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“Good tests kill flawed theories; we remain alive to guess again.”

Karl Popper
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The explosion of widely available relational data in the form of knowledge graphs enabled
many applications, including automated personal agents, recommender systems and
enhanced web search results. The very large size and notorious incompleteness of
these databases calls for automatic knowledge graph completion methods to make these
applications viable. Knowledge graph completion, also known as link prediction, deals
with automatically understanding the structure of large knowledge graphs—Ilabeled
directed graphs—to predict missing entries—labeled edges. An increasingly popular
approach consists in representing a knowledge graph as a 3'9-order tensor, and using

tensor factorization methods to predict their missing entries.

State-of-the-art factorization models propose different trade-offs between modeling ex-
pressiveness, time and space complexity, and generalization abilities. We introduce a new
model, CoMPLEX—for Complex Embeddings—to reconcile expressiveness, complexity
and generalization through the use of complex-valued factorization. We corroborate
our approach theoretically and show that all possible knowledge graphs can be exactly
decomposed by the proposed model. Our approach based on complex embeddings is
arguably simple, as it only involves a complex-valued trilinear product, whereas other
methods resort to more and more complicated composition functions to increase their
expressiveness. The proposed COMPLEX model is scalable to large data sets as it remains
linear in both space and time, while consistently outperforming alternative approaches
on standard link-prediction benchmarksﬂ We also demonstrate its ability to learn useful
vectorial representations for other tasks, by enhancing word embeddings that improve
performances on the natural language problem of entailment recognition between pair of

sentences.

In the last part of this thesis, we explore factorization models ability to learn relational
patterns from observed data. By their vectorial nature, it is not only hard to interpret
why this class of models works so well, but also to understand where they fail and how
they might be improved. We conduct an experimental survey of state-of-the-art models,
not towards a purely comparative end, but as a means to get insight about their inductive
abilities. To assess the strengths and weaknesses of each model, we create simple tasks
that exhibit first, atomic properties of knowledge graph relations, and then, common
inter-relational inference through synthetic genealogies. Based on these experimental
results, we propose new research directions to improve on existing models, including

ComMPLEX.

1Code is available at: https://github.com/ttrouill/complex
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L’explosion de données relationnelles disponibles sous la forme de graphes de connais-
sances a permis le développement de multiples applications, dont les agents person-
nels automatisés, les systéemes de recommandation et I’amélioration des résultats de
recherche en ligne. La grande taille et 'incomplétude de ces bases de données nécessite
le développement de méthodes de complétion automatiques pour rendre ces applications
viables. La complétion de graphes de connaissances, aussi appelée prédiction de liens, se
doit de comprendre automatiquement la structure de larges graphes de connaissances
(graphes dirigés labellisés) pour prédire les entrées manquantes (les arétes labellisées).
Une approche populaire consiste a représenter un graphe de connaissances comme un
tenseur d’ordre 3, et a utiliser des méthodes de décomposition de tenseur pour prédire

leurs entrées manquantes.

Les modeles de factorisation existants proposent différents compromis entre leur expres-
sivité, leur complexité en temps et en espace, et leur capacités de généralisation. Nous
proposons un nouveau modele appelé CoOMPLEX, pour “Complex Embeddings”, pour
réconcilier expressivité, complexité et généralisation par 1'utilisation d’une factorisation
en nombre complexes. Nous corroborons notre approche théoriquement en montrant que
tous les graphes de connaissances possibles peuvent étre exactement décomposés par le
modele proposé. Notre approche, basée sur des embeddings complexes reste simple, car
n’impliquant qu’un produit trilinéaire complexe, la ou d’autres méthodes recourent a des
fonctions de composition de plus en plus sophistiquées pour accroitre leur expressivité.
Le modele proposé ayant une complexité linéaire en temps et en espace est passable a
I’échelle, tout en dépassant les scores de prédiction des approches existantes sur les jeux
de données de référence pour la prédiction de liensﬂ Nous démontrons aussi la capacité
de CoMPLEX a apprendre des représentations vectorielles utiles pour d’autres taches, en
enrichissant des embeddings de mots, qui améliorent les prédictions sur le probleme de

reconnaissance d’implication entre paires de phrases.

Dans la derniere partie de cette these, nous explorons les capacités des modeles de
factorisation & apprendre les structures relationnelles & partir d’observations. De part
leur nature vectorielle, il est non seulement difficile de comprendre pourquoi cette classe
de modeles fonctionne aussi bien, mais aussi ou ils échouent et comment ils peuvent étre
améliorés. Nous conduisons une étude expérimentale de modeles de I’état de 1’art, non
pas simplement pour les comparer, mais pour comprendre leurs capacités d’induction.
Pour évaluer les forces et faiblesses de chaque modele, nous créons d’abord des taches
simples représentant des propriétés atomiques des propriétés des relations des graphes de
connaissances ; puis des taches représentant des inférences multi-relationnelles communes

au travers de généalogies synthétisées. A partir de ces résultats expérimentaux, nous

2Le code est mis & disposition: https://github.com/ttrouill/complex
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proposons de nouvelles directions de recherche pour améliorer les modeles existants, y

compris COMPLEX.
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Chapter 1

Introduction

Web-scale knowledge graphs provide a structured representation of world knowledge, with
projects such as the Google Knowledge Graph |Google Blog, [2012]. They enable a wide
range of applications including recommender systems [Koren, 2008|, question answering
[Bordes et al 2014b], automated personal agents [Ma et al., 2015] and enhanced search
results [Google Blog, 2012] (Figure . The incompleteness of these knowledge graphs—
also called knowledge bases—has stimulated research into predicting missing entries, a
task known as link prediction or knowledge-graph completion. The need for high quality
predictions made it progressively become the main problem in statistical relational
learning [Getoor and Taskar, [2007], a research field involving the study of relational-data

representation and modeling.

Knowledge graphs were born with the advent of the Semantic Web, pushed by the World
Wide Web Consortium (W3C) recommendations. Namely, the Resource Description
Framework (RDF) standard, that underlies knowledge graphs’ data representation,
provides for the first time a common framework across all connected information systems
to share their data under the same paradigm. Being more expressive than classical
relational databases, all existing relational data can be translated into RDF knowledge
graphs [Sahoo et al., 2009]. Through these data-representation standards glimpses the
hope for a future, freely accessible, global database storing all of humanity’s knowledge,

that could be automatically completed by reliable link-prediction methods.

In artificial intelligence, many tasks require what is called commonsense knowledge to
be solved perfectly. The ensemble of facts and information about the world that any
person is expected to know constitutes the commonsense knowledge. Such tasks are
considered Al-complete, that is, they are considered as hard as developing an artificial
general intelligence (AGI). These tasks include natural language understanding and

image understanding [Yampolskiyl 2012]. The existence of such a complete knowledge

1
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Rafael Bombelli - Wikipedia, the free encyclopedia
htps:/fen.wikipedia.org/wiki/Rafael_Bombelli ~

Rafael Bombelli was an Italian mathematician. Barn in Bologna, he is the author of a treatise on
algebra and is a central figure in the understanding of imaginary ...

Life - Bombelli's Algebra - Accomplishments - Bombelli method

Bombelli biography - University of St Andrews
www-groups.des.st-and.ac.uk/~history/Biographies/Bombelli.html ~

Rafael Bombelli's father was Antonio Mazzoli but he changed his name from Mazzoli to Bombelli. It is
perhaps worth giving & little family background

P21 rafael bombelli's algebra (1572) - Inrp
ife.ens-lyon.fr/publications/edition-electronique/cermet/iwg4-03-bagni.pdf ~

by GT Bagni - Related articles

RAFAEL BOMBELLI'S ALGEBRA (1572) AND A NEW. MATHEMATICAL "OBJECT™: A SEMICTIC
ANALYSIS. Giorgio T. Bagni. Department of Mathematics and ...

Fermat's Last Theorem: Rafael Bombelli
fermatslasttheorem.blogspot.com/2006/11/rafael-bombelli.htm| ~

Nov 27, 2006 - Rafael Bombelli was born in 1526 in Bologna. His father, Antonio Mazzoli, changed his
name o Bombelli in order to avoid the reputation of the ...

Fermat's Last Theorem: Bombelli and the invention of complex numbers
fermatslasttheorem.blogspot.com/2006/12/bombelli-and-invention-of-complex.html =

Dec 1, 2006 - Rafael Bombelli was the first to propose the idea of complex numbers. Bombelli wrote
about imaginary numbers in his very influential book ...

Bombelli, Rafael — Dictionary definition of Bombelli, Rafael ...
www.encyclopedia.com/doc/1G2-2830900516.him| ~

Definition of Bombelli, Rafael — Qur online dictionary has Bombelli, Rafael information from Complete
Dictionary of Scientific Biography dictionary.

Rafael Bombelli <

Mathematician

Rafael Bombelli was an ltalian mathematician. Born in Bologna, he is the
author of a treatise on algebra and is a central figure in the
understanding of imaginary numbers. Wikipedia

Bomn: January 20, 1526, Bologna, ltaly
Died: 1572, Rome, [taly

Education: University of Bologna

People also search for

)

B |
Gerolamo Niccolo Scipione del Luca Pacioli
Cardano Fontana Ferro viete

Tartaglia

Feeaback

FIGURE 1.1: Example of a Google search result for the query “Rafael Bombelli”,
enhanced by the Google Knowledge Graph (right-side block), that provides extra-
information such as birth and death place and time, and education.

base of commonsense knowledge, as pursued by the the Cyc project [Lenat), 1995], would
help solve hard artificial intelligence problems, and open a path to AGI.

Formally, knowledge graphs express data as a directed graph with labeled edges (relations)
between pairs of nodes (entities): relations are binary predicates. Natural redundancies
between the recorded relations often make it possible to fill in the missing entries
of a knowledge graph. As an example, the relation livesInCountry could not be
recorded for all entities, but it can be inferred if the relation 1ivesInCity is known.
The goal of link prediction is the automatic discovery of such regularities. However,
inference between relations is often non-deterministic: the combination of the two
facts livesInCity(John,Athens) and isInCountry(Athens,Greece) does not always
imply the fact hasNationality(John,Greece). Hence, it is natural to handle inference
probabilistically, and jointly with other facts involving these relations and entities. To
this end, an increasingly popular method is to state the knowledge graph completion
task as a 3D binary tensor completion problem, where each tensor slice is the adjacency
matrix of one relation in the knowledge graph, and compute a decomposition of this

partially-observed tensor from which its missing entries can be completed.

Decomposition models, also known as factorization models, or latent factor models, or

low-rank embedding models; were popularized by the Netflix challenge |[Koren et al.,2009].

A partially-observed matrix or tensor is decomposed into a product of embedding matrices
with much smaller dimensions, resulting in fixed-dimensional vector representations for

each entity and relation in the graph, that allow completion of the missing entries. For a
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F1GURE 1.2: Cross-validated average precision on a synthetic antisymmetric relation

with 30 entities, for each rank ranging from 5 to 50 on different state-of-the-art models.

RESCAL is working best but does not exceed 0.8 of average precision and has quadratic
complexity. See the full experiment description in Section

given fact r(s,0) in which the subject entity s is linked to the object entity o through the
relation r, a score for the fact can be recovered as a multilinear product between the

embedding vectors of s, r and o, or through more sophisticated scoring functions [Nickel!

Gt al] 20163

Binary relations in knowledge graphs exhibit various types of patterns: hierarchies and
compositions like father0f, olderThan or isPart0f, with strict/non-strict orders or
preorders, and equivalence relations like isSimilarTo. These characteristics map to

different combinations of the following properties: reflexivity /irreflexivity, symmetry/an-

tisymmetry and transitivity. As described in Bordes et al.| [2013a], a relational model

should (i) be able to learn all combinations of such properties, and (ii) be linear in both
time and memory in order to scale to the size of present-day knowledge graphs, and keep

up with their growth.

A natural way to handle any possible set of relations is to use the classic canonical polyadic

(CP) tensor decomposition [Hitchcockl 1927], which yields two different embeddings for

each entity and thus poor generalization performance as shown in Chapter With
unique entity embeddings, multilinear products scale well and can naturally handle both
symmetry and (ir)reflexivity of relations. However, dealing with antisymmetric and more

generally asymmetric relations has so far almost always implied scoring functions with

superlinear time and space complexity [Nickel et al.| 2011} [Socher et al., 2013|, making

models prone to overfitting and not scalable.

Finding the best trade-off between expressiveness, generalization and complexity is the

keystone of embedding models. Following an empirical approach to the problem, we
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designed different synthetic tasks that each targets different types of inference abilities—
among them learning the basic binary-relation properties. From the observation that no
existing factorization model could correctly learn an antisymmetric relation, as shown in
Figure we explore matrix and tensor decompositions in the complex space. Indeed,
antisymmetric—or skew-symmetric—matrices are known to have complex eigenvalues

[Horn and Johnson, [2012]. Through the use of complex linear algebra, we aimed at:

1. Correctly modeling all basic properties of binary relations.
2. Building a scoring function with linear time and space complexity.

3. Ensuring good generalization by keeping unique representations of entities.

Structure of the Thesis

The resulting model, based on unitary-diagonalization properties, is presented in Chap-
ter ] We discuss its existence and rank bounds first in the single-relation case, and
then extend it to the multi-relational, tensor case. We present a stochastic gradient
algorithm to learn the decomposition of partially-observed tensors. Experimental results
with this model, and its different applications are described in Chapter [ We first assess
its ability to model jointly symmetric and antisymmetric relations on synthetic data,
and then compare it to state-of-the-art models on established link-prediction bench-
marks. We also show the flexibility of the knowledge graph decomposition approach
to learn reusable vectorial representations of entities, by learning word embeddings
that improve on entailment recognition. Finally, we conduct an experimental survey to
assess state-of-the-art latent factor models ability to learn from data in Chapter [5} We
design synthetic experiments that exhibit binary-relation properties, as well as common
multi-relational inference through genealogical relations. Results give insights about each
parametrization’s pros and cons, and open to different future research directions. We
conclude this thesis contributions and perspectives in Chapter [l Appendix [A] presents
an partially-related contribution of this thesis on online learning to sample training
data for stochastic gradient descent. We demonstrate the benefits on different matrix

factorization problems.

We made our implementation of the proposed model availableﬂ as well as the synthetic

data used in the last chaptelﬂ

"https://github.com/ttrouill/complex
Zhttps://github.com/ttrouill/induction_experiments
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Chapter 2

Related Work

Before focusing on state-of-the-art models and methods for link prediction in knowledge
graphs, let us put this problem back into its context. Link prediction is one of the main
tasks of statistical relational learning (SRL) |Getoor and Taskar, 2007], a sub-field of
machine learning concerned with the representation and modeling of relational data.
We then formally define the link-prediction problem and review the literature, with an
emphasis on latent factor models on which this thesis focuses. Finally we discuss related

factorization problems and methods.

2.1 Relational Learning

Data is said to be relational when its representation is expressed as links, or relations,
between the underlying objects of the database: the entities. This linked nature between
the entities can be expressed in different but equivalent formalisms such as relational
tables, as classically used in relational database management systems [Codd} 1970];
ground predicates in first-order logic where predicates are the relations and ground terms
the entities [De Raedt, 2008; Richardson and Domingos| |2006]; and n-tuples through set
theory where relations and entities are mixed in the tuples [Nickel, 2013]. In this work
we will focus on specific relational data expressed as triples. Collections of such triples

are known as knowledge graphs.

A knowledge graph stores data about a set of entities £ and a set of relations R, where
relations link pairs of entities in the form of facts r(s,0)—for example isCapitalOf
(Ulaanbaatar,Mongolia)—that we also write as triples (r,s,0), where the relation
r € R and the subject and object entities s,0 € £. It is thus naturally represented
as a labeled directed graph: a directed graph which has labeled edges that connect
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subject entities to object entities, where the labels are the different relations r € R (see
Figure . We denote the set of all possible triples for a given entity set and relation
set by T =R x & x £. A knowledge graph is hence a subset of 7 the set of observed
triples (r, s,0) among all the possible ones, that we write (r,s,0) € To C T.

This representation has been driven by the coming of the Semantic Web, through the
recommendations of the W3C, and namely, the Resource Sescription Framework (RDF)
[Cyganiak et al.| |2014]. Databases that follows this representation of data as triples are
called knowledge graphs or knowledge bases. Many such knowledge graphs have been
collaboratively or automatically created in recent years such as DBpedia |[Auer et al.,
2007|, Freebase [Bollacker et al., |2008] and the Google Knowledge Vault [Dong et al.,
2014].

From the very existence of these knowledge graphs and the applications they enable arise
different tasks, such as predicting the missing triples in it—the task on which this thesis
focuses—but also finding entities that are different instances of the same underlying
object [Kopcke and Rahm), [2010], or grouping similar entities together [Fortunato, |2010].
Tackling these tasks require inferential abilities about the data, that is, a model of the
knowledge graph considered. Many different formalisms for modeling relational data
have been proposed, including first-order logic [Muggleton, |1995; Lisi, [2010; Galarraga
et al., [2015], probabilistic graphical models [Ngo and Haddawy), [1997; Wellman et al.)
1992; Kersting and De Raedt, 2001], latent space models [Nickel et al., 2011; Bordes
et al., 2013b; [Riedel et all 2013], and different combinations of those |[Richardson and
Domingos, 2006; [Rocktaschel et al., [2015].

2.1.1 Knowledge Graphs

Knowledge graphs differ largely in the way they are constructed, and in the domain they

store data about.

Construction methods Some graphs are manually curated by experts, and have very
accurate data such as WordNet [Fellbaum, |1998], but are generally restricted to small
knowledge graphs as expert annotation is expensive. Other graphs such as Freebase
[Bollacker et al., 2008] are created collaboratively on an open-access platform, following
the model of Wikipedia. This construction model allows for a much larger scalability,
while keeping a good data reliability, as Freebase has been estimated to be 99% accurate
[Giannandreay, 2011].

More and more knowledge graphs resort to automatic triple extraction from data, either

structured or not. The DBpedia project |Auer et al., 2007| extracts information from
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Number of
Knowledge graph Entities || Relations |R| Facts ||
WordNet 155 K 116 9M
NELL 5M 306 0.5 M
YAGO2 10 M 114 447 M
DBpedia 5 M 1,367 538 M
Freebase 40 M 35,000 637 M
Google Knowledge Vault 45 M 4,469 1,600 M

TABLE 2.1: Number of entities |£], relations |R|, and observed triples |{2| of some
knowledge graphs.

Wikipedia, and re-frames it as a knowledge graph. Similarly YAGO [Suchanek et al.,
2007; [Hoffart et al., 2013] also uses other sources of structured data. Other projects also
make use of unstructured data such as the Never-Ending Language Learning system
[Carlson et al.l 2010] and the Google Knowledge Vault [Dong et al.l 2014]. Both crawl the
web and extract triples directly from its content, including text, tabular data and page
structure. Knowledge graphs constructed this way are much bigger than the humanly
created ones, but also less reliable as NELL is estimated to be 87% accurate |Lohr} 2010].
Sizes of the aforementioned knowledge graphs are summarized in Table

Data domain Most of the knowledge graphs above store general knowledge about
the world, akin to Wikipedia—but as triples. There are also projects dedicated to
specific types of data. WordNet [Fellbaum, 1998] is a lexical database of English, its
entities are word meanings, grouped in synsets, each representing a different concept. For
polysemous words for example, each of their different meanings will be represented by a
different entity. The entities are interlinked together by conceptual-semantic and lexical
relations, such as hypernymy, meronymy or being part of another synset. WordNet
resource has proven useful in many natural language processing tasks, such as word-sense
identification |[Leacock and Chodorow, [1998], text classification [Scott and Matwin) 1998§]

and information retrieval [Varelas et al., |2005].

In biology, many knowledge graphs arise such as Bio2RDF [Belleau et al., 2008] and
LinkedLifeData [Momtchev et al., 2009]. Both projects aim at unifying many existing
bioinformatics databases in a single knowledge graph. The IntAct database [Kerrien
et al., 2011 describes interactions between pairs of molecules. Beyond projects that are
explicitly storing their data as triples, many data sets that represent networks can be
naturally expressed in the same triple formalism. Among them are the CORA [McCallum
et al., [2000] and Citeseer [Lawrence et al., |1999] data sets, that represent citations
network between scientific articles. There are also the Kinships data set [Denham), (1973]
that describes kinship relations between individuals of an aboriginal tribe from Australia,

the Nations data set that features diplomatic relations between countries [Rummel, [1976],
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and the unified medical language system (UMLS) data set [McCray, [2003] that links

medical concepts through their interactions.

2.1.2 Tasks and Applications

Knowledge-graph learning problems essentially inherit the classical problems coming
from both databases, and machine learning. They thus have their own classification
and clustering problems, namely collective classification and link-based clustering. But
also classical databases problems such as avoiding duplicates and being as complete as

possible, that is entity resolution, and our problem of interest, link prediction.

Collective classification When data naturally exhibits an interlinked nature, as is the
case for social networks, or biological networks for example, the classical attribute-based
classification model does not exploit this relational information properly. In this case,
data can be naturally framed as a knowledge graph, and the classification of its entities
among a set of classes, based on the links between entities—and their attributes when
they exist—is known as collective classification. Methods that explicitly take into account
such networked information have proven to be more accurate than those that do not
[Sen et al., [2008; Neville and Jensen, [2003]. Collective classification applications include
document classification |Chakrabarti et al., 1998], part-of-speech tagging [Lafferty et al.,

2001], and counter-terrorism analysis [Macskassy and Provost, [2005].

Link-based clustering Similarly to collective classification, link-based clustering meth-
ods are clustering methods tailored for interlinked data, and make use of the relational
patterns between entities. Such methods are widely used in social network analysis for
community detection [Fortunatol 2010|, for example on mobile phone communications
[Blondel et al.l 2008], e-mail exchanges |Tyler et al., 2005], and Facebook “friendship”
networks |Traud et al., 2009].

Entity resolution Knowledge graphs that aggregate data from multiple sources of
data, structured or unstructured, face the problem of duplicate entities. This is especially
true when data is harvested from raw text, where for example, the same person name
can be written either fully, or only with first name initial, or with middle name initial,
and so forth. Resolving these duplicates is known as entity resolution, or more generally
as record linkage |Kopcke and Rahm), [2010]. Approaches to solve this problem can be
either fully automatic [Dredze et al., 2010; Bhattacharya and Getoor, |2007], or involve

interactive interfaces that suggests possible conflicts to users [Bilgic et al.l |2006]. As the
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number of duplicates consequently affects the quality of the models that will be built
on the knowledge graph to solve other tasks, this task arises quite naturally from the
existence of knowledge graphs. But it also has its own direct applications in government
data, public health systems, comparison shopping engines, and generally any information

system that gather/store data from/in multiple databases |Christen) 2012].

Knowledge graphs are notoriously largely incomplete and predicting their missing entries
is thus one of the main problems of relational learning. This problem is known as
link prediction, or knowledge graph completion. Beyond search-results enhancement
(Figure , link prediction has various applications including question answering [Bordes
et al},[2014b], recommender systems [Rendle and Schmidt-Thieme} [2010] (see Section [2.3.1)
and probabilistic querying of knowledge bases [Huang and Liu, [2009; Krompaf et al.,
2014].

2.2 Link-Prediction

In this section, we formally define the link-prediction problem in knowledge graphs, as
well as the notations that will be used throughout this manuscript. We then introduce
in detail a family of state-of-the-art models, the latent factor models, on which this
work focuses. We then review other approaches to the problem, including proposals
mixing first-order logic and latent space models, as this is also one of interest to us (see
Chapter [5)).

