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ABSTRACT

Nowadays we are witnessing the democratization of cloud services.
As a result, more and more end-users (individuals and businesses) are
using these services in their daily lives. In such scenarios, personal data
is generally flowed between several entities. End-users need to be aware
of the management, processing, storage and retention of personal data,
and to have necessary means to hold service providers accountable for
the use of their data. In this thesis we present an accountability frame-
work called Accountability Laboratory (AccLab) that allows to consider
accountability from design time to implementation time of a system. In
order to reconcile the legal world and the computer science world, we
developed a language called Abstract Accountability Language (AAL)
that allows to write obligations and accountability policies. This lan-
guage is based on a formal logic called First Order Linear Temporal
Logic (FOTL) which allows to check the coherence of the accountability
policies and the compliance between two policies. These policies are
translated into a temporal logic called FO-DTL3 , which is associated
with a monitoring technique based on formula rewriting. Finally, we
developed a monitoring tool called Accountability Monitoring (AccMon)
which provides means to monitor accountability policies in the context
of a real system. These policies are based on FO-DTL3 logic and the
framework can act in both centralized or distributed modes and can
run in on-line and off-line modes.
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RÉSUMÉ

Nous assistons à la démocratisation des services du cloud et de plus
en plus d’utilisateurs (individuels ou entreprises) utilisent ces services
dans la vie de tous les jours. Dans ces scénarios les données person-
nelles transitent généralement entre plusieurs entités. L’utilisateur final
se doit d’être informé de la collecte, du traitement et de la rétention
de ses données personnelles, mais il doit aussi pouvoir tenir pour res-
ponsable le fournisseur de service en cas d’atteinte à sa vie privée. La
responsabilisation (ou accountability) désigne le fait qu’un système ou
une personne est responsable de ses actes et de leurs conséquences.
Dans cette thèse nous présentons un framework de responsabilisation

AccLab qui permet de prendre en considération la responsabilisation dès
la phase de conception d’un système jusqu’à son implémentation. Afin
de réconcilier le monde juridique et le monde informatique, nous avons
développé un langage dédié nommé AAL permettant d’écrire des obli-
gations et des politiques de responsabilisation. Ce langage est basé sur
une logique formelle FOTL ce qui permet de vérifier la cohérence des
politiques de responsabilisation ainsi que la compatibilité entre deux
politiques. Les politiques sont ensuite traduites en une logique tempo-
relle distribuée que nous avons nommée FO-DTL3 , cette dernière est
associée à une technique de monitoring basée sur la réécriture de for-
mules. Enfin nous avons développé un outil monitoring appelé AccMon
qui fournit des moyens de surveiller les politiques de responsabilisation
dans le contexte d’un système réel. Les politiques sont fondées sur la
logique FO-DTL3 et le framework peut agir en mode centralisée ou
distribuée et fonctionne à la fois en ligne et hors ligne.
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Part I

ACCOUNTABIL ITY : BEYOND SECURITY AND
PRIVACY

We live in a world where machines are omnipresent in our
daily life, where the rooster was replaced by an alarm clock
and smart phones, letters were replaced by emails and horses
by cars with sophisticated electronics. Computers are every-
where, the 21st century human used them for leisure, work-
ing, communicating or even to control a spacecraft. In this
world digital information is everywhere, and our personal
data are exposed continuously, so what about our privacy?
Our data are hosted in computers and travel via networks,
is it sufficient to secure these components to protect our
privacy? What about the human role in computer security
and privacy protection? Does a perfect security guarantee
our privacy?

“Perfect security is probably impossible in any useful
system.”

— William D. Young





1
INTRODUCTION

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Context and problematic . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . 5

“Everybody with a computer should worry a little about whether
hackers might break in and steal personal data.”

— John Viega

1.1 Motivation

I discovered computer science by hacking when I was fourteen years
old and I was surprised how easily we can get into a computer just by
using hacking software and scripts without having a lot of knowledge
in this field. Thinking of what a malicious script kiddie could do with In hacking culture,

a script kiddie is
an unskilled
person who uses
scripts or
programs
developed by other
hackers to attack
computer systems
and networks.

these tools was scary.
I was convinced that an intensive control and a strong protection

was the answer to all these security issues but at the same time I knew
that every time security experts developed a new protection mechanism,
hackers found new ways to bypass it. That’s what made hacking funny
for me but I was facing a paradox: As a hacker I couldn’t assume
that one day security experts would find the ultimate protection, but
as person caring about my privacy I hope that they will find it and
hackers could not break it.
My advisor told me that we would work on computer security and

data privacy, I said to myself: We will find the ultimate protection! By
enrolling in this thesis I was expecting to work on low-level security
and develop new protection mechanisms and software, but it wasn’t
the case at all, at least at the beginning of my thesis. In the middle
of my third year we started to work on low-level security tools and
at that point I understood that if I had started directly on low level
security something would have been missing. Indeed, when a person
or a company violates our privacy and does not respect their privacy
policy, we generally don’t reply by hacking them, but we refer to law
and judges. So the problem of privacy violation is not just a low level
security issue, it also includes juridical, economical and social aspects.
But is it so important to protect our privacy in a digital world, after

all, who cares?

3



4 introduction

Privacy concerns are related to information. The emergence of in-
formation technology gave a chance to peek at the private lives of
strangers, thus people start to get concerned by their privacy. In the
21st century, the power of information is greater than ever, and privacy
concerns are one of the biggest challenges for humanity today. Imagine
a world without privacy, where our information and our privacy are
shared everywhere with everyone. Will we be safe in this world? Pri-
vacy violations is a human problem, is it realistic to try to solve this
issue using technical means? If we have a system in which violating pri-
vacy is technically impossible, is this system usable? And what if our
privacy is controlled by an artificial intelligence? Should we consider a
world without privacy?

I often had a conflicting discussion with my relatives and people in
general concerning social networks, on-line Internet services that handle
our personal data, computer security and privacy concerns. Below is a
non-exhaustive list of some sentences that I heard:
— Privacy is not my concern, I have nothing to hide.
— Big companies know what they are doing, it is not in their benefit

to violate the privacy of their users.
— But my photos are private and only my friends can see them.
— Who cares about me? I am not a famous person after all!
— I have the best anti-virus on the market and my computer is

updated.
— No worries, I use private navigation mode.
— Yeah, but my data are processed by a machine, there is no human

behind that.
— My anti-virus didn’t find any virus.

So if you agree with one of these sentences, I hope that reading this
manuscript will change your opinion!

1.2 Context and problematic

Accountability and the A4CLOUD project. Before I started
my Ph.D, the first time that I saw the word Accountability in a com-
puter science context was in the job description of this very thesis. My
interviewer (who is now my supervisor) gave me a paper [EW07] of
Sandro Etale to analyze.
In this paper there were two examples that illuminated my vision of

accountability. Consider a school bus driver that takes the bus for his
personal purpose, normally it is considered as a crime in New Orleans,
but if his purpose was to help a neighborhood evacuate as Hurricane
Katrina approached, it would probably have been recognized as heroic.
Now if there had been a strict policy that prevents the bus driver to
use the bus in other circumstances, he would not have been able to
help the neighborhood. The second example is on criminal justice in
open societies. Individuals are not controlled so tightly as to prevent
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all crime. However, society is not overwhelmed by criminality because
of the fear of legal consequences is a deterrent.
From these two examples we retain the following points:
— A strict security policy can sometimes hinder security.
— Relaxing security works only if we have responsibility and deter-

rence.
Accountability is defined in Black’s Law Dictionary as follows: “When

one party must report its activities and take responsibility for them. It
is done to keep them honest and responsible”.

This thesis is in the context of the Cloud Accountability Project
(A4Cloud). The goal of this project is to increase trust in cloud comput-
ing by devising methods and tools, through which cloud stakeholders
can be made accountable for the privacy and confidentiality of informa-
tion held in the cloud. These methods and tools combine risk analysis,
policy enforcement, monitoring and compliance auditing. But how can
we define policies that respect privacy? How can we check the com-
pliance of different actors? And how to ensure that these policies are
correctly implemented?

Talking to a computer. Humans use languages to communicate
with each other, it generally works when the people speak the same
language, but what about if two people speak different languages? In
this case they need a translator to translate between the two languages.
Human created machines and gave them the ability to talk binary lan-
guage. In order to communicate with the machine, we can learn the
binary language which is very fastidious to use, or the alternative is
to make the machines understand our human language, which is quite
difficult due to the number of spoken languages in the world and the
ambiguity of human language. The intermediate solution is to create a
language that is, easy to learn for a human, relatively simple to trans-
late into machine language and that has more expressiveness power
than binary language. We call such languages: programming language.
Now having the binary language and our programming language we
need a translator to translate the programming language into machine
language, that what we call a compiler.
As a sentence in natural language can have many interpretations

depending on the person who reads it, the same issue appears with
programming languages. Thus, we need to agree on a common inter-
pretation associated to a programming language that what we call a
semantic.

1.3 Outline

This manuscript is divided into three main parts:

1. Accountability: Beyond security and privacy: this part is
divided in two chapters:
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— Chapter 1 - Introduction: the chapter that you are reading,
this chapter introduces the motivation and the context of this
thesis, and gives an overview of my vision regarding privacy
and security questions.

— Chapter 2 - State of art: We will see why classical security
mechanisms are not sufficient to protect our privacy, we will
introduce privacy and accountability and we will present some
logical background required for the contribution chapters.

2. Accountability: from specification to implementation: this
part contains the contributions chapters and it is structured as
follows:
— Chapter 3 - An abstract accountability language: this chapter

is about AAL which is a language designed to express account-
ability policy at a high level of abstraction. In this chapter
we present the language and its semantic based on temporal
logic, then we show how we can use AAL in order to check
policies compliance and consistency. After that we present
the principle of an accountable component diagram which is
based on UML2 with AAL annotations, then we finish with
some advanced features of AAL such as its type system and
macros.

— Chapter 4 - Accountability enforcement: in this chapter we
will present a new logic called FO-DTL3 , a distributed first
order temporal logic. Next we will present monitoring tech-
niques for this logic, one using the progression technique and
some optimizations and another one based on the inference
rules called co-inductive monitoring. Finally, we will show
how we monitor AAL policies using this FO-DTL3 monitor.

— Chapter 5 - Accountability tools: in this chapter we will present
the different tools developed in the context of this thesis. The
first tool is an accountability framework called AccLab, the
second one is a distributed monitoring engine that is used by
AccLab for simulation and two other tools: (1) AccMon an ac-
countability monitoring framework for web applications and
(2) PyMon a python code monitoring framework.

3. Accountability: Beyond accountability
— Chapter 6 - Conclusion and future work: in this chapter we

will present the flow of reasoning that we had during this
thesis and different key points concerning the future work.
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“Think before you speak. Read before you think.”

— Fran Lebowitz

2.1 Introduction

In this chapter we introduce the basic concepts and the background
for this thesis. Since this thesis is in the context of the A4CLOUD
project, first we present the cloud and the major concepts around it,
then we talk about the Internet and the World Wide Web (WEB) which
is the best known service offered by the Internet, we particularly focus
on it and on security and privacy issues related to the Web. Then
we talk about computer security and cyber-attacks and we discuss the
limits of classical security mechanisms. Security does not guarantee
the privacy, but without security there is no privacy at all. In the
next section we talk about the privacy and how the new technologies
impact the privacy in our daily life. Finally, we present the concept
of accountability, its application in computer science and the different
concepts required to follow the contribution part of this thesis.

7
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2.2 The myth of computer security

2.2.1 The cloud, over the Internet and the Web

Cloud computing. In a October, 2009 a presentation entitled "Ef-
fectively and Securely Using the Cloud Computing Paradigm", by Peter
Mell and Tim Grance of the National Institute of Standards and Tech-
nology (NIST) Information Technology Laboratory, cloud computing
was defined as follows:

“Cloud computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable and reliable

computing resources (e.g., networks, servers, storage, applications,
services) that can be rapidly provisioned and released with minimal

consumer management effort or service provider interaction.”

The key point of this definition is the externalization of resources.
The literature defines three service models for the cloud depending on
the type of shared resources:For more details,

the reader can
refer to [MKL09];

[BBG11]

1. Software as a service (SaaS) delivers software applications over
the Web.

2. Platform as a service (PaaS) delivers platforms to deploy custom
applications over the web.

3. Infrastructure as a service (IaaS) rents processing, storage, net-
work capacity, and other fundamental computing resources.

Sharing resources leads us to talk about their accessibility, there are
three deployment models for the cloud:

1. Public Clouds generally provide resources over the Internet via
web applications and web services, the cloud is hosted and man-
aged by a third party.

2. Private Clouds act like private networks where resources are ded-
icated to a single organization.

3. Hybrid Clouds are composed with multiple public and private
clouds.

2.2.1.1 The Internet and the World Wide Web

The Internet is a system composed by interconnected computers that
use the Internet protocols (TCP/IP). The WEB is probably the most
well-known Internet service. The Web was initially designed as a dis-People often use

the terms Internet
and Web

interchangeably.

tributed information system for scientists at CERN in 1990 and was
proposed by Tim Berners-Lee and Robert Cailliau, at this time the
web was an interconnected static hypertext documents relays on four
components: (1) HyperText Markup Language (HTML) a standard
markup language used to create web pages, (2) Hypertext Transfer
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Protocol (HTTP) a protocol to transfer the web pages, (3) a web server
which is a software used to serve the web pages, and (4) a web browser,
a software to display the web pages. Nowadays the Web is a complex
combination of many technologies and protocols . . . .

A recipe for disaster. From the point of view of a security re-
searcher and a hacker I would define the Web as the following:

“A very very complex system, evolving at a very fast pace, designed
to run arbitrary code and be reachable by everyone ... in the hands of

amateurs who know nothing about programming...”

— Davide Balzarotti

Let us analyze this definition:
1. Very complex system: indeed, the web relies on the Internet

which is composed of computers with different hardware running
on multiple platforms with different operating systems. In addi-
tion there are many technologies used (communication protocols,
browsers, plugins, etc).

2. Very fast evolution: many technologies appear and disappear dur-
ing a short lapse of time, due to the market competition some-
times the security is just not taken in account in the earlier stage
of development and sometimes these technologies are released
without being matured.

3. Untrusted mobile code: that is what happens each time you visit
a web page, your browser gets a piece of code developed by some-
one and runs it on your computer... Thanks to

sandboxing
techniques that
helps a lot to
minimize risks on
this huge security
whole . . .

4. Attack surface: obvious since everything is interconnected means
more entry points which leads to more potential attacks.

5. A platform for the masses: nowadays the democratization of the
web makes it accessible to a large number of people of different
categories.

The last point is particularly interesting, indeed this facility to make
a website by people with little experience in software development or
with small/no awareness about security leads to have many vulnerable
websites. But one could say why should we care about the security of
Alice’s blog that she uses to post her trips pictures ? Attackers do not
care about her website and even if her blog is hacked, it’s just a simple
blog . . . To answer this question we have to see the types of attacks
on the Web and the goal of attackers. We distinguish two types of
attacks: the targeted and non-targeted attacks. Non-targeted attacks
are mostly automated and widespread, attackers generally use a tool
that perform automated scans and once the tool identify a vulnerable
target, another tool tries to exploit the vulnerability and installs a
backdoor. On the other hand targeted attacks are mostly manual and
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target specific sites or companies, attackers spent a lot of time studying
and analyzing their target and they do not use automated tools to
remain undetectable, once everything is ready they perform the attack.
The targeted attacks can be easily justified, the goal of attackers can be
social or political activism, cyberwars, personal vengeance, or to gain
money using Web ransom-ware 1 But to understand the goal of non-
targeted attacks we have to investigate what attackers do with these
websites after attacking them. Studies like [Ala+06] using honeypots
showed that targets attacked by non-targeted attacks are mostly used
for phishing, scams and to perform targeted attacks. So the issue is
when a security breach in Alice’s blog allowed to perform an attack
on a governmental organization, who is responsible? The attacker, the
framework used by Alice to develop her blog, the web server provider,
or Alice?

Global architecture of the Web. The figure 1 shows the global
view of the Web architecture in a general manner. The client inter-
acts with a computer (1), and sends a request to a server using a web
browser, the browser runs under an operating system (2), the request
is transmitted to the internal router (5) and then to a proxy which
routes the request (11). The reverse proxy routes the request to the
destination server (10), then the request is handled by the web appli-
cation (6) which interacts with an operating system (7), a database (8)
and a backup server (9). Finally, a response is sent to the client from
the web application (6) to his web browser (3) which potentially runs
some plug-ins (4).
Sadly each node of the web architecture presented in figure 1 repre-

sents a potential attack vector. There are several techniques to bypass
security mechanisms such as network sniffing, identity spoofing, keylog-
gers, etc. But the most effective attacks are social engineering based
ones since the user remains the weakest point of the chain.

2.2.2 Cyber attacks and Cyber defense

In order to understand the importance and the stakes of security in
the 21st century we need to study the impact of cyber security on our
real world.

The economic problem. Many years ago, hackers looked for vul-
nerabilities in systems for popularity and for fun, then they disclose the
vulnerabilities publicly. Disclosure was a way to counter poorly-written
software at the time where security concerns and awareness were not
priority for developers, since the objectives of the companies were to
produce software quickly and sell their products. But today the world

1. https://www.htbridge.com/blog/ransomweb_emerging_website_threat.
html

https://www.htbridge.com/blog/ransomweb_emerging_website_threat.html
https://www.htbridge.com/blog/ransomweb_emerging_website_threat.html
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Figure 1 – Global Web architecture

has changed, the disclosure of vulnerabilities that we hear about are
just the visible part of the iceberg. The hidden part is now on the
black/gray market which becomes a huge business. Companies offer
rewards to who finds security threats in their systems in order not to
disclose the vulnerabilities and the worst is that in many cases they do
not fix the vulnerabilities immediately due to economic issues. Other
companies are specialized in selling zero-day vulnerabilities (a security
hole that is unknown to the owner) to cyber criminals.

The social problem. We should not ignore the importance of the
human part in computer security, as we say, the bug is between the
chair and the keyboard. Real and targeted attacks relies mostly on
social engineering, a pirate spends most of the time to prepare the For more details

on social
engineering, we
recom-
mend [MS03];
[MS06]

attack by collecting information about the target, his contacts, his
habits, etc. Even in academics we teach more how to write programs
than how to write a secure code. Security should be a concern of every
person who writes a piece of code.

The technical problem. Computer science is an exact science in
theory, but in real life there are many factors that make things un-
predictable. Bugs are often a source of vulnerabilities, and bugs that
are introduced by humans may remain hidden for many years before
being discovered even if the software source code is public (like Heart-
bleed [Hea] which is a famous vulnerability in the open source world).
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2.3 Privacy, an illusion in a digital world

For all people who told me that they do not care about privacy
because they have nothing to hide, I would like to answer them by this
quote:

“Arguing that you don’t care about the right to privacy because you
have nothing to hide is no different than saying you don’t care about

free speech because you have nothing to say.”

— Edward Snowden

In my opinion, not caring about privacy because we think that we
have nothing to hide is similar to thinking that we cannot be hacked
because we have installed the best anti-virus on the market... A naive
and meaningless way of thinking which harms the society. I don’t know
which is the worst, don’t care about privacy or think that we have the
control of privacy? What about public cameras, mobile phones, public
networks, drones, etc? Nowadays we can forget our privacy on the
Internet, as John Viega said:

“By now , people should have a reasonable expectation that there’s
no privacy on the Internet.”

— John Viega

2.3.1 But what is privacy about?

The concept of privacy varies widely among countries, cultures, and
jurisdictions. It is shaped by public expectations and legal interpre-
tations; as such, a concise definition is elusive if not impossible. Pri-
vacy rights or obligations are related to the collection, use, disclosure,
storage, and destruction of personal data (or Personally identifiable in-
formation (PII)). Personal data means any information relating to an
identified or identifiable natural person.
As mentioned in [MKL09], privacy advocates have raised many con-

cerns about cloud computing. These concerns typically mix security
and privacy. Here are some additional considerations to be aware of.
— Access: Data subjects have a right to know what personal in-

formation is held and, in some cases, can make a request to stop
processing it. In the cloud, the main concern is the organiza-
tion’s ability to provide the individual with access to all personal
information, and to comply with stated requests. If a data sub-
ject exercises this right to ask the organization to delete his data,
will it be possible to ensure that all of his information has been
deleted in the cloud?

— Compliance: What are the privacy compliance requirements in
the cloud? What are the applicable laws, regulations, standards,
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Figure 2 – Privacy opinions - XKCD

and contractual commitments that govern this information, and
who is responsible for maintaining the compliance?

— Storage: Where is the data in the cloud stored? Was it trans-
ferred to another data center in another country? Is it commin-
gled with information from other organizations that use the same
cloud service provider? Privacy laws in various countries place
limitations on the ability of organizations to transfer some types
of personal information to other countries. When the data is
stored in the cloud, such a transfer may occur without the knowl-
edge of the organization, resulting in a potential violation of the
local law.

— Retention: How long is personal information retained? Which
retention policy governs the data? Does the organization own the
data, or the cloud service provider? Who enforces the retention
policy in the cloud?

