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Résumé

L'explosion de données relationnelles disponibles sous la forme de graphes de connaissances a permis le développement de multiples applications, dont les agents personnels automatisés, les systèmes de recommandation et l'amélioration des résultats de recherche en ligne. La grande taille et l'incomplétude de ces bases de données nécessite le développement de méthodes de complétion automatiques pour rendre ces applications viables. La complétion de graphes de connaissances, aussi appelée prédiction de liens, se doit de comprendre automatiquement la structure de larges graphes de connaissances (graphes dirigés labellisés) pour prédire les entrées manquantes (les arêtes labellisées).

Une approche populaire consiste à représenter un graphe de connaissances comme un tenseur d'ordre 3, et à utiliser des méthodes de décomposition de tenseur pour prédire leurs entrées manquantes.

Les modèles de factorisation existants proposent différents compromis entre leur expressivité, leur complexité en temps et en espace, et leur capacités de généralisation. Nous proposons un nouveau modèle appelé ComplEx, pour "Complex Embeddings", pour réconcilier expressivité, complexité et généralisation par l'utilisation d'une factorisation en nombre complexes. Nous corroborons notre approche théoriquement en montrant que tous les graphes de connaissances possibles peuvent être exactement décomposés par le modèle proposé. Notre approche, basée sur des embeddings complexes reste simple, car n'impliquant qu'un produit trilinéaire complexe, là où d'autres méthodes recourent à des fonctions de composition de plus en plus sophistiquées pour accroître leur expressivité.

Le modèle proposé ayant une complexité linéaire en temps et en espace est passable à proposons de nouvelles directions de recherche pour améliorer les modèles existants, y compris ComplEx.
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Introduction

Web-scale knowledge graphs provide a structured representation of world knowledge, with projects such as the Google Knowledge Graph [Google Blog, 2012]. They enable a wide range of applications including recommender systems [START_REF] Koren | Factorization meets the neighborhood: A multifaceted collaborative filtering model[END_REF], question answering [START_REF] Bordes | Open question answering with weakly supervised embedding models[END_REF], automated personal agents [START_REF] Ma | Knowledge graph inference for spoken dialog systems[END_REF] and enhanced search results [Google Blog, 2012] (Figure 1.1). The incompleteness of these knowledge graphsalso called knowledge bases-has stimulated research into predicting missing entries, a task known as link prediction or knowledge-graph completion. The need for high quality predictions made it progressively become the main problem in statistical relational learning [START_REF] Getoor | Introduction to Statistical Relational Learning[END_REF], a research field involving the study of relational-data representation and modeling.

Knowledge graphs were born with the advent of the Semantic Web, pushed by the World Wide Web Consortium (W3C) recommendations. Namely, the Resource Description Framework (RDF) standard, that underlies knowledge graphs' data representation, provides for the first time a common framework across all connected information systems to share their data under the same paradigm. Being more expressive than classical relational databases, all existing relational data can be translated into RDF knowledge graphs [START_REF] Sahoo | A survey of current approaches for mapping of relational databases to rdf[END_REF]. Through these data-representation standards glimpses the hope for a future, freely accessible, global database storing all of humanity's knowledge, that could be automatically completed by reliable link-prediction methods.

In artificial intelligence, many tasks require what is called commonsense knowledge to be solved perfectly. The ensemble of facts and information about the world that any person is expected to know constitutes the commonsense knowledge. Such tasks are considered AI-complete, that is, they are considered as hard as developing an artificial general intelligence (AGI). These tasks include natural language understanding and image understanding [START_REF] Yampolskiy | Ai-complete, ai-hard, or ai-easy-classification of problems in ai[END_REF]. The existence of such a complete knowledge base of commonsense knowledge, as pursued by the the Cyc project [START_REF] Lenat | Cyc: A large-scale investment in knowledge infrastructure[END_REF], would help solve hard artificial intelligence problems, and open a path to AGI.

Formally, knowledge graphs express data as a directed graph with labeled edges (relations) between pairs of nodes (entities): relations are binary predicates. Natural redundancies between the recorded relations often make it possible to fill in the missing entries of a knowledge graph. As an example, the relation livesInCountry could not be recorded for all entities, but it can be inferred if the relation livesInCity is known.

The goal of link prediction is the automatic discovery of such regularities. However, inference between relations is often non-deterministic: the combination of the two facts livesInCity(John,Athens) and isInCountry(Athens,Greece) does not always imply the fact hasNationality(John,Greece). Hence, it is natural to handle inference probabilistically, and jointly with other facts involving these relations and entities. To this end, an increasingly popular method is to state the knowledge graph completion task as a 3D binary tensor completion problem, where each tensor slice is the adjacency matrix of one relation in the knowledge graph, and compute a decomposition of this partially-observed tensor from which its missing entries can be completed.

Decomposition models, also known as factorization models, or latent factor models, or low-rank embedding models; were popularized by the Netflix challenge [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF].

A partially-observed matrix or tensor is decomposed into a product of embedding matrices with much smaller dimensions, resulting in fixed-dimensional vector representations for each entity and relation in the graph, that allow completion of the missing entries. For a designed different synthetic tasks that each targets different types of inference abilitiesamong them learning the basic binary-relation properties. From the observation that no existing factorization model could correctly learn an antisymmetric relation, as shown in Figure 1.2, we explore matrix and tensor decompositions in the complex space. Indeed, antisymmetric-or skew-symmetric-matrices are known to have complex eigenvalues [START_REF] Horn | Matrix analysis[END_REF]. Through the use of complex linear algebra, we aimed at:

1. Correctly modeling all basic properties of binary relations.

2. Building a scoring function with linear time and space complexity.

3. Ensuring good generalization by keeping unique representations of entities.

Structure of the Thesis

The resulting model, based on unitary-diagonalization properties, is presented in Chapter 3. We discuss its existence and rank bounds first in the single-relation case, and then extend it to the multi-relational, tensor case. We present a stochastic gradient algorithm to learn the decomposition of partially-observed tensors. Experimental results with this model, and its different applications are described in Chapter 4. We first assess its ability to model jointly symmetric and antisymmetric relations on synthetic data, and then compare it to state-of-the-art models on established link-prediction benchmarks. We also show the flexibility of the knowledge graph decomposition approach to learn reusable vectorial representations of entities, by learning word embeddings that improve on entailment recognition. Finally, we conduct an experimental survey to assess state-of-the-art latent factor models ability to learn from data in Chapter 5. We design synthetic experiments that exhibit binary-relation properties, as well as common multi-relational inference through genealogical relations. Results give insights about each parametrization's pros and cons, and open to different future research directions. We conclude this thesis contributions and perspectives in Chapter 6. Appendix A presents an partially-related contribution of this thesis on online learning to sample training data for stochastic gradient descent. We demonstrate the benefits on different matrix factorization problems.

We made our implementation of the proposed model available1 , as well as the synthetic data used in the last chapter2 .
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Chapter 2

Related Work

Before focusing on state-of-the-art models and methods for link prediction in knowledge graphs, let us put this problem back into its context. Link prediction is one of the main tasks of statistical relational learning (SRL) [START_REF] Getoor | Introduction to Statistical Relational Learning[END_REF], a sub-field of machine learning concerned with the representation and modeling of relational data.

We then formally define the link-prediction problem and review the literature, with an emphasis on latent factor models on which this thesis focuses. Finally we discuss related factorization problems and methods.

Relational Learning

Data is said to be relational when its representation is expressed as links, or relations, between the underlying objects of the database: the entities. This linked nature between the entities can be expressed in different but equivalent formalisms such as relational tables, as classically used in relational database management systems [START_REF] Codd | A relational model of data for large shared data banks[END_REF];

ground predicates in first-order logic where predicates are the relations and ground terms the entities [START_REF] De Raedt | Logical and relational learning[END_REF][START_REF] Richardson | Markov logic networks[END_REF]; and n-tuples through set theory where relations and entities are mixed in the tuples [START_REF] Nickel | Tensor factorization for relational learning[END_REF]. In this work we will focus on specific relational data expressed as triples. Collections of such triples are known as knowledge graphs.

A knowledge graph stores data about a set of entities E and a set of relations R, where relations link pairs of entities in the form of facts r(s, o)-for example isCapitalOf (Ulaanbaatar,Mongolia)-that we also write as triples (r, s, o), where the relation r ∈ R and the subject and object entities s, o ∈ E. It is thus naturally represented as a labeled directed graph: a directed graph which has labeled edges that connect subject entities to object entities, where the labels are the different relations r ∈ R (see Figure 2.1). We denote the set of all possible triples for a given entity set and relation set by T = R × E × E. A knowledge graph is hence a subset of T : the set of observed triples (r, s, o) among all the possible ones, that we write (r, s, o) ∈ T Ω ⊆ T .

This representation has been driven by the coming of the Semantic Web, through the recommendations of the W3C, and namely, the Resource Sescription Framework (RDF) [START_REF] Cyganiak | Rdf 1.1 concepts and abstract syntax[END_REF]. Databases that follows this representation of data as triples are called knowledge graphs or knowledge bases. Many such knowledge graphs have been collaboratively or automatically created in recent years such as DBpedia [START_REF] Auer | DBpedia: A nucleus for a web of open data[END_REF], Freebase [START_REF] Bollacker | Freebase: a collaboratively created graph database for structuring human knowledge[END_REF] and the Google Knowledge Vault [START_REF] Dong | Knowledge vault: A web-scale approach to probabilistic knowledge fusion[END_REF].

From the very existence of these knowledge graphs and the applications they enable arise different tasks, such as predicting the missing triples in it-the task on which this thesis focuses-but also finding entities that are different instances of the same underlying object [START_REF] Köpcke | Frameworks for entity matching: A comparison[END_REF], or grouping similar entities together [START_REF] Fortunato | Community detection in graphs[END_REF].

Tackling these tasks require inferential abilities about the data, that is, a model of the knowledge graph considered. Many different formalisms for modeling relational data have been proposed, including first-order logic [START_REF] Muggleton | Inverse entailment and progol[END_REF][START_REF] Lisi | Inductive logic programming in databases: From datalog to[END_REF][START_REF] Galárraga | Fast rule mining in ontological knowledge bases with amie+[END_REF], probabilistic graphical models [START_REF] Ngo | Answering queries from context-sensitive probabilistic knowledge bases[END_REF][START_REF] Wellman | From knowledge bases to decision models[END_REF][START_REF] Kersting | Towards combining inductive logic programming with bayesian networks[END_REF], latent space models [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF][START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Riedel | Relation extraction with matrix factorization and universal schemas[END_REF], and different combinations of those [START_REF] Richardson | Markov logic networks[END_REF][START_REF] Rocktaschel | Injecting Logical Background Knowledge into Embeddings for Relation Extraction[END_REF].

Knowledge Graphs

Knowledge graphs differ largely in the way they are constructed, and in the domain they store data about.

Construction methods Some graphs are manually curated by experts, and have very accurate data such as WordNet [START_REF] Fellbaum | WordNet[END_REF], but are generally restricted to small knowledge graphs as expert annotation is expensive. Other graphs such as Freebase [START_REF] Bollacker | Freebase: a collaboratively created graph database for structuring human knowledge[END_REF] are created collaboratively on an open-access platform, following the model of Wikipedia. This construction model allows for a much larger scalability, while keeping a good data reliability, as Freebase has been estimated to be 99% accurate [START_REF] Giannandrea | Cikm 2011 industry event: John giannandrea on freebase a rosetta stone for entities[END_REF].

More and more knowledge graphs resort to automatic triple extraction from data, either structured or not. The DBpedia project [START_REF] Auer | DBpedia: A nucleus for a web of open data[END_REF] Wikipedia, and re-frames it as a knowledge graph. Similarly YAGO [Suchanek et al., 2007;[START_REF] Hoffart | Yago2: A spatially and temporally enhanced knowledge base from wikipedia[END_REF] also uses other sources of structured data. Other projects also make use of unstructured data such as the Never-Ending Language Learning system [START_REF] Cardano | Toward an architecture for never-ending language learning[END_REF] and the Google Knowledge Vault [START_REF] Dong | Knowledge vault: A web-scale approach to probabilistic knowledge fusion[END_REF]. Both crawl the web and extract triples directly from its content, including text, tabular data and page structure. Knowledge graphs constructed this way are much bigger than the humanly created ones, but also less reliable as NELL is estimated to be 87% accurate [START_REF] Lohr | Aiming to learn as we do, a machine teaches itself[END_REF].

Sizes of the aforementioned knowledge graphs are summarized in Table 2.1.

Data domain Most of the knowledge graphs above store general knowledge about the world, akin to Wikipedia-but as triples. There are also projects dedicated to specific types of data. WordNet [START_REF] Fellbaum | WordNet[END_REF]] is a lexical database of English, its entities are word meanings, grouped in synsets, each representing a different concept. For polysemous words for example, each of their different meanings will be represented by a different entity. The entities are interlinked together by conceptual-semantic and lexical relations, such as hypernymy, meronymy or being part of another synset. WordNet resource has proven useful in many natural language processing tasks, such as word-sense identification [START_REF] Leacock | Combining local context and wordnet similarity for word sense identification[END_REF]], text classification [START_REF] Scott | Use of WordNet in natural language processing systems[END_REF] and information retrieval [START_REF] Varelas | Semantic similarity methods in wordnet and their application to information retrieval on the web[END_REF].

In biology, many knowledge graphs arise such as Bio2RDF [START_REF] Belleau | Bio2rdf: towards a mashup to build bioinformatics knowledge systems[END_REF] and LinkedLifeData [START_REF] Momtchev | Expanding the pathway and interaction knowledge in linked life data[END_REF]. Both projects aim at unifying many existing bioinformatics databases in a single knowledge graph. The IntAct database [START_REF] Kerrien | The IntAct molecular interaction database in[END_REF] describes interactions between pairs of molecules. Beyond projects that are explicitly storing their data as triples, many data sets that represent networks can be naturally expressed in the same triple formalism. Among them are the CORA [START_REF] Mccallum | Efficient clustering of highdimensional data sets with application to reference matching[END_REF] and Citeseer [START_REF] Lawrence | Autonomous citation matching[END_REF] data sets, that represent citations network between scientific articles. There are also the Kinships data set [START_REF] Denham | The detection of patterns in Alyawara nonverbal behavior[END_REF] that describes kinship relations between individuals of an aboriginal tribe from Australia, the Nations data set that features diplomatic relations between countries [START_REF] Rummel | The dimensionality of nations project: attributes of nations and behavior of nations dyads[END_REF],

and the unified medical language system (UMLS) data set [START_REF] Mccray | An upper-level ontology for the biomedical domain[END_REF] that links medical concepts through their interactions.

Tasks and Applications

Knowledge-graph learning problems essentially inherit the classical problems coming from both databases, and machine learning. They thus have their own classification and clustering problems, namely collective classification and link-based clustering. But also classical databases problems such as avoiding duplicates and being as complete as possible, that is entity resolution, and our problem of interest, link prediction.

Collective classification When data naturally exhibits an interlinked nature, as is the case for social networks, or biological networks for example, the classical attribute-based classification model does not exploit this relational information properly. In this case, data can be naturally framed as a knowledge graph, and the classification of its entities among a set of classes, based on the links between entities-and their attributes when they exist-is known as collective classification. Methods that explicitly take into account such networked information have proven to be more accurate than those that do not [START_REF] Sen | Collective classification in network data[END_REF][START_REF] Neville | Collective classification with relational dependency networks[END_REF]. Collective classification applications include document classification [START_REF] Chakrabarti | Enhanced hypertext categorization using hyperlinks[END_REF]], part-of-speech tagging [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF], and counter-terrorism analysis [START_REF] Macskassy | Suspicion scoring based on guilt-by-association, collective inference, and focused[END_REF].

Link-based clustering Similarly to collective classification, link-based clustering methods are clustering methods tailored for interlinked data, and make use of the relational patterns between entities. Such methods are widely used in social network analysis for community detection [START_REF] Fortunato | Community detection in graphs[END_REF], for example on mobile phone communications [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF]], e-mail exchanges [START_REF] Tyler | E-mail as spectroscopy: Automated discovery of community structure within organizations[END_REF], and Facebook "friendship" networks [Traud et al., 2009].

Entity resolution Knowledge graphs that aggregate data from multiple sources of data, structured or unstructured, face the problem of duplicate entities. This is especially true when data is harvested from raw text, where for example, the same person name can be written either fully, or only with first name initial, or with middle name initial, and so forth. Resolving these duplicates is known as entity resolution, or more generally as record linkage [START_REF] Köpcke | Frameworks for entity matching: A comparison[END_REF]. Approaches to solve this problem can be either fully automatic [START_REF] Dredze | Entity disambiguation for knowledge base population[END_REF][START_REF] Bhattacharya | Collective entity resolution in relational data[END_REF], or involve interactive interfaces that suggests possible conflicts to users [START_REF] Bilgic | D-dupe: An interactive tool for entity resolution in social networks[END_REF]. As the number of duplicates consequently affects the quality of the models that will be built on the knowledge graph to solve other tasks, this task arises quite naturally from the existence of knowledge graphs. But it also has its own direct applications in government data, public health systems, comparison shopping engines, and generally any information system that gather/store data from/in multiple databases [START_REF] Christen | Data matching: concepts and techniques for record linkage, entity resolution, and duplicate detection[END_REF].

Knowledge graphs are notoriously largely incomplete and predicting their missing entries is thus one of the main problems of relational learning. This problem is known as link prediction, or knowledge graph completion. Beyond search-results enhancement (Figure 1.1), link prediction has various applications including question answering [START_REF] Bordes | Open question answering with weakly supervised embedding models[END_REF], recommender systems [START_REF] Rendle | Pairwise interaction tensor factorization for personalized tag recommendation[END_REF] (see Section 2.3.1)

and probabilistic querying of knowledge bases [START_REF] Huang | Query evaluation on probabilistic rdf databases[END_REF][START_REF] Krompaß | Querying factorized probabilistic triple databases[END_REF].

Link-Prediction

In this section, we formally define the link-prediction problem in knowledge graphs, as well as the notations that will be used throughout this manuscript. We then introduce in detail a family of state-of-the-art models, the latent factor models, on which this work focuses. We then review other approaches to the problem, including proposals mixing first-order logic and latent space models, as this is also one of interest to us (see Chapter 5).

Let us first introduce some notations. The number of entities is denoted by

N e = |E|,
and the number of relations by N r = |R|. The i th row of a complex matrix X ∈ C n×m is written x i ∈ C m . By a slight abuse of notation, for entities i ∈ E and relations r ∈ R, we will write their corresponding rows in the embedding matrices as x i or x r , where

x i , x r ∈ C m .
As previously defined, a knowledge graph is a set of observed triples (r, s, o), denoted by T Ω . The link-prediction task consists in predicting some missing triples (r ′ , s ′ , o ′ ) ∈ T \ T Ω . Figure 2.1 presents a simple knowledge graph with five entities: Bombelli, Grimaldi, Manfredi (three Italian mathematicians), the city Bologna and its university U.

Bologna; interlinked by two relations, studied and born. The fact studied(Bombelli,U.

Bologna) is one of several facts that are missing in this graph. Link prediction's goal is to automatically discover and use redundancies in the graph to predict whether this missing triple is true or not-in order to display it in a search result for example, as shown in Figure 1 

Latent Factor Models

We define each model by its scoring function φ(r, s, o; Θ), where Θ are the latent parameters of this model-the entity and relation embeddings-and φ(r, s, o;

•) : C |Θ| → R
assigns a real-valued score to the fact r(s, o). As some models have real-valued parameters and some other models have complex-valued parameters, we define the space of the parameters C |Θ| directly over the complex space.

Let us also define the trilinear product of three vectors over the complex space:

a, b, c = K j=1 a j b j c j = a ⊤ (b ⊙ c) (2.1)
where a, b, c ∈ C K , and ⊙ is the Hadamard product, that is the element-wise product between two vectors of same length.

Models Compared in this Work

In the following we present in detail the model scoring functions and parameters that we experimentally compare in this work. Those models are among the most popular and best-performing link-prediction models. The models' scoring functions and parameters are summarized in Table 2.2.

Each of the following models use latent representations of variable length, controlled by the hyper-parameter K ∈ Z ++ , the rank of the decomposition. We start by introducing the most natural model, a general decomposition for tensors: the Canonical-Polyadic (CP) decomposition [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF], also know as CANDECOMP [START_REF] Caroll | Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF], and PARAFAC [START_REF] Harshman | Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis[END_REF].