Let us first introduce some notations. The number of entities is denoted by N, = |&|,

and the number of relations by N, = |R|. The i*" row of a complex matrix X € C"*™ is
written z; € C™. By a slight abuse of notation, for entities i € £ and relations r € R,
we will write their corresponding rows in the embedding matrices as x; or z,, where

x;, x, € C™.

As previously defined, a knowledge graph is a set of observed triples (r, s,0), denoted
by 7q. The link-prediction task consists in predicting some missing triples (', s, 0) €
T\ Ta. Figure presents a simple knowledge graph with five entities: Bombelli,
Grimaldi, Manfredi (three Italian mathematicians), the city Bologna and its university U.
Bologna; interlinked by two relations, studied and born. The fact studied (Bombelli,U.
Bologna) is one of several facts that are missing in this graph. Link prediction’s goal
is to automatically discover and use redundancies in the graph to predict whether this
missing triple is true or not— in order to display it in a search result for example, as

shown in Figure Here the facts studied(s,U. Bologna) and born(s,Bologna) are
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Manfredi
born studied
Bologna <«——born Grimaldi studied——> U. Bologna
- IY
born studied?
Bombelli

FIGURE 2.1: Example of a knowledge graph with 5 entities (nodes), 2 relations (edge
labels) and 5 observed facts (edges). The dotted edge represent a missing fact of interest.

observed for the entities s for which they are observed. However that might not always

be true, and link-prediction models thus have to handle inference probabilistically.

There are different possible assumptions concerning the truth of the missing triples. Under

the closed-world assumption |Nickel et al., 2016a], those missing triples are considered to

indicate false facts—then the link-prediction problem is de facto solved. This assumption
is primarily used with complete data sets that serve as benchmarks for link prediction
through cross-validation, such as the Kinships or UMLS data sets [Denham)| [1973; McCray,
, as shown in Section The very existence of the link-prediction problem implies

the open-world assumption: missing triples are indeed considered as missing, and one

has to separate the true facts from the false facts among them [Drumond et al., 2012].

To abstract ourselves from different assumptions, and generalize to all cases, we consider
that we observe a set of true and false triples—possibly only true ones—by associating

to each observed triple (r,s,0) € T its corresponding truth value y,s, € {—1,1}. For

example, the fact first_used(Cardano, imaginary numbers) is true |Cardano, |1545[|E|

It thus has a corresponding truth value y,s, = 1. To false facts we attribute the
value —1. We write the corresponding set of observed facts with their truth values
Q = {((r,5,0),Yrs0) | (r,8,0) € Tq}. Link prediction is then framed as predicting the

truth values y,» ¢ »» of a disjoint set of unobserved triples (', s’,0') € T\ Ta.

Graphs are naturally represented by their adjacency matrix. Knowledge graphs have
labeled edges, and hence have a different adjacency matrix Y, € {—1,1}"Ve*Ne for each
relation » € R. These matrices Y, are only partially observed as we only observe the

values y,s, for observed triples ((7,s,0),¥rs0) € . Note that —1 represent the truth

!The first person to stumble on imaginary numbers was Heron of Alexandria. However, no mathe-
matician until Cardano—a millenium and a half later—went past the puzzling moment of facing the
square root of a negative number. Simply putting “nevertheless we will operate”, Cardano provided
the first solution to a system of equations that has complex roots, and the first actual use of complex

numbers 5]
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FIGURE 2.2: Adjacency matrices stacked into a 3'd-order partially-observed tensor,
corresponding to the knowledge graph in Figure The question mark represents a
missing fact of interest.

value y,s, of the false observed triples in €2, not the missing ones. All those adjacency
matrices can be stacked as a 3'%-order, partially-observed tensor Y € {—1,1}VrxNexNe,
and the value at index (r, s,0) is the truth value of the corresponding triple: y,s,, for
observed triples ((r,s,0), yrso) € §2. Figure shows the adjacency matrices and tensor
corresponding to the knowledge graph presented in Figure [2.1

By representing a knowledge graph as a partially observed tensor, the link-prediction
problem becomes a tensor-completion problem. To enable completion by factorization
methods, the unknown tensor is assumed to have low rank or approximately low rank.
In this case, the observed entries constrain the possible values of the missing entries, and
the tensor can then be completed by the product of learnt factor matrices with much
smaller dimensions. Low-rank matrix and tensor-factorization methods have proven
to be very effective for completion problems, and numerous research works have been
published on the topic (see Section [2.3.1)). We decided to follow this approach to tackle
the link-prediction problem. In the next section, we review the state-of-the-art latent
factor models for link prediction, which are models that learn a factorization of the

knowledge graph tensor, and we discuss their known advantages and limitations.
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Model Scoring Function ¢ | Parameters O

CP [Hitchcock], [1927] (W, g, Vo) Wy, Us, Vo € RE
RESCAL [Nickel et al.| 2011] el W,e, W, € RKQ, es, €0 € RE
TRANSE |Bordes et al., 2013b] —||(es +wy) — €ollq Wy, €5, €5 € RE

F model [Riedel et al., [2013] u) wy wy,ug € RE
DisTMULT [Yang et al., [2015] (wy, €5, €0) Wy, €5, €0 € RE
CoMPLEX (this thesis) Re({wy, es, €5)) Wy, €5, €5 € CK

TABLE 2.2: Scoring functions of state-of-the-art latent factor models for a given fact
r(s,0), along with the representation of their parameters. In the F model, d indexes all
possible pairs of entities: d = (s,0) € € x &.

2.2.1 Latent Factor Models

We define each model by its scoring function ¢(r,s,o0;0), where © are the latent pa-
rameters of this model—the entity and relation embeddings—and ¢(r, s, 0;-) : clel - r
assigns a real-valued score to the fact (s, 0). As some models have real-valued parameters
and some other models have complex-valued parameters, we define the space of the

parameters Cl®! directly over the complex space.

Let us also define the trilinear product of three vectors over the complex space:

K
(a,b,c) = Y ajbje
j=1

= a' (boOc) (2.1)

where a,b,c € CK, and ® is the Hadamard product, that is the element-wise product

between two vectors of same length.

2.2.1.1 Models Compared in this Work

In the following we present in detail the model scoring functions and parameters that we
experimentally compare in this work. Those models are among the most popular and
best-performing link-prediction models. The models’ scoring functions and parameters

are summarized in Table 2.2

Each of the following models use latent representations of variable length, controlled by
the hyper-parameter K € Z, , the rank of the decomposition. We start by introducing
the most natural model, a general decomposition for tensors: the Canonical-Polyadic
(CP) decomposition [Hitchcockl 1927], also know as CANDECOMP [Caroll and Chang},
1970], and PARAFAC [Harshmanl 1970].
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FIGURE 2.3: Graphic representation of the CP, DisTMULT and RESCAL models as
tensor factorization models, with their latent parameters.

Canonical-Polyadic Decomposition (CP) The Canonical-Polyadic decomposition
involves one latent matrix for each dimension of the decomposed tensor, so in our case

we have three latent matrices as Y is a 3"9-order tensor. Its scoring function is
¢(T7370;@) = <w7‘7u37v0> (22)

where U,V € RNeXK are the embedding matrices of entities depending on whether they
appear as subject (U) of the triple or as object (V), and W € RN"*X is the embedding

matrix of the relations.

This model is a very general tensor decomposition, though it is not really tailored to
our problem, since our tensor is a stack of N, square matrices where rows and columns
represent the same underlying objects: the entities. Indeed, its completely decorrelated
representations u; and v; of the same entity ¢ € £ make it harder for this model to

generalize, as we will see in Chapter [
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RESCAL RESCAL |Nickel et al. 2011] differs from the CP decomposition in two
points: there is only one embedding per entity instead of having one embedding for
entities as subject and another one for entities as objects; and each relation is represented

by a matrix embedding instead of a vector. Its scoring function is
6(r,5,0,0) = e Wreo (2.3)

where E € RVe*K is the embedding matrix of the entities, and W € RN-*XEXK the
embedding tensor of the relations. Thus W, € RE*X is the embedding matrix of the

relation 7.

RESCAL was the first model to propose unique embeddings for entities—simultaneously
with Bordes et al.| [2011]—which yielded significant performance improvement, and since
then unique entity embeddings have been adopted by most of the subsequent models.
However, its matrix representations of relations makes its scoring function time and space
complexity quadratic in the rank K of the decomposition. This also leads to potential

overfitting.

F model This model proposed by Riedel et al.|[2013] maps all possible subject and
object entity pairs p = (s,0) € £ x £ to a single dimension. Each row in the entity
embedding matrix corresponds to one pair of entities. The scoring function computes
the dot product of the embedding of the pair p with the embedding of the relation 7:
¢(r,5,0,0) = ¢,

» Wr (2.4)

where E € RV XK ig the embedding matrix of the pairs of entities, and W € RN"*K the
embedding matrix of the relations. It is actually a decomposition of the matrix that

results from a specific unfolding of the Y tensor.

Its pairwise nature gives this model an advantage over non-compositional pairs of entities.
However, its memory complexity is quadratic in the number of entities V.. In practice,
unobserved pairs of entities are not stored in memory as they are useless. Though this
is also the weak point of this model: it cannot predict scores for unobserved pairs of

entities since it only learns pairwise representations.

TransE The TRANSE model [Bordes et al., |2013b] imposes a geometrical structural
bias on the model: the subject entity vector should be close to the object entity vector

once translated by the relation vector. For a given ¢g-norm (generally ¢ = 1 or g = 2)
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over the embedding space,
¢(r,5,0,0) = —||(es + wr) — €ollq (2.5)

where E € RNeXK ig the embedding matrix of the entities, and W € RN *K ig the
embedding matrix of the relations. Deriving the norm in the scoring function exposes
another perspective on the model and unravels its factorial nature, as it gives a sum of
bilinear terms as explored by |Garcia-Duran et al. [2014]:

Tw, (2.6)

o(r,8,0;0) ~ ele, + eOTwT — e,

S

where constant multipliers and norms of the embeddings have been ignored here. These

bigram terms will help in some specific situations as shown in Section [5.3

It is difficult to capture symmetric relations with this model. Indeed, having ¢(r, s, 0; 0) =
#(r,0,5;0) implies either e; = e,, or w,' (e, — €5) = 0. Since e # e, in general for s # o,
and w, is in general not the zero vector—in order to share latent dimensions’ information
with the other relation embeddings—modeling symmetric relations such as similar,
cousin, or related implies a strong geometrical constraint on entity embeddings: their
difference must be orthogonal to the relation embedding w,. The model thus has to
make a trade-off between (i) correctly modelling the symmetry of the relation r, (ii) not
zeroing its relation embedding w,, and (iii) not altering too much the entity embeddings

to meet the orthogonality requirement between w, and (e, — es) for all e,0 € €.

DistMult The DiSTMULT model [Yang et al., 2015] can be seen as a simplification
of the RESCAL model, where the unique representation of entities is kept, while the

representation of the relations is brought back to vectors instead of matrices:
¢(T7370;®) = <687w7“760> (27)

where E € RNe*K is the embedding matrix of the entities, and W & RN *K the

embedding matrix of the relations.

The major drawback of this model is its symmetry over the subject and object entity roles.
Indeed we have ¢(r,s,0;0) = ¢(r,0,s;0), for all s,0 € £&. But many antisymmetric
relations appear in knowledge graphs such as older, part0f, hypernym. One does not

want to assign the same score to older(a,b) as to older(b,a)!
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2.2.1.2 Other Latent Factor Models

Akin to the CP model, there exist various classical tensor decomposition, such as
the Tucker decomposition [Tucker] 1963], also known as higher-order singular value
decomposition (HOSVD) [De Lathauwer et al., 2000], from which many of the presented
latent factor models are adaptations. Tensor decompositions and their applications are
surveyed in Kolda and Bader| [2009]; |Comon et al.| [2009).

The first ones to propose to use factorization methods, already popular in the neighbor
field of collaborative filtering (see Section , to tackle link prediction in knowledge
graphs were [Franz et al.| [2009] and Sutskever et al|[2009], who respectively used the
CP model, and proposed the Bayesian clustered tensor factorization model (BCTF).
The BCTF scoring function can be seen as an intermediate between the CP and the
RESCAL models, as relations are modeled with matrices and entities with two separate

vectors depending on whether they appear as subject or as object of the triple:
o(r,s,0;0) = u;—ero (2.8)

where U,V € RVeXK are the embedding matrices of entities depending on whether they
appear as subject (U) of the triple or as object (V), and W € R¥"*KXK the embedding
tensor of the relations. The model is learned in a Bayesian setting with a Chinese

restaurant process prior over the embeddings.

Jenatton et al. [2012] proposed a similar model, with a non-probabilistic clustering over

the relations matrices, by expressing them as a low rank, L'-constrained decomposition:

D
W, = aj(agby) (2.9)
d=1

where D is the rank of the decomposition of the relations parameters, A, B € RP*P,
and o” € RP is constrained by a hyperparameter: |[a”||; < Aq. The scoring function

is itself also slightly different as they add bias terms to the subject and object-entity
embeddings:

d(r,5,0;0) = (us + 2) Wy (v, + 2') (2.10)

where 2,2’ € RX.

Various models built on TRANSE have been proposed, including the TRANSH model
[Wang et all 2014] that models relations as translating hyperplanes instead of vectors,
and the TRANSR model [Lin et al., 2015b] that learns relation and entity embeddings

in different spaces and maps entity embeddings to relation space using linear operators,
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before performing a translation. |[He et al.|[2015] propose to learn these models with
Gaussian embeddings, replacing the vector norm with the KL-divergence or the expected
likelihood. The TATEC model [Garcia-Duran et al., [2016] combines TRANSE bigram
terms and RESCAL scoring function in a single model, but trained separately. [Welbl
et al. [2016] extended the F model to learn pairwise embeddings not only of entities, but
of subject/relation and object/relation pairs too. [Verga et al.| [2017] address the squared
complexity in the number of the entities of the F model, by expressing the pairwise
embeddings of entities as combinations of the relation embeddings in which the pair
appear. For each observed triple (r,s,0) € Tq, the corresponding pair embedding e, for
p=(s,0) €ExEis

ey = F({wn | (", 5,0) € To}) (2.11)

where f is the composition function of the relation embedding. This model only learns
relation embeddings, yet it performs just as well as the original F model. Moreover, it

gives it the ability to naturally generalize to unseen entities.

The holographic embeddings model |[Nickel et al., [2016b] proposes to combine vectorial
entity embeddings using discrete circular convolution between the subject and object
embeddings. This model and its link to the model proposed in this manuscript are

discussed in detail in Section [3.4]

Sometimes, entities and relations come with additional domain knowledge. A common
feature of entities is their type, such as person or place, that defines incompatibilities
for some relations in which such typed entities can appear. For example, a place cannot
be the president of a person. |Chang et al|[2014]; Krompafl et al.| [2015]; Sedghi and
Sabharwal| [2016] enhance predictions of existing factorization models by not using

incompatible triples during training, whereas they are usually considered as false triples.

2.2.1.3 Losses and Negative Sampling

Commonly used matrix and tensor decompositions such as SVD and CP natively minimize
the squared error. Classical decomposition algorithms for these models, based on iterative
methods or alternating minimization, cannot efficiently handle missing triples as missing,

and consider them as negatives instead. This corresponds to minimizing:

LOY;0) = > > |l6(r,5,0:0) — yrsoll3 (2.12)

reR se€€ oe€
where y,so = —1 if (7, s,0) ¢ To—though in this dense case the value zero is more often
used for negatives. However, as the tensor Y has binary values 41, using a binary loss is

indeed more appropriate. We discuss theoretical motivation for doing so in Section |3.1.2.2
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Jenatton et al| [2012] used instead the negative log-likelihood of the logistic model:

LOY;0) = D > log(l + exp(—yrsod(r,5,0;0))) (2.13)

rER sEE 0€E
and Nickel and Tresp [2013]; |[London et al. [2013] showed it worked better than the
squared loss, in all cases on dense datasets (under the closed-world assumption) with
observed negatives. |Acar et al. [2010] and London et al. [2013] proposed a weighted
version of respectively CP and RESCAL to avoid imputing test triples when learning

the decomposition, and improved performances in the closed-world case.

Drumond et al.|[2012] first acknowledged the importance of the open-world assumption.
By treating missing triples as missing, they exposed a large gap between the predictive
performances of dense and sparse versions of the CP model. In general under the
open-world assumption, only positive triples are observed. One thus has to generate
negatives to learn a supervised model. To do so, they make the assumption that an
observed triple (r,s,0) € Tq should be ranked higher than unobserved triples with
a different object entity (r,s,o’) ¢ Tq. They implement this constraint through the
Bayesian Personalized Ranking optimization criterion [Rendle and Schmidt-Thieme),

2010|, by uniformly sampling object entities o':
LEBO)= > 108(0(Yrso — Yrso')) (2.14)
((7‘7870)7y7'50)69

1
14+e—2"

where o is the logistic function o(x) =

Bordes et al.| [2013b] extended this assumption to subject entities: for each positive triple
(r,s,0) € T they corrupt either the subject or the object of the triple at random, and

optimize a slightly different pairwise loss, with a max-margin criterion:

L(Q;0) = Z max(0,y + o(¢p(r,s',0';0)) — a(¢(r, s,0;0)) (2.15)

(r,8,0)ETq

where 7y € [0, 1] is the margin hyperparameter. This loss has been often used in subsequent
works [Yang et al., [2015; [Nickel et al.l 2016b]. In this work, we instead consider all such
corrupted triples explicitly as negatives, which is also known as the local closed-world
assumption [Dong et al., 2014]: all (r,s,0),(r,s,0") ¢ Tq for each (r,s,0) € Tq are
considered as negatives: ¥,so = Yrsor = —1 . We optimize a classical log-likelihood
loss, and show that it can bring a large improvement over the max-margin loss (see
Section , and that sampling more than one negative per positive triple also sensibly
improves prediction scores (see Section .
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2.2.2 Other Link-Prediction Approaches

Early relational learning approaches for relational databases that follows a schema used
probabilistic models. The general idea is to map a probabilistic graphical model to
the database schema architecture, and use observed entries to learn the corresponding
probability distribution [Friedman et al., |1999; Taskar et al., 2001; Heckerman et al.,
2007; |Getoor and Taskar, [2007; Raedt et al., [2016].

Logic-based link prediction consists in using both observed facts and logical rules to
infer the truth of unobserved facts. In this case one must either handcraft rules, or
learn them through inductive logic programming (ILP) for example [Muggleton and
De Raedt), 1994; Dzeroski and Lavrac, 1994]. Many contributions have been made using
inductive logic programming for relational data during the last decades [Muggleton),
1995} [Lisi, 2010; |Galarraga et al. 2015]. Inference can be achieved deterministically by
logical deduction, or probabilistically to cope with uncertainty of the data. Different
probabilistic logic-based inference models have been proposed [Ngo and Haddawy), 1997}
Wellman et al., 1992} Kersting and De Raedt| [2001; [Frasconi et al., [2014; Kok and
Domingos, 2007]. The main contribution along this line of research is probably Markov
Logic Networks (MLNs) [Richardson and Domingos, [2006]. MLNs take as input a set
of first-order rules and facts, build a Markov random field between facts co-occuring
in possible groundings of the formulae, from which they learn a weight over each of
these rules that represents their likeliness of being applied at inference time. Different
improvements over this model have been proposed |[Riedel, [2008; Noessner et al., [2013].
Among them, Pujara et al. [2013] used probabilistic soft logic [Brocheler et al., [2010]
to assign continuous truth values to atoms instead of boolean ones, which resulted in

increased prediction accuracy and scalability.

In the neural tensor network (NTN) model, Socher et al. [2013] combined linear transfor-
mations and multiple bilinear forms of subject and object embeddings to jointly feed

them into a nonlinear neural layer:
d(r,5,0,0) = ul flelWPle, + Viles eo]” +by), (2.16)

where D € Z_, is an additional hyperparameter, ey, e, € RX are learned entity embed-
dings; W, € REXEXD 17« RDX2K 4, € RP are the learned relation parameters, and
f is a non-linear activation function. Its non-linearity and multiple ways of including
interactions between embeddings gives it an advantage in expressiveness over simpler
latent factor models. As a downside, its very large number of parameters can make the
NTN model harder to train and make it overfit more easily. Authors also propose to

learn the entity embeddings as a composition of the word embeddings of their labels.
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Doing so can significantly improve results, depending on the model and the dataset.
Bordes et al. [2011] proposed the Structured Embeddings (SE) model, a generalization
of Siamese networks:

é(r,8,0;0) = ||Wres — Weollq (2.17)

where W,., W/ € REXK are the relation embeddings. Though it looks like TRANSE,
deriving the norm shows that the two matrix embeddings of relations play the role of
two fully connected layers. Subsequently, Bordes et al. [2014a] proposed the Semantic
Matching Energy (SME) model, an explicit two-layer network where subject and object
embeddings are similarly combined with a right and left relation embeddings first, then
intermediate left and right representation are merged into the final score. Nguyen et al.
12016] proposed STransE, a combination of the SE and TRANSE models. Dong et al.

[2014] use a two-layer perceptron:
d(r,s,0;0) = ul f(Alw, e €,]"), (2.18)

where f is a non-linear activation function, ey, e,, w, € RX, A € RP*3K 4 ¢ RP where

D € Z, 4 is an hyperparameter controlling the size of the second layer.

Aforementioned latent models of knowledge graphs consider triples separately from each
other, and capture dependencies between conjunctions of relations such as 1ivesInCity(a,b)
A isInCountry(b,c) = livesInCountry(a,c) from redundancy in the data. From a
graph perspective, such multi-relation inferences correspond to paths in the knowledge
graph. Different models propose to take into account these path patterns explicitly. The
path ranking algorithm [Lao et al., [2011] predicts missing triples by combining the results
of different random walks accross the knowledge graph. |Lin et al.| [2015a]; |Das et al.
[2016]; Neelakantan et al.| [2015] proposed to consider all possible paths between each pair
of observed entities (s, 0) for (r,s,0) € Tq, using a recurrent neural network to model
paths of arbitrary length. Conversely, Guu et al. [2015] introduced the task of answering
path-based queries instead of simply predicting triples. A path query consist of a source
entity s and a sequence of relations (r1,...,7,). The answer is the set of entities o that
can be reached from s by that sequence of relations such that all intermediate triples
(s,r1,€1),...,(en,Tn,0) are true. They propose a general framework to train and predict
on such paths by recursively composing scoring functions that provide intermediate
representations of subject/relation pairs—the condition that scoring function must fulfil

to be composable.

Trilinear models for example are composable in this sense as a trilinear product can
be factorized in the object-entity embedding. For example with the DISTMULT model:

(es, Wy, e0) = (es ® wy) ey, where the intermediate representation is the Hadamard
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product between the subject entity and the relation embeddings e; ® w,.. Other graph-
related approaches include the additive relational effect model |[Nickel et al., |2014] that
learns a linear combination over metrics computed on the knowledge graph such as
common neighbors or Katz centrality, and combines it with RESCAL’s scoring function;
and Gaifman models that learn neighborhood embeddings of local structures in the

knowledge graph |Niepert} 2016].

The factorization machines model, proposed by |[Rendle [2010], enhances supervised linear
models by learning vectorial representations of the features of the samples, combined
d-linearly, where d is an hyperparameter setting the degree of the model. Given a feature

vector x € R™ and its corresponding label y € R, a factorization machine of degree d = 3

gives:
—wo—f—ZwaZ—FZ Z u Uj)TiT +Z Z Z Vi, Vj, V) Ty (2.19)
=1 j=1+1 i=1 j=14+1k=j5+1
where wy, ..., w, € R, U,V € R™¥_ This model generalizes the CP decomposition:
by encoding in & € RM2Ne the concatenation of the one-hot representation of the
(r,8,0) triple indexes z = [el,el,el], with ¥ = y,50, Where e} has a 1 at index i and

zeros everywhere else, el € RV el el € RNe, This adds bigram terms—as in TRANSE—
unigram terms and biases to the trilinear term of the CP decomposition. With different
encoding of the feature of x, the author shows generalization of diverse matrix and tensor
factorization models. This model has also been adapted to scale to classical schema-based

relational databases (such as SQL) [Rendlel 2013].

