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A B S T R A C T

In this thesis, I present my research work on phase-conjugate feedback in a semi-
conductor laser, especially how high-frequency solutions appear in this system.

First, I study a simple theoretical model adapted from the well-known Lang-
Kobayashi rate equations modeling a laser with conventional feedback. Using
mostly numerical simulation of the rate equations, I present how the fundamen-
tal solutions of the laser with phase-conjugate feedback known as external-cavity
modes (ECMs) appear. I describe their stability properties with respect to the two
most important parameters of the system, namely feedback rate and external-
cavity length – directly proportional to the induced time-delay. I show that by
driving the system with a large feedback rate, we can obtain self-pulsating solu-
tions at harmonics of the external-cavity frequency reaching frequencies beyond
several gigahertz regardless of the external-cavity length.

Secondly, I use numerical simulations to show how these high-frequency fun-
damental solutions are destabilized into different chaotic regimes with distinct
characteristics. In the regime of low-frequency fluctuations, I show that itiner-
ancy among ruins of (ECMs) underlies power-dropouts. I describe how this itin-
erancy among ECMs can be observed in the experiment since each ECM brings
its own radiofrequency spectral signature. In the regime of coherence collapse, I
reproduce the emergence of extreme events observed experimentally in previous
works. Some subtle properties are well-reproduced. With these first two results,
I conclude that the model used is accurate enough to qualitatively reproduce
dynamics observed experimentally.

Finally, I study the system experimentally. With a first experiment, I am able to
actually observe the itinerancy among ruins of ECMs thanks to an oscilloscope
with a large sampling-rate and a technique called short-time Fourier transform.
With this same setup, I also report on optical chaos with a bandwidth up to 27 %
larger than the bandwidth of optical chaos from the same laser with conven-
tional feedback. With a second experiment, I am able to observe experimentally
the succession of bifurcations that leads the laser from a steady-state, through os-
cillations and chaos, to the regime V. Among the most successful achievements,
I report on observation of high-frequency ECMs of frequency equal to the thir-
teenth harmonic (8 GHz) of the external-cavity frequency (616 MHz).
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R É S U M É

Dans cette thèse, je présente mon travail de recherche sur la rétroaction optique à
conjugaison de phase dans un laser à semi-conducteurs et je décris en particulier
l’apparition de solutions à hautes fréquences.

Tout d’abord, j’étudie un modèle théorique simple adapté des équations de
taux de Lang-Kobayashi modélisant un laser avec rétroaction optique conven-
tionnelle. J’utilise principalement des outils numériques (simulation) pour mon-
trer comment apparaissent les solutions fondamentales d’un laser à conjugaison
de phase connues sous le nom de modes de cavité externe (MCE). Je décris leur
comportement face à des variations du taux de rétroaction et de la longueur
de la cavité externe, proportionnelle au délai. Je montre qu’en imposant un fort
taux de rétroaction, il est possible d’obtenir des solutions oscillantes à des har-
moniques de la fréquence de cavité externe atteignant plusieurs gigahertz quelle
que soit la longueur de cavité externe.

Ensuite, j’utilise la simulation numérique pour montrer comment ces solutions
fondamentales à haute fréquence sont déstabilisées vers différents régimes chao-
tiques. Dans un régime de fluctuations à basses fréquences, je montre que la
trajectoire du système avant une chute de puissance est itinérante sur les ruines
des MCE, phénomène observable sur une trace temporelle puisque chaque MCE
a une signature radio-fréquence spectrale différente. Dans un cas de chaos com-
plètement développé, je montre comment le modèle reproduit l’apparition d’évé-
nements extrêmes avec une précision suffisante pour observer certaines subtilités
montrées dans une étude expérimentale précédente. Ces deux premiers résultats
me permettent de conclure quant à la validité du modèle pour obtenir des résul-
tats qualitatifs.

Enfin, j’étudie expérimentalement le système. Une première expérience per-
met d’observer l’itinérance sur les ruines de MCE grâce à un grand taux d’échan-
tillonnage et une transformée de Fourier sur courte durée. Cette expérience me per-
met aussi de montrer qu’utiliser une rétroaction optique à conjugaison de phase
plutôt que conventionnelle permet d’obtenir un chaos optique avec une bande
passante jusqu’à 27% plus grande. Une seconde expérience permet d’observer la
succession de bifurcations menant le laser depuis son état stationnaire, jusqu’au
régime V en passant par des régimes oscillants et chaotiques. Entre autres im-
portants résultats, j’observe des MCE avec des fréquences correspondant à la
treizième harmonique (8 GHz) de la fréquence de cavité externe (616 MHz).
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P R E FA C E

Words can be funny. For example, laser is actually the name of a plant also known
as silphium. It comes from the latin laserpicium which tends to designate the resin
that used to be extracted from different parts of the plant, shortened to laser
when talking about the plant as a whole – silphium is the greek word for the
plant. It was widely used during antiquity all around the Mediterranean basin
and it was renowned for its culinary and medicinal properties which included
birth control. It was the pride and wealth of the city of Cyrene – located in the
North of the current Lybia – but it is now thought to be extinct and the word
saw less and less use through the ages.

The modern use of the word laser does not really have an etymology as we
generally expect. It is actually an acronym meaning Light Amplification by Stim-
ulated Emission of Radiation (LASER), which is simply a description of how the
device it designates works: it is a device that uses the physical process of stim-
ulated emission of radiation to amplify light. LASER itself comes from another
acronym: Microwave Amplification by Stimulated Emission of Radiation (MASER)
and the first name suggested for a laser was optical maser.

As time passed, the LASER device grew to be more and more popular and
the acronym became a common word, laser, with a plural lasers. It also gave
birth to two verbs: 1/ to lase which is used to tell when a laser device enters
its operational regime of amplification by stimulated emission, and 2/ to laser
which means to apply a laser to something, as in surgical use for example, or
to do something very precisely, in reference to the high directionality and low
divergence of a laser beam.

The success of the laser device in popular culture, especially in science fiction
but also in action films such as Goldfinger in 1964 a few years only after it had
been invented, contributed to spreading the use of the acronym as a common
word, to the point that probably most people do not know its original meaning1.
But lasers in the real world are generally far from what we see in fiction, either
in terms of power, or in terms of size, even if significant development has been
done in the recent years to make laser-based weaponry for purposes ranging
from anti-ballistic measures to non-lethal riot control.

1 To cite a similar example, I did not know until recently that the word scuba originated from an
acronym too, meaning Self-Contained Underwater Breathing Apparatus (SCUBA).
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preface

The first application of lasers that comes to mind is maybe the laser pointer,
making use of the high intensity and low divergence of a laser beam. Lasers can
be used for leisure purposes, with light shows making good use of them. They
can be used for leveling, distance-measuring, drilling, sawing, detection, aiming.
Other applications that people have most probably heard about include medical
and cosmetic uses: laser eye surgery, to replace scalpels, tumor removal, hair
removal, tattoo removal.

But one of the most important applications that has driven investment and
research over several decades is the use of laser diodes based on semiconductor
materials for telecommunications, in conjunction with optical fiber for guiding
light. It is mostly hidden from the eyes of users, but it is almost everywhere. The
combination of low losses in the fiber compared to copper cables, its insensitivity
to perturbations and crosstalk, and the possibility to modulate laser diodes quite
fast have been really advantageous. Over the last decades, all long-distance com-
munication lines have been replaced by optical fiber, with more and more cables
at the bottom of the oceans all around the world. Continental and regional net-
works soon followed. And now metropolitan networks are transitioning too to
allow optical fiber access to all residents with so-called Fiber To The Home (FTTH).

This impulse has led to development of laser diodes for numerous wave-
lengths. The initial goal was to reach the 1550 nm wavelength where optical
fibers present the minimum losses due to absorption. Other motivations such
as storage on optical disks pushed to find materials suitable for emission at
low wavelengths, where diffraction occurs for smaller apertures, which is what
allows to store more data on Blu-Rays than on DVDs or CDs. As such, laser
diodes with wavelengths ranging from 375 to 3500 nm are commercially avail-
able, although there are some wavelengths in between that are not accessible.

With new technologies such as VCSELs, we now have access to laser diodes
with even lower power consumption and in the future, the development of lasers
on silicon could have a big impact for integration with existing integrated cir-
cuits.

All of this did not happen without any difficulties of course. Coupling a laser
diode into an optical fiber or putting it in front of the reflective surface of an
optical disk can reflect some of the light back into the laser, a phenomenon we
call optical feedback. It can lead the laser diode to dynamical regimes where it
is completely unstable, with periodic oscillations or chaotic solutions depending
on the intensity of the feedback. This problem can be solved by using an optical
isolator, adequate coating, or angle-polished connections.

But if this phenomenon can be seen as a problem for engineers trying to de-
sign a stable system of telecommunications, it has also been seen as an oppor-
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tunity for studying interesting dynamics by some scientists. After discovering
that optical feedback had an impact on laser diode stability, scientists began to
purposefully add reflection in front of a laser diode to understand the behavior
of the laser. This has led to the discovery that a laser diode with feedback is
capable of producing deterministic chaos.

Chaos appears random at first sight, but it can be shown that it is the output of
a deterministic system. The first thoughts about chaos date back from the begin-
ning of the twentieth century by Poincaré, but the chaos theory really emerged
after a discovery by Lorenz in 1962. He found that some systems are sensitive to
initial conditions, in the sense that a small modification of the initial state of a
system can lead to great differences in its behavior after some time, also known
as the butterfly effect. This is in part why we cannot reliably predict weather,
which is a chaotic system, for more than a few days.

Studies of optical chaos showed that it is made of fast-evolving dynamics
reaching bandwidths of several gigahertz. This makes a chaotic laser a good
substitute to study experimentally chaos and its properties: it is really compact
and capable of generating large amounts of data in only a few seconds. Beside
understanding the physics of generating optical chaos, recent years have seen
the emergence of chaos-based applications in random number generation and
encryption of communications.

The work of this thesis lies in the continuation of these two motivations: under-
standing the physics of complex systems and chaotic dynamics, as well as think-
ing about potential applications of our findings. Here, we study a special kind of
optical feedback, namely Phase-Conjugate Feedback (PCF) which involves effects
from non-linear optics. As such, we will also discuss a bit about this additional
complexity, but it will not be the center of the study since PCF is used as a means
to an end. Indeed, through the work presented here, we want to show that us-
ing this special kind of feedback can lead to faster, more complex dynamics,
interesting physics and potentially better results in applications.

