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INTRODUCTION

The transport-reaction, the flow of fluids in open channels or in gas pipelines, the blood flow in the vessels of mammalians, the road traffic, the light propagation in optical fibers, the propagation of agedependent epidemics or the chromatography [START_REF] Bastin | Lyapunov stability analysis of networks of scalar conservation laws[END_REF][START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws[END_REF]PRIEUR, 2008;[START_REF] Witrant | Wireless ventilation control for large-scale systems: the minimal industrial case[END_REF][START_REF] Banda | Gas flow in pipeline networks[END_REF]HERTY;[START_REF] Banda | Gas flow in pipeline networks[END_REF][START_REF] Castillo | Dynamic boundary stabilization of linear parameter varying hyperbolic systems: Application to a Poiseuille flow[END_REF], among others, are typical examples of processes that may be represented by hyperbolic partial differential equations (PDEs). In these applications, the system dynamics is represented by one-dimensional hyperbolic systems although the original system dynamics is three-dimensional, because the dominant phenomena evolves in one privileged coordinate dimension while the phenomena in the other directions can be neglected.

This PhD thesis focuses on the study of systems governed by first-order hyperbolic PDEs (commonly used to express the fundamental balance law that occurs in many physical systems when small friction or dissipation effects are neglected [START_REF] Bastin | Lyapunov stability analysis of networks of scalar conservation laws[END_REF]), with boundary conditions modeled by means of ordinary differential equations (ODEs) expressing, for instance, actuator dynamics. The main property of first-order hyperbolic PDEs is the existence of the so-called Riemann coordinates which is a successful tool for demonstrating classical solutions, exponential stability analysis and control design, among other dynamical properties; see, e.g., [START_REF] Bressan | Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem[END_REF][START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF]. In particular, the stability of steady state solutions is a fundamental issue for ODE and PDE systems. Therefore, the exponential stability of steady-state solutions of one-dimensional hyperbolic PDEs coupled to nonlinear ODE system dynamics is studied in this thesis. It is considered conservation laws over a finite space interval, i.e., the spatial domain is an interval of the real line.

The definition of exponential stability is intuitively simple: starting from an arbitrary initial condition, the system time-trajectory has to exponentially converge in spatial-norm to the steady state (globally for linear systems and locally for nonlinear systems). Behind the appar-ent simplicity of this definition, the stability analysis is however quite challenging. First because this definition is not so easily translated into practical tests of stability. Secondly, there exist various function norms used to measure the deviation with respect to steady state solutions which are not necessarily equivalent and may therefore give rise to different stability tests.

The stability analysis of first-order hyperbolic PDE control systems are subject to sensor and actuator dynamics in two situations: (i) there are sensors and actuators spatially distributed; and (ii) sensors and actuators are only located in the system boundaries (contours). It is considered in this thesis only the situation in which the measurements and actuators are only available at the boundaries. Hence, the exponential stability of steady states closely depends on the so-called dissipativity of the boundary conditions which, in many instances, is a natural physical property of the system. This thesis discusses issues where the dissipativity of the boundary conditions (and, consequently the stability) is achieved by applying a boundary feedback control with sensors and actuators located at the boundaries.

A necessary and sufficient stability test for linear homogeneous first-order hyperbolic PDEs (such as systems of linear ODEs) is to verify if the all the roots of the characteristic equation (i.e., the poles) have a negative real part. However, this stability test is not very practical because it is not robust with respect to small variations of the system dynamics. Then, in this thesis, a robust dissipativity test will be proposed derived from the Lyapunov stability approach, which guarantees the existence of a exponentially converging solution for space domain L 2 -norm.

The stability analysis of homogeneous first-order hyperbolic systems has been a research subject for more than thirty years now in the literature. A sufficient condition is that the Jacobian matrix of the boundary conditions has a spectral radius smaller than one, see (SLEM-ROD, 1983;[START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF][START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF][START_REF] Qin | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF]. The stability analysis can be based on the method of characteristics which can exploit an explicit computation of the 'reflection' of the solutions at the boundaries along the characteristics curves, see for instance [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF].

Other way to perform the stability analysis is by using an appropriate dummy doubling of the system size, [START_REF] Halleux | Boundary feedback control in networks of open channels[END_REF]; ??) have shown how the general dissipative boundary condition ρ|G ′ (0 0 0)| < 1 that can be established for systems with the general non local boundary condition.

On the other hand, several control practitioners have studied the analysis of dissipative boundary conditions based on the Lyapunov theory. The first attempts employed the system entropy as Lyapunov function candidate as, for instance (CORON; D'ANDRÉA-NOVEL; [START_REF] Coron | A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations[END_REF] and (LEUGERING; [START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF]. The disadvantage of the latter approach was related to the fact that the time derivatives of such entropy-based Lyapunov functions is only negative semi-definite. Hence, the LaSalle's invariance principle should be applied to complete the stability analysis. However, the LaSalle's requires the precompactness of the trajectories which is hard to ensure for nonlinear partial differential equations. To overcome this problem, CORON; BASTIN; D'ANDRÉA-NOVEL (2007) have proposed a strict Lyapunov function whose time derivative is strictly negative definite.

The advantage of strict conditions is twofold: (i) the proof is simpler than the one using the method of characteristics in view of more direct computations, and (ii) it is easier to be numerically tractable.

Another related advantage regards the robustness properties with respect to small uncertainties and disturbances. More recently, CORON;

BASTIN; D'ANDRÉA-NOVEL (2008) have generalized the strict Lyapunov approach to general nonlinear hyperbolic systems. [START_REF] Castillo | Dynamic boundary stabilization of linear parameter varying hyperbolic systems: Application to a Poiseuille flow[END_REF] addressed the problem of boundary observer design for one-dimensional first-order linear and quasilinear strict hyperbolic systems with n rightward convecting transport terms. The stability problem of linear and quasi-linear hyperbolic systems in the presence of dynamic boundary conditions is addressed in [START_REF] Castillo | Dynamic boundary stabilization of linear and quasi-linear hyperbolic systems[END_REF]CASTILLO;[START_REF] Witrant | Wireless ventilation control for large-scale systems: the minimal industrial case[END_REF][START_REF] Castillo | Dynamic boundary stabilization of linear parameter varying hyperbolic systems: Application to a Poiseuille flow[END_REF][START_REF] Castillo | Dynamic boundary stabilization of linear parameter varying hyperbolic systems: Application to a Poiseuille flow[END_REF][START_REF] Castillo | Fresh air fraction control in engines using dynamic boundary stabilization of LPV hyperbolic systems[END_REF], while in (DOS SAN-TOS et al., 2008) a strict Lyapunov function approach is proposed for the boundary control with integral actions of hyperbolic systems of conservation law that can be diagonalized by means of Riemann invariants.

Various recent contributions and extensions of the previous results worth also to be mentioned.

• CORON;[START_REF] Coron | Dissipative boundary conditions for nonlinear 1-D hyperbolic equations: sharp conditions through an approach via time delay equations[END_REF] analyzed dissipative boundary conditions for nonlinear hyperbolic systems in one spatial dimension and proposed sufficient conditions for exponential stability using techniques inspired from the theory of the linear time-delay systems.

• Sufficient conditions for the stability of systems of conservation laws (quasi-linear hyperbolic systems with non-homogeneous terms) were proposed in (PRIEUR; WINKIN; BASTIN, 2008;[START_REF] Prieur | Control of systems of conservation laws with boundary errors[END_REF].

• The stability problem of switched linear hyperbolic partial differential equations is considered in (PRIEUR; GIRARD; WITRANT, 2012; PRIEUR; GIRARD; WITRANT, 2014) by means of Lyapunov techniques.

• A numerical computation of Lyapunov functions for hyperbolic PDEs using LMI formulation and polytopic inclusions is addressed in (LAMARE; GIRARD; PRIEUR, 2015; LAMARE; GI-RARD; PRIEUR, 2016).

• The use of backstepping method for boundary stabilization for non-homogeneous linear systems has been studied in (KRSTIC et al., 2008) (see, e.g., the text book of KRSTIC; SMYSHLYAEV (2008b) for a complete course on backstepping techniques applied to the boundary control).

Taking the above scenario into account, in this thesis, LMI based techniques are studied to guarantee the dissipativity of the boundary conditions and, consequently, the stability using boundary feedback control with sensors and actuators located at the boundaries. The control may be implemented with the goal of stabilization (when the system is physically unstable) or simply to achieve an efficient regulation.

In some first-order hyperbolic PDEs, the flow of information is usually supplied at the system boundary by a forcing process that provides the information motion along the way by means of wave propagation. In these systems, boundary feedback control often depends on other auxiliary dynamical processes (e.g., sensors and actuators). For instance, a positive-displacement pump may be driven by an electrical motor that imposes a constraint on the pump speed according to the motor torque dynamics and, in this case, the pump speed is a boundary control variable. Thus, the boundary feedback control is studied in situations where first-order hyperbolic PDE systems are coupled to a dynamic boundary system governed by nonlinear ODEs.

In particular, three techniques are considered in this thesis. The first one is a classical time and space finite-dimensional discretization of the first-order hyperbolic PDE which is coupled to a difference equation representing a linear approximation of the nonlinear ODE. In the sequel, the input delay approach approximates the first-order hyperbolic PDE dynamics by a pure delay in the feedback loop of a nonlinear ODE system and the Lyapunov-Krasovckii stability theory of delayed differential equations is applied to derive stability and stabilization conditions guaranteeing the regional stability of the input delayed system.

Then, infinite-dimensional tools are used to address the robust boundary control stabilization problem of a coupled first-order hyperbolic PDE with a nonlinear ODE considering strict Lyapunov functionals.

Motivation

In many applications, such as diffusion, the physical quantity of interest depends on both position and time. These systems are modeled by partial differential equations (PDEs) and the solution evolves on an infinite-dimensional Lebesgue or Hilbert space. For this reason, these systems are often called infinite-dimensional systems. In contrast, the state of the system modeled by an ordinary differential equation (ODE) evolves on a finite-dimensional system, such as R n , and these systems are called finite-dimensional. Since the solution of the PDE reflects the distribution in space of a physical quantity such as the temperature of a rod or the deflection of a beam, these systems are often also called distributed parameter systems (DPS).

Finite-dimensional models are often inadequate for control design for DPS [START_REF] Lasiecka | Mathematical Control Teory of Coupled PDEs[END_REF]. In particular, hyperbolic systems have features such as finite speed of propagation which require approximation by high-order finite dimensional models [START_REF] Pavel | Lyapunov-based boundary control for a class of hyperbolic lotka-volterra systems[END_REF][START_REF] Pavel | Lyapunov-based boundary control for a class of hyperbolic lotka-volterra systems[END_REF]. While hyperbolic systems of second order describe oscillatory systems such as strings or beams, first-order hyperbolic systems (thesis focus) describe physical problems of transport-reaction type often encountered in many industrial applications such as hydraulic networks [START_REF] Bastin | Lyapunov stability analysis of networks of scalar conservation laws[END_REF][START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws[END_REF]PRIEUR, 2008), gas flow in pipelines (BANDA; HERTY; [START_REF] Banda | Gas flow in pipeline networks[END_REF][START_REF] Castillo | Dynamic boundary stabilization of linear parameter varying hyperbolic systems: Application to a Poiseuille flow[END_REF], flow regulation in deep pits [START_REF] Witrant | Wireless ventilation control for large-scale systems: the minimal industrial case[END_REF], among others.

The distinct feature of hyperbolic PDEs is that all the eigenmodes of the spatial differential operator typically contain nearly the same amount of energy; as a result a very large number of modes is required to accurately approximate their dynamic behaviour. This feature distinguishes hyperbolic partial differential equations and suggests addressing the control problem on the basis of the infinite-dimensional model itself [START_REF] Christofides | Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes[END_REF][START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF][START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF][START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF].

An example of a control design is performed in (DOWER; FAR-RELL, 2006), based on a finite-dimensional approximation of the linearized PDE model around the desired steady-state. From a 588thorder finite-difference model a tenth-order reduced model is obtained by open-loop balance truncation, and a tenth-order H ∞ -controller is designed. However, there is no guarantee that the stabilization and regulation properties will hold for the real closed-loop hyperbolic system.

Boundary control has been an area of great interest recently, one reason being the fact that it has addressed the problem on the infinite-dimensional model itself.

• Results for the stabilization or disturbance rejection for the linear wave equation are developed in (LUO; [START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF][START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF][START_REF] Morgul | Stabilization and disturbance rejection for the wave equation[END_REF].

• The backstepping method is an approach that requires numerical computation of the kernel (KRSTIC; SMYSHLYAEV, 2008b; KRSTIC; SMYSHLYAEV, 2008a).

• The zero dynamics-based approach provides a systematic methodology, and typically results in infinite-dimensional controllers (BYRNES; GILLIAM; HU, 2006).

• A Lyapunov-based approach which is related to the recently employed methods in (CORON; BASTIN; D' ANDRÉA-NOVEL, 2007;[START_REF] Bastin | Lyapunov stability analysis of networks of scalar conservation laws[END_REF]CORON;[START_REF] Bastin | Lyapunov stability analysis of networks of scalar conservation laws[END_REF][START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]DOS SANTOS et al., 2008;[START_REF] Xu | Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems[END_REF][START_REF] Xu | Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems[END_REF].

Thesis Scope

Consider the following first-order hyperbolic system of linear conservation laws in Riemann coordinates (TORO, 2013, Chapter 2), [START_REF] Bastin | Lyapunov stability analysis of networks of scalar conservation laws[END_REF][START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF]:

ξ ξ ξ t + Λξ ξ ξ x = 0 0 0, t ∈ [0, +∞), x ∈ [0, 1],
(1.1)

where ξ ξ ξ : [0, +∞) × [0, 1] → R n , Λ Λ Λ is a diagonal matrix with non-zero diagonal terms such that Λ = diag{λ 1 , λ 2 , ..., λ n }, with λ i > 0, ∀ i ∈ {1, ..., m}, and 
λ i < 0, ∀ i ∈ {m + 1, ..., n}.
The thesis will focus on deriving strategies to ensure the dissipativity of the boundary conditions for the above PDE system. To this end, the following notation is introduced:

ξ ξ ξ + =     ξ 1 . . . ξ m     , ξ ξ ξ -=     ξ m+1 . . . ξ n     , ξ ξ ξ = ξ ξ ξ + ξ ξ ξ - , (1.2) 
Λ + = diag{λ 1 , ..., λ m }, Λ -= diag{λ m+1 , ..., λ n }, (1.3) 
where ξ ξ ξ

+ : R × [0, 1] → R m , ξ ξ ξ -: R × [0, 1] → R n-m .
In light of the above, the linear hyperbolic system in (1.1) can be recast as follows:

∂ t ξ ξ ξ + ξ ξ ξ - + Λ + 0 0 0 0 0 0 Λ -∂ x ξ ξ ξ + ξ ξ ξ - = 0 0 0. (1.4)
The exponential stability of system (1.4) has been the focus of 

ξ ξ ξ + (t, 0) ξ ξ ξ -(t, 1) = K K K ξ ξ ξ + (t, 1) ξ ξ ξ -(t, 0) , t ∈ [0, +∞), (1.5)
where K K K is a matrix in R n×n having the following structure

K K K = K 00 K 01 K 10 K 11 .
The initial condition of system (1.4) is given by ξ ξ ξ (0, x) = ξ ξ ξ(x) x ∈ (0, 1).

(1.6)

Instead of studying the exponentially stability of system (1.1) subject to static boundary conditions (1.5), in this thesis, it will be addressed the exponential stability of linear first-order hyperbolic system

(1.1) considering the following dynamics for the boundary conditions:

Ẋ X X = AX X X + Bξ ξ ξ out (t), ξ ξ ξ in (t) = CX X X + K K Kξ ξ ξ out (t), (1.7) where A ∈ R n ×n , B ∈ R n ×n , C ∈ R n×n , X X X ∈ R n , n ≤ n.
The vectors ξ ξ ξ in and ξ ξ ξ out are defined as:

ξ ξ ξ in (t) ξ ξ ξ + (t, 0) ξ ξ ξ -(t, 1) , ξ ξ ξ out (t) ξ ξ ξ + (t, 1) ξ ξ ξ -(t, 0) . (1.8)
It will be also considered in this thesis that the boundary dynamics is described by a nonlinear ODE where the matrices (A, B, C and K) of (1.7) depends on X (which is coupled with a first-order hyperbolic system). In this case, it will be studied finite-dimensional and infinitedimensional tools for assessing the coupled PDE-ODE system which are briefly introduced in the sequel. These methods are evaluated considering an experimental setup consisting of a fluid transport in a tube (Poiseuille flow) with a heating nonlinear dynamics at the boundary condition to control the outlet temperature. In particular, the device is constituted by a heating column encasing a resistor, a tube, two ventilators, a gas speed meter and three distributed temperature sensors (described in Chapter 3).

The first proposed solution employs classical finite-dimensional techniques for designing a stabilizing state feedback boundary controller considering the proposed experimental setup which is describe by a coupled finite-dimensional dynamic model of the heating column and a static model of the ventilator. An approximate linear model of the boundary dynamics is considered while a space discretization technique is applied to obtain an augmented discrete linear system with the dimension depending on the step size of discretization in space.

Then, the second proposed solution considers an approximate infinite-dimensional model of the first-order hyperbolic system (1.1) which consists on a pure transport delay leading to the following input delayed nonlinear system:

         ẋ(t) = A(x(t), δ )x(t) + B(x(t), δ )u(t -τ(t)), u(t) = 0 0 0, ∀ t < 0, u(t) = K(x(t))x(t), ∀ t ≥ 0, x(0) = x 0 (1.9) where x(t) ∈ X ⊂ R n is the state, u(t) ∈ U ⊂ R n u is the control input,
δ ∈ ∆ ⊂ R n δ is a vector of uncertain constant parameters, x 0 is the initial condition, and τ(t) ∈ R is a time-varying input delay satisfying:

0 < τ(t) ≤ d, τ(t) ≤ h < 1, ∀t ≥ 0, (1.10)
with d and h positive scalars. X, U and ∆ are compact regions defining respectively the state, input and uncertainty domains with X containing the system origin. The matrices A(•), B(•) and K(•) are affine functions of their arguments, more precisely:

A(x(t), δ ) = A 0 + n ∑ i=1 x i (t)A i + n δ ∑ i=1 δ i Ȃi , (1.11) B(x(t), δ ) = B 0 + n ∑ i=1 x i (t)B i + n δ ∑ i=1 δ i Bi , (1.12) K(x(t)) = K 0 + n ∑ i=1 x i (t)K i , (1.13) 
where x i (t) denotes the i-th entry of x(t); and A i , Ȃ j , B i , B j and K i , for i = 0, 1, . . . , n and j = 1, . . . , n δ , are given constant matrices with appropriate dimensions.

Since the input delay is assumed to be greater than zero and bounded by d and its time derivative is smaller or equal to one, there exists a unique t 0 ≤ d such that tτ(t) < 0, for all t ∈ [0,t 0 ), and tτ(t) ≥ 0, for all t ≥ t 0 . As a consequence, the system operates in open-loop in the interval of time [0;t 0 ). Hence, the closed-loop system is governed by the following dynamics:

ẋ(t) =    A(x(t), δ )x(t), if 0 ≤ t < t 0 ; A(x(t), δ )x(t) + B(x(t), δ )K( x(t)) x(t), if t ≥ t 0 ; (1.14) where x(s) = x 0 for s ∈ [-d, 0], x(t) = x(t -τ(t)) is the delayed state, τ(t) ∈ (0, d] and K( x(t)) = K 0 + n ∑ i=1 xi (t)K i ,
with xi (t) denoting the i-th entry of x(t).

Finally, an infinite-dimensional approach (considering linear conservation laws in Riemann coordinates) with no approximations is applied to the (exponential) stability analysis and stabilization of coupled PDE-ODE systems in a regional context (i.e., local stability with an estimate of the stability region of attraction). In other words, bounded initial state trajectories imply that the state trajectories are bounded and they converge to the system equilibrium point as the time goes to infinity. To this end, it is considered strict Lyapunov functionals and the regional stability is characterized in terms of two sets (the set of boundary initial conditions and the set of ODE initial states). The control law is a nonlinear function of the (inlet and outlet) boundary conditions.

Methodology

A literature review is performed on the fundamental concepts of the theory of first-order hyperbolic systems in Riemann coordinates, dissipativity of the boundary conditions (static and dynamic), boundary feedback control, nonlinear system with input delay, finitedimensional tools for hyperbolic PDE system analysis and some mathematical tools needed to deal with the problem in question. Hence, in this thesis, the proposed techniques to address the stability and stabilization problems of first-order linear hyperbolic systems (of conservation laws in Riemann coordinates) with nonlinear dynamic boundary conditions are based on the Lyapunov stability theory and they are numerically solved via the LMI framework. A finite-dimensional approach which is based on classical solutions to coupled PDE-ODE systems is firstly studied. More precisely, it is performed a time and space discretization (considering standard finite difference schemes) to deal with the PDE while a linear approximation technique around the steady state solution is applied to deal with the nonlinear ODE. These approximation schemes lead to an augmented discrete-time system whose dimension depends on the discretization steps. Hence, a discrete-time controller is designed based on the Lyapunov theory in order to impose the boundary dynamics. This technique is applied to the experimental setup (Poiseuille flow system) to control the outlet temperature showing that classical tools can be applied to coupled PDE-ODE systems at the cost of somewhat poor performance.

The two proposed infinite-dimensional techniques are based on Lyapunov functionals with the stability and stabilization conditions formulated in terms of LMI constraints which guarantee the closed-loop stability while providing an estimate of the system region of attraction. The first one models the PDE dynamics as a pure delay leading to an input delayed system in closed-loop (LIU; FRIDMAN, 2014).

Subsequently, stability analysis and control design conditions are proposed to guarantee the regional exponential stability of the input delayed nonlinear systems considering a Lyapunov-Krasovskii (L-K) functional [START_REF] Krasovskii | Stability of Motion[END_REF]. Two convex optimization problems are proposed to maximize either an estimate of the set of initial states or the admissible delay, with both optimization problems formulated in terms of LMI constraints.

The second infinite-dimensional approach considers that the first-order hyperbolic systems of linear conservation laws is cast in Riemann coordinates. Hence, stability and stabilization conditions with boundary control actions to ensure the dissipativity of the boundary conditions are obtained based on a strict Lyapunov functional whose time derivative is strictly negative definite as in (CORON; BASTIN; D' ANDRÉA-NOVEL, 2007;[START_REF] Castillo | Fresh air fraction control in engines using dynamic boundary stabilization of LPV hyperbolic systems[END_REF]. Similarly to the former infinite-dimensional technique, two convex optimization problems in terms of LMI constraints are proposed. The first one assuming a given boundary controller and a given set of PDE initial conditions obtains a maximized estimate of the set of ODE initial conditions, while the second one synthesizes the boundary control gains in order to obtain a maximized estimate of the set of the ODE initial conditions for a given set of PDE initial conditions.