RESCAL RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF] differs from the CP decomposition in two points: there is only one embedding per entity instead of having one embedding for entities as subject and another one for entities as objects; and each relation is represented by a matrix embedding instead of a vector. Its scoring function is

φ(r, s, o; Θ) = e ⊤ s W r e o (2.3)
where E ∈ R Ne×K is the embedding matrix of the entities, and W ∈ R Nr×K×K the embedding tensor of the relations. Thus W r ∈ R K×K is the embedding matrix of the relation r.

RESCAL was the first model to propose unique embeddings for entities-simultaneously with [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF]-which yielded significant performance improvement, and since then unique entity embeddings have been adopted by most of the subsequent models.

However, its matrix representations of relations makes its scoring function time and space complexity quadratic in the rank K of the decomposition. This also leads to potential overfitting.

F model This model proposed by [START_REF] Riedel | Relation extraction with matrix factorization and universal schemas[END_REF] where E ∈ R N 2 e ×K is the embedding matrix of the pairs of entities, and W ∈ R Nr×K the embedding matrix of the relations. It is actually a decomposition of the matrix that results from a specific unfolding of the Y tensor.

Its pairwise nature gives this model an advantage over non-compositional pairs of entities.

However, its memory complexity is quadratic in the number of entities N e . In practice, unobserved pairs of entities are not stored in memory as they are useless. Though this is also the weak point of this model: it cannot predict scores for unobserved pairs of entities since it only learns pairwise representations.

TransE The TransE model [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] imposes a geometrical structural bias on the model: the subject entity vector should be close to the object entity vector once translated by the relation vector. For a given q-norm (generally q = 1 or q = 2) over the embedding space, φ(r, s, o; Θ) = -||(e s + w r )e o || q (2.5)

where E ∈ R Ne×K is the embedding matrix of the entities, and W ∈ R Nr×K is the embedding matrix of the relations. Deriving the norm in the scoring function exposes another perspective on the model and unravels its factorial nature, as it gives a sum of bilinear terms as explored by [START_REF] García-Durán | Effective blending of two and three-way interactions for modeling multi-relational data[END_REF]:

φ(r, s, o; Θ) ≈ e ⊤ s e o + e ⊤ o w r -e ⊤ s w r (2.6)
where constant multipliers and norms of the embeddings have been ignored here. These bigram terms will help in some specific situations as shown in Section 5.3.

It is difficult to capture symmetric relations with this model. Indeed, having φ(r, s, o; Θ) = φ(r, o, s; Θ) implies either e s = e o , or w ⊤ r (e oe s ) = 0. Since e s = e o in general for s = o, and w r is in general not the zero vector-in order to share latent dimensions' information with the other relation embeddings-modeling symmetric relations such as similar, cousin, or related implies a strong geometrical constraint on entity embeddings: their difference must be orthogonal to the relation embedding w r . The model thus has to make a trade-off between (i) correctly modelling the symmetry of the relation r, (ii) not zeroing its relation embedding w r , and (iii) not altering too much the entity embeddings to meet the orthogonality requirement between w r and (e oe s ) for all e, o ∈ E.

DistMult The DistMult model [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF] can be seen as a simplification of the RESCAL model, where the unique representation of entities is kept, while the representation of the relations is brought back to vectors instead of matrices:

φ(r, s, o; Θ) = e s , w r , e o (2.7)
where E ∈ R Ne×K is the embedding matrix of the entities, and W ∈ R Nr×K the embedding matrix of the relations.

The major drawback of this model is its symmetry over the subject and object entity roles.

Indeed we have φ(r, s, o; Θ) = φ(r, o, s; Θ), for all s, o ∈ E. But many antisymmetric relations appear in knowledge graphs such as older, partOf, hypernym. One does not want to assign the same score to older(a,b) as to older(b,a)!

Other Latent Factor Models

Akin to the CP model, there exist various classical tensor decomposition, such as the Tucker decomposition [START_REF] Tucker | Implications of factor analysis of three-way matrices for measurement of change[END_REF], also known as higher-order singular value decomposition (HOSVD) [START_REF] De Lathauwer | A multilinear singular value decomposition[END_REF], from which many of the presented latent factor models are adaptations. Tensor decompositions and their applications are surveyed in [START_REF] Kolda | Tensor decompositions and applications[END_REF]; [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF].

The first ones to propose to use factorization methods, already popular in the neighbor field of collaborative filtering (see Section 2.3.1), to tackle link prediction in knowledge graphs were [START_REF] Franz | Triplerank: Ranking semantic web data by tensor decomposition[END_REF] and Sutskever et al. [2009], who respectively used the CP model, and proposed the Bayesian clustered tensor factorization model (BCTF).

The BCTF scoring function can be seen as an intermediate between the CP and the RESCAL models, as relations are modeled with matrices and entities with two separate vectors depending on whether they appear as subject or as object of the triple:

φ(r, s, o; Θ) = u ⊤ s W r v o (2.8)
where U, V ∈ R Ne×K are the embedding matrices of entities depending on whether they appear as subject (U ) of the triple or as object (V ), and W ∈ R Nr×K×K the embedding tensor of the relations. The model is learned in a Bayesian setting with a Chinese restaurant process prior over the embeddings. [START_REF] Jenatton | A Latent Factor Model for Highly Multi-relational Data[END_REF] proposed a similar model, with a non-probabilistic clustering over the relations matrices, by expressing them as a low rank, L 1 -constrained decomposition:

W r = D d=1 α r d (a d b T d ) (2.9)
where D is the rank of the decomposition of the relations parameters, A, B ∈ R D×D , and α r ∈ R D is constrained by a hyperparameter: ||α r || 1 ≤ λ α . The scoring function is itself also slightly different as they add bias terms to the subject and object-entity embeddings:

φ(r, s, o; Θ) = (u s + z) ⊤ W r (v o + z ′ ) (2.10)
where z, z ′ ∈ R K .

Various models built on TransE have been proposed, including the TransH model [START_REF] Wang | Knowledge graph embedding by translating on hyperplanes[END_REF] that models relations as translating hyperplanes instead of vectors, and the TransR model [START_REF] Lin | Learning entity and relation embeddings for knowledge graph completion[END_REF]] that learns relation and entity embeddings in different spaces and maps entity embeddings to relation space using linear operators, before performing a translation. [START_REF] He | Learning to represent knowledge graphs with gaussian embedding[END_REF] propose to learn these models with Gaussian embeddings, replacing the vector norm with the KL-divergence or the expected likelihood. The TATEC model [START_REF] Garcia-Duran | Combining two and three-way embedding models for link prediction in knowledge bases[END_REF] 

e p = f ({w r ′ | (r ′ , s, o) ∈ T Ω }) (2.11)
where f is the composition function of the relation embedding. This model only learns relation embeddings, yet it performs just as well as the original F model. Moreover, it gives it the ability to naturally generalize to unseen entities.

The holographic embeddings model [START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF] proposes to combine vectorial entity embeddings using discrete circular convolution between the subject and object embeddings. This model and its link to the model proposed in this manuscript are discussed in detail in Section 3.4.

Sometimes, entities and relations come with additional domain knowledge. A common feature of entities is their type, such as person or place, that defines incompatibilities for some relations in which such typed entities can appear. For example, a place cannot be the president of a person. [START_REF] Chang | Typed tensor decomposition of knowledge bases for relation extraction[END_REF]; [START_REF] Krompaß | Type-constrained representation learning in knowledge graphs[END_REF]; [START_REF] Sedghi | Knowledge completion for generics using guided tensor factorization[END_REF] enhance predictions of existing factorization models by not using incompatible triples during training, whereas they are usually considered as false triples.

Losses and Negative Sampling

Commonly used matrix and tensor decompositions such as SVD and CP natively minimize the squared error. Classical decomposition algorithms for these models, based on iterative methods or alternating minimization, cannot efficiently handle missing triples as missing, and consider them as negatives instead. This corresponds to minimizing:

L(Y; Θ) = r∈R s∈E o∈E ||φ(r, s, o; Θ) -y rso || 2 2
(2.12)

where y rso = -1 if (r, s, o) / ∈ T Ω -though in this dense case the value zero is more often used for negatives. However, as the tensor Y has binary values ±1, using a binary loss is indeed more appropriate. We discuss theoretical motivation for doing so in Section 3.1.2.2. and [START_REF] Nickel | Logistic tensor factorization for multi-relational data[END_REF]; [START_REF] London | Multi-relational learning using weighted tensor decomposition with modular loss[END_REF] showed it worked better than the squared loss, in all cases on dense datasets (under the closed-world assumption) with observed negatives. [START_REF] Acar | Scalable tensor factorizations with missing data[END_REF] and [START_REF] London | Multi-relational learning using weighted tensor decomposition with modular loss[END_REF] proposed a weighted version of respectively CP and RESCAL to avoid imputing test triples when learning the decomposition, and improved performances in the closed-world case. where σ is the logistic function σ(x) = 1 1+e -x . [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] extended this assumption to subject entities: for each positive triple (r, s, o) ∈ T Ω they corrupt either the subject or the object of the triple at random, and optimize a slightly different pairwise loss, with a max-margin criterion:

L(Ω; Θ) = (r,s,o)∈T Ω max(0, γ + σ(φ(r, s ′ , o ′ ; Θ)) -σ(φ(r, s, o; Θ)) (2.15)
where γ ∈ [0, 1] is the margin hyperparameter. This loss has been often used in subsequent works [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF][START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF]. In this work, we instead consider all such corrupted triples explicitly as negatives, which is also known as the local closed-world assumption [START_REF] Dong | Knowledge vault: A web-scale approach to probabilistic knowledge fusion[END_REF]: all (r, s ′ , o), (r, s, o ′ ) / ∈ T Ω for each (r, s, o) ∈ T Ω are considered as negatives: y rs ′ o = y rso ′ = -1 . We optimize a classical log-likelihood loss, and show that it can bring a large improvement over the max-margin loss (see Section 4.3.6), and that sampling more than one negative per positive triple also sensibly improves prediction scores (see Section 4.3.4).

Other Link-Prediction Approaches

Early relational learning approaches for relational databases that follows a schema used probabilistic models. The general idea is to map a probabilistic graphical model to the database schema architecture, and use observed entries to learn the corresponding probability distribution [START_REF] Friedman | Learning probabilistic relational models[END_REF]Taskar et al., 2001;[START_REF] Heckerman | Probabilistic entity-relationship models, prms, and plate models. Introduction to statistical relational learning[END_REF][START_REF] Getoor | Introduction to Statistical Relational Learning[END_REF][START_REF] Raedt | Statistical relational artificial intelligence: Logic, probability, and computation[END_REF].

Logic-based link prediction consists in using both observed facts and logical rules to infer the truth of unobserved facts. In this case one must either handcraft rules, or learn them through inductive logic programming (ILP) for example [START_REF] Muggleton | Inductive logic programming: Theory and methods[END_REF][START_REF] Dzeroski | Inductive logic programming: t echniques and applications[END_REF]]. Many contributions have been made using inductive logic programming for relational data during the last decades [START_REF] Muggleton | Inverse entailment and progol[END_REF][START_REF] Lisi | Inductive logic programming in databases: From datalog to[END_REF][START_REF] Galárraga | Fast rule mining in ontological knowledge bases with amie+[END_REF]. Inference can be achieved deterministically by logical deduction, or probabilistically to cope with uncertainty of the data. Different probabilistic logic-based inference models have been proposed [START_REF] Ngo | Answering queries from context-sensitive probabilistic knowledge bases[END_REF][START_REF] Wellman | From knowledge bases to decision models[END_REF][START_REF] Kersting | Towards combining inductive logic programming with bayesian networks[END_REF][START_REF] Frasconi | klog: A language for logical and relational learning with kernels[END_REF][START_REF] Kok | Statistical predicate invention[END_REF]. The main contribution along this line of research is probably Markov Logic Networks (MLNs) [START_REF] Richardson | Markov logic networks[END_REF]. MLNs take as input a set of first-order rules and facts, build a Markov random field between facts co-occuring in possible groundings of the formulae, from which they learn a weight over each of these rules that represents their likeliness of being applied at inference time. Different improvements over this model have been proposed [START_REF] Riedel | Improving the accuracy and efficiency of MAP inference for markov logic[END_REF][START_REF] Noessner | RockIt: Exploiting Parallelism and Symmetry for MAP Inference in Statistical Relational Models[END_REF].

Among them, [START_REF] Pujara | Knowledge graph identification[END_REF] used probabilistic soft logic [START_REF] Brocheler | Probabilistic similarity logic[END_REF] to assign continuous truth values to atoms instead of boolean ones, which resulted in increased prediction accuracy and scalability.

In the neural tensor network (NTN) model, [START_REF] Socher | Reasoning with neural tensor networks for knowledge base completion[END_REF] combined linear transformations and multiple bilinear forms of subject and object embeddings to jointly feed them into a nonlinear neural layer: [2014] use a two-layer perceptron:

φ(r, s, o; Θ) = u T r f (e T s W [1:D] r e o + V r [e s e o ] ⊤ + b r ) , (2.16) where D ∈ Z ++ is an additional hyperparameter, e s , e o ∈ R K are learned entity embed- dings; W r ∈ R K×K×D , V r ∈ R D×2K , b r ,u r ∈ R D are
φ(r, s, o; Θ) = u T f (A[w r e s e o ] ⊤ ) , (2.18)
where f is a non-linear activation function, e s , e o , w and Gaifman models that learn neighborhood embeddings of local structures in the knowledge graph [START_REF] Niepert | Discriminative gaifman models[END_REF].

r ∈ R K , A ∈ R D×3K , u ∈ R D where D ∈ Z ++ is
The factorization machines model, proposed by [START_REF] Rendle | Factorization machines[END_REF], enhances supervised linear models by learning vectorial representations of the features of the samples, combined d-linearly, where d is an hyperparameter setting the degree of the model. Given a feature vector x ∈ R n and its corresponding label y ∈ R, a factorization machine of degree d = 3

gives:

ŷ(x) = w 0 + n i=1 w i x i + n i=1 n j=i+1 (u ⊤ i u j )x i x j + n i=1 n j=i+1 n k=j+1 v i , v j , v k x i x j x k (2.19)
where w 0 , . . . , w n ∈ R, U, V ∈ R n×K . This model generalizes the CP decomposition:

by encoding in x ∈ R Nr+2Ne the concatenation of the one-hot representation of the (r, s, o) triple indexes x = [e 1 r , e 1 s , e 1 o ], with y = y rso , where e 1 i has a 1 at index i and zeros everywhere else, e 1 r ∈ R Nr , e 1 s , e 1 o ∈ R Ne . This adds bigram terms-as in TransEunigram terms and biases to the trilinear term of the CP decomposition. With different encoding of the feature of x, the author shows generalization of diverse matrix and tensor factorization models. This model has also been adapted to scale to classical schema-based relational databases (such as SQL) [START_REF] Rendle | Scaling factorization machines to relational data[END_REF].

Many authors have proposed to use text as distant supervision to enhance knowledge graphs, by extracting triples from raw text, which increased predictive performances for link prediction [START_REF] Riedel | Relation extraction with matrix factorization and universal schemas[END_REF]Toutanova et al., 2015;Surdeanu and Tibshirani, 2012;[START_REF] Yao | Structured relation discovery using generative models[END_REF][START_REF] Mintz | Distant supervision for relation extraction without labeled data[END_REF].

Learning Logic within Latent Space Models

In this thesis, we evaluate latent space models on their ability to learn logical reasoning from observed data only (see Chapter 5). Similarly to our approach, Bowman et al.

[2015b] learned some natural logic operations directly from data with recurrent neural tensor networks, to tackle natural language processing tasks such as entailment or equivalence. Natural logic is a theoretical framework for natural language inference that uses natural language strings as the logical symbols. [START_REF] Singh | Towards combined matrix and tensor factorization for universal schema relation extraction[END_REF] investigated learning from a few synthetic examples for relational learning on different latent factor models.

Following a different goal, other approaches formalised the encoding of logical operations as tensor operations. [START_REF] Smolensky | Basic reasoning with tensor product representations[END_REF] applied it to the bAbI data set reasoning tasks, and [START_REF] Grefenstette | Towards a formal distributional semantics: Simulating logical calculi with tensors[END_REF] to general Boolean operations.

Advances in bringing both worlds together include the work of [START_REF] Rocktaschel | Injecting Logical Background Knowledge into Embeddings for Relation Extraction[END_REF]; [START_REF] Rocktäschel | Low-dimensional embeddings of logic[END_REF] and [START_REF] Demeester | Lifted rule injection for relation embeddings[END_REF], where a latent factor model is used, as well as a set of logical rules. An error-term over the rules is added to the classical latent factor objective function. In [START_REF] Rocktäschel | Learning knowledge base inference with neural theorem provers[END_REF], a fully differentiable neural theorem prover is used to handle both facts and rules, whereas [START_REF] Minervini | Adversarial sets for regularising neural link predictors[END_REF] use adversarial training to do so. [START_REF] Wang | Learning first-order logic embeddings via matrix factorization[END_REF] learned first-order logic embeddings from formulae learned by ILP. Similar proposals for integrating logical knowledge in distributional representations of words include the work of [START_REF] Lewis | Combining distributional and logical semantics[END_REF].

Conversely, [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF] learn a latent factor model over the facts only, and then try to extract rules from the learned embeddings. [START_REF] Yoon | A translation-based knowledge graph embedding preserving logical property of relations[END_REF] proposed to use projections of the subject and object-entity embeddings that conserve transitivity and symmetry.

Related Factorization Problems and Methods

We here survey related work concerning the vast field of matrix and tensor decompositions, and the use of complex numbers therein.

Matrix and Tensor Completion

The application of factorization methods in relational learning comes from their large success in a preceding, closely-related problem: collaborative filtering. Collaborative filtering is a special case of link prediction in knowledge graphs: a matrix X ∈ R n×m is partially observed-and not a tensor-however it is real-valued and it is not necessarily square. Rows represent users, columns represent items, and entries x ij ∈ R for observed (i, j) pairs are implicit or explicit feedback, such as ratings. Typical factorization models are of the form X ≈ U V ⊤ , where each row u i corresponds to a user i ∈ U and each column v j corresponds to an item j ∈ I. In this problem, U ∩ I = ∅ conversely to knowledge graphs, where entities can be either the subject or the object of a relation. Despite this, this parametrization with different left (U ) and right (V ) matrices persisted in knowledge-graph factorization models up to the RESCAL and SE models [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF][START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF]. Interestingly, these rectangular matrix factorization models for collaborative filtering can be seen as a special case of knowledge graph factorization models with single entity embeddings E ∈ R Ne×K . By writing the set of entities E = U ∪I and having a single relation r, embeddings of users and items of observed triples (r, i, j) are indeed disjoint: e i = e j for any i ∈ U, j ∈ I, and correspond to the U and V matrices since users are always subjects and items are always objects. Hence classical factorization models for link prediction subsume rectangular matrix factorization with disjoint set of entities as rows and columns, provided that the open-world assumption is enforced (unobserved user-user, item-item and item-user triples are ignored) and that a non-binary loss is used to handle the real-valued entries x ij ∈ R.

Completing the missing entries of such feedback matrices has direct applications in recommender systems, and factorization approaches became popular with the famous Netflix prize [START_REF] Koren | Factorization meets the neighborhood: A multifaceted collaborative filtering model[END_REF][START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]. In most partially-observed matrix and tensor-factorization models, optimizing directly over the low-rank factor matrices is a non-convex problem. A well-known relaxation of the matrix completion problem consists in minimizing its trace-norm, which is the sum of its singular values:

min || X|| * (2.20) subject to xij = x ij , (i, j) ∈ Ω ,
where X ∈ R n×m and Ω is the set of the observed values in X. This approach has strong guarantees to recover the minimal rank of the partially observed matrix X and can be cast as a semi-definite program to solve it [START_REF] Candès | The power of convex relaxation: Near-optimal matrix completion[END_REF][START_REF] Candes | Exact matrix completion via convex optimization[END_REF]. Convex extensions to collective matrix factorization have also been proposed [START_REF] Singh | Relational learning via collective matrix factorization[END_REF][START_REF] Bouchard | Convex collective matrix factorization[END_REF], and the classical tensor-factorization models [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF]] also had their convex relaxations for completion [Tomioka et al., 2010;[START_REF] Romera-Paredes | A new convex relaxation for tensor completion[END_REF]. In most convex factorization methods, the reconstructed matrix/tensor must be instantiated in memory, which is a serious space bottleneck. More scalable approaches have been proposed for matrix completion, based on iterative sparse singular value decompositions (SVD) [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF], allowing for not storing the whole reconstructed matrix X in memory.