In Chapter 1 we will introduce all the basic concepts of laser physics, chaos,
and non-linear dynamics that are necessary for the overall understanding of the
thesis. In Part I (Chapters 2 to 5), we present everything related to the model
and the results of our simulations. Chapter 2 will present how we derive the
model for our system and the numerical techniques we use, as well as tools
from signal analysis. These tools and techniques will be put to use in Chapter 3

to study the behavior of fundamental self-pulsating solutions of the laser with
PCF, in Chapter 4 to explain the mechanism that leads to the observation of Low-
Frequency Fluctuations (LFF), and in Chapter 5 to reproduce chaotic dynamics
with abnormally intense events. Part II (Chapters 6 and 7)presents the results of
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our experimental investigations. In Chapter 6, we go back to the experiment after
having gained much insight from our theoretical findings and we also test if our
system exhibits optical chaos with characteristics potentially suitable for appli-
cations. In Chapter 7 we propose a second experimental configuration aimed at
observing harmonic solutions of frequencies up to almost ten gigahertz. Finally
we conclude on the contributions of this thesis to the field of non-linear dynam-
ics and chaos in laser diodes in Chapter 8, as well as suggesting perspectives for
future work.
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1
L A S E R D Y N A M I C S A N D P H A S E - C O N J U G AT I O N

This first chapter is an introduction to the three concepts on which is built the
work presented in this thesis. Some basic scientific knowledge is needed to grasp
the physics involved but I hope it can provide the unfamiliar readers with a good
idea of the premises and main results.

Section 1.1 is an introduction to the physics governing the operation of lasers
and more specifically semiconductor lasers which are studied in this thesis. In
Section 1.2 are presented the concepts of chaos theory and how complex systems
can generate non-linear dynamics. It also provides several experimental config-
urations in which a semiconductor laser can be used to exhibit chaotic behavior,
one of them being optical feedback to which our work is dedicated. To be precise,
we use a special kind of mirror: a Phase-Conjugate Mirror (PCM). The operating
principle of such a mirror and the nonlinear optics required to build it are pre-
sented in Section 1.3. A state of the art of Phase-Conjugate Feedback (PCF) in
lasers is presented in Section 1.4. Finally, Section 1.5 contextualizes the work of
this thesis and provides the outline of the document.
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1.1 lasers

1.1.1 Principle

The word ’laser‘ is actually an acronym which stands for Light Amplification by
Stimulated Emission of Radiation (LASER), because it makes use of the stimulated
emission of photons in an active medium. This mechanism was proposed by
Albert Einstein [1, 2] in 1916 as a part of the old quantum theory. The existence
of the phenomena was confirmed in 1928 by Rudolf W. Ladenburg.

To explain briefly the different kinds of interaction that can occur between
light and matter, let us consider a single atom with two atomic levels: the ground
level (of energy E1) and the excited level (of energy E2) – quantum mechanics
dictates that an electron must have a discrete level of energy. Then there are
three possible ways the system can evolve, depending on the initial conditions
(see corresponding diagrams in Fig. 1.1).

1. Absorption: the electron is originally in the ground level, a photon with a
frequency ν such that its energy hν = ∆E = E2 − E1 hits the atom. Then
the photon is absorbed and the electron jumps to the excited level.

2. Spontaneous emission: the electron is originally in the excited level. With-
out any interaction, it can spontaneously relax to the ground level by emit-
ting a photon of energy ∆E in the process. The emitted photon has a ran-
dom phase and direction of propagation. This phenomenon is analogous
to the decay of radioactive materials.

3. Stimulated emission: the electron is originally in the excited level. Then, a
photon of energy ∆E hits the atom, making the electron relax to the ground
level, and emitting a second photon of energy ∆E, with the same phase and
direction of propagation. This can be seen as a form of amplification.

We see now that the process of stimulated emission can be used to emit light
at a specific wavelength, with a narrow linewidth where photons are in phase, a
property we call coherence which is useful for making light interfere with itself.
However, stimulated emission by itself is not enough to make a laser.

Indeed, a medium at room temperature is not likely to have most of its elec-
trons in an excited state, which means that there cannot be enough stimulated
emission to maintain amplification or a continuous field of emission. For ampli-
fication by stimulated emission to be the dominant process, we need to find a
way to excite a lot of electrons, at least half the population to reach a state called
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Figure 1.1: Three different mechanisms for light-matter interaction are presented here
with a simple two-atomic-level atom which has an electron that can be on
the ground level or on the excited level. (a) Absorption happens when the
atom absorbs energy from a photon of energy hν and transfers it to the elec-
tron which goes from the ground level to the excited level. (b) Spontaneous
emission is the opposite, when an electron spontaneously and randomly re-
laxes to the ground level, its energy is converted into a photon of random
phase and direction. (c) Stimulated emission needs an incoming photon to
force the relaxation of an electron and to create a perfect copy – in phase,
energy, and direction – of the first photon in the process.

population inversion. We do this by pumping, either optically from an auxiliary
source of light or electrically via a bias current.

But even with pumping, it is not enough to create a laser. One needs to put
the active medium inside a resonator, which is a cavity composed of two mirrors,
with at least one of them being semi-transparent. The resonator helps confine
photons inside the gain medium and along a direction of propagation to enhance
the gain from stimulated emission. Hence, most photons are inside the cavity
and only a small fraction of them exits the laser.

When the gain inside the cavity exceeds the losses – due to absorption in
the medium, and the loss of photons exiting the cavity – the laser reaches its
threshold and starts to emit a coherent beam of light. A typical intensity-versus-
pump characteristic of a laser in Fig. 1.2 shows that emission starts after the
pump parameter reaches a threshold at which the gain equals the losses.

The three requirements for building a laser can therefore be summarized
as: 1/ a medium capable of spontaneous emission at the desired wavelength,
2/ pumping to achieve population inversion, and 3/ a cavity which acts as a
resonator [3]. Of course, real-life examples of lasers are more complicated than
the simple image presented here, e. g. it has been shown that a laser with only
two states of energy cannot emit a continuous wave [4].
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Figure 1.2: Schematic illustration of the intensity-versus-pump characteristic of a laser.
Before threshold, emitted light is mostly due to spontaneous emission, and
the system is not in the lasing state. Around threshold, the gain overcomes
the losses and most of the photons are produced thanks to stimulated emis-
sion, hence creating a highly coherent and directional laser beam, with po-
tentially high power.

1.1.2 Semiconductor laser

Making a laser with semiconductor material as the gain medium is a little more
complicated. In semiconductor materials the energy levels are distributed in a
conduction band and a valence band. A given range of energy between the high-
est energy of the valence band and the lowest energy of the conductive band –
called bandgap– is forbidden for the electrons. Energy levels within conduction
and valence bands can act similarly to the two atomic levels described previ-
ously.

Most lasers use a double-heterostructure where a thin active layer of posi-
tively doped (p-type) semiconductor material with low bandgap, is clad between
strongly-doped n-type and p-type layers, represented in Fig. 1.3. The cladding
layers have a larger bandgap, thus creating an energy well for holes and elec-
trons inside the active region. This structure can be electrically pumped to add
electrons to the conduction band or holes in the valence band. At the junction,
where electrons and holes are confined in the active region, they can recombine
to emit a photon (through spontaneous or stimulated emission) with an energy
corresponding to the energy of the bandgap. As was the case with our first exam-
ple of a laser, increasing the pumping leads to the population inversion, where
lasing is possible. We should note here that for a laser diode, we talk about
carrier density – proportional to the injection current – rather than population.

8



1.1 lasers

Conduction
band

Valence
band

Electrons

Holes
n+

p
p+

Photons
E(t)

Rf Rf
p+

p

n+

J

Figure 1.3: Schematic representation of a double heterostructure, commonly used in
edge-emitting laser diodes. On the left, we see a cross-section of a laser, where
light would be emitted towards the left and the right. The thin positively-
doped active layer is clad between two strongly-doped (denoted by the +

sign) n- and p-type materials. The structure is forward-biased with an elec-
tric current, bringing electrons in the n-type region and holes in the p-type
region. On the right is the bandgap representation of the structure along the
vertical axis, where we see the electrons and holes being trapped in the en-
ergy well formed by the three layers to enhance electron-hole recombination
via stimulated emission.

Since its invention [5], a lot of so-called bandgap engineering has been done
– and it is still going on – to find suitable materials and arrangements for the
design of laser diodes emitting at any desired wavelength.

Laser diodes present an additional advantage. The n-doped and p-doped lay-
ers have a smaller refractive index than the active layer, a structure which acts
as a guide for the light generated in the laser. This effect contributes to the re-
duction of losses in the cavity, and thus to a reduction of the lasing threshold. It
allows to make lasers requiring low pumping energy, which has been essential
for the development of telecommunications via optical fibers.

Now that we understand roughly what is going on inside a laser, we can try
to find a phenomenological model that would help us understand and simulate
how a laser behaves. For this, we will use the two variables I the intensity of the
laser beam and N the population or carrier density. As we have seen, we need to
model several phenomenons:

1. pumping, which contributes to the increase of carriers, modeled by its con-
stant rate R.
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2. stimulated emission, which is proportional to the intensity of the laser
beam and to the carrier density, with a gain parameter g. It contributes
to an increase of I and it consumes carriers, which makes N decrease, by
the quantity gI(t)N(t).

3. spontaneous emission, which consumes carriers by a quantity N(t)
τs

, but
since photons emitted that way are random in phase and direction, they do
not really contribute to the laser intensity. Thus, we neglect the influence
of spontaneous emission on I. τs is called the population/carrier lifetime.

4. cavity losses, which lead to a decrease of the laser intensity by a quantity
I(t)
τp

. τp is called the photon lifetime.

The behavior of a laser can thus be simply modeled as follows:

dI(t)

dt
= gI(t)N(t) −

I(t)

τp
, (1.1)

dN(t)

dt
= R− gI(t)N(t) −

N(t)

τs
. (1.2)

With these equations laid down, it is now simple to see that the pumping
needs to be large enough to compensate for the consumption of carriers by stim-
ulated and spontaneous emission. We also see that a laser is fundamentally a
nonlinear system, because the modeling of stimulated emission implies the pres-
ence of a multiplication between the carrier density and the intensity of the laser
field.

1.1.3 Properties of a laser diode

Relaxation-oscillation frequency

We can now try to figure out what is going to happen when the laser is turned
on. After the onset of an injection current step, the carrier density will increase
mostly linearly. Once there is a large number of carriers, and a few photons are
present in the cavity, stimulated emission can begin, and the laser intensity in-
creases rapidly. Associated with the increase of output power the carrier density
decreases because carriers are consumed by stimulated recombination. The de-
crease in carriers leads to a decrease of laser power down to situation where
the carrier density can build up again, and the cycle goes on with less and less
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Figure 1.4: At t = 0, the injection current is turned on. The carrier density builds up
until stimulated emission consumes all the carriers and the process repeats
until the system reaches an equilibrium and continuous wave emission. The
pulses occur at a frequency we call relaxation oscillation frequency and they
are exponentially damped as time goes by.

oscillation amplitude until the laser settles on a steady-state of continuous wave
operation, as illustrated in Fig. 1.4.

This dampened oscillating motion observed at the turn-on of the laser is called
the relaxation oscillation, which happens at a specific frequency fRO. It is one
of the most important characteristics of a laser diode. Often, it represents the
frequency range of the dynamics that a specific laser diode can exhibit. The
value of fRO can be derived from Eqs. (1.1), (1.2) (detailed by Uchida in Ref. [6]):

fRO =
1

2π

√
p− 1

τpτs
, (1.3)

where p = R
Rth

is the pump parameter with R being the pump strength and
Rth its value at the lasing threshold. For semiconductor lasers, the frequency of
relaxation oscillations is typically of the order of a few gigahertz.

