWI mismatch [Kaesemann et al. 2014]. 
 

Since it has been hypothesized that PWI reflects the complete 
hypoperfused area and DWI only the irreversible damage, the differentiation 
should be obvious by imaging technique [Jansen et al. 1999] (Fig.2.13). 
However, if there is no difference between these two volumes, or even a 
negative difference (DWI > PWI), it is termed a DWI / PWI match. Insignificant 
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penumbra in stroke patients may be caused by the normalization of prior 
hypoperfusion or completion of mature infarct lesion with total loss of chance 
to reverse [Parsons et al. 2002, Schellinger et al. 2003]. One criticism is that 
hypothesis followed this pattern does not take into account that the 
PWI-positive area also reflect oligemia, which is without risk and the 
corresponding DWI abnormalities do not necessarily turn into infarction 
[Kidwell et al. 2003]. 

 
Figure 2.13: DWI / PWI mismatch in a patient with occlusion of the left MCA. (A) In 
DWI, the infarct core is limited to a small area (white arrow). (B) In MTT map, the 
corresponding perfusion abnormality is shown as a large area (white arrows). A 
significant volume of penumbra can be derived [Kloska et al. 2010]. 
 

Compared with the extensive and severe delay in time-domain perfusion 
parameters in DWI / PWI mismatch area, the increased CBV and hypointense 
vessels by the gradient recalled echo (GRE) sequence within the 
hypoperfused areas may suggest the presence of viable tissue in the lesion 
[Tamura et al. 2002, Lee et al. 2003]. Increased CBV reflects an efficient 
collateral blood flow soon after the occlusion of artery, which indicates the 
ability of ischemic tissue to compensate for the consequence due to decreased 
CBF [Hermier et al. 2005]. Areas indicated by hypointense vessels on GRE 
imaging are correlated with a large perfusion defect and arrival time delay, but 
an increased CBV, which reveals the destiny to become infarction during the 
subacute and chronic phases [Tamura et al. 2002, Hermier et al. 2003]. In 
clinical practice, if prominent collaterals exists in AIS when PWI acquisition for 
population in which intracranial occlusive disease is prevalent, time-domain 
PWI parameters may overestimate the perfusion severity and extent of 
ischemia, which should be interpreted with caution [Wu et al. 2001]. 

DWI / PWI mismatch can be applied for candidate selection in several 
clinical trials focusing on AIS treatment but few meaningful responses were 
acquired. In the Diffusion and Perfusion Imaging Evaluation for Understanding 
Stroke Evolution (DEFUSE) study, patients with DWI / PWI mismatch in the 
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time window of 3-6 h demonstrated more favorable clinical response after 
reperfusion compared to patients without such a DWI / PWI mismatch [Albers 
et al. 2006a]. However, this previous study had no placebo control group and it 
was not designed to demonstrate the efficacy of intravenous thrombolysis with 
MRI monitoring. In the Echoplanar Imaging Thrombolytic Evaluation Trial 
(EPITHET) study, infarct growth was compared between patients who received 
tissue plasminogen activator (t-PA) and those who received a placebo. The 
primary outcome measure was the attenuation of infarct growth using a ratio of 
geometric means [Davis et al. 2008]. But the results failed to demonstrate 
beneficial outcomes by using DWI / PWI mismatch evaluation in thrombolysis. 
The Desmoteplase in Acute Ischemic Stroke (DIAS) clinical trial was a phase 2 
trial that employed a pre-randomization penumbral imaging screening as an 
indication for patient selection [Hacke et al. 2005]. Within 3-9 h of symptom 
onset, patients with ischemic stroke and at least 20% DWI / PWI mismatch as 
evaluated by visual inspection were included in trials. However, the results of 
the DIAS study have failed to prove the benefit of desmoteplase versus 
placebo in patients with penumbras identified by MRI. 

In a prospective, multicenter study, pretreatment MRI could be used to 
differentiate between subgroups of stroke patients likely to benefit from 
reperfusion therapies given 3-6 h after stroke onset [Albers et al. 2006a]. In a 
30-day follow-up, the DEFUSE trial group reported a significant association 
between recanalization and decreased infarct growth in patients with DWI / 
PWI mismatch who were under t-PA treatment within 3-6 hours after stroke 
onset [Olivot et al. 2008]. Patients who exhibited a target mismatch pattern 
had a favorable clinical response to recanalization therapy by the comparison 
of DWI and PWI lesion volumes [Bang et al. 2008] (Fig.2.14). 
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Figure 2.14: Pretreatment DWI and PWI findings and final DWI findings of three 
individuals with the target mismatch pattern (a PWI lesion that was ≥ 10 mL and ≥ 
120% of the DWI lesion, white arrows). (A) a patient with a favorable clinical 
response and no infarct growth after complete recanalization, (B) a patient with good 
collaterals showing minimal or no marked infarct growth after recanalization, (C) a 
patient with poor collaterals and visible infarct growth despite recanalization, adapted 
from [Bang et al. 2008]. 
 

A limitation of the current DWI / PWI mismatch method is that DSC-PWI is 
unable to generate absolute values of CBF and CBV, and no consensus has 
been established regarding the optimal perfusion algorithm and mismatch 
volume threshold. Moreover, a diversity of postprocessing software is used to 
generate perfusion parametric maps with resulting discrepancy [Kane et al. 
2007]. Therefore, a harmonized approach and consensus about the definition 
of DWI / PWI mismatch are necessary to make it comparable within all stroke 
centers [Wintermark et al. 2013]. Moreover, the further development of MR 
techniques is essential to the penumbra with a very restricted volume. If the 
penumbra is anatomically limited, even major salvage of target tissue may be 
without clinically detectable or relevant beneficial interventions [Fisher et al. 
2000, Oppenheim et al. 2001]. 
 

2.3.2 Multiparametric routine clinical MRI selections 
For individual image acquisitions in ischemic stroke, a series of MRI 

protocols with different signal contrast weightings, are assembled aiming at the 
detection of stroke lesion, the differentiation of salvageable tissue and the 
exclusion of ICH or other cerebrovascular diseases, which lead to a better 
understanding of stroke evolution and decision on therapy [Leiva-Salinas et al. 
2011]. Each MRI protocol probably provides partial characteristic of lesions 
with active pathological brain tissue and corresponding occluded vessels 
based on a description including number, size, location and signal intensity of 
impaired regions in the brain. A combined clinical application of different MRI 
protocols previously mentioned in this chapter can be designed for both 
identification and / or differentiation based on morphologic and hemodynamic 
features in stroke monitoring [El-Koussy et al. 2014] (Fig.2.15). 
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Figure 2.15: A classical combined application of MRI protocols for a hyperacute 
MCAo in the right hemisphere. (a) DWI (b value = 1000) clearly shows the area of 
acute ischemia as hyperintensity (arrows). (b) Corresponding ADC map is generated 
automatically to demonstrate the accurate diffusion-restricted range of free water as 
hypointensity (arrows). (c) The hyperacute stroke is not yet detectable on the 
conventional T2WI. Perfusion MRI maps including (d) MTT, (e) CBF and (f) CBV 
reveals the delayed arrival time, low blood flow and diminished blood volume in the 
lesional region separately (arrows). (g) The occlusion of the M1-segment (arrows) is 
clearly depicted on the TOF MRA. (h) The 24 h-follow-up DWI shows the ultimate 
extent of the infarction (arrows). (i) The lesion is visible on 24 h-follow-up T2WI 
(arrows), adapted from [El-Koussy et al. 2014]. 
 

Generally, typical comprehensive combinations of stroke MRI protocols 
consist of DWI, FLAIR, TOF MRA, PWI, routine T2WI and / or T2*WI, which 
mainly focus on acute phase. One protocol may compensate for the 
deficiencies of the others based on its imaging principle and characteristic. For 
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example, imaging data from T2* can be analyzed with DWI to raise the 
accuracy in diagnosis of ICH (Fig.2.16). Prediction of HT in the infarcted tissue, 
especially after reperfusion, can be achieved by observing the hyperintensity 
on FLAIR in the CSF space and parenchymal enhancement on CE-T1WI 
[Latour et al. 2004, Hjort et al. 2008]. 

 
Figure 2.16: An example of a 68-year-old patient in CHU Grenoble Alpes with a 
small ICH lesion in left basal ganglia. It represents as a region of hyperintensity on 
DWI and hypointensity on T2*WI (red arrows). 
 

The combined use of FLAIR and DWI helps to distinguish acute from 
subacute and chronic stroke lesions. Because CSF tends to gather within the 
area of infarct core during the progression of stroke, application of FLAIR 
combined with DWI can improve the recognition of new lesions near sites of 
prior ischemic injury, potentially providing insight into concerned 
pathophysiology and stroke subtype [Liu et al. 2015]. 

The DWI / FLAIR mismatch refers to lesion visible on DWI but not on 
FLAIR, which has been used as a surrogate marker for estimating the duration 
of lesion development in stroke with unknown onset, and can help determine 
the use of thrombolytic agent [Madai et al. 2016]. Patients with DWI / FLAIR 
mismatch are likely to be within the time window for thrombolysis, the 
specificity and predictive value of which have both been shown to be higher 
than 90% respectively [Thomalla et al. 2009]. Finally, in the reperfusion 
therapy in unclear-onset stroke based on MRI evaluation (RESTORE) trial, 
such patients within 6 h of symptom detection with DWI / PWI mismatch > 20% 
and negative or subtle FLAIR representation, were treated with t-PA or 
endovascular approach, and MRI-determinate reperfusion therapy was proved 
to be feasible and safe [Kang et al. 2012b]. The DWI / FLAIR mismatch also 
works to demonstrate the safety and good clinical outcome of acute 
recanalization therapy in patients with stroke in the anterior circulation and 
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unknown time of onset [Mourand et al. 2016]. 
However, potential confounding factors that interfere with the diagnostic 

accuracy of DWI / FLAIR mismatch also exist. In addition to the unclear stroke 
onset time, BBB permeability affected by premature age and too large lesion 
size may cause altered FLAIR intensity [Thomalla et al. 2011, Kim et al. 2014]. 
Besides biological variations in individual situation of stroke patient, statistical 
analysis has also suggested that DWI / FLAIR mismatch may be not definitely 
associated poor outcome of HT, which means the selecting wake-up stroke 
patients by DWI / FLAIR mismatch standard may exclude a large group of 
patients who might benefit in therapeutic trial [Odland et al. 2015]. 

Flow-sensitive TOF MRA is a prior choice for the evaluation of intracranial 
arteries, while CE-MRA is feasible to provide a true lumenography for a 
combined assessment of both intracranial and extracranial cervical arteries 
[Hassan et al. 2013]. Extent of collateral circulation can be evaluated based on 
CE-MRA and PWI, which helps predict the final infarct volume and thus the 
prognosis [Angermaier et al. 2011]. 

Anatomical peculiarities of congenital vascular variation or malformation 
may handicap the operation of stroke therapeutic intervention, which can be 
demonstrated by morphological MR sequences, such as MRA / CE-MRA 
[El-Koussy et al. 2014]. CE-T1WI can show arterial enhancement in some 
hyperacute ischemic stroke cases, probably based on local slow blood flow 
velocity. It also provides additional information on the differential diagnosis to 
rule out other intracranial diseases such as tumor or inflammatory disease 
[Srinivasan et al. 2006]. So these techniques may help to describe an exact 
presence of lesion and define a correct diagnosis when applied with other MRI 
sequences in the evaluation of stroke. 

However, the clinical significance of a combination of single conventional 
MR sequences remains controversial. Information from imaging evidence may 
not be efficiently predictive for a certain pathophysiological phenomenon 
during stroke evolution. Furthermore, the results from imaging data should be 
considered with caution for clinical decision because of the underestimation or 
overestimation of true state of stroke progression such as TAR, lesion growth 
and collateralization [Mezzapesa et al. 2006]. The application of current 
conventional MRI protocols is still inadequate to reflect an exact, follow-up 
change of stroke lesion development due to the lack of a standard for the 
justified selection among all these parameters. Optimization of analytic 
methods for present imaging techniques may have potential to solve this 
problem. 
 
The benefits and limitations of multiparametric MRI application for stroke are 
summarized in Tab.2.3. 
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Table 2.3: Summary of multiparametric MRI application for stroke 
Multiparametric MRI protocols Clinical benefits Limitation 

DWI / PWI mismatch definition of penumbra (help set 
therapeutic trials and predict outcomes) 

no absolute values of CBF and CBV; lack 
of a harmonized approach and consensus 
in different centers; deficiency of imaging 
technique for the detection of anatomically 
limited penumbra; contraindication for 
patients with poor renal function 

DWI and T2* exclusion of ICH - 
DWI / FLAIR mismatch definition of stroke lesion phase - 

MRA / CE-MRA and PWI (DSC) assessment of collateral circulation contraindication for patients with poor 
renal function 

Conventional stroke sequences and 
CE-MRA 

definition of congenital vascular variation 
or malformation 

contraindication for patients with poor 
renal function 

Conventional stroke sequences and 
CE-T1WI 

prediction of HT in ischemic stroke (FLAIR 
and CE-T1WI); exclusion of other cerebral 
diseases (tumor, inflammatory disease, 
etc.) 

contraindication for patients with poor 
renal function 
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Chapter 3 
 

Overview of methods for MR imaging analysis 
 

In Chapter 2, current MRI techniques in stroke application have been 
introduced in detail. These techniques provide information of physiologically 
distinct characteristics of stroke from the very beginning of ischemia to a 
long-term follow-up. An overall comprehension of stroke progression can be 
derived from the combination of multiparametric MR images. In simple terms, the 
conventional MR images help to identify basic anatomical features such as 
location, extent, and quantity of lesion. The diffusion images can reflect lesion 
volume, edema and other complementary information for conventional 
sequences. Perfusion images can evaluate the hemodynamics influenced by 
stroke and define the salvageable tissue with corresponding diffusion images. 
With plenty of imaging data, clinical trials can be well designed based on 
objective evaluation of stroke evolution, accurate decision of treatment selection, 
and effective reflection of therapeutic reaction. A reasonable method of imaging 
analysis used for all measures from different imaging protocols can quantify the 
stroke-induced changes and bring about intraindividual comparison between 
different durations and interindividual comparison between objects with different 
interventions or outcomes, even from different centers. In this level, 
multiparametric imaging analyses focus on the features of the lesion rather than 
global changes, especially for those which are invisible or nullified by routine 
screening. 

In this chapter, both frequently-used and newly-developed imaging analysis 
methods will be introduced. By means of these methods, new insights could be 
obtained into the characteristics of brain insults, mainly solid lesions. Due to the 
popular option in brain tumor, this pathology will be on target for most 
illustrations of imaging analysis methods. 
 
3.1 Region of interest 
 

A subset of pixels in an input image is the basic for image analysis task, 
which can be selected as samples in a data set identified for a specific purpose. 
Target containing these selected pixels is termed the region of interest (ROI). 
The ROI selection may be fairly arbitrary for a general test or particularly 
purposeful for the representation of designated imaging characteristics. The 
application of a ROI is widely used in medical imaging analysis for identification 
of lesion, comparison of tissue contrast and measurement of volume. Since ROI 
analysis provides benefits in image-based research, the definition of ROI is part 
of a more general concept and also the premise of image segmentation with 
following data analysis. ROIs can be defined both in terms of structural and 
functional features. Structural ROIs are generally defined according to 
anatomical knowledge. Due to the individual substantial variability, ROIs are 
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normally set for each subject. With developments in segmentation methods, 
some anatomical structures in images can be reliably defined with a minimum 
manual intervention [Fischl et al. 2004]. 

In the evaluation of ischemic stroke evolution or relevant therapeutic effect, 
the whole lesion identification and the infarct volume computation are important 
to reflect the severity of ischemic injury from onset of stroke to post-reperfusion. 

The ROI definition of stroke lesion is mainly based on the morphological 
feature and signal changes in MR images. It can be segmented both manually 
and automatically. Manual delineation of a ROI, as the most common method, 
generally takes the first step in various studies. So we could think it as the 
premise which is entirely possible to affect the final results. However, due to the 
limited spatial extent, manual ROI can be replaced by a global segmentation, 
normally semi- / automatically. Automatic imaging segmentation methods based 
on different theories and algorithms may lead to similar outputs although 
respective deficits exist. A detailed introduction of current imaging segmentation 
methods has been made in Chapter 8 (Appendix 1). Briefly, automatic 
segmentation methods can be used for different purposes, mainly focusing on 
distinction of anatomical structures in healthy brain of multiple populations and 
separation of tumor contour from original background that initially confounds the 
observer by the naked eye. Since the sequence-specific MRI findings provide 
huge information of stroke in different phases to help classify subtypes, evaluate 
extent, determine infarct age and guide the treatment selection, and dealing with 
stroke is generally in critical conditions, the routine imaging analysis is sufficient 
[Allen et al. 2012]. Still, global segmentation of brain suffering from stroke has 
been reported, mainly through hybrid segmentation method such as the Markov 
random field (MRF) with random forest classification [Mitra et al. 2014], 
thresholding with subtracted atlas [Tsai et al. 2014] and multiple modalities 
[Kabir et al. 2007, Maier et al. 2015] (cf. 8.2). 
 
3.2 Histogram analysis 
 

Once the target image has been segmented spatially based on the MR 
signal changes, various metrics which reflect class distribution of the imaging 
data can be extracted. From the selected ROI, one can simply extract the mean 
value and its standard deviation of an imaging parameter. However, a classic 
metric of descriptive statistic may differ from each other. It depends on whether 
the parametric values of the ROI have typicality to represent the feature of 
classification. To refine analysis, histograms can help to lead to a more accurate 
and objective description of the imaging data. 

A histogram is the most commonly used graphical representation to show 
the probability distribution of a continuous quantitative variable by depicting the 
frequencies in certain ranges of values. This method provides a rough 
estimation of the data density in medical application. In clinical cases, histogram 
methods were used for the MR imaging analysis of brain tumor and 
hypoxic-ischemic encephalopathy (HIE) [Pope et al. 2009, Cauley et al. 2014]. 
In tumor progression-free survival assessment, the data on the basis of mean 
values of the histogram analysis was dichotomized to provide more accurate 
information on the parametric value classifiers and the lesion volume change 
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[Pope et al. 2009, Pope et al. 2012] (Fig.3.1). However, changes detected in 
mean values of a single parameter for the prediction of therapeutic efficacy have 
hampered the clinical utility because of tumor heterogeneity and suboptimal 
methods of digital image analysis. Since the histogram analysis on mean values 
may be no efficient to represent the accurate progression of disease, the 
pressing need of a new imaging biomarker of early treatment response is 
necessary [Moffat et al. 2005]. 

 
Figure 3.1: An example of a recurrent glioblastoma (GBM) case. (A) An axial 
post-contrast T1-weighted image and (B) a co-registered ADC map show the MR signal 
characteristics of the lesion. (C) An asymmetrical, broad and dual-peaked ADC 
histogram with a poorly-fitted single distribution curve and (D) an ADC histogram with 
two components separated with a two normal distribution fitting curve are generated 
corresponding to the original MR images [Pope et al. 2012]. 
 
3.3 Texture analysis 
 

Conventionally, imaging analysts perceive and recognize image patterns 
and associate the identification consistent with their training, experience and 
individual judgment. It follows that there will be an inevitable degree of variability 
in image interpretation as long as it relies primarily on human visual perception. 
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Tools for automated pattern recognition and image analysis can provide 
objective information to support clinical decision-making and may effectively 
reduce this variability. An alternative is texture analysis (TA), which displayed by 
a wide range of techniques that enable quantification of the grey-level patterns, 
pixel interrelationships and the spectral properties of images. Texture 
parameters are used to characterize the underlying structures of the observed 
tissues [Sikio et al. 2014]. Feature extraction from the images is the first step of 
TA, from which the results can be used for texture discrimination, texture 
classification or outline determination. Information of variation in surface 
intensity or patterns, including that are imperceptible to the human visual system 
can be provided by TA. It has already demonstrated considerable potential in 
MR neuroimaging as an objective strategy for lesion segmentation and 
characterization by examining the nature of grey-level transitions, particularly in 
cases in which the lesions are inseparable on the basis of standard sequences 
such as T1, T2, proton-attenuation, and DWI [Tourassi et al. 1999]. Additionally, 
TA can provide the underlying textural features which assist in monitoring 
disease progression or longitudinal observation of emerging therapies. 
Furthermore, it has been shown to increase the level of diagnostic information 
extracted from other imaging modalities rather than MRI [Garra et al. 1993, Ito et 
al. 1995]. 

The application of TA can be restricted to a set of pre-defined ROIs if the 
spatial extent of the lesion is identified by an independent means. In the 
selection of ROI or imaging data size, the investigator should balance the need 
to capture sufficient textural information for classification purposes with the 
desire to avoid including the ROI or whole image that span multiple tissue 
categories [Kassner et al. 2010]. 

In the case of acute ischemic stroke (AIS), due to the risk of hemorrhagic 
transformation (HT), the thrombolysis approach is limited within a narrow time 
window [Shobha et al. 2011]. Based on the role of blood-brain barrier (BBB) 
disruption before HT, the texture features which reveal the differences in the 
complexity and homogeneity of HT-prone stroke infarcts can be evaluated by 
first-order and 2D grey-level co-occurrence matrix (GLCM) from post-contrast 
T1-weighted spin-echo images of AIS. Metrics constructed by the GLCM 
distances reveal information on the spatial distribution of pixel values which are 
regarded to bring together the features of microtexture [Pantic et al. 2013]. As 
the final result, contrast and correlation are thought to be capable of predicting 
HT and were much more sensitive predictors than conventional visual 
assessment of post-contrast T1WI [Kassner et al. 2009]. 

TA can also be used in the assessment of ischemia-associated treatment. 
The inflammatory factor is an underlying mechanism which influences the 
progression of ischemic stroke [Amantea et al. 2014]. To investigate the 
therapeutic potential of anti-inflammatory agents in post-ischemia, the texture 
parameters were applied to detect early differences in T2WI of stroke depending 
on anti-inflammatory agents and the correlation between texture features and 
changes in ADC and T2 maps [Chen et al. 2010] (Fig.3.2). 
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Figure 3.2: Texture analysis 
flowchart: T2WI acquired from 
MR scanner is loaded to the 
MaZda software, then ROIs 
containing image texture are 
defined. After textural features 
are computed, distribution of 
three texture parameters is 
presented for classification. 
Finally, data classification is 
performed by means of 
nonlinear discriminated 
analysis (NDA). 
Transformation of three 
original features is presented, 
resulting in two NDA features. 
As the results mentioned, two 
texture parameters (black 
circle), which indicate contrast 
and co-occurrence 
matrix-based feature estimated 
as a variance of differential 
distribution respectively, are 
capable of distinguishing 
infarct segments between 
treated group and control 
group, adapted from [Chen et 
al. 2010]. 

 
Image features contained a large amount of information which naked eye 

cannot reach, whereas TA could be the alternative for assessing structural 
properties of images in detail, including homogeneity, complexity and disorder 
level [Pantic et al. 2013]. In chronic ischemic stroke, correlations of DTI and 
texture analysis parameters showed that the two methods mainly reveal different 
information and could both assist in detecting tissue damage due to stroke 
outside the infarct core area [Xie et al. 2012]. The textural parameters, angular 
second moment (ASM) and entropy (ENT) characterize the homogeneity of the 
matrix entries. The results indicated that the damaged brain structure on 
ipsilateral hemisphere is more heterogeneous and random in texture than the 
unaffected areas in the contralateral hemisphere, which is easily hidden by the 
general naked eyes’ observation [Sikio et al. 2014]. 
 
3.4 Voxel-based analysis 
 

Advances in updated equipment, imaging techniques, targeted probes, and 
contrast agents provide benefits in various diseases by a rich-feature dataset, 
especially in monitoring of tumor therapy response [Abramson et al. 2013]. So 
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we cite an instance of tumor for the statement of current predicament in imaging 
data analysis. 

The increased toolbox of techniques provides more details in the 
characterization and interrogation of tumor evolution. So the Response 
Evaluation Criteria in Solid Tumors (RECIST) was defined as the clinical 
standard criteria for assessing the post-treatment follow-ups [Eisenhauer et al. 
2009]. One of the key metric in RECIST is the linear measurement of the longest 
diameter of a tumor or sum of multiple tumors obtained from anatomical tumor 
images. The characteristics of tumor dimension have been fundamental to the 
integration of imaging in routine clinical practice. Additionally, the MRI-derived 
metrics beyond morphological measurement such as DWI and PWI results may 
be more sensitive to reflect the overall response to treatment [Ingrisch et al. 
2013, Sourbron et al. 2013]. These multimodal image-derived metrics are 
extracted from whole tumor volume-of-interest (VOI) contours. Histogram 
analysis of the quantitative voxel values contained within this target lesion 
follows [Jones et al. 2010]. Histogram analysis allows for quantification of the 
image-based VOI assessment, as mentioned in 3.2.2. The mean value where 
tumor response is quantified by the magnitude of change from baseline following 
treatment is evaluated by this approach. However, metrics of the whole tumor 
are thought to be representative when tumor evolution is relatively 
homogeneous. In other cases, these VOI-based measures may be less sensitive 
for detecting treatment-associated changes in longitudinally acquired scans in 
the presence of intra-tumor heterogeneity where local changes are spatially 
varying within the mass [Boes et al. 2014]. 

Current observation for treatment response evaluation in brain tumor relies 
on changes in the maximal crossed-diameter product (CDP) of the tumor at each 
set time point of a therapeutic protocol, which have been correlated with 
increased survival for patients with high-grade gliomas treated with primary 
radiation therapy [Chisholm et al. 1989, Barker et al. 1996, James et al. 1999]. 
Improvements in individual-specific imaging-based metrics are important to 
obtain an objective reflection of treatment response correlated with clinical trial 
outcome. A surrogate biomarker for the efficacy evaluation might enable earlier 
detection to guide suitable clinical decisions and adjust ongoing therapy to 
alternative, because the general period for treatment monitoring is always weeks 
to months from the onset of the therapeutic protocol [Behin et al. 2003, 
Yankeelov et al. 2013]. 

Early therapeutic response readouts during the treatment may be explained 
by the emerging heterogeneity exposed by voxel-based analysis. The 
intralesional heterogeneity can be thought as self-characterized feature or 
therapeutic reaction to the intervention. The former situation can lead to different 
outcomes of individuals with similar imaging representation using summary 
metrics extracted from whole lesion volume contours, while the latter situation 
may result in early identification of therapeutic efficacy using more sensitive 
response metrics, as mentioned above [Tsien et al. 2010, Lestro Henriques et 
al. 2015]. Changes of quantitative voxel values contained within the target ROI in 
histogram MR metrics can be minimal and uniformly shifted with a corresponding 
net shift in the mean value or have similar numbers of voxels with increased and 
decreased values, thus nullifying the overall histogram shift. However, robust 
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measures can be exploited by voxel-based analysis when value changes within 
the lesion are relatively heterogeneous rather than homogeneous [Boes et al. 
2014]. In the following section, we focus on the spread of a relatively new 
voxel-based imaging analytic methodology. 
 
3.4.1 Principle of the parametric response map (PRM): a 
voxel-wise methodology 

DWI itself is a sensitive metric that is able to detect early tumor-associated 
edema and tumor cellularity changes during the treatment, which precede 
macroscopic volumetric response [Ellingson et al. 2010]. In addition, it also 
allows the identification of spatially distinct regional response to the therapy 
within tumor tissues [Ross et al. 2003, Hall et al. 2004, Moffat et al. 2004]. 
Whole-tumor analysis is the most common technique for assessing therapeutic 
response, typically comparing post-therapy or mid-therapy mean ADC value 
changes to pre-therapy ones. However, the response of ADC to cytotoxic 
therapy in the clinical setting has been revealed to be more complex due to 
heterogeneity observed within tumors [Chenevert et al. 2000, Mardor et al. 
2003, Mardor et al. 2004]. During the treatment of patients with malignant brain 
tumors, it has been shown that diffusion changes could both increase and 
decrease over time within the same tumor volume, which means loss and 
gathering of intracellular space separately, especially for therapies with modest 
efficacy [Moffat et al. 2005, Moffat et al. 2006]. Assessing the changes in overall 
tumor mean ADC value can lead to a diminution of sensitivity for the ADC 
measure because of divergent changes in tumor ADC values after treatment. 

As a new pattern of imaging data statistical approach, the PRM, which 
initially used only in ADC maps, has been developed for segmenting tumors 
based on a defined threshold of ADC value changes following therapy. 

Theoretically, the procedure of PRM analyses on each kind of voxel-based 
map is achieved and similar. Here, the generation of PRMADC will be described in 
details as an example: 

1) All images were co-registered onto a reference sequence (generally T2WI 
or FLAIR) of the initial time point (baseline) using a fully automated, affine, 
mutual information-based, simplex optimization algorithm (co-registration 
function in SPM12 free software, distributed under the terms of the GNU General 
Public License as published by the Free Software Foundation); 

2) The 95% confidence interval (CI) was computed for the classification of 
ADC values. Briefly, we empirically calculated the threshold that yields a 
significant change in ADC value for each voxel between the baseline and the 
target time point using a reference of healthy tissue in undamaged brain (the 
mirrored ROI of the lesion in the contralateral hemisphere or the lesion ROI in 
the ipsilateral hemisphere of the sham object). The ADC threshold was 
determined by the 95% unchanged CI resulting from linear least squares 
analysis on the data combined from all the reference objects; 

3) PRMADC maps were determined by calculating the difference between 
ADC within the lesion at the baseline and at each following time point. Red 
voxels represent voxels within each lesion with an increase in the ADC value 
(beyond the CI), blue voxels represent voxels with a decrease in the ADC value 
(below the CI), and green voxels represent voxels within each lesion with an 
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unchanged ADC value (the absolute value of ΔADC varies less than the CI). 
Therefore, all voxels within the lesion volume were segmented into three 

fractions: PRMADC+ (increased ADC, denoted red), PRMADC- (decreased ADC, 
denoted blue), and PRMADC0 (unchanged ADC, denoted green). The same 
analytic procedure can be applied to all the target maps after determining their 
respective CIs. 