Though the cost of computing numerous SVDs iteratively is prohibitive for very large scale matrices. Convex tensor factorization models have similar scalability issues.

Though, non-convex approaches that optimize over the low-rank latent factors actually work very well in practice [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]Nickel et al., 2016a]. Some first theoretical results start explaining this, and showed that on some non-convex matrix and tensor factorization problems and under certain conditions, all local minima are global [START_REF] Ge | Matrix completion has no spurious local minimum[END_REF][START_REF] Bhojanapalli | Global optimality of local search for low rank matrix recovery[END_REF][START_REF] Haeffele | Global optimality in tensor factorization, deep learning, and beyond[END_REF]. Specifically, Ge et al.

[2016] showed that this is the case for positive semi-definite matrix completion. This being said, given the size of the problems we tackle in this work, we cannot afford convex relaxation. Optimization is conducted over the non-convex low-rank parametrization (see Section 3.3), as in all state-of-the-art factorization models for knowledge-graph completion [Nickel et al., 2016a].

Among other contributions are the pairwise interaction tensor factorization (PITF) [START_REF] Rendle | Pairwise interaction tensor factorization for personalized tag recommendation[END_REF], that handles feedback between users', item and tags through tensor factorization. [START_REF] Abernethy | A new approach to collaborative filtering: Operator estimation with spectral regularization[END_REF] integrate users' and items' attributes in their factorization model. [START_REF] Ermis | Iterative splits of quadratic bounds for scalable binary tensor factorization[END_REF] use quadratic approximation of the logistic loss to speed-up the decomposition, and [START_REF] Zhang | Binary matrix factorization with applications[END_REF] propose to learn binary latent factors instead of real-valued factors. [START_REF] Lee | Llorma: Local low-rank matrix approximation[END_REF] make low-rank decomposition of local sub-blocks of the matrix separately before summing them together, and show it improves prediction accuracy for collaborative filtering. Many proposals have been made to distribute stochastic gradient descent for matrix and tensor factorizations [START_REF] Yu | Scalable coordinate descent approaches to parallel matrix factorization for recommender systems[END_REF][START_REF] Yun | Nomad: Non-locking, stochastic multi-machine algorithm for asynchronous and decentralized matrix completion[END_REF][START_REF] Gemulla | Large-scale matrix factorization with distributed stochastic gradient descent[END_REF][START_REF] Niu | Hogwild!: A lock-free approach to parallelizing stochastic gradient descent[END_REF], which allow to scale to always bigger problems.

Complex Numbers in Factorization Methods

When factorization methods are applied, the representation of the decomposition is generally chosen in accordance with the data, despite the fact that most real square matrices only have eigenvalues in the complex domain. Indeed in the machine learning community, the data is usually real-valued, and thus eigendecomposition is used for symmetric matrices, or other decompositions such as (real-valued) singular value decomposition [START_REF] Beltrami | Sulle funzioni bilineari[END_REF], non-negative matrix factorization [START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF], or canonical polyadic decomposition when it comes to tensors [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF].

Conversely, in signal processing, data is often complex-valued [Stoica and Moses, 2005] and the complex-valued counterparts of these decompositions are then used. Joint diagonalization is also a much more common tool than in machine learning for decomposing sets of (complex) dense square matrices [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF][START_REF] De Lathauwer | Independent component analysis and (simultaneous) third-order tensor diagonalization[END_REF]. Classic complex matrix decompositions and their properties are clearly exposed in [START_REF] Horn | Matrix analysis[END_REF].

Some little-known work in analysis of dense square matrices relates to our contribution, as they consider complex-valued spectral models for asymmetric real-valued square matrices [START_REF] Chino | Complex space models for the analysis of asymmetry[END_REF]. In particular, [START_REF] Escoufier | Analyse factorielle des matrices carrees non symetriques[END_REF] proposed to encode real-valued square matrices as complex-valued Hermitian matrices, where the real-part corresponds to the symmetric part of the real-valued matrix, and the imaginary part corresponds to the the antisymmetric part of the real-valued matrix.

Some works on recommender systems use complex numbers as an encoding facility, to merge two real-valued relations, similarity and liking, into one single complex-valued matrix which is then decomposed with complex embeddings [START_REF] Kunegis | Online dating recommender systems: The split-complex number approach[END_REF][START_REF] Xie | A link prediction approach for item recommendation with complex numbers[END_REF]. Still, unlike our work, it is not real data that is decomposed in the complex domain. In deep learning, [START_REF] Danihelka | Associative long short-term memory[END_REF] proposed an long short-term memory network extension with an associative memory based on complex-valued vectors for memorization tasks, and [START_REF] Hu | Initial investigation of speech synthesis based on complex-valued neural networks[END_REF] a complex-valued neural network for speech synthesis. In both cases again, the data is first encoded in complex vectors that are then fed into the network.

Conversely to these contributions, this work suggests that processing real-valued data with complex-valued representations, through a projection onto the real-valued subspace, can be a very simple way of increasing the expressiveness of the model considered.

Chapter 3

Complex-Valued Tensor

Factorization and Completion

In this chapter we describe a new tensor factorization and completion model, based on complex-valued factor matrices. Each row in these matrices represents one entity or one relations, these vectors are called embeddings. In the previous chapter, we have seen that recent proposals resorts to more and more complicated scoring function to increase their expressiveness. Here we argue that the standard dot product between embeddings can be a very effective scoring function, provided that one uses the right representation: instead of using embeddings containing real numbers, we discuss and demonstrate the capabilities of complex embeddings. When using complex vectors, that is vectors with entries in C, the dot product is often called the Hermitian (or sesquilinear) dot product, as it involves the conjugate-transpose of one of the two vectors. As a consequence, the dot product is not symmetric any more, and facts about one relation can receive different scores depending on the ordering of the entities involved in the fact. In summary, complex embeddings naturally represent arbitrary relations while retaining the efficiency of a dot product, that is linearity in both space and time complexity.

We first provide justification and intuition for using complex embeddings in the square matrix case, where there is only a single type of relation between entities, and show the existence of the proposed decomposition for all possible relations. The formulation is then extended to a stacked set of square matrices in a third-order tensor to represent multiple relations. We then describe a stochastic gradient descent algorithm to learn the model on partially-observed tensors, where we present an equivalent reformulation of the proposed model that involves only real embeddings. This should help practitioners when implementing our method, without requiring the use of complex numbers in their software implementation. Finally, we study the theoretical links with a simultaneously and independently proposed model, HolE [START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF].

Relations as the Real Parts of Low-Rank Normal Matrices

We consider in this section a simplified link prediction task with a single relation, and introduce complex embeddings for low-rank matrix factorization.

We will first discuss the desired properties of embedding models, show how this problem relates to the spectral theorems, and discuss the classes of matrices these theorems encompass in the real and in the complex case. We then propose a new matrix decomposition-to the best of our knowledge-and a proof of its existence for all real square matrices. Finally we discuss the rank of the proposed decomposition.

Modeling Relations

Let E be a set of entities, with n := N e = |E| to have lighter notations in this chapter.

The truth of the single relation holding between two entities is represented by a sign value y so ∈ {-1, 1}, where 1 represents true facts and -1 false facts, s ∈ E is the subject entity and o ∈ E is the object entity. The probability for the relation holding true is given by

P (y so = 1) = σ(x so ) (3.1)
where X ∈ R n×n is a latent matrix of scores indexed by the subject (rows) and object entities (columns), Y is a partially-observed sign matrix indexed in identical fashion, and σ is a suitable sigmoid function. Throughout this manuscript we use the logistic inverse link function σ(x) = 1 1+e -x .

Handling Both Asymmetry and Unique Entity Embeddings

In this work we pursue three objectives: finding a generic structure for X that leads to (i) a computationally efficient model, (ii) an expressive enough approximation of common relations in real world knowledge graphs, and (iii) good generalization performances in practice. Standard matrix factorization approximates X by a matrix product U V ⊤ , where U and V are two functionally-independent n × K matrices, K being the rank of the matrix. Within this formulation it is assumed that entities appearing as subjects are different from entities appearing as objects. This extensively studied type of model is closely related to the singular value decomposition (SVD) and fits well with the case where the matrix X is rectangular, as explained in Section 2.3.1.

However, in many knowledge graph completion problems, the same entity i can appear as both subject or object and will have two different embedding vectors, u i and v i , depending on whether it appears as subject or object of a relation. It seems natural to learn unique embeddings of entities, as initially proposed by [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF] and [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF] and since then used systematically in other prominent approaches [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF][START_REF] Socher | Reasoning with neural tensor networks for knowledge base completion[END_REF]. In the factorization setting, using the same embeddings for left-and right-side factors boils down to a specific case of eigenvalue decomposition: orthogonal diagonalization.

Definition 1. A real square matrix X ∈ R n×n is orthogonally diagonalizable if it can be written as X = EW E ⊤ , where E, W ∈ R n×n , W is diagonal, and E orthogonal so that

EE ⊤ = E ⊤ E = I
where I is the identity matrix.

The spectral theorem for symmetric matrices tells us that a matrix is orthogonally diagonalizable if and only if it is symmetric [START_REF] Cauchy | Sur l'équation à l'aide de laquelle on détermine les inégalités séculaires des mouvements des planètes[END_REF]. It is therefore often used to approximate covariance matrices, kernel functions and distance or similarity matrices.

However as previously stated, this paper is explicitly interested in problems where matrices-and thus the relation patterns they represent-can also be antisymmetric, or even not have any particular symmetry pattern at all (asymmetry). In order to both use a unique embedding for entities and extend the expressiveness to asymmetric relations, researchers have generalised the notion of dot products to scoring functions, also known as composition functions, that allow more general combinations of embeddings. We recall several examples of scoring functions in Table 2.2.

These models propose different trade-offs between the three essential points:

• Expressiveness, which is the ability to represent symmetric, antisymmetric and more generally asymmetric relations.

• Scalability, which means keeping linear time and space complexity scoring function.

• Generalization, for which having unique entity embeddings is critical.

RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF] and NTN [START_REF] Socher | Reasoning with neural tensor networks for knowledge base completion[END_REF] are very expressive, but their scoring functions have quadratic complexity in the rank of the factorization. DistMult [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF] can be seen as a joint orthogonal diagonalization with real embeddings, hence handling only symmetric relations. Conversely, TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] handles symmetric relations to the price of strong constraints on its entity embeddings, as explained in the previous chapter. The canonical-polyadic decomposition (CP) [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF] generalizes poorly with its different embeddings for entities as subject and as object.

We reconcile expressiveness, scalability and generalization by going back to the realm of well-studied matrix factorizations, and making use of complex linear algebra, a scarcely used tool in the machine learning community.

Decomposition in the Complex Domain

We introduce a new decomposition of real square matrices using unitary diagonalization, the generalization of orthogonal diagonalization to complex matrices. This allows decomposition of arbitrary real square matrices with unique representations of rows and columns.

Let us first recall some notions of complex linear algebra as well as specific cases of diagonalization of real square matrices, before building our proposition upon these results.

A complex-valued vector x ∈ C K , with x = Re(x) + iIm(x) is composed of a real part Re(x) ∈ R K and an imaginary part Im(x) ∈ R K , where i denotes the square root of -1. The conjugate x of a complex vector inverts the sign of its imaginary part:

x = Re(x) -iIm(x).
Conjugation appears in the usual dot product for complex numbers, called the Hermitian product, or sesquilinear form, which is defined as:

u, v := ū⊤ v = Re(u) ⊤ Re(v) + Im(u) ⊤ Im(v) +i(Re(u) ⊤ Im(v) -Im(u) ⊤ Re(v)) .
A simple way to justify the Hermitian product for composing complex vectors is that it provides a valid topological norm in the induced vector space. For example, x⊤ x = 0 implies x = 0 while this is not the case for the bilinear form x ⊤ x as there are many complex vectors x for which x ⊤ x = 0.

This yields an interesting property of the Hermitian product concerning the order of the involved vectors: u, v = v, u , meaning that the real part of the product is symmetric, while the imaginary part is antisymmetric.

For matrices, we shall write X * ∈ C n×m for the conjugate-transpose

X * = (X) ⊤ = X ⊤ .
The conjugate transpose is also often written X † or X H . Definition 2. A complex square matrix X ∈ C n×n is unitarily diagonalizable if it can be written as X = EW E * , where E, W ∈ C n×n , W is diagonal, and E is unitary such that

EE * = E * E = I.
Definition 3. A complex square matrix X is normal if it commutes with its conjugatetranspose so that XX * = X * X.

We can now state the spectral theorem for normal matrices.

Theorem 1 (Spectral theorem for normal matrices, von Neumann [1929]). Let X be a complex square matrix. Then X is unitarily diagonalizable if and only if X is normal.

It is easy to check that all real symmetric matrices are normal, and have pure real eigenvectors and eigenvalues. But the set of purely real normal matrices also includes all real antisymmetric matrices (useful to model hierarchical relations such as IsOlder), as well as all real orthogonal matrices (including permutation matrices), and many other matrices that are useful to represent binary relations, such as assignment matrices which represent bipartite graphs. However, far from all matrices expressed as X = EW E * are purely real, and Equation (3.1) requires the scores X to be purely real.

As we only focus on real square matrices in this work, let us summarize all the cases where X is real square and

X = EW E * if X is unitarily diagonalizable, where E, W ∈ C n×n ,
W is diagonal and E is unitary:

• X is symmetric if and only if X is orthogonally diagonalizable and E and W are purely real.

• X is normal and non-symmetric if and only if X is unitarily diagonalizable and E and W are not both purely real.

• X is not normal if and only if X is not unitarily diagonalizable.

We generalize all three cases by showing that, for any X ∈ R n×n , there exists a unitary diagonalization in the complex domain, of which the real part equals X:

X = Re(EW E * ) . (3.2)
In other words, the unitary diagonalization is projected onto the real subspace.

Theorem 2. Suppose X ∈ R n×n is a real square matrix. Then there exists a normal matrix Z ∈ C n×n such that Re(Z) = X.

Proof. Let Z := X + iX ⊤ . Then

Z * = X ⊤ -iX = -i(iX ⊤ + X) = -iZ , so that ZZ * = Z(-iZ) = (-iZ)Z = Z * Z .
Therefore Z is normal.

Note that there also exists a normal matrix Z = X ⊤ + iX such that Im(Z) = X.

Following Theorem 1 and Theorem 2, any real square matrix can be written as the real part of a complex diagonal matrix through a unitary change of basis.

Corollary 1. Suppose X ∈ R n×n is a real square matrix. Then there exist E, W ∈ C n×n , where E is unitary, and W is diagonal, such that X = Re(EW E * ).

Proof. From Theorem 2, we can write X = Re(Z), where Z is a normal matrix, and from Theorem 1, Z is unitarily diagonalizable.

Applied to the knowledge graph completion setting, the rows of E here are vectorial representations of the entities corresponding to rows and columns of the relation score matrix X. The score for the relation holding true between entities s and o is hence

x so = Re(e ⊤ s W ēo ) (3.3)
where e s , e o ∈ C n and W ∈ C n×n is diagonal. For a given entity, its subject embedding vector is the complex conjugate of its object embedding vector.

To illustrate this difference of expressiveness with respect to real-valued embeddings, let us consider two complex embeddings e s , e o ∈ C of dimension 1, with arbitrary values:

e s = 1 -2i
, and e o = -3 + i; as well as their real-valued, twice-bigger counterparts:

e ′ s = 1 -2 ∈ R 2 and e ′ o = -3 1 ∈ R 2 .
In the real-valued case, that corresponds to the DistMult model [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF], the score is x so = e ′⊤ s W ′ e ′ o . Figure 3.1 represents the heatmaps of the scores x so and x os , as a function of W ∈ C in the complex-valued case, and as a function of W ′ ∈ R 2 diagonal in the real-valued case. In the real-valued case, that is symmetric in the subject and object entities, the scores x so and x os are equal for any value of W ′ ∈ R 2 diagonal. Whereas in the complex-valued case, the variation of W ∈ C allows to score x so and x os with any desired pair of values.

In general, there are many other possible couples of matrices E and W that preserve the real part of the decomposition. In practice however this is no synonym of low generalization abilities, as many effective matrix and tensor decomposition methods used in machine learning lead to non-unique solutions [START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF][START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF]. In this case also, the learned representations prove useful as shown in the experimental section.

Low-Rank Decomposition

Addressing knowledge graph completion with data-driven approaches assumes that there is a sufficient regularity in the observed data to generalize to unobserved facts. When formulated as a matrix completion problem, as it is the case in this section, one way of implementing this hypothesis is to make the assumption that the matrix has low rank or approximately low rank. We first discuss the rank of the proposed decomposition, and then introduce the sign-rank and extend the bound developed on the rank to the sign-rank.

Rank Upper Bound

First, we recall one definition of the rank of a matrix [START_REF] Horn | Matrix analysis[END_REF].

Definition 4. The rank of an m-by-n complex matrix rank(X) = rank(X ⊤ ) = k, if X has exactly k linearly independent columns. Also note that if X is diagonalizable so that X = EW E -1 with rank(X) = k, then W has k non-zero diagonal entries for some diagonal W and some invertible matrix E. From this it is easy to derive a known additive property of the rank:

rank(B + C) ≤ rank(B) + rank(C) (3.4)
where B, C ∈ C m×n .

We now show that any rank k real square matrix can be reconstructed from a 2kdimensional unitary diagonalization.

Corollary 2. Suppose X ∈ R n×n and rank(X) = k. Then there exist E ∈ C n×2k such that the columns of E form an orthonormal basis of C 2k , W ∈ C 2k×2k is diagonal, and

X = Re(EW E * ).
Proof. Consider the complex square matrix Z := X + iX ⊤ . We have rank

(iX ⊤ ) = rank(X ⊤ ) = rank(X) = k.
From Equation (3.4), rank(Z) ≤ rank(X) + rank(iX ⊤ ) = 2k.

The proof of Theorem 2 shows that Z is normal.

Thus Z = EW E * with E ∈ C n×2k , W ∈ C 2k×2k
where the columns of E form an orthonormal basis of C 2k , and W is diagonal.

Since E is not necessarily square, we replace the unitary requirement of Corollary 1 by the requirement that its columns form an orthonormal basis of its smallest dimension, 2k.

Also, given that such decomposition always exists in dimension n (Theorem 2), this upper bound is not relevant when rank(X) ≥ n 2 .

Sign-Rank Upper Bound

Since we encode the truth values of each fact with ±1, we deal with square sign matrices: We define the sign function of c ∈ R as

Y ∈ {-1, 1} n×n .
sign(c) = 1 if c ≥ 0 -1 otherwise
where the value c = 0 is here arbitrarily assigned to 1 to allow zero entries in X, conversely to the stricter usual definition of the sign-rank.

To make generalization possible, we hypothesize that the true matrix Y has a low sign-rank, and thus can be reconstructed by the sign of a low-rank score matrix X.

The low sign-rank assumption is theoretically justified by the fact that the sign-rank is a natural complexity measure of sign matrices [Linial et al., 2007a] and is linked to learnability [START_REF] Alon | Sign rank versus vc dimension[END_REF] and empirically confirmed by the wide success of factorization models [Nickel et al., 2016a].

Using Corollary 2, we can now show that any square sign matrix of sign-rank k can be reconstructed from a rank 2k unitary diagonalization. Previous attempts to approximate the sign-rank in relational learning did not use complex numbers. Previous work showed the existence of compact factorizations under conditions on the sign matrix [START_REF] Nickel | Reducing the rank in relational factorization models by including observable patterns[END_REF]. Our results show that if a square sign matrix has sign-rank k, then it can be exactly decomposed through a 2k-dimensional unitary diagonalization.

Although we can only show the existence of a complex decomposition of rank 2k for a matrix with sign-rank k, the sign rank of Y is often much lower than the rank of Y , as we do not know any matrix Y ∈ {-1, 1} n×n for which rank ± (Y ) > √ n [START_REF] Alon | Sign rank versus vc dimension[END_REF]. For example, the n × n identity matrix has rank n, but its sign-rank is only 3! By swapping the columns 2j and 2j -1 for j in 1, . . . , n 2 , the identity matrix corresponds to the relation marriedTo, a relation known to be hard to factorize over the reals [START_REF] Nickel | Reducing the rank in relational factorization models by including observable patterns[END_REF], since the rank is invariant by row/column permutations. Yet our model can express it at most in rank 6, for any n.