— Destruction: How does the cloud provider destroy PII at the
end of the retention period? How do organizations ensure that
their PII is destroyed by the Cloud service provider (CSP) at the
right point and is not available to other cloud users? How do
they know that the CSP didn’t retain additional copies? Did the
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CSP really destroy the data, or just make it inaccessible to the
organization?

— Audit and monitoring: How can organizations monitor their
cloud service provider and provide assurance to relevant stake-
holders that privacy requirements are met when their PII is in
the cloud?

— Privacy breaches: How do you know that a breach has oc-
curred? How do you ensure that the CSP notifies you when a
breach occurs? Who is responsible for managing the breach noti-
fication process (and costs associated with the process)?

2.3.2 Privacy in the real world: laws and regulations

Legal aspects for data privacy vary across the world, some countries
apply strict enforcement of privacy directives whereas other countries
have no privacy directives. This makes it challenging for multinational
companies that process personal data of customers from different ju-
risdictions. When processing personal data in a global environment,
a major challenge is the fact that some requirements are conflicting.
The jurisdiction of privacy laws and directives is determined differ-
ently in different countries and states. Some of the laws are based
on the location of the organization, some on the physical location of
the data centers, and some on the location of the data subjects. The
only universal consistency is that the law has not caught up with the
technology [MKL09].
There is an international trend in protecting data, for instance the

Gramm-Leach-Bliley Act (GLBA) [US] tackles the privacy in the finan-
cial world. The Financial Privacy Rule requires financial institutions to
provide their customers with a privacy notice upon inception of the re-
lationship and annually. The privacy notice must explain information
collection, sharing, use, and protection. The HIPAA rules [Sch+08]
regulates the use and disclosure of protected health information (PHI)
by health care providers and health plans. It stipulates the right of an
individual to access his PHI and have any inaccuracies corrected. The
HIPAA Privacy Rule requires health care providers to notify individ-
uals of their information practices. However, with data being in the
cloud, those notices may be incomplete or inaccurate.
In Europe, privacy is considered a basic human right and cannot be

divorced from one’s personal freedom. The EU 95 Directive [Dir95]
(replaced now by General Data Protection Regulation (GDPR)) [EU]
oblige member states to implement and enforce data privacy legislation
that satisfies the requirements present in the EU Directive. The EU
Directive distinguishes between data controllers and data processors.
It is the controller that is responsible for implementing an effective
mechanism and, therefore, ensuring its use of compliant third-party
service providers.
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The GDPR is applied to the processing of personal data, whether
it is automated (even partially) or not. The GDPR defines principles
regarding data and processing [Lau17]. Data principles consists in:
— Transparency: data must be processed fairly, lawfully and trans-

parently.
— Purposes: data should only be collected for determined, explicit

and legitimate purposes, and should not be processed later for
other purposes.

— Minimization: the data processed must be relevant, adequate
and limited to what is necessary in view of the purposes for which
they are processed.

— Accuracy: the data processed must be accurate and up-to-date
regularly.

— Retention: the data must be deleted after a limited period.
— Subject explicit consent: the data may be collected and pro-

cessed only if the data subject gives his explicit consent.

2.3.3 Towards a formalization of privacy

There are several work that tackle privacy issues using formal meth-
ods. In [M0́9] the authors present a restricted natural language SIMple
Privacy Language (SIMPL) to express privacy requirements and com-
mitments. Their work is part of a broader multidisciplinary project
which follows a top-down approach, starting from the legal analysis
and defining technical and legal requirements for the development of
an effective solution to privacy issues. Another example is the privacy
language of [BMB10] provides a formal and decidable language to write
data privacy policies and close to natural language.
Other works handle abstract privacy policy like in [BA05] the au-

thors describe a general process for developing semantic models from
privacy policy goals mined from policy documents. In [KL03], the au-
thors develop an approach where contracts are represented by XML
documents enriched with logic metadata and assistance with a theo-
rem prover. DeYoung et al in [DeY+10] define Privacy Least Fixed
Point: a formal language to express data privacy management. They
demonstrate the ability of this language by representing the obligations
of two consequent sets of rules. The readability for non-expert user is,
of course, a problem, since it is based on fixed points (this is similar to
the language of mCRL2).
The data Privacy Logic [PD11] is a deontic and linear temporal logic

based on predicates dealing with personal data management. The au-
thors focus on obligations with deadlines and maintained interdiction,
that is on deontic logic with time. They identifed requirements for such
a privacy language and surveyed most of the existing candidates and
found them insufficient. Thus they introduce two new operators: one
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for obligation with deadline and another one for maintained interdic-
tion and they illustrate their use.
In [MGL06], authors present an approach that consists in extending

the access control matrix model to deal with privacy rules which were
used to express the HIPAA [Hea96] consent rules in a formal way and
to check properties of different versions of the HIPAA. However, this
model does not deal with sticky policies, compliance or future obliga-
tions as in [M0́9].
In [GMS05] authors used the same access control matrix approach to

express privacy policies for location-based services based on a Personal
Digital Rights Management (PDRM) architecture.
The Obligation Specification Language (OSL) [Hil+07] is illustrated

through DRM policies but can also be used to express privacy poli-
cies. It includes usage requirements such as duration, number of times,
purpose, notification, etc. It also includes different modalities (such as
must and may) and temporal operators.

2.4 Accountability: beyond security to preserve privacy

Previous work on security showed that it is not sufficient to ensure
data privacy in distributed systems where new agents may be involved
and can send data to others. Several articles already mention the lim-
its of the pure security approach (for instance [Wei+08]) and suggest
relying on the concept of accountability. Indeed, we live in an intercon-
nected world where information can be easily copied, aggregated and
automated correlations across multiple databases uncover information
even when it is not revealed explicitly.
Thus, there is a recent interest and active research for accountability

which overlaps several domains like security [Wei+08]; [ZX12]; [PW13],
language representation [M0́9]; [DeY+10], auditing systems [Fei+12];
[Jag+09], evidence collection [SSL12]; [Hae+10] and so on. However,
only few of them consider an interdisciplinary view of accountability
taking into account legal and business aspects.
Regarding tool supports and frameworks we can find several propos-

als [Wei+09]; [Hae+10]; [ZWL10]. But none of them provides a holistic
approach for accountability in the cloud, from end-user understandable
sentences to concrete machine-readable representations. In [SSL12], au-
thors propose an end-to-end decentralized accountability framework to
keep track of the usage of the data in the cloud. They suggest an
object-centered approach that packs the logging mechanism together
with users’ data and policies.

Recently Butin et al. advocate for strong accountability in [BCM14].
The authors consider that the view from normative text put too much
emphasis on accountability of policy and procedure while computer sci-
entists have a too narrow approach of accountability by practice. They
put forward strong accountability as a set of precise legal obligations
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supported by an effective software tool set. They demonstrate that
the state of the art in terms of technology is sufficient to ensure the
notion of accountability by design. The authors while they promote a
precise and operational approach think that a multidisciplinary view
of accountability is fundamental. This interdisciplinary approach is
necessary since a pure computer science approach is not sufficient to
tackle some contractual aspects. Laws and normative texts contain
many features we cannot represent with computers or we do not want
that computer decide without human control.
There are theoretical formal models like [Ced+05]; [EW07]; [Jag+09]

but they do not provide concrete languages and means to verify account-
ability at design time.
The A-Posteriori PoLicy Enforcement (APPEL) core presented in [EW07]

combines an audit logic with trust management techniques. It makes it
possible to define sticky data policies; in addition, it includes provisions
for constraining the join of documents and defining policy refinement
rules. Trust and accountability are central and the formal setting is
based on audit logs.

2.4.1 Policy languages: towards a link between worlds

Existing data privacy languages such as [DeY+10]; [PD11]; [BMB10];
[Cho+13] only consider access or usage control, they did not address
full accountability. However these approaches provide advanced com-
parisons for permissions and obligations.
Several approaches to contract specification define specific modali-

ties generally classified in permission or authorization, obligation and
prohibition. There are mainly three approaches: relying on deon-
tic logic as in [PD11], using a pure temporal approach, or a mix
of both, for instance [BBF06]. Deontic logic appears as a natural
choice. However it is subject to few confusing paradoxes like the Good-
Samaritan, the Knower, the Contrary-to-duty paradox and the Sec-
ondBest Plan [Cas81]; [HPT07]. Note that there are several work that
try to solve these paradoxes [Fel90], In [Cho+13] the authors present
a policy language based on a restricted subset of FOTL. The restricted
subset of FOTL allows some past operators, but it limits future opera-
tors in specific places and the decision procedure is based on a small
finite model theorem. Another related work is [TDW13] which focuses
on purpose restrictions governing information use. This paper provides
a formal semantics for purpose restrictions which is based on simulat-
ing ignorance of the information prohibited. Policy languages can be
classified into four categories:

1. Access Control: eXtensible Access Control Markup Language
(XACML, [OAS13]);
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2. Privacy: The Platform for Privacy Preferences (P3P, [P3p]), the
Primelife Policy Language (PPL, [Ard+09]) and SecPal for Pri-
vacy (SecPal4P, [BMB10]);

3. Policy specification for security: Conspec ([AN08]) and Ponder
([Dam+01]);

4. Service Description: The Unified Service Description Language
(USDL, [BO12]), SLAng ([LSE03]) andWS-Policy ([OAS06]; [OAS12]).

2.4.2 Temporal logic: formalizing a physical world

Propositional logic. Propositional logic is a simple logic that aims
to study propositions which can be true or false. These propositions
can be composed with each other using connectors (called logical opera-
tors) such as the disjunction (or), conjunction (and), conjunction (and),
material condition (if...then) and the negation (not). Bellow Table 1
shows the syntax of the propositional logic.

ψ ::= true | false (constant symbol)

| ©ψ | ¬ψ | ψ(∨| ∧ | ⇒ | ⇔)ψ (propositional formula)

| P (propositional symbol)

Table 1 – Propositional Logic syntax

The interpretation for a well-formed formula is to assign either a
truth value > or a falsehood value ⊥.

I � P = literal

I � ¬ψ = not ψ

I � ψ1 ∧ψ2 = I � ψ1 and I � ψ2

I � ψ1 ∨ψ2 = I � ψ1 or I � ψ2

I � ψ1 ⇒ ψ2 = if I � ψ1 then I � ψ2

I � ψ1 ⇔ ψ2 = I � (ψ1 ⇒ ψ2) and I � (ψ2 ⇒ ψ1)

Table 2 – Propositional logic semantics

Satisfiability and validity. A formula ψ is satisfiable if there is
an interpretation I that satisfies ψ. In the same way, if there is no
interpretation that satisfies ψ the formula is unsatisfiable. For example,
the formula p ∧ q is satisfiable whereas p ∧ false is unsatisfiable. A
formula is valid if all interpretations I satisfies ψ. For example the
formula p∨ true is valid.
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For more details
on temporal logic
and on formal
methods in general
we recommend the
excellent book by
Fisher [Fis11].

Temporal logic. Temporal logic is an extension of classical logic
that introduces operators relating to time. Temporal logic often con-
tains operators such as ©, meaning in the next moment in time, �,
meaning at every future moment, and ♦, meaning at some future mo-
ment, ψ1Uψ2, meaning that ψ1 has to hold at least until ψ2 holds,
ψ1Rψ2, meaning that ψ2 has to hold until ψ1 holds (including the
point where ψ1 holds).

ψ ::= true | false | ¬ψ | ψ(∨| ∧ | ⇒)ψ | ϕ (propositional formulas)

| ©ψ | �ψ | ♦ψ | ψUψ | ψRψ (temporal formulas)

ϕ ::= P (t∗) (predicates)

Table 3 – Temporal Logic syntax

Model-checking and proofs. As defined in [Fis11], the proof the-
ory of a logic consists of axioms and inference rules (alternatively called
proof rules). Axioms describe ’universal truths’ for the logic and infer-
ence rules transform true statements into other true statements (theo-
rems). The process involved in a proof is generally that of transforming
such true statements in the logic using only the inference rules and ax-
ioms. Technically, a proof is a sequence of formulae, each of which is
either an axiom or follows from earlier formulae by a rule of inference.
On the other hand, model-checking consists in checking if there are

execution sequences of a given system that do not satisfy the required
formula, then at least one ’failing’ sequence will be returned as a
counter-example. If no such counter-examples are produced then this
means that all executions of the system satisfy the prescribed formula.





Part II

ACCOUNTABIL ITY : FROM SPECIF ICAT ION
TO IMPLEMENTATION

In this part we present our work which is about filling the
gap between the specification (how things should work) and
implementation (how things really work). In the first chap-
ter we present a methodology to take in account account-
ability at design time, we will show how to make an account-
able design and present accountable design principles. Then
we present a language called AAL (Abstract Accountabil-
ity Language) that allows to specify Accountability policies
and a specification methodology around this language.
In the second chapter of this part we will talk about account-
ability monitoring, in order to enforce the specifications we
synthesize a reference monitor for each actor in the system,
the role of the monitors is to ensure that the specified poli-
cies are respected.
In the last chapter we present the different tools developed
during this thesis . We present a tool AccLab (Account-
ability Laboratory) that provide assistance for writing and
checking policies and also provide a simulation platform to
see accountability in action. Next we talk on monitoring
tools such as AccMon (Accountability Monitoring) that al-
lows to monitor accountability policies in the context of a
real system. This tool has an interconnection with AccLab.

“A good policy language allows not only the expression of
policy but also the analysis of a system to determine if it
conforms to that policy. The latter may require that the

policy language be compiled into an enforcement program
(to enforce the stated policy) or into a verification

program (to verify that the stated policy is enforced).”

— Matt Bishop
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“The development of policy languages focuses on supplying
mathematical rigor that is intelligible to humans.”

— Matt Bishop

3.1 Introduction

As said before, there is a big gap between laws and regulations which
are written in natural language and the real implementation of systems.
In addition writing policies without a tool that checks their consistency
can lead to unexpected behaviors. Thus in this chapter we present a
formal model for accountability in order to tackle these issues. This
model relies on a language called AAL which is a language that allows to
write accountability policies. First we introduce the AAL language with
its syntax and we illustrate its usage with some examples. After that
we present the FOTL that is the semantics of the AAL language, and the
interpretation of AAL over FOTL. Next we talk about the compliance,
the consistency and how we verify these properties on AAL policies
based on the FOTL translation. Then we present an approach to handle
accountability at design time using extended UML component diagram.
Before we conclude, we talk on the advanced usage of AAL with the
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macros and type system. Finally, we conclude this chapter and we
discuss the benefits and the limitations of our approach. Note that all
examples used in this chapter are available in the examples folder of
AccLab 1.

3.2 Abstract Accountability Language (AAL)

According to [Fei+12] accountability can be fulfilled in five temporal
steps: prevention, detection, evidence collection, judgment and punish-
ment. In order to represent accountability obligations, we adopt the
same point of view by synthesizing these steps in three parts : (1)us-
age control for the preventive aspects, (2)audit for detection, evidence
collection and judgment, and (3)rectification for punishment/compen-
sation.

3.2.1 AAL language syntax

We consider an AAL clause as a triplet (ue, ae, re) which informally
means: In any execution state, do the best to ensure the usage expres-
sion (ue), and if a violation of the usage is observed by an audit (ae)
then the rectification (re) applies. A clause is identified by a name and
composed with at least a usage expression in which we define the policy
that we want to ensure,
an audit part in which we specify actions related to the audit phase

(such as the auditor, the audit frequency, etc) and a rectification part
in which we define what we should do if a violation occurs on the usage
part. Bellow the template for an AAL clause:

CLAUSE policy_name (
<usage_expression>
AUDITING <audit_expression>
IF_VIOLATED_THEN <rectification_expression>

)

The core of expressions are actions, the syntax of an action is the
following:

// action
actor1.service1’[’actor2’]’(parameters) [PURPOSE purpose]

Which means that ’actor1’ uses a service called ’service1’ which is pro-
vided by ’actor2’ using the arguments ’parameters’. This vision is
inspired by the architectural design of a system in a component dia-
gram [RJB04]. The PURPOSE keyword is optional and is used to denote
that the action is used for the specific purpose ’purpose’.
In addition to these actions we introduce the permission and prohibi-

tion which is common in security and access control languages [OAS13];
[EW07]. The AAL syntax is as follows:

1. https://github.com/hkff/AccLab See Chapter 5 for more information.

https://github.com/hkff/AccLab
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PERMIT action // Permission
DENY action // Prohibition

Actions and authorizations (permissions/prohibitions) can be composed
with different boolean operators (AND, OR, NOT) and conditions (IF(...)

THEN {...}).

Example 1. The following example illustrates the basic usage of AAL.
We want to express the following policy : “Alice can read her data
that are managed by Bob, John cannot read Alice’s data, and if a vi-
olation occurs when Bob is audited Bob should inform Alice about the
violation.”
1 CLAUSE alice_policy (
2 // Allow alice to read ’aliceData’ from bob
3 PERMIT alice.read[bob](aliceData) AND
4 // Deny john to read ’aliceData’ from bob
5 DENY john.read[bob](aliceData)
6 // The agent auditor audit the agent bob
7 AUDITING auditor.audit[bob]()
8 // If a violation occurs, bob should notify alice about the

violation
9 IF_VIOLATED_THEN bob.notify[alice]("Data access violation")

10 )

One important point when we express policies and behaviors in gen-
eral is the notion of time, we need means to express that something will
always or never occur or will occur in the future, and also precedence be-
tween events (i.e. eventA occurs before eventB), thus we introduce the
following temporal operators: (ALWAYS, NEVER, SOMETIME, UNTIL, UNLESS).
The first three operators are unary and are used as follows: Operator

expression. ALWAYS and NEVER mean that expression will always/never
happens, SOMETIME means that the expression will occur at some point
in the future. UNTIL and UNLESS are binary operators and they are used
as follows: expression_{1} Operator expression_{2}. UNTIL means that
expression1 doesn’t occur before expression2, and UNLESS means that
while expression2 does not occur, expression1 have to.

In addition to linear discrete time (expressed in AAL using previously
presented operators), AAL proposes a limited way to express real-time
constraints using predicates expressing dates. Real-time operates only
on atomic actions and not on composed expressions.

// Real time action
Action [BEFORE | AFTER time]

Here time is a string that represents time in days/months/years (for
example "2 days", "3 months", "1 year").
We also need a means to express quantifier constructions that are

present in natural language (e.g. Aristotle syllogism), thus introduce ∀x.(Humanx
⇒ Mortalx
∧HumanSocrates)
⇒ MortalSocrates

the quantification operators (FORALL and EXISTS).
FORALL x:Type // Universal quantifier
EXISTS x:Type // Existential quantifier
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Example 2. Let’s enrich the previous example with the new concepts:
1 CLAUSE alice_policy (
2 // For all data where the subject is alice
3 FORALL x:Data
4 IF(x.subject == alice) THEN {
5 // Allow alice to read her data from bob
6 PERMIT alice.read[bob](x) AND
7 // Deny john to read alice’s data from bob
8 DENY john.read[bob](x) AND
9 IF(alice.requestDeletion[bob](x)) THEN {

10 SOMETIME(bob.delete[bob](x))
11 }
12 }
13 AUDITING auditor.audit[bob]()
14 // If a violation occurs, bob should notify alice about the

violation
15 IF_VIOLATED_THEN bob.notify[alice]("Data access violation")
16 )

We need to declare the different actors of the system with their ser-
vices and the used data. Bellow the AAL syntax of declarations.Note that some

elements are
optional, details
are presented in

Listing 1.

AGENT name TYPES(type1 ...) REQUIRED(service1 ...)
PROVIDED(service1 ...)

DATA name TYPES(type1 ...) REQUIRED(service1 ...)
PROVIDED(service1 ...)

SERVICE name TYPES(type1 ...)

Example 3. To complete the previous example with declarations:
1 AGENT alice TYPES(User) REQUIRED(read) PROVIDED(notify)
2 AGENT bob TYPES(Provider) REQUIRED(read notify) PROVIDED()
3 AGENT john TYPES(User) REQUIRED(read) PROVIDED()
4 SERVICE read
5 DATA aliceData TYPES(Data)

Finally, we want to express properties on actors and objects, for that
we introduce a special operator (@) called predicate.

// Predicate syntax in AAL
@<predicate_name>(parameters)

Example 4. In this example we illustrate the use of predicates. Aris-
totle syllogism: All men are mortal and Socrates is a man, therefore
Socrates is mortal.
1 AGENT Socrates
2 CLAUSE syllogism (
3 ALWAYS(
4 FORALL x:Human @Mortal(x) AND
5 IF (@Human(Socrates)) THEN { @Mortal(Socrates) }
6 )
7 )

With these constructions we cover all data privacy concepts such as
access control, data retention, data transfer, etc.
We presented the main concepts of AAL language which allow you to

write basic AAL programs. The minimal grammar of AAL in listing 1
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regroups all the concepts presented previously. The grammar is writ-
ten here in a pseudo Backus–Naur form. ::= represents a definition
of an expression, | a disjunction, * a repetition, [...] an optional
expression, { } are used for grouping, and // for comments.

Listing 1 – AAL core grammar
1 // A. AAL program an AAL program is

composed of a set
of clauses and
declarations.

