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“Good tests kill flawed theories; we remain alive to guess again.”
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The explosion of widely available relational data in the form of knowledge graphs enabled

many applications, including automated personal agents, recommender systems and

enhanced web search results. The very large size and notorious incompleteness of

these databases calls for automatic knowledge graph completion methods to make these

applications viable. Knowledge graph completion, also known as link prediction, deals

with automatically understanding the structure of large knowledge graphs—labeled

directed graphs—to predict missing entries—labeled edges. An increasingly popular

approach consists in representing a knowledge graph as a 3rd-order tensor, and using

tensor factorization methods to predict their missing entries.

State-of-the-art factorization models propose different trade-offs between modeling ex-

pressiveness, time and space complexity, and generalization abilities. We introduce a new

model, ComplEx—for Complex Embeddings—to reconcile expressiveness, complexity

and generalization through the use of complex-valued factorization. We corroborate

our approach theoretically and show that all possible knowledge graphs can be exactly

decomposed by the proposed model. Our approach based on complex embeddings is

arguably simple, as it only involves a complex-valued trilinear product, whereas other

methods resort to more and more complicated composition functions to increase their

expressiveness. The proposed ComplEx model is scalable to large data sets as it remains

linear in both space and time, while consistently outperforming alternative approaches

on standard link-prediction benchmarks.1 We also demonstrate its ability to learn useful

vectorial representations for other tasks, by enhancing word embeddings that improve

performances on the natural language problem of entailment recognition between pair of

sentences.

In the last part of this thesis, we explore factorization models ability to learn relational

patterns from observed data. By their vectorial nature, it is not only hard to interpret

why this class of models works so well, but also to understand where they fail and how

they might be improved. We conduct an experimental survey of state-of-the-art models,

not towards a purely comparative end, but as a means to get insight about their inductive

abilities. To assess the strengths and weaknesses of each model, we create simple tasks

that exhibit first, atomic properties of knowledge graph relations, and then, common

inter-relational inference through synthetic genealogies. Based on these experimental

results, we propose new research directions to improve on existing models, including

ComplEx.

1Code is available at: https://github.com/ttrouill/complex

https://github.com/ttrouill/complex
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by Théo Trouillon

http://www.univ-grenoble-alpes.fr/
https://www.liglab.fr/en
http://www.xrce.xerox.com/


L’explosion de données relationnelles disponibles sous la forme de graphes de connais-

sances a permis le développement de multiples applications, dont les agents person-

nels automatisés, les systèmes de recommandation et l’amélioration des résultats de

recherche en ligne. La grande taille et l’incomplétude de ces bases de données nécessite

le développement de méthodes de complétion automatiques pour rendre ces applications

viables. La complétion de graphes de connaissances, aussi appelée prédiction de liens, se

doit de comprendre automatiquement la structure de larges graphes de connaissances

(graphes dirigés labellisés) pour prédire les entrées manquantes (les arêtes labellisées).

Une approche populaire consiste à représenter un graphe de connaissances comme un

tenseur d’ordre 3, et à utiliser des méthodes de décomposition de tenseur pour prédire

leurs entrées manquantes.

Les modèles de factorisation existants proposent différents compromis entre leur expres-

sivité, leur complexité en temps et en espace, et leur capacités de généralisation. Nous

proposons un nouveau modèle appelé ComplEx, pour “Complex Embeddings”, pour

réconcilier expressivité, complexité et généralisation par l’utilisation d’une factorisation

en nombre complexes. Nous corroborons notre approche théoriquement en montrant que

tous les graphes de connaissances possibles peuvent être exactement décomposés par le

modèle proposé. Notre approche, basée sur des embeddings complexes reste simple, car

n’impliquant qu’un produit trilinéaire complexe, là où d’autres méthodes recourent à des

fonctions de composition de plus en plus sophistiquées pour accrôıtre leur expressivité.

Le modèle proposé ayant une complexité linéaire en temps et en espace est passable à

l’échelle, tout en dépassant les scores de prédiction des approches existantes sur les jeux

de données de référence pour la prédiction de liens.2 Nous démontrons aussi la capacité

de ComplEx à apprendre des représentations vectorielles utiles pour d’autres tâches, en

enrichissant des embeddings de mots, qui améliorent les prédictions sur le problème de

reconnaissance d’implication entre paires de phrases.

Dans la dernière partie de cette thèse, nous explorons les capacités des modèles de

factorisation à apprendre les structures relationnelles à partir d’observations. De part

leur nature vectorielle, il est non seulement difficile de comprendre pourquoi cette classe

de modèles fonctionne aussi bien, mais aussi où ils échouent et comment ils peuvent être

améliorés. Nous conduisons une étude expérimentale de modèles de l’état de l’art, non

pas simplement pour les comparer, mais pour comprendre leurs capacités d’induction.

Pour évaluer les forces et faiblesses de chaque modèle, nous créons d’abord des tâches

simples représentant des propriétés atomiques des propriétés des relations des graphes de

connaissances ; puis des tâches représentant des inférences multi-relationnelles communes

au travers de généalogies synthétisées. À partir de ces résultats expérimentaux, nous

2Le code est mis à disposition: https://github.com/ttrouill/complex

https://github.com/ttrouill/complex


proposons de nouvelles directions de recherche pour améliorer les modèles existants, y

compris ComplEx.
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Résumé vi

Acknowledgements ix

List of Figures xv

List of Tables xix

1 Introduction 1

2 Related Work 7

2.1 Relational Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Tasks and Applications . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Link-Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Latent Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1.1 Models Compared in this Work . . . . . . . . . . . . . . . 14

2.2.1.2 Other Latent Factor Models . . . . . . . . . . . . . . . . 18

2.2.1.3 Losses and Negative Sampling . . . . . . . . . . . . . . . 19

2.2.2 Other Link-Prediction Approaches . . . . . . . . . . . . . . . . . . 21

2.2.3 Learning Logic within Latent Space Models . . . . . . . . . . . . . 23

2.3 Related Factorization Problems and Methods . . . . . . . . . . . . . . . . 24

2.3.1 Matrix and Tensor Completion . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Complex Numbers in Factorization Methods . . . . . . . . . . . . 26

3 Complex-Valued Tensor Factorization and Completion 29

3.1 Relations as the Real Parts of Low-Rank Normal Matrices . . . . . . . . . 30

3.1.1 Modeling Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1.1 Handling Both Asymmetry and Unique Entity Embeddings 30

3.1.1.2 Decomposition in the Complex Domain . . . . . . . . . . 32

3.1.2 Low-Rank Decomposition . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2.1 Rank Upper Bound . . . . . . . . . . . . . . . . . . . . . 36

3.1.2.2 Sign-Rank Upper Bound . . . . . . . . . . . . . . . . . . 37

xi



Contents xii

3.1.2.3 Rank Bound Discussion . . . . . . . . . . . . . . . . . . . 38

3.2 Extension to Multi-Relational Data . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Complex Factorization Extension to Tensors . . . . . . . . . . . . 40

3.2.2 Existence of the Tensor Factorization . . . . . . . . . . . . . . . . 42

3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Link with Holographic Embeddings . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Discussion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . 50

4 Experiments and Applications 53

4.1 Synthetic Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Comparing Logistic and Squared Losses . . . . . . . . . . . . . . . 54

4.1.2 Symmetry and Antisymmetry . . . . . . . . . . . . . . . . . . . . . 56

4.2 Real Fully-Observed Data Sets: Kinships and UMLS . . . . . . . . . . . . 57

4.3 Real Sparse Data Sets: FB15K and WN18 . . . . . . . . . . . . . . . . . . 59

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Training time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.4 Influence of Negative Samples . . . . . . . . . . . . . . . . . . . . . 65

4.3.5 WN18 Embeddings Visualization . . . . . . . . . . . . . . . . . . . 66

4.3.6 Comparing ComplEx and HolE . . . . . . . . . . . . . . . . . . . 66

4.4 Learning Complex Word Embeddings . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Imaginary Part Only Learning . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Results on Entailment: SNLI . . . . . . . . . . . . . . . . . . . . . 72

5 Inductive Abilities of Latent Factor Models 75

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Learning Relation Properties . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2.1 Individual Relation Learning . . . . . . . . . . . . . . . . 80

5.2.2.2 Joint Learning . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Learning Inter-Relational Patterns: Family Relationships . . . . . . . . . 83

5.3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2.1 Random Split . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2.2 Evidence Split . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2.3 Family Split . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Conclusion 97

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A Accelerating Stochastic Gradient Descent via Online Learning to Sam-

ple 103

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents xiii

A.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 Adaptive Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . 106

A.4 Biased Sampling in Stochastic Optimization . . . . . . . . . . . . . . . . . 107

A.4.1 Weighted Stochastic Gradient Descent . . . . . . . . . . . . . . . . 108

A.4.2 Adaptive Weighted Stochastic Gradient Descent . . . . . . . . . . 108

A.5 Application to Matrix Factorization . . . . . . . . . . . . . . . . . . . . . 110

A.6 Adapting to Non-Uniform Architectures . . . . . . . . . . . . . . . . . . . 113

A.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B Results with Reflexivity and Irreflexivity 119

Bibliography 123





List of Figures

1.1 Example of a Google search result for the query “Rafael Bombelli”, en-
hanced by the Google Knowledge Graph (right-side block), that provides
extra-information such as birth and death place and time, and education. 2

1.2 Cross-validated average precision on a synthetic antisymmetric relation
with 30 entities, for each rank ranging from 5 to 50 on different state-
of-the-art models. RESCAL is working best but does not exceed 0.8 of
average precision and has quadratic complexity. See the full experiment
description in Section 4.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Example of a knowledge graph with 5 entities (nodes), 2 relations (edge
labels) and 5 observed facts (edges). The dotted edge represent a missing
fact of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Adjacency matrices stacked into a 3rd-order partially-observed tensor,
corresponding to the knowledge graph in Figure 2.1. The question mark
represents a missing fact of interest. . . . . . . . . . . . . . . . . . . . . . 13

2.3 Graphic representation of the CP, DistMult and RESCAL models as
tensor factorization models, with their latent parameters. . . . . . . . . . 15
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Chapter 1

Introduction

Web-scale knowledge graphs provide a structured representation of world knowledge, with

projects such as the Google Knowledge Graph [Google Blog, 2012]. They enable a wide

range of applications including recommender systems [Koren, 2008], question answering

[Bordes et al., 2014b], automated personal agents [Ma et al., 2015] and enhanced search

results [Google Blog, 2012] (Figure 1.1). The incompleteness of these knowledge graphs—

also called knowledge bases—has stimulated research into predicting missing entries, a

task known as link prediction or knowledge-graph completion. The need for high quality

predictions made it progressively become the main problem in statistical relational

learning [Getoor and Taskar, 2007], a research field involving the study of relational-data

representation and modeling.

Knowledge graphs were born with the advent of the Semantic Web, pushed by the World

Wide Web Consortium (W3C) recommendations. Namely, the Resource Description

Framework (RDF) standard, that underlies knowledge graphs’ data representation,

provides for the first time a common framework across all connected information systems

to share their data under the same paradigm. Being more expressive than classical

relational databases, all existing relational data can be translated into RDF knowledge

graphs [Sahoo et al., 2009]. Through these data-representation standards glimpses the

hope for a future, freely accessible, global database storing all of humanity’s knowledge,

that could be automatically completed by reliable link-prediction methods.

In artificial intelligence, many tasks require what is called commonsense knowledge to

be solved perfectly. The ensemble of facts and information about the world that any

person is expected to know constitutes the commonsense knowledge. Such tasks are

considered AI-complete, that is, they are considered as hard as developing an artificial

general intelligence (AGI). These tasks include natural language understanding and

image understanding [Yampolskiy, 2012]. The existence of such a complete knowledge

1
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Figure 1.1: Example of a Google search result for the query “Rafael Bombelli”,
enhanced by the Google Knowledge Graph (right-side block), that provides extra-

information such as birth and death place and time, and education.

base of commonsense knowledge, as pursued by the the Cyc project [Lenat, 1995], would

help solve hard artificial intelligence problems, and open a path to AGI.

Formally, knowledge graphs express data as a directed graph with labeled edges (relations)

between pairs of nodes (entities): relations are binary predicates. Natural redundancies

between the recorded relations often make it possible to fill in the missing entries

of a knowledge graph. As an example, the relation livesInCountry could not be

recorded for all entities, but it can be inferred if the relation livesInCity is known.

The goal of link prediction is the automatic discovery of such regularities. However,

inference between relations is often non-deterministic: the combination of the two

facts livesInCity(John,Athens) and isInCountry(Athens,Greece) does not always

imply the fact hasNationality(John,Greece). Hence, it is natural to handle inference

probabilistically, and jointly with other facts involving these relations and entities. To

this end, an increasingly popular method is to state the knowledge graph completion

task as a 3D binary tensor completion problem, where each tensor slice is the adjacency

matrix of one relation in the knowledge graph, and compute a decomposition of this

partially-observed tensor from which its missing entries can be completed.

Decomposition models, also known as factorization models, or latent factor models, or

low-rank embedding models; were popularized by the Netflix challenge [Koren et al., 2009].

A partially-observed matrix or tensor is decomposed into a product of embedding matrices

with much smaller dimensions, resulting in fixed-dimensional vector representations for

each entity and relation in the graph, that allow completion of the missing entries. For a
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designed different synthetic tasks that each targets different types of inference abilities—

among them learning the basic binary-relation properties. From the observation that no

existing factorization model could correctly learn an antisymmetric relation, as shown in

Figure 1.2, we explore matrix and tensor decompositions in the complex space. Indeed,

antisymmetric—or skew-symmetric—matrices are known to have complex eigenvalues

[Horn and Johnson, 2012]. Through the use of complex linear algebra, we aimed at:

1. Correctly modeling all basic properties of binary relations.

2. Building a scoring function with linear time and space complexity.

3. Ensuring good generalization by keeping unique representations of entities.

Structure of the Thesis

The resulting model, based on unitary-diagonalization properties, is presented in Chap-

ter 3. We discuss its existence and rank bounds first in the single-relation case, and

then extend it to the multi-relational, tensor case. We present a stochastic gradient

algorithm to learn the decomposition of partially-observed tensors. Experimental results

with this model, and its different applications are described in Chapter 4. We first assess

its ability to model jointly symmetric and antisymmetric relations on synthetic data,

and then compare it to state-of-the-art models on established link-prediction bench-

marks. We also show the flexibility of the knowledge graph decomposition approach

to learn reusable vectorial representations of entities, by learning word embeddings

that improve on entailment recognition. Finally, we conduct an experimental survey to

assess state-of-the-art latent factor models ability to learn from data in Chapter 5. We

design synthetic experiments that exhibit binary-relation properties, as well as common

multi-relational inference through genealogical relations. Results give insights about each

parametrization’s pros and cons, and open to different future research directions. We

conclude this thesis contributions and perspectives in Chapter 6. Appendix A presents

an partially-related contribution of this thesis on online learning to sample training

data for stochastic gradient descent. We demonstrate the benefits on different matrix

factorization problems.

We made our implementation of the proposed model available1, as well as the synthetic

data used in the last chapter2.

1https://github.com/ttrouill/complex
2https://github.com/ttrouill/induction_experiments

https://github.com/ttrouill/complex
https://github.com/ttrouill/induction_experiments
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• Trouillon, T., Gaussier, É., Dance, C. R., and Bouchard, G. (2017b). On inductive

abilities of latent factor models. Submitted to the Journal of Artificial Intelligence

Research.

• Bouchard, G., Singh, S., and Trouillon, T. (2015a). On approximate reasoning

capabilities of low-rank vector spaces. AAAI Spring Symposium on Knowledge

Representation and Reasoning: Integrating Symbolic and Neural Approaches.

• Bouchard, G., Trouillon, T., Perez, J., and Gaidon, A. (2015b). Online learning to

sample. arXiv preprint arXiv:1506.09016.

• Trouillon, T., Dance, C. R., Gaussier, É., and Bouchard, G. (2016a). Decomposing
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Chapter 2

Related Work

Before focusing on state-of-the-art models and methods for link prediction in knowledge

graphs, let us put this problem back into its context. Link prediction is one of the main

tasks of statistical relational learning (SRL) [Getoor and Taskar, 2007], a sub-field of

machine learning concerned with the representation and modeling of relational data.

We then formally define the link-prediction problem and review the literature, with an

emphasis on latent factor models on which this thesis focuses. Finally we discuss related

factorization problems and methods.

2.1 Relational Learning

Data is said to be relational when its representation is expressed as links, or relations,

between the underlying objects of the database: the entities. This linked nature between

the entities can be expressed in different but equivalent formalisms such as relational

tables, as classically used in relational database management systems [Codd, 1970];

ground predicates in first-order logic where predicates are the relations and ground terms

the entities [De Raedt, 2008; Richardson and Domingos, 2006]; and n-tuples through set

theory where relations and entities are mixed in the tuples [Nickel, 2013]. In this work

we will focus on specific relational data expressed as triples. Collections of such triples

are known as knowledge graphs.

A knowledge graph stores data about a set of entities E and a set of relations R, where
relations link pairs of entities in the form of facts r(s, o)—for example isCapitalOf

(Ulaanbaatar,Mongolia)—that we also write as triples (r, s, o), where the relation

r ∈ R and the subject and object entities s, o ∈ E . It is thus naturally represented

as a labeled directed graph: a directed graph which has labeled edges that connect

7
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subject entities to object entities, where the labels are the different relations r ∈ R (see

Figure 2.1). We denote the set of all possible triples for a given entity set and relation

set by T = R× E × E . A knowledge graph is hence a subset of T : the set of observed

triples (r, s, o) among all the possible ones, that we write (r, s, o) ∈ TΩ ⊆ T .

This representation has been driven by the coming of the Semantic Web, through the

recommendations of the W3C, and namely, the Resource Sescription Framework (RDF)

[Cyganiak et al., 2014]. Databases that follows this representation of data as triples are

called knowledge graphs or knowledge bases. Many such knowledge graphs have been

collaboratively or automatically created in recent years such as DBpedia [Auer et al.,

2007], Freebase [Bollacker et al., 2008] and the Google Knowledge Vault [Dong et al.,

2014].

From the very existence of these knowledge graphs and the applications they enable arise

different tasks, such as predicting the missing triples in it—the task on which this thesis

focuses—but also finding entities that are different instances of the same underlying

object [Köpcke and Rahm, 2010], or grouping similar entities together [Fortunato, 2010].

Tackling these tasks require inferential abilities about the data, that is, a model of the

knowledge graph considered. Many different formalisms for modeling relational data

have been proposed, including first-order logic [Muggleton, 1995; Lisi, 2010; Galárraga

et al., 2015], probabilistic graphical models [Ngo and Haddawy, 1997; Wellman et al.,

1992; Kersting and De Raedt, 2001], latent space models [Nickel et al., 2011; Bordes

et al., 2013b; Riedel et al., 2013], and different combinations of those [Richardson and

Domingos, 2006; Rocktaschel et al., 2015].

2.1.1 Knowledge Graphs

Knowledge graphs differ largely in the way they are constructed, and in the domain they

store data about.

Construction methods Some graphs are manually curated by experts, and have very

accurate data such as WordNet [Fellbaum, 1998], but are generally restricted to small

knowledge graphs as expert annotation is expensive. Other graphs such as Freebase

[Bollacker et al., 2008] are created collaboratively on an open-access platform, following

the model of Wikipedia. This construction model allows for a much larger scalability,

while keeping a good data reliability, as Freebase has been estimated to be 99% accurate

[Giannandrea, 2011].

More and more knowledge graphs resort to automatic triple extraction from data, either

structured or not. The DBpedia project [Auer et al., 2007] extracts information from
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Number of
Knowledge graph Entities |E| Relations |R| Facts |Ω|
WordNet 155 K 116 9 M
NELL 5 M 306 0.5 M
YAGO2 10 M 114 447 M
DBpedia 5 M 1,367 538 M
Freebase 40 M 35,000 637 M
Google Knowledge Vault 45 M 4,469 1,600 M

Table 2.1: Number of entities |E|, relations |R|, and observed triples |Ω| of some
knowledge graphs.

Wikipedia, and re-frames it as a knowledge graph. Similarly YAGO [Suchanek et al.,

2007; Hoffart et al., 2013] also uses other sources of structured data. Other projects also

make use of unstructured data such as the Never-Ending Language Learning system

[Carlson et al., 2010] and the Google Knowledge Vault [Dong et al., 2014]. Both crawl the

web and extract triples directly from its content, including text, tabular data and page

structure. Knowledge graphs constructed this way are much bigger than the humanly

created ones, but also less reliable as NELL is estimated to be 87% accurate [Lohr, 2010].

Sizes of the aforementioned knowledge graphs are summarized in Table 2.1.

Data domain Most of the knowledge graphs above store general knowledge about

the world, akin to Wikipedia—but as triples. There are also projects dedicated to

specific types of data. WordNet [Fellbaum, 1998] is a lexical database of English, its

entities are word meanings, grouped in synsets, each representing a different concept. For

polysemous words for example, each of their different meanings will be represented by a

different entity. The entities are interlinked together by conceptual-semantic and lexical

relations, such as hypernymy, meronymy or being part of another synset. WordNet

resource has proven useful in many natural language processing tasks, such as word-sense

identification [Leacock and Chodorow, 1998], text classification [Scott and Matwin, 1998]

and information retrieval [Varelas et al., 2005].

