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Abstract

Modern vehicles have become increasingly computerized to satisfy the more strict safety
requirements and to provide better driving experiences. Therefore, the number of electronic
control units (ECUs) in modern vehicles has continuously increased in the last few decades.
In addition, advanced applications put higher computational demand on ECUs and have
both hard and soft timing constraints, hence a unified approach handling both constraints
is required. Moreover, economic pressures and multi-core architectures are driving the
integration of several levels of safety-criticality onto the same platform. Such applications
have been traditionally designed using static approaches; however, static approaches are
no longer feasible in highly dynamic environments due to increasing complexity and tight
cost constraints, and more flexible solutions are required. This means that, to cope with
dynamic environments, an automotive system must be adaptive; that is, it must be able
to adapt its structure and/or behaviour at runtime in response to frequent changes in its
environment.

These new requirements cannot be faced by the current state-of-the-art approaches of
automotive software systems. Instead, a new design of the overall Electric/Electronic (E/E)
architecture of a vehicle needs to be developed. Recently, the automotive industry agreed
upon changing the current AUTOSAR platform to the “AUTOSAR Adaptive Platform”.
This platform is being developed by the AUTOSAR consortium as an additional product
to the current AUTOSAR classic platform. This is an ongoing feasibility study based
on the POSIX operating system and uses service-oriented communication to integrate
applications into the system at any desired time.

The main idea of this thesis is to develop novel architecture concepts based on
adaptation to address the needs of a new E/E architecture for Fully Electric Vehicles
(FEVs) regarding safety, reliability and cost-efficiency, and integrate these in AUTOSAR.
We define the ASLA (Adaptive System Level in AUTOSAR) architecture, which is
a framework that provides an adaptive solution for AUTOSAR. ASLA incorporates
tasks-level reconfiguration features such as addition, deletion and migration of tasks in
AUTOSAR. The main difference between ASLA and the Adaptive AUTOSAR platform
is that ASLA enables the allocation of mixed critical functions on the same ECU as well
as time-bound adaptations while adaptive AUTOSAR separates critical, hard real-time

functions (running on the classic platform) from non-critical/soft-real-time functions



(running on the adaptive platform). To assess the validity of our proposed architecture,
we provide an early prototype implementation of ASLA and evaluate its performance
through experiments.

Keywords: AUTOSAR, E/E architecture, Runtime adaptation, Real-time systems
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Chapter 1
Introduction

Modern vehicles increasingly offer Advanced Driver Assistance Systems (ADAS) such
as collision avoidance and adaptive cruise control. These functions further require large
and complex software systems that have to respect timing and safety requirements. Cost
reduction requires the integration of mixed criticality functions on the same Electronic
Control Unit (ECU).

Definition 1 ECU is an embedded computer system that is used to control and
requlate various functions in the vehicle. The ECU is a networked component that

consists of both hardware and software elements [85].

Traditionally, ADAS applications have been designed using static approaches, i.e.,
design-time mechanisms are used to validate and allocate the applications’ functions.
However, static approaches no longer meet the complexity of today’s systems that in
particular increases the number of potential failures. As a result, ADAS need to be

adaptive.

Definition 2 An adaptive system is a system that is, able to change its structure

and/or behavior at runtime in response to environmental changes or failures [}2].

As we can see in Figure 1.1, initially, the automobile was completely mechanical. Gradually,
embedded systems were introduced into various subsystems. Examples are electronic
Engine Management System, Anti-lock brakes, power windows, etc. Then came the desire
for dynamic. The first functionality to go dynamic was the automatic transmission, which

requires little human intervention during operation, and is, therefore, adaptive according



to our definition. Next came the cruise control and traction control functionality, which are
enabled by embedded systems, and incorporate a certain level of adaptivity within them.
Notice that at this point, the automobile has three features with varying levels of adaptivity,
but the automobile as a whole is still not fully adaptive and/or autonomous. Also, at this
point conflicts start appearing between functionalities. For instance: What if the cruise
control system wishes to accelerate the vehicle while simultaneously the traction control
system wishes to apply the brakes? Such undesirable interaction between functionalities
is termed functionality and/or feature interaction in the engineering lexicon [82][64].

As the complexity and the autonomy of individual functionalities grow, the automo-
tive industry is finding increasingly difficult and costly to deal with such functionality

interactions and to design safe and reliable vehicles.

Dynamic ,
Fully-autonomous
>
Stop and Go
Adaptive headlight
Automatic lane
change......
Software update
Car 2Car
Communication
Adaptive cruise . .
Control Adaptive cruise
Control
) Airbags
Anti lock brakes Anti lock brakes Anti lock brakes
Hectroni Eig(troni( fuel
Electronic fuel Electronic fuel ::‘]je(t;f)m( fuel Injection
P . P . njection
injection injection . Cruise Control
Cruise Control Cruise Control Cruise Control
1975 1985 1995 2005 2015 2020

Fig. 1.1 Growth of automotive embedded systems [112].

Currently, AUTOSAR [11]- a widely used automotive operating system and framework—
has been used by the automotive industry to cope with the increasing complexity of
in-vehicle software. AUTOSAR decouples the Basic SoftWare (BSW) that needs to exist
in every ECU, from the application software that is node-specific. Automotive systems are
very cost-sensitive, and the ECU hardware is traditionally kept to a minimum. Therefore,
AUTOSAR has been designed to execute with limited resources. Hence, the system’s

configuration is fixed at design-time with no support for runtime adaptation.

Making AUTOSAR adaptive requires specific support at different levels of the software
architecture. The most important component affecting adaptivity is the Operating
System (OS), but some flexibility can be introduced in the Run-Time Environment
(RTE). Therefore, an architectural solution is needed that can handle the adaptation of
applications with soft and hard (mixed) real-time as well as safety requirements. With
the goal of creating a new architecture that can satisfy the above requirements, in this

dissertation, we present a new E/E architecture that tackles various challenges over the



current E/E architecture. In particular, the challenges that this thesis addresses can be
stated in terms of the following three Research Questions:

e RQ1: How to enhance the current AUTOSAR tasks model in order to deal with
runtime adaptation?

e RQ2: How to enhance the RTE to ensure flexibility in AUTOSAR configuration?

e RQ3: How to manage migration, replacement, and insertion of a new software
component on the platform?

Our work revolves around the following thesis statement: “The focus of my thesis is to
design and develop an architectural solution and strategies for software reconfiguration
in automotive systems, and integrate those in AUTOSAR in order to contribute to

making automotive systems more evolvable.”

1.1 Scope and Requirements of the Thesis

The observations made hitherto lead us to the following scope and requirements which
drive the work described in this thesis. We use Kiviat diagrams [104] to show visually the
characteristics of our solution (Figure. 1.2) and the requirements we consider for adaptive
automotive systems (Figure. 1.3). These diagrams provide developers of automotive
software an easy way of viewing the characteristics of their applications. The dimensions
represent axes of the Kiviat diagrams and characteristics of the dimensions represent the

set of properties to be met by our solution (i.e., the red bullets).

1.1.1 The Scope of our Research

The adaptation Model. The adaptation may typically be synchronous and/or asyn-
chronous with respect to the execution of applications. In the synchronous case, the
applications synchronize their execution, and new tasks (actions) are introduced only
after all applications have finished performing the actions specified in the initial con-
figuration. The schedulability analysis of the adaptation is thus not required because
there is no interference between tasks before and after the adaptation (i.e., in the new
system configuration). On the other hand, in the case of asynchronous adaptation, all
the applications start changing their configuration as soon as they receive an adaptation
trigger without considering the behavior of the other applications. As a result, actions of
the initial system configuration run concurrently with the new ones during the transition,
which calls for schedulability analysis.

Promptness. Adaptation is well suited for systems that require reactive behavior,
there is no need to wait until an idle period or slack before performing such a change as
in Tindell’s model [110] or at the end of cycles like in some approaches based on cyclic

executive scheduling [97]. The adaptation may be classified in three different categories in



the time domain: (i) time-based adaptation: These are adaptations where we know the
arrival time of the adaptation request in advance. (ii) event-driven adaptation: These
are adaptations triggered by events rather than time. We don’t know exactly when they
happen. (iii) @rreqular event-driven adaptation: These are adaptations when no prediction
can be made about the arrival time of the adaptation request. An example of this type is
a system fault. The system may change its configuration and migrate to a degraded one
where not all the functionalities are provided. In our work, we consider all three types of

adaptation.

Scheduling policy. The use of dynamic priorities scheme suits better with systems

running in highly dynamic environments [97][73].

Scheduling algorithm. Combining two scheduling mechanisms Constant Bandwidth
Server (CBS) and Earliest Deadline First (EDF) has proven its efficiency to solve the
problem of temporal isolation due to the integration of soft and hard real-time applications
on the same platform [73][99].

Architecture. Distributed architecture. In our work, a real-time distributed system
is defined to be a system with multiple autonomous processing units (ECUs) cooperating
together to achieve a common goal. We use the term distributed architecture to refer
to loosely coupled architectures where message passing is required (full connectivity is

assumed between ECUs, i.e., each of the ECUs is connected to each other).

Timing requirement criticality. In our solution we are dealing with mixed-
criticality systems, to the best of our knowledge, no one has applied runtime adaptation
considering both soft and hard real-time constraints in AUTOSAR.

Scheduling

Algorithm
Scheduling
policy

Timing requirement
Criticality

synchronous

Adapfation
Model

Fig. 1.2 The scope of our research.



1.1.2 Requirements for Runtime Adaptation in Real-Time Sys-

tems

(R1) Timeliness: The timeliness requirements of an adaptation characterize the time
constraints under which the adaptation is executed. Hard real-time constraints require
the execution of adaptation within a firm deadline. Adaptations executed under soft
real-time constraints minimize the adaptation execution and blackout time (which is the
time the application is unavailable due to state transfer and reconfiguration). Unbounded
adaptations are executed without any time bound [52].

(R2) Consistency: Preserving the system consistency and leaving the system under
change in a correct state after adaptation are two major requirements that must be ensured
when performing adaptation of the running system. Many adaptation approaches freeze

the entities to be reconfigured into an adaptation safe state called quiescent state [72].

(R3) Flexibility: The dynamic behavior of real-time systems requires executing
applications with certain flexibility requirements in which the temporal properties and
the number of applications vary during runtime. That means, the tasks of flexible
application provide implementations that can adapt their execution to the available
processing resources. These tasks have variable period and/or may demand variable
WCET (i.e., stochastic [73]). So, executing flexible applications prevents the use of an
efficient static temporal partitioning of the processing time. A static temporal partitioning
that lasts over the entire lifetime of a system would result in an oversized system. Hence,
in order to efficiently use the processing time, the flexibility of applications and possible
demand changes during runtime have to be considered during runtime analysis.

(R4) Adaptation trigger: Adaptation can be triggered either internally due to the
monitoring infrastructure or externally requested from an outside entity, for example the
user. Furthermore, adaptation triggers may arrive synchronously (i.e., at a specific time)

or asynchronously (i.e., with unknown arrival pattern).

Timelines

o real-time .

Resource mStrucure Flexibility

O——
Type of adaptation Behavior

Consistenc

Fig. 1.3 Requirements for runtime adaptation.



(R5) Type of adaptation: The type of adaptation defines what is being reconfigured.
We distinguish: Resource adaptation dynamically allocates resources based on current
conditions. Software adaptation is a category that comprises parameter adaptation,
behavioral adaptation, and structural adaptation. Parameter adaptation involves modifying
variable values that determine program behaviour. Behavioral adaptation changes the
behavior of the application, e.g., a change in distance to the vehicle ahead (e.g., driving
closer to a lead vehicle with ABS). Structural adaptation changes the software architecture
of the application, e.g., by removing a SWC, introducing a new one or replacing/updating

an existing SWC with another newer version.

1.2 Research Approach and Contributions

To address the needs described above, we have been developing in this dissertation the
Adaptive System-Level in AUTOSAR (ASLA) solution (Figure 1.4 ) which incorporates
runtime adaptation to AUTOSAR while maintaining mixed Soft and Hard
real-time requirements. ASLA provides the ability to dynamically reconfigure the sys-
tem, such as adding a new application or moving an existing application to a different ECU.
In AUTOSAR, the system configuration is, by design, static: the AUTOSAR Run-Time
Environment (RTE) is configured at design-time for specific ECUs and partly generated
based on the requirements of the software components (SWCs). A reconfiguration of the
system, such as adding an application or moving an application from one ECU to another,
cannot be done dynamically at runtime. ASLA extends AUTOSAR in two ways. It
changes the scheduling policy from a fixed-priority (assigned to tasks at design time) to a
dynamic pre-emptive policy based on EDF and CBS schedulers to guarantee mixed critical
requirements. ASLA also contains RTE extension that supports the runtime application
migration between ECUs in response to anticipated changes caused by the environment,
such as network connectivity, as well as unexpected failures in both software and hardware.
The deployment and reconfiguration of an application onto an ASLA system is handled
by a SWC called the Adaptive Software Component that is responsible for reconfiguring
applications running on the system and composed of: (i) a Monitor, that monitors events
triggering adaptation, (ii) a Mapping Manager, offering a dynamic deployment of tasks
on the ECUs and (iii) a Reconfiguration Manager, which automatically reconfigures tasks
inside /or between the different ECUs. The plug-in offers a task execution container and
enables any task launched by ASLA to be periodically executed.

In particular, this dissertation involves a combination of:

1. Contribution 1: Issues of AUTOSAR to support runtime adaptation
We review the challenges and issues about current AUTOSAR ECU status.
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Fig. 1.4 Overview of ASLA architecture.

Mainly, we describe the major drawbacks with its current task model, runtime
environment, mode manager, etc. Second, we show why it is necessary to change the
AUTOSAR architecture to make it adequate for reconfiguration. Third, we present
an approach towards making AUTOSAR dynamic, starting from the application
down to the operating system level. Surprisingly, the identified issues of AUTOSAR
and the problem tackled in this dissertation are recently becoming the focus of
the newly established branch of the AUTOSAR initiative, the so-called Adaptive
AUTOSAR platform [10].

. Contribution 2: Runtime adaptation support for AUTOSAR.

We propose a layer called ASLA (Adaptive System-Level in AUTOSAR) to incor-
porate tasks-level adaptation features in AUTOSAR. ASLA aims at extending the

AUTOSAR architecture, starting from the application down to the operating system
layer (task model and RTE)(i.e., extending AUTOSAR ECU Software architecture).

. Contribution 3: Resource allocation and scheduling for automotive sys-
tems. We have developed a task-partitioning strategy for allocating SWCs to the
ECUs based on the work of [99]. In [99], the authors propose TSMBA, “Tabu Search
Mapping and Bandwidth Allocation” algorithm, which provides a comprehensive
solution that allocates mixed hard and soft SWCs onto a distributed architecture
and performs processor bandwidth reservation for guaranteeing timing requirements
even in the presence of faults. TSMBA [99] cannot be used directly for our goal.
Specifically, TSMBA cannot be used directly in systems with tasks dependencies

(i.e., pipeline task model). Therefore, we propose a new allocation algorithm based



on TSMBA. To incorporate task dependencies, we have defined an abstraction called
Operational Chains, which enables timing analysis. An ECU assignment methodol-
ogy called O-TSMBA (Operational chains-Tabu Search Mapping and Bandwidth
allocation) is introduced to consider task dependencies. TSMBA is also adapted to
an AUTOSAR-compliant platform so that the proposed algorithm can be used in

the automotive context.

4. Contribution 4: Proposing an algorithm for task mapping, bandwidth

allocation and reconfiguration for mixed hard/soft distributed systems.

Conventional real-time theories are in general applicable to automotive systems.
However, they do not incorporate highly dynamic attributes and hence do not provide
tight schedulability analyses. To the best of our knowledge, TSeRBA is the first
algorithm that supports runtime adaptation while taking into account schedulability

analysis and task allocation for mixed hard/soft applications in AUTOSAR.

1.3 Thesis Outline

In accordance with the contributions we specified above, we structure our thesis as follows:

e Chapter 2 gives a more detailed introduction to the field of embedded real-time
systems. The reader is given a deeper insight into the specific challenges during
the design and implementation of safety critical systems being subject to real-time
constraints and distributed topology. The automotive systems targeted in the thesis
are clearly within that field. In addition, the chapter surveys existing approaches
related to this dissertation. Our work falls into the following categories: (1) runtime

adaptation in real-time embedded systems and (2) mode change protocols.

e Subsequently, in Chapter 3, the architecture of automotive systems is discussed.
Furthermore, a summary of current automotive software development concepts is
given. In addition, a summary of existing approaches for runtime adaptation in

automotive systems is discussed.

e Chapter 4 describes our distributed framework called ASLA (Adaptive-System-level
in AUTOSAR) used to incorporate tasks-level adaptation techniques in AUTOSAR.
In addition, ASLA’s development methodology is given.

e Chapter 5 introduces ASLA’s algorithms to support dynamic task re-allocation and

task-level adaptation.



e Chapter 6 presents our prototype implementation of ASLA along with a set of exten-
sive evaluations. In addition, the results of the resource allocation and schedulability

analysis methods used in ASLA are reported.

e Chapter 7 emphasizes the contribution of our work and identifies challenges and

research gaps that require further exploration.

A portion of our work has been published in the following conference and workshop

paper:
e Conference paper:

e In [23], we presented the design and the implementation of ASLA’s framework.
e Workshop paper:

e In [24], we presented the open issues and the necessary requirements for making

AUTOSAR adaptive.
¢ Ongoing conference paper:

e Dynamic Software Adaptation and Reconfiguration in AUTOSAR. In this ongo-

ing publication, we will present the ASLA’s theoretical studies and algorithms.



10



Chapter 2

Foundations of Embedded
Real-Time Systems

The software development concept presented in this thesis is targeted at automotive
systems, which belong to the family of embedded real-time systems. Real-time systems are
typically operating under stringent timing constraints. The moment in time the system
sends a result is as important as the result itself for correct behavior. As these systems
are not visible as computers in an automobile, but rather interact with their environment
using sensors and actuators, they are called embedded systems. In addition, automotive
systems are typically distributed, which refers to their structure as an interconnected
network of computing nodes, exchanging their respective current states. We summarize
the key aspects of real-time and embedded systems in Sections 2.1 and 2.2, respectively, to
give a better understanding of the general conditions for the implementation of automotive
systems. In Section 2.3, we give a short overview of the actual practice of embedded
real-time systems development. Section 2.4 defines the concept of self-adaptive systems.
A survey of existing approaches for adaptive real-time embedded systems is presented in

Section 2.5. Finally, in Section 2.6 we conclude with a summary of Chapter 2.

2.1 Real-Time Systems

The Oxford dictionary defines real-time as “the actual time during which a process or
event occurs'. In computer science, a real-time system is one where its timing requirements

are an integral part of its behavioral specification.
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Definition 3 . Real-Time System: A real-time computer system is a computer
system, in which the correctness of the system behavior depends not only on the logical
results of the computations, but also on the physical instant at which these results are

produced—— Hermann Kopetz [68]

Definition 3 below is given by Kopetz [68]. This definition means that in strict real-time
systems a late result is not just late but wrong. The meaning of “late” of course has to
be defined dependent on the specific application. In case of an air-bag controller, it is
intuitively clear what real-time means and it is easy to understand that a late firing of
the air-bag is not only late but definitely wrong.

As most real-time systems are control systems, several other definitions consider a real-
time system as a reactive system having timing specifications—that changes its state as a
function of physical time, e.g., a chemical reaction continues to change its state even after
its controlling computer system has stopped [50]. Based on this, a real-time system can
be decomposed into a set of subsystems, i.e., the controlled object, the real-time computer
system and the physical world. A real-time computer system must react to stimuli from the
controlled object (or the physical world) within time intervals dictated by its environment.
This interaction with the environment is done by acquiring information from sensors and
acting upon that environment through actuators, as depicted in Figure 2.1.

Control System Environment -

(Controlled Object)

i Stimuli
Real-time <« Computations g '
Computer Physical
System world
C ds . >
omman )
Actuators Reaction

Fig. 2.1 Schematic representation of a real-time system.

2.1.1 Soft and Hard Real-Time Systems

Depending on time constraints, real-time systems can be organized into two main cate-

gories:

— Hard Real-Time Systems: Hard real-time systems have very strict time con-
straints, in which missing the specified deadline is unacceptable. The system must
be designed to guarantee all time constraints. Many safety-critical systems are hard-

real-time systems. Examples of hard-real-time systems include embedded tactical
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systems for military applications, flight mission control, traffic control, production

control, robotics, nuclear plant control, etc [68].

Figure 2.2 shows an example of a hard real-time safety-critical application that

determines driver’s intentions and driving conditions in real-time.

Determine drivers

intentions and
driving conditions
in Real-time

SN

Fig. 2.2 An automobile shift control system is an example of a hard real-time safety-critical
system.

— Soft Real-time Systems: Soft real-time systems also have time constraints; how-
ever, missing some deadlines may not lead to a catastrophic failure of the system.
Thus, soft real-time systems are similar to hard real-time systems in their infras-
tructure requirements, but it is not necessary that every time constraint is always
met. In other words, some time constraints are not strict, but they are nonetheless
important. A soft real-time system is not equivalent to a non-real-time system,
because the goal of the system is still to meet as many deadlines as possible. Typical

examples of applications with soft constraints are multimedia applications.

— Mixed Soft and Hard Real-time Systems: Mized soft and hard real-time
systems are dual criticality systems with soft and hard tasks. In these systems,
in contrast to soft tasks, the timely execution of hard tasks is guaranteed. Soft
real-time tasks are scheduled in a best-effort strategy, for example, to reduce their

response time [36].

2.1.2 Internal Structure of a Real-time System

The structure of a real-time system is mainly composed of two layers: (i) hardware
architecture and (ii) software architecture. Figure 2.3 illustrates the general structure
of a real-time system. Starting from the hardware layer up to the software layer. The
hardware layer includes computation resources (i.e., processors), communication resources
(i.e., networks), storage resources (i.e., memories) and I1/O peripherals (i.e., sensors and
actuators). The software layers provide most of the features and flexibility in the system.

These layers include: low-level drivers, a Real-Time Operating System (RTOS) and
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the application. The RTOS is composed of different modules providing communication
services, synchronization, and execution. It is the responsibility of the RTOS to ensure

that all the applications meet their respective time constraints.

Application Software .=

¢ 34

OS Kernel
Scheduler . Primitives
Resources Management :

Fig. 2.3 Internal structure of a real-time system.

We examine in next sections how an RTOS can ensure that applications meet their
respective timing constraints through appropriate scheduling strategies. There are open-
source RTOS (e.g., FreeRTOS, MicroC/OS-II and RTEMS) or a closed source executive
(from over 300 commercial/proprietary options).

The software layer contains a computer program that controls the environment of a
real-time system. This program may comprise several execution entities treated by the
operating system [39]. These entities are called processes or tasks.

Real-time tasks are also classified with respect to their real-time constraints. We

distinguish: periodic tasks, aperiodic tasks and sporadic tasks [118] [101].

1. Periodic tasks make a resource request at regular periodic intervals. The processing
time and the time elapsed between the request and the deadline are always the same
for each request of a particular task; they may however be different for different
tasks. Monitoring patient’s vitals is an example of periodic task system. Figure 2.4
summarizes the characteristics of a periodic task, a task 7; is characterized by the

following timing parameters:

— the arrival time a; or release time r; is the time at which the task is ready

for execution.
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— the execution requirement C;, specifies an upper limit on the execution

requirement of the generated task; it is also called the worst-case execution
time (WCET).

— the period or minimum inter-arrival time T}, denotes the temporal sepa-
ration between the arrival times of the task.

— the absolute deadline d; is the time at which the job should be completed.

— the relative deadline D;, is the time length between the arrival time and the

absolute deadline.
— the start time s; is the time at which the task starts its execution.
— the finishing time f; is the time at which the tasks finishes it execution.

— the response time R; is the time length at which the task finishes its execution

after its arrival, which is f;— a;.

Ri i " i
‘ Deadline Di Period‘Ti

—_—
WCET Ci

Job Jii! Job Jii Job Jii+!

a/ fi ‘
Fig. 2.4 Parameters of a real-time task.

A real-time task is characterized by the relation between its deadline and its period:

— Implicit-deadline: task 7; has a relative deadline equal to its period (D; = Tj).

— Constrained-deadline: task 7; has a relative deadline less than or equal to
its period (D; < T;)
— Arbitrary-deadline: task 7; has a relative deadline which can be less, equal

or greater than its period.

2. Aperiodic tasks are tasks that are executed on demand (or with unknown period).
A task is executed in response to an event. It should be noted that the arrival time
may not be specified in some systems, and the ready time is defined by the arrival

of an event.

3. Sporadic tasks are similar to periodic tasks, except that the parameter T; denotes
the minimum rather than the exact, separation between successive tasks. These

tasks are defined random arrival times.

A task set is referred to as synchronous or asynchronous based on the first activation
scenario of its tasks. In the case of a synchronous task set, the task set is defined as a
set whose first job of its tasks are activated at the same time. Whereas in the case of

asynchronous task set, the first jobs are activated at different time.
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2.1.3 Real-Time Scheduling

A real-time scheduling is defined as the process that defines the execution order of tasks on
a platform of processors. The main problem that real-time theory is concerned with is the
following: The feasibility analysis— Given the specification of a task system, and real-
time constraints on the scheduling environment determine whether there exists a schedule
for the task system that will meet all deadlines [16]. The Real-Time Operating System
(RTOS) is an example of such systems that is responsible for choosing which tasks to
execute on which processor and at what time. The main objective of a real-time scheduler
is to guarantee the correctness of the results while respecting the timing constraints of
the tasks (no deadline miss). It is important to clarify that real-time scheduling does not
necessarily mean executing tasks as soon as possible, but taking scheduling decisions that
guarantee their timing constraints. Furthermore, a real-time scheduling is divided into

two categories based on the scheduling decisions and when they are taken:

1. Static scheduling: A real-time system is scheduled based on a scheduling table
that contains all scheduling decisions of the system and the activation times of all
tasks. Hence, the scheduling decisions are taken prior to the running of the system
and they rely on a knowledge of the process behavior (i.e., at compile time). The
main advantage of static scheduling is its simplicity (hence a small overhead), no
runtime overhead is incurred by such a method since all the scheduling decisions are
made at design time [39]. However, this scheduling approach is too rigid to cope
with environmental changes occurring during the system execution, since it assumes
that all the parameters, including the time to wake-up tasks, are fixed at design
time [100].

2. Dynamic scheduling: Scheduling decisions are taken during the execution of
the system based on certain priority assignment rules defined by the scheduling
algorithm. Depending on whether the scheduling decisions are taken at runtime
or at design time, the scheduler uses different algorithms (or policies) to schedule,
define the priority assignment of tasks and select which tasks to execute on which

processors. We distinguish three main categories:

— First Come First Served Scheduling (FCFS): FCFS uses a simple “first,
in first out” (FIFO) queue [89]. Tasks are dispatched according to their arrival
time on the ready queue. Being a non-preemptive method, once a task has a

CPU, it runs to completion.

— Fixed-Priority Scheduling (FPS): This algorithm is well suited for static,
hard real-time systems. In this algorithm the priorities are assigned to tasks

at design time. Priorities can be assigned on the basis of urgency— that is,
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tasks that have the shortest timing constraints will have the highest priority
level. Liu and Layland [78] proposed two methods for assigning fixed priorities
to tasks based on urgency, Rate Monotonic (RM) [76] and Deadline Mono-
tonic (DM) [9]. In RM, tasks are assigned priorities according to periods such
that tasks with shorter periods get higher priorities. DM assigns the highest
priority to the task with the shortest deadline.