Hence, by enforcing a low-rank K ≪ n on EW E * , individual relation scores x so = Re(e ⊤ s W ēo ) between entities s and o can be efficiently predicted, as e s , e o ∈ C K and W ∈ C K×K is diagonal.

Finding the K that matches the sign-rank of Y corresponds to finding the smallest K that brings the 0-1 loss on X to 0, as link prediction can be seen as binary classification of the facts. In practice, and as classically done in machine learning to avoid this NP-hard problem, we use a continuous surrogate of the 0-1 loss, in this case the logistic loss as described in Section 3.3, and validate models on different values of K, as described in Chapter 4.

Rank Bound Discussion

Corollaries 2 and 3 use the aforementioned subadditive property of the rank to derive the 2k upper bound. Let us give an example for which this bound is strictly greater than k.

Consider the following 2-by-2 sign matrix:

Y = -1 -1 1 1 .
Not only is this matrix not normal, but one can also easily check that there is no real normal 2-by-2 matrix that has the same sign-pattern as Y . Clearly, Y is a rank 1 matrix since its columns are linearly dependent, hence its sign-rank is also 1. From Corollary 3, we know that there is a normal matrix whose real part has the same sign-pattern as Y , and whose rank is at most 2.

However, there is no rank 1 unitary diagonalization of which the real part equals Y .

Otherwise we could find a 2-by-2 complex matrix Z such that Re(z 11 ) < 0 and Re(z 22 ) > 0,

where

z 11 = e 1 wē 1 = w|e 1 | 2 , z 22 = e 2 wē 2 = w|e 2 | 2 , e ∈ C 2 , w ∈ C
. This is obviously unsatisfiable. This example generalizes to any n-by-n square sign matrix that only has -1 on its first row and is hence rank 1, the same argument holds considering Re(z 11 ) < 0 and Re(z nn ) > 0.

This example shows that the upper bound on the rank of the unitary diagonalization showed in Corollaries 2 and 3 can be strictly greater than k, the rank or sign-rank, of the decomposed matrix. However, there might be other examples for which the addition of an imaginary part could-additionally to making the matrix normal-create some linear dependence between the rows/columns and thus decrease the rank of the matrix, up to a factor of 2.

We summarize this section in three points:

1. The proposed factorization encompasses all possible score matrices X for a single binary relation.

2. By construction, the factorization is well suited to represent both symmetric and antisymmetric relations.

3. Relation patterns can be efficiently approximated with a low-rank factorization using complex-valued embeddings.

Extension to Multi-Relational Data

Let us now extend the previous discussion to models with multiple relations. Let R be the set of relations, with m := N r = |R|. We shall now write X ∈ R m×n×n for the score 2.2.

Complex Factorization Extension to Tensors

The single-relation model is extended by jointly factorizing all the square matrices of scores into a 3 rd -order tensor X ∈ R m×n×n , with a different diagonal matrix W r ∈ C K×K (3.7)

These equations provide two interesting views of the model:

• Changing the representation: Equation (3.6) would correspond to DistMult with real embeddings (see Table 2.2), but handles asymmetry thanks to the complex conjugate of the object-entity embedding.

• Changing the scoring function: Equation (3.7) only involves real vectors corresponding to the real and imaginary parts of the embeddings and relations.

By separating the real and imaginary parts of the relation embedding w r as shown in Equation (3.7), it is apparent that these parts naturally act as weights on each latent dimension: Re(w r ) over the real part of e o , e s which is symmetric, and Im(w) over the imaginary part of e o , e s which is antisymmetric.

Indeed, the decomposition of each score matrix X r for each r ∈ R can be written as the sum of a symmetric matrix and an antisymmetric matrix. To see this, let us rewrite the decomposition of each score matrix X r in matrix notation. We write the real part of matrices with primes E ′ = Re(E) and imaginary parts with double primes E ′′ = Im(E):

X r = Re(EW r E * ) = Re((E ′ + iE ′′ )(W ′ r + iW ′′ r )(E ′ -iE ′′ ) ⊤ ) = (E ′ W ′ r E ′ ⊤ + E ′′ W ′ r E ′′ ⊤ ) + (E ′ W ′′ r E ′′ ⊤ -E ′′ W ′′ r E ′ ⊤ ) . (3.8) It is trivial to check that the matrix E ′ W ′ r E ′ ⊤ + E ′′ W ′ r E ′′ ⊤ is symmetric and that the matrix E ′ W ′′ r E ′′ ⊤ -E ′′ W ′′ r E ′ ⊤ is antisymmetric.
Hence this model is well suited to model jointly symmetric and antisymmetric relations between pairs of entities, while still using the same entity representations for subjects and objects. When learning, it simply needs to collapse W ′′ r = Im(W r ) to zero for symmetric relations r ∈ R, and W ′ r = Re(W r ) to zero for antisymmetric relations r ∈ R, as X r is indeed symmetric when W r is purely real, and antisymmetric when W r is purely imaginary.

From a geometrical point of view, each relation embedding w r is an anisotropic scaling of the basis defined by the entity embeddings E, followed by a projection onto the real subspace.

Existence of the Tensor Factorization

Let us first discuss the existence of the multi-relational model where the rank of the decomposition K ≤ n, which relates to simultaneous unitary decomposition. Definition 6. A family of matrices X 1 , . . . , X m ∈ C n×n is simultaneously unitarily diagonalizable, if there is a single unitary matrix E ∈ C n×n , such that X i = EW i E * for all i in 1, . . . , m, where W i ∈ C n×n are diagonal. Definition 7. A family of normal matrices X 1 , . . . , X m ∈ C n×n is a commuting family of normal matrices, if X i X * j = X * i X j , for all i, j in 1, . . . , m.

Theorem 3 (see [START_REF] Horn | Matrix analysis[END_REF]). Suppose F is the family of matrices X 1 , . . . , X m ∈ C n×n . Then F is a commuting family of normal matrices if and only if F is simultaneously unitarily diagonalizable.

To apply Theorem 3 to the proposed factorization, we would have to make the hypothesis that the relation score matrices X r are a commuting family, which is too strong a hypothesis. Actually, the model is slightly different since we take only the real part of the tensor factorization. In the single-relation case, taking only the real part of the decomposition rids us of the normality requirement of Theorem 1 for the decomposition to exist, as shown in Theorem 2.

In the multiple-relation case, it is an open question whether taking the real part of the simultaneous unitary diagonalization will enable us to decompose families of arbitrary real square matrices-that is with a single unitary matrix E that has at most n columns.

Though it seems unlikely, we could not find a counter-example yet.

However, by letting the rank of the tensor factorization K to be greater than n, we can show that the proposed tensor decomposition exists for families of arbitrary real square matrices, by simply concatenating the decomposition of Theorem 2 of each real square matrix X i .

Theorem 4. Suppose X 1 , . . . , X m ∈ R n×n . Then there exists E ∈ C n×nm and W i ∈ C nm×nm are diagonal, such that X i = Re(EW i E * ) for all i in 1, . . . , m.

Proof. From Theorem 2 we have

X i = Re(E i W i E * i )
, where W i ∈ C n×n is diagonal, and each E i ∈ C n×n is unitary for all i in 1, . . . , m.

Let E = [E 1 . . . E m ],
and

Λ i =     0 ((i-1)n)×((i-1)n) W i 0 ((m-i)n)×((m-i)n)    
where 0 l×l the zero l × l matrix. Therefore X i = Re(EΛ i E * ) for all i in 1, . . . , m.

By construction, the rank of the decomposition is at most nm. When m ≤ n, this bound actually matches the general upper bound on the rank of the canonical polyadic (CP) decomposition [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF][START_REF] Kruskal | Rank, decomposition, and uniqueness for 3-way and n-way arrays[END_REF]. Since m corresponds to the number of relations and n to the number of entities, m is always smaller than n in real world knowledge graphs, hence the bound holds in practice.

Though when it comes to relational learning, we might expect the actual rank to be much lower than nm for two reasons. The first one, as discussed above, is that we are dealing with sign tensors, hence the rank of the matrices X r need only match the sign-rank of the partially-observed matrices Y r . The second one is that the matrices are related to each other, as they all represent the same entities in different relations, and thus benefit from sharing latent dimensions. As opposed to the construction exposed in the proof of Theorem 4, where other relations dimensions are canceled out. In practice, the rank needed to generalize well is indeed much lower than nm as we show experimentally in Also, note that with the construction of the proof of Theorem 4, the matrix E = [E 1 . . . E m ] is not unitary any more. However the unitary constraints in the matrix case serve only the proof of existence, which is just one solution among the infinite ones of same rank. In practice, imposing orthonormality is essentially a numerical commodity for the decomposition of dense matrices, through iterative methods for example [START_REF] Saad | Numerical methods for large eigenvalue problems[END_REF]. When it comes to matrix and tensor completion, and thus generalisation, imposing such constraints is more of a numerical hassle than anything else, especially for gradient methods. As there is no apparent link between orthonormality and generalisation properties, we did not impose these constraints when learning the model.

Algorithm

Algorithm 1 describes stochastic gradient descent (SGD) to learn the proposed multirelational model with the AdaGrad learning-rate updates [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF]. Stochastic gradient descent is a natural and scalable way of respecting the open-world assumption, that is treating missing triples as missing instead of negatives. We refer to the proposed model as ComplEx, for Complex Embeddings. We expose a version of the algorithm that uses only real-valued vectors, in order to facilitate its implementation. To do so, we use separate real-valued representations of the real and imaginary parts of the embeddings. These real and imaginary part vectors are initialized with vectors having a zero-mean normal distribution with unit variance. If the training set Ω contains only positive triples, negatives are generated for each batch using the local closed-world assumption as in [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF]. That is, for each triple, we randomly change either the subject or the object, to form a negative example. In this case the parameter η > 0 sets the number of negative triples to generate for each positive triple. Collision with positive triples in Ω is not checked, as it occurs rarely in real world knowledge graphs as they are largely sparse, and may also be computationally expensive. For a given embedding size K, let us rewrite Equation (3.7), by denoting the real part of embeddings with primes and the imaginary part with double primes: e ′ i = Re(e i ), where each entity and each relation has two real embeddings.

e ′′ i = Im(e i ), w ′ r = Re(w r ), w ′′ r = Im(w r ). The set of parameters is Θ = {e ′ i , e ′′ i , w ′ r , w ′′ r ∈ R K , i ∈ E,
Gradients are now easy to write:

∇ e ′ s φ(r, s, o; Θ) = (w ′ r ⊙ e ′ o ) + (w ′′ r ⊙ e ′′ o ), ∇ e ′′ s φ(r, s, o; Θ) = (w ′ r ⊙ e ′′ o ) -(w ′′ r ⊙ e ′ o ), ∇ e ′ o φ(r, s, o; Θ) = (w ′ r ⊙ e ′ s ) -(w ′′ r ⊙ e ′′ s ), ∇ e ′′ o φ(r, s, o; Θ) = (w ′ r ⊙ e ′′ s ) + (w ′′ r ⊙ e ′ s ), ∇ w ′ r φ(r, s, o; Θ) = (e ′ s ⊙ e ′ o ) + (e ′′ s ⊙ e ′′ o ), ∇ w ′′ r φ(r, s, o; Θ) = (e ′ s ⊙ e ′′ o ) -(e ′′ s ⊙ e ′ o ),
where ⊙ is the element-wise (Hadamard) product.

We optimized the negative log-likelihood of the logistic model described in Equation (3.5)

with L 2 regularization on the entity and relation embeddings in Θ: where λ ∈ R + is the regularization parameter.

L(Ω; Θ) = ((
To handle regularization, note that using separate representations for the real and imaginary parts does not change anything as the squared L 2 -norm of a complex vector v = v ′ + iv ′′ is the sum of the squared modulus of each entry:

||v|| 2 2 = j v ′2 j + v ′′2 j 2 = j v ′2 j + j v ′′2 j = ||v ′ || 2 2 + ||v ′′ || 2 2 ,
which is actually the sum of the L 2 -norms of the vectors of the real and imaginary parts.

We can finally write the gradient of L with respect to a real embedding v for one triple (r, s, o) and its truth value y: 

∇ v L({((r, s, o), y)}; Θ) = -yσ(-yφ(r, s, o; Θ))∇ v φ(
′ i ∼ N (0 k , I k×k ) , e ′′ i ∼ N (0 k , I k×k ) for each i ∈ E w ′ i ∼ N (0 k , I k×k ), w ′′ i ∼ N (0 k , I k×k ) for each i ∈ R g e ′ i ← 0 k , g e ′′ i ← 0 k for each i ∈ E g w ′ i ← 0 k , g w ′′ i ← 0 k for each i ∈ R previous score ← 0 for i = 1, . . . , m do for j = 1, . . . , |Ω|/b do Ω b ← sample batch of size b(Ω, b) // Negative sampling: Ω n ← {∅} for ((r, s, o), y) in Ω b do for l = 1, . . . , η do e ← one random sample(E) if Bern(0.5) > 0.5 then Ω n ← Ω n ∪ {((r, e, o), -1)} else Ω n ← Ω n ∪ {((r, s, e), -1)} end if end for end for Ω b ← Ω b ∪ Ω n for ((r, s, o), y) in Ω b do for v in Θ do // AdaGrad updates: g v ← g v + (∇ v L({((r, s, o), y)}; Θ)) 2 // Gradient updates: v ← v -α gv+ǫ ∇ v L({((

Link with Holographic Embeddings

In this section we investigate the link between the proposed ComplEx model, and a simultaneously and independently proposed model, the holographic embeddings (HolE) [START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF]. We show that they have equivalent scoring functions, up to a constant factor, but that ComplEx's formulation of the scoring function has a lower time complexity. A similar proof as independently been proposed by [START_REF] Hayashi | On the equivalence of holographic and complex embeddings for link prediction[END_REF].

We will consider discrete Fourier transform (DFT) of purely real vectors only : F : R K → C K . For j ∈ {0, . . . , K -1}:

F(x) j = K-1 k=0 x k e -2iπj k K (3.12)
where F(x) j ∈ C is the j th value in the resulting complex vector F(x) ∈ C K . Note that the vector components in Equation (3.12) are indexed from 0 to K -1.

The holographic embeddings model (HolE) represents relations and entities with real- where e s , e o , w r ∈ C K are complex vectors, and e o is the complex conjugate of the vector

valued embeddings E ∈ R Ne×K , W ∈ R Nr×K
e o .
First, recall Parseval's Theorem:

Theorem 5. Suppose x, y ∈ R K are real vectors. Then x ⊤ y = 1 K F(x) ⊤ F(y).

Using Theorem 5 as well as Equations (3.13) and (3.14), we can then rewrite the scoring function of HolE as:

φ h (r, s, o) = w ⊤ r (e s ⋆ e o ) = w ⊤ r (F -1 (F(e s ) ⊙ F(e o ))) = 1 K F(w r ) ⊤ F(F -1 (F(e s ) ⊙ F(e o ))) = 1 K F(w r ) ⊤ (F(e s ) ⊙ F(e o )) = 1 K F(w r ), F(e s ), F(e o ) .
(3.16)

We now derive a property of the DFT on real vectors x, showing that the resulting complex vector F(x) has a partially symmetric structure, for j ∈ {1, . . . , K -1}:

F(x) (K-j) = K-1 k=0 x k e -2iπ(K-j) k K = K-1 k=0
x k e -2iπk e 2iπj k K and given that k is an integer:

e -2iπk = 1, = K-1 k=0 x k e 2iπj k K = K-1 k=0 x k e -2iπj k K and since x k ∈ R, = K-1 k=0 x k e -2iπj k K = F(x) j .
(3.17)

Two special cases arise, the first one is F (x) 0 , which is not concerned by the above symmetry property:

F(x) 0 = K-1 k=0 x k e -2iπ0 k K = K-1 k=0 x k =: s(x) ∈ R . (3.18)
And the second one is F (x) K 2 when K is even:

F(x) (K-K 2 ) = F(x) K 2 = F(x) K 2 = K-1 k=0 x k e -2iπ Kk 2K = K-1 k=0 x k e -iπk = K 2 -1 k=0 x 2k -x 2k+1 =: t(x) ∈ R . (3.19)
From Equations (3.17) to (3.19), we write the general form of the Fourier transform

F(x) ∈ C K of a real vector x ∈ R K : F(x) =    [s(x) x ′ t(x) x ′ ← ], if K is even, [s(x) x ′ x ′ ← ], if K is odd. (3.20) where x ′ , x ′ ← ∈ C ⌈ K 2 ⌉-1 , with x ′ = [F(x) 1 , . . . , F(x) ⌈ K 2 ⌉-1 ], and x ′ ← is x ′ in reversed order: x ′ ← = [F(x) ⌈ K 2 ⌉-1 , . . . , F(x) 1 ].
We can then derive Equation (3.16) for w r , e s , e o ∈ R K , first with K being odd: 

φ h (r, s, o) = 1 K F(w r ), F(e s ), F(e o ) = 1 K [s(w r ) w ′ r w ′ r← ],
= 2 K Re [ 3 1 2 s(w r ) w ′ r ], [ 3 1 2 s(e s ) e ′ s ], [ 3 1 2 s(e o ) e ′ o ] = 2 K Re w ′′ r , e ′′ s , e ′′ o = 2 K φ c (r, s, o) (3.21) where w ′′ r , e ′′ s , e ′′ o ∈ C ⌈ K 2 ⌉ .
The derivation is similar when K is even, with double prime vectors being

x ′′ = [ 3 1 2 s(x) 3 1 2 t(x) x ′ ] ∈ C K 2 +1 .
The two scoring functions are thus directly proportional. Both models have an equal memory complexity, as the complex vectors w ′′ r , e ′′ s , e ′′ o ∈ C ⌈ K 2 ⌉ take twice as much memory as real-valued ones of same size-for a given floating-point precision. Though the complex formulation of the scoring function brings time complexity from O(K log(K)) down to

O(K).

We investigate in the next chapter the discrepancy of results between our proposal and HolE results reported in [START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF], and postulate that they are due to the use of two different loss functions. Experiments in Section 4.3.6 correlate with originally reported results for HolE, and confirm this hypothesis.

Discussion and Future Directions

Though the proposed decomposition is clearly not unique, we will see in the next chapter that it is able to learn meaningful representations of entities and relations.

Still, characterizing all possible unitary diagonalizations that preserve the real part is an interesting open question. Especially in an approximation setting with a constrained rank, in order to characterize the decompositions that minimize a given reconstruction error.

That might allow the creation of an iterative algorithm similar to eigendecomposition iterative methods [START_REF] Saad | Numerical methods for large eigenvalue problems[END_REF] for computing such a decomposition for any given real square matrix.

The proposed decomposition could also find applications in many asymmetric square matrices decompositions applications, such as spectral graph theory for directed graphs [START_REF] Cvetković | Eigenspaces of graphs[END_REF], but also factorization of asymmetric measures matrices such as asymmetric distance matrices [START_REF] Mao | Modeling distances in large-scale networks by matrix factorization[END_REF] and asymmetric similarity matrices [START_REF] Pirasteh | Exploiting matrix factorization to asymmetric user similarities in recommendation systems[END_REF].

From an optimization point of view, the objective function (Equation (3.10)) is clearly non-convex, and we could indeed not be reaching a globally optimal decomposition using stochastic gradient descent. Recent results show that there are no spurious local minima in the completion problem of positive semi-definite matrix [START_REF] Ge | Matrix completion has no spurious local minimum[END_REF][START_REF] Bhojanapalli | Global optimality of local search for low rank matrix recovery[END_REF]. Studying the extensibility of these results to our decomposition is another possible line of future work. The first step would be generalizing these results to symmetric real-valued matrix completion, then generalization to normal matrices should be straightforward. The two last steps would be extending to matrices that are expressed as real part of normal matrices, and finally to the joint decomposition of such matrices as a tensor.

Practically, an obvious extension is to merge our approach with known extensions to tensor factorization models in order to further improve predictive performance. For example, the use of pairwise embeddings [START_REF] Riedel | Relation extraction with matrix factorization and universal schemas[END_REF][START_REF] Welbl | A factorization machine framework for testing bigram embeddings in knowledge base completion[END_REF] together with complex numbers might lead to improved results in situations that involve noncompositionality. Adding bigram embeddings to the objective could also improve the results as shown on other models [START_REF] Garcia-Duran | Combining two and three-way embedding models for link prediction in knowledge bases[END_REF].