Many authors have proposed to use text as distant supervision to enhance knowledge
graphs, by extracting triples from raw text, which increased predictive performances
for link prediction |Riedel et all 2013} Toutanova et al., 2015} Surdeanu and Tibshirani,
2012; [Yao et al., 2011; Mintz et al., [2009).

2.2.3 Learning Logic within Latent Space Models

In this thesis, we evaluate latent space models on their ability to learn logical reasoning
from observed data only (see Chapter . Similarly to our approach, [Bowman et al.
[2015b] learned some natural logic operations directly from data with recurrent neural
tensor networks, to tackle natural language processing tasks such as entailment or
equivalence. Natural logic is a theoretical framework for natural language inference that
uses natural language strings as the logical symbols. |Singh et al. [2015] investigated
learning from a few synthetic examples for relational learning on different latent factor

models.
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Following a different goal, other approaches formalised the encoding of logical operations
as tensor operations. |Smolensky et al.|[2016] applied it to the bAbI data set reasoning

tasks, and |Grefenstette] [2013] to general Boolean operations.

Advances in bringing both worlds together include the work of Rocktaschel et al.| [2015];
Rocktaschel et al.|[2014] and |Demeester et al|[2016], where a latent factor model is used,
as well as a set of logical rules. An error-term over the rules is added to the classical latent
factor objective function. In|Rocktaschel and Riedel| [2016], a fully differentiable neural
theorem prover is used to handle both facts and rules, whereas Minervini et al.| [2017] use
adversarial training to do so. |Wang and Cohen| [2016| learned first-order logic embeddings
from formulae learned by ILP. Similar proposals for integrating logical knowledge in
distributional representations of words include the work of Lewis and Steedman [2013].
Conversely, [Yang et al.| [2015] learn a latent factor model over the facts only, and then
try to extract rules from the learned embeddings. [Yoon et al., [2016] proposed to use
projections of the subject and object-entity embeddings that conserve transitivity and

Symimetry.

2.3 Related Factorization Problems and Methods

We here survey related work concerning the vast field of matrix and tensor decompositions,

and the use of complex numbers therein.

2.3.1 Matrix and Tensor Completion

The application of factorization methods in relational learning comes from their large
success in a preceding, closely-related problem: collaborative filtering. Collaborative
filtering is a special case of link prediction in knowledge graphs: a matrix X € R™*™ ig
partially observed—and not a tensor—however it is real-valued and it is not necessarily
square. Rows represent users, columns represent items, and entries x;; € R for observed
(i,7) pairs are implicit or explicit feedback, such as ratings. Typical factorization models
are of the form X ~ UV, where each row u; corresponds to a user i € I and each
column v; corresponds to an item j € Z. In this problem, Y NZ = ) conversely to
knowledge graphs, where entities can be either the subject or the object of a relation.
Despite this, this parametrization with different left (U) and right (V') matrices persisted
in knowledge-graph factorization models up to the RESCAL and SE models |Nickel et al.,
2011; Bordes et al., [2011]. Interestingly, these rectangular matrix factorization models
for collaborative filtering can be seen as a special case of knowledge graph factorization

models with single entity embeddings E € RVe*X By writing the set of entities £ = YUT
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and having a single relation r, embeddings of users and items of observed triples (r,1, j)
are indeed disjoint: e; # e; for any ¢ € U, j € Z, and correspond to the U and V matrices
since users are always subjects and items are always objects. Hence classical factorization
models for link prediction subsume rectangular matrix factorization with disjoint set
of entities as rows and columns, provided that the open-world assumption is enforced
(unobserved user-user, item-item and item-user triples are ignored) and that a non-binary

loss is used to handle the real-valued entries z;; € R.

Completing the missing entries of such feedback matrices has direct applications in
recommender systems, and factorization approaches became popular with the famous
Netflix prize [Koren, |2008; |Koren et al., [2009]. In most partially-observed matrix and
tensor-factorization models, optimizing directly over the low-rank factor matrices is a
non-convex problem. A well-known relaxation of the matrix completion problem consists

in minimizing its trace-norm, which is the sum of its singular values:

min || X]] (2.20)

subject to Tij = 345, (4,7) € Q,

where X € R™™ and 2 is the set of the observed values in X. This approach has strong
guarantees to recover the minimal rank of the partially observed matrix X and can be
cast as a semi-definite program to solve it [Candes and Tao, |2010; Candes and Recht),
2012]. Convex extensions to collective matrix factorization have also been proposed
[Singh and Gordon, 2008; Bouchard et al.l [2013], and the classical tensor-factorization
models [Comon et al., 2009; [Kolda and Bader, [2009] also had their convex relaxations
for completion [Tomioka et al. |2010; Romera-Paredes and Pontil, [2013]. In most convex
factorization methods, the reconstructed matrix/tensor must be instantiated in memory,
which is a serious space bottleneck. More scalable approaches have been proposed for
matrix completion, based on iterative sparse singular value decompositions (SVD) [Cai
et al.l 2010], allowing for not storing the whole reconstructed matrix X in memory.
Though the cost of computing numerous SVDs iteratively is prohibitive for very large

scale matrices. Convex tensor factorization models have similar scalability issues.

Though, non-convex approaches that optimize over the low-rank latent factors actually
work very well in practice [Koren et al., [2009; Nickel et al., 2016a]. Some first theoretical
results start explaining this, and showed that on some non-convex matrix and tensor
factorization problems and under certain conditions, all local minima are global |Ge
et al.l 2016; Bhojanapalli et al., |2016; Haeffele and Vidal, 2015]. Specifically, Ge et al.
[2016] showed that this is the case for positive semi-definite matrix completion. This
being said, given the size of the problems we tackle in this work, we cannot afford convex

relaxation. Optimization is conducted over the non-convex low-rank parametrization
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(see Section , as in all state-of-the-art factorization models for knowledge-graph
completion |Nickel et al., [2016a)].

Among other contributions are the pairwise interaction tensor factorization (PITF)
[Rendle and Schmidt-Thieme, 2010], that handles feedback between users’, item and tags
through tensor factorization. |Abernethy et al. [2009] integrate users’ and items’ attributes
in their factorization model. Ermis and Bouchard| [2014] use quadratic approximation
of the logistic loss to speed-up the decomposition, and Zhang et al.| [2007] propose to
learn binary latent factors instead of real-valued factors. Lee et al.[2016] make low-rank
decomposition of local sub-blocks of the matrix separately before summing them together,
and show it improves prediction accuracy for collaborative filtering. Many proposals have
been made to distribute stochastic gradient descent for matrix and tensor factorizations
[Yu et al., [2012; [Yun et al., |2014; Gemulla et al., [2011}; Niu et al., [2011], which allow to

scale to always bigger problems.

2.3.2 Complex Numbers in Factorization Methods

When factorization methods are applied, the representation of the decomposition is
generally chosen in accordance with the data, despite the fact that most real square
matrices only have eigenvalues in the complex domain. Indeed in the machine learn-
ing community, the data is usually real-valued, and thus eigendecomposition is used
for symmetric matrices, or other decompositions such as (real-valued) singular value
decomposition [Beltrami, |1873], non-negative matrix factorization [Paatero and Tapper,
1994], or canonical polyadic decomposition when it comes to tensors [Hitchcockl, 1927].
Conversely, in signal processing, data is often complex-valued [Stoica and Moses, |2005]
and the complex-valued counterparts of these decompositions are then used. Joint diago-
nalization is also a much more common tool than in machine learning for decomposing
sets of (complex) dense square matrices [Belouchrani et al., [1997; De Lathauwer et al.,
2001]. Classic complex matrix decompositions and their properties are clearly exposed in
Horn and Johnson, [2012].

Some little-known work in analysis of dense square matrices relates to our contribution, as
they consider complex-valued spectral models for asymmetric real-valued square matrices
[Chino, 2002|. In particular, Escoufier and Grorud, |[1980] proposed to encode real-valued
square matrices as complex-valued Hermitian matrices, where the real-part corresponds
to the symmetric part of the real-valued matrix, and the imaginary part corresponds to

the the antisymmetric part of the real-valued matrix.

Some works on recommender systems use complex numbers as an encoding facility, to

merge two real-valued relations, similarity and liking, into one single complex-valued
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matrix which is then decomposed with complex embeddings [Kunegis et al. 2012; Xie
et al., [2015]. Still, unlike our work, it is not real data that is decomposed in the complex
domain. In deep learning, Danihelka et al.| [2016] proposed an long short-term memory
network extension with an associative memory based on complex-valued vectors for
memorization tasks, and Hu et al. [2016] a complex-valued neural network for speech
synthesis. In both cases again, the data is first encoded in complex vectors that are then

fed into the network.

Conversely to these contributions, this work suggests that processing real-valued data
with complex-valued representations, through a projection onto the real-valued subspace,

can be a very simple way of increasing the expressiveness of the model considered.






Chapter 3

Complex-Valued Tensor

Factorization and Completion

In this chapter we describe a new tensor factorization and completion model, based on
complex-valued factor matrices. Each row in these matrices represents one entity or one
relations, these vectors are called embeddings. In the previous chapter, we have seen that
recent proposals resorts to more and more complicated scoring function to increase their
expressiveness. Here we argue that the standard dot product between embeddings can be
a very effective scoring function, provided that one uses the right representation: instead
of using embeddings containing real numbers, we discuss and demonstrate the capabilities
of complex embeddings. When using complex vectors, that is vectors with entries in C,
the dot product is often called the Hermitian (or sesquilinear) dot product, as it involves
the conjugate-transpose of one of the two vectors. As a consequence, the dot product
is not symmetric any more, and facts about one relation can receive different scores
depending on the ordering of the entities involved in the fact. In summary, complex
embeddings naturally represent arbitrary relations while retaining the efficiency of a dot

product, that is linearity in both space and time complexity.

We first provide justification and intuition for using complex embeddings in the square
matrix case, where there is only a single type of relation between entities, and show the
existence of the proposed decomposition for all possible relations. The formulation is
then extended to a stacked set of square matrices in a third-order tensor to represent
multiple relations. We then describe a stochastic gradient descent algorithm to learn the
model on partially-observed tensors, where we present an equivalent reformulation of
the proposed model that involves only real embeddings. This should help practitioners

when implementing our method, without requiring the use of complex numbers in their

29
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software implementation. Finally, we study the theoretical links with a simultaneously

and independently proposed model, HOLE [Nickel et al., 2016b].

3.1 Relations as the Real Parts of Low-Rank Normal Ma-

trices

We consider in this section a simplified link prediction task with a single relation, and

introduce complex embeddings for low-rank matrix factorization.

We will first discuss the desired properties of embedding models, show how this problem
relates to the spectral theorems, and discuss the classes of matrices these theorems encom-
pass in the real and in the complex case. We then propose a new matrix decomposition—to
the best of our knowledge—and a proof of its existence for all real square matrices. Finally

we discuss the rank of the proposed decomposition.

3.1.1 Modeling Relations

Let &€ be a set of entities, with n := N, = |€| to have lighter notations in this chapter.
The truth of the single relation holding between two entities is represented by a sign
value ys, € {—1,1}, where 1 represents true facts and -1 false facts, s € £ is the subject
entity and o € £ is the object entity. The probability for the relation holding true is
given by

P(yso = 1) = 0(xs0) (3.1)

where X € R™*" is a latent matrix of scores indexed by the subject (rows) and object
entities (columns), Y is a partially-observed sign matrix indexed in identical fashion, and
o is a suitable sigmoid function. Throughout this manuscript we use the logistic inverse

link function o(x) = 1—&-%

3.1.1.1 Handling Both Asymmetry and Unique Entity Embeddings

In this work we pursue three objectives: finding a generic structure for X that leads to (7)
a computationally efficient model, (i7) an expressive enough approximation of common
relations in real world knowledge graphs, and (iii) good generalization performances
in practice. Standard matrix factorization approximates X by a matrix product UV T,
where U and V' are two functionally-independent n x K matrices, K being the rank of
the matrix. Within this formulation it is assumed that entities appearing as subjects

are different from entities appearing as objects. This extensively studied type of model
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is closely related to the singular value decomposition (SVD) and fits well with the case

where the matrix X is rectangular, as explained in Section [2.3.1

However, in many knowledge graph completion problems, the same entity ¢ can appear
as both subject or object and will have two different embedding vectors, u; and wv;,
depending on whether it appears as subject or object of a relation. It seems natural
to learn unique embeddings of entities, as initially proposed by |Nickel et al.|[2011] and
Bordes et al.|[2011] and since then used systematically in other prominent approaches
[Bordes et al.l |2013b; Yang et al., 2015; Socher et al. 2013]. In the factorization setting,
using the same embeddings for left- and right-side factors boils down to a specific case of

eigenvalue decomposition: orthogonal diagonalization.

Definition 1. A real square matrix X € R™*" is orthogonally diagonalizable if it can be
written as X = EWET, where E,W € R™ "™ W is diagonal, and E orthogonal so that
EET = ETE = I where I is the identity matrix.

The spectral theorem for symmetric matrices tells us that a matrix is orthogonally
diagonalizable if and only if it is symmetric [Cauchy, |1829]. It is therefore often used to

approximate covariance matrices, kernel functions and distance or similarity matrices.

However as previously stated, this paper is explicitly interested in problems where
matrices—and thus the relation patterns they represent—can also be antisymmetric, or
even not have any particular symmetry pattern at all (asymmetry). In order to both use
a unique embedding for entities and extend the expressiveness to asymmetric relations,
researchers have generalised the notion of dot products to scoring functions, also known
as composition functions, that allow more general combinations of embeddings. We recall

several examples of scoring functions in Table

These models propose different trade-offs between the three essential points:

e Expressiveness, which is the ability to represent symmetric, antisymmetric and

more generally asymmetric relations.
e Scalability, which means keeping linear time and space complexity scoring function.

e Generalization, for which having unique entity embeddings is critical.

RESCAL |Nickel et al.,|2011] and NTN [Socher et al.,|2013] are very expressive, but their
scoring functions have quadratic complexity in the rank of the factorization. DiIsTMULT
[Yang et al., 2015] can be seen as a joint orthogonal diagonalization with real embeddings,
hence handling only symmetric relations. Conversely, TRANSE [Bordes et al.| 2013b]

handles symmetric relations to the price of strong constraints on its entity embeddings, as
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explained in the previous chapter. The canonical-polyadic decomposition (CP) [Hitchcock,

1927| generalizes poorly with its different embeddings for entities as subject and as object.

We reconcile expressiveness, scalability and generalization by going back to the realm of
well-studied matrix factorizations, and making use of complex linear algebra, a scarcely

used tool in the machine learning community.

3.1.1.2 Decomposition in the Complex Domain

We introduce a new decomposition of real square matrices using unitary diagonalization,
the generalization of orthogonal diagonalization to complex matrices. This allows
decomposition of arbitrary real square matrices with unique representations of rows and

columns.

Let us first recall some notions of complex linear algebra as well as specific cases of

diagonalization of real square matrices, before building our proposition upon these results.

A complex-valued vector # € CK| with = Re(z) + ilm(z) is composed of a real part
Re(z) € RX and an imaginary part Im(z) € RX, where i denotes the square root
of —1. The conjugate T of a complex vector inverts the sign of its imaginary part:
T = Re(z) — ilm(x).

Conjugation appears in the usual dot product for complex numbers, called the Hermitian

product, or sesquilinear form, which is defined as:

A simple way to justify the Hermitian product for composing complex vectors is that it
provides a valid topological norm in the induced vector space. For example, 'z = 0

T

implies * = 0 while this is not the case for the bilinear form x'x as there are many

complex vectors z for which "z = 0.

This yields an interesting property of the Hermitian product concerning the order of the

involved vectors: (u,v) = (v, u), meaning that the real part of the product is symmetric,

while the imaginary part is antisymmetric.

For matrices, we shall write X* € C" ™ for the conjugate-transpose X* = (X)T = X T.

The conjugate transpose is also often written Xt or XH.
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Definition 2. A complex square matrix X € C™*" is unitarily diagonalizable if it can be
written as X = EW E*, where E,W € C™*", W is diagonal, and FE is unitary such that
FE*=FEFE=1.

Definition 3. A complex square matrix X is normal if it commutes with its conjugate-
transpose so that X X* = X*X.

We can now state the spectral theorem for normal matrices.

Theorem 1 (Spectral theorem for normal matrices, von Neumann| [1929]). Let X be a

complex square matrix. Then X is unitarily diagonalizable if and only if X is normal.

It is easy to check that all real symmetric matrices are normal, and have pure real
eigenvectors and eigenvalues. But the set of purely real normal matrices also includes all
real antisymmetric matrices (useful to model hierarchical relations such as IsOlder), as
well as all real orthogonal matrices (including permutation matrices), and many other
matrices that are useful to represent binary relations, such as assignment matrices which
represent bipartite graphs. However, far from all matrices expressed as X = EW E* are

purely real, and Equation (3.1)) requires the scores X to be purely real.

As we only focus on real square matrices in this work, let us summarize all the cases where
X is real square and X = FW E* if X is unitarily diagonalizable, where E, W € C"*",

W is diagonal and F is unitary:

e X is symmetric if and only if X is orthogonally diagonalizable and £ and W are

purely real.

e X is normal and non-symmetric if and only if X is unitarily diagonalizable and E

and W are not both purely real.

e X is not normal if and only if X is not unitarily diagonalizable.

We generalize all three cases by showing that, for any X € R™*™, there exists a unitary

diagonalization in the complex domain, of which the real part equals X:

X = Re(EWE™). (3.2)

In other words, the unitary diagonalization is projected onto the real subspace.

Theorem 2. Suppose X € R™ "™ is a real square matrix. Then there exists a normal
matrix Z € C"*" such that Re(Z) = X.
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Proof. Let Z := X +iX". Then
ZF=X" —iX = —iiX" +X)=—iZ,
so that
27" =7Z(—iZ)=(—i2)Z =Z"Z.
Therefore Z is normal. O

Note that there also exists a normal matrix Z = X +iX such that Im(Z) = X.

Following Theorem [1| and Theorem [2| any real square matrix can be written as the real

part of a complex diagonal matrix through a unitary change of basis.

Corollary 1. Suppose X € R™ ™ is a real square matrix. Then there exist E, W € C"*",
where E is unitary, and W is diagonal, such that X = Re(EW E*).

Proof. From Theorem [2, we can write X = Re(Z), where Z is a normal matrix, and

from Theorem [l} Z is unitarily diagonalizable. O

Applied to the knowledge graph completion setting, the rows of E here are vectorial
representations of the entities corresponding to rows and columns of the relation score

matrix X. The score for the relation holding true between entities s and o is hence
Tso = Re(e] We,) (3.3)

where eg, e, € C" and W € C"*" is diagonal. For a given entity, its subject embedding

vector is the complex conjugate of its object embedding vector.

To illustrate this difference of expressiveness with respect to real-valued embeddings, let
us consider two complex embeddings es, e, € C of dimension 1, with arbitrary values:
es =1 — 24, and e, = —3 + 1; as well as their real-valued, twice-bigger counterparts:
el = (_12) € R? and e, = (_13) € R2. In the real-valued case, that corresponds to the
DisTMULT model [Yang et al., [2015], the score is x5, = €. W’e!. Figure represents
the heatmaps of the scores x4, and x4, as a function of W € C in the complex-valued
case, and as a function of W’ € R? diagonal in the real-valued case. In the real-valued
case, that is symmetric in the subject and object entities, the scores x,, and x5 are equal
for any value of W’ € R? diagonal. Whereas in the complex-valued case, the variation of

W e C allows to score x4, and x,s with any desired pair of values.
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FIGURE 3.1: Left: Scores x5, = Re(e] Weé,) (top) and z,s = Re(e] Wes) (bottom) for
the proposed complex-valued decomposition, plotted as a function of W € C, for fixed
entity embeddings e; = 1 — 2i, and e, = —3 +i. Right: Scores x5, = €.T W'e!, (top)
and 2,5 = €T W’e’, (bottom) for the corresponding real-valued decomposition with the
same number of free real-valued parameters (i.e. in twice the dimension), plotted as a

function of W’ € R? diagonal, for fixed entity embeddings e/, = (_12) and e} = (_13)

By varying W € C, the proposed complex-valued decomposition can attribute any
pair of scores to x4, and T, Whereas T, = o, for all W’ € R? with the real-valued
decomposition.

This decomposition however is non-unique, a simple example of this non-uniqueness is

obtained by adding a purely imaginary constant to the eigenvalues. Let X € R™*" and

X = Re(EWE™*) where F is unitary, W is diagonal. Then for any real constant ¢ € R

we have:

Re(E(W +icl)E")
e(EWE* + icEIE")
Re(EWE* +icl)
(EWE").

=

=
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In general, there are many other possible couples of matrices £ and W that preserve
the real part of the decomposition. In practice however this is no synonym of low
generalization abilities, as many effective matrix and tensor decomposition methods
used in machine learning lead to non-unique solutions |[Paatero and Tapper, 1994; Nickel
et al. 2011]. In this case also, the learned representations prove useful as shown in the

experimental section.

3.1.2 Low-Rank Decomposition

Addressing knowledge graph completion with data-driven approaches assumes that there
is a sufficient regularity in the observed data to generalize to unobserved facts. When
formulated as a matrix completion problem, as it is the case in this section, one way of
implementing this hypothesis is to make the assumption that the matrix has low rank
or approximately low rank. We first discuss the rank of the proposed decomposition,
and then introduce the sign-rank and extend the bound developed on the rank to the

sign-rank.

3.1.2.1 Rank Upper Bound

First, we recall one definition of the rank of a matrix [Horn and Johnson, 2012].

Definition 4. The rank of an m-by-n complex matrix rank(X) = rank(X ) = k, if X

has exactly k linearly independent columns.

Also note that if X is diagonalizable so that X = EW E~! with rank(X) = k, then W
has k non-zero diagonal entries for some diagonal W and some invertible matrix . From

this it is easy to derive a known additive property of the rank:
rank(B + C) < rank(B) + rank(C) (3.4)

where B,C € C™*",

We now show that any rank k real square matrix can be reconstructed from a 2k-
dimensional unitary diagonalization.

Corollary 2. Suppose X € R™" and rank(X) = k. Then there exist E € C"*?* such
that the columns of E form an orthonormal basis of C?*, W e C2?k*2k

X = Re(EWE*).

is diagonal, and

Proof. Consider the complex square matrix Z := X + iX'. We have rank(iX ') =
rank(X ") = rank(X) = k.
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From Equation (3.4)), rank(Z) < rank(X) + rank(iX ") = 2k.

The proof of Theorem [2| shows that Z is normal. Thus Z = EW E* with E € C"*?k,
W € C?*2k where the columns of E form an orthonormal basis of C*, and W is

diagonal. 0

Since FE is not necessarily square, we replace the unitary requirement of Corollary [1| by
the requirement that its columns form an orthonormal basis of its smallest dimension,

2k.

Also, given that such decomposition always exists in dimension n (Theorem , this

upper bound is not relevant when rank(X) > 7.

3.1.2.2 Sign-Rank Upper Bound

Since we encode the truth values of each fact with +1, we deal with square sign matrices:

Y € {—1,1}™*". Sign matrices have an alternative rank definition, the sign-rank.