An experimental setup (the Poiseuille flow) whose control objective is to design a boundary controller to regulate the outlet temperature is also studied in this thesis. The derived model (including 

Text organization

The remaining of this thesis is organized as follows:

• Chapter 2 presents fundamental concepts necessary for the de- • Chapter 6 some comments on the obtained results, correlated works and future research concludes the thesis.

General Comments

In this thesis, the model uncertainties (PDE and ODE dynamics) are assumed to belong to convex polytopic regions with known vertices. [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF][START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF][START_REF] Serre | Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves[END_REF][START_REF] Bressan | Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem[END_REF]DAFERMOS, 2000;[START_REF] Lasiecka | Mathematical Control Teory of Coupled PDEs[END_REF][START_REF] Tveito | Introduction to partial differential equations: a computational approach[END_REF][START_REF] Tveito | Introduction to partial differential equations: a computational approach[END_REF][START_REF] Coron | Control and Nonlinearity[END_REF][START_REF] Silva | PID controllers for time-delay systems[END_REF][START_REF] Silva | PID controllers for time-delay systems[END_REF][START_REF] Silva | PID controllers for time-delay systems[END_REF][START_REF] Krstic | Output-feedback stabilization of an unstable wave equation[END_REF]SMYSHLYAEV, 2008b;[START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: a practical introduction[END_REF][START_REF] Fridman | Introduction to time-delay systems: Analysis and control[END_REF].

Basic definitions

Although we address only one-dimensional systems of law of conservation, in this first stage, we present the basic definitions for the more general case of one-dimensional systems of balance laws. Let Ω be a non-empty connected open subset of R n . A one-dimensional hyperbolic system of n nonlinear balance laws over a finite space interval is a system of PDEs of the form

∂ t e[U U U(t, x)] + ∂ x f [U U U(t, x)] + g[U U U(t, x)] = 0 0 0, (2.1)
where t ∈ [0, +∞] and x ∈ [0, L] are independent variables representing the time and the space, respectively. U U U : [0, +∞] × [0, L] → Ω is the vec-tor of state variables; e ∈ C 2 (Ω; R n ) is the vector of the densities of the balanced quantities; the map e is a diffeomorphism on Ω; f ∈ C 2 (Ω; R n ) is the vector of the corresponding flux densities; g ∈ C 1 (Ω; R n ) is the vector of source terms representing production or consumption of the balanced quantities inside the system.

In this chapter, the partial derivatives of a function h(t, x) with respect to the variables x and t are indifferently denoted by either ∂ x h and ∂ t h or h x and h t .

Under these conditions, system (2.1) can be recast in the following quasi-linear system representation:

U U U t + F[U U U]U U U x + G[U U U] = 0 0 0, t ∈ [0, +∞), x ∈ [0, L],
(2.2)

with F : Ω → R n×n and G : Ω → R n are of class C 1 and defined as

F[U U U] ∂ e ∂U U U -1 ∂ f ∂U U U , G[U U U] ∂ e ∂U U U -1 g[U U U].
From (2.2) and hereafter, the argument (t, x) will be often omitted in this thesis when not leading to any confusion.

It will be assumed that system (2.2) is hyperbolic i.e. that F[U U U] has n real eigenvalues (called the characteristic velocities) for all U U U ∈ Ω.

In the whole of this thesis, it will be also always assumed that these eigenvalues do not vanish in Ω. It follows that a number m of positive eigenvalues (counting multiplicity) is independent of U U U. Thus, it will be always possible to consider the following notation for the m positive and nm negative eigenvalues:

λ 1 [U U U], ..., λ m [U U U], -λ m+1 [U U U], ... -λ n [U U U], λ i [U U U] > 0, ∀ U U U ∈ Ω, ∀i.
In the particular case where F F F is constant (i.e., F F F does not depend on U U U), the system (2.2) is called semi-linear. In this case, the system has constant characteristic velocities denoted: λ 1 , ..., λ m , -λ m+1 , ..., -λ n , λ i > 0, ∀i.

Characteristic form and Riemann coordinates

The class of hyperbolic systems of balance laws can be transformed into a characteristic form by defining a set of n Riemann coordinates; see for instance, (TORO, 2013, Chapter 2) and (DAFER-MOS, 2000, Chapter 7, Section 7.3). The characteristic form is obtained through a change of coordinates ξ ξ ξ = ψ[U U U] having the following properties:

• The function ψ : Ω → R ⊂ R n is a diffeomorphism: ξ ξ ξ = ψ[U U U] ←→ U U U = ψ -1 [ξ ξ ξ ], with Jacobian matrix Ψ[U U U] ∂ ψ ∂U . • The Jacobian matrix Ψ[U U U] makes the matrix F[U U U] diagonal. That is Ψ[U U U]F[U U U] = D[U U U]Ψ[U U U], U U U ∈ Ω, with D[U U U] = diag {λ 1 [U U U], ..., λ m [U U U], -λ m+1 [U U U], ..., -λ n [U U U]}.
Then, system (2.2) is equivalent for C 1 -solutions to the following system in characteristic form expressed in the Riemann coordinates:

ξ ξ ξ t + Λ[ξ ξ ξ ]ξ ξ ξ x +C C C[ξ ξ ξ ] = 0 0 0, t ∈ [0, +∞), x ∈ [0, L], (2.3) with Λ[ξ ξ ξ ] D[ψ -1 [ξ ξ ξ ]] and C C C[ξ ξ ξ ] Ψ[ψ -1 [ξ ξ ξ ]]G G G[ψ -1 [ξ ξ ξ ]].
Clearly, this change of coordinates exists for any system of balance laws with linear flux densities (i.e. with f [U U U] = AU U U, A ∈ R n×n constant) when the matrix A is diagonalizable. For systems with nonlinear flux densities, finding the change of coordinates ξ ξ ξ = ψ[U U U] requires to find a solution of the first order partial differential equation

Ψ[U U U]F[U U U] = D[U U U]Ψ[U U U].
As shown in (LAX, 1973, pages 34 -35), this partial differential equation can always be solved (at least locally) for systems of size n = 2 with distinct characteristic velocities; see to (LI, 1994, page 30)). In contrast, for systems of size larger than 3, the change of coordinates only exists in some particular cases.

Steady state and linearization

A steady state (or equilibrium) is a time-invariant space-varying solution U U U(t, x) = U U U * (x) ∀t ∈ [0, +∞] of system (2.2). It satisfies the ordinary differential equation

F[U U U * ]U U U * x + G[U U U * ] = 0 0 0, x ∈ [0, L].
(2.4)

The linearization of the system about the steady state is then

U U U t + A(x)U U U x + B(x)U U U = 0 0 0, t ∈ [0, +∞), x ∈ [0, L],
(2.5)

where

A(x) F[U U U * (x)] and B(x) ∂ ∂U [F[U U U]U U U * x + G(U U U)] U U U=U U U * (x)
.

(2.6)

In the special case where there is a solution to the algebraic equation G[U U U * ] = 0 0 0, the system has a constant steady state (independent of both t and x) and the corresponding linearization is

U U U t + AU U U x + BU U U = 0 0 0, t ∈ [0, +∞), x ∈ [0, L],
(2.7)

where A and B are constant matrices. In this special case where U U U * is constant, the nonlinear system (2.2) is said to have uniform steady state.

In general the steady state U U U * (x) is space varying, and the nonlinear system (2.2) is said to have a nonuniform steady state.

Riemann coordinates around the steady state

By definition, the steady state of system (2.3) is

ξ ξ ξ * (x) = ψ[U U U * (x)] such that Λ[ξ ξ ξ * ]ξ ξ ξ * x +C[ξ ξ ξ * ] = 0 0 0.
Then, alternatively, Riemann coordinates may also be defined around this steady state as

ξ ξ ξ ψ[U U U] -ψ[U U U * ].
(2.8)

With these coordinates the system is now rewritten in characteristic form as

ξ ξ ξ t + Λ[ξ ξ ξ , x]ξ ξ ξ x +C[ξ ξ ξ , x] = 0 0 0, t ∈ [0, +∞), x ∈ [0, L], (2.9) with Λ[ξ ξ ξ (t, x), x] D[ψ -1 [ξ ξ ξ (t, x) + ψ[U U U * (x)]].
and

C[ξ ξ ξ (t, x), x] D[ψ -1 [ξ ξ ξ (t, x) + ψ[U U U * (x)]]ψ x [U U U * (x)] + Ψ[ψ -1 [ξ ξ ξ (t, x) + ψ[U U U * (x)]]G[ψ -1 [ξ ξ ξ (t, x) + ψ[U U U * (x)]].
The linearization of the system (2.9) gives:

ξ ξ ξ t + Λ(x)ξ ξ ξ x + M(x)ξ ξ ξ = 0 0 0, t ∈ [0, +∞), x ∈ [0, L], with Λ(x) D[U U U * (x)] and M(x) ∂C(ξ ξ ξ , x) ∂ ξ ξ ξ ξ ξ ξ =0 0 0 .
Remark that this linear model is also the linearization of system (2.3) around the steady state and that it could be obtained as well by transforming directly the linear system (2.5) into Riemann coordinates. In other words the operations of linearization and Riemann coordinate transformation can be commuted.

Example 2.1. The Saint-Venant equation (BARRÉ DE SAINT-VENANT, 1871) (also called shallow water equation), which is a simplification of the Navier-Stokes equation, describes the water propagation in a prismatic channel with rectangular cross-section and constant slope as follows:

∂ t H V + ∂ x   HV 1 2 V 2 + gH   + 0 g(CV 2 H -1 -S) = 0, (2.10)
with H(t, x) the water height and V (t, x) the water velocity at time t and location x along the channel. g is the gravity constant, C a friction parameter and S the channel slope. From this equation we have:

U = H V , A[U] = V H g V , g[U] = 0 g(CV 2 H -1 -S)
.

(2.11)

The eigenvalues of the matrix A(U U U) are:

V + gH and V -gH.

The system is hyperbolic when the so-called Froude's number F r = V √ gH < 1. In such a case, the flow in the channel is said to be fluvial or subcritical. Under this condition, the system is hyperbolic with characteristic velocities

λ 1 [U U U] = V + gH > 0 > -λ 2 [U U U] = V -gH.
Riemann coordinates may be defined as

ξ 1 = V + 2 gH, ξ 1 = V -2 gH,
and are inverted as

H = (ξ 1 -ξ 2 ) 2 16g , V = (ξ 1 + ξ 2 ) 2 .
With these coordinates, the system is written in characteristic form

ξ ξ ξ t + Λ[ξ ξ ξ ]ξ ξ ξ x +C[ξ ξ ξ ] = 0 0 0, with Λ[ξ ξ ξ ] λ 1 (ξ ξ ξ ) 0 0 λ 2 (ξ ξ ξ ) =    3ξ 1 + ξ 2 4 0 0 ξ 1 + 3ξ 2 4    , and 
C[ξ ξ ξ ] 4gC ξ 1 + ξ 2 ξ 1 -ξ 2 2 -gS 1 1 .
For the Saint-Venant equation (2.11) an equilibrium is a constant state H * , V * that verifies the relation

SH * = C(V * ) 2 .
The linearisation of the Saint-Venant equations around the equilibrium in diagonal form with the following characteristic state variables (ξ 1 , ξ 2 ), characteristic velocities λ 1 , λ 2 and the matrix S S S:

ξ 1 = (V -V * ) + (H -H * ) g H * ξ 2 = (V -V * ) -(H -H * ) g H * , λ 2 = V * -gH * < 0 < λ 1 = V * + gH * , S S S = γ β γ β , with γ = gS 2 2 V * - 1 √ gH * > 0 and β = gS 2 2 V * + 1 √ gH * > 0.
Example 2.2. The Aw-Rascle equation (AW; [START_REF] Aw | Resurection of second-order models for traffic flow[END_REF] is a basic fluid model for the description of road traffic dynamics. It is directly given here in the quasi-linear form. The model is as follows:

∂ t ρ V + V ρ 0 V + ρV ′ o (ρ) ∂ x ρ V +   0 V -V o (ρ) τ   = 0,
(2.12)

with ρ(t, x) the traffic density and V (t, x) the speed of the vehicles at time t and location x along the road. The function V o (ρ) is the preferential speed function: it is a decreasing function that represents the relation, in the average, between the speed of the vehicles and the traffic density (the higher the density, the lower the speed of the vehicles). The constant parameter τ is a positive time constant. The eigenvalues of the matrix A[U] are:

λ 1 [U] = V and λ 2 [U] = V + ρV ′ o (ρ).
For the Aw-Rascle equation (2.12) an equilibrium is a constant state ρ * , V * that verifies the relation

V * = V o (ρ * ).
The linearisation of the Aw-Rascle equation around the equilibrium in diagonal form with the following characteristic state variables (ξ 1 , ξ 2 ), characteristic velocities λ 1 , λ 2 and the matrix S S S:

ξ 1 = V -V * -V ′ o (ρ * )(ρ -ρ * ) ξ 2 = V -V * , 0 < λ 2 = V * + ρ * V ′ o (ρ * ) < λ 1 = V * , S S S = γ β γ β , with γ = V ′ o (ρ * ) τ > 0 and β = V * τ > 0.

Conservation laws and Riemann invariants

In special case where there are no source term (i.e G[U U U] = 0 0 0, ∀U U U ∈ Ω), system (2.1) or (2.2) reduces to

∂ t e[U U U] + ∂ x f [U U U] = 0 0 0, or U U U t + F[U U U]U U U x = 0 0 0, t ∈ [0, +∞), x ∈ [0, L].
(2.13)

A system of this form is a hyperbolic system of conservation laws, 

∂ t ξ i + λ i [ξ ξ ξ ]∂ x ξ i = 0, i = 1, ..., m, (2.14) ∂ t ξ i -λ i [ξ ξ ξ ]∂ x ξ i = 0, i = m + 1, ..., n.
The left-hand sides of these equations are the total time derivatives

dξ i dt ∂ t ξ i + dx dt ∂ x ξ i ,
of the Riemann coordinates along the characteristic curves which are the integral curves of the ordinary differential equations

dx dt = λ i [ξ ξ ξ (t, x)], i = 1, ..., m, dx dt = -λ i [ξ ξ ξ (t, x)], i = m + 1, ..., n,
in the plane (t, x).

Since dξ i dt = 0, it follows that the Riemann coordinates ξ i (t, x)

are constant along the characteristic curves and are therefore called Riemann invariants for systems of conservation laws.

Example 2.3. The scalar linear advection equation:

∂ t u + a∂ x u = 0, -∞ < x < ∞, t > 0, u(x, 0) = u 0 (x), (2.15) 
where u = u(t, x). Characteristics may be defined as curves x = x(t) in the tx plane along which the PDE become an ODE. Consider x = x(t) and regard u as a function of t, that is u = u(x(t),t). The rate of change of u along 

x = x(t) is du dt = ∂ u ∂t + dx dt ∂ u ∂ x . ( 2 
du dt = ∂ u ∂t + a ∂ u ∂ x = 0. (2.18)
Therefore the rate of change of u along the characteristic curve x = x(t) satisfying (2.17) is zero, that is, u is constant along the curve x = x(t). The speed a in (2.17) is called the characteristic speed and according to (2.17) it is the slope of the curve x = x(t) in the tx plane. In practice it is more common to use the x -t plane to sketch the characteristics, in which case the slope of the curves in question is 1 a . The family of characteristic curves x = x(t) given by the ODE (2.17) are shown in Figure 1 for a > 0 and they are a one-parameter family of curves. A particular member of this family is determined when initial condition (IC) at time t = 0 for the ODE (2.17) is added. Suppose we set

x(0) = x 0 , (2.19)
then the single characteristic curve that passes through the point (x 0 , 0), according to (2.17) is x = x 0 + at.

(2.20)

This is also illustrated in Figure 1. Now we may regard the initial position x 0 as a parameter and in this way we reproduce the full one-parameter family of characteristics. The fact that the curves are parallel is typical of linear hyperbolic PDEs with constant coefficients.

Recall the conclusion from (2.18) that u remains constant along characteristics. Thus, if u is given the initial value u(x, 0) = u 0 (x) at time t = 0, then along the whole characteristic curve x(t) = x 0 + at that passes through the initial point x 0 on the x-axis, the solution is u(x,t) = u 0 (x 0 ) = u 0 (xat).

(2.21)

The second equality follows from (2.20). The interpretation of the solution (2.21) of the PDE in (2.15) is this: given an initial profile u 0 (x), the PDE will simply translate this profile with velocity a to the right if a > 0 and to the left if a < 0. The shape of the initial profile remains unchanged (TORO, 2013).

Stability, boundary stabilization and the associated Cauchy problem

In order to have a unique well defined solution to a quasi-linear hyperbolic system (2.2) over the interval [0, L], initial and boundary conditions must be specified. This thesis address the specific issue of identifying and characterizing dissipative boundary conditions which guarantee bounded solutions converging to an equilibrium.

The feedback control problem is specially interesting when the manipulated control input, the controlled outputs and the measured outputs are physically located at the boundaries. Formally, this means that we consider the system (2.2) under n boundary conditions having the general form

B [U U U(t, 0), U U U(t, L), Q Q Q(t)] = 0 0 0, (2.22) with the map B ∈ C 1 (Ω × Ω × R q , R n ). The dependence of the map B on [U U U(t, 0), U U U(t, L)
] refers to natural physical constraints on the system. The function Q Q Q(t) ∈ R q represents a set of q exogenous control inputs that can be used for stabilization, output tracking or disturbance rejection.

In the case of static feedback control laws

Q Q Q[U U U(t, 0),U U U(t, L)], one
of our main concerns is to analyze the asymptotic convergence of the solutions of the following Cauchy problem

System U U U t + F[U U U]U U U x + G[U U U] = 0 0 0, t ∈ [0, +∞), x ∈ [0, L], B.C. B [U U U(t, 0), U U U(t, L), Q Q Q[U U U(t, 0), U U U(t, L)]] = 0 0 0, t ∈ [0, +∞), I.C. U U U(0, x) = U U U 0 (x), x ∈ [0, L].
Additional constraints on the initial conditions (I.C.) and the boundary conditions (B.C.) are needed to have a well-posed Cauchy problem. We examine this issue in the case when the system can be transformed into a characteristic form.

The Cauchy problem in Riemann coordinates

For the physical systems described by hyperbolic equations written in characteristic form (2.3)

ξ ξ ξ t + Λ[ξ ξ ξ ]ξ ξ ξ x +C[ξ ξ ξ ] = 0 0 0, t ∈ [0, +∞), x ∈ [0, L], (2.23)
it is a basic property that at each boundary point the incoming information ξ ξ ξ in is determined by the outgoing information ξ ξ ξ out (RUSSELL, 1978, Section 3), with the definitions

ξ ξ ξ in (t) ξ ξ ξ + (t, 0) ξ ξ ξ -(t, L) and ξ ξ ξ out (t) ξ ξ ξ + (t, L) ξ ξ ξ -(t, 0) , (2.24) 
where ξ ξ ξ + and ξ ξ ξ

-are defined as follows:

ξ ξ ξ + = [ξ 1 , ..., ξ m ] T , ξ ξ ξ -= [ξ m+1 , ..., ξ n ] T .
This means that the system (2.3) is subject to boundary conditions having the nominal form

ξ ξ ξ in = H[ξ ξ ξ out ], (2.25) 
where the map

H ∈ C 1 (R n ; R n ). Moreover, the initial condition ξ ξ ξ (0, x) = ξ ξ ξ(x), x ∈ [0, L],
(2.26) must be specified.

Hence, in Riemann coordinates, the Cauchy problem is formulated as follows:

System ξ ξ ξ t + Λ[ξ ξ ξ ]ξ ξ ξ x +C[ξ ξ ξ ] = 0 0 0, t ∈ [0, +∞), x ∈ [0, L], B.C. ξ ξ ξ in (t) = H[ξ ξ ξ out (t)], t ∈ [0, +∞), I.C. ξ ξ ξ (0, x) = ξ ξ ξ(x), x ∈ [0, L],
For linear system (uniform case), in Riemann coordinates, the Cauchy problem is formulated as follows

System ξ ξ ξ t + Λξ ξ ξ x +C C C[ξ ξ ξ ] = 0 0 0, t ∈ [0, +∞), x ∈ [0, L], B.C. ξ ξ ξ in (t) = K[ξ ξ ξ out (t)], t ∈ [0, +∞), I.C. ξ ξ ξ (0, x) = ξ ξ ξ(x), x ∈ [0, L].
with K ∈ R n×n . The well-posedness of this Cauchy problem may require that the initial condition be compatible with the boundary condition.

The compatibility conditions which are necessary for the well-posedness of the Cauchy problem depend on the functional space to which the solutions belong. In this thesis, we will be mainly concerned with solutions ξ ξ ξ (t, •) that may be of class L 2 .

Systems of Linear Conservation Laws

This section presents the stability of general systems of linear conservation laws under static linear boundary conditions assuming that the hyperbolic system of linear conservation laws is in Riemann coordinates. That is:

ξ ξ ξ t + Λξ ξ ξ x = 0 0 0, t ∈ [0, +∞), x ∈ [0, L], (2.27) 
where ξ ξ ξ :

[0, +∞)×[0, 1] → R n . Without loss of generality, it is assumed that Λ Λ Λ it is diagonal matrix having non-zero diagonal terms such that Λ = diag{λ 1 , λ 2 , ..., λ n }, with λ i > 0, ∀ i ∈ {1, ..., m}, and 
λ i < 0, ∀ i ∈ {m + 1, ..., n}.
Hence, the following notation is introduced:

ξ ξ ξ + =     ξ 1 . . . ξ m     , ξ ξ ξ -=     ξ m+1 . . . ξ n     , such that ξ ξ ξ = ξ ξ ξ + ξ ξ ξ - , where ξ ξ ξ + : R × [0, 1] → R m e ξ ξ ξ -: R × [0, 1] → R n-m and Λ + = diag{λ 1 , ..., λ m }, Λ -= diag{λ m+1 , ..., λ n }, λ i > 0, ∀i.
In light of the above notation, the linear hyperbolic system (2.27) can be cast as follows:

∂ t ξ ξ ξ + ξ ξ ξ - + Λ + 0 0 0 0 0 0 Λ -∂ x ξ ξ ξ + ξ ξ ξ - = 0 0 0.
(2.28)

One major concern in boundary control schemes is to access the exponential stability of the closed-loop system under boundary conditions of the form

ξ ξ ξ + (t, 0) ξ ξ ξ -(t, L) = K K K ξ ξ ξ + (t, L) ξ ξ ξ -(t, 0) , t ∈ [0, +∞), (2.29) where K K K is a matrix in R n×n partitioned as follows K K K = K 00 K 01 K 10 K 11
, accordingly to (2.28), with the initial condition defined as follows:

ξ ξ ξ (0, x) = ξ ξ ξ(x) x ∈ (0, L).