In biology, many knowledge graphs arise such as Bio2RDF [Belleau et al., 2008] and

LinkedLifeData [Momtchev et al., 2009]. Both projects aim at unifying many existing

bioinformatics databases in a single knowledge graph. The IntAct database [Kerrien

et al., 2011] describes interactions between pairs of molecules. Beyond projects that are

explicitly storing their data as triples, many data sets that represent networks can be

naturally expressed in the same triple formalism. Among them are the CORA [McCallum

et al., 2000] and Citeseer [Lawrence et al., 1999] data sets, that represent citations

network between scientific articles. There are also the Kinships data set [Denham, 1973]

that describes kinship relations between individuals of an aboriginal tribe from Australia,

the Nations data set that features diplomatic relations between countries [Rummel, 1976],
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and the unified medical language system (UMLS) data set [McCray, 2003] that links

medical concepts through their interactions.

2.1.2 Tasks and Applications

Knowledge-graph learning problems essentially inherit the classical problems coming

from both databases, and machine learning. They thus have their own classification

and clustering problems, namely collective classification and link-based clustering. But

also classical databases problems such as avoiding duplicates and being as complete as

possible, that is entity resolution, and our problem of interest, link prediction.

Collective classification When data naturally exhibits an interlinked nature, as is the

case for social networks, or biological networks for example, the classical attribute-based

classification model does not exploit this relational information properly. In this case,

data can be naturally framed as a knowledge graph, and the classification of its entities

among a set of classes, based on the links between entities—and their attributes when

they exist—is known as collective classification. Methods that explicitly take into account

such networked information have proven to be more accurate than those that do not

[Sen et al., 2008; Neville and Jensen, 2003]. Collective classification applications include

document classification [Chakrabarti et al., 1998], part-of-speech tagging [Lafferty et al.,

2001], and counter-terrorism analysis [Macskassy and Provost, 2005].

Link-based clustering Similarly to collective classification, link-based clustering meth-

ods are clustering methods tailored for interlinked data, and make use of the relational

patterns between entities. Such methods are widely used in social network analysis for

community detection [Fortunato, 2010], for example on mobile phone communications

[Blondel et al., 2008], e-mail exchanges [Tyler et al., 2005], and Facebook “friendship”

networks [Traud et al., 2009].

Entity resolution Knowledge graphs that aggregate data from multiple sources of

data, structured or unstructured, face the problem of duplicate entities. This is especially

true when data is harvested from raw text, where for example, the same person name

can be written either fully, or only with first name initial, or with middle name initial,

and so forth. Resolving these duplicates is known as entity resolution, or more generally

as record linkage [Köpcke and Rahm, 2010]. Approaches to solve this problem can be

either fully automatic [Dredze et al., 2010; Bhattacharya and Getoor, 2007], or involve

interactive interfaces that suggests possible conflicts to users [Bilgic et al., 2006]. As the
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number of duplicates consequently affects the quality of the models that will be built

on the knowledge graph to solve other tasks, this task arises quite naturally from the

existence of knowledge graphs. But it also has its own direct applications in government

data, public health systems, comparison shopping engines, and generally any information

system that gather/store data from/in multiple databases [Christen, 2012].

Knowledge graphs are notoriously largely incomplete and predicting their missing entries

is thus one of the main problems of relational learning. This problem is known as

link prediction, or knowledge graph completion. Beyond search-results enhancement

(Figure 1.1), link prediction has various applications including question answering [Bordes

et al., 2014b], recommender systems [Rendle and Schmidt-Thieme, 2010] (see Section 2.3.1)

and probabilistic querying of knowledge bases [Huang and Liu, 2009; Krompaß et al.,

2014].

2.2 Link-Prediction

In this section, we formally define the link-prediction problem in knowledge graphs, as

well as the notations that will be used throughout this manuscript. We then introduce

in detail a family of state-of-the-art models, the latent factor models, on which this

work focuses. We then review other approaches to the problem, including proposals

mixing first-order logic and latent space models, as this is also one of interest to us (see

Chapter 5).

Let us first introduce some notations. The number of entities is denoted by Ne = |E|,
and the number of relations by Nr = |R|. The ith row of a complex matrix X ∈ C

n×m is

written xi ∈ C
m. By a slight abuse of notation, for entities i ∈ E and relations r ∈ R,

we will write their corresponding rows in the embedding matrices as xi or xr, where

xi, xr ∈ C
m.

As previously defined, a knowledge graph is a set of observed triples (r, s, o), denoted

by TΩ. The link-prediction task consists in predicting some missing triples (r′, s′, o′) ∈
T \ TΩ. Figure 2.1 presents a simple knowledge graph with five entities: Bombelli,

Grimaldi, Manfredi (three Italian mathematicians), the city Bologna and its university U.

Bologna; interlinked by two relations, studied and born. The fact studied(Bombelli,U.

Bologna) is one of several facts that are missing in this graph. Link prediction’s goal

is to automatically discover and use redundancies in the graph to predict whether this

missing triple is true or not— in order to display it in a search result for example, as

shown in Figure 1.1. Here the facts studied(s,U. Bologna) and born(s,Bologna) are







Related Work 14

Model Scoring Function φ Parameters Θ

CP [Hitchcock, 1927] 〈wr, us, vo〉 wr, us, vo ∈ R
K

RESCAL [Nickel et al., 2011] eTs Wreo Wr ∈ R
K2

, es, eo ∈ R
K

TransE [Bordes et al., 2013b] −||(es + wr)− eo||q wr, es, eo ∈ R
K

F model [Riedel et al., 2013] u⊤d wr wr, ud ∈ R
K

DistMult [Yang et al., 2015] 〈wr, es, eo〉 wr, es, eo ∈ R
K

ComplEx (this thesis) Re(〈wr, es, ēo〉) wr, es, eo ∈ C
K

Table 2.2: Scoring functions of state-of-the-art latent factor models for a given fact
r(s, o), along with the representation of their parameters. In the F model, d indexes all

possible pairs of entities: d = (s, o) ∈ E × E .

2.2.1 Latent Factor Models

We define each model by its scoring function φ(r, s, o; Θ), where Θ are the latent pa-

rameters of this model—the entity and relation embeddings—and φ(r, s, o; ·) : C|Θ| → R

assigns a real-valued score to the fact r(s, o). As some models have real-valued parameters

and some other models have complex-valued parameters, we define the space of the

parameters C|Θ| directly over the complex space.

Let us also define the trilinear product of three vectors over the complex space:

〈a, b, c〉 =
K
∑

j=1

ajbjcj

= a⊤(b⊙ c) (2.1)

where a, b, c ∈ C
K , and ⊙ is the Hadamard product, that is the element-wise product

between two vectors of same length.

2.2.1.1 Models Compared in this Work

In the following we present in detail the model scoring functions and parameters that we

experimentally compare in this work. Those models are among the most popular and

best-performing link-prediction models. The models’ scoring functions and parameters

are summarized in Table 2.2.

Each of the following models use latent representations of variable length, controlled by

the hyper-parameter K ∈ Z++, the rank of the decomposition. We start by introducing

the most natural model, a general decomposition for tensors: the Canonical-Polyadic

(CP) decomposition [Hitchcock, 1927], also know as CANDECOMP [Caroll and Chang,

1970], and PARAFAC [Harshman, 1970].
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RESCAL RESCAL [Nickel et al., 2011] differs from the CP decomposition in two

points: there is only one embedding per entity instead of having one embedding for

entities as subject and another one for entities as objects; and each relation is represented

by a matrix embedding instead of a vector. Its scoring function is

φ(r, s, o; Θ) = e⊤s Wreo (2.3)

where E ∈ R
Ne×K is the embedding matrix of the entities, and W ∈ R

Nr×K×K the

embedding tensor of the relations. Thus Wr ∈ R
K×K is the embedding matrix of the

relation r.

RESCAL was the first model to propose unique embeddings for entities—simultaneously

with Bordes et al. [2011]—which yielded significant performance improvement, and since

then unique entity embeddings have been adopted by most of the subsequent models.

However, its matrix representations of relations makes its scoring function time and space

complexity quadratic in the rank K of the decomposition. This also leads to potential

overfitting.

F model This model proposed by Riedel et al. [2013] maps all possible subject and

object entity pairs p = (s, o) ∈ E × E to a single dimension. Each row in the entity

embedding matrix corresponds to one pair of entities. The scoring function computes

the dot product of the embedding of the pair p with the embedding of the relation r:

φ(r, s, o; Θ) = e⊤p wr (2.4)

where E ∈ R
N2

e×K is the embedding matrix of the pairs of entities, and W ∈ R
Nr×K the

embedding matrix of the relations. It is actually a decomposition of the matrix that

results from a specific unfolding of the Y tensor.

Its pairwise nature gives this model an advantage over non-compositional pairs of entities.

However, its memory complexity is quadratic in the number of entities Ne. In practice,

unobserved pairs of entities are not stored in memory as they are useless. Though this

is also the weak point of this model: it cannot predict scores for unobserved pairs of

entities since it only learns pairwise representations.

TransE The TransE model [Bordes et al., 2013b] imposes a geometrical structural

bias on the model: the subject entity vector should be close to the object entity vector

once translated by the relation vector. For a given q-norm (generally q = 1 or q = 2)
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over the embedding space,

φ(r, s, o; Θ) = −||(es + wr)− eo||q (2.5)

where E ∈ R
Ne×K is the embedding matrix of the entities, and W ∈ R

Nr×K is the

embedding matrix of the relations. Deriving the norm in the scoring function exposes

another perspective on the model and unravels its factorial nature, as it gives a sum of

bilinear terms as explored by Garćıa-Durán et al. [2014]:

φ(r, s, o; Θ) ≈ e⊤s eo + e⊤o wr − e⊤s wr (2.6)

where constant multipliers and norms of the embeddings have been ignored here. These

bigram terms will help in some specific situations as shown in Section 5.3.

It is difficult to capture symmetric relations with this model. Indeed, having φ(r, s, o; Θ) =

φ(r, o, s; Θ) implies either es = eo, or w
⊤
r (eo − es) = 0. Since es 6= eo in general for s 6= o,

and wr is in general not the zero vector—in order to share latent dimensions’ information

with the other relation embeddings—modeling symmetric relations such as similar,

cousin, or related implies a strong geometrical constraint on entity embeddings: their

difference must be orthogonal to the relation embedding wr. The model thus has to

make a trade-off between (i) correctly modelling the symmetry of the relation r, (ii) not

zeroing its relation embedding wr, and (iii) not altering too much the entity embeddings

to meet the orthogonality requirement between wr and (eo − es) for all e, o ∈ E .

DistMult The DistMult model [Yang et al., 2015] can be seen as a simplification

of the RESCAL model, where the unique representation of entities is kept, while the

representation of the relations is brought back to vectors instead of matrices:

φ(r, s, o; Θ) = 〈es, wr, eo〉 (2.7)

where E ∈ R
Ne×K is the embedding matrix of the entities, and W ∈ R

Nr×K the

embedding matrix of the relations.

The major drawback of this model is its symmetry over the subject and object entity roles.

Indeed we have φ(r, s, o; Θ) = φ(r, o, s; Θ), for all s, o ∈ E . But many antisymmetric

relations appear in knowledge graphs such as older, partOf, hypernym. One does not

want to assign the same score to older(a,b) as to older(b,a)!
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2.2.1.2 Other Latent Factor Models

Akin to the CP model, there exist various classical tensor decomposition, such as

the Tucker decomposition [Tucker, 1963], also known as higher-order singular value

decomposition (HOSVD) [De Lathauwer et al., 2000], from which many of the presented

latent factor models are adaptations. Tensor decompositions and their applications are

surveyed in Kolda and Bader [2009]; Comon et al. [2009].

The first ones to propose to use factorization methods, already popular in the neighbor

field of collaborative filtering (see Section 2.3.1), to tackle link prediction in knowledge

graphs were Franz et al. [2009] and Sutskever et al. [2009], who respectively used the

CP model, and proposed the Bayesian clustered tensor factorization model (BCTF).

The BCTF scoring function can be seen as an intermediate between the CP and the

RESCAL models, as relations are modeled with matrices and entities with two separate

vectors depending on whether they appear as subject or as object of the triple:

φ(r, s, o; Θ) = u⊤s Wrvo (2.8)

where U, V ∈ R
Ne×K are the embedding matrices of entities depending on whether they

appear as subject (U) of the triple or as object (V ), and W ∈ R
Nr×K×K the embedding

tensor of the relations. The model is learned in a Bayesian setting with a Chinese

restaurant process prior over the embeddings.

Jenatton et al. [2012] proposed a similar model, with a non-probabilistic clustering over

the relations matrices, by expressing them as a low rank, L1-constrained decomposition:

Wr =
D
∑

d=1

αr
d(adb

T
d ) (2.9)

where D is the rank of the decomposition of the relations parameters, A,B ∈ R
D×D,

and αr ∈ R
D is constrained by a hyperparameter: ||αr||1 ≤ λα. The scoring function

is itself also slightly different as they add bias terms to the subject and object-entity

embeddings:

φ(r, s, o; Θ) = (us + z)⊤Wr(vo + z′) (2.10)

where z, z′ ∈ R
K .

Various models built on TransE have been proposed, including the TransH model

[Wang et al., 2014] that models relations as translating hyperplanes instead of vectors,

and the TransR model [Lin et al., 2015b] that learns relation and entity embeddings

in different spaces and maps entity embeddings to relation space using linear operators,
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before performing a translation. He et al. [2015] propose to learn these models with

Gaussian embeddings, replacing the vector norm with the KL-divergence or the expected

likelihood. The TATEC model [Garcia-Duran et al., 2016] combines TransE bigram

terms and RESCAL scoring function in a single model, but trained separately. Welbl

et al. [2016] extended the F model to learn pairwise embeddings not only of entities, but

of subject/relation and object/relation pairs too. Verga et al. [2017] address the squared

complexity in the number of the entities of the F model, by expressing the pairwise

embeddings of entities as combinations of the relation embeddings in which the pair

appear. For each observed triple (r, s, o) ∈ TΩ, the corresponding pair embedding ep for

p = (s, o) ∈ E × E is

ep = f({wr′ | (r′, s, o) ∈ TΩ}) (2.11)

where f is the composition function of the relation embedding. This model only learns

relation embeddings, yet it performs just as well as the original F model. Moreover, it

gives it the ability to naturally generalize to unseen entities.

The holographic embeddings model [Nickel et al., 2016b] proposes to combine vectorial

entity embeddings using discrete circular convolution between the subject and object

embeddings. This model and its link to the model proposed in this manuscript are

discussed in detail in Section 3.4.

Sometimes, entities and relations come with additional domain knowledge. A common

feature of entities is their type, such as person or place, that defines incompatibilities

for some relations in which such typed entities can appear. For example, a place cannot

be the president of a person. Chang et al. [2014]; Krompaß et al. [2015]; Sedghi and

Sabharwal [2016] enhance predictions of existing factorization models by not using

incompatible triples during training, whereas they are usually considered as false triples.

2.2.1.3 Losses and Negative Sampling

Commonly used matrix and tensor decompositions such as SVD and CP natively minimize

the squared error. Classical decomposition algorithms for these models, based on iterative

methods or alternating minimization, cannot efficiently handle missing triples as missing,

and consider them as negatives instead. This corresponds to minimizing:

L(Y; Θ) =
∑

r∈R

∑

s∈E

∑

o∈E

||φ(r, s, o; Θ)− yrso||22 (2.12)

where yrso = −1 if (r, s, o) /∈ TΩ—though in this dense case the value zero is more often

used for negatives. However, as the tensor Y has binary values ±1, using a binary loss is

indeed more appropriate. We discuss theoretical motivation for doing so in Section 3.1.2.2.
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Jenatton et al. [2012] used instead the negative log-likelihood of the logistic model:

L(Y; Θ) =
∑

r∈R

∑

s∈E

∑

o∈E

log(1 + exp(−yrsoφ(r, s, o; Θ))) , (2.13)

and Nickel and Tresp [2013]; London et al. [2013] showed it worked better than the

squared loss, in all cases on dense datasets (under the closed-world assumption) with

observed negatives. Acar et al. [2010] and London et al. [2013] proposed a weighted

version of respectively CP and RESCAL to avoid imputing test triples when learning

the decomposition, and improved performances in the closed-world case.

Drumond et al. [2012] first acknowledged the importance of the open-world assumption.

By treating missing triples as missing, they exposed a large gap between the predictive

performances of dense and sparse versions of the CP model. In general under the

open-world assumption, only positive triples are observed. One thus has to generate

negatives to learn a supervised model. To do so, they make the assumption that an

observed triple (r, s, o) ∈ TΩ should be ranked higher than unobserved triples with

a different object entity (r, s, o′) /∈ TΩ. They implement this constraint through the

Bayesian Personalized Ranking optimization criterion [Rendle and Schmidt-Thieme,

2010], by uniformly sampling object entities o′:

L(Ω;Θ) =
∑

((r,s,o),yrso)∈Ω

log(σ(yrso − yrso′)) (2.14)

where σ is the logistic function σ(x) = 1
1+e−x .

Bordes et al. [2013b] extended this assumption to subject entities: for each positive triple

(r, s, o) ∈ TΩ they corrupt either the subject or the object of the triple at random, and

optimize a slightly different pairwise loss, with a max-margin criterion:

L(Ω;Θ) =
∑

(r,s,o)∈TΩ

max(0, γ + σ(φ(r, s′, o′; Θ))− σ(φ(r, s, o; Θ)) (2.15)

where γ ∈ [0, 1] is the margin hyperparameter. This loss has been often used in subsequent

works [Yang et al., 2015; Nickel et al., 2016b]. In this work, we instead consider all such

corrupted triples explicitly as negatives, which is also known as the local closed-world

assumption [Dong et al., 2014]: all (r, s′, o), (r, s, o′) /∈ TΩ for each (r, s, o) ∈ TΩ are

considered as negatives: yrs′o = yrso′ = −1 . We optimize a classical log-likelihood

loss, and show that it can bring a large improvement over the max-margin loss (see

Section 4.3.6), and that sampling more than one negative per positive triple also sensibly

improves prediction scores (see Section 4.3.4).
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2.2.2 Other Link-Prediction Approaches

Early relational learning approaches for relational databases that follows a schema used

probabilistic models. The general idea is to map a probabilistic graphical model to

the database schema architecture, and use observed entries to learn the corresponding

probability distribution [Friedman et al., 1999; Taskar et al., 2001; Heckerman et al.,

2007; Getoor and Taskar, 2007; Raedt et al., 2016].

Logic-based link prediction consists in using both observed facts and logical rules to

infer the truth of unobserved facts. In this case one must either handcraft rules, or

learn them through inductive logic programming (ILP) for example [Muggleton and

De Raedt, 1994; Dzeroski and Lavrac, 1994]. Many contributions have been made using

inductive logic programming for relational data during the last decades [Muggleton,

1995; Lisi, 2010; Galárraga et al., 2015]. Inference can be achieved deterministically by

logical deduction, or probabilistically to cope with uncertainty of the data. Different

probabilistic logic-based inference models have been proposed [Ngo and Haddawy, 1997;

Wellman et al., 1992; Kersting and De Raedt, 2001; Frasconi et al., 2014; Kok and

Domingos, 2007]. The main contribution along this line of research is probably Markov

Logic Networks (MLNs) [Richardson and Domingos, 2006]. MLNs take as input a set

of first-order rules and facts, build a Markov random field between facts co-occuring

in possible groundings of the formulae, from which they learn a weight over each of

these rules that represents their likeliness of being applied at inference time. Different

improvements over this model have been proposed [Riedel, 2008; Noessner et al., 2013].

Among them, Pujara et al. [2013] used probabilistic soft logic [Brocheler et al., 2010]

to assign continuous truth values to atoms instead of boolean ones, which resulted in

increased prediction accuracy and scalability.

In the neural tensor network (NTN) model, Socher et al. [2013] combined linear transfor-

mations and multiple bilinear forms of subject and object embeddings to jointly feed

them into a nonlinear neural layer:

φ(r, s, o; Θ) = uTr f(e
T
s W

[1:D]
r eo + Vr[es eo]

⊤ + br) , (2.16)

where D ∈ Z++ is an additional hyperparameter, es, eo ∈ R
K are learned entity embed-

dings; Wr ∈ R
K×K×D, Vr ∈ R

D×2K , br,ur ∈ R
D are the learned relation parameters, and

f is a non-linear activation function. Its non-linearity and multiple ways of including

interactions between embeddings gives it an advantage in expressiveness over simpler

latent factor models. As a downside, its very large number of parameters can make the

NTN model harder to train and make it overfit more easily. Authors also propose to

learn the entity embeddings as a composition of the word embeddings of their labels.
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Doing so can significantly improve results, depending on the model and the dataset.

Bordes et al. [2011] proposed the Structured Embeddings (SE) model, a generalization

of Siamese networks:

φ(r, s, o; Θ) = ||Wres −W ′reo||q , (2.17)

where Wr,W
′
r ∈ R

K×K are the relation embeddings. Though it looks like TransE,

deriving the norm shows that the two matrix embeddings of relations play the role of

two fully connected layers. Subsequently, Bordes et al. [2014a] proposed the Semantic

Matching Energy (SME) model, an explicit two-layer network where subject and object

embeddings are similarly combined with a right and left relation embeddings first, then

intermediate left and right representation are merged into the final score. Nguyen et al.

[2016] proposed STransE, a combination of the SE and TransE models. Dong et al.

[2014] use a two-layer perceptron:

φ(r, s, o; Θ) = uT f(A[wr es eo]
⊤) , (2.18)

where f is a non-linear activation function, es, eo, wr ∈ R
K , A ∈ R

D×3K , u ∈ R
D where

D ∈ Z++ is an hyperparameter controlling the size of the second layer.