The PRM approach has been proven as an early and quantitative imaging 
biomarker of clinical brain tumor treatment outcome in the past decade 
[Hamstra et al. 2005, Moffat et al. 2005] (Fig.3.3). 

 
This voxel-based method for processing longitudinally acquired MRI data 

has been further generalized to multimodal applications including DSC-MRI 
wherein it has been shown to possess significant sensitivity for early cancer 
treatment response over VOI-based metrics [Galban et al. 2009a]. Because 
accurate therapeutic response assessment in brain tumors has strong clinical 
implications in patient management, multiple choices of the MR sequences and 
imaging protocols are essential to get an overall conclusion. It is also reliable to 

Figure 3.3: ADC maps are 
obtained from three 
representative patients with 
GBM treated with 
fractionated radiation therapy 
and either adjuvant or 
concurrent temozolomide 
theray (week 3 and week 7) 
and then classified as PD, SD 
and PR. The regional spatial 
distributions of ADC changes 
in an axial slice containing 
the tumor are shown as 
color-coded overlay for (a1) 
PD, (a2) SD and (a3) PR 
separately. The red voxels 
indicate regions with 
increased ADC, whereas the 
green and blue voxels 
indicate regions with 
unchanged and decreased 
ADC, respectively. (b1-b3) 
The corresponding 
quantitative scatter plots 

from (a1-a3) show the distribution of ADC changes for the whole tumor volume. Box 
plots reflect the percentage of ADC changes within total tumor volume for SD / PR 
and PD groups. (c) The volume within the tumors with significantly increased ADC 
value was denoted red. (d) The volume within the tumors with significantly decreased 
ADC was denoted blue. (e) The total volume of tumors that experienced any 
significant change in ADC was denoted yellow, adapted from [Hamstra et al. 2005]. 
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distinguish true progression from pseudoprogression based on the post-therapy 
tumor heterogeneity revealed by PRM [Tsien et al. 2010] (Fig.3.4). 
 

Figure 3.4: CE-T1W 
images and rCBV 
maps with color scale 
are shown in 2 patients 
at baseline and after 3 
weeks of 
chemoradiation 
therapy. (a1, a3) 
Pre-treatment and (a2, 
a4) mid-treatment 
CE-T1W images, (b1, 
b3) pre-treatment and 
(b2, b4) mid-treatment 
rCBV maps of patient 
no.1 with PP and 
patient no.2 with PD 
are shown separately. 
(c1, c3) PRMs of 
rCBV color-coded 
overlay and (c2, c4) 
corresponding 
quantitative scatter 
plots of patient no.1 
with PP and patient 
no.2 with PD are 
derived from the 
relevant original rCBV 
maps separately. 

Voxels are designated red with significant increase in rCBV, green for voxels 
remain unchanged (the absolute value of ΔrCBV varies less than the 1.2) and blue 
for a significant decrease in rCBV. (d) No difference is noted between patients with 
PP and PD by analyzing whole tumor average rCBV changes. (e) A statistical 
significance in fractional tumor volume with rCBV decrease during the 
chemoradiation therapy (after 3 weeks) versus baseline is shown in patients with 
PP and PD, adapted from [Tsien et al. 2010]. 

 
In summary, with respect to assessment of treatment in patients with 

malignant brain tumors, enhanced advancements in neuroimaging techniques of 
both radiology and nuclear medicine offer detailed functional and quantitative 
information on both adult and pediatric brain tumor heterogeneity [Galban et al. 
2011, Grech-Sollars et al. 2014]. As for MRI system, while early application of 
the voxel-based methods was termed fDM as it was singly applied to ADC map 
[Hamstra et al. 2005, Moffat et al. 2005, Hamstra et al. 2008, Ellingson et al. 
2012a, Ellingson et al. 2012b]. More recently, it has been referred as PRM, 
which can be generalized and applied to multiple imaging modalities including 



72 
 

MRI, CT, PET, etc [Galban et al. 2009a, Chiba et al. 2012, Galban et al. 2012, 
Harris et al. 2012, Hoff et al. 2012]. 
 
3.4.2 Applications of parametric response map in other 
diseases 

DWI sequence and corresponding ADC map are widely used in the various 
diseases of whole body. Since PRM assessment of the heterogeneity appears 
as a promising imaging biomarker in efficacy between patients with malignant 
brain tumors, theoretically the extension of ADC-mediated PRM analysis has 
potential to be applied besides the brain, including breast cancer [Sinha et al. 
2002], rectal carcinoma [Kremser et al. 2003], uterine fibroids [Liapi et al. 2005], 
prostate cancer [Sinha et al. 2004], head and neck tumors [Wang et al. 2001] 
and liver metastases [Theilmann et al. 2004]. 

Several published results have shown the successful applications of PRM in 
different diseases outside brain. It has been testified that PRM has great 
potential for the revolutionary imaging analysis in multiple targets of organ based 
on diversified image platforms. For example, a PRM analysis for ADC values 
appears to provide an improved sensitivity over histogram-based mean ADC 
changes for early response assessment in patients with breast cancer 
undergoing neoadjuvant chemotherapy (NAC) [Galban et al. 2015b]. It also has 
the potential to provide both prognostic and spatial information during the 
nonsurgical organ preservation therapy (NSOPT) of head and neck squamous 
cell carcinoma (HNSCC) [Galban et al. 2009b]. For the metastatic prostate 
cancer to the bone, the potential application of this approach has been proven to 
be sensitive to assess early changes in therapeutic response of solid bone 
lesions [Lee et al. 2007b] (Fig.3.5). 



73 
 

 
Figure 3.5: A summarized example to show the multiple applications of PRM approach 
in various diseases besides brain tumor. PRMADC (a1, a2) and corresponding scatter 
plots (b1, b2) of two patients with primary breast cancer are shown for a representative 
non-responder (a1, b1) and responder (a2, b2) to NAC [Galban et al. 2015b]. PRMKtrans 
color-coded ROIs superimposed on pre-treatment CE-T1W images (c1, c2) and  
corresponding scatter plots (d1, d2) of two patients with HNSCC stratified by PRMKtrans- 
(the blue voxels) as good prognosis (c1, d1) and poor prognosis (c2, d2) [Baer et al. 
2015]. PRMADC analysis of metastatic prostate cancer to the bone at week 2 (e1-e3) and 
week 8 (f1-f3), after a combined treatment of androgen blockade with bicalutamide and 
goserelin acetate, and radiation are presented on the right column. The PRMADC 
color-coded overlay provides a visual representation of femoral head lesion (e1, f1), 
sacral lesion (e2, f2) and ilium lesion (e3, f3) with large regions of increased ADC (red 
voxels). (g) Statistical significances are revealed by the comparison of mean ADC value 
and PRMADC approach in the osteolesions, adapted from [Lee et al. 2007a]. 
 

This analytic method is feasible not only for MRI parameters but also for all 
other digital imaging approaches in form of voxels / pixels. Once PRM has been 
demonstrated as a novel quantitative imaging biomarker to assess phenotypic 
contributions of functional small airways disease (fSAD) and emphysema in 
chronic obstructive pulmonary disease (COPD) from inspiratory and expiratory 
lung CT images [Galban et al. 2012]. For another example, loss of bone mass 
due to disease such as osteoporosis and metastatic lesions to the bone is the 
leading cause of bone weakening and possibly orthopedic complications like 
bone fracture [Krestan et al. 2011]. PRM is also capable of identifying local 
changes in bone mineral earlier than whole-bone mean statistics by standard 
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CT-based protocols in a preclinical research. It is able to detect changes in bone 
mass with higher sensitivity and spatial location than conventional CT scans, 
which may provide information on clinical decision making for human suffering 
from bone loss [Hoff et al. 2015]. 
 

The advantages and drawbacks of different imaging analysis strategies 
introduced in this chapter are summarized in Tab.3.1. 
 

Table 3.1: The strengths and challenges of different imaging analysis methods 
 Strengths Challenges 

Whole ROI-based 
analysis 

Manageable; Visually 
observable; 
Widely-accepted; Instant 
comparability 

Limited spatial extent; 
Nullification of the overall 
value shift; Dependency on 
ROI contours 

Texture analysis Characterize the underlying 
structure of the observed 
tissues 

A restriction to a set of 
predefined regions of 
interest without sufficient 
textural information; 
Difficulties in feature 
classification 

Voxel-based 
analysis 

(parametric 
response map) 

Provide voxel-wise 
classification and spatial 
information; 
Show the heterogeneity of 
individuals; 
Sensitive to early prediction 

Data of at least two time 
points is obligatory; 
Inherent complexity of 
image registration 
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Chapter 4 
 

Challenges and fundamental objective 
 
 

Stroke is one of the leading causes of mortality and disability in adults. Once 
for a long period, intravenous thrombolysis was regarded as the only effective 
treatment to rescue the brain tissue suffering from ischemia. However, due to the 
very limited therapeutic time window and selecting criteria, considerable efforts 
of rehabilitation have only been made to enhance functional recovery for most 
patients [Hacke et al. 2008]. While additional revascularization strategies have 
since been developed, the basic premise behind them remains the same. The 
goal of such therapies is to restore potentially salvageable ischemic tissue for 
the prevention of irreversible infarction in the brain [Tsivgoulis et al. 2014]. The 
territory of restorable brain tissue is termed as penumbra, which can be 
recognized from perfusion CT or diffusion / perfusion MRI. The general concept 
that a patient with a significant penumbra is more likely to benefit from 
recanalization therapies with the consideration of the potential risks makes it 
crucial to properly identify penumbra using noninvasive and high-performance 
imaging approaches [Wintermark et al. 2006, Davis et al. 2014, Lin L. et al. 
2016]. 

Beyond the narrow time window and risk of hemorrhage of intravenous 
thrombolysis and / or endovascular treatment, cell therapy has huge potential for 
improving stroke outcome. As a regenerative treatment for stroke, it has been 
reported to be effective to the functional recovery in a later stage. However, the 
underlying mechanisms which depend on different stem cell types, delivery 
routes, doses, starting onsets of therapy, etc. remain uncertain [Prasad et al. 
2012, Sharma et al. 2014]. Due to the extended therapeutic time window, 
accurate reflection of the response to this new therapy, using imaging 
biomarkers, is necessary for the assessment of therapeutic efficacy [Bang et al. 
2005]. 

Since MR diffusion-weighted imaging (DWI) can reflect the free water 
distribution and diffusivity, it is highly sensitive to identify tissue damage after 
ischemic injury. The corresponding apparent diffusion coefficient (ADC) map is 
hypothesized to be a valuable illustration in both morphological and functional 
assessment of ischemic stroke [Nour et al. 2011, Le Bihan et al. 2014]. Besides 
DWI, MR perfusion-weighted imaging (PWI) represents a form of alterations in 
cerebral blood flow, with additional information on hemodynamic properties and 
metabolism by measuring diffusible tracers such as exogenous Gadolinium 
contrast agent or endogenous magnetically labeled arterial blood water protons 
[Ostergaard et al. 2005, Petcharunpaisan et al. 2010]. PWI has been 
employed as a prominent role for implementation in acute stroke management 
by providing a visual representation of reversible hypoperfused tissue in 
ischemic stroke based on the assessment of cerebral (micro)vasculature [Grand 
et al. 2013]. 
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Although the identification of penumbra can be realized by a combined 
application of both DWI and PWI, the time-consuming process of PWI still limits 
its use in the acute clinical setting. DWI is thought as a very promising routine 
imaging technique for its high sensitivity to ischemic tissue damage and 
infarction [Aronen et al. 2007, Rodriguez-Yanez et al. 2011]. However, 
alterations in the stroke lesion with the development of ischemia may involve cell 
swelling secondary to loss of cellular water homeostasis, followed by 
subsequent necrosis or apoptotic-induced cellular death. In addition, there may 
be a reorganization of free extracellular water as seen for edema or cystic 
regions. The interaction of all these factors may produce transient, spatially 
varying increases and decreases in regional diffusion values, which may be 
underestimated by using the mean ADC value inside specific regions of interest 
(ROIs) in whole-lesion analytic approach [Tamura et al. 2009, Lestro 
Henriques et al. 2015]. 

From ADC maps, the intralesional patterns of acute stroke lesions can be 
categorized into different types including homogeneous or patchy and 
heterogeneous. It has been reported that different intralesional patterns in ADC 
maps may represent lesions of ischemia with a different potential for recovery 
after acute stage and consequently predict functional outcome in follow-ups 
[Lestro Henriques et al. 2015]. 

Up to now, the whole-lesion approach is still the commonest method for 
imaging data analysis in most studies. However, the heterogeneity of stroke 
lesions should be taken into account if one aspires to the objective evaluation of 
stroke evolution by a more accurate quantification of the data. A voxel-based 
approach termed the parametric response map (PRM) has been developed, by 
which regional variations in the value of each imaging parameter can be 
quantified separately [Moffat et al. 2005, Galban et al. 2009a, Baer et al. 2015]. 

Furthermore, the current widely-used treatments mainly focus on acute 
management, of which the efficacy has been evaluated to find the correlation 
with functional outcome. But cell therapies have extended the therapeutic time 
window to subacute or even chronic stage of ischemic stroke [Detante et al. 
2014, Kalladka et al. 2014]. So the new imaging biomarkers are in urgent need 
to assess the pathological changes in detail inside a stroke lesion and deduce 
the underlying mechanisms concerning the clinical therapeutic strategies based 
on stem cells [Moisan et al. 2012]. 

As a significant difference in prognosis evaluation in patients with malignant 
tumors, which can be designated as long and short survival to distinguish the 
outcome or anti-tumor therapy effects, prognosis of patients with ischemic stroke 
is generally delimited as different extents of handicap or disability instead of 
death, which can be evaluated by multiple functional tests [Fischer et al. 2005]. 
The results of the final score can reflect the functional level in each stage during 
stroke evolution and normally be compared before and after treatment 
[Bugnicourt et al. 2013, Schaefer et al. 2015, Guo et al. 2016]. However, the 
score may be set on a relatively wide scale, and to some extent, it may probably 
be interfered by the inspector’s subjective consciousness. With a long-term 
observation of the functional test results in chronic ischemic stroke, an overall 
consideration of prognosis may be provided with respect to the additional 
information from new imaging metrics explored by PRM. 
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Our studies were divided into two parts including a preclinical and a clinical 
research, with a main goal to reveal the superiority of PRM approach over the 
conventional whole-lesion approach in stroke imaging analysis. 

In our preclinical study, we compared these two analytic approaches based 
on the same multiparametric MR protocols including diffusion, perfusion and 
vessel size at several pre- and post-treatment time points to assess the effects 
of a biotherapy with intravenous delivery of human mesenchymal stem cells 
(hMSCs) in subacute stage, using a rat model after experimental stroke. 

In the clinical study, patients suffering from ischemic stroke were undergone 
the DWI and PWI inspection at the set time points in chronic stage. For each 
time point, the National Institutes of Health Stroke Scale (NIHSS) and the 
modified Rankin Scale (mRS) were obtained for objective quantification of the 
impairment after ischemic injury. All the MRI parameters were analyzed by 
whole-lesion approach and PRM approach. The PRM results were derived from 
the comparison of the parametric values between the baseline and each other 
time point. An overall analysis was done to show the correlation between 
imaging metrics and functional scores during the whole follow-up. 

As we have known from the published references, our work is the first trial to 
use PRM approach for the MRI data analysis in stroke monitoring, including 
estimation of new therapy efficacy and prediction of functional outcome. It may 
prove that the PRM can be used as a feasible and potential imaging tool to 
reflect the accuracy of intralesional characteristics for individuals with stroke, 
which may correlate with the therapeutic response and clinical outcome. 
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Chapter 5 
 

Evaluation of parametric response map to assess 
cell therapy effects after experimental stroke 

(This part of research has been submitted to the journal “Cell Transplantation”) 
 
 
5.1 Brief abstract 
 

Stroke is the leading cause of disability in adults. After the very narrow time 
frame during which treatment by thrombolysis and mechanical thrombectomy is 
possible, cell therapy has huge potential for enhancing stroke recovery. Accurate 
analysis of the response to new therapy, using imaging biomarkers, is needed to 
assess therapeutic efficacy. The aim of this study is to compare two analysis 
techniques: the parametric response map (PRM), a voxel-based technique, and 
the standard whole-lesion approach. These two analyses were performed on 
data collected at 4 time points in a transient middle cerebral artery occlusion 
(tMCAo) model, which was treated with human mesenchymal stem cell (hMSC) 
therapy. The apparent diffusion coefficient (ADC), cerebral blood volume (CBV) 
and vessel size index (VSI) were mapped using MRI. Two groups of rats 
received an intravenous (IV) injection of either 1 mL phosphate-buffered saline 
(PBS)-glutamine (MCAo-PBS, n = 10) or 3 million hMSCs (MCAo-hMSC, n = 10). 
One sham group were given PBS-glutamine (sham, n = 12). Each MRI 
parameter was analyzed by both the PRM and whole-lesion approaches. At day 
9 (D9), one day after graft, PRM revealed that hMSCs had reduced the fraction 
of decreased ADC (PRMADC-: MCAo-PBS 6.7±1.7% vs. MCAo-hMSC 3.3±2.4%), 
abolished the fraction of increased CBV (PRMCBV+: MCAo-PBS 16.1±3.7% vs. 
MCAo-hMSC 6.4±2.6%) and delayed the fraction of increased VSI (PRMVSI+: 
MCAo-PBS 17.5±6.3% vs. MCAo-hMSC 5.4±2.6%). The whole-lesion approach 
was, however, insensitive to these early modifications. PRM thus appears to be 
a promising technique for the detection of early brain changes following 
treatments such as cell therapy. 

 
Key Words: ischemic stroke; cell therapy; mesenchymal stem cell; diffusion 

MRI; perfusion MRI; parametric response map 
 
5.2 Introduction 
 

Stroke is the leading neurological cause of disability in adults. Ischemic 
stroke (about 80% of all cases) occurs when arterial blood flow is interrupted. 
Currently, thrombolysis with tissue plasminogen activator (t-PA) and mechanical 
thrombectomy are employed as clinical treatments. Unfortunately, only around 5% 
of patients are treated with t-PA / thrombectomy, due to the very narrow 
therapeutic time window. Thus, most patients suffering from stroke only receive 
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supportive care and rehabilitation to improve recovery [Fonarow et al. 2011]. 
The development of other therapeutic strategies, which may be effective beyond 
the time window, is therefore critical for patients. 

Multiple therapeutic approaches have been developed in preclinical studies 
in rodent models of cerebral ischemia. To this end, there is a strong interest for 
the potential of cell transplantation [Moskowitz et al. 2010, Eckert et al. 2013]. 
Among the cell populations currently available, human mesenchymal stem cells 
(hMSCs), derived from bone marrow, seem to have definite therapeutic potential. 
Indeed, these cells are characterized by poor immunogenicity, and may be used 
for cell therapy following stroke, under either autologous or allogenic conditions, 
without inducing side effects [Moisan et al. 2012, Eckert et al. 2013, Gennai et 
al. 2015]. Human MSCs participate in the reconstruction of a favorable 
microenvironment, leading to neovascularization and tissue regeneration. 
Enhancement of the differentiation of stem cells into the original cell lineages of 
the damaged tissue, or selective migration of cells to ischemic regions to support 
plasticity may eventually improve functional recovery after ischemia [Orlic et al. 
2001, Shyu et al. 2004]. The detailed mechanisms by which transplanted 
hMSCs ameliorate stroke prognosis are still poorly understood  and could 
depend on the microenvironment (accessibility to tissue, tissue type, 
oxygenation level etc.) [Jeong C. H. et al. 2014]. Moreover, among all the 
administration routes available (intracerebral, intrathecal, intra-arterial and IV), 
the IV administration, less invasive, appears today safer and easier than local 
brain grafting following stroke in the clinical setting and allows cell distribution 
into vascularized and viable areas of the lesion [Detante et al. 2009]. A clinical 
trial already demonstrated that IV delivery of hMSC is feasible and safe for 
stroke patients [Bang et al. 2005]. 

Today, multiparametric magnetic resonance imaging (MRI), including 
diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI), has 
become the gold standard to characterize stroke lesions [Gonzalez et al. 2012]. 
MRI also plays an important role in the identification, evaluation and monitoring 
of cerebral tissue undergoing stroke, from the acute to the recovery phase [Ding 
et al. 2014]. However, the spatial heterogeneity of a stroke lesion, well visible on 
MRI maps, remains a challenge for current image analysis techniques [Bang et 
al. 2009a, Lestro Henriques et al. 2015]. An analysis of the mean value across 
a large region of interest (ROI) by manual delineation can easily mask focal 
changes of intralesional tissue properties. Thus, to evaluate the therapeutic 
effect dedicated to stroke recovery, the lesion heterogeneity in space and time 
needs to be accounted for by the image analysis. Histogram-based techniques 
provide an evaluation of lesion heterogeneity but fail to provide spatial 
information. An alternative is the parametric response map (PRM), a 
voxel-based analysis technique, which has been used in multiple brain diseases 
including glioma and primary intracerebral hemorrhage (ICH). PRM, which has 
been established as a promising tool to investigate parametric changes of 
heterogeneous lesion over time at the voxel level, is well suited to evaluate a 
therapeutic response or to make a prognosis [Galban et al. 2009a, Galban et al. 
2011, Tsai et al. 2013]. All the demonstrations of the PRM approach are based 
on the potential mechanisms occur during stroke evolution, which indirectly 
realized by imaging visualization (a schematic representation of PRMADC in 
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Fig.5.1). 
In a recent publication, Moisan et al. reported that an IV injection of hMSC 

modifies microvasculature associated with overexpressions of several 
angiogenic factors such as Ang1, Ang2 or Tie2 as soon as 1 day post injection in 
a rat model of stroke, by enhancing endogenous angiogenesis and immature 
vessel stabilization in a parallel study with the same experiment condition of ours 
[Moisan et al. 2016]. In that article, a sustained overexpression of Ang1 and 
Ang2 were observed from D9 to D25 in hMSC-treated group (Fig.5.2). Ang2 has 
been proved to promote endothelial cells survival and participate to vascular 
stabilization through Tie2 activation [Kim et al. 2000, Teichert-Kuliszewska et 
al. 2001]. Furthermore, improvement of the functional recovery has been 
revealed in hMSC-treated animals by behavioral testing with a long-term 
follow-up [Moisan et al. 2016]. No microvascular change is however detected by 
the associated multiparametric MRI protocol at the early times points following 
hMSC injection. 

To reduce the delay between the biological changes induced by the stem 
cells and the MRI changes, we evaluate in this study new imaging biomarkers. 
The MRI dataset from Moisan et al. was reprocessed by using the PRM 
technique. The two main methodological goals of this study were: i) to 
characterize the evolution of the heterogeneity of stroke lesions in a rodent 
model using in vivo multiparametric MRI and ii) to evaluate the potential of PRM 
to describe the impact of a cell therapy on the stroke lesion. 
 
5.3 Materials and methods 
 

All animal procedures were carried out in accordance with the French 
guidelines on the use of animals in scientific investigations (permits 381106 for 
AM, 380820 for CR and A3851610008 for experimental and animal cares 
facilities), with the approval of the “Grenoble Institut des Neurosciences” ethical 
committee (agreement 004). For all procedures, anesthesia was induced by 
inhalation of 5% isoflurane (Abbott Scandinavia AB, Solna, Sweden) in 30% O2 
in air and was maintained throughout all surgical and imaging protocols with 
2-2.5% isoflurane through a facial mask. Rectal temperature was monitored and 
maintained at 37.0±0.5 ℃. 
 
5.3.1 Transient Middle Cerebral Artery occlusion (tMCAo) 
model 

A total of 32 rats were used in this study. Twenty Sprague Dawley male rats 
(weighing 250-300g, Janvier, France) underwent transient focal cerebral 
ischemia surgery at day 0 (D0), as described by Moisan et al. [Moisan et al. 
2012]. Briefly, after isolating the right carotid arterial tree, a commercially 
available silicon rubber-coated monofilament (diameter 0.37 mm, Doccol 
Corporation, Pennsylvania) was advanced from the lumen of the external carotid 
artery into the internal carotid artery, up to 5 mm beyond the external skull base. 
After 90 min of occlusion, rats were reanaesthetized and the thread was 
removed. A further 12 rats underwent the same surgery without occlusion (sham 
group). 
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5.3.2 Experimental groups and intravenous administration 
of hMSCs 

The 20 MCAo rats were stratified randomly into 2 groups (10 rats per group). 
At D8, the two groups received an injection via the tail vein of either 1 mL 
phosphate-buffered saline (PBS)-glutamine (MCAo-PBS) or 3 million hMSCs 
(MCAo-hMSC). The sham group received the same PBS-glutamine injection as 
the MCAo-PBS group (Fig.5.3-A). 

The hMSCs were used to be consistent with an ongoing clinical trial (PHRC 
NCT00875654). The hMSCs were isolated from bone marrow aspirated from 

healthy, consenting donors and cultured at 37 ℃ in a humidified atmosphere 

containing 5% CO2. Minimum Essential Medium with alpha modification (MEMɑ), 
supplemented with 100 ug/mL penicillin, 100 ug/mL streptomycin, and 10% fetal 
calf serum was used for culturing (all reagents are from Invitrogen, France). 
 

5.3.3 MRI experiments: acquisition 
Each rat was analyzed by MRI (7 T, Avance III console; Bruker - Grenoble 

MRI facility IRMaGE) for 3 weeks (subacute stage: D3, D7, D9 and chronic stage: 
D16 after transient MCAo or sham surgery). The following sequences were 
performed: 1) T2-weighted images (TR/TE = 2500/60 ms, voxel = 
234×234×1000 μm3, 16 slices, 2 averages); 2) diffusion-weighted images (DWI: 
spin echo planar imaging; TR/TE = 3000/29 ms; voxel = 234×234×1000 μm3; 7 
slices) for three principal directions and 3) multi-gradient echo and spin echo 
images (MGESE: TR/TE = 4000/40 ms; 7 echoes from 2.3 to 15.6 ms, voxel = 
234×234×1000 μm3; 7 slices; 2 averages) acquired before (MGESE-pre) and 2 
min after IV injection (MGESE-post) of ultrasmall superparamagnetic iron oxide 
particles (USPIO; P904®, Guerbet, Roissy, France; 200 μmol iron/kg body 
weight). 
 
5.3.3.1 MRI experiments: data processing 

The apparent diffusion coefficient (ADC) map was calculated by Eq. [1]: 
 

[1] 

 
where S1 is the signal intensity (SI) of the voxel obtained through three 
orthogonally oriented diffusion-weighted images or diffusion trace images. S0 is 
the SI of the voxel obtained through reference T2-weighted images. b1 is the 
gradient b factor with a value of 900 s/mm2. b0 is the gradient b factor with a 
value of 0 s/mm2. 

Cerebral blood volume (CBV) and vessel size index (VSI) maps were 
obtained using a steady-state approach and computed using an in-house 
software developed within Matlab (MathWorks, Natick, MA, USA), according to 
Tropres et al. [Tropres et al. 2014]. CBV was derived from the ΔR2
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Eq. [2]: 
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[2] 

 
where γ is the gyromagnetic ratio of the proton. Δχ is the increase in 
intravascular susceptibility following the injection of contrast agent (0.19 ppm 
(cgs)). B0 is the value of the static magnetic field. 

VSI was derived using Eq. [3], according to Tropres et al. [Tropres et al. 
2014], and represents the mean vessel diameter in each voxel: 
 

[3] 

 
Within each map of each time point, voxels for which the analysis could not be 
performed, for example, voxels with non-converging fits or voxels with values 
outside the range of validity of the method used to measure parameters (ADC > 
3500 µm2/s; CBV > 17%; VSI > 50 µm), were identified and excluded from the 
analysis (fractions of all excluded voxels of each map: 12.8%, 17.5% and 19.8% 
respectively). It must be noted that the microvascular parameters (CBV and VSI) 
only reflect the functional vessels (i.e. those perfused by the contrast agent). 
 
5.3.3.2 Data analysis 
 
5.3.3.2.1 Regions of interest (ROIs) definition 

For each rat and each MRI session, the whole stroke lesion, identified as 
the hyperintense region on the T2-weighted images, was manually delineated 
and subsequently checked for concordance on the ADC maps, to avoid 
ventricles. Each lesion was delineated on all slices where it was visible [Moisan 
et al. 2012]. The definition of ROIs was made blind to treatment allocation. 
Lesion volumes were computed by calculating the sum of lesion areas on each 
slice. In the sham group, a ROI was delineated on the right hemisphere, which 
had a contour and a size similar to that of the stroke lesions observed in the 
MCAo groups at D0. ROIs were then transferred onto the ADC, CBV, and VSI 
parametric maps. 
 
5.3.3.2.2 Whole-lesion analysis 

For each rat at each time point, ADC, CBV and VSI values were measured 
in each ROI and are presented as mean±standard deviation (SD[2]). 
 