2 AALprogram ::= {Declaration | Clause}*
3

4 // B. Declaration part
5 Declaration ::= AgentDec | ServiceDec | DataDec
6 ServiceDec ::= SERVICE Id TYPES(type*)
7 AgentDec ::= AGENT Id [TYPES(type*)]
8 [REQUIRED(service*) PROVIDED(service*)]
9 DataDec ::= DATA Id TYPES(type*)

10 [REQUIRED(service*) PROVIDED(service*)]
11

12 // C. Clause part
13 Clause ::= CLAUSE Id(Usage [Audit Rectification])
14 Usage ::= ActionExp
15 Audit ::= AUDITING ActionExp
16 Rectification ::= IF_VIOLATED_THEN ActionExp
17

18 // D. Action expression (usage, audit and rectification expressions)
19 ActionExp ::= Action | NOT ActionExp | Modality(ActionExp)
20 | Condition | ActionExp1 BinaryOp ActionExp2
21 | Author | Quant ActionExp | Predicate
22 | IF (ActionExp1) THEN ’{’ ActionExp2 ’}’
23

24 // E. Action expression components
25 Action ::= agent1.service’[’agent2’]’(Exp) [Time] [Purpose]
26 Time ::= {AFTER | BEFORE} date
27 Purpose ::= PURPOSE(Id)
28 Exp ::= Variable | constant | Id.attribute | Predicate
29 Predicate ::= @Id(arg*)
30 Author ::= {PERMIT | DENY} Action
31 Condition ::= [NOT] Exp | Exp1 {== | !=} Exp2
32 | Condition1 {AND | OR} Condition2
33 Quant ::= {FORALL | EXISTS} Variable
34 Variable ::= Id : type
35 Modality ::= ALWAYS | NEVER | SOMETIME | NEXT
36 BinaryOp ::= AND | OR | UNTIL | UNLESS
37 Id, type, service, agent, arg, constant, attribute, date ::= literal

Next we present the semantics of our language and we show how an
AAL program is interpreted.

3.2.2 Temporal logic: semantics for AAL language

In order to interpret our language AAL, we use the linear temporal
logic [Fis08] with quantified data. FOTL is not a decidable logic, nor a
semi-decidable [Fis11] but there are several fragments with decidable
properties. We particularly focus on the monodic fragment [HWZ00] free variable : a

variable that is
used by a
quantifier

which supports a semi-decidable decision method. Such method is pre-
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sented in [LH10] and has been implemented in a theorem prover TSPASS
that we use in our implementation. The monodic condition states that
any temporal formula has, at most, one free variable.e.g. this formula is

not monodic :
∀x.∃y.G(Px ∧ Py)

whereas those
formulas are

monodic :
∀x.∃y.G(Px)

G(∀x.∃y.Px ∧ Py)

The syntax of FOTL is described in Table 4. We recall that for read-
ability the operators : ©, �, ♦ (respectively next, always, future)
are often written X, G and F.

ψ ::= true | false | ¬ψ | ψ(∨| ∧ | ⇒)ψ | ϕ (propositional formulas)

| ∃x.ψ | ∀x.ψ (first-order formulas)

| ©ψ | �ψ | ♦ψ | ψUψ | ψRψ (temporal formulas)

ϕ ::= P (t∗) (predicates)

Table 4 – First Order Linear Temporal Logic syntax

Compared to LTL, FOTL introduces the universal quantifier (∀) and
the existential quantifier (∃). For detailed semantics of LTL/FOTL the
reader can refer to [Fis11]; [Dix+07]; [Pnu77].

Interpreting AAL expressions over FOTL. AAL language is close
to FOTL which makes the translation straightforward. Indeed, boolean/tem-
poral operators, predicates, and constants are directly translated into
FOTL.

Definition 1. Let I the interpretation function of AAL expressions over
FOTL which is inductively defined as follows :
An action is interpreted as a predicate: service(actor1, actor2, I(∆ �

exp)) where the parameter can be either a reference to quantified vari-
able, a constant or a predicate which has a direct translation into FOTL.
An action with a purpose is interpreted using the implication between
the interpretation of the action and the purpose (the action implies the
purpose). A typed variable is interpreted as a predicate type(id).
For expressions with a quantified variables the translation depends

on the quantifier operator. With a universal quantifier, the expression
is interpreted using an implication: ∀var.id.I(∆ � var)⇒ I(∆ � Exp).
For example, the following AAL expression FORALL x:Data alice.read[bob

](x) is translated as follows: ∀x.Data(x)⇒ read(alice, bob, x). For the
existential quantifier we use the duality with the universal quantifier
which gives: ∃var.id.I(∆ � var) ∧ I(∆ � Exp).

The expression IF exp1 THEN exp2 is translated with a simple implica-
tion: I(∆ � exp1) ⇒ I(∆ � exp2). Finally for each action we add the
corresponding authorization link that states that if we have an action
we have the permission for this action:

(always (![x, y, z] (action(x, y, z) => Paction(x, y, z)) ))
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I(∆ � literal) = literal

I(∆ � agent1.service[agent2](Exp)) = service(agent1, agent2,I(∆ � Exp))

I(∆ � NOT ActionExp) = ¬I(∆ � ActionExp)

I(∆ � Modality(ActionExp)) = I(∆ � Modality)(I(∆ � ActionExp))

I(∆ � ActionExp1 BinaryOp ActionExp2) = I(∆ � ActionExp1)I(∆ � BinaryOp)I(∆ � ActionExp2)

I(∆ � PERMIT Action) = PI(∆ � Action)

I(∆ � DENY Action) = ¬PI(∆ � Action)

I(∆ � Action PURPOSE(p)) = I(∆ � Action)⇒ P

I(∆ � FORALL Variable. ActionExp) = ∀I(∆ � Variable)⇒ I(∆ � ActionExp)

I(∆ � EXISTS Variable. ActionExp) = ∃I(∆ � Variable) ∧ I(∆ � ActionExp)

I(∆ � Id(arg1 .. argN)) = Id(arg1,..argN)

I(∆ � IF(ActionExp1) THEN {ActionExp2}) = I(∆ � ActionExp1)⇒ I(∆ � ActionExp2)

I(∆ � Id:Type) = Id(Type)

I(∆ � Id.attribute) = attribute(Id)

I(∆ � Condition1 AND Condition2) = I(∆ � Condition1) ∧ I(∆ � Condition2)

I(∆ � Condition1 OR Condition2) = I(∆ � Condition1) ∨ I(∆ � Condition2)

I(∆ � NOT Exp) = ¬I(∆ � Exp)

I(∆ � Exp1 == Exp2) = EQUAL(I(∆ � Exp1), I(∆ � Exp2))

I(∆ � Exp1 != Exp2) = ¬EQUAL(I(∆ � Exp1), I(∆ � Exp2))

I(∆ � Modality) = Modality

I(∆ � BinaryOp) = BinaryOp

I(∆ � AgentDec) = always(∧i1..n Ti(Id)T∈AgentDec.TYPES)

I(∆ � DataDec) = always(∧i1..n Ti(Id)T∈DataDec.TYPES)

I(∆ � ServiceDec) = always(∀x,y,z.Id(x, y, z)⇒ PId(x, y, z))

Table 5 – AAL semantics over FOTL

In addition, translating AAL expressions needs to generate some con-
text. First we generate an invariant for the equality predicate in order
to use the comparison between actors:

// Identity
(always ![a] (Actor(a) => EQUAL(a, a))) &
// Comparison
(always ![a, b]

((Actor(a) & Actor(b) & EQUAL(a, b)) => EQUAL(b, a)))

Next we generate knowledge for the types:
// Type habitation
(?[a] Type(a)) & (?[a] always(Type(a)))
// Subtyping relation
(?[a] Type(a) & (![x] SubType(x) => Type(x)))

Finally, for each declared actor we add subject:
(?[d] subject(d, actorName))
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Note that our equality is defined without transitivity property due
to FOTL theoretical limitations.
The interpretation function I always terminates if the program is

syntactically correct since all expressions lead to atoms.

Example 5. Bellow the translation into FOTL of the AAL program pre-
sented in example 3.
1 %%% Action authorizations
2 always (
3 ( ![x, y, z] (notify(x, y, z) => Pnotify(x, y, z)) ) &
4 ( ![x, y, z] (read(x, y, z) => Pread(x, y, z)) )
5 ) &
6

7

8 %%% Actors knowledge
9 always (

10 // AGENT alice TYPES(User) REQUIRED(read) PROVIDED(notify)
11 ( User(alice) ) &
12 // AGENT bob TYPES(Provider) REQUIRED(read notify) PROVIDED()
13 ( Provider(bob) ) &
14 // AGENT john TYPES(User) REQUIRED(read) PROVIDED()
15 ( User(john) )
16 )
17 &
18

19 // FORALL x:Data
20 ((![x] ( Data(x) =>
21 // IF(x.subject == alice) THEN
22 ( ((subject(x, alice)) =>
23 // PERMIT alice.read[bob](x) AND
24 (((Pread(alice, bob, x) &
25 // DENY john.read[bob](x) AND
26 ~Pread(john, bob, x)) &
27 // IF (john.read[bob](x)) THEN
28 ((read(john, bob, x)) =>
29 // SOMETIME( bob.notify[alice]("Data access") )
30 (sometime(notify(bob, alice, CTS0)))))))) )) ))

AAL clause semantics. In this part we provide the interpretation
of an AAL clause (ue, ae, re).
In a given state there are two cases: either the usage is satisfied or

violated and in this last case if an audit happens a rectification should
be done. This leads to the following formula:

I(∆ � Clause(ue, ae, re)) =
G(I(∆ � ue) ∨ (¬I(∆ � ue) ∧ (G(I(∆ � ae)⇒ I(∆ � re)))))

This is not the unique possible interpretation, many variations on the
rectifications or the audit events are possible. For instance, the rectifi-
cation can hold few times after violation occurs.
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I(∆ � Clause(ue, ae, re)) =
G(I(∆ � ue) ∨ (¬I(∆ � ue) ∧ (G(I(∆ � ae)⇒ F (I(∆ � re))))))

3.2.3 Expressing security and privacy in AAL

AAL addresses privacy and security concepts described in Chapter 2.
Authorizations are expressed using permissions in AAL, and obligations
using SOMETIME action in AAL. The purpose is explicitly managed using
PURPOSE keyword in actions.
Concerning data retention, data transfer, user consent and notifi-

cations, these concepts can be handled using AAL actions, since AAL
provides actions based on uninterpreted predicates.
For example, data retention is handled using the delete action with

a time period. The following example means that “the Hospital should
delete Kim’s data within two months”.

Listing 2 – Data retention example
1 ALWAYS (FORALL a:Data
2 IF(d.subject==Kim) THEN {
3 hospital.delete[hospital](d) BEFORE "2 months"})

Data transfer and location controls are easily expressed as soon as we
defined geographic areas as a partition of types. Once declared a type in
AAL the prefix @ denotes the associated type predicate. The example
below states that “Hospital is allowed to transfer only to European
countries”.

Listing 3 – Data transfer example
1 ALWAYS (FORALL d:Data FORALL target:Agent
2 IF(@Europe(target)) THEN {PERMIT Hospital.transfer[target](d)})
3 AND
4 ALWAYS (FORALL d:Data FORALL target:Agent
5 IF(NOT @Europe(target)) THEN {DENY Hospital.transfer[target](d)})

Listing 4 – Data subject explicit consent example
1 FORALL d:data
2 IF(d.subject==Kim) THEN {
3 (NOT Hospital.process(d)) UNTIL Kim.giveConsent[Hospital](d)}

Listing 5 – Breaches notification example
1 CLAUSE kim_policy (
2 FORALL d:data
3 IF (d.subject==Kim) THEN {
4 PERMIT Kim.read[bob](aliceData) AND ... }
5 AUDITING auditor.audit[hospital]()
6 IF_VIOLATED_THEN Hospital.notify[Kim]("Data access violation")
7 )
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3.3 Handling accountability at design time

Historically in software development security issues were addressed
at the end of the software development life cycle, probably by lack of
time or means, this leads to situations where security issues are not
patchable at all. Thus it is important to handle security issues at an
earlier stage of the development life cycle, and the same remark is
valid for privacy and accountability. Note that we make a distinction
between accountability at design time and accountability by design.
An accountable system by design requires extra specially on the logs
collection for the audit [BLM14]. In this part we consider the design of
accountability systems. We propose to define a system’s design based
on components diagram.

3.3.1 Accountable design

We enrich classic component design notations from UML V2, and
we propose a set of guidelines to evaluate the suitability of the design
regarding accountability. A system is composed of components repre-
senting agents or processes. These components provide services (called
provided services) and require services (called required services) from
other components. We attach an AAL clause to each component.

Principle for accountable design. The main principle for our ac-
countable component design which is also shared with rules in security
and privacy policies, is that a clause associated to a component/service
must respect the data’s user preference. The rationale for this is that,
in any execution state, the clause must logically imply the user prefer-
ences. To check the compliance of two accountability contracts we rely
on the following sufficient condition : if the provider provides stronger
usage, audit and rectification expressions than those expected by the
required side then the contract compliance is ensured. Furthermore, as
data can travel along a communication path (through several services
in a component design), we need a strict evolution. It means that along
communication paths, the accountability clauses are strengthened, oth-
erwise ensuring the user preferences will fail. Note that we do not
consider merge and split of data, we assume that data can be tracked
from its owner to any other agent which gets it. But we allow multiple
data and multiple paths in the component design.

We first state the main principle, thus the notion of accountable com-
ponent design as following:

Definition 2. (Preferences principle). The user preferences of any
data should be ensured by all the services of the component design.

The strict evolution of accountability clauses can be defined as follows.



3.4 checking and proving accountability 33

Definition 3. (Well-Connected property). In a well-connected compo-
nent design, on any communication a provided clause always is compli-
ant with the connected required clause. Also, in case where communica-
tion cycles exist in a component design, well-connection implies that all
clauses associated to the services in the cycle are logically equivalent.

Definition 4. (Preferences property). In a well-connected component
design, if the user preferences are compliant with the provided clause
at the input of a component design then the preferences principle is
satisfied. The preferences property provides guarantees on the data
circulating in the component design.

3.4 Checking and proving accountability

3.4.1 Model-checking versus proofs

In order to check to properties of an accountable design, our first
approach was to use the model-checking technique.
We rely on the mCRL2 toolset [Cra+13] and a translation of the com-

ponent design as well as the clauses. We choose this approach (rather
than the PrivacyLFP [DeY+10] or the Data Privacy Logic [PD11]) be-
cause there is an efficient toolset to support various analyses. The
mCRL2 language is devoted to the formal specification and analysis of
distributed systems [Gro+08]. The language is a process algebra allow-
ing data type specification in a functional style. The language supports
the expression of complex temporal properties involving time and data.
The mCRL2 branching temporal logic is based on the least and greatest
fixed points and allows quantifications on data. A toolset [Cra+13]
for specification, state space exploration and verification by model-
checking is available. It also provides the use of parameterized Boolean
equation system. From a specification and a formula expressing a prop-
erty, the toolset builds a parameterized Boolean equation system which
can be solved using the prover of the toolset.
We successfully implemented this approach, for more details the

reader can refer to [Ben+14]. However using a model-checker will force
us to define a more operational behavior for the agents. In addition,
we do not need a specific computation model and we must check for
the validity of clauses, that means clauses will be satisfied in any imple-
mentation model. Thus, our second approach is the use of the theorem
proving technique. We rely on the TSpass tool which is a prover sup-
porting the FOTL monodic class. It provides a semi-decision procedure
for satisfaction and validity. Regarding efficiency, the theoretical res-
olution complexity behind TSpass is elementary [HWZ00]. Despite
this, practical experiments have been successfully achieved with TeMP
in [FG+06] and TSpass is competitive and outperform TeMP on unsatis-
fiable problems [LH10]. Furthermore, [SD11] compares it with several
classic LTL model-checkers and sat solvers and concludes that no one



34 an abstract accountability language

dominates or solves all instances. This approach is presented in the
next section.

3.4.2 Clauses consistency and compliance

A component diagram can be translated into AAL, the components
are translated as actors with their corresponding provided and required
services. Policies attached to actors The links between services/compo-
nents are translated into validity checks.
After writing a clause we want to check if the clause is consistent,

and does not contain for instance a permission and a prohibition on
the same action. Then we want to check various properties on the
clause for example if an action or a set of action is permitted by the
clause. Finally, we want to compare two or more clauses, and check if
our clause is compliant with another.

Definition 5 (Clause consistency). Let C be a context and P an AAL
expression, proving that P is consistent is equivalent to check if C ∧P
is satisfiable.

Definition 6 (Clauses compliance). Let C be a context, P1 and P2 an
AAL expressions, proving that P1 is compliant with P2 is equivalent to
check that C ⇒ (P1 ⇒ P2) is valid. In order to check the validity we
apply the following checks:

1. C ∧ (P1 ∧ P2) is satisfiable.
2. C ⇒ (P1 ⇒ P2) is satisfiable.
3. ¬(C ⇒ (P1 ⇒ P2)) is unsatisfiable.

Example 6. Here is an example for the satisfiability and compliance
of three policies. The first one bob_policy is not satisfiable due to the
PERMIT and DENY on the same action with the same parameters (line 4).
The second and the third clauses provider_policy and alice_policy
are both satisfiable but not compliant with each other. The problem
here is that in the provider_policy we deny every actor from reading
his data (line 11) and in alice_policy we allow alice to read her data
(line 20).
1 CLAUSE bob_policy (
2 FORALL x:Data
3 PERMIT alice.read[bob](x) AND DENY alice.read[bob](x)
4 )
5 CALL sat_ue("bob_policy") // bob_policy clause is not satisfiable
6Note the use of a

new keyword
CALL to run

macros which is
explained in 3.5.

7 CLAUSE provider_policy (
8 FORALL x:Data FORALL y:Actor
9 IF(x.subject == y) THEN {

10 DENY y.read[bob](x) AND
11 DENY john.read[bob](x)
12 }
13 )
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14 CALL sat_ue("provider_policy") // provider_policy is satisfiable
15

16 CLAUSE alice_policy (
17 FORALL x:Data
18 IF(x.subject == alice) THEN {
19 PERMIT alice.read[bob](x) AND
20 DENY john.read[bob](x) AND
21 IF (john.read[bob](x)) THEN {
22 SOMETIME( bob.notify[alice]("Data access") )
23 }
24 }
25 )
26 CALL sat_ue("alice_policy")// alice_policy is satisfiable
27 // provider_policy is not compliant with alice_policy
28 CALL validate_usage("provider_policy" "alice_policy")

3.4.3 Conflict detection and localization

One of the limits of this approach is the difference between the nat-
ural language and the logic language which is very tricky. We know
that the natural language is not logic and is subject to multiple inter-
pretations. For instance, one source of misinterpretation is the logical
implication (⇒) which is the translation of IF THEN AAL operator. Let’s
demonstrate it with a concrete example.

Example 7.

1 CLAUSE bob_policy (
2 FORALL x:Data
3 IF(@login(alice)) THEN {
4 PERMIT alice.read[bob](x) AND DENY alice.read[bob](x)
5 }
6 )
7 CALL sat_ue("bob_policy") // bob_policy clause is satisfiable

Here we expect the consistency check on bob_policy clause to be
unsatisfiable, since we can easily see that we have a permission and a
prohibition on the same action, but the check will return a satisfiable
result! This is due to the semantics of the implication, if @login(alice)

false there is no need to check the expression inside the THEN. In order This is derived
from the truth
table of the logical
implication,
False ⇒? is
always True.

to detect such conflicts, we have some heuristics that apply different
checks using variations on the context. For example, the case of the
logical implication, we run a check by forcing the conditions to be true.
Another point about conflict detection is that we want to localize and

isolate the expression that makes the consistency or compliance checks
fail. We use two techniques: the first one is the masking technique
as in [Sch12], in which we mask sub-formulas consecutively in order
to isolate the conflict. The second one is the combining technique, in
which we combine a sub-formula with the rest of the clause.

Let us consider the following AAL example:
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Example 8.

1 /*** Kim’s user preference ***/
2 CLAUSE kim_policy (
3 FORALL file:data
4 IF(file.subject == kim) THEN {
5 PERMIT kim.read[cloudX](file)
6 AND cloudX.delete[file]() BEFORE "2 Years"
7 AND IF (cloudX.delete[file]()) THEN {
8 cloudX.notify[kim]("DATA DELETED")}
9 }

10 AUDITING DPA.audit[cloudX]()
11 IF_VIOLATED_THEN MUST(DPA.sanction[cloudX]())
12 )
13 /*** CloudX’s policy ***/
14 CLAUSE cloudX_policy (
15 FORALL a:agent FORALL file:data
16 IF(file.subject == a) THEN {
17 DENY a.read[cloudX](file)
18 AND cloudX.delete[file]() BEFORE "3 Years"
19 }
20 AUDITING DPA.audit[cloudX]()
21 IF_VIOLATED_THEN DPA.sanction[cloudX]()
22 )

Using the logical prover shows that the clause cloudX policy is not
consistent with Kim’s clause, but no more information is provided. Us-
ing our tool AccLab that implements combining and masking technique
precisely show to the user the following conflicts:
— PERMIT kim.read[cloudX](file) doesn’t match with DENY a.read[cloudX

](file).
— cloudX.delete[file]() BEFORE "2 Years" doesn’t match with cloudX.

delete[file]() BEFORE "3 Years".
— IF (cloudX.delete[file]()) THEN cloudX.notify[kim]("DATA DELETED")

is not guaranteed.