Chapter Summary

We proposed a new matrix and tensor decomposition with complex-valued latent factors called ComplEx. The decomposition exists for all real square matrices, expressed as the real part of normal matrices. The result extends to sets of real square matricestensors-and answers to the requirements of the knowledge graph completion task : handling a large variety of different relations including antisymmetric and asymmetric ones, while being scalable. We described a stochastic gradient descent algorithm to learn from partially-observed knowledge graphs, that either contain both positive and negative triples or only positive ones. Finally we discussed the theoretical links with an independently proposed model, HolE.

Chapter 4

Experiments and Applications

To evaluate our proposal, we used both synthetic experiments to assess our claims, and classical link-prediction benchmarks. First, we justify empirically that using the logisticloss yields much better generalization with low-ranks than the squared loss on some typical synthetic relations. In another synthetic experiment, we demonstrate the ability of the ComplEx model to jointly learn a symmetric and an antisymmetric relations.

Then we evaluate it on classical closed-world datasets: Kinships and UMLS; as well as classical open-world benchmarks: WN18 and FB15K which are respectively subsets of WordNet [START_REF] Fellbaum | WordNet[END_REF] and Freebase [START_REF] Bollacker | Freebase: a collaboratively created graph database for structuring human knowledge[END_REF]. We also experimentally explore the discussed theoretical links between HolE and ComplEx. Finally, we propose a different application of our model for enriching distributed representations of words.

We compared ComplEx to state-of-the-art models, namely TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], DistMult [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF], RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF] and also to the canonical polyadic decomposition (CP) [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF], to emphasize empirically the importance of learning unique embeddings for entities. For experimental fairness, we reimplemented these models within the same framework as the ComplEx model, using a Theano-based SGD implementation1 [START_REF] Bergstra | Theano: a CPU and GPU math expression compiler[END_REF].

For the TransE model, results were obtained with its original max-margin loss, as it turned out to yield better results for this model only. To use this max-margin loss on data sets with observed negatives (Sections 4.1.2 and 4.2), positive triples were replicated when necessary to match the number of negative triples, as described in [START_REF] Garcia-Duran | Combining two and three-way embedding models for link prediction in knowledge bases[END_REF]. We also trained it with L 1 and L 2 norms, results are reported for the best performing one in each experiment. As in the original paper, we did not use regularization over the parameters but instead we enforced entity embeddings to have unit norm ||e i || 2 = 1 for all i ∈ E [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF]. most general decomposition model, the CP model, which relates to SVD in the matrix case (single relation). We here minimize the negative log-likelihood of both losses on observed entries.

Finding the decomposition that matches the sign-pattern of a given sign matrix amounts to bringing the 0-1 loss to 0, which is theoretically possible if the rank of decomposition is greater or equal to the sign-rank of the decomposed sign matrix. However to avoid this combinatorial problem, the logistic loss is classically used as a surrogate. Sign-identity n × n matrices-where 0 are replaced with -1-are known to have a rank of n, but to have a constant sign-rank of 3 [START_REF] Alon | Sign rank versus vc dimension[END_REF], as discussed in Section 3.1.2.2. As the rank (and sign-rank) are invariant by column permutation, identity-permuted matrices can be used as a permutation relation in knowledge graph that assign each entity to another one, such as isMarriedTo. To assess the quality of the logistic loss as a surrogate of the sign-rank, we decompose fully observed identity matrices, and compare reconstruction error between the squared and logistic losses. We report the F1-measure in Figure 4.1.

On the smallest matrix (20 × 20), the logistic loss actually matches the sign-rank as it reaches perfect reconstruction with an embedding size of K = 3. On bigger matrices (60 × 60 and 200 × 200), the actual rank required to decompose an identity matrix with the logistic loss seems to scale logarithmically with the size of the matrix; whereas it scales linearly with the squared loss. Using the logistic loss allows for decomposing permutation matrices with a rank much closer to the true sign-rank than using the squared loss.

We further conduct our experiments on n×n matrix completion problems, first on an upper tri-diagonal synthetic relation, which can be seen as a sequential relation (Figure 4.2).

And second on block upper-diagonal patterns, which can be seen as transitive groups of entities, such as olderBrotherOf (Figure 4.3). In the observed matrices (left), white denotes -1, black 1, and grey unobserved entries. In the reconstructed matrices for the squared (middle) and logistic (right) losses, values are represented in grey-scale. The logistic loss reaches perfect reconstruction with K = 3 in the sequential case and with K = 4 in the transitive case, whereas the squared loss reconstruction is largely corrupted for these ranks.

These experiments show us that if the logistic loss is minimized, many common relations such as permutation matrices, sequential relations, and transitive relations can be represented with surprisingly small embeddings. In the following experiments, we used the logistic loss with all models. subset of WordNet [START_REF] Fellbaum | WordNet[END_REF], a database featuring lexical relations between words.

We used the same training, validation and test set splits as in [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF]. Table 4.2 summarizes the metadata of the two data sets.

Experimental Setup

As both data sets contain only positive triples, we generated negative samples using the local closed-world assumption, and use the mean reciprocal rank (MRR) for evaluation, where ranking of each test triple r(s, o) is computed among all possible subject and object substitutions-as described in Section 3.3. The MRR and Hits at N are standard evaluation measures for these data sets and come in two flavours: raw and filtered. The filtered metrics are computed after removing all the other positive observed triples that appear in either training, validation or test set from the ranking, whereas the raw metrics do not remove these.

Since ranking measures are used, previous studies generally preferred a max-margin ranking loss for the task [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF]. We chose to use the negative log-likelihood of the logistic model. We tried both losses in preliminary work, and training the models with the log-likelihood yielded better results than with the max-margin ranking loss, especially on FB15K-except with TransE.

We report both filtered and raw MRR, and filtered Hits at 1, 3 and 10 in Table 4.3 for the evaluated models. We have shown in Section 3.4 that the scoring function of the HolE model is equivalent to ComplEx -which has also been independently shown by [START_REF] Hayashi | On the equivalence of holographic and complex embeddings for link prediction[END_REF]. We record the original results for HolE as reported in Nickel et al.

[2016b] and briefly discuss the discrepancy of results obtained with ComplEx. GPU (NVIDIA Tesla P40) takes 45 minutes on WN18 (K = 150, η = 1), and three hours on FB15K (K = 200, η = 10).

Results

WN18 describes lexical and semantic hierarchies between concepts and contains many antisymmetric relations such as hypernymy, hyponymy, and being part of. Indeed, the DistMult and TransE models are outperformed here by ComplEx and HolE, which are on a par with respective filtered MRR scores of 0.941 and 0.938, which is expected as both models are equivalent.

Table 4.4 shows the filtered MRR for the reimplemented models and each relation of WN18, confirming the advantage of ComplEx on antisymmetric relations while losing nothing on the others. 2D projections of the relation embeddings (Figures 4.10 & 4.11) visually corroborate the results.

On FB15K, the gap is much more pronounced and the ComplEx model largely outperforms HolE, with a filtered MRR of 0.692 and 59.9% of Hits at 1, compared to 0.524 and 40.2% for HolE. This difference of scores between the two models, though their scoring functions are equivalent, is due to the use of the aforementioned max-margin loss in the original HolE publication [START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF] that performs worse than the log-likelihood on this dataset, and to the generation of more than one negative sample per positive in these experiments. We will further explore this interpretation in Section 4.3.6.

The fact that DistMult yields fairly high scores (0.654 filtered MRR) is also due to the task itself and the evaluation measures used. As the dataset only involves true facts, the test set never includes the opposite facts r(o, s) of each test fact r(s, o) for antisymmetric relations-as the opposite fact is always false. Thus highly scoring the opposite fact barely impacts the rankings for antisymmetric relations. This is not the case in the fully observed experiments (Section 4.2), as the opposite fact is known to be false-for RESCAL, that represents each relation with a K × K matrix, performs well on WN18 as there are few relations and hence not so many parameters. On FB15K though, it probably overfits due to the large number of relations and thus the large number of parameters to learn, and performs worse than a less expressive model like DistMult.

On both data sets, TransE and CP are largely left behind. This illustrates again the power of the multilinear product in the first case, and the importance of learning unique entity embeddings in the second. CP performs especially poorly on WN18 due to the small number of relations, which magnifies this subject/object difference. does not perform better because it has twice as many parameters for the same rank-the real and imaginary parts-compared to other linear space complexity models, but indeed thanks to its better expressiveness.

Best ranks were generally 150 or 200, in both cases scores were always very close for all models, suggesting there was no need to grid-search on higher ranks. The number of negative samples per positive sample also had a large influence on the filtered MRR on FB15K (up to +0.08 improvement from 1 to 10 negatives), but not much on WN18.

sampled. This would reduce the number of negatives required to reach good performance, thus accelerating training time. When the knowledge graph comes with a schema that defines entity types (person, place or song for example) this information can be used to sample negatives by corrupting positive triples with entities of the same type, as shown by [START_REF] Sedghi | Knowledge completion for generics using guided tensor factorization[END_REF].

WN18 Embeddings Visualization

We 

Comparing ComplEx and HolE

Following the equivalence discussion with the scoring function of the HolE model in Section 3.4, we now experimentally compare the differences between the two models.

In Table 4.5, results for the ComplEx and HolE models agreed on the WN18 data set, but diverged on FB15K. Since both models are equivalent, we assumed that this is due to the different loss functions that were used. To assess this hypothesis, we reimplemented both losses over the ComplEx model scoring function within the same framework, and compared them on the WN18 and FB15K data sets.

In the original HolE publication [START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF], a pairwise max-margin loss is optimized over each positive and its corrupted negative (r, s ′ , o ′ ): where γ is the margin hyperparameter. The entity embeddings are also constrained to unit norm : ||e i || 2 = 1, for all i ∈ E. Whereas we optimized the log-likelihood loss as explained in the previous chapter.

L(Ω; Θ) = ((r,s,o),y)∈Ω max(0, γ + σ(φ(r, s ′ , o ′ ; Θ)) -σ(φ(r, s, o; Θ))) (4.1)
The results are reported for the best validated models after a distributed grid-search on the following values: K ∈ {10, 20, 50, 100, 150, 200}, λ ∈ {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0} for the log-likelihood loss, and γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for the max-margin loss. The raw and filtered mean reciprocal ranks (MRR), as well as the filtered hits at 1, 3 and 10 are reported in Table 4.5.

The max-margin loss results are consistent with the HolE ones originally reported in [START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF], confirming the equivalence of the scoring functions, and our hypothesis that the loss was responsible for the difference in previously reported results.

The log-likelihood results are also coherent, as one must note that the higher scores reported on FB15K in Table 4.5 are due to the use of more than one generated negative sample for each positive training triple. Here, we generated a single negative sample for each positive one in order to keep the comparison fair between the two losses.

The choice of the loss is of little consequence on the WN18 dataset, whereas the loglikelihood loss performs much better on FB15K. While much research attention has been given to scoring functions in link prediction, little has been said about the losses, and the max-margin loss has been used in most of the existing work [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF][START_REF] Riedel | Relation extraction with matrix factorization and universal schemas[END_REF]. Properties of both losses should be studied to understand this discrepancy of results on some datasets, as well as a more extensive empirical comparison of both losses to assess whether or not the log-likelihood should be systematically chosen over the max-margin loss.

Learning Complex Word Embeddings

In the next experiments, we explore the applicability of the multi-relational factorization framework for enriching distributed representation of words.

With the release of the word2vec [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF] and gloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] trained word embeddings, machine learning researchers started to widely reuse pre-trained models on different tasks. This breakthrough let us glimpse the possible future existence of a fully modular library of pre-trained representations. However, this potential has not yet been fully grasped and exploited. In many use cases of word embeddings, those are just used for initialization, and then fine-tuned for the task.

Allow us here a loose comparison with software development. The current use of word embeddings would be as if, after the release of the first ever written library package, every one went forking its source code for his own purpose, and no one was building-and releasing-another package built on top of it. In this work, we argue for embracing the full modularity potential that is now offered to our community through the incremental building of trained representations.

Among various different applications, pre-trained word embeddings have been used for recognizing textual entailment (RTE) [START_REF] Marelli | Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment[END_REF]Bowman et al., 2015a]. On one hand, integrating external resources such as WordNet in combination with distributional representations of words proved to be very useful for this task [START_REF] Marelli | Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment[END_REF].

This is intuitively understandable, as distributional representations are trained on a symmetrical information, co-occurrence, yet entailment is an antisymmetric property, and resources as WordNet [START_REF] Fellbaum | WordNet[END_REF] contains antisymmetric information between words such as hypernymy or meronymy. [START_REF] Levy | Do supervised distributional methods really learn lexical inference relations?[END_REF]; [START_REF] Bowman | Recursive neural networks can learn logical semantics[END_REF] also discussed the limits of distributional representations for entailment prediction. On the other hand, using only fixed word embeddings during the optimization process largely reduces the number of parameters and allows for using larger and better performing models [Rocktäschel et al., 2016;[START_REF] Liu | Learning natural language inference using bidirectional lstm model and inner-attention[END_REF]. Here we reconcile both aspects by first giving the word representations these asymmetric properties by enriching them with external knowledge, in the form of knowledge graphs. However, conversely to previous works that either learn embeddings jointly on a corpus and on external resources [START_REF] Xu | Rcnet: A general framework for incorporating knowledge into word representations[END_REF][START_REF] Liu | Learning semantic word embeddings based on ordinal knowledge constraints[END_REF], or refine pre-trained embeddings with external resources [START_REF] Faruqui | Retrofitting word vectors to semantic lexicons[END_REF]; we propose to extend the pre-trained vectorial representations of words, to encode this new knowledge in a modular fashion.

In To sum up:

• We propose to extend vectorial representations of words with knowledge graphs, instead of refining these vectors.

• To encode antisymmetric information about words into vectors, we leverage on the asymmetry of the Hermitian dot product.

• Only the imaginary part is learned, keeping the approach modular and incremental.

Imaginary Part Only Learning

To train our word embeddings with the ComplEx model, we reused the WN18 subset of WordNet [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], that mainly contains antisymmetric relations. It is initially composed of |E| = 40,943 words. For each entity i ∈ E, we initialized the real parts of their embeddings Re(e i ) ∈ R K with pre-trained word2vec vectors 2 of dimension K = 300. To do so, we dropped POS tag information as well as the different meanings of each words (that were represented as different entities) in WN18, and merged them together as a single entity. This resulted into an intersection of |E| = 16,561 words with the word2vec embeddings, and |Ω| = 63,251 observed positive triples.

The training is performed as described in the previous WN18 experiment, except for the size of the embeddings that is not validated as it is fixed to K = 300, the dimension of the pre-trained embeddings. This time, only the imaginary part of the entity embeddings is learned, while the real part is kept constant to the pre-trained initialization value. We next assess our extended word embeddings on a classical entailment classification data set, SNLI [Bowman et al., 2015a].

Results on Entailment: SNLI

The SNLI dataset contains 570,000 human-written English sentences pairs, labeled with three classes: entailment, contradiction, and neutral. To compare our embeddings extended with an imaginary part against the word2vec ones, we reused an existing neural network architecture available online3 , which is a simple but yet strong baseline. The model is very similar to the one originally proposed by Bowman et al. [2015a], except it uses ReLU layers instead of hyperbolic tangent ones. For each pair of sentences, the corresponding word embeddings of size K are passed through a first K-ReLU translation layer. For each sentence, the translated word embeddings are summed together, both sentence sums are then concatenated into a layer of size L = 2K and fed through three L-ReLU layers, before a final 3-way softmax. Formally, each word in the vocabulary w ∈ V has an input word embedding e w ∈ R K , that is not updated during training. Let

f i n (x) = max(0, W i x) be a ReLU layer, where x ∈ R K and W i ∈ R n×K .
For each pair of sentences (s 1 , s 2 ) with its label y, the model holds in a single line:

ŷ = softmax f 4 L f 3 L f 2 L w∈s 1 f 1 K (e w ), w∈s 2 f 1 K (e w ) . (4.2) 
To use our complex embeddings in this real-valued network, we concatenated the learnt imaginary parts to their original word2vec real parts, resulting in word embedding vectors of size K c = 600 for each word. word2vec words that were not in the WN18 subset were assigned a zero vector for their imaginary part. Comparatively, the original word2vec vectors are of size K r = 300, and correspond to the real part-which is the first half-of our complex vectors. As the last layers are of size L = 2K, the resulting network has more parameters with the complex embeddings as K c = 2K r . To compare the two sets of embeddings fairly, we trained the model twice with L = 2K c and L = K r for each set of embeddings. The hyper-parameters are left as provided: optimization is conducted with RMSProp [Tieleman and Hinton, 2012], L 2 -regularization strength of 4 × 10 -6 , dropout of 0.2 and early-stopping. Out-of-vocabulary embeddings are zeroed. The resulting accuracies are reported in Table 4.6. The proposed complex word embeddings brings an improvement of almost one point of accuracy on the test set.

These results are promising as WN18 is but a small subset of WordNet, and only 16, 561 word embeddings were extended with an imaginary part. We expect to yield a better improvement when using a larger dump of WordNet. In the future, it would be interesting to feed these complex embeddings into a complex-valued neural network, such as used by [START_REF] Danihelka | Associative long short-term memory[END_REF]. Though in principle, using a twice-larger real-valued network over the concatenation of the real and imaginary parts of the input vectors (as done here) is more general. Indeed, the complex-valued vector-matrix product is but a specific linear combination of their real and imaginary parts, that hence can be learnt by the a twice-larger real-valued fully-connected layer over the concatenation of the real and imaginary part of the input vectors.

This practice of extending vectorial representations could be generalized without all the complex algebra apparatus. When training an embedding model, one could, instead of fine tuning word embeddings, fix them and add to them new free dimensions to optimize, and then publish these newly trained dimensions. An online platform that aggregates all the uploaded pre-trained embeddings on various tasks, and allow for an easy download of a selected concatenation of them could sensibly accelerate the progress of artificial

intelligence, as open-source did for the progress of computer science.

Chapter Summary

We first showed the importance of using a binary loss for decomposing matrices of binary relations. Then we confirmed the ability of the ComplEx model to efficiently learn symmetric and antisymmetric relations. Experiments on real data sets confirm its theoretical versatility, as it substantially improves over the state-of-the-art. It shows that real world relations can be efficiently approximated as the real part of low-rank normal matrices. We underlined the importance of some hyper-parameters, especially the number of negatives generated, as well as the choice of the loss. Finally, we proposed a novel way of enriching distributional word embeddings with knowledge graphs, by extending vectorial representations, which proved to enhance entailment recognition.

Chapter 5

Inductive Abilities of Latent

Factor Models

Artificial intelligence is becoming more driven by its empirical successes than by the quest for a principled formalisation of reasoning, making it more of an empirical science than a theoretical one. Experimental design is a key skill of empirical scientists, and a well-designed experiment should expose model limitations to enable improving on them.

Indeed, seeking falsification is up to now the best definition of science [START_REF] Popper | Logik der Forschung[END_REF].

In machine learning, it is extremely simple to come up with an experiment that will fail. However it is less easy to think of one that brings an informative failure-when one thinks of a failing experiment at all. The bAbI data set [START_REF] Weston | Towards AI-complete question answering: A set of prerequisite toy tasks[END_REF], proposing a set of 20 prerequisite tasks for reasoning over natural language, is an example of an informative experiment, by the specific reasoning type that each task targets. Inspired by the idea of this work, we designed simple tasks for relational learning that assess basic properties of relations, as well as simple reasonings such as kinship relations.

In many machine learning fields, research is drifting away from first-order logic methods.

Most of the time, this drift is justified by better predictive performances and scalability of the new methods. It is especially true with link prediction, where latent factor models became more popular than logic-based models [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF][START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Trouillon | Complex embeddings for simple link prediction[END_REF]. Logic-based link prediction consists in using both observed facts and logical rules to infer the truth of unobserved facts. For example, given the entities Alice, Eve and Bob and the relations mother and grandmother, if mother(Alice,Eve) and mother(Eve,Bob) are true facts, then grandmother(Alice,Bob) is also true. Inferring this last fact from the first two however, requires knowing that the mother of one's mother is one's grandmother, which can be expressed by the first-order formula: ∀x∀y∀z mother(x, y) ∧ mother(y, z) ⇒ grandmother(x, z). Logical deduction can be conducted deterministically, or probabilistically to cope with uncertainty of the data [START_REF] Richardson | Markov logic networks[END_REF][START_REF] Kersting | Towards combining inductive logic programming with bayesian networks[END_REF]. Beyond known problems such as complexity or brittleness, an obvious limitation arises in this setup: logical rules over the knowledge graph relations are required for inference, and many knowledge graphs only provide observed facts [START_REF] Dong | Knowledge vault: A web-scale approach to probabilistic knowledge fusion[END_REF][START_REF] Auer | DBpedia: A nucleus for a web of open data[END_REF]. In this case rules can be handcrafted, or learnt, generally through inductive logic programming (ILP) methods [START_REF] Muggleton | Inductive logic programming: Theory and methods[END_REF][START_REF] Dzeroski | Inductive logic programming: t echniques and applications[END_REF].