— Dynamic-Priority Scheduling (DPS): This algorithm works similarly to
FPS with the difference that the task priorities are computed during the
execution of the application rather than during the design time. Several
methods fall in this category, the Earliest Deadline First (EDF) is one of them.
EDF scheduling is one of the first DPS proposed [62][6]. As the name implies,
tasks are selected for execution in the order of their deadline. The Least Lazity
First (LLF) is another example: the highest priority task is the task with the
smallest Slack time (i.e., the temporal difference between the deadline, the

ready time and the run-time).

3. The Constant Bandwidth Server (CBS): The Constant Bandwidth Server
(CBS) is a scheduling mechanism proposed by Abeni and Butazzo [3] to implement
resource reservations in EDF-based systems. Resource reservations are an effective
technique to support soft and hard real-time applications in open system environ-
ment [5]. The idea behind this mechanism is that each task (or set of tasks) is
assigned a fraction of the CPU, and is scheduled in such a way that it will never
demand more than its reserved bandwidth. With this abstraction, the processor
capacity is viewed as a quantifiable resource that can be reserved, like physical
memory. In particular, this approach provides (i) temporal isolation (see Definition
4) between tasks and (ii) schedulability analysis for hard real-time tasks. A fully
detailed description of CBS can be found in [73]. Intuitively, CBS divides the
processor into virtual chunks by allocating a certain processor time for the tasks, as

depicted in Figure 2.5.

Each task is allocated a Constant bandwidth server S; with two parameters (), where
Qs is the server budget and Ty is the server period. The server bandwidth Uy = Qs/Ts
is the fraction of the CPU bandwidth assigned to S;. The algorithm dynamically
updates two variables (gs, ds) for each server S;: ¢, is the server’scurrent budget and
keeps track of the consumed bandwidth; d, is the server’s current scheduling deadline.
Initially, g, is set to the maximum budget Qs and J; is set to 0. S; is active if the
corresponding task has a pending instance. The CBS reservations are implemented
by means of an Earliest Deadline First (EDF) scheduler. At each instant, the
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Fig. 2.5 CBS scheduling mechanism.

active server with the earliest deadline d5 is selected and the corresponding task is
dispatched to be executed. The CBS updates its parameters as follows:

e Rule A: When job J;; of a task 7; arrives at time a, ;, the server checks the

following condition:

(SS — aij
s <= s — 77—
q Q T

If the condition holds, the current pair (gs,ds) is computed as g; < Qs and d5 <
a; i+ Ts.

e Rule B: If the server S5; executes for At units of time, the budget is decreased
accordingly: ¢, <= qs — At.

e Rule C: Server S; is allowed to execute while g; > 0. When the budget is
exhausted (¢g; = 0) and the server job has not finished yet, a new pair (gs, ds) is
computed, the scheduling deadline is postponed to ¢, < ¢s + T, and the budget is
recharged to ¢, < Q.

As a consequence, each task is reserved an amount of computation time @), in each
server period T regardless of the behavior of the other tasks (as explained in the
CBS rules). As we said above this is the temporal isolation property and it holds as

long as the system satisfies the following schedulability condition:

n
Theorem 1 Given a system of n servers with »_ U(Ty) < 1, no server misses its

s=1
scheduling deadline, regardless of the behavior of the other tasks [4].
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Definition 4 . Temporal Isolation: A kernel mechanism able to enforce resource
reservation on the processor, so that the tasks running within the reservation are
guaranteed to receive the reserved amount of time and do not interfere with the others

for more than the reserved amount [39].

Real-time systems are also distinguished based on their implementation:

— Preemptive systems: The running task can be interrupted at any time by another
task with higher priority, and be resumed to continue when all higher priority tasks
have completed. In other systems, preemption may be disabled for certain intervals
of time during the execution of critical operations (e.g., interrupt service routines,
critical sections, etc). In some situations, preemption can be completely forbidden
to avoid unpredictable interference among tasks and achieve a higher degree of
predictability (although higher blocking times) [39].

— Non-preemptive systems : They do not permit preemption. It is easier to design
preemptive scheduling algorithms for real-time systems. However, non-preemptive
scheduling is more efficient, particularly for soft real-time applications, than the
preemptive approach caused by the reduced overhead needed for switching among
tasks [65] [63].

2.1.4 Validation and Verification of Real-Time Systems

In order to ensure that a real-time system is temporally correct, we need to analyze its
schedulability (see Definition 5). Several approaches are used to determine whether a
set of tasks meets its timing constraints [20] [77]. In general, these approaches are based
on a well-defined schedulability conditions that are founded on temporal requirements of
system’s tasks. Therefore, schedulability conditions can be defined to determine the status
of the task set and whether it is schedulable or not using a given scheduling algorithm
A before its implementation. There are three types of schedulability conditions w.r.t a
given algorithm A: sufficient, necessary and exact conditions (see Definition 5). These

conditions depend on the special features of the systems for which they are used.
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Definition 5 . Real-time Feasibility and Schedulability:

For a given scheduling algorithm A, a system is referred to as A—schedulable if all
its tasks meet their deadlines when scheduled with the algorithm A. Similarly, a task
set is said to be A—schedulable if all of its tasks areA—schedulable.

Sufficient condition: if the condition is true then the task set is deemed A-
schedulable, otherwise, it cannot be concluded whether the set of tasks is schedulable
or not.

Necessary condition: if the condition is false, then the task set is unschedulable
using algorithm A; otherwise, it cannot be concluded whether the set of tasks is
schedulable or not

Exact condition: it is the combination of sufficient and necessary conditions. If the

condition is true, then the task set is A-schedulable, otherwise it is unschedulable.

According to [16] [21], three approaches are used for the schedulability analysis : (i) the
processor utilization,(ii) the demand bound function and (iii) and response time analysis.

In the sequel, we detail(i) and (ii); details about (iii) can be found in [8].

e The processor utilization: Informally, task utilization represents the fraction
of computational capacity that a task requires on a single processor. The amount
of execution over any interval of length ¢ on processing platform II that a task 7;
requires is upper bounded by u; x t. Below is a more formal definition of processor

utilization [16].

Definition 6 The utilization U(T) of a periodic or sporadic task T; is defined to be
the ratio of its execution requirement to its period: U(T;) = C;/P;. The utilization
U(T) of a periodic or sporadic task system 7 is defined to be the sum of all the

utilization of all tasks in T:

U(r) = Y. U(T) (2.1)

T,eT

The workload of real-time tasks can also be characterized by the Demand Bound

Function which is defined as follows:

e Demand Bound Function (DBF) is useful for the purpose of schedulability
analysis, to quantify the amount of computation required over an interval by a
real-time instance. We call this quantity the demand over the interval. Informally,
demand is an indication of how “ temporally constrained” the system is over that

interval. Below is a more formal definition of demand bound function [21].
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Definition 7 The Demand Bound Function of tasks 7; in a time interval [0,t] for
any t > 0 is defined as the sum of the execution time of all jobs of T; that have both
their arrival time and deadline in 7;:

- D;
B

DBF(r1;,t) = max <O, V J + 1) .Ci (2.2)

Consequently, the processor load [21] of task set 7 is defined as :

(2.3)

* . DBF(r;, t)>

load(T) = mazyi>o < ;

2.1.5 Real-Time Communication

Definition 8 . Distributed System: A distributed system consists of a collection
of autonomous computers, connected through a network and distribution middleware,
which enables computers to coordinate their activities and to share the resources of

the system, so that users perceive the system as a single, integrated computing facility

[108].

Real-time systems are often of distributed nature. A distributed real-time system architec-
ture consists of a set of nodes and a communication network between these nodes. Thus,
the system’s functionality is not necessarily implemented on a single node, but may be
achieved by an arbitrary number of cooperating nodes in the system (see Definition 8).

Computer node 1 Computer node 2 Computer node 3~ Computer node 4

1

[Appﬁcaﬁonl ’ { Application 2 } [Application3 ]

{ Local OS 1 } [ Local OS 2 } { Local OS 3 } [ Local OS 4 J

Network

Fig. 2.6 Distributed system.

From a functional point of view there is no difference whether the computation is
distributed over several nodes, or executed on a single node, as depicted in Figure 2.6.

The distributed solution, however, yields several advantages, we cite some advantages

from [68].
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— Architecture: It may be advantageous to execute a function on dedicated hardware.
This approach allows the employment of hardware components, for example, a digital
signal processor, which are optimized for the respective function. The resulting node
is able to calculate results faster or more efficiently. If several nodes with an identical
hardware architecture can be used in the overall system, the opportunity of mass
production might also reduce the cost per node. Other constraints for the system’s
architecture may originate from the historical evolution of the system. Considering
an automotive system, the functionality of nodes has been largely improved by
replacing simple circuitry with ECUs. The resulting system is a large set of small
nodes. Often it is easier to situate the simpler, and hence smaller, nodes in the
installation space available, than larger pieces of hardware. At the same time, the
linking might be reduced if each node’s physical location is close to the sensors and
actuators it uses, compared to a star topology in a centralized system. Further, from
a system architect’s point of view, the abstraction provided by the distributed nodes
eases the design of the overall system. As explained by Kopetz [68], each node is
an autonomous real-time system with essential functional and temporal properties.

The exact implementation of the node is hidden beneath its interface.

— Extensibility: With all nodes providing a common interface, easy extensibility
of the real-time system is achieved. If the communication system provides the
necessary resources, it is sufficient from an architect’s point of view to add further
nodes to the system by connecting them to the communication system. Of course
this approach requires the subsystems to be composable, that is, their integration
into the overall system via the communication mechanism must not invalidate the

timeliness property achieved by the system.

— Fault containment: Hiding a node’s internal state is also advantageous in case of
failure of a node. Since each node is implemented as an autonomous subsystem, it can
be prevented from influencing the rest of the system if it fails. The communication
system is liable for providing a mechanism that avoids the propagation of erroneous
values to other nodes of the system. This approach largely improves the reliability,

and thus safety, of the overall system.

— Parallelism: The availability of a larger number of processors and memory, com-
pared to a single node solution, enables the parallel execution of tasks. This is
mainly of interest for large scale systems, where several independent tasks are ready
for computation at the same time. Parallelization of the system not only improves

processing speeds, but also lowers overall system cost.
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2.2 Embedded Systems

An embedded systems consists of a physical device and an integrated computer system
that controls the functions of the physical device acting in the physical environment [69].
Most of today’s machines and appliances (e.g., automotive engines, washing machines,

medical devices, mobile phones) are controlled by an embedded computer system (see

Figure 2.7).
e - B

Fig. 2.7 Embedded system applications.

According to Kopetz [70], embedded systems have a number of distinctive characteris-

tics that influence the system’s development process:

Mass production. Many embedded systems are designed for a mass market and
consequently for mass production in highly automated assembly plants. This implies that
the production cost of a single unit must be as low as possible, i.e., efficient memory and

processor utilization are of concern.

Static structure. Usually, the embedded system is used unaltered throughout its
lifetime and has a dedicated use. The a priori known static environment can be analyzed
at design time to simplify the software design and requirements. This avoids unnecessary

complexity of the systems, since little flexibility or dynamic algorithms are needed.

Ability to communicate. In case of distributed embedded systems like cars, robust
and deterministic behavior of the employed communication system is more important than
transmission speeds. Therefore, the focus for the employed protocols results in predictable

timing and absence of collisions.

Low power. Many mobiles embedded devices are powered by a battery and should
consume low power.The lifetime of a battery load is a critical parameter for the utility of a
system. Embedded systems consist of hardware and software components. The hardware
components include: processor (1 or more), memory, 1/O peripherals including network
devices, sensors, actuators, timers, etc. The software components are mainly composed of
two parts: (i) the system software layer that contains an Operating system and drivers of
I/O devices, and (ii) the application software that runs on top of the OS and executes

tasks that users wish to perform.
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2.3 Embedded Systems Development

The design of embedded real-time systems is guided by a load of different prerequisites, aris-
ing from the system’s environment, its intended functionality, and the safety requirements.
The size and complexity of today’s distributed systems (for example in automobiles, they
are expected to reach up to 100 million lines of code in 2020 [103]), make the development
of such systems difficult. In order to tackle this complexity, engineers/designers use an
abstraction and models for the system description. These models enable the designers to
solve different issues yield by the separation of the development steps [31] [32], [67]. Several
researchers [47] [98] show that separating the system’s behavior from its structure eases
the design of complex real-time systems. Figure 2.8 depicts a design flow development of
embedded systems. This design starts with the “system specification” step. Typically, it
involves a consideration of both software and hardware models. Since both have to be
taken into account during embedded system design. There are many ways to model a
software (see [68] for a description of the common modeling formalism used in embedded
system). In this thesis, we use task graphs [68], the exact model is presented in Chapter 5.
For the hardware model, we consider heterogeneous distributed platforms, consisting of
computation nodes connected to a bus. Details about the hardware model is presented in
Chapter 5.

In the “design tasks” step, the system is partitioned into distributed components,
the mapping of these components to their respective location (i.e., computation node) is
achieved based on a model of the target platform. This step also comprises: design space

exploration, compilation and the scheduling.

Software Model Hardware Model

A

Design tasks

* HW/SW partitioning
* Function allocation Evaluation
¢ Scheduling

¢ Communication analysis

J

Code implementation

Fig. 2.8 Embedded system development.
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2.4 Adaptive Systems

In [43], authors have defined self-adaptive systems as systems that are able to modify
their behavior according to changes in their environment. Self-adaptation endows a
software system with the capability to adapt itself to internal dynamics and dynamics
in the environment in order to achieve certain goals. Examples are a system that
heals itself when certain errors occur, or a system that optimizes its performance under
changing conditions. Different loosely connected communities have studied self-adaptation.
Prominent examples are the SEAMS community (International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, http://www.self-adaptive.org/).
Self-adaptive systems automatically take the correct actions based on the knowledge
of what is happening in the system, guided by objectives and needs of stakeholders.

Self-adaptive systems are characterized by three core functionalities:

e Monitor (sensing) the environment to recognize “problems”;

e Take decisions on which behavior to exhibit;

e Realize the behavior change by adaptation.

Therefore, to act adaptively, a self-adaptive system, which ideally bases on some
specialized architecture to support previously mentioned functionalities, needs knowledge
about:

e What to monitor and for which symptoms;

e Which alternative behaviors are available;

e Decision criteria for the selection of a specific behavior.

Several challenges were tackled in the research roadmap of self-Adaptive Systems [43].
We summarize the most important challenges, as follows:

Modeling dimensions, in which authors have defined models that can represent a wide
range of system properties.

Requirements, in this challenge they have defined a language to capture the kind of
uncertainty at the requirements phase and still there is need of means to manage it.

The third challenge is about Engineering, authors have set the role of feedback control
loops in the life cycle of self-adaptive systems, in other word to show the importance of
making the adaptation control loops explicit.

The last challenge is concerned by assurance, in which the authors have studied how
to supplement traditional and V methods applied at requirements and design stages of
development with run-time assurances. All these challenges result from the dynamic nature
of self-adaptation, which brings uncertainty. This uncertainty restricts the applicability
of traditional software engineering principles and practices but motivates the search for

new approaches for developing, deploying, managing and evolving self-adaptive software
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systems. In this thesis, we develop novel architecture concepts based on adaptation to

address the needs of a new E/E architecture for FEVs regarding safety and cost-efficiency.

2.5 Runtime Adaptation in Real-time Embedded Sys-

tems

There is an increasing need for embedded software systems that are able to adapt
dynamically to changes in their environment. However, there is still a lack of applicable
techniques for handling adaptation [38, 37| in this setting. Several research initiatives
have recently aimed to tackle runtime adaptation in real-time embedded systems. These
approaches can be divided into two different groups targeting on two different scenarios:
(i) Runtime adaptation of embedded software: which tries to add, replace, migrate or
remove SWCs from the running system, and (i) Runtime adaptation and mode change
concept: which focuses on the switching between predefined configuration or modes of

system at runtime.

2.5.1 Runtime Adaptation of Embedded Software.

Concerning this first group, we begin with the work of Marisol Garcia Valls et al. [57]. In
this paper, two strategies for component replacements scheduling are presented. One of
the replacements scheduling approaches allows the replacement of a component each time
the component is executed, which leads to add the replacement time to the execution
time of the component. This approach has a high processor time reservation; however,
the replacement is accomplished in shorter completion time. The other approach allows
the replacement of the component at a predefined safe time. The time reserved for
replacements can be adjusted to the application needs.

The same authors (i.e., Marisol Garcia Valls et al.) introduced iLAND (mlIddLewAre
for deterministic dynamically reconfigurable NetworkeD embedded systems) [53, 56], a
middleware that supports time-deterministic reconfiguration in distributed soft real-time
service oriented systems. iLAND stands out the work carried out in real-time service
composition, [54], and QoS models for supporting composition, [55], which deals with
the problem of dynamic allocation of services with multiple available implementations
and dynamic component-based reconfiguration [57]. The authors addressed the problem
of finding a suitable system configuration with composition algorithms, which contain
heuristics and figures of merit. The use of these techniques allows reducing the overhead
when executing these algorithms by several orders in magnitude. Both references focus
on service-based dynamic reconfiguration of soft real-time systems, and do not address

mixed hard and soft real-time requirements of distributed real-time systems.
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Patrick Lardieri et al. [75] have presented a Multi-Layer Resource Management (MLRM)
architecture. MLRM was developed to demonstrate DRM (Dynamic Resource manage-
ment) capabilities in a shipboard computing environment. This environment consists
of a grid of computers that manage many aspects of a ship’s power, navigation, com-
mand, control, and tactical operations, using standards-based DRM services that support
multiple QoS requirements, such as survivability, predictability, security, and efficient
resource utilization. MLRM was developed for the DARPA’s Adaptive and Reflective
Middleware Systems (ARMS) program, which is applying DRM technologies to coordinate
a computing grid that manages and automates many aspects of shipboard computing,
and to support DRM in enterprise distributed real-time embedded systems. The ARMS
MLRM was designed to manage computing resources dynamically and ensures proper
execution of missions in response to mission mode changes and/or resource load changes
and failures, as well as capability upgrades. The work done in this paper is somehow

closer to our focus however they considered hard real-time systems.

Rasche and Polze, in [95, 96], present an approach for dynamic reconfiguration of
component-based software, in which components are blocked to apply management tasks
such as reconfiguration of components. The reconfiguration is managed and applied in a
way that the execution of all the current transactions between components is correct, but
the application is blocked until the reconfiguration is finished without taking into account
real-time deadlines. Other approaches are in fact concerned about real-time properties as
the one proposed by Michael Whaler et al. in [116]. The model proposed is mainly focused
on a model for component replacements. This model may require several iterations to
complete the replacement and does not guarantee that the copy of the component state
is completed in a fixed number of periods; given that the component is still working
and its state is modified. This method also obviates the need to analyze the available
slack time to make these component updates. Several techniques aiming at dynamically
updating component-oriented embedded system were studied and compared in [111].
Yet, none of the proposed techniques is designed for automotive systems. Adaptation in
fault-tolerant distributed embedded systems has been extensively studied in the literature
[48] [15] [84] and there have also been efforts on building adaptive real-time fault-tolerant
systems. Priya Narasimhan et al. proposed MEAD [84], Middleware for Embedded
Adaptive Dependability for avionics, provides a proactive fail-over framework using a
failure prediction method to overcome the unpredictable nature of failure occurrences
and supports somewhat predictable timing behavior. In [15] a Fault-tolerant, Load-aware
and Adaptive middlewaRe (FLARe) is designed and implemented to maintain service
availability and soft real-time performance in dynamic environments. FLARe supports
distributed systems where application servers provide multiple long running services on a

cluster of computing nodes. The services in a system are invoked by clients periodically via
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remote operation requests. Further, these types of systems experience dynamic workloads
when clients start and stop services at runtime. Clients demand both soft real-time
performance as well as system availability despite workload fluctuations and processor and
process failures. FLARe is targeted at soft real-time applications and does not provide
hard guarantees on meeting every deadline.

One last approach to be discussed here is the one presented by Fritsch et al. [51].
They propose the TimeAdapt model, which supports runtime adaptation for component-
based real-time systems. The model uses an admittance test for reconfiguration, which
determines a probability whether a reconfiguration can meet a given time bound. If the
probability of meeting the constraints is high enough, the reconfiguration can then be
executed. The proposed model is not suitable for distributed embedded systems with

mixed hard and soft constraints.

2.5.2 Runtime Adaptation and Mode Change Concept.

Hard real-time systems realize dynamic reconfiguration via mode changes. A system
mode change mostly refers to a switch of defined operating modes of the system, which
is generally controlled by a mode change protocol [34], i.e., when the system’s internal
state or the environment change all the tasks that belong to the old mode are removed
whereas the tasks that belong to the new one are released. During the switching phase
(i.e., transition from old to a new mode) the old tasks are still active and the new tasks
are scheduled to the system. The mode change protocol is used to guarantee that tasks
meet their deadlines [97]. So, we can see that there is a close relationship between mode
changes and dynamic reconfiguration. In order to guarantee timing requirements in
the presence of mode changes in the system, several approaches have been proposed
and focused on mode changes protocols. Sha et al. [102] firstly introduces an algorithm
allowing timing guarantees of a set of periodic tasks during mode changes in uniprocessor
platform [110, 91, 97] (see the survey of [97] for more details). Other efforts have been
performed towards extending the above approaches to multiprocessor platforms [114]. The
analysis approach in [102] is improved and extended to deadline-monotonic scheduling in
[110, 109]. The model is augmented with transition offsets during the execution of new
tasks in [90, 91], which makes the schedulability analysis simpler and permits avoiding
overload situations. However, a way to calculate such offsets is not provided. Similarly to
(90, 91], a slightly different mode change protocol is introduced in [97], in which authors
have proposed an asynchronous mode change protocol that permits to tasks from both
new and old modes to run concurrently, in order to study the impact of introducing an
offset during the mode change on the system schedulability analysis. Abeni and Butazzo
[40, 4] have proposed Constant bandwidth server (CBS) and elastic model which allow

the system to adapt its resources at runtime however their results were used just for
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soft real-time systems. If we confine our interest to mode change protocols with EDF
scheduling, they have been only a few studies (three for e.g., [87], [105], [114]) that support
dynamic priority preemptive scheduling.

We can see that all the above-referenced approaches are limited to strictly periodic
activation and the main limitation of their mentioned analysis is the restriction to static

scheduling policies.

Mixed criticality Systems (MCS) scheduling was first presented in [113]. A recent
survey about this field can be found in [36]. Vestal et al. [113, 17] was the first introduces
an algorithm allowing all the tasks with different criticality levels to remain schedulable
regardless of the changes of the system mode. In MCS, a system mode change refers to a
change of the criticality level of the system for example from lower to higher criticality.
The major limitation of Vestal’s model [17] is that the WCET of all tasks must always be

known for all criticality level, which is not always possible in practice.

Based on this, in 2013 researchers started looking for solutions to improve the scheduling
efficiency of MCS, therefore, the new topic about Adaptive mixed criticality systems
has been explored. Building further on this analysis, a variety of algorithms such as
AMC [35], and EDF-VD [18] were developed. Burah et al. [19] developed Adaptive Mixed
Criticality algorithm (AMC). This new algorithm was shown to dominate all the fixed
priority preemptive scheduling algorithms for MCS.

Recently, in 2014, Burns and Davis [35] showed how AMC could use final-non pre-
emptive region [44], their evaluation shows that this scheme improves the AMC in terms
of schedulability analysis. However, one of the major issues hindering the real-world
application of AMC is that most of them supported two criticality levels: LO-criticality
level and HlI-criticality level (with HI-criticality level is higher than LO-criticality level)
and always LO-criticality tasks may be terminated in order to ensure the execution
of Hl-criticality tasks when the criticality level of the system increase. For dynamic
scheduling, Hang et al. [107] and Mathieu et al. [79] addressed the issue of abandoning
LO-criticality by using an elastic critical task model.[107] introduced a mechanism called
Early-Release EDF (ER-EDF) which allows LO-criticality tasks to be released early on
the slack generated by HI-criticality tasks, whereas [79], they used elastic task model by
stretching a LO-criticality task’s period in order to decrease the load on the system in
HI-criticality mode. Previous methods aimed at allowing LO-criticality tasks to execute

after a criticality mode change have mostly been best effort.

Discussion: In Table 2.1, we present our survey concerning the recent efforts for the
design and development of adaptive real-time embedded systems. This classification is
based on the requirements introduced in Chapter 1 Section 1.1. Regarding Table 2.1, for
each Publication, we provide the type of adaptation (e.g., structural), the system’s timing

constraint that has been satisfied (e.g., soft real-time constraints) and the scheduling
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method that has been used to schedule the adaptation (e.g., fixed priority scheduling).
As we can conclude from our survey, none of the above mention-systems provides a
flexible adaptation techniques for application with both hard and soft timing constraints.
In addition, most of them use a fixed preemptive scheduling policy. Consequently, the
solution we devise throughout this thesis is especially directed for handling adaptation for
mixed hard and soft real-time applications using dynamic preemptive scheduling policy.

Note that, the mode change handling in the above approaches from the real-time

literature is rather complementary to our work.

2.6 Summary

In this chapter, we have given an introduction to the basic requirements of real-time
systems and challenges during their development. A classification into soft and hard
real-time systems has been given, as well as the concept of self-adaptive systems has been
introduced. In addition, A survey about the existing adaptive real-time system approaches
was given.

Before giving a detailed overview of our approach in Chapters 4 and 5, we give a
more detailed description of the specific needs of automotive systems, and its current
state. The next chapter presents these needs and outlines recent architectural changes for

automotive systems, which our approach takes care of.
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1€

Runtime adaptation of embedded software

Publication type of adaptation real-time requirement scheduling mechanism

[Valls et al., 13, 14] replacement soft fixed
[Lardieri et al.,07] upgrade hard fixed
[Rasche et al., 05, 08] replacement soft fixed
[Wahler et al., 11] replacement hard fixed
[Narasimhan et al., 05] replication soft fixed
[Balasubramanian et al., 09, 13] replication soft fixed
[Kim et al., 12, 13, 14] replication mixed fixed
[Fritsch et al., 08] upgrade, replacement, deletion soft fixed

Runtime adaptation and mode change

’ Mode change approaches [from 89..16] \

User-defined parameters

soft,hard or mixed

| (80%) fixed or (20%)dynamic |

Table 2.1 Comparison of different approaches to add runtime adaptation in real-time embedded systems.
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Chapter 3

Automotive Embedded Systems:
Focus on AUTOSAR

In Chapter 2, we have introduced the general concepts and foundations of embedded
real-time systems. Automotive systems clearly fall in that domain, but compared to
airplanes or other plant-automation systems cars have evolved differently over the years.
The automotive domain faces more stringent constraints regarding cost and weight,
and is affected by a different division of labor between OEMs and suppliers. A brief
description of the architecture of automotive embedded systems is given in Section 3.1.
The AUTOSAR standard is explained in Section 3.2. In Section 3.3, we introduce
the AUTOSAR methodology for developing software for ECUs. Section 3.4 addresses
some of the AUTOSAR issues to support runtime adaptation. Section 3.5 positions
our contributions with respect to the related state of the art. Towards the objective of
introducing an adaptive automotive software architecture. Afterwards, in Section 3.6, we
give a brief overview of the current AUTOSAR status. Finally, a summary of the chapter

is given in Section 3.7.