Aforementioned latent models of knowledge graphs consider triples separately from each

other, and capture dependencies between conjunctions of relations such as livesInCity(a, b)

∧ isInCountry(b, c) ⇒ livesInCountry(a, c) from redundancy in the data. From a

graph perspective, such multi-relation inferences correspond to paths in the knowledge

graph. Different models propose to take into account these path patterns explicitly. The

path ranking algorithm [Lao et al., 2011] predicts missing triples by combining the results

of different random walks accross the knowledge graph. Lin et al. [2015a]; Das et al.

[2016]; Neelakantan et al. [2015] proposed to consider all possible paths between each pair

of observed entities (s, o) for (r, s, o) ∈ TΩ, using a recurrent neural network to model

paths of arbitrary length. Conversely, Guu et al. [2015] introduced the task of answering

path-based queries instead of simply predicting triples. A path query consist of a source

entity s and a sequence of relations (r1, . . . , rn). The answer is the set of entities o that

can be reached from s by that sequence of relations such that all intermediate triples

(s, r1, e1), . . . , (en, rn, o) are true. They propose a general framework to train and predict

on such paths by recursively composing scoring functions that provide intermediate

representations of subject/relation pairs—the condition that scoring function must fulfil

to be composable.

Trilinear models for example are composable in this sense as a trilinear product can

be factorized in the object-entity embedding. For example with the DistMult model:

〈es, wr, eo〉 = (es ⊙ wr)
⊤eo, where the intermediate representation is the Hadamard
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product between the subject entity and the relation embeddings es ⊙ wr. Other graph-

related approaches include the additive relational effect model [Nickel et al., 2014] that

learns a linear combination over metrics computed on the knowledge graph such as

common neighbors or Katz centrality, and combines it with RESCAL’s scoring function;

and Gaifman models that learn neighborhood embeddings of local structures in the

knowledge graph [Niepert, 2016].

The factorization machines model, proposed by Rendle [2010], enhances supervised linear

models by learning vectorial representations of the features of the samples, combined

d-linearly, where d is an hyperparameter setting the degree of the model. Given a feature

vector x ∈ R
n and its corresponding label y ∈ R, a factorization machine of degree d = 3

gives:

ŷ(x) = w0 +
n
∑

i=1

wixi +
n
∑

i=1

n
∑

j=i+1

(u⊤i uj)xixj +
n
∑

i=1

n
∑

j=i+1

n
∑

k=j+1

〈vi, vj , vk〉xixjxk (2.19)

where w0, . . . , wn ∈ R, U, V ∈ R
n×K . This model generalizes the CP decomposition:

by encoding in x ∈ R
Nr+2Ne the concatenation of the one-hot representation of the

(r, s, o) triple indexes x = [e1r , e
1
s, e

1
o], with y = yrso, where e1i has a 1 at index i and

zeros everywhere else, e1r ∈ R
Nr , e1s, e

1
o ∈ R

Ne . This adds bigram terms—as in TransE—

unigram terms and biases to the trilinear term of the CP decomposition. With different

encoding of the feature of x, the author shows generalization of diverse matrix and tensor

factorization models. This model has also been adapted to scale to classical schema-based

relational databases (such as SQL) [Rendle, 2013].

Many authors have proposed to use text as distant supervision to enhance knowledge

graphs, by extracting triples from raw text, which increased predictive performances

for link prediction [Riedel et al., 2013; Toutanova et al., 2015; Surdeanu and Tibshirani,

2012; Yao et al., 2011; Mintz et al., 2009].

2.2.3 Learning Logic within Latent Space Models

In this thesis, we evaluate latent space models on their ability to learn logical reasoning

from observed data only (see Chapter 5). Similarly to our approach, Bowman et al.

[2015b] learned some natural logic operations directly from data with recurrent neural

tensor networks, to tackle natural language processing tasks such as entailment or

equivalence. Natural logic is a theoretical framework for natural language inference that

uses natural language strings as the logical symbols. Singh et al. [2015] investigated

learning from a few synthetic examples for relational learning on different latent factor

models.
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Following a different goal, other approaches formalised the encoding of logical operations

as tensor operations. Smolensky et al. [2016] applied it to the bAbI data set reasoning

tasks, and Grefenstette [2013] to general Boolean operations.

Advances in bringing both worlds together include the work of Rocktaschel et al. [2015];

Rocktäschel et al. [2014] and Demeester et al. [2016], where a latent factor model is used,

as well as a set of logical rules. An error-term over the rules is added to the classical latent

factor objective function. In Rocktäschel and Riedel [2016], a fully differentiable neural

theorem prover is used to handle both facts and rules, whereas Minervini et al. [2017] use

adversarial training to do so. Wang and Cohen [2016] learned first-order logic embeddings

from formulae learned by ILP. Similar proposals for integrating logical knowledge in

distributional representations of words include the work of Lewis and Steedman [2013].

Conversely, Yang et al. [2015] learn a latent factor model over the facts only, and then

try to extract rules from the learned embeddings. [Yoon et al., 2016] proposed to use

projections of the subject and object-entity embeddings that conserve transitivity and

symmetry.

2.3 Related Factorization Problems and Methods

We here survey related work concerning the vast field of matrix and tensor decompositions,

and the use of complex numbers therein.

2.3.1 Matrix and Tensor Completion

The application of factorization methods in relational learning comes from their large

success in a preceding, closely-related problem: collaborative filtering. Collaborative

filtering is a special case of link prediction in knowledge graphs: a matrix X ∈ R
n×m is

partially observed—and not a tensor—however it is real-valued and it is not necessarily

square. Rows represent users, columns represent items, and entries xij ∈ R for observed

(i, j) pairs are implicit or explicit feedback, such as ratings. Typical factorization models

are of the form X ≈ UV ⊤, where each row ui corresponds to a user i ∈ U and each

column vj corresponds to an item j ∈ I. In this problem, U ∩ I = ∅ conversely to

knowledge graphs, where entities can be either the subject or the object of a relation.

Despite this, this parametrization with different left (U) and right (V ) matrices persisted

in knowledge-graph factorization models up to the RESCAL and SE models [Nickel et al.,

2011; Bordes et al., 2011]. Interestingly, these rectangular matrix factorization models

for collaborative filtering can be seen as a special case of knowledge graph factorization

models with single entity embeddings E ∈ R
Ne×K . By writing the set of entities E = U∪I
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and having a single relation r, embeddings of users and items of observed triples (r, i, j)

are indeed disjoint: ei 6= ej for any i ∈ U , j ∈ I, and correspond to the U and V matrices

since users are always subjects and items are always objects. Hence classical factorization

models for link prediction subsume rectangular matrix factorization with disjoint set

of entities as rows and columns, provided that the open-world assumption is enforced

(unobserved user-user, item-item and item-user triples are ignored) and that a non-binary

loss is used to handle the real-valued entries xij ∈ R.

Completing the missing entries of such feedback matrices has direct applications in

recommender systems, and factorization approaches became popular with the famous

Netflix prize [Koren, 2008; Koren et al., 2009]. In most partially-observed matrix and

tensor-factorization models, optimizing directly over the low-rank factor matrices is a

non-convex problem. A well-known relaxation of the matrix completion problem consists

in minimizing its trace-norm, which is the sum of its singular values:

min ||X̂||∗ (2.20)

subject to x̂ij = xij , (i, j) ∈ Ω ,

where X ∈ R
n×m and Ω is the set of the observed values in X. This approach has strong

guarantees to recover the minimal rank of the partially observed matrix X and can be

cast as a semi-definite program to solve it [Candès and Tao, 2010; Candes and Recht,

2012]. Convex extensions to collective matrix factorization have also been proposed

[Singh and Gordon, 2008; Bouchard et al., 2013], and the classical tensor-factorization

models [Comon et al., 2009; Kolda and Bader, 2009] also had their convex relaxations

for completion [Tomioka et al., 2010; Romera-Paredes and Pontil, 2013]. In most convex

factorization methods, the reconstructed matrix/tensor must be instantiated in memory,

which is a serious space bottleneck. More scalable approaches have been proposed for

matrix completion, based on iterative sparse singular value decompositions (SVD) [Cai

et al., 2010], allowing for not storing the whole reconstructed matrix X̂ in memory.

Though the cost of computing numerous SVDs iteratively is prohibitive for very large

scale matrices. Convex tensor factorization models have similar scalability issues.

Though, non-convex approaches that optimize over the low-rank latent factors actually

work very well in practice [Koren et al., 2009; Nickel et al., 2016a]. Some first theoretical

results start explaining this, and showed that on some non-convex matrix and tensor

factorization problems and under certain conditions, all local minima are global [Ge

et al., 2016; Bhojanapalli et al., 2016; Haeffele and Vidal, 2015]. Specifically, Ge et al.

[2016] showed that this is the case for positive semi-definite matrix completion. This

being said, given the size of the problems we tackle in this work, we cannot afford convex

relaxation. Optimization is conducted over the non-convex low-rank parametrization
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(see Section 3.3), as in all state-of-the-art factorization models for knowledge-graph

completion [Nickel et al., 2016a].

Among other contributions are the pairwise interaction tensor factorization (PITF)

[Rendle and Schmidt-Thieme, 2010], that handles feedback between users’, item and tags

through tensor factorization. Abernethy et al. [2009] integrate users’ and items’ attributes

in their factorization model. Ermis and Bouchard [2014] use quadratic approximation

of the logistic loss to speed-up the decomposition, and Zhang et al. [2007] propose to

learn binary latent factors instead of real-valued factors. Lee et al. [2016] make low-rank

decomposition of local sub-blocks of the matrix separately before summing them together,

and show it improves prediction accuracy for collaborative filtering. Many proposals have

been made to distribute stochastic gradient descent for matrix and tensor factorizations

[Yu et al., 2012; Yun et al., 2014; Gemulla et al., 2011; Niu et al., 2011], which allow to

scale to always bigger problems.

2.3.2 Complex Numbers in Factorization Methods

When factorization methods are applied, the representation of the decomposition is

generally chosen in accordance with the data, despite the fact that most real square

matrices only have eigenvalues in the complex domain. Indeed in the machine learn-

ing community, the data is usually real-valued, and thus eigendecomposition is used

for symmetric matrices, or other decompositions such as (real-valued) singular value

decomposition [Beltrami, 1873], non-negative matrix factorization [Paatero and Tapper,

1994], or canonical polyadic decomposition when it comes to tensors [Hitchcock, 1927].

Conversely, in signal processing, data is often complex-valued [Stoica and Moses, 2005]

and the complex-valued counterparts of these decompositions are then used. Joint diago-

nalization is also a much more common tool than in machine learning for decomposing

sets of (complex) dense square matrices [Belouchrani et al., 1997; De Lathauwer et al.,

2001]. Classic complex matrix decompositions and their properties are clearly exposed in

Horn and Johnson [2012].

Some little-known work in analysis of dense square matrices relates to our contribution, as

they consider complex-valued spectral models for asymmetric real-valued square matrices

[Chino, 2002]. In particular, Escoufier and Grorud [1980] proposed to encode real-valued

square matrices as complex-valued Hermitian matrices, where the real-part corresponds

to the symmetric part of the real-valued matrix, and the imaginary part corresponds to

the the antisymmetric part of the real-valued matrix.

Some works on recommender systems use complex numbers as an encoding facility, to

merge two real-valued relations, similarity and liking, into one single complex-valued
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matrix which is then decomposed with complex embeddings [Kunegis et al., 2012; Xie

et al., 2015]. Still, unlike our work, it is not real data that is decomposed in the complex

domain. In deep learning, Danihelka et al. [2016] proposed an long short-term memory

network extension with an associative memory based on complex-valued vectors for

memorization tasks, and Hu et al. [2016] a complex-valued neural network for speech

synthesis. In both cases again, the data is first encoded in complex vectors that are then

fed into the network.

Conversely to these contributions, this work suggests that processing real-valued data

with complex-valued representations, through a projection onto the real-valued subspace,

can be a very simple way of increasing the expressiveness of the model considered.





Chapter 3

Complex-Valued Tensor

Factorization and Completion

In this chapter we describe a new tensor factorization and completion model, based on

complex-valued factor matrices. Each row in these matrices represents one entity or one

relations, these vectors are called embeddings. In the previous chapter, we have seen that

recent proposals resorts to more and more complicated scoring function to increase their

expressiveness. Here we argue that the standard dot product between embeddings can be

a very effective scoring function, provided that one uses the right representation: instead

of using embeddings containing real numbers, we discuss and demonstrate the capabilities

of complex embeddings. When using complex vectors, that is vectors with entries in C,

the dot product is often called the Hermitian (or sesquilinear) dot product, as it involves

the conjugate-transpose of one of the two vectors. As a consequence, the dot product

is not symmetric any more, and facts about one relation can receive different scores

depending on the ordering of the entities involved in the fact. In summary, complex

embeddings naturally represent arbitrary relations while retaining the efficiency of a dot

product, that is linearity in both space and time complexity.

We first provide justification and intuition for using complex embeddings in the square

matrix case, where there is only a single type of relation between entities, and show the

existence of the proposed decomposition for all possible relations. The formulation is

then extended to a stacked set of square matrices in a third-order tensor to represent

multiple relations. We then describe a stochastic gradient descent algorithm to learn the

model on partially-observed tensors, where we present an equivalent reformulation of

the proposed model that involves only real embeddings. This should help practitioners

when implementing our method, without requiring the use of complex numbers in their

29
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software implementation. Finally, we study the theoretical links with a simultaneously

and independently proposed model, HolE [Nickel et al., 2016b].

3.1 Relations as the Real Parts of Low-Rank Normal Ma-

trices

We consider in this section a simplified link prediction task with a single relation, and

introduce complex embeddings for low-rank matrix factorization.

We will first discuss the desired properties of embedding models, show how this problem

relates to the spectral theorems, and discuss the classes of matrices these theorems encom-

pass in the real and in the complex case. We then propose a new matrix decomposition—to

the best of our knowledge—and a proof of its existence for all real square matrices. Finally

we discuss the rank of the proposed decomposition.

3.1.1 Modeling Relations

Let E be a set of entities, with n := Ne = |E| to have lighter notations in this chapter.

The truth of the single relation holding between two entities is represented by a sign

value yso ∈ {−1, 1}, where 1 represents true facts and -1 false facts, s ∈ E is the subject

entity and o ∈ E is the object entity. The probability for the relation holding true is

given by

P (yso = 1) = σ(xso) (3.1)

where X ∈ R
n×n is a latent matrix of scores indexed by the subject (rows) and object

entities (columns), Y is a partially-observed sign matrix indexed in identical fashion, and

σ is a suitable sigmoid function. Throughout this manuscript we use the logistic inverse

link function σ(x) = 1
1+e−x .

3.1.1.1 Handling Both Asymmetry and Unique Entity Embeddings

In this work we pursue three objectives: finding a generic structure for X that leads to (i)

a computationally efficient model, (ii) an expressive enough approximation of common

relations in real world knowledge graphs, and (iii) good generalization performances

in practice. Standard matrix factorization approximates X by a matrix product UV ⊤,

where U and V are two functionally-independent n×K matrices, K being the rank of

the matrix. Within this formulation it is assumed that entities appearing as subjects

are different from entities appearing as objects. This extensively studied type of model
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is closely related to the singular value decomposition (SVD) and fits well with the case

where the matrix X is rectangular, as explained in Section 2.3.1.

However, in many knowledge graph completion problems, the same entity i can appear

as both subject or object and will have two different embedding vectors, ui and vi,

depending on whether it appears as subject or object of a relation. It seems natural

to learn unique embeddings of entities, as initially proposed by Nickel et al. [2011] and

Bordes et al. [2011] and since then used systematically in other prominent approaches

[Bordes et al., 2013b; Yang et al., 2015; Socher et al., 2013]. In the factorization setting,

using the same embeddings for left- and right-side factors boils down to a specific case of

eigenvalue decomposition: orthogonal diagonalization.

Definition 1. A real square matrix X ∈ R
n×n is orthogonally diagonalizable if it can be

written as X = EWE⊤, where E,W ∈ R
n×n, W is diagonal, and E orthogonal so that

EE⊤ = E⊤E = I where I is the identity matrix.

The spectral theorem for symmetric matrices tells us that a matrix is orthogonally

diagonalizable if and only if it is symmetric [Cauchy, 1829]. It is therefore often used to

approximate covariance matrices, kernel functions and distance or similarity matrices.

However as previously stated, this paper is explicitly interested in problems where

matrices—and thus the relation patterns they represent—can also be antisymmetric, or

even not have any particular symmetry pattern at all (asymmetry). In order to both use

a unique embedding for entities and extend the expressiveness to asymmetric relations,

researchers have generalised the notion of dot products to scoring functions, also known

as composition functions, that allow more general combinations of embeddings. We recall

several examples of scoring functions in Table 2.2.

These models propose different trade-offs between the three essential points:

• Expressiveness, which is the ability to represent symmetric, antisymmetric and

more generally asymmetric relations.

• Scalability, which means keeping linear time and space complexity scoring function.

• Generalization, for which having unique entity embeddings is critical.

RESCAL [Nickel et al., 2011] and NTN [Socher et al., 2013] are very expressive, but their

scoring functions have quadratic complexity in the rank of the factorization. DistMult

[Yang et al., 2015] can be seen as a joint orthogonal diagonalization with real embeddings,

hence handling only symmetric relations. Conversely, TransE [Bordes et al., 2013b]

handles symmetric relations to the price of strong constraints on its entity embeddings, as
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explained in the previous chapter. The canonical-polyadic decomposition (CP) [Hitchcock,

1927] generalizes poorly with its different embeddings for entities as subject and as object.

We reconcile expressiveness, scalability and generalization by going back to the realm of

well-studied matrix factorizations, and making use of complex linear algebra, a scarcely

used tool in the machine learning community.

3.1.1.2 Decomposition in the Complex Domain

We introduce a new decomposition of real square matrices using unitary diagonalization,

the generalization of orthogonal diagonalization to complex matrices. This allows

decomposition of arbitrary real square matrices with unique representations of rows and

columns.

Let us first recall some notions of complex linear algebra as well as specific cases of

diagonalization of real square matrices, before building our proposition upon these results.

A complex-valued vector x ∈ C
K , with x = Re(x) + iIm(x) is composed of a real part

Re(x) ∈ R
K and an imaginary part Im(x) ∈ R

K , where i denotes the square root

of −1. The conjugate x of a complex vector inverts the sign of its imaginary part:

x = Re(x)− iIm(x).

Conjugation appears in the usual dot product for complex numbers, called the Hermitian

product, or sesquilinear form, which is defined as:

〈u, v〉 := ū⊤v

= Re(u)⊤Re(v) + Im(u)⊤Im(v)

+i(Re(u)⊤Im(v)− Im(u)⊤Re(v)) .

A simple way to justify the Hermitian product for composing complex vectors is that it

provides a valid topological norm in the induced vector space. For example, x̄⊤x = 0

implies x = 0 while this is not the case for the bilinear form x⊤x as there are many

complex vectors x for which x⊤x = 0.

This yields an interesting property of the Hermitian product concerning the order of the

involved vectors: 〈u, v〉 = 〈v, u〉, meaning that the real part of the product is symmetric,

while the imaginary part is antisymmetric.

For matrices, we shall write X∗ ∈ C
n×m for the conjugate-transpose X∗ = (X)⊤ = X⊤.

The conjugate transpose is also often written X† or XH.
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Definition 2. A complex square matrix X ∈ C
n×n is unitarily diagonalizable if it can be

written as X = EWE∗, where E,W ∈ C
n×n, W is diagonal, and E is unitary such that

EE∗ = E∗E = I.

Definition 3. A complex square matrix X is normal if it commutes with its conjugate-

transpose so that XX∗ = X∗X.

We can now state the spectral theorem for normal matrices.

Theorem 1 (Spectral theorem for normal matrices, von Neumann [1929]). Let X be a

complex square matrix. Then X is unitarily diagonalizable if and only if X is normal.

It is easy to check that all real symmetric matrices are normal, and have pure real

eigenvectors and eigenvalues. But the set of purely real normal matrices also includes all

real antisymmetric matrices (useful to model hierarchical relations such as IsOlder), as

well as all real orthogonal matrices (including permutation matrices), and many other

matrices that are useful to represent binary relations, such as assignment matrices which

represent bipartite graphs. However, far from all matrices expressed as X = EWE∗ are

purely real, and Equation (3.1) requires the scores X to be purely real.

As we only focus on real square matrices in this work, let us summarize all the cases where

X is real square and X = EWE∗ if X is unitarily diagonalizable, where E,W ∈ C
n×n,

W is diagonal and E is unitary:

• X is symmetric if and only if X is orthogonally diagonalizable and E and W are

purely real.

• X is normal and non-symmetric if and only if X is unitarily diagonalizable and E

and W are not both purely real.

• X is not normal if and only if X is not unitarily diagonalizable.

We generalize all three cases by showing that, for any X ∈ R
n×n, there exists a unitary

diagonalization in the complex domain, of which the real part equals X:

X = Re(EWE∗) . (3.2)

In other words, the unitary diagonalization is projected onto the real subspace.

Theorem 2. Suppose X ∈ R
n×n is a real square matrix. Then there exists a normal

matrix Z ∈ C
n×n such that Re(Z) = X.
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Proof. Let Z := X + iX⊤. Then

Z∗ = X⊤ − iX = −i(iX⊤ +X) = −iZ ,

so that

ZZ∗ = Z(−iZ) = (−iZ)Z = Z∗Z .