(2.30)

Exponential Stability Problem

The exponential stability problem of the equilibrium ξ ξ ξ ≡ 0 0 0 for nonlinear systems of conservation laws ∂ t ξ ξ ξ + A[ξ ξ ξ ]∂ x ξ = 0 0 0 has been studied by [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF][START_REF] Li | Boundary value problems for quasilinear hyperbolic systems[END_REF] in the framework of C 1 -solutions. For such systems, the issue of finding sufficient dissipative boundary conditions has been addressed in the literature for more than thirty years. To our knowledge, first results were published by [START_REF] Slemrod | Control theory for distributed parameter systems and applications[END_REF] and by [START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF][START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF] for the special case of systems of size n = 2. A generalization to systems for size n ≥ 3 was then progressively elaborated by the Ta-Tsien Li school, in particular by [START_REF] Qin | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF] and by [START_REF] Zhao | Classical solutions for quasilinear hyperbolic systems[END_REF]. All these contributions deal with the particular case of local boundary conditions having the specific form

ξ ξ ξ + (t, 0) = G 0 [ξ ξ ξ -(t, 0)], ξ ξ ξ -(t, 1) = G 1 [ξ ξ ξ + (t, 1)] (2.31)
With these boundary conditions, the analysis can be based on the method of characteristics which can exploit an explicit computation of the reflection of the solutions at the boundaries along the characteristic curves. This has given rise to the sufficient condition ρ (2.33) where || || denotes the usual 2-norm of matrices in R n×n and D

ρ 0 0 0 G 0 ′ (0 0 0) G 1 ′ (0 0 0) 0 0 0 < 1, ( 2 
2 [G ′ (0 0 0)] Inf ||∆G ′ (0 0 0)∆ -1 ||; ∆ ∈ D + n [R] < 1,
+ n [R]
the set of diagonal matrices whose elements on the diagonal are strictly positive.

Other various contributions and extensions of the previous results deserve also to be mentioned. DOS SANTOS; [START_REF] Santos | A hamiltonian perspective to the stabilization of systems of two conservations laws[END_REF] addresses a Hamiltonian perspective to the stabilization of systems of two conservation laws. Using the Lyapunov approach, CASTILLO et al.

(2013) proposed sufficient conditions for the existence of exponentially stable observers in the case where all eigenvalues Λ i are positive. Continuing in the Lyapunov stability setting, dynamic boundary conditions stabilization it is proposed in [START_REF] Castillo | Dynamic boundary stabilization of linear and quasi-linear hyperbolic systems[END_REF], [START_REF] Castillo | Dynamic boundary stabilization of linear parameter varying hyperbolic systems: Application to a Poiseuille flow[END_REF] and [START_REF] Castillo | Fresh air fraction control in engines using dynamic boundary stabilization of LPV hyperbolic systems[END_REF]. Using an approach based on delayed differential equations, CORON; NGUYEN have derived sufficient conditions for the exponential stability in the Sobolev norm W 2,p .

For the so-called inhomogeneous quasi-linear hyperbolic systems (i.e with additional zero-order terms): 

ξ ξ ξ t + A A A[ξ ξ ξ ]ξ ξ ξ x + S S S[ξ ξ ξ ] = 0 0 0, ( 2 

Exponential Stability for the L 2 -norm

In this section, using Lyapunov approach, an explicit condition on the matrix K K K is given under which the steady state solution ξ ξ ξ (t, x) ≡ 0 of the system (2.28)-(2.30) is globally exponentially stable for the L 2norm. Then, the classical definition of solution to the Cauchy problem

(2.28)-(2.30) in L 2 ((0, L); R n ) is given in the Definition 2.1. Let ξ ξ ξ 0 ∈ L 2 ((0, L); R n ). A map ξ ξ ξ : [0, +∞) × (0, L) → R n is a solution of the Cauchy problem (2.28)-(2.30) if ξ ξ ξ ∈ C 0 ([0, +∞]; L 2 ((0, L); R n )) is such that, for every ϕ = (ϕ T -, ϕ T + ) T ∈ C 1 ([0, +∞) × [0, L]; R n ) with compact support and satisfying ϕ + (t, L) ϕ -(t, 0) = (Λ + ) -1 K T 00 (Λ + ) (Λ + ) -1 K T 10 (Λ -) (Λ -) -1 K T 01 (Λ + ) (Λ -) -1 K T 11 (Λ -) ϕ -(t, 0) ϕ + (t, L) we have +∞ 0 L 0 (ϕ T t + ϕ T x Λ)ξ ξ ξ dx dt + L 0 ϕ T (0, x)ξ ξ ξ 0 (x) dx = 0.
From the above definition, the following classical result is obtained; see, e.g., (CORON, 2007, Section 2.1 and 2.3).

Proposition 2.1. For every ξ ξ ξ 0 ∈ L 2 ((0, 1); R n ), the Cauchy problem (2.28)-(2.30) has a unique solution. Moreover, for every T > 0, there exists C(T ) > 0 such that, for every ξ ξ ξ 0 ∈ L 2 ((0, 1); R n )), the solution to the Cauchy problem (2.28)-(2.30) satisfies

||ξ ξ ξ (t, •)|| L 2 ((0,L);R n ) ≤ C(T )||ξ ξ ξ 0 || L 2 ((0,L);R n ) , ∀t ∈ [0, T ]. (2.35)
It is adopt in this thesis, the following definition for the exponential stability of the linear hyperbolic system as in (2.28)-(2.29)

Definition 2.2. The linear hyperbolic system (2.28)-(2.29) is exponentially stable if there exist ν > 0 and C > 0 such that, for every ξ ξ ξ 0 (x) ∈ L 2 ((0, L); R n ), the solution to the Cauchy problem (2.28)-(2.30) satisfies

||ξ ξ ξ (t, •)|| L 2 ((0,L);R n ) ≤ Ce -νt ||ξ ξ ξ 0 || L 2 ((0,L);R n ) , ∀t ∈ [0, +∞]. (2.

36)

In order to state the stability condition, it is firstly introduced the functions ρ p : R n×n → R defined by (2.37) where D + n denotes the set of diagonal n × n real matrices with strictly positive diagonal entries with

ρ p [M] Inf ||∆M∆ -1 || p , ∆ ∈ D + n , 1 ≤ p ≤ ∞,
‖ζ ζ ζ ‖ p n ∑ i=1 |ζ i | p 1 p , ‖ζ ζ ζ ‖ ∞ max {|ζ 1 |, ..., |ζ n |} , ||M|| p max ‖ζ ζ ζ ‖ p =1 ‖Mζ ζ ζ ‖ p .
(2.38)

for a vector ζ ζ ζ [ ζ 1 • • • ζ n ] T and a matrix M ∈ R n×n .
Hence, the following stability theorem is given.

Theorem 2.1.

(BASTIN; CORON, 2016, Theorem 3.2) The system (2.28)- (2.29) is exponentially stable for the L 2 -norm if ρ 2 [K K K] < 1.
Proof. We introduce the following candidate Lyapunov function

V V V = L 0 m ∑ i=1 p i λ i ξ 2 i (t, x) exp(- µx λ i ) + n ∑ i=m+1 p i λ i ξ 2 i (t, x) exp( µx λ i ) dx, = L 0 (ξ ξ ξ + T (Λ + ) -1 P + (µx)ξ ξ ξ + ) + (ξ ξ ξ -T (Λ -) -1 P -(µx)ξ ξ ξ -) dx, with P + (µx) diag p 1 exp(- µx λ 1 ), ..., p m exp(- µx λ m ) , p i > 0, (2.39) P -(µx) diag p m+1 exp(+ µx λ m+1 ), ..., p n exp(- µx λ n ) , p i > 0. (2.40) The time derivative of V V V along the C 1 -solutions of (2.28)-(2.29) is dV V V dt = -µV V V +W W W , with W W W -ξ ξ ξ + T P + (µx)ξ ξ ξ + L 0 + ξ ξ ξ -T P -(µx)ξ ξ ξ -L 0 .
(2.41)

First we will show that the parameters p i and µ can be selected such that, under the condition

ρ 2 [K K K] < 1, W W W is negative definite quadratic form in ξ ξ ξ -(t, 0) and ξ ξ ξ + (t, L).
For this analysis, we introduce the following notations:

ξ ξ ξ - 0 (t) ξ ξ ξ -(t, 0), ξ ξ ξ + L (t) ξ ξ ξ + (t, L).
Using the boundary condition (2.29), we have

W W W = -ξ ξ ξ + T P + (µx)ξ ξ ξ + L 0 + ξ ξ ξ -T P -(µx)ξ ξ ξ -L 0 = -ξ ξ ξ + L T P + (µL)ξ ξ ξ + L + ξ ξ ξ - 0 T P -(0)ξ ξ ξ - 0 + ξ ξ ξ + L T K T 00 + ξ ξ ξ - 0 T K T 01 P + (0) K 00 ξ ξ ξ + L + K 01 ξ ξ ξ - 0 + ξ ξ ξ + L T K T 10 + ξ ξ ξ - 0 T K T 11 P 1 (µL) K 10 ξ ξ ξ + L + K 11 ξ ξ ξ - 0 . Since ρ 2 [K K K] < 1 by assumption, there exist D 0 ∈ D + m , D 1 ∈ D + n-m and ∆ diag {D 0 , D 1 } such that ||∆K K K∆ -1 || < 1.
The parameters p i are selected such that P + (0) = D 2 0 and P -(0) = D 2 1 . With these definitions, regarding W W W as a function of µ, we have

W W W [µ] = -ξ ξ ξ + L T D 0 ξ ξ ξ - 0 T D 1 Ω Ω Ω[µ] D 0 ξ ξ ξ + L D 1 ξ ξ ξ - 0 , with Ω Ω Ω[µ] P + (µL)D - 0 2 0 0 I - D 0 K 00 D -1 0 D 0 K 01 D -1 1 D 1 K 10 D -1 0 D 1 K 11 D -1 1 T D 0 K 00 D -1 0 D 0 K 01 D -1 1 P -1 (µL)D -1 1 K 10 D -1 0 P -1 (µL)D -1 1 K 11 D -1 1 ,
and, for µ = 0,

W W W (0) = -ξ ξ ξ + L T D 0 ξ ξ ξ - 0 T D 1 Pr I I I -(∆K K K∆ -1 ) T )(∆K K K∆ -1 ) D 0 ξ ξ ξ + L D 1 ξ ξ ξ - 0 . Since ||∆K K K∆ -1 || < 1, it follows that W W W (0) is strictly negative definite quadratic form in ξ ξ ξ + L and ξ ξ ξ - 0 .
Then, by continuity, W W W [µ] remains a strictly negative definite quadratic form for µ > 0 sufficiently small. Hence, we have

dV V V dt = -µV V V +W W W ≤ -µV V V ,
along the system trajectories. Therefore V V V is a strict Lyapunov function and the solutions of the system (2.28)-(2.30) exponentially converge to zero for the L 2 -norm.

Dissipative Boundary Conditions

It is notable that the stability condition ρ 2 [K K K] < 1 depends on the value of K K K but not on the values of the characteristic velocities λ i .

In other words, the stability condition is independent of the system dynamics (2.28) and depends only on the boundary conditions (2.29).

When the matrix K K K satisfies such a stability condition, the boundary conditions are said to be dissipative and the stability is guaranteed whatever the length L and the time required for solutions to cross the system. Intuitively, this is understood as follows: the solutions, which are moving back and forth between the two boundaries, remain constant along the characteristic lines and are exponentially damped at the boundaries only. This can be also understood using a small gain principle. We have observed, that the hyperbolic system (2.28) under the boundary condition (2.29) can be regarded as a closed loop interconnection of two causal input-output systems as represented in Figure 2. It is therefore natural that the stability requires a small gain of the feedback loop. The condition relies only on the gain ρ 2 [K K K] of the system S 2 since the system S 1 has a unit gain by definition. In this section, we now take the frequency domain viewpoint to analyze the exponential stability of the system (2.28)-(2.29) for the C 0 -norm according to the following definition.

Definition 2.3. The system (2.28)-(2.29) is exponentially stable for the C 0 -norm if there exist ν > 0 and C > 0 such that, for every ξ ξ ξ 0 ∈ C 0 ([0, L], R n ) satisfying the compatibility condition

ξ ξ ξ + (t, 0) ξ ξ ξ -(t, L) = K K K ξ ξ ξ + (t, L) ξ ξ ξ -(t, 0) , (2.42)
the solution of the Cauchy problem (2.28)-(2.30) satisfies

||ξ ξ ξ (t, •)|| C 0 ((0,L);R n ) ≤ Ce νt ||ξ ξ ξ 0 || C 0 ((0,L);R n ) , ∀t ∈ [0, +∞).
(2.43)

The system (2.28) can be regarded as a set of scalar delay systems Hence the stability analysis does not require to know the actual location of the poles. It is sufficient to know that they have negative real parts which are bounded away from zero. From the viewpoint of boundary control design, it is obviously of major interest to predict the stability, and therefore the sign of the real parts of the poles, directly from the coefficients of the matrix K K K.

ξ i (t, L) = ξ i (t -τ i , 0), i = 1, ..., m, ξ i (t, 0) = ξ j (t -τ j , L), j = m + 1, ..., n, τ k L λ k , k = 1, ...,

Linear Dynamic Boundary Conditions

In this section, we discuss the stability of linear hyperbolic systems with linear dynamic boundary conditions. More precisely, we consider the linear hyperbolic system of conservation laws in Riemann coordinates (2.28) under linear differential boundary conditions of the following form:

Ẋ X X = AX X X + Bξ ξ ξ out (t), ξ ξ ξ in (t) = CX X X + K K Kξ ξ ξ out (t), (2.45) where A ∈ R n ×n , B ∈ R n ×n , C ∈ R n×n , X X X ∈ R n , n ≤ n.
The notations ξ ξ ξ in and ξ ξ ξ out were introduced in (2.24) and stand for

ξ ξ ξ in (t) ξ ξ ξ + (t, 0) ξ ξ ξ -(t, L) and ξ ξ ξ out (t) ξ ξ ξ + (t, L) ξ ξ ξ -(t, 0) . (2.

46)

The well-posedness of the Cauchy problem associated to this system is addressed in (BASTIN; CORON, 2016, Appendix A, Theorem A.6).

Frequency Domain

Using Laplace transform, the system (2.28)-(2.45) is written in the frequency domain as

ξ ξ ξ out (s) = D(s)ξ ξ ξ in (s), with D(s) diag e -sτ 1 , ..., e -sτ n , τ i = L λ i , (sI -A)X X X(s) = Bξ ξ ξ out (s), ξ ξ ξ in (s) = CX X X(s) + K K Kξ ξ ξ out (s).
Hence the poles of the system are the roots of the characteristic equa- 

tion det I -D(s)(C(sI -A) -1 B) + K K K = 0. ( 2 

Lyapunov Approach

In the line of the previous developments, consider the following Lyapunov function candidate:

V V V = L 0 m ∑ i=1 p i λ i ξ 2 i (t, x) exp(- µx λ i ) + n ∑ i=m+1 p i λ i ξ 2 i (t, x) exp( µx λ i ) dx, + ∑ j=1 q j X 2 j , (2.48) with X X X X 1 , ..., X n T , p i > 0 (i = 1, ..., n), q j > 0 ( j = 1, ..., n ).
The time-derivative of this function along the C 1 -solutions of

(2.28)-(2.45) is V V V = -µV V V + ξ ξ ξ out X X X T M(µ) ξ ξ ξ out X X X , with M(µ) K K K T P 1 (µ)K K K -P 2 (µ) K K K T P 1 (µ)C + B T Q C T P 1 (µ)K K K + QB µQ +C T P 1 (µ)C + A T Q + QA , P 1 (µ) diag p 1 , ..., p m , p m+1 exp(+ µL λ m+1 ), ..., p n exp(+ µL λ n ) , P 2 (µ) diag p 1 exp(- µL λ 1 ), ..., p m exp(- µL λ m ), p m+1 , ..., p n , Q diag q 1 , ...q n .
(2.49)

The exponential stability will hold if there exist p i > 0 and q j > 0 such that the matrix M(0) is negative-definite; see, e.g., [START_REF] Castillo | Fresh air fraction control in engines using dynamic boundary stabilization of LPV hyperbolic systems[END_REF][START_REF] Castillo | Dynamic boundary stabilization of linear parameter varying hyperbolic systems: Application to a Poiseuille flow[END_REF][START_REF] Castillo | Dynamic boundary stabilization of linear and quasi-linear hyperbolic systems[END_REF].

Example 2.4. A lossless electrical line connecting an inductive power supply to a capacitive load as shown in Figure 3. The dynamics of the line are described by the following system of two conservation laws:

∂ t I + 1 L ∂ x V = 0, ∂ t V + 1 C ∂ x I = 0, (2.50)
with the dynamic boundary conditions:

L 0 dI(t, 0) dt + R 0 I(t, 0) +V (t, 0) = U(t), C L dV (t, L) dt + V (t, L) R L = I(t, L).
(2.51)

For a given constant input voltage U(t) = U * , the system has a unique constant steady state

I * = U * R 0 + R , V * = R U * R 0 + R .
The Riemann coordinates are defined as

ξ 1 (V -V * ) + (I -I * ) L C , ξ 2 (V -V * ) -(I -I * ) L C
with the inverse coordinates

I =I * + ξ 1 -ξ 2 2 L C , V =V * + ξ 1 -ξ 2 2 .
Then, expressing the dynamics (2.50) and the boundary conditions (2.51) in Riemann coordinates, we have

∂ t ξ 1 + λ 1 ∂ x ξ 1 = 0, ∂ t ξ 2 -λ 2 ∂ x ξ 2 = 0, λ 1 = λ 2 1 √ L C , Ẋ1 Ẋ2 = -α 1 0 0 -α 2 A X 1 X 2 + 0 -β 1 β 2 0 B ξ 1 (t, L) ξ 2 (t, 0) , ξ 1 (t, 0) ξ 2 (t, L) = 1 0 0 1 C X 1 X 2 + 0 1 -1 0 K K K ξ 1 (t, L) ξ 2 (t, 0) , with α 1 = 1 L 0 C L + R 0 L 0 , α 2 = 1 C L L C + 1 R L C L , β 1 = 2 L 0 C L , β 2 = 2 C L L C . (2.52)
The characteristic equation is

(s + α 1 )(s + α 2 ) d(s) + (s + α 1 -β 1 )(s + α 2 -β 2 ) n(s) e -sτ = 0, τ 2L L C .
In order to analyze the dependence of the stability of the poles on the length L of the line, it is applied the Walton and Marshall procedure as described in (SILVA; DATTA; BHATTACHARYYA, 2007, Section 5.6). Thus, the first step is to examine the stability when L = 0 (i.e. τ = 0) where the characteristic equation reduces to the following second order polynomial with positive coefficients:

τ = 0 ⇒ s 2 + R 0 L 0 + 1 R L C L s + 1 L 0 C L 1 + R 0 R L = 0.
Obviously, in the above case, the two poles are stable.

The second step consists in computing the following polynomial in

ω 2 : W (ω 2 ) d( jω)d(-jω) -n( jω)n(-jω) = (-ω 2 + (α 1 + α 2 ) jω + α 1 α 2 )(-ω 2 -(α 1 + α 2 ) jω + α 1 α 2 ) -(-ω 2 (α 1 + α 2 -β 1 -β 2 ) jω + (α 1 -β 1 )(α 2 -β 2 )) (-ω 2 (α 1 + α 2 -β 1 -β 2 ) jω + (α 1 -β 1 )(α 2 -β 2 )) = (α 1 α 2 -ω 2 ) 2 + (α 1 α 2 ) 2 ω 2 -(α 1 -β 1 )(α 2 -β 2 ) -ω 2 2 -(α 1 + α 2 -β 1 -β 2 ) 2 ω 2 ,
leading after few computations to

W (ω 2 ) = (γ 1 + γ 2 )ω 2 -γ 1 γ 2 + γ 1 α 2 2 + γ 2 α 2 1 , (2.53)
with

γ 1 α 2 1 -(α 1 -β 1 ) 2 = 4R 0 L 2 0 C L , γ 2 α 2 2 -(α 2 -β 2 ) 2 = 4 R L C 2 L L C .
It follows that the sign of W (ω 2 ) for large ω is positive. This means that all the system poles have strictly negative real parts for sufficiently small non-zero values of L.

In the third step, it is noticed that the polynomial (2.53) has a single root:

ω 2 = γ 1 γ 2 -γ 1 α 2 2 -γ 2 α 2 1 (γ 1 + γ 2 ) ,
which is negative for all positive values of the physical parameters R 0 , R L , L 0 , L , C L and C . Accordingly to physical intuition, it can be concluded that the poles of the system are stable for any line length L.

MODELING AND CONTROL OF FLOW WITH DYNAMIC BOUNDARY ACTIONS

In this chapter it is considered fluid transport which is a phenomenon often encountered in many industrial applications such as hydraulic networks [START_REF] Bastin | Lyapunov stability analysis of networks of scalar conservation laws[END_REF] et al., 2015).

The rest of this chapter can be summarized as follows. Section 3.1 introduces the description of fluid transport systems and the modeling of Poiseuille flow with dynamics at the boundary conditions. In Section 3.2, it is presented an augmented discrete-time linear system obtained by means of linear approximation and spatial discretization with the inclusion of integral action for the steady-state tracking of constant reference signals. Section 3.3 illustrates the proposed approach by means of a numeric example and Section 3.4 ends the chapter.

System Description and Modeling

The fluid transport system is normally used for industrial applications. Such as the ventilation system in a mining industry The modeling of the experimental setup is done by considering three subsystems: the tube, the heating column and the ventilator.

One-dimensional transport model is used to describe the gas density, speed and pressure variations in the tube. For the dynamic boundary conditions, it is considered a zero-dimensional model of control volume approach with heat exchanges coming from the heating resistor in the column. In addition, the Bernoulli's equation is used to relate the pressure, temperature and speed with the ventilator rotation for the static boundary condition, and the perfect gases law is used to relate density with temperature.

Heating Column Model

The control volume is obtained from reference (CASTILLO;

WITRANT; DUGARD, 2013). Figure 5 represents a control volume approach for the heating column.

Figure 5 -Control volume approach

Consider the internal energy of a perfect gas:

U 0 = C v m 0 T 0 , (3.1)
where U 0 is the gas internal energy, T 0 is the gas temperature, m 0 is the mass inside the column and C v is the specific heat of the gas for constant volume. The time derivative of (3.1) is:

U0 = C v m 0 Ṫ0 +C v T 0 ṁ0 . (3.2)
Using the first law of thermodynamics, the internal energy of the gas inside the column can be alternatively given by:

U0 = h in ṁin + h out ṁout + dQ + dW, (3.3) 
where h in and h out are the specific enthalpies getting in and out of the volume with mass flow rates ṁin and ṁout , respectively. dQ quantifies the heat added by the resistor and dW is the work done by the gas.

In the case of the heating column, there are two flows interacting with the volume, the input mass flow rate ṁin and the output mass flow rate ṁout . As the gas does not perform any work, then dW = 0. In order to write (3.3) in terms of temperature, the specific enthalpy of a gas is used defined by h = C p T with C p being the specific heat at constant pressure. Therefore, (3.3) can be redefined as:

U0 = C p T in ṁin -C p T 0 ṁout + dQ, (3.4)
where T in is the heating column input temperature. To simplify the model, consider the following two hypothesis:

H1.1 The pressure dynamics in the heating column is much faster than the temperature dynamics, which allows a quasi-static behavior of the mass and pressure to be considered;

H1.2 p 0 ≈ p in , where p in is the input pressure and p 0 is the pressure inside the column.