3.5 Advanced usage of AAL

We introduced some extensions to AAL for usability and practical
issues. Before we explain in detail the extensions, we present below the
complete grammar of AAL in Listing 6.

Listing 6 – AAL Grammar
1 // A. AAL program
2 AALprogram ::= Declaration | Clause | Comment
3 | Macro | MacroCall | Loadlib | LtlCheck
4 | CheckApply | Exec | Env | Behavior
5

6 // B. Declaration part
7 Declaration ::= AgentDec | ServiceDec | DataDec | TypesDec | VarDec
8

9 ServiceDec ::= SERVICE Id [TYPES(Type*)] [Purpose]
10 AgentDec ::= AGENT Id [TYPES(Type *)
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11 [REQUIRED(Service*) PROVIDED(Service*)]
12 DataDec ::= DATA Id TYPES(Type*)
13 [REQUIRED(Service*) PROVIDED(Service*)]
14 VarDec ::= Type Id [attribute(value*)]*
15

16 // C. Clause part
17 Clause ::= CLAUSE Id(Usage [Audit Rectification])
18 Usage ::= ActionExp
19 Audit ::= AUDITING ActionExp
20 Rectification ::= IF_VIOLATED_THEN ActionExp
21

22 // D. Action expression (usage, audit and rectification expressions)
23 ActionExp ::= Action | NOT ActionExp | Modality (ActionExp)
24 | Condition | ActionExp1 BinaryOp ActionExp2
25 | Author | Quant* ActionExp | Predicate
26 | IF (ActionExp1) THEN ’{’ ActionExp2 ’}’
27

28 // E. Action expression components
29 Action ::= agent1.service[’[’agent2’]’](Exp) [Time] [Purpose]
30 Purpose ::= PURPOSE(Id*)
31 Exp ::= Variable | constant | Id.attribute | Predicate
32 Predicate ::= @Id(parg*)
33 Author ::= {PERMIT | DENY} {Action | ActionExp}
34 Condition ::= [NOT] Exp | Exp1 {== | !=} Exp2
35 | Condition1 {AND | OR} Condition2
36 Quant ::= {FORALL | EXISTS} Variable [WHERE Condition]
37 Variable ::= Id : Type
38 Modality ::= ALWAYS | NEVER | SOMETIME | NEXT | MUST | MUSTNOT
39 BinaryOp ::= AND | OR | ONLYWHEN | UNTIL | UNLESS
40 Time ::= {AFTER | BEFORE} date
41

42 // F. Type system extension
43 TypesDec ::= TYPE Id [{EXTENDS | UNION | INTERSECT}(Type*)]
44 [ATTRIBUTES(Id*)] [ACTIONS(Id*)]
45

46 // G. Reflexion extension
47 Macro ::= MACRO Id [(param*)] (MCode)
48 MCode ::= ’"""’ Metamodel api + target interpreter
49 language code ’"""’
50 MCall ::= CALL Id(arg*)
51 LoadLib ::= LOAD STRING
52 Exec ::= EXEC MCode
53 Macro execution.
54 // H. FOTL checking extension
55 LtlCheck ::= CHECK Id(Check)
56 Check ::= ’"""’FOTL formula + clause(Id)[.ue | .ae | .re]’"""’
57 CheckApply ::= APPLY Id()
58 Direct call to LTL

prover.59 // I. Utils
60 Env ::= ENV MCode
61 // J. Templates
62 Template ::= TEMPLATE Id (param*) (ActionExp)
63 Behavior ::= BEHAVIOR Id (ActionExp)
64

65 Type, var, val, attr Id, agent, Constant, date ::= literal
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3.5.1 Usability and development extensions

AAL is a research language thus was designed some extensions to make
it developer-friendly in order to experiment new ideas easily.

Libraries. For readability and modularity, we may need to split our
AAL program into several separate files, thus we introduced the ability
to load external AAL files into another one. To load a library we use
the following syntax: LOAD "dir1.dir2....dirN.aal_file". We exploit thisNote that ’/’ are

replaced by ’.’ and
the file extension is

omitted.

mechanism to define a standard library for AAL language, which pro-
vides many useful constructions, such as macros and predefined types
(see below).

Macros. Macros allow to manipulate the AAL language and to per-
form different kinds of operations and checks on an AAL program. There
are several macros defined in AAL standard library that comes with
AccLab 2. Here is an example of a macro clause_fotl which is present
in the standard library and how we call it in an AAL program:Note that the

internal macro
language used here
is the language of
the AAL interpreter
in AccLab which is

written in
Python3.4.

/*
* clause_fotl
* :param c: a string that represents a clause name
* :effect: shows the FOTL translation
*/

MACRO clause_fotl(c) (
"""
cl = self.clause(c) // Get a clause by name
if cl is not None: // If the clause exists

print(cl.to_fotl()) // Show the clause FOTL translation
"""
)

// Call the macro on alice_policy
CALL clause_fotl("alice_policy")

Here is a more interesting example, we want to check that all actions
are called with a purpose.
MACRO check_purpose ()(
// Getting all used actions in the program
actions = self.aalprog.walk(filter_type=m_aexpAction)
// We loop over the actions
for x in actions:

if x.purpose is None:
// If there is no purpose in the current action, we print a

warning message
print("Warning : Action " + str(x.action) + " is used without a

purpose !")
)

Another possibility is to execute a code directly while the program
is being parsed. The syntax is as follows:MACROS and

EXEC are
analogous to
functions and

lambda (without
parameters).

2. See Chapter 5 for more details.
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EXEC """ Same as the code used inside macros """

Checks. In an AAL program we can directly include FOTL formulas
which can be checked by the prover. In addition to FOTL, the following
commands are available:
— clause(c): will be replaced by the FOTL translation of the clause

c.
— clause(c).[ue/ae/re]: will be replaced by the FOTL translation of

the usage/audit/rectification part of the clause c.
— @verbose: shows the final translated formula.
Bellow a compliance check example: The syntax used

for FOTL is the
syntax accepted
by the prover.

// LTL check declaration
CHECK chk1 (

clause("kim_policy").ue => clause("cloudX_policy").ue
)

// Call the check
APPLY chk1()

Context. As the same principle of checks, the keyword ENV allows to
add FOTL formula into the translation context which is used when the
prover runs compliance and consistency checks.

Templates. In order to improve AAL usability for non specialists in
formal methods, we go further in assisting privacy and security officers
in writing policies with the help of dedicated templates.
A template, or a behavioral pattern, is a function which trans-

forms several AAL expressions into a more complex AAL sentence ex-
pressing a specific accountability practice. In other words, it allows to
replace simple predicates with complex AAL expressions.
The keyword TEMPLATE allows to define an expression, the predicate

@template allows to refer to a given template and the predicate @arg

allows to refer to a template argument.

// Template
TEMPLATE acc (ue:Behavior, ae:Behavior, re:Behavior) (

ALWAYS( @arg(AE) AND ALWAYS (@arg(UE) OR
((NOT( @arg(UE))) AND (ALWAYS ( IF(@arg(AE)) THEN { @arg(RE)})))))

)

// Expressions
BEHAVIOR b1 (

FORALL d:data FORALL a:Actor
// Allow users to read their data
IF (d.subject == a) THEN {

PERMIT a.read[css](d) AND DENY a.read[css](d)
} AND

)
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BEHAVIOR b2 (
dpa.audit[css](log)

)

BEHAVIOR b3 (
MUST(dpa.sanction[css](d) AND css.delete[css](d))

)

// Template instanciation
@template(acc, b1, b2, b3)

The template and the expressions can be stored in a separate AAL files,
and the instantiation will be done using the load keyword LOAD "template

file".

3.5.2 Extending authorizations

There are many cases where we need to specify complex authoriza-
tions which do not cover only actions but a chain of actions. For in-
stance we can allow some actions but at the same time prohibit a
specific chaining of these actions.
We extend our grammar as following:

Author ::= {PERMIT | DENY} {Action | ActionExp}

For instance consider the following example :

Example 9. We want to allow alice to modify secret data, to send
secret data but not to send modified secret data.
FORALL d:Secret
PERMIT alice.modify(d) AND
PERMIT alice.send[bob](d) AND
DENY (FORALL d:Secret alice.modify(d) AND SOMETIME alice.send[bob](d))

We extend our semantics to have two kinds of authorization, a sub
world for authorizations that are applied to expressions; and another
one for atomic actions.

Definition 7. The interpretation function I of AAL expressions over
FOTL is extended as follows:
For each action we add the corresponding authorization link that

states that if we have an action we have the permission for this action:
(always (![x, y, z] (action(x, y, z) => Paction(x, y, z)) ))

For each complex permission PERMIT (ActionExp) we generate a context
rule that links complex permissions and atomic permissions. This rule
has the following form:

// link between complex and atomic permissions
always (GPermit(ActionExp) => LPermit(ActionExp))

The function GPermit copies the ActionExp by replacing each action
with a unique permission (GPAction) in the global authorizations world.
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The function LPermit copies the ActionExp by replacing each action
with a unique permission (PAction) in the atomic authorizations world.

Next, we generate a context rule that links between expressions and
permissions:

// link between expressions and permissions
always (ActionExp => GPermit(ActionExp))

Finally, the complex permission is translated as follows:
GPermit(ActionExp)

I(∆ � PERMIT ActionExp) = GPermit(ActionExp)

I(∆ � DENY ActionExp) = ¬I(∆ � PERMIT ActionExp)

GPermit(∆ � Action) = GPI(∆ � Action)

GPermit(∆ � *) = I(∆ � *)

Table 6 – AAL extended authorizations semantics over FOTL

The translation of the example in Listing 9 gives:
(always

(![x, y, z] (modify(x, y, z) => Pmodify(x, y, z))) &
(![x, y, z] (send(x, y, z) => Psend(x, y, z)))

) &
// link between complex and atomic permissions

(always
![d] (Secret(d) => GPmodify(alice, alice, d) & sometime(GPsend(alice,

bob,d)))
=>
![d] (Secret(d) => Pmodify(alice, alice, d) & sometime(Psend(alice,

bob,d)))
) &
// link between expressions and permissions
(always

![d] (Secret(d) => modify(alice, alice, d) & sometime(send(alice, bob
,d)))

=>
![d] (Secret(d) => GPmodify(alice, alice, d) & sometime(GPsend(alice,

bob,d)))
) &
// FORALL d:Secret
(![d] (Secret(d) =>

// PERMIT alice.modify(d) AND PERMIT alice.send[bob](d) AND
Pmodify(alice, alice, x) & Psend(alice, bob, d) &

// DENY (FORALL d:Secret alice.modify(d) AND SOMETIME alice.send[
bob](d))
~(![d] (Secret(d) => GPmodify(alice, alice, d) & sometime(GPsend(
alice, bob,d))))

)
)
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3.5.3 AAL type system

As mentioned before, agents, services and data should be typed in
AAL with literals which actually refer to declared types in the program.
A type is defined by a unique identifier, a set of super types, a set of
attributes and a set of actions.

TYPE id EXTENDS(supertype1...supertypeN)
ATTRIBUTES(attribute1...attributeN) ACTIONS(action1...actionN)

The typing relation EXTENDS is translated in FOTL using the implica-
tion.

// Type habitation
?[a] (type(a)) &
// Subtyping relation
![x] (type(x) => supertype1(x) & type(x)...supertypeN(x))

Note that we can also define the negation, conjunction, and union
of type only with the EXTENDS operator using the implicational propo-
sitional calculus. We need only to define the bottom type (false) and
the top type (true). For more readability we introduced two operators
UNION and INTERSECT.

TYPE True
TYPE False

// T = Not A
TYPE A EXTENDS(False)
TYPE T EXTENDS(A)

// T = A & B
TYPE T INTERSECT(A B)

// T = A | B
TYPE T UNION(A B)

Bellow the semantics of the UNION and INTERSECT operators:

I(∆ � TYPE T INTERSECT(A B)) = (A⇒ (B ⇒ False))⇒ False

I(∆ � TYPE T UNION(A B)) = (A⇒ B)⇒ B

Table 7 – AAL union and conjunction type semantics over FOTL

In order to use a type checker, you have to add the following macro
call: CALL enable_type_checker() to your program. Before we present theType checker is

too strict,
disabling it by

default is a design
choice.

type system, let’s take a look at the following example:
TYPE Data
TYPE Secret EXTENDS(Data)
TYPE Public EXTENDS(Data)
SERVICE send TYPES(Secret)
AGENT alice
AGENT bob
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CLAUSE c1 (
// Allow alice to send to bob any public data
FORALL d:Public PERMIT alice.send[bob](d)

)

This AAL program is syntactically correct but semantically wrong, in
the sense that here we allow to use the send service with public data
but the service declaration shows that we can only use it with secret
data. Such kinds of errors can be detected easily and statically using a
type checker and without translating AAL into FOTL with its overhead.
Thus we introduce a simple type system to AAL and we focus mainly

on actions Action and expressions Exp.

T ::= A // Agent type
| S // Service type
| E // Expression

Γ ` s : S (s ⊆R agent1) ∧ (s ⊆P agent2) Γ ` e : E e ⊆S s
Action Γ ` Action : S + E

Γ ` s : S Γ ` a : A (s ∈ a.required) ∨ (s ∈ a.types.actions)
s ⊆R a Γ ` s ⊆R a : A + S

Γ ` s : S Γ ` a : A (s ∈ a.provided) ∨ (s ∈ a.types.actions)
s ⊆P a

Γ ` s ⊆P a : A + S

Γ ` e : E Γ ` s : S ∃ t/t ∈ e.types∧ t ∈ s.types
e ⊆S s Γ ` e ⊆S s : E + S

Γ ` Type : T
Variable Γ ` Variable : T

Γ ` Id : T attribute ∈ T.attributesId.attribute Γ ` Id.attribute : T

Table 8 – AAL type system

An action which has the form agent1.service[agent2](Exp) is well
typed if: (1) the service is declared in the required services of agent1

or is an action in the types of agent1; (2) the service is declared in the
provided services of agent2 or is an action in the types of agent2; (3) the
type of Exp is declared in types of service. An Id.attribute expression
is well typed if attribute is declared in the attributes of Id types.
The advantages of the type system are that we can detect and localize

precisely typing errors which may not be localized by our conflict local-
ization techniques. In addition we avoid the computational overhead
introduced by the translation to FOTL and prover runs.
When we apply typing rules to the previous example, the type checker

reports the following errors:
1. Agent alice uses the service send which is not required
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2. Agent alice uses the service send which is not provided by agent
bob

3. The service send is called with a non-compatible argument d.
Expected: { Secret } Found: { Public|Data }.

In order to solve type errors, first we need to complete the declara-
tions:

AGENT alice TYPES(Data) REQUIRED(send) PROVIDED()
AGENT bob TYPES() REQUIRED() PROVIDED(send)

For the third error, either we make the service send supports the type
Public SERVICE send TYPES(Secret Public) or we change the type of the
quantified variable to Secret or its subtypes FORALL d:Secret.
Typing the full AAL program is a part of our future work. This may

contribute to refining the conflict localization.

3.6 Conclusion and discussion

We presented AAL which is a formal language, close to natural lan-
guage that allows to express accountability policies. Several languages
exist for specifying privacy preferences and policies, but some of them
are less readable for non-specialist users (e.g. lawyers, privacy officers),
some of them lack a formal modal and others doesn’t cover all account-
ability requirements.
For instance the language eXtensible Access Control Markup Lan-

guage (XACML) based on XML language and AAL are quite generic on
resources and subjects. XACML allows also the use of generic actions
(AnyAction), which can be easily implemented in AAL using macros.
Unlike XACML, AAL defines a true negation (a permission is a nega-
tion of a prohibition, and it allows negative obligations), and explicit
quantifiers. AAL enables subtype hierarchy for resources, subjects, roles,
actions and provides attributes but also dynamic roles and roles shar-
ing . The main strength of XACML is its policy enforcement. OurXACML can

manage these
features by using

an external
component

approach for enforcement is based on a monitoring technique which is
presented in the next chapter.
The authors in [BCM14] advocate for strong accountability. The

authors put forward strong accountability as a set of precise legal obli-
gations supported by an effective software tool set. They demonstrate
that the state of the art in terms of technology is sufficient to ensure
the notion of accountability by design. Our work is a corner stone
in the direction of strong accountability, an attempt to connect real
accountability obligations with software design. There are theoretical
formal models like [Ced+05]; [EW07]; [Jag+09] but they do not pro-
vide concrete languages and means to verify accountability at design
time.
Another related work is [TDW13] which focuses on purpose restric-

tions governing information use. This paper provides a formal seman-
tics for purpose restrictions which is based on simulating ignorance of
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the prohibited information. Our notion of purpose is simply an infor-
mation string associated with an action.
The most closely related work is [ZWL10], authors provide a formal

service contract for accountable SaaS services. However, the decid-
ability requirement, the contract language and the reasoning technique
are different. It proposes a formal model, called OWL-SC, and a rep-
resentation of the contracts based on ontology mixing two languages
OWL-DL and SWRL. The paper also presents a translation of these
contracts into colored Petri net. This allows to check properties and to
reason on the contracts with Colored Petri nets (CNP) tools.
Several approaches to contract specification define specific modalities

generally classified into permission or authorization, obligation, and
prohibition. There are mainly three approaches: relying on deontic
logic as in [PD11], using a pure temporal approach as we did, or a
mix of both, for instance [BBF06]. Deontic logic appears as a natural
choice. However it is subject to a few confusing paradoxes. Mixing
both results in complex languages for which effective tool support is
lacking. We rely on a uniform approach based on temporal operators
and specific actions for permissions and prohibitions. This makes the
result more understandable and we can reuse existing tools: provers or
model-checkers.
As far as we know our work is the first providing a first-order lin-

ear temporal formula expressing accountability. But there are several
points and open issues, starting with the usability of the language, even
if AAL is close to natural language it still requires to have some techni-
cal background to use it. Recently we added the notion of templates
in AAL which facilitates policy writing for the privacy officers, but we
still need to develop more templates to cover more use-cases.
Concerning the semantics of AAL, a major limitation is the monodic

condition that represents an expressiveness limitation, but we do not
face this limitation in real use-cases. In the future we expect to relax
the monodic constraint. For instance, (always FORALL X,Y P(X, Y)) =>

FORALL X,Y always P(X, Y)) is a valid property. While the conclusion of
the right-hand side is not monodic, it can be proved with the left-hand
side. Also a true equality is missing in the language semantics.
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“I Never Think of the Future. It Comes Soon Enough.”

— Albert Einstein

4.1 Introduction

Checking the consistency and compliance of policies is necessary but
not sufficient, indeed we need to be able to enforce or to check that
the real execution of a system matches with the specified behavior in
the policy language. In order to achieve this goal, we can either en-
force the policy by synthesizing a program or use runtime verification
to monitor the system and report policy violations. In this chapter we
first talk about the runtime verification of temporal logic properties
and the problems introduced due to our application context, then we
introduce a new logic called FO-DTL3 and we show how it answers
our needs. Next we present the monitoring technique and the con-
struction of FO-DTL3 monitors. Finally, we show the link between
AAL and FO-DTL3 and how we can monitor AAL policies. The monitor
implementation and the tools developed around this contribution are
presented in Chapter 5.

47
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4.2 From global to local specifications

When we design a system it’s easier to specify the behavior of the
system with a global vision, but when we move to the implementation
phase we need to specify a local behavior and check that the composi-
tion of these behaviors respects the global behavior defined previously.
Enforcing an accountability policy has to do with runtime monitoring

which is a topic discussed in several articles. For instance, [Sen+04]
presents a temporal language with past operators and the synthesis of
monitor in a distributed context. This approach proposes a temporal
language able to express a local policy for distributed agents and then
the translation of these policies into automata for their monitoring.
Our purpose is slightly different since we are interested in enforcing
accountability policies and not only to monitor safety properties.
This approach can be reused as a basis, for its language and synthesis

algorithm. However, it seems really more difficult to directly translate
our AAL sentences into distributed programs. One reason is that we
have a logical approach with a global meaning. It means that we have
two problems to solve: agent distribution and monitor synthesis.
Thus a pragmatic view is to consider first a projection step then

a synthesis step. The projection step is responsible to transform one
global AAL sentence involving several agents into a set of local AAL
sentences (one for each agent). The synthesis step is to transform a
local AAL sentence into a program or a monitor for enforcement of the
local policy. To illustrate the projection, let us consider the global
sentence in the following Listing:
FORALL d:Data ALWAYS
IF (d.subject=Kim) THEN {
(PERMIT Kim.read(d) AND PERMIT Kim.write(d) AND PERMIT Kim.input[

CloudX](d)
AND PERMIT CloudX.store(d) AND PERMIT CloudX.notify[Kim](d)
AND DENY CloudX.write(d) AND PERMIT CloudX.read(d)
AND (Kim.write(d) UNTIL Kim.input[CloudX](d))
AND (IF CloudX.store(d) THEN CloudX.notify[Kim](d)))

}

// Kim projection
FORALL D:Data ALWAYS
IF (D.subject==Kim) THEN
(PERMIT Kim.read(D) AND (PERMIT Kim.write(D) AND (PERMIT Kim.input[

CloudX](D)
AND ((Kim.write(D) U Kim.input_R[CloudX](D)) AND CloudX.notify_P[Kim

](D)))))
}

// CloudX projection
FORALL D:Data ALWAYS
IF (D.subject==Kim) THEN {
(PERMIT CloudX.store(D) AND (PERMIT CloudX.notify[Kim](D)
AND (DENY CloudX.write(D) AND (PERMIT CloudX.read(D) AND (F Kim.

input_P[CloudX](D)
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AND (IF CloudX.store(D) THEN CloudX.notify_R[Kim](D)))))))
}

We can produce the two local AAL sentences of the Listing above by
projecting the original sentence to the agents Kim and CloudX. The
new services with suffixes R and P represent the emission and the receipt
associated with each global service interaction. It is possible to verify
logically that the composition of the local AAL sentences, taking account
the needed synchronizations, ensures the original global behavior.
Thus systematizing the above projection principle it seems possible

to automatically project the global AAL sentences on each agent. Then
automata synthesis from a local projection can be done using a tech-
nique similar to the one exposed in [Sen+04]. However, such an ap-
proach is only suitable with synchronous agents, that is agents have a
common clock and there is a central mechanism to ensure communica-
tions and synchronization. But this is not adequate with distributed
asynchronous agents evolving at their own speed and if the network
latency or the criticality of some applications could impact the global
system behavior. The problem of the behavioral synthesis in a true dis-
tributed context has been studied for a long time ago, especially in the
context of web services choreography. The problem is complex (for in-
stance, with synchronous communications is known not to be tractable)
in general but various sufficient conditions to get it decidable have been
established [KP06]; [GS12]; [McN10]; [RS14] among others. There are
several issues to solve before implementing one of these solutions. The
first issue is to choose adequate conditions for our context and to define
the projection algorithm. Note that all the previous quoted work has
been done in the context of linear temporal logic, thus generally we
need to extend it to take into account first-order structures. The sec-
ond issue is to extend the automata synthesis for LTL or Past Linear
Temporal Logic (PLTL) to take into account our first-order logic.