Therefore Z is normal.

Note that there also exists a normal matrix Z = X⊤ + iX such that Im(Z) = X.

Following Theorem 1 and Theorem 2, any real square matrix can be written as the real

part of a complex diagonal matrix through a unitary change of basis.

Corollary 1. Suppose X ∈ R
n×n is a real square matrix. Then there exist E,W ∈ C

n×n,

where E is unitary, and W is diagonal, such that X = Re(EWE∗).

Proof. From Theorem 2, we can write X = Re(Z), where Z is a normal matrix, and

from Theorem 1, Z is unitarily diagonalizable.

Applied to the knowledge graph completion setting, the rows of E here are vectorial

representations of the entities corresponding to rows and columns of the relation score

matrix X. The score for the relation holding true between entities s and o is hence

xso = Re(e⊤s Wēo) (3.3)

where es, eo ∈ C
n and W ∈ C

n×n is diagonal. For a given entity, its subject embedding

vector is the complex conjugate of its object embedding vector.

To illustrate this difference of expressiveness with respect to real-valued embeddings, let

us consider two complex embeddings es, eo ∈ C of dimension 1, with arbitrary values:

es = 1 − 2i, and eo = −3 + i; as well as their real-valued, twice-bigger counterparts:

e′s =
(

1
−2

)

∈ R
2 and e′o =

(

−3
1

)

∈ R
2. In the real-valued case, that corresponds to the

DistMult model [Yang et al., 2015], the score is xso = e′⊤s W ′e′o. Figure 3.1 represents

the heatmaps of the scores xso and xos, as a function of W ∈ C in the complex-valued

case, and as a function of W ′ ∈ R
2 diagonal in the real-valued case. In the real-valued

case, that is symmetric in the subject and object entities, the scores xso and xos are equal

for any value of W ′ ∈ R
2 diagonal. Whereas in the complex-valued case, the variation of

W ∈ C allows to score xso and xos with any desired pair of values.
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In general, there are many other possible couples of matrices E and W that preserve

the real part of the decomposition. In practice however this is no synonym of low

generalization abilities, as many effective matrix and tensor decomposition methods

used in machine learning lead to non-unique solutions [Paatero and Tapper, 1994; Nickel

et al., 2011]. In this case also, the learned representations prove useful as shown in the

experimental section.

3.1.2 Low-Rank Decomposition

Addressing knowledge graph completion with data-driven approaches assumes that there

is a sufficient regularity in the observed data to generalize to unobserved facts. When

formulated as a matrix completion problem, as it is the case in this section, one way of

implementing this hypothesis is to make the assumption that the matrix has low rank

or approximately low rank. We first discuss the rank of the proposed decomposition,

and then introduce the sign-rank and extend the bound developed on the rank to the

sign-rank.

3.1.2.1 Rank Upper Bound

First, we recall one definition of the rank of a matrix [Horn and Johnson, 2012].

Definition 4. The rank of an m-by-n complex matrix rank(X) = rank(X⊤) = k, if X

has exactly k linearly independent columns.

Also note that if X is diagonalizable so that X = EWE−1 with rank(X) = k, then W

has k non-zero diagonal entries for some diagonal W and some invertible matrix E. From

this it is easy to derive a known additive property of the rank:

rank(B + C) ≤ rank(B) + rank(C) (3.4)

where B,C ∈ C
m×n.

We now show that any rank k real square matrix can be reconstructed from a 2k-

dimensional unitary diagonalization.

Corollary 2. Suppose X ∈ R
n×n and rank(X) = k. Then there exist E ∈ C

n×2k such

that the columns of E form an orthonormal basis of C2k, W ∈ C
2k×2k is diagonal, and

X = Re(EWE∗).

Proof. Consider the complex square matrix Z := X + iX⊤. We have rank(iX⊤) =

rank(X⊤) = rank(X) = k.
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From Equation (3.4), rank(Z) ≤ rank(X) + rank(iX⊤) = 2k.

The proof of Theorem 2 shows that Z is normal. Thus Z = EWE∗ with E ∈ C
n×2k,

W ∈ C
2k×2k where the columns of E form an orthonormal basis of C

2k, and W is

diagonal.

Since E is not necessarily square, we replace the unitary requirement of Corollary 1 by

the requirement that its columns form an orthonormal basis of its smallest dimension,

2k.

Also, given that such decomposition always exists in dimension n (Theorem 2), this

upper bound is not relevant when rank(X) ≥ n
2 .

3.1.2.2 Sign-Rank Upper Bound

Since we encode the truth values of each fact with ±1, we deal with square sign matrices :

Y ∈ {−1, 1}n×n. Sign matrices have an alternative rank definition, the sign-rank.

Definition 5. The sign-rank rank±(Y ) of an m-by-n sign matrix Y, is the rank of the

m-by-n real matrix of least rank that has the same sign-pattern as Y, so that

rank±(Y ) := min
X∈Rm×n

{rank(X) | sign(X) = Y } ,

where sign(X)ij = sign(xij).

We define the sign function of c ∈ R as

sign(c) =

{

1 if c ≥ 0

−1 otherwise

where the value c = 0 is here arbitrarily assigned to 1 to allow zero entries in X, conversely

to the stricter usual definition of the sign-rank.

To make generalization possible, we hypothesize that the true matrix Y has a low

sign-rank, and thus can be reconstructed by the sign of a low-rank score matrix X.

The low sign-rank assumption is theoretically justified by the fact that the sign-rank

is a natural complexity measure of sign matrices [Linial et al., 2007a] and is linked

to learnability [Alon et al., 2016] and empirically confirmed by the wide success of

factorization models [Nickel et al., 2016a].

Using Corollary 2, we can now show that any square sign matrix of sign-rank k can be

reconstructed from a rank 2k unitary diagonalization.
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Corollary 3. Suppose Y ∈ {−1, 1}n×n, rank±(Y ) = k. Then there exists E ∈ C
n×2k,

W ∈ C
2k×2k where the columns of E form an orthonormal basis of C

2k, and W is

diagonal, such that Y = sign(Re(EWE∗)).

Proof. By definition, if rank±(Y ) = k, there exists a real square matrix X such that

rank(X) = k and sign(X) = Y . From Corollary 2, X = Re(EWE∗) where E ∈ C
n×2k,

W ∈ C
2k×2k where the columns of E form an orthonormal basis of C

2k, and W is

diagonal.

Previous attempts to approximate the sign-rank in relational learning did not use complex

numbers. Previous work showed the existence of compact factorizations under conditions

on the sign matrix [Nickel et al., 2014]. Our results show that if a square sign matrix

has sign-rank k, then it can be exactly decomposed through a 2k-dimensional unitary

diagonalization.

Although we can only show the existence of a complex decomposition of rank 2k for a

matrix with sign-rank k, the sign rank of Y is often much lower than the rank of Y ,

as we do not know any matrix Y ∈ {−1, 1}n×n for which rank±(Y ) >
√
n [Alon et al.,

2016]. For example, the n× n identity matrix has rank n, but its sign-rank is only 3! By

swapping the columns 2j and 2j − 1 for j in 1, . . . , n2 , the identity matrix corresponds to

the relation marriedTo, a relation known to be hard to factorize over the reals [Nickel

et al., 2014], since the rank is invariant by row/column permutations. Yet our model can

express it at most in rank 6, for any n.

Hence, by enforcing a low-rank K ≪ n on EWE∗, individual relation scores xso =

Re(e⊤s Wēo) between entities s and o can be efficiently predicted, as es, eo ∈ C
K and

W ∈ C
K×K is diagonal.

Finding the K that matches the sign-rank of Y corresponds to finding the smallest K

that brings the 0–1 loss on X to 0, as link prediction can be seen as binary classification

of the facts. In practice, and as classically done in machine learning to avoid this NP-hard

problem, we use a continuous surrogate of the 0–1 loss, in this case the logistic loss as

described in Section 3.3, and validate models on different values of K, as described in

Chapter 4.

3.1.2.3 Rank Bound Discussion

Corollaries 2 and 3 use the aforementioned subadditive property of the rank to derive the

2k upper bound. Let us give an example for which this bound is strictly greater than k.
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Consider the following 2-by-2 sign matrix:

Y =

[

−1 −1
1 1

]

.

Not only is this matrix not normal, but one can also easily check that there is no real

normal 2-by-2 matrix that has the same sign-pattern as Y . Clearly, Y is a rank 1 matrix

since its columns are linearly dependent, hence its sign-rank is also 1. From Corollary 3,

we know that there is a normal matrix whose real part has the same sign-pattern as Y ,

and whose rank is at most 2.

However, there is no rank 1 unitary diagonalization of which the real part equals Y .

Otherwise we could find a 2-by-2 complex matrix Z such that Re(z11) < 0 and Re(z22) > 0,

where z11 = e1wē1 = w|e1|2, z22 = e2wē2 = w|e2|2, e ∈ C
2, w ∈ C. This is obviously

unsatisfiable. This example generalizes to any n-by-n square sign matrix that only has

−1 on its first row and is hence rank 1, the same argument holds considering Re(z11) < 0

and Re(znn) > 0.

This example shows that the upper bound on the rank of the unitary diagonalization

showed in Corollaries 2 and 3 can be strictly greater than k, the rank or sign-rank, of the

decomposed matrix. However, there might be other examples for which the addition of

an imaginary part could—additionally to making the matrix normal—create some linear

dependence between the rows/columns and thus decrease the rank of the matrix, up to a

factor of 2.

We summarize this section in three points:

1. The proposed factorization encompasses all possible score matrices X for a single

binary relation.

2. By construction, the factorization is well suited to represent both symmetric and

antisymmetric relations.

3. Relation patterns can be efficiently approximated with a low-rank factorization

using complex-valued embeddings.

3.2 Extension to Multi-Relational Data

Let us now extend the previous discussion to models with multiple relations. Let R be

the set of relations, with m := Nr = |R|. We shall now write X ∈ R
m×n×n for the score
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tensor, Xr ∈ R
n×n for the score matrix of the relation r ∈ R, and Y ∈ {−1, 1}m×n×n

for the partially-observed sign tensor.

Given one relation r ∈ R and two entities s, o ∈ E , the probability that the fact r(s,o) is

true given by

P (yrso = 1) = σ(xrso) = σ(φ(r, s, o; Θ)) (3.5)

where φ is the scoring function of the model considered and Θ denotes the model

parameters. We recall that we denote the set of all possible facts (or triples) for a

knowledge graph by T = R × E × E . While the tensor X as a whole is unknown, we

assume that we observe a set of true and false triples Ω = {((r, s, o), yrso) | (r, s, o) ∈ TΩ}
where yrso ∈ {−1, 1} and TΩ ⊂ T is the set of observed triples. The goal is to find the

probabilities of entries yr′s′o′ for a set of targeted unobserved triples {(r′, s′, o′) ∈ T \TΩ}.

Depending on the scoring function φ(r, s, o; Θ) used to model the score tensor X, we

obtain different models. Examples of scoring functions are given in Table 2.2.

3.2.1 Complex Factorization Extension to Tensors

The single-relation model is extended by jointly factorizing all the square matrices of

scores into a 3rd-order tensor X ∈ R
m×n×n, with a different diagonal matrix Wr ∈ C

K×K

for each relation r, and by sharing the entity embeddings E ∈ C
n×K across all relations:

φ(r, s, o; Θ) = Re(e⊤s Wrēo)

= Re(

K
∑

k=1

wrkeskēok)

= Re(〈wr, es, ēo〉) (3.6)

where K is the rank hyperparameter, es, eo ∈ C
K are the rows in E corresponding to

the entities s and o, wr = diag(Wr) ∈ C
K is a complex vector, and 〈a, b, c〉 :=∑k akbkck

is the component-wise multilinear dot product1. For this scoring function, the set of

parameters Θ is {ei, wr ∈ C
K , i ∈ E , r ∈ R}. This resembles the real part of a complex

matrix decomposition as in the single-relation case discussed above. However, we now

have a different vector of eigenvalues for every relation. Expanding the real part of this

1This is not the Hermitian extension of the multilinear dot product as there appears to be no standard
definition of the Hermitian multilinear product in the linear algebra litterature.
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product gives:

Re(〈wr, es, ēo〉) = 〈Re(wr),Re(es),Re(eo)〉
+ 〈Re(wr), Im(es), Im(eo)〉
+ 〈Im(wr),Re(es), Im(eo)〉
− 〈Im(wr), Im(es),Re(eo)〉 . (3.7)

These equations provide two interesting views of the model:

• Changing the representation: Equation (3.6) would correspond to DistMult with

real embeddings (see Table 2.2), but handles asymmetry thanks to the complex

conjugate of the object-entity embedding.

• Changing the scoring function: Equation (3.7) only involves real vectors corre-

sponding to the real and imaginary parts of the embeddings and relations.

By separating the real and imaginary parts of the relation embedding wr as shown in

Equation (3.7), it is apparent that these parts naturally act as weights on each latent

dimension: Re(wr) over the real part of 〈eo, es〉 which is symmetric, and Im(w) over the

imaginary part of 〈eo, es〉 which is antisymmetric.

Indeed, the decomposition of each score matrix Xr for each r ∈ R can be written as the

sum of a symmetric matrix and an antisymmetric matrix. To see this, let us rewrite the

decomposition of each score matrix Xr in matrix notation. We write the real part of

matrices with primes E′ = Re(E) and imaginary parts with double primes E′′ = Im(E):

Xr = Re(EWrE
∗)

= Re((E′ + iE′′)(W ′r + iW ′′r )(E
′ − iE′′)⊤)

= (E′W ′rE
′⊤ + E′′W ′rE

′′⊤) + (E′W ′′r E
′′⊤ − E′′W ′′r E

′⊤) . (3.8)

It is trivial to check that the matrix E′W ′rE
′⊤ + E′′W ′rE

′′⊤ is symmetric and that the

matrix E′W ′′r E
′′⊤−E′′W ′′r E

′⊤ is antisymmetric. Hence this model is well suited to model

jointly symmetric and antisymmetric relations between pairs of entities, while still using

the same entity representations for subjects and objects. When learning, it simply needs

to collapse W ′′r = Im(Wr) to zero for symmetric relations r ∈ R, and W ′r = Re(Wr) to

zero for antisymmetric relations r ∈ R, as Xr is indeed symmetric when Wr is purely

real, and antisymmetric when Wr is purely imaginary.
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From a geometrical point of view, each relation embedding wr is an anisotropic scaling

of the basis defined by the entity embeddings E, followed by a projection onto the real

subspace.

3.2.2 Existence of the Tensor Factorization

Let us first discuss the existence of the multi-relational model where the rank of the

decomposition K ≤ n, which relates to simultaneous unitary decomposition.

Definition 6. A family of matrices X1, . . . , Xm ∈ C
n×n is simultaneously unitarily

diagonalizable, if there is a single unitary matrix E ∈ C
n×n, such that Xi = EWiE

∗ for

all i in 1, . . . ,m, where Wi ∈ C
n×n are diagonal.

Definition 7. A family of normal matrices X1, . . . , Xm ∈ C
n×n is a commuting family of

normal matrices, if XiX
∗
j = X∗i Xj , for all i, j in 1, . . . ,m.

Theorem 3 (see Horn and Johnson [2012]). Suppose F is the family of matrices X1, . . .

, Xm ∈ C
n×n. Then F is a commuting family of normal matrices if and only if F is

simultaneously unitarily diagonalizable.

To apply Theorem 3 to the proposed factorization, we would have to make the hypothesis

that the relation score matrices Xr are a commuting family, which is too strong a

hypothesis. Actually, the model is slightly different since we take only the real part

of the tensor factorization. In the single-relation case, taking only the real part of the

decomposition rids us of the normality requirement of Theorem 1 for the decomposition

to exist, as shown in Theorem 2.

In the multiple-relation case, it is an open question whether taking the real part of the

simultaneous unitary diagonalization will enable us to decompose families of arbitrary

real square matrices—that is with a single unitary matrix E that has at most n columns.

Though it seems unlikely, we could not find a counter-example yet.

However, by letting the rank of the tensor factorization K to be greater than n, we can

show that the proposed tensor decomposition exists for families of arbitrary real square

matrices, by simply concatenating the decomposition of Theorem 2 of each real square

matrix Xi.

Theorem 4. Suppose X1, . . . , Xm ∈ R
n×n. Then there exists E ∈ C

n×nm and Wi ∈
C
nm×nm are diagonal, such that Xi = Re(EWiE

∗) for all i in 1, . . . ,m.

Proof. From Theorem 2 we have Xi = Re(EiWiE
∗
i ), where Wi ∈ C

n×n is diagonal, and

each Ei ∈ C
n×n is unitary for all i in 1, . . . ,m.
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Let E = [E1 . . . Em], and

Λi =









0((i−1)n)×((i−1)n)

Wi

0((m−i)n)×((m−i)n)









where 0l×l the zero l × l matrix. Therefore Xi = Re(EΛiE
∗) for all i in 1, . . . ,m.

By construction, the rank of the decomposition is at most nm. When m ≤ n, this bound

actually matches the general upper bound on the rank of the canonical polyadic (CP)

decomposition [Hitchcock, 1927; Kruskal, 1989]. Since m corresponds to the number

of relations and n to the number of entities, m is always smaller than n in real world

knowledge graphs, hence the bound holds in practice.

Though when it comes to relational learning, we might expect the actual rank to be much

lower than nm for two reasons. The first one, as discussed above, is that we are dealing

with sign tensors, hence the rank of the matrices Xr need only match the sign-rank of

the partially-observed matrices Yr. The second one is that the matrices are related to

each other, as they all represent the same entities in different relations, and thus benefit

from sharing latent dimensions. As opposed to the construction exposed in the proof

of Theorem 4, where other relations dimensions are canceled out. In practice, the rank

needed to generalize well is indeed much lower than nm as we show experimentally in

Figure 4.7.

Also, note that with the construction of the proof of Theorem 4, the matrix E =

[E1 . . . Em] is not unitary any more. However the unitary constraints in the matrix case

serve only the proof of existence, which is just one solution among the infinite ones of

same rank. In practice, imposing orthonormality is essentially a numerical commodity

for the decomposition of dense matrices, through iterative methods for example [Saad,

1992]. When it comes to matrix and tensor completion, and thus generalisation, imposing

such constraints is more of a numerical hassle than anything else, especially for gradient

methods. As there is no apparent link between orthonormality and generalisation

properties, we did not impose these constraints when learning the model.

3.3 Algorithm

Algorithm 1 describes stochastic gradient descent (SGD) to learn the proposed multi-

relational model with the AdaGrad learning-rate updates [Duchi et al., 2011]. Stochastic

gradient descent is a natural and scalable way of respecting the open-world assumption,
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that is treating missing triples as missing instead of negatives. We refer to the proposed

model as ComplEx, for Complex Embeddings. We expose a version of the algorithm that

uses only real-valued vectors, in order to facilitate its implementation. To do so, we use

separate real-valued representations of the real and imaginary parts of the embeddings.

These real and imaginary part vectors are initialized with vectors having a zero-mean

normal distribution with unit variance. If the training set Ω contains only positive triples,

negatives are generated for each batch using the local closed-world assumption as in

Bordes et al. [2013b]. That is, for each triple, we randomly change either the subject

or the object, to form a negative example. In this case the parameter η > 0 sets the

number of negative triples to generate for each positive triple. Collision with positive

triples in Ω is not checked, as it occurs rarely in real world knowledge graphs as they are

largely sparse, and may also be computationally expensive.

Squared gradients are accumulated to compute AdaGrad learning rates, then gradients

are updated. Every s iterations, the parameters Θ are evaluated over the evaluation set

Ωv (evaluate AP or MRR(Ωv; Θ) function in Algorithm 1). If the data set contains both

positive and negative examples, average precision (AP) is used to evaluate the model. If

the data set contains only positives, then mean reciprocal rank (MRR) is used as average

precision cannot be computed without true negatives. The ranking of each validation

triple r(s, o) is computed among all possible subject and object substitutions : r(s′, o)

and r(s, o′), for each s′, o′ in E , as used in previous studies [Bordes et al., 2013b; Nickel

et al., 2016b]. Substituted triples that are in the train set are removed for computing

the rankings, which is known as filtered MRR. The optimization process is stopped when

the measure considered decreases compared to the last evaluation (early stopping).

Bern(p) is the Bernoulli distribution, the one random sample(E) function sample uni-

formly one entity in the set of all entities E , and the sample batch of size b(Ω, b) function

sample b true and false triples uniformly at random from the training set Ω.

For a given embedding size K, let us rewrite Equation (3.7), by denoting the real part

of embeddings with primes and the imaginary part with double primes: e′i = Re(ei),

e′′i = Im(ei), w
′
r = Re(wr), w

′′
r = Im(wr). The set of parameters is Θ = {e′i, e′′i , w′r, w′′r ∈

R
K , i ∈ E , r ∈ R}, and the scoring function involves only real vectors:

φ(r, s, o; Θ) =
〈

w′r, e
′
s, e
′
o

〉

+
〈

w′r, e
′′
s , e
′′
o

〉

+
〈

w′′r , e
′
s, e
′′
o

〉

−
〈

w′′r , e
′′
s , e
′
o

〉

(3.9)

where each entity and each relation has two real embeddings.
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Gradients are now easy to write:

∇e′s
φ(r, s, o; Θ) = (w′r ⊙ e′o) + (w′′r ⊙ e′′o),

∇e′′s
φ(r, s, o; Θ) = (w′r ⊙ e′′o)− (w′′r ⊙ e′o),

∇e′o
φ(r, s, o; Θ) = (w′r ⊙ e′s) − (w′′r ⊙ e′′s),

∇e′′o
φ(r, s, o; Θ) = (w′r ⊙ e′′s) + (w′′r ⊙ e′s),

∇w′
r
φ(r, s, o; Θ) = (e′s ⊙ e′o) + (e′′s ⊙ e′′o),

∇w′′
r
φ(r, s, o; Θ) = (e′s ⊙ e′′o)− (e′′s ⊙ e′o),

where ⊙ is the element-wise (Hadamard) product.