Even during normal operation of a laser diode at its steady-state, it is common
to observe irregular oscillations at a frequency close to fRO due to thermal and
quantum noises in the gain medium, or due to perturbations in the pump. As
such, it is easy to imagine that any additional perturbation that we are going
to add to the system is prone to excite – regularly or irregularly – this natural
frequency of the laser. This can lead to observation of sustained oscillations at the
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relaxation frequency, also called undamped relaxation oscillations, or to chaotic
dynamics1.

Henry factor

However, a semiconductor laser is more complex than that and it is possible to
obtain a set of equations that describes more accurately our system by consid-
ering a traveling-wave model. Indeed, inside the laser cavity we can consider
that there are two waves traveling, one forward and another backward with the
same optical frequency, schematically represented in Fig. 1.3. Using boundary
conditions at the laser facets and properties of the semiconductor material, it is
possible to derive another set of equations [6]:

dÊ(t)
dt

=

[
1+ ıα

2

{
GN(N(t) −N0) −

1

τp

}
+ ıω

]
Ê(t), (1.4)

dN(t)

dt
=
I

q
−
N(t)

τe
−GN(N(t) −N0)|Ê(t)|2, (1.5)

where Ê(t) is the complex electric field and N(t) the real carrier density. N0 is
the carrier density at which the medium becomes transparent, GN is the gain for
stimulated emission, τp and τe are the decay rate of photons and carriers in the
laser. And here, we introduce the parameter α [7] known under several names:
the Henry factor, the linewidth enhancement factor or simply the alpha factor.
It represents the ratio of the real and imaginary parts of the complex electric
susceptibility and it is quite large for semiconductor lasers, with values typically
ranging between 2 and 7.

The Henry factor is primarily responsible of enhancing the linewidth of the
emitted beam by factor 1+α2, which is quite significant with the typical values
mentioned, hence its name of linewidth enhancement factor. A large value of α
also makes the laser more sensitive to perturbations. Thus, it is easier to observe
chaotic dynamics in a laser with a large alpha factor.

This approach to modeling a semiconductor laser is useful because we could
not have guessed the existence of the Henry factor from the phenomenologi-
cal approach we used to establish Eqs. (1.1) and (1.2). Indeed α is a parameter
that couples the phase and amplitude of the electric field, hence it cannot be

1 Nonlinear and complex dynamics, highly sensitive to initial conditions, that can appear in systems
with three or more degrees of freedom. See Sec. 1.2 for an introduction on chaos and nonlinear
dynamics.
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accounted for in intensity rate equations. However, by considering α = 0, it is
easy to show that Eqs. (1.4) and (1.5) are equivalent to our previous model.

When including the modeling of the effects of optical feedback in Part I, we
will use Eqs. (1.4) and (1.5) as our starting point, as it has historically been done
by Lang and Kobayashi in Ref. [8].
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1.2 unlocking non-linear dynamics

1.2.1 History and fundamentals of chaos theory

The history of chaos and nonlinear dynamics can be traced back to the end of the
nineteenth century with the theorem of Poincaré-Bendixon (1881-1901) stating
that for a given continuous two-dimensional system modeled by

dx

dt
= f(x), (1.6)

where f is a function from the plane to the plane, the asymptotic solutions
can only be a fixed point or a limit cycle. A limit-cycle would be an ellipsis in
phase-space2, meaning that the variables follow a periodic evolution. However,
that theorem cannot be extended to dimensions n > 2. It is therefore possible to
observe more complex solutions in systems of higher order.

When studying the three-body problem after King Oscar II of Sweden put up
a prize that would be awarded to anyone finding a solution, Poincaré and his
peers – Mittag-Leffler, Weierstraß, Sundman – formulate the first ideas about
bifurcations of complex systems, quasiperiodicity, and mention that, in the case
of planet orbits around the sun, small variations in the initial conditions can have
a great influence on the predicted motion of planets [9].

Throughout the twentieth century, other hints at chaotic behavior and turbu-
lent motion were found in radio engineering, fluid physics, but the lack of a
proper theory impeded further development and a full understanding.

The advent of electronic computing and some experiments like the logistic
map helped mathematicians formulate what we now call the chaos theory in the
second half of the twentieth century. Pioneering work was done by Lorenz start-
ing in 1963 when he was studying a weather model based on Navier-Stokes
equations:

dx

dt
= σ(x− y), (1.7)

dy

dt
= ρx− xz− y, (1.8)

dz

dt
= xy−βz, (1.9)

2 A space composed of variables representing the system e. g. angular position and velocity of a
pendulum, in which a periodic evolution would be represented as an ellipsis. See Sec. 2.3.3 for
more details.
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where x, y, and z are the three variables of the system and σ, ρ, and β are
the parameters. Simulating these equations on a computer, Lorenz obtained non-
regular oscillations and discovered accidentally that the system was very sensible
to initial conditions. When printing the values of a point in the middle of one
simulation, he only had access to approximations of the real values stored in the
computer’s memory. By injecting this mid-simulation approximate state as the
starting point of another simulation, he found that the computer would predict
different trajectories for the three variables [10] as illustrated in Fig. 1.5. This
discovery led to the modern chaos theory, with links to the fractal theory that
was developed around the same time by Mandelbrot.

Figure 1.5: Simulation of Eqs. (1.7)-(1.9) with a Runge-Kutta (RK) algorithm for two ini-
tial states that differ only slightly. For a little duration, the two trajectories
(blue and green) follow the same evolution, but after a long enough time,
they are completely different.

Although there is no single and universal mathematical definition of chaos,
we can keep in mind these three properties of a chaotic system:

1. Determinism: all the dynamics exhibited are not due to any kind of pertur-
bation, be it internal noise or external forcing.

2. Sensitivity to initial conditions: two trajectories with slightly different ini-
tial states will become more and more different as time goes by (see Fig. 1.5).
The divergence rate can be measured by so-called Lyapunov exponents of
the system on which we give more details in Section 1.2.4.

3. The possible trajectories of the system will form a strange attractor in an
adequate phase-space (see illustration in Fig. 1.6). It was later shown that
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there were links between this kind of attractors and fractals which are ob-
jects of non-integer dimension [11].

Figure 1.6: Approximation with a single trajectory of the strange attractor characterizing
the Lorenz set of equations. It is dubbed the butterfly.

Since then, chaos has been explored in many different fields of physics. In
particular, we can now wonder about the stability of lasers: is it possible to
obtain chaotic dynamics from a solitary laser without forcing or perturbation?

1.2.2 Stability of lasers

To answer the question about the stability of lasers, people have traditionally
used a model derived from the Maxwell-Bloch equations, introducing the polar-
ization via Schrödinger equations. This gives the following set of equations for
a single-mode laser [12]:
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dE(t)
dt

= −
κc

γ‖
[E(t) +AP(t)] , (1.10)

dP(t)
dt

= −P(t) − E(t)D(t), (1.11)

dD(t)

dt
=
γ‖

γ⊥

[
1−D(t) +

1

2
(E∗(t)P(t) + E(t)P∗(t)

]
, (1.12)

where E(t) is the complex slowly varying envelope of the electric field, P(t)
is the complex atomic polarization and D(t) is the real population inversion. κc,
γ‖, and γ⊥ are the decay rates of, respectively, the electric field, the population
inversion, and the atomic polarization.

These equations and parameters are used to separate the different kind of
lasers into three classes [13]. In class C lasers the three decay rates are of the
same order of magnitude and the three equations are needed to fully model
the behavior of the laser, e. g. He-Ne lasers operating at the 3.39 µm line. With
three state variables (E(t), P(t), and D(t)) governed by three equations, class C
lasers are thus candidates for exhibiting chaos. In fact, it has been shown that
Eqs. (1.10)-(1.12) are directly equivalent to the Lorenz Eqs. (1.7)-(1.9) [14]. As
such, this makes a laser an interesting system for studying chaotic behavior,
with time scales much faster than the time scales of weather dynamics.

Class A lasers are characterized by their polarization and population inversion
decay rates being very large compared to the electric field decay rate, which
means that variables P and D are considered to be dependent of E, thus only
one equation is needed to describe the system, e. g. He-Ne lasers operating at
the 632.8 nm line. These lasers are considered to be strongly stable and cannot
exhibit chaotic dynamics in free-running operation.

Finally, between those two classes lie class B lasers, a category that includes
semiconductor lasers for which only the polarization decay rate can be consid-
ered very large when compared to the other decay rates. Polarization can there-
fore be adiabatically eliminated [12]. Thus we consider dP(t)

dt = 0 in previous
equations, which gives P(t) = −E(t)D(t) and the system can be modeled as
follows [6]:

dE(t)
dt

=
κc

γ‖
(−1+AD(t))E(t), (1.13)

dD(t)

dt
=
γ‖

γ⊥
(1−D(t) − |E(t)|2D(t)). (1.14)

17



laser dynamics and phase-conjugation

This approach using Maxwell-Bloch equations confirms what we already gath-
ered from Eqs. (1.4) and (1.5) that we derived with a traveling-wave model: semi-
conductor lasers can be modeled with three equations (E is complex) but the
phase equation is decoupled from the two other equations. Thus they only has
two degrees of freedom and according to the Poincaré-Bendixon theorem they
cannot exhibit chaotic dynamics on their own3. However, by adding a source of
perturbation, modulation, we add degrees of freedom to the system which can
lead to unstable operation of the laser. Several schemes have been proposed and
thoroughly analyzed throughout the years and we briefly present them in the
next section.

1.2.3 Experimental schemes for observing chaos with a semiconductor laser

Figure 1.7: (a) Optical feedback from a conventional mirror. (b) Unidirectional optical in-
jection from a master laser on the left into a slave laser on the right. (c) Mod-
ulation of the injection current of the laser diode. (d) Hybrid optoelectronic
feedback where the output of a photodetector drives the injection current of
the laser. Figure from [16].

Three main techniques – and a lot of variations around those – have been pro-
posed and are used to drive a laser diode to chaotic dynamics (see illustrations
in Fig. 1.7):

1. Optical injection. It consists of unidirectionally injecting the light from a so-
called master laser into a slave laser. By adjusting the frequency detuning
between the two lasers, and the relative intensity injected in the slave laser,
a wide range of dynamics can be unlocked [17–19]. Some experiments fo-
cus on the injection of a chaotic master laser in a slave laser [20].

3 It has been shown that some laser diodes can emit chaotic output power without any additional
perturbation, e. g. a quantum-dot Vertical-Cavity Surface-Emitting Laser (VCSEL) in Ref. [15] but
this is a more complicated kind of laser with two competing polarization modes. This intrinsic
complexity means that a third equation needs to be added to faithfully model the polarization
dynamics, adding a degree of freedom to the system, which makes this example consistent with
the arguments presented here.
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2. External current modulation. Through modulation of the injection current
of the laser diode, one can also obtain non-linear dynamics. It seems simple
at first glance but it is in fact hard to obtain good experimental results
because it requires strong and fast modulation to enter nonlinear regimes
and the route to chaos is typically blurred by laser noise [21, 22].

3. Feedback. Simply adding a mirror in front of the laser to feed part of the
emitted beam back into the laser cavity is enough to destabilize the laser
into non-linear dynamics [16, 19]. The laser interacts with a time-delayed
version of the power it emitted, thus introducing an important parameter:
the length of the External Cavity (EC).