In the following we will present how we resolve these issues using a
logic called FO-DTL3 .

4.3 Verification of temporal logic at runtime

In model checking and theorem proving we need to check all the
possible executions of a system, whereas in runtime verification we
only need to consider one execution sequence which is a finite prefix
of a potentially infinite trace. Our goal is to be able to monitor AAL
policies, thus we consider the following points:

1. Monitoring first order temporal logic: since the AAL language is
based on first order temporal logic, we need to be able to monitor
the first order case.

2. Logic over infinite traces: while standard model checking deals
with infinite traces, runtime verification considers finite traces.
Thus we need to mimic the LTL semantics over finite traces.
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3. Distributed system architecture: in our context we deal with sev-
eral actors which are distributed over a system, we need a means
to handle this distribution.

4. Communications: in the real world, actors can communicate with
each other using synchronous or asynchronous communications,
thus our monitoring technique should be able to manage both
cases.

5. Safety and liveness: safety properties describe that something bad
should never happen (e.g G(¬bad)), and liveness properties de-
scribes that something good will always happens (e.gG(F (good))).

For more details on runtime-verification the reader can refer to the
surveys [GP10]; [BB13].

4.3.1 Monitoring the first order case

Several works exist in literature that tackle monitoring of first or-
der logics. In [Cho95] authors present a technique to verify tempo-
ral constraints specified using metric past temporal logic. Basin et
al. [BKM10] extend Chomicki’s monitor with bounded future opera-
tors using the same logic. Authors in [HV08] present a technique to
generate Buchi automaton on the fly for a logic with quantifications like
in [BKV13]. There are several works that deal with parametric moni-
toring which offers support for monitoring traces carrying data [CR09];
[All+05]; [Sto10], even if it is not based on first-order logic. In [BKV13]
authors propose monitoring technique for a first order logic in which
quantified variables range over elements that occur at the current po-
sition of the trace.

4.3.2 Finite trace interpretation and Three-Valued-Logic

The semantic of LTL and FOTL are generally interpreted over infi-
nite traces. As mentioned before, in the case of runtime verification a
monitor has to check if the current trace is a prefix of an infinite trace.
In this context we need to distinguish between the fact that a prop-
erty is not yet satisfied, or if it is falsified. As mentioned in [BLS10],
monitoring a property leads to three different states:

1. The property is satisfied after a finite number of steps.
2. The property is falsified for every possible continuation.
3. The observed prefix allows different continuations leading to ei-

ther satisfaction or falsification.
This can be represented using a Three-Valued-Logic family, in which
an evaluation leads to (true, false or ?). This logic is a part of the
many-valued logic family in which there are more than two truth values.
In [DGV13] authors present LDLf a linear dynamic logic on finite

traces which includes regular expressions, in order to overcome the
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expressiveness limits of LTLf over LTL on infinite traces. For example,
the formula ♦�ϕ that states in the future there exists a point where
ϕ holds till the end. This is equivalent to ♦(Last ∧ ϕ), i.e ϕ must
hold at the last event of the trace, and this differs from the semantics.
However in our case the use of Three-Valued-Logic solves the problem.
Indeed, the previous formula will be evaluated to ? if ϕ doesn’t hold
at the last point of the trace instead of false. We are able to mimic
the semantic of LTL over infinite traces with finite traces. In [BLS10]
the authors give a review of LTL-derived logics for finite traces from
a runtime-verification perspective and they also present a technique to
generate an automaton for LTL3.

4.3.3 Dealing with distribution

Having several components to monitor in the context of a real dis-
tributed system, generally they communicate with each other with asyn-
chronous communications and the notion of time differs for each com-
ponent (i.e each component have his own local clock). The simplest
approach is to have a central monitor that collects traces from other
monitors and performs a computation to check the given formula. But
exchanging messages for monitoring purpose only introduces an over-
head in network communications which can be exponential in size in
the number of events [Sen+04].
In [Sen+04] authors introduces PT-DTL (Past distributed temporal

logic) which is an extension of PLTL (Past linear temporal logic). The
benefits of this logic is that we can monitor a global property using lo-
cal monitors at each actor of the system. The translation between the
past and future is possible using U and R operators [LS95]. However
this approach handles only safety properties. In [BF11] the authors
present a decentralized LTL monitoring technique based on decentral-
ized progression which needs to send messages for monitoring purpose
only.

4.4 FO-DTL3 : a first order temporal distributed logic

In [SS14] the authors tackle the runtime verification in distributed
asynchronous systems. In their approach they extend PTLTL [Sen+04]
and LTL3 [BLS11]. Here we introduce a logic called FO-DTL3 (Three-
Valued First Order Linear Distributed Temporal Logic), this logic is a
mix between LTLFO [BKV15] and DTL [Sen+04].

FO-DTL3 logic
inheritance
diagram.4.4.1 The syntax of FO-DTL3

In FO-DTL3 we find the classical propositional and LTL operators.
We also have the operator @ called the location operator that allows
distribution i.e a formula with the form @kψ means that the formula
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ψ is distributed on agent k. In addition to uninterpreted predicates
P (t∗) we allow interpreted predicates I(t∗) and functions f(ϕ∗). The
syntax of FO-DTL3 is described in Table 9.

ψ ::= @iψi (Top level formula)

ψi ::= true | false | ¬ψi | ψi(∨| ∧ | ⇒)ψi | ϕ (propositional formulas)

| ©ψi | �ψi | ♦ψi | ψi U ψi | ψi R ψi (temporal formulas (future))

| ∃V.ψi | ∀V.ψi (first-order formulas)

| @kψk (distribution operator)

ϕi ::= P (t∗) | I(t∗) | f(ϕ∗i ) (predicates and functions)

| C | V (constants and variables)

Table 9 – First Order Distributed Linear Temporal Logic

The top level FO-DTL3 formula @iψi where i is an actor, is always
defined on a local actor. For example, the property “whenever a pres-
ence is detected by the sensor, the alarm should ring” is expressed as
follows:
in the point of view of the alarm:

@alarm(@sensor(detected)⇒ ring)

or in the point of view of the sensor:

@sensor(detected⇒ @alarm(ring))

Note that since we use local monitors (presented later in this chapter),
we do not allow free variables outside localization operators. Let us
consider the following example:

@alarm(∀x@sensor(P (x))⇒ ring)

The formula P (x) ⇒ ring is monitored locally, and the domain of
the variable x is not known inside sensor. To do that, we have to
synchronize the domains of quantified variables between each actor,
which introduces a communication overhead.

4.4.2 Semantics of FO-DTL3

FO-DTL3 is interpreted over infinite traces. This logic extends LTLFO
that differs from FOTL in that the quantified variables range over the
current element of the trace instead of the whole trace. Before we
present the semantics of FO-DTL3 we introduce some concepts and
definitions of DTL from [Sen+04]; [SS14].

Definition 8 (Last known position). Let a, b ∈ Agents, w ∈ Traces:

lasta(w, b, h) = k
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means that agent a at the position h of its execution knows that k is
the last known position of agent b on its execution.

Definition 9 (Known prefix). Let a, b ∈ Agents, w, u ∈ Traces :

knownb(w, h) = (ua0 , ua1 , . . . uan)

such as ∀a ∈ Agents, ua = wa0..k if k = lastb(w, a, h) is defined.

Which means that agent b at the position h of its execution knows a
prefix of the execution trace ua of all agents a where the prefix size is
k which is the last known position of agent a by b.

Let i ∈ Agents, πi is the execution trace of agent i and p a position
in the trace πi, the semantic of a local FO-DTL3 formula is defined as
follows:

(πi, p) � true
def⇔ true

(πi, p) � false
def⇔ false

(πi, p) � ¬ψ
def⇔ ¬((πi, p) � ψ)

(πi, p) � (ψ1 ∨ψ2)
def⇔ (πi, p) � ψ1 ∨ (πi, p) � ψ2

(πi, p) � (ψ1 ∧ψ2)
def⇔ (πi, p) � ψ1 ∧ (πi, p) � ψ2

(πi, p) � ϕ
def⇔ ϕ(πi(p))

(πi, p) � ∃x.ψ def⇔ ∃x ∈ U .((πi, p) � ψ)
(πi, p) � ∀x.ψ def⇔ ∀x ∈ U .((πi, p) � ψ)
(πi, p) � Xψ

def⇔ ((p+ 1) < |πi|) ∧ ((πi, p+ 1) � ψ)
(πi, p) � ψ1Uψ2

def⇔ ∃q.(p ≤ q < |πi|) ∧ ((πi, q) � ψ2) ∧ (∀q′.(p ≤ q′ < q)⇒
((πi, q′) � ψ1))

(πi, p) � ψ1Rψ2
def⇔ (∀q.(p ≤ q < |πi|)⇒ ((πi, q) � ψ2)) ∨ ∃q.(p ≤ q < |πi|)

∧((πi, q) � ψ1) ∧ (∀q′.(p ≤ q′ < q)⇒ ((πi, q′) � ψ2))

(πi, p) � Gψ
def⇔ ∀q.(p ≤ q < |πi|)⇒ ((πi, q) � ψ)

(π, p) � Fψ
def⇔ ∃q.(p ≤ q < |πi|) ∧ ((πi, q) � ψ)

(πi, p) � @xψ
def⇔ (πx, k) � ψ where k = lasti(πi, x, p)

def⇔ knowni(πi, p) � ψ

Table 10 – The semantics of FO-DTL3

4.5 FO-DTL3 monitoring

Overview. We recall that in our context a system is composed of
several agents that communicate with each other by exchanging mes-
sages. We call an actor, an agent in the system with a reference monitor
attached to it.
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Definition 10 (System actor). An actor a of the system is defined as
follows:
RMa={agent, ψ, w,M,Σ, θ} where:
— agent is the name of monitor’s actor;
— ψ the main FO-DTL3 formula to monitor;
— w a infinite trace;
— M the main reference monitor;
— Σ sub formulas from other actors to monitor;
— θ a set of {SEND/RECEIVE/INTERNAL} events that corre-

spond respectively to (emitted, received, internal ) messages by
the actor.

For each agent i in the system we attach a reference monitor RMi,
which monitors a formula ψi. We extract the sub formulas of ψi that
are inside a localization operator @ and we distribute these formulas on
the corresponding remote actor. More formally we have the definition
that follows (the expression @i

jψx denotes a remote formula ψx specified
by actor i on actor j.):
∀i ∈ agents.∀@i

jψjn ∈ ϕi where ϕi = {@i
jψj0,@i

jψj1, . . .@i
kψkn} :

RMj [Σ] = RMj [Σ] ∪ {ψjn}
Let us consider a simple ping-pong example to illustrate the monitor-

ing principle: we have two agents bob and alice that communicates
with each other using actions send, reply. bob wants to monitor the
property that states: if bob sends a ping message to alice, then alice
should reply to him with a pong message.

@bob(F (send(bob, alice, ping)⇒ F (@alice(reply(alice, bob, pong))))

Generating the monitors for this formula gives the following configu-
ration:

1. on actor bob: one monitor that monitors the main formula:
F (send(bob, alice, ping)⇒ F (@alice(reply(alice, bob, pong))))

2. on actor alice: one sub monitor that monitors the formula:
reply(alice, bob, pong) for bob.

Details on how actors exchange information will be discussed in the
next sections.

4.5.1 Monitors construction

In the following we present the technique to monitor FO-DTL3 for-
mula. First we explain the principle of the progression technique [BK98];
[Zha+10].

Concept. We use the formula progression technique also called rewrit-
ing technique, the principle is to split a given formula into two formulas,
the first expresses what needs to be satisfied at the current event and
the second one expresses what needs to be satisfied in the next events
(future).
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From classical semantics to progression. Starting from the clas-
sical semantics of LTL3, we want to express inductively an LTL3 for-
mula at state n depending on an LTL3 formula at state n+1. For
example, G(ψ)π,n is expressed inductively by ψπ,n ∧ G(ψ)π,n + 1, where Note that these

two notations
G(ψ)π,n and
(π, n) � Gψ are
equivalent.

ψπ,n is the formula that we need to satisfy at the current step and
G(ψ)π,n+1 is the formula that we need to satisfy in the future. Below
the proof of this transformation:

Proof. (π, n) � Gψ
def⇔ ∀q.(n ≤ q < |π|)⇒ ((π, q) � ψ)⇔

we split the ≤ into < and =
∀q.(n < q < |π|)⇒ ((π, q) � ψ) ∧ ∀q.(n = q < |π|)⇒ ((π, n) � ψ)⇔
we use the equivalence n < q ≡ n+ 1 ≤ q
∀q.(n + 1 ≤ q < |π|)⇒ ((π, q) � ψ) ∧ ((π, n) � ψ)⇔
(π, n + 1) � Gψ ∧ ((π, n) � ψ)

Following the same principle we derive the new semantics for the five
LTL operators (for the other operators the semantic form does not
change)

(Xψ)π,n
def⇔ ψπ,n + 1

(ψ1 U ψ2)π,n
def⇔ ψ2π,n ∨ (ψ1π,n ∧ (ψ1 U ψ2)π,n + 1)

(ψ1 R ψ2)π,n
def⇔ ψ1π,n ∨ (ψ2π,n ∧ (ψ1 R ψ2)π,n + 1)

(Gψ)π,n
def⇔ ψπ,n ∧ G(ψ)π,n + 1

(Fψ)π,n
def⇔ ψπ,n ∨ F(ψ)π,n + 1

Table 11 – The progression semantics of LTL operators

Proof.
Next operator.
(π, n) � Xψ

def⇔ ((n + 1) < |π|)∧ ((π, n + 1) � ψ)⇔ (π, n + 1) � ψ

Future operator.
(π, n) � Fψ

def⇔ ∃q.(n ≤ q < |π|)⇒ ((π, q) � ψ)⇔
∃q.(n < q < |π|)⇒ ((π, q) � ψ) ∨ ∃q.(n = q < |π|)⇒ ((π, n) � ψ)⇔
∃q.(n + 1 ≤ q < |π|)⇒ ((π, q) � ψ) ∨ ((π, n) � ψ)⇔
(π, n + 1) � Fψ ∨ ((π, n) � ψ)

Until operator.
(π, n) � ψ1U ψ2

def⇔ ∃q.(n ≤ q < |π|) ∧ ((π, q) � ψ2) ∧
∀q′.(n ≤ q′ < q)⇒ ((π, q′) � ψ1)⇔
(∃q.(n = q < |π|) ∧ ((π, n) � ψ2) ∨ ∃q.(n < q < |π|) ∧ ((π, q) � ψ2)) ∧
(∀q′.(n = q′ < q) ⇒ ((π, n) � ψ1) ∧ ∀q′.(n < q′ < q) ⇒ ((π, q′) �
ψ1)⇔
(∃q.(n = q < |π|) ∧ ((π, n) � ψ2) ∨ ∃q.(n + 1 ≤ q < |π|) ∧ ((π, q) �
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ψ2)) ∧
(∀q′.(n = q′ < q) ⇒ ((π, n) � ψ1) ∧ ∀q′.(n + 1 ≤ q′ < q) ⇒ ((π, q′) �
ψ1))

⇔ we apply the distributive law of conjunction
(∃q.(n = q < |π|) ∧ ((π, n) � ψ2)) ∧ (∀q′.(n = q′ < q) ⇒ ((π, n) �
ψ1) ∧ ∀q′.(n + 1 ≤ q′ < q)⇒ ((π, q′) � ψ1) ∨
(∃q.(n + 1 ≤ q < |π|) ∧ ((π, q) � ψ2)) ∧ (∀q′.(n = q′ < q) ⇒ ((π, n) �
ψ1 ∧
∀q′.(n + 1 ≤ q′ < q)⇒ ((π, q′) � ψ1)

⇔ we apply the associative law of conjunction
((π, n) � ψ2) ∨ e(((π, n) � ψ1) ∧ (π, n + 1) � ψ1U ψ2)

Release operator. The proof can be derived directly from the Until
proof using the equivalence ψ1Rψ2 ≡ ¬(¬ψ1U¬ψ2)

(π, n) � ψ1R ψ2
def⇔ ((π, n) � ψ1) ∨ (((π, n) � ψ2) ∧ (π, n + 1) �

ψ1R ψ2)

Below we present the general progression function.

Definition 11 (LTL3 progression function). Let ψ,ψ1, ψ2 ∈ LTL3 and
an event σ ∈ Σ. The progression function Pltl : LTL3 × Σ → LTL3 is
inductively defined as follows:

Pltl(>, σ) = >
Pltl(⊥, σ) = ⊥

Pltl(p ∈ AP, σ) = >, if p ∈ σ,⊥ otherwise
Pltl(¬ψ, σ) = ¬3 Pltl(ψ, σ)

Pltl(ψ1 ∨ψ2, σ) = Pltl(ψ1, σ) ∨3 Pltl(ψ2, σ)

Pltl(ψ1 ∧ψ2, σ) = Pltl(ψ1, σ) ∧3 Pltl(ψ2, σ)

Pltl(G ψ, σ) = Pltl(ψ, σ) ∧3 G(ψ)

Pltl(F ψ, σ) = Pltl(ψ, σ) ∨3 F(ψ)

Pltl(ψ1 U ψ2, σ) = Pltl(ψ2, σ) ∨3 (Pltl(ψ1, σ) ∧3 ψ1 U ψ2)

Pltl(ψ1 R ψ2, σ) = Pltl(ψ1, σ) ∨3 (Pltl(ψ2, σ) ∧3 ψ1 R ψ2)

Pltl(X ψ, σ) = ψ

Table 12 – Progression algorithm for LTL_3

The truth tables of the operators ∧3,∨3,¬3 are defined below:
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ψ1 ∧3 ψ2 > ⊥ _
> > ⊥ ψ2

⊥ ⊥ ⊥ ⊥
_ ψ1 ⊥ ψ1 ∧ ψ2

ψ1 ∨3 ψ2 > ⊥ _
> > > >
⊥ > ⊥ ψ2

_ > ψ1 ψ1 ∨ ψ2

ψ ¬3ψ

> ⊥
⊥ >
_ ¬ψ

In addition we define a reduction function eval3 (which is derived
from LTL3 semantics) that is applied on the rewritten formula:

eval3(ψ) =


> if ψ = >
⊥ if ψ = ⊥
? otherwise

Example 10. Let us consider the formula ψ = F (p ∨ F (q)) and the
prefix u = ({a,b} {q} {b}) of an infinite execution trace w.

1. At the first step, we have ψ = F (p ∨ F (q)) and the event {a,b}.
We apply the progression function:
Pltl(ψ, {a, b}) = Pltl(p∨3 F (q))∨3 F (p∨3 F (q)) = F (q)∨F (p∨3
F (q)) and eval3(F (q) ∨ F (p∨3 F (q))) gives ?.

2. At the second step, the new rewritten formula is now:
ψ = F (q) ∨ F (p∨3 F (q))

we apply the progression function:
Pltl(ψ, {q}) = Pltl(F (q))︸ ︷︷ ︸

true∨3F (q)

∨3 Pltl(F (p∨3 F (q)))︸ ︷︷ ︸
p∨3q∨3F (q)∨3F (p∨3F (q))︸ ︷︷ ︸
true

and eval3(true) is >.
3. At the third step, the new rewritten formula is true which always

gives >, so there is no need to continue the progression.