Latent factor models do not suffer this limitation, as the learned model is never represented explicitly in a symbolic way, but rather as vectorial embeddings of the entities and relations. Such representations can make the model difficult to interpret, and although they show better predictive abilities, it has not yet been explored how well those models are able to overcome this absence of logical rules, and how their inference abilities differ from logic-based models.

To do so, we evaluate state-of-the-art latent factor models for relational learning on synthetic tasks, each designed to target a specific inference ability, and see how well they discover structure in the data. As we are only interested in evaluating inductive abilities of these models, and not their ability to cope with uncertainty, we design synthetic experiments with noise-free deterministic data. The choice of this very favorable setup for deterministic logical inference clarifies the approach followed here and its very purpose: we do not evaluate latent factor models as an end, but as a means to point out their weaknesses and stimulate research towards models that do not suffer from combinatorial complexity-as advocated by [START_REF] Bottou | From machine learning to machine reasoning[END_REF]. Computational complexity, and namely polynomiality, could turn out to be the very criterion for machine intelligence [START_REF] Aaronson | Why philosophers should care about computational complexity[END_REF]. Beyond complexity, one could also argue against explicitly learning logical expressions to tackle knowledge graph completion that, "when solving a given problem, try to avoid solving a more general problem as an intermediate step" [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF].

In the previous chapter, we started to investigate synthetic symmetric and antisymmetric relations and special cases of transitivity, with specific training/testing splits, targeted at specific abilities. Here, we first extend these experiments with randomly generated combinations of all of the three main properties of binary relations: reflexivity, symmetry and transitivity. The splits between training, validation and test are random, as we want to assess models' ability to learn from realistically distributed data, and with more and more missing triples. Conversely, the symmetry experiments described in Section 4.1.2 are much easier as the upper-triangular matrix was always in the training set, as the goal was to see if the models can learn with perfect information. Then we set up tasks that represent real reasoning over family genealogies. On this data, we explore different types of training/testing splits that map to different types of inference.

Experimental Setup

To assess whether latent factor models are able to generalize from data without any firstorder logic rules, we generate synthetic data from such rules, and assess the models' ability to learn these patterns in a classical training, validation and test splitting of the data. The proportion of positives and negatives is respected across the sets. We evaluate the stateof-the-art latent factor models described in Section 2. Results are evaluated with average precision, as we also generate negative triples in these synthetic experiments. For each factorization rank, the models with best validated λ are kept. Average precisions are macro-averaged over 10 runs, and error bars show the standard deviation over these 10 runs. We also computed the average precision of a deterministic logic inference engine, by applying the corresponding rules that were used to generate each data set. For each fact r(s, o) in the test set, its probability P (y rso = 1) is set to 1 if the fact can be logically deduced true from the facts of the training and validation sets, 0 if it can be deduced to be false, and 0.5 otherwise. This simulate test metrics of what perfect induction would yield, and gives an upper-bound on the performance of any method.

All data sets are made available1 .

Learning Relation Properties

In this section we define the three main properties of binary relations, and devise different experimental setups for learning them individually or jointly, and with more or less observed data.

Experimental Design

Relations in knowledge graphs have different names in the different areas of mathematics.

Logicians call them binary predicates, as they are Boolean-valued functions of two variables. For set theorists, they are binary endorelations, as they operate on two elements of a single set, in our case the set of entities E. In set theory, relations are characterized by three main properties: reflexivity/irreflexivity, symmetry/antisymmetry and transitivity. The definitions of these properties are given in first-order logic in Table 5.1.

Different combinations of these properties define basic building blocks of set theory such as equivalence relations that are reflexive, symmetric and transitive relations, or partial orders that are reflexive, antisymmetric and transitive relations [START_REF] Halmos | Naive set theory[END_REF].

Examples are given in Table 5. There are many such common examples of these combinations in knowledge graphs, as there are many hierarchical and similarity relations. For example, the relations older and father are both strict hierarchies, thus antisymmetric and irreflexive. But one is transitive (older) whereas the other is not, and that makes all the difference at inference time. Similarly for symmetric relations, such as has-the-same-parents-as and friend, your sibling's parents are also yours which makes the first relation transitive, whereas your friend's friends are not necessarily yours. Note that this makes the has-the-same-parents-as relation reflexive-it is thus an equivalence relation.

Relational learning models must be able to handle relations that exhibit each of the possible combinations of these properties, since they are all very common, but imply different types of reasoning, as already acknowledged by Bordes et al. [2013a]. Given that a relation can be reflexive, irreflexive, or neither; symmetric, antisymmetric, or neither;

and transitive or not, we end up with 18 possible combinations. However we will not address the cases of little interest where (i) none of these properties are true, (ii) only reflexivity or irreflexivity is true, (iii) the irreflexive, symmetric and transitive case as the only consistent possibility is that all facts are false, and (iv) the irreflexive transitive case that again must be either all false, or antisymmetric-and thus corresponds to an already existing case-to be consistent. Indeed, if one observes two true facts r(s, o) and r(o, s), by application of the transitivity rule, r(s, s) and r(o, o) must be true, which explains the inconsistency of cases (iii) and (iv), as they are irreflexive. This leaves us with 13 cases of interest. To evaluate the ability of models to learn these properties, we generate random 50 × 50 matrices that exhibit each combination.

To do so, we sample random square sign matrices Y ∈ {-1, 1} Ne×Ne . First we fill the diagonal with 1, -1 or missing depending on reflexivity/irreflexivity or none. Then we make successive passes over the data to make it [anti-]symmetric and/or transitive, until all of the properties are true over the whole matrix. A pass to make a matrix symmetric consists in assigning y ji ← y ij for all i, j ∈ 1, . . . , N e where i < j, and y ji ← -y ij to make it antisymmetric. A pass to make a matrix transitive consists in assigning y ij ← 1 if there exists a k ∈ 1, . . . , N e such that y ik = y kj = 1, for all i, j ∈ 1, . . . , N e . When no more assignment is made during the passes it means the desired properties are true, and the relation generation is finished.

We also sample each matrix under the constraint of having a balanced number of positives and negatives up to ±1%. Though there are many more negatives than positives in real knowledge graphs, in practice negatives are generally subsampled or generated to match the number of positive facts [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF].

We first learn each relation individually as in a single relation knowledge graph, and then jointly. In the joint case, note that since each relation is generated independently, there is no signal shared across the relations that would help predicting facts of one relation from facts of another relation, thus only the ability to learn each relation patterns is tested.

The proportion of observed facts is generally very small in real knowledge graphs. To assess models robustness to missing data, we also reduce the proportion of the training set when learning the different relations jointly.

but also with much less observed facts. We next assess the models ability to learn these five relations together, and their robustness to sparse observations by gradually decreasing the size of the training set. RESCAL again overfits with the rank increasing, but is the best performing model with 10% of the training set, up to rank K = 30. This suggests that having richer relation representations than entity representations, that is with more parameters, can be profitable for learning relation properties from little data. However the reason why the variance of RESCAL's average precision decreases again for K ≥ 40 remains mysterious.

Joint Learning

The CP and TransE models seem to be more sensitive to missing data as their curves progressively get away from RESCAL's one with the percentage of observed data decreasing. DistMult, being a symmetric model, is below the other models in the four settings as some of the relations are not symmetric.

Since each relation is generated independently, having observed the entity pair (s, o) in the other relations does not help the F model, and it thus fails here too. At 10%, we see that the latent factor models cannot match logical inference, suggesting that the number of examples is not sufficient to learn these properties.

Finally, in the last setting with 10% of the training set, the best models are still 10 points below the best achievable average precision, showing that they need a large amount of training data to correctly learn these basic properties of binary relations.

These results should be taken cautiously as this experiment does not state that in general at least 80% of the facts should be observed in order to learn these properties correctly.

Indeed, here the 5 relations are completely uncorrelated, while in real knowledge graphs they generally are correlated and thus share information. Also, as often in machine learning, the ratio between the number of parameters and the number of data points is more informative about generalization than the number of data points alone. Similar splits of data have already been proposed to evaluate rule-based inference models (for example the UW-CSE dataset [START_REF] Richardson | Markov logic networks[END_REF]), which are able of such transfer of reasoning between disjoint sets of entities. Interestingly, such data sets have rarely been reused in the subsequent latent factor model literature. Results reported next might give us a hint why this is the case.

Results

Results are reported for each split separately. In each of them we again decrease progressively the amount of training data, and report average precision macro-averaged over 10 runs for each configuration.

Random Split

In the first random split, we try to evaluate the quantity of training data needed to learn to reason in genealogies. Figure 5.8 shows the average precision of each model for ranks ranging from 5 to 50, for each value of p. Only ComplEx and RESCAL are able to generalize almost perfectly with 80% of observed data, which first tells us that these models are indeed capable to learn such genealogical reasonings. As many relations are antisymmetric, it is no surprise that DistMult and TransE cannot reach perfect predictions, as they already failed in the antisymmetric synthetic relation.

The ComplEx model generalizes quickly with small ranks, but is outrun by RESCALwith small ranks-and TransE when the percentage of observed data decreases below p = 0.2. We conjecture that TransE's robustness is due to its bilinear terms, and especially the one that involves the subject and the object embeddings-e ⊤ s e o -as shown in Section 2.2.1.1, that can give high scores to pairs of entities belonging to the same data is available. This could be due to the imbalance in the number of each relation in the training set that this split introduces, biasing the entity embeddings towards a better reconstruction of the 4 main relations, to the detriment of the generalization over the 13 remaining ones. Weighting the facts in accordance with the preponderance of each relation in the dataset could improve performances here.

Family Split

In this last split, all the mother, father, son and daughter are in the train set for all families, but also all the 13 other relations of four out of the five families. The value of p corresponds here to the amount of the 13 other relations of the fifth family only that are in the training set too.

The curves in Figure 5.10 show a clear improvement over the previous ones in Figure 5.9.

RESCAL is again the best model as it reaches average precisions ≥ 0.9 even down to p = 0.1-with small ranks again. ComplEx is in these cases the best with high ranks, though much below RESCAL's best scores when p = 0.1. Does that mean these models were able to exploit the additional information? Yes and no. We conjecture that the better results for p ranging from 0.8 to 0.1 are partly due to the relation imbalance problem-explained in the previous split-being much smaller here, as all the relations of four families are given in in the training set.

To ensure that models indeed did not generalized from the four perfectly informed families, we reduced the proportion p of the 13 other relations of the fifth family that are in the training set to zero-which thus constitute the whole validation and test sets.

And though the models are provided with four perfectly informed families, and all the needed facts to predict the missing ones in the fifth family, they fail in this last setting as shown in the bottom plot of Figure 5.9. RESCAL and TransE resist better than the other models again in this last setting with p = 0. This is easily explained, as disconnected sets of entities, here families, correspond to different blocks in the tensor Y, as shown in Figure 5.6. Entities that are in different families s, o ∈ Ω i , s ′ , o ′ ∈ Ω j , i = j, are never involved together in an observed fact:

((s, r, o ′ ), y sro ′ ), ((s ′ , r, o), y s ′ ro ) /

∈ Ω, for any relation r ∈ R. Thus when learning their embeddings e s , e o and e s ′ , e o ′ , the only link they share is the embedding of the relation r that is involved in the scoring functions φ(r, s, o) and φ(r, s ′ , o ′ ). This interpretation is also supported by RESCAL scores, which benefits from its higher number of parameters of its relation representations W r ∈ R K×K , which increases the amount of information shared across the families. sister :

a b c d             a -1 1 b 1 -1 c -1 1 d 1 -1 , grandfather : a b c d             a -1 -1 b -1 -1 c • • d • • (5.1)
where • and empty spaces are unobserved facts. From the first, fully observed family we wish to learn the above rules and the irreflexivity of the grandfather relation, to correctly complete the grandfather facts between entities c and d.

As the observed blocks-and the block we wish to recover-are symmetric here, there is no expressiveness issue with using DistMult. Decomposing this tensor with the DistMult model with K = 2 such that true facts have probability P (y rso = 1) > 0.5 and false facts have probability P (y rso = 1) < 0.5, amounts to solving the following system of inequalities:

                                                      
w s1 e 2 a1 + w s2 e 2 a2 < 0 w s1 e 2 b1 + w s2 e 2 b2 < 0 w s1 e a1 e b1 + w s2 e a2 e b2 > 0 w g1 e 2 a1 + w g2 e 2 a2 < 0 w g1 e 2 b1 + w g2 e 2 b2 < 0 w g1 e a1 e b1 + w g2 e a2 e b2 < 0 w s1 e 2 c1 + w s2 e 2 c2 < 0 w s1 e 2 d1 + w s2 e 2 d2 < 0 w s1 e c1 e d1 + w s2 e c2 e d2 > 0 (5.2) where e i ∈ R 2 is the embedding of entity i ∈ E, w s ∈ R 2 is the embedding of the relation sister, and w g ∈ R 2 is the embedding of the relation grandfather. The six first inequalities involve the entities a and b, and the three lower ones involve the entities c and d.

Correctly reconstructing the grandfather facts between c and d would thus require their embeddings to satisfy the same three additional inequalities:

        
w g1 e 2 c1 + w g2 e 2 c2 < 0 w g1 e 2 d1 + w g2 e 2 d2 < 0 w g1 e c1 e d1 + w g2 e c2 e d2 < 0 .

(5.3) However, it is easy to check that arbitrary solutions to the system (5.2) for e c and e d does not necessarily satisfy the system (5.3), and hence does not necessarily predict the grandfather facts between c and d correctly. Also, this would be true even if we added more families like a and b with both relations fully observed, as this would not add more constraints on e c and e d .

This explains why all models fail in the family split with p = 0: nothing encourages less constrained entities to have embeddings that resemble the ones of similar, more constrained entities; and adding more examples of more constrained entities does not help.

Family Experiments Summary:

• RESCAL is the best model in all different splits, but overfits with a too big K.

• RESCAL and TransE are the most robust to missing data.

• ComplEx behaves well with more data and hardly overfits.

• Relation imbalance in the training set can be a problem when the test set is distributed differently, and could be easily fixed by weighting the facts accordingly.

• The absence of explicit parameter sharing between entity representations prevents knowledge transfer between disjoint sets of entities.

Future Research Directions

Overall, the ComplEx model proved to have the more stable generalization abilities across all the synthetic experiments. Most models showed a good ability to learn basic relation properties, except on antisymmetry where only ComplEx succeeded. This said, when decreasing the size of the training set down to 10% on joint learning of the relation properties, the best models were 10 points of average precision behind the best possible score. Improving models towards learning basic binary relation properties from less data thus seems a promising direction.

Some models showed their advantages in some specific settings. RESCAL and TransE showed a good robustness when a lot of data is missing in the family experiments, thanks to the bilinear terms for TransE, and the rich matrix relation representations of RESCAL. The F model was not fit for these experiments, but its pairwise terms are known to give it an advantage for non-compositional pairs of entities [START_REF] Welbl | A factorization machine framework for testing bigram embeddings in knowledge base completion[END_REF].

Different possible combinations seem promising. The behaviour of RESCAL and

ComplEx on symmetric and antisymmetric experiments suggests that encoding these patterns through complex conjugation is more stable than using the non-commutative matrix product. But RESCAL's matrix representations of relations helped a lot in the family experiments, as long as the rank was not too high, suggesting that there might be a middle ground between K and K 2 to be found for the parametric representation of the relations. Using tridiagonal or pentadiagonal (or more) symmetric matrices for relation representations within the ComplEx model could be an answer to these problems.

Combining the scoring functions of the TransE and F models with ComplEx could also lead to a more robust model. The combination of bilinear and trilinear terms has already been explored within real-valued models [START_REF] García-Durán | Effective blending of two and three-way interactions for modeling multi-relational data[END_REF], also with vectorial weights over each term [START_REF] Jenatton | A Latent Factor Model for Highly Multi-relational Data[END_REF], as well as combining different pairwise terms [START_REF] Welbl | A factorization machine framework for testing bigram embeddings in knowledge base completion[END_REF][START_REF] Singh | Towards combined matrix and tensor factorization for universal schema relation extraction[END_REF], which yielded better performance in all cases.

The main defect of latent factor models that this experimental survey points to is their low ability to transfer knowledge between disjoint set of entities, as shown in the last family split with p = 0. Real knowledge graphs might not have fully disjoint subsets, but rather some less-connected sub-graphs, between which this effect is likely to appear too.

We believe improving this ability of latent factor models is key.

One already-pursued way to harness this problem is to enable latent factor models to make use of logic rules [START_REF] Rocktaschel | Injecting Logical Background Knowledge into Embeddings for Relation Extraction[END_REF][START_REF] Demeester | Lifted rule injection for relation embeddings[END_REF]. As already said, those rules are not always available, and thus latent factor models should be improved in order to have this ability to learn from disjoint subsets, while still operating without rules.

Intuitively, sharing parameters across all entity representations could also solve this issue, as used in Bayesian clustered factorization models [Sutskever et al., 2009]. Though those models have known scalability issues. A possible, more scalable way to implement a shared parametrization between the entity embeddings E ∈ C Ne×K is through a nested factorization, where the matrix E is itself expressed as a low-rank factorization, as it has already been proposed for the relation embeddings [START_REF] Jenatton | A Latent Factor Model for Highly Multi-relational Data[END_REF]. Another one could be a suited regularization over the whole matrix E: in most proposals E is regularized row-wise with ||e i || 2 2 for all i ∈ E-as shown in Section 3.3.

Another linked limitation of latent factor models-that does not require experiments to be shown-is their inability to generalize to new entities without retraining. Indeed A non-mentioned aspect of the problem in this paper is the theoretical learnability of such logic formulas, a field that has been extensively covered [START_REF] Valiant | A theory of the learnable[END_REF][START_REF] Kearns | Cryptographic limitations on learning boolean formulae and finite automata[END_REF][START_REF] Muggleton | Inductive logic programming: Theory and methods[END_REF][START_REF] Dzeroski | Inductive logic programming: t echniques and applications[END_REF]. However logic learnability by latent factor models has not yet been specifically studied. Recently established links between sign matrices complexity-specifically the sign-rank [START_REF] Linial | Complexity measures of sign matrices[END_REF]-and VC-dimension open the door to such theoretical study [START_REF] Alon | Sign rank versus vc dimension[END_REF], and possible extensions to the tensor case. This being said, theoretical guarantees generally come under the condition that the training and test sets are drawn from the same distribution, which is not the case in the last two splits of the family experiments: a theoretical analysis of the learnability of such cases might require a new theoretical framework for statistical learning.

Chapter Summary

We experimentally surveyed state-of-the-art latent factor models for link prediction in knowledge graphs, in order to assess their ability to learn (i) binary relation properties,

(ii) genealogical relations, directly from observed facts, as well as their robustness to missing data. Latent factor models yield good performances in the first case, while having more difficulties in the second one. Specifically, we show that such models do not reason as it is generally meant for logical inference engines, as they are unable to transfer their predictive abilities between disjoint subsets of entities. The different behaviors of the models in each experimental setup suggest possible enhancements and research directions, including combining them, as well as it exposes each model's advantages and limitations.

Chapter 6

Conclusion

Knowledge-based systems, such as automated personal agents or recommender systems, require robust link-prediction abilities to become viable, as the knowledge graphs they rely on are often largely incomplete. This work aimed at improving factorization models for link prediction in knowledge graphs. We followed an empirical approach to spot weaknesses of existing models, starting with the very basics: properties of binary relations. From the evidence that the correct modeling of all these properties, especially antisymmetry, was not already covered by existing models, we designed a new tensor factorization model named ComplEx. We turned ourselves to the large legacy of matrix theory for inspiration, and leveraged on complex linear algebra to create this new model.

The ComplEx model fulfilled the task of modeling all basic properties of binary relations, and provided new state-of-the-art results on classic benchmarks for link prediction, while being scalable. We finished our study as we started it, with experiments on which all current factorization models-including ComplEx-fail, thereby opening the path to future improvements.

This last chapter summarizes the contributions of this thesis, and proposes future research directions.