The first two solutions simply add an equation to the system, thus making it
three-dimensional, which is enough to produce chaos as we have seen previously.
The third technique is a little bit more complicated: by introducing a time-delay
τ into the system, we create in fact an infinite-dimensional system. Indeed, the
initial state of the system is not simply a set of values at t = 0 anymore, but it
requires the complete knowledge of the evolution of the system on the interval
[−τ, 0].

By introducing a delay τ in the system, we also introduce the associated fre-
quency fEC = 1

τ in the dynamics of the system. Dynamics can then be classified
in two main categories:

1. fEC � fRO. For short cavities, the observed dynamics typically include
pulsating behavior at the external-cavity frequency [23, 24] and quasiperi-
odicity in the form of regular pulse packages [25, 26].

2. fEC � fRO. For long cavities, the dynamics are generally more complex,
with fully-developed chaos in the form of Low-Frequency Fluctuations
(LFF) [27–29], coherence collapse [30]. The chaotic attractors are typically
high-dimensional [31] and the Radio-Frequency (RF) spectra are the most
broadband [32, 33].

Additional work has been done through the last decades by considering dif-
ferent types of feedback: pure Conventional Optical Feedback (COF) as we have
just described, optoelectronic feedback where the intensity of the laser is mea-
sured by a photodetector which modulates the injection current of the laser (see
Fig. 1.7-(d)), filtered feedback where only one longitudinal mode is fed back, in-
coherent feedback [34], polarization-rotated feedback especially in VCSELs which
can emit light in one of two orthogonal polarization states resulting in switching
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dynamics between different polarization modes. VCSELs are particularly interest-
ing for their low threshold current resulting in low energy consumption, their
circular output beam, and their geometry where emission by the top surface
instead of the edge allows for easier design of arrays.

In the work presented here, we study the specific case of PCF where the phase-
conjugate of the electric field of the laser output is fed back into the cavity after
a delay τ. COF is also briefly studied for the sake of comparison when necessary.

1.2.4 Properties of optical chaos from feedback

Figure 1.8: Example of an RF spectrum of the laser output intensity exhibiting chaotic
dynamics in the long-cavity regime.

Adding a new frequency in the system in the form of fEC can make for com-
plex dynamics to study. RF spectra of a laser diode with feedback in a chaotic
regime usually show excitation of the EC frequency and a lot of its harmonics,
especially for long cavities as illustrated in Fig. 1.8. This is usually explained by
some itinerancy among so-called External-Cavity Modes (ECMs) [28, 35] where
the hopping between the different modes generates the numerous frequency
components.

It is not uncommon to observe the frequency of relaxation oscillations being
excited too, as suggested previously. In the example of Fig. 1.8, it can be seen
around 2 GHz where the baseline of the spectrum is slightly higher.

We can use different measurements to characterize chaotic dynamics:

• These broadband RF spectra can be characterized by their bandwidth, a
measure useful when considering applications of optical chaos. Of course,
the usual definition of the bandwidth being the cutoff frequency at −3 dB
cannot be considered here because of the resonances of harmonics of fEC.
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A commonly adopted definition [36, 37] defines the bandwidth of a chaotic
system as the frequency which includes 80 % of the total power, which is
quite simple to compute. Other definitions have been proposed that could
lead to a better identification of the real bandwidth available but they have
yet to be tested on different configurations [38].

• A dynamical system can be characterized by its Lyapunov exponents which
form a spectrum. These exponents measure how quick two similar time
traces converge or diverge. Having an infinite number of degrees, a laser
with feedback theoretically has an infinite number of Lyapunov exponents.
They can be derived from the equations themselves or can be estimated on
time traces [39] but they are generally very hard to obtain.

Thankfully, since only the positive exponents are useful to characterize
chaotic behavior – because they are the ones estimating the divergence,
whereas the negative ones would make similar trajectories converge – the
actual dimension of such a system is considered to be equal to the num-
ber of positive Lyapunov exponents. In some cases, the knowledge of the
largest one only is enough to characterize the system [31, 40–42].

• The complexity of a chaotic system can also be characterized by its unpre-
dictability, which has historically been measured by the Kolmogorov-Sinai
entropy. It can be derived from the positive Lyapunov exponents of the sys-
tem or it can be estimated through other means. But it is generally another
quantifier that is hard to compute.

Recently, another quantifier, permutation entropy, has been shown to be
easier to compute on time traces and it gives results similar to the ones
that would give Kolmogorov-Sinai entropy [42, 43]. Thus, it is a possible
alternative for characterizing a chaotic system. It is based on the probabili-
ties of apparition of different ordinal patterns in time traces and gives good
results if the traces are very long.

1.2.5 Applications of optical chaos

Systems that exhibit the appropriate properties as just described, i. e. large com-
plexity and large bandwidth, can be considered for several applications [16].

First, they can be used for chaos communication, which requires the synchro-
nization of two laser diodes through optical injection (see Fig. 1.7), where the
master laser is the emitter and the slave is the receiver. By choosing similar in-
ternal parameters for the two lasers, we can make sure that the chaos produced
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Figure 1.9: Two schematics setups operating at 1.55 µm and tested for chaos-encrypted
communications. (a) The optoelectronic scheme in which the output of the
laser diode is strongly and nonlinearly modulated. (b) The all-optical scheme
in which optical feedback is used to destabilize the emitting laser and the
message is modulated on the output signal of the laser diode. In both cases
the message is recovered by subtraction of the carrier from the signal received.
Figure from Ref. [44].

by the master is reproduced by the slave [45, 46]. A signal can then be added to
the chaotic carrier – provided that the signal is weak enough when compared
to the carrier, and strong enough not to be drowned in noise – and the slave
laser will synchronize on the chaos only, thus allowing to recover the signal with
a simple subtraction [47]. An eavesdropper can only recover the signal if they
possess a similar laser device. The complexity of the chaos is also important
for the eavesdropper not to be able to reconstruct the carrier. The chaotic band-
width is important to guarantee a high-speed operation of the encrypted line
of communication [44]. Figure 1.9 presents two examples of schemes used for
chaos-encrypted communications and tested on the metropolitan area network
of the city of Athens, Greece.

Second, they can be used for generation of random numbers, even though ran-
domness and chaos are two distinct concepts [15, 48]. Since a chaotic system is
sensitive to initial conditions, even a tiny amount of noise can be amplified by
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1.2 unlocking non-linear dynamics

Figure 1.10: The chaotic outputs of two laser diodes with optical feedback are measured
by two 1-bit Analog to Digital Converters (ADCs). A simple logic gate, here
a XOR is used to combine the two bits. The stream of bits at the output of
the logic gate has proven to be random. Figure from Ref. [48].

the chaotic system, provided it has at least one large Lyapunov exponent. Ran-
dom number generators based on optical chaos are thus often characterized by
their entropy and they are capable of producing random bits at bit rates up to
hundreds of Gb.s−1. They are far quicker than traditional generators based on,
e. g. thermal noise sources. Figure 1.10 illustrates the first experimental configu-
ration used to generate random numbers from optical chaos [48].

Finally, they can be used for a range of other applications, including optical
sensing at long distances with so-called chaotic radars or replication of transistor-
like behavior [16].
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1.3 phase-conjugate feedback

PCF is a special kind of optical feedback where the electric field of the output
beam of a laser diode is phase-conjugated before being fed back into the laser
cavity. However, unlike conventional mirrors which are standard pieces of opti-
cal equipment, PCMs are not readily available in a single component. They have
to be built by using additional optical techniques.

1.3.1 Phase-conjugate mirror

Mathematically speaking, two optical waves are considered to be phase-conjugated
to each other if their complex amplitude functions are conjugated with respect
to their phase factors. This means that, considering a planar complex wave trav-
eling through space along z-axis [49]

−→
E (z, x,y, t) =

−→
E (z, x,y) exp(−ıωt) =

−→
A(z, x,y) exp [ı(kz+φ(z, x,y)) − ıωt] ,

(1.15)

then the backward frequency-degenerate phase-conjugated wave is defined as

−→
E ′(z, x,y, t) =

−→
E ′(z, x,y) exp(−ıωt) =

−→
A ′(z, x,y) exp [−ı(kz+φ(z, x,y)) − ıωt] .

(1.16)

This is only a simple example. Of course, in real-life applications, the waves
are not necessarily monochromatic and the phase-conjugated wave can be non-
degenerate, in which case the detuning between the two waves can have a more
or less important impact. But this is enough to understand how a PCM works.

To illustrate how it works (see Fig. 1.11) let us consider a plane wave interact-
ing with a disturbing medium before being reflected and see how a conventional
mirror and a PCM differ. The disturbing medium distorts the wave front and by
reflecting on a conventional mirror, the backwards wave is distorted again by the
medium (see Fig. 1.11-(a)). However, since the backwards wave keeps the same
wavefront after reflection on a PCM, passing through the disturbing medium the
second time cancels the anomaly and the plane wave is restored (see Fig. 1.11-
(b)).

It is interesting to note that the tilt of the PCM has no importance since the
mirror will always generate the backwards phase-conjugated wave. This is a
really useful property for optical feedback since we do not have to worry about
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Figure 1.11: (a) A planar wavefront is distorted and then reflected on a conventional
mirror. Distortion is accumulated as the reflection travels backwards. (b)
In the case of a PCM the wavefront is maintained upon reflection and the
distortion is reversed when the wave travels backwards. Figure from [49].

aligning the feedback wave into the laser cavity. It also means that our example
works even if the wavefront is not planar4.

However, it only works if the disturbing medium is the same during the for-
ward and backward propagation. Variations over time in the disturbing medium
can be attributed to temperature changes inducing refractive index changes or
motion of a non-homogeneous fluid in general, moving sample if it is live tissue
for example. These phenomenon are generally quite slow relatively to the prop-
agation of light forward and backward which usually occurs in less than a few
nanoseconds. So it is safe to assume that in most cases the disturbing medium
is the same during forward and backward propagation.

1.3.2 Experimental schemes

Backward four-wave mixing

Backward degenerate four-wave mixing is probably the most popular and most
studied way of creating a PCM since it was proposed in 1977 [50]. It is achieved in

4 These properties mean that if one was looking at a phase-conjugate mirror, whatever the angle
each eye would only see an image of its own pupil, assuming it would be possible to build such
a mirror.
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Figure 1.12: Schematic illustration of frequency-degenerate four-wave mixing. Two
strong pump beams interact with a weak signal beam in a third-order non-
linear medium to create a fourth beam which is the phase-conjugate of the
signal beam. If the pump beams are carefully aligned in the opposite direc-
tion, then the created beam is also in the opposite direction of the signal
beam. All waves have the same frequency. Figure from [49].

a third-order non-linear medium thanks to two (strong) pump beams traveling in
the opposite direction and one (weak) signal beam traveling in any direction. It
can be shown that this configuration creates a refractive index grating inside the
medium. Diffraction of the pumps and signal on the induced grating creates a
fourth beam that is phase-conjugated with respect to the signal beam and which
travels in the opposite direction, as illustrated in Fig. 1.12 [49]. Interestingly, such
a configuration can yield a mirror reflectivity (the ratio between the power of
the backward phase-conjugate wave and the power of the incident wave) greater
than 100 % owing to the fact the power transferred to the phase-conjugate wave
comes from the pump beams that can originate from an external source of high
power compared to the signal beam.