We optimized the negative log-likelihood of the logistic model described in Equation (3.5)

with L2 regularization on the entity and relation embeddings in Θ:

L(Ω;Θ) =
∑

((r,s,o),y)∈Ω

log(1 + exp(−yφ(r, s, o; Θ))) + λ||Θ{r,s,o}||22 (3.10)

where λ ∈ R+ is the regularization parameter.

To handle regularization, note that using separate representations for the real and

imaginary parts does not change anything as the squared L2-norm of a complex vector

v = v′ + iv′′ is the sum of the squared modulus of each entry:

||v||22 =
∑

j

√

v′2j + v′′2j
2

=
∑

j

v′2j +
∑

j

v′′2j

= ||v′||22 + ||v′′||22 ,

which is actually the sum of the L2-norms of the vectors of the real and imaginary parts.

We can finally write the gradient of L with respect to a real embedding v for one triple

(r, s, o) and its truth value y:

∇vL({((r, s, o), y)}; Θ) = −yσ(−yφ(r, s, o; Θ))∇vφ(r, s, o; Θ) + 2λv . (3.11)
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Algorithm 1 Stochastic gradient descent with AdaGrad for the ComplEx model

Input Training set Ω, validation set Ωv, learning rate α ∈ R++, rank K ∈ Z++, L
2

regularization factor λ ∈ R+, negative ratio η ∈ Z++, batch size b ∈ Z++, maximum

iteration m ∈ Z++, validate every s ∈ Z++ iterations, AdaGrad regularizer ǫ = 10−8.

Output Embeddings e′, e′′, w′, w′′.

e′i ∼ N (0k, Ik×k) , e′′i ∼ N (0k, Ik×k) for each i ∈ E
w′i ∼ N (0k, Ik×k), w′′i ∼ N (0k, Ik×k) for each i ∈ R
ge′i ← 0k , ge′′i ← 0k for each i ∈ E
gw′

i
← 0k , gw′′

i
← 0k for each i ∈ R

previous score← 0

for i = 1, . . . ,m do

for j = 1, . . . , |Ω|/b do

Ωb ← sample batch of size b(Ω, b)

// Negative sampling:

Ωn ← {∅}
for ((r, s, o), y) in Ωb do

for l = 1, . . . , η do

e← one random sample(E)
if Bern(0.5) > 0.5 then

Ωn ← Ωn ∪ {((r, e, o),−1)}
else

Ωn ← Ωn ∪ {((r, s, e),−1)}
end if

end for

end for

Ωb ← Ωb ∪ Ωn

for ((r, s, o), y) in Ωb do

for v in Θ do

// AdaGrad updates:

gv ← gv + (∇vL({((r, s, o), y)}; Θ))2

// Gradient updates:

v ← v − α
gv+ǫ
∇vL({((r, s, o), y)}; Θ)

end for

end for

end for

// Early stopping

if i mod s = 0 then

current score← evaluate AP or MRR(Ωv; Θ)

if current score ≤ previous score then

break

end if

previous score← current score

end if

end for

return Θ



Complex-Valued Tensor Factorization and Completion 47

3.4 Link with Holographic Embeddings

In this section we investigate the link between the proposed ComplEx model, and a

simultaneously and independently proposed model, the holographic embeddings (HolE)

[Nickel et al., 2016b]. We show that they have equivalent scoring functions, up to a

constant factor, but that ComplEx’s formulation of the scoring function has a lower

time complexity. A similar proof as independently been proposed by Hayashi and Shimbo

[2017].

We will consider discrete Fourier transform (DFT) of purely real vectors only : F : RK →
C
K . For j ∈ {0, . . . ,K − 1}:

F(x)j =
K−1
∑

k=0

xke
−2iπj k

K (3.12)

where F(x)j ∈ C is the jth value in the resulting complex vector F(x) ∈ C
K . Note that

the vector components in Equation (3.12) are indexed from 0 to K − 1.

The holographic embeddings model (HolE) represents relations and entities with real-

valued embeddings E ∈ R
Ne×K , W ∈ R

Nr×K , and scores a triple (r, s, o) with the

dot product between the embedding of the relation p and the circular correlation ⋆ :

R
K × R

K → R
K of the embeddings of entities s and o:

φh(r, s, o) = w⊤r (es ⋆ eo) . (3.13)

The circular correlation can be written with the discrete Fourier transform (DFT),

es ⋆ eo = F−1(F(es)⊙F(eo)) (3.14)

where F−1 : CK → C
K is the inverse DFT. In this case, the embedding vectors are real

es, eo, wr ∈ R
K , and so is the result of the inverse DFT, since the circular correlation of

real-valued vectors results in a real-valued vector.

We recall the scoring function of the proposed model (ComplEx), that represents

relations and entities with complex-valued embeddings E ∈ C
Ne×K , W ∈ C

Nr×K , and

scores a triple (r, s, o) with the real part of the trilinear product of the corresponding

embeddings:

φc(r, s, o) = Re (〈wr, es, eo〉) (3.15)

where es, eo, wr ∈ C
K are complex vectors, and eo is the complex conjugate of the vector

eo.

First, recall Parseval’s Theorem:
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Theorem 5. Suppose x, y ∈ R
K are real vectors. Then x⊤y = 1

K
F(x)⊤F(y).

Using Theorem 5 as well as Equations (3.13) and (3.14), we can then rewrite the scoring

function of HolE as:

φh(r, s, o) = w⊤r (es ⋆ eo)

= w⊤r (F−1(F(es)⊙F(eo)))

=
1

K
F(wr)

⊤F(F−1(F(es)⊙F(eo)))

=
1

K
F(wr)

⊤(F(es)⊙F(eo))

=
1

K

〈

F(wr),F(es),F(eo)
〉

. (3.16)

We now derive a property of the DFT on real vectors x, showing that the resulting

complex vector F(x) has a partially symmetric structure, for j ∈ {1, . . . ,K − 1}:

F(x)(K−j) =
K−1
∑

k=0

xke
−2iπ(K−j) k

K

=
K−1
∑

k=0

xke
−2iπke2iπj

k
K

and given that k is an integer: e−2iπk = 1,

=

K−1
∑

k=0

xke
2iπj k

K

=

K−1
∑

k=0

xke
−2iπj k

K

and since xk ∈ R,

=
K−1
∑

k=0

xke
−2iπj k

K

= F(x)j . (3.17)
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Two special cases arise, the first one is F (x)0, which is not concerned by the above

symmetry property:

F(x)0 =
K−1
∑

k=0

xke
−2iπ0 k

K

=

K−1
∑

k=0

xk

=: s(x) ∈ R . (3.18)

And the second one is F (x)K
2

when K is even:

F(x)(K−K
2
) = F(x)K

2

= F(x)K
2

=

K−1
∑

k=0

xke
−2iπKk

2K

=
K−1
∑

k=0

xke
−iπk

=

K
2
−1
∑

k=0

x2k − x2k+1

=: t(x) ∈ R . (3.19)

From Equations (3.17) to (3.19), we write the general form of the Fourier transform

F(x) ∈ C
K of a real vector x ∈ R

K :

F(x) =







[s(x) x′ t(x) x′←], if K is even,

[s(x) x′ x′←], if K is odd.
(3.20)

where x′, x′← ∈ C⌈K2 ⌉−1, with x′ = [F(x)1, . . . ,F(x)⌈K
2
⌉−1], and x′← is x′ in reversed

order: x′← = [F(x)⌈K
2
⌉−1, . . . ,F(x)1].
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We can then derive Equation (3.16) for wr, es, eo ∈ R
K , first with K being odd:

φh(r, s, o) =
1

K

〈

F(wr),F(es),F(eo)
〉

=
1

K

〈

[s(wr) w′r w′r←], [s(es) e′s e′s←], [s(eo) e′o e′o←]
〉

=
1

K

〈

[s(wr) w′r w′r], [s(es) e′s e′s], [s(eo) e′o e′o]
〉

=
1

K

(

s(wr)s(es)s(eo) +
〈

w′r, e
′
s, e
′
o

〉

+
〈

w′r, e
′
s, e
′
o

〉)

=
1

K

(

s(wr)s(es)s(eo) +
〈

w′r, e
′
s, e
′
o

〉

+ 〈w′r, e′s, e′o〉
)

=
1

K

(

s(wr)s(es)s(eo) + 2Re
(〈

w′r, e
′
s, e
′
o

〉))

=
2

K
Re

(〈

[ 3

√

1
2s(wr) w′r], [

3

√

1
2s(es) e′s], [

3

√

1
2s(eo) e′o]

〉)

=
2

K
Re
(〈

w′′r , e
′′
s , e
′′
o

〉)

=
2

K
φc(r, s, o) (3.21)

where w′′r , e
′′
s , e
′′
o ∈ C⌈K2 ⌉. The derivation is similar when K is even, with double prime

vectors being x′′ = [ 3

√

1
2s(x)

3

√

1
2 t(x) x′] ∈ C

K
2
+1.

The two scoring functions are thus directly proportional. Both models have an equal

memory complexity, as the complex vectors w′′r , e
′′
s , e
′′
o ∈ C⌈K2 ⌉ take twice as much memory

as real-valued ones of same size—for a given floating-point precision. Though the complex

formulation of the scoring function brings time complexity from O(K log(K)) down to

O(K).

We investigate in the next chapter the discrepancy of results between our proposal and

HolE results reported in [Nickel et al., 2016b], and postulate that they are due to the

use of two different loss functions. Experiments in Section 4.3.6 correlate with originally

reported results for HolE, and confirm this hypothesis.

3.5 Discussion and Future Directions

Though the proposed decomposition is clearly not unique, we will see in the next

chapter that it is able to learn meaningful representations of entities and relations.

Still, characterizing all possible unitary diagonalizations that preserve the real part is an

interesting open question. Especially in an approximation setting with a constrained rank,

in order to characterize the decompositions that minimize a given reconstruction error.

That might allow the creation of an iterative algorithm similar to eigendecomposition
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iterative methods [Saad, 1992] for computing such a decomposition for any given real

square matrix.

The proposed decomposition could also find applications in many asymmetric square

matrices decompositions applications, such as spectral graph theory for directed graphs

[Cvetković et al., 1997], but also factorization of asymmetric measures matrices such as

asymmetric distance matrices [Mao and Saul, 2004] and asymmetric similarity matrices

[Pirasteh et al., 2015].

From an optimization point of view, the objective function (Equation (3.10)) is clearly

non-convex, and we could indeed not be reaching a globally optimal decomposition using

stochastic gradient descent. Recent results show that there are no spurious local minima

in the completion problem of positive semi-definite matrix [Ge et al., 2016; Bhojanapalli

et al., 2016]. Studying the extensibility of these results to our decomposition is another

possible line of future work. The first step would be generalizing these results to

symmetric real-valued matrix completion, then generalization to normal matrices should

be straightforward. The two last steps would be extending to matrices that are expressed

as real part of normal matrices, and finally to the joint decomposition of such matrices

as a tensor.

Practically, an obvious extension is to merge our approach with known extensions to

tensor factorization models in order to further improve predictive performance. For

example, the use of pairwise embeddings [Riedel et al., 2013; Welbl et al., 2016] together

with complex numbers might lead to improved results in situations that involve non-

compositionality. Adding bigram embeddings to the objective could also improve the

results as shown on other models [Garcia-Duran et al., 2016].

Chapter Summary

We proposed a new matrix and tensor decomposition with complex-valued latent factors

called ComplEx. The decomposition exists for all real square matrices, expressed as

the real part of normal matrices. The result extends to sets of real square matrices—

tensors—and answers to the requirements of the knowledge graph completion task :

handling a large variety of different relations including antisymmetric and asymmetric

ones, while being scalable. We described a stochastic gradient descent algorithm to

learn from partially-observed knowledge graphs, that either contain both positive and

negative triples or only positive ones. Finally we discussed the theoretical links with an

independently proposed model, HolE.





Chapter 4

Experiments and Applications

To evaluate our proposal, we used both synthetic experiments to assess our claims, and

classical link-prediction benchmarks. First, we justify empirically that using the logistic-

loss yields much better generalization with low-ranks than the squared loss on some

typical synthetic relations. In another synthetic experiment, we demonstrate the ability

of the ComplEx model to jointly learn a symmetric and an antisymmetric relations.

Then we evaluate it on classical closed-world datasets: Kinships and UMLS; as well as

classical open-world benchmarks: WN18 and FB15K which are respectively subsets of

WordNet [Fellbaum, 1998] and Freebase [Bollacker et al., 2008]. We also experimentally

explore the discussed theoretical links between HolE and ComplEx. Finally, we propose

a different application of our model for enriching distributed representations of words.

We compared ComplEx to state-of-the-art models, namely TransE [Bordes et al.,

2013b], DistMult [Yang et al., 2015], RESCAL [Nickel et al., 2011] and also to the

canonical polyadic decomposition (CP) [Hitchcock, 1927], to emphasize empirically the

importance of learning unique embeddings for entities. For experimental fairness, we

reimplemented these models within the same framework as the ComplEx model, using

a Theano-based SGD implementation1 [Bergstra et al., 2010].

For the TransE model, results were obtained with its original max-margin loss, as it

turned out to yield better results for this model only. To use this max-margin loss on

data sets with observed negatives (Sections 4.1.2 and 4.2), positive triples were replicated

when necessary to match the number of negative triples, as described in Garcia-Duran

et al. [2016]. We also trained it with L1 and L2 norms, results are reported for the

best performing one in each experiment. As in the original paper, we did not use

regularization over the parameters but instead we enforced entity embeddings to have

unit norm ||ei||2 = 1 for all i ∈ E [Bordes et al., 2013b].

1https://github.com/lmjohns3/downhill
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most general decomposition model, the CP model, which relates to SVD in the matrix

case (single relation). We here minimize the negative log-likelihood of both losses on

observed entries.

Finding the decomposition that matches the sign-pattern of a given sign matrix amounts

to bringing the 0–1 loss to 0, which is theoretically possible if the rank of decomposition

is greater or equal to the sign-rank of the decomposed sign matrix. However to avoid this

combinatorial problem, the logistic loss is classically used as a surrogate. Sign-identity

n×n matrices—where 0 are replaced with -1—are known to have a rank of n, but to have

a constant sign-rank of 3 [Alon et al., 2016], as discussed in Section 3.1.2.2. As the rank

(and sign-rank) are invariant by column permutation, identity-permuted matrices can be

used as a permutation relation in knowledge graph that assign each entity to another

one, such as isMarriedTo. To assess the quality of the logistic loss as a surrogate of the

sign-rank, we decompose fully observed identity matrices, and compare reconstruction

error between the squared and logistic losses. We report the F1-measure in Figure 4.1.

On the smallest matrix (20× 20), the logistic loss actually matches the sign-rank as it

reaches perfect reconstruction with an embedding size of K = 3. On bigger matrices

(60× 60 and 200× 200), the actual rank required to decompose an identity matrix with

the logistic loss seems to scale logarithmically with the size of the matrix; whereas it

scales linearly with the squared loss. Using the logistic loss allows for decomposing

permutation matrices with a rank much closer to the true sign-rank than using the

squared loss.

We further conduct our experiments on n×nmatrix completion problems, first on an upper

tri-diagonal synthetic relation, which can be seen as a sequential relation (Figure 4.2).

And second on block upper-diagonal patterns, which can be seen as transitive groups

of entities, such as olderBrotherOf (Figure 4.3). In the observed matrices (left), white

denotes -1, black 1, and grey unobserved entries. In the reconstructed matrices for the

squared (middle) and logistic (right) losses, values are represented in grey-scale. The

logistic loss reaches perfect reconstruction with K = 3 in the sequential case and with

K = 4 in the transitive case, whereas the squared loss reconstruction is largely corrupted

for these ranks.

These experiments show us that if the logistic loss is minimized, many common relations

such as permutation matrices, sequential relations, and transitive relations can be

represented with surprisingly small embeddings. In the following experiments, we used

the logistic loss with all models.
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Number of triples in sets:
Data set |E| |R| Training Validation Test

WN18 40,943 18 141,442 5,000 5,000
FB15K 14,951 1,345 483,142 50,000 59,071

Table 4.2: Number of entities |E|, relations |R|, and observed triples in each split for
the FB15K and WN18 data sets.

subset of WordNet [Fellbaum, 1998], a database featuring lexical relations between words.

We used the same training, validation and test set splits as in Bordes et al. [2013b]. Table

4.2 summarizes the metadata of the two data sets.

4.3.1 Experimental Setup

As both data sets contain only positive triples, we generated negative samples using the

local closed-world assumption, and use the mean reciprocal rank (MRR) for evaluation,

where ranking of each test triple r(s, o) is computed among all possible subject and

object substitutions—as described in Section 3.3. The MRR and Hits at N are standard

evaluation measures for these data sets and come in two flavours: raw and filtered. The

filtered metrics are computed after removing all the other positive observed triples that

appear in either training, validation or test set from the ranking, whereas the raw metrics

do not remove these.

Since ranking measures are used, previous studies generally preferred a max-margin

ranking loss for the task [Bordes et al., 2013b; Nickel et al., 2016b]. We chose to use

the negative log-likelihood of the logistic model. We tried both losses in preliminary

work, and training the models with the log-likelihood yielded better results than with

the max-margin ranking loss, especially on FB15K—except with TransE.

We report both filtered and raw MRR, and filtered Hits at 1, 3 and 10 in Table 4.3 for the

evaluated models. We have shown in Section 3.4 that the scoring function of the HolE

model is equivalent to ComplEx —which has also been independently shown by Hayashi

and Shimbo [2017]. We record the original results for HolE as reported in Nickel et al.

[2016b] and briefly discuss the discrepancy of results obtained with ComplEx.

Reported results are given for the best set of hyper-parameters evaluated on the validation

set for each model, after a distributed grid-search on the following values: K ∈ {10, 20,
50, 100, 150, 200}, λ ∈ {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0}, α ∈ {1.0, 0.5, 0.2, 0.1,
0.05, 0.02, 0.01}, η ∈ {1, 2, 5, 10} with λ the L2 regularization parameter, α the initial

learning rate, and η the number of negatives generated per positive training triple. We

also tried varying the batch size but this had no impact and we settled with 100 batches

per epoch. With the best hyper-parameters, training the ComplEx model on a single
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WN18 FB15K

MRR Hits at MRR Hits at
Model Filtered Raw 1 3 10 Filtered Raw 1 3 10

CP 0.075 0.058 0.049 0.080 0.125 0.326 0.152 0.219 0.376 0.532
TransE 0.454 0.335 0.089 0.823 0.934 0.380 0.221 0.231 0.472 0.641
RESCAL 0.894 0.583 0.867 0.918 0.935 0.461 0.226 0.324 0.536 0.720
DistMult 0.822 0.532 0.728 0.914 0.936 0.654 0.242 0.546 0.733 0.824
HolE* 0.938 0.616 0.930 0.945 0.949 0.524 0.232 0.402 0.613 0.739

ComplEx 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840

Table 4.3: Filtered and raw mean reciprocal rank (MRR) for the models tested on
the FB15K and WN18 data sets. Hits@N metrics are filtered. *Results reported from

Nickel et al. [2016b] for HolE model.

GPU (NVIDIA Tesla P40) takes 45 minutes on WN18 (K = 150, η = 1), and three hours

on FB15K (K = 200, η = 10).

4.3.2 Results

WN18 describes lexical and semantic hierarchies between concepts and contains many

antisymmetric relations such as hypernymy, hyponymy, and being part of. Indeed, the

DistMult and TransE models are outperformed here by ComplEx and HolE, which

are on a par with respective filtered MRR scores of 0.941 and 0.938, which is expected

as both models are equivalent.

Table 4.4 shows the filtered MRR for the reimplemented models and each relation of

WN18, confirming the advantage of ComplEx on antisymmetric relations while losing

nothing on the others. 2D projections of the relation embeddings (Figures 4.10 & 4.11)

visually corroborate the results.

On FB15K, the gap is much more pronounced and the ComplEx model largely outper-

forms HolE, with a filtered MRR of 0.692 and 59.9% of Hits at 1, compared to 0.524

and 40.2% for HolE. This difference of scores between the two models, though their

scoring functions are equivalent, is due to the use of the aforementioned max-margin

loss in the original HolE publication [Nickel et al., 2016b] that performs worse than the

log-likelihood on this dataset, and to the generation of more than one negative sample per

positive in these experiments. We will further explore this interpretation in Section 4.3.6.