Thus, H1.1 and H1.2 allow (3.2) and (3.4) to be respectively rewritten as:

U0 = C v m 0 Ṫ0 , (3.5) U0 = C p ṁin (T in -T 0 ) + dQ. (3.6)
For simplicity, the temperature dynamics can be expressed in terms of the gas density by introducing the following change of variable (perfect gases law):

ρ 0 = p in RT 0 , (3.7)
where R is the specific ideal gas constant. Taking the time derivative of (3.7) into account, the following holds:

Ṫ0 = - R p in T 2 0 ρ0 . (3.8)
In addition, equating (3.5) and (3.6) and using (3.7)-(3.8) to replace the mass inside the control volume m 0 in terms of the pressure and the specific gas constant R, it is obtained:

ρ0 = - RγT in ṁin p in V 0 ρ 0 - R p in V 0 C v ρ 0 dQ + γ ṁin V 0 , (3.9) 
where ρ 0 = m 0 V 0 is the density inside the heating column, V 0 is the column volume and γ = C p C v .

Flow model in the tube

Consider the ideal gas flow through a constant section, where all the friction losses and heat transfers are neglected. Hence, the Euler equations can be used to model the system. The equations consist of conservation of mass, momentum and energy and they can be written in terms of the primitive variables density ρ, particle speed v and pressure p. In this case, the flow is assumed to be one-dimensional leading to the following system of PDEs (which are three nonlinear coupled equations):

W t + AW x = 0, (3.10) where W =    ρ v p    and A =     v ρ 0 0 v 1 ρ 0 a 2 ρ v     , with a = γ p ρ rep-
resenting the sound speed in ideal gas and γ the adiabatic constant. Further, t ≥ 0 is the time variable and x ∈ [0, L] is the space variable with L = 1 being the tube length.

Ventilator Model

The ventilator is a power driven machine that moves a continuous volume of air by converting rotational mechanical energy to an increase in the total pressure of the moving air. From (MCQUISTON; PARKER; SPITLER, 2005), there are three relationships among fan pressure, speed, power and flow rate, which are stated as ventilator's laws. In this work, it is only considered one ventilator installed at the input side of the tube as the actuator, and a flow rate proportional to the ventilator speed. Thus, the ventilator rotating speed is the control action.

Bernoulli's equation is used to relate the density, speed and pressure with the ventilator rotation. Using the ventilator law, the boundary condition is modeled, for x = 0 and t ≥ 0, by means of:

p a + 1 2 ρ(0,t)v(0,t) 2 = K n C(t) 2 (3.11)
where the p a is the atmospheric pressure, K n is a constant coefficient, C(t) is the ventilator rotating speed, and ρ(0,t) and v(0,t) represent gas density and velocity at the input side of the tube, respectively.

Outputs

T (L, •), v(L, •), p(L, •) and T (0, •)
The outputs considered are the particle temperature, speed and pressure at the outlet of the tube, respectively, T (L, •), v(L, •) and p(L, •). The dynamic boundary condition is the temperature in the heating column T (0, •). The outputs v(L, •) and p(L, •) are obtained directly, but the outputs T (L, •) and T (0, •) are obtained by means of the nonlinear relationship (3.7). The pressure inside the tube is considered constant (equal to the atmospheric pressure, p a ). The pressure at the inlet p in and outlet p out of the tube are considered equal, since the pressure differential introduced by the ventilator is supposed to be very small with respect to the pressure inside the tube.

Augmented Discrete-Time System

This section describes three main steps: (i) the linearization of the coupled nonlinear hyperbolic system (flow model in the tube), the nonlinear ordinary differential equation (ODE) that represents the heating column, the Bernoulli's equation for the ventilator model and the nonlinear relationship between density and temperature; (ii) discretization of the linear system resulting from the first step; and (iii)

the representation of the system dynamics in terms of an augmented finite-dimensional discrete-time system, and the development of stability analysis and control design conditions.

Linearization

Flow model in the tube

The system (3.10) admits a steady-state (ρ * , v * , p * ) and the deviations of the states (ρ, v, p) with respect to their steady-state values are defined as ρ

= ρ -ρ * , v = v -v * , p = p -p * .
Thus, the linearization of system (3.10) at this equilibrium is given by Wt + A * Wx = 0, (3.12)

with W =    ρ v p    and A * =     v * ρ * 0 0 v * 1 ρ * 0 a *2 ρ * v *     .

Heating Column Model

Whereas the pressure inside the tube is constant (and equal to the atmospheric pressure), the input mass flow rate will be expressed as ṁin = v(0,t)ρ(0,t)A t , (3.13)

where A t is the tube cross section area.

Taking (3.13) into account, the boundary condition (3.9) can be expressed as:

ρ(0,t) = - RγT in v(0,t)ρ(0,t)A t p in V 0 ρ(0,t) - R p in V 0 C v ρ(0,t)dQ + γv(0,t)ρ(0,t)A t V 0 . (3.14) Defining A = - RγT in A t p in V 0 , B = - R p in V 0 C v and C = γA t V 0 ,
we obtain:

ρ(0,t) = Av(0,t)ρ(0,t) 2 + BdQρ(0,t)

+ Cv(0,t)ρ(0,t).

(3.15)

Then, linearizing (3.15) and defining dQ = U 2 (t) yields:

ρ(0,t) = A v(0,t)ρ *2 + 2v * ρ * ρ(0,t) + B [U * 2 ρ(0,t) + ρ * U 2 (t)] + C [v * ρ(0,t) + ρ * v(0,t)] , (3.16) 
where ρ(0,t) = ρ(0,t)ρ * is a small deviation around the equilibrium point; ρ * and v * are the same equilibrium points used for flow model in the tube; and U * 2 is a constant control action at the equilibrium point. Hence, reorganizing (3.16) leads to

ρ(0,t) = [2v * ρ * A + BU * 2 + Cv * ] ρ(0,t) + Aρ *2 + Cρ * v(0,t) + Bρ * U 2 (t).
(3.17)

Ventilator Model

Linearizing equation (3.11) assuming that p a is constant, the following boundary condition is derived: (3.18) and then defining

ρ(0,t)v *2 + 2ρ * v * v(0,t) = 4K n C * C(t),
C(t) = U 1 (t), C * = U 1 * and reorganizing (3.18) yields v(0,t) = - v * 2ρ * ρ(0,t) + 4K n U 1 * 2ρ * v * U 1 (t), (3.19) 
with U 1 * being a constant control action at the equilibrium point. 

T (L,t) = - p out ρ(L,t) Rρ *2 , T (0,t) = - p in ρ(0,t) Rρ *2 .
(3.20)

Discretization

Flow model in the tube

In order to spatially discretize the linear hyperbolic system (3.12), we shall make use of the forward and backward difference quotients for W t and W x , respectively. Let △t and △x be respectively the time and space steps satisfying a Courant-Friedrichs-Lewy (CFL) condition (COURANT;

FRIEDRICHS; LEWY, 1967). Then, by routine manipulations over j = 0, 1, ..., N and i = 1, 2, ..., α with N being a given integer and α = L △x , the PDE (3.12) is approximated by means of

ρd (i, j + 1) = b 1 ρd (i, j) + b 2 ρd (i -1, j) -b 3 vd (i, j) + b 3 vd (i -1, j), (3.21) vd (i, j + 1) = b 1 vd (i, j) + b 2 vd (i -1, j) -b 4 pd (i, j) + b 4 pd (i -1, j), (3.22) pd (i, j + 1) = b 1 pd (i, j) + b 2 pd (i -1, j) -b 5 vd (i, j) + b 5 vd (i -1, j), (3.23 
)

where b 1 = 1 - △t △x v * , b 2 = △t △x v * , b 3 = △t △x ρ * , b 4 = △t △xρ * and b 5 = △t △x γ p * .

Ventilator Model

The discretization of (3.19) is obtained by applying a standard discretization j△t leading to

vd (0, j) = - v * 2ρ * ρd (0, j) + 4K n U 1 * 2ρ * v * U 1 ( j).
(3.24)

Heating Column Model

Considering j△t, the discretization of the heating column approximation in (3.17) is as follows

ρd (0, j + 1) = [1 + △t [2v * ρ * A + BU * 2 + Cv * ]] ρd (0, j) + △t Aρ *2 + Cρ * vd (0, j) + △t [Bρ * ]U 2 ( j), (3.25) 
with △t being the period of sampling. Thus, in view of the above, we derive the following expression by replacing vd (0, j) as (3.24) and reorganizing (3.25)

ρd (0, j + 1) = Q 1 ρd (0, j) + Q 2 U 1 ( j) + Q 3 U 2 ( j), (3.26) 
where

Q 1 =   [1 + △t [2v * ρ * A + BU * 2 + Cv * ]] + △t Aρ *2 + Cρ * -v * 2ρ *   , Q 2 = △t Aρ *2 + Cρ * 4K n U 1 * 2ρ * v * and Q 3 = △tBρ * .
3.2.2.4 Outputs T (L, •), v(L, •), p(L, •) and T (0, •)

The discrete linear approximate outputs vd (L, •) and pd (L, •) are obtained directly from the discrete linear approximate flow model in the tube. For T (L,t) and T (0,t) as described in (3.20) is applied the standard discretization step j△t leading to:

Td (0, j) = - p in ρd (0, j) Rρ *2 , Td (L, j) = - p out ρd (L, j) Rρ *2 .
(3.27)

Discrete-Time Linear Approximation

After the steps of linearization and discretization, an augmented discrete-time linear model can be obtained. To this end, let the augmented state vector be defined by:

X( j) = ρd (1, j) ρd (2, j) • • • ρd (α, j) vd (1, j) vd (2, j) • • • vd (α, j) pd (1, j) pd (2, j) • • • pd (α, j) T , (3.28)
and the boundary points as follows X c ( j) = ρd (0, j) vd (0, j) T .

(3.29)

The boundary condition pd (0, j) is considered constant and it is not used for the boundary control problem.

Since the boundary control is not directly applied to the states components density ρd (0, j) and speed vd (0, j), it is employed the ventilator speed U 1 ( j) (installed in the initial part of the tube) and the power dissipated on the heating resistor U 2 ( j) (installed in the heating column) as the boundary control actuation. Thus, the control input vector of the discrete-time approximation is defined as:

U( j) = U 1 ( j) U 2 ( j) T .
(3.30)

Notice that we have a static boundary condition and a dynamic boundary condition. Hence, to obtain the boundary condition related to the density ρd (0, j), we use the dynamic model of the heating column.

Therefore, the augmented state vector is redefined as follows Z( j) = X( j) ρd (0, j) .

(3.31)

Then, the discrete-time linear approximation will be as follows:

Ω :

   Z( j+1) = AZ( j) + BU( j), y( j) = CZ( j), (3.32)
where j is the sampling time index; Z( j) ∈ R 3α+1 is the augmented state vector; U( j) ∈ R m represents the control input vector; y( j) ∈ R p represents the output signals; and A, B and C are constant matrices as defined in (3.33) at the top of next page. 

A =                                              b 1 0 • • • 0 b 3 0 • • • 0 0 • • • • • • 0 b 2 + b 3 -v *
. . 0 0 b 2 b 1 0 0 b 3 b 3 0 • • • • • • 0 0 0 • • • • • • 0 b 1 0 • • • 0 b 4 0 • • • 0 b 2 -v *
. . 0 • • • • • • 0 0 0 b 2 b 1 0 0 b 4 b 4 0 0 • • • • • • 0 b 5 0 • • • 0 b 1 0 • • • 0 b 5 -v * 2ρ 
. . 0 • • • • • • 0 0 0 b 5 b 5 0 0 b 2 b 1 0 0 • • • • • • 0 0 • • • • • • 0 0 • • • • • • 0 Q 1                                              B =                                              b 3 4K n U 1 * 2ρ * v * 0 . . . . . . . . . . . . 0 0 b 2 4K n U 1 * 2ρ * v * 0 . . . . . . . . . . . . 0 0 b 5 4K n U 1 * 2ρ * v * 0 . . . . . . . . . . . . 0 0 Q 2 Q 3                                              C =        0 • • • 0 - p out Rρ * 2 0 • • • • • • 0 0 • • • • • • 0 0 0 • • • • • • 0 0 • • • 0 1 0 • • • • • • 0 0 0 • • • • • • 0 0 • • • 0 0 0 • • • 0 1 0 0 • • • • • • 0 0 • • • • • • 0 0 • • • • • • 0 - p in Rρ * 2        . (3.33)
To implement a state feedback control law, a standard Luenberger-like observer is designed. That is, the following control law

is considered U( j) = K Ẑ( j), (3.34) 
where Ẑ( j) is the state of the following observer

Ω : { Ẑ( j+1) = (A -LC) Ẑ( j) + BU( j) + Ly( j), (3.35) 
with K ∈ R m×3α+1 and L ∈ R 3α+1×p to be determined such that [A -BK] and [A -LC] are Schur stable. The stability of system (3. 35) is analyzed using classical control tools for discrete-time systems (such as pole allocation). Since the original problem is an infinite dimension problem, the numerical stability of the discrete model depends on the discretization steps △t and △x and the approximation scheme considered to handle the partial derivatives. The parameters △t and △x are adopted to ensure the numerical stability condition (CFL condition, see (COURANT; FRIEDRICHS; LEWY, 1967)). The temporal partial derivative is approximated using forward differences and the spatial partial derivative is approximated using backward differences.

Numerical Simulations

Let the following system parameters: adiabatic constant γ = 1.4; molar mass of dry air M = 28.97 g/mol.K; ideal gas constant R = 8.3143 J/(mol.K); specific heat constant for constant pressure C p = 1.005 KJ/Kg.K for constant volume C v = 0.718 KJ/Kg.K; initial pressure p in = 1 × 10 5 Pa; initial temperature T in = 304 K; column volume V 0 = 4 × 10 -3 m 3 ; tube cross section area A t = 6.4 × 10 -3 m 2 ; tube length L = 1 m; and the constant coefficient of ventilator model K n = 1 × 10 -4 . In addition, define the discretization steps as △t = 0.0075 and △x = 0.036 which ensure the numerical stability condition of (COURANT; FRIEDRICHS; LEWY, 1967) (i.e., b 1 < |1| -with b 1 = 0.5032).

Firstly, some simulations are performed aiming to validate the proposed models, i.e., the hyperbolic nonlinear system (3.10) with non-linear boundary conditions (3.9) and (3.11) referred as HSNL, the hyperbolic linear approximation (3.12) with linear boundary conditions (3.17) and (3.19) referred as HSL and the augmented discrete-time linear approximate system (3.32) which is referred as ADLS. For these three models, it is imposed an initial condition and it is verified the steady-state convergence. To this end, it is considered control inputs U * 1 = 150 rpm and U * 2 = 300 watts which yield steady-state values ρ * = 1.1 kg/m 3 (or, equivalently, T * = 320.92 K), v * = 2.02 m/s and p * = 1 Bar (or, equivalently, 1 × 10 5 Pa in SI units). Figure 6 shows the 35). To this end, a discrete-time integrator is added to the system dynamics of (3.32) leading to the following state space realization:

Ω : { Z( j+1) = Ã Z( j) + BU( j) + B r T re f (3.36)
where Z( j) = [ Z( j) T ξ ( j) ] T is the enlarged state vector, ξ ( j) is the integrator state, and

à = A 0 -C r 1 , B = B 0 , B r = 0 1 ,
with C r and T re f being respectively a constant matrix such that Td (L, j) = C r Z( j) and the desired temperature at x = L. Then, the control law (3.34) is modified to be as follows:

U( j) = K Z( j), (3.37) 
where K = [ K K r ] and Z( j) = [ Ẑ( j) T ξ ( j) ] T . Figure 7 shows a comparison of the hyperbolic linear PDE model HSL, as in (3.12), with linear boundary conditions (3.17)-(3.19) (---) and the discretetime approximate model ADLSC (-•-•-) using in both cases a controller designed for the ADLSC model. Notice that the controller is able to track the reference temperature T re f = 325 K considering both models showing that the designed control law can be applied for boundary control of hyperbolic PDE systems at the cost of some performance degradation.

Concluding Remarks

In this chapter, we have presented the boundary control of first order hyperbolic PDE systems associated with dynamic boundary con- 

STABILITY AND STABILIZATION OF INPUT DELAYED NONLINEAR QUADRATIC SYSTEMS

In this chapter we address the dynamic boundary condition system coupled with the first-order hyperbolic system. As we have seen previously, the first-order hyperbolic system can be approximated by a pure delay. Thus, we will address the coupled system of an ODE-PDE by an ODE with input-delay (see Figure 8). In particular, in this chapter, the dynamic boundary is modeled by means of an uncertain nonlinear quadratic system. The stability analysis and control design are devised in a regional setting considering the nonlinear dynamic boundary and approximating the PDE by a pure delay. The link between the PDE-ODE system and the input delayed quadratic system is demonstrated via an experimental setup in Section 4.4. bounds on the input delay and its variation are known a priori) is characterized in terms of two compact sets R 0 and R which are such that the state trajectory x(t) starting in the former set remains inside the latter and converges to the equilibrium point as the time goes to infinity. Then, the stability analysis result is extended for control design in order to determine a quadratic state feedback control law to either maximize the set of admissible initials conditions or maximize the input delay size. Some of the results present in this chapter can be found in [START_REF] Caldeira | Regional stability and stabilization of input delayed nonlinear quadratic systems[END_REF].

The remaining of this chapter is organized as follows. In Section 4.1, it is established the stability and stabilization problems to be addressed and introduced the regional stability notion to be considered.

Then, Section 4.2 presents the Lyapunov-Krasovskii based conditions employed to guarantee the state trajectory boundedness in the first time interval as well as the state trajectory convergence to the equilibrium point under analysis. Next, two convex optimization problems are stated in Section 4.3 in order to design a stabilizing delayed state feedback control law to maximize either the set of admissible initial conditions or the input delay size. Ending the chapter, Section 4.5 discusses some concluding remarks and future developments.

Problem Statement

Consider the following class of input delayed nonlinear control systems:

ẋ(t) = A(x(t), δ )x(t) + B(x(t), δ )u(t -τ(t)), u(t) = K(x(t))x(t) (4.1) where x(t) ∈ X ⊂ R n is the state, u(t) ∈ U ⊂ R n u is the control input,
δ ∈ ∆ ⊂ R n δ is a vector of uncertain constant parameters, and τ(t) ∈ R is a time-varying input delay satisfying:

0 < τ(t) ≤ d, τ(t) ≤ h < 1, ∀t ≥ 0, (4.2)
with d and h being given positive scalars. X, U and ∆ are compact regions defining respectively the state, input and uncertainty domains with X containing the system origin. The matrices A(•), B(•) and K(•)

are affine functions of their arguments, more precisely:

A(x(t), δ ) = A 0 + n ∑ i=1 x i (t)A i + n δ ∑ i=1 δ i Ȃi , (4.3) B(x(t), δ ) = B 0 + n ∑ i=1 x i (t)B i + n δ ∑ i=1 δ i Bi , (4.4) K(x(t)) = K 0 + n ∑ i=1 x i (t)K i , (4.5) 
where x i (t) denotes the i-th entry of x(t); and A i , Ȃ j , B i , B j and K i , for i = 0, 1, . . . , n and j = 1, . . . , n δ , are given constant matrices with appropriate dimensions. Note that system (3.32) with the matrices defined as in (4.3)-(4.5) corresponds to a system with a quadratic dependence on the state and bilinear with respect to the state and control input.

Observe that x = 0 is an equilibrium point of the closed-loop system and stability analysis will be carried for this point.

Since the input delay is assumed to be bounded by d and its time derivative is smaller than or equal to one, there exists a unique t 0 ≤ d such that tτ(t) < 0, for all t ∈ [0,t 0 ), and tτ(t) ≥ 0, for all t ≥ t 0 .

As a consequence, the system operates in open-loop in the interval of time [0;t 0 ). Hence, the closed-loop system is governed by the following dynamics:

ẋ(t) =    A(x(t), δ )x(t) if 0 ≤ t < t 0 A(x(t), δ )x(t) + B(x(t), δ )K( x(t)) x(t) if t ≥ t 0 (4.6) where x(s) = x 0 for s ∈ [-d, 0], x(t) = x(t -τ(t)) is the delayed state, τ(t) ∈ (0, d] and K( x(t)) = K 0 + n ∑ i=1 xi (t)K i ,
with xi (t) denoting the i-th entry of x(t). For notation simplicity, hereafter, the argument t of x(t), x(t), u(t) and τ(t) will be often omitted.

The stability analysis of the closed-loop dynamics in (4.6) is particularly interesting for open-loop unstable systems, since for t ∈ [0,t 0 ) the trajectory starting in some initial state x0 will move away from the equilibrium point until the feedback signal starts to be applied to the system input at t = t 0 . Notice in this case that the state trajectory may leave the equilibrium point region of attraction and thus a delayed feedback will not be able to asymptotically stabilize the system origin.

In order to prevent this situation and to properly address the stability behavior on the vicinity of the equilibrium point in closed-loop, it will be considered in this paper the following definition of regional stability.

Definition 4.1. Consider the system (4.1). Let R 0 and R be two compact sets such that R 0 ⊂ R ⊂ X. The system origin (x = 0) is robustly regionally stable if, for any x0 ∈ R 0 and all δ ∈ ∆, the state trajectory x(t) remains bounded in R, for all t ≥ 0, and it approaches x = 0 as t → ∞.

Figure 9 illustrates the above notion of regional stability for an open-loop unstable planar system. Notice that the state trajectory starting at x0 ∈ R 0 diverges from the equilibrium point, but it remains bounded in R. Then, the state trajectory converges to the equilibrium point when the feedback signal is applied to the system input at t = τ. In view of that, in this chapter, the regions R 0 and R will be often re-ferred to as the set of admissible initial states and the set of reachable states, respectively. In light of the above scenario, this chapter is concerned in obtaining numerical and tractable solutions to the regional stability and stabilization problems for uncertain input delayed nonlinear quadratic systems as stated below:

P P P1 1 1 For a given state feedback control matrix K(•) as defined in (4.5),

derive stability analysis conditions ensuring the robust regional stability of the control system in (4.1) while determining either:

(i) a upper estimate of the set of initial conditions R 0 for a given bound d on the input delay; or (ii) an estimate of the maximum admissible delay d for a given set of initial states.

P P P2 2 2 Design a state feedback control matrix K(•) ensuring the robust regional stability of the control system in (4.1) in order to obtain either: (i) a maximized estimate of the set of initial condition R 0 for a given maximum delay d; or (ii) an estimate of the maximum admissible delay d for a given set of admissible initial states.

Before ending this section, the following two results taken from specialized literature will be instrumental for deriving the main results of this chapter.