Since the principle of this method is very general, any material can be used
provided it has a strong enough third-order non-linearity – measured by its χ(3)

coefficient – at the desired wavelength. As such, a lot of different materials have
been shown to be able to produce optical phase-conjugation5 [49]:

1. Absorbing liquid and solid materials, such as dye solutions [51], dye-doped
matrices [52], impurity-doped glasses [53] and crystals [54], fullerenes-

5 The list of articles cited here is non-exhaustive and more examples can be found in the bibliogra-
phies of those references.
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related materials [55], and liquid crystals [56], where the refractive-index
grating is induced by population change or opto-thermal effect.

2. Lasing media, such as CO2 [57], Nd:YAG [58] and others, where the main
mechanism of refractive-index change could be the periodic spatial modu-
lation of population.

3. Metal vapors, such as Na, K, Rb, Cs [59, 60].

4. Photorefractive materials, such as LiNbO3, BaTiO3, SBN, SPS and much
more [61], where the changes in the refractive index of the medium are
photo-induced. These materials are among the most studied and we are
going to use these for several reasons.

Backward stimulated scattering

Figure 1.13: Experimental configuration for generating a phase-conjugated wave with a
scattering medium. Figure from [49].

Probably the simplest setup of all, the backward stimulated scattering tech-
nique needs a focused laser beam input and a scattering medium (see Fig. 1.13).
The theoretical explanation is based on the fact that the input wave is only quasi-
collinear – especially with an aberrator – and the non-collinear parts of the wave
act as signal beams that are phase-conjugated thanks to the incident wave and
the main back-scattered component acting as pumps [49, 62]. As with other tech-
niques, a refractive-index grating is formed in the scattering medium. But it
produces a non-degenerate phase-conjugated wave which means that it would
be more complicated to study for an optical feedback experiment.

First observed with stimulated Brillouin scattering in 1972 [63], it has also
been reported to work with stimulated Raman scattering [64], and stimulated
Rayleigh-wing scattering [65].
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Backward stimulated emission

A third technique would be to use the lasing medium to produce a phase-
conjugated wave very similarly to backward stimulated scattering. Except that
instead of producing photons with scattering, it uses stimulated emission [49].

Digital optical phase-conjugation

Figure 1.14: Experimental configuration for digital optical phase-conjugation. In the first
step, the CCD reads the spatial phase profile of the beam. In the second step,
a PC computes the phase profile to input to the SLM for it to generate the
phase-conjugated wave. Figure from [66].

Finally, a more recent technique for creating a PCM has been developed using
a camera and a SLM, as in Fig. 1.14. A mask is inserted before the CCD to read the
phase profile of the laser beam, and a computer is used to generate the image to
display on the SLM for it to act as a PCM [66]. This technique has strong poten-
tial applications in imaging of organic tissue, where the scattering is strong but
the method has proven to generate a phase-conjugated wave with good fidelity
nonetheless [67].

Configurations used in this study

Among the solutions presented above, we will use the first one: backward four-
wave mixing. In particular, photorefractive materials have been popular to make
PCMs in this configuration. In our specific case, we will not be using an external
pumping beam. Instead, we use the signal as a pump, thus working in a so-called
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Figure 1.15: Four configurations for self-pumped optical phase-conjugation with a pho-
torefractive crystal: (a) linear, (b) semi-linear, (c) ring cavity, and (d) CAT.
The deviated beams are produced thanks to fanning in the photorefractive
crystal, a phenomenon where diffusion is amplified in one direction of the
crystal. CAT configuration requires the crystal to have polished faces to
make use of total internal reflection.

self-pumped configuration where the reflectivity can theoretically reach 100% [68–
70]. Figure 1.15 presents examples of self-pumped configurations where thanks
to multiple passes through the crystal, the same beam acts as the signal and as
pumps. This makes the experiment easy to set up, with only one laser to align
and most importantly, it produces a frequency-degenerate phase-conjugated sig-
nal. If we used external pumping, there would be a frequency detuning between
the signal and the backward phase-conjugated wave, which would be an impor-
tant parameter for optical feedback.

In practice, lower reflectivities have been reached, because of absorption losses
in the medium, imperfect mirrors, Fresnel reflections. Examples in a ring cavity
setup include 17 % reflectivity with BaTiO3 in Ref. [71], 9 % with tellurium-
doped Sn2P2S6 in Ref. [72]. 50 % has been reached with KNbO3 in a feed-
back loop configuration in Ref. [73] or 16 % in BaTiO3. Good results have been
achieved using the CAT configuration and a BaTiO3 crystal with 50% in Refs. [32,
74].

In this thesis, we choose to make our PCM with four-wave mixing in a pho-
torefractive medium for several reasons. Choosing a self-pumped configuration
makes for easier alignment and simpler modeling since there is no detuning to
account for. This leaves us with several choices for four-wave mixing medium.
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Here, we choose photorefractive material since it has been used with good re-
sults in several previous experiments analyzing the behavior of semiconductor
lasers with PCF [24, 32, 75–77]. Lasing medium and metal vapors have been used
too but less frequently and not in self-pumped configurations [78, 79]. Finally,
nonlinear optics is one of the strengths of our group and photorefractive materi-
als were readily available for experimenting with.

In particular, we will use two different configurations in this thesis: the ring
cavity (see Fig. 1.15-(c)) with a Sn2P2S6 crystal doped with tellurium in Chap-
ter 6 and the CAT configuration (see Fig. 1.15-(d)) with a rhodium-doped BaTiO3
crystal in Chapter 7 since we wanted to reach higher values of the reflectivity.

For modeling and simulation in Part I, the method used to make the PCM does
not have an influence on the model we use, as long as it is self-pumped, meaning
that there is no frequency detuning.

1.4 semiconductor laser with phase-conjugate feedback

PCF into a semiconductor laser diode has already been performed in the past
with studies dating back to 1986. At first, the motivations were to take advantage
of the self-aligning property of the PCF and to get rid of the phase-dependence
of COF [80, 81]. The first experimental study reported on enhancement of the
spectral characteristics of the laser diode [80]. Theory reported on the analysis of
the first Hopf bifurcation, the first ECM and its destabilization to quasiperiodicity
and chaos, as well as confirming the analysis of linewidth enhancement [81, 82].

Studies continued to be published throughout the years, mostly exploring the
rise and richness of chaotic dynamics, their spectral density as well as the sta-
bility of various solutions with rate equations models [83–88] – some including
the detuning induced by non-frequency-degenerate PCMs. The first mapping of
dynamics from a semiconductor laser with PCF was published in 1997 [89]. Only
a few experimental studies were published [75, 78, 79].

Even though there were far less studies for PCF than for COF, the reports from
the articles aforementioned already pointed to a well-understood route to chaos
for a laser diode with PCF. The laser is in a stable Steady-State (SS) for really
low values of the feedback rate, but quickly destabilizes through a first Hopf
bifurcation, which has the effect of unlocking undamped relaxation oscillations.
This oscillating dynamics then destabilizes multiple times when increasing the
feedback strength through quasiperiodicity and gives birth to chaotic dynamics6

(coherence collapse), which is well illustrated in Fig. 1.16. The route is similar to

6 We will analyze this route to chaos theoretically in Section 2.3 and experimentally in Section 7.2.
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the one for a laser diode with COF. Note that in the self-pumped configurations
that we will use in the work presented here, we will not observe the locking
illustrated in Fig. 1.16-(b), (c) because the phase-conjugated wave has the same
optical frequency as the output beam of the laser.

An interesting and thorough experimental comparison of the two types of
feedback with the same laser diode was published in 2001 [32], stressing the dif-
ferences and similarities between the two feedback configurations. It confirmed
that the feedback fraction needed to destabilize a laser diode is lower with PCF

than with COF. However, the authors did not observe a route to chaos through
undamped laser relaxation oscillations. This is most probably due to the fact that
the authors used a highly damped laser diode.

The authors of Ref. [32] used the phenomenological classification introduced
by Tkach and Chraplyvy in 1986 [90] which distinguishes five regimes of op-
eration of a laser diode with COF: regimes I to III correspond to SS emission
with properties specific to COF and do not really make sense for a laser with
PCF7; regime IV where we reach coherence collapse and other forms of chaos
after destabilization by excitation of relaxation oscillations or other mechanisms;
regime V corresponds to a restabilization to a SS and increasing the feedback rate
does not have any more influence on the laser diode dynamics. The experiment
in Ref. [32] shows that the region of parameters exhibiting operation in regime
IV is larger in the case of PCF than it is in the case of COF (see Fig. 1.17).

In the early 2000s, several studies focused on the analysis of bifurcations of the
system, with tools such as continuation [91–93], analyzing among others the spe-
cific bifurcations of ECMs in the case of PCF. ECMs in PCF are oscillating solutions
at harmonics of the EC frequency appearing between bubbles of chaos [87]. The
study of ECMs will be more detailed in Chapters 2 and 3, along with the model
we used which is the same as in Ref. [93].

Finally, more recent studies realized in our laboratory – before the work ex-
posed in this thesis – expanded on the wealth of dynamics exhibited by a laser
diode with PCF. They showed numerically how successive bifurcations to ECMs

of higher orders should lead to a disappearance of chaos known as a chaos cri-
sis. In the experiment, observation of stable ECMs – up to the fifth harmonic –
were reported [24, 72]. Interesting chaotic dynamics were reported with regimes
such as LFF [77] – previously numerically studied in Ref. [94] – and extreme
events [76].

7 This is due to the fact that solutions known as ECMs are fundamentally different depending on
the type of feedback considered. Chapters 2 and 3 will introduce and explain this difference in
details.
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However, more insight into the model would be needed to fully understand
how these dynamics appear. Instead of using analytical tools and bifurcation
analysis which were popular in the latest theoretical studies, we will use nu-
merical simulations to understand the physics of the system. Also, it would be
interesting to push the experiment further and see if we can reach the chaos cri-
sis with high-order ECMs. Also, with better measurement tools now available –
photodetectors with a large bandwidth, oscilloscopes with large sampling rates –
we will be able to observe things that could have gone unnoticed in earlier exper-
iments. Finally, chaos from a laser diode with PCF has never been characterized
in terms of complexity or evaluated for possible applications. We therefore see
that there is still work to be done for understanding PCF dynamics.
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Figure 1.16: Optical spectra of a laser diode with PCF achieved in a rubidium vapor
with a frequency-detuned pump. (a) Free-running laser, linewidth around
50 MHz. (b) Behavior attributed to four-wave mixing. (c) Locking of the
laser diode to the pump frequency. (d) Undamped relaxation oscillations.
Peak A is located 3.9 GHz from the central peak. (e) Destabilization
through quasiperiodicity. Peak B is located 7.8 GHz from the central peak.
(f) Quasiperiodicity increases. Peaks C and D are located 12 and 16 GHz
from the central peak. (g) Broad spectra. (h) Coherence collapse. Figure
from [79].
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Figure 1.17: Mapping of dynamical regimes for the same laser diode with PCF and with
COF when changing the feedback fraction (both sides), the EC length (left
side), and the injection current (right side). Figure from [32].
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1.5 conclusion

1.5.1 Motivations

In this introduction, we have seen roughly how semiconductor lasers operate
and we have explained their basic properties. Since their invention, laser diodes
have always evolved and continue to do so to this day, with more research de-
voted to the design of lasers emitting at any desired wavelength, to the improve-
ment of their properties, be it linewidth, stability, or energy consumption among
others.