5.3.3.2.3 Parametric response map (PRM) analysis 

All images were co-registered onto T2-weighted images of D3 using a fully 
automated, affine, mutual information-based, simplex optimization algorithm 
(co-registration function in SPM12 free software, distributed under the terms of 
the GNU General Public License as published by the Free Software Foundation). 
Changes in ADC, CBV and VSI maps were analyzed voxel-wise by PRM for 
each rat at each time point. For the purpose of clarity, PRM analyses on ADC 
maps will be described in details (Fig.5.3-B). We first computed the 95% 
confidence interval (CI) for the classification of ADC values according to most 
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PRM procedure design. Briefly, we empirically calculated, in the sham animals, 
the threshold that yields a significant change in ADC value for each voxel 
between D3 and D7. The ADC threshold (120 µm²/s) was determined by the 95% 
unchanged CI resulting from linear least squares analysis on the data combined 
from all 12 rats of the sham group (data not shown) instead of the receiver 
operating characteristic (ROC) curve analysis for an optimal prediction which 
previously described in a reference [Galban et al. 2009b]. Then, PRMADC maps 
were determined by calculating the difference between ADC within the stroke 
lesion at D3 and at each following time point (D7, D9 and D16). Red voxels 
represent voxels within each lesion with an increase in the ADC value (beyond 
the CI of 120 µm2/s; cf. above), blue voxels represent voxels with a decrease in 
the ADC value (below the CI), and green voxels represent voxels within each 
lesion with an unchanged ADC value (the absolute value of ΔADC varies less 
than the CI). Therefore, all voxels within the lesion volume were segmented into 
three fractions: PRMADC+ (increased ADC, denoted red), PRMADC- (decreased 
ADC, denoted blue), and PRMADC0 (unchanged ADC, denoted green). The same 
analytic procedure was applied to the CBV and VSI maps. After determining 
each CI (2.5% for PRMCBV and 5.8 µm for PRMVSI), PRMCBV and PRMVSI maps 
were obtained at D7, D9 and D16 by comparison with the data acquired at D3. 
 
5.3.3.2.4 Statistical analysis 

Between-group comparison was performed using unpaired t-tests after 
checking the variance homogeneity (Levene’s test). In cases of variance 
inhomogeneity, a Mann-Whitney test was used. To evaluate the PRM changes, 
we performed a three-group (MCAo-PBS, MCAo-hMSC and sham) and 
three-time-point (D7, D9, and D16) mixed-design ANOVA, using a Bonferroni 
correction for multiple comparisons. Results are expressed as mean±SD[2]. All 
statistical analyses were conducted with a statistical software package (SPSS; 
SPSS, Inc, Chicago, IL). Results were declared statistically significant at the 
two-sided 5% comparison-wise significance level (p < 0.05). 
 
5.4 Results 
 
5.4.1 Evolution of lesion volume 

At each time point, the mean lesion volumes of the two MCAo groups were 
comparable (MCAo-PBS vs. MCAo-hMSC: D3: 67.5±15.7 mm3 vs. 83.9±24.6 
mm3; D7: 91.5±39.1 mm3 vs. 70.0±14.3 mm3; D9: 89.3±33.8 mm3 vs. 97.6±9.2 
mm3; D16: 92.8±24.6 mm3 vs. 107.2±9.2 mm3) (Fig.5.4-A). 
 
5.4.2 Evolution of ADC 

The whole-lesion approach showed that the ADC in the MCAo and sham 
groups were comparable at D3 and D7 and differed at D9 and D16: the mean 
ADC values in the lesions were increased in both MCAo groups (MCAo-PBS 
and MCAo-hMSC), when compared to the sham condition (D9: 1151±166 μm2/s 
and 1142±144 μm2/s vs. 736±189 μm2/s; D16: 1582±415 μm2/s and 1753±145 
μm2/s vs. 789±32 μm2/s, p < 0.05 respectively) (Fig.5.4-B). Moreover, the 
intralesional heterogeneity in both MCAo groups were two times higher at D3 
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than in the sham group (mean of the SD[2] values were 127±23 μm2/s and 
129±37 μm2/s vs. 65±17 μm2/s for MCAo-PBS, MCAo-hMSC and sham groups, 
respectively) (Fig.5.4-B). This intralesional heterogeneity increases over time to 
reach a mean of the SD[2] about seven times higher in both MCAo groups than in 
the sham group (mean of the SD[2] values were 435±198 μm2/s and 
472±121 μm2/s vs. 64±31 μm2/s for MCAo-PBS, MCAo-hMSC and sham groups, 
respectively) (Fig.5.4-B). 

The PRM approach showed that most of the pixels in the lesion ROIs 
exhibited increased ADC values in the stroke animals. At the periphery of the 
lesion ROIs, areas with a stable or decreased ADC were also observed at each 
time point (Fig.5.5). A visual inspection of the maps also suggested that the 
PRMADC maps were relatively stable over time. PRMADC color-coded overlay of a 
rat in MCAo-PBS group is shown in contrast to a rat in hMSC-treated group. A 
corresponding quantitative scatter plot shows the distribution of ADC value at D3 
compared with D9 for the entire ischemic lesion volume region (Fig.5.6). 

The fractions of voxels with an increased (PRMADC+) or decreased (PRMADC-) 
ADC over time in both MCAo groups differed from those of the sham group. The 
PRMADC+ fractions were larger in the MCAo groups (MCAo-PBS and 
MCAo-hMSC) than in the sham group at D7 (62.7±12.1% and 71.9±14.2% vs. 
4.0±3.3%, p < 0.01), D9 (68.7±9.1% and 77.1±9.4% vs. 2.9±2.3%, p < 0.01) and 
D16 (78.7±13.1% and 83.8±8.2% vs. 3.7±3.0%, p < 0.01) (Fig.5.9). The 
PRMADC- fraction was larger in the MCAo-PBS group than in the sham group at 
D7 (6.1±2.4% vs. 3.0±2.6%, p < 0.01), D9 (6.7±1.7% vs. 3.2±2.6%, p < 0.01) 
and D16 (5.7±1.7% vs. 3.0±1.9%, p < 0.01). The PRMADC- fraction was larger in 
the MCAo-hMSC group than in the sham group only before treatment (D7: 
6.3±2.3% vs. 3.0±2.6%, p < 0.01). Moreover, the PRMADC- fraction decreased in 
the MCAo-hMSC group, in comparison to the MCAo-PBS group, after treatment 
(D9: 3.3±2.4% vs. 6.7±1.7% and D16: 3.3±1.0% vs. 5.7±1.7%; p < 0.01 
respectively) (Fig.5.9). The ANOVA showed significant increase of PRMADC+ at 
D7, D9 and D16 in both MCAo groups when compared to the sham group. At D3, 
there was significant increase of PRMADC- in both MCAo groups when compared 
to the sham group. At D9 and D16, PRMADC- was significantly higher in the 
MCAo-PBS group than that in MCAo-hMSC and sham groups while no 
significant interaction between the latter two groups. 
 
5.4.3 Evolution of CBV 

The whole-lesion approach showed that no significant CBV difference was 
observed between the two MCAo groups at each time point, but the mean CBV 
values in the lesions were significantly increased in both MCAo groups 
(MCAo-PBS and MCAo-hMSC), compared to the sham group (D3: 4.1±0.4% 
and 4.5±0.3% vs. 2.7±0.7%; D7: 3.8±0.3% and 4.2±0.3% vs. 2.5±0.6%; D9: 
4.3±0.4% and 4.4±0.4% vs. 2.7±0.3%; D16: 4.4±0.4% and 4.5±0.4% vs. 
2.5±0.4%, p < 0.05 respectively) (Fig.5.4-C). Moreover, the intralesional 
heterogeneity in both MCAo groups was higher and stable over time than in the 
sham group (mean of the SD[2] values across time points were 2.6±0.4 and 
2.7±0.4 vs. 1.8±0.3% for MCAo-PBS, MCAo-hMSC and sham groups, 
respectively) (Fig.5.4-C). 

The PRM approach yielded PRMCBV maps with a large fraction of stable 
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CBV values. Small areas with either decreased or increased CBV appeared 
throughout each lesion and the positions of these modified CBV areas evolved 
with time (Fig.5.5). PRMCBV color-coded overlay of a rat in MCAo-PBS group is 
shown in contrast to a rat in MCAo-hMSC group. A corresponding quantitative 
scatter plot shows the distribution of CBV value at D3 compared with D9 for the 
entire ischemic lesion volume region (Fig.5.7). 

The fraction of voxels with an increased (PRMCBV+) and decreased 
(PRMCBV-) CBV over time in the two MCAo groups differed from that of the sham 
group. The PRMCBV+ fraction was larger in the MCAo groups (MCAo-PBS and 
MCAo-hMSC) than in the sham group at D7 (15.4±2.4% and 16.4±4.7% vs. 
2.9±2.3%, p < 0.01 respectively), D9 (16.1±3.7% and 6.4±2.6% vs. 3.9±2.3%, p 
< 0.01 and p < 0.05 respectively) and D16 (23.7±2.8% and 20.6±5.0% vs. 
3.5±2.3%, p < 0.01 respectively). Moreover, the PRMCBV+ fraction was higher in 
the MCAo-PBS group than in the MCAo-hMSC group at D9 (16.1±3.7% vs. 
6.4±2.6%, p < 0.01) (Fig.5.10). The PRMCBV- fraction was larger in the MCAo 
groups (MCAo-PBS and MCAo-hMSC) than in the sham group at D7 (24.1±9.5% 
and 25.5±7.5% vs. 4.8±2.9%, p < 0.01 respectively), D9 (16.5±6.0% and 
23.5±12.2% vs. 4.2±2.5%, p < 0.01 respectively) and D16 (15.5±4.8% and 
17.9±5.6% vs. 3.4±1.9%, p < 0.01 respectively) (Fig.5.10). The ANOVA showed 
significant increase of PRMCBV+ and PRMCBV- at D7, D9 and D16 in both MCAo 
groups when compared to the sham group. At D9, PRMCBV+ was significantly 
higher in the MCAo-PBS group than that in the MCAo-hMSC group. 
 
5.4.4 Evolution of VSI 

The whole-lesion approach showed that the VSI value measured in each 
lesion was higher in both MCAo groups (MCAo-PBS and MCAo-hMSC) than in 
the sham group at D3 (11.2±0.6 μm and 11.9±0.2 μm vs. 5.6±0.6 μm, p < 0.05 
respectively), D7 (10.3±0.5 μm and 10.0±0.1 μm vs. 5.0±0.3 μm, p < 0.05 
respectively), D9 (10.0±0.3 μm and 10.2±0.3 μm vs. 5.2±0.2 μm, p < 0.05 
respectively) and D16 (9.4±0.5 μm and 7.6±0.4 μm vs. 5.1±0.6 μm, p < 0.05 
respectively) (Fig.5.4-D). Moreover, no difference in VSI was observed between 
the MCAo groups (MCAo-PBS and MCAo-hMSC) at D3, D7 and D9. However, 
at D16, the mean VSI value was higher in the MCAo-PBS group than in the 
MCAo-hMSC group (9.4±0.5 μm vs. 7.6±0.4 μm, p = 0.047). Moreover, the 
intralesional heterogeneity in both MCAo groups were higher and stable over 
time as compared to the sham group (mean of the SD[2] values across time point 
were 4.8±0.5 and 4.8±0.5 vs. 3.3±0.6 μm for MCAo-PBS, MCAo-hMSC and 
sham groups, respectively) (Fig.5.4-D). 

With the PRM approach, PRMVSI maps exhibited patterns similar to those of 
PRMCBV: a large unchanged VSI fraction with small areas of modified VSI 
distributed throughout each lesion, the positions of which varied with time 
(Fig.5.5). PRMVSI color-coded overlay of a rat in MCAo-PBS group is also shown 
in contrast to a rat in MCAo-hMSC group. A corresponding quantitative scatter 
plot shows the distribution of VSI value at D3 compared with D9 for the entire 
ischemic lesion volume region (Fig.5.8). 

The fraction of voxels with increased (PRMVSI+) and decreased (PRMVSI-) 
VSI, over time, in both MCAo groups differed from that of the sham group. The 
PRMVSI+ fraction was larger in the MCAo groups (MCAo-PBS and MCAo-hMSC) 
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than in the sham group at D7 (12.3±2.9% and 14.3±3.6% vs. 4.0±2.4%, p < 0.01 
respectively) and D16 (24.4±5.4% and 21.0±5.7% vs. 5.0±2.9%, p < 0.01 
respectively). Moreover, the PRMVSI+ fraction at D9 was higher in the MCAo-PBS 
group than in either the MCAo-hMSC or sham groups (17.5±6.3% vs. 5.4±2.6% 
and 4.7±2.5%, p < 0.01 respectively) (Fig.5.11). The PRMVSI- fraction was larger 
in the MCAo groups (MCAo-PBS and MCAo-hMSC) than in the sham group at 
D7 (17.7±8.3% and 18.5±4.4% vs. 4.7±2.7%, p < 0.01 respectively), D9 
(19.6±8.2% and 21.2±8.7% vs. 4.7±2.4%, p < 0.01 respectively) and D16 
(13.6±4.9% and 18.3±4.9% vs. 4.3±2.1%, p < 0.01 respectively). Moreover, the 
PRMVSI- fraction at D16 was lower in the MCAo-PBS group than in the 
MCAo-hMSC group (13.6±4.9% vs. 18.3±4.9%, p < 0.01) (Fig.5.11). The 
ANOVA showed significant increase of PRMVSI- at D7, D9 and D16 in both MCAo 
groups when compared to the sham group. At D16, PRMVSI- was significantly 
higher in the MCAo-hMSC group than that in the MCAo-PBS group. At D7 and 
D16, PRMVSI+ was significantly higher in both MCAo groups than that in the 
sham group. At D9, PRMVSI+ was significantly higher in the MCAo-PBS group 
than that in MCAo-hMSC and sham groups while no significant interaction 
between the latter two groups. 
 
5.5 Discussion 
 

In this study, we analyzed MRI data collected from a stroke model 
undergoing cell therapy. Two analysis techniques were compared: the 
whole-lesion approach, which yields a mean estimate of the entire lesion for 
each MRI parameter, and PRM, a voxel-based approach which describes the 
fraction of voxels which evolves beyond a given threshold for each parameter. 
As expected, we observed a large heterogeneity in the stroke lesion in the ADC, 
CBV, and VSI maps. Furthermore, our results show that the IV injection of 
hMSCs induces cellular and microvascular modifications in the stroke lesion, 
assessed by MRI and analyzed by PRM. The microvascular MRI results are in 
agreement with previously reported biological data obtained in the same 
experimental conditions (release of angiogenic factors, such as angiopoietin 2 
(Ang2), angiopoietin 1 (Ang1), stromal-cell-derived factor-1 (SDF-1), and 
transforming growth factor-β1 (TGFβ1)) [Moisan et al. 2016]. The early 
therapeutic response (D9, one day after treatment) was easily observed and 
quantified by the PRM analysis, whereas the whole-lesion approach remained 
blind to these changes due to the heterogeneity of stroke lesions (Tab.5.1). 

As expected for a transient ischemic stroke model, ADC values calculated 
for each lesion, by the whole-lesion approach were significantly larger in the 
MCAo groups than in the sham group from D9 [Decanniere et al. 1995, Kohno 
et al. 1995]. However, unlike the PRM approach, the increase in ADC observed 
with the whole-lesion approach fails to account for some small areas where ADC 
remains lower than normal in both MCAo groups at D7. This fraction of voxels 
with a reduced ADC is reduced by the hMSC treatment at D9. In this case, the 
PRM highlights the effect of therapy, which was not revealed by the whole-lesion 
approach. 

We also monitored microvascular remodeling by assessing CBV and VSI, 
which are established methods of characterizing the changes elicited by stroke 
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therapy [Moisan et al. 2012, Liu et al. 2014, Tropres et al. 2015]. The 
therapeutic effect for these two parameters was spatially distributed among 
small regions with varying microvascular parameters. Moreover, focal changes 
were detected by PRM in both the VSI and CBV maps at both D9 (one day after 
treatment) and D16. These focal changes could not be detected by the 
whole-lesion approach, except for VSI at the last time point (D16). It is 
noteworthy that a previous study using the same MCAo model and the same 
type of stem cells showed a therapeutic effect upon the microvascular 
characteristics assessed by MRI. Stem cells either injected directly into the 
lesions or IV as our study [Moisan et al. 2012, Moisan et al. 2016]. If the 
biological effects of hMSC therapy in stroke lesions are beyond the scope of this 
methodological study, PRM appears as a suitable tool to guide the biological 
analysis towards areas that undergone physiological changes. 

Overall, IV-injected hMSCs affected only a fraction of lesions. Both 
increases and decreases in MRI parameters were observable throughout the 
lesions and over time. Given the initial heterogeneity of the lesions and the 
underlying brain tissue, these findings are not surprising. This also suggests that 
longitudinal imaging data from previous clinical trials such as neuroprotective 
drug trials should be re-analyzed to evaluate if some negative results could be 
ascribed, at least in part, to the coarse analysis approach employed. 
 
5.6 Conclusion 
 

This study describes the application of PRM analysis to multiparametric MRI 
maps (ADC, CBV and VSI), after a delayed IV injection of hMSCs, in a transient 
stroke model. One day after treatment, the PRM analysis was able to highlight 
the changes induced by hMSCs upon cellular edema, microvascular plasticity 
and vasodilation, whereas the classic whole-lesion approach was insensitive to 
the early therapeutic effect. The PRM approach also indicated that the effect of 
hMSCs is distributed throughout the entire lesion. For longitudinal studies, PRM 
analysis thus appears to be a promising technique for the early detection of 
heterogeneous changes induced by cell therapies in heterogeneous lesions, 
such as those which characterize ischemic stroke. 
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Tables 
 

 
MCAo- 
PBS 

(n=10) 

MCAo- 
hMSC 
(n=10) 

MCAo- 
PBS 

(n=10) 

MCAo- 
hMSC 
(n=10) 

MCAo- 
PBS 

(n=10) 

MCAo- 
hMSC 
(n=10) 

MCAo- 
PBS 

(n=10) 

MCAo- 
hMSC 
(n=10) 

Whole-lesion approach 
 

 D3 D7 D9 D16 
Lesion 
volume 
(mm3) 

67.5±
15.7 

83.9±
24.6 

91.5±
39.1 

70.0±
14.3 

89.3±
33.8 97.6±9.2 92.8±

24.6 
107.2±

9.2 
 p = 0.831 p = 0.615 p = 0.990 p = 0.834 

ADC 
(μm2/s) 

788±
86 721±71 939±73 994±89 1151±

166 
1142±

144 
1582±

415 
1753±

145 
 p = 0.510 p = 0.578 p = 0.836 p = 0.241 

CBV 
(%) 

4.1±
0.4 4.5±0.3 3.8±0.3 4.2±0.3 4.3±0.4 4.4±0.4 4.4±0.4 4.5±0.4 

 p = 0.387 p = 0.393 p = 0.818 p = 0.960 
VSI 
(μm) 

11.2±
0.6 11.9±0.2 10.3±

0.5 10.0±0.1 10.0±
0.3 10.2±0.3 9.4±0.5 7.6±0.4 

 p = 0.850 p = 0.951 p = 0.980 p = 0.047* 
PRM approach 

 
  D3 vs. D7 D3 vs. D9 D3 vs. D16 

PRMADC+ (%)  62.7±
12.1 

71.9±
14.2 

68.7±
9.1 77.1±9.4 78.7±

13.1 83.8±8.2 

   p = 0.206 p = 0.264 p = 0.612 
PRMADC- (%)  6.1±2.4 6.3±2.3 6.7±1.7 3.3±2.4 5.7±1.7 3.3±1.0 
   p = 0.965 p = 0.001** p = 0.004** 

PRMCBV+ (%)  15.4±
2.4 16.4±4.7 16.1±

3.7 6.4±2.6 23.7±
2.8 20.6±5.0 

   p = 0.838 p < 0.001** p = 0.591 

PRMCBV- (%)  24.1±
9.5 25.5±7.5 16.5±

6.0 
23.5±
12.2 

15.5±
4.8 17.9±5.6 

   p = 0.957 p = 0.146 p = 0.590 

PRMVSI+ (%)  12.3±
2.9 14.3±3.6 17.5±

6.3 5.4±2.6 24.4±
5.4 21.0±5.7 

   p = 0.183 p < 0.001** p = 0.157 

PRMVSI- (%)  17.7±
8.3 18.5±4.4 19.6±

8.2 21.2±8.7 13.6±
4.9 18.3±4.9 

   p = 0.981 p = 0.939 p = 0.007** 

Table 5.1: Quantitative measures of two analytic approaches between MCAo groups 
analyzed by the whole-stroke mean and PRM approaches. MCAo: middle cerebral 
aretery occlusion; PBS: phosphate-buffered saline; hMSC: human mesenchymal stem 
cell; ADC: apparent diffusion coefficient; CBV: cerebral blood volume; VSI: vessel size 
index; PRM: parametric response map. Parametric values are expressed as mean±SD[2]. 
*p < 0.05, **p < 0.01 indicate a statistically significant difference between MCAo-PBS 
and MCAo-hMSC groups. 
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Figures and legends 
 

 
Figure 5.1: A schematic representation of the dynamic biological processes supposed to 
be involved in potential cell therapeutic-induced changes of ADC values in ischemic 
stroke along with a corresponding chromatic description of the PRMADC metrics. 
Neuronal cells in brain tissue suffering from ischemic injury within a voxel may have 
several fates during cell-therapy. It is generally supported that at the very start of 
ischemia, sodium-potassium adenosine triphosphatase (Na+ / K+-ATPase) pump failure 
results in cellular membrane depolarization, which decreases ADC values (ADC-, blue) 
on diffusion imaging by the redistribution of water from the extracellular space to the 
diffusion-restricted intracellular space and consequently leads to the initiation of 
cytotoxic edema. These processes can eventually progress to cell lysis (ADC+, red). 
With the occurence of brain tissue necrosis in a later stage, the blood-brain barrier 
breaks down and serum proteins begin to leak from the blood into the parenchyma. This 
disturbance causes the vasogenic edema which further increase the water content of the 
tissue. Vasogenic edema is isosmotic and accumulates mainly in the extracellular 
compartment which reverses the decreased extracellular space and explains the 
pseudonormalization of the signal intensity observed in diffusion imaging with a 
near-normal or increased ADC value (ADC+, red). Futhermore, cells which resistant to 
therapy or stabe during stroke evolution represent an unaltered ADC value (ADC0, 
green). So for the PRMADC analytic process, a color-coded overlay is generated with 
regions in which the ADC values of stroke lesion are stable, significantly increased or 
significantly decreased based on the underlying mechanisms mentioned above. 
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Figure 5.2: Expression of angiogenic factors following the IV injection of PBS or 
hMSC after MCAo. Evolution of (a) Ang1, (b) Ang2, (c) Tie2 and (d) TGFβ1 from D1 
to D25. Results are presented as mean fold increase to expression in sham±standard 
error mean (SEM). *p < 0.05: MCAo vs. sham, #p = 0.077: MCAo-PBS vs. 
MCAo-hMSC, adapted from [Moisan et al. 2016]. 
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Figure 5.3: Study design and PRM analysis process. (A) Experimental protocol. (B) 
Description of the PRM analysis. PRMADC maps appear as color-coded overlays on the 
ADC maps. Areas with unchanged ADC values are in green, increased ADC are red, 
and decreased ADC are blue. The scatter plot represents the two coordinates of a spot, 
and are the ADC values of the same pixel at two time points. CI: confidence interval; L, 
left hemisphere; R, right hemisphere. 
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Figure 5.4: In vivo MRI estimated parameters: whole-lesion approach (A) Mean lesion 
volume over time in the MCAo-PBS and MCAo-hMSC groups and representative 
T2-weighted images of each group and each time point. (B) Evolution of the ADC, 
showing significant increase at D9 and D16 in both MCAo groups when compared to 
the sham group, (C) Evolution of CBV, showing significant increase at D3, D7, D9 and 
D16 in both MCAo groups when compared to the sham group, and (D) Evolution of 
VSI, showing significant increase at D3, D7, D9 and D16 in both MCAo groups when 
compared to the sham group. At D16, the VSI value is significantly higher in the 
MCAo-PBS group than that in the MCAo-hMSC group. Data are presented as 
mean±SD[2]. For each parameter, each group and each time point, a representative map 
is displayed. ROIs are delineated by a black solid line. *p < 0.05, **p < 0.01: MCAo vs. 
sham; $p < 0.05: MCAo-PBS vs. MCAo-hMSC. L, left hemisphere; R, right 
hemisphere. 
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Figure 5.5: PRMADC, PRMCBV and PRMVSI color-coded maps overlays on ADC, CBV and VSI maps for two MCAo animals. Voxels with 
significant increase in the parametric value are denoted red, with significant decrease are denoted blue, and remaining unchanged within 
the confidence interval are denoted green for ADC, CBV and VSI map respectively. Each map corresponds to the comparison of D7, D9, 
and D16 with the baseline (D3). L, left hemisphere; R, right hemisphere. 
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Figure 5.6: PRMADC color-coded overlay of two representative rats in (A1) MCAo-PBS 
and (A2) MCAo-hMSC group respectively. Voxels are designated red with significant 
increase in ADC, blue for significant decrease in ADC and green if they remain 
statistically unaltered based on the defined threshold. Corresponding quantitative scatter 
plots representing the distribution of ADC at D3 compared with D9 are shown 
respectively (B1, B2). The 95% CIs within the scatter plot were designated by two black 
lines. 
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Figure 5.7: PRMCBV color-coded overlay of two representative rats in (A1) MCAo-PBS 
and (A2) MCAo-hMSC group respectively. Voxels are designated red with significant 
increase in CBV, blue for significant decrease in CBV and green if they remain 
statistically unaltered based on the defined threshold. Corresponding quantitative scatter 
plots representing the distribution of CBV at D3 compared with D9 are shown 
respectively (B1, B2). The 95% CIs within the scatter plot were designated by two black 
lines. 
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Figure 5.8: PRMVSI color-coded overlay of two representative rats in (A1) MCAo-PBS 
and (A2) MCAo-hMSC group respectively. Voxels are designated red with significant 
increase in VSI, blue for significant decrease in VSI and green if they remain 
statistically unaltered based on the defined threshold. Corresponding quantitative scatter 
plots representing the distribution of VSI at D3 compared with D9 are shown 
respectively (B1, B2). The 95% CIs within the scatter plot were designated by two black 
lines. 
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Figure 5.9: Histogram of the percent changes of PRMADC values. PRMADC+ (red) and 
PRMADC- (blue) over time in the MCAo-PBS, MCAo-hMSC and sham groups in the 
right hemisphere (mean±SD[2]). **p < 0.01: MCAo vs. sham; $$p < 0.01: MCAo-PBS 
vs. MCAo-hMSC. 
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Figure 5.10: Histogram of the percent changes of PRMCBV values. PRMCBV+ (red) and 
PRMCBV- (blue) over time in the MCAo-PBS, MCAo-hMSC and sham groups in the 
right hemisphere (mean±SD[2]). *p < 0.05, **p < 0.01: MCAo vs. sham; $$p < 0.01: 
MCAo-PBS vs. MCAo-hMSC. 
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Figure 5.11: Histogram of the percent changes of PRMVSI values. PRMVSI+ (red) and 
PRMVSI- (blue) over time in the MCAo-PBS, MCAo-hMSC and sham groups in the 
right hemisphere (mean±SD[2]). **p < 0.01: MCAo vs. sham; $$p < 0.01: MCAo-PBS 
vs. MCAo-hMSC. 
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Chapter 6 
 

Correlating clinical outcome with voxel-based 
quantitative multiparametric MRI analysis in 

chronic ischemic stroke 
(This part of research has been submitted to Proc. ISMRM 2017) 

 
 
6.1 Brief abstract 
 

Predicting clinical outcome remains a challenge for stroke magnetic 
resonance imaging (MRI). In this study, we have acquired multiparametric MRI 
data sets including diffusion-weighted images and perfusion-weighted images of 
30 patients with chronic ischemic stroke from 4 pre-defined time points ranging 
from 6 weeks to 7 months after stroke onset. All of the diffusion and perfusion 
MRI parameters were analyzed by the classic whole-lesion approach and the 
parametric response map (PRM), a voxel-based analytic approach at each time 
point. The biomarker from each acquired MRI metric that predictive for both 
neurological and functional outcome measured by National Institutes of Health 
Stroke Scale (NIHSS) and modified Rankin Scale (mRS) respectively, was 
investigated prospectively. The results revealed the correlation between clinical 
prognosis (based on NIHSS and mRS) and MRI metrics and emphasized the 
superiority of the PRM over the whole-lesion approach for the prediction of 
long-term outcome, which suggested that complementary information for the 
predictive assessment of post-stroke outcome can be obtained by the PRM 
analysis. 

 
Key Words: chronic infarction; magnetic resonance imaging; diffusion 

imaging; perfusion imaging; parametric response map; prognosis 
 
6.2 Introduction 
 

In the western world, stroke is a major cause of death and long-term 
handicap. High mortality and vast burden followed permanent disability aside, 
only around one-third of stroke patients have favorable recovery [Sudlow et al. 
1997]. The evaluation of clinical outcome plays an important role to prospect the 
survival situation and life quality in stroke population. From the early phase after 
symptom onset to the late phase of recovery, prognosis after ischemic stroke 
can be influenced by a variety of assessable factors. Therefore, accurate and 
early outcome prediction is urgent to be realized by various means. 