Definition 5. The sign-rank rank (Y') of an m-by-n sign matrix Y, is the rank of the
m-by-n real matrix of least rank that has the same sign-pattern as Y, so that

ranky (Y) := Xé%nr}m{rank(X) |sign(X) =Y},

where sign(X);; = sign(z;;).

We define the sign function of c € R as

ian(c) 1 ife>0
sign(c) =
—1 otherwise

where the value ¢ = 0 is here arbitrarily assigned to 1 to allow zero entries in X, conversely

to the stricter usual definition of the sign-rank.

To make generalization possible, we hypothesize that the true matrix Y has a low
sign-rank, and thus can be reconstructed by the sign of a low-rank score matrix X.
The low sign-rank assumption is theoretically justified by the fact that the sign-rank
is a natural complexity measure of sign matrices |Linial et al., 2007a] and is linked
to learnability |[Alon et al., |2016] and empirically confirmed by the wide success of

factorization models [Nickel et al., [2016a].

Using Corollary 2, we can now show that any square sign matrix of sign-rank k can be

reconstructed from a rank 2k unitary diagonalization.
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Corollary 3. Suppose Y € {—1,1}"*" ranky(Y) = k. Then there exists E € C"*?F,
W € C?*2F where the columns of E form an orthonormal basis of C?*, and W is
diagonal, such that Y = sign(Re(EW E*)).

Proof. By definition, if ranky(Y) = k, there exists a real square matrix X such that
rank(X) = k and sign(X) = Y. From Corollary [2, X = Re(EW E*) where E € C"*2k,
W € C%*2k where the columns of E form an orthonormal basis of C?*, and W is

diagonal. O

Previous attempts to approximate the sign-rank in relational learning did not use complex
numbers. Previous work showed the existence of compact factorizations under conditions
on the sign matrix [Nickel et al., [2014]. Our results show that if a square sign matrix
has sign-rank k, then it can be exactly decomposed through a 2k-dimensional unitary

diagonalization.

Although we can only show the existence of a complex decomposition of rank 2k for a
matrix with sign-rank k, the sign rank of Y is often much lower than the rank of Y,
as we do not know any matrix Y € {—1,1}"*" for which ranky (Y) > /n [Alon et al.,

2016). For example, the n x n identity matrix has rank n, but its sign-rank is only 3! By

swapping the columns 2j and 2j — 1 for j in 1,..., 3, the identity matrix corresponds to
the relation marriedTo, a relation known to be hard to factorize over the reals [Nickel
et al., 2014], since the rank is invariant by row/column permutations. Yet our model can

express it at most in rank 6, for any n.

Hence, by enforcing a low-rank K < n on EWE*, individual relation scores x5, =
Re(e, We,) between entities s and o can be efficiently predicted, as es, e, € CX and
W e CEXK i5 diagonal.

Finding the K that matches the sign-rank of Y corresponds to finding the smallest K
that brings the 0—1 loss on X to 0, as link prediction can be seen as binary classification
of the facts. In practice, and as classically done in machine learning to avoid this NP-hard
problem, we use a continuous surrogate of the 0-1 loss, in this case the logistic loss as
described in Section [3.3], and validate models on different values of K, as described in
Chapter [4

3.1.2.3 Rank Bound Discussion

Corollaries [2 and [3| use the aforementioned subadditive property of the rank to derive the

2k upper bound. Let us give an example for which this bound is strictly greater than k.
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Consider the following 2-by-2 sign matrix:

Y

Not only is this matrix not normal, but one can also easily check that there is no real
normal 2-by-2 matrix that has the same sign-pattern as Y. Clearly, Y is a rank 1 matrix
since its columns are linearly dependent, hence its sign-rank is also 1. From Corollary
we know that there is a normal matrix whose real part has the same sign-pattern as Y,

and whose rank is at most 2.

However, there is no rank 1 unitary diagonalization of which the real part equals Y.
Otherwise we could find a 2-by-2 complex matrix Z such that Re(z11) < 0 and Re(z22) > 0,
where 217 = eqweé; = wle1|?, 202 = eawéy = wles|?, e € C?,w € C. This is obviously
unsatisfiable. This example generalizes to any n-by-n square sign matrix that only has
—1 on its first row and is hence rank 1, the same argument holds considering Re(z11) < 0
and Re(zp,) > 0.

This example shows that the upper bound on the rank of the unitary diagonalization
showed in Corollaries [2] and [3] can be strictly greater than k, the rank or sign-rank, of the
decomposed matrix. However, there might be other examples for which the addition of
an imaginary part could—additionally to making the matrix normal—create some linear
dependence between the rows/columns and thus decrease the rank of the matrix, up to a

factor of 2.

We summarize this section in three points:

1. The proposed factorization encompasses all possible score matrices X for a single

binary relation.

2. By construction, the factorization is well suited to represent both symmetric and

antisymmetric relations.

3. Relation patterns can be efficiently approximated with a low-rank factorization

using complex-valued embeddings.

3.2 Extension to Multi-Relational Data

Let us now extend the previous discussion to models with multiple relations. Let R be

the set of relations, with m := N, = |R|. We shall now write X € R"*"*" for the score
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tensor, X, € R™™ for the score matrix of the relation r € R, and Y € {—1, 1}"m>"*"

for the partially-observed sign tensor.

Given one relation 7 € R and two entities s,0 € £, the probability that the fact r(s,0) is

true given by
P(Yrso = 1) = 0(xrs0) = o(¢(1, 5,0;0)) (3.5)

where ¢ is the scoring function of the model considered and © denotes the model
parameters. We recall that we denote the set of all possible facts (or triples) for a
knowledge graph by 7 = R x £ x £. While the tensor X as a whole is unknown, we
assume that we observe a set of true and false triples Q = {((r, s,0), Yrso) | (r, $,0) € Ta}
where y,5o € {—1,1} and T C T is the set of observed triples. The goal is to find the
probabilities of entries y,/4 for a set of targeted unobserved triples {(r’, s, 0’) € T\ Ta}-

Depending on the scoring function ¢(r, s, 0;©) used to model the score tensor X, we

obtain different models. Examples of scoring functions are given in Table [2.2]

3.2.1 Complex Factorization Extension to Tensors

The single-relation model is extended by jointly factorizing all the square matrices of
scores into a 3"d-order tensor X € R™*"*" ith a different diagonal matrix W, € CK*K

for each relation r, and by sharing the entity embeddings E € C**X across all relations:
H(r,5,0,0) = Re(e] Wye,)

K
= RG(Z wrkeskéok)
k=1

— Re((wy, e, 6)) (3.6)

where K is the rank hyperparameter, e,, e, € CX are the rows in F corresponding to
the entities s and o, w, = diag(W,.) € C¥ is a complex vector, and (a, b, c) := >, arbyck
is the component-wise multilinear dot productﬂ For this scoring function, the set of
parameters © is {e;,w, € CK i € £ r € R}. This resembles the real part of a complex
matrix decomposition as in the single-relation case discussed above. However, we now

have a different vector of eigenvalues for every relation. Expanding the real part of this

1This is not the Hermitian extension of the multilinear dot product as there appears to be no standard
definition of the Hermitian multilinear product in the linear algebra litterature.
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product gives:

Re((wy, es,80)) =

These equations provide two interesting views of the model:

e Changing the representation: Equation (3.6 would correspond to DISTMULT with
real embeddings (see Table [2.2]), but handles asymmetry thanks to the complex
conjugate of the object-entity embedding.

e Changing the scoring function: Equation (3.7) only involves real vectors corre-

sponding to the real and imaginary parts of the embeddings and relations.

By separating the real and imaginary parts of the relation embedding w, as shown in
Equation (3.7)), it is apparent that these parts naturally act as weights on each latent
dimension: Re(w;) over the real part of (e,, es) which is symmetric, and Im(w) over the

imaginary part of (e,, es) which is antisymmetric.

Indeed, the decomposition of each score matrix X, for each » € R can be written as the
sum of a symmetric matrix and an antisymmetric matrix. To see this, let us rewrite the
decomposition of each score matrix X, in matrix notation. We write the real part of

matrices with primes E’ = Re(F) and imaginary parts with double primes E” = Im(E):

X, = Re(EW,E*)
= Re((E' +iE"Y(W!. +iW/")(E' —iE"T)
— (EW/E" + E'W.E" )+ (EW/'E" — E'"W/E'""). (3.8)

It is trivial to check that the matrix E'W/E' + E"W/!E"" is symmetric and that the
matrix E'W/E" —E"W/E'" is antisymmetric. Hence this model is well suited to model
jointly symmetric and antisymmetric relations between pairs of entities, while still using
the same entity representations for subjects and objects. When learning, it simply needs
to collapse W)/ = Im(W,.) to zero for symmetric relations r € R, and W, = Re(W,.) to
zero for antisymmetric relations r € R, as X, is indeed symmetric when W, is purely

real, and antisymmetric when W, is purely imaginary.
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From a geometrical point of view, each relation embedding w, is an anisotropic scaling
of the basis defined by the entity embeddings E, followed by a projection onto the real

subspace.

3.2.2 Existence of the Tensor Factorization

Let us first discuss the existence of the multi-relational model where the rank of the

decomposition K < n, which relates to simultaneous unitary decomposition.

Definition 6. A family of matrices Xq,...,X,, € C™" is simultaneously unitarily

diagonalizable, if there is a single unitary matrix £ € C"*", such that X; = EW,;E* for

all iin 1,...,m, where W; € C"*™ are diagonal.
Definition 7. A family of normal matrices X1, ..., X,, € C"*™ is a commuting family of
normal matrices, if XZ-X; = X;7Xj, forall¢,jin1,...,m.

Theorem 3 (see Horn and Johnson| [2012]). Suppose F is the family of matrices X1, ...
, X € C"", Then F is a commuting family of normal matrices if and only if F is

simultaneously unitarily diagonalizable.

To apply Theorem (3| to the proposed factorization, we would have to make the hypothesis
that the relation score matrices X, are a commuting family, which is too strong a
hypothesis. Actually, the model is slightly different since we take only the real part
of the tensor factorization. In the single-relation case, taking only the real part of the
decomposition rids us of the normality requirement of Theorem [1| for the decomposition

to exist, as shown in Theorem

In the multiple-relation case, it is an open question whether taking the real part of the
simultaneous unitary diagonalization will enable us to decompose families of arbitrary
real square matrices—that is with a single unitary matrix F that has at most n columns.

Though it seems unlikely, we could not find a counter-example yet.

However, by letting the rank of the tensor factorization K to be greater than n, we can
show that the proposed tensor decomposition exists for families of arbitrary real square
matrices, by simply concatenating the decomposition of Theorem [2| of each real square

matrix X;.

Theorem 4. Suppose Xi,..., X, € R™ ™. Then there exists E € C"*™ and W, €
Crm>mm are diagonal, such that X; = Re(EW;E*) for all i in 1,...,m.

Proof. From Theorem [2| we have X; = Re(E;W;EY), where W; € C"*" is diagonal, and

each F; € C™*" is unitary for all 4in 1,...,m.
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Let E = [E; ... Ey], and

0((i=1)n)x ((i~1)n)

Ai = WZ'
o((m=i)m)x ((m—i)n)

where 0! the zero | x | matrix. Therefore X; = Re(EA;E*) for all i in 1,...,m. O

By construction, the rank of the decomposition is at most nm. When m < n, this bound
actually matches the general upper bound on the rank of the canonical polyadic (CP)
decomposition [Hitchcock, 1927} [Kruskal, 1989]. Since m corresponds to the number
of relations and n to the number of entities, m is always smaller than n in real world

knowledge graphs, hence the bound holds in practice.

Though when it comes to relational learning, we might expect the actual rank to be much
lower than nm for two reasons. The first one, as discussed above, is that we are dealing
with sign tensors, hence the rank of the matrices X, need only match the sign-rank of
the partially-observed matrices Y,. The second one is that the matrices are related to
each other, as they all represent the same entities in different relations, and thus benefit
from sharing latent dimensions. As opposed to the construction exposed in the proof
of Theorem [, where other relations dimensions are canceled out. In practice, the rank

needed to generalize well is indeed much lower than nm as we show experimentally in

Figure [1.7]

Also, note that with the construction of the proof of Theorem [4, the matrix £ =
[E] ... Ep] is not unitary any more. However the unitary constraints in the matrix case
serve only the proof of existence, which is just one solution among the infinite ones of
same rank. In practice, imposing orthonormality is essentially a numerical commodity
for the decomposition of dense matrices, through iterative methods for example [Saad,
1992]. When it comes to matrix and tensor completion, and thus generalisation, imposing
such constraints is more of a numerical hassle than anything else, especially for gradient
methods. As there is no apparent link between orthonormality and generalisation

properties, we did not impose these constraints when learning the model.

3.3 Algorithm

Algorithm (1| describes stochastic gradient descent (SGD) to learn the proposed multi-
relational model with the AdaGrad learning-rate updates [Duchi et al., [2011]. Stochastic

gradient descent is a natural and scalable way of respecting the open-world assumption,
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that is treating missing triples as missing instead of negatives. We refer to the proposed
model as COMPLEX, for Complex Embeddings. We expose a version of the algorithm that
uses only real-valued vectors, in order to facilitate its implementation. To do so, we use

separate real-valued representations of the real and imaginary parts of the embeddings.

These real and imaginary part vectors are initialized with vectors having a zero-mean
normal distribution with unit variance. If the training set €2 contains only positive triples,
negatives are generated for each batch using the local closed-world assumption as in
Bordes et al.| [2013b]. That is, for each triple, we randomly change either the subject
or the object, to form a negative example. In this case the parameter n > 0 sets the
number of negative triples to generate for each positive triple. Collision with positive
triples in 2 is not checked, as it occurs rarely in real world knowledge graphs as they are

largely sparse, and may also be computationally expensive.

Squared gradients are accumulated to compute AdaGrad learning rates, then gradients
are updated. Every s iterations, the parameters © are evaluated over the evaluation set
Q, (evaluate_AP_or_-MRR({2,;©) function in Algorithm [I). If the data set contains both
positive and negative examples, average precision (AP) is used to evaluate the model. If
the data set contains only positives, then mean reciprocal rank (MRR) is used as average
precision cannot be computed without true negatives. The ranking of each validation
triple r(s, 0) is computed among all possible subject and object substitutions : r(s, 0)
and r(s,0'), for each §',0' in &, as used in previous studies [Bordes et al., [2013bf Nickel
et al.l 2016b|. Substituted triples that are in the train set are removed for computing
the rankings, which is known as filtered MRR. The optimization process is stopped when

the measure considered decreases compared to the last evaluation (early stopping).

Bern(p) is the Bernoulli distribution, the one_random_sample(E) function sample uni-
formly one entity in the set of all entities £, and the sample_batch_of-size_b(£2, b) function

sample b true and false triples uniformly at random from the training set €.

For a given embedding size K, let us rewrite Equation , by denoting the real part

of embeddings with primes and the imaginary part with double primes: €, = Re(e;),

e =Im(e;), w,. = Re(w,), w! = Im(w,). The set of parameters is © = {¢}, e/, w,, w! €
RE ie&re R}, and the scoring function involves only real vectors:
¢(r,5,0,0) = (wy, e}, €,) +(wy, €, eq)
+ <w;“/¢ 6/5, €Z> - <w;‘/? egv €i)> (39)

where each entity and each relation has two real embeddings.
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Gradients are now easy to write:

Ve, ¢(r,5,0,0) = (w;, © ) + (w © ep),
Verd(r,s,0,0) = (w, © ep) — (0, © €}),
Ve, (1, 5,0;0) = (w; © €;) — (w) ©¢y),
Verd(r,s,0,0) = (w, © €) + (w © €),
Vur ¢(r,5,0,0) = (e Oep) + (€ ©ep),
Vurd(r,s,0,0) = (e ©ey) — (e Oep),

where © is the element-wise (Hadamard) product.

We optimized the negative log-likelihood of the logistic model described in Equation (3.5])

with L? regularization on the entity and relation embeddings in ©:

L0) = > log(l+exp(—ye(r,5,0;0)) + AM[Opqll3  (3.10)
((r,s,0),y)EN

where A € R, is the regularization parameter.

To handle regularization, note that using separate representations for the real and
imaginary parts does not change anything as the squared L?-norm of a complex vector

v =1" 4+ " is the sum of the squared modulus of each entry:

W3 = 3 for e
J
S0 e
J J
= [IW]I3 + [["]I3,
which is actually the sum of the L?-norms of the vectors of the real and imaginary parts.

We can finally write the gradient of £ with respect to a real embedding v for one triple

(r,s,0) and its truth value y:

V. LH((r,8,0),y)};0) = —yo(—yp(r,s,0;0))Vyp(r,s,0;0)+2 v. (3.11)
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Algorithm 1 Stochastic gradient descent with AdaGrad for the CoMPLEX model

Input Training set 2, validation set (,, learning rate « € Ry, rank K € Z,,, L?
regularization factor A € R, negative ratio n € Z, 4, batch size b € Z4, maximum
iteration m € Z, y, validate every s € Z,, iterations, AdaGrad regularizer ¢ = 1075.

Output Embeddings €', ¢e”, v, w".
el ~ N(OF IF*F) el ~ N(OF, IF%F) for each i € €
wh ~ N(OF, TF¥K) !’ ~ N(OF, IF¥F) for each i € R
e, 0" | e < 0F for each i € £
G, o* | Gur 0F for each i € R
previous_score <— 0
fori=1,...,mdo

for j=1,...,|Q|/bdo
Qp < sample_batch_of_size_b(§2, b)
// Negative sampling:
Q, « {0}
for ((r,s,0),y) in  do
fori=1,...,ndo
e < one_random_sample(E)
if Bern(0.5) > 0.5 then
Q, — QU {((r,e,0),—1)}
else
Q, — Q U{((r,s,€),—1)}
end if
end for
end for
Qp < QU
for ((r,s,0),y) in 2 do
for v in © do
// AdaGrad updates:
go = gu+ (VuL{((r,5,0),9)}; ©))?
// Gradient updates:
v v = 22V L({((r,5,0),9)};0)
end for
end for
end for
// Early stopping
if ¢ mod s =0 then
current_score < evaluate_AP_or_MRR(2,; O)
if current_score < previous_score then
break
end if
previous_score < current_score
end if
end for
return ©
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3.4 Link with Holographic Embeddings

In this section we investigate the link between the proposed CoOMPLEX model, and a
simultaneously and independently proposed model, the holographic embeddings (HOLE)
[Nickel et al., 2016b]. We show that they have equivalent scoring functions, up to a
constant factor, but that COMPLEX’s formulation of the scoring function has a lower
time complexity. A similar proof as independently been proposed by Hayashi and Shimbo
[2017].

We will consider discrete Fourier transform (DFT) of purely real vectors only : F : RX —
CK. Forje{0,..., K —1}:

K—
Flz); = rpe 2K (3.12)
k=0

—_

where F(z); € C is the j' value in the resulting complex vector F(z) € CX. Note that
the vector components in Equation (3.12)) are indexed from 0 to K — 1.

The holographic embeddings model (HOLE) represents relations and entities with real-
valued embeddings £ € RN*K 1§ ¢ RV *K = and scores a triple (r,s,0) with the
dot product between the embedding of the relation p and the circular correlation x :

RE x RE — RX of the embeddings of entities s and o:
" (r,5,0) = w, (esx€,). (3.13)
The circular correlation can be written with the discrete Fourier transform (DFT),
esxeo=F (Fles) ® Fley)) (3.14)

where F~1 : CK — C¥ is the inverse DFT. In this case, the embedding vectors are real
€s, €0, Wy € RE and so is the result of the inverse DFT, since the circular correlation of

real-valued vectors results in a real-valued vector.

We recall the scoring function of the proposed model (COMPLEX), that represents
relations and entities with complex-valued embeddings E € CNeXK 17 e CN*K  and
scores a triple (r, s,0) with the real part of the trilinear product of the corresponding
embeddings:

¢°(r, s,0) = Re ({(wy, €5, €5)) (3.15)

where e, e,, w, € CX are complex vectors, and €, is the complex conjugate of the vector

€o.

First, recall Parseval’s Theorem:
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Theorem 5. Suppose x,y € RE are real vectors. Then z 'y = %]:(x)T]:(y).

Using Theorem 5| as well as Equations (3.13)) and (3.14]), we can then rewrite the scoring

function of HOLE as:

Cf)h(ra 5,0) = w;—(es * €5)

= w, (F7H(F(es) © Fleo)))

g

F(wy)  F(F(Fles) © Fleo)))

F(wr)T(f(65> © F(eo))

= === ==

(Fwy), Fles), Flea)) - (3.16)

We now derive a property of the DFT on real vectors x, showing that the resulting
complex vector F(z) has a partially symmetric structure, for j € {1,..., K — 1}:
—2im(K—j)

L
K

—2irk €2i7rj%

and given that k is an integer: e=2"% =1,

and since xj € R,

= ]:(a:)] . (3.17)
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Two special cases arise, the first one is F'(z)g, which is not concerned by the above

Symmetry property:

I
8
=

=:s(z) e R. (3.18)
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From Equations (3.17) to (3.19)), we write the general form of the Fourier transform
F(x) € CK of a real vector » € RE:

s(x) 2 t(x) 2’.], if K is even,
Flx) = () 7( ) o] (3.20)
[s(z) o' o' ], if K is odd.
where 2/, 2/_ € C(%}—I’ with 2’ = [F(2)1,...,F(z) [%1_1], and 2/_ is 2/ in reversed

order: z/_ = [F(z) [£]-10- - s F(z)1).
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We can then derive Equation (3.16) for w,, e, e, € RX, first with K being odd:

" (r,s,0) = % <‘7:(w7">7]:<€s),.7:(60)>
:%<[3(wr) w, w,_],[s(es) €, é;(_]7m>
- %<[S(w,,) w, W], [s(es) € €, [s(eo) €, 6:)]>

7 (s(wy)s(es)s(eo) + (wr., €5, €,) + (W), e, €,))

= % (s(wr)s(es)s(eo) + (w), e}, e,) +m)

— % (s(wy)s(es)s(eo) +2Re ((w)., €}, €,)))
— %Re <<[ 3 %S(WT) U};ﬂ]’ [ 3 %8(65) e;]’ [ 3 %S(eo) 6:)]>>
2 14 "=
- ?Re (<wr765,eo>)
2 c
= ?QZ) (T,S,O) (321)

"o n

K
where w/, e’ el € cl= 1. The derivation is similar when K is even, with double prime

vectors being 2" = [\3/%3(:(:) f/gt(a:) NS CTH!,

The two scoring functions are thus directly proportional. Both models have an equal
memory complexity, as the complex vectors w, e? e/ € C [ 1 take twice as much memory
as real-valued ones of same size—for a given floating-point precision. Though the complex
formulation of the scoring function brings time complexity from O(K log(K)) down to

O(K).

We investigate in the next chapter the discrepancy of results between our proposal and
HOLE results reported in [Nickel et al., [2016b], and postulate that they are due to the
use of two different loss functions. Experiments in Section [4.3.6] correlate with originally

reported results for HOLE, and confirm this hypothesis.

3.5 Discussion and Future Directions

Though the proposed decomposition is clearly not unique, we will see in the next
chapter that it is able to learn meaningful representations of entities and relations.
Still, characterizing all possible unitary diagonalizations that preserve the real part is an
interesting open question. Especially in an approximation setting with a constrained rank,
in order to characterize the decompositions that minimize a given reconstruction error.

That might allow the creation of an iterative algorithm similar to eigendecomposition
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iterative methods [Saad), [1992] for computing such a decomposition for any given real

square matrix.