A lot of research has also been aimed towards applications of laser diodes. We
have seen how such devices can be driven to exhibit non-linear dynamics, be
they regular or chaotic oscillations of the output power. These types of dynam-
ics are interesting from a purely scientific point of view since chaos represents
a paradigm shift in our understanding of the behavior of complex systems. But
they are also interesting from a practical point of view with several applications
already demonstrated at realistic scales. Overall, the study of non-linear dynam-
ics in lasers and their applications is still a strong field of research.

In particular, we are interested here in systems based on feedback which are
interesting for their large dimensionality, potentially large chaotic bandwidths
and thus for their use in a lot of applications using optical chaos. We especially
focus on PCF here, and contrast it with COF. Many differences and similarities
between the two kinds of feedback have already been shown but more can be
done.

1.5.2 Objectives

In this context, we want to confirm that a simple mathematical model is enough
to reproduce qualitatively all the recent experimental observations. This model
only takes into account the phase-conjugate nature of the feedback and the
time-delay, leaving aside gain saturation, possible multiple round-trips in the
feedback loop, non-instantaneous phase-conjugation. Despite the simplicity we
will show that the simulated model is capable of exhibiting periodic oscillations,
quasi-periodicity, chaos in two distinctive regimes: LFF and extreme events.

Based on the expertise of the laboratory with this setup, we also want to con-
tinue to explore the experimental behavior. In particular, we will focus on re-
producing any new feature that we could unveil thanks to our simulations, and
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we will also begin to test if a chaotic signal from a laser diode with PCF can be
suitable for applications using optical chaos.

1.5.3 Outline

Part I is dedicated to the theoretical part of our investigation, including model-
ing, the tools we use, and several investigations with numerical simulations in
order to reproduce dynamics observed experimentally.

In Chapter 2, we will start from the standard equations modeling a semicon-
ductor laser and derive the simple normalized model that we will use further
in the thesis. We will describe the RK algorithm used to simulate time traces.
Different tools stemming from signal analysis and non-linear dynamics will be
introduced. They will be used through the rest of the work.

We will use our model and numerical simulations in Chapters 3-5 to show
how we reproduce all kinds of dynamics – namely ECMs, LFF and extreme events.
Interestingly, we will show that in chaotic dynamics, itinerancy happens along
ruins of ECMs, as is the case for a laser with COF. Since the nature of ECMs is fun-
damentally different in the case of PCF, we expect to see very different frequency
signatures in the chaotic signal.

In Part II are presented the results of our experimental investigations.
Based on our expectations acquired with simulated time traces, we will present

the experiment in Chapter 6 where the whole setup along with measurement
tools are presented. By operating in a long-cavity regime, we are able to show
the peculiar frequency signature of PCF thanks to a new technique applied to
laser dynamics analysis: Short-Time Fourier Transform (STFT). We also analyze
the bandwidth of the signal when changing the reflectivity of the PCM and we
compare with the COF configuration. We find that using PCF can lead to a larger
bandwidth and thus could be suitable to applications. Interestingly, the band-
width does not seem to saturate when the reflectivity increases, but this experi-
ment does not allow for very large reflectivities.

To have the possibility to reach higher reflectivities, we propose in Chapter 7

to build a second experiment, using a CAT configuration: it will allow easier
alignment of the PCM and provide higher reflectivities; we will also be able to
obtain shorter cavities.

Finally, we conclude in Chapter 8 on our contributions to the field and we
summarize the additional knowledge discovered thanks to this work. We also
open the way to several ideas that could be pursued to extend this thesis work.
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T H E O RY A N D S I M U L AT I O N





2
M O D E L A N D S I M U L AT I O N O F A L A S E R D I O D E W I T H
P H A S E - C O N J U G AT E F E E D B A C K

In this Chapter, we introduce the set of equations that we are going to use
through the rest of Part I. We derive them from the rate equations of a semi-
conductor laser diode introduced in Chapter 1. These equations will be studied
in the hope of reproducing the dynamics observed in Refs. [24, 72, 76, 77]. The
model needs to include the optical feedback and its phase-conjugated nature,
which are believed to be the sources responsible for dynamics observed experi-
mentally.

However, we only wish to obtain a qualitative agreement, in order to under-
stand the physics that lead to said dynamics. As such, we will not model com-
plex behaviors that could have a minor influence on our system. Therefore we
do not take into account the saturation of gain that can happen especially when
working far from the laser threshold. Also, we suppose that only one round-trip
in the External Cavity (EC) occurs, which is usually a right assumption in the
case of low optical output power and low feedback rates.

Finally, for easier manipulation, we use a normalized form of the model and
we will never bother to convert back to SI units since quantitative agreement is
not our objective.

The need for a good theoretical model is crucial for the understanding of the
physics of an optical system, since we can have access to the evolution of the
electric field and its phase, as well as the dynamics of the carrier density. In
an experiment, we can only measure the output power related to the squared
modulus of the amplitude of the electric field. In some cases, phase evolution
helps explaining how the dynamics appear [28] and having access to it via a
model is important.
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2.1 rate equation model of a semiconductor laser with feed-
back

We have seen in Section 1.1 that a solitary semiconductor laser can be modeled
with a set of two rate equations taking into account the dynamics of the complex
electric field Ê(t) and the carrier densityN(t). The polarization dynamics relaxes
so fast that it can be adiabatically eliminated from the set of equations [12].
For the sake of simplicity, we consider that we work with a single-mode laser
without nonlinear saturation of the gain, and we can use the following equations
to model a semiconductor laser [6, 95]:

dÊ(t)
dt

=

[
1+ ıα

2

{
GN(N(t) −N0) −

1

τp

}
+ ıω

]
Ê(t), (2.1)

dN(t)

dt
=
I

q
−
N(t)

τe
−GN(N(t) −N0)|Ê(t)|2, (2.2)

where N0 is the carrier density at which the medium becomes transparent
and α is the linewidth enhancement factor, also known as the Henry factor [7]
or simply the alpha factor. Equation (2.1) models the evolution of the electric
field Ê(t), which is ruled by the stimulated emission of photons (with differen-
tial gain GN) and the decaying rate of photons (τp) due to losses in the laser
cavity. Equation (2.2) models the evolution of the carrier density N(t), which is
determined by the injection current I that adds carriers to the laser cavity, the
spontaneous emission (at a rate τe) responsible for the decay of carriers, and
the stimulated emission again with a negative contribution this time – because
it consumes carriers.

We can also simplify the model by considering that the electric field is com-
posed of a fast optical carrier with an angular frequencyω and a slowly evolving
envelope, so that we can write:

Ê(t) = E(t) exp(ıωt), (2.3)

dÊ(t)
dt

=
dE(t)
dt

exp(ıωt) + ıωE(t) exp(ıωt). (2.4)

By using Eqs. (2.3) and (2.4) in Eqs. (2.1) and (2.2), we obtain a simple model
of a laser diode:
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dE(t)
dt

=
1

2

[
(1+ ıα)

{
GN(N(t) −N0) −

1

τp

}]
E(t), (2.5)

dN(t)

dt
=
I

q
−
N(t)

τe
−GN(N(t) −N0)|E(t)|2. (2.6)

We should note here that E(t) is still a complex variable accounting for the
slowly varying envelope of the electric field.

E(t)

Laser diode External mirror

Rf Rf
R

Active medium

E(t-τ)

L

Figure 2.1: A semiconductor laser with COF: a laser cavity (left) composed of an active
medium providing gain and two reflective facets, and a mirror (right) creat-
ing an EC of length L in the air.

Adding optical feedback to a semiconductor laser can be seen as simply adding
a second cavity of length L to the already existing one, except that this additional
cavity is composed of air, and not of an active medium (concept illustrated in
Fig. 2.1). The round-trip in the EC delays the signal that is fed back into the
laser cavity by a duration τ = 2L

c typically varying between 0.1 to 10 ns for
non-integrated cavities. Once again, for the sake of simplicity, we only consider
a single round-trip in the EC, which is usually realistic for low values of the feed-
back rate. This means that optical feedback (at time t) can simply be modeled as
an additional source for the electric field inside the laser cavity, but where the
source is a delayed replica of the electric field (emitted at t−τ) with a phase-shift
taking into account the phase accumulated during the round-trip:

κE(t− τ) exp(−ıωτ). (2.7)

Due to the power reflectivity R of the external mirror and the power reflectivity
Rf of laser facets, only a fraction of the electric field is fed back into the laser
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cavity: κ = 1−Rf
τin

η
√
R
Rf

, where η is the coupling efficiency of the feedback, and
τin is the round-trip time in the laser cavity. This gives us the following model
of a laser diode with optical feedback:

dE(t)
dt

=
1

2

[
(1+ ıα)

{
GN(N(t) −N0) −

1

τp

}]
E(t) + κE(t− τ) exp(−ıωτ),

(2.8)
dN(t)

dt
=
I

q
−
N(t)

τe
−GN(N(t) −N0)|E(t)|2. (2.9)

These equations were first introduced in 1980 [8] and are now famously known
as the Lang-Kobayashi rate equations for a semiconductor laser with COF. They
have been used in several theoretical studies [25, 28, 96, 97] and have been
adapted to model other types of feedback or lasers such as Phase-Conjugate
Feedback (PCF) or multimode lasers [81, 93, 98, 99].
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2.2 normalized rate equations for a laser diode with pcf

2.2.1 Normalization

Here, we are going to adapt Eqs. (2.8), (2.9) in order to model a semiconduc-
tor laser with PCF. For this, we must remind ourselves that a Phase-Conjugate
Mirror (PCM) has the effect of reflecting the phase-conjugate of any wavefront
that hits it, which means that the feedback term must contain the conjugate of
the complex electric field and also that in the definition of the feedback rate
κ, we can consider η = 1 because of the auto-aligning feature of the backward
beam1. Owing to the phase-conjugate nature of the feedback, any phase accu-
mulated during the forward propagation of the laser beam will be compensated
during the backward trip, thus there is no exp(−ıωτ) term for PCF. But to ac-
count for any phase-shift that can occur at the reflection on the PCM, we are
going to use the variable ΦPCM [81]. Finally, as we have seen in Section 1.3, we
must account for the fact that some PCMs induce an angular frequency detuning
2δ = 2(ω−ωP) due to the angular frequency of a pump beam ωP being off-
set from the angular frequency of the signal beam ω. We obtain the following
model [95]:

dE(t)
dt

=
1

2

[
(1+ ıα)

{
GN(N(t) −N0) −

1

τp

}]
E(t) (2.10)

+ κE∗(t− τ) exp
[
−ı2δ

(
t−

τ

2

)
+ ıΦPCM

]
,

dN(t)

dt
=
I

q
−
N(t)

τe
−GN(N(t) −N0)|E(t)|2, (2.11)

which is general enough to be used for simulating different experimental con-
figurations. This model could be made even more complete by adding a filtering
effect due to the penetration depth inside the medium used for creating the PCM,
which has been done in other studies [99, 101].