Lemma 4.1. [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF][START_REF] Coutinho | L 2 -gain analysis and control of uncertain nonlinear systems with bounded disturbance inputs[END_REF]DE SOUZA, 2012) Given

matrix functions N(v) ∈ R s×m , S(v) = S(v) ′ ∈ R m×m and η(v) ∈ R m , with v ∈ V ⊆ R v , then η(v) ′ S(v)η(v) < 0, ∀ v ∈ V : N(v)η(v) = 0, η(v) ̸ = 0 , if there exists a matrix L ∈ R m×s such that S(v) + He(LN(v)) < 0, ∀ v ∈ V .
Lemma 4.2. (DE OLIVEIRA; GEROMEL; BERNUSSOU, 2002) Let P and G be real square matrices with P > 0 and G nonsingular. Then, the following holds:

G ′ PG ≥ G + G ′ -P -1 . (4.7)

Stability Analysis

This section develops an LMI approach to the robust regional stability analysis of input delayed quadratic systems as defined in (4.1).

It is assumed that a control matrix K(x), which locally stabilizes the closed-loop system with no input delay, is given a priori. The solution to be proposed in the following is based on the Lyapunov-Krasovskii stability theory for input delayed systems (FRIDMAN; LIU, 2016).

Firstly, the notion of local stability for functional differential equations of retarded type is recalled. To this end, consider the following delayed state-space representation:

ẋ = f (x t ), x ∈ R n , x t ∈ C n [t-d,t] , x(s) = φ (s), ∀ s ∈ [-d, 0], φ ∈ C n [-d,0] . (4.8)
It is assumed for the above system that f : 

C n [t-d,t] ↦ → R n , with f (0) = 0,
V : C n [-d,0] ↦ → R such that: (a) u(‖x‖) ≤ V (x t ) ≤ v(‖x t ‖ [-d,0] ), ∀ x ∈ X; (b) V (t, x t ) < -w(‖x‖), ∀ x ∈ X, t ≥ 0. Let B(γ) := {φ ∈ C n [-d,0] : V (φ ) ≤ γ} with γ > 0 being such that D(γ) := {φ (s) ∈ R n , s ∈ [-d, 0] : φ ∈ B(γ)} ⊂ X.
Then, the equilibrium point x = 0 of (4.8) is locally asymptotically stable. Moreover, x t ∈ B(γ), ∀t ≥ 0, and lim t→∞ x(t) = 0 for any φ ∈ B(γ).

Since in the interval [0,t 0 ) the controlled system in (4.6) operates in open-loop, the above result cannot be directly applied to assess the stability of system (4.6) if the open-loop system is unstable. To overcome this difficulty, a procedure inspired by (LIU; [START_REF] Fridman | Introduction to time-delay systems: Analysis and control[END_REF] will be used. To this end, let the following Lyapunov-Krasovskii functional candidate:

V (x t , ẋt ) = V 1 (x(t)) +V 2 (x t ) +V 3 ( ẋt ), (4.9) where V 1 (x) = x ′ P 1 x, V 2 (x t ) = t t-τ(t)
x ′ (α)P 2 x(α)dα,

V 3 ( ẋt ) = 0 -d t t+β
ẋ′ (α)P 3 ẋ(α)dα dβ , (4.10)

with P 1 , P 2 and P 3 being symmetric positive-definite matrices to be determined. Hence, the origin of the system in (4.1) is robustly regionally stable if the following three conditions hold for all δ ∈ ∆ and some positive scalars ε and ϕ:

C C C1 1 1 V (t, x t , ẋt , δ ) ≤ -ε‖x‖ 2 , ∀ x(s) ∈ X, s ∈ [t -d,t], t ≥ t 0 , δ ∈ ∆; C C C2 2 2 V1 (x(t), δ ) -2ϕV 1 (x(t)) ≤ 0, ∀ x(t) ∈ X, t ∈ [0,t 0 ), δ ∈ ∆; C C C3 3 3 V (t, x t , ẋt , δ ) -2ϕV 1 (x(t)) ≤ 0, ∀ x(t) ∈ X, t ∈ [0,t 0 ), δ ∈ ∆.
Notice from Lemma 4.3 that C C C1 1 1 implies the asymptotic convergence of x(t) for t ≥ d provided that the state trajectory x(t), for any t ∈ [0, d), is confined to a certain neighborhood R of the system origin satisfying R ⊂ X. It will be shown in the sequel that C C C2 2 2 and C C C3 3 3 guarantee that x(t), for any t ∈ [0, d), lies inside R if x 0 belongs to some set R 0 , with R 0 ⊂ R.

Hence, notice from (KHALIL, 1996, Lemma 2.5) that C C C2 2 2 implies the following:

V 1 (x) ≤ e 2ϕt V 1 (0), ∀ t ∈ [0,t 0 ), δ ∈ ∆. (4.11) Next, integrating C C C3 3 3 from 0 to t, t ∈ [0, d], leads to t 0 V (s) -2ϕV 1 (s) ds ≤ 0 , ∀x(t) ∈ X , t ∈ [0,t 0 ], δ ∈ ∆,
which in turn yields:

V (t) ≤ V (0) + 2ϕ t 0 V 1 (s)ds ≤ V (0) + 2ϕV 1 (0) t 0 e 2ϕs ds ≤ V (0) +V 1 (0) e 2ϕt -1 , (4.12)
where V (t) = V (x t ). Now, for convenience, suppose with out loss of generality that x(s) = x 0 , s ∈ [-d, 0]. Then, the following holds:

V (0) = x ′ 0 P 1 x 0 + 0 -d x ′ 0 P 2 x 0 dα ≤ x ′ 0 (P 1 + dP 2 ) x 0 . (4.13)
Taking (4.12) and (4.13) into account, V (t) satisfies

V (t) ≤ x 0 ′ P 1 x 0 + e 2ϕt x 0 ′ P 1 x 0 -x 0 ′ P 1 x 0 + dx 0 ′ P 2 x 0 ≤ e 2ϕt x 0 ′ P 1 x 0 + dx 0 ′ P 2 x 0 . (4.14)
Let σ be a positive scalar such that σ P 1 ≥ dP 2 and let R 0 be the following set:

R 0 := x ∈ R n : x ′ P 1 x ≤ 1 . (4.15) If in addition x 0 ∈ R 0 , then V (t), t ∈ [0, d],
is bounded as follows:

V (t) ≤ γ , γ = σ + e 2ϕd . ( 4 

.16)

In other words, the trajectory segment x [0,d] = x(s), for s ∈ [0, d], is confined to the following set

B := x [0,d] ∈ C n [0,d] : V (t) ≤ γ (4.17) provided that D := {x(s) ∈ R n , s ∈ [0, d] : x(s) ∈ B} ⊂ X.
Later in this section, to obtain a numerical and tractable condition for guaranteeing that D ⊂ X, it is considered the following set:

R := {x ∈ R n : V 1 (x) = x ′ P 1 x ≤ γ} , (4.18) since D ⊆ R by noting that V (t) ≥ V 1 (x), R 0 ⊂ R for γ ≥ 1. Then, R ⊂ X implies D ⊂ X.

Main Result

Before introducing the main result of this section, it will be shown in the sequel how condition C C C1 1 1 will be handled in this chapter. Thus, in view of Lyapunov-Krasovskii functional in (4.9), the time-derivative of V (t) is given by:

V (x t ) = 2x ′ P 1 ẋ + x ′ P 2 x -(1 -τ) x′ P 2 x + d ẋ′ P 3 ẋ - t t-d ẋ(α) ′ P 3 ẋ(α) dα = 1 d t t-d 2x ′ P 1 ẋ + x ′ P 2 x -(1 -τ) x′ P 2 x + d ẋ′ P 3 ẋ -d ẋ(α) ′ P 3 ẋ(α) dα (4.19)
Now, let the following notation:

η(t, α) = x(t) ′ x(t) ′ τ(t) ẋ(α) ′ ′ , ϒ(x, x, δ ) = A(x, δ ) B(x, δ )K( x) 0 n . (4.20)
Hence, V (t) in (4.19) can be cast as follows:

V (x t ) = 1 d t t-d η ′ (t, α) Ψ(x, x, δ ) + ϒ(x, x, δ ) ′ d P 3 ϒ(x, x, δ ) η(t, α) dα (4.21) where Ψ(x, x, δ ) = [Ψ i, j ], i, j = 1, 2, 3
, is a symmetric block matrix function whose nonzero blocks are given by:

Ψ 11 = He{P 1 A(x, δ )} + P 2 , Ψ 12 = P 1 B(x, δ )K( x), Ψ 22 = -(1 -τ)P 2 , Ψ 33 = - d τ 2 P 3 . (4.22)
It turns out that the entries of the auxiliary vector η(t, α) satisfy the following equality:

x(t) -x(t) - t t-τ(t) ẋ(α) dα = 0 . (4.23)
To take the above relation into account, let the following notation:

I = I n -I n -I n . (4.24)
Thus, the former equality can be written as follows, since τ(t) > 0:

t t-τ(t) I η(t, α) dα = 0 . (4.25) Next, note that t t-d η ′ 3 (α) P 3 τ(t) 2 η 3 (α) dα ≥ t t-τ(t) η ′ 3 (α) P 3 τ(t) 2 η 3 (α) dα. (4.26)
with η 3 (α) = τ(t) ẋ(α), since P 3 > 0 and d ≥ τ(t). Hence, the following upper-bound on V (x t ) holds:

V (x t ) ≤ 1 τ(t) t t-τ(t) η ′ (t, α) Ψ(x, x, δ ) + ϒ ′ (x, x, δ ) d P 3 ϒ(x, x, δ ) η(t, α) dα
(4.27) by noting that P 3 /τ(t) ≥ P 3 /d, where Ψ(•) = [ Ψi, j ], i, j = 1, 2, 3, is a block symmetric matrix whose nonzero blocks are as follows

Ψ11 = Ψ 11 , Ψ12 = Ψ 12 , Ψ33 = - P 3 d . (4.28)
Then, applying Lemma 4.1 to the right-hand side of (4.27) subject to (4.25) leads to:

V (x t ) ≤ 1 τ(t) t t-τ(t) η ′ (t, α) Ψ(x, x, δ )+ϒ ′ (x, x, δ ) d P 3 ϒ(x, x, δ ) +He{R I}] η(t, α) dα, (4.29)
where R is a free multiplier to be determined. Now, it is proposed in the following a result to evaluate if conditions C C C1 1 1, C C C2 2 2 and C C C3 3 3 hold for all x ∈ X and δ ∈ ∆ in terms of a finite set of LMI constraints. To this end, it assumed that X and ∆ are given polytopic regions with known vertices with 0 ∈ X. In addition, X will be either defined in terms of the convex hull of its vertices or in the following equivalent form:

X = {x ∈ R n : |c ′ i x| ≤ 1, i = 1, . . . , n f } (4.30)
with c i ∈ R n , i = 1, . . . , n f , defining the faces of X.

Theorem 4.1. Consider system (4.1) with (4.2)-(4.5). Let X and ∆ be given polytopic regions defining the state and uncertainty domains. Let d, h, σ and ϕ be given scalars. Suppose there exist matrices P 1 > 0; P 2 > 0; P 3 > 0; R i0 , R i j , Ri j , Ȓik , S i0 , S i j and Sik , for i = 1, 2, 3, j = 1, . . . , n and k = 1, . . . , n δ ; and L having appropriate dimensions and satisfying the following LMIs:

Φ(x, x, δ ) + LΩ a ( x) + Ω a ( x) ′ L ′ < 0 , ∀ (x, x, δ ) ∈ V(X × X × ∆) (4.31) A ′ (x, δ )P 1 + P 1 A(x, δ ) -2ϕP 1 < 0 , ∀ (x, δ ) ∈ V(X × ∆) (4.32) Λ(x, δ ) < 0 , ∀ (x, δ ) ∈ V(X × ∆) (4.33) γ γc ′ i γc i P 1 ≥ 0 , i = 1, . . . , n f (4.34) σ P 1 -dP 2 ≥ 0 (4.35)
where

Φ(•) = [ Φ i j ], i, j = 1, 2, 3, 4, and 
Λ(•) = [ Λ i j ], i, j = 1, 2, 3
, are symmetric block matrices; γ = σ + e 2ϕd ; and

Φ 11 = He{P 1 A(x, δ ) + R 1 } + P 2 , Φ 12 = (R ′ 2 -R 1 )N + P 1 B(x, δ )K a , Φ 13 = R ′ 3 -R 1 , Φ 14 = dA ′ (x, δ )P 3 , Φ 22 = -N ′ R 2 + R ′ 2 + (1 -h)P 2 N, Φ 23 = -N ′ R 2 + R ′ 3 , Φ 24 = dK ′ a B ′ (x, δ )P 3 , Φ 33 = -P 3 /d + R 3 + R ′ 3 , Φ 34 = 0 n , Φ 44 = -dP 3 ; Λ 11 = He{P 1 A(x, δ ) + S 1 } + P 2 -2ϕP 1 , Λ 12 = (S ′ 2 -S 1 ), Λ 13 = S ′ 3 -S 1 , Λ 14 = dA ′ (x, δ )P 3 , Λ 22 = -S 2 + S ′ 2 + (1 -h)P 2 , Λ 23 = -S 2 + S ′ 3 , Λ 24 = 0 n , Λ 33 = -P 3 /d + S 3 + S ′ 3 , Λ 34 = 0 n , Λ 44 = -dP 3 , K a = K 0 K 1 • • • K n , N = I n 0 n 2 ×n ′ ; Ω a (•) = 0 n 2 ×n Ω 0 n 2 ×2n 0 m×n N a 0 m×2n , Ω = Π ′ -I n 2 ′ , Π =     x1 ⊗ I n . . . xn ⊗ I n     , N a = 0 m×n N , N =       x2 I n -x1 I n 0 n • • • 0 n 0 n x3 I n -x2 I n • • • 0 n . . . . . . . . . . . . . . . 0 n • • • 0 n xn I n -xn-1 I n       ∈ R m×n 2 ; R i = R i0 + n ∑ j=1 x j R i j + n ∑ j=1 x j Ri j + n δ ∑ j=1 δ j Ȓi j , i = 1, 2, 3 ; S i = S i0 + n ∑ j=1 x j S i j + n δ ∑ j=1 δ j Si j , i = 1, 2, 3 . (4.36)
Then, the system origin is locally robustly stable. Moreover, for any x(0) ∈ R 0 and δ ∈ ∆, x(t) ∈ R for all t ≥ 0 and x(t) → 0 as t → ∞.

Proof. Suppose that (4.31)-(4.35) are satisfied. Then, from convexity arguments, (4.31)-(4.33) are respectively satisfied for all (x, x, δ ) ∈ X × X × ∆, (x, δ ) ∈ X × ∆ and (x, δ ) ∈ X × ∆. In the following, it will be shown respectively that C C C1 1 1, C C C2 2 2 and C C C3 3 3 holds.

C C C1 1 1: note that the matrix inequality in (4.31) pre-and post-multiplied by diag{I n , Π ′ a , I n , I n } and its transpose, respectively, leads to

Ψ(x, x, δ ) + He{RI} d ϒ ′ (x, x, δ )P 3 d ϒ(x, x, δ )P 3 -d P 3 < 0, ∀ (x, x, δ ) ∈ X × X × ∆, (4.37) by noting that K( x) = K a Π a , where Π a = [ I n Π ′ ] ′ and R = [ R ′ 1 R ′ 2 R ′ 3 ] ′ .
Applying the Schur's complement to (4.37), and then pre-and postmultiplying it by η ′ (t, α) and η(t, α), respectively, yields

η ′ (t, α) Ψ(x, x, δ ) + ϒ ′ (x, x, δ ) d P 3 ϒ(x, x, δ ) + He{RI} η(t, α) < 0, ∀ (x, x, δ ) ∈ X × X × ∆, η(t, α) ̸ = 0. (4.38)
Now, integrate the above with respect to α from tτ(t) to t and divide it by τ(t). Hence, the following is obtained 1 (4.39) which in turn yields C C C2 2 2: consider the matrix inequality in (4.32). Pre-and post-multiplying it by x ′ and x results in:

τ(t) t t-τ(t) η ′ (t, α) Ψ(x, x, δ ) + ϒ ′ (x, x, δ ) d P 3 ϒ(x, x, δ ) η(t, α)dα+ 1 τ(t) t t-τ(t) η ′ (t, α) RI + I ′ R ′ η(t, α)dα < 0, ∀ (x, x, δ ) ∈ X × X × ∆, η(t, α) ̸ = 0,
V (t) < 0, ∀ (x, δ ) ∈ X × ∆, t ≥ d, ( 
V1 (x) -2ϕV 1 (x) < 0, ∀ (x, δ ) ∈ X × ∆, t ∈ [0, d], (4.41)
taking (4.10) into account and by noting that ẋ = A(x, δ )x for t ∈ [0, τ(t)) with d ≥ τ(t).

C C C3 3 3: note that the matrix inequality in (4.33) can be cast as follows

Θ(x, δ ) + He{SI} d Ξ ′ (x, δ )P 3 d Ξ(x, δ )P 3 -d P 3 < 0, ∀ (x, δ ) ∈ X × X × ∆, (4.42) where Ξ(x, δ ) = [ A(x, δ ) 0 n 0 n ]; S = [ S ′ 1 S ′ 2 S ′ 3 ]; and Θ(x, δ ) is 3 × 3 block matrix, i.e., Θ(•) = [Θ i j (•)], i, j = 1, 2, 3,
whose nonzero block elements are:

Θ 11 = He{P 1 A(x, δ )}+P 2 -2ϕP 1 , Θ 22 = -(1-h)P 2 , Θ 33 = -P 3 /d.
Applying the Schur's complement to (4.42), and then pre-and postmultiplying it by η ′ (t, α) and η(t, α), respectively, yields

η ′ (t, α) Θ(x, δ ) + Ξ ′ (x, δ ) d P 3 Ξ(x, δ ) + He{SI} η(t, α) < 0, ∀ (x, δ ) ∈ X × ∆, η(t, α) ̸ = 0. (4.43)
Then, integrating the above with respect to α from tτ(t) to t and dividing it by τ(t) leads to 1

τ(t) t t-τ(t) η ′ (t, α) Θ(x, δ ) + Ξ ′ (x, δ ) d P 3 Ξ(x, δ ) η(t, α)dα < 0, ∀ (x, δ ) ∈ X × ∆, η(t, α) ̸ = 0, (4.44) since t t-τ(t) η ′ (t, α) SI + I ′ S ′ η(t, α)dα = 0.
Noting that P 3 /τ(t) ≥ P 3 /d, the following is obtained from (4.44):

1 d t t-d η ′ (t, α) Θ(x, δ ) + Ξ ′ (x, δ ) d P 3 Ξ(x, δ ) η(t, α)dα < 0, ∀ (x, δ ) ∈ X × ∆, η(t, α) ̸ = 0. (4.45)
Next recall that ẋ = A(x, δ )x for t ∈ [0, τ(t)) with τ(t) ≤ d. Thus, in view of (4.10) and (4. 35), it follows that:

V (t) -2ϕV 1 (x) < 0, ∀ x 0 , x(s) ∈ X, s ∈ [t -d,t], t ∈ [0, d), δ ∈ ∆. (4.46)
Finally, applying the Schur's complement to (4.34) leads to 1c ′ j γ P -1 1 c j ≥ 0, j = 1, . . . , n f , which from [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] implies R ⊂ X completing the proof.

Remark 4.1. For unstable open-loop systems, observe that ϕ is an exponential bound on the state trajectory norm over the interval [0, d). An initial estimate of ϕ might be obtained by considering the largest eigenvalue of a linear approximation of the open-loop system.

A Convex Solution to Problem P1

In this section, Theorem 4.1 is applied to obtain a solution to problem P P P1 1 1 assuming that a state feedback gain K(x) which locally stabilizes the closed-loop system with no input delay is known a priori.

Firstly, it is assumed that a bound on the maximum admissible delay is given. Then, it is addressed the case of a given set of initial conditions (which will be referred to the set of guaranteed initial conditions).

When an upper-bound on the maximal input delay and its variation are given, it is often desirable to estimate the largest set of admissible initial conditions R 0 assuming a given polytopic state space domain X. For instance, the volume maximization of R 0 can be approximately obtained by minimizing the trace of P 1 (since the trace of P -1 1 is the sum of the squared semi-axis lengths of R 0 ) leading to the following optimization problem: σ and ϕ are given. Thus, the optimization problem in (4.47) can be numerically solved via semi-definite programming applying a gridding technique over σ and ϕ.

On the other hand, it might be of interest to estimate the maximum admissible delay d ensuring robust regional stability when a set of guaranteed initial conditions R0 is given. In this chapter, the set R0 will be characterized as follows

R0 = x ∈ R n : x ′ P 0 x ≤ 1 , (4.48) 
where P 0 > 0 is a given matrix defining the size and shape of R0 such that R0 ⊂ X. 

Numerical Example 1

Consider the following uncertain input delayed nonlinear quadratic system:

ẋ = 0 1 + 0.2x 2 2x 1 + x 2 x 1 + δ x + 0 1 + δ u(t -τ(t)), (4.50) x = x 1 x 2 ,
where x ∈ R 2 is the state, δ ∈ R is a bounded parameter and u ∈ R is the control input being subject to a time-varying delay τ(t).

The origin of the above system is open-loop unstable and the following locally stabilizing control law has been proposed in reference (COUTINHO; DE SOUZA, 2012):

u = K(x)x , K(x) = K 0 + 2 ∑ i=1 x i K i , (4.51) 
considering an uncertainty free system with no input delay, where K 0 = -6.86 -5.38 , K 1 = -1.54 -0.94 ,

K 2 = -1.04 -0.09 . (4.52)
This example focus on evaluating the local stability of the closed loop system assuming that:

(i) The uncertain parameter δ is bounded to ∆ = [-0.35 0.35];

(ii) The time-varying delay τ(t) satisfies 0 < τ(t) ≤ d and τ(t) ≤ h, ∀t ≥ 0, where d and h are given parameters; and

(iii) The state-space domain is defined by

X = x ∈ R 2 : |x i | ≤ 0.5, i = 1, 2 . (4.53) 
Firstly, optimization problem (4.47) is applied to determine maximized estimates of the set of admissible initial conditions R 0 as defined in (4.15) for different values of d and h leading to results show in Table 3. The values of ϕ and σ showed in this table were obtained in order to minimize the trace of P 1 (i.e., approximately maximizing the size of R 0 ). Notice, in this case, that larger input delays yield smaller regions of admissible initial conditions. In particular, Fig. 10 shows the set of admissible initial conditions R 0 , a stable trajectory starting at the boundary of R 0 , the set of reachable states R as well as the statespace domain X considering the parameters given in the last row of Table 3.

Then, optimization problem (4.49) is applied to obtain a lower bound on the maximal admissible delay d considering a given bound h on the delay variation and different sets of guaranteed initial conditions R0 (defined in terms of the matrix P 0 ) leading to the results given in Table 4. It turns out in this case that larger input delays are admissible at the cost of smaller sets of guaranteed initial conditions. Fig. 11 shows the obtained sets R 0 and R as well as the given sets R0 and X d h σ ϕ trace(P 1 ) 0.01 1.0 0.01 2.0 13.39 0.05 1.0 0.50 2.0 24.86 0.05 0.5 0.01 2.0 17.81 0.10 0.5 0.20 3.0 34.49 0.17 0.5 0.01 2.7 95.31 considering the parameters values in the 2nd row of Table 4. These solutions were obtained by performing a grid search over the parameters h, σ , and ϕ. Table 4 -Lower bounds on d for different values of P 0 , h, σ and ϕ.