3.1 Architecture of Embedded Automotive Systems

3.1.1 Concepts of E/E Architecture:

The E/E architecture in vehicles includes sensors, actuators, and control units as well as
other hardware components. The architecture does not specify the details about each
sensor, but more that there should be a sensor measuring the distance to objects in front
of the vehicle, i.e., if it is a radar, high-speed camera or a laser range finder is not part of

the architecture.
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Definition 9 Architecture: This term means the fundamental architecture of the
system embodied in its components, their relationships to each other and the envi-
ronment and the principles guiding its design and evolution. The term architecture
in automotive systems denotes the description of automotive electronic systems at
different abstraction levels.

Topology: The term topology in automotive systems means the interconnection of
the ECUs (nodes) in a vehicle with various communication networks and the E/E

architecture of the ECUs, including the hardware and the software architectures.

Further, the physical network, software, and wiring is part of the E/E architecture. A
reason for this is the tight coupling between hardware and software. Before going into
detail about the automotive electronic architectures, a few technical terms will be defined
(see Definition 9): An automotive electronic system architecture can be described in many
ways using different views as stipulated in [85]. Generally, there are two views: (1) the

hardware architecture and (2) the software architecture.

1. Hardware architecture: The hardware architecture addresses the following ele-
ments:

- ECU hardware architecture: This includes the physical components such as
processor, sensor, actuator, RAM/ROM, internal communication, and bus connec-

tion. Figure 3.1 shows the hardware components of an ECU.
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Fig. 3.1 Hardware component of an ECU.

- In-vehicle network topology: This shows where the different ECUs are physi-

cally placed and also shows how they are connected in the vehicle. The topology
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includes: (i) the number and types of ECUs, (ii) the number and types of com-
munications networks such as Control Area Network(CAN) [45], FLEXRAY [80],
etc, and (iii) how the ECUs are connected to the communications networks. In
luxury cars such as Mercedes E-Class, the system topology of the communication
is very complex with more than 60 ECUs as shown in Figure 3.2. The ECUs are
divided in this case into fours vehicle domains: Chassis, cabin/body, power train
and telematics, where the power train and the chassis are usually combined together.

These ECUs are connected by various communication networks.
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Fig. 3.2 ECU topology of Mercedes E-Class BR211 [85].

- Communication system and protocol between the ECUs: A widely used
automotive communication network is the Controller Area Network (or CAN referred
to CAN bus) [45]. The CAN is an event-triggered communication network with a
transfer rate from approximately 20 Kbit/s to a maximum 1 Kbit/s. Bus access for
CAN follows the arbitration concept based on the priority of each CAN message. This
means that when one or more than one device wants to access the bus simultaneously,
only the message with the highest priority can be sent. The other messages with low
priority will be discarded and sent at a later time. Thus, the time period to access
the bus is not deterministic because the messages with lower priority are discarded

and other CAN messages can dominate the bus.
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2. Software architecture: This is a description that includes the specification of a
standard software components. It defines the components of a software system and

how they use each other’s functionality and data.

3.1.2 Characteristics of Automotive Systems

3.1.2.1 Complexity

The complexity of automotive systems is caused by two distribution aspects: first, the
computing platform is composed of a huge number of ECUs or computing nodes. Second,
the application software executed on an automotive platform is distributed over its
hardware platform. This distribution requires reliable communication and compatible
interfaces of the involved tasks for providing the desired functionality. At the same
time, hardware and software distribution must not affect the timing requirements of the
application in a negative way, causing the application to miss its deadlines. Traditionally,
one of the reasons for the highly distributed nature of automotive architecture is the supply
chain. In other words the relationship between automotive OEMs and their suppliers;
in which, the system supplier provides the OEM with the system components ready for
direct installation [70, 69].

3.1.2.2  Safety

With the large amount of interaction between the different functionalities in today’s car,
ensuring that the entire vehicular system operates safely is very demanding. Compared
to other embedded systems that are facing a high demand of safety such as avionics;
automotive softwares were limited to rather non-critical applications such as infotainment
systems. As a result, neither safety considerations were applied nor systematic development
processes are required by law [93]. Even today, standards like ISO26262 which are intended
to enhance safety of an automotive system are optional. The use of such a standard
still does not necessarily result in a safe system. Instead, the explicit use of methods for
safety analysis is required [106, 115]. In the next section, we cite some general hardware/
software safety requirements according to the safety norm IS0O26262 [46]:

e Reliability and restlessness in such a way that fault tolerance mechanisms can handle
detected faults locally without propagation to the other software components in the
System.

e Monitoring mechanisms dedicated to indicate the internal and the external failures
to the driver.

e Certification and test of automotive software according to a safety norm is an
important issue, especially, as the development time for of automotive software is becoming

ever shorter.
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3.1.2.3 Cost Constraints

The automotive domain is very cost sensitive compared with other domains. A car
manufacturer produces 50.000 to 1 million entities of a model [61]. Even adding a
small amount of memory or using a faster CPUs in one of the ECUs may add up to a
large amount of money [71]. Therefore, automotive systems face more narrow resource
constraints than others embedded software domains. Even if automotive engineers try
to reduce this cost by reducing the amount of required memory and processing speed
is not without problem [31]. As a result, the code needs to be squeezed for the given
ECU. However adding a new functionality is made more difficult or even impossible if
memory size of the ECUs was optimized too much during the development process [94].
In addition, it becomes harder to identify the error and fix bugs in case of faults [31].
The automotive industry needs new techniques that take into account rising development

costs, maintenance cost, project risk, and time-to-market.

3.2 The AUTomotive Open System ARchitecture

AUTOSAR (AUTomotive Open System ARchitecture) defines an architecture for the
development of automotive systems [11]. AUTOSAR was launched in 2003 and jointly
developed by BMW, Bosch, Continental, Daimler Chrysler, Volkswagen and Siemens
VDO. The goal was to create a standard for automotive E/E (Electronics/Electrics)
architectures and to decouple application software from lower level Basic SoftWare (BSW)
by means of a standardized middleware called RunTime Environment (RTE). This allows
running the same application software seamlessly on different hardware platforms, as
long as the underlying hardware is linked with the RTE through appropriate BSW. This
standard enables the use of a component-based software design model for the design
of a vehicular system. It defines as well a methodology that can be used to create
the E/E system architecture starting from the design-model (see Figure 3.7). Basically,
AUTOSAR-compliant automotive software can be divided into three layers: (i) the
application software, (ii) the runtime environment (RTE) and (iii) the basic software layer
(see Figure 3.3). The software developers focus on the implementation of application
software components (SWCs), whereas the RTE and necessary basic software components
such as the operating system, etc. are generated and configured according to the services

required by the applications. Details about each layer are given in the next section.

3.2.1 AUTOSAR SoftWare Component (SWC) and Runnables

The AUTOSAR Software is realized by several Software Components (SWCs), which

provide the functional behavior of the system. The communication between SWCs and

37



Application Actuator Sensor
AUTOSAR Software Software Software AUTOSAR

Software

Software Component Component Component
e 4 AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface

AUTOSAR Runtime Environment (RTE)

Standard
Software
Standardized g Standardized AUTOSAR AUTOSAR
Interface s Interface Interface Interface
ECU
“ VFB & RTE Services Communication ST
relevant St - — — = -
¢=> RTE b 5 Interface Interface Interface
relevant
Operating Complex
= Bsw System Drivers
relevant Standardized
Possible interfaces | Interface |
inslles ‘ Microcontroller
m&:‘:" Abstraction
not specified
within AUTOSAR)

Note: This figure is incomplete with respect to the possible interactions between the layers.

Fig. 3.3 The layered software architecture of AUTOSAR [11].

other components or with parts of the BSW is done through the RTE. AUTOSAR

distinguishes two kinds of software components:

— Sensor/Actuator Software Component. This component depends on sensors
and actuators which are available at the ECU. Due to performance reasons, such
a component runs on the ECU to which the sensors and actuators are physically
connected. Besides, it is as independent as an AUTOSAR Software Component.

— AUTOSAR Software Component. A SWC corresponds to application functions.
It consists of entities called Runnables. Each application in AUTOSAR consists of
one or more SWCs. These SWCs transmit information (i.e., Data Types) to other
SWCs using defined interfaces (i.e., Ports) and communicate with each other using
the RTE. Note that the application function can either be fitted in a single SWC
or spread out in multiple components. Apart from the component implementation,
AUTOSAR SWC came with its formal software description, which includes among
other: General characteristics: (Name, manufacturers), Communication properties:
(Pport, Rport, Interfaces), Composition: (sub-components, connections) and the

required HW resources: (scheduling, memory, processing time, etc).

3.2.1.1 Runnable

Since an AUTOSAR SWC is not allowed to access directly the underlying HW or OS,

its implementation cannot reflect artifacts like threads or process [1]. Furthermore, each
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functionality that needs to be executed within the SWC is covered into Runnable entity
or for short Runnable (see Definition 10). Since the unit of execution in AUTOSAR
is an OS task, all runnables need to be mapped to such an OS task to be executed
within the underlying OS task (i.e., an OS task acts as a container of one, or sequence of,

runnable(s)).

Definition 10 . Runnables: Runnables are a schedulable units of an SWC, which
are basically a sequence of instructions (C-functions) that can be started by the RTE
as a result of an event initiated by the RTE and are executed in the scope of an OS
task. An SWC consists of at least one runnable [806].

Depending on whether runnables have an internal wait-points; two main runnable cat-
egories exist. That are then allocated on different kind of operating system tasks (see
Section 3.2.3.4):

— Catl. Runnables are without wait-points (i.e., non-blocking), in other words, the
runnables terminate in a finite time. Within this category, there are two sub-
categories: 1A which is only allowed to use implicitly defined APIs and 1B which
is an extension of 1A making it also to use of explicit APIs. Runnables that fulfill
these constraints are usually assigned to Basic tasks of the operating system (i.e

which are not allowed to invoke any blocking system calls).

— Cat2. Runnables have at least one waiting point. Runnables that fulfill these
constraints are usually assigned to Extended tasks (i.e., which are allowed to use
blocking system calls).

Runnables activation. All runnables are activated by the RTE as a result of an
RTEEvent. The RTEEvent specifies how and when the runnables should be invoked /or
activated at runtime. AUTOSAR defined sevens RTEEvents that trigger the execution of
the runnables, which is done either by activating or waking up them [1]. The following
Table 3.1 names the most important RTEEvents that are defined by AUTOSAR.

3.2.1.2 Ports

Are the mechanism of SWCs to communicate between each other. There are two types
of ports in AUTOSAR SWCs: a PPort or an RPort. A PPort provides an AUTOSAR
Interface while an RPort requires one. If the interface that is encapsulated by the port
is provided a module or service of the AUTOSAR Service layer then it has to be a
Standardized AUTOSAR interface. Whereas, if it is provided by an AUTOSAR SWC
or module of the I/O HW layer then this interface has to be an AUTOSAR Interface.
This means it is used by the layer above the RTE as well as by ECUAL and CDD which
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Table 3.1 Overview of RTEEvents.

RTEEvent Type | Communication | Description
category
TimingFEvent Triggers a runnable
periodically.
DataReceiveEvent | S/R triggers a runnable
upon reception of
new data.
Operationlnvoke C/S Triggers a runnable
Event when a client wants
to use one of its ser-
vices provided on a
PPort
Asynchronous- Sev- | C/S Triggers a runnable
erCall upon the return
of an asynchronous
call .

are below the RTE. A port always belongs to exactly one component and represents
a point of interaction between a component and other components. This distinction
describes the direction of the communication. An AUTOSAR standardized Interfaces or
an AUTOSAR interfaces can either be a Client-Server Interface (C/S) or a Sender-Receiver
Interface(S/R). Figure 3.4 shows C/S and S/R interfaces with their symbols.

— C/S: defining a set of operations that can be invoked, either synchronously or

asynchronously.

— S/R: which allows only the usage asynchronous communication (i.e. all calls are

non-blocking). The direction of the communication is given through the arrow.

| sender | | receiver | client server
=1
(v} ! !Al ~ (e]

Fig. 3.4 Symbols of ports.

3.2.1.3 Inter Runnable Variable (IRV)

Ports define the interaction between SWCs, or more precise the interaction between
the runnables of the SWCs. For runnables of one SWC another mechanism for internal
communication exists. These are the Inter Runnable Variables (IRVs), which can be
accessed by the runnables. Runnables could also use global variables for this internal
communication, but with IRVs protection mechanism are provided by the RTE for

concurrency.
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3.2.2 The RunTime Environment (RTE) and Virtual Function
Bus (VFB)

The RTE provides communication services for the application software (AUTOSAR SWCs
and Sensor/Actuator). It implements the data exchange and controls the interaction
between the application software components and the Basic Software Layer. Precisely
the RTE is an implementation of the Virtual Function Bus (VEB), which is an abstract
communication environment for connecting SWCs. Having a VFB to exchange data

between the SWCs enables them to be independent from the underlying hardware platform.

SWCy SWCs, SWC3 SWC,

990 80 oEY  p@d

Virtual Functional Bus

Fig. 3.5 Virtual function bus.

The interface defines the ports that can be used from the functions in the component.
At the VFB level, these ports can be used to connect components by connecting compatible
ports as it is shown in Figure 3.5. This represents the functional part of the system,

independent from the architecture or infrastructure which is needed to execute this system.

3.2.3 The Basic SoftWare (BSW)

The Basic SoftWare (BSW for short) consists of four sub-layers presented from down to
up as follows:

3.2.3.1 The ECU Abstraction Layer (ECUAL)

This layer offers access to all of an ECU functionalities such as I/O(Input/Output),
communication and memory-regardless whether these functionalities are part of the

microcontroller or are implemented by peripheral components.

3.2.3.2 The Complex Device Driver (CDD)

The CDD contains the drivers for the specific properties of a microcontroller or ECU, which
are not standardized in AUTOSAR, so this layer provides non-AUTOSAR components
(e.g., device drivers).

41



3.2.3.3 The Microcontroller Abstraction Layer (MCAL)

This is the lowest layer of the BSW. It contains hardware-specific drivers for access to
memory, communication and I/O of the microcontroller. The purpose of this layer is to

isolate higher software layers from the specifics of the microcontroller.

3.2.3.4 The Service Layer

This is the highest layer of the BSW, that provides different types of background services
such as memory management, vehicle network communication services (bus communica-
tion), diagnostic services and the ECU mode management. The Operating System is also
contained in this layer. In the following, we clarify the most important concepts for our

work.

3.2.3.4.1 AUTOSAR Current Task Model.

The AUTOSAR Operating System (AUTOSAR-OS) is a real-time OS associated with
the AUTOSAR standard. AUTOSAR scheduling tables are inherited and based on the
same mechanism in the OSEK/VDX operating system [88]. These tables are executed
periodically or once and they are an encapsulation of a statically defined set of expiry
points, the later are offsets at which the OS activates tasks and/or set of events [2].
In other words, it encapsulates a set of points at which certain statically configured
actions will be executed. Most of the general properties and attributes of OSEK-OS
apply to AUTOSAR-OS as well. In particular, the main characteristics provided by
OSEK-OS to AUTOSAR: statically configured (i.e., the overall system configuration is
known at compile-time), fized priority scheduling, interrupts handling and some protection
mechanisms against unintended use of the OS services.

AUTOSAR-OS differentiates between two kinds of tasks: Basic tasks and Extended
tasks.

- Basic task: Basic tasks release the processor, only if they terminate, the scheduler
switches to a task with a higher priority or an interrupt arises and an interrupt service
routine is called.

- Extended task: The extended tasks provide in addition to the basic tasks the
possibility to release the processor without termination and wait for an event. After the
event occurs, the extended task can be waked up by the scheduler again. This is called a
wait-point and can be used to synchronize tasks. Basic tasks can just be synchronized on
the start or the end. Figure. 3.6 depicts the state transition model for extended tasks as
defined in OSEK-OS [88] and AUTOSAR-OS [2], where each task is in one of the four
states: Ready, Suspend, Run or Wait. The different transitions between these states are
described in Table 3.2.
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Table 3.2 States and status transitions for extended tasks defined by OSEK & AUTOSAR-
OS.

] Transition ‘ Initial state ‘ target state ‘ Detalils ‘

Activate suspended ready A new tasks set tran-
sits into ready state
by a system ser-
vice which is function
called from alarms,
tasks or ISRs (i.e.,
it’s used to set or
clear the events).

start ready running A ready task is se-
lected by the sched-
uler to be executed.

wait running waiting The transition into
the waiting state is
caused by a system
service e.g., Wait-
Event. The waiting
task requires an event
to continue its opera-
tion.

release waiting ready At least one event has
occurred for which a
task has been wait-
ing.

preempted running ready The scheduler de-
cides to start another
task,the running task
is put into the ready
state.

terminate running suspended The running task
causes its transition
into the suspended
state by a system
service.Task termina-
tion is only possible
if the task terminates
itself.
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preempt

wait

Fig. 3.6 AUTOSAR extended tasks state mode.

When an AUTOSAR application is defined, it must be loaded into an embedded target.

For this, it is necessary to take into account the execution medium. This execution medium

has two aspects: on the one hand, the tasks that execute the application software, and

On the other hand, the intrinsic characteristics related to the target, namely the memory

space used as well as the total CPU utilization. Table 3.3 depicts the characteristics of

AUTOSAR tasks.

Table 3.3 Characteristics of AUTOSAR-OS tasks.

] Concept

‘ Characteristics

|

Details ‘

Type

Basic / Extended

A basic task cannot
wait for an event,
only extended tasks
can.

Activation Mode

Periodic or Event-
triggered

Periodic tasks are
triggered by alarms

and sporadic tasks by
events.

Preemptive Full-preemptive Suspended if a
higher-priority tasks
is ready or by an
interrupt.

Non-preemptive Only suspended by
an interrupt.

Priority A higher num-
ber means higher
priority.

Trigger Alarm Periodic Tasks

Events/ISRs Sporadic Tasks

Activation mode

Periodic / Sporadic
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3.2.3.4.2 AUTOSAR Mode Management
AUTOSAR has a basic concept for performing adaptation via the notion of mode [12]

(i.e., its only consider static adaptation with a fixed set of modes). The adaptation can be
for example achieved by changing the BSW components, the communication network or
the RTE configuration at runtime. Specifically, AUTOSAR defines a mode manager, that
is responsible for the state of the vehicle’s system, from the lowest level (i.e., individual
ECUs) to the highest level (i.e., the whole vehicle). The mode manager consists of two
parts: Mode Arbitration and Mode Control, and it can be either SWC or a BSW module.
The idea behind, is that upon receiving an initial request to change between the predefined
mode for e.g., M1 to M2, this request will be distributed by the RTE to the locally defined
Basic SoftWare Mode Manager (BSWM) in each ECU. Then, the BSWM propagates the
received requests, evaluates its corresponding rules and runs the corresponding actions
(this is the role of the mode arbitration and mode control in BSWM). Finally, the BSWM
sends an RTE call to the mode switch API to transmit the resulting mode i.e., M2 to the

Mode User in order to read the currently running mode.
3.2.3.4.3 AUTOSAR Fault Management

Faults and errors management in AUTOSAR are enabled through the Diagnostic Event
Manager(DEM) service [11]. The DEM is a basic software module of the diagnostic
Services. Relevant errors are reported either from application layer (resp. SWC) or basic
Software modules. The DEM handles and stores events detected by diagnostic monitors in
both SWC and BSW levels (see Definition 11). The stored event information is available
via an interface to other BSW modules or SWCs. Each monitoring path is associated with
exactly one diagnostic event. A diagnostic event is the status (pass/fail) of a system under
test for a set of test conditions. If an event gets qualified as failed, it becomes active. If
the event gets qualified as passed, it becomes passive. The DEM is also responsible for

event qualification, confirmation and memory overflow indication.

Definition 11 . Diagnostic Event Manager: A component that processes and
stores Diagnostic Events (errors) and associated data. A Diagnostic Event defines
the atomic unit that can be handled by the DEM module [12].

Diagnostic monitor: A diagnostic monitor is is a routine entity determining the
proper functionality of a component by identifying a specific fault type (e.g., short to
ground, open load, etc.) for a monitoring path.

Monitoring path: A monitoring path represents the physical system or a circuit

that is being monitored.
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3.3 AUTOSAR Development Methodology

After the architecture is clarified, this section takes a look at the approach of AUTOSAR
for developing software for ECUs. In AUTOSAR, this is done in multiple steps. The
methodology [13] shown in Figure 3.7 handles the whole view of the complete system with
multiple ECUs and is used to create the E/E system architecture starting from the design

model to the generation to an ECU executable. This methodology consists of four steps:

The first step, “The system configuration”, concerns the whole system. During this
step the entire set of applications is specified in terms of software architecture : SWCs,
ports, interfaces and connectors and their distribution to the ECUs. The system topology
is also specified in term of: ECUs interconnection, the used protocol and the available
data buses, the communication matrix and attributes (e.g., timing/latency, etc.). The
hardware such as sensors, actuators and processors needs to be defined in this step with
the ECUs resources. The output of this step is a System Description— an AUTOSAR XML

file, which serves as input for the following phase.

The second step, “Extract ECU-Specific Information”, concerns the SWCs implemen-
tation (i.e., the definition of the internal behavior the Runnables and the RTEEvents).
During this phase the allocation of SWCs to the hardware architecture is specified and
the application signals are mapped to bus frames. As a result of this step, we obtain
an ECU extract of system Configuration or Extract of System Configuration Description— an
AUTOSAR XML file, which serves as input for the following phase.

The third step called “ECU Configuration” concerns the configuration of the BSW
modules and RTE of each ECU. The most important step adds all the implementation
concepts, including the scheduling of tasks, mapping of runnables to OS tasks, the required
BSW modules, etc. As a result of this step, an ECU Configuration Description is generated,
which is aligned with System description and the ECU Extract.

The fourth and last step is “Generation of Software Executable”. It concerns the Build
executable based on the ECU description in "ECU Configuration Description', it involves
also the code generation of the RTE, BSW, the compilation of SWC available as source
code, the generated code and linking everything together.

In Appendix B.0.1 , we give a short example to clarify the concepts described in
Chapter 3. The example presents the complexity of the XML configuration which is
already reached by such a simple case. But it should help to understand, how the

mechanisms described in this chapter are implemented in the source code.
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Fig. 3.7 AUTOSAR Development Methodology.

3.4 AUTOSAR Open Issues to Support Runtime Adap-

tation

A major drawback of AUTOSAR lies in its lack of flexibility. Software-wise, ECUs are
tested, validated and uploaded; these three steps are performed in a monolithic process.
Adding adaptability features into the standard is a major challenge in this context, and
may result in consequent savings of time and money. In the next, we describe the major
drawbacks with AUTOSAR current task model, fault and resource management, runtime
environment and the mode manager.

I,) Task Model: The AUTOSAR OS specification states that it must be run on
a real-time operating system that can be configured statically and that is amenable to
reasoning of real-time performance. The specification expects the underlying OS to control
three factors (the execution time of tasks/ISRs, blocking time that tasks suffer from lower
priority tasks locking shared resources and the inter-arrival rate of tasks/ISRs) at runtime
to ensure timing protection. However, AUTOSAR describes no methodology for analyzing
whether a system design will meet its real-time requirements. The timing extensions to
AUTOSAR are relatively recent additions, and thus manufacturers previously had to
use proprietary timing specifications and internal tools to perform automated reasoning
about the timing of their specifications. Even with the standardized timing extensions,
manufacturers are on their own to devise methods and tooling for checking whether an
integrated system is schedulable, which is a highly non-trivial task. In addition, the

concept of scheduling table definitely needs to be enhanced. Because if we change the
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statically defined table to run and plan a new allocation at runtime, it may lead to a big
overhead and there is a need for a complex schedulability analysis [121], [2] to guarantee
correct system behavior in the new configuration. Also, AUTOSAR scheduling algorithm
doesn’t assign tasks dynamically to CPUs which limits the adaptation capabilities.

For these reasons, we believe that the current AUTOSAR-OS is not in a position to
support adaptation at runtime. Hence, changing its current status that assigns static
priority to tasks at design time to an adaptive/dynamic preemptive(a-)periodic using EDF
(Earliest Deadline First) and CBS (Constant Bandwidth server) as scheduling mechanisms
to guarantee real-time requirements for mixed hard/soft real-time systems work efficiently
for adaptive real-time applications [18] [33] [38].

I,) Fault Model: AUTOSAR does not specify a fault model, nor does it describe
a specific mechanism or methodology for dealing with faults that may occur in the
system. Such fault handling is high-level functionality must be built on-top of the basic
functionalities that are specified by AUTOSAR. Kim et al. [66] describes one attempt at
extending the AUTOSAR specification with fault tolerance provisions. This work presents
the standard fault-tolerance concept of replication to provide duplicate copies of software
components that are used when the primary copy of a software component fails. As we
showed in the previous section, AUTOSAR uses the concept of diagnostic monitors to
monitor specific physical systems. If a fault is detected, the diagnostic monitor logs a
diagnostic event with the diagnostic event manager. As we can see AUTOSAR lacks

complex fault detection mechanisms as well as temporal isolation strategies.

I3) QoS support and resource management: AUTOSAR does not offer extra-
functional properties support, i.e., QoS model. Ensuring application’s meeting their
expected level of performance requires a priori knowledge at design time about the system
requirements. AUTOSAR application requirements are always statically satisfied. Thus,
no way to describe resource levels and requirements that change over time in AUTOSAR.
Instead, the system integrator is in charge of knowing all the requirements at design time
and provision the system accordingly.

I;) RunTime Environment (RTE): The Run Time Environment (RTE) within AU-
TOSAR is partly configured and partly generated based on the resource needs of the
applications running on top of it. This approach allows the RTE to be optimized for
a specific set of applications and ensures that the runtime system is neither under nor
over-provisioned. The allocation of resources to software components in AUTOSAR is
static, with many resources such as mutexes and memory being allocated once and never
changing.

Is) Mode Manager: With the actual mode manger, all possible configurations at
runtime must be anticipated at design time and thus non-anticipated configurations are

not supported. Another point is that neither the insertion of new tasks at runtime nor
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changing the deployment of a SWC have so far been considered in AUTOSAR mode
management. What we can conclude, that AUTOSAR mode manager lacks flexibility.
Hence, the arbitration and control must then be extended to include other functionalities
while running in dynamic environments. It seems natural to extend its responsibilities
in order to deal for example with the case of dynamic linking or introducing a new
software components in the existing system. Another remark that there is no information
in [2] about the schedulability analysis behind the mode protocol used in AUTOSAR. All
these drawbacks limit significantly the adaptation in AUTOSAR to anticipated adaptation.

Discussion. The ability to dynamically adapt the system, such as adding a new
application or moving an existing application to a different ECU, is not possible with
AUTOSAR. In AUTOSAR, the system configuration is, by design static: the AUTOSAR
OS specification states that the underlying operating system must be able to be configured
statically, such as the number of tasks and the number of resources. The AUTOSAR
Run-Time Environment (RTE), which sits on top of the BSW but below the application
level Software Components (SWCs), is not only configured at design time for specific
ECUs but is also partly generated based on the requirements of the SWCs that will be
running on it. A reconfiguration of the system, such as adding an application or moving
an application from one ECU to another, cannot be done dynamically at runtime. On
the other hand, the solution provided in this thesis is designed with such reconfiguration
capabilities in mind. In fact, it is expected that applications may need to migrate, at
runtime between ECUs in response to both anticipated changes caused by the environment,

such as network connectivity, as well as unexpected failures in both software and hardware.

3.5 Runtime Adaptation in Automotive Systems

In recent years there have been a number of publications discussing the issue of creating
runtime adaptive ECUs complying to the AUTOSAR standard. These approaches can be
divided into two different groups targeting on two different scenarios. One group focuses
on the switching between different configurations of SWCs at runtime. The second one
actually tries to add or remove SWCs from the AUTOSAR ECUs while the vehicle is
running.