The proposed decomposition could also find applications in many asymmetric square
matrices decompositions applications, such as spectral graph theory for directed graphs
[Cvetkovi¢ et al., [1997], but also factorization of asymmetric measures matrices such as
asymmetric distance matrices [Mao and Saul, [2004] and asymmetric similarity matrices
[Pirasteh et al., [2015].

From an optimization point of view, the objective function (Equation (3.10)) is clearly
non-convex, and we could indeed not be reaching a globally optimal decomposition using
stochastic gradient descent. Recent results show that there are no spurious local minima
in the completion problem of positive semi-definite matrix [Ge et al., |2016; Bhojanapalli
et al 2016]. Studying the extensibility of these results to our decomposition is another
possible line of future work. The first step would be generalizing these results to
symmetric real-valued matrix completion, then generalization to normal matrices should
be straightforward. The two last steps would be extending to matrices that are expressed
as real part of normal matrices, and finally to the joint decomposition of such matrices

as a tensor.

Practically, an obvious extension is to merge our approach with known extensions to
tensor factorization models in order to further improve predictive performance. For
example, the use of pairwise embeddings [Riedel et al., [2013; [Welbl et al.l 2016] together
with complex numbers might lead to improved results in situations that involve non-
compositionality. Adding bigram embeddings to the objective could also improve the

results as shown on other models |Garcia-Duran et al., [2016].

Chapter Summary

We proposed a new matrix and tensor decomposition with complex-valued latent factors
called CoMPLEX. The decomposition exists for all real square matrices, expressed as
the real part of normal matrices. The result extends to sets of real square matrices—
tensors—and answers to the requirements of the knowledge graph completion task :
handling a large variety of different relations including antisymmetric and asymmetric
ones, while being scalable. We described a stochastic gradient descent algorithm to
learn from partially-observed knowledge graphs, that either contain both positive and
negative triples or only positive ones. Finally we discussed the theoretical links with an

independently proposed model, HOLE.






Chapter 4

Experiments and Applications

To evaluate our proposal, we used both synthetic experiments to assess our claims, and
classical link-prediction benchmarks. First, we justify empirically that using the logistic-
loss yields much better generalization with low-ranks than the squared loss on some
typical synthetic relations. In another synthetic experiment, we demonstrate the ability
of the COMPLEX model to jointly learn a symmetric and an antisymmetric relations.
Then we evaluate it on classical closed-world datasets: Kinships and UMLS; as well as
classical open-world benchmarks: WN18 and FB15K which are respectively subsets of
WordNet |Fellbaum, 1998] and Freebase [Bollacker et al., 2008]. We also experimentally
explore the discussed theoretical links between HOLE and CoMPLEX. Finally, we propose

a different application of our model for enriching distributed representations of words.

We compared COMPLEX to state-of-the-art models, namely TRANSE [Bordes et al.,
2013b|, DiIsTMULT [Yang et all 2015], RESCAL [Nickel et al. 2011] and also to the
canonical polyadic decomposition (CP) [Hitchcock, [1927], to emphasize empirically the
importance of learning unique embeddings for entities. For experimental fairness, we
reimplemented these models within the same framework as the COMPLEX model, using
a Theano-based SGD implementatiorﬂ [Bergstra et al. 2010].

For the TRANSE model, results were obtained with its original max-margin loss, as it
turned out to yield better results for this model only. To use this max-margin loss on
data sets with observed negatives (Sections and , positive triples were replicated
when necessary to match the number of negative triples, as described in |Garcia-Duran
et al| [2016]. We also trained it with L' and L? norms, results are reported for the
best performing one in each experiment. As in the original paper, we did not use
regularization over the parameters but instead we enforced entity embeddings to have

unit norm ||e;||2 = 1 for all i € € [Bordes et al., 2013b].

"https://github.com/Imjohns3/downhill

53
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FIGURE 4.1: Identity matrix: F1 measure on the training data corresponding to a fully
observed identity matrix, as function of the embedding size, for various matrix sizes.
The two curves correspond to the minimization of the squared loss and the logistic loss.

All other models are trained with the negative log-likelihood of the logistic model
(Equation (3.10))). In all the following experiments we used a maximum number of
iterations m = 1000, a batch size b = %, and validated the models for early stopping
every s = 50 iterations. The regularization parameter A is validated in {0.1, 0.03, 0.01,

0.003,0.001, 0.0003, 0.00001, 0.0} and the learning rate « is initialized to 0.5.

4.1 Synthetic Validation Experiments

First we compare the logistic and squared loss on synthetic matrix completion repre-
senting simple relations, and then we assess our model ability to learn symmetric and

antisymmetric patterns.

4.1.1 Comparing Logistic and Squared Losses

We validate the intuition of using the logistic loss over the squared loss when decomposing
sign matrices and tensors, that is matrices with -1 and 1 only. We are here interested in
evaluating the two losses on matrix completion problems, independently of the actual

expressiveness of link-prediction models. We hence propose to compare them on the



Ezxperiments and Applications 55

most general decomposition model, the CP model, which relates to SVD in the matrix
case (single relation). We here minimize the negative log-likelihood of both losses on

observed entries.

Finding the decomposition that matches the sign-pattern of a given sign matrix amounts
to bringing the 0-1 loss to 0, which is theoretically possible if the rank of decomposition
is greater or equal to the sign-rank of the decomposed sign matrix. However to avoid this
combinatorial problem, the logistic loss is classically used as a surrogate. Sign-identity
n X n matrices—where 0 are replaced with -1—are known to have a rank of n, but to have
a constant sign-rank of 3 [Alon et al., [2016|, as discussed in Section As the rank
(and sign-rank) are invariant by column permutation, identity-permuted matrices can be
used as a permutation relation in knowledge graph that assign each entity to another
one, such as isMarriedTo. To assess the quality of the logistic loss as a surrogate of the
sign-rank, we decompose fully observed identity matrices, and compare reconstruction
error between the squared and logistic losses. We report the Fl-measure in Figure
On the smallest matrix (20 x 20), the logistic loss actually matches the sign-rank as it
reaches perfect reconstruction with an embedding size of K = 3. On bigger matrices
(60 x 60 and 200 x 200), the actual rank required to decompose an identity matrix with
the logistic loss seems to scale logarithmically with the size of the matrix; whereas it
scales linearly with the squared loss. Using the logistic loss allows for decomposing
permutation matrices with a rank much closer to the true sign-rank than using the

squared loss.

We further conduct our experiments on nxn matrix completion problems, first on an upper
tri-diagonal synthetic relation, which can be seen as a sequential relation (Figure .
And second on block upper-diagonal patterns, which can be seen as transitive groups
of entities, such as olderBrother0f (Figure . In the observed matrices (left), white
denotes -1, black 1, and grey unobserved entries. In the reconstructed matrices for the
squared (middle) and logistic (right) losses, values are represented in grey-scale. The
logistic loss reaches perfect reconstruction with K = 3 in the sequential case and with
K = 4 in the transitive case, whereas the squared loss reconstruction is largely corrupted

for these ranks.

These experiments show us that if the logistic loss is minimized, many common relations
such as permutation matrices, sequential relations, and transitive relations can be
represented with surprisingly small embeddings. In the following experiments, we used

the logistic loss with all models.
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FIGURE 4.2: Sequential relation learning with rank-3 embeddings. One can see that for
a fixed embedding size, the predictive accuracy of the logistic-loss model is much higher.

b b o,
B, a1
. L.
- h: .

i i §

Observed Squared Loss Logistic Loss

FIGURE 4.3: Transitive relation learning with logistic loss and rank-4 embeddings. Gray
cells represent missing values in the training set (left). We see that they are perfectly
recovered by predicting relation probabilities (right).

4.1.2 Symmetry and Antisymmetry

To assess our claim that COMPLEX can accurately model jointly symmetry and anti-
symmetry, we randomly generated a knowledge graph of two relations and 30 entities.
One relation is entirely symmetric, while the other is completely antisymmetric. This
data set corresponds to a 2 x 30 x 30 tensor. Figure shows a part of this randomly
generated tensor, with a symmetric slice and an antisymmetric slice, decomposed into
training, validation and test sets. To ensure that all test values are predictable, the upper
triangular parts of the matrices are always kept in the training set, and the diagonals
are unobserved. We conducted a 5-fold cross-validation on the lower-triangular matrices,
using the upper-triangular parts plus 3 folds for training, one fold for validation and
one fold for testing. Each training set contains 1392 observed triples, whereas validation
and test sets contain 174 triples each. Figure shows the best cross-validated average
precision (area under the precision-recall curve) for different factorization models of ranks

ranging up to 50, and error bars show the standard deviation over the 5 runs.



Ezxperiments and Applications Y

Symmetric relation Symmetric relation Symmetric relation
training slice matrix validation slice matrix test slice matrix

o+ H 0

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Antisymmetric relation Antisymmetric relation Antisymmetric relation
training slice matrix validation slice matrix test slice matrix
0 - - - - o - - -
2F 2
4 af

T g m "m

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

FIGURE 4.4: Parts of the training, validation and test sets of the generated experiment
with one symmetric and one antisymmetric relation. Red pixels are positive triples, blue
are negatives, and green missing ones. Top: Plots of the symmetric slice (relation) for
the 10 first entities. Bottom: Plots of the antisymmetric slice for the 10 first entities.

As expected, DISTMULT [Yang et al., [2015] is not able to model antisymmetry and only

predicts the symmetric relations correctly. Although TRANSE [Bordes et all 2013b] is

not a symmetric model, it performs poorly in practice, particularly on the antisymmetric

relation. RESCAL |Nickel et al., 2011], with its large number of parameters, quickly

overfits as the rank grows. Canonical Polyadic (CP) decomposition [Hitchcockl, 1927]

fails on both relations as it has to push symmetric and antisymmetric patterns through

the entity embeddings. Surprisingly, only COMPLEX succeeds even on such simple data.

4.2 Real Fully-Observed Data Sets: Kinships and UMLS

We then compare all models on two fully observed data sets, that contain both positive
and negative triples, also called the closed-world assumption. The Kinships data set

[Denham| 1973| describes the 26 different kinship relations of the Alyawarra tribe in

Australia, among 104 individuals. The unified medical language system (UMLS) data
set [McCray, 2003| represents 135 medical concepts and diseases, linked by 49 relations

describing their interactions. Metadata for the two data sets is summarized in Table



Ezxperiments and Applications

o8

Symmetric relation

Antisymmetric relation

1.0

0.9

o
@
=]
£
v

e
~
o

Average precision
v
v

o
o

0.5

0.4
5

Average precision

1.0

0.9

o
©

e
3

o
o

0.5

0.4

L]
o

. /‘V/*'%/A/i\%»;

l

25 30
Factorization rank

2‘0 35

40 45 50

Overall

5 10

' y N
25 30 35 45

Factorization rank

15 20 40 50

1.0p

_—

0.9

e et
~ ©

Average precision

4
o

0.5

e

CP
#—¢ ComplEx

DistMult
RESCAL
TranskE

0.4
5

10 15

20 25 30

Factorization rank

35

40 45 50

FIGURE 4.5: Average precision (AP) for each factorization rank ranging from 5 to 50
for different state-of-the-art models on the synthetic task. Learning is performed jointly
on the symmetric relation and on the antisymmetric relation. Top-left: AP over the
symmetric relation only. Top-right: AP over the antisymmetric relation only. Bottom:

Overall AP.
Data set | || |R| Total number of triples
Kinships | 104 26 281,216
UMLS 135 49 893,025

TABLE 4.1: Number of entities |€|, relations |R|, and observed triples (all are observed)
for the Kinships and UMLS data sets.

We performed a 10-fold cross-validation, keeping 8 for training, one for validation and

one for testing. Figure shows the best cross-validated average precision for ranks

ranging up to 50, and error bars show the standard deviation over the 10 runs.

On both data sets CoMPLEX, RESCAL and CP are very close, with a slight advantage
for CoMPLEX on Kinships, and for RESCAL on UMLS. DisTMULT performs poorly here

as many relations are antisymmetric both in UMLS (causal links, anatomical hierarchies)

and Kinships (being father, uncle or grand-father).

The fact that CP, RESCAL and CoMPLEX work so well on these data sets illustrates

the importance of having an expressive enough model, as DISTMULT fails because of



Ezxperiments and Applications 59

Kinships

1.0

oo — o0 1
/M ]

v

o

N
¥
v
¥
\

¥

v
¥

Average precision
5 o
o

0.2

0.0 . . . .
5 10 15 20 25 30 35 40 45 50
Factorization rank

UMLS

f\: al §g——98 s [ E—

0.8}

1.0

c
S
§ 0.6 /1\&\*__4:?;?“\_*__.
g V.
9]
(=}
© /
[
204y
CpP
ComplEx
0.2 DistMult
RESCAL
TransE
0.0 . . .
5 10 15 20 25 30 35 40 45 50

Factorization rank

FIGURE 4.6: Average precision (AP) for each factorization rank ranging from 5 to 50
for different state-of-the-art models on the Kinships data set (top) and on the UMLS
data set (bottom).

antisymmetry; the power of the multilinear product—that is the tensor factorization

approach—as TRANSE can be seen as a sum of bilinear products |Garcia-Duran et al.|

2016]; but not yet the importance of having unique entity embeddings, as CP works

well. We believe having separate subject and object-entity embeddings works well under
the closed world assumption, because of the amount of training data compared to the
number of embeddings to learn. Though when only a fractions of the positive training
examples are observed (as it is most often the case), we will see in the next experiments

that enforcing unique entity embeddings is key to good generalization.

4.3 Real Sparse Data Sets: FB15K and WN18

Finally, we evaluated COMPLEX on the FB15K and WN18 data sets, as they are well
established benchmarks for the link-prediction task. FB15K is a subset of Freebase

[Bollacker et al., 2008], a curated knowledge graph of general facts, whereas WN18 is a
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Number of triples in sets:
Data set I€| |R| Training Validation Test

WNI8 | 40,943 18 141,442 5,000 5,000
FBI5K | 14,951 1,345 483,142 50,000 59,071

TABLE 4.2: Number of entities |£|, relations |R|, and observed triples in each split for
the FB15K and WN18 data sets.

subset of WordNet |[Fellbaum), 1998|, a database featuring lexical relations between words.
We used the same training, validation and test set splits as in Bordes et al. [2013b]. Table

M2 summarizes the metadata of the two data sets.

4.3.1 Experimental Setup

As both data sets contain only positive triples, we generated negative samples using the
local closed-world assumption, and use the mean reciprocal rank (MRR) for evaluation,
where ranking of each test triple r(s,0) is computed among all possible subject and
object substitutions—as described in Section [3.3] The MRR and Hits at N are standard
evaluation measures for these data sets and come in two flavours: raw and filtered. The
filtered metrics are computed after removing all the other positive observed triples that
appear in either training, validation or test set from the ranking, whereas the raw metrics

do not remove these.

Since ranking measures are used, previous studies generally preferred a max-margin
ranking loss for the task [Bordes et al., 2013b; Nickel et al., 2016b]. We chose to use
the negative log-likelihood of the logistic model. We tried both losses in preliminary
work, and training the models with the log-likelihood yielded better results than with
the max-margin ranking loss, especially on FB15K—except with TRANSE.

We report both filtered and raw MRR, and filtered Hits at 1, 3 and 10 in Table [4.3]for the
evaluated models. We have shown in Section that the scoring function of the HOLE
model is equivalent to COMPLEX —which has also been independently shown by [Hayashi
and Shimbo| [2017]. We record the original results for HOLE as reported in [Nickel et al.
[2016b] and briefly discuss the discrepancy of results obtained with CoMPLEX.

Reported results are given for the best set of hyper-parameters evaluated on the validation
set for each model, after a distributed grid-search on the following values: K € {10, 20,
50, 100, 150, 200}, A € {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0}, a € {1.0, 0.5, 0.2, 0.1,
0.05, 0.02, 0.01}, n € {1, 2, 5, 10} with A the L? regularization parameter, a the initial
learning rate, and 7 the number of negatives generated per positive training triple. We
also tried varying the batch size but this had no impact and we settled with 100 batches
per epoch. With the best hyper-parameters, training the CoMPLEX model on a single
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WN18 FB15K
MRR Hits at MRR Hits at

Model Filtered Raw 1 3 10 Filtered Raw 1 3 10
CP 0.075 0.058 0.049 0.080 0.125 0.326 0.152 0.219 0.376 0.532
TRANSE 0.454 0.335 0.089 0.823 0.934 0.380 0.221 0.231 0.472 0.641
RESCAL 0.894 0.583 0.867 0.918 0.935 0.461 0.226 0.324 0.536 0.720
DistMuLT 0.822 0.532 0.728 0.914 0.936 0.654 0.242 0.546 0.733 0.824
HoLE* 0.938 0.616 0.930 0.945 0.949 0.524 0.232 0.402 0.613 0.739
CoMPLEX 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840

TABLE 4.3: Filtered and raw mean reciprocal rank (MRR) for the models tested on
the FB15K and WN18 data sets. Hits@N metrics are filtered. *Results reported from
Nickel et al.| [2016b] for HOLE model.

GPU (NVIDIA Tesla P40) takes 45 minutes on WN18 (K = 150,n = 1), and three hours
on FB15K (K = 200,n = 10).

4.3.2 Results

WN18 describes lexical and semantic hierarchies between concepts and contains many
antisymmetric relations such as hypernymy, hyponymy, and being part of. Indeed, the
DistMUuLT and TRANSE models are outperformed here by CoMPLEX and HOLE, which
are on a par with respective filtered MRR scores of 0.941 and 0.938, which is expected

as both models are equivalent.

Table shows the filtered MRR for the reimplemented models and each relation of
WN18, confirming the advantage of COMPLEX on antisymmetric relations while losing
nothing on the others. 2D projections of the relation embeddings (Figures & [4.11)

visually corroborate the results.

On FB15K, the gap is much more pronounced and the COMPLEX model largely outper-
forms HOLE, with a filtered MRR of 0.692 and 59.9% of Hits at 1, compared to 0.524
and 40.2% for HOLE. This difference of scores between the two models, though their
scoring functions are equivalent, is due to the use of the aforementioned max-margin
loss in the original HOLE publication [Nickel et al.l 2016b| that performs worse than the
log-likelihood on this dataset, and to the generation of more than one negative sample per
positive in these experiments. We will further explore this interpretation in Section [4.3.6)
The fact that DISTMULT yields fairly high scores (0.654 filtered MRR) is also due to the
task itself and the evaluation measures used. As the dataset only involves true facts, the
test set never includes the opposite facts (o, s) of each test fact r(s, o) for antisymmetric
relations—as the opposite fact is always false. Thus highly scoring the opposite fact
barely impacts the rankings for antisymmetric relations. This is not the case in the

fully observed experiments (Section [4.2]), as the opposite fact is known to be false—for
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Relation name CompLEX RESCAL DistMurr TraNsE CP

hypernym 0.953 0.935 0.791 0.446 0.109
hyponym 0.946 0.932 0.710 0.361 0.009
member_meronym 0.921 0.851 0.704 0.418 0.019
member_holonym 0.946 0.861 0.740 0.465 0.134
instance_hypernym 0.965 0.833 0.943 0.961 0.233
instance_hyponym 0.945 0.849 0.940 0.745 0.040
has_part 0.933 0.879 0.753 0.426 0.035
part_of 0.940 0.888 0.867 0.455 0.094
member_of_domain_topic 0.924 0.865 0.914 0.861 0.007
synset_domain_topic_of 0.930 0.855 0.919 0.917 0.153
member_of_domain_usage 0.917 0.629 0.917 0.875 0.001
synset_domain_usage_of 1.000 0.541 1.000 1.000 0.134
member_of_ domain_region | 0.865 0.632 0.635 0.865 0.001
synset_domain_region_of 0.919 0.655 0.888 0.986 0.149
derivationally _related_form | 0.946 0.928 0.940 0.384 0.100
similar_to 1.000 0.001 1.000 0.244 0.000
verb_group 0.936 0.857 0.897 0.323 0.035
also_see 0.603 0.302 0.607 0.279 0.020

TABLE 4.4: Filtered Mean Reciprocal Rank (MRR) for the models tested on each
relation of the WordNet data set (WN18).

antisymmetric relations—and largely impacts the average precision of the DiSTMULT

model (Figure [4.6)).

RESCAL, that represents each relation with a K x K matrix, performs well on WN18
as there are few relations and hence not so many parameters. On FB15K though, it
probably overfits due to the large number of relations and thus the large number of
parameters to learn, and performs worse than a less expressive model like DISTMULT.
On both data sets, TRANSE and CP are largely left behind. This illustrates again the
power of the multilinear product in the first case, and the importance of learning unique
entity embeddings in the second. CP performs especially poorly on WN18 due to the

small number of relations, which magnifies this subject/object difference.

Figure [4.7] shows that the filtered MRR of the COMPLEX model quickly converges on
both data sets, showing that the low-rank hypothesis is reasonable in practice. The little
gain of performances for ranks comprised between 50 and 200 also shows that CoOMPLEX
does not perform better because it has twice as many parameters for the same rank—the
real and imaginary parts—compared to other linear space complexity models, but indeed

thanks to its better expressiveness.

Best ranks were generally 150 or 200, in both cases scores were always very close for
all models, suggesting there was no need to grid-search on higher ranks. The number
of negative samples per positive sample also had a large influence on the filtered MRR

on FB15K (up to +0.08 improvement from 1 to 10 negatives), but not much on WNI18.
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FI1GURE 4.7: Best filtered MRR for CoMPLEX on the FB15K and WN18 data sets for
different ranks. Increasing the rank gives little performance gain for ranks of 50 — 200.

On both data sets regularization was important (up to +0.05 on filtered MRR between
A = 0 and optimal one). We found the initial learning rate to be very important on
FB15K, while not so much on WN18. We think this may also explain the large gap
of improvement COMPLEX provides on this data set compared to previously published
results—as DISTMULT results are also better than those previously reported
—along with the use of the log-likelihood objective. It seems that in general
AdaGrad is relatively insensitive to the initial learning rate, perhaps causing some
overconfidence in its ability to tune the step size online and consequently leading to less

efforts when selecting the initial step size.

4.3.3 Training time

As defended in Section having a linear time and space complexity becomes critical
when the dataset grows. To illustrate this, we report in Figure the evolution of the
filtered MRR on the validation set as a function of time, for the best set of validated
hyper-parameters for each model. The convergence criterion used is the decrease of the
validation filtered MRR (computed every 50 iterations), with a maximum number of
iterations of 1000 (see Algorithm . All models have a linear complexity except for
RESCAL that has a quadratic one in the rank of the decomposition, as it learns one
matrix embedding for each relation » € R. Timings are measured on a single NVIDIA
Tesla P40 GPU.

On WNI18, all models reach convergence in a reasonable time, between 15 minutes and 1

hour and 20 minutes. The difference between RESCAL and the other models is not sharp
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WN18 training time to convergence
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FIGURE 4.8: Evolution of the filtered MRR on the validation set as a function of time,
on WNI18 (top) and FB15K (bottom) for each model for its best set of hyper-parameters.
The best rank K is reported in legend. Final black marker indicates that the maximum
number of iterations (1000) has been reached (RESCAL on WN18, TRANSE on FB15K).

there, first because its optimal embedding size (K = 50) is lower compared to the other
models. Secondly, there are only |R| = 18 relations in WN18, hence the memory footprint
of RESCAL is pretty similar to the other models—because it represents only relations
with matrices and not entities. On FB15K, the difference is much more pronounced, as
RESCAL optimal rank is similar to the other models; and with |R| = 1345 relations,
RESCAL has a much higher memory footprint, which implies more processor cache

misses due to the uniformly-random nature of the SGD sampling.