The fact that DistMult yields fairly high scores (0.654 filtered MRR) is also due to the

task itself and the evaluation measures used. As the dataset only involves true facts, the

test set never includes the opposite facts r(o, s) of each test fact r(s, o) for antisymmetric

relations—as the opposite fact is always false. Thus highly scoring the opposite fact

barely impacts the rankings for antisymmetric relations. This is not the case in the

fully observed experiments (Section 4.2), as the opposite fact is known to be false—for
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Relation name ComplEx RESCAL DistMult TransE CP

hypernym 0.953 0.935 0.791 0.446 0.109
hyponym 0.946 0.932 0.710 0.361 0.009
member meronym 0.921 0.851 0.704 0.418 0.019
member holonym 0.946 0.861 0.740 0.465 0.134
instance hypernym 0.965 0.833 0.943 0.961 0.233
instance hyponym 0.945 0.849 0.940 0.745 0.040
has part 0.933 0.879 0.753 0.426 0.035
part of 0.940 0.888 0.867 0.455 0.094
member of domain topic 0.924 0.865 0.914 0.861 0.007
synset domain topic of 0.930 0.855 0.919 0.917 0.153
member of domain usage 0.917 0.629 0.917 0.875 0.001
synset domain usage of 1.000 0.541 1.000 1.000 0.134
member of domain region 0.865 0.632 0.635 0.865 0.001
synset domain region of 0.919 0.655 0.888 0.986 0.149
derivationally related form 0.946 0.928 0.940 0.384 0.100
similar to 1.000 0.001 1.000 0.244 0.000
verb group 0.936 0.857 0.897 0.323 0.035
also see 0.603 0.302 0.607 0.279 0.020

Table 4.4: Filtered Mean Reciprocal Rank (MRR) for the models tested on each
relation of the WordNet data set (WN18).

antisymmetric relations—and largely impacts the average precision of the DistMult

model (Figure 4.6).

RESCAL, that represents each relation with a K ×K matrix, performs well on WN18

as there are few relations and hence not so many parameters. On FB15K though, it

probably overfits due to the large number of relations and thus the large number of

parameters to learn, and performs worse than a less expressive model like DistMult.

On both data sets, TransE and CP are largely left behind. This illustrates again the

power of the multilinear product in the first case, and the importance of learning unique

entity embeddings in the second. CP performs especially poorly on WN18 due to the

small number of relations, which magnifies this subject/object difference.

Figure 4.7 shows that the filtered MRR of the ComplEx model quickly converges on

both data sets, showing that the low-rank hypothesis is reasonable in practice. The little

gain of performances for ranks comprised between 50 and 200 also shows that ComplEx

does not perform better because it has twice as many parameters for the same rank—the

real and imaginary parts—compared to other linear space complexity models, but indeed

thanks to its better expressiveness.

Best ranks were generally 150 or 200, in both cases scores were always very close for

all models, suggesting there was no need to grid-search on higher ranks. The number

of negative samples per positive sample also had a large influence on the filtered MRR

on FB15K (up to +0.08 improvement from 1 to 10 negatives), but not much on WN18.
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sampled. This would reduce the number of negatives required to reach good performance,

thus accelerating training time. When the knowledge graph comes with a schema that

defines entity types (person, place or song for example) this information can be used to

sample negatives by corrupting positive triples with entities of the same type, as shown

by [Sedghi and Sabharwal, 2016].

4.3.5 WN18 Embeddings Visualization

We used principal component analysis (PCA) to visualize embeddings of the relations

of the WordNet data set (WN18). We plotted the four first components of the best

DistMult and ComplEx model’s embeddings in Figures 4.10 & 4.11. For the ComplEx

model, we simply concatenated the real and imaginary parts of each embedding.

Most of WN18 relations describe hierarchies, and are thus antisymmetric. Each of these

hierarchic relations has its inverse relation in the data set. For example: hypernym

/ hyponym, part of / has part, synset domain topic of / member of domain topic.

Since DistMult is unable to model antisymmetry, it will correctly represent the nature

of each pair of opposite relations, but not the direction of the relations. Loosely speaking,

in the hypernym / hyponym pair the nature is sharing semantics, and the direction is that

one entity generalizes the semantics of the other. This makes DistMult representing

the opposite relations with very close embeddings. It is especially striking for the third

and fourth principal component (Figure 4.11). Conversely, ComplEx manages to oppose

spatially the opposite relations.

4.3.6 Comparing ComplEx and HolE

Following the equivalence discussion with the scoring function of the HolE model in

Section 3.4, we now experimentally compare the differences between the two models.

In Table 4.5, results for the ComplEx and HolE models agreed on the WN18 data set,

but diverged on FB15K. Since both models are equivalent, we assumed that this is due to

the different loss functions that were used. To assess this hypothesis, we reimplemented

both losses over the ComplEx model scoring function within the same framework, and

compared them on the WN18 and FB15K data sets.

In the original HolE publication [Nickel et al., 2016b], a pairwise max-margin loss is

optimized over each positive and its corrupted negative (r, s′, o′):

L(Ω;Θ) =
∑

((r,s,o),y)∈Ω

max(0, γ + σ(φ(r, s′, o′; Θ))− σ(φ(r, s, o; Θ))) (4.1)
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WN18 FB15K

MRR Hits at MRR Hits at
Loss Filtered Raw 1 3 10 Filtered Raw 1 3 10

Max-margin 0.938 0.605 0.932 0.942 0.949 0.541 0.298 0.411 0.627 0.757
Neg-LL 0.941 0.587 0.936 0.945 0.947 0.639 0.250 0.523 0.725 0.825

Table 4.5: Filtered and raw mean reciprocal rank (MRR), Hits@N metrics are filtered,
for the ComplEx model with the pairwise max-margin loss and the negative log-

likelihood on WN18 and FB15K data sets.

where γ is the margin hyperparameter. The entity embeddings are also constrained to

unit norm : ||ei||2 = 1, for all i ∈ E . Whereas we optimized the log-likelihood loss as

explained in the previous chapter.

The results are reported for the best validated models after a distributed grid-search on

the following values: K ∈ {10, 20, 50, 100, 150, 200}, λ ∈ {0.1, 0.03, 0.01, 0.003, 0.001,
0.0003, 0.0} for the log-likelihood loss, and γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0} for the max-margin loss. The raw and filtered mean reciprocal ranks (MRR), as

well as the filtered hits at 1, 3 and 10 are reported in Table 4.5.

The max-margin loss results are consistent with the HolE ones originally reported

in Nickel et al. [2016b], confirming the equivalence of the scoring functions, and our

hypothesis that the loss was responsible for the difference in previously reported results.

The log-likelihood results are also coherent, as one must note that the higher scores

reported on FB15K in Table 4.5 are due to the use of more than one generated negative

sample for each positive training triple. Here, we generated a single negative sample for

each positive one in order to keep the comparison fair between the two losses.

The choice of the loss is of little consequence on the WN18 dataset, whereas the log-

likelihood loss performs much better on FB15K. While much research attention has been

given to scoring functions in link prediction, little has been said about the losses, and

the max-margin loss has been used in most of the existing work [Bordes et al., 2013b;

Yang et al., 2015; Riedel et al., 2013]. Properties of both losses should be studied to

understand this discrepancy of results on some datasets, as well as a more extensive

empirical comparison of both losses to assess whether or not the log-likelihood should be

systematically chosen over the max-margin loss.

4.4 Learning Complex Word Embeddings

In the next experiments, we explore the applicability of the multi-relational factorization

framework for enriching distributed representation of words.
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With the release of the word2vec [Mikolov et al., 2013] and gloVe [Pennington et al.,

2014] trained word embeddings, machine learning researchers started to widely reuse

pre-trained models on different tasks. This breakthrough let us glimpse the possible

future existence of a fully modular library of pre-trained representations. However, this

potential has not yet been fully grasped and exploited. In many use cases of word

embeddings, those are just used for initialization, and then fine-tuned for the task.

Allow us here a loose comparison with software development. The current use of word

embeddings would be as if, after the release of the first ever written library package, every

one went forking its source code for his own purpose, and no one was building—and

releasing—another package built on top of it. In this work, we argue for embracing the

full modularity potential that is now offered to our community through the incremental

building of trained representations.

Among various different applications, pre-trained word embeddings have been used for

recognizing textual entailment (RTE) [Marelli et al., 2014; Bowman et al., 2015a]. On one

hand, integrating external resources such as WordNet in combination with distributional

representations of words proved to be very useful for this task [Marelli et al., 2014].

This is intuitively understandable, as distributional representations are trained on a

symmetrical information, co-occurrence, yet entailment is an antisymmetric property,

and resources as WordNet [Fellbaum, 1998] contains antisymmetric information between

words such as hypernymy or meronymy. Levy et al. [2015]; Bowman et al. [2015b] also

discussed the limits of distributional representations for entailment prediction. On the

other hand, using only fixed word embeddings during the optimization process largely

reduces the number of parameters and allows for using larger and better performing

models [Rocktäschel et al., 2016; Liu et al., 2016]. Here we reconcile both aspects by

first giving the word representations these asymmetric properties by enriching them with

external knowledge, in the form of knowledge graphs. However, conversely to previous

works that either learn embeddings jointly on a corpus and on external resources [Xu

et al., 2014; Liu et al., 2015], or refine pre-trained embeddings with external resources

[Faruqui et al., 2015]; we propose to extend the pre-trained vectorial representations of

words, to encode this new knowledge in a modular fashion.

In the WordNet knowledge graph, words are the entities. The ComplEx model ability

to model antisymmetric relations between pairs of entities comes from the complex

conjugation of the object-entity embedding, that is the change of sign of its imaginary

part. As we are interested here into both (i) encoding antisymmetric information about

words, and (ii) keeping the approach modular, we train the ComplEx model on WordNet

while keeping the real part of the word embeddings constant and initialized from pre-

trained embeddings, and only learn their imaginary part to fit WordNet antisymmetric

relations between words.
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Embeddings Embeddings size Layers size Train Dev Test

Word2vec K = Kr = 300 L = 2Kr = 600 0.7903 0.7706 0.7792
Word2vec K = Kr = 300 L = 2Kc = 1200 0.8332 0.7835 0.7771

Word2vec+ComplEx K = Kc = 600 L = 2Kr = 600 0.8054 0.7840 0.7875

Word2vec+ComplEx K = Kc = 600 L = 2Kc = 1200 0.8245 0.7805 0.7850

Table 4.6: Accuracies on the SNLI corpus with the word2vec embeddings, and the
embeddings enhanced with the ComplEx model on WordNet, for different sizes of the

intermediate layers.

To sum up:

• We propose to extend vectorial representations of words with knowledge graphs,

instead of refining these vectors.

• To encode antisymmetric information about words into vectors, we leverage on the

asymmetry of the Hermitian dot product.

• Only the imaginary part is learned, keeping the approach modular and incremental.

4.4.1 Imaginary Part Only Learning

To train our word embeddings with the ComplEx model, we reused the WN18 subset

of WordNet [Bordes et al., 2013b], that mainly contains antisymmetric relations. It is

initially composed of |E| = 40,943 words. For each entity i ∈ E , we initialized the real

parts of their embeddings Re(ei) ∈ R
K with pre-trained word2vec vectors2 of dimension

K = 300. To do so, we dropped POS tag information as well as the different meanings

of each words (that were represented as different entities) in WN18, and merged them

together as a single entity. This resulted into an intersection of |E| = 16,561 words with

the word2vec embeddings, and |Ω| = 63,251 observed positive triples.

The training is performed as described in the previous WN18 experiment, except for the

size of the embeddings that is not validated as it is fixed to K = 300, the dimension of

the pre-trained embeddings. This time, only the imaginary part of the entity embeddings

is learned, while the real part is kept constant to the pre-trained initialization value. We

next assess our extended word embeddings on a classical entailment classification data

set, SNLI [Bowman et al., 2015a].
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4.4.2 Results on Entailment: SNLI

The SNLI dataset contains 570,000 human-written English sentences pairs, labeled with

three classes: entailment, contradiction, and neutral. To compare our embeddings

extended with an imaginary part against the word2vec ones, we reused an existing neural

network architecture available online3, which is a simple but yet strong baseline. The

model is very similar to the one originally proposed by Bowman et al. [2015a], except

it uses ReLU layers instead of hyperbolic tangent ones. For each pair of sentences, the

corresponding word embeddings of size K are passed through a first K-ReLU translation

layer. For each sentence, the translated word embeddings are summed together, both

sentence sums are then concatenated into a layer of size L = 2K and fed through three

L-ReLU layers, before a final 3-way softmax. Formally, each word in the vocabulary

w ∈ V has an input word embedding ew ∈ R
K , that is not updated during training. Let

f i
n(x) = max(0,W ix) be a ReLU layer, where x ∈ R

K and W i ∈ R
n×K . For each pair of

sentences (s1, s2) with its label y, the model holds in a single line:

ŷ = softmax
(

f4
L

(

f3
L

(

f2
L

([

∑

w∈s1

f1
K(ew),

∑

w∈s2

f1
K(ew)

]))))

. (4.2)

To use our complex embeddings in this real-valued network, we concatenated the learnt

imaginary parts to their original word2vec real parts, resulting in word embedding vectors

of size Kc = 600 for each word. word2vec words that were not in the WN18 subset were

assigned a zero vector for their imaginary part. Comparatively, the original word2vec

vectors are of size Kr = 300, and correspond to the real part—which is the first half—of

our complex vectors. As the last layers are of size L = 2K, the resulting network has

more parameters with the complex embeddings as Kc = 2Kr. To compare the two sets of

embeddings fairly, we trained the model twice with L = 2Kc and L = Kr for each set of

embeddings. The hyper-parameters are left as provided: optimization is conducted with

RMSProp [Tieleman and Hinton, 2012], L2-regularization strength of 4× 10−6, dropout

of 0.2 and early-stopping. Out-of-vocabulary embeddings are zeroed. The resulting

accuracies are reported in Table 4.6. The proposed complex word embeddings brings an

improvement of almost one point of accuracy on the test set.

These results are promising as WN18 is but a small subset of WordNet, and only 16, 561

word embeddings were extended with an imaginary part. We expect to yield a better

improvement when using a larger dump of WordNet. In the future, it would be interesting

to feed these complex embeddings into a complex-valued neural network, such as used

by Danihelka et al. [2016]. Though in principle, using a twice-larger real-valued network

2https://code.google.com/archive/p/word2vec/
3https://github.com/Smerity/keras_snli

https://code.google.com/archive/p/word2vec/
https://github.com/Smerity/keras_snli
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over the concatenation of the real and imaginary parts of the input vectors (as done

here) is more general. Indeed, the complex-valued vector-matrix product is but a specific

linear combination of their real and imaginary parts, that hence can be learnt by the

a twice-larger real-valued fully-connected layer over the concatenation of the real and

imaginary part of the input vectors.

This practice of extending vectorial representations could be generalized without all the

complex algebra apparatus. When training an embedding model, one could, instead of

fine tuning word embeddings, fix them and add to them new free dimensions to optimize,

and then publish these newly trained dimensions. An online platform that aggregates all

the uploaded pre-trained embeddings on various tasks, and allow for an easy download

of a selected concatenation of them could sensibly accelerate the progress of artificial

intelligence, as open-source did for the progress of computer science.

Chapter Summary

We first showed the importance of using a binary loss for decomposing matrices of

binary relations. Then we confirmed the ability of the ComplEx model to efficiently

learn symmetric and antisymmetric relations. Experiments on real data sets confirm its

theoretical versatility, as it substantially improves over the state-of-the-art. It shows

that real world relations can be efficiently approximated as the real part of low-rank

normal matrices. We underlined the importance of some hyper-parameters, especially

the number of negatives generated, as well as the choice of the loss. Finally, we proposed

a novel way of enriching distributional word embeddings with knowledge graphs, by

extending vectorial representations, which proved to enhance entailment recognition.





Chapter 5

Inductive Abilities of Latent

Factor Models

Artificial intelligence is becoming more driven by its empirical successes than by the

quest for a principled formalisation of reasoning, making it more of an empirical science

than a theoretical one. Experimental design is a key skill of empirical scientists, and a

well-designed experiment should expose model limitations to enable improving on them.

Indeed, seeking falsification is up to now the best definition of science [Popper, 1934].

In machine learning, it is extremely simple to come up with an experiment that will

fail. However it is less easy to think of one that brings an informative failure—when one

thinks of a failing experiment at all. The bAbI data set [Weston et al., 2015], proposing

a set of 20 prerequisite tasks for reasoning over natural language, is an example of an

informative experiment, by the specific reasoning type that each task targets. Inspired

by the idea of this work, we designed simple tasks for relational learning that assess basic

properties of relations, as well as simple reasonings such as kinship relations.

In many machine learning fields, research is drifting away from first-order logic methods.

Most of the time, this drift is justified by better predictive performances and scalability

of the new methods. It is especially true with link prediction, where latent factor models

became more popular than logic-based models [Nickel et al., 2011; Bordes et al., 2013b;

Trouillon et al., 2016b]. Logic-based link prediction consists in using both observed facts

and logical rules to infer the truth of unobserved facts. For example, given the entities

Alice, Eve and Bob and the relations mother and grandmother, if mother(Alice,Eve)

and mother(Eve,Bob) are true facts, then grandmother(Alice,Bob) is also true. In-

ferring this last fact from the first two however, requires knowing that the mother

of one’s mother is one’s grandmother, which can be expressed by the first-order for-

mula: ∀x∀y∀z mother(x, y) ∧ mother(y, z)⇒ grandmother(x, z). Logical deduction can

75
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be conducted deterministically, or probabilistically to cope with uncertainty of the data

[Richardson and Domingos, 2006; Kersting and De Raedt, 2001]. Beyond known problems

such as complexity or brittleness, an obvious limitation arises in this setup: logical rules

over the knowledge graph relations are required for inference, and many knowledge graphs

only provide observed facts [Dong et al., 2014; Auer et al., 2007]. In this case rules can

be handcrafted, or learnt, generally through inductive logic programming (ILP) methods

[Muggleton and De Raedt, 1994; Dzeroski and Lavrac, 1994].

Latent factor models do not suffer this limitation, as the learned model is never represented

explicitly in a symbolic way, but rather as vectorial embeddings of the entities and

relations. Such representations can make the model difficult to interpret, and although

they show better predictive abilities, it has not yet been explored how well those models

are able to overcome this absence of logical rules, and how their inference abilities differ

from logic-based models.

To do so, we evaluate state-of-the-art latent factor models for relational learning on

synthetic tasks, each designed to target a specific inference ability, and see how well they

discover structure in the data. As we are only interested in evaluating inductive abilities

of these models, and not their ability to cope with uncertainty, we design synthetic

experiments with noise-free deterministic data. The choice of this very favorable setup

for deterministic logical inference clarifies the approach followed here and its very

purpose: we do not evaluate latent factor models as an end, but as a means to point

out their weaknesses and stimulate research towards models that do not suffer from

combinatorial complexity—as advocated by Bottou [2014]. Computational complexity,

and namely polynomiality, could turn out to be the very criterion for machine intelligence

[Aaronson, 2011]. Beyond complexity, one could also argue against explicitly learning

logical expressions to tackle knowledge graph completion that, “when solving a given

problem, try to avoid solving a more general problem as an intermediate step” [Vapnik,

1995].

In the previous chapter, we started to investigate synthetic symmetric and antisymmetric

relations and special cases of transitivity, with specific training/testing splits, targeted

at specific abilities. Here, we first extend these experiments with randomly generated

combinations of all of the three main properties of binary relations: reflexivity, symmetry

and transitivity. The splits between training, validation and test are random, as we want

to assess models’ ability to learn from realistically distributed data, and with more and

more missing triples. Conversely, the symmetry experiments described in Section 4.1.2

are much easier as the upper-triangular matrix was always in the training set, as the

goal was to see if the models can learn with perfect information. Then we set up tasks
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that represent real reasoning over family genealogies. On this data, we explore different

types of training/testing splits that map to different types of inference.

5.1 Experimental Setup

To assess whether latent factor models are able to generalize from data without any first-

order logic rules, we generate synthetic data from such rules, and assess the models’ ability

to learn these patterns in a classical training, validation and test splitting of the data. The

proportion of positives and negatives is respected across the sets. We evaluate the state-

of-the-art latent factor models described in Section 2.2.1.1. Those are RESCAL, CP,

DistMult, TransE, the F model and our proposal, ComplEx. Algorithm 1 describes

the training algorithm, that is stochastic gradient descent with mini-batches (10 batches

for the relation properties experiment, and 100 for the families experiment), AdaGrad

[Duchi et al., 2011] with an initial learning rate of α = 0.1, and early stopping when average

precision decreased on the validation set calculated every 50 epochs. The λ regularization

parameter was validated over the values {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.00001, 0.0}
for each model for each factorization rank K. Parameters are initialized from a centered

unit-variance Gaussian distribution.

Results are evaluated with average precision, as we also generate negative triples in these

synthetic experiments. For each factorization rank, the models with best validated λ

are kept. Average precisions are macro-averaged over 10 runs, and error bars show the

standard deviation over these 10 runs. We also computed the average precision of a

deterministic logic inference engine, by applying the corresponding rules that were used

to generate each data set. For each fact r(s, o) in the test set, its probability P (yrso = 1)

is set to 1 if the fact can be logically deduced true from the facts of the training and

validation sets, 0 if it can be deduced to be false, and 0.5 otherwise. This simulate

test metrics of what perfect induction would yield, and gives an upper-bound on the

performance of any method.

All data sets are made available1.

5.2 Learning Relation Properties

In this section we define the three main properties of binary relations, and devise different

experimental setups for learning them individually or jointly, and with more or less

observed data.

1https://github.com/ttrouill/induction_experiments

https://github.com/ttrouill/induction_experiments
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5.2.1 Experimental Design

Relations in knowledge graphs have different names in the different areas of mathematics.

Logicians call them binary predicates, as they are Boolean-valued functions of two

variables. For set theorists, they are binary endorelations, as they operate on two

elements of a single set, in our case the set of entities E . In set theory, relations are

characterized by three main properties: reflexivity/irreflexivity, symmetry/antisymmetry

and transitivity. The definitions of these properties are given in first-order logic in

Table 5.1.