In well-designed clinical trials, stroke outcome is generally rated by the 
National Institutes of Health Stroke Scale (NIHSS) and / or modified Rankin 
Scale (mRS) due to their validity and availability to discriminate clinically relevant 
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grades of individual status after ischemic stroke. Between these two testing 
scales, the mRS is more specific to indicate functional independence for daily 
activities, which has been shown to be reliable and reproducible [Banks et al. 
2007, Konig et al. 2008]. 

One challenge in post-stroke prognosis assessment remains in picking best 
study end point that appropriately indicates the final outcome. Therefore, it is of 
major interest to elucidate the relationship between early lesion patterns mostly 
based on MR images and functional impairment in the later phase of ischemic 
stroke. 

Both diffusion-weighted imaging (DWI) and perfusion-weighted imaging 
(PWI) provide a large amount of information that could be evaluated 
quantitatively with image analysis methods instead of visual detection. Generally, 
measures of imaging parameters are based on a pre-defined region of interest 
(ROI) by manual delineation which contains all the significantly different values 
of pixels in the lesion from the healthy tissue. The intralesional characteristics in 
a parametric map are shown by a mean value of all the pixels in the ROI. 
However, an analysis of the ROI-based mean value can easily mask focal 
changes of intralesional tissue properties and lose details which reflect the 
actual evolution of stroke. The ability to predict long-term functional impairment 
and recovery based on diffusion and perfusion MRI sequences and associated 
measures of lesion evolution can be enhanced by using a voxel-wise analytic 
technique, the parametric response map (PRM) [Galban et al. 2009a]. PRM 
analyzes the parametric values voxel by voxel using coregistered longitudinal 
MR maps. It has been proven to be distinctly advantageous over whole-lesion 
volume techniques such as mean value and histogram analysis in tumor 
researches [Hamstra et al. 2008, Tsien et al. 2010] and gradually transferred to 
cerebrovascular disease application [Tsai et al. 2013]. PRM allows for 
classification of individual ROI-contained voxels based on the extent of change 
in values which is spatially dependent, and so far it has been applied across a 
wide variety of MRI quantitative parameters including apparent diffusion 
coefficient (ADC), regional cerebral blood flow (rCBF), regional cerebral blood 
volume (rCBV) and Ktrans in numerous researches to assess tumor therapeutic 
response [Moffat et al. 2005, Galban et al. 2009a, Baer et al. 2015]. PRM could 
also be useful in stroke because it can identify changes over time within 
ischemic regions at voxel-wise individual level. 

In this study, we compared the ability of PRM and of a whole-lesion 
approach based on ROI to identify the evolution of ischemic tissue in clinical 
chronic stroke. Accordingly, we examined the linear correlation between these 
imaging parameters and clinical outcome assessed by NIHSS and mRS. We 
hypothesized that PRM could reveal more details on the relationship between 
diffusion and / or perfusion MR parameters and long-term outcome. Furthermore, 
the conventional MRI parameters by PRM would be a better predictor of 
long-term outcome than by classic whole-lesion approach. 
 
6.3 Subjects and methods 
 
6.3.1 Study population and study design 

Thirty patients with chronic stroke examined and treated in CHU Grenoble 
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Alpes from August 2010 were selected. After confirmed diagnosis by 
neuroimaging evidence, either conservative or intravenous thrombolytic 
treatment was induced. Exclusion criteria such as intracranial hemorrhage (ICH), 
traumatic brain injury (TBI), previous neurological or psychiatric disorder, 
substance abuse, major decline in consciousness were implemented in advance. 
The study was approved by the CHU Grenoble Alpes Ethics Committee (PHRC 
NCT00875654) and according to the Declaration of Helsinki. Patients were 
included after providing a written informed consent. 

The basic clinical information of each patient was included in Tab.6.1 (21 
male, 9 female; mean age 52±10, range 27 to 67 years-old). Among these 
patients, eleven of them had received IV recombinant tissue plasminogen 
activator (rt-PA) (7 male, 4 female) within 4.5 h after the onset of stroke 
symptoms. The ischemic lesion is located in either left or right hemisphere (left 
hemisphere: n = 8; right hemisphere: n = 22). 

For the clinical protocol design (Fig.6.1-A), 7 post-stroke time points in all 
(V1a: 7 days, V1b: 9 days, V2: 6 weeks, V3: 8 weeks, V4: 3 months, V5: 5 
months, V6: 7 months) were set to monitor disease evolution after the stroke 
onset (V0: Day 0). All 30 patients underwent the MRI scan at 4 time points (V2, 
V3, V4 and V6), NIHSS assessment was measured at 6 time points (V1a, V1b, 
V3, V4, V5 and V6) and mRS assessment was measured at 5 time points (V1b, 
V3, V4, V5 and V6). To analyze the linear correlation between imaging metrics 
and clinical outcome scores, the results of both NIHSS and mRS obtained at V3, 
V4, V5 and V6 were adopted. The daily rate changes of NIHSS and mRS scores 
were also measured between each two continuous time points based on the 
duration of interval. 
 

6.3.2 Clinical assessment 
Besides the clinical indices including age, sex and side of damaged 

hemisphere, severity of neurological deficit on admission assessed by NIHSS, 
and functional deficit measured by mRS at several pre-defined time points 
during the stroke monitoring were recorded, respectively (Tab.6.1). 

The NIHSS consists of 5 grades rated as follows: 0, no stroke symptoms; 
1-4, minor stroke; 5-15, moderate stroke; 16-20, moderate to severe stroke; 
21-42, severe stroke. The scale is performed based on 11 items including level 
of consciousness, horizontal eye movement, visual field test, facial palsy, motor 
arm, motor leg, limb ataxia, sensory, language, speech, and extinction and 
inattention [Goldstein et al. 1989]. 

The mRS consists of 7 grades rated as follows: 0, no symptoms at all; 1, no 
significant disability: despite symptoms, able to perform all usual duties and 
activities; 2, slight disability: unable to carry out all previous activities but able to 
look after own affairs without assistance; 3, moderate disability: requiring some 
help but able to walk without assistance; 4, moderately severe disability: unable 
to walk without assistance and unable to attend to own bodily needs without 
assistance; 5, severe disability: bedridden, incontinent, and requiring constant 
nursing care and attention; and 6, death [van Swieten et al. 1988]. 

To verify the efficiency of functional outcome prediction using the different 
approaches, all 30 patients were stratified into either good- or poor-outcome 
subgroups according to the individual final outcome (mRS score at V6). For the 
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good-outcome subgroup (n = 6), the mRS score estimated at V6 ranged 
between 0 and 2, whereas for the poor-outcome subgroup (n = 24), it ranged 
between 3 and 6, as previously described [Tsai et al. 2013]. 
 
6.3.3 MRI assessment 

Imaging protocol was carried out on a 3.0T Achieva MR scanner (Philips 
Healthcare®), using a whole-body radiofrequency (RF) transmit and 8-channel 
head receive coils. The total duration of all sequences used in our study was 
approximately 1 h, although the whole protocol which contained other 
procedures for different objectives such as oxygen and function would take a 
much longer time. Conventional MR sequences including T1-weighted imaging 
(T1WI), T2-weighted imaging (T2WI) and magnetic resonance angiography (MRA) 
were performed for clinical routine, and fluid attenuation inversion recovery 
(FLAIR), DWI and dynamic susceptibility contrast (DSC)-PWI were included in 
our research (Fig.6.1-B). All the details of MR scanning condition were 
mentioned below: 

1) A 3D gradient recalled echo (GRE) T1-weighted image (160 contiguous 
slices, slice thickness = 1 mm, TR/TE = 9.8/4.6 ms, 512 × 512 matrix, a field of 
view (FOV) of 256 × 160 mm and 4.5 min acquisition time) was performed; 

2) An MRA was performed using a time-of-flight (TOF) sequence (130 slices, 
thickness = 1.4 mm, TR/TE = 25/3.4 ms, 560 × 560 matrix, a FOV of 220 × 180 
mm and 5.3 min acquisition time) on the Circle of Willis (CoW); 

3) An axial FLAIR sequence (30 slices, 0.4 mm slice gap, TR/TE = 
11000/125 ms, TI = 2200 ms, 512 × 512 matrix, a FOV of 230 × 180 mm, 
resolution = 0.45 × 0.45 × 4 mm and 2.9 min acquisition time) was performed; 

4) Axial slices obtained with spin-echo DWI (28 slices, 0.4 mm slice gap, 
TR/TE 2372/55 ms, 256 × 256 matrix, resolution = 0.9 × 0.9 × 0.4 mm and 0.46 
min acquisition time) were acquired with b values of 0 and 1000 s/mm2, the high 
b value measurements were performed with six combinations of diffusion 
gradient vectors; 

5) A dynamic, gradient-echo, echo-planar PWI (25 contiguous slices, 0 mm 
slice gap, thickness = 4 mm, TR/TE 1670/40 ms, flip angle 75°, 112 × 112 matrix, 
resolution = 2 × 2 × 4 mm, a FOV of 224 × 184 mm and 1.1 min acquisition time) 
was performed. After acquisition of 4 baseline images, a bolus of 
Gadolinium-DOTA (0.1 mmol/kg, Guerbet, France) was injected and flushed with 
physiological saline (60 mL) at a rate of 5 mL/s with a magnetic resonance 
compatible power injector (MEDRAD, Inc., Warrendale, PA, USA). To obtain an 
accurate estimate of the baseline MR signal intensity S0 prior to the arrival of 
contrast agent an injection delay of 10 s was applied. Eight single-shot, 
gradient-echo and echo-planar images were obtained per slice. 

All these sequences were acquired in an axial plane, parallel to the anterior 
commissure-posterior commissure (AC-PC), covering the entire brain. 
 
6.3.4 Data processing 
 

Data analysis was performed using in-house developed modules run in 
Matlab (The MathWorks, Inc., Natick, MA, USA) and SPM12 software (Statistical 
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Parametric Mapping, Welcome Trust Centre for NeuroImaging, Inst. of 
Neurology, University College London, UK). 
 
6.3.4.1 Diffusion data processing 

ADC maps were calculated by: 
 

 

where S1 is the signal intensity (SI) of the voxel obtained through three 
orthogonally oriented diffusion-weighted images or diffusion trace images. S0 is 
the SI of the voxel obtained through reference T2-weighted images. b1 is the 
gradient b factor with a value of 1000 s/mm2. b0 is the gradient b factor with a 
value of 0 s/mm2. 
 
6.3.4.2 Perfusion data processing 

DSC MR perfusion data were analyzed using a parametric approach 
[Mouridsen et al. 2006]. The arterial input function (AIF) was determined 
semi-automatically and extracted from a single slice of the perfusion scan 
containing the middle cerebral artery (MCA). The maps of arrival time include 
time-to-peak (TTP), mean transit time (MTT) and time-to-maximum (Tmax). TTP 
was defined as the time point of maximum intensity loss after the passage of the 
contrast agent. MTT and Tmax were calculated pixel-wise with a deconvolution 
approach based on a singular value decomposition using a tracer arrival timing 
insensitive method and an automatic regularization of oscillations (oscillation 
index regularized block-circulant singular value decomposition, oSVD). 

Cerebral blood volume (CBV) maps were generated from DSC T2*-weighted 
images by dynamically tracking the passage of a bolus high-susceptibility 
contrast agent. By detecting the arterial as well as the total tissue concentration 
as a function of time during a single transit, the CBV can be determined from the 
ratio of the areas under the tissue and arterial concentration time curves, 
respectively, as: 
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To assess differences in lesion blood volume objectively and avoid the 
variations between individuals, the rCBV by kinetic analysis of the concentration 
time curve was estimated after the normalization of CBV because arterial 
measurements with limited spatial resolution are not readily quantifiable 
[Ostergaard et al. 2005]. CBV maps were normalized to values within the 
regions contralateral to the stroke lesion with normal appearing white matter 
(NAWM), which defined as large as possible to avoid regions with susceptibility 
artifacts and partial volume averaging, generally normalized to 5% as 
quantitative references. 

MTT was computed from the residue function obtained from the 
deconvolution and rCBF was calculated as the ratio rCBV / MTT from the central 
volume theorem [Mouridsen et al. 2006]. 
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6.3.4.3 Image registration 

All image data were registered to FLAIR images at baseline (V2) using 
mutual information as an objective function and Nelder-Mead simplex as an 
optimizer algorithm (co-registration function in SPM12 free software, distributed 
under the terms of the GNU General Public License as published by the Free 
Software Foundation). Automatic co-registration of different and similar weighted 
serial MRI scans for the same patient was performed assuming a rigid 
body-geometry relationship, which meant rotation and translation between head 
scans, so that the motion and susceptibility artifacts were restrained. Pairwise 
registration was applied under the situation that lesion volume changes were 
obviously large. 
 
6.3.4.4 Regions of interest 

Following co-registration, regions of interest (ROIs) of ischemia were 
manually contoured under the guidance of experienced clinicians including 
stroke physician and neuroradiologist blinded to the diagnosis. ROIs of the 
whole stroke lesion were drawn on FLAIR images, identified as the hyperintense 
regions, and subsequently checked for concordance on the ADC maps. Caution 
was taken to exclude the ventricles. Lesion volumes were computed by 
calculating the sum of lesion areas on each slice. On the contralateral 
undamaged hemisphere, a mask was applied to delineate the ROI contains 
NAWM with mean value of each target parameter in healthy tissue (ADC: 
686.2±34.3 μm2/s, MTT: 5.0±0.9 s, TTP: 23.5±2.3 s, Tmax: 2.2±0.4 s, rCBF: 
16.0±1.7 mL/100g/min and rCBV: 8.1±0.7%). For each object, this ROI was 
used to acquire the range and determine the threshold of each parameter in 
PRM analysis. All these ROIs (lesion and reference) were then automatically 
transferred onto each other registered parametric maps, which especially avoids 
the confusion of delineation on those non-morphological maps. 

Shrinkage or growth of the ischemic lesion during the stroke evolution 
between two monitoring time points may occur. However, for the stroke 
population, no significant changes in lesion volume were observed between 
each two time points set for the subsequent PRM analysis (V2 vs. V3, V2 vs. V4 
and V2 vs. V6, cf. below). Therefore, only voxels that were present in both 
baseline (V2) and each other time points were included. Voxels with 
non-converging fits or values outside the range of validity of the measurement 
(ADC > 3500 μm2/s, MTT > 27 s, TTP > 60 s, Tmax > 60 s, rCBF > 100 
mL/100g/min, rCBV > 48%), were identified and excluded from the analysis 
(fractions of all excluded voxels of each map: ADC, MTT: < 1.0%; TTP: 2.6%; 
Tmax: 4.7%; rCBF: 3.0% and rCBV: 3.6%). 

For the resultant parametric maps consist of spatially aligned voxels, ROIs 
were initially contoured at each time point. Besides the comparison of lesion 
volume measured based on these ROIs (e.g. volume of ROIV2 vs. volume of 
ROIV3), the mean parametric values at a single time point calculated based on 
ROIs delineated at respective time points were also statistically analyzed (e.g. 
ADCV2 measured in ROIV2 vs. ADCV2 in ROIV3). The purpose of this step is to 
exclude the influential factor of size change of the ROI in the parametric value 
measurements in the case that the ROI contoured during the follow-up contains 
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voxels of tissular content with quite different value compared to the original one. 
In our study, there was no significant variation between the results in different 
ROIs on each map at each time point so that a single one from the ROIs 
contoured at 4 time points was selected for the PRM analysis. 
 
6.3.5 Imaging analysis 
 

Two imaging post-processing approaches were assessed for monitoring 
stroke evolution using ROIs delineated on both diffusion and perfusion 
parametric maps. 
 
6.3.5.1 Whole-lesion analysis 

For each patient at each time point (V2, V3, V4 and V6), both diffusion and 
perfusion parametric values (ADC, MTT, TTP, Tmax, rCBF and rCBV) were 
measured in each ROI. 
 
6.3.5.2 Parametric response map (PRM) analysis 

Changes in six co-registered diffusion and perfusion parametric maps were 
analyzed voxel-wise by PRM for each patient (n = 30) at each of the 4 time 
points from V2 to V6. For the purpose of clarity, PRM analyses on ADC maps 
(V2 vs. V3) will be described in details. We first computed the 95% confidence 
interval (CI) for the classification of ADC values according to most PRM 
procedure design. Briefly, we empirically calculated the threshold that yields a 
significant change in ADC value for each voxel between the baseline (V2) and 
V3 based on the reference ROI. The ADC threshold (200 µm²/s) was determined 
by the 95% unchanged CI resulting from linear least squares analysis on the 
data combined from all 30 patients instead of the receiver operating 
characteristic (ROC) curve analysis for an optimal prediction which previously 
described in a reference [Galban et al. 2009b]. For each patient, the ROI within 
the contralateral hemisphere containing NAWM was used to acquire the range of 
ADC at V2 and V3. Then, PRMADC maps were determined by calculating the 
difference between ADC within the lesion ROI at V2 and at each following time 
point (V3, V4 and V6). Red voxels represent voxels within each lesion with an 
increase in the ADC value (beyond the CI of 200 µm2/s; cf. above), blue voxels 
represent voxels with a decrease in the ADC value (below the CI) and green 
voxels represent voxels within each  lesion with an unchanged ADC value (the 
absolute value of ΔADC varies less than the CI). Therefore, all voxels within the 
lesion volume were stratified into three fractions: PRMADC+ (increased ADC, 
denoted red), PRMADC- (decreased ADC, denoted blue) and PRMADC0 
(unchanged ADC, denoted green). The sum of both PRMADC+ and PRMADC- 
volume was termed PRMADC+/-, which indicate the total volume of voxels with 
ADC changes within the lesion. The same analytic procedure was applied to the 
other five perfusion maps (MTT, TTP, Tmax, rCBF and rCBV). After determining 
each CI (2.8 s for PRMMTT, 4 s for PRMTTP, 2 s for PRMTmax, 25 mL/100g/min for 
PRMrCBF and 1% for PRMrCBV), the other five parametric maps were obtained at 
V3, V4 and V6 by comparison with the data acquired at V2. 
 
6.3.6 Statistical analysis 
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A paired 2-tailed Student’s t-test was used for comparison of differences in 
baseline 1) lesion volume, 2) mean parametric values (ADC, MTT, TTP, Tmax, 
rCBF, rCBV), 3) percentage of voxels with increased value, percentage of voxels 
with decreased value and total percentage of voxels with significantly changed 
value by PRM approach (PRMADC, PRMMTT, PRMTTP, PRMTmax, PRMrCBF, 
PRMrCBV) with each other individual time point. 

Significance of median incremental daily changes in NIHSS score and mRS 
score was assessed using a non-parametric Mood’s median test. Comparison of 
scores between thrombolysis group and no-thrombolysis group was performed 
using unpaired t-tests after checking the variance homogeneity (Levene’s test). 
In cases of variance inhomogeneity, a Mann-Whitney test was used. 

We performed Pearson correlation coefficient (Pearson’s r) for correlations 
of the representative imaging parameters with the assessment of neurological 
and functional deficit (NIHSS and mRS score respectively) at each time point. In 
addition, the receiver operating characteristic (ROC) curve analysis was also 
applied to define the most predictive parameter for the clinical outcome. 
Differences between pre-defined good-outcome subgroup and poor-outcome 
subgroup based on categorical final functional outcome (mRS at V6) were also 
performed using unpaired t-tests for the comparisons of positive PRM results 
from correlation analysis. Results are expressed as mean±standard deviation 
(SD[2]). All statistical analyses were conducted using the software SPSS19.0® 
(SPSS, Inc, Chicago, IL). Results were declared statistically significant at the 
two-sided 5% comparison-wise significance level (p < 0.05). 
 
6.4 Results 
 
6.4.1 Clinical outcome 

The NIHSS score and mRS score were measured at pre-defined time points 
(mentioned in 6.3.2). The results were analyzed overall for the total population (n 
= 30) and separately for objects treated by thrombolysis or not (thrombolysis: 11, 
no-thrombolysis: 19). The measurements of NIHSS and mRS for all patients are 
shown in Fig.6.2-A and Fig.6.2-C, respectively. The NIHSS and the mRS of the 
thrombolysis subgroup was compared to no-thrombolysis subgroup at each time 
point (Fig.6.2-B and Fig.6.2-D). Rate change of NIHSS and mRS were overall 
measured in sequential durations (Fig.6.3-A and C). The comparisons between 
thrombolysis and no-thrombolysis subgroups were also undergone (Fig.6.3-B 
and D). No intergroup significance was shown at each time point for both value 
and rate change. Information of both imaging metrics and outcome assessment 
from V3 to V6 was taken into consideration for correlation analysis. The mRS 
score is significantly higher at V3 than that at V5 and V6 (p = 0.016 and p = 
0.008, respectively, Fig.6.2-C), while the rate change is significantly higher from 
V3 to V5 than that from V5 to V6 (p = 0.006, Fig.6.3-C). No significance was 
shown between other time points of interest for either NIHSS or mRS (both value 
and rate change). In sum, the NIHSS, mRS and the rate change of mRS were 
decreased over time. The rate change of NIHSS was decreased from V1b to V5 
and slightly increased from V5 to V6. 
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6.4.2 Imaging data 
 
6.4.2.1 Evolution of lesion volume 

At each time point for MRI session, the mean lesion volumes based on the 
manually-delineated ROIs of the whole sample were measured (Tab.6.2). No 
significance was shown in the lesion volume measurement over time. However, 
lesion volume of the poor-outcome subgroup was larger all along than that of the 
good-outcome subgroup (V2: p = 0.001, V3: p = 0.002 and V6: p = 0.005) 
(Fig.6.4-A). 
 
6.4.2.2 Evolution of ADC 

The whole-lesion approach showed that the mean ADC value in the lesions 
was increased over time (Tab.6.2). At each time point, the mean ADC values 
measured in each lesion in the two subgroups with good- and poor-outcome 
(hereinafter referred to as “subgroups”) were similar (Fig.6.4-B). 

A visual inspection of the ADC map of a patient (No.22) with good outcome 
suggested that the PRM approach showed that most of the pixels in the lesion 
ROIs exhibited increased ADC values in the ischemic lesions (Fig.6.5-A). Some 
areas with decreased ADC in the lesion ROIs were also observed at each time 
point (Tab.6.3). 

The fraction of voxels with ADC changes increased over time, in which the 
increased ADC volume (PRMADC+) kept growing in two subgroups. No significant 
interaction of any PRMADC metric between subgroups and time points was found. 
However, we observed that the PRMADC+ fraction was larger in the poor-outcome 
subgroup than that in the good-outcome subgroup at V3 (33.5±9.2% vs. 
29.0±9.5%), V4 (53.8±17.1% vs. 39.5±10.2%) and reverse at V6 (57.8±24.6% 
vs. 63.4±26.7%) (Fig.6.6-A1). Moreover, the PRMADC- fraction was larger in the 
good-outcome subgroup than that in the poor-outcome subgroup at all the time 
points (V3: 23.1±11.8% vs. 14.2±9.3%; V4: 17.3±9.7% vs. 9.3±5.9% and V6: 
13.8±6.2% vs. 11.3±6.0%) (Fig.6.6-A2). 
 
6.4.2.3 Evolution of perfusion parameters 
MTT 

The whole-lesion approach showed that the mean MTT value in the lesion 
was increased over time (Tab.6.2). The mean MTT values measured in two 
subgroups were similar (Fig.6.4-C). 

The PRM approach showed that the pixels whose value changed over time 
were scattered in the lesion ROIs (Tab.6.3). A visual inspection of the maps 
suggested that the PRMMTT maps were mainly more rambling with value change 
in the patient (No.14) of the poor-outcome subgroup over time (Fig.6.5-B) as 
compared to the one of the good-outcome subgroup (Fig.6.5-A). 

The fraction of voxels with MTT changes increased over time, in which both 
the increased MTT (PRMMTT+) and decreased MTT (PRMMTT-) in the 
good-outcome subgroup followed the same trend. The PRMMTT+ fractions in two 
subgroups were similar over time (Fig.6.6-B1). The PRMMTT- fraction was larger 
in the poor-outcome subgroup than that in the good-outcome subgroup at only 
V3 (15.0±9.1% vs. 12.8±5.9%) but reversed at V4 (15.6±10.3% vs. 16.8±7.0%) 
and V6 (8.9±6.6% vs. 18.8±6.1%) (Fig.6.6-B2). No significant interaction 
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between subgroups and time points was found. 
 
TTP 

The whole-lesion approach showed that the mean TTP values in the lesions 
were approximately equivalent over time (Tab.6.2). The mean TTP values 
measured in the lesions for both subgroups were similar (Fig.6.4-D). 

The PRM approach showed that the pixels with increased and stable TTP 
value scattered across the lesion ROIs of the good-outcome subgroup 
(Fig.6.5-A), whereas pixels with decreased TTP value represent a considerably 
large fraction of the lesion of the poor-outcome subgroup (Fig.6.5-B). 

The fraction of voxels with increased TTP (PRMTTP+) increased over time in 
both subgroups. The PRMTTP+ fractions in two subgroups were similar over time 
(Fig.6.6-C1). The PRMTTP- fraction was larger in the poor-outcome subgroup 
than that in the good-outcome subgroup at V3 (28.3±11.1% vs. 20.5±9.8%). At 
V4, the PRMTTP- fraction was decreased, therefore it was significantly lower in 
the good-outcome subgroup than that in the poor-outcome subgroup (16.4±5.7% 
vs. 34.0±7.9%, p = 0.037). The fraction reversed in both subgroups at V6 
(22.1±16.2% vs. 24.3±9.4%) (Fig.6.6-C2). 
 
Tmax 

The whole-lesion approach showed that the mean Tmax value in the lesion 
increased over time (Tab.6.2). The mean Tmax values measured in the lesions in 
two subgroups were similar (Fig.6.4-E). 

The PRM approach showed that the pixels with increased and stable Tmax 
value scattered in the lesion ROIs of the good-outcome subgroup (Fig.6.5-A), 
whereas pixels with decreased Tmax value occupied the largest fraction of the 
lesion in the poor-outcome subgroup (Fig.6.5-B). 

The fraction of voxels with the increased Tmax (PRMTmax+) increased over 
time in both subgroups. The PRMTmax+ fraction was larger in the good-outcome 
subgroup than that in the poor-outcome subgroup at V3 (24.5±9.2% vs. 
21.2±7.5%) and V6 (36.3±12.7% vs. 30.7±10.2%) but reversed at V4 (25.2±9.8% 
vs. 27.9±9.6%) (Fig.6.6-D1). The PRMTmax- fraction was larger in the 
poor-outcome subgroup than that in the good-outcome subgroup at each time 
point. It is worthwhile to note that the PRMTmax- fraction decreased significantly at 
V4 in the good-outcome subgroup when compared to the poor-outcome 
subgroup (1.7±1.3% vs. 20.1±13.5%, p = 0.045) (Fig.6.6-D2). 
 
rCBF 

The whole-lesion approach showed that the mean rCBF value in the lesion 
decreased over time (Tab.6.2). The mean rCBF values measured in the lesions 
of both subgroups were similar (Fig.6.4-F). 

The PRM approach showed that the pixels with stable rCBF value were 
scattered in the lesion ROIs of the good-outcome subgroup (Fig.6.5-A), whereas 
pixels with decreased rCBF value were scattered in the lesion of the 
poor-outcome subgroup (Fig.6.5-B). 

The fractions of voxels with the increased rCBF (PRMrCBF+) were similar in 
both subgroups at each time point (Fig.6.6-E1). The PRMrCBF- fraction was larger 
in the good- than that in the poor-outcome subgroup at V3 (4.1±2.7% vs. 
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3.7±1.3%) and then reversed at V4 (5.2±2.1% vs. 6.3±2.4%) and V6 (7.2±2.3% 
vs. 8.0±5.0%) (Fig.6.6-E2). No significant interaction between groups and time 
points was found. 
 
rCBV 

The whole-lesion approach showed that the mean rCBV value in the lesion 
increased from V2 to V3 and then decreased over time (Tab.6.2). The mean 
rCBV values in the lesions of both subgroups were similar (Fig.6.4-G). 

The PRM approach showed that the pixels with mainly stable rCBV value 
scattered in the lesion ROIs of the good-outcome subgroup (Fig.6.5-A), whereas 
pixels with decreased rCBV value scattered in the lesion of the poor-outcome 
subgroup (Fig.6.5-B). 

The fraction of voxels with the increased rCBV (PRMrCBV+) was significantly 
larger in the good-outcome subgroup than that in the poor-outcome subgroup at 
V3 (15.7±2.8% vs. 4.7±1.8%, p = 0.001), then decreased at V4 (6.5±3.9% vs. 
9.1±7.2%), reversed until V6 (8.9±4.9% vs. 4.9±2.4%) (Fig.6.6-F1). The 
PRMrCBV- fraction was significantly larger in the poor-outcome subgroup than that 
in the good-outcome subgroup at V3 (9.8±2.9% vs. 3.1±1.3%, p = 0.036) but not 
at V4 (10.7±5.1% vs. 7.0±2.7%) and V6 (10.1±3.6% vs. 10.0±4.0%) (Fig.6.6-F2). 
The feature of PRMrCBV changes at the early time point was more evident than 
those of other acquired parameters. PRMrCBV color-coded overlay of a patient 
with good outcome showed a sharp contrast when compared to a patient with 
poor outcome. A corresponding quantitative scatter plot demonstrated the 
distribution of rCBV value at V2 compared with V3 for the entire ischemic lesion 
volume region (Fig.6.7). A larger volume of voxels with increased rCBV and a 
relatively smaller volume of voxels with decreased rCBV appeared 
simultaneously in the good-outcome patient compared to the poor-outcome 
patient at V3. 
 