4.5.2 First order and distribution extensions

4.5.2.1 Monitoring FOTL

The first order introduces variables, interpreted predicates, functions
and two operator ∀ and ∃. Note that the progression function does
not consider the existential quantifier, since it is expressed with the
universal quantifier with the equivalence relation: ∃x.ψ ≡ ¬(∀x.¬ψ).
We recall that this extension is based on [BKV15] which imposes the
restriction that the quantified variables range over the current element
of the trace instead of the whole trace.

Definition 12 (FOTL progression function). Let ψ ∈ FOTL3, an
event σ ∈ Σ and ξxi←vi a valuation that associates the value vi to the
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variable xi. The progression function for a FOTL formula, is obtained
by extending Pltl with the rule that follows:

Pfotl(∀x.ψ, σ) = Pfotl(∧i=0..n
3 (ψ, ξxi←vi), σ)

Pfotl(∧i=0..n
3 (ψ, ξxi←vi), σ) = ∧i=0..n

3 Pfotl((ψ, ξxi←vi), σ)

A universal quantified formula ∀x.ψ is rewritten as a conjunction of
formula ψ with an evaluation for each x that appears in the event σ.
The conjunction of valued formulas is rewritten by a conjunction of the
progression for each valued formula. The interpreted predicates and
functions are computable thus they do not appear in the progression
function.
The truth table of ∧i=0..n

3 (ψi) is as follows:

∧i=0..n
3 (ψi) =


> if ∀i = 0..n . ψi = >
⊥ if ∃i = 0..n . ψi = ⊥
∧i=0..n

3 (ψi) otherwise

Example 11. Let us consider the formula ψ = G(∀x : T . P (x)) and
the prefix
u = ({P(b)} {T(a), P(a)} {T(b)}) of an infinite execution trace w.

1. At the first step, ψ = G(∀x : T . P (x))
we apply the progression function:
Pfotl(ψ, {P (b)}) = Pfotl(∀x : T . P (x))︸ ︷︷ ︸

∧i=0..0
3 (∅)

∧3 G(∀x : T . P (x))

︸ ︷︷ ︸
true ∧3 G(∀x:T . P (x))≡G(∀x:T . P (x))

and eval3(G(∀x : T . P (x))) =?.
2. In the second step, the rewritten formula remains the same as

the original, but this time the valued formula conjunction that
results from the progression changes since we have T (a) in the
current event.
Pfotl(ψ, {T (a), P (a)}) = Pfotl(∀x : T . P (x))︸ ︷︷ ︸

∧i=0..1
3 (P (a))

∧3 G(∀x : T . P (x))

︸ ︷︷ ︸
true ∧3 G(∀x:T . P (x))≡G(∀x:T . P (x))

Thus, the result remains the same because ∧i=0..1
3 (P (a)) is evalu-

ated to> which gives the same formula as in step 1, and eval3(G(∀x :
T . P (x))) gives ?.

3. The third step is similar to step2, but here ∧i=0..1
3 (P (b)) is evalu-

ated to ⊥ and this is because we check P (b) on the current event
only, if we consider the whole trace the result would be > since
P (b) appears in the first event of the trace.
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Pfotl(ψ, {T (b)}) = Pfotl(∀x : T . P (x))︸ ︷︷ ︸
∧i=0..1

3 (P (b))

∧3 G(∀x : T . P (x))

︸ ︷︷ ︸
False ∧3 G(∀x:T . P (x)) ≡ False

and eval3(False) is ⊥.

4.5.2.2 Monitoring DLTL

When we deal with distributed systems we face to a well-known issue
which is the causality preservation. As mentioned before, a common
solution is the vector clock algorithm. Here we use the knowledge
vectors inspired from [Sen+04] which are based on vector clocks.

Definition 13 (knowledge vector). Let KVi[xψ] denote an entry for
the remote formula ψ of agent x in the knowledge vector KV of agent i.
An entry KVi[xψ] contains a value (val) that represents the evaluation
of the remote monitor on x for the formula ψ which can be (>,⊥, ?),
and a sequence (seq) which represents the current step of the remote
monitor. Each actor updates its knowledge vector using the following
rules:

— INTERNAL: ∀ψj ∈ Σ. KVi[xψj
].val = eval3(ψj)

— SEND msg to x: KVi[xψj
].val = eval3(ψj)

— RECEIVE msg from x:
∀j if KVm[j].seq > KVi[j].seq then KVi[j]←− KVm[j]

We notice that the knowledge vectors are updated only if a message is
exchanged between actors, thus we do not introduce specific messages
used for monitoring purposes only, in order to avoid a communication
overhead in the network. Other solutions exist, for example we can
use a smart broadcasting by sending KV updates to other actors only
when the result changes (from ? to ⊥ or >).

Definition 14 (DTL progression function). The progression function
for a DTL formula, is obtained by extending Pltl with the rule that
follows:

Pdtl(@x(ψ), σ) = KV [xψ].val

Example 12. We take the ping-pong example presented previously
with the traces: ubob = ({send(bob,alice,ping)} {q} {p}) ualice = ({q}
{reply(alice,bob,pong)} {p}).

@bob(F (send(bob, alice, ping)⇒ F (@alice(reply(alice, bob, pong))))

The figure below illustrates the DTL monitoring of this example.
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Figure 3 – DTL monitoring example

Definition 15 (FO-DTL3 progression function). The progression func-
tion for an FO-DTL3 formula is obtained by combining Pdtl and Pfotl.

4.5.3 Monitor optimizations

The progression technique has the advantage to be close to the se-
mantic and it is more flexible than classical monitoring techniques since
the formula to monitor can be modified at runtime without any over-
head, which is useful when we monitor accountability policies i.e. the
monitored property can change if a violation occurs.
The disadvantage of the rewriting technique is that the progressed

formula can diverge and grow in size depending on the number of
events. For example, consider the formula G(a∧ F (b)) with the trace
a, a, a, . . . . Applying the progression technique for 3 steps gives the fol-
lowing rewritten formula: F (b)∧ (F (b)∧ (F (b)∧F (b)∧G(a∧F (b)))).
However as mentioned in [BF12], the addition of some practical simpli-
fication rules to the progression function usually prevents this problem
from occurring. In [She+14] authors used Fix-point reduction in order
to limit the size of the generated formula by progression. Formulas
that contains the operators U , R and G,F by extension are more likely
susceptible to lead to this problem, due to the expansion formula of
these operators. The principle of the Fix-point reduction of [She+14]
is as follows:

Theorem 4.1 (Fix-point Reduction). Let f(1) and f(2) formulas de-
fined recursively as follows:

f1(1) = ψ3 ∨ (ψ2 ∧ψ1) and f1(n) = ψ2n+1 ∨ (ψ2n ∧ f1(n− 1))
f2(1) = ψ3 ∧ (ψ2 ∨ψ1) and f2(n) = ψ2n+1 ∧ (ψ2n ∨ f1(n− 1))

When n > 1 and n > k then:
1. ψ2n+1 = ψ2k+1 ⇒ f1(n) ≡ f1(k)[⊥ /ψ2k+1]

2. ψ2n = ψ2k ⇒ f1(n) ≡ f1(k)[>/ψ2k]

3. ψ2n+1 = ψ2k+1 ⇒ f2(n) ≡ f2(k)[>/ψ2k+1]
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4. ψ2n = ψ2k ⇒ f2(n) ≡ f2(k)[⊥ /ψ2k]

Note that the progression formula of U and R operators, can be
written in f(1) and f(2) forms :

ψ1Uψ2 ≡ ψ2 ∨ψ1 ∧X(ψ1Uψ2)

ψ1Rψ2 ≡ ψ2 ∧ψ1 ∨X(ψ1Uψ2)

Following the same principle, the progression of the liveness formula
can be written in f(1) form : G(F (ψ)) ≡ ψ ∨ F (ψ) ∧X(G(F (ψ)))

Another drawback is that the rewriting technique doesn’t consider
the semantic level. For example, consider the formula F (a ∧ ¬a), an
optimized automaton based monitor can easily detect that the formula
is falsified, which is not the case of a monitor that uses the progression
technique since it operates on the syntactic level only. Here again, we
can introduce some simplification rules based on the semantics (which
also reduce the written formula). Below we present an extended version
of the simplification rules presented in [She+14].

1. ψ ∧¬ψ ≡⊥
2. (ψ1Uψ2) ∧ψ2 ≡ ψ2

3. (ψ1Uψ2) ∨ψ2 ≡ ψ1Uψ2

4. (ψ1Rψ2) ∧ψ2 ≡ ψ1Rψ2

5. (ψ1Rψ2) ∨ψ2 ≡ ψ2

6. (ψ1Rψ2) ∧ψ1 ≡ ψ1 ∧ψ2

7. (ψ1Uψ2) ∨ (ψ3U¬ψ2) ≡ >
8. (ψ1Rψ2) ∧ (ψ3R¬ψ2) ≡⊥

4.5.4 Monitor completeness and soundness

The progression formula is not complete [BLS10] thus we need to
combine it with a theorem prover. We experimented this approach
using the TSpass prover, even if it is more complete this approach is
less effective and time consuming.
Let’s consider the formula ψ = G(p∨¬p) with an infinite trace, inde-

pendently from the events in the trace, the formula will progress indef-
initely: true ∧3 true ∧3 · · · ∧3 G(p ∨ ¬p). We can prove co-inductively
that the previous formula is valid. The same behavior for the formula
ψ = F (p ∧ ¬p) which progresses indefinitely: false ∨3 false ∨3 · · · ∨3
F (p∧¬p) we can prove inductively that this formula is not satisfiable.
Thus, we propose the following changes to the initial progression

function:

Pltl(G ψ, σ) =


> if ψ is valid

⊥ if ψ is unsatisfiable

Pltl(ψ, σ) ∧3 G(ψ) otherwise

Pltl(F ψ, σ) =


> if ψ is valid

⊥ if ψ is unsatisfiable

Pltl(ψ, σ) ∨3 F(ψ) otherwise
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Pltl(ψ1 U ψ2, σ) =


> if ψ2 is valid

⊥ if ψ2 is unsatisfiable

Pltl(ψ2, σ) ∨3 (Pltl(ψ1, σ) ∧3 ψ1 U ψ2) otherwise

Pltl(ψ1 R ψ2, σ) =


> if ψ1 is valid

⊥ if ψ1 is unsatisfiable

Pltl(ψ1, σ) ∨3 (Pltl(ψ2, σ) ∧3 ψ1 R ψ2) otherwise

4.6 Monitoring AAL policies using FO-DTL3 .

We consider a ping-pong example, in AAL we have the following global
behavior:
ALWAYS ( IF(bob.send[alice]("ping")) THEN { MUST alice.reply[bob]("pong

")} )

We want to monitor the global property that says: whenever bob sends
a ping message to alice, then alice replies to him with a pong mes-
sage. First we translate the AAL formula into an FO-DTL3 formula,
the translation is similar to FOTL, except that we prefix the messages
with the localization operator @, which gives us the following formula:

G(@bob(send(bob, alice, ping))⇒ F (@alice(reply(alice, bob, pong))))

We choose for example to project the property on bob’s local monitor,
and we produce three monitors (one for each @ operator and a local
monitor for bob):
— Sub monitor 1 on bob: send(bob, alice, ping)
— Sub monitor 2 on alice: reply(alice, bob, pong)
— Main monitor on on bob: G(KV [1]⇒ F (KV [2]))
The actors are synchronized when they communicate with each other.

4.7 Conclusion

In this chapter we introduced a new logic called FO-DTL3 which is a
distributed first order temporal logic. We also presented a monitoring
technique based on rewriting formula.
In [Sen+06] authors present a specific temporal logic MTTL, to ex-

press properties of asynchronous multi-threaded systems. Its monitor-
ing procedure takes as input a safety formula and a partially ordered
execution of a parallel asynchronous system. Then it determines if runs
exist or not in the execution that violate the formula. Their monitors
are restricted to safety formulae but in our case we want to be able to
monitor liveness formulae (which are the most used in our use case).
Another difference is that they use a global trace and in our case we
assume that the system is not always able to collect a global trace.
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Other works like [GMM06] target distributed systems but do not fo-
cus on the communication overhead that may be induced by the moni-
toring. In [SS14] authors tackles the runtime verification in distributed
asynchronous systems. In their approach they extend PTLTL [Sen+04]
and LTL3 [BLS11]. They monitor LTL formula over a distributed sys-
tem using a Bushi automaton. In our approach, we monitor formulas
with the first order using the progression technique. However, we face
some limitations: we do not allow free variables outside localization
operators, otherwise we need to synchronize the domains of quantified
variables between each actor, which introduces a communication over-
head. Also the domain of quantified variables is limited to the current
event only, we do not consider the full trace from the beginning. The
synchronization of knowledge vectors only when actors communicate
with each other may introduce a small delay on monitoring results.
This can be fixed by forcing reference monitors to synchronize peri-
odically but it introduces a communication overhead. This overhead
can be reduced using heuristic analysis. Expressing AAL policies using
FO-DTL3 is relatively simple, since in AAL we describe abstract behav-
iors. The translation will be more difficult in the case of more complex
systems.
Finally, as seen before, the progression technique is not complete

and needs to be mixed with a theorem prover. Currently, we work on
a co-inductive monitoring technique in order to deal with this issue.
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“Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by

definition, not smart enough to debug it.”

— Brian Kernighan.

5.1 Introduction

In this chapter we present different tools that were developed in
the context of this thesis. This set of tools represents an end-to-end
accountability framework that helps to consider accountability in mod-
ern systems from the specification to the implementation. First we
present the accountability laboratory AccLab which helps users to de-
sign a consistent set of policies for a specific system, using the abstract
accountability component design and AAL language. Second we present
FodtlMon which is the implementation of the monitoring framework for
FO-DTL3 presented in Chapter 4. This tool is the core for two other
accountability tools: the first one is the AccMon framework (Account-
ability monitoring) that we present in Section 5.4. This framework
allows to monitor policies written in FO-DTL3 on real systems (web
applications, hardware, operating systems, etc). The second tool that
we present in Section 5.5 is PyMon which is a monitoring system for
Python. It allows to specify different properties on monitor them on
Python code and enforce Python type system with runtime verification.

65
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5.2 AccLab: an accountability laboratory

The idea behind AccLab was born at the beginning of this thesis
during a discussion with my director. At this time the language AAL
was just a prototype with a very minimal grammar. We wanted to
have a kind of sandbox or laboratory that allows us to develop policies
and see accountability in action, and thus we came up with the name
AccLab for Accountability Laboratory. The goal of AccLab framework
is to handle accountability from design time and to guide the developers
in the process of software development.
The first prototype of AccLab was developed since February 2014,

the back-end was written in Java, and the front-end in PHP/JavaScript
based on CODIAD (codiad.com) which is an open source web-based IDE.
The framework was reimplemented from scratch in August 2014 and
was released on github (github.com/hkff/AccLab) in February 2015
under GPL3 license. The last release of AccLab is version 2.2 which
was released on 23 July 2017. The AccLab has 4870 Source lines of
code (sloc) for the core and 6800 sloc for the UI. Now the back-end is
written in Python3 and the front-end in JavaScript based on dockspawn
(dockspawn.com) which is a web- based dock layout engine released
under MIT license.

5.2.1 Framework presentation

AccLab workflow. We first introduce the workflow in AccLab illus-
trated by Figure 4. (1) First the system architect designs the system
with all the actors and their communications using the abstract compo-
nent design; (2) next, the privacy officer writes accountability policies
using the abstract accountability language AAL; (3) with the support
of an expert, the privacy officer checks the consistency and the compli-
ance of the AAL policies and modifies the AAL clauses in order to obtain
a coherent set of policies; (4) after that, they can perform simulations
to see if everything works as expected; (5) finally,they can generate ma-
chine readable policies or monitoring specifications with the assistance
of a developer.

Figure 4 – AccLab workflow

codiad.com
github.com/hkff/AccLab
dockspawn.com
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Framework architecture. Figure 5 shows AccLab global architec-
ture. The system architecture component diagram is translated au-
tomatically into AAL declarations, policies and obligations in natural
language are translated manually into AAL policies. After that we per-
form a type analysis on the AAL code, then the AAL code is translated
automatically into FOTL formulas. We check the consistency and the
compliance of the policies using a prover (TSPASS). The simulation en-
gine uses AAL code and agents behaviors in order to run the simulation
(that can be connected with external tools). The export to machine
level can be either to export the policies into A-PPL [Azr+15] (an
extension of XACML) code and send them to the A-PPL engine, or gen-
erate a specification for AccMon framework (Accountability monitoring
framework see Section 5.4).

Figure 5 – AccLab architecture

5.2.2 AccLab IDE

As mentioned before the AccLab IDE is a web interface that provides
a component diagram editor and tools to work with AAL language.
The Figure 6 shows the main interface of AccLab.
1. Project explorer tree that contains files and folders of the workspace.

A version control (SVN) is integrated into AccLab workspace.
2. Diagram editor: the diagram editor allows to create actors with

their provided and required services, connect them with each
other and create AAL policies. It also allows to perform checks
on AAL policies and to control agents in the simulation mode.
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Figure 6 – AccLab UI (component diagram view)

3. Output: shows the compilation results and logs.
4. Tools: contains different tools to manipulate the component dia-

gram/AAL editors.
5. Diagram components: contains the elements to add in the dia-

gram.
6. Outline: shows the elements contained in the current component

diagram.
The Figure 7 shows the AAL view of AccLab, the gray panel (1) is the

AAL editor that provides syntax highlighting, syntactic and semantic
linter and auto-completion. The output (2) contains the compilation
results.

Figure 7 – AccLab UI overview
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5.2.3 Simulation and monitoring

One idea behind AccLab is to see accountability in action, one way
to achieve that is to be able to run simulations. In this part we present
the simulation model of AccLab and the usage of a real monitoring
engine.

5.2.3.1 Simulation model

Below we present the simulation model of AccLab. Each agent in the
system is wrapped by a reference monitor which acts as a proxy and
intercepts all incoming and out-coming messages of an agent, reference
monitors communicates with each other via a component that simulates
the network.

Figure 8 – AccLab simulation model

Definition 16 (Basic communication protocol). The general commu-
nication schema is as follows: an actor performs a local action and
produces a message to another actor.

ACTOR1
local action−−−−−−−−−−−−→

Produced message
ACTOR2

The detailed communication using the reference monitors is as fol-
lows: the actor A1 want to send a message action to the actor A2, The
actor A1 performs a local action that produces a messageMSG(action)

which is intercepted by his reference monitor RM1 that logs and checks
if it is a legitimate action, and forwards the message to the reference
monitor RM2 of the actor A2 that performs the same checks as RM1
but on his own policy and forwards the message to A2.

A1
action−−−−−−−−→

MSG(action)
RM1

`CHK(action)−−−−−−−−−→
MSG(action)

Net −→ RM2
`CHK(MSG(action))−−−−−−−−−−−−−−→

MSG(action)

A2

Reference monitor. As said before, in our model each agent is
wrapped by a reference monitor. An agent which is not wrapped is
considered as an intruder in the system. In the following we expose the
main ideas to design our reference monitors.
In [Sen+04] authors present three key guiding principles to design

their monitoring algorithm:
1. A local monitor should be fast, so that monitoring can be done

online.
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2. A local monitor should have little memory overhead, in particu-
lar, it should not need to store the entire history of events on a
process.

3. The number of messages that need to be sent between processes
for the purpose of monitoring should be minimal.

In [And74] authors define a secure reference monitor in terms of
satisfying three criteria:

1. Non-Bypassability: a reference monitor is always invoked during
each communication.

2. Tamperproofness: a reference monitor cannot be modified by
unauthorized agents.

3. Verifiability: a reference monitor can be proved correct, with a
sufficient level of trust.

In the real world, non-bypassability and tamperproofness may not
be guaranteed due to technical breaches. Since we want to be close to
the real world, we allow these properties to be violated in our model.
We consider two types of agents :
1. Safe agent: under this hypothesis, controls performed by the ref-

erence monitor can be relaxed.
2. Unsafe agent: with this assumption the reference monitor inten-

sify its controls.

5.2.3.2 Attacks

Below we present some known attack principles and how we model
them in our simulation model.

Man-in-the Middle attack (MITM): which is one of the famous
attacks principles:

1. Between two reference monitors: The attack is performed on the
network, by intercepting messages between reference monitors 1.
This attack has many derivations depending on the monitors com-

RM1
`CHK(action)−−−−−−−−−−−−→

SIG(MSG(action))
Net

Attack−−−−−−−−→
MSG(action)

RM2

munication protocol, messages can be simply destroyed or altered.
We suppose that messages are encrypted by reference monitors.
Altering messages suppose for the attacker to know the encryp-
tion / decryption keys.

2. Between an agent and its reference monitor: in a realistic case
this scenario is totally relevant, if we consider that the agent and
its reference monitor are on the same physical machine and this
one can be infected by a virus. In the other case where the agent

1. In our model this attack can be simulated by the network.



5.2 acclab: an accountability laboratory 71

and its monitor are not on the same physical machine, it can be
a network attack.

A1
action−−−−−−−−→

MSG(action)
Attacker

6`CHK(action2)−−−−−−−−−−→
MSG(action2)

RM1
`CHK(action2)−−−−−−−−−−→
MSG(action2)

...

In this scenario the attacker intercepts messages coming from
the agent, supposing that it is a legitimate action the attacker
substitutes the action by another action which is not allowed, the
monitor could consider it as a violation and a rectification could
be triggered.