Different combinations of these properties define basic building blocks of set theory

such as equivalence relations that are reflexive, symmetric and transitive relations, or

partial orders that are reflexive, antisymmetric and transitive relations [Halmos, 1998].

Examples are given in Table 5.2.

Property Definition

Reflexivity ∀a r(a, a)

Irreflexivity ∀a ¬r(a, a)
Symmetry ∀a∀b r(a, b)⇒ r(b, a)

Antisymmetry ∀a∀b r(a, b) ∧ r(b, a)⇒ a = b

Transitivity ∀a∀b∀c r(a, b) ∧ r(b, c)⇒ r(a, c)

Table 5.1: Definitions of the main properties of binary relations.

Table 5.2: Different types of binary relations in set theory. From Wikipedia page on
binary relations [Wikipedia, 2004].

There are many such common examples of these combinations in knowledge graphs, as

there are many hierarchical and similarity relations. For example, the relations older

and father are both strict hierarchies, thus antisymmetric and irreflexive. But one

is transitive (older) whereas the other is not, and that makes all the difference at

inference time. Similarly for symmetric relations, such as has-the-same-parents-as
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and friend, your sibling’s parents are also yours which makes the first relation transitive,

whereas your friend’s friends are not necessarily yours. Note that this makes the

has-the-same-parents-as relation reflexive—it is thus an equivalence relation.

Relational learning models must be able to handle relations that exhibit each of the

possible combinations of these properties, since they are all very common, but imply

different types of reasoning, as already acknowledged by Bordes et al. [2013a]. Given that

a relation can be reflexive, irreflexive, or neither; symmetric, antisymmetric, or neither;

and transitive or not, we end up with 18 possible combinations. However we will not

address the cases of little interest where (i) none of these properties are true, (ii) only

reflexivity or irreflexivity is true, (iii) the irreflexive, symmetric and transitive case as

the only consistent possibility is that all facts are false, and (iv) the irreflexive transitive

case that again must be either all false, or antisymmetric—and thus corresponds to an

already existing case—to be consistent. Indeed, if one observes two true facts r(s, o) and

r(o, s), by application of the transitivity rule, r(s, s) and r(o, o) must be true, which

explains the inconsistency of cases (iii) and (iv), as they are irreflexive. This leaves us

with 13 cases of interest. To evaluate the ability of models to learn these properties, we

generate random 50× 50 matrices that exhibit each combination.

To do so, we sample random square sign matrices Y ∈ {−1, 1}Ne×Ne . First we fill the

diagonal with 1, −1 or missing depending on reflexivity/irreflexivity or none. Then we

make successive passes over the data to make it [anti-]symmetric and/or transitive, until

all of the properties are true over the whole matrix. A pass to make a matrix symmetric

consists in assigning yji ← yij for all i, j ∈ 1, . . . , Ne where i < j, and yji ← −yij to

make it antisymmetric. A pass to make a matrix transitive consists in assigning yij ← 1

if there exists a k ∈ 1, . . . , Ne such that yik = ykj = 1, for all i, j ∈ 1, . . . , Ne. When no

more assignment is made during the passes it means the desired properties are true, and

the relation generation is finished.

We also sample each matrix under the constraint of having a balanced number of positives

and negatives up to ±1%. Though there are many more negatives than positives in real

knowledge graphs, in practice negatives are generally subsampled or generated to match

the number of positive facts [Bordes et al., 2013b; Nickel et al., 2016b].

We first learn each relation individually as in a single relation knowledge graph, and then

jointly. In the joint case, note that since each relation is generated independently, there is

no signal shared across the relations that would help predicting facts of one relation from

facts of another relation, thus only the ability to learn each relation patterns is tested.

The proportion of observed facts is generally very small in real knowledge graphs. To

assess models robustness to missing data, we also reduce the proportion of the training

set when learning the different relations jointly.
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but also with much less observed facts. We next assess the models ability to learn these

five relations together, and their robustness to sparse observations by gradually decreasing

the size of the training set.

5.2.2.2 Joint Learning

Figure 5.4 shows the results when all five above relations are jointly learned, for different

proportions of the training set: 80%, 40%, 20%, 10%. As expected the scores drop, and

the gap between the—deterministic logic—upper-bound and latent factor models widen

with the decrease of training data. ComplEx proves to be the most robust to missing

data down to 20%, but match logical inference only with 80% of training data.

RESCAL again overfits with the rank increasing, but is the best performing model

with 10% of the training set, up to rank K = 30. This suggests that having richer

relation representations than entity representations, that is with more parameters, can be

profitable for learning relation properties from little data. However the reason why the

variance of RESCAL’s average precision decreases again for K ≥ 40 remains mysterious.

The CP and TransE models seem to be more sensitive to missing data as their curves

progressively get away from RESCAL’s one with the percentage of observed data

decreasing. DistMult, being a symmetric model, is below the other models in the four

settings as some of the relations are not symmetric.

Since each relation is generated independently, having observed the entity pair (s, o) in

the other relations does not help the F model, and it thus fails here too. At 10%, we see

that the latent factor models cannot match logical inference, suggesting that the number

of examples is not sufficient to learn these properties.

Finally, in the last setting with 10% of the training set, the best models are still 10 points

below the best achievable average precision, showing that they need a large amount of

training data to correctly learn these basic properties of binary relations.

These results should be taken cautiously as this experiment does not state that in general

at least 80% of the facts should be observed in order to learn these properties correctly.

Indeed, here the 5 relations are completely uncorrelated, while in real knowledge graphs

they generally are correlated and thus share information. Also, as often in machine

learning, the ratio between the number of parameters and the number of data points is

more informative about generalization than the number of data points alone.
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Size with p =
Split Set 0.8 0.4 0.2 0.1 0

Random
Ωtrain = Sp(Ω) 35973 17987 8994 4496 -
Ωvalid = S0.1(Ω) 4496 4496 4496 4496 -
Ωtest = S(0.9−p)(Ω) 4496 22482 31475 35973 -

Evidence
Ωtrain = Ω4main ∪ Sp(Ω13other) 38089 24334 17457 14019 -
Ωvalid = S0.1(Ω13other) 3438 3438 3438 3438 -
Ωtest = S(0.9−p)(Ω13other) 3438 17193 24070 27508 -

Family
Ωtrain = Ω1−4 ∪ Ω5

4main ∪ Sp(Ω5
13other) 43589 40839 39463 38776 38088

Ωvalid = S0.1(Ω5
13other) 688 688 688 688 688

Ωtest = S(0.9−p)(Ω5
13other) 688 3438 4814 5501 6189

Table 5.4: Training, validation and test set numbers for each split for each value of p.

Similar splits of data have already been proposed to evaluate rule-based inference models

(for example the UW-CSE dataset [Richardson and Domingos, 2006]), which are able

of such transfer of reasoning between disjoint sets of entities. Interestingly, such data

sets have rarely been reused in the subsequent latent factor model literature. Results

reported next might give us a hint why this is the case.

5.3.2 Results

Results are reported for each split separately. In each of them we again decrease

progressively the amount of training data, and report average precision macro-averaged

over 10 runs for each configuration.

5.3.2.1 Random Split

In the first random split, we try to evaluate the quantity of training data needed to

learn to reason in genealogies. Figure 5.8 shows the average precision of each model

for ranks ranging from 5 to 50, for each value of p. Only ComplEx and RESCAL are

able to generalize almost perfectly with 80% of observed data, which first tells us that

these models are indeed capable to learn such genealogical reasonings. As many relations

are antisymmetric, it is no surprise that DistMult and TransE cannot reach perfect

predictions, as they already failed in the antisymmetric synthetic relation.

The ComplEx model generalizes quickly with small ranks, but is outrun by RESCAL—

with small ranks—and TransE when the percentage of observed data decreases below

p = 0.2. We conjecture that TransE’s robustness is due to its bilinear terms, and

especially the one that involves the subject and the object embeddings—e⊤s eo—as shown

in Section 2.2.1.1, that can give high scores to pairs of entities belonging to the same
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data is available. This could be due to the imbalance in the number of each relation in

the training set that this split introduces, biasing the entity embeddings towards a better

reconstruction of the 4 main relations, to the detriment of the generalization over the

13 remaining ones. Weighting the facts in accordance with the preponderance of each

relation in the dataset could improve performances here.

5.3.2.3 Family Split

In this last split, all the mother, father, son and daughter are in the train set for all

families, but also all the 13 other relations of four out of the five families. The value of p

corresponds here to the amount of the 13 other relations of the fifth family only that are

in the training set too.

The curves in Figure 5.10 show a clear improvement over the previous ones in Figure 5.9.

RESCAL is again the best model as it reaches average precisions ≥ 0.9 even down to

p = 0.1—with small ranks again. ComplEx is in these cases the best with high ranks,

though much below RESCAL’s best scores when p = 0.1.

Does that mean these models were able to exploit the additional information? Yes and

no. We conjecture that the better results for p ranging from 0.8 to 0.1 are partly due to

the relation imbalance problem—explained in the previous split—being much smaller

here, as all the relations of four families are given in in the training set.

To ensure that models indeed did not generalized from the four perfectly informed

families, we reduced the proportion p of the 13 other relations of the fifth family that

are in the training set to zero—which thus constitute the whole validation and test sets.

And though the models are provided with four perfectly informed families, and all the

needed facts to predict the missing ones in the fifth family, they fail in this last setting

as shown in the bottom plot of Figure 5.9. RESCAL and TransE resist better than

the other models again in this last setting with p = 0.

This is easily explained, as disconnected sets of entities, here families, correspond to

different blocks in the tensor Y, as shown in Figure 5.6. Entities that are in different

families s, o ∈ Ωi, s′, o′ ∈ Ωj , i 6= j, are never involved together in an observed fact:

((s, r, o′), ysro′), ((s
′, r, o), ys′ro) /∈ Ω, for any relation r ∈ R. Thus when learning their

embeddings es, eo and es′ , eo′ , the only link they share is the embedding of the relation r

that is involved in the scoring functions φ(r, s, o) and φ(r, s′, o′). This interpretation is

also supported by RESCAL scores, which benefits from its higher number of parameters

of its relation representations Wr ∈ R
K×K , which increases the amount of information

shared across the families.
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• sister(b, a)⇒ ¬grandfather(a, b)

• sister(b, a)⇒ ¬grandfather(b, a)

Similarly to the family split with p = 0, let us have both relations fully observed for a first

family that contains entities a, b ∈ E1, and only the facts of the relation sister observed

for entities of a second family c, d ∈ E2. The resulting 2× 4× 4 partially-observed binary

tensor is:

sister :

a b c d
























a −1 1

b 1 −1
c −1 1

d 1 −1

, grandfather :

a b c d
























a −1 −1
b −1 −1
c · ·
d · ·

(5.1)

where · and empty spaces are unobserved facts. From the first, fully observed family

we wish to learn the above rules and the irreflexivity of the grandfather relation, to

correctly complete the grandfather facts between entities c and d.

As the observed blocks—and the block we wish to recover—are symmetric here, there

is no expressiveness issue with using DistMult. Decomposing this tensor with the

DistMult model with K = 2 such that true facts have probability P (yrso = 1) > 0.5

and false facts have probability P (yrso = 1) < 0.5, amounts to solving the following

system of inequalities:














































































































ws1e
2
a1 + ws2e

2
a2 < 0

ws1e
2
b1 + ws2e

2
b2 < 0

ws1ea1eb1 + ws2ea2eb2 > 0

wg1e
2
a1 + wg2e

2
a2 < 0

wg1e
2
b1 + wg2e

2
b2 < 0

wg1ea1eb1 + wg2ea2eb2 < 0

ws1e
2
c1 + ws2e

2
c2 < 0

ws1e
2
d1 + ws2e

2
d2 < 0

ws1ec1ed1 + ws2ec2ed2 > 0

(5.2)

where ei ∈ R
2 is the embedding of entity i ∈ E , ws ∈ R

2 is the embedding of the

relation sister, and wg ∈ R
2 is the embedding of the relation grandfather. The six

first inequalities involve the entities a and b, and the three lower ones involve the entities

c and d.



Inductive Abilities of Latent Factor Models 93

Correctly reconstructing the grandfather facts between c and d would thus require their

embeddings to satisfy the same three additional inequalities:



















wg1e
2
c1 + wg2e

2
c2 < 0

wg1e
2
d1 + wg2e

2
d2 < 0

wg1ec1ed1 + wg2ec2ed2 < 0

. (5.3)

However, it is easy to check that arbitrary solutions to the system (5.2) for ec and ed

does not necessarily satisfy the system (5.3), and hence does not necessarily predict the

grandfather facts between c and d correctly. Also, this would be true even if we added

more families like a and b with both relations fully observed, as this would not add more

constraints on ec and ed.

This explains why all models fail in the family split with p = 0: nothing encourages

less constrained entities to have embeddings that resemble the ones of similar, more

constrained entities; and adding more examples of more constrained entities does not

help.

Family Experiments Summary:

• RESCAL is the best model in all different splits, but overfits with a too big K.

• RESCAL and TransE are the most robust to missing data.

• ComplEx behaves well with more data and hardly overfits.

• Relation imbalance in the training set can be a problem when the test set is

distributed differently, and could be easily fixed by weighting the facts accordingly.

• The absence of explicit parameter sharing between entity representations prevents

knowledge transfer between disjoint sets of entities.

5.4 Future Research Directions

Overall, the ComplEx model proved to have the more stable generalization abilities

across all the synthetic experiments. Most models showed a good ability to learn basic

relation properties, except on antisymmetry where only ComplEx succeeded. This said,

when decreasing the size of the training set down to 10% on joint learning of the relation

properties, the best models were 10 points of average precision behind the best possible

score. Improving models towards learning basic binary relation properties from less data

thus seems a promising direction.
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Some models showed their advantages in some specific settings. RESCAL and TransE

showed a good robustness when a lot of data is missing in the family experiments,

thanks to the bilinear terms for TransE, and the rich matrix relation representations of

RESCAL. The F model was not fit for these experiments, but its pairwise terms are

known to give it an advantage for non-compositional pairs of entities [Welbl et al., 2016].

Different possible combinations seem promising. The behaviour of RESCAL and

ComplEx on symmetric and antisymmetric experiments suggests that encoding these

patterns through complex conjugation is more stable than using the non-commutative

matrix product. But RESCAL’s matrix representations of relations helped a lot in the

family experiments, as long as the rank was not too high, suggesting that there might be

a middle ground between K and K2 to be found for the parametric representation of the

relations. Using tridiagonal or pentadiagonal (or more) symmetric matrices for relation

representations within the ComplEx model could be an answer to these problems.

Combining the scoring functions of the TransE and F models with ComplEx could

also lead to a more robust model. The combination of bilinear and trilinear terms has

already been explored within real-valued models [Garćıa-Durán et al., 2014], also with

vectorial weights over each term [Jenatton et al., 2012], as well as combining different

pairwise terms [Welbl et al., 2016; Singh et al., 2015], which yielded better performance

in all cases.

The main defect of latent factor models that this experimental survey points to is their

low ability to transfer knowledge between disjoint set of entities, as shown in the last

family split with p = 0. Real knowledge graphs might not have fully disjoint subsets, but

rather some less-connected sub-graphs, between which this effect is likely to appear too.

We believe improving this ability of latent factor models is key.

One already-pursued way to harness this problem is to enable latent factor models to

make use of logic rules [Rocktaschel et al., 2015; Demeester et al., 2016]. As already said,

those rules are not always available, and thus latent factor models should be improved

in order to have this ability to learn from disjoint subsets, while still operating without

rules.

Intuitively, sharing parameters across all entity representations could also solve this issue,

as used in Bayesian clustered factorization models [Sutskever et al., 2009]. Though those

models have known scalability issues. A possible, more scalable way to implement a

shared parametrization between the entity embeddings E ∈ C
Ne×K is through a nested

factorization, where the matrix E is itself expressed as a low-rank factorization, as it

has already been proposed for the relation embeddings [Jenatton et al., 2012]. Another
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one could be a suited regularization over the whole matrix E: in most proposals E is

regularized row-wise with ||ei||22 for all i ∈ E—as shown in Section 3.3.

Another linked limitation of latent factor models—that does not require experiments

to be shown—is their inability to generalize to new entities without retraining. Indeed

for new facts involving a new entity i, its embedding ei ∈ C
K is unknown. But in a

logic-based setting, only the new facts involving the new entity are necessary to infer

other facts from known rules. Some recent works started tackling this problem: Verga

et al. [2017] proposed a solution for the F model, by expressing entity pair embeddings as

combinations of the relation embeddings in which they appear. Hamaguchi et al. [2017]

used graph neural networks to handle unseen entities at test time.

The evidence split in the family experiments also pointed out a potential problem

of imbalance in the distribution of the relations across the facts when the train and

test sets are distributed differently. Correcting this imbalance via down-weighting the

facts involving the most frequent relations could be a solution, as well as sharing the

parametrization between the relations.

A non-mentioned aspect of the problem in this paper is the theoretical learnability of

such logic formulas, a field that has been extensively covered [Valiant, 1984; Kearns and

Valiant, 1994; Muggleton and De Raedt, 1994; Dzeroski and Lavrac, 1994]. However

logic learnability by latent factor models has not yet been specifically studied. Recently

established links between sign matrices complexity—specifically the sign-rank [Linial

et al., 2007b]—and VC-dimension open the door to such theoretical study [Alon et al.,

2016], and possible extensions to the tensor case. This being said, theoretical guarantees

generally come under the condition that the training and test sets are drawn from the

same distribution, which is not the case in the last two splits of the family experiments:

a theoretical analysis of the learnability of such cases might require a new theoretical

framework for statistical learning.

Chapter Summary

We experimentally surveyed state-of-the-art latent factor models for link prediction in

knowledge graphs, in order to assess their ability to learn (i) binary relation properties,

(ii) genealogical relations, directly from observed facts, as well as their robustness to

missing data. Latent factor models yield good performances in the first case, while having

more difficulties in the second one. Specifically, we show that such models do not reason

as it is generally meant for logical inference engines, as they are unable to transfer their

predictive abilities between disjoint subsets of entities. The different behaviors of the
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models in each experimental setup suggest possible enhancements and research directions,

including combining them, as well as it exposes each model’s advantages and limitations.



Chapter 6

Conclusion

Knowledge-based systems, such as automated personal agents or recommender systems,

require robust link-prediction abilities to become viable, as the knowledge graphs they

rely on are often largely incomplete. This work aimed at improving factorization

models for link prediction in knowledge graphs. We followed an empirical approach to

spot weaknesses of existing models, starting with the very basics: properties of binary

relations. From the evidence that the correct modeling of all these properties, especially

antisymmetry, was not already covered by existing models, we designed a new tensor

factorization model named ComplEx. We turned ourselves to the large legacy of matrix

theory for inspiration, and leveraged on complex linear algebra to create this new model.

The ComplEx model fulfilled the task of modeling all basic properties of binary relations,

and provided new state-of-the-art results on classic benchmarks for link prediction, while

being scalable. We finished our study as we started it, with experiments on which all

current factorization models—including ComplEx—fail, thereby opening the path to

future improvements.

This last chapter summarizes the contributions of this thesis, and proposes future research

directions.

6.1 Contributions

We proposed a novel, non-unique decomposition for arbitrary square matrices, based on

the projection onto the real sub-space of a unitary diagonalization (Section 3.1). This

decomposition always exists (Theorem 2) with a number of dimensions that is at most

twice as large as the rank of the decomposed matrix. These properties are also true for

sign matrices, and their corresponding complexity measure, the sign-rank. We extended

97
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the analysis to the 3rd-order tensor case when jointly decomposing a set of arbitrary

square matrices (Section 3.2), and showed that the decomposition also exists with a rank

upper-bound matching the canonical polyadic decomposition’s (CP) rank upper-bound,

despite having only two factor matrices—for the relations and the entities—instead of

three—one per dimension for CP. As knowledge graphs correspond to partially-observed

sign tensors, we proposed a stochastic gradient descent algorithm to learn the proposed

decomposition model while naturally ignoring the missing values. Not imputing the

missing values is essential for generalization [Drumond et al., 2012], but also for scalability

given the size and sparsity of knowledge graphs.

When we started this work, our goal was to create a model that would be expressive

enough to model all possible relations, yet ensure a linear time and space complexity

to be scalable, and that generalizes well on real data. The use of complex-valued

embeddings allowed us to achieve this goal, by keeping unique representations of entities

which is essential to ensure good generalization, vectorial representations of relations for

scalability, and correctly modeling asymmetry through the use of the complex conjugation.

Experiments confirmed its abilities in practice, as ComplEx yields state-of-the-art results

on all classic link-prediction data sets, but can also successfully learn all combinations

of the basic binary-relation properties. The assumption that knowledge graphs tend to

have low sign-rank relations that can be efficiently approximated with a binary surrogate

such as the logistic function, combined with our model, was confirmed in practice as

prediction scores converged with low embedding sizes. The ComplEx model especially

confirmed its ability to model antisymmetric relations on WordNet data. But also that

it could be used for enriching vectorial representations of words, which proved useful in

the natural language processing task of entailment recognition. Finally, the ComplEx

model is among the first works to bring complex linear algebra in the machine learning

community.

We conducted an experimental survey on state-of-the-art latent factor models for link

prediction, to better understand the effect of different parametrization choices on the

ability to learn patterns from observed data. Specifically, experiments tested the models’

ability to learn combinations of basic relation properties, to learn genealogical relations

given different evidence about the families, and the models’ robustness to missing data.