6.4.3 Correlation between imaging and clinical data 

All the imaging metrics mentioned above were undergone correlation 
analysis with both NIHSS and mRS scores of each time point (528 statistical 
analysis in all, 336 for mean values and 192 for PRM results), and the positive 
results (11 in mean values and 53 in PRM metrics) were summarized (Tab.6.4). 
We only considered as potential predictive biomarker the correlation between 
imaging metrics obtained at a relatively earlier stage and long-term NIHSS and / 
or mRS score. The PRMADC+/- at V3 had significant correlation with the rate 
change of NIHSS at V4 (r = 0.618, p < 0.05) (Tab.6.4-C). This metric at V4 also 
showed correlation with the rate change of both NIHSS and mRS at V5 (r = 
0.497, p < 0.05; r = 0.513, p < 0.05, respectively) (Tab.6.4-C and D). The 
PRMrCBV- at V3 had significant correlation with NIHSS at V6 (r = 0.524, p < 0.05), 
the PRMrCBV- at V4 had significant correlation with NIHSS at V5 and V6 (r = 
0.495, p < 0.05; r = 0.610, p < 0.01, respectively) (Tab.6.4-A). The PRMrCBV+ at 
V3 exhibited excellent inverse correlation with mRS at V6 (r = -0.668, p < 0.01) 
(Tab.6.4-B) and with NIHSS at V4 and V5 (r = -0.583, p < 0.05; r = -0.518, p < 
0.05, respectively) (Tab.6.4-A). Furthermore, the PRMTmax- at V3 has significant 
correlation with NIHSS at V3 and V6 (r = 0.537, p < 0.05; r = 0.534, p < 0.05, 
respectively) (Tab.6.4-A). The PRMTmax- at V4 had significant correlation with 
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both NIHSS and mRS at V5 (r = 0.593, p < 0.01; r = 0.510, p < 0.05, respectively) 
(Tab.6.4-A and B) and NIHSS at V6 (r = 0.621, p < 0.01) (Tab.6.4-A). It also 
correlated with the rate change of NIHSS at V5 (r = 0.534, p <0.05) (Tab.6.4-A). 
The PRMTmax+/- at V3 had correlation with NIHSS at V6 (r = 0.498, p < 0.05) 
(Tab.6.4-A). The PRMTmax+/- at V4 had significant correlation with both NIHSS 
and mRS at V5 (r = 0.455, p < 0.05; r = 0.480, p < 0.05, respectively) and NIHSS 
at V6 (r = 0.514, p < 0.05) (Tab.6.4-A and B). Although the correlation between 
PRMTmax+/- and later NIHSS and / or mRS score existed, it was not strong. Based 
on these analytic results (correlation coefficient r), PRMrCBV (both PRMrCBV+ and 
PRMrCBV-) and PRMTmax- (also with PRMTmax+/-) were picked as candidates for 
potential predictor. 

The rCBV changes estimated by both whole-lesion approach and PRM 
were illustrated by scatter plot versus both NIHSS and mRS at a delayed stage 
(Fig.6.8). The mean change of rCBV at each early time point was not correlated 
with the final NIHSS or mRS, whereas the PRMrCBV+ at V3 was correlated with 
the final mRS and the PRMrCBV- at V3 was correlated with the final NIHSS. 

ROC analysis was undergone based on these primary results compared 
with mean value of the single time point. The ROC curves evaluated the ability to 
predict NIHSS and mRS at V6 with PRMrCBV metrics at V3 and the mean rCBV 
value at V2 and V3 respectively. For the prediction of NIHSS at V6, the PRMrCBV- 
had the largest area under curve (AUC = 0.841, p = 0.023). When a cutoff of 7.0 
for PRMrCBV- was used, the sensitivity and specificity were 0.86 and 0.89 
respectively (Fig.6.9-A). For the prediction of mRS at V6, the PRMrCBV+ had the 
largest AUC (0.897, p = 0.037). For PRMrCBV+, the cutoff of 4.0 was applied to 
acquire the sensitivity and specificity (0.70 and 0.98, respectively) (Fig.6.9-B). 
Since the NIHSS and mRS at V6 have significant correlation between each other 
(r = 0.744, p < 0.01), but the PRMrCBV- was not correlated with PRMrCBV+ at V3 (r 
= 0.279, p > 0.05), both metrics can be regarded as independent predictors for 
the final clinical outcome. 

The Tmax changes estimated by both whole-lesion approach and PRM were 
also illustrated by scatter plot versus both NIHSS and mRS at a later time point. 
The mean change of Tmax value at each early time point was not correlated with 
the NIHSS or mRS at V5, whereas the PRMTmax- at V4 was correlated with both 
NIHSS and mRS at V5 (Fig.6.10). 

The ROC curves indicated that PRMTmax- at V4 can predict both NIHSS and 
mRS at V5 and be superior to the mean Tmax value at V2 and V4 respectively. 
For the prediction of NIHSS at V5, the PRMTmax- had the largest AUC (0.900, p = 
0.002) and the sensitivity and specificity were 0.80 and 0.98 respectively using 
the cutoff of 8.8 (Fig.6.9-C). For the prediction of mRS at V5, the PRMTmax- had 
the largest AUC (0.961, p = 0.013) and the sensitivity and specificity were 0.98 
and 0.94 respectively using the cutoff of 3.1 (Fig.6.9-D). 
 
6.5 Discussion 

Inconsistencies regarding post-stroke prognosis have been reported in 
clinical researches which focus on patients with infarctions of the similar size, 
arterial territory and duration after symptoms onset including complete middle 
cerebral artery occlusion (MCAo) [Koyama et al. 2014, Lima et al. 2014]. 
Possible explanations for this diversity in clinical outcome have been proposed 
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and include interindividual variability in collateral circulation, preconditioning and 
microcirculation response after ischemic impairment [Thompson et al. 2013, 
Malik et al. 2014]. Although differences in lesion volume can reflect the severity 
of ischemic stroke in our study, this metric lacked the capability to predict the 
final outcome. And for those cases with similar lesion volumes, the assessment 
of stroke progression remained inconclusive. Previous clinical studies 
investigating diffusion and / or perfusion MRI for stroke monitoring have 
evaluated the capabilities of different types of MRI sequences or parameters, 
both descriptive and quantitative, as potential predictors of outcome. However, 
these studies have historically relied on the whole-lesion mean value as the 
summary statistic of multiparametric MR maps for quantification of 
corresponding parameters, with varying clinical significance [Barber et al. 1998, 
Berry et al. 1998]. The polytropic changes of parametric values throughout the 
lesion were believed to desensitize the final results using whole-lesion approach. 
For instance, in our results, even the minimal percentage changes (lower than 
5%) of rCBF or rCBV values which were invisible on original images can be 
calculated by PRM approach, although they were still inconspicuous on 
color-coded PRM overlays (Tab.3). The capability of PRM to quantify the slight 
changes further supports this viewpoint. The spatial information of the image 
was also preserved using PRM and local variations in terms of all voxels with 
changed and stable values during stroke evolution can be distinguished based 
on their spatial distributions, which may confuse the differentiation between 
different contents within the lesion by visual observation. Furthermore, the 
relationship between quantitative heterogeneous changes in multiparametric MR 
maps and final outcome has not yet been addressed in clinical setting although it 
has been suggested in preclinical stroke [Lestro Henriques et al. 2015]. 

Here, PRM facilitates identification of the voxel-based value changes in both 
diffusion and perfusion imaging data set over duration from 6 weeks to 7 months. 
Because no specific therapy was induced during the whole follow-up, the 
positive correlation with final outcomes can be considered as a pure influence of 
individual inhomogeneity of stroke evolution between different subjects, which 
may be hidden by traditional imaging analytic methods. These results revealed 
by PRM emphasize the importance of heterogeneous evolution in stroke, which 
may explain the different outcome. 

The diffusion sequence is widely used in acute stroke to visualize the infarct 
core, the cytotoxic edema and, with great importance, the penumbra with 
perfusion MRI in aid, whereas it is used as secondary in chronic stroke. In acute 
phase, the tissue at risk may be salvageable if effective therapy is induced within 
the time window [Schlaug et al. 1999]. At chronic stage, without recanalization 
of spontaneous or therapeutic factor, the penumbra has already vanished and 
developed into irreversible necrosis within the lesion. However, a preclinical 
research reported that ongoing changes in damaged rat brain tissues can persist 
for at least 1 year after stroke. The post-stroke temporal evolution of 
multiparametric MRI measures including ADC in aged rats out to 1 year may 
provide useful information about the long-term course of brain injury and 
remodeling, which is hypothesized to be similar in human brain [Karki et al. 
2010]. 

In our results, the total volume of voxels with both increased and decreased 
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ADC values (PRMADC+/-) of 8 weeks (V3) after stroke was correlated with the rate 
change of NIHSS during the following month, of which the PRMADC+/- was 
correlated with the rate change of both NIHSS and mRS during the next 2 
months (until V5). Furthermore, the sum of heterogeneous ADC changes within 
the lesion followed the same trend (increased over time) with the changes of 
outcome measures (improved over time). From the PRMADC color-coded overlay 
and the estimates of the overall PRMADC, the volume of heterogeneous ADC 
changes mainly consist of voxels with increased ADC (PRMADC- only around 
10%). The total volume increased over time with the same trend of PRMADC+. 
The heterogeneity pattern of ADC in good-outcome subgroup was similar to that 
in poor-outcome subgroup. This finding may imply that the ADC reversed from 
acute phase and increased during 5 months after stroke was due to the 
vasogenic edema in the poor-outcome subgroup with a similar representation in 
the good-outcome subgroup. Resolution of the liquefaction necrosis in cerebral 
infarction can result in the formation of a cystic space, in which the diffusion is 
restricted. The PRMADC- in the stroke lesion may reflect this pathological process. 
In the representative of the poor-outcome subgroup (Fig.6.5-B), the volume of 
voxels with decreased ADC (blue layer) corresponding to the hypointense region 
on original ADC map may refer to the formation from malacia to liquefaction 
during V4 and V6 because the initially increased ADC-constraint volume was 
limited in this period. However, the PRMADC- was insensitive to be a reliable 
predictor probably for the reason that, i) the liquefaction brought about the cell 
death and neuron loss, which led to poor outcome or ii) the change of lesion size 
was relatively limited after liquefaction, which avoided the recurrence of 
ischemia in brain tissue of such area. The dilemma in PRMADC- analysis of 
predictive capability may need more evidences to clarify. 

It is noteworthy that a negative correlation appeared between PRMADC+/- 
and the rate change of mRS during 2 months after V5, which was conspicuous 
for PRMADC+/- of 7 months after stroke (r = -0.961, p < 0.01). This phenomenon 
may indicate that the ratio of contents within the total volume of ADC changes 
reversed from 5 months after stroke because either PRMADC+ or PRMADC- was 
regarded as independent predictor. Since the lack of imaging evidence of V5, the 
details of dynamic changes in ADC during 4 months from V4 remain unclear. 

The challenge of delineating penumbra in acute stroke gets various 
perfusion metrics and their corresponding thresholds involved in terms of the 
prediction of subsequent fate of brain tissue [Thijs et al. 2001]. The choice of 
perfusion parameter combined with diffusion-weighted images critically affects 
the assessment of tissue at risk at acute stage and the following selection of 
candidates with potential benefits of thrombolysis [Hjort et al. 2005a, Kane et al. 
2007]. Since the biotherapies developed, the therapeutic time frame extends by 
a large margin [Detante et al. 2014]. It is increasingly meaningful to identify an 
ideal perfusion biomarker for the best prediction of chronic stroke follow-up, but 
conflicting results yielded need to be dissected. 

The CBV is an important perfusion parameter which corresponds to the 
volume of blood passes through capillary network contained in a certain volume 
of brain [Kaneko et al. 2004]. An area suffering from ischemia with normal blood 
flow and delayed arrival time indices generally demonstrates that regional blood 
supply is maintained by autoregulation, but this effect occurs late in the potential 
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infarct core area which temporarily sustained by collaterals. In general, areas 
with decreased CBV correlate well with the final size of a cerebral infarction 
[Chamorro et al. 2007]. Especially in the condition that delayed arrival time (e.g. 
MTT) is found in the area with decreased CBV, it might imply the insufficient 
collateral circulation of the focal brain tissue, which will eventually evolve into the 
infarction [Singer et al. 2003, Lee et al. 2009, Kim et al. 2014]. In the example of 
PRM color-coded overlay of a poor-outcome patient (Fig.6.5-B), the distribution 
of the blue layer in PRMrCBV map (PRMrCBV-) basically matched that of the red 
layer in PRMMTT map (PRMMTT+), which might support the theory. 

In our study, the percentage changes of rCBV defined by PRM between V2 
and V3 (during 2 weeks) outperformed the single mean rCBV value at either 
time point in determining both long-term neurological and functional outcome 
after stroke. The mean rCBV value did not correlate with further prognosis or 
sufficiently stratify the subjects with opposite outcomes. The predictive capability 
of PRMrCBV was also confirmed by the ROC analysis. In detail, the PRMrCBV- at 
V3 (V2 vs. V3) was positive correlated with NIHSS score at V6 while PRMrCBV+ at 
V3 (V2 vs. V3) was negative correlated with mRS score at V6. A possible 
explanation was that the reduction in local blood volume of brain tissue which 
occurred in duration of 2 weeks from 8 weeks after stroke onset may portend a 
worse outcome about 5 months later from the nearer monitoring time point of 
PRM analysis, perhaps owing to poor collateral status in patients with 
unfavorable outcome. The cerebral collateral circulation is an evolutionarily 
conserved blood vessel network generated to maintain consistent cerebral 
perfusion encountering physiological and pathophysiological changes of 
hemodynamics. The promising clinical evolution in patients with chronic stroke is 
informed by the evaluation of collateral status in terms of the risk of stroke 
recurrence. The beneficial influence of collateral flow is significantly correlated 
with the follow-ups of stroke patients in a later phase. The qualified illustration of 
cerebral collateral circulation can be accomplished by real-time non-invasive 
imaging techniques, generally MRI [Liebeskind et al. 2009]. The PRM, as an 
independent determinant of outcome, provides rich details on the fundamental 
feature of perfusion condition which may help inform the quality and quantity of 
collateral flow. 

An increase in PRMrCBV+ and / or a decrease in PRMrCBV- in chronic 
infarction may derive from an increase in overall density of microvasculature or 
dilation of microvessels, as both could lead to a net increase of cerebral blood 
volume in the region suffering from ischemia. However, the increased PRMrCBV- 
and / or the decreased PRMrCBV+ at V3 which correlated with high NIHSS and / 
or mRS score at V6, cannot be simply interpreted as a decreased total value of 
rCBV correlating with poor clinical outcome, and vice versa. The correlation 
analysis results in this study represented that the PRMrCBV- was not correlated 
with PRMrCBV+ at V3, which meant either rCBV change exploited by PRM 
approach played a role as an independent predictor for long-term clinical 
outcome. 

Besides the possible reasons mentioned above, the decreased rCBV may 
also be a consequence of capillary obstruction or metabolic depression. Several 
factors including plugging of capillaries by leukocytes, endothelial swelling, 
formation of microvilli, platelet aggregation and external compression of 
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capillaries secondary to edema or perivascular astrocyte swelling contribute to 
rCBV reduction. In addition, metabolic failure indicated by an increased oxygen 
extraction fraction (OEF) and a reduced CMRO2 is also related to the decrease 
in rCBV [Singer et al. 2003]. Therefore, alternative imaging approaches such as 
positron emission tomography (PET) and blood-oxygen-level dependent 
functional MRI (BOLD fMRI) are essential to help interpret PRMrCBV alterations to 
obtain an objective description of stroke evolution [Wise et al. 2013]. 

Tmax represents the time from the start of the scan until the maximum 
intensity of contrast agent arrives at each voxel. Tmax is sensitive to reflect 
dynamic changes of brain tissue into an infarction and changes of perfusion level. 
It can also predict brain tissue viability suffering from ischemic injury, although 
high Tmax value has been reported to be correlated with lower likelihood of tissue 
survival [Shih et al. 2003, Olivot et al. 2009]. Tmax may be prolonged in very 
large volumes of tissue which is not proceeding to infarction regardless of CBF 
status [Bang et al. 2010]. Since Tmax is not influenced by scan duration, it has 
the merit that sufficient scanning for a long time is possible to achieve an even 
distribution of contrast agent [Copen et al. 2011]. In addition, Tmax has little grey 
matter (GM) / white matter (WM) heterogeneity and relatively low conspicuity of 
large blood vessels, which may complicate the observation of parenchymal 
condition. In some studies, Tmax has been speculated as a profile of collateral 
extent [Liebeskind et al. 2005, Christensen et al. 2008]. Thus, Tmax is 
considered as a widely accepted reliable perfusion parameter to assess the 
viable tissue in stroke, but with the exact threshold remaining controversial. In 
previous studies, different thresholds for Tmax were set with a main goal of 
representing the accurate situation of acute stroke evolution although this 
parameter was seldom used in chronic stroke cases. In the evaluation of 
alteplase effects beyond 3 hrs after stroke onset in the Echoplanar Imaging 
Thrombolytic Evaluation Trial (EPITHET) cohort, a Tmax of 4-6 s delay was used 
[Donnan et al. 2009]. A Tmax > 8 s with a core volume of approximately 100 mL 
(lesion size on DWI) was reported as an adequate threshold for identification of 
patients with malignant profile of infarction and consequent unfavorable outcome 
despite reperfusion therapy [Mlynash et al. 2011]. A Tmax ≥ 10 s was also 
reported in another study to best predict the final infarction [Nagakane et al. 
2012]. 

Generally, optimal Tmax thresholds from one study must be used with 
caution in other studies if the same experimental conditions are not ensured. 
However, the PRM analysis contributes to an objective assessment based on 
intraindividual percentage changes of both temporal and spatial complementary 
information and avoids bias of pre-defined thresholds among different 
researches. 

By using general analytic methods, an increasing number of studies have 
promoted the use of Tmax to gain considerable success in clinical trials [Albers et 
al. 2006b, Davis et al. 2008, Olivot et al. 2009]. However, various hemodynamic 
situations can result in the same Tmax appearance. Besides the influence from 
the process of deconvolution, other factors from the feature of subjects such as 
arterial abnormalities in patients also lead to bolus temporal dispersion which 
affects the Tmax measure [Calamante et al. 2006]. One study showed that 
whereas Tmax theoretically reflects bolus delay, the measure Tmax is influenced 
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also by bolus temporal dispersion and, to a smaller degree, by MTT. Tmax 
primarily reflects macrovascular features, whereas MTT reflects microvascular 
features [Calamante et al. 2010]. Nevertheless, the severe Tmax abnormality 
could not be solely explained by prolonged MTT, it may also reflect delay or 
dispersion. Tmax should be considered with the combination of other 
macrovascular or microvascular indices to interpret the physiological process, so 
that the various factors contributing to the measured Tmax may be disentangled. 
Due to the complex interaction between different factors influencing Tmax 
measure, the clinical significance of Tmax is not straightforward. 

It was thought that Tmax should not be used in some clinical conditions such 
as chronic stroke to avoid misleading conclusions. To have a reasonable and 
objective understanding of the significance of delay-weighted measures in 
stroke, the temporal dynamics of blood supply including collaterals recruitment 
are required to provide more information based on delay-related perfusion 
parameters [Liebeskind et al. 2005, Christensen et al. 2008]. Coincidentally, 
the PRM approach is capable of indicating the temporal evolution of all 
voxel-wise parameters and may help explain the relevance of Tmax to post-stroke 
pathophysiology. 

Among all the perfusion parameters of arrival time in our study, the 
PRMTmax- of 3 months after stroke onset (during around 6 weeks) can reflect the 
outcome of the same time point and predict both NIHSS and mRS of 2 months 
later. Since the correlation is positive with both outcome scores of two 
continuous time points, in other words, the delay of time to the peak of the 
residue curve significantly shortened of 6 weeks during the follow-up may imply 
unfavorable neurological and functional deficits after 2 months. The ROC curves 
also confirmed that the diagnostic and predictive capability of PRMTmax- was 
superior to the mean Tmax at either single time point with high sensitivity and 
specificity. 

In our research, the improvement using PRM approach in assessing the 
outcome of stroke patients is definite, but limitations still remained. The 
challenge existed for the validation of all components of this approach including 
imaging data acquisition, algorithm selection for registration and response 
mapping for heterogeneity illustration [Boes et al. 2014]. Due to the problems in 
technical processing, an overall influence of image datasets emerged. The 
sample volume of the PRM analysis shrank because of the failure in registration 
compliance between two time points probably induced by the susceptibility 
artifacts associated with scanning protocols in the image of either time point. 
Consistent imaging protocols that provide repeatable and quantitative readouts 
are crucial for applying PRM across clinical setting. Still, the predictive potential 
of PRM for the clinical outcome of stroke patients has been evaluated using 
ROC curves. To get an objective effect of sensitivity by the PRM cutoff in ROC 
analysis, various cutoffs should be tested in a considerable quantity of samples. 
Furthermore, for the methodology of PRM approach in clinical applications, the 
applicability across imaging parameters or even modalities in a repeatable and 
robust manner is appreciated. For the application in different diseases, the PRM 
study design should be individualized with different purposes and targets based 
on the specific pathophysiological characteristics during the disease evolution, 
although the basic theories of the overall data process are similar. 
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Furthermore, it is worthwhile to note that an exceptive spot (lower left area) 
of the linear discordance appeared in the scatter plot for the correlation analysis 
of PRMrCBV- at V3 and NIHSS score at V6 (Fig.6.8-D, black arrow). After 
rechecking the imaging data of this object (No.3), two ischemic lesions in the 
right hemisphere were demonstrated. Before the initiation of the PRM analytic 
process, regions with abnormal signal on each slice were taken into account to 
promise the integrity of lesion volume. So in this counterexample, the 
percentage change of rCBV between V2 and V3 were calculated voxel by voxel 
for both lesions. However, one lesion located in non-functional cortical area 
(right superior parietal lobe) with a relatively larger volume of decreased rCBV 
may not aggravate the neurological deficits proportionally according to our 
hypothesis on the predictive efficacy of PRMrCBV-. Due to the interindividual 
variation of functional area distribution in brain, the prediction performance and 
practicability of PRM approach may be influenced by the simultaneous 
heterogeneous changes in multiple lesions. Conservatively, PRM technique is 
promising to deduce the clinical status of the stroke patient with a single 
ischemic lesion. This assumption needs to be proven in further researches with 
sufficient samples by means of PRM, necessarily with assistance of other 
imaging approaches such as magnetoencephalography (MEG), diffusion tensor 
imaging (DTI) and BOLD fMRI. 
 

6.6 Conclusion 
This study describes for the first time the clinical application of PRM 

analysis of multiparametric MR measures based on diffusion and perfusion 
maps in chronic stroke patients. The perfusion parameters analyzed by PRM 
were highly correlated with long-term clinical outcomes including neurological 
impairment and degree of disability, whereas the classic whole-lesion approach 
was insensitive to the outcome prediction. This new approach allows for spatial 
voxel-wise tracking of hemodynamic changes from imaging evidence. In the 
monitoring of stroke patients, it may be feasible to use perfusion PRM metrics as 
imaging biomarkers to predict the further prognosis. With the existing superiority 
of PRM applications in voxel-based tracking of disease status and progression, it 
may be more suitable to reflect the pathophysiological heterogeneity within 
stroke lesions and may renovate the thinking process from a new perspective for 
imaging evaluation of clinical stroke cases. It would also certainly promising to 
evaluate in greater details emerging stroke therapies such as the use of stem 
cells. 
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Tables 
 

 
Table 6.1: Clinical information of 30 chronic stroke patients with individual NIHSS and mRS estimates of each monitoring time point. Due 
to the lack of information in some objects, the sum of samples in each column was marked at the end. The measures were expressed as 
mean±SD[2]. NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale; M: male; F: female; Y: yes; N; No; SD[2]: 
standard deviation.  
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Table 6.2: Estimates of lesion volume, ADC, MTT, TTP, Tmax, rCBF and rCBV obtained from 4 time points (V2: 6 weeks; V3: 8 weeks; V4: 
3 months and V6: 7 months after stroke onset) using whole-lesion approach and averaged across 30 patients. Due to the lack of data in 
some objects, the sum of samples was marked after the value. The results were expressed as mean±SD[2]. ADC: apparent diffusion 
coefficient; MTT: mean transit time; TTP: time-to-peak; Tmax: time-to-maximum; rCBF: regional cerebral blood flow; rCBV: regional 
cerebral blood volume. 
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Table 6.3: Estimates of ADC, MTT, TTP, Tmax, rCBF and rCBV obtained from the comparison between the baseline and each other time 
point using PRM approach and averaged across 30 patients. Due to the lack of data in some objects, the sum of samples was marked in 
parentheses. The results were expressed as mean±SD[2]. PRM: parametric response map; ADC: apparent diffusion coefficient; MTT: mean 
transit time; TTP: time-to-peak; Tmax: time-to-maximum; rCBF: regional cerebral blood flow; rCBV: regional cerebral blood volume; 
ADC+: the volume of voxels with increased ADC values (denoted red); ADC-: the volume of voxels with decreased ADC values (denoted 
blue); ADC+/-: the sum of ADC+ and ADC- (denoted yellow). The same pattern of PRM estimates was applied for other parameters.
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Table 6.4: Imaging parameters analyzed by both whole-lesion approach and PRM were 
estimated versus outcome measures at each corresponding time point and positive 
results were demonstrated. In detail, lesion volume, mean value of ADC, MTT, TTP, 
Tmax, rCBF and rCBV at each time point (denoted grey), and PRM fractions including 
volume of voxels with increased values (denoted red), decreased values (denoted blue) 
and the total volume of voxels with all changed values (denoted yellow) of ADC, MTT, 
TTP, Tmax, rCBF and rCBV between each following time point and baseline were 
analyzed with (A) NIHSS, (B) mRS, (C) rate change of NIHSS and (D) rate change of 
mRS at each time point by correlation analysis. Only positive results were recorded in 
this table with respective correlation coeffient (r) and p value. ** p < 0.01, * p < 0.05; 
PRM: parametric response map; ADC: apparent diffusion coefficient; MTT: mean 
transit time; TTP: time-to-peak; Tmax: time-to-maximum; rCBF: regional cerebral blood 
flow; rCBV: regional cerebral blood volume; NIHSS: National Institutes of Health 
Stroke Scale; mRS: modified Rankin Scale. 
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Figures and legends 
 

 
Figure 6.1: Diagram of study design and the acquisition and processing schemes to 
obtain diffusion and perfusion maps (A) Clinical protocol. V0 to V6 represented all the 
time points for stroke monitoring. The duration of each time point was noted above the 
code. (B) MRI protocols. MRA: magnetic resonance angiography; NIHSS: National 
Institutes of Health Stroke Scale; mRS: modified Rankin Scale; FLAIR: fluid 
attenuation inversion recovery; DWI: diffusion-weighted imaging; Gd: 
Gadolinium-DOTA; PWI: perfusion-weighted imaging; ADC: apparent diffusion 
coefficient; MTT: mean transit time; TTP: time-to-peak; Tmax: time-to-maximum; rCBF: 
regional cerebral blood flow; rCBV: regional cerebral blood volume. 
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Figure 6.2: Line chart of NIHSS and mRS score over time (A) Overall NIHSS score 
over time; (B) NIHSS score over time in the no-thrombolysis and thrombolysis 
subgroups; (C) Overall mRS score over time; (D) mRS score over time in the 
no-thrombolysis and thrombolysis subgroups. Data were presented as mean±SD[2]. The 
trend of NIHSS and mRS score changes showed the improvement of clinical outcome 
of the whole population and there was no significance between subgroups with and 
without thrombolysis. The mRS score was significantly higher at V3 than that at V5 and 
V6. No significance was shown between other time points of interest for either NIHSS 
or mRS. NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin 
Scale. 
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Figure 6.3: Line chart of daily rate change of NIHSS and mRS score over time (A) 
Overall rate change of NIHSS score over time; (B) Rate change of NIHSS score over 
time in the no-thrombolysis and thrombolysis subgroups; (C) Overall rate change of 
mRS score over time; (D) Rate change of mRS score over time in the no-thrombolysis 
and thrombolysis subgroups. Data were presented as mean±SD[2]. The rate change of 
NIHSS decreased from V3 to V5 and slightly increased from V5 to V6, and the rate 
change of mRS decreased over time in both subgroups with and without thrombolysis. 
The overall rate change of mRS was significantly higher from V3 to V5 than that from 
V5 to V6. No significance was shown between other time points of interest for rate 
change of either NIHSS or mRS and between subgroups with and without thrombolysis. 
NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale. 
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Figure 6.4: Bar chart of (A) lesion volume, (B) ADC, (C) MTT, (D) TTP, (E) Tmax, (F) 
rCBF and (G) rCBV estimates by whole-lesion approach in the good- and poor-outcome 
subgroups. Data were presented as mean±SD[2]. At V2, V3 and V6, the lesion volume of 
the poor-outcome subgroup was significantly larger than that of the good-outcome 
subgroup. ** p < 0.01. ADC: apparent diffusion coefficient; MTT: mean transit time; 
TTP: time-to-peak; Tmax: time-to-maximum; rCBF: regional cerebral blood flow; rCBV: 
regional cerebral blood volume. 
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Figure 6.5 (A) 
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Figure 6.5 (B) 
 