... −→ Net −→ RM2
`CHK(MSG(action))−−−−−−−−−−−−−−→

MSG(action)
Attacker

6`CHK(MSG(action2))−−−−−−−−−−−−−−−→
MSG(action2)

A2

Unsafe agent attacks.
1. Hidden channels: Considering this kind of attack we intentionally

violate the Non-Bypassability criteria of [And74]. In practice the
monitors don’t always control all communication channels, even if
it’s the case attackers can exploit trusted channels to dissimulate
its activities.

A1
action−−−−−−−−−−−−−−−−→

MSG(action(hiddenMsg))
RM1

`CHK(action)−−−−−−−−−→
MSG(action)

Net −→

RM2
`CHK(MSG(action))−−−−−−−−−−−−−−−−→

MSG(action(hiddenMsg))
A2

2. Controlling reference monitor: This is a less frequent attack since
it requires advanced technical skills to achieve it. The idea is to
alter the behavior of the reference monitor that can be done by
buffer over flow attacks, reverse engineering, etc.

A1
`attack−−−−−−−−−−−−−−−−−−−−−−→

MSG(EXEC(σ1→ϕ1 ? σ2[σ1/σ3]))
RM1

`CHK(action)−−−−−−−−−→
MSG(action)

...

3. Log corruption: Logs can be corrupted even if we could make the
assumption that logs are secure and encrypted. Logs can simply
be deleted, which can be problematic to perform an efficient au-
dit. Many other scenarios about log corruption are possible, an
attacker can delete his actions from logs or adds traces in logs of
actions that not have been executed, etc.
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5.2.4 Use case

In this part we present a use-case that illustrates the use of AccLab.
Figure 9 shows a component diagram that contains three actors (Alice,
Bob and Kim) and their policies.

Figure 9 – Use-case: AccLab component diagram editor

Bellow the declaration part of this system in AAL and actors policies.
1 // Services
2 SERVICE transfer
3 SERVICE read
4 SERVICE write
5 SERVICE delete
6

7 // Actors
8 AGENT Alice TYPES() REQUIRED(transfer) PROVIDED(read write delete)
9 AGENT Bob TYPES() REQUIRED(read write delete) PROVIDED()

10 AGENT Kim TYPES() REQUIRED(read write delete) PROVIDED()

1 /**
2 * Alice’s policy
3 **/
4 CLAUSE alice_policy (
5 // access control
6 (FORALL c:Customer FORALL d:data
7 IF (d.subject==c) THEN {PERMIT c.read[Alice](d) AND
8 PERMIT c.write[Alice](d) AND PERMIT c.delete[Alice](d)

})
9 AND

10 (FORALL a:Actor FORALL d:UserName
11 IF ((a==NSA) OR @Employee(a)) THEN {DENY a.read[Alice](d)})
12 AND
13 (FORALL a:Actor FORALL d:DisplayName
14 IF ((a==NSA) OR (@Employee(a))) THEN {PERMIT a.read[Alice](d)})
15 AND
16 // data transfer
17 (FORALL d:Sensitive FORALL a:Actor
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18 IF (@Europe(a)) THEN {PERMIT Alice.transfer[a](d)})
19

20 AND (FORALL d:Sensitive FORALL a:Actor
21 IF (NOT @Europe(a)) THEN {DENY Alice.transfer[a](d)})
22

23 // data retention
24 AND (FORALL ds:Sensitive MUST( Alice.delete[Alice](ds) BEFORE "6

month"))
25

26 AUDITING MUST(dpa.audit[Alice](log) BEFORE "1 month")
27 IF_VIOLATED_THEN MUST(dpa.sanction[Alice](d))
28 )
29

30 /**
31 * Bob’s policy
32 **/
33 CLAUSE bob_policy (
34 // access control
35 (FORALL e:Employee FORALL d:DisplayName DENY e.read[Alice](d)) AND
36 (FORALL e:Employee FORALL d:DisplayName PERMIT e.read[Alice](d))
37

38 // data transfer
39 AND (FORALL d:Sensitive FORALL a:Actor
40 IF (@Germany(a) OR @France(a)) THEN {PERMIT Alice.transfer[a](d

)})
41

42 // data retention
43 AND (FORALL ds:Sensitive MUST(Alice.delete[Alice](ds) BEFORE "4

month"))
44 )
45

46 /**
47 * Kim’s policy
48 **/
49 CLAUSE kim_policy (
50 // access control
51 (FORALL e:Employee FORALL d:UserName DENY e.read[Alice](d)) AND
52 (FORALL e:Employee FORALL d:DisplayName PERMIT e.read[Alice](d))
53

54 // data transfer
55 AND (FORALL d:Sensitive FORALL a:Actor
56 IF (@US(a)) THEN {PERMIT Alice.transfer[a](d)})
57

58 // data retention
59 AND (FORALL ds:Sensitive MUST(Alice.delete[Alice](ds) BEFORE "6

month"))
60 )

Checking policy’s consistency. The Figure 10 shows consistency
detection in Bob’s policy. The error here is that we allow and deny
employee to read their display name from Alice at the same time.
1(FORALL e:Employee FORALL d:DisplayName DENY e.read[Alice](d)) AND
2(FORALL e:Employee FORALL d:DisplayName PERMIT e.read[Alice](d))
3...
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Figure 10 – AccLab consistency detection

Checking policies compliance. The Figure 11 shows compliance
detection between Bob’s policy and Alice’s policy. Here Alice specifies
6 months for data retention period while Bob specifies 4 months.

1 // data retention
2 AND (FORALL ds:Sensitive MUST(Alice.delete[Alice](ds) BEFORE "6

month"))
3 ...
4 // data retention
5 AND (FORALL ds:Sensitive MUST(Alice.delete[Alice](ds) BEFORE "4

month"))

Figure 11 – AccLab compliance detection
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Simulation. The Figure 12 shows simulation environment of AccLab,
with terminals emulators for each actor.

Figure 12 – AccLab simulation

5.3 Fodtlmon: a monitoring framework for FO-DTL3

FodtlMon is the core monitoring framework for FO-DTL3 . The
first version was released on github (github.com/hkff/FodtlMon) on
February 2016 under GPL3 license. The last release of FodtlMon is
version 1.2 which was released on August 2016, this version includes
mainly monitor optimizations and some bug fixes. FodtlMon has 1600
sloc. The framework has a modular architecture, as the Figure 13 shows
at the top level we have the FO-DTL3 monitor which extends FOTL and
DTL monitors and both extends LTL monitor. Note that all monitors
use a Three-valued logic. The framework includes a server that exposes
a REST API to create and run monitors.

Figure 13 – Fodtlmon architecture

Below the concrete syntax of FO-DTL3 used in FodtlMon. G Always, F for
Future and X for
Next.

github.com/hkff/FodtlMon
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ψ ::= true | false | ψ | ψ(&|’|’| =>)ψ | ϕ (propositional formulas)

| Xψ | Gψ | Fψ | ψ U ψ | ψ R ψ (temporal formulas (future))

| ![x1 : type1 . . . xn : typen]ψ (existential quantifier)

| ?[x1 : type1 . . . xn : typen]ψ (universal quantifier)

| @name(ψ) (distribution operator)

ϕ ::= P (t∗) | I(t∗) | f(ϕ∗) (predicates and functions)

| C | V (constants and variables)

Table 13 – Fodtlmon syntax

A trace is a set of events and an event is composed of a set of predi-
cates.
event : {Predicate(args) | ....}
trace : {event1; event2; .... }

Example 13. Here a simple example using LTL monitor, -f specifies
the formula, -t the trace and -1 to use the LTL monitor.
python3 mon.py -f "F(w(’x’))" -t "{w(a)};{w(a)};{w(x)}; {w(a)}" -1
>> Result Progression: True after 3 events.

Below the available monitors:
— LTL monitor: -1 or - -ltl
— FOTL monitor: -2 or - -fotl
— DTL monitor: -3 or - -dtl
— FODTL monitor: -4 or - -fodtl
— Instrumented FOTL monitor: -5 or - -ifotl
The option –opt allows to specify the optimization to use (0: for

the simplification rules, 1: use the TSPASS solver, 2: to use Fixpoint
reduction and rules, 3: to use both simplification and Fixpoint)

Interpreted predicates and functions. We can define new inter-
preted predicates and functions, the general form is presented below:
# A predicate is a class that inherit from IPredicate
class my_predicate(IPredicate):

# We only need to redefine the eval function
def eval(self, valuation=None, trace=None):

# Call the eval function of the super class in order to handle
# the arguments correctly
args2 = super().eval(valuation=valuation, trace=trace)

# Make your custom computation

# Return a boolean value
return <boolean value>

# A function has the same structure as a predicate except that we
inherit from
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# Function class
class my_function(Function):

def eval(self, valuation=None, trace=None):
args2 = super().eval(valuation=valuation, trace=trace)
# Return a value of any type
return <value>

Example 14. We define the addition function and a predicate that
checks if a number is greater than zero.
# An interpreted predicate that checks if the given argument is greater

than 0
class Gtz(IPredicate):

def eval(self, valuation=None, trace=None):
args2 = super().eval(valuation=valuation, trace=trace)
if len(args2) > 0:

return int(args2[0].name) > 0
else:

raise Exception("Missing arguments")

# A function has the same structure as a predicate except
class Add(Function):

def eval(self, valuation=None, trace=None):
args2 = super().eval(valuation=valuation, trace=trace)
if len(args2) > 1:

return int(args2[0].name) + int(args2[1].name)
else:

raise Exception("Missing arguments")

Then we can use them in a formula:
python3 mon.py -f "Gtz(Add(’1’, ’2’))" -t "{}" -2
>> Result Progression: True after 1 events.

For more information please refer to the framework homepage.

5.4 Monitoring accountability with AccMon

The goal of AccMon is to provide means to monitor accountability
policies in the context of a real system. The first version was released
on github (github.com/hkff/AccMon) on February 2016 under GPL3
license. The last release of AccMon is version 1.1 which was released on
April 2016. This framework is based on Django which is an open-source
web application framework written in Python and it is based on the
model-view-controller (MVC) pattern. AccMon has 1800 sloc. AccMon
allows to specify policies that are applicable to network traffic, web
application code and external components via plugins.

Global architecture. As the Figure 14 shows, AccMon acts as a
middleware in the Django framework, it intercepts and logs client’s
HTTP requests, server’s requests processing and responses. On the
web application side the developer can configure the framework to in-
tercept function/method calls and databases access. AccMon can act

github.com/hkff/AccMon
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as a daemon and can be interconnected with external tools, the prop-
erty to monitor on the tool is defined in AccMon and the tool sends
log events to AccMon via HTTP calls. The framework can also be con-
nected with external hardware such as Arduino electronic boards (anArduino is an

open-source
prototyping

platform based on
easy -to-use

hardware and
software.

Arduino plugin was developed and is available in AccMon plugins).

Figure 14 – AccMon global architecture

Framework architecture The Figure 15 shows AccMon internal
architecture which is composed with:

1. Monitors: a monitor is defined by an id, an Fodtl formula and
control type (posteriori or realtime).
# Add a rule (monitor) in the system
Sysmon.add_<http|view|response>_rule(<name>, <Fodtl_formula>,

description="",
control_type=Monitor.MonControlType. <REAL_TIME|

POSTERIORI>)

2. Logging: a log attribute is defined by a name, a description and
an evaluation function that has five arguments (request, view,
args, kwargs, response) and which will be called automatically by
the framework if the logging attribute is enabled.
# Logging attribute evaluation function
def fx(request, view, args, kwargs, response):

# Do some computations
# ...
# Must return an Fodtl Predicate
return P("<name>", args=[Constant*]))

# Creating a logging attribute
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Figure 15 – AccMon architecture

lg = LogAttribute(<name>, description="...", enabled=<True|False
>, eval_fx= fx)

# Adding the logging attribute to the system
Sysmon.add_log_attribute(lg, target=Monitor.MonType.<HTTP|VIEW|

RESPONSE>)

3. Controls: defines security checks that can be extended by the
developer. Below an example of an input sanitizer in order to
prevent some XSS attacks:
class XSS(Control):

def prepare(self, request, view, args, kwargs):
data = getattr(request, request.method)

for key in data:
mutable = data._mutable

data._mutable = True
data[key] = sanitize(data.get(key))
data._mutable = mutable

4. Plugins: connect AccMon with external components which allows
to define monitors that monitor formulas for external software/
hardware in AccMon. The framework expose an interface in order
to receive events from external components.

Usage First we need to define what we want to log, AccMon comes
with predefined logging attributes that can be enabled and disabled at
runtime. The developer can also define custom attributes to log. Here
a basic example :
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# The evaluation function of the log attribute
# Here we return a predicate that looks like : USER(’user_name’)
def username(request, view, args, kwargs, response):

return P("USER", args=[Constant(request.user)])

# Create the log attribute
username_log = LogAttribute("UserName", enabled=True, eval_fx=username)

# Register the attribute in the monitoring system and make it available
# on HTTP request level.
Sysmon.add_log_attribute(username_log, target=Monitor.MonType.HTTP)

Next the developer can define custom interpreted predicates and func-
tions that will be used in the monitoring formulas (this feature is pro-
vided by FodtlMon). Here an example that checks if the corresponding
user (django user) of a given id has a certain username.
class UserEq(IPredicate):

# Compare the username of a user for a given id with a given
username.
# Usage in a formula : UserEq(usser_id, user_name)
def eval(self, valuation=None):

args2 = super().eval(valuation=valuation)
u1 = User.objects.filter(id=args2[0].name).first()
return u1.usernmae == args2[1].name

Finally, the developer defines monitoring rules using Fodtl formulas.
Here some examples :
— Add a rule on HTTP request:

# Add a rule on HTTP request
Sysmon.add_http_rule("UserProfile", control_type=Monitor.

MonControlType.REAL_TIME,
"G( ![id:UIDL uname:USER req:GET]( ReqIn(r\"taskManager/profile

/\", req) =>
UserEq(id, uname)) )" )

— System interfacing example: In this example each time the user
uses the change directory ’cd’ command of the operating system,
the system sends the event with the path to AccMon.
# Check if the path is not in /root/*
remote.Remote.add_rule("cdroot", "G( ![path:cd]( ~Regex(path, r

\"/root/*\")) )")

— Hardware interfacing example (Arduino) : In this example we
built a laser detector using an Arduino board, a laser diode and a
light sensor. Basically the laser diode points into the light sensor
which sends to the arduino board a value of the light intensity.
The code on the arduino board (written in C language) simplyThe AccMon

arduino plugin
read the events
from the serial

port and append
them to arduino
monitors traces.

reads values from the light sensor and print them in the serial
port, in the form of a predicate LIGHT(value).
# The light intensity should always be greater than 10
arduino.Arduino.add_rule("light", "G( ![x:LIGHT]( Gt(x, ’10’) ))"

)
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Screenshots. The Figure 16 presents an overview of the running
monitors with their name, location, status and violations.

Figure 16 – AccMon monitors overview

The Figure 17 shows a view of the traces collected at runtime, each row
contains the timestamp and a list of events.

Figure 17 – AccMon traces

5.5 PyMon: a python monitoring framework

We applied our monitoring framework to Python code. PyMon allows
to monitor function and method calls. The prototype of this framework
can be found on github (github.com/hkff/pymon) and it is released
under GPL3 licence. PyMon has 400 sloc.

github.com/hkff/pymon
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Function/method calls. For each function/method decorated with
mon_fx decorator, we attach a monitor that will be called on function
calls.
Here for example we want to ensure that, if one of the arguments is

a string then the function should return a string.
@mon_fx("G( (?[x:ARG] str(x)) => (![y:RET] str(y)) )")
def concat(a, b):

# Do obscure stuffs ...
return result

A type system for Python. Python is a dynamic type language,
with static type annotations on source code level support, but the an-
notations have no effects on runtime. Here a simple example of an add
function defined on integers:
# 1. Without type annotations
def add(a, b):

return a + b

>> add(1, "2")
>> "TypeError: unsupported operand type(s) for +: ’int’ and ’str’"

# 2. With type annotations
def add(a: int, b: int):

return a + b

>> add(1, "2")
>> "TypeError: unsupported operand type(s) for +: ’int’ and ’str’"

Calling the function with an integer and a string leads to a runtime
type error in both cases.
Using PyMon:

@SIG("(a:int, b:int) -> int")
def add(a, b):

return a + b

>> add(1, "2")
>> "Arguments type Error ! Expected <(int(’a’)) & (int(’b’))>"
>> "Found : [a: <int>, b: <str>]"

Currently we support all basic python type, classes and lists.

Distributed monitoring. As PyMon relies on FodtlMon engine, it
supports distributed monitoring. In the following example, the monitor
of the function foo checks that the argument a of the function bar is
always an integer.
@mon_fx(["G(int(’a’) & @bar(int(’a’)))"], name="foo")
def foo(a, b):

return a

@mon_fx("X(X(int(’a’)))", name="bar")
def bar(a, b):

return a
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5.6 Conclusion

In this chapter we presented a set of tools that handle accountability
at different levels of software development cycle. The goal is to have an
end to end framework that helps developers to integrate accountability
from the design time to the implementation.
Many improvements are possible, first we want to have a better syn-

ergy between the different tools, especially the link between AccLab
and AccMon. The gap between the abstract architecture and the imple-
mentation is huge, which makes an automated mapping very difficult.
However since AAL is an abstract language, we can easily describe techni-
cal behaviors close to the implementation, but we lose the link with the
abstract level. One approach can be refinement technique like Event-B
method. Refinement consists to represent systems at different abstrac-
tion levels and to use proof to verify consistency between refinement
levels.
Concerning AccMon, one major improvement is the synchronization

frequency between actors. Currently, the knowledge vectors are syn-
chronized only when actors communicate with each other. Another
point is about the monitoring engine FodtlMon, as we have seen in
Chapter 4 the monitoring technique is not complete and needs to be
coupled with a theorem prover. Currently, FodtlMon supports this
approach by using the TSpass prover, but calling a prover at each mon-
itoring step is not efficient and no heuristic was developed at this time.





Part III

ACCOUNTABIL ITY : BEYOND
ACCOUNTABIL ITY

This part concludes this manuscript but doesn’t conclude
this thesis. Protecting our privacy is more than a thesis
work, a computer science topic or a technical problem. It
is a way of thinking, a way of living, and it is about ethics
and human morality.

“ .”





6
CONCLUS ION AND FUTURE WORK

“To know, is to know that you know nothing. That is the meaning of
true knowledge.”

— Socrates

During this thesis I had the chance to work on interesting questions
and bring some solutions, but these solutions are partial and bring
many other questions.
We started with a simple question: how do we ensure that our pri-

vacy is guaranteed in the digital world? We answered by checking that
the privacy policies of the actors that handle our data are compliant
with the law and regulations. But from this answer two more issues
appear: (1) first regulations and the privacy policies that actors expose
publicly are written in natural language which makes the comparison
more complicated due to the ambiguity and the multiple interpretation
of natural language; (2) the second issue is that we have no guarantees
that the privacy policies are implemented correctly because their im-
plementation is written in machine language. From the second issue
another point is raised which is on the perfect security, we agree that
no system is perfectly secure so what happens if a violation occurs?
And who is the responsible regarding the law? This is where the ac-
countability enters in action, in the sense that we have to define who
is the responsible in case of violations and what we should we do. At
this point we answered the sub-issues but the two main issues are still
without an answer. To deal with the problem of natural language am-
biguity and the gap between natural language and machine language,
we designed a language close to natural language and formal enough
to be interpreted by a machine, and we included the accountability in
order to handle the previous sub-issues. We called this language AAL
(Abstract accountability language). To return to the second main prob-
lem of how we guarantee that policies are correctly implemented, we
decided to use monitoring techniques. Since AAL semantics is based on
a first order temporal logic, we need to have techniques to monitor such
logic. Thus we introduced FO-DTL3 which is a first order distributed
temporal logic and we used progression technique to monitor this logic.
We raised the problem of completeness of this technique and we came
up with another monitoring technique called co-inductive monitoring.
The Figure 18 illustrates the flow of reasoning presented previously,

the red boxes correspond to the questions/issues, the green boxes cor-
respond to the solutions, the yellow boxes correspond to the potential
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solutions or future work and the blue boxes are the tools that we de-
veloped.As you can see,

there are more red
boxes than green

ones . . .

Figure 18 – Thesis flow of reasoning
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Beyond accountability. Accountability in the digital world implies
many things such as privacy and security and the problem is beyond
technical challenges, it’s educational, political, sociological and at some
point a philosophical challenge. Accountability is not limited to privacy,
and can be applied to larger domains, accountability policies can de-
scribe not only privacy policies but also more general protocols.
Can an accountability system be accountable itself? At some point

we have to trust someone or something but the question is at which
point shall we do that? The Figure 19 illustrates perfectly this issue.