These last experiments on families exposed the inability of latent factor models to transfer

knowledge between disjoint sub-graphs in knowledge graphs. The matrix representations

of relations in the RESCAL model yielded a better robustness to this issue, and in general

to missing data, though it also caused it to overfit when the rank of the decomposition

becomes too large. Bigram terms of the TransE model also shown a good robustness to

this effect, by highly scoring pairs of entities belonging to the same family. The DistMult

model has expected problems with asymmetric relations, and the F model with knowledge
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graphs featuring exclusive relations. The CP model unrelated representations of entities

as subject and object make it very sensitive to missing data. The ComplEx model

proves to be a safe choice as it performs well in most cases. These findings point where to

improve existing models, as well as which choices to make and to avoid for practitioners,

depending on the distribution of their data.

6.2 Future Work

We divide future research directions into theoretical and practical directions.

Theoretical Directions

Among the theoretical properties of the proposed decomposition that have been discussed,

several improvements are possible. The tightness of the 2K upper-bound on the existence

of the decomposition in the matrix case, discussed in Section 3.1.2.3, could be investigated.

We showed that the decomposition was not unique, characterizing the ensemble of existing

decompositions and their generalization properties at a given cut-off rank K could help

design more efficient algorithms to compute it. In the tensor case, we showed that the

decomposition always exist provided K is big enough, however we could not prove or

disprove its existence with embeddings of size inferior or equal to the dimension of the

square matrices K ≤ Ne (see Section 3.2.2).

We briefly mentioned the extension of the sign-rank to the tensor case, however its

properties has not yet been studied. Exploring sign-rank for tensors and its properties,

especially in the case of a set of square matrices, is a yet unexplored field. In practice, we

demonstrated that the logistic loss is a good surrogate for matching the sign-pattern of

sign matrices and tensors. How good is that surrogate for bilinear and trilinear models

could be quantified. This leads to addressing the non-convexity of these models, and

more precisely quantifying the spuriousness of local minima. In recent studies, Ge et al.

[2016] showed that in the bilinear semi-definite matrix completion problem, all local

minima were in fact global. The stability of prediction scores from different random

initializations that we observed with the ComplEx model could be the result of such

a property. This does not exclude also studying convex relaxations for sign matrices:

the trace-norm is well-known to be the convex hull of the classical rank [Candes and

Recht, 2012], but the convex hull of the sign-rank is as yet unknown. Finally, the links

between the VC-dimension and the sign-rank [Alon et al., 2016] open a path to study

the learnability of first-order logic rules from ground predicates encoded as sign matrices

by decomposition models.
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Practical Directions

In this work, we chose to consider sampling negative triples using the local closed-world

assumptions as real negatives, and to optimize the classical log-likelihood loss instead of

the more often used max-margin pairwise loss. On the FB15K data set of Freebase, this

yielded a large improvement in predictive abilities (see Section 4.3.6), which highlights

the importance of the loss in the link-prediction problem, an aspect of the problem that

has yet been barely studied, and thus should be explored. In Section 4.3.4, we showed

that sampling more than one negative for each positive triple can also bring a large

performance improvement. However the procedure is costly as it adds as many samples

to optimize over, and thus calls for a more intelligent sampling of negatives, that contrast

more with the positives from which they have been sampled.

Chapter 5’s experimental survey of existing models pointed out many possible enhance-

ments of existing models, including combining parts of their scoring functions. Our study

of the models’ robustness to missing data could be extended to assess their capacity to

cope with corrupted data. Solving the learning problem between disjoint sets of entities

require a scalable way of binding the parametrization of entity embeddings together

that is yet to be found. Furthermore, most existing latent factor models are unable to

generalize to new triples involving unseen entities and relations without a retraining step.

There are also more general future directions for knowledge graph models. Integrating

time is one, as some facts are only true for a given period, such as the living place of a

person or the president of a country. But also a proper handling of entities that represent

algebraic values or dates, such as hasAge(John,42), for which it makes little sense to

learn an embedding for each different value. Extension to relations between more than

two entities, n-tuples, is not straightforward, as ComplEx’s expressiveness comes from

the complex conjugation of the object-entity, that breaks the symmetry between the

subject and object embeddings in the scoring function. This stems from the Hermitian

product, which seems to have no standard multilinear extension in the linear algebra

literature, this question hence remains largely open.

The ComplEx model could also be used in other problems than link prediction, actually

for any problem that can be formulated as the completion of one or more square matrices.

Decomposing knowledge graphs itself could also serve other applications by learning or

enhancing vectorial representations of entities, which are then used for some downstream

task, as we showed with word embeddings for entailment recognition (see Section 4.4).

As a final word, it is by building experiments that target specific inference abilities,

starting with the basics, that we were put on the track of weak spots to improve on.
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We believe this is a good experimental design practice, and humbly hope to inspire the

reader.





Appendix A

Accelerating Stochastic Gradient

Descent via Online Learning to

Sample

Another contribution of this thesis, which is only partially related to knowledge graph

completion—by its application on matrix factorization—is reported in this Appendix.

Stochastic Gradient Descent (SGD) is one of the most widely used techniques for online

optimization in machine learning. In this work, we accelerate SGD by adaptively learning

how to sample the most useful training examples at each time step. First, we show

that SGD can be used to learn the best possible sampling distribution of an importance

sampling estimator. Second, we show that the sampling distribution of an SGD algorithm

can be estimated online by incrementally minimizing the variance of the gradient. The

resulting algorithm—called Adaptive Weighted SGD (AW-SGD)—maintains a set of

parameters to optimize, as well as a set of parameters to sample learning examples. We

show that AW-SGD yields faster convergence on matrix factorization, where rows and

columns are not sampled uniformly.

We first introduce the idea of this work in Appendix A.3, before reviewing the related

work in Appendix A.2. We show that SGD can be used to find the optimal sampling

distribution of an importance sampling estimator (Appendix A.3). This variance reduction

technique is then used during the iterations of a SGD algorithm by learning how to reduce

the variance of the gradient (Appendix A.4). We then illustrate this algorithm—called

Adaptive Weighted SGD (AW-SGD)—on matrix factorization (Appendix A.5). Other

application domains such as image classification and reinforcement learning are reported

in [Bouchard et al., 2015b], but were not part of this thesis, and thus are not reported

here.
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A.1 Introduction

In many real-world problems, one has to face intractable integrals, such as averaging on

combinatorial spaces or non-Gaussian integrals. Stochastic approximation is a class of

methods introduced in 1951 by Herbert Robbins and Sutton Monro [Robbins and Monro,

1951] to solve intractable equations by using a sequence of approximate and random

evaluations. Stochastic gradient descent [Bottou, 1998] is a special type of stochastic

approximation method that is widely used in large scale learning tasks thanks to its

scalability and good generalization properties [Bottou and Bousquet, 2011].

We are interested in using SGD to minimize functions of the form:

γ(w) := Ex∼P [f(x;w)] =

∫

X
f(x;w)dP (x) (A.1)

where P is a known fixed distribution and f is a function that maps X ×W into R, i.e.

a family of functions on the metric space X and parametrized by w ∈ W. SGD is a

stochastic approximation method that consists in using approximate gradients computed

on subspaces of X that are equal on average to the true gradient ∇wγ(w) [Bottou,

1998]. In many applications, including supervised learning techniques, the function f is

a log-likelihood and P is an empirical distribution with density 1
n

∑n
i=1 δ(x, xi) where

{x1, · · · , xn} is a set of i.i.d. data sampled from an unknown distribution.

At a given step t, SGD can be viewed as a two-step procedure: (i) sampling xt ∈ X
according to the distribution P ; (ii) doing an approximate gradient step with step-size

ρt:

wt+1 = wt − ρt∇wf(xt;wt) . (A.2)

The convergence properties of SGD are directly linked to the variance of the gradient

estimate [Bach and Moulines, 2011]. Consequently, some improvements to this basic

algorithm focus on the use of (i) parameter averaging [Polyak and Juditsky, 1992] to

reduce the variance of the final estimator, (ii) the sampling of mini-batches [Friedlander

and Schmidt, 2012] when multiple points are sampled at the same time to reduce the

variance of the gradient, and (iii) the use of adaptive step sizes to have per-dimension

learning rates, e.g., AdaGrad [Duchi et al., 2011].

We propose another general technique, which can be used in conjunction with the

aforementioned ones, which is to reduce the gradient variance by learning how to sample

training points. Rather than learning the fixed optimal sampling distribution and then

optimizing the gradient, we propose to dynamically learn an optimal sampling distribution

at the same time as the original SGD algorithm. Our formulation uses a stochastic process
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that focuses on the minimization of the gradient variance, which amounts to doing an

additional SGD step (to minimize gradient variance) along each SGD step (to minimize

the learning objective). There is a constant extra cost to pay at each iteration, but it is

the same for each iteration, and when simulations are expensive or the data access is

slow, this extra computational cost is compensated for by the increase in convergence

speed, as quantified in our experiments.

A.2 Related Work

The idea of speeding up learning by modifying the importance sampling distribution in

SGD has been recently analyzed by [Hazan et al., 2011] who showed that a particular

choice of the sampling distribution could lead to sub-linear performance guarantees

for support vector machines. We can see our approach as a generalization of this idea

to other models, by including the learning of the sampling distribution as part of the

optimization. The work of [Mineiro and Karampatziakis, 2013] shows that using a simple

model to choose which data to resample from is a useful thing to do, but they do not

learn the sampling model while optimizing. The two approaches mentioned above can be

viewed as the extreme case of adaptive sampling, where there is one step to learn the

sampling distribution, and then a second step to learn the model using this sampling

distribution. Training language models has been shown to be faster with adaptive

importance sampling [Senecal and Bengio, 2003; Bengio and Senecal, 2008], but the

authors did not directly minimize the variance of the estimator.

Regarding variance-reduction techniques, in addition to the aforementioned ones (Polyak-

Ruppert Averaging [Polyak and Juditsky, 1992], batching [Friedlander and Schmidt, 2012],

and adaptive learning rates like AdaGrad [Duchi et al., 2011]), an additional technique is

to use control variates (see for instance [Ross, 1997]). It has been recently used by Paisley

et al. [2012] to estimate non-conjugate potentials in a variational stochastic gradient

algorithm. The techniques described here can also be straightforwardly extended to the

optimization of a control variate. In the neural net community, adapting the order in

which the training samples are used is called curriculum learning [Bengio et al., 2009],

and our approach can be seen under this framework, although our algorithm is more

general as it can speed-up learning for arbitrary integrals, not only sums of losses over

the training data.
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A.3 Adaptive Importance Sampling

We first show in this section that SGD is a powerful tool for optimizing the sampling

distribution of Monte Carlo estimators. This will motivate our Adaptive Weighted SGD

algorithm in which the sampling distribution is not kept constant, but learned during

the optimization process.

We consider a family {Qτ} of sampling distributions on X , such that P is absolutely

continuous with respect to Qτ for any τ in the parametric set T . By Radon-Nikodym

theorem, the density q(·; τ) = dQτ

dP
exists since P and Qτ are probability measures, hence

σ-finite. Importance sampling is a common method to estimate the integral in Equation

A.1. It corresponds to a Monte Carlo estimator of the form (we omit the dependency on

w for clarity):

γ̂ =
1

T

T
∑

t=1

f(x)

q(xt; τ)
, x ∼ Qτ (A.3)

where we refer to Qτ as the importance distribution. It is an unbiased estimator of γ, i.e.

the expectation of γ̂ is exactly the desired quantity γ.

To compare estimators, we can use a variance criterion. The variance of this estimator

depends on τ :

σ2(τ) = Varτ [γ̂] =
1

T
Eτ

[

(

f(x)

q(x; τ)

)2
]

− γ2

T
(A.4)

where Eτ [.] and Varτ [.] denote the expectation and variance with respect to distribution

Qτ .

To find the best possible sampling distribution in the sampling family {Qτ}, one can

minimize the variance σ2(τ) with respect to τ . The optimal parameter τ∗ ∈ T is such

that q(., τ∗) ∝ |f |. In such a case, the variance σ2(τ∗) of the estimator is null: one

can estimate the integral with a single sample. In general, however, the parametric

family does not contain a normalized version of |f |. In addition, the minimization of the

variance σ2(τ) has often no closed-form solution. This motivates the use of approximate

variance-reduction methods.
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Algorithm 2 Minimal Variance Importance Sampling

Require: Initial sampling parameter vector τ0 ∈ T
Require: Learning rates {ηt}t≥0
for t = 0, 1, 2, · · · , T − 1 do

xt ∼ Qτt

τt+1 ← τt + ηt

(

f(xt)
q(xt;τt)

)2
∇τ log q(xt; τt)

end for

Output γ̂ ← 1
T

∑

t
f(xt)

q(xt;τt)

A possible approach is to minimize σ2(τ) with respect to the importance parameter τ .

The gradient is:

∇τσ
2(τ) = ∇τEτ

[

(

f(x)

q(x; τ)

)2
]

(A.5)

= −2Eτ

[

f(x)2∇τq(x; τ)

q(x; τ)3

]

= −2Eτ

[

(

f(x)

q(x; τ)

)2

∇τ log q(x; τ)

]

.

This quantity has no closed form solution in general, but we can use a SGD algorithm

with a gradient step equal on average to this quantity. To obtain an estimator g of

the gradient with expectation given by Equation A.5, it is enough to sample a point

xt according to Qτ and then set g := −(f(xt)/q(xt; τ))2∇τ log q(xt; τ). This is then

repeated until convergence. The full iterative procedure is summarized in Algorithm 2.

In the experiments below, we show that learning the importance weight of an importance

sampling estimator using SGD can lead to a significant speed-up in several machine

learning applications, including the estimation of empirical loss functions and the evalua-

tion of a policy in a reinforcement learning scenario. In the following, we show that this

idea can also be used in a sequential setting (the function f can change over time), and

when f has multivariate outputs, so that we can control the variance of the gradient of a

standard SGD algorithm and, ultimately, speedup the convergence.

A.4 Biased Sampling in Stochastic Optimization

In this section, we first analyze a weighted version of the SGD algorithm where points are

sampled non-uniformly, as in importance sampling, and then derive an adaptive version

of this algorithm, where the sampling distribution evolves with the iterations.
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A.4.1 Weighted Stochastic Gradient Descent

As introduced previously, our goal is to minimize the expectation of a parametric function

f (cf. Equation A.1). As in importance sampling, we do not need to sample according to

the base distribution P at each iteration of SGD. Instead, we can use any distribution Qτ

defined on X such that P is absolutely continuous with respect to Qtau, if each gradient

step is properly re-weighted by the density q(·; τ) = dQτ/dP . Each iteration t of the

algorithm consists in two steps: (i) sample xt ∈ X according to distribution Qτ ; (ii) do

an approximate gradient step:

wt+1 = wt − ρt
∇wf(xt;wt)

q(xt, τt)
. (A.6)

Depending on the importance distribution Qτ , this algorithm can have different con-

vergence properties from the original SGD algorithm. As mentioned previously, the

best sampling distribution would be the one that gives a small variance to the weighted

gradient in Equation A.6. The main issue is that it depends on the parameters wt, which

are different at each iteration.

Our main observation is that we can minimize the variance of the gradient using the

previous iterates, under the assumption that this variance does not change too quickly

when wt is updated. We argue that this is reasonable in practice as learning rate policies

for ρt usually assume a small constant learning rate, or a decreasing schedule [Bottou,

1998]. In the next section, we build on that observation to build a new algorithm that

learns the best sampling distribution Q in an online fashion.

A.4.2 Adaptive Weighted Stochastic Gradient Descent

As in Appendix A.3, we consider a family {Qτ} of sampling distributions parametrized

by τ in the parametric set T . Using the sampling distribution Qτ with probability

density function q(x; τ) = dQτ (x)
dP (x) , we can now evaluate the efficiency of the sampling

distributions Qτ based on the covariance Σ(w, τ):

Σ(w, τ) := Varτ [∇wf(x;w)/q(x, τ)] (A.7)

= Eτ

[∇wf(x;w)∇⊤wf(x;w)
q(x; τ)2

]

−∇wγ(w)∇⊤wγ(w) . (A.8)
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Algorithm 3 Adaptive Weighted SGD (AW-SGD)

Require: Initial target and sampling parameter vectors w0 ∈ W and τ0 ∈ T
Require: Learning rates {ρt}t≥0 and {ηt}t≥0

for t = 0, 1, · · · , T − 1 do

xt ∼ Qτt

dt ← ∇wf(xt;wt)
q(xt;τt)

wt+1 ← wt − ρtdt
τt+1 ← τt + ηt ‖dt‖2∇τ log q(xt; τt)

end for

For a given function f(·;w) we would like to find the parameter τ∗(w) of the sampling

distribution that minimizes the trace of the covariance Σ(w; τ), i.e.:

τ∗(w) ∈ argmin
τ

Eτ

[

∥

∥

∥

∥

∇wf(x;w)

q(x; τ)

∥

∥

∥

∥

2
]

. (A.9)

Consequently, a simple SGD algorithm with gradient steps having small variance consists

in the following two steps at each iteration t:

1. Perform a weighted stochastic gradient step using distribution Qτt to obtain wt+1;

2. Compute τt = τ∗(wt) by solving Equation A.9, i.e. find the parameter τt minimizing

the variance of the gradient at point wt. This can be done approximately by applying

M steps of stochastic gradient descent.

The inner-loop SGD algorithm involved in the second step can be based on the current

sample, and the stochastic gradient direction is

∇τ tr(Σ(wt, τ)) = ∇τEτ

[

∥

∥

∥

∥

∇wtf(x;wt)

q(x; τ)

∥

∥

∥

∥

2
]

(A.10)

= −2Eτ

[

∥

∥

∥

∥

∇wtf(x;wt)

q(x; τ)

∥

∥

∥

∥

2

∇τ log q(x; τ)

]

.

In our experiments, we observed that it is enough to do a single step of the inner

loop, i.e. M = 1. We call this simplified algorithm the Adaptive Weighted SGD

Algorithm and its pseudo-code is given in Algorithm 3. We see that AW-SGD is a slight

modification of the standard SGD—or any variant of it, such as AdaGrad [Duchi et al.,

2011], AdaDelta [Zeiler, 2012] or RMSProp [Tieleman and Hinton, 2012]—but where the

sampling distribution evolves during the algorithm, thanks to the update of τt. This

algorithm is useful when the approximate gradient has a variance that can be significantly

reduced by choosing better samples.
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The benefits of this algorithm have been illustrated in three different applications:

image classification, matrix factorization and reinforcement learning [Bouchard et al.,

2015b]. We here report only the work that is part of this thesis: the matrix factorization

applications.

A.5 Application to Matrix Factorization

We applied AW-SGD to learn how to sample the rows and columns in a SGD-based

low-rank matrix decomposition algorithm. Let Y ∈ R
n×m be a matrix that we want to

approximate with a rank-K decomposition UV ⊤, where U ∈ R
n×K and V ∈ R

m×K . We

consider a differentiable loss function ℓ(z; y) where z ∈ R and y is observed. With the

squared loss, each entry of Y is a real scalar and ℓ(z, y) = (z− y)2. The full loss function

is

γ(U, V ) =

n
∑

i=1

m
∑

j=1

ℓ(uiv
⊤
j , yij) . (A.11)

We consider the sampling distributions {Qτ} over the set X := {1, · · · , n} × {1, · · · ,m},
where we independently sample a row i and a column j according to the discrete

distributions ς(τ ′) and ς(τ ′′) respectively, with τ ′ ∈ R
n, τ ′′ ∈ R

m, τ = (τ ′, τ ′′) ∈ R
m+n,

and x = (i, j). We define:

ς(z) =(ez1 , ez2 , · · · , ezp)/
(

p
∑

i=1

ezi

)

, (A.12)

q(x, τ) = ς(τ ′) ς(τ ′′) (A.13)

where z ∈ R
p and ς : Rp → R

p is the softmax function. Using the squared loss, as in the

experiments below, the update equations in AW-SGD (Algorithm 3) are:

f(xt;ut, vt) =ℓ(uitv
⊤
jt
, yitjt) = (uitv

⊤
jt
− yitjt)

2 , (A.14)

∇uit
f(xt;ut, vt) = 2vjt(uitv

⊤
jt
− yitjt) , (A.15)

∇vjt
f(xt;ut, vt) = 2uit(uitv

⊤
jt
− yitjt) , (A.16)

∇τ ′ log q(xt; τt) = ei − ς(τ ′) , (A.17)

∇τ ′′ log q(xt; τt) = ej − ς(τ ′′) (A.18)
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This work also shows that we can learn about the algorithm while optimizing, as shown

by the time-aware AW-SGD. This idea can be extended to design new types of meta-

algorithms that learn to optimize or learn to coach other algorithms.





Appendix B

Results with Reflexivity and

Irreflexivity

In this appendix we report results of the individual learning of combinations of relation

properties including reflexivity and irreflexivity. Those results are included for complete-

ness as they are similar to the cases that are neither reflexive nor irreflexive, reported

in Section 5.2.2.1. Figure B.1 shows results for the 5 combinations with reflexivity, and

Figure B.2 for the 3 combinations with irreflexivity. The irreflexive transitive case, and

the irreflexive symmetric transitive case are not reported as they are not consistent, as

explained in Section 5.2.1. The single noticeable difference is in the symmetric irreflexive

case, where all models perform slightly worse compared to the symmetric and symmetric

reflexive cases, especially TransE.
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