For the first group which uses configuration switching as a basis in order to change
the system, four different approaches have been identified.

The first one is the DySCAS (Dynamically Self-Configuring Automotive Systems) [7]
project. The work introduces a new architecture, with focuses on context-aware adap-
tation mechanism,specified by execution and architecture aware contexts. The former

context uses distributed policies to detect deviations and react, while the latter em-
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beds meta-information of configuration reasoning (resource dependencies, QoS contracts,
compatibility, composability, and dependability) within dynamically reconfigurable com-
ponents. DySCAS deals with task migrations to cope with hardware failures and network
balancing. A global node dynamically maintains the intentions of every node within
the network and decides the possible configurations based on their requirements. Each
node locally performs admission control deciding if a task is schedulable considering
resource limitations (memory, CPU, bandwidth) and optimization of resources. The
DySCAS middleware is one of the efforts towards context awareness and self-configuration
in telematics domain in automotive systems. The approach is different from ours in some
relevant aspects. They do not extend AUTOSAR architecture to support the adaptation,
also they target applications with best effort requirements. In our case, we are concerned
about runtime adaptation of mixed hard/soft applications within AUTSOAR. Other works

such as [120, 29, 22] have studied runtime adaptation in automotive systems.

The authors of [120] (i.e., Zeller et al.) introduces requirements that must be considered
for supporting the adaptation within AUTOSAR. The reconfiguration in this work aims
at switching between different configurations of SWCs. They add two additional SWCs to
the system: An Adaptation Service and an Adaptation Manager. These components are
in charge of activating and de-activating SWCs installed on the device. The capability to
add new SWCs and migrate SWCs between different ECUs at runtime is not considered
in their work. Additionally, neither the details about the algorithm used for making

adaptation nor the evaluation of their approach was given.

An approach quite similar to the one of Zeller et al. is presented by Berger and
Tichy [29]. The authors integrated the Operator-Controller-Module (OCM) approach for
self-adaptive mechatronic systems to the AUTOSAR architecture. OCM is an architectural
model used for example in factory automation to introduce self-x properties. It specifies
three different control loops namely a motor loop that actually controls the mechatronic
device underneath, a reflective loop that allows to monitor and change the configuration
of the entities within the motor loop and finally a cognitive loop that gathers information
on the system itself as well as its surroundings to improve the reconfiguration mechanisms
using a behavioral approach (see [58]). Berger and Tichy combine this architectural style
with AUTOSAR in order to allow runtime adaptation. However, this solution is quite
limited since it causes the same problems as the approach of Zeller et al. by not adding
adaptability to the BSW but integrate all possible configurations at design time instead.
Hereby it suffers from the same drawbacks such as overheads in the development process

as well as in the final implementation.

The last approach to be named within this group has been presented by Becker et al.
in [22]. Just like the other publications before it is a technique to switch between pre-defined

configurations without adding real flexibility to the BSW. However, this approach goes one
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step further by not only defining a configuration for the communication handles within the
BSW but for the overall software architecture of the ECU. An additional component called
State Manager organizes the switches between these different configurations at runtime
and deploys the predefined one for each upcoming situation. Although being integrated
into a well defined and AUTOSAR compatible development procedure this approach is
even worse in terms of development and implementation efficiency when comparing it
to the proposals of Zeller et al., Berger and Tichy. This is because developing a single
configuration equals to the development of a complete ECU in the conventional AUTOSAR
procedures. Also, none of the mentioned-approaches studied runtime adaptation with

taking into account schedulability analysis of mixed hard/soft applications.

The second group of approaches has a different perspective. In order to allow upgrades
or extensions to AUTOSAR-based ECUs that are already running within a vehicle, these
proposals target on dynamically adding and removing SWCs at runtime. The first one,
presented by Zeeb in [119], intends to enable installing software updates at runtime. This
is done by reserving memory capacity for future software variants at design time and
re-flashing parts of the memory in the event of an update while maintaining the subroutine
addresses of the SWCs. This focus on updates sets up two main restrictions. First of
all, it is limited to the update of already installed SWCs rather than allowing adding
additional ones. Second, since those updated components do use the same interfaces to
the RTE and the BSW no changes within these layers are necessary. Hence, no flexibility
is added to these modules within this approach of Zeeb. This results in the conclusion
that, although this proposal adds some kind of runtime adaptivity to AUTOSAR it does

not add any dynamics to the modules underneath the Application Layer.

The main goal of another approach presented by Axelson et al. in [14] to plug
in new components at runtime. Therefore, the authors suggest adding two SWCs to
each AUTOSAR ECU: the first one holds a virtual machine to run Java applications.
The second one which is called “external communication manager” establishes a direct
connection to an external software source. The approach follows the idea that software
components developed in Java are downloaded via the external communication manager
and installed into the virtual machine at runtime. However, the paper leaves unclear
how the Java components downloaded are interacting with the static RTE and BSW
underneath since no solution is presented on how to make the communication stack more
flexible. This leads to the assumption that those Java-based software modules can either
only access a predefined set of channels to the hardware and communication devices or
are not interacting with the remaining parts of the ECU and the overall system accessible
through the networks. This does not only reduce the fields of application but also does
not provide any answer to the requirements on a dynamic BSW as needed for adaptive

automotive system design.
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The last approach to be discussed in this group is the one by Martorell et al. [81], which
provides a way to design and develop a partial dynamic update in AUTOSAR application.
Just as Axelson et al. the authors suggest adding several empty SWCs to AUTOSAR
architecture. These can be filled with runnables at runtime. However, the approach uses
a static configuration of the OS level of AUTOSAR, specifically the BSW layer, instead of
introducing some kind of flexibility. The update is applied at the application level. This
means that all potential hardware handles and communication routes have to be foreseen
at design time and that no real flexibility is added to the AUTOSAR low-level layers (i.e.,
BSW layer). No details are given about the schedulability analysis for this partial update.

Discussion. The discussion of the existing approaches to integrate runtime adapta-
tion into AUTOSAR is summarized in Table 3.4. As shown in this table, the suggestions
vary in their type of adaptation supported and the scheduling technique they use. How-
ever, to the best of our knowledge, no one has provided a framework to support runtime
adaptation while taking into account schedulability analysis and task allocation for mixed
hard and soft distributed real-time systems in AUTOSAR.

3.6 Current State of AUTOSAR

Recently in March 2017, the automotive industry agreed upon changing the current AU-
TOSAR platform to the “AUTOSAR Adaptive Platform”, this platform is being developed
by the AUTOSAR consortium as an additional product to the current AUTOSAR classic
platform. This is an ongoing feasibility study based on the POSIX operating system
and uses service-oriented communication to integrate applications into the system at any
desired time. The AUTOSAR Adaptive Platform is designed to help engineers create
more flexible architectures. AUTOSAR Adaptive will provide a software framework for
more complex systems and help engineers increase bandwidth by implementing Ether-
net. Most suppliers currently seem to be interested in moving fairly quickly to get the
standard completed and implemented. It is expected to become a piece of the in-vehicle
infrastructure used on the road to autonomous vehicles. The first parts of AUTOSAR
adaptive may appear on highways as early as 2019/2020 [10]. Vector company expects a
more general adoption of AUTOSAR adaptive for production by 2022 and late.

3.7 Summary

In this chapter, the specific challenges of automotive systems and their implementation
have been introduced. As explained, the number of computing nodes included in an
automotive system has grown continuously over the past years. Implementing such a

system is a huge challenge regarding the complexity of current automotive software. Even
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more, so when taking into account the high-quality demands arising from the safety
criticality of the implemented functions. In order to tackle this complexity automotive
industry have developed the standard AUTOSAR. In this chapter, we have introduced
the basic concepts of this standard more precisely, we have presented functional parts (i.e.,
SWCs) of AUTOSAR software and infrastructural parts (i.e., BSW), which provides the
necessary basis to run the SWCs. In addition, we discussed some of the major drawbacks
of AUTOSAR for handling runtime adaptation. Also, the existing approaches for runtime
adaptation in AUTOSAR were presented. Finally, we concluded the chapter with the
current status of the AUTOSAR standard.
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Runtime Adaptation in AUTOSAR

|

Publication type of adaptation real-time requirement | scheduling mechanism
[Richard Anthony et al., 09] migration best effort fixed
[Zeller et al., 12, 13] active/deactivate hard fixed
[Berger et al., 12] active/deactivate, deletion soft fixed
[Becker et al., 09] active/deactivate, deletion hard fixed
[Axelson et al., 13] plug an play soft fixed
[Zeeb et al., 12] update,upgrade soft fixed
[Martorell et al., 14, 15] update,upgrade soft fixed

Table 3.4 Comparison of different approaches to add runtime adaptation to AUTOSAR.
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Chapter 4

Runtime Adaptation Support in

Automotive Software Architecture
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Fig. 4.1 Runtime support for adaptation features in the dissertation overview.

More than ten years have passed since the establishment of the AUTOSAR (Automotive
Open System Architecture) standard. AUTOSAR was introduced to simplify automotive
system design while offering interoperability, scalability, and extensibility. As we said
in Chapter 3, recently in March 2017, the automotive industry agreed upon changing
AUTOSAR to making it able to support runtime adaptation; i.e.: changing the system’s
structure and/or behavior at runtime in response to environmental changes or failures. In
the actual version of the standard, the system configuration is still static by design from
the application down to the Operating System (OS) layer. A reconfiguration of the system,
such as adding an application or moving an application from one Electronic Control Unit
(ECU) to another cannot be done dynamically at runtime. Making AUTOSAR adaptive
requires specific support at different layers of the software architecture. Therefore, our
objective is to elaborate an architectural solution that can handle the adaptation

of mixed hard and soft applications while respecting timing and safety requirements
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and offering a high degree of flexibility. To address this challenge we describe in this
chapter our distributed layer called ASLA (Adaptive System-Level in AUTOSAR) used
to incorporate task-level adaptation techniques in AUTOSAR as depicted in Figure 4.1.
In this chapter we outline how the AUTOSAR standard can be adaptive by changing
its architecture. Section 4.1 gives an overview of the proposed approach (i.e., ASLA).
Subsequently, in Section 4.2 we introduce ASLA development methodology. We conclude
this chapter in Section 4.3.

4.1 The Architecture of ASLA

We now describe our solution ASLA, which is designed to overcome the limitations of
AUTOSAR cited in Chapter 3 Section 3.4. We first detail the responsibilities of the
major components of ASLA. Then we describe how these components work together
with different runtime algorithms to provide tasks adaptation capabilities in AUTOSAR.
Figure 4.2 provides an overview of the ASLA architecture. Every ECU that supports
adaptation through the ASLA layer consists of a real-time OS with EDF and CBS
scheduling policies, an Adaptive SWC that is responsible for reconfiguring applications
running on the system, RTE, and application layers. The real-time OS is responsible
for HW abstraction, communication, scheduling and executing tasks in real-time. We
assume that the underlying HW is a fail-silent system and the communication network is
fault-tolerant. Our application layer consists of a set of SWCs (similar to AUTOSAR’s)
and a new Adaptive SWC which can be distributed over several ECUs. The RTE provides
a communication abstraction to SWCs. Unlike AUTOSAR, our RTE extension contains
functions to support adaptation. These functions are managed by the Adaptive SWC
(more precisely by the Reconfiguration Manager (RM)) which also communicates with
the others Adaptive SWCs running on the different ECUs to make one of the adaptation
actions such as: adding, deleting or updating application. When a new application is
being added, the mapping between the application’s SWCs and the ECUs is given to the
RM, then each RM analyzes the mapping and renews the RTE’s function.

The ASLA layer is composed of an Adaptive SWC (one on each ECU) and plugin
offering a task execution container. This plugin enables any task launched on the ASLA
layer to be periodically executed. The adaptive component has a coordination-based
architecture i.e., One Adaptive SWC acts as a coordinator of the other Adaptive SWCs
which are responsible for handling tasks on each ECU and monitoring a health vector.
The latter contains all Non-Functional Requirements (NFRs) needed for the adaptation
such as the ECU’s processor utilization, resources, QoS, HW NFRs, etc. All operational
ECUs compute their resources and processor utilization in form of a health vector at a

fixed time period and share their health vector with each other. This provides each ECU
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Fig. 4.2 The ASLA architecture.

a consistent view of the available resources and utilization on the other nodes. Figure. 4.3
illustrates a brief overview of our health vector.
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iﬂg"_ﬁms;ﬁi‘a msﬁe L p|  health appStatus appStatus; »  healthv_float_ecuDoSecuQoS;
}hdthvit_:pp‘ loc appAlloc[NB]; } health_appAlloc ; } health. AppStatus:

Fig. 4.3 An example of health vector structure.

Since our Adaptive SWC has a coordination based-architecture, we define an adaptation-
management protocol between the different Adaptive SWCs inspired by [83]. However,
we differ from them in the sense that our protocol is used for managing the process
of an adaptation in distributed real-time systems. In our protocol, all the Adaptive
SWCs, including the coordinator, broadcast messages to each other. The coordinator can
detect the failure of the other Adaptive SWCs by the absence of heartbeat messages (our
adaptation-management protocol is described in Section 4.1.2) .

The major components of ASLA are described below.
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4.1.1 The ASLA Components

4.1.1.1 The Adaptive SWC

As illustrated in Figure 4.2, an Adaptive SWC is composed of a Monitor, a Mapping
Manager (MM) and a Reconfiguration Manager (RM).

e The Monitor. The monitor is responsible for monitoring events that trigger the
adaptation. Hence, it periodically sends messages to other ECUs in the system via
the network. The monitor allows ASLA to agree on the availability of each ECU. Any
adaptation trigger received by the application during its execution may invoke the monitor,
which sends a message to the RM in order to adapt the application. The loss of a message
for two consecutive cycles means that the ECU is no longer alive and the adaptation

needs to be triggered to accommodate the desired changes.

e The Mapping Manager (MM). The MM offers a dynamic deployment of tasks on
ECUs. We use O-TSMBA (OPerational chains-TSMBA) algorithm (described in Chapter
5), a variant of TSMBA[99] that supports task dependencies. The MM takes as input
the application description (an initial system configuration file) and changes the current
mapping when it is necessary to do so. Changes of the allocation can occur due to the

adaptation or in case of one or several ECU failures.

e The Reconfiguration Manager (RM). The RM automatically reconfigure tasks
inside/or between the different ECUs. The RM is a sporadic task that gets triggered
upon the reception of an adaptation trigger (requests for adding new tasks, requests
for migrating failed tasks/and or failed ECUs, replacement of tasks with an improved
version and removing tasks). Figure 4.4 shows the flowchart of our algorithm TSeRBA
(Tabu Search Reconfiguration and Bandwidth Allocation). The ASLA reconfiguration
manager uses TSeRBA for adding and/or migrating applications at runtime. TSeRBA
uses the following inputs: (1) a schedulable solution obtained from the mapping manager
and (2) the adaptation triggers from the monitor (for e.g., the request for adding a new
application or a request for migrating a failed applications). The output of TSeRBA is
a new system configuration, which needs to be schedulable. To deal with the current
adaptation, the algorithm starts by finding the target ECU to host the new and/or the
failed applications. TSeRBA maintains an ordered list of ECU candidates, and the one
which gives the best QoS is selected as a target ECU. This QoS is the probability of
meeting the deadline for applications with soft real-time requirements and it depends on
the allocated bandwidth @; [73]. Then if the mapping is still valid, the new application is
simply added on the target ECU (or the failed applications are simply migrated on the
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Fig. 4.4 Flowchart of tasks adaptation algorithm (i.e., TSeRBA).

target ECU). Thus, in case of adding a new application, the RM loads, instantiates and
connects the new application, changes the network schedule and dynamically finds and
binds it to the correct interface. However, if the RM cannot analyze this new application
i.e., the mapping is not valid; the bandwidth @); associated with applications with soft
real-time requirements on that ECU is decreased, and then the new application can be
mapped on the ECU. A completely new resource is added to host the new application if

the mapping is not valid even when we adjust the bandwidth.

4.1.1.2 ASLA Plugins

All applications will run on top of the ASLA plugins. ASLA plugins support the mecha-
nisms for task reconfiguration and bandwidth allocation and also enable tasks to have
guaranteed and protected access to required processing resources during reconfiguration

in a timely manner.

4.1.2 A Simple Adaptation-Management Protocol

There are many ways and protocols for managing the process of adaptation in real-time

systems. The protocol presented in this section is a simple one that illustrates one of
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many possibilities. The process adaptation-management is done based on the protocol of
[83]. Our adaptation-management protocol is implemented as a separate thread in ASLA
plugin which will be used by the application SWCs and the adaptive SWC as well. Our
protocol is designed to provide deterministic adaptation times. In this protocol, each ECU
participates in rounds of information exchange, sends a heartbeat message (health vector)
to the Adaptive SWC coordinator. The dedicated ECU for the coordinator broadcasts its
own health vector including the list of the health vectors to all the other ECUs. Based on
this information, only the coordinator will decide which ECU is operational or not. The
coordinator can detect if one of the ECUs is no more alive since no heartbeat messages
are received from that ECU. Similarly, the other ECUs can detect the failure of the
coordinator and one of the ECUs will be promoted to become a coordinator as illustrated

in Figure 4.5. The semantic behind this protocol consists of three steps:

1. Initialization: At a given time period, each ECU constructs its health vector (i.e.,
all the NFRs, the utilization processor available on that ECU).

2. Election : Each ECU sends its health vector to the other ECUs, upon the reception
of the health vector from these ECUs, it compares the available information and the

one which has the best health properties, tags its Adaptive SWC as coordinator.
3. Ezecution: This step deals with the runtime management of the adaptation.

We will now discuss the above steps in more detail:

First, The adaptation request is triggered from processing a set of events; these events
can be either alarms or triggering conditions monitored from sensors. Each request is
assigned an identifier that characterizes it on the distributed system. The adaptation
request can be seen as a message containing the ID of the target system configuration,
which is sent directly to the Adaptive SWC. These adaptation requests start when event
triggering the adaptation is detected.

Second, the adaptation request is identified from its source ECU by the Reconfig-
uration Manager (RM). So the network is responsible of this step. As we need to send
the reconfiguration request to the RM in order to be treated. As we may have regular &
irregular event-triggered adaptations we need to take advantage of the service provided
by the communication bus i.e., the fact that it allows transmission of sporadic messages.

Third, the RM coordinator receives the reconfiguration from the ECUs or from the
RMs running on the others ECUs. The coordinator tracks the evolution of the distributed
process and it has a global vision and knowledge about the whole system or application.
The coordinator becomes a supervisor of all incoming adaptation requests. Its role it can

either to process the request, to reject or accept it, or to send it to the other nodes. For

60



simplicity we suppose there are no conflicting requests. Once the node is localized (i.e.,
the adaptation is supervised) the Adaptive SWC coordinator must specify which ECUs
need to adapt and which local adaptation each ECU must progress to. Furthermore, a
distributed adaptation management protocol is required to ensure the correct coordination
of applications under adaptation.

Fourth, The RM broadcasts the reconfiguration message to all the ECUs connected
to the network but only the ECUs concerned by the adaptation request open and process
the adaptation message. By broadcasting the message the ECU obtains the confirmation
of its adaptation request and at the same time all ECUs participating in adaptation will
be notified that a change is started in the system by broadcasting adaptation message all
the ECUs are aware of the new system configuration.

In the Fifth step the change is executed. Once receiving the adaptation message,
each ECU starts changing the source (current configuration) set of tasks to a target (new

configuration) one.
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Fig. 4.5 ASLA adaptation-management protocol.

4.2 ASLA Development Methodology

The standard development process is slightly modified for introducing the necessary
mechanisms for runtime adaptation. Yet, it remains fully compliant with the AUTOSAR
development methodology described in Chapter 3 Section 3.3. The ASLA development
process is depicted in Figure. 4.6 and it consists of four steps:

The first step, “The System Configuration” concerns the whole system. During this
step the entire set of the applications is specified in terms of software architecture: SWCs,

the Adaptive SWC, ports, real-time constraints, HW resource requirements and other
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information needed in the vehicle. In our approach we are interested in mixed critical
applications with soft and hard real-time requirements. The output of this step is the
System Description-an AUTOSAR XML file, which serves as input for the following phase.

The second step, “Extract ASLA ECU-Specific Information” concerns the SWCs and
the Adaptive SWC implementation (i.e., the definition of the internal behavior of the
Runnables and the RTEEvents). We consider that each SWC contains one runnable and is
represented by one AUTOSAR task. During this phase the initial allocation of SWCs with
both soft /hard real-time requirements to ECUs is specified and the application signals are
mapped to bus frames. As a result of this step we obtain an initial solution (AUTOSAR
XML) which is not necessary schedulable and it serves as input for the mapping manager

and the following phase.

Systom Configuration

Extract ASLA
ECU spocific
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ABLA WO
Configuration
Description

Ganaration of
a Boftware
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Gonorate

Fig. 4.6 ASLA development process.

The third step, “ASLA ECU Configuration” concerns the configuration of the BSW
modules and the RTE of each ECU. Our RTE extension contains functions to support
adaptation. The Adaptive SWC and its three components, i.e., the RM, MM and the
Monitor, are configured as tasks at the OS level with their corresponding runnables as
application components. The callback functions configured at COM and the corresponding
APIs defined at the RTE level are used for signal handling. This step includes the scheduling
and the tasks mapping concepts. In our approach, we assume that the initial mapping
of runnables to AUTOSAR tasks is given at design time similarly to AUTOSAR and all
runnables are executed periodically within the context of an AUTOSAR task. However,
the mapping of tasks to ECUs is performed using our task mapping algorithm O-TSMBA
which we designed for the operational chain model. The output of O-TSBMA algorithm
is used as input for the runtime adaptation algorithm (i.e. TSeRBA) described in the
previous section. A result of this step is the ASLA ECU Configuration Description is

generated aligned with the above steps. Finally, the software executables are generated.
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4.3 Summary

We have proposed ASLA (Adaptive system-Level in AUTOSAR) architecture, a novel
framework that supports task-level reconfiguration features in AUTOSAR. In this Chapter,
we described the main functionality of ASLA and it development methodology. We proceed
in the following chapter (i.e., Chapter 5) to describe, in detail, the theoretical and technical
aspects of the algorithms behind ASLA architecture.
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Chapter 5

The ASLA Approach: Theoretical
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Fig. 5.1 Dynamic task model in the dissertation overview.

Traditionally, automotive systems have been designed to be unchanged at runtime in
order to maintain the system predictability. However with the new trends in automotive
industries and the emerging applications such as smart cars, etc, has proved that some
flexibility can be provided to real-time systems mainly soft real-time systems. Dealing
with runtime adaptation in real-time systems is a hard problem to solve due to the
complex deployment and configuration issues involved in satisfying multiples requirements
such as timeliness and fault-tolerance. Effective deployment requires developing and
evaluating a range of task allocation and reconfiguration algorithms that satisfy automotive
system requirements while reducing resources usage. Therefore, we tackle in this chapter
the problem of task mapping and reconfiguration (see Figure 5.1). This chapter makes two
contributions. First, it describes a novel task allocation algorithm for mapping runnables
to ECUs. Second, it presents TSeRBA (Tabu Search Mapping and Bandwidth allocation)
algorithm for task reconfiguration and bandwidth allocation. These two contributions
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are realized with ASLA, the framework we designed for task adaptation in AUTOSAR
(Chapter 4).

5.1 ASLA System Models and Assumptions

In this section, we state our assumptions, the problem definition for our work on ASLA.

We describe ASLA’s system, fault and reconfiguration models.

5.1.1 ASLA’s System Model

Applications in the automotive system use sensor information to obtain current system’s
information. For instance, in Steer-by-Wire (SBW) applications [60], sensors are typically
used to measure and obtain information about steering wheel movement. This information
is then fed into the system to be processed. The controllers compute signals for steering
movements with the information from sensors. The computed signals are then sent to the
steering wheel actuator for the motors, which are handled periodically for timely handling
user operations and reactions to the environment. In order to reflect this nature, we
define an “OPerational chain” OP, which is composed of periodically executing runnables
generating data and events regularly that propagate through multiple runnables. An
“OPerational chain” also has an end-to-end delay from the input to the output'. Within
an OP, runnables are classified into sensor/actuator runnables and other computational
runnables. For instance, an actuator runnable controlling the steering wheel motors
must run on the ECU connected to the motor in an SBW application. Every runnable
generates data to be fed to other runnables, except actuator runnables which terminate
the OP. Figure 5.2 shows an example of operational chains (with hard and soft real-time
requirements) applied to E/E vehicle. Handling adaptations on demand with bounded
time is a requirement for real-time systems. By handling adaptations within a specified
timing boundary, time to adapt can be bounded, and the system can operate continuously.
To limit time to adapt, authors of [117] classified software tasks into three classes: Hard
Tasks, Soft Tasks, and Best-Effort Tasks. In our work, we apply the same classification to
SWCs, where a runnable is a part of an SWC [2]. In this work, we consider a system with
two criticality levels: Hard and Soft Tasks. Considering multiple criticality levels is left
as future work. An SWC with strict timing constraints, for which deadline misses lead
to a catastrophic degradation of the system is classified as a Hard software Component
(Hard SWC). An SWC which has flexible timing constraints,i.e., the deadline misses are
tolerable is classified as a Soft Software Component(Soft SWC). The TSMBA (Tabu Search

Mapping and Bandwidth Allocation) algorithm [99] provides a comprehensive solution

1Dealing with End-to-End delay of an OP is beyond the scope of this work, we calculate it similarly to [74]
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Fig. 5.2 An example of operational chains can be applicable to an E/E vehicle, where r
represents a runnable, and m denotes a message between two runnables.

that allocates Hard SWC, and Soft SWC' to distributed heterogeneous architectures and
performs processor bandwidth reservation for guaranteeing timing requirements even in
the presence of faults. From dependability perspective, a single failure of a runnable
within an OP will affect all its successors such that the overall OP requirement is violated.
TSMBA cannot be used directly in systems with data dependencies. Therefore, we propose
a new allocation algorithm based on TSMBA, O-TSMBA (OPerational chain-TSMBA)
which is a variant of TSMBA that takes dependencies among SWCs.

Then we add support for reconfiguration to O-TSMBA. We call this algorithm
TSeRBA(Tabu Search Reconfiguration and bandwidth Allocation). TSeRBA has two
properties that distinguish it from TSMBA: (i) It supports dynamic SWCs allocation and
reconfiguration within AUTOSAR, As we said in the previous chapters, currently, there
is no support for doing this within AUTOSAR. In our work, we propose enhancements
to the different layers of AUTOSAR (i.e., from the application down to the OS layer) to
enable runtime adaptation and, therefore, provide support for TSeRBA, (ii) it considers

dependencies among SWCs.

5.1.1.1 Software Architecture

We model an application as a set R of interacting runnables r; € R. R is composed of
n runnables,ry, ..., r,. Each runnable is part of an atomic SWC, sw;, which may have
several runnables. In order to represent a relationship between a runnable, r; and the

SWC, sw;j, we define a function w such that w(r;) = sw; when sw; contains r;. The function
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! returns all the runnables inside an SWC. Runnables receive data via

inverse of w,w™
input ports P'r'l1 and send out the data via output ports Py, P'r'l1 and P are defined as a
set of input, output ports of a runnable r;, respectively. Runnables interact between each
other via £, which is a set of links. An interaction between runnables is represented by a
link I;. Runnables exchange data through signals s; on the links. We define Snd(s;),Rev(s;)
as a function returning the runnables that send a data signal s; and function returning
the runnables receiving a data signal s;, respectively. In order to express the dependency
relationship between the SWCs, we define a function Dep: R—R, such that Dep(r;) returns
all the runnables that depend on r;, in other words, a runnable r; depends on a runnable
rj, if there is a link l; between both runnables r; and rj such that I; connects the input port
of rj (i.e., P'r:‘) to the output port of r; (i.e., Pi"*). The set of SWCs are also given, T', for
guaranteeing different timing requirements, I" is classified by a function RQ into two sets.