Figure 10 -A stable trajectory and the regions R 0 , R and X considering 4.47, d = 0.17 and h = 0.5.

Regional Stabilization

This section addresses the design of a state feedback gain K( x) which is an affine matrix function of x such that the closed-loop system of (4.6) is regionally stable for all δ ∈ ∆. The proposed design will be based on Theorem 4.1 together with a parametrization K( x) = F( x)P 1 , with F( x) being an affine matrix function of x to be determined. Thus, consider the following similarity transformations:

ξ 1 (t) = P 1 x(t), ξ 2 (t) = P 1 x(t), ξ 3 (α) = τP 1 ẋ(α), (4.54) 
and let

ξ (t, α) = ξ ′ 1 (t) ξ ′ 2 (t) ξ ′ 3 (α) ′ , Q 1 = P -1 1 , Q 2 = Q 1 P 2 Q 1 .
(4.55) In view of above definitions, observe that (4.29) can be recast as follows:

V (t) ≤ 1 τ(t) t t-τ(t) ξ ′ (t, α) Ψ(x, x, δ )+ Υ′ (x, x, δ ) d P 3 Υ(x, x, δ ) +He{R I}] ξ (t, α) dα, (4.56) 
where R is a free multiplier added as a null term that will make it possible to use Lemma 4.1 at the end.

Ψ(•) = [ Ψi j ], i, j = 1, 2, 3; and Ψ11 = He{A(x, δ )Q 1 } + Q 2 , Ψ12 = B(x)F( x), Ψ13 = 0 n , Ψ22 = -(1 -h)Q 2 , Ψ23 = 0 n , Ψ33 = - Q 1 P 3 Q 1 d ; Υ(x, x, δ ) = A(x, δ )Q 1 B(x, δ )F( x) 0 n . (4.57)
Next, to obtain a numerical and tractable condition, notice in light of Lemma 4.2 that

P 3 ≤ G + G ′ -G ′ P 3 G -1
for any nonsingular G and P 3 > 0. Hence, the following holds for G = Q 1 and Q

3 = Q 1 P 3 Q 1 : P 3 ≤ 2Q 1 -Q 3 -1 . (4.58)
Then, the following upper-bound on the right-hand side of (4.56) is obtained:

V (x t ) ≤ 1 τ(t) t t-τ(t) ξ ′ (t, α) Ψ(x, x, δ )+d Υ′ (x, x, δ ) 2Q 1 -Q 3 -1 Υ(x, x, δ ) + He{R I}] ξ (t, α) dα. (4.59)
Now, it is proposed in the sequel an LMI-based result for designing a state feedback gain K( x) such that the closed-loop system of (4.6) is regionally stable for all δ ∈ ∆.

Theorem 4.2. Consider system (4.1) with (4.2)-(4.4). Let X and ∆ be given polytopic regions defining the state and uncertainty domains. Let d, h, σ and ϕ be given scalars. Suppose there exist matrices Q 1 > 0; Q 2 > 0;

Q 3 > 0; F 0 , F j , R i0 , R i j , Ri j , Ȓik , S i0 , S i j and Sik , for i = 1, 2, 3, j = 1, . . . , n and k = 1, . . . , n δ ; and L satisfying the following LMIs:

Φ(x, x, δ ) + LΩ a ( x) + Ω a ( x) ′ L ′ < 0 , ∀ (x, x, δ ) ∈ V(X × X × ∆) (4.60) Q 1 A ′ (x, δ ) + A(x, δ )Q 1 -2ϕQ 1 < 0 , ∀ (x, δ ) ∈ V(X × ∆) (4.61) Λ(x, δ ) < 0 , ∀ (x, δ ) ∈ V(X × ∆) (4.62) 1 -γc ′ i Q 1 c i ≥ 0 , i = 1, . . . , n f (4.63) σ Q 1 -dQ 2 ≥ 0 (4.64)
where

Φ(•) = [ Φi j ], i, j = 1, 2, 3, 4, and 
Λ(•) = [ Λi j ], i, j = 1, 2, 3
, are symmetric block matrices; γ = σ + e 2ϕd ; and

Φ11 = He{A(x, δ )Q 1 + Ȓ1 } + Q 2 , Φ12 = ( Ȓ′ 2 -Ȓ1 )N + B(x, δ )F a , Φ13 = Ȓ′ 3 -Ȓ1 , Φ14 = Q 1 A ′ (x, δ ), Φ22 = -N ′ Ȓ2 + Ȓ′ 2 + (1 -h)Q 2 N, Φ23 = -N ′ Ȓ2 + Ȓ′ 3 , Φ24 = F ′ a B ′ (x, δ ), Φ33 = -Q 3 /d + Ȓ3 + Ȓ′ 3 , Φ34 = 0 n , Φ44 = (Q 3 -2Q 1 )/d; Λ11 = He{A(x, δ )Q 1 + S1 } + Q 2 -2ϕQ 1 , Λ12 = S′ 2 -S1 , Λ13 = S′ 3 -S1 , Λ14 = Q 1 A ′ (x, δ ), Λ22 = -S2 + S′ 2 + (1 -h)Q 2 , Λ23 = -S2 + S′ 3 , Λ24 = Λ34 = 0 n , Λ33 = -Q 3 /d + S3 + S′ 3 , Λ44 = (Q 3 -2Q 1 )/d, F a = F 0 F 1 • • • F n , Ȓi = R i0 + n ∑ j=1 x j R i j + n ∑ j=1 x j Ri j + n δ ∑ j=1 δ j Ȓi j , i = 1, 2, 3 ; Si = S i0 + n ∑ j=1 x j S i j + n δ ∑ j=1 δ j Si j , i = 1, 2, 3 . (4.65)
Then, the origin of the closed-loop system in (4.6), with

K( x) = K 0 + n ∑ i=1 xi K i , K j = F j P 1 , P 1 = Q -1 1 , j = 0, 1, . . . , n, (4.66)
is locally robustly stable. Moreover, for any x(0) ∈ R 0 and δ ∈ ∆, x(t) ∈ R for all t ≥ 0 and x(t) → 0 as t → ∞.

Proof. Suppose that (4.60)-(4.62) are satisfied, then from convexity arguments they are respectively satisfied for all

(x, x, δ ) ∈ X × X × ∆, (x, δ ) ∈ X × ∆ and (x, δ ) ∈ X × ∆.
Firstly, it will be shown that (4.60) implies V (t) < 0, ∀ (x, δ ) ∈ X × ∆. Hence, pre-and post-multiplying (4.60) by diag{I n , Π ′ a , I n , I n } and its transpose respectively yields:

Φ(x, x, δ ) < 0, (x, x, δ ) ∈ X × X × ∆, (4.67) 
where

Π a = [ I n Π ′ ] ′ ; Φ = [ Φi j ], i, j = 1, 2, 3, 4, and Φ11 = Φ11 , Φ12 = ( Ȓ′ 2 -Ȓ1 ) + B(x, δ )F a Π a , Φ13 = Φ13 , Φ14 = Φ14 , Φ22 = -Ȓ2 + Ȓ′ 2 + (1 -h)Q 2 , Φ23 = -Ȓ2 + Ȓ′ 3 , Φ24 = Π ′ a F ′ a B ′ (x, δ ), Φ33 = Φ33 , Φ34 = 0 n , Φ44 = Φ44 . Let R = [ Ȓ′ 1 Ȓ′ 2 Ȓ′ 3 ] ′ .
Then, applying the Schur's complement to Φ(x, x, δ ) < 0 leads to:

Ψ(x, x, δ )+d Υ′ (x, x, δ ) 2Q 1 -Q 3 -1 Υ(x, x, δ )+He{R I} < 0, ∀ (x, x, δ ) ∈ X × X × ∆, (4.68) 
by noting that F a Π a = F(x). Hence, taking (4.59) into account, the following is obtained: (ii) (4.62) → (4.33): let Λ(x, δ ) be equal to Λ(x, δ ) except by the (4,4) block which is replaced by -

V (t) < 0, ∀ (x, x, δ ) ∈ X × X × ∆. ( 4 
(d P 3 ) -1 . By noting that Q 3 - 2Q 1 ≥ -P -1 3 (from Lemma 4.2 and Q 3 = Q 1 P 3 Q 1 )
, it follows that Λ(x, δ ) < 0, ∀ (x, δ ) ∈ X × ∆. Thus, pre-and post-multiplying Λ(x, δ ) < 0 by diag{P 1 , P 1 , P 1 , d P 3 } implies that (4.33) holds for all (x, δ ) ∈ X × ∆, with S i = P 1 Si P 1 , i = 1, 2, 3.

1. (4.63) → (4.34): multiplying (4.63) by γ and then applying the Schur's complement yields (4.34).

2. (4.64) → (4.35): pre-and post-multiplying (4.64) by Q -1 1 = P 1 leads to (4. 35), since by definition

Q 2 = Q 1 P 2 Q 1 .
The rest of this proof follows directly from Theorem 4.1.

Solving Problem P2

Theorem 4.2 can be applied for designing the state feedback gain K(x), as defined in (4.5), in order to locally stabilize the closed-loop system of (4.6) while either maximizing the size of the set of admissible initial conditions (for a given admissible delay) or to maximize a bound on the maximal admissible delay (for a given set of guaranteed initial conditions). It is assumed in both cases, that a polytopic state space domain X is known a priori.

Firstly, assume that the maximal input delay d and its variation h are given. Then, in order to obtain a maximized estimate of the set of admissible initial conditions R 0 , the following optimization problem is proposed:

max ϕ,σ ,Q 1 ,...,L logdet(Q 1 ) subject to (4.60)-(4.64).
(4.70)

The above optimization problem can be numerically solved via semidefinite programming applying a gridding technique over σ and ϕ. In addition, notice that the maximization of logdet(Q 1 ) implies the volume maximization of R 0 . Now, assume that the set of guaranteed initial conditions R0 as defined in (4.48) is known. Thus, the following optimization problem is proposed to obtain a lower-bound on the maximal admissible delay:

max d,ϕ,σ ,Q 1 ,...,L d subject to (4.60)-(4.64) and P 0 I n I n Q 1 ≥ 0. (4.71)
Notice that the latter matrix inequality implies R0 ⊂ R 0 . In addition, similarly to the optimization problem of (4.70), a numerical solution in terms of LMI constraints can be searched for by means of a griding technique over σ , ϕ and d.

Numerical Example 2

Consider the uncertain input delayed nonlinear quadratic system of (4.50). Firstly, the optimization problem (4.70) is applied to determine a maximized estimate of the set admissible initial conditions R 0 as defined in (4.15) considering the largest admissible delay d considered in Example 1. A griding technique has been applied to determine the values of ϕ and σ in order to maximize logdet(Q 1 ) (i.e., the volume maximization of R 0 ). Fig. 12 shows the estimates of the set of admissible initial conditions R 0 and of the set of reachable states R considering: d = 0.17, h = 0.5, σ = 0.01, ϕ = 2.7.

(4.72)

Notice that the size of admissible initial conditions R 0 is much larger than the one given in Fig. 10. For comparison purposes, the controller designed by means of optimization problem (4.70) has led to trace P 1 = Q -1 1 = 20.21 contrasting with the value 95.31 obtained in Example 1.
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Figure 12 -Estimates of the sets R 0 and R for d = 0.17 considering a controller designed by means of (4.70).

In addition, it is possible to find feasible solutions for the optimization problem (4.70) considering a larger bound on the delay size or a larger state space domain X. For instance, Fig. 13 shows estimates of R 0 and R considering a maximum delay of d = 0.72 which is much larger than the maximum admissible delay of d = 0.17 obtained in Example 1 for the same scenario. Observe as expected that larger values of d yields smaller admissible initial conditions. On the other hand, considering a bound d = 0.17 on the delay size and the following state space domain:

X = x ∈ R 2 : |x i | ≤ 0.92, i = 1, 2 , (4.73) 
it is obtained a larger estimate of the set of admissible initial conditions as illustrate in Fig. 14. It is also shown in the latter figure a closedloop state trajectory starting in x 0 = [-0.3 0.56] ′ at the boundary of R 0 . Then, optimization problem (4.71) is applied to estimate a lower bound on the maximal admissible delay d considering a given bound h on the delay variation, the state space domain defined in (4.73) and the following set of guaranteed initial conditions:

R0 = x ∈ R 2 : x ′ P 0 x ≤ 1 , P 0 = 20I 2 . (4.74) 
Fig. 15 shows the obtained estimates of R 0 and R as well as the given sets R0 and X, considering d = 0.18, h = 1.00, σ = 0.30 and ϕ = 2.70. 

Application to a Poiseuille Flow

A detailed system description and modeling are presented in Chapter 3, Section 3.1. In this section, we present only some details of the modeling as well as some simplifications. 

Flow model in the tube

Consider the ideal gas flow through a constant section, where all the friction losses and heat transfers are neglected. Hence, the Euler equations can be used to model the system. The equations consist of conservation of mass, momentum and energy and they can be written in terms of the primitive variables density ρ, particle speed v and pressure p (see [START_REF] Winterbone | Theory of Engine Manifold Design: Wave action Methods for IC Engines[END_REF][START_REF] Winterbone | Theory of Engine Manifold Design: Wave action Methods for IC Engines[END_REF]). In this case, the flow is assumed to be one-dimensional leading to the following system of PDEs (which are three nonlinear coupled equations):

∂W W W ∂t + A A A[ [ [W W W ] ] ] ∂W W W ∂ x +C C C[ [ [W W W ] ] ] = 0, (4.75) W W W =    ρ v p   ; A A A =     v ρ 0 0 v 1 ρ 0 a 2 ρ v     ; C C C =    0 G (γ -1)ρ(q + vG)    .
where a = γ p ρ representing the sound speed in ideal gas, G is a term associated with the friction losses and q is a term associated with the wall heat exchanges and γ the adiabatic constant. Further, t ≥ 0 is the time variable and x ∈ [0, L] is the space variable with L = 1 being the tube length.

In order to simpify (4.75) the following hypothesis are considered:

H.1 the propagation speed of the entropy wave (average energy and mass) inside the tube is much slower than the sound speed u << a; H.2 the pressure inside the tube is considered constant (equal to the atmospheric pressure), because the pressure differential introduced by the ventilator is very small; H.3 the heat exchanges and the friction in the tube are neglected: q = 0 and G = 0, i.e. 

ρ(0,t) = - RγT in v(t)A t p in V 0 ρ(0,t) 2 + γv(t)A t V 0 ρ(0,t) - R p in V 0 C v ρ(0,t)dQ.
(4.78) Often one may act on system at x = 0. This leads to a dynamic boundary condition defined by (4.78), and the sensor is located in ρ(L,t) and no density measurement is taken inside the heating column. Then the value ρ(0,t) can be given by ρ(0,t) = ρ(L,t -L v * ).

Therefore, the PDE-ODE cascades system, can be considered a input delay quadratic system, defined as:

ρ(0,t) = - RγT in v * A t p in V 0 ρ(0,t) 2 + γv * A t V 0 ρ(0,t) - R p in V 0 C v ρ(0,t)dQ.
(4.81)

Let define the control input as:

dQ = C v γv(t)A t pin R -T in ρ re f + u(t -τ * ), u(t -τ * ) = Kρ(0,t -τ * ), τ * = L v * . (4.82)
Now, a controller for tracking a constant reference density ρ(L,t) is designed. To this end, an integral action is added to the system dynamics (4.81) leading to the following state space realization:

ρ ξ =   - RγT in v * A t p in V 0 ρ + γv * A t V 0 0 -1 0   ρ ξ +   - R p in V 0 C v ρ 0   dQ + 0 1 ρ re f , (4.83) 
with ρ = ρ(0,t), dQ defined in (4.82) and ξ = ξ (t) is the integrator state. For this example we use a linear control law, and the control law (4.5) is modified to be as follows:

u = (K 0 + ρK 1 + ξ K 2 ) ρ ξ , K 1 = 0 0 0, K 2 = 0 0 0. (4.84)

Output Temperature Boundary Control

The output temperature boundary control is designed for system (4.83). Let define the error vector as:

e = e 1 e 2 , e 1 = ρρ re f , e 1 = ξξ re f , (4. 85) where ρ re f is the desired output density. It is easy to show that system (4.76) with boundary conditions (4.78) can be expressed as follows: (4.86) with dQ defined as (4.82).

ė1 ė2 =   - RγT in v * A t p in V 0 (e 1 + ρ re f ) + γv * A t V 0 0 -1 0   e 1 + ρ re f e 2 + ξ re f +   - R p in V 0 C v (e 1 + ρ re f ) 0   dQ,
Note that the nonlinear input-delay system (4.86) can be seen as an approximation of the coupled PDE-ODE system with the nonlinear ODE defined in (4.78) and the convection equation (4.76). Thus, we can apply Theorem 1 or 2 proposed in this work. In order to operate the experimental setup between the temperatures of 300 K and 325 K and the flow speed between 1 m/s and 3 m/s.

In order to design the control for nonlinear input-delay system (4.86), consider the control architecture presented in Figure 16. • v * = 3 m/s K 0 = [-1.8737 0.7859], K 1 = 0 0 0, K 2 = 0 0 0, (4.87) (4.89) which ensure that the equilibrium e = 0 0 0 is exponentially stable. In order to illustrate the effectiveness of the proposed approach, some simulation results of the coupled PDE-ODE system with the nonlinear ODE defined in (4.78), the convection equation (4.76) and the controls (4.87)-(4.89) are presented for different flow speeds. A change of temperature reference from 300 K to 320 K (which can be transformed into a density reference using the perfect gases law) is shown.

• v * = 2 m/s K 0 = [-1.5248 0.7221], K 1 = 0 0 0, K 2 = 0 0 0, (4.88) • v * = 1 m/s K 0 = [-0.7937 0.3445], K 1 = 0 0 0, K 2 = 0 0 0,
As depicted in Figure 17, the system effectively follows the change of reference for different flow speeds. The faster the flow speed, the faster the convergence, as the fluid transport time is smaller. For the flow speed v * = 1 m/s the delay between sensor information temperature and action in the power of the resistor heating column is 1 s.

Figure 18 shows the respective control inputs obtained for the simulation results. The power dissipated by the heating resistor has to be greater as the flow speed increases. This is due to the fact that in this case, the gas residence time inside the heating column is smaller and the amount of energy absorbed by the gas is smaller. The Fig-

ure 19 shows the simulation results obtained when using the proposed control (4.87)-(4.89) to coupled PDE-ODE system with the nonlinear ODE defined in (4.78), and the convection equation (4.76). We consider a tube length L = 1 m. The space was divided in 200 parts and the space derivatives were written using a finite difference scheme. An ODE solver was used to obtain the solution. Figure 20 shows the region of admissible initial conditions R 0 for the state-space domain defined by X = x ∈ R 2 : |x i | ≤ 0.5, i = 1, 2 . The optimization problem (4.47) is applied to determine maximized estimates of the set of admissible initial conditions R 0 as defined in (4.15) for different values of flow speed that consequently implies that different values of d and h. The values of ϕ and σ were obtained in order to minimize the trace of P 1 (i.e., approximately maximizing the size of R 0 ). As expected, for smaller values of flow speed, which results in a greater delay the region of admissible initial conditions R 0 is lower. research will be concentrated in extending the approach to a broader class of nonlinear systems and to deal with nonlinear networked control systems under aperiodic sampling. 

BOUNDARY CONTROL OF COUPLED PDE-ODE SYSTEMS

In industrial processes, a large variety of physical systems is governed by hyperbolic partial differential equations (PDEs) such as hydraulic networks (BASTIN; CORON, 2011; DIAGNE; BASTIN; CORON, 2012) and gas devices [START_REF] Castillo | Dynamic boundary stabilization of linear parameter varying hyperbolic systems: Application to a Poiseuille flow[END_REF][START_REF] Castillo | Fresh air fraction control in engines using dynamic boundary stabilization of LPV hyperbolic systems[END_REF]. In particular, fluid transport is often modeled by balance laws (or conservation laws when additive and dissipative terms are disregarded) which are hyperbolic PDEs normally used to express the fun-

damental dynamics of open conservative systems. However, infinite dimensional systems introduce variable time-delays that make the closed loop control much more challenging and, moreover, distributed measurements and actuators are not usually available. As a consequence, it is more common that actuators and measurements are located at the boundaries which is desired in practical applications as, for instance, in the references previously cited. In addition, a large number of numerical techniques based on finite-dimensional tools, which are often used to the stability analysis of PDE systems, provides only approximate solutions.

On the other hand, Lyapunov theory has been largely applied for several decades to deal with the stability analysis and control design of finite dimension systems described by ordinary differential equations (EDOs) (VIDYASAGAR, 2002). In the particular case of linear dynamical systems, a large number of stability and stabilization results are cast in terms of linear matrix inequality (LMI) constraints [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], which are numerically solved using dedicated software [START_REF] Lofberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF]. The LMI framework is a powerful tool for linear systems, since it can deal with a large diversity of control and systems theory problems such as robust stability, input-to-output 

Problem Statement

Let n be a positive integer, Ω an open non-empty subset of R n and ∆ a non empty convex set of R n δ . Consider the general class of first-order uncertain hyperbolic systems of order n defined as follows:

∂ t ξ ξ ξ (t, x) + Λ Λ Λ(δ )∂ x ξ ξ ξ (t, x) = 0 0 0, t ∈ R, x ∈ [0, 1],
(5.1)

where ξ ξ ξ : R + × [0, 1] → Ω, δ ∈ ∆ is a continuous vector function of time with bounded magnitude, Λ Λ Λ(δ ) : ∆ ↦ → R n×n is a diagonal and continuous matrix function (called the characteristic matrix), i.e., Λ Λ Λ(δ ) = diag{λ 1 (δ ), λ 2 (δ ), . . . , λ n (δ )} with λ i (δ ) ̸ = 0 for all δ ∈ ∆, ∂ t and ∂ x denote the partial derivatives with respect to time and space, respectively.

Assumption 1. The diagonal elements of Λ Λ Λ(δ ) satisfy the following inequalities for all δ ∈ ∆:

0 < λ 1 (δ ) < • • • < λ n (δ ).
Associated to (5.1), consider the following nonlinear quadratic dynamic boundary action:

ξ ξ ξ in (t) = A(ξ ξ ξ in (t), δ )ξ ξ ξ in (t) + B(ξ ξ ξ in (t), δ )u(t), u(t) = G(ξ ξ ξ in (t))ξ ξ ξ in (t) + K(ξ ξ ξ out (t))ξ ξ ξ out (t), (5.2) where ξ ξ ξ in (t) = ξ ξ ξ (0,t) , ξ ξ ξ out (t) = ξ ξ ξ (1,t) (5.3)
are the boundary conditions of (5.1) which interconnect the dynamics of (5.1) and (5.2), ξ ξ ξ in ∈ Ξ ⊂ R n is the state vector of the dynamic boundary condition, ξ ξ ξ out ∈ Ξ ⊂ R n is the measurement, u(t) ∈ R n u is the boundary control input, Ξ is some compact region of the boundary state-space containing ξ ξ ξ in = 0 and to be specified later in this chapter.