Contributions

We proposed a novel, non-unique decomposition for arbitrary square matrices, based on the projection onto the real sub-space of a unitary diagonalization (Section 3.1). This decomposition always exists (Theorem 2) with a number of dimensions that is at most twice as large as the rank of the decomposed matrix. These properties are also true for sign matrices, and their corresponding complexity measure, the sign-rank. We extended the analysis to the 3 rd -order tensor case when jointly decomposing a set of arbitrary square matrices (Section 3.2), and showed that the decomposition also exists with a rank upper-bound matching the canonical polyadic decomposition's (CP) rank upper-bound, despite having only two factor matrices-for the relations and the entities-instead of three-one per dimension for CP. As knowledge graphs correspond to partially-observed sign tensors, we proposed a stochastic gradient descent algorithm to learn the proposed decomposition model while naturally ignoring the missing values. Not imputing the missing values is essential for generalization [START_REF] Drumond | Predicting RDF triples in incomplete knowledge bases with tensor factorization[END_REF], but also for scalability given the size and sparsity of knowledge graphs.

When we started this work, our goal was to create a model that would be expressive enough to model all possible relations, yet ensure a linear time and space complexity to be scalable, and that generalizes well on real data. The use of complex-valued embeddings allowed us to achieve this goal, by keeping unique representations of entities which is essential to ensure good generalization, vectorial representations of relations for scalability, and correctly modeling asymmetry through the use of the complex conjugation.

Experiments confirmed its abilities in practice, as ComplEx yields state-of-the-art results on all classic link-prediction data sets, but can also successfully learn all combinations of the basic binary-relation properties.

The assumption that knowledge graphs tend to have low sign-rank relations that can be efficiently approximated with a binary surrogate such as the logistic function, combined with our model, was confirmed in practice as prediction scores converged with low embedding sizes. The ComplEx model especially confirmed its ability to model antisymmetric relations on WordNet data. But also that it could be used for enriching vectorial representations of words, which proved useful in the natural language processing task of entailment recognition. Finally, the ComplEx model is among the first works to bring complex linear algebra in the machine learning community.

We conducted an experimental survey on state-of-the-art latent factor models for link proves to be a safe choice as it performs well in most cases. These findings point where to improve existing models, as well as which choices to make and to avoid for practitioners, depending on the distribution of their data.

Future Work

We divide future research directions into theoretical and practical directions.

Theoretical Directions

Among the theoretical properties of the proposed decomposition that have been discussed, several improvements are possible. The tightness of the 2K upper-bound on the existence of the decomposition in the matrix case, discussed in Section 3.1.2.3, could be investigated.

We showed that the decomposition was not unique, characterizing the ensemble of existing decompositions and their generalization properties at a given cut-off rank K could help design more efficient algorithms to compute it. In the tensor case, we showed that the decomposition always exist provided K is big enough, however we could not prove or disprove its existence with embeddings of size inferior or equal to the dimension of the square matrices K ≤ N e (see Section 3.2.2).

We briefly mentioned the extension of the sign-rank to the tensor case, however its properties has not yet been studied. Exploring sign-rank for tensors and its properties, especially in the case of a set of square matrices, is a yet unexplored field. In practice, we demonstrated that the logistic loss is a good surrogate for matching the sign-pattern of sign matrices and tensors. How good is that surrogate for bilinear and trilinear models could be quantified. This leads to addressing the non-convexity of these models, and more precisely quantifying the spuriousness of local minima. In recent studies, Ge et al.

[2016] showed that in the bilinear semi-definite matrix completion problem, all local minima were in fact global. The stability of prediction scores from different random initializations that we observed with the ComplEx model could be the result of such a property. This does not exclude also studying convex relaxations for sign matrices:

the trace-norm is well-known to be the convex hull of the classical rank [START_REF] Candes | Exact matrix completion via convex optimization[END_REF], but the convex hull of the sign-rank is as yet unknown. Finally, the links between the VC-dimension and the sign-rank [START_REF] Alon | Sign rank versus vc dimension[END_REF] open a path to study the learnability of first-order logic rules from ground predicates encoded as sign matrices by decomposition models.

Practical Directions

In this work, we chose to consider sampling negative triples using the local closed-world assumptions as real negatives, and to optimize the classical log-likelihood loss instead of the more often used max-margin pairwise loss. On the FB15K data set of Freebase, this yielded a large improvement in predictive abilities (see Section 4.3.6), which highlights the importance of the loss in the link-prediction problem, an aspect of the problem that has yet been barely studied, and thus should be explored. In Section 4.3.4, we showed that sampling more than one negative for each positive triple can also bring a large performance improvement. However the procedure is costly as it adds as many samples to optimize over, and thus calls for a more intelligent sampling of negatives, that contrast more with the positives from which they have been sampled.

Chapter 5's experimental survey of existing models pointed out many possible enhancements of existing models, including combining parts of their scoring functions. Our study of the models' robustness to missing data could be extended to assess their capacity to cope with corrupted data. Solving the learning problem between disjoint sets of entities require a scalable way of binding the parametrization of entity embeddings together

that is yet to be found. Furthermore, most existing latent factor models are unable to generalize to new triples involving unseen entities and relations without a retraining step.

There are also more general future directions for knowledge graph models. Integrating time is one, as some facts are only true for a given period, such as the living place of a person or the president of a country. But also a proper handling of entities that represent algebraic values or dates, such as hasAge(John,42), for which it makes little sense to learn an embedding for each different value. Extension to relations between more than two entities, n-tuples, is not straightforward, as ComplEx's expressiveness comes from the complex conjugation of the object-entity, that breaks the symmetry between the subject and object embeddings in the scoring function. This stems from the Hermitian product, which seems to have no standard multilinear extension in the linear algebra literature, this question hence remains largely open.

The ComplEx model could also be used in other problems than link prediction, actually for any problem that can be formulated as the completion of one or more square matrices.

Decomposing knowledge graphs itself could also serve other applications by learning or enhancing vectorial representations of entities, which are then used for some downstream task, as we showed with word embeddings for entailment recognition (see Section 4.4).

As a final word, it is by building experiments that target specific inference abilities, starting with the basics, that we were put on the track of weak spots to improve on.

A.1 Introduction

In many real-world problems, one has to face intractable integrals, such as averaging on combinatorial spaces or non-Gaussian integrals. Stochastic approximation is a class of methods introduced in 1951 by Herbert Robbins and Sutton Monro [START_REF] Robbins | A stochastic approximation method[END_REF] to solve intractable equations by using a sequence of approximate and random evaluations. Stochastic gradient descent [START_REF] Bottou | Online algorithms and stochastic approximations[END_REF]] is a special type of stochastic approximation method that is widely used in large scale learning tasks thanks to its scalability and good generalization properties [START_REF] Bottou | The tradeoffs of large scale learning[END_REF].

We are interested in using SGD to minimize functions of the form:

γ(w) := E x∼P [f (x; w)] = X f (x; w)dP (x) (A.1)
where P is a known fixed distribution and f is a function that maps X × W into R, i.e.

a family of functions on the metric space X and parametrized by w ∈ W. SGD is a stochastic approximation method that consists in using approximate gradients computed on subspaces of X that are equal on average to the true gradient ∇ w γ(w) [START_REF] Bottou | Online algorithms and stochastic approximations[END_REF]. In many applications, including supervised learning techniques, the function f is a log-likelihood and P is an empirical distribution with density 1 n n i=1 δ(x, x i ) where {x 1 , • • • , x n } is a set of i.i.d. data sampled from an unknown distribution.

At a given step t, SGD can be viewed as a two-step procedure: (i) sampling x t ∈ X according to the distribution P ; (ii) doing an approximate gradient step with step-size ρ t : w t+1 = w tρ t ∇ w f (x t ; w t ) .

(A.2)

The convergence properties of SGD are directly linked to the variance of the gradient estimate [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]. Consequently, some improvements to this basic algorithm focus on the use of (i) parameter averaging [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] to reduce the variance of the final estimator, (ii) the sampling of mini-batches [START_REF] Friedlander | Hybrid deterministic-stochastic methods for data fitting[END_REF] when multiple points are sampled at the same time to reduce the variance of the gradient, and (iii) the use of adaptive step sizes to have per-dimension learning rates, e.g., AdaGrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF].

We propose another general technique, which can be used in conjunction with the aforementioned ones, which is to reduce the gradient variance by learning how to sample training points. Rather than learning the fixed optimal sampling distribution and then optimizing the gradient, we propose to dynamically learn an optimal sampling distribution at the same time as the original SGD algorithm. Our formulation uses a stochastic process

A.3 Adaptive Importance Sampling

We first show in this section that SGD is a powerful tool for optimizing the sampling distribution of Monte Carlo estimators. This will motivate our Adaptive Weighted SGD algorithm in which the sampling distribution is not kept constant, but learned during the optimization process.

We consider a family {Q τ } of sampling distributions on X , such that P is absolutely continuous with respect to Q τ for any τ in the parametric set T . By Radon-Nikodym theorem, the density q(•; τ ) = dQτ dP exists since P and Q τ are probability measures, hence σ-finite. Importance sampling is a common method to estimate the integral in Equation A.1. It corresponds to a Monte Carlo estimator of the form (we omit the dependency on w for clarity):

γ = 1 T T t=1 f (x) q(x t ; τ ) , x ∼ Q τ (A.3)
where we refer to Q τ as the importance distribution. It is an unbiased estimator of γ, i.e.

the expectation of γ is exactly the desired quantity γ.

To compare estimators, we can use a variance criterion. The variance of this estimator depends on τ : .4) where E τ [.] and Var τ [.] denote the expectation and variance with respect to distribution Q τ .

σ 2 (τ ) = Var τ [γ] = 1 T E τ f (x) q(x; τ ) 2 - γ 2 T (A
To find the best possible sampling distribution in the sampling family {Q τ }, one can minimize the variance σ 2 (τ ) with respect to τ . The optimal parameter τ * ∈ T is such that q(., τ * ) ∝ |f |. In such a case, the variance σ 2 (τ * ) of the estimator is null: one can estimate the integral with a single sample. In general, however, the parametric family does not contain a normalized version of |f |. In addition, the minimization of the variance σ 2 (τ ) has often no closed-form solution. This motivates the use of approximate variance-reduction methods.

Algorithm 2 Minimal Variance Importance Sampling Require: Initial sampling parameter vector τ 0 ∈ T Require: Learning rates {η t } t≥0 for t = 0, 1, 2, A possible approach is to minimize σ 2 (τ ) with respect to the importance parameter τ .

The gradient is:

∇ τ σ 2 (τ ) = ∇ τ E τ f (x) q(x; τ ) 2 (A.5) = -2E τ
f (x) 2 ∇ τ q(x; τ ) q(x; τ ) 3 = -2E τ f (x) q(x; τ ) 2 ∇ τ log q(x; τ ) . This quantity has no closed form solution in general, but we can use a SGD algorithm with a gradient step equal on average to this quantity. To obtain an estimator g of the gradient with expectation given by Equation A.5, it is enough to sample a point x t according to Q τ and then set g := -(f (x t )/q(x t ; τ )) 2 ∇ τ log q(x t ; τ ). This is then repeated until convergence. The full iterative procedure is summarized in Algorithm 2.

In the experiments below, we show that learning the importance weight of an importance sampling estimator using SGD can lead to a significant speed-up in several machine learning applications, including the estimation of empirical loss functions and the evaluation of a policy in a reinforcement learning scenario. In the following, we show that this idea can also be used in a sequential setting (the function f can change over time), and when f has multivariate outputs, so that we can control the variance of the gradient of a standard SGD algorithm and, ultimately, speedup the convergence.

A.4 Biased Sampling in Stochastic Optimization

In this section, we first analyze a weighted version of the SGD algorithm where points are sampled non-uniformly, as in importance sampling, and then derive an adaptive version of this algorithm, where the sampling distribution evolves with the iterations.

Algorithm 3 Adaptive Weighted SGD (AW-SGD)

Require: Initial target and sampling parameter vectors w 0 ∈ W and τ 0 ∈ T Require: Learning rates {ρ t } t≥0 and {η t } t≥0 for t = 0, 1, Consequently, a simple SGD algorithm with gradient steps having small variance consists in the following two steps at each iteration t:

1. Perform a weighted stochastic gradient step using distribution Q τt to obtain w t+1 ;

2. Compute τ t = τ * (w t ) by solving Equation A.9, i.e. find the parameter τ t minimizing the variance of the gradient at point w t . This can be done approximately by applying M steps of stochastic gradient descent.

The inner-loop SGD algorithm involved in the second step can be based on the current sample, and the stochastic gradient direction is ∇ τ tr(Σ(w t , τ )) = ∇ τ E τ ∇ wt f (x; w t ) q(x; τ ) 2 (A.10) = -2E τ ∇ wt f (x; w t ) q(x; τ ) 2 ∇ τ log q(x; τ ) .

In our experiments, we observed that it is enough to do a single step of the inner loop, i.e. M = 1. We call this simplified algorithm the Adaptive Weighted SGD Algorithm and its pseudo-code is given in Algorithm 3. We see that AW-SGD is a slight modification of the standard SGD-or any variant of it, such as AdaGrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF], AdaDelta [START_REF] Zeiler | Adadelta: an adaptive learning rate method[END_REF] or RMSProp [Tieleman and Hinton, 2012]-but where the sampling distribution evolves during the algorithm, thanks to the update of τ t . This algorithm is useful when the approximate gradient has a variance that can be significantly reduced by choosing better samples.
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 11 Figure 1.1: Example of a Google search result for the query "Rafael Bombelli", enhanced by the Google Knowledge Graph (right-side block), that provides extrainformation such as birth and death place and time, and education.

  maps all possible subject and object entity pairs p = (s, o) ∈ E × E to a single dimension. Each row in the entity embedding matrix corresponds to one pair of entities. The scoring function computes the dot product of the embedding of the pair p with the embedding of the relation r: φ(r, s, o; Θ) = e ⊤ p w r (2.4)

  the learned relation parameters, and f is a non-linear activation function. Its non-linearity and multiple ways of including interactions between embeddings gives it an advantage in expressiveness over simpler latent factor models. As a downside, its very large number of parameters can make the NTN model harder to train and make it overfit more easily. Authors also propose to learn the entity embeddings as a composition of the word embeddings of their labels. Doing so can significantly improve results, depending on the model and the dataset. Bordes et al. [2011] proposed the Structured Embeddings (SE) model, a generalization of Siamese networks: φ(r, s, o; Θ) = ||W r e s -W ′ r e o || q , (2.17) where W r , W ′ r ∈ R K×K are the relation embeddings. Though it looks like TransE, deriving the norm shows that the two matrix embeddings of relations play the role of two fully connected layers. Subsequently, Bordes et al. [2014a] proposed the Semantic Matching Energy (SME) model, an explicit two-layer network where subject and object embeddings are similarly combined with a right and left relation embeddings first, then intermediate left and right representation are merged into the final score. Nguyen et al. [2016] proposed STransE, a combination of the SE and TransE models. Dong et al.

  an hyperparameter controlling the size of the second layer.Aforementioned latent models of knowledge graphs consider triples separately from each other, and capture dependencies between conjunctions of relations such as livesInCity(a, b) ∧ isInCountry(b, c) ⇒ livesInCountry(a, c) from redundancy in the data. From a graph perspective, such multi-relation inferences correspond to paths in the knowledge graph. Different models propose to take into account these path patterns explicitly. The path ranking algorithm[START_REF] Lao | Random walk inference and learning in a large scale knowledge base[END_REF] predicts missing triples by combining the results of different random walks accross the knowledge graph.Lin et al. [2015a];[START_REF] Das | Chains of reasoning over entities, relations, and text using recurrent neural networks[END_REF];[START_REF] Neelakantan | Compositional vector space models for knowledge base completion[END_REF] proposed to consider all possible paths between each pair of observed entities (s, o) for (r, s, o) ∈ T Ω , using a recurrent neural network to model paths of arbitrary length. Conversely,[START_REF] Guu | Traversing knowledge graphs in vector space[END_REF] introduced the task of answering path-based queries instead of simply predicting triples. A path query consist of a source entity s and a sequence of relations (r 1 , . . . , r n ). The answer is the set of entities o that can be reached from s by that sequence of relations such that all intermediate triples (s, r 1 , e 1 ), . . . , (e n , r n , o) are true. They propose a general framework to train and predict on such paths by recursively composing scoring functions that provide intermediate representations of subject/relation pairs-the condition that scoring function must fulfil to be composable.Trilinear models for example are composable in this sense as a trilinear product can be factorized in the object-entity embedding. For example with the DistMult model: e s , w r , e o = (e s ⊙ w r ) ⊤ e o , where the intermediate representation is the Hadamard product between the subject entity and the relation embeddings e s ⊙ w r . Other graphrelated approaches include the additive relational effect model[START_REF] Nickel | Reducing the rank in relational factorization models by including observable patterns[END_REF] that learns a linear combination over metrics computed on the knowledge graph such as common neighbors or Katz centrality, and combines it with RESCAL's scoring function;

  Sign matrices have an alternative rank definition, the sign-rank. Definition 5. The sign-rank rank ± (Y ) of an m-by-n sign matrix Y, is the rank of the m-by-n real matrix of least rank that has the same sign-pattern as Y, so that rank ± (Y ) := min X∈R m×n {rank(X) | sign(X) = Y } , where sign(X) ij = sign(x ij ).

Corollary 3 .

 3 Suppose Y ∈ {-1, 1} n×n , rank ± (Y ) = k. Then there exists E ∈ C n×2k , W ∈ C 2k×2k where the columns of E form an orthonormal basis of C 2k , and W is diagonal, such that Y = sign(Re(EW E * )). Proof. By definition, if rank ± (Y ) = k, there exists a real square matrix X such that rank(X) = k and sign(X) = Y . From Corollary 2, X = Re(EW E * ) where E ∈ C n×2k , W ∈ C 2k×2k where the columns of E form an orthonormal basis of C 2k , and W is diagonal.

  tensor, X r ∈ R n×n for the score matrix of the relation r ∈ R, and Y ∈ {-1, 1} m×n×n for the partially-observed sign tensor.Given one relation r ∈ R and two entities s, o ∈ E, the probability that the fact r(s,o) is true given byP (y rso = 1) = σ(x rso ) = σ(φ(r, s, o; Θ)) (3.5)where φ is the scoring function of the model considered and Θ denotes the model parameters. We recall that we denote the set of all possible facts (or triples) for a knowledge graph by T = R × E × E. While the tensor X as a whole is unknown, we assume that we observe a set of true and false triples Ω = {((r, s, o), y rso )| (r, s, o) ∈ T Ω }where y rso ∈ {-1, 1} and T Ω ⊂ T is the set of observed triples. The goal is to find the probabilities of entries y r ′ s ′ o ′ for a set of targeted unobserved triples{(r ′ , s ′ , o ′ ) ∈ T \ T Ω }.Depending on the scoring function φ(r, s, o; Θ) used to model the score tensor X, we obtain different models. Examples of scoring functions are given in Table

w

  for each relation r, and by sharing the entity embeddings E ∈ C n×K across all relations: φ(r, s, o; Θ) = Re(e ⊤ s W r ēo ) rk e sk ēok ) = Re( w r , e s , ēo ) (3.6) where K is the rank hyperparameter, e s , e o ∈ C K are the rows in E corresponding to the entities s and o, w r = diag(W r ) ∈ C K is a complex vector, and a, b, c := k a k b k c k is the component-wise multilinear dot product 1 . For this scoring function, the set of parameters Θ is {e i , w r ∈ C K , i ∈ E, r ∈ R}. This resembles the real part of a complex matrix decomposition as in the single-relation case discussed above. However, we now have a different vector of eigenvalues for every relation. Expanding the real part of this product gives: Re( w r , e s , ēo ) = Re(w r ), Re(e s ), Re(e o ) + Re(w r ), Im(e s ), Im(e o ) + Im(w r ), Re(e s ), Im(e o ) -Im(w r ), Im(e s ), Re(e o ) .

Figure

  Figure 4.7.