Figure 19 – Police of police

Currently, in order to be accountable we need to be monitored. Of
course we can limit the collected data for the monitoring purpose, but
conceptually the need to monitor in order to protect our privacy vi-
olates our privacy. We need to care about ethics when we develop
monitoring techniques, because even if our intentions are good, theses
techniques can be used for bad purposes such as surveillance and in this
case it will be the opposite of the original purpose. To limit the use of
monitors some work on privacy by design exists [BCM14]; [Che16] but
it cannot be applicable to all situations. One approach is to develop
monitoring technique that respect our privacy using privacy by design
approach.
During this thesis we developed a set of tools in order to answer to

accountability issues. AccLab can be used to validate accountability
policies and to check if a system is accountable. It can be used to
check if a system policy is compliant with regulations like the GDPR.
However, the usability for non specialists represent an issue for the
adoption of the tool in the real world. AccMon and PyMon allow to
monitor real world applications, but we still need to improve their
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performance in order to be scalable. Even if these issues are fixed, we
still need to find a way to convince societies and developers to use these
tools. Imposing the use of such tools is not realistic.

Future work. As we can see in the Figure 18 there are more ques-
tions than answers, there is still a lot of work. In addition to the
previously cited ameliorations that concern the AAL language usability
and semantics, monitoring technique and tool support, there are also
many paths to explore.
Some characteristics are specifics of human behaviors (for instance,

moral dilemma or force majeure) and cannot be modeled or are out
of the scope of automation. Many works consider that true account-
ability cannot be completely automatic and humans (an auditor, a
judge, etc) should be involved in the process. According to [Sch99]:
“Given that the notion of accountability is not built on the illusion that
power is subject to full control ...”. A fully automated solution would
be equivalent to a preventive security solution, all violation cases and
countermeasures are known and decided in advance. In our approach
human behavior is defined by actions connected to a virtual agent (as
in [Mét09]) under the control of the real human, thus it will be trans-
parent here. These actions may occur mainly in the audit and rectifi-
cation expressions. With the emergence of deep learning and artificial
intelligence techniques, maybe we can start to consider automatic re-
mediation where human actions and moral dilemma are performed by
artificial intelligence .
As we saw previously, monitors that are based on progression tech-

nique are not complete and we need to combine it with a theorem
prover. However this introduces an important overhead which is not
desirable when we deal with online monitors. Thus we are working
on a new monitoring technique that uses inference rules based on the
standard semantics of LTL. The idea is to combine the satisfiability
(like in the progression technique) and the validity (like in the theorem
prover). The idea is to deduce a monitoring algorithm combining two
inference systems, one for validity, another one for satisfaction. A sim-
ilar approach exists in [SRA03], where authors use coinduction-based
technique to generate an optimal monitor that can detect good and
bad prefixes incrementally for a given trace.
Nowadays we are witnessing the democratization of Internet of Things

(IOT). These objects collect data from the digital world but also from
the physical world, and most of them offer the possibility of control and
remote access. As a result, more and more personal data are sent to
the cloud, which is not without consequences. For example, disclosing
information from a connected thermometer does not seem critical, it
may nevertheless make possible to know whether the house is occupied
or not. Even worse a mismanaged remote access to a connected thermo-
stat or a connected hot plate can represent a real physical danger. We
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plan to explore monitoring possibilities using AccMon that provides dis-
tributed monitoring capabilities which are suitable for IOT. We already
developed an arduino plugin for AccMon.
Perhaps the answer to privacy issues today is to disconnect your

computer from the Internet, shut it down, burn your hard drive and
throw it far away in the river... and go to live in a cave! But I hope
that research will bring other answers tomorrow.
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A
GETTING STARTED WITH A C C L A B

a.1 Installing AccLab

To use the ltl prover, you need to put the following executable files
(tspass, fotl-translate) in tools /your_platform/ (linux/mac/win)
TSpass binaries are provided for linux x64 and mac x64 in the folder
tools/<platformeName>/. For other platformes you have to compile
tspass source code. The last version of TSpass can be found in [Mic].
The source code for TSpass version 0.95-0.17 is provided with this
tool. AAL Syntax highlighting modes for emacs, intellij, nano and
ace, can be found in tools/utils/. If you want to run aalc using a
symbolic link you need to set the environment variable ACCLAB_PATH :
export ACCLAB_PATH=<AccLab_install_dir>. You need python3.4.0
or greater.

a.1.1 Using AAL compiler "aalc"

In this part we see how to use aalc which is the command line
backend of AccLab.

Listing 7 – aalc options
root@root/:$ python aalc.py
AAL tools set V 2.1 . aalc is a part of Acclab tool.
For more information see AccLab home page
Usage : aalc.py [OPTIONS]
-h --help display this help and exit
-i --input= [file] the input file
-o --output= [path] the output file
-c --compile compile the file, that can be loaded after

using -l
-m --monodic apply monodic check on aal file
-s --shell run a shell after handling aal program
-k --check perform a verbose check
-l --load load a compiled aal file (.aalc) and run a

shell
-t --fotl translate the aal program into FOTL
-r --reparse reparse tspass file
-r --recompile recompile the external files
-b --no-colors disable colors in output
-x --compile-stdlib compile the standard library
-d --hotswap enable hotswaping (for development only)
-a --ast show ast tree
-u --gui= [port] run the gui on the specified port
-n --no-browser do not start the web browser
-q --timeout= [n] TSPASS prover timeout (in seconds)

Bellow we describe the different tool options.
— -i –input= [file]: this argument allows to specify the input file to

be processed, the program accepts two kind of files (*.aal) that
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correspond to AAL programs and (*.tspass) that contains FOTL
formulae using TSpass syntax.

— -o –output= [path]: this argument allows to specify the stdout
output file.

— -c –compile: this option works only with AAL files. If this argu-
ment is specified, the compiler will compile the AAL program into
compiled AAL file format (*.aalc). As said before, in an AAL
program we can load external AAL files. In order to optimize the
interpretation of AAL programs, when the compiler find a refer-
ence to an external AAL file (LOAD "aalfile), it tries to lookup for
the compiled version of the AAL file first and load it if it exists,
otherwise it will interpret the external AAL file. This is particu-
larly useful for AAL libraries that do not need to be reinterpreted
each time, thus they are compiled once and the compiler uses the
compiled version which decrease considerably the interpretation
time.

— -r –recompile: if this argument is specified, the compiler will re-
compile the external compiled AAL files if any before using them.

— -s –shell: run a shell after handling aal program
— -l –load load a compiled aal file (.aalc) and run a shell
— -m –monodic: apply monodic check on aal file
— -k –check: perform a verbose check
— -t –fotl translate the aal program into FOTL
— -r –reparse reparse tspass file
— -b –no-colors disable colors in output
— -x –compile-stdlib compile the standard library
— -d –hotswap enable hotswaping (for development only)
— -a –ast show ast tree
— -u –gui= [port] run the gui on the specified port
— -n –no-browser do not start the web browser
— -q –timeout= [n] TSPASS prover timeout (in seconds)

a.1.2 Writing your first AAL program

Let consider the following scenario, we have three actors :
— cloud storage service: let call it css which is a cloud service

provider.
— alice and bob: an end users that uses css service.
The css offers the following services: read (a user reads some data

form css server), store (a user stores some data into css server), delete
(a user deletes some data from css server). css allows users to read/s-
tore/delete only their data on his server, and don’t allow them to read
other customers data. css can also read and delete any data from his
server.
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Alice want to check if css policy respect her privacy. Typically she
want to know if she is allowed to performs some actions and if bob can
read here data.

1. Declaring actors: first we need to declare our actors.
// Agents declaration
AGENT alice
AGENT bob
AGENT css

2. Declaring services: next we declare the services.
SERVICE read
SERVICE store
SERVICE delete

3. Linking services and actors: once services are defined, we can
complete actors declarations.
AGENT alice TYPES(Actor) REQUIRED(read store delete) PROVIDED()
AGENT bob TYPES(Actor) REQUIRED(read store delete) PROVIDED()
AGENT css TYPES(Actor) REQUIRED() PROVIDED(read store delete)

4. Defining policies: next we can write our policies.
/*
* Cloud storage service provider policy
*/

CLAUSE css_policy (
FORALL d:data FORALL a:Actor

// Allow users to read their data
IF (d.subject == a) THEN {

PERMIT a.read[css](d)
} AND

// Deny access to read other
IF (d.subject != a) THEN {

DENY a.read[css](d)
} AND

// Allow css to read/delete stored data
PERMIT css.read[css](d) AND
PERMIT css.delete[css](d)

)

/*
* Alice’s preferences
*/

CLAUSE alice_pref (
FORALL d:data
// Alice want to be able to read all her data stored on css
IF (d.subject == alice) THEN {

PERMIT alice.read[css](d)
AND
// Bob cannot read Alice’s data
DENY bob.read[css](d)

}
)
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5. Writing checks: Now we want to check if Alice’s privacy prefer-
ences are respected by the css policy. To do this, we can call the
macro validate and passing the the clauses names as arguments.
Important: Note that the order of arguments is important.
CALL validate("css_policy" "alice_pref")

a.1.3 Running the program in command line

— In order to run an AAL program, you have to run aalc.py.
root@root/:$ python aalc.py -i examples/tuto0.aal

------------------------- Monodic check -------------------------
Monodic check passed !
------------------------- Starting Validity check

-------------------------
c1 : css_policy
c2 : alice_pref
----- Checking c1 & c2 consistency :

-> Satisfiable
----- Checking c1 => c2 :

-> Satisfiable
----- Checking ~(c1 => c2) :

-> Unsatisfiable

[VALIDITY] Formula is valid !
------------------------- Validity check End -------------------------

File : examples/tuto0.aal

Execution time : 0.24277639389038086

— You can perform a detailed check by using (-k) argument.
root@root/:$ python aalc.py -i examples/tuto0.aal -k

------------------------- Start Checking -------------------------

** DECLARATIONS
[DECLARED AGENTS] : 3
[DECLARED SERVICES] : 6
[DECLARED DATA] : 0
[DECLARED TYPES] : 11

*** Forwards references check
[AGENTS] : 0
[SERVICES] : 0
[DATA] : 0
[TYPES] : 0

*** Unused declarations

[WARNING] Unused agent declaration : bob -> at line 18
[WARNING] Unused service declaration : read -> at line 12
[WARNING] Unused service declaration : store -> at line 13
[WARNING] Unused service declaration : delete -> at line 14
[WARNING] Unused service declaration : write -> at line 20
[WARNING] Unused service declaration : update -> at line 22
[WARNING] Unused service declaration : audit -> at line 23

** LOADED libraries
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[LIBS] : 2

** CLAUSES
[CLAUSES] : 2

*** Miscellaneous
[PERMISSIONS] : 3
[PROHIBITIONS : 2

*** Sat test

---------- css_policy ----------
------------------------- Monodic check -------------------------
Monodic check passed !
------------------------ Starting check ---------------------
----- Checking c1 :

-> Satisfiable
------------------------- check End -------------------------

---------- alice_pref ----------
------------------------- Monodic check -------------------------
Monodic check passed !
------------------------ Starting check ---------------------
----- Checking c1 :

-> Satisfiable
------------------------- check End -------------------------

— To perform a monodic test on all clauses, use (-m) argument:
root@root/:$ python aalc -i examples/tuto0.aal -m

------------------------- Start Checking -------------------------
|css_policy | Formula is monodic ! |
|alice_pref | Formula is monodic ! |
-------------------------- Checking End -------------------------

— Translate AAL program into FOTL (in TSpass syntax) using (-t)
argument:
root@root/:$ python aalc -i examples/tuto0.aal -t

------------------------- FOTL Translation start
-------------------------

%%%%%%%%% START EVN %%%%%%%%%%%
(
(always ![a] (Actor(a) => EQUAL(a, a))) &
(always ![a, b] ((Actor(a) & Actor(b) & EQUAL(a, b)) => EQUAL(b, a)))

%%% Types knowledge
&
always (
( ?[a] data(a) ) &
( ?[a] actor(a) ) &
( ?[a] Actor(a) ) &
( ?[a] Data(a) ) &
( ?[a] DataSubject(a) & (![x] ( (DataSubject(x) => Actor(x) ) )) ) &
( ?[a] DataController(a) & (![x] ( (DataController(x) => Actor(x) ) ))

) &
( ?[a] DataProcessor(a) & (![x] ( (DataProcessor(x) => Actor(x) ) )) )

&
( ?[a] DwDataController(a) & (![x] ( (DwDataController(x) => Actor(x) )

)) ) &
( ?[a] Auditor(a) & (![x] ( (Auditor(x) => Actor(x) ) )) ) &
( ?[a] CloudProvider(a) & (![x] ( (CloudProvider(x) => Actor(x) ) )) )

&
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( ?[a] CloudCustomer(a) & (![x] ( (CloudCustomer(x) => Actor(x) ) )) )
&

( ?[a] EndUser(a) & (![x] ( (EndUser(x) => Actor(x) ) )) ) &
( ?[a] User(a) & (![x] ( (User(x) => Actor(x) ) )) )

)

%%% Action authorizations
&
always (
( ![x, y, z] (read(x, y, z) => Pread(x, y, z)) ) &
( ![x, y, z] (store(x, y, z) => Pstore(x, y, z)) ) &
( ![x, y, z] (delete(x, y, z) => Pdelete(x, y, z)) )
)

%%% Actors knowledge
&
always (
( Actor(alice) ) &
( Actor(bob) ) &
( Actor(css) )

)

%%% Time knowledge

%%% Data knowledge
&
always (
( ?[d](subject(d, alice)) ) &
( ?[d](subject(d, bob)) ) &
( ?[d](subject(d, css)) )

)
)
%%%%%%%%% END EVN %%%%%%%%%%%

%% Clause : css_policy
((![d] ( data(d) => ((![a] ( Actor(a) => (((( ((subject(d, a)) => (Pread

(a, css, d))) & ((~subject(d, a)) => (~Pread(a, css, d)))) & Pread
(css, css, d)) & Pdelete(css, css, d))) ))) )) )

%% Clause : alice_policy
((![d] ( data(d) => ( ((subject(d, alice)) => ((Pread(alice, css, d) & ~

Pread(bob, css, d))))) )) )

-------------------------- FOTL Translation end
--------------------------

a.1.4 Advanced checks

/*
* Alice’s preferences
*/

CLAUSE alice_pref (
FORALL d:data
// Alice want to be able to read all her data stored on css
IF (d.subject == alice) THEN {

PERMIT alice.read[css](d)
AND
// Bob cannot read Alice’s data
DENY bob.read[css](d)

}



A.1 installing acclab 101

)

The previous call to validate macro will gives: Satisfiable. Why? Be-
cause the predicate subject is not exclusive: subject of d can be alice
and bob at the same time.
A simple way to fix it is to add the condition that the subject of d

is not bob :
IF (d.subject == alice AND d.subject != bob) THEN {
....

Or we can to add the following condition manually to our check:
(![f] (subject(f, alice) => ~subject(f, bob))) &

The construction CHECK allows you to write directly FOTL formula
mixed with somme AAL constructions.
— @verbose (print the generated formula).
— @buildenv (build the environment, which is a set of preconditions

generated from the AAL program).
— clause(c): get the fotl translation of clause "c".
— clause(c).ue: get the fotl translation of usage part of the clause

"c".
— clause(c).ae: get the fotl translation of audit part of the clause

"c".
— clause(c).re: get the fotl translation of rectification part of the

clause "c".
— APPLY chk(): call the check "chk".

CHECK c1() (
"""
% Comments in Checks starts with ’%’

% Enable verbose mode
@verbose
~(

% Build the environment
@buildenv

% Add extra condition
(![f] ((subject(f, alice) )=> ~subject(f, bob))) &

% The check ~ P => U
(clause(css_policy))
=>
(clause(alice_pref))

)
"""
)
APPLY c1()

The result is Unsatisfiable so the formula is valide.

a.1.5 Using the shell

The shell is a useful tool for developing:
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— Run the shell.
root@root/:$ python aalc -i examples/tuto0.aal -s
....
shell >

— Type help to show the shell help.
shell >help

Shell Help
- call(macro, args) call a macro where /

*macro : is the name of the macro
*args : a list of string; <<ex :["’args1’",

"’args2’", ..."’argsN’"]>>
- clauses() show all declared clauses in the loaded aal

program
- macros() show all declared macros in the loaded aal

program
- load(lib) load the librarie lib
- quit / q exit the shell
- help / h / man() show this help
- self the current compiler instance of the loaded aal

program
- aalprog the current loaded aal program
- man(arg) print the help for the given arg
- hs(module) hotswaping : reload the module
- r() hot-swaping the shell

— Here an example, we print all clauses in the AAL program.
shell> clauses()
css_policy alice_pref

— self variable refers to the compiler instance.
shell> self
<AALCompiler.AALCompilerListener object at 0x7f8b00ce8630>

— man can be called on any element, it will show its documentation.
shell> man(self)
printing manual for <class ’AALCompiler.AALCompilerListener’>
Manual for aal compiler visitor
- Attributes

- aalprog Get the AAL program instance
- file The AAL source file
- libs Show the loaded libraries
- libsPath Print the standard lib path

- Methods
- load_lib(lib_name) Load an aal file
- clause(clauseId) Lookup for clause cluaseId
- show_clauses() Show all clauses (names
- get_clauses() Get all clauses (objects)
- get_macros() Get all macros (objects)

— AAL program instance
shell> man(aalprog)
printing manual for <class ’AALMetaModel.m_aalprog’>

AAL program class.
Note that clauses and macros extend a declarable type, but are not
in the declarations dict

Attributes
- clauses: a list that contains all program clauses
- declarations: a dictionary that contains lists of typed

declarations
- comments: a list that contains program s comment
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- macros: a list that contains program s macros declarations
- macroCalls: a list that contains program s comment

— Calling a macro
call("validate", ["’css_policy’", "’alice_pref’"])
------------------------- Monodic check -------------------------
Monodic check passed !
------------------------- Starting Validity check

-------------------------
c1 : css_policy
c2 : alice_pref
----- Checking c1 & c2 consistency :

-> Satisfiable
----- Checking c1 => c2 :

-> Satisfiable
----- Checking ~(c1 => c2) :

-> Satisfiable
:: Solving trigger

[VALIDITY] Formula is not valid !
------------------------- Validity check End -------------------------

— Defining a new macro
shell> self.new_macro("toto", ["p"], """print(p)""")
shell> call("toto", ["’4’"])
4

— hotswaping commands are used for debugging purpose only. r()
command allows you to reload the shell without exiting it after
source code modification.

— hs(module) reloading other modules after source code modifica-
tion without exiting. ! IMORTANT : to use hotswaping properly
you must enable it explicitly in aalc arguments -d / –hotswap,
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Résumé 
 

Nous assistons à la démocratisation des services du 
cloud et de plus en plus d’utilisateurs (individuels ou 
entreprises) utilisent ces services dans la vie de tous les 
jours. Dans ces scénarios, les données personnelles 
transitent généralement entre plusieurs entités. 
L’utilisateur final se doit d’être informé de la collecte, du 
traitement et de la rétention de ses données 
personnelles, mais il doit aussi pouvoir tenir pour 
responsable le fournisseur de service en cas d’atteinte à 
sa vie privée. La responsabilisation (ou accountability) 
désigne le fait qu’un système ou une personne est 
responsable de ses actes et de leurs conséquences. 
Dans cette thèse nous présentons un framework de 
responsabilisation AccLab qui permet de prendre en 
considération la responsabilisation dès la phase de 
conception d’un système jusqu’à son implémentation. 
Afin de réconcilier le monde juridique et le monde 
informatique, nous avons développé un langage dédié 
nommé AAL permettant d’écrire des obligations et des 
politiques de responsabilisation. Ce langage est basé sur 
une logique formelle FOTL ce qui permet de vérifier la 
cohérence des politiques de responsabilisation ainsi que 
la compatibilité entre deux politiques. Les politiques sont 
ensuite traduites en une logique temporelle distribuée 
que nous avons nommée FO-DTL 3, cette dernière est 
associée à une technique de monitorage basée sur la 
réécriture de formules. Enfin nous avons développé un 
outil monitorage appelé AccMon qui fournit des moyens 
de surveiller les politiques de responsabilisation dans le 
contexte d’un système réel. Les politiques sont fondées 
sur la logique FO-DTL 3 et le framework peut agir en 
mode centralisée ou distribuée et fonctionne à la fois en 
ligne et hors ligne. 

Mots clés 

Responsabilisation, sécurité, vie privée, logique 
temporelle, vérification, monitorage. 

 

Abstract 
 

Nowadays we are witnessing the democratization of 
cloud services. As a result, more and more end-users 
(individuals and businesses) are using these services in 
their daily life. In such scenarios, personal data is 
generally flowed between several entities. End-users 
need to be aware of the management, processing, 
storage and retention of personal data, and to have 
necessary means to hold service providers accountable 
for the use of their data. In this thesis we present an 
accountability framework called Accountability 
Laboratory (AccLab) that allows to consider 
accountability from design time to implementation time of 
a system. In order to reconcile the legal world and the 
computer science world, we developed a language called 
Abstract Accountability Language (AAL) that allows to 
write obligations and accountability policies. This 
language is based on a formal logic called First Order 
Linear Temporal Logic (FOTL) which allows to check the 
coherence of the accountability policies and the 
compliance between two policies. These policies are 
translated into a temporal logic called FO-DTL 3, which is 
associated with a monitoring technique based on formula 
rewriting. Finally, we developed a monitoring tool called 
Accountability Monitoring (AccMon) which provides 
means to monitor accountability policies in the context of 
a real system. These policies are based on FO-DTL 3 
logic and the framework can act in both centralized and 
distributed modes and can run into on-line and off-line 
modes. 
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