The function RQ: I' — {Hard, Soft}, determines if a SWC is in hard or soft real-time
subsets, respectively. The SWCs are allocated on a distributed heterogeneous architecture
denoted by a set of ECUs. The allocation is denoted by the function? y: R—ECUs.
This allocation is not yet known but would be decided by the Cost function described
in Section 5.1.4. We assume that each runnable is represented by a periodic task [99] r;,
which releases a job every T; units of time, where each job consumes at most C; units
of computation time and should be completed within a relative deadline D; = T;. Both
runnables Soft and Hard are periodic and have a period T;. A subset OP; CR contains
runnables for the i™" operational chain out of total m operational chains. In certain
cases, a runnable r; can be an element of OP; and also an element of OP|, where i # I.
The relationship among the tasks in the i*" operational chain OP; is represented by a
directed graph G;. In this graph, a node u denotes a runnable, r; € R, and an edge (u,v)
of G; indicates data flow from u to v; the edge (u,v) has its own message, my,, which is
generated by the node u and consumed by the node v in G;. We assume that the allocation
of each runnable, r;, to the graph is given at design time. Certain runnables can only
be mapped on certain ECUs. Let denote u(G;,r;) to be the node of G; allocated to the
runnable, r;. The u(G;,r;) value is & if the runnable r; is not an element of OP;. This
function is also applicable to a SWC. An OP; represented by a pair (T, A) where TOP
is the period of the application OP; and A is an end-to—end delay, which is defined as
the worst-case delay between the release time of the first executed node in the graph G;
and the completion time of the last executed node in G;. All runnables in OP; have the
same period TiOP. So a runnable with hard real-time requirement r; is characterized by
its Worst Case Execution Time (WCET) C; and a deadline D;. For a hard runnable r;,
the WCET CiE Y is known for each processing element ECU; where r; is considered for

the allocation. Soft runnables are characterized by the Probability Distribution Function

2Allocating a runnable in the AUTOSAR implies that the corresponding SWC is also allocated. In other words, all
runnables of a SWC should be assigned to one ECU
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ECU;

(PDF) UFY of their execution times and a soft deadline &. U; (h) is the probability
that the job Jix of r; has an execution time of h on the processing elements ECU;. Each
soft runnable (or task) must have An Expected Utility (EU) function EUg(r;, ECU;) for
each ECU; whose values is defined as the probability-weighted sum of possible values of
the soft tasks’ execution time (i.e., ¢;). The QoS of a soft runnable r; is defined as the
probability of meeting the deadline d;, i.e, QoS (&) = P{fix < arix + ;},where f;x and ar;
are the finishing and arrival time of the k™ job of runnable r;, respectively. An SWC
sw; is also characterized by a worst-case execution time C; and a deadline D;, however,
it differs from runnables in the sense that it: C; = Zyc,-1Ci, Tj = miny,c,—1 T; and the
deadline is D; = miny,,c,—1D;. Let U; denote the utilization of an SWC sw; with hard
real-time requirement and it is defined as C;/T;. whereas an SWC sw; with Soft real-time
requirement its utilization is defined as Q;/T;. Throughout this dissertation, we restrict

ourselves to implicit-deadline task systems.

5.1.1.2 Hardware Architecture

We model the hardware architecture as an undirected graph G, = (Vy, F,). Nodes V,
represent a set of hardware resources and the edges F;, represent the communications
links (or buses) between them. The hardware resources consist of a set of heterogeneous
processing units (or ECUs), to which a runnable set R can be potentially mapped, run and
delivered as part of SWCs. The ECUs are interconnected by a communication channel bus
B on which messages mj; are exchanged. We assume that we use a fault-tolerant network
such as CAN [45] as the underlying in-vehicle network. Communicating SWCs allocated
on different ECUs exchange messages on the communication channel. We assume that
the network has an upper-bound on message delivery and is completely connected. This
assumption is reasonable for automotive systems. Relaxing this assumption through the
integration of our framework with the network level fault-tolerance techniques is an area
of future work. Each ECU; € ECUs is composed of an EDF scheduler and a middleware
implementing online tasks reconfiguration mechanism. The soft tasks are scheduled by
the CBS server. The hard tasks and the CBS servers are scheduled using EDF. The
temporal isolation between the hard and the soft real-time tasks is enforced by CBS, thus
guaranteeing the schedulability of the hard tasks. The soft tasks T; are assigned to a CBS,
characterized by the couple (Q;, T;) where Q; (bandwidth server) represents a time that
the soft task is allowed to use ECU every period T;. The ECUs have access to a shared
memory where the code of the tasks is stored. The system model is illustrated in Figure.
5.3.
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Fig. 5.3 Soft real-time tasks are served by a CBS server, while hard real-time tasks are
directly scheduled.

5.1.2 Problem Statement

Based on the software and the hardware architecture presented above, we state the
problem to solve as follows: given a set of ECUs and a system Configuration (consisting
of a set of OPs with hard and soft real-time requirements) determine whether all tasks
of every OP ® will always meet all deadlines (both hard and soft constraints) under any
possible adaptation sequences. However, there are many sub-problems that we need to

consider in conjunction with the adaptation.

P1. Allocation problem. Can we find an optimal allocation schemes for each OP
to maintain the schedulability analysis? By applying our global scheduling algorithm;
we determine the mapping and the utilization such that the deadlines for all hard tasks
are satisfied and the probability of meeting the deadline (i.e.,QoS *) for the soft tasks is

maximized.

P2. Adaptation problem. Knowing a best allocation, can we guarantee all deadlines
both (hard and soft) in the presence of the adaptation such as adding, deleting and
migrating tasks? The objective of scheduling the runtime adaptation is to guarantee that
a system is schedulable not only after the adaptation but also during the adaptation path.

In the next we will give a simple example to show the difficultly of runtime adaptation.

Task T 1 2 3 4 d 6 7 7 8 9 10
U; 0.19 || 0.186 || 0.16 || 0.1 || 0.165 || 0.15 || 0.4 || 0.4 || 0.42 || 0.32 || 0.32
Qi 29 29 31 31 33 35 - - - - -

Table 5.1 Example task set.

3The number of OPs depends on the number of applications in the system
4The QoS derivation is described in Section 5.1.4
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Example 1.2 Consider a system configuration in Figure. 5.4 with a 3 ECUs, 4 hard
tasks and 6 soft tasks. The task set parameters are reported in Table 5.1. Task parameters
were chosen to keep the example simple and easily understandable; they should not be
considered as real task cases. We assume that the allocation tasks to ECUs depicted in
Figure. 5.4 has been already defined and it is so far the best solution (i.e., within which
the deadline for hard tasks is satisfied and the QoS for soft tasks is maximized). The

system configuration is schedulable under EDF in the absence of adaptation.
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Fig. 5.4 The missed deadline during the adaptation.

Further, let us assume that during runtime, specifically at time t=9 an adaptation is
triggered that updates the task t; to T/7; this adaptation will lead other tasks on ECU; to
miss their deadlines at time t=12. This example illustrates that reconfiguring a task may

cause deadline miss of other tasks on the system.

5.1.3 Fault Model

This work focuses on a fail-stop model of failures, where tasks or ECUs can fail and the
remainder of the system can continue executing. We assume that ASLA employs a failure
recovery policy[99], which consists of restoring the last non-faulty state of the failing task,
i.e., to recover from faults. This state has to be saved in advance in the shared memory
and will be restored if the task fails.

5.1.4 Cost Function Calculation (i.e., QoS)

The schedulability analysis of a soft task T; (i.e., the probability of meeting its deadline
di; QoS(d;)) is calculated using the stochastic analysis method described in [73] (see
Chapter 2 Section 2.1.3-CBS). This QoS guarantee depends on both the PDFs and the
bandwidth server Q;. As we said previously in Section 5.1.1, for a given soft real-time
task T;, The QoS r; is defined as the probability of meeting the deadline ¢;, i.e., QoS
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(0i) = P{fix < arx + 0i},where f; and ar;y are the finishing and arrival time of the k™ job
of runnable r;, respectively. This QoS guarantee is calculated by by modeling the CBS
server(serving the Soft tasks) as a queue [73]. The arriving job j;x are seen as tokens
to be served by the server having the capacity Q; (where is the capacity of the server
Qi). As we had previously described, the PDF of the computation times of jobs of the
tasks allocated on the ECU; is defined to be UFY. In this model, UFY represents the
PDF of the incoming requests for the queue: UiECUj(h) = P{c;x = h}, Probability that the
arriving job requires h units of computation time. The system is modeled with a queue
where: a request of ¢;, units arrives every T;. Since the server capacity is Q;, at most
Q; can be served every T; units of time. The system is described with a random process
defined as follows:

U1 Ci1
v = mazx{0,ve_1 — Qi} + Cix

The state variable vy indicates the length of the queue (in time units) immediately
after the job jix having a computation time ¢;y arrives. It can be shown that the job ji

will finish before this time:
v
fik =arx+ (7Qli]Ti

Thus, the probability that the queue length is v, immediately after a job arrives is a
lower bound to the probability that the job would finish before the deadline §; = fgk] T;.
Let WLE) = P{ci; = h} be the state probability of the process v;. We already hauveI the
PDF of the request times of the arriving jobs, i.e., UiECUj:P{civk = h}. Since we know
that ¢k is time invariant, as UiECUj (h)does not depend on i, k, the value of W[mk) can be

calculated as follows:
7™ = P{v, = m} = P{maz{vi_; — Q;,0} + ¢, = m}

Finally the solution comes out to be:

Qi

777(7':) — Z(Uz(m) X W}(Lk_l))
h=0
+ Y (Uilm—h+@Q) x 7))
h=Q;+1

(k)

Using a matrix notation, one can solve for m,;

using the following equation:

I = MIF!
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where:

and

k k
11 e

From the queuing model theory the condition for the queue to be stable (i.e., the

number of elements in the queue do not diverge to infinity) is presented as :

mean interarrival time
P = <1

mean service rate

In our case the stability condition is achieved when the mathematical expectation
of the PDF of incoming requests is less than the server capacity, i.e., Gk < Q;. If this
condition is not satisfied, the difference between deadline f;x assigned by the server for
the job J;x and the job release time ar;x would increase indefinitely, thus the queue would
overflow and the schedulability of the other tasks would slow down in unpredictable
manner. For stable queue, a stationary solution of the Markov chain describing the queue
can be found, i.e. there exists a solution II such that II = zklig}oo IT%*. Since the size of
the matrices M and II are infinite, the calculation of an exact solution is computationally
expensive. Thus, the matrices can be truncated and an approximate solution can be found.
However, by doing this we get inaccurate (approximated) results, but the computation
complexity is highly improved. The Matrix M is truncated to an N x N matrix M " and
the problem of finding the stationary solution becomes an eigenvector problem, i.e., one
has to find IT' such that I = M'IT .

The resulting eigenvector IT' has to be normalized since the steady state probabilities
must sum to one. This is done by dividing all the elements of the eigenvector by their
combined sum. More formally:

’

1 H
Y1l

The resulting stationary solution is in fact — a PDF of the stochastic variable v. In our

IT

case, we would like to compute the CDF as it describes the system completely. We can
recall that the CDF of a stochastic variable expresses the probability that the variable is
less than or equal to a given value. The CDF D(v) of the given stochastic variable v can

be easily computed as
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D(v) szowm.

Vg

6i—|Ti7

Since we know that the deadline ¢ is related to the length of the queue as §; = |

the probabilistic guarantee Qos(d;) can be easily computed as :

Qos(d;) = D([F1Q)

The quality of solution depends a lot on the truncation point N. Essentially, by setting a
truncation point on a state probability vector, the state space is reduced. Thus, it would
be a good idea to set the truncation point such that, only the states which are impossible
to reach are removed. In this case, the elements in the state probability vector II represents
the probability of the queue having a certain length. By setting the truncation point at
the point representing the maximum possible length of the queue, we can have a safe
assumption. The maximum possible length of the queue can be calculated by considering

the PDF of the incoming requests and having a certain upper limit on the total number

of jobs.
Let’s assume that the total number of jobs are: JOBS. The probability distribution
function of incoming jobs is given as Ul-ECUj. The PDF is finite and let’s say it has a

length of L;. The server capacity is given as Q;.
The worse case scenario in this case would be observed when all the jobs having request
times greater than the server capacity would arrive one after another. Thus, the maximum

possible queue size can be calculated as:

L;
N = 3 U (h)xhx JOBS
h=Q;+1

This value N can be a safe truncation point. We have used this in our implementation
to truncate and then solve the Markov chain for a stationary solution, our proposed
algorithm will decide on the appropriate Q values that minimize the cost function, thus

maximizing the total QoS.

5.1.4.1 Cost Function Calculation — A Numerical Example

We considered a periodic task having a period of 8 and distributed computation times as
shown in Figure. 5.5. The Q value for this example is 4 and the deadline ¢ is 6.

The worst case length of the queue (for 100 jobs) came out to be 67. Thus, this was
set as the truncation point for calculation of the M " matrix. The dimensions of M  are
fixed at 67x67. The M  matrix results as follows:
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Fig. 5.5 PDF of the computation times.

0.0 0.0 0.0 0.0 0.0 0.0 0.0 .o \
0.0417 0.0417 0.0417 0.0417 0.0417 0.0 0.0
0.2083 0.2083 0.2083 0.2083 0.2083 0.0417 0.0
0.25 0.25 0.25 0.25 0.25  0.2083 0.0417
0.125 0.125 0125 0.125 0.125 0.25 0.2083
M = | 0.1667 0.1667 0.1667 0.1667 0.1667 0.125  0.25
0.125 0.125 0125 0.125 0.125 0.1667 0.125
0.0833 0.0833 0.0833 0.0833 0.0833 0.125 0.1667
0.0 0.0 0.0 0.0 0.0 0.0833 0.125

This matrix M is then raised to higher powers until the desired accuracy level is
reached. The accuracy is measured by calculating the quadratic distance between the
elements of the first and the last column. We have set this accuracy level as 1071,
Figure. 5.6 shows the measured error values for different values of power. For this
particular case, M " is raised to 19, since the measured error for higher powers is less than
the fixed accuracy level. The error measured at iteration 19 is 1.3693056903764797E-41.

One of the columns is then extracted and the CDF is generated. Then Qos(6) is
calculated. It comes out to be 0.53. This is multiplied with its weight to give the final
value of the cost function. The plot for QoS(d;) can be seen in Figure. 5.7

5.1.5 Definitions

We first introduce some definitions:
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Fig. 5.6 Error in calculation of stationary solution vs number of iterations (power to which
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Fig. 5.7 Probability to satisfy a certain deadline, Qos(9;).

Definition 12 (Demand-Bound Function) A demand-bound function dbf(t,,L) gives
an upper bound on the mazimum possible execution demand of task T, in any time interval
of length L where, dbf is calculated as the total amount of required execution requirements
of all jobs of T, with their whole scheduling windows within the time interval, dbf can be

calculated as follows.

D:

¢ L —
dbf(t,, L) = max (o, l 5|+ 1) .C, (5.1)

Definition 13 (Time2adapt) time2adapt denoted & is defined as the time instant rela-
tive to the release time of T, within which job of T, should be reconfigured. During this
time the task’s period is prolonged at runtime in order to accommodate the new request for
reconfiguration. This operation is called task compression in which the period of task is
prolonged from T; to T so the utilization of the task is reduced to U; = C;/T; which gives
some room to insert a new task i.e., the freed utilization U; — U!. If a task T; is compressed
at t,, then:

Oi (tr) Ci<tr) . Ci<tr)
R — T — R
" t f d; — Giltr)
T ? % Uz — Ul/ = Uy
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where d; is the deadline of the current instance of the task 7. Ci(t,) is the new
computation time of T, which is executed with the new period T, and t, is the time to
accommodate the new requests during which the deadline of the instance is delayed from
to+ T; to to + T. where to is the release time of the current instance. Att,, to <t, <
to+ T <ty+T..

Definition 14 (Safe adaptation path) A safe adaptation path sp comprises an ordered
series of reconfiguration actions that modify the structure and the behavior of the system
configuration (i.e., OP); sp has the following parameters sp = (lgth, T,, D, nbr, Dep) — The
length of the safe adaptation path |gth(sp;) which varies depending on the reconfiguration
type i.e., the number of reconfiguration actions within the path nbr, with nbr > 1 .Dep
function (see section 5.1.1.1) of the affected SWCs is used to determine which reconfigura-
tion actions need to be grouped in sp to reach a target system configuration. The global

deadline of sp is equal to the sum of all the reconfiguration actions deadlines,D where

Dmax(spi) = ID{_,(T}), with Igth(sp;) > Drmax(spi)

r

Example 1.1 (Safe adaptation path) Consider a system with a set of mized tasks

hard and soft, both tasks are schedulable under EDF without reconfiguration. However,

srT

Source/ Targeft l l Job release
Adaptation trigger

“adding a new task”

5 5 T T T
Soft task T , l l l l 1 >
fi mr [ By 1
Hard task , L J‘ J’
T T T
reconfigurationt” ‘ l l N

ty sﬂ»rtz

Fig. 5.8 Safe adaptation path overview.

at time t1 a reconfiguration task is triggered and safe adaptation path sp is released at
t1 from a source configuration (S) to a target configuration (T): while this adaptation
does not change any task parameter of (ty1), it extends the period of (T2) and introduces a
new task as illustrated in Figure. 5.8. With our approach, we want to determine whether
a mized task set (T) is schedulable in the presence of a runtime adaptation. The actual
execution behavior during a sp depends on online information, such as the time instant
when the current adaptation trigger is released, and the release and execution patterns.
Since our system is adaptive and evolve at runtime it is able to monitor and keep track of

the information which are required for the schedulability analysis.
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In Chapter 2, we have shown how Baruah et al. [21] computes the total resource demand
of sporadic tasks under EDF scheduling over an interval [L) i.e., DBF (see equation 5.1).
By using the concept of DBF introduced in Definition 12, it is possible to formalize, bound

and ensure the schedulability analysis of our safe adaptation path sp as follows:

Definition 15 (Demand-Bound Function for Safe Adaptation Path) DBF for

sp; can be calculated as follows:
DBF., (T}, Igth(sp;)) = max (0, [
C=2q(T)

D! = £d0_,(t7)

r

lgth(sp;) — D}
Py

+ 1) .C; with :

lgth(sp;) > D;

and D; =P;.
Definition 16 (Feasible Safe Adaptation Path) Let sp be a safe adaptation path. sp
is feasible (i.e., schedulable) if and only if Lwcrdbf(T,L) <L for some positive interval
L, where L = Igth(sp).

Definition 17 (Feasible Mapping) Let (I',ECU) denote a system with heterogeneous
ECU, with |I'| = n and |ECU| = m. Let x : I' — ECU denote a mapping from the tasks
of I to the ECUs in ECU. Let A,(;) denote the set of all tasks hard and soft mapped
onto ECU; by the mapping x : My = {ilx(i) = j}. X is a feasible mapping if and only

if it satisfies the following condition:

Viil<i<m:SU(AG) < 1) (5.2)

Definition 18 (Feasible Adaptation) The adaptation is said to be feasible if (i) if the
mapping is feasible and (ii) the safe adaptation path is feasible too.

5.1.6 ASLA’s Reconfiguration Model

The reconfiguration in our case is a sporadic task T, has the following four timing properties:
(Cr, Dy, Pr, time2adapt)—a worst case execution time C, a relative deadline D}, a minimum
inter-arrival time P

r

which is used as the necessary bounded time in which we execute the reconfiguration

and the time instant in which jobs of T, are executed time2adapt,

and the system need not to be stopped. This time is mainly based on the work of
[59], in which authors studied what is the best time to introduce new tasks into an

EDF-scheduled system. T" comprising n reconfiguration actions °, or so-called jobs i.e.,

>The terms reconfiguration action and job are used interchangeably
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* def

{vt; e v, T, = {47,795, -, Jn}}. The jobs of T} are separated by at least P; time units and
each one has the maximum execution time C; time units and must complete within D; time
units after its arrival. So, C* = Zc _1(t;) where {cj:,cjs, .., ¢z } denotes the processing
times of n reconfiguration actions of the reconfiguration task t;. and D} = Zdl._, (t;) where
{dji«,djg, ..,djz } denotes the execution durations or the deadlines of the reconfiguration
actions in T. The utilization of the task T is defined as Ugy’ = = Cr/P* which is the
additional utilization while a task is being reconfigured i.e., the required resources for
reconfiguring a task on the ECUs within the remaining time after triggering reconfiguration.
Whereas the task system utilization is equal to ZUqthers + UECU

The reconfiguration task has a global view on the tasks running on the different ECUs.
An adaptation transforms a current system configuration to a new system configuration by
applying reconfiguration actions on the respective configurations. ASLA uses the following

six reconfiguration actions: add, migrate, replace, link, unlink and remove.

1. Adds a new component SWC,,, to the current architecture by taking its used
and provided ports, constraints and implementation. As the SWC,.,, is a stateful this

action initializes the execution state with default values.(See Algorithm 2).

2. The replacement can be classified into two categories given the required
need. —changes the behavior of an existing component with an improved
version, the SWC will have the same interface, WCET, communication pattern temporal
behavior, but has an improved internal behavior (runnables). — which implies
adding a new functionality. The new functionality needs to be stored first in memory
and as well as its communication pattern and the new version of runnables that will
communicate with the new added functionality. The update is more difficult than the

upgrade (see Algorithm 4).

3. Creates a binding from a provided port of a SWC to a used port of another
SWC.i.e.,
||nk(SWCn, SWCy, pout P'”) a connection is created between the output port of the

rn

SWC,; and the input port of the SWC,;.

4. Disconnects a binding from the current architecture by using the same

parameters as

5. The SWC is moved from its current location (ECUs) to a new location, we
consider a migration as a special case of SWC replacement in which the version of the

component doesn’t change (See Algorithm 3)

6. Removes an existing component from the current architecture by taking the
name of the component. This action first removes the SWC execution state and then
the respective SWC is deleted (see Algorithm 5).
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5.1.7 Notations

The notation introduced here will be used throughout this chapter as well as the rest of

the manuscript.

Symbol \ Description

ri i"runnable
O i""operational chain
UiECUj(h) Probability of job j has an execuion timeof h on ECU;
cEeY The WCET of hard task on ECU;
D; The deadline of hard task
i soft deadline
QoS(6;) | The probability of meeting the deadline §;
T; The period of soft and hard tasks
Q The bandwidth server
i/ T The utilisation of soft tasks
G/T; The utilisation of hard tasks
T i periodic task
T reconfiguration (sporadic)task
Cr WCET of 1,
Dy relative deadline of T,
P Period of T,
UE%UJ The utilization required for the reconfiguration

Table 5.2 Main notation used throughout this chapter.

5.2 ASLA’s Algorithms

5.2.1 ASLA’s Task Allocation Algorithm

ASLA’s mapping manager uses Algorithm 1 to deploy tasks on ECUs. O-TSMBA uses
the application description (initial system configuration file-AUTOSAR XML file) as an
input. This algorithm is executed whenever there is a need to compute a new deployment
of tasks on ECUs. O-TSMBA produces the following outputs: (1) The mapping, that is
where each of the tasks should be mapped to, and (2) The utilization, that is how much
processor utilization we should allocate to these soft tasks, processor utilization for hard
tasks is fixed. So that the deadlines for all the hard tasks are satisfied, even when there
are faults and the probability of meeting the deadlines for the soft tasks is maximized.
In order to handle tasks dependencies, our algorithm tries to allocate all corresponding
SWCs of an OP as a single SWC (or task) when possible, Else, it splits these consolidated
SWCs when necessary. O-TSMBA starts by combining SWCs as part of the same OPs
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(whether it is an application with soft or hard real-time requirements) ( Lines 1- 12). The
OPs with hard real-time requirements are considered before the OPs with soft real-time
requirements and the combined SWCs are ordered on decreasing order of their utilization
(total utilization of OP) C;/T; for hard and EU,,/T; for soft, where EU, represents the
Expected Utility of each ECU (Line 13).

ALGORITHM 1: O-TSMBA (I"°, ECUs)
re=¢
: fori=1...n do
if SWC; ¢ T then
Find a composite SWCj; SWC; € Dep(SWGC))
IS =5 J{swc}
else
I ey = {SWG}
re=re{J Lire)
end if
: end for
: Sort I'“ in descending order; start with I'© € {OPyq,q}and after I' € {OP;, 1}
: §° = Initial Solution(I', ECUs)
. Scurrent — Sbest — 8°
. Cost*s! = CostFunction(S°)
: TabuList = ¢
: for max__iter iterations do
NS = Generate Neighborhood(S“""¢"™)
Seurrent — Select Solution (N S)
if CostFunction(S°“ ™) < Cost***! then
Cost*®st = CostFunction(Serent)
Sbest — Scurrent
end if
TabuList = TabuList U Seurrent
: end for
. return Sbe*t

N N e N S
GUh @ QO © 0wy o

A Tabu search algorithm takes the application (i.e., the set of OPs) and the ECUs as
input and produces a solution “S” consisting of the allocation y for all the tasks and a
set of bandwidth values Q for all the tasks with soft real-time requirements. (Take note
that we assume that a runnable is represented by a task and runnables to tasks mapping
exists before O-TSMBA is used similarly to AUTOSAR). Once having the OPs with their
timing requirements and the architecture, we will have an initial solution in which the
tasks are mapped such that their utilization is evenly distributed among the ECUs (for
the soft tasks we consider the Average utilization AET/T;.). The bandwidth for the soft
tasks is allocated to a value equal to their AET (Line 14).