 
Figure 6.5: Maps of  FLAIR, ADC, MTT, TTP, Tmax, rCBF and rCBV at V2, V3, V4 and V6, and PRM color-coded maps overlays on 
ADC, MTT, TTP, Tmax, rCBF and rCBV maps obtained in a representative patient (No.22) of the good-outcome subgroup (A) and the one 
(No.14) of the poor-outcome subgroup (B) respectively. Each PRM map corresponds to the comparison of V3, V4 and V6 with the baseline 
(V2). The scale of signal intensity and the threshold for PRM stratification of each map were noted at the end of each column. FLAIR: fluid 
attenuation inversion recovery; ADC: apparent diffusion coefficient; MTT: mean transit time; TTP: time-to-peak; Tmax: time-to-maximum; 
rCBF: regional cerebral blood flow; rCBV: regional cerebral blood volume; L: left hemisphere; R: right hemisphere. 
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Figure 6.6: Bar chart of the percent changes of PRMADC (A1: PRMADC+, A2: PRMADC- 
and A3: PRMADC+/-), PRMMTT (B1: PRMMTT+, B2: PRMMTT- and B3: PRMMTT+/-), 
PRMTTP (C1: PRMTTP+, C2: PRMTTP- and C3: PRMTTP+/-), PRMTmax (D1: PRMTmax+, D2: 
PRMTmax- and D3: PRMTmax+/-), PRMrCBF (E1: PRMrCBF+, E2: PRMrCBF- and E3: 
PRMrCBF+/-) and PRMrCBV (F1: PRMrCBV+, F2: PRMrCBV- and F3: PRMrCBV+/-) values 
over time in the good- and poor-outcome subgroups. Data were presented as 
mean±SD[2]. ** p < 0.01, * p < 0.05. ADC: apparent diffusion coefficient; MTT: mean 
transit time; TTP: time-to-peak; Tmax: time-to-maximum; rCBF: regional cerebral blood 
flow; rCBV: regional cerebral blood volume.
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Figure 6.7: (A1) The histogram, (B1) the PRMrCBV color-coded overlay and (C1) the 
corresponding quantitative scatter plots of a representative patient in the 
good-outcome subgroup, compared to the representations of a patient in the 
poor-outcome subgroup (A2, B2 and C2 respectively). (B1) and (B2) represented 
regions in which rCBV values were significantly increased (red voxels), unchanged 
(green voxels) or significantly decreased (blue voxels) based on the predetermined 
threshold (CI = 1.0%). (C1) and (C2) showed the distribution of rCBV at V2 and V3 
for the entire 3-dimensional lesion volume. The 95% CIs within the scatter plot were 
designated by two black dotted lines. CI: confidence interval; rCBV: regional cerebral 
blood volume. 
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Figure 6.8: NIHSS score at V6 estimated versus rCBV at V2 (A), V3 (B) and V4 (C) 
measured by whole-lesion approach and PRMrCBV- between V2 and V3 (D). An 
exceptive spot in (D) was indicated by a black arrow (details in 6.5). mRS score at V6 
estimated versus rCBV at V2 (E), V3 (F), V4 (G) and PRMrCBV+ between V2 and V3 
(H). NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale; 
rCBV: regional cerebral blood volume. 
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Figure 6.9: ROC analysis (A) ROC curves for rCBV at V2 and V3, and PRMrCBV- 
between V2 and V3. PRMrCBV- value has the largest AUC because curve is located 
nearest to left upper corner; (B) ROC curves for rCBV at V2 and V3, and PRMrCBV+ 
between V2 and V3. PRMrCBV+ value has the largest AUC because curve is located 
nearest to left upper corner; (C, D) ROC curves for Tmax at V2 and V4, and PRMTmax- 
between V2 and V4. In either ROC curve, PRMTmax- value has the largest AUC 
because curve is located nearest to left upper corner. Yellow indicates curve of no 
discrimination. ROC: receiver operating characteristic; AUC: area under the curve; 
rCBV: regional cerebral blood volume; Tmax: time-to-maximum. 
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Figure 6.10: NIHSS score at V5 esimated versus Tmax at V2 (A), V3 (B) and V4 (C) 
measured by whole-lesion approach and PRMTmax- between V2 and V4 (D). mRS 
score at V5 esimated versus Tmax at V2 (E), V3 (F), V4 (G) and PRMTmax- between V2 
and V4 (H). NIHSS: National Institutes of Health Stroke Scale; mRS: modified 
Rankin Scale; Tmax: time-to-maximum. 
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Chapter 7 
 

General conclusion and perspectives 
 
 

7.1 General conclusion 
 

Cerebral multiparametric MRI plays an important role in assessment of 
stroke at different stages. Imaging data analyzed by different methods may 
lead to diversity of results, which impact on the evaluation of stroke evolution 
and relevant treatment decision. 

In all studies performed in this thesis, a novel methodology of imaging 
analysis based on a voxel-wise approach has been applied to help to identify 
the heterogeneity within stroke lesions from which potential imaging 
biomarkers were derived for more accurate evaluation of therapeutic response 
and prediction of clinical outcome. 

The application of this approach has been used in rat models of 
experimental stroke and then transferred to chronic stroke patients. 
 

7.1.1 The assessment of stem cell therapeutic effects in 

preclinical application 
Stroke is a medical emergency in which time is critical for victims. 

However, most patients are excluded by the limited therapeutic time window. 
For a long duration and even until now, the imaging approaches, normally 
diffusion and perfusion MRI sequences have been regarded as diagnostic 
tools to investigate the penumbra which probably offer an opportunity to select 
patients that may benefit from treatment strategies. With the development of 
biotherapies, the medical grade stem cells are regarded as the alternative for 
current stroke therapies in a delayed time frame [Detante et al. 2014]. 

However, although the cell therapies have been thought to be potential to 
promote the functional recovery in subacute or chronic phase of stroke, the 
proposed mechanisms remain poorly understood. Quantitative MRI techniques 
including DWI and PWI are essential to assess the therapeutic response of 
stem cells. The diffusion-weighted images are capable of measuring the 
random thermal motion of water, while the perfusion-weighted images are 
capable of quantifying changes in stroke hemodynamics and assessing the 
angiogenesis after ischemic injury [Moisan et al. 2012]. 

In general, evaluation of therapeutic response to drugs, biomaterials or 
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other interventions based on imaging data uses the mean value throughout the 
whole lesion as the quantitative metric. However, intralesional heterogeneity of 
stroke is an inherent property which correlates with different patterns of the 
parametric value change, and therefore classic analytic methods using a mean 
average of the voxels in the entire lesion can significantly underestimate the 
details of regional change after the therapy. 

The parametric response map (PRM), a voxel-wise technique, is an 
alternative to present the heterogeneity within the lesion by the comparison of 
serial maps acquired before and during the therapy after spatially aligning via 
co-registration. The volume fraction of voxels with significant value changes 
between the baseline and an early time point may reflect the early response to 
the treatment [Galban et al. 2009a]. In view of the capability to exhibit early 
therapeutic response using the PRM on multiparametric MR images in various 
clinical sites, this technique is believed to be feasible to provide more details of 
cell-therapy effects in stroke, although no mature precedent in such application 
has been reported yet. 

In our preclinical research, the PRM approach was applied to both 
diffusion and perfusion maps including ADC, CBV and VSI for the assessment 
of the response to hMSC therapy between MCAo rat models with and without 
treatment. Focal changes on each map were detected by the PRM just one 
day after a delayed IV injection of hMSCs. The PRM was able to highlight the 
changes potentially induced by hMSCs upon cellular edema, microvascular 
plasticity and vasodilation, which have been proven by the histological 
evidence in a parallel research by Moisan et al. under the same experimental 
condition [Moisan et al. 2016]. However, the classic whole-lesion approach 
was insensitive to show the early response. Thus, PRM analysis appears to be 
a promising tool for the early detection of heterogeneous changes induced by 
stem cell therapy in stroke lesions. The PRM reflects the superiority over the 
whole-lesion approach, so that it is potential to be a new monitor for 
therapeutic efficiency in stroke. 
 

7.1.2 The prediction of outcome in clinical application 
Lestro Henriques et al. reported that heterogeneous ADC patterns in 

ischemic areas of similar size correlated with different functional outcome in 
permanent MCAo (pMCAo) rodent models [Lestro Henriques et al. 2015]. It is 
hypothesized that “one stroke may differ from another” even without any 
therapeutic intervention. Therefore, the motivation of research in this part is to 
design a complementary clinical protocol to predict clinical outcome of chronic 
stroke based on the intralesional heterogeneity in both diffusion and perfusion 
MR maps. In the previous study, the definition of patterns according to 
qualitative visual criteria and histogram categorization was not sufficient to 
reflect the temporal evolution of stroke. Whereas in our research, the PRM 
approach provided a quantitative analysis on stratifications of voxels with 
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heterogeneous value changes over time. Furthermore, three statistical tests 
including Spearman’s correlation analysis, receiver operating characteristic 
curve and an intergroup Student’s t-test were investigated to define and 
validate a reliable predictor for long-term clinical outcome from all acquired 
imaging metrics. 

In our clinical research, multiparametric MR maps including ADC, MTT, 
TTP, Tmax, rCBF and rCBV obtained during the follow-up ranging from 6 weeks 
to 7 months after stroke onset were analyzed by the classic whole-lesion 
approach and the PRM at each time point. The early prognostic capability of 
mean value and corresponding PRM fraction of each parameter was analyzed 
with NIHSS and mRS which quantified the neurological impairment and 
functional independence suffering from stroke. 

The PRMrCBV- and PRMrCBV+ at 8 weeks were significantly correlated with 
NIHSS and mRS at 7 months after stroke onset respectively, which probably 
due to poor collateral status in patients with unfavorable outcome, and vice 
versa. The PRMTmax- at 3 months after stroke onset can reflect the instant 
outcome and make a further prediction of both NIHSS and mRS at 2 months 
later, which may imply that prolonged Tmax reflects the capability of brain tissue 
to survive in ischemic environment, and moreover, a favorable outcome 
probably resulting from sufficient collateral perfusion in chronic phase. 

To sum up, ROI-based mean values of perfusion estimates lack sensitivity 
to provide substantial early prediction of clinical outcome, whereas the 
quantifiable metrics of hemodynamics based upon the lesion volume fractions 
measured by the PRM appear significantly predictive of both long-term 
neurological deficit and degree of disability at an early time point. 
Consequently, PRM analysis is able to carry out early stratification of chronic 
stroke patients with different outcome and it can be regarded as a reliable 
predictor of stroke prognosis. 
 

7.2 Perspectives 
Brain edema, defined as a growing brain tissue volume resulting from its 

increasing fluid content, is an important pathological process in ischemic 
stroke concerning unfavorable outcomes. The formation of edema results in a 
certain extent of brain swelling which, if unchecked, can lead to elevated 
intracranial pressure (ICP), reduced cerebral blood flow, and fatal cerebral 
herniation. The term “malignant ischemic stroke” can bring about widespread 
cerebral edema and rapid clinical decline with high mortality. In fact, the clinical 
significance of cerebral edema apart, the mechanisms of edema formation and 
exacerbation remain poorly understood [Zador et al. 2009]. 

The brain edema observed in ischemic stroke has a characteristic time 
course and it begins inevitably with a cytotoxic edema, due to the intracellular 
fluid accumulation resulted from energy failure after hypoperfusion or cerebral 
circulation interruption. This pathological process is initiated before blood-brain 
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barrier (BBB) disruption occurs [Liu et al. 2010]. With ongoing 
ischemia-reperfusion, the BBB breakdown leads to the vasogenic edema, 
which coexists with cytotoxic edema in most pathological conditions [Song et 
al. 2014]. 

The potential therapeutic aims of the forthcoming clinical trials have been 
emphasized to reduce the incidence of hemorrhagic complications and 
improve neurological outcome by promoting BBB integrity and preventing 
hemorrhagic transformation (HT) [Machado et al. 2009]. The transplantation of 
endothelial progenitor cells (EPCs) has been highlighted for BBB repair and 
proceeds in future clinical application [Rouhl et al. 2008, Kaneko et al. 2012]. 
Besides stem cells, BBB disruption may also recover using anti-edema drugs 
with various molecules including vascular permeability factors, membrane 
channels, transporters and receptors, which as known to be responsible for 
ischemia-induced edema on target [Simard et al. 2007, Michinaga et al. 
2015]. 

However, disrupted BBB is generally confirmed through microscopic 
observation, although MRI can be used to reflect the extent of permeability 
change. The increased vascular permeability may be observed as 
homogeneous contrast enhancement on contrast-enhanced T1-weighted 
images after the injection of gadolinium contrast medium [Choi et al. 2014]. In 
addition, loss of BBB integrity can result in a leakage of serum-derived 
components into the extracellular space, which is associated with a reversal of 
ADC value [Kim J. E. et al. 2013]. 

Quantitative multiparametric MRI can provide information of cellularity and 
hemodynamic characteristics by means of different sequences. Normally the 
DWI and PWI are necessary to monitor the severity of cerebral edema, as well 
as the therapeutic response to biomaterials or anti-edema drugs. As 
mentioned above, the PRM approach is potential to be an ideal monitor and 
predictor in stroke evolution and it has been applied to analyze the correlation 
between perilesional edematous tissue after intracerebral hemorrhage and 
functional outcome [Tsai et al. 2013]. PRM can also be used to investigate two 
parameters altogether for integrated diagnostic and prognostic value in 
therapeutic response assessment and thus guide the selection of treatment 
strategies [Galban et al. 2011]. 

To an extent, the goal of accurate quantification of the synchronous 
diffusion and perfusion changes is difficult to reach because the concerned 
pathological process is dynamic. By using multiparametric response map 
referred to as mPRM, the percentage change of the target parameter can be 
calculated under the premise that the pattern of changes in another correlative 
parameter is controlled in the same analytic condition. The mPRM can 
consolidate physiologically distinct multiparametric imaging data into a single 
interpretable and quantitative metric with an illustration analogous to the single 
PRM (Fig.7.1). In a pioneer report with the first application of mPRM in 
high-grade glioma, it has been proven to improve the accuracy of the imaging 
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biomarker over the evaluation of a single one in the prediction of overall 
survival [Galban et al. 2015a]. 

 
Figure 7.1: Generation of the mPRM. Each PRM is built by using co-registered 
original maps acquired before and midway through therapy. The PRM analysis retains 
the spatial information of the target parameter as coded by color overlay on initial 
images and also quantification of the sum of voxel numbers (on a percentage of total 
lesion volume) which labeled in red (increase above the specified threshold, e.g. 
PRMA+, PRMB+), green (relatively unchanged, e.g. PRMA0, PRMB0) and blue 
(decrease below the specified threshold, e.g. PRMA-, PRMB-). After the co-registration 
of all serial images, Map “A” and Map “B” share the same spatial geometric space, 
with each voxel having temporal pairs for the pre- and mid-treatment values of “A” 
and “B”. PRM applied to Map “A” or Map “B” results in 3 classifications each, when 
applied to both “A” and “B” voxels, it is stratified into 9 new classifications (32 = 9, 
noted in the box; e.g. the volume fraction characterized as having red on the PRMA 
and blue on the PRMB is called “mPRMA+/B-”). The notation used to indicate the 
mPRM classifications is analogous to the single PRM, outputs are presented as a 
visual map with all intralesional voxels color-coded based upon respective 
classifications, according to [Galban et al. 2015a]. 
 

The mPRM approach is potential to provide a new imaging methodology 
for assessing edema progression and therapy response by integrating the 
diffusion and perfusion parameters into a single response map in both 
preclinical and clinical studies. The permutation and combination of basic 
parameters by mPRM produces more new metrics as candidates for imaging 
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biomarkers. Since perfusion-weighted MRI can be used in edema evaluation 
after osmotherapy [Stoll et al. 1998], it is believed to be capable of showing 
the response to other intervention means, especially with multiple MR 
parameters. Inclusion of PRMADC+ and PRMCBV+ into a single imaging metric by 
mPRM may provide a more accurate evaluation of the edema progression 
(Fig.7.2). 

 
Figure 7.2: Schematic of the mPRM technique applied to the individual ADC and 
CBV maps acquired at D3 and D9 of one representative in our preclinical study. After 
the co-registration of the original images, the PRM approach was applied to the ADC 
and CBV maps resulting in 3 classifications each. The outputs were presented as a 3 
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color-coded overlay for their respective maps to create the (A1) PRMADC and (A2) 
PRMCBV on the same slice, in which the parameter values of either ADC or CBV were 
stratified into significantly increased (red voxels), unchanged (green voxels) and 
significantly decreased (blue voxels) based on predetermined thresholds. (B1) The 
corresponding scatter plot of PRMADC. (B2) The corresponding scatter plot of 
PRMCBV. Each scatter plot showed the distribution of the parameter values (ADC or 
CBV) at D3 and D9 for the entire 3-dimensional lesion volume. The 95% CIs within 
the scatter plot were designated by two black lines. (C) The individual PRMs are 
combined, resulting in 9 classifications. In our example, only the volume of red 
voxels in ADC was separated in the scatter plot to show the voxel distribution of 3 
classes of CBV changes with significantly increased ADC values. 
 

As a composite approach, mPRM potentially identifies an objective 
pathological process after ischemic injury which is useful to assess the 
therapeutic effects of stem cells or anti-edema drugs. By controlling the value 
changes of one variate which are relevant to a certain pathological process, 
the quantification of pure changes in the other parameter is highlighted. The 
ability to accurately identify changes in perfusion on mPRM maps is 
confounded in lesion areas where diffusion and perfusion are colocalized. The 
value of this approach is that the microenvironment and pathophysiology of the 
stroke progression can be monitored noninvasively. These results may lead to 
a better understanding of uncertain mechanisms of the edema development or 
a sensitive imaging biomarker of the early detection of relative therapeutic 
effects. 
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Appendix 1 
 

Chapter 8 
 

MRI segmentation methods 
 
 

Data acquisition, extraction and analysis are consequent but independent 
steps in imaging research. As an improvement in the methodology of imaging 
analysis, PRM approach does not change the innate character of dataset. 
Based on different requirements of practical applications, with considering 
efficiency, repeatability and optimization, selection of image segmentation 
method could be regarded as an explorative step which helps define the final 
target for research. In this chapter, I will review the different methods available 
for this key step. 

As a probe of brain anatomy, physiology and function, MRI is a 
noninvasive and highly versatile modality that promises to play a significantly 
important role in neuroimaging. Accurate segmentation of brain MRI is 
undoubtedly of great potential for both preclinical and clinical researches on 
various neurological diseases. The aim of image segmentation is to divide an 
image into a set of semantically meaningful, homogeneous and 
non-overlapping regions of similar attributes such as intensity, depth or texture. 
The segmentation result is either an image with labels identifying each 
delineated region or a set of contours which describe the region boundaries 
[Despotovic et al. 2015]. However, challenges remained in MRI brain 
segmentation arise from various reasons, including data size, low contrast 
between tissue classes, unavailability of a priori knowledge, both local and 
global perspectives [Scherrer et al. 2007]. 

A wide variety of segmentation techniques were developed and separated 
into several categories based on the classification scheme [Pham et al. 2000]. 
Both healthy and impaired brains are potential targets of MRI segmentation 
with different levels of difficulty in manipulation. For the healthy brain of a 
specific population, template-associated methods are feasible to attain 
favorable repeatability and reproducibility among different individuals. For the 
pathological brain, accurate delineation of lesion is the primary task which 
tightly related with evaluation of severity, therapeutic effects, prognosis, and 
even clinical interventions such as precise tumorectomy. 

All in all, the main cerebral MRI segmentation methods with multiple 
applications including healthy brain, brain tumor and ischemic stroke can be 
grouped as follows: 
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Ø Manual segmentation 
Ø Automatic segmentation 
n Intensity-based methods 
² Thresholding 
² Region growing (Region merging) 
² Edge detection 

n Atlas-based methods 
² Probabilistic atlas segmentation (PA) 
² Label propagation (LP) 
² Multi-atlas propagation (MA) 
² Classification 
² Clustering 

n Artificial neural networks (ANNs) 
n Surface-based methods 
² Deformable models 

n Hybrid segmentation methods 
n Other methods 
² Texture segmentation 
² Wavelet transform 
² Multispectral segmentation 

 

8.1 Manual segmentation 
 

Manual segmentation of anatomy in brain MRI data is considered to be 
with the closest quality of gold standard. It refers to the process where a 
human operator segments and labels an image manually. The procedure is 
typically done by a trained operator who goes through around multiple images 
to extract the contours of the target structures on 3D volumetric imagery slice 
by slice. This method is believed to have high accuracy because it solves the 
difficulties related to image quality and artifacts by reliably identifying and 
delineating different structures in medical images [Garg et al. 2014]. However, 
it depends to a great extent on individual experience and a prior knowledge is 
generally required before the procedure. 

With the developments of imaging tools and attendant higher resolution, 
more slices and more image types of acquired data, the manual segmentation 
has become an intensive and relatively time-consuming task, especially in 
clinical emergency. Manual delineation is not only tedious but also particularly 
difficult to reproduce due to the intra- or interindividual difference in operation 
[Collier et al. 2003]. Registration before manual segmentation, normally in 
anatomic atlas of healthy brain, can improve the operability by transferring the 
ground truth template labels onto the unlabeled images, which then fused to 
obtain the final outputs in the target population (Fig.8.1). Accurate delineation 
of target regions is of prime importance as inaccuracies in the templates for an 
accurate segmentation. The outlines of the overlay should follow the 
anatomical structure boundaries of intensity change and physiological 
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information with a high degree of precision [Garg et al. 2014, de Macedo 
Rodrigues et al. 2015]. 

 
Figure 8.1: Overlay of surface outlines on T1W MRI slices of an 8-year-old healthy 
pediatric brain in the three orthogonal views along with the smooth 3D surface 
renderings. The manually segmented anatomical structures include: (a) lateral 
ventricles, (b) cerebellum, (c) putamen, (d) thalamus, (e) caudate, (f) hippocampus, (g) 
corpus callossum, (h) the third ventricle, (i) brainstem, and (j) the fourth ventricle, 
adapted from [Garg et al. 2014]. 
 

In addition, limitations for manual delineation are due to the principle of 
some editing tools. For example, 3D data was composed by the synchronized 
2D orthogonal views of axial, coronal and sagittal position from which the 
contour of target structure was derived by ITK-SNAP (http://www.itksnap.org) 
[Yushkevich et al. 2006]. Then a continuous 3D surface was extracted from 
the series of 2D contours in three positions. But this task was prone to errors if 
the interslice inconsistencies were inevitable during the segmentation. The 
gaps in the reconstructed surface can be solved by true 3D structure models 
which provided globally smoother and more coherent surfaces across slices. 

Nevertheless, manual segmentation is still widely used as a surrogate for 
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ground truth delineation and quantitative evaluation because of the 
convenience. Furthermore, the different brain structures derived from manual 
segmentation can be applied as the ground truth in brain atlas formation and 
thus can be used in the approaches for atlas-based segmentation [Shi et al. 
2011] (methods mentioned in 8.2.2.2). 
 

8.2 Automatic segmentation 
 

Automatic segmentation can be categorized as semi-automatic and fully 
automatic approaches, which provide clinical potential benefits on the 
monitoring and evaluation of a variety of diseases, especially in brain tumors. 
The semi-automatic method for tumor extraction showed greater efficiency and 
stability than the manual method [Yu et al. 2016]. An automated, reliable and 
efficient technique for MRI brain segmentation is challenged by several factors. 
The common factor is the random Rician noise associated with the magnitude 
MR images [He et al. 2009]. Because of the non-uniformity in the 
radiofrequency (RF) coils or acquisition sequences, intensity inhomogeneity, 
also called bias field, usually appears as an intensity variation across the MR 
images during the image generation [Li Y. et al. 2011]. Thus, a bias of the 
resultant intensities which is hardly observed by the naked eye may lead to a 
serious misclassification by using intensity-based segmentation algorithms. In 
addition, images can be corrupted by other negative factors such as noises, 
partial volume (PV) effect and truncation (Gibbs) artifact. PV effect means 
more than one type of class / tissue occupies one voxel / pixel of the image, 
which leads to the fuzzy boundaries between different tissues. [Ruan et al. 
2000]. The manifestation of truncation artifacts, also as known as Gibbs 
phenomenon, are the overshoot and ringing artifacts around sharp changes in 
image contrast, which caused by the truncation of a Fourier series of a 
discontinuous function. Normally, the truncation artifacts are unavoidable at 
sharp edges with high contrast when the image is being deblurred. The 
reduction of truncation artifacts can be realized at the cost of compromising 
image resolution because high-frequency components of the data will be 
excluded by blurring the input image [Zeng et al. 2011]. 

In general, brain MR imaging elements are typically classified into three 
main tissue types: WM, GM and cerebrospinal fluid (CSF). But various 
fundamental components of structural brain MRI data can lead to significantly 
different results of segmentation. For example, compared with the adult brain 
MR images, contrast in neonatal MR images is much lower than that of adult 
because the majority of WM is as-yet unmyelinated and has the water content 
closer to that of GM than in adults and adolescents. Besides the image 
contrast, the intensities of tissues are significantly affected by intensity 
inhomogeneity due to not only RF inhomogeneity but also biological properties 
of the developing tissue, which leads to a large overlap in their intensity 
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distributions. The inversion of contrast between GM and WM, compared to 
adult MRI, is also a difficulty given the limited resolution of neonate MRI. Due 
to this inverted GM / WM contrast, many voxels between CSF and GM can be 
incorrectly classified as WM by conventional intensity-based segmentation 
approaches. In a word, it remains challenging to segment brain MR images, 
especially for neonatal brain images [Xue et al. 2007, Shi et al. 2010]. Method 
complexity has thus evolved to account for these constraints. 
 

8.2.1 Intensity-based methods 
 

Intensity-based segmentation methods distinguish individual voxel / pixel 
of different types according to their intensities. In the case of the brain MRI, 
elements are typically classified into three tissue types as described before. 
More detailed classification is limited by the overlap between different brain 
structural intensity profiles such as brain and non-brain tissue (e.g. the scalp). 

Several intensity-based techniques are available for tissue classification. 
The most common method is to use intensity histogram of all voxels and fitting 
Gaussian functions to the distribution, and then associates a probability to a 
given intensity of correspondence to a given type of tissue. Incorporating tools 
for dealing with artifacts in MRI are required even only for the basic separation 
of the three main tissue classes. Incorporating neighborhood information helps 
to give preference to spatially homogeneous regions in the resulting 
segmentation by significantly decreasing misclassification caused by random 
noise in the image [Pham et al. 2000]. 
 
8.2.1.1 Thresholding 

As the simplest image segmentation method, the thresholding procedure 
uses the intensity histogram to define the thresholds τ values which separate 
the desired classes (e.g. object from background). The segmentation is then 
realized by grouping all pixels between defined thresholds into one class. 
Thresholding methods have many variations including global signal threshold, 
local threshold depending on the location in the image, multi-thresholding, 
adaptive thresholding and so forth (Fig.8.2). They can be applied to separate 
background voxels from the brain tissue or to initialize the tissue classes in 
other iterative segmentation methods. 
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Figure 8.2: Grey level histogram can be partitioned by (a) a single threshold or (b) 
multiple thresholds [Despotovic et al. 2015]. 
 

Although thresholding method is fast and computationally efficient, the 
neighborhood information which reflects the imaging spatial characteristics is 
not taken into account. Thus, it tends to produce scattered groups of pixels 
rather than connected regions because of its sensitivity to noise and intensity 
inhomogeneities, especially under low contrast condition. Furthermore, this 
method is not suitable for textured images because of their perceptual qualities 
from the higher order interactions between image elements [Ghaye et al. 2013, 
Despotovic et al. 2015]. 
 
8.2.1.2 Region growing 

Region growing is a technique for extracting a connected region of the 
image which consists of groups of voxels with similar intensities [Sharma et al. 
2010]. It is suitable for segmentation of volumetric images which are 
composed of large connected homogeneous regions. The selection of seed 
points is a key step which based on the criterion of users such as pixels in a 
defined greyscale range or pixels evenly distributed on a grid. This procedure 
starts from the seed points which can be manually defined or automatically 
initialized with the algorithm to the accumulation of all neighboring voxels with 
similar intensities which satisfy a predefined uniformity or homogeneity 
criterion. It is repeated until all examined qualified voxels are added to the 
growing region [Park et al. 2014, Despotovic et al. 2015]. 

Successful applications of region growing algorithm provide huge 
information in brain MRI analysis for segmentation of brain vessels [Passat et 
al. 2005], extraction of brain surface [del Fresno et al. 2009] and brain tumor 
[Hsieh et al. 2011] (Fig.8.3). A semiautomatic segmentation technique based 
on region growing was applied to measure the infarction volume on 3D image 
representation [Dastidar et al. 2000]. 
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Figure 8.3: An example of MRI segmentation by region growing in brain tumor. (a, b) 
For the images which are too fragmented to be properly classified, (c, d) the seed 
areas are selected to turn the fragments into (e) tumor-containing image or (f) 
meaningful intermediate by voxel-wise aggregation, adapted from [Hsieh et al. 2011]. 
 

The main disadvantage of the region growing method is its sensitivity to 
the initialization of seed point which may change the segmentation result 
completely by different choice. If the seed point or homogeneity criterion is not 
properly defined, the growing region can leak out into irrelevant regions. 
Region growing is also sensitive to noise which leads to the disconnected or 
defective presence of the image. 
 