However, since we use a PCM with self-pumped four-wave mixing in a photore-
fractive crystal in our experiments (see Chapters 6 and 7), there was no frequency
detuning and thus we can take 2δ = 0 here. Also, we can assume that ΦPCM = 0

without any loss of generality [88].

1 In an experiment, it is almost impossible to create a PCM with a perfect fidelity across the whole
beam profile. The coupling efficiency thus cannot be exactly 1, but it can still attain large values
and a PCM allows for a higher efficiency than a conventional mirror [100]. Since we do not aim for
a quantitative model, we allow ourselves to use η = 1 in the model.
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For easier use with mathematical tools, we are also going to normalize these
equations, as was originally done by Erneux et al. [93] to obtain a formulation
that was later adopted for several studies [35, 72, 101–103]. Details of the normal-
ization can be found in Appendix A. It yields the following equations:

dY(t)
dt

= (1+ ıα)Y(t)Z(t) + γY∗(t− θ),

T
dZ(t)

dt
= P−Z(t) − (1+ 2Z(t))|Y(t)|2,

(2.12)

(2.13)

where the signification and typical values of all symbols can be found in Ta-
ble 2.1. For the rest of the work presented here, these are the equations that will
be used.

Symbol Description Typical value(s)

Y Complex normalized electric field –

Z Real normalized carrier density –

t Time in units of τp –

τp Photon lifetime in the laser cavity 1.4 ps

α Linewidth enhancement factor 2 to 6

γ Normalized feedback rate 0 to 0.05

θ Delay in units of τp 10 to 3200

T Ratio of carrier to photon lifetimes 1428

P Pump parameter above threshold 0.0417

Table 2.1: Signification and typical values of notations used in the normalized equations
(Eqs. (2.12), (2.13)) to model a semiconductor laser with PCF. Typical values
mentioned either come from past studies [72, 84, 93, 102] for comparison or
from new configurations we wanted to investigate [24, 35, 103].

2.2.2 Steady-state solutions

This set of equations, even though it models our system with several approxima-
tions, is still rather complex. Notably, it involves a nonlinear term in the equation
for the electric field and introduces a time-delayed term, which gives an infinite
dimension to the system. Overall, the system of equations cannot be solved an-
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alytically. However it is possible to determine the Steady-State (SS) solutions of
this system. We introduce the decomposition :

Y(t) = Y(t) exp(ıΦ(t)), (2.14)

where Y is the real amplitude of Y, and Φ is its phase. We substitute Eq. (2.14)
into Eq. 2.12:

dY(t)

dt
exp(ıΦ(t)) + i

dΦ(t)

dt
Y(t) exp(ıΦ(t)) (2.15)

= (1+ ıα)Y(t) exp(ıΦ(t))Z(t) + γY(t− θ) exp(−ıΦ(t− θ)).

This simplifies easily by dividing by exp(ıΦ(t)):

dY(t)

dt
+ ı
dΦ(t)

dt
Y(t) =(1+ ıα)Y(t)Z(t) (2.16)

+ γY(t− θ) exp [−ı(Φ(t− θ) +Φ(t))] .

Using the relation exp(−ıx) = cos x− ı sin x we obtain:

dY(t)

dt
+ ı
dΦ(t)

dt
Y(t) =(1+ ıα)Y(t)Z(t) (2.17)

+ γY(t− θ) cos [(Φ(t− θ) +Φ(t))]

− ı sin [(Φ(t− θ) +Φ(t))] .

Finally, we obtain the equations for the real amplitude Y(t) and the real phase
Φ(t) by separating real and imaginary parts of Eq. (2.17):

dY(t)

dt
=Y(t)Z(t) + γY(t− θ) cos [(Φ(t) +Φ(t− θ))] , (2.18)

dΦ(t)

dt
=αZ(t) − γ

Y(t− θ)

Y(t)
sin [(Φ(t) +Φ(t− θ))] . (2.19)

A SS solution of this system implies dY(t)dt =
dΦ(t)
dt =

dZ(t)
dt = 0. This condition

changes Eqs.(2.18), (2.19), and (2.13) into:

Z0 =
γ

α
sin(2Φ0), (2.20)

Z0 = −γ cos(2Φ0), (2.21)

Y20 =
P−Z0
1+ 2Z0

. (2.22)
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From these three equations we can find that there are two possible branches
of solutions, depending on the value of 2Φ [93]:

2Φ0 = − arctan(α), Z0 = −
γ√
1+α2

, (2.23)

2Φ0 = π− arctan(α), Z0 =
γ√
1+α2

, (2.24)

Y20 =
P−Z0
1+ 2Z0

> 0. (2.25)

Figure 2.2: As we modeled it, we find that a laser diode with PCF can have only two SSs.
We plot here the value Y20 of the SSs versus the feedback rate γ.

These two possible branches of SSs are plotted in Fig. 2.2 and they are the only
ones. But their stability cannot be evaluated analytically: authors of Ref. [93] have
searched for the Hopf bifurcations that destabilize these SSs by introducing the
growth rate of a small perturbation ıσ and ε = T−1 which gives the following
transcendental equations:
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0 =σ
{
(1+α2)Z20 [cos(2σθ) − 1] + σ2

}
+ ε

1+ 2P

1+ 2Z0

[
−(1+α2)Z20 sin(2σθ) + 2σZ0

]
− 2ε(P−Z0)(1+α

2)Z0 [sin(σθ) − σ] , (2.26)

0 =σ
[
(1+α2)Z20 sin(2σθ) − 2σ20

]
+ ε

1+ 2P

1+ 2Z0

{
(1+α2)Z20 [cos(2σθ) − 1] + σ2

}
+ 2ε(P−Z0)(1+α

2)Z0 [cos(σθ) + 1] . (2.27)

In addition to being transcendental, these equations are hard to solve nu-
merically. The authors proposed to take advantage of the large value of T to
use asymptotic techniques [104, 105] and find approximations of the bifurcation
points. Of the two branches that exist, they showed that the upper one quickly
destabilizes through a Hopf bifurcation and that the lower one is always unsta-
ble [93].

Overall, they combined analytical tools with numerical tools and continua-
tion [106] to study the SSs and three of the many oscillating solutions known
as External-Cavity Modes (ECMs). These solutions are self-pulsating harmonics
of the EC frequency that we define with their order n such that ECMn has a
frequency of oscillations equal to fn = n

τp
= nfEC. In that regard, they are fun-

damentally different from the ECMs of the laser with COF, a system for which
they are SSs.

Asymptotic techniques are however limited. It has been shown in Ref. [102]
that if continuation tools and asymptotic techniques give comparable results
for the first Hopf bifurcations, it is not the case for the bifurcations occurring
for large values of the feedback rate γ. We thus think it is useful to conduct a
thorough analysis of the bifurcations and dynamics of the laser diode with PCF

using numerical integration, which was used in Refs. [93, 102]. When possible
we will compare our results with those given by continuation and asymptotic
tools.

We are going to explore the transitions between several types of dynamics (os-
cillations, chaos) as well as characteristics of said dynamics. How we numerically
integrate the set of equations of our model is described in the following section.
We will also take a look at the dynamics that we can expect from this system
when illustrating the tools we use to analyze time traces, and further studies of
different types of dynamics will be presented in Chapters 3, 4, and 5.
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2.3 numerical simulation and analysis toolbox

Here, our theoretical work is not focused on the use of analytical tools, but rather
on results of numerical simulation that aim at reproducing experimental results
observed in Refs. [24, 72, 76, 77] for realistic values of the set of parameters. We
wish to gain insight into the physics that drives the observed behaviors.

2.3.1 Runge-Kutta algorithm

Since Eqs. (2.12), (2.13) cannot be solved analytically, we have to use numerical
integration methods to simulate the dynamics of the system. For easier use with
programming tools and languages, we do not want to use complex numbers in
the equations, so we need to derive either the amplitude and phase, or the real
and imaginary electric-field equations from the complex electric-field equations.
For some problems, phase dynamics can be quite important [28] so we choose to
work with the amplitude and phase decomposition, which we already developed
in the previous section and yielded the following set of equations modeling a
laser diode with PCF:

dY(t)

dt
=Y(t)Z(t) + γY(t− θ) cos [(Φ(t) +Φ(t− θ))] ,

dΦ(t)

dt
=αZ(t) − γ

Y(t− θ)

Y(t)
sin [(Φ(t) +Φ(t− θ))] ,

T
dZ(t)

dt
=P−Z(t) − (1+ 2Z(t))Y(t)2.

(2.28)

(2.29)

(2.30)

These equations are almost exactly the same as for a laser with COF, except
that Φ(t) +Φ(t− θ) is replaced with Φ(t) −Φ(t− θ). And this slight change in
the equations is responsible for the different physics of the ECMs as mentioned
in Section 2.2 and for features of the dynamics that are specific to the laser with
PCF as will be seen in the following chapters.

Having the equations written in the right form for our needs, we can use
numerical integration to simulate the dynamics of our system. We choose here a
3/8-rule fourth-order Runge-Kutta (RK) method, which we detail in Appendix B,
along with samples of code from the implementation in C and Matlab.

This method of numerical integration has several advantages. It is an explicit
method, which means that the next value at each iteration can be simply com-
puted from the past approximated values, whereas an implicit method would
require to solve an algebraic equation involving the next value at each iteration
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of the algorithm. It gives a good estimation of the function we want to approx-
imate: with a time-step h, the local truncation error is on the order of O(h5)
and the accumulated error is on the order of O(h4). Finally, it is a fixed-step
method, which means that if we take a value of h low enough, we do not need
to adapt the length of the time-step at each iteration of the algorithm. All these
points make for a robust approximating algorithm of the dynamics we want to
simulate, while keeping the implementation quite easy (see samples of code in
Appendix B) and not too costly in terms of computation time.

Figure 2.3: Numerical integration of Eqs. (2.28)-(2.30) yields time traces of (a) the output
power of the laser equal to |Y(t)|2 which is the typically measured in an
experiment, (b) the normalized amplitude of the electric field Y(t) and (c) its
phase Φ(t), and (d) the normalized carrier density Z(t).

This algorithm is used to generate (long) time traces of the three variables of
the system: Y(t),Φ(t) and Z(t), snapshots of which are presented in Fig. 2.3 with
an example of a chaotic time trace.

2.3.2 Bifurcation diagrams

To get a good overview of the dynamics that our system exhibits while changing
a parameter without looking at all the individual time traces and to understand
how they are linked together, one usually computes what we call a bifurcation
diagram. For this, we take fixed values of all the parameters of our system, except
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Figure 2.4: (a) Bifurcation diagram computed with increasing values of γ (from 0 to 0.05)
for α = 3 and θ = 476 which corresponds to parameters used in Refs. [93,
102]. Different dynamical regimes can be observed. (b) Inset of the details of
the transitions occurring for low values of feedback.

for the parameter for which we want to study the influence on the dynamics, e.g.
the feedback rate γ.