This initial solution can either be schedulable or not. A schedulable solution is the
one that satisfies Liu & Layland utilization test for EDF [78], to determine if the task
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set combined of hard tasks and CBS servers is schedulable (see Definition 6 in Chapter 2
Section 2.1.4) i.e.,

>S9y Fugia

VT}EOPHardﬂX(T])ZECUj i VT]GOPSO&QX(TO:ECUJ

The total utilization which needs to be bounded by 1 is the sum of utilization of: the
hard tasks, soft tasks and the reconfiguration task. For hard tasks it is simply, (C;/T;)
where C; is the execution time including the reconfiguration overhead, for soft tasks it is
Q;/T;, and for the reconfiguration task, the utilization is the worst-case utilization needed
to reconfigure tasks URQECUJ. The neighborhood of the current solution is generated
using design transformation (moves) that changes the current system implementation
(Line 19). The neighborhood can be very large, thus we consider a limited number of
neighboring solutions, called candidate set. Similarly to the original TSMBA. Two moves
are considered in the mapping algorithm (i) Mapping move (Mm) and (ii) Bandwidth
Moves (BM). In (i) the mapping for the tasks is changed by selecting randomly a set
of consolidated SWCs from a randomly selected ECU, tries to allocate them as a single
SWC and allocate them to another ECU also selected randomly. The cost for doing this
operation is given to O-TSMBA to evaluate the solution. In (ii) BM, the bandwidth
of tasks is changed also by selecting randomly consolidated SWCs with soft real-time
requirements from randomly selected ECUs. In O-TSMBA algorithm all the visited
solutions are maintained by the tabu search in a TabuList to avoid revisiting them again
(Line 17). All the solutions that have been already visited are marked as Tabu and
are put in TabuList, this list is updated in (Line 25). The non-tabu solution with the
minimum cost is chosen and exploration continues. The selected solutions (Line 20) are

the ones which minimize the following cost function:

Z max(O, UECU; - 1) X Wopenalty
VECU;€ECUs
+ Y (1-QoS(n)) x w(r;, ECY))

vri:R(ri)=Soft

(5.3)

where Wpepary corresponds to a very large penalty added to the cost of a solution
in case of hard real-time tasks are not scheduled (in other words the utilization of the
ECU’s processor is greater than one). In case the hard tasks are schedulable the first
is 0 and the second term of the cost function is the maximization of the QoS of the
soft tasks. Different weights w;(r;, ECU;) can be assigned to the soft task. These weights
represent how important is to satisfy the QoS of a given task when being mapped on
ECU;. Similarly to TSMBA, our algorithm iterates the procedure until a bound number

of iteration maze, is reached which is given by the designer (Line 18).
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5.2.2 ASLA’s Task Adaptation Algorithm—The Case for Adding
a New Task

As we said in chapter 4 section 4.1, the RM is a sporadic task that gets triggered upon the
reception of an adaptation triggers (requests for adding new tasks, requests for migrating
failed tasks/and or failed ECUs, replacement of tasks with an improved version and
removing tasks). ASLA’s reconfiguration manager uses Algorithm 2 for adding a new
application at runtime (i.e., TSeRBA). TSeRBA uses the following inputs: (1) a solution
schedulable and tagged optimized obtained from mapping manager using O-TSMBA
algorithm and (2) the adaptation triggers from the monitor (in this case: request for
adding a new application). The output of TSeRBA is a new system configuration which
needs to be schedulable. To deal with the current reconfiguration, the algorithm starts
by finding the target ECU to host the new application (Line 3- 8). So it maintains
an ordered list of ECU candidates, and the one which gives the best QoS is selected
as the target ECU. This QoS is the probability of meeting the deadline for soft tasks
and it depends on the allocated bandwidth Q; [3], then if the mapping is still feasible
(Line 10) and the time2adapt is reached, the new task is simply added in the target
ECU (Lines 11, 12, 13 and 20) (see Definition 13). Thus, the RM loads, instantiates
and connects a new component safely without affecting other components, changes the
network schedule, and dynamically finds and binds to the correct interface as no SWC
knows how to use this new component and the network schedule has to be reorganized to
accommodate the communication pattern of this component (Lines 12, 13 and 14). If
the RM cannot analyze and schedule this new component i.e., the mapping is not feasible
(see Definition. 17) (Line 15), in that case the bandwidth Q associated with soft tasks on
that ECU is decreased in proportion do their expectations, and then the new task can
be mapped on the ECU. A completely new resource is added to host the new task if the
mapping is not feasible even when we adjust the bandwidth (Line 16). For our example
task system described in section 5.1.2, upon the receipt of an adaptation trigger to add
new task to the system; TSeRBA tries to find the best target ECU to host this new task
(as shown in Figure 5.9). ECU2 is selected as a candidate for adding this new task since it
gives the best QoS. Furthermore, in Figure 5.9, the compressed task T;(C;, T;) is ts(15, 35)
since it is the only hard task on ECU2. The only new task in Fig 5.9 is Tpe (1, 4), while the
other unchanged tasks are: (9, 150), t3(12, 190) and t4(19,300). Suppose the release time
of the current instance ¢ty = 0 and the time to accommodate the new request (i.e., inserting
a new task) t, = 2, 13(15,35) is compressed into Tg(15, 70), thus using Definition 13, we
have C;(t,) = 2 and Us + Uy + U3+ Uy = (15/35) + (9/150) + (19/300) + (12/190) = 0.61.
Upew = Us — Ug = (15/35) — (15/70) = 1/5. From [59] and according to Definition 13, we
get time2adapt = 35 — 2/(1/5) = 25 > t,.1t is shown in the Figure 5.9 that no deadline is

missed.
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IALGORITHM 2: TSeRBA for adding a new task

1: As soon as the add request is triggered

2: for all SWC; such that x(SWC;) € ECUs do

3: Q0Spest = 0

4:  for all ECU; € ECUs do

5: QoS;i = GetQoS(SWCi); QoScurrecy; = > GetQoS(SWCy)

YSWCy:x (SWCy ) EECU;

6: if QoScyrr > Q0Spest then

T ECUtarget = ECUj; Q0Spest = QoScurr

8: end if

9: if Feasible Mapping then
10: When (time2adapt = §)
11: load the SWC;();
12: link SWGC; to the correct interface();
13: Change the network schedule();
14: else if Adjust Qs Proportionally(SWC;, ECU;) then
15: recomputey

else
| ECUs < ECUs + ECUpew
end
16: end if
17: Undo Adjust Qs(ECU;)
18:  end for
19:  Add(SWCi, ECUarget)
20: end for
adaptation trigger « a request -~ T T~ -
for adding a new application » / \‘ N
ECU1 ECU2 ECU3 Tnew(14)

> O
o
CAN FrEeI;ilisation

Bus

| | I I I I

0 5 10 15 20 25 an a5 40 45
0 tr time2adapt

Fig. 5.9 New task insertion example.

5.2.3 ASLA’s Task Adaptation Algorithm—The Case for Migrat-
ing Tasks

Similarly to Algorithm 2. ASLA’s reconfiguration manager uses Algorithm 3 to migrate tasks
between ECUs. In this case, TSeRBA tries to find first the target ECU (Line 3- 11) to host
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the failed tasks on ECU3 (i.e.,T5, T, T10) (as shown in Figure 5.10). ECUL1 is determined
an infeasible solution since the combined utilization on ECU1 would exceed 100% if Tt
were allocated on ECU1 already hosting Ty, T7, Tg and T10 (0.32+0.32+0.4+0.186 = 1.23)
(Line 14). TSeRBA tries to decrease the server bandwidth of the soft tasks allocated on
ECU1, however again no schedulable task set on ECU1 is found (Line 15) and ECUL1 is

eliminated as a choice to host the failed tasks.

-
-

ECU1 s ECU2 .~ =< ~_  ECU3

T

/1 v =
@ , / / 8@ \ @
' adaptation trigger

«ECU3 faulty »

"
CAN N L7
Bus
| | | | | | | | l W
i} 5 10 15 20 25 a0 k53 40 45

Fig. 5.10 Tasks migration example.

The set of candidate ECUs is updated (Line 5) and TSeRBA is attempted again and
selects ECU2 as the target migration node. Since the total processor utilization available
for the soft tasks on ECU2 if Ty, is migrated on it is equal to 1 — (0.49 + 0.32) = 0.26.
Therefore, the utilization desired by Ti9 can be made available by decreasing the bandwidth
of the soft tasks on ECU2 in proportion to their expected utilities EUs. The values of
EU for the allocated soft tasks (i.e., Ty, T3, T4) on ECU2 are: 28, 29 and 31, respectively.
For instance, the available utilization and the changed bandwidth for Tty is computed as
follows: U, = (28/(28 4+ 29 + 31)) * 0.26 = 0.09, Q7 = 0.09 * 150 = 12. In the same
way we compute Uy, and Q7" with i € {3,4}.Note that if the task to migrate cannot be
allocated to any of ECU1 or ECU2, thereby an additional ECU is required (Line 17).

Note that ASLA’s algorithms for replacing and removing tasks are given in Appendix
2 Section B.0.3.
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IALGORITHM 3: TSeRBA for migrating tasks
1: As soon as the failure request is triggered (i.e a set of failed ECUs)
2: for all SWC; € I' such that x(I'°, ECUgayity) do
3: Q0Spest = 0
4:  get all the utilization of the Op mapped on ECUf,yity
5. U; = getUtilization(SWGC;); SWC; € I
6:  for all ECU; € ECUs; ECU; ¢ ECUgyy1y do
T Find the best-fit ECUs(which is the one that gives the best QoS)
8: QOScurrECUj = Z GetQOS(rk)
VI (M) €ECY;
9: if QoScyrr > Q0Spest then
10: ECUtarget = ECUj; Q0Spest = QoScurr
11: end if
12: Sorts I'“in descending order of their utilization, I' with hard requirement first and
after Soft.
13: if Feasible Mapping then
14: Migrate(I', ECU¢arget)
15: else if Picks the biggest I'is,r 1fsort € ECUtarget;
AdjustQsProportionally(T', ECU;) then
16: recomputey
else
| ECUs + ECUs+ ECUyey
end
17: end if
18: UndoAdjustQs(ECU;)
19: end for
20: end for

5.3 Summary

In this Chapter, we have considered the theoretical and the technical aspect of ASLA
framework described in Chapter 4. More specifically, we have formalized and solved the
problem faced when tackling runtime adaptation in automotive real-time systems. We have
shown how the runtime support to AUTOSAR is realized by TSeRBA algorithm “Tabu
Search Reconfiguration and Bandwidth Allocation” as it allows the dynamic allocation of
Software components(SWCs) with both Hard and Soft real-time constraints as well as
supports the insertion and the migration of SWCs at runtime. In the next Chapter, the

theoretical results will be illustrated with examples and test cases.
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Chapter 6

Implementation and Evaluation

In previous chapters, we described the theoretical aspects of our approach towards
an adaptive AUTOSAR, ASLA. In this chapter, we present the implementation of
ASLA components, namely Reconfiguration & Mapping managers. Most importantly,
this implementation allows us to demonstrate the feasibility of our approaches through
extensive evaluations, which we detail throughout the chapter. Due to the complexity of
ASLA scheduling analysis, we have first implemented ASLA’s algorithms using Java-based
implementation (simulation) and then we moved a part of this implementation on a real

platform (more specifically, ASLA’s migration algorithm).

6.1 ASLA Reconfiguration Model

This section describes the implementation of ASLA reconfiguration model that reconfigures
the system components. Figure 6.1 illustrates a class diagram of the reconfiguration
model. The core functional system of ASLA are ReconfigurationManager as well as the
ReconfigurationAlgorithm sub-classes. The ReconfigurationManager provides the entry point
for adaptations. The ReconfigurationAlgorithm classes implement the TSeRBA algorithm
with CBS and EDF scheduling algorithms discussed in Chapter 5.

— ReconfigurationManager a singleton class that is deployed in every ASLA reconfig-
uration model instance and is created via a static getlnstance() operation. This
static operation calls the class’s constructor of the ReconfigurationManager class, in
which fields, such as the reconfiguration scheduling algorithm used are instantiated.
The current implementations provide an operation that set the algorithm used
manually. The ReconfigurationManager maintains a list of all the components that
are deployed in ComplList as well as the currently used ReconfigurationAlgorithm
algo. Additionally, it contains a list of adaptation triggers triggersList that have
occurred and that still need to executed. The reconfiguration manager implements

the CompFactory interface that is responsible for the creation and the deletion of
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Fig. 6.1 ASLA reconfiguration model implementation.

the components (this is done manually). Additionally the reconfiguration manager,

provides the following interfaces :

e SystemConfiguration Interface
This interface provides operations to change the current system configuration
and to execute reconfiguration operations. These include createlnitialSystemConfig|()
method to create an initial system configuration, this system configuration is
generated by matlab script GENERATE.INIT.Config.m (see code in Appendix A)
and methods to connect(link()) and disconnect(unlink()) components to and

from the current system configuration.

e Reconfigurationexcution Interface This interface provides operations that deal
with the actual execution of a reconfiguration sequence. The method executeReconfiguration()

executes all the reconfiguration actions. The method updateAllConnections()
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class
class
class
class

Listing 6.1 Implemented reconfiguration action classes.

AddComp ()

RemoveComp ()
ReplaceComp ()
MigrateComp ()

retrieves all dependent components, i.e., components that are connected to
the replaced component via an input port, and updates their input ports
accordingly. It is called, for example, when a reconfiguration action needs to

be revoked.

e TriggersProcessing Interface This interface provides the notify Trigger() method
that deals with the processing of incoming triggers. This method is called by
any component in the system configuration when it receives an incoming recon-
figuration triggers. This then starts the reconfiguration scheduling algorithm

referenced by the filed algo, which is of type ReconfigurationAlgorithm.

ReconfigurationAlgorithm. The class ReconfigurationAlgorithm serves as the abstract
base class for TSeRBA reconfiguration scheduling algorithms. This class has an
abstract executeReconfiguration() method. ASLA also contains the implementation
of CBS and EDF scheduling algorithms.

ReconfigurationActions

All reconfiguration actions extend from the abstract base class ReconfigurationAction.
This class contains the unique identifier of the component on which the reconfigu-
ration action is executed. Methods that need to be implemented by the concrete
sub-classes include accessor methods to retrieve the affected component, such as
getComp() or methods to retrieve the new component getNextComp(). Also, a con-
crete sub-class must implement the abstract method execute(), which contains the
actual implementation of the respective action. A more detailed description of how

the execute() method is realized for the different actions is presented next subsection.

Listing 6.1 summarizes the concrete reconfiguration action classes, which represent
the available reconfiguration actions identified in Chapter 5, Section 5.1.6. Note
that the reconfiguration action classes link and unlink are only indirectly realized
as actions, since they are part of the reconfiguration manager, or more specifically,

part of the reconfiguration manager’s systemconfiguration interface.

Reconfiguration actions at runtime. A reconfiguration is triggered by calling
the executeReconfiguration() method of the reconfiguration manager. Reconfigu-

rations can be either triggered explicitly by a reconfiguration designer or can be
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triggered by changes in the system conditions. However, the reconfiguration manager
is oblivious to the cause of the trigger.The executeReconfiguration() method gets as
parameter the list of reconfiguration actions to execute. The AddComp reconfigu-
ration action class realizes the execute() method by calling the static createComp()
method of the reconfiguration manager, with the type identifier of the component to
be added as parameter. The RemoveComp action class contains the unique identifier
of the component to be removed. The implementation of execute() results in a call
to the removeComp() method of the reconfiguration manager, that then executes
the actual object removal. Replace and Migrate reconfiguration actions contain
the identifier the component to be replaced and the type identifier of the replace-
ment component. In both cases, the execute() method first creates the component,
which replaces the old component, by calling the static createComp() method of the
reconfiguration manager. The reconfiguration actions link and unlink are realized
by the reconfiguration manager. link is realized by calling the link() method of
the reconfiguration manager, which takes as parameters the two components to be
connected and their input and output ports. Likewise, the unlink() method of the
manager takes as parameters the components to be disconnected and their ports.
Take note that, in our current implementation we were interested in implementing
ASLA’s algorithms, having a complete implementation of ASLA classes is left as

future work.

6.2 Simulation Based Evaluation Environment

ASLA’s algorithms presented in Chapter 4 and 5 are implemented using Java and
MATLAB' on a 2.3 GHz Intel Core i5 machine running Ubuntu Linux 10.04 (8G RAM).
It is noteworthy to mention that we chose Java as a programming language given its
robustness, portability, large suit of available libraries and the widespread community of
Java developers. Nonetheless, we acknowledge the fact that Java and related frameworks
employed while implementing our solution are mostly suitable for systems with high
processing and computation capabilities. However, the solution can be ported to other
languages (e.g., C, C++) that are suitable for real-time systems. The central part in
the implementation of the algorithms described in Chapter 5 (i.e. TSeRBA) is the cost
function (see equation 5.3). In the next section, we describe the implementation details:

The cost function is implemented as a Java function. The input of the Java function
is a mapping of tasks to the ECUs and their allocated budgets (Q; values). It outputs the
value of the cost function. The TABU search heuristic searches through the solution space

of such values of cost function for various mappings and tries to find the best mapping and

"https://fr.mathworks.com /products /simulink.html
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best budget allocations. The ECUs, tasks (both hard and soft real-time) are represented
on disk in an XML file (see Listing 6.2).

The hard real-time tasks are characterized by a task id, a worst case execution time, a
period and a deadline. The soft real-time tasks are characterized by a task id, the PDFs
of computation times (multiple PDFs corresponding to various mappings), the period of
the tasks, a deadline which should be satisfied to give the best possible quality of service
and a weight which represents how important is it to satisfy the QoS of this task. The
weight is a fraction with values between [0 — 1].

We have used Apache commons maths library to implement various routines (all the
theory about cost function calculation described in Chapter 5 Section 5.1.4). Various

steps in the calculation of cost function are given below:

— Step 1-Reading XML file The processing elements, tasks (both hard and soft
real-time) are read from the XML file and they are converted to an in-memory
representation. This in-memory representation is constructed using the Interface
RealMatrix as defined in Apache Commons api.org.apache.commons.math.linear. This
interface defines a real-valued matrix on which some basic algebraic operations can

be performed.

— Step 2 — Constructing the Marcov matriz

The Markov matrix M’ is constructed in two steps. First, the worst possible length
of the queue is found out. In our case we have restricted the maximum number of
jobs to 100. This computed length is the truncation point for the infinite Markov
matrix. Thus, we generate the Markov matrix having dimensions equal to the worst

possible length of the queue.

— Step 3-Solving the Markov matrix for stationary solution.

We are generating the stationary solution by raising M’ to higher and higher powers
until all columns are almost identical. A variable measures the error by calculating
the quadratic distance between the elements of the first and the last column. The
iterations are stopped when this measured error is less than a certain pre-decided
value. This value corresponds to the desired level of accuracy. Any column can be
used as a steady state vector since they are all equal and correspond to a stationary
solution. The steady state vector is then normalized so that the sum of the elements

becomes 1.

— Step 4-Generating the Cumulative Distribution Function (CDF)

The CDF QoS(6;) is then calculated from the given steady state vector using the
method described in Chapter 5.
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Listing 6.2 Example of application description.

<?xml version="1.0" encoding="UTF-8"7>

<input>

<PARAMS>

<EXPNO> 1 </EXPNO>

<PDFLEN> 50 </PDFLEN>

NC> 100 </NC>

<TABULEN> 100 </TABULEN>

<MAX_ITER> 8000 </MAX_ ITER>

<LAST IMPRV_CNT> 50 </LAST IMPRV_CNT>

<BUS BW> 2.000000 </BUS BW>

<TOT_FAULTS> 2 </TOT_ FAULTS>

< /PARAMS>

<ECU> <ID> ECU1 </ID> </ECU>

<ECU> <ID> ECU2 </ID> </ECU>

<task SRT>

<TID> 1 </TID>

<CPDFE> 0.007810 0.012313 0.003486 0.015320 0.016111 0.007229
0.013019 0.019692 0.012083 0.018671 0.020155 0.022963

0.017444 0.024728 0.018166 0.019347 0.026893 0.024261
0.027072 0.025218 0.022833 0.027270 0.030258 0.023530
0.019951 0.025495 0.023168 0.029968 0.021092 0.025485
0.021558 0.019881 0.019079 0.022833 0.025172 0.026560
0.020570 0.022825 0.017249 0.017169 0.018913 0.022026
0.018240 0.016288 0.018930 0.021573 0.016870 0.013552
0.012540 0.018430 </CPDE>

<EXP> 26.240276 </EXP>
<CPDF>  0.000000  0.007881  0.007694  0.014759  0.013345  0.016354
0.010878  0.014253  0.016396  0.020932  0.010923  0.012577

0.013794 0.023443 0.022570 0.019238 0.023526 0.017286
0.027132 0.026045 0.020880 0.024943 0.027748 0.022039
0.025154 0.024189 0.019146 0.020508 0.024245 0.028744
0.029168 0.022293 0.023442 0.018908 0.020788 0.025859
0.023639 0.019775 0.019107 0.027283 0.020515 0.021385
0.018202 0.023872 0.018638 0.015002 0.022644 0.024630
0.020156 0.015272 </CPDE>

<EXP> 27.304875 </EXP>
<IPDF> 150 </TPDE>

<DDLN> 124 </DDLN>

<WGHD> 1 </WGHD>

<CHKP OVER> 2 </CHKP OVER>
<NUM_CHKP> 4 </NUM_CHKP>
<SFC> 1 </SFC>
</task_SRT>

<task HRT>

<TID> 4 </TID>

<WCI> 6 </WCE>

<PER> 30 </PER>

<DDI> 30 </DDL>

<CHKP OVER> 1 </CHKP OVER>
<NUM CHKP> 3 </NUM CHKP>
<SFC> 1 </SFC>
</task_HRT>

<task HRT>

<TID> 5 </TID>

<WCE> 10 </WCE>

<PER> 50 </PER>

<DDI> 50 </DDL>

<CHKP OVER> 1 </CHKP OVER>
<NUM_CHKP> 3 </NUM CHKP> 92
<SFC> 1 </SFC>
</task_HRT>

</input>



— Step 5-Cost function calculation

After we have got QoS(9;) for all soft real time tasks (77 = 1,2,...M;), the value
of the cost function is calculated by multiplying the task’s weights with their
probabilistic guaranties QoS(d;)and adding them up.

Take note that the initial system configuration and the description of the system given

to TSeRBA algorithm are automatically generated by Matlab code (see Appendix A).

6.2.1 Empirical Evaluation

In this section, we present an empirical investigation, examining the effectiveness of
our analysis techniques and TSeRBA scheme itself. We report on a set of experiments
undertaken for tasks set with both hard and soft tasks. We will first introduce an
experiment designed to compare the performance of TSeRBA and the non-adaptation
algorithm (i.e., TSMBA). Then, we will explore others experiments.These are sufficient to
provide a clear evaluation.

Task set parameter generation. We performed a number of simulations by varying
the number of ECUs E, the number of tasks n, the total utilization U and the task
parameters: deadline D;, period T;, PDF, bandwidth @); and execution time C;. We
consider tasksets with 6, 10, 16, 26, 37...83 tasks. The number of ECUs to allocate these
tasksets vary from 3 to 20 ECUs. For each one of these cases, we let the total utilization
vary from 0.025 to 0.975. For each configuration (n, E,U), we generated 1000 task sets.
The taskset parameters used in our experiments were randomly generated as follows: Task
utilizations (U; = C;/T') were generated using the Uunifast algorithm [35]. Task deadlines
D; were assigned according to a uniform distribution, in the range [C;, T;]. Periods T; were
generated using a Log uniform algorithm [92]. The execution time WCET C; for each
hard task is accordingly computed using the generated T; and U;: C; = [T;U;]|. The server
bandwidth @; is randomly generated with uniform distribution similar to [30]. The soft
tasks utilization is (U; = @;/T). The Server period P is computed as P = Q;/U;. The
PDFs were generated using a Matlab script. These PDFs were generated using WCETSs in
the range [3, 19ms] to match the shape of real-life benchmarks. The message lengths were
assigned randomly within 1 to 4 bytes ranges. Since the bus bandwidth is assumed to be
10 Mbps, the transmission times on the bus are in between 1 to 4 ms. We are assuming
that there can be at most 1 transient fault per execution segment of the application. We
are assuming a hard task 7; has to recover before the end of the next period, i.e., 2 x T; .
The checkpointing overhead and number of checkpoints for these tasks are between 1 to
3 ms and 2 to 8, respectively. We computed The number of preemptions N?"(77) that
occur with TSeRBA to the j-th generated task sets 7/ in the time interval [0, 1.5 * 10%).
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Experiments results. In the experiments presented below we performed the schedu-
lability analysis test presented in Chapter 5 comparing the TSeRBA and TSMBA (the
baseline approach presented in [99]) schemes. A first experiment has been carried out to
measure the schedulability of the different tests at taskset utilizations. Figure 6.2 plots
the percentage of tasksets generated that were deemed schedulable for a system with 8
ECUs and 33 tasks, with on average 50% of those tasks are hard. We observe that both
algorithms the static and the dynamic one are capable to find some schedule solutions in
all the cases. However, TSeRBA finds schedulable solutions much earlier than TSMBA.
This is expected as TSeRBA tries to reconfigure (migrate) an already allocated tasks
which may improve scheduling. It can be seen also, that both algorithms are able to
find good solutions even if the utilization of the system increases, however TSeRBA has
better performance than TSMBA when U > 0.65 and TSMBA degrades much faster with

increase in the utilization.
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Fig. 6.2 Percentage of schedulable tasksets.

Figure 6.3 illustrates the result of a second experiment aimed at measuring the
migration cost for different task set sizes. Clearly, the cost of migrating the task on our
target ECUs linearly increases with the size of the tasksets. However, in Figure 6.3, the
task migration cost also includes the computation cost of TSeRBA algorithm. From this
figure, we can see that the task migration cost increases slowly with the taskset size when
it is under 35. However, when the taskset size is bigger than 35, the task migration cost
has a near linear relationship with the taskset size. The reason is that when the taskset
size is small the task migration cost is dominated by the computation cost of TSeRBA
algorithm. However, when the taskset size increase to a certain amount, the computation

cost dominates the task migration cost.
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6.2.2 Additional Experimental Results

For each considered configuration (n, E, U) described in Section 6.2.1; we have computed
the average number of task preemptions as a function of the taskset utilization U, for
all considered values of n € {4, 8,12} (See Figure 6.4, 6.5 and Figure 6.6.). The average
number of preemption NV, ggg(fj) is counted as the sum, among all 1000 generated task sets,
of the total number of preemptions experienced by each task set during interval[0, 1.5% 10%],
divided by the number of generated task sets (i.e., Zjl-ozoloNpr(Tj) /1000). From the above
Figure. 6.4, it clearly appears that TSeRBA schedules tasksets with a significantly small
number of preemptions, at all the system utilizations. This property becomes more evident
considering tasksets composed of a large number of tasks. For n = 12, our algorithm
has an average number of preemptions that is less than 15%. A well known property
of EDF scheduling is that the number of preemptions in a given interval is bounded by
the number of jobs in the same interval [37]. Therefore, increasing the number of tasks
while keeping constant the total U, the number of tasks increases,as does the number
of preemptions. In our experiments, the N2 (77) with TSeRBA remains more or less
constant while varying n. TSeRBA shows a very limited number of preemptions even
at system utilizations close to 1; with the considered parameters, the Ng;"g(Tj ) is never
higher than 1.5 * 10% preemptions every 10* time units, for all considered values of n .
We provide the number of migrated tasks as another metric of the migration overhead,

which is reported in Fig 6.7. We have varied the number of faults from 1 to 3 faults (which
can happen during one execution cycle), depending on the number of ECUs (from 3 to
20 ECUs) in the system, for taskset cardinalities of 10, 16, 21, 29, 33, 37, 49, 69, 80, 83
tasks. We observe that the number of tasks to migrate are similar regardless of which
ECU fails. It implies that the entire workload of the system is kept quite well distributed

over the available ECUs even after the failure.
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6.3 Second Implementation— Ongoing Demonstrator
Platform

In order to create a rapid prototype of ALSA, we built an experimental platform (in

Figure. 6.10). Three ARM-based STM32FDiscovery boards are used as representatives

for more powerful control units that are expected in the future. The scenario we would

like to show is described as follows: “upon the receipt of an adaptation trigger that is,
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one of the ECU fails, migrate tasks from this ECU to the other operational ECUs”. This

section describes the software architecture in detail.

ERIMKA
=C
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STlink “hex
ECul ECuz ECuU3
STM3Z2 STM3Z STM3Z
Application Application Application
CAN CAN CAN
Controller Controller Controllar
T= * A rx TX* A rx ™= + * rx
CAN CAMN CAN
Tranceiver Trancelver Tranceiver
Low t t High Lowt t High Low igh
CAN Bus

Fig. 6.8 Block diagram of the experimental platform.