8.2.1.3 Edge detection 

The edge detection technique refers to the segmentation results in terms 
of the boundaries between different regions of image with good contrast. 
Edges are defined as the intersection between two regions with significant 
changes in grey level intensity values. Various edge detections are generally 
named after their inventors. For example, the frequently used techniques are 
named the Marr-Hildreth or Laplacian-of-Gaussian (LoG), Sobel, Roberts, 
Prewitt and Canny.  

In brain MR images, binary mathematical morphology and Watershed 
algorithm are often used for the segmentation. However, the major drawbacks 
of these methods are over-segmentation, sensitivity to noise, poor detection of 
significantly low contrast edges and poor detection of insubstantial structures 
[Grau et al. 2004]. 
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8.2.2 Atlas-based methods 
 

For brain MRI segmentation, the atlas-based methods are powerful tools 
with the available atlas or template of a specific region of interest of human 
brain. The atlas contains information about the brain anatomy from different 
brain structures which is used as a reference for segmenting new images. It is 
possible to segment any brain structure available only by the atlas. To an 
extent, atlas-based approaches are similar to classifier methods, except that 
they are implemented in the spatial domain rather than in the feature space. 
Medical targets including brain structure with well-defined shapes, brain 
tissues in healthy subjects, brain tissues in challenging populations and 
damaged brains with either focal lesions or space-occupying lesions can be 
realized by multiple atlas-based segmentation algorithms [Despotovic et al. 
2015] (Fig.8.4). 

 
Figure 8.4: A schematic representation of the atlas-based segmentation of brain 
structures, healthy tissue, abnormal tissue and lesions (e.g. multiple sclerosis). The 
MR brain data sets and their manual segmentations are available at 
http://www.cma.mgh.harvard.edu/ibsr/ [Cabezas et al. 2011]. 
 
8.2.2.1 Probabilistic atlas segmentation 

In medical images there is sometimes a weak relation between voxel data 
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and the label assignment. In such cases, spatial information must be taken into 
account in the segmentation process. One well-validated approach relies on 
combining the segmentations obtained from non-rigid aligning multiple 
manually labeled atlases with the target image [Wang et al. 2005]. The 
probabilistic atlas segmentation (PA) method provides a framework in which 
appropriate datasets can be entered, across an ever-increasing number of 
challenges such as age, gender, disease states and imaging modalities, 
varying in populations, laboratories and experiments such that, in time, the 
aggregate data from populations will provide even greater insights into this 
important relationship in both quality and quantity [Mazziotta et al. 2001]. It is 
commonly used in the analysis of medical images, since it integrates a priori 
knowledge of the shape and the appearance after being aligned with the 
image to be segmented. Since the segmentation labels for the actualities are 
known for the atlas, all atlas information is transferred to the target image after 
registration. Therefore, the performance of atlas-based methods is directly 
dependent on quality of the registration method employed [Sjoberg et al. 
2013]. Generally, the affine registration is used for aligning the PA. However, 
an affine alignment may not be sufficient if the brain anatomy of interest differs 
significantly from the average atlas anatomy. And it is difficult to register 
anatomical template with the image to be segmented by using standard 
registration methods. Multiple methods such as simultaneous segmentation, 
bias correction and nonrigid registration of a PA have been developed which 
aim to overcome this problem by iteratively refining the segmentation and 
nonrigid registration of the PA at the same time, which lead to different 
approaches based on density, label or deformation [Ashburner et al. 2005]. 

Even with nonrigid registration methods, accurate segmentation of 
complex structures is difficult due to anatomical variability. Also, atlas-guided 
segmentation in patients with brain deformations can be prone to errors, 
because the PA is based on the population of healthy subjects. The 
atlas-based approach is not suitable for image segmentation of a brain 
anatomy significantly different from the atlas template. The PA segmentation 
methods use atlas values in a probabilistic framework to segment the images 
into new classes and reduce the effect of registration errors from a subset of 
voxels of the image by the estimation of such models [Cabezas et al. 2011]. 

An aligned PA can be also used as a good initial estimate of the 
segmentation, which is especially important for EM-based methods, as EM 
algorithm is guaranteed to converge, at least to local maxima. In addition, most 
EM-based methods use the PA to constrain the segmentation process where 
again the correct alignment of the PA is crucial for successful and accurate 
segmentation [Ashburner et al. 2005, Pohl et al. 2006]. 
 
8.2.2.2 Label propagation 

Label propagation (LP) is a widely-used graph-based semi-supervised 
learning framework in which a dataset consisting of both labeled and unlabeled 
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data points is provided to assign labels to the unlabeled subset [Zikic et al. 
2013]. Propagate labels of the labeled data points to the unlabeled data points 
depend on the intrinsic data manifold structures which based on a large 
number of samples because data points with the same manifold are very likely 
to share the same label. To increase the number of both labeled and unlabeled 
data points, the LP algorithm is more likely to get an ideal result of the label 
estimation. However, this process is at the expense of higher computation time 
[Heckemann et al. 2006]. 

To select an ideal atlas-based segmentation strategy, the main 
advantages and drawbacks should be overall considered. The LP technique is 
highly dependent on both the atlas image and the registration procedure, and it 
may not be desirable to deal with subjects from very different populations. But 
it is still widely used to define a ROI for further segmentation or to initialize an 
active contour strategy [Baillard et al. 2001, Wu et al. 2006]. 
 
8.2.2.3 Multi-atlas propagation 

The multi-atlas propagation (MA) technique based on multiple labels with 
outlier minimization is desirable when segmenting objects with a well-defined 
shape where there is low anatomical variability between different images. It 
has been reported that framework based on MA technique results in 
significantly optimized segmentation accuracy in mouse brain atlas databases 
with expert-delineated manually labeled anatomical structures, compared to 
the single-atlas based segmentation method [Ma et al. 2014] (Fig.8.5). 
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Figure 8.5: Sample images comparing the parcellation result of MA segmentation 
method and the single-atlas based method. The selected coronal and sagittal slices 
demonstrated that the MA technique preserved the correct local registration in 
different regions while some local misalignments were found by using the single-atlas 
based method (red arrows). (a) The original images on which structural parcellations 
are overlaid. (b) Structural parcellation using the MA based framework. (c) Structural 
parcellation result of one single-atlas based method with part of the cerebellum 
mis-segmented on coronal view. (d) Another structural parcellation result of 
single-atlas based method with the edge between olfactory bulb and cortex 
mis-segmented on sagittal view [Ma et al. 2014]. 
 
8.2.2.4 Classification 

Classification methods partition image data based on different image 
features which can be related to intensity or other image properties besides 
intensity values. Segmentation results are formed by classified regions with 
defined labels. The problems of segmentation and classification are interlinked 
because segmentation implies a classification, while a classifier implicitly 
segments an image. A set of predefined rules based on known tissue 
properties or manual expert annotations of the anatomical information is 
essential to simplify the segmentation task. Classification methods are 
normally supervised which require manually segmented training images as 
references for automatic procedure on new images [Kiang et al. 2003]. 

The κ-nearest-neighbor (κNN) classifier is one of the simplest approaches 
by ranking the voxels according to the majority vote of the closest training data. 
It is also regarded as a nonparametric classifier because it makes no 
underlying assumption about the statistical structure of the data, which is 
especially suitable for a huge amount of training data [Geva et al. 1991]. 

The first step of brain MRI segmentation based on image intensities is to 
apply the κNN classification methods corresponding to the spatial localization 
of brain structure (classes) as a nonrigidly registered template, to enhance the 
classification process [Warfield et al. 2000, Svolos et al. 2013]. The 
segmentation is calculated in an iterative process by interleaving the 
segmentation refinement with updating the nonrigid alignment to the template. 
A huge amount of training samples for each tissue class are manually selected 
for the κNN classifier during the processing procedure. Due to the manual 
interaction during training phase, the method is not fully automatic and the 
results depend on the choice of the training set. A better generalization of 
robust selection of training samples is developed for the κNN classification to 
realize a fully automatic process of anatomical structures [Cocosco et al. 
2003]. However, it does not deal well with the problem of natural intensity 
variation within each tissue class. And the correction of the bias field during 
pre-processing is necessary for both methods. 

As for the parametric classifiers, one of the most commonly used is called 
Bayesian classifier which models the probabilistic relationships between the 
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attribute set and the class variables, and subsequently estimates 
corresponding probability of variables [Wells et al. 1996]. Based on the 
relationship between posterior probability, prior probability and likelihood of 
Bayes rule, all the pixel intensities are supposed to be independent samples 
from a mixture of Gaussian probability distributions in brain MRI segmentation. 
Samples from each component of the Gaussian mixture are collected as the 
training data. The Bayesian classifier assigns each pixel of the newly obtained 
data to the class with the highest posterior probability to continue the 
classification process [Marroquin et al. 2002]. 

Different algorithms can be exploited based on Bayesian classifiers to 
estimate parameters in statistical models. The expectation-maximization (EM) 
algorithm is a natural generalization of maximum likelihood estimation to the 
incomplete data case which arises in many computational biology applications 
that involve probabilistic models [Papaconstadopoulos et al. 2016]. This 
imaging segmentation method by Bayesian classifiers has been successfully 
implemented in several software packages such as FAST, FreeSurfer, SPM 
and 3DSlicer [Zhang et al. 2001, Fischl et al. 2002, Ashburner et al. 2005, 
Pohl et al. 2006]. Besides the bias correction in the EM framework, various 
additional improvements have been achieved for ideal segmentation, such as 
nonrigid alignment of atlas [Ashburner et al. 2005]. By this improvement, 
neighborhood information is estimated by the statistical model in the form of 
Markov random field (MRF) [Held et al. 1997, Zhang et al. 2001] or by the 
Gaussian mixture model (GMM) to produce the α-stable distribution mixture 
model [Salas-Gonzalez et al. 2013]. The Bayesian framework can also be 
used to segment particular cerebral anatomy and its neighboring brain 
structures by the generalization of a PA [Iglesias et al. 2015]. 

The segmentation of chronic ischemic stroke is generally confused by the 
remote, asymptomatic, even silent appearance or white matter 
hyperintensities (WMH) with the heterogeneity within the lesion volume caused 
by ongoing gliosis or demyelination [Cramer et al. 2006, Vernooij et al. 2007]. 
Multimodal techniques for image segmentation can be combined to provide 
more accurate identification of classes in the images of chronic ischemic 
stroke. An automated Bayesian / MRF segmentation strategy combining with 
random forest classification was applied to identify ischemic, WM and other 
secondary lesions in chronic stroke from multimodal MRI including T1WI, T2WI, 
FLAIR and DWI [Mitra et al. 2014] (Fig.8.6). Random forest is a multitude of 
single decision trees for classification, regression and other tasks, with each 
outputs the mode of classes of object from an input vector [Li X. et al. 2009, 
Azeez et al. 2015]. 
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Figure 8.6: Likelihood and random forest probabilistic segmentation of probable 
ischemic lesion areas. (a) Original FLAIR image, (b) the likelihood of the probable 
lesion area with heterogeneity in the probabilities (white arrow) and (c) the smoother 
probabilities by random forest segmentation [Mitra et al. 2014]. 
 

For supervised classification methods, the manual interaction task is 
supposed to be laborious and time-consuming. And the neighborhood 
information of data is not taken into account which leads to the high sensitivity 
to noise. Also, by using the same training set for a large number of images will 
cause bias towards the anatomical and physiological variability between 
different subjects [Despotovic et al. 2015]. 
 
8.2.2.5 Clustering 

Clustering methods are unsupervised segmentation methods that partition 
an image into clusters of voxels / pixels with similar intensities by self-training 
on the data instead of using training images. The segmentation and 
self-training are processed in parallel by iterating between data clustering and 
estimating the properties of each tissue class. The most commonly used 
clustering methods are the EM method, the fuzzy C-means (FCM) clustering 
and the κ-means clustering [Pham et al. 2000, Chuang et al. 2006, Chen Z. et 
al. 2013]. 

The EM method usually segments objects by either assigning a class 
label to a pixel or by estimating the relative amounts of the various tissue types 
within a pixel [Singh et al. 2004]. The procedure is iterative for the calculation 
of maximum likelihood or maximum a posteriori (MAP) probability. In brain MRI 
segmentation, the EM method typically assumes cerebral intensities of 
different tissues accord with a GMM. Compared with FCM and κ-means 
methods, EM method is highly sensitive to initialization of some certain 
parameters instead of training data [Pham et al. 2000]. 

The first step of EM approach for segmentation is to initialize the EM 
algorithm [Rohlfing et al. 2003, Lu et al. 2008]. Normally, the GMM is used to 
initially estimate model parameters followed by the iteration between 
expectation step (E-step) and maximization step (M-step) until convergence. 
E-step is to estimate the segmentation of target given the current estimate of 
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model parameter while M-step is to estimate the model parameters including 
the intensity distribution parameters for each tissue class, the bias correction 
parameters and the registration parameters for alignment of PA with the image 
[Chuang et al. 2005, Hong et al. 2008]. 

The FCM clustering method is based on fuzzy set theory which allows 
each voxel / pixel to be classified to multiple classes according to a certain 
cluster membership value (Fig.8.7). 

 
Figure 8.7: Original non-contrasted axial MR images of meningioma were shown. (a) 
T1-weighted image, (b) T2-weighted image and (c) 2D intensity histogram based on 
these two original MR images. (d) Using FCM clustering on MR images and (e) the 
resulting histogram after defuzzification, which usually performed to convert the 
fuzzy memberships into a clear-cut set. Each of the 32 groups of color zones shown 
on this histogram represent a particular tissue character, adapted from [Hsieh et al. 
2011]. 
 

The κ-means clustering method partitions the input data into κ classes by 
iteratively computing a mean intensity for each class. The image is segmented 
by classifying each voxel / pixel in the class with the closest centroid. 
Compared with the FCM clustering, the κ-means clustering is regarded as a 
hard classification method because it forces each voxel / pixel to belong 
exclusively to one class in each iteration. In general, the shape of joints 
multimodal MR intensity distributions of different tissue classes depends on 
the image quality. This concept applies to all segmentation methods. An 
example was given to show that the probability maps and the final clusters of 
brain tissue segmentation with good quality could be realized by the standard 
κ-means clustering method when overlaps appeared among classes in 
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multimodal MR intensity distributions (Fig.8.8). Under the condition of a 
significant overlap among tissue classes, the spatial information is required to 
eliminate the bias of classification [Despotovic et al. 2015]. 

 
Figure 8.8: Joint 2D intensity histogram of the multimodal T1W and T2W MRI 
clustering of the adult brain, which consisted by three overlapped Gaussian 
distributions. (a) Tissue distribution of GW, WM and CSF on T1W and T2W MRI at 
horizontal and vertical level with a slight overlap among classes. (b) After the 
application of the standard κ-means clustering method, the scatter plot of the T1W and 
T2W tissue intensities represent GM, WM and CSF by red, green and blue lump 
separately [Despotovic et al. 2015]. 
 

For acute ischemic lesion identification and quantification, an automatic 
segmentation methodology based on unsupervised clustering and spatial 
clustering on FLAIR images with incorporation of DWI images enabled 
differentiation between the post-ischemic area and other hyperintense signal 
areas [Artzi et al. 2013]. 

The disadvantage of clustering methods is that they are sensitive to noise 
and intensity heterogeneity due to their initialization without incorporating 
spatial neighborhood information. Several extensions of the clustering 
algorithms concern optimization of the neighboring pixels modification, 
measurement of spatial information and noise filtering have been proposed to 
improve the clustering performance for images biased by this factor [Ahmed et 
al. 2002, Chen et al. 2004, Shen et al. 2005, Rivest-Henault et al. 2011]. 
 

8.2.3 Artificial neural network 
 

Artificial neural network (ANN) is a parallel distributed processor of 
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elements or nodes that has a natural tendency for storing experiential 
knowledge. Each node in an ANN is capable of performing elementary 
computations. A layer of hand-coded features are applied by perceptrons to 
realize the recognition of objects by learning how to weight such features. 
Learning is then achieved through the adaptation of weights assigned to the 
connections between nodes. Data processing of a component begins from the 
data input to data output of neurons by propagation function, activation 
function and output function sequentially [Buscema et al. 2002] (Fig.8.9). To 
simulate biological neural network, the massive connectionist architecture 
constituted by neurons and connections in ANN model enables the system to 
produce output to reproduce the dynamic interaction of multiple factor 
simultaneously and draw conclusion on individual basis without following 
average trends with respect to classical statistical techniques [Grossi et al. 
2007]. This digitized model of biological brain can detect complex nonlinear 
relationships between both dependent and independent variables contained in 
the data where human brain may be not capable to detect [Patel et al. 2007]. 
Nowadays, ANNs have been developed for a wide range of applications in 
various disciplines of medicine, especially for medical imaging data processing 
such as image enhancement, segmentation, registration, feature extraction 
and object recognition. In particular, image segmentation is a critical step for 
high-level processing in clinical research [Perez de Alejo et al. 2003, 
Hosseini et al. 2007]. 

 
Figure 8.9: A diagram of the data processing of a neuron in ANN model which is 
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available at http://www.dkriesel.com/en/science/neural_networks. 
 

In medical imaging application, data segmentation was determined by 
classifier and followed by the ANN [Hall et al. 1992]. ANNs can also be used in 
an unsupervised fashion as a clustering method as well as for deformable 
models by exploiting imaging data constraints with a priori knowledge about 
the location, size and shape of anatomical structures [McInerney et al. 1996, 
Reddick et al. 1997]. Because of the many interconnections used in a neural 
network, spatial information can be easily incorporated into its classification 
procedures [Pham et al. 2000]. However, the training data is indispensable for 
the ANNs. The other major disadvantage is that the simulation by the ANNs 
usually requires high processing time, especially for large neural networks, so 
that equipment with high standard configuration is necessary. 

The self-organizing map (SOM) is a type of ANN extracted from the 
learning vector quantization (LVQ) [Torrecilla et al. 2009]. It is able to convert 
complex, nonlinear statistical relationships between high-dimensional data 
items into simple geometric relationships on a low-dimensional display using 
unsupervised learning. However, SOM algorithms are highly dependent on the 
training data representatives and the initialization of the connection weights. 
And they have a high consumption of computation if the dimensions of the data 
increases [Rajchl et al. 2015]. 
 

8.2.4 Surface-based methods 
 

The deformable models based on the surface-based methods provide 
active contours and surfaces for brain MRI segmentation. Deformable models 
are physically motivated, model-based techniques for detecting region 
boundaries by using closed parametric curves or surfaces that deform under 
the influence of internal and external forces. To delineate a boundary on the 
object of interest, a closed curve or surface must be placed near the desired 
boundary first and then be allowed to undergo an iterative relaxation process. 
Internal forces are computed from within the curve or surface to keep it smooth 
throughout the deformation. External forces are usually derived from the image 
to drive the curve or surface toward the desired feature of interest [Pham et al. 
2000]. The contour deforms to minimize the contour energy that includes the 
internal energy from the contour and the external energy from the image by the 
snake model, an original deformable model. Improvements such as snake 
variations and level set on deformable contour method have been proposed for 
image segmentation to obtain a better convergence [Xu et al. 1998, Verma et 
al. 2012]. 

Volumetric images revealing the location and amount of brain shift can be 
taken intra-operatively during the neurosurgery. However, surgical constraints 
limit both the time per acquisition as well as prevent the application of 
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multi-modality imaging. The reliability of the resulting volumetric calculation is 
dependent on the accuracy of the brain surface detection which could be 
contributed by an ideal surface-based method and provide a weighted result of 
3D point corresponding estimation and surface deformation constraints 
[DeLorenzo et al. 2006] (Fig.8.10). In a recent publication, a new non-rigid 
registration method that integrates surface and sulci feature to noninvasively 
track the brain surface has been proposed. Measured brain surfaces were 
acquired using phase-shift 3D shape measurement, which offers 2D image 
pixels and their corresponding 3D points directly. The corresponding 
feature-concerned points between intraoperative brain surfaces were 
estimated by a designed algorithm and subsequently led to a smooth surface 
deformation and local surface details. The advantages of this surface-based 
method are the integration of vessels or sulci features, robustness in dealing 
with dissociation in variable deformation magnitude and features and feasibility 
in compensating for brain shift in image-guided neurosurgeries [Jiang et al. 
2016]. 

 
Figure 8.10: The extracted preoperative brain surface and the 3D point locations 
selected during surgery for validation. The 3D manually-selected preoperative 
definition of sulci location smoothed extracted surface and intraoperative stereo 
images with outlined sulci were inputs to the surface detection algorithm. (a) The 
extracted 3D brain surface (the craniotomy area labeled in red curve), (b) The initial 
(black arrow) and final (white arrow) brain surface positions by 3D points were 
acquired in the operation room for algorithm validation and (c, d) Intraoperative 
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images acquired approximately 3 h after surgery by stereo camera. The sulci used as 
the feature information are outlined (white lines), adapted from [DeLorenzo et al. 
2006]. 
 

The benefits of deformable models in cerebral cortical MRI segmentation 
are that they are capable of generating closed parametric curves or surfaces 
from images and incorporating a smoothness constraint that provides 
robustness to noise and spurious edges. On the other side, deformable 
models require manual interaction to place an initial model and choose 
appropriate parameters. Poor convergence to concave boundaries exhibited 
by standard deformable models can be alleviated through the use of 
topological model which uses an implicit representation, pressure force and 
other modified external-force models [Terzopoulos et al. 1997, Xu et al. 
1998]. 
 

8.2.5 Hybrid segmentation methods 
 

Technological development of brain MRI segmentation is continuously 
explored but each of them has particular advantages and drawbacks. Since a 
selection of the most appropriate technique for a given application is often a 
difficult task, a combination of multiple techniques may be necessary to obtain 
the segmentation goal. Therefore, hybrid or combined segmentation methods 
have been used extensively in different brain MRI segmentation applications 
[Li B. N. et al. 2011]. The main idea is to combine different complementary 
segmentation methods into a hybrid approach to avoid many individual 
disadvantages and improve segmentation accuracy. 

Definitely, to segment images of adult healthy brain, the effect can be 
reinforced by using multiple MR contrasts. As for the computational 
segmentation techniques, EM method combined with binary mathematical 
morphology and active contours models once were applied on 2D MRI to 
realize it [Kapur et al. 1996]. Brain lesions with different sizes, locations and 
textures were detected and delineated by an automated procedure with the 
combination of outliers detection and fuzzy clustering from single T1 images 
[Seghier et al. 2008] (Fig.8.11). For segmenting tumor lesions, edema, cysts, 
necrosis and normal tissue in T2 and FLAIR MRI, a hybrid MRI segmentation 
method was developed on ANN [Vijayakumar et al. 2011]. Furthermore, a 
combination of model-based region growing and spectrum information was 
applied in blood vessels segmentation [Jiang et al. 2013]. Hybrid 
segmentation methods are also used for the neonatal brain segmentation. 
Brain volume or anatomical regions in neonates can be segmented by the 
combination of thresholding, active contours, FCM clustering and 
morphological operations [Despotovic et al. 2010, Gui et al. 2012]. 
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Figure 8.11: A flow chart diagram of the process of automated lesion identification by 
outliers detection and fuzzy clustering [Seghier et al. 2008]. 
 

The white matter hyperintensities automated segmentation algorithm 
(WHASA) is a new method for automatically segmenting WMH from T1W and 
FLAIR images. WMH have to be differentiated mainly from surrounding WM on 
FLAIR images. The application of non-linear diffusion on FLAIR images which 
were bias corrected improved enhancement of edges between WM and WMH 
and weakened edges between WM and GM. The contrast parameter λ was set 
as the mean of the gradient magnitude of bias-corrected FLAIR on the 
interface mask [Samaille et al. 2012] (Fig.8.12). 

 
Figure 8.12: Computation of the contrast parameter λ for non-linear diffusion on 
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FLAIR image of WMH [Samaille et al. 2012]. 
 

As previously mentioned, due to the heterogeneity in tissue contrasts, 
stroke lesions were normally difficult to be effectively segmented with WMHs. A 
method can detect WMHs by empirical threshold and atlas with subtraction of 
WM voxels affected by acute infarction in combined T1W, FLAIR and DWI 
sequences [Tsai et al. 2014] (Fig.8.13). 

 
Figure 8.13: A typical example of the segmentation with both WMHs and acute 
infarcts on 7 continuous slices of axial brain images. This method illustrated the 
boundary between WMHs (yellow arrow) and stroke lesions (red arrow) which is 
difficult to recognize by manual delineation with human naked eye, adapted from 
[Tsai et al. 2014]. 
 

Lesions diversify into different representation according to the MR 
modality. A single procedure which accounts for various sources of information 
will lead to a unified and accurate conclusion in imaging analysis. It remains 
challenges in MRI segmentation of ischemic stroke lesions, especially shape 
complexity and ambiguity during delineation. Due to the inhomogeneity of 
stroke lesions, the elusive ground truth is still a challenge in creating an 
automatic segmentation method. In addition, accurate segmentation of stroke 
lesions requires anatomical knowledge of a certain population. In particular, 
identification of occlusion location and relevant vascular territory by MRI is 
important in assessing disease severity and differentiating stroke from other 
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diseases. One example of a multimodal MRF model including all MR 
modalities simultaneously was proposed with joint application of an atlas of 
blood supply territories, which constructed to help determine the stroke 
subtypes and concerned post-stroke functional deficit. By this hybrid 
segmentation method, the evolution of a stroke lesion mainly located in the 
MCA territory in multiple sessions is shown (Fig.8.14). The infarct extension to 
the deep territory in the early stage may reflect the cytotoxic edema, which can 
be confirmed by other clinical evidences. 

Compared with a mono-dimensional segmentation applied on each MRI 
sequence, this hybrid method shows a powerful capability of gathering 
available information, delineating correct lesion region, assigning the relevant 
vascular territory and providing synthetic information concerning the potential 
mechanisms in stroke development [Kabir et al. 2007]. 

 
Figure 8.14: Application of the Blood Supply Territories (BST) Atlas for the 
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determination of stroke subtypes on the segmented images. (a1-3) The stroke lesion of 
the same individual at three different time points is presented by multimodal MR 
segmentation methods, which mainly located in the MCA territory. In (a1) acute stage 
and (a2) early subacute stage, the lesion extends to the deep territory supported by 
MCA perforating branches. In (a3) chronic stage, the lesion is restricted to the 
leptomeningeal branches of the MCA. (b) Corresponding BST Atlas slice, and (c1-3) 
Corresponding delineations of the stroke lesion superimposed on the BST Atlas, 
adapted from [Kabir et al. 2007]. 
 

The main drawback of hybrid segmentation methods is often the 
increased complexity in comparison with each single method integrated into 
the hybrid one, which leads to a longer time-consuming task and a higher 
number of parameters tuned for a specific goal. Therefore, a hybrid 
segmentation method should be carefully and wisely designed to give efficient 
and good quality segmentation. 
 

8.2.6 Other methods 
 

Texture segmentation is to segment an image into regions according to 
the texture of the regions. It began to be applied in brain segmentation in the 
early 1990s for the classification of WM, GM and CSF [Kjaer et al. 1995]. 
However, it was hard to judge the performance of such a segmentation 
algorithm and the algorithm was sensitive to the initial textural properties. The 
details including application in clinic will be described below. 

Wavelet transform is a tool to cut up data or functions or operators into 
different frequency components, and then studies each component with a 
resolution matched to its scale [Maldjian et al. 1997]. In medical image 
segmentation, wavelet transforms have been employed to combine texture 
analysis, edge detection, classifiers, statistical models and deformable models 
as the hybrid methods which benefit through using image features within a 
spatial-frequency domain for the assistance to the image segmentation [Barra 
et al. 2000]. 

Multispectral segmentation is a method for differentiating tissue 
classifications having similar characteristics in a single imaging modality by 
using several independent images of the same anatomical slice in different 
modalities. As a  consequence of different responses of the tissues to 
particular pulse sequences, this method increases the capability of 
discrimination between different tissues [Fletcher et al. 1993]. Pattern 
recognition is the most common approach for multispectral MR image 
segmentation but remains much work in the area of validation [Bezdek et al. 
1993, Reddick et al. 1997, Juan-Albarracin et al. 2015]. 