RESCAL took more than four days to train, whereas other models took between 40
minutes and 3 hours. While a few days might seem manageable, this could not be

the case on larger data sets, as FB15K is but a small subset of Freebase that contains
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Fi1cURE 4.9: Influence of the number of negative triples generated per positive training

example on the filtered test MRR and on training time to convergence on FB15K for

the CoMPLEX model with K = 200, A = 0.01 and a = 0.5. Times are given relative to

the training time with one negative triple generated per positive training sample (= 1
on time scale).

|R| = 35000 relations |[Bollacker et al., 2008]|. This experimentally supports our claim

that linear complexity is required for scalability.

4.3.4 Influence of Negative Samples

We further investigated the influence of the number of negatives generated per positive
training sample. In the previous experiment, due to computational limitations, the
number of negatives per training sample, 1, was validated over the set {1,2,5,10}. On
WN18 it proved to be of no help to have more than one generated negative per positive.
Here we explore in which proportions increasing the number of generated negatives leads
to better results on FB15K. To do so, we fixed the best validated \, K, o obtained from
the previous experiment. We then let n vary in {1, 2,5, 10, 20, 50, 100, 200}.

Figure shows the influence of the number of generated negatives per positive training
triple on the performance of CoMPLEX on FB15K. Generating more negatives clearly
improves the results up to 100 negative triples, with a filtered MRR of 0.737 and 64.8%
of Hits@1, before decreasing again with 200 negatives, probably due to the too large class
imbalance. The model also converges with fewer epochs, which compensates partially for
the additional training time per epoch, up to 50 negatives. It then grows linearly as the

number of negatives increases.

This calls to develop a more intelligent negative sampling procedure, to generate more

informative negatives with respect to the positive sample from which they have been
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sampled. This would reduce the number of negatives required to reach good performance,
thus accelerating training time. When the knowledge graph comes with a schema that
defines entity types (person, place or song for example) this information can be used to
sample negatives by corrupting positive triples with entities of the same type, as shown
by [Sedghi and Sabharwal, 2016].

4.3.5 WNI18 Embeddings Visualization

We used principal component analysis (PCA) to visualize embeddings of the relations
of the WordNet data set (WN18). We plotted the four first components of the best
DistMULT and COMPLEX model’s embeddings in Figures & For the CoMPLEX

model, we simply concatenated the real and imaginary parts of each embedding.

Most of WN18 relations describe hierarchies, and are thus antisymmetric. Each of these
hierarchic relations has its inverse relation in the data set. For example: hypernym
/ hyponym, part_of / has part, synset domain topic_of / member of domain topic.
Since DISTMULT is unable to model antisymmetry, it will correctly represent the nature
of each pair of opposite relations, but not the direction of the relations. Loosely speaking,
in the hypernym / hyponym pair the nature is sharing semantics, and the direction is that
one entity generalizes the semantics of the other. This makes DISTMULT representing
the opposite relations with very close embeddings. It is especially striking for the third
and fourth principal component (Figure . Conversely, COMPLEX manages to oppose

spatially the opposite relations.

4.3.6 Comparing ComplEx and HolE

Following the equivalence discussion with the scoring function of the HOLE model in

Section we now experimentally compare the differences between the two models.

In Table results for the CoMPLEX and HOLE models agreed on the WN18 data set,
but diverged on FB15K. Since both models are equivalent, we assumed that this is due to
the different loss functions that were used. To assess this hypothesis, we reimplemented
both losses over the COMPLEX model scoring function within the same framework, and

compared them on the WN18 and FB15K data sets.

In the original HOLE publication |Nickel et al., 2016b], a pairwise max-margin loss is

optimized over each positive and its corrupted negative (r, s, 0):

L0) = Y max(0,y+0(p(r,¢,050)) —o(4(r,5,0,0)))  (4.1)
((r,s,0),y)€N
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FIGURE 4.10: Plots of the first and second components of the WN18 relations embed-

dings using principal component analysis. Red arrows link the labels to their point.

Top: CoMPLEX embeddings. Bottom: DISTMULT embeddings. Opposite relations are
clustered together by DISTMULT while correctly separated by COMPLEX.
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WN18 FB15K
MRR Hits at MRR Hits at
Loss Filtered Raw 1 3 10 Filtered Raw 1 3 10
Max-margin 0.938 0.605 0.932 0.942 0.949 0.541 0.298 0.411 0.627 0.757
Neg-LL 0.941 0.587 0.936 0.945 0.947 0.639 0.250 0.523 0.725 0.825

TABLE 4.5: Filtered and raw mean reciprocal rank (MRR), Hits@N metrics are filtered,
for the CoMPLEX model with the pairwise max-margin loss and the negative log-
likelihood on WN18 and FB15K data sets.

where «v is the margin hyperparameter. The entity embeddings are also constrained to
unit norm : ||e;||2 = 1, for all i € £. Whereas we optimized the log-likelihood loss as

explained in the previous chapter.

The results are reported for the best validated models after a distributed grid-search on
the following values: K € {10, 20, 50, 100, 150, 200}, A € {0.1, 0.03, 0.01, 0.003, 0.001,
0.0003, 0.0} for the log-likelihood loss, and v € {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0} for the max-margin loss. The raw and filtered mean reciprocal ranks (MRR), as
well as the filtered hits at 1, 3 and 10 are reported in Table

The max-margin loss results are consistent with the HOLE ones originally reported
in |Nickel et al.| [2016b], confirming the equivalence of the scoring functions, and our
hypothesis that the loss was responsible for the difference in previously reported results.
The log-likelihood results are also coherent, as one must note that the higher scores
reported on FB15K in Table are due to the use of more than one generated negative
sample for each positive training triple. Here, we generated a single negative sample for

each positive one in order to keep the comparison fair between the two losses.

The choice of the loss is of little consequence on the WN18 dataset, whereas the log-
likelihood loss performs much better on FB15K. While much research attention has been
given to scoring functions in link prediction, little has been said about the losses, and
the max-margin loss has been used in most of the existing work [Bordes et al., |2013b;
Yang et al., 2015; Riedel et al., 2013]. Properties of both losses should be studied to
understand this discrepancy of results on some datasets, as well as a more extensive
empirical comparison of both losses to assess whether or not the log-likelihood should be

systematically chosen over the max-margin loss.

4.4 Learning Complex Word Embeddings

In the next experiments, we explore the applicability of the multi-relational factorization

framework for enriching distributed representation of words.
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With the release of the word2vec [Mikolov et al. [2013] and gloVe [Pennington et al.,
2014] trained word embeddings, machine learning researchers started to widely reuse
pre-trained models on different tasks. This breakthrough let us glimpse the possible
future existence of a fully modular library of pre-trained representations. However, this
potential has not yet been fully grasped and exploited. In many use cases of word
embeddings, those are just used for initialization, and then fine-tuned for the task.
Allow us here a loose comparison with software development. The current use of word
embeddings would be as if, after the release of the first ever written library package, every
one went forking its source code for his own purpose, and no one was building—and
releasing—another package built on top of it. In this work, we argue for embracing the
full modularity potential that is now offered to our community through the incremental

building of trained representations.

Among various different applications, pre-trained word embeddings have been used for
recognizing textual entailment (RTE) [Marelli et al., 2014; |Bowman et al., 2015a]. On one
hand, integrating external resources such as WordNet in combination with distributional
representations of words proved to be very useful for this task [Marelli et al.l 2014].
This is intuitively understandable, as distributional representations are trained on a
symmetrical information, co-occurrence, yet entailment is an antisymmetric property,
and resources as WordNet [Fellbaum, 1998 contains antisymmetric information between
words such as hypernymy or meronymy. Levy et al.| [2015]; Bowman et al.| [2015b] also
discussed the limits of distributional representations for entailment prediction. On the
other hand, using only fixed word embeddings during the optimization process largely
reduces the number of parameters and allows for using larger and better performing
models [Rocktaschel et al.l 2016; Liu et al., 2016]. Here we reconcile both aspects by
first giving the word representations these asymmetric properties by enriching them with
external knowledge, in the form of knowledge graphs. However, conversely to previous
works that either learn embeddings jointly on a corpus and on external resources |[Xu
et al., 2014} Liu et al., 2015], or refine pre-trained embeddings with external resources
[Faruqui et al.l |2015]; we propose to extend the pre-trained vectorial representations of

words, to encode this new knowledge in a modular fashion.

In the WordNet knowledge graph, words are the entities. The CoMPLEX model ability
to model antisymmetric relations between pairs of entities comes from the complex
conjugation of the object-entity embedding, that is the change of sign of its imaginary
part. As we are interested here into both (i) encoding antisymmetric information about
words, and (ii) keeping the approach modular, we train the COMPLEX model on WordNet
while keeping the real part of the word embeddings constant and initialized from pre-
trained embeddings, and only learn their imaginary part to fit WordNet antisymmetric

relations between words.
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Embeddings Embeddings size Layers size Train  Dev Test
Word2vec K =K"=300 L=2K"=600 0.7903 0.7706 0.7792
Word2vec K =K"=300 L=2K°=1200 0.8332 0.7835 0.7771

Word2vec+CoMPLEX K = K¢ =600 L=2K"=600 0.8054 0.7840 0.7875
Word2vec+CoMPLEX K = K¢ =600 L =2K°=1200 0.8245 0.7805 0.7850

TABLE 4.6: Accuracies on the SNLI corpus with the word2vec embeddings, and the
embeddings enhanced with the COMPLEX model on WordNet, for different sizes of the
intermediate layers.

To sum up:

e We propose to extend vectorial representations of words with knowledge graphs,

instead of refining these vectors.

e To encode antisymmetric information about words into vectors, we leverage on the

asymmetry of the Hermitian dot product.

e Only the imaginary part is learned, keeping the approach modular and incremental.

4.4.1 Imaginary Part Only Learning

To train our word embeddings with the COMPLEX model, we reused the WN18 subset
of WordNet [Bordes et al., 2013b], that mainly contains antisymmetric relations. It is
initially composed of |€| = 40,943 words. For each entity i € £, we initialized the real
parts of their embeddings Re(e;) € R¥ with pre-trained word2vec vector of dimension
K = 300. To do so, we dropped POS tag information as well as the different meanings
of each words (that were represented as different entities) in WN18, and merged them
together as a single entity. This resulted into an intersection of |£] = 16,561 words with

the word2vec embeddings, and |2] = 63,251 observed positive triples.

The training is performed as described in the previous WN18 experiment, except for the
size of the embeddings that is not validated as it is fixed to K = 300, the dimension of
the pre-trained embeddings. This time, only the imaginary part of the entity embeddings
is learned, while the real part is kept constant to the pre-trained initialization value. We
next assess our extended word embeddings on a classical entailment classification data
set, SNLI [Bowman et al., 2015a].
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4.4.2 Results on Entailment: SNLI

The SNLI dataset contains 570,000 human-written English sentences pairs, labeled with
three classes: entailment, contradiction, and neutral. To compare our embeddings
extended with an imaginary part against the word2vec ones, we reused an existing neural
network architecture available onlineﬂ which is a simple but yet strong baseline. The
model is very similar to the one originally proposed by Bowman et al.| [2015a], except
it uses ReLLU layers instead of hyperbolic tangent ones. For each pair of sentences, the
corresponding word embeddings of size K are passed through a first K-ReLU translation
layer. For each sentence, the translated word embeddings are summed together, both
sentence sums are then concatenated into a layer of size L = 2K and fed through three
L-ReLU layers, before a final 3-way softmax. Formally, each word in the vocabulary
w € V has an input word embedding e,, € R¥, that is not updated during training. Let
fi(z) = max(0, Wiz) be a ReLU layer, where € RE and W € R"*¥. For each pair of

sentences (s1, s2) with its label y, the model holds in a single line:

g = softmax (£ (77 (12([ X2 fhtew), Y- Fiten)]))))- (4.2)

weSs, weSs?2

To use our complex embeddings in this real-valued network, we concatenated the learnt
imaginary parts to their original word2vec real parts, resulting in word embedding vectors
of size K¢ = 600 for each word. word2vec words that were not in the WN18 subset were
assigned a zero vector for their imaginary part. Comparatively, the original word2vec
vectors are of size K™ = 300, and correspond to the real part—which is the first half—of
our complex vectors. As the last layers are of size L = 2K, the resulting network has
more parameters with the complex embeddings as K¢ = 2K". To compare the two sets of
embeddings fairly, we trained the model twice with L = 2K¢ and L = K" for each set of
embeddings. The hyper-parameters are left as provided: optimization is conducted with
RMSProp [Tieleman and Hinton|, 2012], Lo-regularization strength of 4 x 107, dropout
of 0.2 and early-stopping. Out-of-vocabulary embeddings are zeroed. The resulting
accuracies are reported in Table The proposed complex word embeddings brings an

improvement of almost one point of accuracy on the test set.

These results are promising as WN18 is but a small subset of WordNet, and only 16, 561
word embeddings were extended with an imaginary part. We expect to yield a better
improvement when using a larger dump of WordNet. In the future, it would be interesting
to feed these complex embeddings into a complex-valued neural network, such as used

by Danihelka et al. [2016]. Though in principle, using a twice-larger real-valued network

Zhttps://code.google.com/archive/p/word2vec/
3https://github.com/Smerity/keras_snli
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over the concatenation of the real and imaginary parts of the input vectors (as done
here) is more general. Indeed, the complex-valued vector-matrix product is but a specific
linear combination of their real and imaginary parts, that hence can be learnt by the
a twice-larger real-valued fully-connected layer over the concatenation of the real and

imaginary part of the input vectors.

This practice of extending vectorial representations could be generalized without all the
complex algebra apparatus. When training an embedding model, one could, instead of
fine tuning word embeddings, fix them and add to them new free dimensions to optimize,
and then publish these newly trained dimensions. An online platform that aggregates all
the uploaded pre-trained embeddings on various tasks, and allow for an easy download
of a selected concatenation of them could sensibly accelerate the progress of artificial

intelligence, as open-source did for the progress of computer science.

Chapter Summary

We first showed the importance of using a binary loss for decomposing matrices of
binary relations. Then we confirmed the ability of the CoMPLEX model to efficiently
learn symmetric and antisymmetric relations. Experiments on real data sets confirm its
theoretical versatility, as it substantially improves over the state-of-the-art. It shows
that real world relations can be efficiently approximated as the real part of low-rank
normal matrices. We underlined the importance of some hyper-parameters, especially
the number of negatives generated, as well as the choice of the loss. Finally, we proposed
a novel way of enriching distributional word embeddings with knowledge graphs, by

extending vectorial representations, which proved to enhance entailment recognition.






Chapter 5

Inductive Abilities of Latent
Factor Models

Artificial intelligence is becoming more driven by its empirical successes than by the
quest for a principled formalisation of reasoning, making it more of an empirical science
than a theoretical one. Experimental design is a key skill of empirical scientists, and a
well-designed experiment should expose model limitations to enable improving on them.
Indeed, seeking falsification is up to now the best definition of science [Popper], 1934].
In machine learning, it is extremely simple to come up with an experiment that will
fail. However it is less easy to think of one that brings an informative failure—when one
thinks of a failing experiment at all. The bAbI data set [Weston et al 2015], proposing
a set of 20 prerequisite tasks for reasoning over natural language, is an example of an
informative experiment, by the specific reasoning type that each task targets. Inspired
by the idea of this work, we designed simple tasks for relational learning that assess basic

properties of relations, as well as simple reasonings such as kinship relations.

In many machine learning fields, research is drifting away from first-order logic methods.
Most of the time, this drift is justified by better predictive performances and scalability
of the new methods. It is especially true with link prediction, where latent factor models
became more popular than logic-based models [Nickel et al., 2011; |Bordes et al., 2013b;
Trouillon et all, 2016b]. Logic-based link prediction consists in using both observed facts
and logical rules to infer the truth of unobserved facts. For example, given the entities
Alice, Eve and Bob and the relations mother and grandmother, if mother (Alice,Eve)
and mother (Eve,Bob) are true facts, then grandmother (Alice,Bob) is also true. In-
ferring this last fact from the first two however, requires knowing that the mother
of one’s mother is one’s grandmother, which can be expressed by the first-order for-

mula: VxVyVzmother(x,y) Amother(y,z) = grandmother(x,z). Logical deduction can

75
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be conducted deterministically, or probabilistically to cope with uncertainty of the data
[Richardson and Domingos|, 2006; [Kersting and De Raedt} 2001]. Beyond known problems
such as complexity or brittleness, an obvious limitation arises in this setup: logical rules
over the knowledge graph relations are required for inference, and many knowledge graphs
only provide observed facts [Dong et al, 2014; Auer et al., 2007]. In this case rules can
be handcrafted, or learnt, generally through inductive logic programming (ILP) methods
[Muggleton and De Raedt, |1994; |Dzeroski and Lavrac, 1994].

Latent factor models do not suffer this limitation, as the learned model is never represented
explicitly in a symbolic way, but rather as vectorial embeddings of the entities and
relations. Such representations can make the model difficult to interpret, and although
they show better predictive abilities, it has not yet been explored how well those models
are able to overcome this absence of logical rules, and how their inference abilities differ

from logic-based models.

To do so, we evaluate state-of-the-art latent factor models for relational learning on
synthetic tasks, each designed to target a specific inference ability, and see how well they
discover structure in the data. As we are only interested in evaluating inductive abilities
of these models, and not their ability to cope with uncertainty, we design synthetic
experiments with noise-free deterministic data. The choice of this very favorable setup
for deterministic logical inference clarifies the approach followed here and its very
purpose: we do not evaluate latent factor models as an end, but as a means to point
out their weaknesses and stimulate research towards models that do not suffer from
combinatorial complexity—as advocated by Bottou| [2014]. Computational complexity,
and namely polynomiality, could turn out to be the very criterion for machine intelligence
[Aaronson), 2011]. Beyond complexity, one could also argue against explicitly learning
logical expressions to tackle knowledge graph completion that, “when solving a given
problem, try to avoid solving a more general problem as an intermediate step” [Vapnik,
1995].

In the previous chapter, we started to investigate synthetic symmetric and antisymmetric
relations and special cases of transitivity, with specific training/testing splits, targeted
at specific abilities. Here, we first extend these experiments with randomly generated
combinations of all of the three main properties of binary relations: reflexivity, symmetry
and transitivity. The splits between training, validation and test are random, as we want
to assess models’ ability to learn from realistically distributed data, and with more and
more missing triples. Conversely, the symmetry experiments described in Section
are much easier as the upper-triangular matrix was always in the training set, as the

goal was to see if the models can learn with perfect information. Then we set up tasks
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that represent real reasoning over family genealogies. On this data, we explore different

types of training/testing splits that map to different types of inference.

5.1 Experimental Setup

To assess whether latent factor models are able to generalize from data without any first-
order logic rules, we generate synthetic data from such rules, and assess the models’ ability
to learn these patterns in a classical training, validation and test splitting of the data. The
proportion of positives and negatives is respected across the sets. We evaluate the state-
of-the-art latent factor models described in Section Those are RESCAL, CP,
DistMuLT, TRANSE, the F model and our proposal, COMPLEX. Algorithm [I| describes
the training algorithm, that is stochastic gradient descent with mini-batches (10 batches
for the relation properties experiment, and 100 for the families experiment), AdaGrad
[Duchi et al.,|2011] with an initial learning rate of & = 0.1, and early stopping when average
precision decreased on the validation set calculated every 50 epochs. The A regularization
parameter was validated over the values {0.1,0.03,0.01,0.003,0.001,0.0003,0.00001, 0.0}
for each model for each factorization rank K. Parameters are initialized from a centered

unit-variance Gaussian distribution.

Results are evaluated with average precision, as we also generate negative triples in these
synthetic experiments. For each factorization rank, the models with best validated A
are kept. Average precisions are macro-averaged over 10 runs, and error bars show the
standard deviation over these 10 runs. We also computed the average precision of a
deterministic logic inference engine, by applying the corresponding rules that were used
to generate each data set. For each fact 7(s,0) in the test set, its probability P(y,so = 1)
is set to 1 if the fact can be logically deduced true from the facts of the training and
validation sets, 0 if it can be deduced to be false, and 0.5 otherwise. This simulate
test metrics of what perfect induction would yield, and gives an upper-bound on the

performance of any method.

All data sets are made availabldl]

5.2 Learning Relation Properties

In this section we define the three main properties of binary relations, and devise different
experimental setups for learning them individually or jointly, and with more or less

observed data.

"https://github.com/ttrouill/induction_experiments
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5.2.1 Experimental Design

Relations in knowledge graphs have different names in the different areas of mathematics.
Logicians call them binary predicates, as they are Boolean-valued functions of two
variables. For set theorists, they are binary endorelations, as they operate on two
elements of a single set, in our case the set of entities £. In set theory, relations are
characterized by three main properties: reflexivity /irreflexivity, symmetry/antisymmetry

and transitivity. The definitions of these properties are given in first-order logic in

Table (.11

Different combinations of these properties define basic building blocks of set theory
such as equivalence relations that are reflexive, symmetric and transitive relations, or
partial orders that are reflexive, antisymmetric and transitive relations [Halmos, |1998].

Examples are given in Table

] Property ‘ Definition ‘

Reflexivity | Va r(a,a)
Irreflexivity | Ya —r(a,a)
Symmetry | YaVb r(a,b) = r(b,a)
Antisymmetry | Ya¥b r(a,b) Ar(b,a) =a=10
Transitivity | VaVbVe r(a,b) Ar(b,c) = r(a,c)

TABLE 5.1: Definitions of the main properties of binary relations.

Binary endorelations by property

reflexivity symmetry | transitivity symbol example
undirected graph irreflexive symmeitric
tournament irreflexive antisymmetric pecking order
dependency reflexive symmeitric
strict weak order irreflexive antisymmetric yes =
total preorder reflexive yes =
preorder reflexive yes = preference
partial order reflexive  antisymmetric yes = subset
partial equivalence symmeitric yes
equivalence relation | reflexive symmeitric yes ~, =, =, = | equality
strict partial order irreflexive antisymmetric yes = proper subset

TABLE 5.2: Different types of binary relations in set theory. From Wikipedia page on
binary relations [Wikipedial, 2004].

There are many such common examples of these combinations in knowledge graphs, as
there are many hierarchical and similarity relations. For example, the relations older
and father are both strict hierarchies, thus antisymmetric and irreflexive. But one
is transitive (older) whereas the other is not, and that makes all the difference at

inference time. Similarly for symmetric relations, such as has-the-same-parents-as
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and friend, your sibling’s parents are also yours which makes the first relation transitive,
whereas your friend’s friends are not necessarily yours. Note that this makes the

has-the-same-parents-as relation reflexive—it is thus an equivalence relation.

Relational learning models must be able to handle relations that exhibit each of the
possible combinations of these properties, since they are all very common, but imply
different types of reasoning, as already acknowledged by Bordes et al.|[2013a]. Given that
a relation can be reflexive, irreflexive, or neither; symmetric, antisymmetric, or neither;
and transitive or not, we end up with 18 possible combinations. However we will not
address the cases of little interest where (i) none of these properties are true, (ii) only
reflexivity or irreflexivity is true, (iii) the irreflexive, symmetric and transitive case as
the only consistent possibility is that all facts are false, and (iv) the irreflexive transitive
case that again must be either all false, or antisymmetric—and thus corresponds to an
already existing case—to be consistent. Indeed, if one observes two true facts r(s, 0) and
r(o, s), by application of the transitivity rule, (s, s) and r(o,0) must be true, which
explains the inconsistency of cases (iii) and (iv), as they are irreflexive. This leaves us
with 13 cases of interest. To evaluate the ability of models to learn these properties, we

generate random 50 x 50 matrices that exhibit each combination.