  Squared gradients are accumulated to compute AdaGrad learning rates, then gradients are updated. Every s iterations, the parameters Θ are evaluated over the evaluation set Ω v (evaluate AP or MRR(Ω v ; Θ) function in Algorithm 1). If the data set contains both positive and negative examples, average precision (AP) is used to evaluate the model. If the data set contains only positives, then mean reciprocal rank (MRR) is used as average precision cannot be computed without true negatives. The ranking of each validation triple r(s, o) is computed among all possible subject and object substitutions : r(s ′ , o)and r(s, o ′ ), for each s ′ , o ′ in E, as used in previous studies[START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Nickel | Holographic embeddings of knowledge graphs[END_REF]. Substituted triples that are in the train set are removed for computing the rankings, which is known as filtered MRR. The optimization process is stopped when the measure considered decreases compared to the last evaluation (early stopping). Bern(p) is the Bernoulli distribution, the one random sample(E) function sample uniformly one entity in the set of all entities E, and the sample batch of size b(Ω, b) function sample b true and false triples uniformly at random from the training set Ω.

  , and scores a triple(r, s, o) with the dot product between the embedding of the relation p and the circular correlation ⋆ :R K × R K → R K ofthe embeddings of entities s and o: φ h (r, s, o) = w ⊤ r (e s ⋆ e o ) . (3.13)The circular correlation can be written with the discrete Fourier transform (DFT),e s ⋆ e o = F -1 (F(e s ) ⊙ F(e o )) (3.14)where F -1 : C K → C K is the inverse DFT. In this case, the embedding vectors are real e s , e o , w r ∈ R K , and so is the result of the inverse DFT, since the circular correlation of real-valued vectors results in a real-valued vector.We recall the scoring function of the proposed model (ComplEx), that represents relations and entities with complex-valued embeddings E ∈ C Ne×K , W ∈ C Nr×K , and scores a triple (r, s, o) with the real part of the trilinear product of the corresponding embeddings: φ c (r, s, o) = Re ( w r , e s , e o ) (3.15)

  antisymmetric relations-and largely impacts the average precision of the DistMult model (Figure4.6).

Figure 4 .

 4 Figure 4.7 shows that the filtered MRR of the ComplEx model quickly converges on both data sets, showing that the low-rank hypothesis is reasonable in practice. The little gain of performances for ranks comprised between 50 and 200 also shows that ComplEx

  used principal component analysis (PCA) to visualize embeddings of the relations of the WordNet data set (WN18). We plotted the four first components of the best DistMult and ComplEx model's embeddings in Figures 4.10 & 4.11. For the ComplEx model, we simply concatenated the real and imaginary parts of each embedding. Most of WN18 relations describe hierarchies, and are thus antisymmetric. Each of these hierarchic relations has its inverse relation in the data set. For example: hypernym / hyponym, part of / has part, synset domain topic of / member of domain topic. Since DistMult is unable to model antisymmetry, it will correctly represent the nature of each pair of opposite relations, but not the direction of the relations. Loosely speaking, in the hypernym / hyponym pair the nature is sharing semantics, and the direction is that one entity generalizes the semantics of the other. This makes DistMult representing the opposite relations with very close embeddings. It is especially striking for the third and fourth principal component (Figure 4.11). Conversely, ComplEx manages to oppose spatially the opposite relations.

  the WordNet knowledge graph, words are the entities. The ComplEx model ability to model antisymmetric relations between pairs of entities comes from the complex conjugation of the object-entity embedding, that is the change of sign of its imaginary part. As we are interested here into both (i) encoding antisymmetric information about words, and (ii) keeping the approach modular, we train the ComplEx model on WordNet while keeping the real part of the word embeddings constant and initialized from pretrained embeddings, and only learn their imaginary part to fit WordNet antisymmetric relations between words.

  2.1.1. Those are RESCAL, CP, DistMult, TransE, the F model and our proposal, ComplEx. Algorithm 1 describes the training algorithm, that is stochastic gradient descent with mini-batches (10 batches for the relation properties experiment, and 100 for the families experiment), AdaGrad [Duchi et al., 2011] with an initial learning rate of α = 0.1, and early stopping when average precision decreased on the validation set calculated every 50 epochs. The λ regularization parameter was validated over the values {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.00001, 0.0} for each model for each factorization rank K. Parameters are initialized from a centered unit-variance Gaussian distribution.

  2. Property Definition Reflexivity ∀a r(a, a) Irreflexivity ∀a ¬r(a, a) Symmetry ∀a∀b r(a, b) ⇒ r(b, a) Antisymmetry ∀a∀b r(a, b) ∧ r(b, a) ⇒ a = b Transitivity ∀a∀b∀c r(a, b) ∧ r(b, c) ⇒ r(a, c)

Figure 5 .

 5 Figure 5.4 shows the results when all five above relations are jointly learned, for different proportions of the training set: 80%, 40%, 20%, 10%. As expected the scores drop, and the gap between the-deterministic logic-upper-bound and latent factor models widen with the decrease of training data. ComplEx proves to be the most robust to missing data down to 20%, but match logical inference only with 80% of training data.

•

  sister(b, a) ⇒ ¬grandfather(a, b) • sister(b, a) ⇒ ¬grandfather(b, a) Similarly to the family split with p = 0, let us have both relations fully observed for a first family that contains entities a, b ∈ E 1 , and only the facts of the relation sister observed for entities of a second family c, d ∈ E 2 . The resulting 2 × 4 × 4 partially-observed binary tensor is:

  for new facts involving a new entity i, its embedding e i ∈ C K is unknown. But in a logic-based setting, only the new facts involving the new entity are necessary to infer other facts from known rules. Some recent works started tackling this problem: Verga et al.[2017] proposed a solution for the F model, by expressing entity pair embeddings as combinations of the relation embeddings in which they appear.[START_REF] Hamaguchi | Knowledge transfer for out-of-knowledge-base entities: A graph neural network approach[END_REF] used graph neural networks to handle unseen entities at test time.The evidence split in the family experiments also pointed out a potential problem of imbalance in the distribution of the relations across the facts when the train and test sets are distributed differently. Correcting this imbalance via down-weighting the facts involving the most frequent relations could be a solution, as well as sharing the parametrization between the relations.

  prediction, to better understand the effect of different parametrization choices on the ability to learn patterns from observed data. Specifically, experiments tested the models' ability to learn combinations of basic relation properties, to learn genealogical relations given different evidence about the families, and the models' robustness to missing data.These last experiments on families exposed the inability of latent factor models to transfer knowledge between disjoint sub-graphs in knowledge graphs. The matrix representations of relations in the RESCAL model yielded a better robustness to this issue, and in general to missing data, though it also caused it to overfit when the rank of the decomposition becomes too large. Bigram terms of the TransE model also shown a good robustness to this effect, by highly scoring pairs of entities belonging to the same family. The DistMult model has expected problems with asymmetric relations, and the F model with knowledge graphs featuring exclusive relations. The CP model unrelated representations of entities as subject and object make it very sensitive to missing data. The ComplEx model

  1.1 Example of a Google search result for the query "Rafael Bombelli", enhanced by the Google Knowledge Graph (right-side block), that provides extra-information such as birth and death place and time, and education. 1.2 Cross-validated average precision on a synthetic antisymmetric relation with 30 entities, for each rank ranging from 5 to 50 on different stateof-the-art models. RESCAL is working best but does not exceed 0.8 of average precision and has quadratic complexity. See the full experiment description in Section 4.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1 Example of a knowledge graph with 5 entities (nodes), 2 relations (edge labels) and 5 observed facts (edges). The dotted edge represent a missing fact of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Adjacency matrices stacked into a 3 rd -order partially-observed tensor, corresponding to the knowledge graph in

Table 2 .

 2 1: Number of entities |E|, relations |R|, and observed triples |Ω| of some knowledge graphs.

  .1. Here the facts studied(s,U. Bologna) and born(s,Bologna) are W r ∈ R K 2 , e s , e o ∈ R K

	Model	Scoring Function φ Parameters Θ
	CP [Hitchcock, 1927] RESCAL [Nickel et al., 2011]	w r , u s , v o e T s W r e o	w r , u s , v o ∈ R K
	TransE [Bordes et al., 2013b] F model [Riedel et al., 2013] DistMult [Yang et al., 2015] ComplEx (this thesis)	-||(e s + w r ) -e o || q u ⊤ d w r w r , e s , e o Re( w r , e s , ēo )	w r , e s , e o ∈ R K w r , u d ∈ R K w r , e s , e o ∈ R K w r , e s , e o ∈ C K
	Table 2.2: Scoring functions of state-of-the-art latent factor models for a given fact
	r(s, o), along with the representation of their parameters. In the F model, d indexes all
	possible pairs of entities: d = (s, o) ∈ E × E.	

  r ∈ R}, and the scoring function involves only real vectors:

	φ(r, s, o; Θ) =	w ′ r , e ′ s , e ′ o + w ′ r , e ′′ s , e ′′ o
		+ w ′′ r , e ′ s , e ′′ o -w ′′ r , e ′′ s , e ′ o	(3.9)

  Stochastic gradient descent with AdaGrad for the ComplEx model Input Training set Ω, validation set Ω v , learning rate α ∈ R ++ , rank K ∈ Z ++ , L 2 regularization factor λ ∈ R + , negative ratio η ∈ Z ++ , batch size b ∈ Z ++ , maximum iteration m ∈ Z ++ , validate every s ∈ Z ++ iterations, AdaGrad regularizer ǫ = 10 -8 . Output Embeddings e ′ , e ′′ , w ′ , w ′′ . e

r, s, o; Θ) + 2λv . (3.11) Algorithm 1

  Table 4.2: Number of entities |E|, relations |R|, and observed triples in each split for the FB15K and WN18 data sets.

				Number of triples in sets:
	Data set WN18	|E| 40,943	|R| Training Validation 18 141,442 5,000	Test 5,000
	FB15K	14,951 1,345	483,142	50,000 59,071

  Table4.5: Filtered and raw mean reciprocal rank (MRR), Hits@N metrics are filtered, for the ComplEx model with the pairwise max-margin loss and the negative loglikelihood on WN18 and FB15K data sets.

				WN18					FB15K		
		MRR			Hits at		MRR			Hits at	
	Loss	Filtered	Raw	1	3	10	Filtered	Raw	1	3	10
	Max-margin	0.938	0.605	0.932	0.942	0.949	0.541	0.298	0.411	0.627	0.757
	Neg-LL	0.941	0.587	0.936	0.945	0.947	0.639	0.250	0.523	0.725	0.825

Table 4 .

 4 6: Accuracies on the SNLI corpus with the word2vec embeddings, and the embeddings enhanced with the ComplEx model on WordNet, for different sizes of the intermediate layers.

Table 5 . 1 :

 51 Definitions of the main properties of binary relations.

Table 5 . 2 :

 52 Different types of binary relations in set theory. From Wikipedia page on binary relations[Wikipedia, 2004].

  Table 5.4: Training, validation and test set numbers for each split for each value of p.

					Size with p =	
	Split	Set	0.8	0.4	0.2	0.1	0
	Random Evidence Family	35973 17987 8994 4496 4496 4496 4496 22482 31475 35973 -4496 -4496 -38089 24334 17457 14019 -3438 3438 3438 3438 -3438 17193 24070 27508 -13other ) 43589 40839 39463 38776 38088 4main ∪ S p (Ω 5 Ω test = S (0.9-p) (Ω) Ω train = S p (Ω) Ω valid = S 0.1 (Ω) Ω train = Ω 4main ∪ S p (Ω 13other ) Ω valid = S 0.1 (Ω 13other ) Ω test = S (0.9-p) (Ω 13other ) Ω train = Ω 1-4 ∪ Ω 5 Ω valid = S 0.1 (Ω 5 688 688 688 688 688 13other ) Ω test = S (0.9-p) (Ω 5 13other ) 688 3438 4814 5501 6189

  • • • , T -1 do x t ∼ Q τt τ t+1 ← τ t + η t

	end for		f (xt) q(xt;τt)	2	∇ τ log q(x t ; τ t )
	Output γ ← 1 T	t	f (xt) q(xt;τt)	

  • • • , T -1 do x t ∼ Q τt d t ← ∇wf (xt;wt) q(xt;τt) w t+1 ← w tρ t d t τ t+1 ← τ t + η t d t 2 ∇ τ log q(x t ; τ t ) end forFor a given function f (•; w) we would like to find the parameter τ * (w) of the sampling distribution that minimizes the trace of the covariance Σ(w; τ ), i.e.: τ

	τ	E τ	∇ w f (x; w) q(x; τ )	2	.	(A.9)

* (w) ∈ arg min

l'échelle, tout en dépassant les scores de prédiction des approches existantes sur les jeux de données de référence pour la prédiction de liens. 2 Nous démontrons aussi la capacité de ComplEx à apprendre des représentations vectorielles utiles pour d'autres tâches, en enrichissant des embeddings de mots, qui améliorent les prédictions sur le problème de reconnaissance d'implication entre paires de phrases.Dans la dernière partie de cette thèse, nous explorons les capacités des modèles de factorisation à apprendre les structures relationnelles à partir d'observations. De part leur nature vectorielle, il est non seulement difficile de comprendre pourquoi cette classe de modèles fonctionne aussi bien, mais aussi où ils échouent et comment ils peuvent être améliorés. Nous conduisons une étude expérimentale de modèles de l'état de l'art, non pas simplement pour les comparer, mais pour comprendre leurs capacités d'induction.Pour évaluer les forces et faiblesses de chaque modèle, nous créons d'abord des tâches simples représentant des propriétés atomiques des propriétés des relations des graphes de connaissances ; puis des tâches représentant des inférences multi-relationnelles communes au travers de généalogies synthétisées. À partir de ces résultats expérimentaux, nous 2 Le code est mis à disposition: https://github.com/ttrouill/complex

https://github.com/ttrouill/complex

https://github.com/ttrouill/induction_experiments

This is not the Hermitian extension of the multilinear dot product as there appears to be no standard definition of the Hermitian multilinear product in the linear algebra litterature.

https://github.com/lmjohns3/downhill

https://code.google.com/archive/p/word2vec/

https://github.com/Smerity/keras_snli

https://github.com/ttrouill/induction_experiments
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This work also shows that we can learn about the algorithm while optimizing, as shown by the time-aware AW-SGD. This idea can be extended to design new types of metaalgorithms that learn to optimize or learn to coach other algorithms.

Appendix A

Accelerating Stochastic Gradient Descent via Online Learning to Sample Another contribution of this thesis, which is only partially related to knowledge graph completion-by its application on matrix factorization-is reported in this Appendix.

Stochastic Gradient Descent (SGD) is one of the most widely used techniques for online optimization in machine learning. In this work, we accelerate SGD by adaptively learning how to sample the most useful training examples at each time step. First, we show that SGD can be used to learn the best possible sampling distribution of an importance sampling estimator. Second, we show that the sampling distribution of an SGD algorithm can be estimated online by incrementally minimizing the variance of the gradient. The resulting algorithm-called Adaptive Weighted SGD (AW-SGD)-maintains a set of parameters to optimize, as well as a set of parameters to sample learning examples. We show that AW-SGD yields faster convergence on matrix factorization, where rows and columns are not sampled uniformly.

We first introduce the idea of this work in Appendix A.3, before reviewing the related work in Appendix A.2. We show that SGD can be used to find the optimal sampling distribution of an importance sampling estimator (Appendix A.3). This variance reduction technique is then used during the iterations of a SGD algorithm by learning how to reduce the variance of the gradient (Appendix A.4). We then illustrate this algorithm-called Adaptive Weighted SGD (AW-SGD)-on matrix factorization (Appendix A.5). Other application domains such as image classification and reinforcement learning are reported in [START_REF] Bouchard | Online learning to sample[END_REF], but were not part of this thesis, and thus are not reported here.

that focuses on the minimization of the gradient variance, which amounts to doing an additional SGD step (to minimize gradient variance) along each SGD step (to minimize the learning objective). There is a constant extra cost to pay at each iteration, but it is the same for each iteration, and when simulations are expensive or the data access is slow, this extra computational cost is compensated for by the increase in convergence speed, as quantified in our experiments.

A.2 Related Work

The idea of speeding up learning by modifying the importance sampling distribution in SGD has been recently analyzed by [START_REF] Hazan | Beating sgd: Learning svms in sublinear time[END_REF] who showed that a particular choice of the sampling distribution could lead to sub-linear performance guarantees for support vector machines. We can see our approach as a generalization of this idea to other models, by including the learning of the sampling distribution as part of the optimization. The work of [START_REF] Mineiro | Loss-proportional subsampling for subsequent erm[END_REF] shows that using a simple model to choose which data to resample from is a useful thing to do, but they do not learn the sampling model while optimizing. The two approaches mentioned above can be viewed as the extreme case of adaptive sampling, where there is one step to learn the sampling distribution, and then a second step to learn the model using this sampling distribution. Training language models has been shown to be faster with adaptive importance sampling [START_REF] Senecal | Adaptive importance sampling to accelerate training of a neural probabilistic language model[END_REF][START_REF] Bengio | Adaptive importance sampling to accelerate training of a neural probabilistic language model[END_REF], but the authors did not directly minimize the variance of the estimator.

Regarding variance-reduction techniques, in addition to the aforementioned ones (Polyak-Ruppert Averaging [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], batching [START_REF] Friedlander | Hybrid deterministic-stochastic methods for data fitting[END_REF], and adaptive learning rates like AdaGrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF]), an additional technique is to use control variates (see for instance [START_REF] Ross | Simulation academic press[END_REF]). It has been recently used by [START_REF] Paisley | Variational bayesian inference with stochastic search[END_REF] to estimate non-conjugate potentials in a variational stochastic gradient algorithm. The techniques described here can also be straightforwardly extended to the optimization of a control variate. In the neural net community, adapting the order in which the training samples are used is called curriculum learning [START_REF] Bengio | Curriculum learning[END_REF], and our approach can be seen under this framework, although our algorithm is more general as it can speed-up learning for arbitrary integrals, not only sums of losses over the training data.

A.4.1 Weighted Stochastic Gradient Descent

As introduced previously, our goal is to minimize the expectation of a parametric function f (cf. Equation A.1). As in importance sampling, we do not need to sample according to the base distribution P at each iteration of SGD. Instead, we can use any distribution Q τ defined on X such that P is absolutely continuous with respect to Q t au, if each gradient step is properly re-weighted by the density q(•; τ ) = dQ τ /dP . Each iteration t of the algorithm consists in two steps: (i) sample x t ∈ X according to distribution Q τ ; (ii) do an approximate gradient step:

Depending on the importance distribution Q τ , this algorithm can have different convergence properties from the original SGD algorithm. As mentioned previously, the best sampling distribution would be the one that gives a small variance to the weighted gradient in Equation A.6. The main issue is that it depends on the parameters w t , which are different at each iteration.

Our main observation is that we can minimize the variance of the gradient using the previous iterates, under the assumption that this variance does not change too quickly when w t is updated. We argue that this is reasonable in practice as learning rate policies for ρ t usually assume a small constant learning rate, or a decreasing schedule [START_REF] Bottou | Online algorithms and stochastic approximations[END_REF]]. In the next section, we build on that observation to build a new algorithm that learns the best sampling distribution Q in an online fashion.

A.4.2 Adaptive Weighted Stochastic Gradient Descent

As in Appendix A.3, we consider a family {Q τ } of sampling distributions parametrized by τ in the parametric set T . Using the sampling distribution Q τ with probability density function q(x; τ ) = dQτ (x) dP (x) , we can now evaluate the efficiency of the sampling distributions Q τ based on the covariance Σ(w, τ ):

The benefits of this algorithm have been illustrated in three different applications:

image classification, matrix factorization and reinforcement learning [START_REF] Bouchard | Online learning to sample[END_REF]. We here report only the work that is part of this thesis: the matrix factorization applications.

A.5 Application to Matrix Factorization

We applied AW-SGD to learn how to sample the rows and columns in a SGD-based low-rank matrix decomposition algorithm. Let Y ∈ R n×m be a matrix that we want to approximate with a rank-K decomposition U V ⊤ , where U ∈ R n×K and V ∈ R m×K . We consider a differentiable loss function ℓ(z; y) where z ∈ R and y is observed. With the squared loss, each entry of Y is a real scalar and ℓ(z, y) = (zy) 2 . The full loss function is

We consider the sampling distributions {Q τ } over the set

where we independently sample a row i and a column j according to the discrete distributions ς(τ ′ ) and ς(τ ′′ ) respectively, with

and x = (i, j). We define:

p i=1 e z i , (A.12) .13) where z ∈ R p and ς : R p → R p is the softmax function. Using the squared loss, as in the experiments below, the update equations in AW-SGD (Algorithm 3) are:

Results with Reflexivity and

Irreflexivity

In this appendix we report results of the individual learning of combinations of relation properties including reflexivity and irreflexivity. Those results are included for completeness as they are similar to the cases that are neither reflexive nor irreflexive, reported in Section 5.2.2.1.