The matrices A(

•) ∈ R n×n , B(•) ∈ R n×n u , G(•) ∈ R n u ×n and K(•) ∈ R n u ×n
are affine matrix functions on their arguments, that is:

[A(ξ ξ ξ in , δ ) B(ξ ξ ξ in , δ )] = [A 0 B 0 ] + n ∑ i=1 ξ ξ ξ [i] in [A i B i ] (5.4) + n δ ∑ i=1 δ [i] Ȃi Bi , [G(ξ ξ ξ in ) K(ξ ξ ξ out )] = [G 0 K 0 ] + n ∑ i=1 ξ ξ ξ [i] in G i ξ ξ ξ [i]
out K i , (5.5) with A i , B i , G i , K i , i = 0, 1, . . . , n, and Ȃ j , B j , j = 1, . . . , n δ , being given constant real matrices with appropriate dimensions. It is assumed that the pair (A 0 , B 0 ) is stabilizable and the unforced system of (5.2) is allowed to be unstable.

The initial conditions of the coupled PDE-ODE system of (5.1) and (5.2), namely ξ ξ ξ (0, x) = ξ ξ ξ(x) and ξ ξ ξ in (0) = ξ ξ ξ in ,

(5.6)

are assumed to satisfy:

ξ ξ ξ ∈ A and ξ ξ ξ in ∈ B , (5.7)

where the sets A and B are defined as follows

A := ξ ξ ξ ∈ R n : 1 0 ξ ξ ξ(x) ′ ξ ξ ξ(x) dx ≤ σ , (5.8) B := ξ ξ ξ in ∈ R n : ξ ξ ξ in ′ P 1 ξ ξ ξ in ≤ 1 ,
with the scalar σ > 0 and matrix P 1 > 0 defining the sizes of A and B, respectively. In the particular case of linear dynamic boundary conditions, that is when A i , B i , Ǎi and Bi are null matrices for i = 1, . . . , n, the existence and uniqueness of solutions to (5.2), (5.3) and (5.6) for initial conditions satisfying (5.7) is ensured, see e.g. (CORON; BASTIN; D' ANDRÉA-NOVEL, 2008). As these solutions may not be differentiable everywhere, the concept of weak solutions of partial differential equations has to be used (see (DIAGNE; BASTIN; CORON, 2012) and references therein for further details).

This chapter is concerned in obtaining sufficient conditions to the regional stability and stabilization problems for coupled PDE-ODE system of (5.1) and (5.2) as stated below:

P P P1 1 1 For given state feedback gain matrices G(ξ ξ ξ in ) and K(ξ ξ ξ out ) as defined in (5.5), devise stability analysis conditions ensuring the robust local stability of the coupled PDE-ODE system while determining a maximized set of initial boundary states B for a given set A.

P P P2 2 2 Design the state feedback gain matrices G(ξ ξ ξ in ) and K(ξ ξ ξ out ) as defined in (5.5), ensuring the robust local stability of the coupled PDE-ODE system while maximizing the set of initial boundary states B for a given set A.

Before ending this section, we introduce the notion of exponential stability for the coupled PDE-ODE system of (5.1) and (5.2) to be considered in this chapter.

Definition 5.1. The coupled PDE-ODE system of (5.1) and (5.2), with initial conditions ξ ξ ξ and ξ ξ ξ in satisfying (5.7), is said to be locally robustly exponentially stable if there exist positive scalars α and β such that the following holds:

‖ξ ξ ξ in (t)‖ + ‖ξ ξ ξ (t, •)‖ L 2 ((0,1);R n ) ≤ β e -αt ‖ξ ξ ξ in ‖ + ‖ξ ξ ξ‖ L 2 ((0,1);R n ) , ∀ t ∈ R + , δ ∈ ∆.
(5.9)

Local Stability Analysis

In this section, it is developed an LMI approach to derive a numerical and tractable solution to the robust regional stability analysis problem P P P1 1 1 as defined in Section 5.1. To this end, consider the following Lyapunov function candidate defined for all continuously differentiable functions ξ ξ ξ : R + × [0, 1] → Ω: (5.10) where P 1 , P 2 ∈ R n×n are positive definite diagonal matrices and µ is a positive scalar.

V (ξ ξ ξ ) = ξ ξ ξ ′ in P 1 ξ ξ ξ in + 1 0 e -µx ξ ξ ξ (x) ′ P 2 ξ ξ ξ (x) dx,
Then, evaluating the time derivative of V (•) along the solutions of (5.1) and (5.2) with (5.7) leads to:

V (ξ ξ ξ (t, •)) = 2ξ ξ ξ in (t) ′ P 1 A(ξ ξ ξ in , δ ) + B(ξ ξ ξ in , δ )G(ξ ξ ξ in ) ξ ξ ξ in (t) + 2ξ ξ ξ in (t) ′ P 1 B(ξ ξ ξ in , δ )K(ξ ξ ξ out )ξ ξ ξ out (t) -e -µx ξ ξ ξ (t, x) ′ Λ(δ )P 2 ξ ξ ξ (t, x) x=1 x=0 -µ 1 0 e -µx ξ ξ ξ (t, x) ′ Λ(δ )P 2 ξ ξ ξ (t, x) dx (5.11)
In view of the above and taking (5.3) into account, V (ξ ξ ξ (t, •)) can be cast as follows:

V (ξ ξ ξ (t, •)) = -m 1 (ξ ξ ξ , δ ) + m 2 (ξ ξ ξ in , ξ ξ ξ out , δ ) (5.12) where m 1 (ξ ξ ξ , δ ) = µ ξ ξ ξ ′ in Λ(δ )P 1 ξ ξ ξ in + 1 0 e -µx ξ ξ ξ (t, x) ′ Λ(δ )P 2 ξ ξ ξ (t, x) dx , m 2 (ξ ξ ξ in , ξ ξ ξ out , δ ) = ξ ξ ξ ′ a Φ(ξ ξ ξ in , ξ ξ ξ out , δ )ξ ξ ξ a , ξ ξ ξ a = ξ ξ ξ in ξ ξ ξ out , (5.13) Φ(ξ ξ ξ in , ξ ξ ξ out , δ ) =   A(ξ ξ ξ in , δ ) ′ P 1 +P 1 A(ξ ξ ξ in , δ )+G(ξ ξ ξ in ) ′ B(ξ ξ ξ in , δ ) ′ P 1 +P 1 B(ξ ξ ξ in , δ )G(ξ in ) + Λ(δ )P 2 + µΛ(δ )P 1 P 1 B(ξ ξ ξ in , δ )K(ξ ξ ξ out ) K(ξ ξ ξ out ) ′ B(ξ ξ ξ in , δ ) ′ P 1 -e -µ Λ(δ )P 2   .
Due to Assumption 1 and since Λ is a continuous function on the compact set ∆, there exists a sufficiently small positive value ε such that εI (5.14) the following holds

I I n ≤ Λ(δ ) for all δ ∈ ∆. Then, if m 2 (ξ ξ ξ in , ξ ξ ξ out , δ ) < 0 , ∀ (ξ ξ ξ in , ξ ξ ξ out , δ ) ∈ Ξ × Ξ × ∆,
V (ξ ξ ξ (t, •)) ≤ -µεV (ξ ξ ξ (t)), ∀ t ∈ R + , (5.15) from the fact that m 1 (ξ ξ ξ (t, •), δ ) ≥ µεV (ξ ξ ξ (t, •)).
Notice that the inequality (5.15) implies that the coupled PDE-ODE system is locally exponentially stable if the condition (5.14) is satisfied along the solutions of (5.1) and (5.2) for all ξ ξ ξ ∈ A and ξ ξ ξ in ∈ B.

Hence, we have to guarantee that the solution of the coupled PDE-ODE system is confined to a region R(γ) := {ξ ξ ξ : V (ξ ξ ξ ) ≤ γ} (5.16)

for a certain γ > 0.

Firstly, from (5.15), the following holds:

V (ξ ξ ξ (t, •)) ≤ e -µεt V ( ξ ξ ξ ) , ∀ δ ∈ ∆.
Next, provided that ξ ξ ξ ∈ A, ξ ξ ξ in ∈ B and µ > 0, notice that the following holds:

1 0 e -µx x ′ P 2 x dx ≤ 1 0 x ′ P 2 x dx ≤ ρ 1 0 x ′ x dx ≤ ρσ .
For some scalar ρ such that ρI I I n -P 2 ≥ 0, we obtain:

V ( ξ ξ ξ ) ≤ 1 + ρσ .
Hence, in view of the above, the following is satisfied:

V (ξ ξ ξ (t, •)) ≤ γ , γ = 1 + ρσ , ∀ t ∈ R + , δ ∈ ∆.
(5.17)

Now, let V 1 (ξ ξ ξ in ) = ξ ξ ξ ′ in P 1 ξ ξ ξ in , then it follows from (5.10) that: V 1 (ξ ξ ξ in (t)) ≤ V (ξ ξ ξ (t, •)) ≤ γ, ∀ t ∈ R + , δ ∈ ∆.
(5.18)

Let the following set:

D := {ξ ξ ξ in : V 1 (ξ ξ ξ in ) = ξ ξ ξ ′ in P 1 ξ ξ ξ in ≤ γ}.
(5.19)

Thus, the condition in (5.18) guarantees that ξ ξ ξ in ∈ D for all t ∈ R + and δ ∈

∆, since V 1 (ξ ξ ξ in (t)) ≤ V (ξ ξ ξ (t, •)) ≤ V ( ξ ξ 
ξ ) ≤ γ for all t ∈ R + and δ ∈ ∆. Then, provided that D ⊂ Ξ, the condition in (5.14) holds along the solutions of (5.1) and (5.2) for all ξ ξ ξ ∈ A and ξ ξ ξ in ∈ B.

In the sequel, it is introduced the main result of this section which proposes a numerical and tractable solution to problem P P P1 1 1 in terms of a finite set of LMI constraints. To this end, it is assumed that Ξ is a given polytopic region containing ξ ξ ξ in = 0 with known vertices. Moreover, Ξ can be also equivalently defined in terms of its faces as below (5.20) with c i ∈ R n , i = 1, . . . , n f , defining the faces of Ξ.

Ξ = {ξ ξ ξ in ∈ R n : |c i ′ ξ ξ ξ in | ≤ 1, i = 1, . . . , n f },
Theorem 5.1 (Stability Analysis). Consider the PDE-ODE system (5.1) and (5.2), with the initial conditions defined by (5.7) and (5.8), and given control gains G(ξ ξ ξ in ) and K(ξ ξ ξ out ). Let Ξ and ∆ be given polytopes, and ρ, σ and µ be given positive scalars. Suppose there exist diagonal matrices P 1 and P 2 , and a matrix L, with appropriate dimensions, satisfying the following:

P 1 > 0, P 2 > 0, ρI I I n -P 2 ≥ 0, (5.21) γ γc j ′ γc j P 1 ≥ 0, j = 1, . . . , n f , (5.22) Θ(ξ ξ ξ in , ξ ξ ξ out , δ , µ) + He{LM(ξ ξ ξ in , ξ ξ ξ out )} < 0, ∀ (ξ ξ ξ in , ξ ξ ξ out , δ ) ∈ V(X × X × ∆), (5.23) 
where γ = 1 + ρσ and

Θ(ξ ξ ξ in , ξ ξ ξ out , δ , µ) =    N ′ A(ξ ξ ξ in , δ ) ′ P 1 +P 1 A(ξ ξ ξ in , δ ) +G ′ B(ξ ξ ξ in , δ ) ′ P 1 N +N ′ P 1 B(ξ ξ ξ in , δ )G + N ′ Λ(δ )P 2 + µΛ(δ )P 1 N N ′ P 1 B(ξ ξ ξ in , δ )K K ′ B(ξ ξ ξ in , δ ) ′ P 1 N -N ′ e -µ Λ(δ )P 2 N    , N = I I I n 0 0 0 n×n 2 , G = G 0 G 1 • • • G n , K = K 0 K 1 • • • K n , M(ξ in , ξ out ) =       Π(ξ ξ ξ in ) -I I I n 2 0 0 0 0 0 0 0 0 0 N(ξ ξ ξ in ) 0 0 0 0 0 0 0 0 0 0 0 0 Π(ξ ξ ξ out ) -I I I n 2 0 0 0 0 0 0 0 0 0 N(ξ ξ ξ out )       , Π(ξ ) =     ξ [1] ⊗ I I I n . . . ξ [n] ⊗ I I I n     , N(ξ ) =           ξ [2] I I I n -ξ [1] I I I n 0 0 0 • • • • • • 0 0 0 0 0 0 ξ [3] I I I n -ξ [2] I I I n 0 0 0 • • • 0 0 0 . . . . . . . . . . . . • • • . . . . . . • • • . . . . . . . . . . . . 0 0 0 • • • • • • 0 0 0 ξ [n] I I I n -ξ [n-1] I I I n           . (5.24)
Then, the origin of the coupled PDE-ODE system of (5.1) and (5.2) is locally robustly exponentially stable in the sense of Definition 5.1. Moreover, for any ξ ξ ξ ∈ A and ξ ξ ξ in ∈ B, the system trajectories remain bounded to R as defined in (5.19), for all t ≥ 0, and vanish to zero as time goes to infinity.

Proof. Suppose the conditions of Theorem 5.1 are satisfied, then from convexity arguments the condition in (5.23) is also satisfied for all

(ξ ξ ξ in , ξ ξ ξ out , δ ) ∈ Ξ × Ξ × ∆.
Firstly, it will be shown that (5.23) implies that (5.14) holds. Then, let

Ψ(ξ ξ ξ in , ξ ξ ξ out ) = Π a (ξ ξ ξ in ) 0 0 0 0 0 0 Π a (ξ ξ ξ out ) , Π a (ξ ) = I I I n Π(ξ )
.

Hence, pre-and post-multiplying (5.23) by Ψ(ξ ξ ξ in , ξ ξ ξ out ) ′ and Ψ(ξ ξ ξ in , ξ ξ ξ out ), respectively, yields

Φ(ξ ξ ξ in , ξ ξ ξ out , δ ) < 0 , ∀ (ξ ξ ξ in , ξ ξ ξ out , δ ) ∈ Ξ × Ξ × ∆, since M(ξ ξ ξ in , ξ ξ ξ out )Ψ(ξ ξ ξ in , ξ ξ ξ out ) = 0 by construction, and thus m 2 (ξ ξ ξ in , ξ ξ ξ out , δ ) < 0, ∀ (ξ ξ ξ in , ξ ξ ξ out , δ ) ∈ Ξ × Ξ × ∆.
Next, in light of the definition of V (ξ ξ ξ ) in (5.10) and taking (5.12)-(5.14) into account, the following holds:

V (ξ ξ ξ (t, •)) ≤ -µεV (ξ ξ ξ (t)), ∀ t ∈ R + .
Now, notice that (5.22) implies D ⊂ Ξ; see, e.g., [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. Hence, for all ξ ξ ξ ∈ A and ξ ξ ξ

in ∈ B, it follows that V 1 (ξ ξ ξ in (t)) ≤ V (ξ ξ ξ (t, •)) ≤ V ( ξ ξ ξ
) ≤ γ for t ∈ R + and δ ∈ ∆, which completes the proof.

Theorem 5.1 can be applied to obtain an estimate of the largest set B of admissible initial boundary states assuming that A and Ξ are given a priori. For instance, the volume of B can be approximately maximized by minimizing the trace of P 1 (since the trace of P -1 1 is the sum of the squared semi-axis lengths of B) leading to the following optimization problem min µ,ρ,P 1 ,P 2 ,L trace{P 1 } subject to (5.21)-(5.23).

(5.25)

Notice that the matrix inequalities in (5.21)-(5.23) are LMIs when ρ and µ are given. Hence, in order to obtain a solution to the optimization problem in (5.25) via semi-definite programming we can apply a gridding technique over ρ and µ.

Regional Stabilization

This section addresses the problem of designing the state feedback gain matrices G(•) and K(•) such that the coupled PDE-ODE system of (5.1) and (5.2) with (5.7) is regionally exponentially stable for all δ ∈ ∆. The proposed design will be based on Theorem 5.1 together with matrix parametrization involving the Lyapunov matrix P 1 and the control gains.

Thus, let the following similarity transformations:

η η η in = P 1 ξ ξ ξ in , η η η out = P 1 ξ ξ ξ out , η η η = P 1 ξ ξ ξ , Q 1 = P 1 -1 , Q 2 = Q 1 P 2 Q 1 , G p (ξ ξ ξ in ) = G(ξ ξ ξ in )Q 1 , K p (ξ ξ ξ out ) = K(ξ ξ ξ out )Q 1 , (5.26) with Q 1 > 0.
In view of above definitions, observe that m 1 (ξ ξ ξ , δ ) and m 2 (ξ ξ ξ in , ξ ξ ξ out , δ ) in (5.12) can be respectively recast as follows: (5.28) where

m 1 (ξ ξ ξ , δ ) = µ η η η ′ in Q 1 Λ(δ )η η η in + 1 0 e -µx η η η(t, x) ′ Q 2 Λ(δ )η η η(t, x) dx , (5.27) m 2 (ξ ξ ξ in , ξ ξ ξ out , δ ) = η η η ′ a Φ p (ξ ξ ξ in , ξ ξ ξ out , δ )η η η a ,
η η η a = η η η in η η η out , Φ p (ξ ξ ξ in , ξ ξ ξ out , δ ) =    Q 1 A(ξ ξ ξ in , δ ) ′ +A(ξ ξ ξ in , δ )Q 1 +G p (ξ ξ ξ in ) ′ B(ξ ξ ξ in ) ′ B(ξ ξ ξ in )G p (ξ ξ ξ in )+Q 2 Λ(δ ) + µQ 1 Λ(δ ) B(ξ ξ ξ in , δ )K p (ξ ξ ξ out ) K p (ξ ξ ξ out ) ′ B(ξ ξ ξ in , δ ) ′ -e -µ Λ(δ )Q 2    .
Hence, using similar arguments to Section 5.2, the condition V (ξ ξ ξ (t, •)) ≤ -µεV (ξ ξ ξ (t, •)) will hold for t ∈ R + if m 2 (ξ ξ ξ in , ξ ξ ξ out , δ ) as defined in (5.28) satisfies m 2 (ξ ξ ξ in , ξ ξ ξ out , δ ) < 0, ∀ (ξ ξ ξ in , ξ ξ ξ out , δ ) ∈ Ξ × Ξ × ∆.

(5.29)

In addition, notice that the condition ρI I I n -P 2 ≥ 0 was considered in Section 5.2 to obtain a bound γ on V (ξ ξ ξ (t, •)) as in (5.18) holds for all t ∈ R + and δ ∈ ∆. To this end, the following result will be instrumental to obtain a numerical and tractable solution.

Lemma 5.1 ((DE OLIVEIRA; GEROMEL; BERNUSSOU, 2002)). Let P and R be real square matrices with P > 0 and R nonsingular. Then, the following holds: R ′ P -1 R ≥ R + R ′ -P (5.30)

Now, taking the parametrization of P 2 in (5.26) into account, note that ρI I I n -P 2 ≥ 0 can be equivalently written as follows:

Q 1 Q -1 2 Q 1 -ϕI I I n ≥ 0, ϕ = 1 ρ , (5.31) since P 2 = Q -1 1 Q 2 Q -1 1 .
is locally robustly exponentially stable in the sense of Definition 5.1. Moreover, for any ξ ξ ξ ∈ A and ξ ξ ξ in ∈ B, the solution of the coupled PDE-ODE system remains bounded to R as defined in (5.16), with P 1 = Q -1

1 and P 2 = Q -1 1 Q 2 Q -1
1 , for all t ≥ 0, and vanish to zero as the time goes to infinity.

Proof. Suppose the conditions of Theorem 5.2 are satisfied, then from convexity arguments the condition in (5.35) is also satisfied for all (ξ ξ ξ in , ξ ξ ξ out , δ ) ∈ Ξ × Ξ × ∆.

Firstly, it be shown that (5.35) implies that (5.29) holds. Then, let Ψ(ξ ξ ξ in , ξ ξ ξ out ) = Π a (ξ ξ ξ in ) 0 0 0 0 0 0 Π a (ξ ξ ξ out ) , Π a (ξ ) = I I I n

Π(ξ )

.

Hence, pre-and post-multiplying (5.35) by Ψ(ξ ξ ξ in , ξ ξ ξ out ) ′ and Ψ(ξ ξ ξ in , ξ ξ ξ out ), respectively, yields Φ p (ξ ξ ξ in , ξ ξ ξ out , δ , µ) < 0 , ∀ (ξ ξ ξ in , ξ ξ ξ out , δ ) ∈ Ξ × Ξ × ∆, since M(ξ ξ ξ in , ξ ξ ξ out )Ψ(ξ ξ ξ in , ξ ξ ξ out ) = 0 by construction. Now, pre-and post multiplying the above by η η η ′ a and η η η a , respectively, leads to (5.14) taking the definitions of η η η in and η η η out in (5.26) into account and the fact that: G(ξ ξ ξ in ) = FΠ a (ξ ξ ξ in )η η η in , K(ξ ξ ξ out ) = SΠ a (ξ ξ ξ out )η η η out .

Next, notice that (5.34) implies D ∈ Ξ; see, e.g., [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. Then, consider the condition 2Q 1 -Q 2 -ϕI I I n ≥ 0 on the right-hand side of (5.33). From Lemma 5.1, it follows that:

P -1 2 -ϕI I I n ≥ 0, since P 2 = Q -1 1 Q 2 Q -1 1 .
Hence, multiplying the above by P 2 ρ with ρ = ϕ -1 , the following is obtained ρI I I n -P 2 ≥ 0 Thus, the rest of this proof follows straightforwardly from Theorem 5.1.

Similarly to the stability analysis counterpart, Theorem 5.2 can be applied for designing the state feedback gain matrices G(ξ ξ ξ in ) and K(ξ ξ ξ out ), as defined in (5.5), in order to robustly regionally stabilize the coupled PDE-ODE system of (5.1) and (5.2) in closed-loop while maximizing the volume of B for a given set A. Thus, the following optimization problem solves problem P P P2 2 2: max µ,ϕ,Q 1 ,Q 2 ,F 0 ,...,S n ,L logdet(Q 1 ) subject to (5.33)-(5.35).

(5.37)

Notice that the matrix inequalities in (5.33)-(5.35) are LMIs when ϕ and µ are given a priori. Hence, a solution to the above optimization problem is searched for via semi-definite programming by applying a gridding technique over ϕ and µ.

Application to a Poiseuille Flow

The fluid transport system is normally used for industrial appli- where v(t) is the time-varying convection parameter of (5.38). The gas speed v(t) in the tube is measured.

For the dynamic boundary condition, considering that the input mass flow rate to be expressed as ṁin = v(t)ρ(0,t)A t . Thus, the dynamic boundary condition can be expressed as:

ρ(0,t) = -RγT in v(t)A t p in V 0 ρ(0,t) 2 + γv(t)A t V 0 ρ(0,t) -R p in V 0 C v ρ(0,t)dQ,

(5.39)

where A t is the tube cross section area.