To do so, we sample random square sign matrices Y € {—1,1}¥eXNe  First we fill the
diagonal with 1, —1 or missing depending on reflexivity /irreflexivity or none. Then we
make successive passes over the data to make it [anti-]symmetric and/or transitive, until
all of the properties are true over the whole matrix. A pass to make a matrix symmetric
consists in assigning y;; < y;; for all 4,5 € 1,..., N, where i < j, and yj; < —y;; to
make it antisymmetric. A pass to make a matrix transitive consists in assigning y;; < 1
if there exists a k € 1,..., N, such that y;, = yx; = 1, for all 4,5 € 1,..., N.. When no
more assignment is made during the passes it means the desired properties are true, and

the relation generation is finished.

We also sample each matrix under the constraint of having a balanced number of positives
and negatives up to £1%. Though there are many more negatives than positives in real
knowledge graphs, in practice negatives are generally subsampled or generated to match

the number of positive facts [Bordes et al., 2013b; [Nickel et al., [2016b].

We first learn each relation individually as in a single relation knowledge graph, and then
jointly. In the joint case, note that since each relation is generated independently, there is
no signal shared across the relations that would help predicting facts of one relation from
facts of another relation, thus only the ability to learn each relation patterns is tested.
The proportion of observed facts is generally very small in real knowledge graphs. To
assess models robustness to missing data, we also reduce the proportion of the training

set when learning the different relations jointly.
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FIGURE 5.1: Generated symmetric (left) and antisymmetric (right) relations with 50
entities. Average precision for each rank ranging from 5 to 50 for each model.

5.2.2 Results

Results are first reported on each relation, then jointly and with decreasing proportion of
training data. Reported average-precision scores are macro-averaged over a 10-fold cross-
validation, with 80% training, 10% validation and 10% test in the individual learning
case. In the joint learning case, the training percentage varies between 80% and 10%,
the validation set size is kept constant at 10%, and the test set contains the remaining

samples—between 10% and 80%.

5.2.2.1 Individual Relation Learning

First of all, results were identical for all models whether the relations were reflexive,
irreflexive, or neither (unobserved). This tells us that reflexivity and irreflexivity are
not so important in practice as they do not add or remove any quality in the prediction
of latent factor models. We report only results for different combinations of symme-
try /antisymmetry and transitivity in the main text. Results of combinations including

reflexivity and irreflexivity are reported in Appendix

Figure shows the average precision for each model over the generated symmetric and
antisymmetric relations. Surprisingly, on such simple relations with 80% of observed data,
only CoMmPLEX and RESCAL manage to learn from the symmetric and antisymmetric
patterns, with a non-negligible advantage for the CoMPLEX model. Moreover, we can
see that with higher ranks, RESCAL starts overfitting as its average precision decreases
presumably due to its quadratic number of parameters with respect to the rank, since
each relation 7 is represented by a matrix W, € REXE as showed in Section

The CP model probably fails due to its uncorrelated representations of entities as subject

and as objects, which makes it unable to model symmetry and antisymmetry. DisTMULT
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(right) relations with 50 entities. Average precision for each rank ranging from 5 to 50
for each model.

unsurprisingly fails in the non-symmetric cases, due to the symmetric nature of its scoring
function, and thus succeeds in the symmetric case. More unexpectedly, the TRANSE
model has a hard time on antisymmetry, but performs well on the symmetric relation,
by zeroing its relation embedding, as explained in Section [2.2.1} The F model, cannot
actually generalize in a single relation case, as it has one single embedding for each
(ordered) entity pair. For any fact r(s, o) in the test set, the entity pair (s, 0) has never

been seen in the training set, and thus has a random embedding vector.

Figure shows results for the symmetric transitive and antisymmetric transitive
relations, and Figure for the transitive only relations. Almost all models, except
the F model and DISTMULT in the non-symmetric cases, perfectly generalize with very
low-rank. This tells us that transitivity actually brings so much structure in the data
that it makes the problem very easy for latent factor models when most of the data is

observed.

Most state-of-the-art latent factor models are surprisingly unable to model all the basic

properties of binary relations. Though most of the time those relations are learnt together,
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but also with much less observed facts. We next assess the models ability to learn these
five relations together, and their robustness to sparse observations by gradually decreasing

the size of the training set.

5.2.2.2 Joint Learning

Figure [5.4] shows the results when all five above relations are jointly learned, for different
proportions of the training set: 80%, 40%, 20%, 10%. As expected the scores drop, and
the gap between the—deterministic logic—upper-bound and latent factor models widen
with the decrease of training data. COMPLEX proves to be the most robust to missing

data down to 20%, but match logical inference only with 80% of training data.

RESCAL again overfits with the rank increasing, but is the best performing model
with 10% of the training set, up to rank K = 30. This suggests that having richer
relation representations than entity representations, that is with more parameters, can be
profitable for learning relation properties from little data. However the reason why the

variance of RESCAL’s average precision decreases again for K > 40 remains mysterious.

The CP and TRANSE models seem to be more sensitive to missing data as their curves
progressively get away from RESCAL’s one with the percentage of observed data
decreasing. DISTMULT, being a symmetric model, is below the other models in the four

settings as some of the relations are not symmetric.

Since each relation is generated independently, having observed the entity pair (s,0) in
the other relations does not help the F model, and it thus fails here too. At 10%, we see
that the latent factor models cannot match logical inference, suggesting that the number

of examples is not sufficient to learn these properties.

Finally, in the last setting with 10% of the training set, the best models are still 10 points
below the best achievable average precision, showing that they need a large amount of

training data to correctly learn these basic properties of binary relations.

These results should be taken cautiously as this experiment does not state that in general
at least 80% of the facts should be observed in order to learn these properties correctly.
Indeed, here the 5 relations are completely uncorrelated, while in real knowledge graphs
they generally are correlated and thus share information. Also, as often in machine
learning, the ratio between the number of parameters and the number of data points is

more informative about generalization than the number of data points alone.
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FIGURE 5.4: Joint learning of the 5 relations with 50 entities: one symmetric, one
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and transitive. Average Precision for each factorization rank ranging from 5 to 50 of
each model. Top-Left: 80% train set, Top-Right: 40% train set, Bottom-Left: 20% train

set, Bottom-Right: 10% train set.

Relation Properties Experiments Summary:

e Only CoMPLEX manages to learn each combination near perfectly.

e RESCAL is the most robust to missing data with low ranks.

e There is room for improvement on all models when a lot of data is missing.

5.3 Learning Inter-Relational Patterns: Family Relation-

ships

We generated family trees and their corresponding kinship relations and facts, and

designed three different splits of the data.

The three splits try to assess different

inductive properties of the latent models, by giving more or less supporting facts in the

training set.
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F1GURE 5.5: Example of a generated family tree.

5.3.1 Experimental Design

Predicting family relationships is an old task in Al, popularised by Hinton’s kinship data
set |Hinton, [1986]. Generated synthetic families for testing link-prediction models have
also been recently proposed |Garcia-Durdn et all [2014]. In this public dataset, generated

families are all intertwined with each other in it. We here want each family to be disjoint
from the other ones, such that there is no true fact between entities of two different

families, and we will see why below.

We propose here to generate family relations from synthetic family trees, namely: mother,
father, husband, wife, son, daughter, brother, sister, uncle, aunt, nephew, niece,

cousin, grandfather, grandson, grandmother and granddaughter.

We sample five families independently that span over three generations from a unique
couple, with three children per couple of random sex, where husbands, wives and their
parents were added to wed the middle generation. Figure shows an example of such
a family tree. The whole data set totals 115 entities—23 persons per family—and the 17

relations mentioned above. Each family thus consists in 8993 true and false facts.

Within these traditional families that feature only married heterosexual couples that do
not divorce and have children, one can figure out that the relations mother, father, son
and daughter are sufficient to deduce the 13 remaining ones. Examples of rules that
allow deducing these 13 relations from the 4 main ones are shown in Table From

this fact, we devise three different splits of the data.

Let us first introduce notations for each subset of the observed facts set §). As each family
is independent from the four others, we will denote each entity set of each family from 1 to
5: &L,...,&5, where £'NEJ = () with i # j. Accordingly, we will write the observed facts
of each family Q!,..., Q5 where for all ((r,s,0),¥rs0) € Q° we have s,0 € £'. Observed
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VaVbVc father(a,c) Amother(b,c) = husband(a,b)
VaVbVc father(a,c) Amother(b,c) = wife(b,a)
VaVbVc daughter(a,c) A son(b, c) = sister(a,b)

VaVbVc daughter(a,c) A son(b, c) = brother(b, a)

VaVbVc father(a,b) A father(b, c) = grandfather(a,c)
VaVbVc son(a,b) A son(b, c) = grandson(a, c)

VaVbVc mother(a,b) Amother(b,c) = grandmother(a,c)
VaVbVc daughter(a,b) A daughter(b, c) = granddaughter(a, c)
VaVbVcVd son(a,b) A daughter(b, c) A son(d, c) = uncle(d,a)
VaVbVcVd daughter(a,b) A son(b, c) A daughter(d, c) = aunt(d, a)
VaVbVcVd son(a,b) A daughter(b, c) A son(d, c) = nephew(a,d)
VaVbVcVd daughter(a,b) A son(b, c) A daughter(d, c) = niece(a,d)
VaVbVcVdVe son(a,b) A daughter(b, c) A son(d, c) A daughter(e,d) = cousin(a,e)

TABLE 5.3: Examples of rules to deduce all relations from the four relations: mother,
father, son and daughter.

%
ol
O’o %/@r 13other
25,57
‘9/6 (SN >
& Q%430ther
Q14main
Q3%430ther
024main
Q% 3other
Ne Q3%4main
Qs130ther
Q44main
Q%mpain
Ne

FIGURE 5.6: Tensor representation of the observed subsets for the family experiments.
The part in dark orange represents the sets containing the four relations mother, father,
son and daughter, while the part in light orange represents the 13 other relations.

fact sets that contain only the 4 main relations mother, father, son and daughter are
denoted by Q4main, and the facts involving the 13 other relations by Qq3other. We thus
have for each family i: Q' = Q} .. U Q%Other. Figure draws the corresponding tensor
with each subset of the observed facts. Finally, let the sampling function S,(€2) be a
uniformly random subset of 2 of size |S,(2)| = [p|€2|], with 0 < p < 1, p being the

proportion of the set that is randomly sampled.

We propose to split the data in three different ways to explore inductive abilities of

the models. The first split is the classical random split between training, validation
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F1GURE 5.7: Tensor representation of the three different splits. Green sets are always
contained in the training set y;.in, whereas blue sets are split among training, validation
and test sets.

and test sets, it will mainly serve as a control experiment for the other splits. In the
second split, we aim at evaluating whether latent factor models are able to leverage
this information. To do so, we ensure that all the relations mother, father, son and
daughter of the five families are in the training set, and we split the 13 remaining ones
between training, validation and test set. Formally: Qirain = Q4main U Sp(Q130ther). We
will call this splitting scheme the evidence split, as the training set always contains the

sufficient evidence to deduce the 13 other relations—that is the four main ones.

Thirdly, we assess the ability of latent factor models to transfer knowledge learnt from
a family to another, that is between disjoint set of entities. In this split, the training
set always contains all the relations for four out of the five families plus all the mother,
father, son and daughter of the fifth family, while the 13 other relations of this
fifth family are split between training, validation and test set.
Qtu U SP(Q?Bother)' We will call it the family split. Figure shows tensor

4main

Formally: Qrain =

drawings of the three splits.

For each split we explore different values of p € {0.8,0.4,0.2,0.1}. We also run with
p = 0 in the last (family) split, which corresponds to Qaim = Q14 U Q] ., that is
4 entirely observed family, plus the 4 main relations of the fifth one. Observe that it
only makes sense to have p = 0 in this last split. If latent factor models have expected
inductive abilities, they would be able to understand genealogical reasoning from the
four first families, and use this learned information to correctly predict the 13 other
relations of the fifth family from its four main ones. Note that in the last two splits,
a deterministic logic inference system makes perfect predictions—given rules such as
the ones shown in Table [5.3}for any value of p. The number of facts in the training,

validation and test sets of each split are summarized in Table
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Size with p =
Split Set 0.8 0.4 0.2 0.1 0
Qprain = Sp(Q) 35973 | 17987 | 8994 | 4496 | -
Random | Qqaiig = So.1(£2) 4496 | 4496 | 4496 | 4496 | -
Qest = S(0.9-p) () 4496 | 22482 | 31475 | 35973 | -
Qtrain = Qmain U Sp(Q130ther) 38089 | 24334 | 17457 | 14019 | -
Evidence | Quaida = S0.1(Q130ther) 3438 | 3438 | 3438 | 3438 | -
Qtest = S(0.9—p) (Q130ther) 3438 | 17193 | 24070 | 27508 | -
Qtrain = Q1 UQ, L U Sp(Qi’%ther) 43589 | 40839 | 39463 | 38776 | 38088
Family Qvatid = S0.1(DV330000r) 688 688 688 688 688
Qpest = S(ng_p)(Q%other) 688 3438 | 4814 | 5501 | 6189

TABLE 5.4: Training, validation and test set numbers for each split for each value of p.

Similar splits of data have already been proposed to evaluate rule-based inference models
(for example the UW-CSE dataset [Richardson and Domingos, 2006]), which are able
of such transfer of reasoning between disjoint sets of entities. Interestingly, such data
sets have rarely been reused in the subsequent latent factor model literature. Results

reported next might give us a hint why this is the case.

5.3.2 Results

Results are reported for each split separately. In each of them we again decrease
progressively the amount of training data, and report average precision macro-averaged

over 10 runs for each configuration.

5.3.2.1 Random Split

In the first random split, we try to evaluate the quantity of training data needed to
learn to reason in genealogies. Figure [5.8 shows the average precision of each model
for ranks ranging from 5 to 50, for each value of p. Only CoMPLEX and RESCAL are
able to generalize almost perfectly with 80% of observed data, which first tells us that
these models are indeed capable to learn such genealogical reasonings. As many relations
are antisymmetric, it is no surprise that DISTMULT and TRANSE cannot reach perfect

predictions, as they already failed in the antisymmetric synthetic relation.

The CoMPLEX model generalizes quickly with small ranks, but is outrun by RESCAL—
with small ranks—and TRANSE when the percentage of observed data decreases below

p = 0.2. We conjecture that TRANSE’s robustness is due to its bilinear terms, and
T

S

in Section [2.2.1.1] that can give high scores to pairs of entities belonging to the same

especially the one that involves the subject and the object embeddings—e, e,—as shown
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FIGURE 5.8: Average Precision for each factorization rank ranging from 5 to 50 of each
model on the families experiment with the random split. Top-left: p = 0.8, top-right:
p = 0.4, bottom-left: p = 0.2, bottom-right: p = 0.1.

family. For RESCAL, its richer representations of relations by matrices probably help

here, as long as the rank is not too big which clearly causes overfitting.

The CP decomposition scores drop quickly with the proportion of observed data, because
of its unrelated subject and object representations. The F model here fails again, for
a simple reason: these relations are exclusive between themselves for a given pair of
entities (s,0). Indeed, if father (s, o) is true for example, then none of the other relations
between s and o will be true—at least not in these families. Hence if the F model has to
predict the score of the fact (s, 0), it has no other true triple involving (s, o) to support
its decision. It will also have troubles on the two next splits for the same reason. Note
that in this split, the logic upper-bound is not given as one would need to know all
possible rules to deduce the 17 relations from each of them—and not only from the four

main ones—to compute this upper-bound.

5.3.2.2 [Evidence Split

In this split, we recall that all the mother, father, son and daughter relations are always

in the train set for the 5 families. The value of p ranging from 0.8 to 0.1 corresponds
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here to the proportion of the 13 other relations that are also put into the training set.

The test and validation sets are only composed of these 13 relations.
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FIGURE 5.9: Average Precision for each factorization rank ranging from 5 to 50 of each
model on the families experiment with the evidence split. Top-left: p = 0.8, top-right:
p = 0.4, bottom-left: p = 0.2, bottom-right: p = 0.1.

Compared to the random split setting, we can see in Figure that the performances
of the models decrease more slowly with the percentage of observed data. This shows
that latent factor models are able to use the information provided by these four relations

from which all of the others can be deduced.

RESCAL is here clearly the best model for all values of p, as long as K is not too big. It
exhibits again a behavior that seems to have two equilibria distributed around a pivotal
K at which average precision suddenly drops, with high variance of the predictions
around that K. CoOMPLEX also seems to show a lighter overfitting with high values of
K when p < 0.2. TRANSE confirms an advantage with p = 0.1 with a notable rise of
average precision compared to the random split. CP, DISTMULT and the F model fail

again for the same reasons as in the random split.

However, given the rules to deduce the 13 other relations from the four main ones, recall
that a logical inference engine is able to reach an average precision of one. Though
improvement compared to the random split setup is large, the gap with logical inference is
still wide with p = 0.1 and p = 0.2, showing that latent factor models have troubles making

the link between the four main relations and the 13 other ones when limited training
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data is available. This could be due to the imbalance in the number of each relation in
the training set that this split introduces, biasing the entity embeddings towards a better
reconstruction of the 4 main relations, to the detriment of the generalization over the
13 remaining ones. Weighting the facts in accordance with the preponderance of each

relation in the dataset could improve performances here.

5.3.2.3 Family Split

In this last split, all the mother, father, son and daughter are in the train set for all
families, but also all the 13 other relations of four out of the five families. The value of p
corresponds here to the amount of the 13 other relations of the fifth family only that are

in the training set too.

The curves in Figure [5.10| show a clear improvement over the previous ones in Figure [5.9
RESCAL is again the best model as it reaches average precisions > 0.9 even down to
p = 0.1—with small ranks again. COMPLEX is in these cases the best with high ranks,
though much below RESCAL’s best scores when p = 0.1.

Does that mean these models were able to exploit the additional information? Yes and
no. We conjecture that the better results for p ranging from 0.8 to 0.1 are partly due to
the relation imbalance problem—explained in the previous split—being much smaller

here, as all the relations of four families are given in in the training set.

To ensure that models indeed did not generalized from the four perfectly informed
families, we reduced the proportion p of the 13 other relations of the fifth family that
are in the training set to zero—which thus constitute the whole validation and test sets.
And though the models are provided with four perfectly informed families, and all the
needed facts to predict the missing ones in the fifth family, they fail in this last setting
as shown in the bottom plot of Figure 5.9 RESCAL and TRANSE resist better than
the other models again in this last setting with p = 0.

This is easily explained, as disconnected sets of entities, here families, correspond to
different blocks in the tensor Y, as shown in Figure [5.6] Entities that are in different
families s,0 € Qf, s',0 € Q, i # j, are never involved together in an observed fact:
((s,7,0"), Ysror), ((8',7,0), Ysiro) ¢ 2, for any relation r € R. Thus when learning their
embeddings ey, e, and ey, ey, the only link they share is the embedding of the relation r
that is involved in the scoring functions ¢(r, s, 0) and ¢(r, s’,0'). This interpretation is
also supported by RESCAL scores, which benefits from its higher number of parameters
of its relation representations W, € RE*K which increases the amount of information

shared across the families.
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each model on the families experiment with the family split. Top-left: p = 0.8, top-right:
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To formally bring this problem to light, let us re-frame the tensor approximation problem

as a system of inequalities. As P(y,so = 1) = o(o(r, 8,0;0)), true triples should have a

score ¢(r, s,0;0) > 0, and false triples ¢(r, s,0;©) < 0. For the sake of the example, we

will consider factorizing the two relations sister and grandfather, with two families of

2 persons each, using the DISTMULT model. Observing the true fact sister(a,b) or

the true fact sister(b,a) where a,b € £, allows us to deduce that a and b are not the

grandfather of each other:

e sister(a,b) = —grandfather(a,b)

e sister(a,b) = —grandfather(b,a)
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e sister(b,a) = —grandfather(a,b)
e sister(b,a) = —grandfather(b, a)
Similarly to the family split with p = 0, let us have both relations fully observed for a first

family that contains entities a,b € £', and only the facts of the relation sister observed

for entities of a second family ¢, d € £2. The resulting 2 x 4 x 4 partially-observed binary

tensor is:
a b c d a b ¢ d
a [—1 1 a [—1 -1
sister: 0 1 -1 , grandfather : b -1 -1 (5.1)

ST
|
—_ =
|
—_ =
o

where - and empty spaces are unobserved facts. From the first, fully observed family
we wish to learn the above rules and the irreflexivity of the grandfather relation, to

correctly complete the grandfather facts between entities ¢ and d.

As the observed blocks—and the block we wish to recover—are symmetric here, there
is no expressiveness issue with using DiISTMULT. Decomposing this tensor with the
DistTMULT model with K = 2 such that true facts have probability P(y,so = 1) > 0.5
and false facts have probability P(y,s, = 1) < 0.5, amounts to solving the following

system of inequalities:
4

W €1 + Wepeny < 0
wslegl + ws2622 <0
Ws1€q1€p1 + Ws2€q2€p2 > 0
"1)91621 + wg2€32 <0
wglel2)1 + w926132 <0

Wg1€q1€p1 + Wy2ea2€p2 < 0

2 2
Wg1€c1 + Wg2€co <0
2 2
wgy€g + Wyegy <0

Wg1€c1€q1 + Ws2ec2eq2 > 0

where e¢; € R? is the embedding of entity i € £, wy, € R? is the embedding of the
relation sister, and w, € R? is the embedding of the relation grandfather. The six

first inequalities involve the entities a and b, and the three lower ones involve the entities
c and d.
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Correctly reconstructing the grandfather facts between ¢ and d would thus require their

embeddings to satisfy the same three additional inequalities:

2 2
wglecl + wg2€(:2 <0
wgle?ﬂ + wg2€?zz <0 . (5.3)

Wq1€c1€41 + Wy2ec2eq2 < 0

However, it is easy to check that arbitrary solutions to the system for e, and egq
does not necessarily satisfy the system , and hence does not necessarily predict the
grandfather facts between ¢ and d correctly. Also, this would be true even if we added
more families like a and b with both relations fully observed, as this would not add more

constraints on e. and e .

This explains why all models fail in the family split with p = 0: nothing encourages
less constrained entities to have embeddings that resemble the ones of similar, more
constrained entities; and adding more examples of more constrained entities does not

help.

Family Experiments Summary:

e RESCAL is the best model in all different splits, but overfits with a too big K.
e RESCAL and TRANSE are the most robust to missing data.
e CoMPLEX behaves well with more data and hardly overfits.

e Relation imbalance in the training set can be a problem when the test set is

distributed differently, and could be easily fixed by weighting the facts accordingly.

e The absence of explicit parameter sharing between entity representations prevents

knowledge transfer between disjoint sets of entities.

5.4 Future Research Directions

Overall, the CoMPLEX model proved to have the more stable generalization abilities
across all the synthetic experiments. Most models showed a good ability to learn basic
relation properties, except on antisymmetry where only COMPLEX succeeded. This said,
when decreasing the size of the training set down to 10% on joint learning of the relation
properties, the best models were 10 points of average precision behind the best possible
score. Improving models towards learning basic binary relation properties from less data

thus seems a promising direction.
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Some models showed their advantages in some specific settings. RESCAL and TRANSE
showed a good robustness when a lot of data is missing in the family experiments,
thanks to the bilinear terms for TRANSE, and the rich matrix relation representations of
RESCAL. The F model was not fit for these experiments, but its pairwise terms are

known to give it an advantage for non-compositional pairs of entities [Welbl et al., 2016].