6.3.1 Hardware

For the use case described above, we at least need 3 ECUs; one of the 3 ECUs acts as
a system gateway and is connected to the PC using an USB cable. This ECU acts as
the fault injection module and also to collect data from the system. The Fault in our
case is “shutdown or restart of ECUs”. This fault and the collected data are controlled
using the PC interface. Figure. 6.8 shows the block diagram of our platform. For the
demonstration purpose, we consider 3 applications with varying types of criticality namely,
Steer-By-Wire (SBW) [41], Wiper Status (WS) and Door Locks (DL).
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Steer-By-Wire application. Enables the electric steering of the vehicle by sensing
the driving and steering wheel angles, calculating the intended wheel angles, and actuating
the change of direction via motors to the front axis.

Wiper Status application. The wiper status application has three different modes:
it can be off, constantly on or operated in an interval. The period of this interval depends
on the amount of water on the windshield that is detected by a rain sensor.

Door Locks application. Enables automatic locking and unlocking of doors in the
vehicle. In case of an accident the door lock needs to be unlocked without a tangible
delay; therefore, a fast wake of a sleeping door module is necessary. This application takes
as input the Door state request with four valid states (Close, Open, Lock and Unlock).
This function decides whether to accept the change depending on its current state. In
our current implementation, each application is implemented on a separate ECU and it
contains one runnable, considering several runnables is left as future work. The different
applications and ASLA have been flashed using ERIKA enterprise [49] and STLINK as
follows: ECU1 and ECU2 host WS, DL respectively. Whereas ECU3 executes SBW
application as described in Table 1.

Runnable Task Bound ECU || CPU Utilization CAN msg Msg Lenght (bytes) || Bandwidth(Q)
SBW-Runnable SBW-task ECU3 0.32 SBW, ECU3-health-msg 2 -
WiperStatus-Runnable || WS-Task ECUI 0.9 WS, ECUl-health-msg 2 58
DoorLock-Runnable DL-Task ECU2 049 DL, ECU2-health-msg 2 91

Table 1: System tasks and Allocation

6.3.2 Software

The basic software running on the hardware includes the ERIKA-OS [49] operating system
and generated code from RT-Druid [49]. The code generated conforms to AUTOSAR 4.x
specification and produce the minimum required implementation to produce a working
system. An OIL file for the configuration of ERIKA enterprise is also generated for each
ECU. This generated code includes the necessary code modifications required as part of
the runtime adaptation support described in the previous chapters. The GCC compiler for
the STM32Discovery board is used along with ERIKA OS configuration tool to produce
an executable for each ECU. The CAN message identifiers are generated for each message
on the bus. The various Runnables, Tasks and Messages used in the experimental system
are provided in Table 1. The runnable parameters like WCET, Period and ECU were
provided by the system designer. Message sizes and CAN configuration (125kps) were
also specified at the design phase. Specific CAN identifiers are assigned to specific ECUs.
For example, if the WS application is running on ECU1, the CAN identifier assigned to
its message is 101, etc.
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6.3.3 Test Plan and Preliminary Results

In this section, we present how ASLA deals with the case of ECU failure through task-level
adaptation as depicted in Figure.6.9.
Test Procedure

1. Switch on all the three ECUs.

2. Switch OFF ECU1 when one of the other operational ECUs has greater free CPU

utilization

3. Capture the logs.

N\ [ \

ECU1 ECU2
ASLA ASLA
WS-task DL-task
\ J N/
CAN

BUS

Fig. 6.9 Task migration example

Results

Upon the receipt of the adaptation trigger “ECU3 fails”, the RM tries to find the
target ECU to host the failed tasks on ECU3 (i.e., SBW task) (as shown in Figure. 6.9).
ECU1 is determined as an infeasible solution since the combined utilization on the ECU1
would exceed 100% if SBW-task would be allocated on ECU1 already hosting WS-task.
Even by reducing the bandwidth of the WS-task to zero, the SBW-task would not meet
its deadline (because the resulting task set on ECU1 is not schedulable). Hence, the RM
updates the set of candidate ECUs and selects ECU2 as the target migration node, since
the total CPU utilization available for DL-task on ECU2 if SBW-task is migrated on it is
equal to (1 — (0.49 4+ 0.32) = 0.26. Therefore, the utilization desired by SBW-task can be
made available by decreasing the bandwidth of the DL-task on ECU2. For instance, the
available utilization and the changed bandwidth for DL-task are equal to Upr,—iask) = 0.27

new _
and DL—task — 56.

6.4 Summary

We presented in this chapter the implementation details of ASLA’s algorithms followed by

a set of experiments to assess the validity of our approach, leaving the real-implementation
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for our future work. To assess the validity of our approach, we computed the schedulability
analysis of TSeRBA and we computed the migration cost for different tasks sets. In
addition, we computed the number of preemptions caused by our algorithm. Finally, we

computed the overhead caused by the our task migration algorithm.
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Chapter 7
Conclusion and Future perspectives

Runtime adaptation of embedded systems was not a main concern in many safety critical
application domains up to now. The economic pressure, for time-to market reasons, but
also the new challenges posed by the Internet of Things (IoT), imposes a rapid evolution
of embedded systems. Smart cities are an example of a specific IoT where cars become
connected objects. These new trends with the recent innovation concerning autonomous
vehicles and ADAS (Advanced Driver Assistance Systems) raise the problem of evolution
of safety critical systems. This was one of the main motivations behind this dissertation: Is
it useful to make AUTOSAR adaptive? Our work shows that the AUTOSAR architecture
as it is today does not offer enough flexibility to perform runtime adaptation and hence
does not comply with the new trends discussed above. We have shown that with the
proposition of a new AUTOSAR architecture, i.e., ASLA, that runtime adaptation, is
however, possible and this is the focus of the Adaptive AUTOSAR platform, a recent
initiative from the AUTOSAR consortium.

In this chapter, we present a summary of the concepts and ideas presented in this
thesis. We recall in this context the main contributions of our work for the ASLA approach.
Further, we want to discuss how the ASLA approach could be integrated into today’s
development process. Finally, we want to present some perspectives, how the ASLA

approach might be improved for use with future automotive systems.

7.1 Summary of Contributions

The central goal of my thesis is to extend the AUTOSAR framework in order to support
runtime adaptation. This challenge involves an important number of facets to be addressed.
We recall that runtime adaptation in automotive systems involves task mapping, scheduling
of adaptation. Thus, the contributions of my thesis are threefold: (i) resource allocation
and scheduling for automotive systems, (ii) proposing TSeRBA algorithm “Tabu search
Reconfiguration and Bandwidth Allocation” which we used for task mapping, bandwidth
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allocation and reconfiguration for mixed criticality distributed systems, and (iii) runtime
adaptation support for AUTOSAR. The contributions are summarized as follows:

(i) Resource allocation and scheduling for automotive systems. We have developed a
task-partitioning strategy for allocating SWCs to the ECUs based on the work of [99].
In [99], the authors propose TSMBA “Tabu Search Mapping and Bandwidth Allocation”
algorithm, which provides a comprehensive solution that allocates mixed-criticality SWCs
(hard and soft) to a distributed architecture and performs processor bandwidth reservation
for guaranteeing timing requirements even in the presence of faults. TSMBA [99] cannot
be used directly for our goal; specifically it cannot be used directly in systems with
task dependencies (i.e., pipeline task model). Therefore, we propose a new allocation
algorithm based on TSMBA. So, to incorporate task dependencies, we have defined
an abstraction called Operational Chains, which enables timing analysis. An ECU
assignment methodology called O-TSMBA (Operational chains- Tabu Search Mapping
and Bandwidth allocation) is proposed to consider task dependencies. A key observation is
that consolidating tasks that communicate with each other can save computing resources
as the consolidation reduces the processing overhead. TSMBA is also adapted to an
AUTOSAR-compliant platform to see how the proposed algorithm can be used in the
automotive context.

(ii) Proposing an algorithm for task mapping, bandwidth allocation and reconfiguration
for mized-critical hard/soft distributed systems. Conventional real-time theories are in
general applicable to automotive systems; however, they do not incorporate highly dynamic
attributes and hence do not provide tight schedulability analyses. To the best of our
knowledge, TSeRBA is the first algorithm that integrates runtime adaptation, tasks
allocation and scheduling within AUTOSAR.

(ii1) Runtime adaptation support for AUTOSAR. We propose a layer called ASLA
(Adaptive System-Level in AUTOSAR) to incorporate tasks-level adaptation features
in AUTOSAR. ASLA aims at extending the AUTOSAR architecture starting from the
application layer down to the operating system layer (task model and RTE)(i.e., extending
AUTOSAR ECU Software architecture).

7.2 Future Work

Our work offers opportunities both in the short term for investigating extensions and
enhancements to the approach, and in the long term for exploring new research directions.

This work opens up many directions for future research. Primarily, we intend to
continue validating the results in the experimental platform, but also move it to an
industrial setting and try it in a real vehicle. In addition, we envisage an extension to our

approach to support mode change protocols for operational mode changes.
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During my Master work, my research revolved around decision making in self adaptive
systems [28] [27] [25] [26]. I believe that bringing together my Master and my PhD
works can be a first step towards safer autonomous vehicles. Hence, ASLA can be easily
extended to support machine learning techniques (aka. dynamic decision network). The
new architecture is illustrated in Figure 7.1

Dynamic Reconfiguration
Decision Manager
Network

—— [ e ]
| Monitor

ASLA Tayer——.__ -
Adaptive SWC swc SWC T Adaptive [
Plugin | (appl) (app2) SWC
I|lm| i Plugin Plugin Plugin
’ RTE : Proposed Tasks
adaptation mechanism RTE
SWC Adaptive
O (app1) SWC

Network ECUs ...

Fig. 7.1 The evolution of ASLA architecture towards autonomous vehicle.
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Appendix A

TSeRBA Algorithm Implementation

A.0.1 Cost Function Implementation

/%%

x+ @author Amel BELAGGOUN
* @Qdate 11-12-2014

*/

import org.apache.commons.math.linear .x;

@SuppressWarnings (" deprecation")

public class CostFuncCale {

public static double getCostFuncValue(double [][] array) {
RealMatrix M = new RealMatrixImpl(array);
double Total Cost_Value = 0;

for (int i = 0; i < M.getRowDimension(); i++) {

int DDLINE = (int) M. getEntry (i, 1);
double WGHT = (double) M. getEntry (i, 2);
int Q= (int) M.getEntry (i, 3);
//System.out.println ("\nnt+i+" "+DDLINE+" "+WGHT+" "+Q+"\n") ;
double [] V = M. getRow (i) ;
double [] U = mnew double [XMLRead.getPDFLen() |;
for (int k =5, j = 0; k < V.length; k++ ,j++) {
Uljl= V[k];
}
RealMatrix MRKV;
RealMatrix PI = null;
MRKV = genMarkovMatrix (U, Q);
PI = MRKV;
for (int Im = 0; lm <= 100; lm++) {
PI = PI.multiply (PI);
if (calc_err(PI) < 1E-30)
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break;}
double sum = 0;
for (int jj = 0; jj < PI.getRowDimension(); jj++) {
sum = sum + PI.getEntry(jj, 0);
}
PI = PI.scalarMultiply (1 / sum);double [] CDF = new
double [PI.getColumnDimension () ];
CDF [0]= PI.getEntry (0, 0);
for (int kk = 1; kk < PI.getColumnDimension (); kk++) {
CDF[kk] = CDF[kk — 1] 4+ PI.getEntry(kk, 0);} double
CF__value;
CF_value = CDF[DDLINE|; Total Cost_Value = Total Cost_Value +
WGHTx CF__value;

}
System.out.println (" \n The TOtal COst VaLue is " + Total Cost_Value +
n \Il\Il n ) ;
return (Total Cost_ Value /XMLRead.getNumSRT () ) x100;
}

private static double calc_err(RealMatrix PI) {
// TODO Auto—generated method stub
double err = 0;
for (int i = 0; i < PI.getColumnDimension(); i++) {
err = err + (PI.getEntry(i, 0) — (PI.getEntry (i, PI.getRowDimension()—1)));
}

return err;
}
private static RealMatrix genMarkovMatrix(double[] U, int Q) {
// TODO Auto—generated method stub

int NUMJOBS = 500;

double WCL = 0.0;

for (int k = 0; k < (int) U.length; k++) {
WCL = WCL + NUMJOBS* Ulk]* (k-Q)

)

}
int WCLength = (int) 200;
if (WCLength < Q) {

WCLength = Q + 1;
}

if (WCLength < U.length) {
WCLength = U.length ;

}

double [] UA = new double [WCLength];
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for (int i = 0; i < WCLength; i++) {
if (i < (int) U.length) {
UA[i] = U[i];

else
UA[i]= 0;
double [][] M = new double [WCLength][WCLength];
for (int i = 0; i < WCLength; i++) {

for (int k = 0; k < Q+1; k++) {
M[i][k] = UA[i]:

}
}
for (int i = 0; i < WCLength; i++) {
for (int k = Q+1; k < WCLength; k++) {
M[i][k] = 0;
}

}
for (int i = 0; i < WCLength; i++4) {
for (int k =Q + 1, 1 = 1; k < WCLength; k++, 14++) {
if (i + 1 < WCLength) {
M[i + 1l][k] =UA[i];

}
}
}
RealMatrix MRKV = new RealMatrixImpl (M) ;
return MRKV;
}

A.0.2 TABU Search Implementation

/%%
¥ @author Amel BELAGGOUN

@date 15—01-2015
*/
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.lOException;
import java.io.PrintWriter;

import java.text.DateFormat;
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import java.text.SimpleDateFormat ;
import java.util.Date;

import java.util.HashSet;

import java.util.Random;

import java.util.Set;

import java.util.StringTokenizer;

public class TabuSearch_ MB {

private static int NC ;

private static int TL;

private static double GLOBAL_BEST COST;
private static double [][] GLOBAL_BEST SOL;
private static double [][] CURR_SOL;
[111[] TABU;
private static double [][] SYS;

private static int [][] COMM_ARR;
private static int TABU_ LENGTH;

private static int LAST IMPROVED;
private static int ITR_COUNT;

private static double [][] CHOSEN_MOVE;
private static double NEXT SOL COST;
private static int MAX_ ITERATIONS;
private static int LAST IMPROVED COUNT;

private static double

public static void main(String[] args) throws IOException {
// TODO Auto—generated method stub

XMLRead. getSystem ()

String Filename = "Results MB_".concat (getDateTime () .concat (".txt"));
FileWriter outFile = new FileWriter (Filename);

PrintWriter out = new PrintWriter (outFile);

double [][] INIT_SOL = readInitialSOL ("init_sol.txt");
(OMM._ARR = readComm ( "comm info.txt");
NC = XMLRead. getNC () ;
TL = XMLRead. getTabuLen () ;
TABU_IENGTH = 0;
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LAST IMPROVED
ITR, COUNT = 0 ;
MAX_ITERATIONS = XMLRead. getNumIter () ;
LAST IMPROVED COUNT = XMLRead. getLastImprvCnt () ;
double [][][] CM = new
double [NC] [XMLRead. getSysArrRows () | [ XMLRead . getNumECUs () |;
TABU = new
double [TL] [XMLRead. getSysArrRows () | [ XMLRead . getNumECUs () | ;

0;

SYS = XMLRead. getSystem () ;

System.out.println ("\n———O-TSeMBA AND
TSeRBA————— \n");
System .out.println ("\n\n STATISTICS : " 4+NC +' '+TL+ ' "+
MAX_ITERATIONS + " "4LAST IMPROVED COUNT) ;

out.println ("\n # LIST OF PARAMETERS " +

" \n # NUM_ELEM CAND SET : \t "4NGCt
" \n # LAST IMPR CNT: \t "4 LAST IMPROVED COUNT +
" \n # NUM_ITERATIONs: \t '+ MAX ITERATIONS+ "\n\n'" );
out . flush () ;
System.out.println ("\n IS IT A VALID MAPPING SOLUTION \n" +
isValidSol (INIT_SOL));

if (isValidSol (INIT SOL) = 1) {
CURR_SOL = INIT SOL;
GLOBAL_BEST SOL = INIT_ SOL; GLOBAL_BEST COST =
CostFuncCalc. getCostFuncValue (createParameterArray (INIT _SOL) ) ;
System.out.println ("\n INTITIAL COST FUNCTION VALUER \n'+
GLOBAL BEST COST) ;
LAST IMPROVED= 0;
ITR, COUNT = 1;
CM = CreateCandidateMoves (INIT SOL);
double [][][] NCM = compactCandSet (CM) ;
CHOSEN_MOVE = chooseMove (NCM) ;
NEXT SOL_COST =
CostFuncCalc. getCostFuncValue (createParameterArray (CHOSEN MOVE) ) ;
System.out . println ("\n THE CHOSEN———") ;
printMoreDetails (CHOSEN MOVE) ;
System.out.println (" COST OF CHOSEN ONE————\n"+ NEXT SOL COST );
while (ITR_COUNI< MAX ITERATIONS) ({
while (LAST IMPROVED < LAST IMPROVED_ COUNT) {
System . out . println (" \n\n FHHHHHHAHHHHHHAAHEFF-AAAHRFFHAHAAATERATION
NOHEHHHAHHHAH#H#HA \n "+ TTR_COUNT) ;
System.out.println ("\n COST @ ITERATION "4 ITR_COUNT+" est EGAL " +
GLOBAL BEST COST) ;
System.out.println ("\n THe CURRENT SOLUTION IS : \n ");
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printMoreDetails (GLOBAL BEST SOL) ;
System . out . println ("\n COMMUNICATION COST :" +
getCommunicationCost (COMM_ARR,GLOBAL BEST SOL) ) ;

out.println("\n " -HTR COUNT+' , "+GLOBAL BEST COST+' ")
out . flush () ;
System.out.println ("the current solution \n'");
printSOL (CURR,_SOL) ;
addToTabu (CURR_SOL) ;

LAST IMPROVED++;

ITR_COUNT++;

CURR_SOL = CHOSEN MOVE;

if (NEXT SOL COST > GLOBAL BEST COST) {

GLOBAL_BEST COST = NEXT_ SOL_COST;

GLOBAL_BEST SOL = CURR_SOL;

LAST IMPROVED = 0;

System.out.println ("\n ———The cHosen SOLUTION——7FM" ) ;
printMoreDetails (CURR_SOL) ;

System .out.println ("COST OF THE CHOSEN ONE- \n "NEXT SOL COST) ;
out.println (", Q\n ");

telse {System.out.println ("\n THERE IS NO GOOD SOLUTION THIS TImE \n");}

CM = CreateCandidateMoves (CURR_SOL) ;
double [][][] NCMI1 = compactCandSet (CM) ;
CHOSEN_MOVE = chooseMove (NCMI) ;
NEXT SOL_COST =
CostFuncCalc. getCostFuncValue (createParameterArray (CHOSEN MOVE) ) ;
out.println (" \n");
}
CHOSEN_MOVE = moveSomeWhereElse (CURR_SOL) ;
if (isValidSol (CHOSEN MOVE) — 1) {
NEXT SOL_COST =
CostFuncCalc. getCostFuncValue (createParameter Array (CHOSEN _MOVE) ) ;
LAST IMPROVED = 0;
out.println (", M \n");
out.println (" \n");

ITR, COUNTH+;
}
}//end while externe
}
System .out.println ("\n\n THE END OF THE DESIGN SPACE
EXPLORATION \n\n");

System.out.println ("\n COST"+ GLOBAL BEST COST) ;
printSOL (GLOBAL BEST SOL) :
printMoreDetails (GLOBAL BEST SOL) ;

120



out . close () ;

}
private static double[][] readInitialSOL (String Filename) {
// TODO Auto—generated method stub
double [][] INIT _SOL = new double
[XMLRead . getSysArrRows () ] [ XMLRead . getNumECUs () | ;
try {
System.out.println ("READ the INTIAL SYSTEM DESCRIPTION FROM the
File \n");
FileReader input = new FileReader (Filename);

BufferedReader buffread = new BufferedReader (input);
String Line;

int count = 0;
Line = buffread.readLine () ;
count +4+4;
int col = 0;
while (Line != null) {
col = 0;
System.out.println (count+": "+Line);
{ StringTokenizer st = new StringTokenizer (Line);
while (st.hasMoreTokens()) {
String tok = st.nextToken();

Float f2 = new Float (tok);
double d2 = f2.doubleValue ();

// System.out.println (" x"+col+" x "+d2);
INIT SOL|[count —1][col]= d2;

col++;
}
¥

Line = buffread.readLine () ;
count+-+;

buffread . close () ;

} catch (ArrayIndexOutOfBoundsException e) {
// TODO: handle exception
System.out.println (" CANNOT FIND THE FILE ");
tcatch (IOException e) {
// TODO: handle exception
e.printStackTrace () ;

}
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return INIT SOL;

}
public static double [][] moveSomeWhereElse(double [][] CURR_SOL)
{
return GLOBAL BEST SOL;
}
public static int isTabu(double [][] SOL) {
double err = 0;
for (int k = 0; k < TABU LENGTH; k++) {
err = 0;
for (int i = 1; i < XMLRead. getSysArrRows(); i++) {
for (int j = 0; j < XMLRead.getNumECUs(); j++) {
err = err + Math.abs(TABU[k|[i][j] — SOL[i][j]);
System.out.print (" what is the value of err'+err);
}
}
if (err = 0)
return 1;
}
return 0;
}
public static int addToTabu(double[][] SOL) {

if (TABU LENGTH < TL)

{
TABU[TABU_LENGTH] = SOL;
TABU_LENGTH+-+;
}
else if (TABU_LENGTH=TL)
{
for (int i= 0; i < TABU LENGTH-2; i++)
{
TABU|[i]=TABU[i+1];
}
TABU[TABU LENGTH-1]= SOL;
}

return 0;
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public static int printTabu() {
for (int k = 0; k < TABU LENGTH; k++) {
System.out.println ("\n ITEM NUMERO\n" +k) ;
for (int i = 1; i < XMLRead. getSysArrRows (); i++) {
System.out.println ("\n");
for (int j = 0; j < XMLRead.getNumECUs() ;
i+ {
System.out.println ("THIS Is the TaBU LIst'+
TABU[k][1][j]);
}
}
}

return 0;

}

/%%
*x @Qparam SOL
* @return
*/
private static double [][][] CreateCandidateMoves(double [][] SOL) {
// TODO Auto—generated method stub
System.out. println ("\n ##HHHHHHEAHHHE Creating Candidate Moves — both

Mapping and alloc #HHAEEHHHHHHAAHE \n'" ) ;

double [][] MOV;
int M_param = O0;

int Q_ param = O0;
int skip_step = 1;

double [][][] CM = new

double [NC] [XMLRead. getSysArrRows () | [ XMLRead . getNumECUs () | ;

int CM_index = 0;

for (int k = 0; k < NC; k++) {

System.out.println ("\n — what contains—CM-" 4+ CM_index +

n ") ;

MOV = geMove (SOL, Q_param, M_param, skip_step );
if (isValidSol (MOV) = 1) {
CM[CM _index] = MOV;

CM__index+-+;
System.out.println ("\n the Solution is");
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printMoreDetails (MOV) ;

printSOL (MOV) ;
}
return CM;
}
private static double [][][] compactCandSet(double [][][] CM) {

// TODO Auto—generated method stub

double [][][] NCM = deleteNullElements (CM) ;
System.out.println ("\n AFTER DEL NULL\n") ;
printCandSet (NCM) ;
double [][][] NCMLl = deleteDuplicateElements (NCM) ;

System.out.println ("\nAFTER DEL DUP\n") ;
printCandSet (NCM1) ;

return NCMI;

}
private static double [][][] deleteDuplicateElements(double [][]][]
// TODO Auto—generated method stub
Set<double [][] > NCM_set = new HashSet<double [][] >();

for (int k = 0; k < CM.length; k++) {
if (isAlreadyPresent (CM[k], NCM_set)==0) {

// System.out.println ("\n\n Not Present\n "+k);
NCM._set.add (CM[k]) ;
}
}
double [][][] NCM = new double

[NCM_set. size () ] [ XMLRead. getSysArrRows () | [ XMLRead . getNumECUs () | ;
NCM_set. toArray (NCM) ;
return NCM;

}
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private static int isAlreadyPresent(double[][] SOL, Set<double[][] >
NCM_set) {
// TODO Auto—generated method stub
double err = 0;
double [][][] NCM = new double [NCM_set. size () ]
[XMLRead . getSysArrRows () | [ XMLRead . getNumECUs () | ;
NCM_set. toArray (NCM) ;

if (NCM_set.size() = 0) { return 0;};
for (int k = 0; k < NCM_set. size (); k++) {
err = 0;
for (int i = 1; i < XMLRead. getSysArrRows (); i++) {
for (int j = 0; j < XMLRead.getNumECUs(); j++) {
err = err + Math.abs(NCM[k][1][]j]—
SOL[i](j1) ;

if (err = 0)

return 1;
} // end for k

return 0;

private static double [][][] deleteNullElements(double [][][] CM) {
// TODO Auto—generated method stub
int NOM = 0;

for (int k = 0; k < NC; k++) {

double SUM = 0 ;
for (int i = 1; i < XMLRead. getSysArrRows(); i++) {
for (int j = 0; j < XMLRead.getNumECUs(); j++) {
SUM = SUM + CM[k][i][]];
}

}
// System.out.println (" SUM "4+SUM) ;

if (SUM != 0)
NUM-++;

}

System.out.println (" No of non void entries"NUM) ;
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double [][][] NCM = new
double [NUM] [ XMLRead . getSysArrRows () | [ XMLRead . getNumECUs () |;
System . arraycopy (CM, 0, NCM, 0, NUM) ;

return NCM;

private static void printCandSet(double [][][] KCM) {
// TODO Auto—generated method stub
for (int k = 0; k < KCM. length; k++) {
System.out.println (" \nCandidate Set # : "4+k+"\n");
printMoreDetails (KCM[k]) ;

}
public static double [][] geMove(double [][]ARR,int M param, int

Q_param, int skip_step) {

Random generator = new Random(System.currentTimeMillis());

int rand = generator.nextInt (2);

double [][] MOV_ARR = new double
[XMLRead. getSysArrRows () | [ XMLRead . getNumECUs () | ;
if (rand = 0) {
System.out.println ("\n BW move") ;
MOV_ARR = geBandwidthMove (ARR,M param,Q_ param, skip_ step);
System.out.println ("\n IS a VALID mapping
splution "+isValidSol (MOV_ARR) ) ;
printSOL (MOV_ARR) ;
System.out.println ("AAAAAAAAAAA") ;
System.out.println ("\n MaPping MOOovvVEeee") ;
MOV_ARR = geMappingMove (ARR, M_param,Q_param, skip_ step);
System.out.println ("\n IS a VALID mapping solution"' +isValidSol (MOV_ARR)) ;
printSOL (MOV_ARR) ;
System . out . println ( AWWWWAWWWWWWY ) 5 }

return MOV_ARR;
}

private static double [][] geBandwidthMove(double [][] ARR, int M_param, int
Q_param, int skip_step) {
// TODO Auto—generated method
Random generator = new Random(System.currentTimeMillis ());
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double [][] MOV_ARR = new double
[XMLRead . getSysArrRows () | [ XMLRead . getNumECUs () |;
do {
int randchange = generator.nextInt (XMLRead.getNumSRT()) + 1;

for (int j = 0; j < XMLRead.getNumECUs(); j++) {
for (int i = 1; i < XMLRead.getSysArrRows(); i++) {
MOV_ARR[i][j] = ARR[i][]];
if (Sys[i][i]== 1) {
(]