Temperature Boundary Control

The output temperature boundary control is designed for (5.38) with boundary conditions (5.39). Define the density error as: (5.40) where ρ re f is the desired output density. It is easy to show that system (5.38) with boundary conditions (5.39) can be expressed as follows: (5.42) where A(δ ) = RγT in v(δ )A t p in V 0 , a(δ ) = γv(δ )A t V 0 and B = R p in V 0 C v The speed v(δ ) is measured and is considered an uncertain parameter. The temperature inside the heating column is not measured.

ξ = ρ -ρ re f ,
Define the control input using a feedback (partial) and feedforward linearization as: dQ = F(δ , ρ re f ) + K(ξ out )ξ out , ξ out = ξ (L,t),

(5. [START_REF] Banda | Gas flow in pipeline networks[END_REF] with F(δ , ρ re f ) = C v γv(δ )A t p in R -T in ρ re f . This yields to the system (5.41) with boundary condition (5.42), which corresponds to the system considered in Theorem 5.1 and Theorem 5.2. Define the convex set ∆ = [1, 3] as the flow speed 1 m/s and 3 m/s in order to operate the experimental setup between the temperatures of 300 K and 325 K.

In order to design the boundary control for system (5.41) with boundary condition (5.42), consider the control architecture present in Figure 21 Consider the following system parameters: adiabatic constant γ = 1.4; molar mass of dry air M = 28.97 g/mol.K; ideal gas constant R = 8.3143 J/(mol.K); specific heat constant for constant pressure C p = 1.005 KJ/Kg.K for constant volume C v = 0.718 KJ/Kg.K; initial pressure p in = 1 Bar (or, equivalently, 1×10 5 Pa in SI units); initial temperature T in = 300 K; initial density ρ = 1.1768 Kg/m 3 column volume V 0 = 4 × 10 -3 m 3 ; tube cross section area A t = 6.4 × 10 -3 m 2 ; and the tube length L = 1 m.

In this scenario, we have applied Theorem 5.1 with (5.25) considering a linear control law u L = Kξ ξ ξ out as well as a nonlinear one u NL = (K 0 + ξ ξ ξ out K 1 )ξ ξ ξ out with K = -0.8 (5.44) and an initial temperature error equal to 25 K. 

K 0 = -0.8, K 1 = 8,

Concluding Remarks

This chapter was concerned with the boundary control of uncertain first-order hyperbolic system subject to nonlinear boundary actuation dynamics. An LMI based result has been proposed for assessing the regional robust exponential stability of the closed-loop system. The stability result is then extended to cope with nonlinear boundary control design based on strict Lyapunov functions. An experimental setup was given to illustrate the approach where simulation results have shown the effectiveness of the proposed strategy.

CONCLUSION

This thesis has focused on the study of boundary control for coupled first-order hyperbolic systems with nonlinear dynamic boundary conditions. To the author's opinion, the main thesis contributions rely on the development of two novel results in the infinite-dimensional setting for the stability analysis (i.e., the dissipativity of the boundary conditions) and control design for this class of systems. In the sequel, the main aspects considered in this thesis are summarized.

In the first part of this thesis, a literature review on the thesis subject and a study on the background concepts of hyperbolic PDE systems in Riemann coordinates including boundary feedback control are performed.

Then, finite-dimensional analysis and control tools are applied to the boundary control design of a first-order hyperbolic system with a nonlinear boundary dynamic action. The classical approach is applied to an experimental setup consisting of a tube on a pipe, a heating column, a ventilator and a sensor to measure the outlet temperature.

The experimental setup is modeled in terms of a first-order hyperbolic PDE with a nonlinear boundary dynamics (i.e., the heating column and the ventilator). Hence, the outlet temperature tracking problem of the experimental setup is addressed in a simple manner considering linear approximations around the equilibrium point, finite difference schemes and an integral action leading to an augmented discrete-time linear system whose dimension depends on the step size of discretization in space.

It can be concluded that in some cases that the the tracking problem via boundary control of infinite-dimensional systems can be based on a finite-dimensional model and standard classical control tools, however at the cost of some poor performance. Most part of these results were presented at the 2015 IEEE Multi-Conference on Systems and Control (MSC); see [START_REF] Caldeira | Modeling and control of flow with dynamical boundary actions[END_REF].

In the second part of this thesis, two infinite-dimensional approaches have been proposed to the boundary of coupled (first order hyperbolic) PDE and nonlinear ODE systems. In the first one, the first-order hyperbolic PDE system is approximated by a pure delay that together with an uncertain nonlinear quadratic boundary dynamics led to an input delayed nonlinear quadratic system in closed-loop.

Strict conditions for the regional stability and stabilization of uncertain input delayed nonlinear systems based on Lyapunov-Krasovskii (L-K) method with slack variables are formulated in terms of Linear Matrix Inequality (LMI) constraints. This approach is then applied to the proposed experimental setup showing a significative increase in the closed-loop performance compared to the classical finite-dimensional approach. The better performance occurs at the cost of a larger numerical complexity. These results have been submitted for a possible publication in the International Journal of Robust and Nonlinear Control; see [START_REF] Caldeira | Regional stability and stabilization of input delayed nonlinear quadratic systems[END_REF].

In the sequel, an infinite-dimensional approach based on strict Lyapunov conditions is proposed to the regional stability and stabilization of first-order hyperbolic systems with an uncertain nonlinear quadratic dynamic boundary condition. The proposed result ensures the local exponential stability of the closed-loop system while determining an estimate of the set of admissible initial conditions. When applied to the proposed experimental setup, this approach has also outperformed the performance of the closed-loop system considering the classical approach. The stability and stabilization results have been summarized in [START_REF] Caldeira | Regional stability and stabilization of a class of linear hyperbolic systems with nonlinear quadratic dynamic boundary conditions[END_REF] which is currently under construction and to be submitted to a peer reviewed journal.

To the author's knowledge, until the end of this thesis, this is the first work to address the robust regional stability and stabilization problems of a first-order hyperbolic system coupled with a nonlinear dynamic boundary condition.

Correlated work

During the thesis development, the thesis author have devised some correlated works which are summarized in the sequel.

• H ∞ ε-guaranteed cost of uncertain discrete-time systems with timevarying state delays [START_REF] Caldeira | Custo ε-garantido H ∞ de sistemas incertos discretos no tempo com atraso variante nos estados[END_REF] this paper has proposed an alternative approach to the robust H ∞ performance analysis of discrete time systems with a time-varying delay in the state vector subject to polytopic uncertainties. In this proposal, sufficient conditions are combined for robust H ∞ performance analysis in terms of feasibility of convex problems described as LMIs and a technique of polytope partition combined with branch-and-bound (BnB) algorithm. This allows to calculate the H ∞ guaranteed cost with a prescribed precision. The procedure consists in the successive partition of the polytope containing the matrices that represent the system and, at each partition, the H ∞ performance index of the system is evaluated by means of functions that give upper and lower bounds for such index.

The possibility of determining the precision of the calculation of H ∞ guaranteed cost comes from the fact that the BnB algorithm uses such upper and lower bound functions that converge to the optimum value. Numerical examples are presented to illustrate the efficiency of the proposal.

• Numerically Tractable Stability Tests for 2-D Singular Discrete-Time Systems [START_REF] Caldeira | Numerically tractable stability tests for 2-D singular discrete-time systems[END_REF] this paper presents numerically tractable LMI conditions to the stability analysis of 2-D singular discrete-time systems. Two classes of 2-D singular systems were considered. The 1 st one is the general singular Fornasini-Marchesini model and the 2 nd one is a singular Roesser model. In addition, the proposed conditions also guarantee that the 2-D singular system is acceptable and jump modes free. Numerical examples are presented to illustrate the proposed approach. This result has been developed in the early stages of this thesis in order to derive a reduced-order finite-dimensional representation of PDE systems. However, this approach showed to be quite conservative for analyzing the stability of hyperbolic PDEs.
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  outside the main diagonal block in LMI constraints A notation for matrices (capital letters from the Latin alphabet) A T indicates the transpose operation on a vector or matrix A > 0 indicates that the matrix A is symmetric and positive definite A ≥ 0 indicates that the matrix A is symmetric and positive semi-definite A H indicates matrix conjugate transpose of A He{A} stands for A + A T A Polytope of matrices diag{• • • } denotes a block-diagonal matrix R set of real numbers R + set of real non-negative real numbers N set of natural numbers (including zero) N * set of natural numbers (excluding zero) Ω a non-empty connected open subset of R n t ∈ [0, +∞] and x ∈ [0, L] are independent variables representing the time and the space, respectively ∂ x f and ∂ t f or f x and f t the partial derivatives of a function f with respect to the variables x and t I

  and an outlet sensor) is considered in numerical simulations to demonstrate the proposed boundary control design methodologies allowing the evaluation and discussion of the results.

  velopment and understanding of the work, including some basic definitions of first-order hyperbolic systems, characteristic form and Riemann coordinates, linearization around the steady state solution, Riemann coordinates around the steady state, Conservation Laws in Riemann invariants, stability and boundary stabilization, the Cauchy problem in Riemann coordinates, linear systems of Conservation Laws, Exponential Stability for the L 2norm, Dissipative boundary conditions. • Chapter 3 models the flow inside a pipe experimental setup (i.e., the Poiseuille flow) by means of a hyperbolic first-order PDE system in which the inlet boundary condition is imposed by a finite-dimensional dynamic model of heating column assuming a static model for the ventilator. Then, classical finite-dimensional tools are applied to boundary control design considering a linear approximation of the boundary actuator and time and space discretization of the PDE. Thus, an augmented discrete-time linear system is obtained whose dimension depends on the discretization steps. As a result, the tracking problem of the original complex dynamics can be addressed in a simple manner. Hence, a classical pole placement design methodology consisting of a state observer and a state feedback control law (synthesized by means of the LMI framework) is applied to improve the closed-loop dynamics tracking performance.
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 32 for the dissipativity of the boundary conditions (2.31) for the C 1 -norm with ρ(|M|) representing the spectral radius of the matrix M. This result is given for instance by[START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF], Theorem 1.3, page 173) in his seminal book on the stability of the classical solutions of quasi-linear hyperbolic systems. Finally, by using an appropriate dummy doubling of the system size,[START_REF] Halleux | Boundary feedback control in networks of open channels[END_REF] 13, Theorem 4) has shown how the general dissipative boundary condition ρ[|G ′ (0 0 0)|] < 1 can be established for systems with the general non local boundary condition. This dummy doubling has also been used by (LI; RAO; WANG, 2010) in the framework of C 1 -solutions. An alternative approach to the stability analysis of dissipative boundary conditions is based on the use of Lyapunov functions. The first attempts were using entropies as Lyapunov functions as considered by (CORON; D'ANDRÉA-NOVEL; BASTIN, 1999) and (LEUGER-ING; SCHMIDT, 2002). However, the major drawback of this approach regards the semi-definiteness of the time-derivative of entropy-based Lyapunov functions which are not necessarily definite negative. Hence, one has to conclude the analysis applying the LaSalle's invariant set principle. However, this principle requires the precompactness of the trajectories, a property which is difficult to guarantee in the case of nonlinear partial differential equations. In order to overcome this difficulty, CORON; BASTIN; D'ANDRÉA-NOVEL (2007) have proposed, for systems of size n = 2 a strict Lyapunov function whose time derivative is strictly negative definite when ρ[|G ′ (0 0 0)|] < 1. The advantage is that the proof is less elaborated than the one using the method of characteristics because it uses more direct computations. Furthermore, another advantage of Lyapunov analysis is to directly induce robustness properties with respect to small uncertainties and disturbances. CORON; BASTIN; D'ANDRÉA-NOVEL (2008) have generalized the Lyapunov approach to general nonlinear quasi-linear hyperbolic systems. In particular, they emphasize a new weaker dissipative boundary condition which is formulated as follows:
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  WITRANT; JOHANSSON; TEAM, 2008) and hydraulic networks (DOS SANTOS; PRIEUR, 2008). To investigate the phenomenon of fluid transport in a Poiseuille flow with dynamics at the boundary conditions, an experimental setup has been designed to test and validate control strategies. Figure 4 shows the schematic of the proposed device.
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 4 Figure 4 -Experimental setup (Poiseuille Flow)

  T (L, •), v(L, •), p(L, •) and T (0, •) The outputs v(L, •) and p(L, •) are obtained directly from the linear flow model in the tube. It is required to use the linearization of (3.7) to deal with T (L, •) and T (0, •), hence the following relationship is obtained
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 6 Figure 6 -Temperature, speed and pressure at x = L and temperature at x = 0 (i.e., heating column temperature) time responses for the models HSNL (--), HSL (---), and ADLS (-•-•-).time response of temperature, speed and pressure at the tube outlet, and the heating column temperature (tube inlet) for all three models.The initial condition was set to ρ = 1.1614 kg/m 3 , v = 1.8 m/s and
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 7 Figure 7 -Time evolution of temperature in x = L and x = 0 for HSL, using the designed control for ADLSC (---) and the ADLSC, (-•-•-). ditions. Classical techniques such as linear approximation and discretization have been applied to the model of an experimental setup (consisting of a tube, heating column and ventilator) leading to an augmented discrete-time linear approximate model. Then, an output feedback plus integrator control law is derived to track a constant reference temperature. Simulation results have shown the potentials of the proposed approach. Future research will be concentrated in applying these results on the experimental setup.

Figure 9 -

 9 Figure 9 -Illustrative behavior of an open-loop unstable input delayed nonlinear control system.

  satisfies the conditions of existence and uniqueness of solution for any φ ∈ C n [-d,0] . Hence, the following local version of the Lyapunov-Krasovskii stability theory can be introduced. Lemma 4.3. (FRIDMAN, 2014; DE SOUZA; COUTINHO, 2014) Let u, v, w : R ↦ → R be continuous, positive definite functions, with u(•), w(•) non-decreasing and v(•) strictly increasing. Suppose there exists a continuously differentiable functional

  4.40) taking (4.25), (4.27) and (4.6) into account.

  min ϕ,σ ,P 1 ,...,L trace(P 1 ) subject to (4.31)-(4.35). (4.47) Note that the matrix inequalities in (4.31)-(4.35) become LMIs when
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 11 Figure 11 -Estimates of R 0 and R for given sets R0 and X.

  .69) Next, it is shown in the sequel that (4.61)-(4.64) imply (4.32)-(4.35).(i) (4.61) → (4.32): pre-and post-multiplying (4.61) by Q -1 1 = P 1 yields (4.32).
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 13 Figure 13 -Estimates of the sets R 0 and R for d = 0.72 considering a controller designed by means of (4.70).
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 14 Figure14-Estimates of the sets R 0 and R, for d = 0.17 and X as in (4.73), and a stable closed-loop trajectory for a controller obtained by means of (4.70).
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 15 Figure 15 -Estimates of R 0 and R for X and R0 as in (4.73) and (4.74), respectively, obtained by means of (4.71).
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 16 Figure 16 -Flow tube control Architecture using the input-delay system
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 17 Figure 17 -Temperature evolution for the input delay system (4.86) with the controls (4.87)-(4.89)
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 19 Figure 19 -Output temperature boundary control results using the proposed control (4.87)-(4.89) to coupled PDE-ODE system with the nonlinear ODE defined in (4.78) and the convection equation (4.76).

Figure 20 -

 20 Figure 20 -Estimates of R 0 and R for given set of X.

  cations such as the ventilation system of mining industry (WITRANT; JOHANSSON;[START_REF] Witrant | Air flow modelling in deep wells: aplication to mining ventilation[END_REF] and hydraulic networks[START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws[END_REF] PRIEUR, 2008). To investigate the phenomenon of fluid transport in a Poiseuille flow subject to dynamic boundary conditions, an experimental setup has been designed to test and validate the proposed results.The experimental setup consists on a heating column encasing a resistor, a tube, two ventilators, a gas speed meter and three distributed temperature sensors. The control objective is tracking the outlet temperature by driving the power dissipated on the heating resistor at different air flow speeds through the tube. Only the outlet temperature and the flow speed will be considered as measurements for a closed-loop boundary control strategy and thus G(ξ in ) will be set to be zero. In this work, it is assumed that the output ventilator is set to be off.The modeling of the experimental setup is done by considering two subsystems: the heating column and the tube. One-dimensional transport model is used to describe the gas density, speed and pressure variations in the tube. For the dynamic boundary conditions, it is considered a zero-dimensional model of control volume approach with heat exchanges coming from the heating resistor in the column. The perfect gases law is used to convert density on temperature.System description and modeling are presented in Chapter 3, Section 3.1. Applying some simplifications (according Chapter 4, Section 4.4) the system of PDEs reduces to the following convection equa-

  conditions: ξin = -A(δ )ξ in 2 + a(δ )ξ in -Bξ in dQ, ξ 0 = ξ in ,

  Figure22displays simulation results for the two control laws as above, µ = 0.3, where e L (t) denotes e(t) for u = u L and e NL (t) corresponds to the case where u = u NL . It is observed that the convergence of the temperature error with the non-linear gain outperformed the linear counterpart.
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 21 Figure 21 -Flow tube control architecture.
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 22 Figure 22 -Temperature error trajectories e L (t) and e NL (t) for flow speed 1 m/s.
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 24 Figure24shows the respective control inputs obtained for the latter simulations.
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 23 Figure 23 -Output temperature boundary control results using the proposed control (5.45) to the coupled PDE-ODE experimental setup.
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 24 Figure 24 -Control inputs for v = 1 m/s, v = 2 m/s and v = 3 m/s.
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  [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] have shown the existence of a full-state feedback law ensuring exponential stability for the H 2norm. The proof uses a back-stepping transformation to find new variables for which a strict Lyapunov function can be constructed; see, e.g.,

.34) the analysis of dissipative boundary conditions is much more complicated and only partial results are known. Using the method of characteristic, PRIEUR; WINKIN;

BASTIN (2008) 

showed that the stability conditions (2.32) holds for inhomogeneous systems when ||S(ξ ξ ξ )|| is small enough. In

[START_REF] Prieur | Control of systems of conservation laws with boundary errors[END_REF] 

this result can be extended to deal with differential or integral boundary errors. Using the Lyapunov approach, it was analyzed the boundary feedback stabilization of gas flow in fan-shaped networks described by isentropic Euler equations in (GUGAT; HERTY, 2011) and (GUGAT; DICK; LEUGERING, 2011).

In this context, PAVEL; CHANG (2012) studied the boundary control of hyperbolic Lotka-Volterra systems with application to pumped Raman amplifiers on optical fibres. For inhomogeneous systems of size n = 2 with m = 1, (KRSTIC; SMYSHLYAEV, 2008b).

  n,

	which are interconnected by the boundary conditions (2.29). Taking
	the Laplace transform, it follows that the characteristic function of the
	system (2.28)-(2.29) is:

det I I I ndiag e -sτ 1 , ..., e -sτ n K K K ,

(2.44)

where I I I n is the identity matrix of R n×n . The roots of this function are called the poles of the system.

Theorem 2.2. (BASTIN; CORON, 2016, Theorem 3.5) The system (2.28)-(2.29) is exponentially stable for the C 0 -norm if and only if the poles of the system are stable.

Proof. See (HALE; LUNEL, 1993)[Chapter 9, Theorem 3.5].

  In this scenario, it is proposed the following optimization Notice that the constraint P 0 -P 1 ≥ 0 implies R0 ⊂ R 0 . In addition, similarly to the former optimization problem, the constraints (4.31)-(4.35) become LMIs if a griding technique over σ , ϕ and d is applied.

	problem:		
	max d,ϕ,σ ,P 1 ,...,L	d subject to (4.31)-(4.35) and P 0 -P 1 ≥ 0.	(4.49)
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  d and h are supposed to be given parameters. Then, these results are compared to the ones obtained in Example 1 which have considered the stabilizing controller of (4.51) and (4.52).

This system is open-loop unstable and a local stability analysis has been performed in Example 1, Section 4.2.3, considering the locally stabilizing control law proposed in reference (COUTINHO; DE SOUZA, 2012) which did not consider neither input delay nor parameter uncertainty.

In this example, optimization problems (4.70) and (4.71) are applied for control purposes considering the same setup of Example 1. That is: (i) the state space domain X is as defined in (4.53); (ii) the uncertain parameter δ is bounded to ∆ = [-0.035 0.035]; and (iii) the time-varying delay τ(t) satisfies 0 < τ(t) ≤ d and τ(t) ≤ h, ∀t ≥ 0, where

  C[W] = 0.

	Hypothesis H.1 and H.2, imply reduces system (4.75) to the following convection equation ∂ v(x,t) ∂ x ≈ 0 and ∂ p(x,t) ∂ x	= 0. This
	∂ ρ(x,t) ∂t	+ v(t)	∂ ρ(x,t) ∂ x	= 0,	(4.76)
	where v(t) is the time-varing convection parameter of (4.76). The gas
	speed v(t) in the tube is measured. Using H.1, H.2 and H.3 allows the
	input mass flow rate to be expressed as		
	ṁin = v(t)ρ(0,t)A t ,	(4.77)
	where A t is the tube cross section area. With (4.77), the boundary
	condition of (4.76) can be expressed as:		
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Hence, the following inequality is a sufficient condition for (5.31) to hold: (5.32) by applying Lemma 5.1 with R = Q 1 and P = Q 2 .

In view of the above developments, it is proposed in the sequel an LMI-based result for designing the state feedback gain matrices G(ξ ξ ξ in ) and K(ξ ξ ξ out ) such that the origin of the coupled PDE-ODE of (5.1) and (5.2) is robustly regionally stable in closed-loop.

Theorem 5.2 (Regional Stabilization). Consider the PDE-ODE system (5.1) and (5.2), with the initial conditions defined by (5.7) and (5.8). Let Ξ and ∆ be given polytopes, and ϕ, σ and µ be given positive scalars. Suppose there exist diagonal matrices Q 1 and Q 2 , and matrices L, F i , S i , i = 0, 1, . . . , n, with appropriate dimensions, satisfying the following:

where γ = 1 + σ ϕ and

Then, the origin of the coupled PDE-ODE system (5.1) and (5.2), with

(5.36)

Future Research

This thesis has proposed numerical tractable solutions to the regional stability and stabilization of first-order hyperbolic systems coupled to nonlinear dynamic boundary conditions. However, there are still several points to be further investigated in the context of nonlinear systems. The thesis author will concentrated on investigating some of the following issues:

• Investigate the dissipativity of boundary conditions for linear inhomogeneous hyperbolic systems.

• Devise state observer design conditions for first-order linear hyperbolic system coupled with dynamic boundary conditions in order to obtain output feedback boundary controllers.

• Study the stability and stabilization problems for linear hyperbolic system coupled with switched boundary conditions.

• Practical implementation of the experimental setup with the application of the proposed solutions.

In particular, the delay input approach is directly applicable to nonlinear input delayed systems which has a vast number of practical applications besides the application on the boundary control of firstorder hyperbolic systems. In this context, the following subject will be further investigated:

• Application of state and parameter dependent L-K functionals in order to obtain less conservative results.

• Development of H 2 and H ∞ control design conditions for this class of systems.

• Extend the methodology to a larger class of nonlinear input delayed systems.