Different possible combinations seem promising. The behaviour of RESCAL and
CoMPLEX on symmetric and antisymmetric experiments suggests that encoding these
patterns through complex conjugation is more stable than using the non-commutative
matrix product. But RESCAL’s matrix representations of relations helped a lot in the
family experiments, as long as the rank was not too high, suggesting that there might be
a middle ground between K and K? to be found for the parametric representation of the
relations. Using tridiagonal or pentadiagonal (or more) symmetric matrices for relation

representations within the COMPLEX model could be an answer to these problems.

Combining the scoring functions of the TRANSE and F models with CoMPLEX could
also lead to a more robust model. The combination of bilinear and trilinear terms has
already been explored within real-valued models [Garcia-Duran et al., [2014], also with
vectorial weights over each term [Jenatton et al., 2012, as well as combining different
pairwise terms [Welbl et al 2016 Singh et al., [2015], which yielded better performance

in all cases.

The main defect of latent factor models that this experimental survey points to is their
low ability to transfer knowledge between disjoint set of entities, as shown in the last
family split with p = 0. Real knowledge graphs might not have fully disjoint subsets, but
rather some less-connected sub-graphs, between which this effect is likely to appear too.

We believe improving this ability of latent factor models is key.

One already-pursued way to harness this problem is to enable latent factor models to
make use of logic rules [Rocktaschel et al., [2015; Demeester et al., 2016]. As already said,
those rules are not always available, and thus latent factor models should be improved
in order to have this ability to learn from disjoint subsets, while still operating without

rules.

Intuitively, sharing parameters across all entity representations could also solve this issue,
as used in Bayesian clustered factorization models [Sutskever et al., 2009]. Though those
models have known scalability issues. A possible, more scalable way to implement a

CNexK ig through a nested

shared parametrization between the entity embeddings F €
factorization, where the matrix E is itself expressed as a low-rank factorization, as it

has already been proposed for the relation embeddings [Jenatton et al., 2012|. Another



Inductive Abilities of Latent Factor Models 95

one could be a suited regularization over the whole matrix E: in most proposals E is

regularized row-wise with ||e;||2 for all i € &—as shown in Section

Another linked limitation of latent factor models—that does not require experiments
to be shown—is their inability to generalize to new entities without retraining. Indeed
for new facts involving a new entity i, its embedding e; € C¥ is unknown. But in a
logic-based setting, only the new facts involving the new entity are necessary to infer
other facts from known rules. Some recent works started tackling this problem: |Verga
et al. [2017] proposed a solution for the F model, by expressing entity pair embeddings as
combinations of the relation embeddings in which they appear. Hamaguchi et al.| [2017]

used graph neural networks to handle unseen entities at test time.

The evidence split in the family experiments also pointed out a potential problem
of imbalance in the distribution of the relations across the facts when the train and
test sets are distributed differently. Correcting this imbalance via down-weighting the
facts involving the most frequent relations could be a solution, as well as sharing the

parametrization between the relations.

A non-mentioned aspect of the problem in this paper is the theoretical learnability of
such logic formulas, a field that has been extensively covered [Valiant, 1984; Kearns and
Valiant, 1994; Muggleton and De Raedt, 1994; Dzeroski and Lavrac, [1994]. However
logic learnability by latent factor models has not yet been specifically studied. Recently
established links between sign matrices complexity—specifically the sign-rank |Linial
et al., [2007b]—and VC-dimension open the door to such theoretical study [Alon et al.,
2016], and possible extensions to the tensor case. This being said, theoretical guarantees
generally come under the condition that the training and test sets are drawn from the
same distribution, which is not the case in the last two splits of the family experiments:
a theoretical analysis of the learnability of such cases might require a new theoretical

framework for statistical learning.

Chapter Summary

We experimentally surveyed state-of-the-art latent factor models for link prediction in
knowledge graphs, in order to assess their ability to learn (i) binary relation properties,
(ii) genealogical relations, directly from observed facts, as well as their robustness to
missing data. Latent factor models yield good performances in the first case, while having
more difficulties in the second one. Specifically, we show that such models do not reason
as it is generally meant for logical inference engines, as they are unable to transfer their

predictive abilities between disjoint subsets of entities. The different behaviors of the
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models in each experimental setup suggest possible enhancements and research directions,

including combining them, as well as it exposes each model’s advantages and limitations.



Chapter 6

Conclusion

Knowledge-based systems, such as automated personal agents or recommender systems,
require robust link-prediction abilities to become viable, as the knowledge graphs they
rely on are often largely incomplete. This work aimed at improving factorization
models for link prediction in knowledge graphs. We followed an empirical approach to
spot weaknesses of existing models, starting with the very basics: properties of binary
relations. From the evidence that the correct modeling of all these properties, especially
antisymmetry, was not already covered by existing models, we designed a new tensor
factorization model named CoMPLEX. We turned ourselves to the large legacy of matrix
theory for inspiration, and leveraged on complex linear algebra to create this new model.
The CoMPLEX model fulfilled the task of modeling all basic properties of binary relations,
and provided new state-of-the-art results on classic benchmarks for link prediction, while
being scalable. We finished our study as we started it, with experiments on which all
current factorization models—including CoMpPLEX—fail, thereby opening the path to

future improvements.

This last chapter summarizes the contributions of this thesis, and proposes future research

directions.

6.1 Contributions

We proposed a novel, non-unique decomposition for arbitrary square matrices, based on
the projection onto the real sub-space of a unitary diagonalization (Section . This
decomposition always exists (Theorem [2)) with a number of dimensions that is at most
twice as large as the rank of the decomposed matrix. These properties are also true for

sign matrices, and their corresponding complexity measure, the sign-rank. We extended

97
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the analysis to the 3"-order tensor case when jointly decomposing a set of arbitrary
square matrices (Section , and showed that the decomposition also exists with a rank
upper-bound matching the canonical polyadic decomposition’s (CP) rank upper-bound,
despite having only two factor matrices—for the relations and the entities—instead of
three—one per dimension for CP. As knowledge graphs correspond to partially-observed
sign tensors, we proposed a stochastic gradient descent algorithm to learn the proposed
decomposition model while naturally ignoring the missing values. Not imputing the
missing values is essential for generalization [Drumond et al.; 2012], but also for scalability

given the size and sparsity of knowledge graphs.

When we started this work, our goal was to create a model that would be expressive
enough to model all possible relations, yet ensure a linear time and space complexity
to be scalable, and that generalizes well on real data. The use of complex-valued
embeddings allowed us to achieve this goal, by keeping unique representations of entities
which is essential to ensure good generalization, vectorial representations of relations for
scalability, and correctly modeling asymmetry through the use of the complex conjugation.
Experiments confirmed its abilities in practice, as COMPLEX yields state-of-the-art results
on all classic link-prediction data sets, but can also successfully learn all combinations
of the basic binary-relation properties. The assumption that knowledge graphs tend to
have low sign-rank relations that can be efficiently approximated with a binary surrogate
such as the logistic function, combined with our model, was confirmed in practice as
prediction scores converged with low embedding sizes. The CoMPLEX model especially
confirmed its ability to model antisymmetric relations on WordNet data. But also that
it could be used for enriching vectorial representations of words, which proved useful in
the natural language processing task of entailment recognition. Finally, the CoMPLEX
model is among the first works to bring complex linear algebra in the machine learning

community.

We conducted an experimental survey on state-of-the-art latent factor models for link
prediction, to better understand the effect of different parametrization choices on the
ability to learn patterns from observed data. Specifically, experiments tested the models’
ability to learn combinations of basic relation properties, to learn genealogical relations
given different evidence about the families, and the models’ robustness to missing data.
These last experiments on families exposed the inability of latent factor models to transfer
knowledge between disjoint sub-graphs in knowledge graphs. The matrix representations
of relations in the RESCAL model yielded a better robustness to this issue, and in general
to missing data, though it also caused it to overfit when the rank of the decomposition
becomes too large. Bigram terms of the TRANSE model also shown a good robustness to
this effect, by highly scoring pairs of entities belonging to the same family. The DisTMULT

model has expected problems with asymmetric relations, and the F model with knowledge
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graphs featuring exclusive relations. The CP model unrelated representations of entities
as subject and object make it very sensitive to missing data. The CoMPLEX model
proves to be a safe choice as it performs well in most cases. These findings point where to
improve existing models, as well as which choices to make and to avoid for practitioners,

depending on the distribution of their data.

6.2 Future Work

We divide future research directions into theoretical and practical directions.

Theoretical Directions

Among the theoretical properties of the proposed decomposition that have been discussed,
several improvements are possible. The tightness of the 2K upper-bound on the existence
of the decomposition in the matrix case, discussed in Section [3.1.2.3] could be investigated.
We showed that the decomposition was not unique, characterizing the ensemble of existing
decompositions and their generalization properties at a given cut-off rank K could help
design more efficient algorithms to compute it. In the tensor case, we showed that the
decomposition always exist provided K is big enough, however we could not prove or
disprove its existence with embeddings of size inferior or equal to the dimension of the
square matrices K < N, (see Section [3.2.2).

We briefly mentioned the extension of the sign-rank to the tensor case, however its
properties has not yet been studied. Exploring sign-rank for tensors and its properties,
especially in the case of a set of square matrices, is a yet unexplored field. In practice, we
demonstrated that the logistic loss is a good surrogate for matching the sign-pattern of
sign matrices and tensors. How good is that surrogate for bilinear and trilinear models
could be quantified. This leads to addressing the non-convexity of these models, and
more precisely quantifying the spuriousness of local minima. In recent studies, |Ge et al.
[2016] showed that in the bilinear semi-definite matrix completion problem, all local
minima were in fact global. The stability of prediction scores from different random
initializations that we observed with the CoMPLEX model could be the result of such
a property. This does not exclude also studying convex relaxations for sign matrices:
the trace-norm is well-known to be the convex hull of the classical rank |[Candes and
Recht| |2012], but the convex hull of the sign-rank is as yet unknown. Finally, the links
between the VC-dimension and the sign-rank [Alon et al., 2016] open a path to study
the learnability of first-order logic rules from ground predicates encoded as sign matrices

by decomposition models.
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Practical Directions

In this work, we chose to consider sampling negative triples using the local closed-world
assumptions as real negatives, and to optimize the classical log-likelihood loss instead of
the more often used max-margin pairwise loss. On the FB15K data set of Freebase, this
yielded a large improvement in predictive abilities (see Section , which highlights
the importance of the loss in the link-prediction problem, an aspect of the problem that
has yet been barely studied, and thus should be explored. In Section [4.3.4] we showed
that sampling more than one negative for each positive triple can also bring a large
performance improvement. However the procedure is costly as it adds as many samples
to optimize over, and thus calls for a more intelligent sampling of negatives, that contrast

more with the positives from which they have been sampled.

Chapter [f]'s experimental survey of existing models pointed out many possible enhance-
ments of existing models, including combining parts of their scoring functions. Our study
of the models’ robustness to missing data could be extended to assess their capacity to
cope with corrupted data. Solving the learning problem between disjoint sets of entities
require a scalable way of binding the parametrization of entity embeddings together
that is yet to be found. Furthermore, most existing latent factor models are unable to

generalize to new triples involving unseen entities and relations without a retraining step.

There are also more general future directions for knowledge graph models. Integrating
time is one, as some facts are only true for a given period, such as the living place of a
person or the president of a country. But also a proper handling of entities that represent
algebraic values or dates, such as hasAge(John,42), for which it makes little sense to
learn an embedding for each different value. Extension to relations between more than
two entities, n-tuples, is not straightforward, as COMPLEX’s expressiveness comes from
the complex conjugation of the object-entity, that breaks the symmetry between the
subject and object embeddings in the scoring function. This stems from the Hermitian
product, which seems to have no standard multilinear extension in the linear algebra

literature, this question hence remains largely open.

The CoMPLEX model could also be used in other problems than link prediction, actually
for any problem that can be formulated as the completion of one or more square matrices.
Decomposing knowledge graphs itself could also serve other applications by learning or
enhancing vectorial representations of entities, which are then used for some downstream

task, as we showed with word embeddings for entailment recognition (see Section |4.4)).

As a final word, it is by building experiments that target specific inference abilities,

starting with the basics, that we were put on the track of weak spots to improve on.
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We believe this is a good experimental design practice, and humbly hope to inspire the

reader.






Appendix A

Accelerating Stochastic Gradient
Descent via Online Learning to

Sample

Another contribution of this thesis, which is only partially related to knowledge graph

completion—Dby its application on matrix factorization—is reported in this Appendix.

Stochastic Gradient Descent (SGD) is one of the most widely used techniques for online
optimization in machine learning. In this work, we accelerate SGD by adaptively learning
how to sample the most useful training examples at each time step. First, we show
that SGD can be used to learn the best possible sampling distribution of an importance
sampling estimator. Second, we show that the sampling distribution of an SGD algorithm
can be estimated online by incrementally minimizing the variance of the gradient. The
resulting algorithm—called Adaptive Weighted SGD (AW-SGD)—maintains a set of
parameters to optimize, as well as a set of parameters to sample learning examples. We
show that AW-SGD yields faster convergence on matrix factorization, where rows and

columns are not sampled uniformly.

We first introduce the idea of this work in Appendix [A.3] before reviewing the related
work in Appendix We show that SGD can be used to find the optimal sampling
distribution of an importance sampling estimator (Appendix. This variance reduction
technique is then used during the iterations of a SGD algorithm by learning how to reduce
the variance of the gradient (Appendix . We then illustrate this algorithm—called
Adaptive Weighted SGD (AW-SGD)—on matrix factorization (Appendix [A.5). Other
application domains such as image classification and reinforcement learning are reported
in [Bouchard et al., |2015b], but were not part of this thesis, and thus are not reported

here.
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A.1 Introduction

In many real-world problems, one has to face intractable integrals, such as averaging on
combinatorial spaces or non-Gaussian integrals. Stochastic approximation is a class of
methods introduced in 1951 by Herbert Robbins and Sutton Monro [Robbins and Monro,
1951] to solve intractable equations by using a sequence of approximate and random
evaluations. Stochastic gradient descent |Bottou, [1998] is a special type of stochastic
approximation method that is widely used in large scale learning tasks thanks to its

scalability and good generalization properties [Bottou and Bousquet), 2011].

We are interested in using SGD to minimize functions of the form:

Y(w) = Epop[flz;w) = /X f(;w)dP(x) (A1)

where P is a known fixed distribution and f is a function that maps X x W into R, i.e.
a family of functions on the metric space X and parametrized by w € W. SGD is a
stochastic approximation method that consists in using approximate gradients computed
on subspaces of X’ that are equal on average to the true gradient V,vy(w) [Bottou,
1998]. In many applications, including supervised learning techniques, the function f is
a log-likelihood and P is an empirical distribution with density %Z?:l 0(x,z;) where

{z1,--+ ,x,} is a set of i.i.d. data sampled from an unknown distribution.

At a given step t, SGD can be viewed as a two-step procedure: (i) sampling z; € X
according to the distribution P; (ii) doing an approximate gradient step with step-size
Pt

W1 = Wy — pe Vo f (T; wy) (A.2)

The convergence properties of SGD are directly linked to the variance of the gradient
estimate |[Bach and Moulines, 2011]. Consequently, some improvements to this basic
algorithm focus on the use of (i) parameter averaging [Polyak and Juditsky, |1992] to
reduce the variance of the final estimator, (ii) the sampling of mini-batches [Friedlander
and Schmidt, [2012] when multiple points are sampled at the same time to reduce the
variance of the gradient, and (iii) the use of adaptive step sizes to have per-dimension

learning rates, e.g., AdaGrad [Duchi et al.l |2011].

We propose another general technique, which can be used in conjunction with the
aforementioned ones, which is to reduce the gradient variance by learning how to sample
training points. Rather than learning the fixed optimal sampling distribution and then
optimizing the gradient, we propose to dynamically learn an optimal sampling distribution

at the same time as the original SGD algorithm. Our formulation uses a stochastic process
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that focuses on the minimization of the gradient variance, which amounts to doing an
additional SGD step (to minimize gradient variance) along each SGD step (to minimize
the learning objective). There is a constant extra cost to pay at each iteration, but it is
the same for each iteration, and when simulations are expensive or the data access is
slow, this extra computational cost is compensated for by the increase in convergence

speed, as quantified in our experiments.

A.2 Related Work

The idea of speeding up learning by modifying the importance sampling distribution in
SGD has been recently analyzed by [Hazan et al., [2011] who showed that a particular
choice of the sampling distribution could lead to sub-linear performance guarantees
for support vector machines. We can see our approach as a generalization of this idea
to other models, by including the learning of the sampling distribution as part of the
optimization. The work of [Mineiro and Karampatziakis| |2013] shows that using a simple
model to choose which data to resample from is a useful thing to do, but they do not
learn the sampling model while optimizing. The two approaches mentioned above can be
viewed as the extreme case of adaptive sampling, where there is one step to learn the
sampling distribution, and then a second step to learn the model using this sampling
distribution. Training language models has been shown to be faster with adaptive
importance sampling [Senecal and Bengio|, |2003; Bengio and Senecal, 2008], but the

authors did not directly minimize the variance of the estimator.

Regarding variance-reduction techniques, in addition to the aforementioned ones (Polyak-
Ruppert Averaging [Polyak and Juditsky, |[1992], batching [Friedlander and Schmidt, [2012],
and adaptive learning rates like AdaGrad |[Duchi et al., 2011]), an additional technique is
to use control variates (see for instance |[Ross, 1997]). It has been recently used by [Paisley
et al. [2012] to estimate non-conjugate potentials in a variational stochastic gradient
algorithm. The techniques described here can also be straightforwardly extended to the
optimization of a control variate. In the neural net community, adapting the order in
which the training samples are used is called curriculum learning [Bengio et al., 2009,
and our approach can be seen under this framework, although our algorithm is more
general as it can speed-up learning for arbitrary integrals, not only sums of losses over

the training data.



Accelerating Stochastic Gradient Descent via Online Learning to Sample 106

A.3 Adaptive Importance Sampling

We first show in this section that SGD is a powerful tool for optimizing the sampling
distribution of Monte Carlo estimators. This will motivate our Adaptive Weighted SGD
algorithm in which the sampling distribution is not kept constant, but learned during

the optimization process.

We consider a family {Q;} of sampling distributions on X', such that P is absolutely

continuous with respect to @), for any 7 in the parametric set 7. By Radon-Nikodym

theorem, the density ¢(-;7) = dQ]; exists since P and @), are probability measures, hence
o-finite. Importance sampling is a common method to estimate the integral in Equation
It corresponds to a Monte Carlo estimator of the form (we omit the dependency on

w for clarity):

R 1 T
T T;Q{afﬁz—)’ TG (4.3)

where we refer to Q- as the importance distribution. It is an unbiased estimator of ~, i.e.

the expectation of 4 is exactly the desired quantity ~.

To compare estimators, we can use a variance criterion. The variance of this estimator

2
< f(x) )
q(z;7)
where E; [.] and Var; [.] denote the expectation and variance with respect to distribution

Q.

depends on T:

2
o¥(r) = Var.[4] - (A4)

:T T

To find the best possible sampling distribution in the sampling family {Q;}, one can
minimize the variance o%(7) with respect to 7. The optimal parameter 7* € T is such
that ¢(.,7*) o |f|. In such a case, the variance o%(7*) of the estimator is null: one
can estimate the integral with a single sample. In general, however, the parametric
family does not contain a normalized version of |f|. In addition, the minimization of the
variance o?(7) has often no closed-form solution. This motivates the use of approximate

variance-reduction methods.
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Algorithm 2 Minimal Variance Importance Sampling

Require: Initial sampling parameter vector 79 € T
Require: Learning rates {n:}+>0
fort=0,1,2,--- , 7T —1do

Ty ~ Q’rt )
Ti41 < Te + ¢ (q{x(f;)t)) V. log q(ze; 1)
end for

Output 4 « % Do q{éig)

A possible approach is to minimize o%(7) with respect to the importance parameter 7.

The gradient is:

i 2
V,o2(r) = V,E. <q{;xi))] (A.5)
i z)°V,q(z; T
I
I 2
= —2FE, (q{x(i)')> VTIqu(ZL‘;T)] .

This quantity has no closed form solution in general, but we can use a SGD algorithm
with a gradient step equal on average to this quantity. To obtain an estimator g of
the gradient with expectation given by Equation it is enough to sample a point
zy according to @, and then set g := —(f(z¢)/q(x;7))?V,logq(xy; 7). This is then

repeated until convergence. The full iterative procedure is summarized in Algorithm

In the experiments below, we show that learning the importance weight of an importance
sampling estimator using SGD can lead to a significant speed-up in several machine
learning applications, including the estimation of empirical loss functions and the evalua-
tion of a policy in a reinforcement learning scenario. In the following, we show that this
idea can also be used in a sequential setting (the function f can change over time), and
when f has multivariate outputs, so that we can control the variance of the gradient of a

standard SGD algorithm and, ultimately, speedup the convergence.

A.4 Biased Sampling in Stochastic Optimization

In this section, we first analyze a weighted version of the SGD algorithm where points are
sampled non-uniformly, as in importance sampling, and then derive an adaptive version

of this algorithm, where the sampling distribution evolves with the iterations.
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A.4.1 Weighted Stochastic Gradient Descent

As introduced previously, our goal is to minimize the expectation of a parametric function
f (cf. Equation . As in importance sampling, we do not need to sample according to
the base distribution P at each iteration of SGD. Instead, we can use any distribution Q-
defined on X such that P is absolutely continuous with respect to Q.au, if each gradient
step is properly re-weighted by the density ¢(-;7) = dQ,/dP. Each iteration ¢ of the
algorithm consists in two steps: (i) sample z; € X’ according to distribution @Q,; (ii) do

an approximate gradient step:

Vo f (24; wy) _

(e 10) (A.6)

W41 = Wt — Pt

Depending on the importance distribution ), this algorithm can have different con-
vergence properties from the original SGD algorithm. As mentioned previously, the
best sampling distribution would be the one that gives a small variance to the weighted
gradient in Equation The main issue is that it depends on the parameters wy, which

are different at each iteration.

Our main observation is that we can minimize the variance of the gradient using the
previous iterates, under the assumption that this variance does not change too quickly
when wy is updated. We argue that this is reasonable in practice as learning rate policies
for p; usually assume a small constant learning rate, or a decreasing schedule |Bottou,
1998|. In the next section, we build on that observation to build a new algorithm that

learns the best sampling distribution @ in an online fashion.

A.4.2 Adaptive Weighted Stochastic Gradient Descent

As in Appendix we consider a family {Q;} of sampling distributions parametrized

by 7 in the parametric set 7. Using the sampling distribution @, with probability

density function g(x;7) = dﬁ;((f)), we can now evaluate the efficiency of the sampling

distributions @, based on the covariance ¥(w, 7):

E(wa 7_) := Var, [wa(l‘, w)/‘](w7 T)] (A7)
Vo f (23 w) Vy f (23 w)

—E
T q(z;7)?

~ Vur(w) V(). (A.8)
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Algorithm 3 Adaptive Weighted SGD (AW-SGD)

Require: Initial target and sampling parameter vectors wg € W and 19 € T
Require: Learning rates {p:}+>0 and {n:}+>0
fort=0,1,---, T —1do
Ty ~ Qn
dy Vo f(xt;we)

q(we;7e)
Wiyl < Wi — pedy

Ter1 < Te + 1 Hdt”2 V. logq(xs; 1)
end for

For a given function f(-;w) we would like to find the parameter 7*(w) of the sampling

distribution that minimizes the trace of the covariance ¥ (w;7), i.e.:

7 (w) € argminE, [

’ Vi f(z;w)
q(z;7)

2
] . (A.9)

Consequently, a simple SGD algorithm with gradient steps having small variance consists

in the following two steps at each iteration ¢:

1. Perform a weighted stochastic gradient step using distribution @, to obtain wyy1;
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