)
it (ARR[i][j] != 0) {

if (i = randchange) {
int Randl = generator.nextInt(2);
int Rand2 = generator.nextInt ((int) ((SYS[i][4] —ARR[i][j])/skip_step));
Rand2 = Rand2xskip_step;
System.out.println (" QM Randchange "+randchange+" RANDI "+Randl+ " RAND2
"+Rand2+"\n") ;
if (Randl = 0) {
double Q Temp = ARR[i ][]
double Q = ARR]
if (Rand2 < Q) {
Q = Q- Rand2;
System.out.println ("\n — Exp Q : " +XMLRead. getExpection (i, j,
SYS) ) ;
f(Q < XMLRead. getExpection (i, j, SYS))

{

E
i][jl;

Q = Q Temp;
}
telse {
Q = Q Temp;

MOV_ARR[i][j] = Q;
System.out. println ("\n — Changed Q : " 4MOV_ARR[i][j]);
telse if (Randl = 1) {
double Q _Temp = ARR[i][j];
i1l

double Q = ARR]
Q = Q + Rand2;
f(Q>= SYS[i][4])
{ Q = Q Temp;}
MOV_ARR[ i ][ j]=Q;
System.out.println ("\n — Changed Q : " 4MOV_ARR[i][]]);
}
}
}
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1 }

} while (isValidSol (MOV_ARR) — 0)
return MOV_ARR;

private static double [][] geMappingMove(double [][] ARR,

int M_param, int Q_param, int skip_step) {
// TODO Auto—generated method stub

Random generator = new Random(System.currentTimeMillis ());
double [][] MOV_ARR = new double
[XMLRead . getSysArrRows () | [ XMLRead . getNumECUs () | ;
for (int j = 0; j < XMLRead.getNumECUs(); j++) {
for (int i = 1; i < XMLRead.getSysArrRows () ;
MOV_ARR[i][j] = ARR[i][j];}}
do {

int Randl = generator.nextInt ((int) XMLRead.getSysArrRows ()+ 1);
for (int i = 1; i < XMLRead.getSysArrRows (); i++) {
generator.nextInt ((int)

i++) {

if (i = Randl) { int randomIndex
XMLRead . getNumECUs () ) ;

System .out . println ("\n ## The Mapping MOve MM
RANd"+Rand 1+ "RANDomINDEX "+randomIndex+"\n" );
if (SYS[i][l]== 0) {

for (int j = 0; j < XMLRead.getNumECUs(); j++) MOV_ARR[i][j]= 0 ;
MOV_ARR [i][randomIndex] 1;

telse if(SYS[i][1] = 1) {

double old_value 0;

for (int j = 0; j < XMLRead.getNumECUs(); j++)
if (MOV_ARR[i][j] != 0) {

old value = MOV_ARR[i][j];

MOV_ARR[i][j] = 0;

}

MOV_ARR|[i | [randomIndex] = old__value; }

}
twhile (isValidSol (MOV_ARR) — 0);

return MOV_ARR;

}

private static void printSOL (double [][]SOL) {
// TODO Auto—generated method stub

for (int i = 1; i < XMLRead. getSysArrRows (); i++) {
System.out.println ("\n");

for (int j = 0; j < XMLRead.getNumECUs(); j++) {
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System.out.println ("The SoLUTions is " 4+ SOL[i][]]);

private static void printMoreDetails(double [][] SOL) {
// TODO Auto—generated method stub
System.out.println (" \n ECUl | ECU 2 ");
System.out . println (' ")
for (int i = 1; i < XMLRead. getSysArrRows (); i++) {
System.out.println ("\n");
for (int j = 0; j < XMLRead.getNumECUs(); j++) {

if (SYS[i][l]== 0) {
System . out . format (" %.3f (%.3f) |", SOL[i][j],
SOL[i][j]
x (float) SYS[i][4] / SYS[i][5]);
}
if (SYS[i][l]== 1) {

//System.out.print (" "+SOL[i][j]+" (
" (float)SOL[i][}]/SYS|
[/ 1[4+ ) \t');

System . out . format (" %.3f (%.3f) |", SOL[i][]],
(float) SOL[i][j] / SYS[i][4]);

}

}

}

System.out.println ("\n");

private static double [][] chooseMove(double [][][] NCM) {
// TODO Auto—generated method stub
double local_best_cost = 0;
int chosen_move_index = 0;
int chosen_move_index_oth = 0;
int total tabus = 0;
if (NCM.length =— 0) {

System.out.println ("\n NO ELEMENTs Length
:"HNCM. length ) ;
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return GLOBAL_BEST SOL;
¥
System.out.println ("\n Printing candidate set \n");
printCandSet (NCM) ;
System . out.println ("\n #HHHHFHHHAHH Choosing Move
HHHEHAEHARHERAA \n"HNCM. length ) ;
for (int k = 0; k < NCM. length; k++) {

// Case 1.

if (isTabu(NCM[k])= 0) {
createParameterArray (NCM[k]) ;
double CV = CostFuncCalc.getCostFuncValue (array ) ;
if (CV > local_Dbest_cost) {
local _best_cost = CV;
chosen move_ index = k;

double [][] array

}

System.out.println ("\n This is CaSE 1 \n "4k);

}
// Case 2.

if (isTabu(NCM[k])= 1){
total _tabus++;
double [][] arrayl = createParameterArray (NCM[k]) ;
double CV1 = CostFuncCalc.getCostFuncValue(arrayl);
if (CV1 > GLOBAL_ BEST COST) {
local best_cost = CV1 ;
GLOBAL BEST COST = CV1;
chosen__move_index = k;
telse if (CV1 > local best_cost) {
local_best_cost = CV1;

chosen__move_index_oth = k ;
}
System.out. println ("\n This is CaSE 2 \n "+4k);
}
}
// Case.3

if (total_tabus = NCM.length) {
System.out.println ("\n This CaSE 3\n");

return NCM[chosen_move_index_oth];

else
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return NCM[chosen_move_index] ;

private static double [][] createParameterArray(double[][] SOL) {

// TODO Auto—generated method stub

double [][] param_array = new
double [XMLRead . getNumSRT () | [ XMLRead . getPDFLen () + 5];
int param_index row = O0;

for (int j = 0; j < XMLRead.getNumECUs(); j++) {
1

i = 1; i < XMLRead. getSysArrRows(); i++) {

for (int

if (SYS[i][l]== 1) {

if (SOL[i][j] = 0) {
double [] pdf = XMLRead.getPDF (i, j, SYS);
System.out.print ("\n\n i: "+ i +" j: "+(j+1));

for (int 1=0;1< XMLRead.getPDFLen () ; 1++)

System.out.print (" "+pdf[l]);
param_array [param index row]|[0]= i;
param_array [param_index_ row|[1l] =
svs[i][2] ;
param_array [param index row][2] =
SYS[i][3];

param_ array [param_index_row][3]= SOL[i][j];
param_array [param_index row][4] = SYS[i][4];

System . arraycopy (pdf, 0,
param_ array [param_ index_row],
5, XMLRead. getPDFLen () ) ;

param__index_row+-;

}
}

return param__array ;
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private static int isValidSol(double [][] SOL) {
// TODO Auto—generated method stub
int isValid = 1;
for (int j = 0; j < XMLRead.getNumECUs(); j++) {
double Util = 0;
for (int i = 1; i < XMLRead. getSysArrRows(); i++) {

if (SYS[i][1] = 0) {
Util = Util + SOL[i][j] * (SYS[i][4] / SYS[i][5]);

System.out.println (" \nH SOL[i][j] "+SOL[i][j]+" SYS[i][4]
"+SYS[i][4]+ " SYS[i][5] "4+SYS[i][5]);

}
if (SYS[i][1] = 1) {
Util = Util + SOL[i][j] / SYS[i][4];
System.out.println (" \n SOL[i][]] "HSOL[i][j]+ " SYS[i][4]
"+SYS[i][4]) ;

}

System.out.println (" \n " +Util);

if (Util > 1) {
isValid = 0;
System.out.println ("\n Util Invalid");

if (getCommunicationCost (COMM_ARR, SOL) > 1)

{
isValid = 0;
System.out.println ("\n Bus Invalid");

if (isValid_Reconfig (SOL) = 0)

{
isValid = 0;
System.out.println ("\n reconfig Invalid
(")
}
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isValid =1;

return isValid;

public static double getTotalUtil(double [][] SOL) {

return 0;

private static int isValid Reconfig(double[][] SOL) {
// TODO Auto—generated method stub
int isValid = 1;

for (int j = 0; j < XMLRead.getNumECUs(); j++) {
double Util = 0.0;
double max_wcet = 0;
int max_wcet_index = 0;
int max_srt_index = O0;
double max_srt_et =0;

for (int i = 1; i <XMLRead.getSysArrRows(); i++) {

i ((SYS[i][1] = 0)&(SYS[i][8]== 1)) {
if (SYS[i][4] > max_ wcet) {
max_ wecet= SOL[i][j];

max_ wcet_index = 1i;

if ((SYS[i][1] = 1) & (SYS[i][8] = 1))
{
if (SOL[i][j] > max_ srt_et){
max_srt_et = SOL[i][]];

max_ srt_index = 1i;

for (int i = 1; i < XMLRead. getSysArrRows (); i++) {

if ((SYS[i][1] — 0) & (SYS[i][8]== 1)) {
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int mnew_wcet = (int) ( SYS[i][4] + ((SYS[i][7] -
1)+8YS[i][6]) ):
Util = Util + SOL[i][j] * ( new_wcet / SYS[i][5]);
System.out.println (" \n HHHAAARD SOL[i ][]
"+new__wcet+ " SYS[i][4] "+SYS[i][4]);

}
if ((SYS[i][1] = 1) & (SYS[i][8] = 1)) {
int new Q = (int) ( SOL[i][j] + ((SYS[i][7] — 1)=x
SYS[1][6]));

Util = Util + new_Q / SYS[i][4];

System.out.println ("\n SSSOOOFT SOL[i][j] "+ new_Q + " SYS[i][4]
"+ SYS[i][4]) ;

System.out.println (" index HARD task " +
max_ wcet_index + " index SoFT TASK ' +
max_ srt_index) ;

double reconfiguration_time_hrt = 0;
double reconfiguration_time_srt = 0;
if (max_wcet_index != 0) {

reconfiguration_ time_ hrt =
XMLRead . getNumFaults () * ((
SYS[max_ wcet_ index][4]/
SYS[max_wcet_index][7]) /SYS[max_wcet_index][5]) ;
}
if (max_srt_index !=0) {
reconfiguration_time_srt = XMLRead. getNumFaults () *((
SOL[max_srt_index][j]/SYS[max_srt_index][7]) /SYS[max_srt_index][4]) ;
}
Util = Util + reconfiguration_time_hrt
+reconfiguration_time_ srt;
System.out.println (" \n Util \n " 4+ Util);

if (Util > 1) {
isValid = 0;

return isValid;
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private static double getCommunicationCost(int [][] COMM _ARR,
double [][] SOL) {
// TODO Auto—generated method stub
double BusUtil = 0;
double totalCost = 0;

for (int j = 1; j < XMLRead. getSysArrRows(); j++) {

for (int i = 1; i < XMLRead. getSysArrRows(); i++) {
if ((isMappedOn(j, SOL)!= isMappedOn (i,
SOL)& isMappedOn (i, SOL)!= -1 &
isMappedOn(j, SOL)!= —1))

//System.out.print ("\n "+j+" is
mapped on "+isMappedOn (j ,SOL)+"
, "+i+" is mapped on '
~+isMappedOn (i ,SOL)+

//"Comm Cost"+COMM _ARR[j][i]) ;

totalCost = totalCost +
COMM_ARR[j ][ 1]

if (SYS[j][1] = 0) { double msgSize =
COMM._ARR[j ][1i]/XMLRead.getBusBW () ;
BusUtil = BusUtil + msgSize /SYS[j][5];
System.out.print ("\n BusUtil "+BusUtil);

}

it (SYS[j]{1] = 1) {
double msgSize = COMM ARR[j |[i]/XMLRead.getBusBW () ;
BusUtil = BusUtil + msgSize /SYS[j][4];
System.out.print ("\n
BusUtilSSSSSS
"+BusUtil ) ;

System.out.println (" \n \n COMMUNICATION COST
"+totalCost+ " BUS UTIL "+BusUtil);
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return BusUtil;

private static int isMappedOn(int i, double[][] SOL) {
// TODO Auto—generated method stub
int ecu =-—1;

for (int i1 = 1; il < XMLRead. getSysArrRows(); il++) {
for (int jl1 = 0; jl1 < XMLRead.getNumECUs(); jl++) {
if (i1 = i & SOL[i1][j1]!= 0) {

ecu = jl;
}
}

}

return ecu;
}
public static int [][] readComm(String Filename) {

int [][] COMM ARR = new

int [XMLRead. getSysArrRows () | [ XMLRead. getSysArrRows () | ;
try {

System.out.println ("reading the communication
CONFIg from the file \n");
FileReader input = new FileReader(Filename);
BufferedReader buffRead = new
BufferedReader (input);
String Line ;

int count = 0;
Line = buffRead.readLine () ;
count+-;

int col =1;
while (Line != null){

col =1;

System.out.println (count+": "+Line);
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StringTokenizer st = new StringTokenizer (Line);

while (st.hasMoreTokens()) {
String tok = st.nextToken ()

Integer f2 = new Integer (tok);
int d2 = f2.intValue();

COMM _ARR|[ count | [ col]=
col++;
}
}
Line = buffRead.readLine () ;
count—+-;

buffRead . close () ;

} catch (ArrayIndexOutOfBoundsException e) {

private

// TODO: handle exception
System.out.println ("I cannot find the
COMMUNICATION FILE CONFIG") ;

tcatch (Exception e) {
// TODO: handle exception
e.printStackTrace () ;

return COMM_ARR;

static String getDateTime() {
// TODO Auto—generated method stub

DateFormat dateFormat = new
SimpleDateFormat ("yyyy. MM _dd _HH mm_ss");
Date date = new Date () ;
return dateFormat.format (date);
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A.0.3 Uunifast Algorithm Implementation

/ %

x Uunifast.cpp

x Created on: Nov 24, 2015

* Author: AMel BELAGGOUN
f

#include "Uwunifast.h'
#include<iostream>

#include <math . h>
#include<vector>
#include<stdlib .h>

using namespace std;

std :: vector<double> UUniFast(int n, double U_ target)

{
// std::uniform real distribution<double> dist (0,1);
std :: vector<double> v;
double sum = U_ target;
for (int i=1; i<=mn-1; i++) {
double next = sumxpow(rand (), 1/double(n—i));
v.push_back(sum — next);
sum = next;
}
v.push back(sum) ;
return v;
}

int main() {
std :: vector<double> z;
z= UUniFast (41, rand());
for (std::vector<double >::const_iterator i = z.begin();
i!= z.end(); ++i)
std ::cout << xi << "\n";

return 0;

}
A.0.4 Matlab Script for Generating Initial System Configura-

tion

function GENERATE INIT Config(sys_util ;sys_q,n_srt,n_hrt,n ECU)
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fid2 = fopen(’initial config.txt’, 'w+’);
ECU_UTIL = zeros (1,n ECU);
SYS_ARR = zeros(n_srt + n_hrt ,n ECU);

for i = 1:n_ srt+n_hrt
[C I] = min(ECU_UTIL) ;
if (ECU UTIL(1,I) + sys_util(i,I)<=2)
if (i<=n_hrt)
SYS_ARR(i,I) = 1;
else

SYS ARR(i,I) = sys_q(i,I);

end
ECU_UTIL(1,1)= ECU_UTIL(1,I) + sys_util(i,I);
else

SYS ARR

pause

while (ECU_UTIL(1,I) + sys_util(i,I)>2)
I = ceil (n_ECU % rand());

end

SYS ARR(i,I) = sys_q(i,I);
ECU_UTIL(1,I)= ECU UTIL(1,I) + sys_util(i,I);
end
end
for i =1 :n_srt+n_hrt
sysl(n_hrt+n_ srt—i+1,:) = SYS ARR(i,:);
end

SYS ARR=sysl1 ;

for k= 1:n ECU
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fprintf(fid2, > 0 7);
end
fprintf (fid2, ’\n’);
for 1 = 1:n_srt+n_hrt
for k= 1: n_ECU
fprintf(fid2, > %d ’,SYS_ARR(i,k));
end
fprintf(fid2, ’\n’);
end

SYS ARR
ECU_UTIL

(sum (ECU_UTIL) /n_ECU) *100

fclose (fid2);
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Appendix B

B.0.1 AUTOSAR Software Development

1.

System configuration: The system consists of two SWCs as shown in Figure B.1.
We concentrate on an extract of the configuration and some parts of the source code
for one SWC, thus, the ECU configuration is not shown in this example.

SWC1 SWC2

runll ‘ runl2 } run2l run22

:

Virtual Functional Bus

Fig. B.1 System Configuration.

Take note that the whole configuration of the system can be found in appendix A.
In this configuration every SWC has two runnables runll,runl2 and run21,run22
respectively. . The runnable runll is triggered by a timing event that occurs every
100ms. Runnable runl?2 is triggered by another timing event that occurs every 50ms.
runll, run121 are mapped to the task Taskl and they are running in the context
of the same task. The other two runnables of SWC2 i.e. run22 and run2l also
triggered by an timing event every 50ms and by the invocation of a server call at
the server port respectively. We assume that Both SWC1 and SWC2 are mapped
on the same ECU. The definition of the data types used in this example is shown
in Code Listing B.2. As we can see the first type is the integer type Intl6 with a
specified range of valid values. The second type is a string type, which has a length
of 8 characters and the symbol String8. In order to reference a type, the names of
the packages have to be used as path. For example the path /types/Intl6 can be
used to reference the integer type.

141



<?xml version="1.0" encoding="UTF-8"?>

<AUTOSAR xmlns="http://autosar.org/4.1.2">
<TOP-LEVEL-PACKAGES>

<AR-PACKAGE>

<SHORT-NAME>types</SHORT-NAME>

<ELEMENTS>

<INTEGER-TYPE>

<SHORT-NAME>Int16</SHORT-NAME>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">-32768</LOWER-LIMIT>.
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">32767</UPPER-LIMIT>
</INTEGER-TYPE>

<STRING-TYPE>

<SHORT-NAME>String8</SHORT-NAME>
<ENCODING>utf8</ENCODING>
<MAX-NUMBER-OF-CHARS>8</MAX-NUMBER-OF-CHARS >
</STRING-TYPE>

</ELEMENTS>

</AR-PACKAGE>

</TOP-LEVEL-PACKAGES>

</AUTOSAR>

Fig. B.2 Data types description.

In the same way the interface of the sender-receiver port needs to be described as
shown in the Code Listing B.3. Here, the interface SR Int16 consists of two data

|
<?xml version="1.0" encoding="UTF-8"7>

<TOP-LEVEL-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>interfaces</SHORT-NAME>
<ELEMENTS>
<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>SR Int16</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>
<DATA-ELEMENTS>
<DATA-ELEMENT-PROTOTYPE>
<SHORT-NAME>intValuel</SHORT-NAME>
<TYPE-TREF DEST="INTEGER-TYPE">/types/Int16</TYPE-TREF>
<IS-QUEUED>false</IS-QUEUED>
</DATA-ELEMENT-PROTOTYPE>
<DATA-ELEMENT-PROTOTYPE>
<SHORT-NAME>intValue2</SHORT-NAME>
<TYPE-TREF DEST="INTEGER-TYPE">/types/Int16</TYPE-TREF>
<IS-QUEUED>false</IS-QUEUED>
</DATA-ELEMENT-PROTOTYPE>
</DATA-ELEMENTS >
</SENDER-RECEIVER-INTERFACE>
</ELEMENTS>

</AR-PACKAGE>|
</TOP-LEVEL-PACKAGES>

</AUTOSAR>

Fig. B.3 Interface description.

types intValuel and intValue2, which are both of type Intl6, and it provides a not

queued communication.

In the Code Listing B.4, the SWC1 description is given. SWC1 has two runnables and
ports that are accessed by the runnables via DataSendPoints and a SynchronousServer-
CallPoint This is needed to generate the API and to provide consistency for the
communication. The runnable runll writes both values to the sender port pportll,
whereas runl2 only writes the value intValuel. Both runnables are triggered by the

specified timing events.
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<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns="http://autosar.org/4.1.2">
<TOP-LEVEL-PACKAGES>

<AR-PACKAGE>

<SHORT-NAME>swc root</SHORT-NAME>
<ELEMENTS>
<ATOMIC-SOFTWARE-COMPONENT-TYPE>
<SHORT-NAME>swc1</SHORT-NAME>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME>pport1</SHORT-NAME>
<PROVIDED-INTERFACE-TREF y
DEST="SENDER-RECEIVER-INTERFACE">/interfaces/SR Int16</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
<R-PORT-PROTOTYPE>
<SHORT-NAME>rport1</SHORT-NAME>
<REQUIRED-INTERFACE-TREF y
DEST="CLIENT-SERVER-INTERFACE">/interfaces/CS string to int</REQUIRED-INTERFACE-
TREF>

</R-PORT-PROTOTYPE>

</PORTS>
</ATOMIC-SOFTWARE-COMPONENT-TYPE>
</ELEMENTS>

</AR-PACKAGE>

</TOP-LEVEL-PACKAGES >

</AUTOSAR>

Fig. B.4 Software Component description.

2. Source code generation: The next step after the SWCs description is calling the
RTE generator with that configuration in order to produce auto generated code of the
RTE. This code contains the API for the SWCs. The extract for SWC1 is shown in
the Code listing ?7. In the last two lines the functions for the runnables are declared.
These functions are called when a runnable is executed (i.e. when the timing events
occur). Developers must implement first these functions in order to implement the
functional behavior of the SWC. In AUTOSAR a sender port with a DataSendPoint
is accessed via the API specified in the following form: Rte_Write_<p>_<o>(data).
Where <p> is the name of the port and <o> is the name of the data element
which is accessed. In other words the value which is passed to the call with the
parameter data, is written to the port. It can be seen from the example that r12
uses the specified function call SynchronousServerCallPoint to invoke an operation
at the server. So the function does not return until the operation on the server is
finished and the return values are available. For the SynchronousServerCallPoint,
the API Rte_Call_rportl_parse (string , value) is expected and created by the RTE
generator. The operation parse takes one string as argument and returns one integer
value. This API is implemented using a #define directive to a function; which
directly accesses the global variables Rte_ RxBuf_1 and Rte_ RxBuf_2. This function
is implemented also in the generated file Rte.c. The source code for the tasks is
created by the RTE generator. We present the extract for Taskl in the code listing
B.6. As we said in the example specification it can be seen that rll is triggered
every 100ms whereas r12 every 50ms. Once the task is released the runnable is
executed. Releasing tasks is done in the operating system configuration, the latter is

created by the RTE generator.
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#define RTE_E_CS_string_to_int overflow (42)
#define RTE_E_CS_string_to_int_underflow (43)

#define Rte_Call rportl parse(array, sum) (Rte_Call_swcl_rportl_parse(array, sum))
FUNC(Std_ReturnType, RTE_CODE)
Rte_Call_swcl_rportl_parse(CONSTP2VAR(String8, AUTOMATIC, RTE_APPL_DATA),
CONSTP2VAR(Int16, AUTOMATIC, RTE_APPL_DATA));

/+ Inline Write optimization; Rte_Write_pport1_intValue2_to_direct_access */
extern VAR(Int16, RTE DATA) Rte_RxBuf_1;

#define Rte_Write_pport1_intValue2(data)
Rte_WriteHook_swcl_pportl_intValue2_Start(data), (Rte_RxBuf_1 = data),
Rte_WriteHook_swcl_pportl_intvalue2 Return(data), RTE_E_OK )

/+ Inline Write optimization; Rte_Write_pport1_intValuel_to_direct_access */
extern VAR(Int16, RTE_DATA) Rte_RxBuf_0;

#define Rte_Write pportl intValuel(data)

Rte_WriteHook _swcl_pportl_intValuel_Start(data), (Rte_RxBuf_0 = data),
Rte_WriteHook_swcl_pportl_intValuel_Return(data), RTE_E_OK )

FUNC(void, RTE_APPL_CODE) run11(void);
FUNC(void, RTE_APPL_CODE) run12(void);

Fig. B.5 Example header file for SWCI.

TASK(Task1)

Rte RECount_Task1_divby2 _0;
if ( Rte_RECount_Task1_divby2_0 ==0)

{
runii();
¥

{

run12();

b

if ( Rte_RECount_Task1_divby2 0 == 0)
{

Rte_RECount Task1_divby2_0 = 2;

TerminateTask();

Fig. B.6 Example code for taskl

3. Runnables implementation: The last step in developing the SWC is the runnable

implementation this step is shown at the end of code listing B.7. In which The

FUNC(void, RTE_APPL_CODE) runi2(void)

String8 vali;
Int16 val2;

Rte_Call_rporti_parse(vall, &val2);
Rte_Write_pportl _intValueli(val2);

Fig. B.7 Example code for runnable21.

created API can be used to access the ports. Here it is just necessary to write the
correct API to the source code. This code can then be compiled with the generated
header file. Instead of the global variables for the senderreceiver communication

shown in this example, also a function call can be used. The runnable would not
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get noticed about it. This also shows the first problem for sharing object code.
If a component is compiled against such a header file with global variables, it is
expected that a generator, which creates the whole API, does not create the same
global variable. So the object code cannot be used. Therefore function calls have
to be created for sharing object code.But this causes an overhead for the function

invocation when accessing a port.

B.0.2 The Characteristics of AUTOSAR Runnables

Table B.1 shows the relevant characteristics of a runnable that need to be taken into
account when addressing runtime adaptation, i.e. Category, activation, events. The most

important characteristics are Activation Mode and Category.

Table B.1 Characteristics of AUTOSAR Runnables.

Concept Characteristi¢c Details

Activatio
mode

n Periodic / Spo-
radic

A runnable is either
periodic or triggered
by events.

access mode

Communj-Input and | Corresponds to com-
cation Output Data | munication needs of
and corre- | the runnable. Re-
sponding quired to plan ahead

the proper connec-
tions. Linked to the
runnable category.

Category

1:
point
2: Wait Point

No wait

A wait point is the
moment

when a runnable wait
for an external event
to resume its execu-
tion

B.0.3 ASLA’s Task Adaptation Algorithm—The Case for Re-
placing tasks

Similarly to Algorithm 3, ASLA’s reconfiguration manager uses Algorithm 4 to replace
a SWC with another one that have an improved version; the new SWC has the same
interface, WCET and the same communication pattern however it has an improved internal
behavior (i.e., runnables). Note that the task need to be in suspended State in order to
replace safely the SWC .
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IALGORITHM 4: TSeRBA for replacing SWCpq by SWCiew
1: As soon as the replacement request is triggered.
2: O-TSMBA (T, ECUs)
3: add (SWChew, ECUs)
4: for all SWC; €T do
5: if feasible mapping then
6: if link(SWC;, SWC;) then
7: update input port nguvf_.j of SWCj to connect to Poye.  of SWCinew
8: suspend (SWCqq)
9: State-transfer(SWCeq, SWChew)
10: Link(SWCinew, SWGj)
11: Unlink (SWCioq, I')
12: Remove (SWCioq, I'°)
13: end if
14: else
15: Adjust Qs Proportionally(I'e, ECUj)
16: recomputey
17: end if
18: end for

B.0.4 ASLA’s Task Adaptation Algorithm—The Case for Re-

moving Tasks

Similarly to Algorithm 3. ASLA’s reconfiguration manager uses Algorithm 5 to remove
task from the ECUs.

IALGORITHM 5: TSeRBA for removing tasks
1: As soon as the deletion request is triggered
2: O-TSMBA (I"“, ECUs)

3: unlink(SWCy, SWCy, P3"*, P)
4: Remove (SWC,T°)
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