The advantages and drawbacks of different imaging segmentation 
methods introduced in this chapter are summarized in Tab.8.1. 
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Table 8.1: The strengths and challenges of different imaging segmentation methods 
 Strengths Challenges 

Manual 
segmentation 

Most accurate; 
Provide information to 
automated 
segmentation like 
atlas-based method 

Time-consuming; 
Difficult to reproduce; 
Dependent on individual 
experience 

Intensity-based 
segmentation 

Decrease 
misclassification 

Brain structures overlapped 

1. Thresholding Fast and 
computationally 
efficient 

Sensitive to noise and 
intensity inhomogeneities; 
Not suitable for textured 
images 

2. Region-growing Suitable for volumetric 
images and large 
connected 
homogeneous regions 

Sensitive to the initialization of 
seed point selection; 
Sensitive to noise and partial 
volume effect; 
Produce discontinuous 
pattern of images 

3. Edge-detection Show the grey level 
intensity value change; 
Suitable for good 
contrast images 

Over-segmentation; 
Sensitive to noise; 
Poor detection of significant 
areas with low contrast 
boundaries; 
Poor detection of thin 
structures 

Atlas-based 
methods 

Segment any brain 
structure available in 
the atlas without any 
additional cost 

Affine alignment problem (the 
brain anatomy of interest 
differs significantly from the 
average atlas anatomy) 

1. Probabilistic atlas 
segmentation 

Anatomical variability; 
A single registration; 
Multiple input features 

Atlas weighting; 
Complex model estimation 

2. Label 
propagation 

Intuitive; 
Straight-forward; 
A single registration 

No anatomical variability; 
Atlas dependent 

3. Multi-atlas 
propagation 

Anatomical variability; 
Outlier minimization 

Problems in atlas selection 
and combination; 
Multiple registrations 
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4. Classification Without underlying 
assumption about the 
statistical structure of 
the data 

Laborious and 
time-consuming (supervised 
classification); 
Sensitive to noise; 
Bias of anatomical and 
physiological variability 
between different subjects; 
Contain a natural intensity 
variation within each tissue 
class 

5. Clustering Avoid using training 
images 

Fail to incorporate spatial 
neighborhood information; 
Sensitive to noise and 
intensity inhomogeneities 

Artificial neural 
network 

Parallel processing; 
Feasible in 
unsupervised fashion; 
Incorporate the spatial 
information 

Training data is required; 
Time-consuming; 
Complex design and process; 
Dependent on the 
initialization of the connection 
weights 

Surface- based 
methods 

(deformable 
models) 

Generation of closed 
parametric curves or 
surfaces from images; 
Incorporate a 
smoothness to avoid 
the influence of noise 
and spurious edges 

Require manual interaction to 
place an initial model and 
choose parameters 

Hybrid 
segmentation 

Avoid the disadvantage 
of single method; 
Differentiate the 
associated condition of 
some certain diseases 

Increased complexity in 
comparison with each single 
method; 
High computational time; 
A large amount of different 
parameters required 
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L’accident vasculaire cérébral (AVC) est la principale cause de handicap acquis 
chez l’adulte. Seul 30% des patients récupèrent favorablement après un AVC. De la 
phase aigüe à la phase tardive, le pronostic après un accident vasculaire ischémique 
dépend de nombreux facteurs. Lors d’essais cliniques, les échelles « National 
Institutes of Health Stroke Scale » (NIHSS) et / ou « modified Rankin Scale » (mRS) 
sont les outils les plus communément utilisés pour caractériser l’impact de l’AVC sur 
le patient. Ces échelles sont aujourd’hui considérées comme des prédicteurs objectifs 
de l’état final du patient après un AVC. 

Au-delà de la courte fenêtre d’intervention (thrombolyse, thrombectomie), de 
nombreuses études rapportent le potentiel des biothérapies pour favoriser la plasticité 
et la réparation neuronale après un AVC. Parmi ces thérapies, les thérapies cellulaires 
employant des cellules souches semblent très prometteuses. En effet, plusieurs études 
montrent qu’une greffe de cellules souches favorise la récupération fonctionnelle dans 
des modèles animaux d’AVC. Chez l’homme, la faisabilité des thérapies cellules est 
acquise et des résultats prometteurs ont été obtenus. 

Pour caractériser de façon non-invasive les effets à court et long terme de ces 
thérapies cellulaires, il est nécessaire de développer de nouvelles approches 
d’imagerie. L’imagerie par résonance magnétique (IRM) multiparamétrique pourrait 
être un indicateur intéressant de la réponse thérapeutique ou de la récupération 
spontanée. En particulier, l’IRM multiparamétrique pourrait permettre d’orienter le 
traitement et de mieux trier les patients en vue d’une thérapie par cellules souches. 
Pour évaluer ce potentiel, il convient d’évaluer la corrélation entre les informations 
issues de l’imagerie et les échelles cliniques qui évaluent l’état final du patient. 

En routine clinique, l’imagerie de diffusion (DWI) et l’imagerie de perfusion 
(PWI) sont devenues la référence pour évaluer l’AVC à la phase aigüe. L’imagerie 
DWI mesure le mouvement Brownien des protons de l’eau dans le tissu et est sensible 
à l’œdème qui se forme au tout début de l’AVC. Le coefficient apparent de diffusion 
(ADC) fourni des informations quantitatives que l’on peut relier au type d’œdème 
(cytotoxique ou vasogénique) et qui dépend de la durée et de la sévérité de l’AVC. 
L’imagerie PWI met en évidence la sévérité et l’étendue du déficit de perfusion, des 
déterminants majeurs de l’état final du patient. En cas d’incertitude sur le moment de 
survenue de l’AVC, le niveau déficit de perfusion peut aider à orienter la stratégie 
thérapeutique. L’approche classique pour mesurer la perfusion est l’approche de 
premier passage (dynamic susceptibility contrast, DSC), qui repose sur l’injection 
intraveineuse d’un produit de contraste. L’obtention de données quantitative repose 
sur l’identification d’une fonction d’entrée artérielle et introduit une certaine 
variabilité dans les résultats. 

L’analyse de cartes paramétriques IRM obtenues à la phase précoce et sur 
l’ensemble d’une lésion ne montre pas nécessairement de bonnes corrélations avec le 
devenir du patient. Une cause probable de cette absence de corrélation est le fait que 
l’on néglige l’hétérogénéité de la lésion ischémique. En effet, les hétérogénéités 
spatiale et temporelle des lésions sont très probablement des facteurs importants dans 
l’évolution de la lésion et donc dans l’évaluation de stratégies thérapeutiques. Prendre 
en compte cette hétérogénéité reste un défi pour l’analyse de données d’imagerie. 
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Généralement, les mesures de perfusion et de diffusion reposent sur le dessin, 
souvent manuel, de régions d’intérêt (ROI). Ces régions peuvent correspondre à la 
lésion ou à du tissu sain par exemple. On mesure alors une valeur moyenne pour un 
paramètre donné dans la région considérée. Le recueil d’une valeur moyenne est 
toutefois susceptible de masquer des variations focales qui pourraient se produire au 
sein de la région d’intérêt. Les approches par histogrammes fournissent une 
évaluation de l’hétérogénéité de la lésion mais ne transmettent pas l’information 
spatiale. Nous proposons donc que l’emploi d’une approche voxel-à-voxel de type 
« parametric response map » (PRM) des cartes de perfusion et de diffusion obtenues 
en phase précoce soit davantage capable de prédire les troubles fonctionnels à long 
terme qu’une approche utilisant des valeurs moyennes à travers des régions d’intérêt. 

L’approche PRM se déroule de la façon suivante. Toutes les cartes paramétriques 
acquises chez un même sujet mais à deux temps différents sont recalées spatialement 
sur une même référence à l’aide d’une procédure automatique (information mutuelle, 
fonction affine). Dans une région d’intérêt de référence (tissu), on détermine, 
paramètre par paramètre, l’intervalle de confiance à 95% (CI) à l’intérieur duquel les 
valeurs de la région de référence seront considérées comme stables. Cet intervalle de 
confiance est borné entre –seuil et +seuil. La carte PRM correspond à un codage 
couleur de la carte des différences de valeurs entre deux temps pour un paramètre 
donné. Ainsi, pour un paramètre donné, si la différence est supérieure à +seuil, on la 
représente en rouge (augmentation, PRM+), si la différence est inférieure à –seuil, on 
la représente en bleue (diminution, PRM-), et si la différence est comprise entre –seuil 
et +seuil, on la représente en vert (stabilité, PRM0). Une région donnée est ainsi 
segmentée en trois fractions, dont la distribution spatiale peut être hétérogène. Cette 
procédure est schématisée dans la figure ci-dessous. 

 
Il a été montré que l’approche PRM présente des avantages sur l’approche 

“lésion complète” ou sur l’approche “histogramme” dans la caractérisation de 
l’évolution de tumeurs. Elle a été appliquée à différents paramètres comme l’ADC, le 
débit sanguin, le volume sanguin, et la perméabilité dans l’objectif d’évaluer des 
réponses thérapeutiques en cancérologie. Nous faisons donc l’hypothèse que la 
sensibilité de l’approche PRM sera suffisante pour mieux caractériser l’AVC et 
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notamment l’hétérogénéité des lésions ischémiques. Nous évaluerons également le 
lien entre les indications issues de l’analyse PRM et les échelles cliniques. 

Mon projet de thèse comporte deux parties. La première étude porte sur la 
caractérisation à partir d’IRM multiparamétrique de l’effet de cellules souches 
mésenchymateuses humaines (CSMh) injectés à la phase subaigüe dans un modèle 
d’AVC ischémique chez le rat. La seconde étude porte sur l’application de la PRM à 
des images de perfusion et de diffusion collectées chez des patients à différents temps 
après AVC et au lien entre les analyses PRM et les échelles cliniques caractérisant 
l’état du patient. 

L’objectif de la première étude était de comparer deux méthodes d’analyse : une 
approche « lésion entière » standard et l’approche PRM. Ces deux analyses ont été 
réalisées sur des données IRM collectées à 4 temps (jours 3, 7, 9 et 16) chez des rats 
ayant subi un AVC ischémique (occlusion transitoire de l’artère cérébrale moyenne), 
traités ou non par CSMh. Les paramètres IRM mesurés à 7T étaient : l’ADC, le 
volume sanguin (CBV) et l’index de taille des vaisseaux (VSI). A J8, un groupe de 
rats a reçu une injection intraveineuse de 3 millions de CSMh et un groupe de rat une 
injection de PBS-glutamine. A J9, un jour après la greffe, l’approche PRM met en 
évidence chez le groupe traité une réduction de la fraction des pixels qui présentent un 
ADC réduit (PRMADC-), une disparition de la fraction PRMCBV+, et un retard dans 
l’apparition de la fraction PRMVSI+, par rapport au groupe PBS. L’approche « lésion 
entière » ne met en évidence aucune différence entre les deux groupes. Ces résultats 
sont en accord avec des analyses de biologie moléculaire obtenus dans les mêmes 
conditions (libération de facteurs angiogéniques : Ang1, Ang2, SDT-1, TGFβ1). 
L’approche PRM a également mis en évidence un impact des CSMh distribué à 
l’intérieur de la lésion. Si l’étude des mécanismes biologiques des effets des CSMh 
sur la lésion ischémique est au-delà de ce travail de thèse, les données recueillies au 
cours de cette étude suggèrent que l’approche PRM est plus sensible que l’approche 
« lésion entière » pour mettre en évidence et pour localiser de petites modifications de 
la lésion ischémique en réponse à un traitement. 
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Dans la seconde étude, des données IRM multiparamétriques recueillies chez 30 

patients à 4 temps après AVC (6 semaines, 8 semaines, 3 mois et 7 mois) ont été 
analysées. En plus des images anatomiques, des cartes quantitatives de diffusion 
(ADC) et de perfusion (temps de transit moyen (MTT), temps du pic (TTP), temps du 
maximum de la fonction résidu (Tmax), débit sanguin relatif (rCBF), volume sanguin 
relatif (rCBV) ont été acquises à chaque temps. Tous ces paramètres ont été analysés à 
l’aide d’une approche lésion entière et de l’approche PRM. Nous avons analysé les 
corrélations entre les mesures issues des paramètres d’imagerie et celles obtenues 
avec les échelles cliniques NIHSS et mRS. De plus, sur la base du score mRS à 7 
mois, les patients ont été divisés en deux sous-groupes : le sous-groupe de bon 
pronostic à 7 mois (mRS compris entre 0 et 2) et le sous-groupe de mauvais pronostic 
à 6 mois (mRS compris entre 3 et 6). Les analyses lésion complète et PRM ont 
également été comparées entre les sous-groupes. 

Les résultats démontrent la capacité de l’approche PRM à distinguer les deux 
sous-groupes et à prédire l’état clinique final du patient à partir des données IRM 
recueillies aux temps précoces. Notamment, les analyses PRM des cartes rCBV 
(PRMrCBV-, PRMrCBV+) à 8 semaines étaient bien corrélées avec l’état du patient 
mesuré à 7 mois (R2: 0.78 et 0.48, respectivement). De même, et l’analyse PRM des 
cartes Tmax à 3 mois était bien corrélée avec l’état du patient à 5 mois (R2: 0.68). Dans 
le même temps, l’analyse en lésion complète ne permettait pas de prédire l’état du 
patient. 

Cette étude suggère que la PRM permet d’obtenir des informations 
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complémentaires capables de prédire le devenir du patient. De plus, l’analyse PRM 
offre un suivi spatial à l’échelle du voxel et permet donc de voir quelles sont les 
parties de lésion qui évoluent. 

Les observations PRM mettent en évidence que les paramètres de perfusion sont 
de bon prédicteur du devenir du patient. Ces observations sont cohérentes avec 
différentes notions physiologiques : lors de l’AVC, il a été montré que la mise en 
place d’une circulation collatérale pour maintenir un bon niveau de perfusion était un 
facteur favorable au pronostic du patient. L’analyse des cartes PRMrCBV ou PRMTmax 
pourrait mettre en évidence les régions dans lesquelles la circulation collatérale a été 
mise en place de façon efficace. Les cartes PRMCBV pourraient également être un 
reflet de l’angiogenèse qui se met en place en réponse à l’AVC et qui participe à la 
récupération fonctionnelle, comme cela a été observé chez l’animal. 

 
En conclusion, ces deux études montrent que l’approche PRM s’appliquent 

parfaitement aux lésions cérébrales ischémiques. L’analyse PRM met en évidence des 
variations qui ne sont pas détectables avec une analyse “lésion entière”, variations qui 
sont cohérentes avec les mesures biologiques effectuées. Chez l’homme, l’analyse 
PRM permet d’obtenir des informations prédictives précoces du pronostic clinique. 
Ces outils pourraient être utilisés de façon rétrospective et prospective sur des essais 
thérapeutiques pour analyser l’évolution des lésions après AVC. 
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Patient Identification. ___ ___-___ ___ ___-___ ___ ___ 

 
     Pt. Date of Birth ___ ___/___ ___/___ ___ 

 
Hospital ________________________(___ ___-___ ___) 

 
Date of Exam ___ ___/___ ___/___ ___ 

 
            
Interval: [ ] Baseline [ ] 2 hours post treatment    [ ] 24 hours post onset of symptoms ±20 minutes    [ ] 7-10 days          
 [ ] 3 months [ ] Other ________________________________(___ ___) 
 

Time: ___ ___:___ ___   [ ]am   [ ]pm 
 
Person Administering Scale _____________________________________  
 
Administer stroke scale items in the order listed.  Record performance in each category after each subscale exam.  Do not go 
back and change scores.  Follow directions provided for each exam technique.  Scores should reflect what the patient does, not 
what the clinician thinks the patient can do.  The clinician should record answers while administering the exam and work quickly. 
Except where indicated, the patient should not be coached (i.e., repeated requests to patient to make a special effort). 
 

Instructions   Scale Definition Score 

1a.  Level of Consciousness: The investigator must choose a 
response if a full evaluation is prevented by such obstacles as an 
endotracheal tube, language barrier, orotracheal trauma/bandages.  A 
3 is scored only if the patient makes no movement (other than reflexive 
posturing) in response to noxious stimulation. 
 

 0 =    Alert; keenly responsive. 
 1 = Not alert; but arousable by minor stimulation to obey, 

answer, or respond. 
 2 = Not alert; requires repeated stimulation to attend, or is 

obtunded and requires strong or painful stimulation to 
make movements (not stereotyped). 

 3 = Responds only with reflex motor or autonomic effects or 
totally unresponsive, flaccid, and areflexic. 

 
 
 
 
______ 

1b.  LOC Questions:  The patient is asked the month and his/her age. 
The answer must be correct - there is no partial credit for being close.  
Aphasic and stuporous patients who do not comprehend the questions 
will score 2.  Patients unable to speak because of endotracheal 
intubation, orotracheal trauma, severe dysarthria from any cause, 
language barrier, or any other problem not secondary to aphasia are 
given a 1.  It is important that only the initial answer be graded and that 
the examiner not "help" the patient with verbal or non-verbal cues. 

 0 = Answers both questions correctly. 
 
 1 = Answers one question correctly. 
 
 2 = Answers neither question correctly.  
 
 
 
 

 
 
______ 

1c.  LOC Commands:  The patient is asked to open and close the 
eyes and then to grip and release the non-paretic hand.  Substitute 
another one step command if the hands cannot be used.  Credit is 
given if an unequivocal attempt is made but not completed due to 
weakness.  If the patient does not respond to command, the task 
should be demonstrated to him or her (pantomime), and the result 
scored (i.e., follows none, one or two commands).  Patients with 
trauma, amputation, or other physical impediments should be given 
suitable one-step commands.  Only the first attempt is scored. 

 0 = Performs both tasks correctly. 
 
 1 = Performs one task correctly. 
 
 2 = Performs neither task correctly. 
  

 
 
 
 
______ 

2.  Best Gaze:  Only horizontal eye movements will be tested.  
Voluntary or reflexive (oculocephalic) eye movements will be scored, 
but caloric testing is not done.  If the patient has a conjugate 
deviation of the eyes that can be overcome by voluntary or reflexive 
activity, the score will be 1.  If a patient has an isolated peripheral 
nerve paresis (CN III, IV or VI), score a 1.  Gaze is testable in all 
aphasic patients.  Patients with ocular trauma, bandages, pre-existing 
blindness, or other disorder of visual acuity or fields should be tested 
with reflexive movements, and a choice made by the investigator.  
Establishing eye contact and then moving about the patient from side 
to side will occasionally clarify the presence of a partial gaze palsy.   

 0 = Normal. 
 
 1 = Partial gaze palsy; gaze is abnormal in one or both eyes, 

but forced deviation or total gaze paresis is not present. 
 
 2 = Forced deviation, or total gaze paresis not overcome by the 

oculocephalic maneuver. 

 
 
 
______ 

 
 



  

 

 
Patient Identification. ___ ___-___ ___ ___-___ ___ ___ 

 
     Pt. Date of Birth ___ ___/___ ___/___ ___ 

 
Hospital ________________________(___ ___-___ ___) 

 
Date of Exam ___ ___/___ ___/___ ___ 

 
            
Interval: [ ] Baseline [ ] 2 hours post treatment    [ ] 24 hours post onset of symptoms ±20 minutes    [ ] 7-10 days          
 [ ] 3 months [ ] Other ________________________________(___ ___) 
 

 
3.  Visual:  Visual fields (upper and lower quadrants) are tested by 
confrontation, using finger counting or visual threat, as appropriate.  
Patients may be encouraged, but if they look at the side of the 
moving fingers appropriately, this can be scored as normal.  If there is 
unilateral blindness or enucleation, visual fields in the remaining eye 
are scored.  Score 1 only if a clear-cut asymmetry, including 
quadrantanopia, is found.  If patient is blind from any cause, score 3.  
Double simultaneous stimulation is performed at this point.  If there is 
extinction, patient receives a 1, and the results are used to respond to 
item 11. 

 0 = No visual loss. 
 
 1 = Partial hemianopia. 
 
 2 = Complete hemianopia. 
 
 3 = Bilateral hemianopia (blind including cortical blindness). 
  

 
 
 
______ 

4.  Facial Palsy:  Ask – or use pantomime to encourage – the patient 
to show teeth or raise eyebrows and close eyes.  Score symmetry of 
grimace in response to noxious stimuli in the poorly responsive or 
non-comprehending patient.  If facial trauma/bandages, orotracheal 
tube, tape or other physical barriers obscure the face, these should 
be removed to the extent possible. 

 0 = Normal symmetrical movements. 
 1 = Minor paralysis (flattened nasolabial fold, asymmetry on 

smiling). 
 2 = Partial paralysis (total or near-total paralysis of lower 

face). 
 3 = Complete paralysis of one or both sides (absence of 

facial movement in the upper and lower face). 

 
 
 
______ 

5.  Motor Arm:  The limb is placed in the appropriate position: extend 
the arms (palms down) 90 degrees (if sitting) or 45 degrees (if 
supine).  Drift is scored if the arm falls before 10 seconds.  The 
aphasic patient is encouraged using urgency in the voice and 
pantomime, but not noxious stimulation.  Each limb is tested in turn, 
beginning with the non-paretic arm.  Only in the case of amputation or 
joint fusion at the shoulder, the examiner should record the score as 
untestable (UN), and clearly write the explanation for this choice. 

  0 =  No drift; limb holds 90 (or 45) degrees for full 10 seconds. 
  1 =  Drift; limb holds 90 (or 45) degrees, but drifts down before 

full 10 seconds; does not hit bed or other support. 
  2 =  Some effort against gravity; limb cannot get to or 

maintain (if cued) 90 (or 45) degrees, drifts down to bed, 
but has some effort against gravity. 

  3 =  No effort against gravity; limb falls. 
  4 =  No movement. 
  UN = Amputation or joint fusion, explain:  _____________________ 
 
 5a.  Left Arm  
 
 5b.  Right Arm  
 
  
  
  
  
   
 
 

 
 
 
 
 
 
 
 
 
 
______ 
 
______ 
 
 
 
 

6.  Motor Leg:  The limb is placed in the appropriate position:  hold 
the leg at 30 degrees (always tested supine).  Drift is scored if the leg 
falls before 5 seconds.  The aphasic patient is encouraged using 
urgency in the voice and pantomime, but not noxious stimulation.  
Each limb is tested in turn, beginning with the non-paretic leg.  Only 
in the case of amputation or joint fusion at the hip, the examiner 
should record the score as untestable (UN), and clearly write the 
explanation for this choice. 

  0 =  No drift; leg holds 30-degree position for full 5 seconds. 
  1 =  Drift; leg falls by the end of the 5-second period but does 

not hit bed.    
  2 =  Some effort against gravity; leg falls to bed by 5 

seconds, but has some effort against gravity. 
  3 =  No effort against gravity; leg falls to bed immediately. 
  4 =  No movement. 
  UN = Amputation or joint fusion, explain: ________________ 
 
6a.  Left Leg 
 

6b.  Right Leg 

 
 
 
 
 
 
 
 
 
______ 
 
 

 



  

 

 
Patient Identification. ___ ___-___ ___ ___-___ ___ ___ 

 
     Pt. Date of Birth ___ ___/___ ___/___ ___ 

 
Hospital ________________________(___ ___-___ ___) 

 
Date of Exam ___ ___/___ ___/___ ___ 

 
            
Interval: [ ] Baseline [ ] 2 hours post treatment    [ ] 24 hours post onset of symptoms ±20 minutes    [ ] 7-10 days          
 [ ] 3 months [ ] Other ________________________________(___ ___) 
 

______ 

7.  Limb Ataxia:  This item is aimed at finding evidence of a unilateral 
cerebellar lesion.  Test with eyes open.  In case of visual defect, 
ensure testing is done in intact visual field.  The finger-nose-finger 
and heel-shin tests are performed on both sides, and ataxia is scored 
only if present out of proportion to weakness.  Ataxia is absent in the 
patient who cannot understand or is paralyzed.  Only in the case of 
amputation or joint fusion, the examiner should record the score as 
untestable (UN), and clearly write the explanation for this choice.  In 
case of blindness, test by having the patient touch nose from 
extended arm position. 

 0 = Absent. 
 
 1 = Present in one limb. 
 
 2 = Present in two limbs. 
 
 UN = Amputation or joint fusion, explain:  ________________ 
  
 

 
 
______ 
 
 
 
 

8.  Sensory:  Sensation or grimace to pinprick when tested, or 
withdrawal from noxious stimulus in the obtunded or aphasic patient.  
Only sensory loss attributed to stroke is scored as abnormal and the 
examiner should test as many body areas (arms [not hands], legs, 
trunk, face) as needed to accurately check for hemisensory loss.  A 
score of 2, “severe or total sensory loss,” should only be given when 
a severe or total loss of sensation can be clearly demonstrated.  
Stuporous and aphasic patients will, therefore, probably score 1 or 0. 
The patient with brainstem stroke who has bilateral loss of sensation 
is scored 2.  If the patient does not respond and is quadriplegic, score 
2.  Patients in a coma (item 1a=3) are automatically given a 2 on this 
item. 

 0 = Normal; no sensory loss. 
 
 1 = Mild-to-moderate sensory loss; patient feels pinprick is 

less sharp or is dull on the affected side; or there is a 
loss of superficial pain with pinprick, but patient is aware 
of being touched. 

 
 2 = Severe to total sensory loss; patient is not aware of 

being touched in the face, arm, and leg. 

 
 
 
 
 
______ 

9.  Best Language:  A great deal of information about comprehension 
will be obtained during the preceding sections of the examination.  
For this scale item, the patient is asked to describe what is happening 
in the attached picture, to name the items on the attached naming 
sheet and to read from the attached list of sentences.  
Comprehension is judged from responses here, as well as to all of 
the commands in the preceding general neurological exam.  If visual 
loss interferes with the tests, ask the patient to identify objects placed 
in the hand, repeat, and produce speech.  The intubated patient 
should be asked to write. The patient in a coma (item 1a=3) will 
automatically score 3 on this item.  The examiner must choose a 
score for the patient with stupor or limited cooperation, but a score of 
3 should be used only if the patient is mute and follows no one-step 
commands. 

 0 = No aphasia; normal. 
 
 1 =  Mild-to-moderate aphasia; some obvious loss of fluency 

or facility of comprehension, without significant 
limitation on ideas expressed or form of expression.  
Reduction of speech and/or comprehension, however, 
makes conversation about provided materials difficult 
or impossible.  For example, in conversation about 
provided materials, examiner can identify picture or 
naming card content from patient’s response. 

 
 2 = Severe aphasia; all communication is through fragmentary 

expression; great need for inference, questioning, and guessing 
by the listener.  Range of information that can be exchanged is 
limited; listener carries burden of communication.  Examiner 
cannot identify materials provided from patient response. 

 
 3 = Mute, global aphasia; no usable speech or auditory 

comprehension. 

 
 
 
 
 
 
 
 
 
______ 

10.  Dysarthria: If patient is thought to be normal, an adequate 
sample of speech must be obtained by asking patient to read or 
repeat words from the attached list.  If the patient has severe 
aphasia, the clarity of articulation of spontaneous speech can be 
rated.  Only if the patient is intubated or has other physical barriers to 
producing speech, the examiner should record the score as 
untestable (UN), and clearly write an explanation for this choice.  Do 
not tell the patient why he or she is being tested. 

 0 = Normal. 
 1 = Mild-to-moderate dysarthria; patient slurs at least some 

words and, at worst, can be understood with some 
difficulty. 

 2 = Severe dysarthria; patient's speech is so slurred as to be 
unintelligible in the absence of or out of proportion to 
any dysphasia, or is mute/anarthric. 

UN = Intubated or other physical barrier, 
explain:_____________________________ 

 
 
 
______ 

 



  

 

 
Patient Identification. ___ ___-___ ___ ___-___ ___ ___ 

 
     Pt. Date of Birth ___ ___/___ ___/___ ___ 

 
Hospital ________________________(___ ___-___ ___) 

 
Date of Exam ___ ___/___ ___/___ ___ 

 
            
Interval: [ ] Baseline [ ] 2 hours post treatment    [ ] 24 hours post onset of symptoms ±20 minutes    [ ] 7-10 days          
 [ ] 3 months [ ] Other ________________________________(___ ___) 
 

 
11.  Extinction and Inattention (formerly Neglect):  Sufficient 
information to identify neglect may be obtained during the prior 
testing.  If the patient has a severe visual loss preventing visual 
double simultaneous stimulation, and the cutaneous stimuli are 
normal, the score is normal.  If the patient has aphasia but does 
appear to attend to both sides, the score is normal.  The presence of 
visual spatial neglect or anosagnosia may also be taken as evidence 
of abnormality.  Since the abnormality is scored only if present, the 
item is never untestable.   

 0 = No abnormality. 
 
 1 = Visual, tactile, auditory, spatial, or personal inattention 

or extinction to bilateral simultaneous stimulation in one 
of the sensory modalities. 

 
 2 = Profound hemi-inattention or extinction to more than 

one modality; does not recognize own hand or orients 
to only one side of space. 

 
 
 
______ 
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Appendix 3 
 
 
 
 

modified Rankin Scale 
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Provided by the Internet Stroke Center — www.strokecenter.org 

MODIFIED Patient Name: ___________________________  
RANKIN Rater Name: ___________________________  
SCALE (mRS)  Date: ___________________________  

 

Score Description 
 

0 No symptoms at all 
 
 

1 No significant disability despite symptoms; able to carry out all usual duties and activities 
 
 

2 Slight disability; unable to carry out all previous activities, but able to look after own affairs 
without assistance 

 
 

3 Moderate disability; requiring some help, but able to walk without assistance 
 
 

4 Moderately severe disability; unable to walk without assistance and unable to attend to own bodily 
needs without assistance 

 
 

5 Severe disability; bedridden, incontinent and requiring constant nursing care and attention 
 
 

6 Dead 
 
 
TOTAL (0–6): _______ 
 
 
 
 
 
 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3201508&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3363593&dopt=Abstract
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Appendix 4 
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(Proc. ISMRM May 2014, Milan, Italy) 
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Education 

01/2013 - 11/2016 Ph.D. candidate (Biotechnology, Instrumentation, Signal and Imaging for Biology, Medicine and 
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 Doctoral School of Healthy Engineering, Cognition and Environment, University Grenoble Alpes, 

Grenoble, France 

 —Evaluation of voxel-based analysis in stroke using multiparametric MR imaging (thesis) 

08/2008 - 07/2010 Master of 7-year direct program (Medical Imaging and Nuclear Medicine) 

 Diagnostic Imaging Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, 
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(thesis) 
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Working Experience 

09/2014 - 02/2016 Collaboration with Department of Neuroradiology and MRI and Stroke Unit of 

Grenoble University Hospital for the clinical research on imaging evaluation for 

stroke patients 
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