Let us say we make γ vary from 0 to 0.05 in 1001 steps. Since we know that the
system is sensitive to initial conditions, we are also going to simulate how the
system would behave in a real experiment, meaning that the result of the first
simulation (for γ = 0) will be used as the initial condition for the second simu-
lation (for γ = 0.00005), and so on until we reach the last value of the feedback
rate2. For each of the simulated time traces, we extract all the local extrema of
the optical power |Y(t)|2 = Y2(t) (as seen in Fig. 2.3-(a)), and plot them against

2 This sensitivity to initial conditions means that a bifurcation diagram computed forward (from
γ = 0 to γ = 0.05) can be different from one computed backward (from γ = 0.05 to γ = 0),
exhibiting bistability of solutions or more complex situations. In the present demonstration, we
only look at a forward bifurcation diagram.
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the corresponding value of the feedback, which gives the bifurcation diagram in
Fig. 2.4.

For really small values of the feedback rate ( see Fig. 2.4-(b)), there is only one
point in the diagram, meaning that we observe the stable SS mentioned earlier.
It quickly becomes unstable and another dynamics appears through a Hopf bi-
furcation, with two points on the diagram: it means that we have reached an
oscillating state, where the relaxation oscillations of the laser become undamped
thanks to the feedback. This new state is quickly destabilized through quasiperi-
odicity, as can be observed in a laser with COF [107], and we enter a regime
of chaos with a lot of different extrema appearing on the diagram. Finally, for
larger values of the feedback rate, we observe a succession of ECMs, interspersed
with shrinking windows of chaos. The fact that windows of chaos shrink as γ
increases is related to a chaos crisis [87, 102].

As will be presented in Fig. 2.8 the ECMs observed here are indeed self-pulsating
solutions at increasing harmonics of the EC frequency.

2.3.3 Signal analysis

We also use several tools borrowed from the field of signal analysis which prove
to be very useful for understanding the physics behind non-linear dynamics.

Figure 2.5: RF spectra can be used to gain more insight on the dynamics observed in a
time trace. (a) RF spectrum of a chaotic time trace for a large delay, which
translates into a short EC frequency and a lot of harmonics appearing. (b) RF

spectrum of a time trace for a short cavity exhibiting the third harmonic of
fEC, which means that we observe an ECM of order 3.

Fast Fourier Transform (FFT) algorithms can be used on the optical power of
the system |Y(t)|2 to compute the RF spectrum of a time trace. As can be seen
in Fig. 2.5-(a), the EC frequency and its multiples can often be found in chaotic
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time traces from a laser with feedback. The peaks are large and high above the
noise level, which suggests that we are in presence of chaos, and not simply
noise. In Fig. 2.5-(b), we see the RF spectrum of an ECM, corresponding to only
one multiple (the third) of the EC frequency and its harmonic. Here, the peak
is sharp and the noise level is visible, which indicates that we observe a quasi-
perfect sinusoid, representative of an ECM. In addition to computing RF spectra,
FFT can also be used on Y(t) to compute the optical spectrum of the laser from
the electric field.

Figure 2.6: (a) Time trace we want to analyze with STFT. The first step consists in extract-
ing the data in the moving window (dark red), computing the first FFT and
storing it. The time window is then shifted further to the right by a fixed time
increment. We repeat the process at the second position of the time window
(red), the third position (light red), etc. (b) The spectrogram is obtained by
positioning the successive FFTs next to each other with the magnitude of the
spectrum represented by a color scale.

Adapted from the FFT algorithm is the STFT technique, which simply consists
of doing a FFT on a short window of time (e.g. 10 ns) to get a RF spectrum,
then shifting this window of a fraction of the time-window (e.g. 1 ns) to get
a RF spectrogram of the time trace. This allows to observe the evolution of the
frequency content versus time, which is useful in dynamics where brutal changes
can appear. This technique is illustrated in Fig. 2.6 and is used in Chapter 6. The
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time resolution is given by the time increment with which we shift the window
and the frequency resolution is determined by the length of the window and the
sampling rate with which the signal is acquired.

Autocorrelation techniques on the optical output power are also commonly
used [108, 109]. They are another useful tool to analyze the presence of the time-
delay in the time trace and are sometimes more useful to look at than the RF

spectra, which gives a lot of information.

Figure 2.7: (a) Output power of the laser showing an oscillating state for γ = 0.0017.
Different phase-spaces in which representation of trajectories is possible in-
clude (b) the plane (Z,∆Φ where ∆Φ = Φ(t) −Φ(t− τ) which we will use
in Chapter 4, (c) the 3D space comprised of the output power and delayed
versions of the output power at t− τ and t− 2τ.

To analyze the complex behavior of some systems, one can also use represen-
tation in a phase-space diagram. It consists of taking at least two representative
variables of the system, and plotting one versus the other as time passes. This
method can be used to identify chaotic attractors, or to recognize a periodic
solution (which would give a limit-cycle in this representation). Examples on a
quasiperiodic time trace in Fig. 2.7 show that several representations are possible,
meaning that there is not a unique phase space and we can imagine several of
them. Especially, the phase-space of time-delayed systems is infinite-dimensional.
Representations in Figs. 2.7-(b) and (c) are projections of this phase-space in 2D
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and 3D which can make their interpretation difficult when the trajectories are
more complicated. The famous image of the Lorenz attractor – also known as
the butterfly – as we have seen it in Section 1.2 (see Fig. 1.6) comes from its rep-
resentation in a three-dimensional phase-space3. We use this tool in Chapter 4.

The techniques presented here that are applied to the optical output power
can also be used on experimental time traces, since optical power is a measur-
able variable of the experiment. Techniques that require direct knowledge of the
electric field or its phase are more difficult to implement since these physical val-
ues are typically not measurable. Although it is not commonly used, the carrier
density can be measured from the bias voltage of the laser diode, provided that
the injection current is close to the threshold [110]. This measurement can be
useful to recreate the phase-space evolution of a laser with feedback. This result
is recent (2015) and we did not implement this measurement in our experimen-
tal setups. It would be possible to make it by adding a bias tee to the electrical
connection of the laser diode and use the RF port of the tee to measure the high-
frequency fluctuations of the forward bias. But as we will see in Part II, we will
always work far above the threshold so it is not guaranteed that the measure-
ment of the high-frequency dynamics would be representative of the dynamics
of the carrier density.

2.3.4 Summary

To illustrate the tools we use, we show the time traces, RF spectra and phase-
space representations of the different dynamics represented in the bifurcation
diagram of Fig. 2.4-(a).

After the initial SS is destabilized, we observe excitation of the relaxation os-
cillation frequency. At the bifurcation the output power exhibits an almost har-
monic waveform but it becomes destabilized to a quasiperiodic state when in-
creasing the feedback rate to e. g. γ = 0.0016 (see first row of Fig. 2.8). The RF

spectrum has peaks at fRO, fRO2 and corresponding harmonics. In the phase-
space, this oscillating dynamics is represented by a distorted limit-cycle.

Increasing the feedback rate to larger values leads to a succession of chaotic
bubbles for which the RF spectra are broad with some resonance at the harmon-
ics of the EC frequency (see the second, third and sixth rows of Fig. 2.8). The
trajectories in the phase-space are quite complicated and the system seems to
never follow exactly the same path twice, which is characteristic of chaos. We

3 In the case of Lorenz equations, the system is 3D so finding a phase-space that represents ade-
quately the trajectories of the system is easy.
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Figure 2.8: Time traces (left), RF spectra (middle), and phase-space (right) of several dy-
namics from the bifurcation diagram 2.4-(a) for values of the feedback rate γ
0.0016, 0.0066, 0.012, 0.015, 0.02, 0.023, 0.03 from top to bottom.
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can note that there are basins of attractions in this space where the system goes
more often. We will detail this behavior in Chapter 4.

Finally, we observe the stabilization of almost-perfect sinusoidal solutions –
known as ECMs – as the bubbles of chaos shrink in size when increasing the
feedback rate [87, 102]. Figure 2.8 shows three of these modes (fourth, fifth and
seventh rows) with oscillation frequencies being close to increasing harmonics of
the EC frequency which allows us to label them as (respectively) ECMs of orders
3, 4, and 6.

The dynamics illustrated in Fig. 2.8 do not represent all the bubbles of chaos
and ECMs that appear in the bifurcation diagram of Fig. 2.4 but they give a good
overview of what we will observe in the following chapters and how the different
representations will allows us to explore different properties of the dynamics.
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2.4 conclusion

We have derived here in Eqs. (2.12) and (2.13) the model of a semiconductor
laser with PCF. The advantage of this model, which has already been used in
several articles [76, 93, 102], lies in its simplicity. Complex contributions from
gain saturation or multiple round-trips in the EC cavity are neglected. We use a
normalized version of the equation for easier manipulation since we only want
to achieve qualitative reproduction of experimental results for realistic values of
the parameters.

Numerical integration of the model will be carried out with a Runge-Kutta
method (on phase and amplitude Eqs. (2.28)-(2.30) which offers a good compro-
mise between ease of implementation, computing time and robustness. We will
make use of several tools to analyze the dynamics generated and understand the
physics behind them, which include bifurcation diagrams, FFT for RF spectra or
phase-space projections.

The techniques presented here which are applied to the optical output power
will also be used on experimental time traces, since optical power is a measurable
physical value of the experiment. Techniques that require direct knowledge of
the electric field, of its phase, or of the carrier density, are not considered in the
present work. Only the model can help us in analyzing the phase and carrier
dynamics.

Chapters 3, 4, and 5 will present all the theoretical results that we obtain with
these model and tools.
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3
S E L F - D E T E R M I N I N G H I G H - F R E Q U E N C Y
S E L F - P U L S AT I O N S

In this chapter we focus on the emission of self-pulsating solutions from a laser
diode with Phase-Conjugate Feedback (PCF). Chaotic dynamics will be studied
in the following chapters. For some time, it has been considered a challenge to
make a semiconductor laser oscillate at frequencies higher than its relaxation
oscillation frequency. In a laser with Conventional Optical Feedback (COF), oscil-
lations at a frequency inversely proportional to the External Cavity (EC) length
can be obtained [25, 111–115]. Effort has been made on obtaining ultrashort cav-
ities, which was achieved thanks to Distributed Feedback (DFB) lasers where the
external cavity is integrated with the laser device [116] and oscillations at high
frequency have been unlocked [117].

In Section 3.1 we show theoretically a way to achieve high-frequency oscilla-
tions without the need for a short EC cavity. A semiconductor laser with PCF

is shown to exhibit oscillations at frequencies higher than the relaxation oscil-
lation frequency, independently of the EC length, at large harmonics of the EC

frequency. The driving parameter for the oscillation frequency is the feedback
rate and the system locks on External-Cavity Modes (ECMs) [24, 93, 102] which
have been introduced in Chapter 2. In Section 3.2 we study the model with bi-
furcation analysis and continuation. In Section 3.3 we compare the evolution of
oscillating solutions frequencies in the case of COF. We conclude on this chapter
in Section 3.4.

Part of the work presented in this chapter has been submitted for publica-
tion with the title “Self-determining high-frequency oscillation from an external-
cavity laser diode”. Part of this work has been made in collaboration with master
student Chi-Hak Uy, post-doc Lionel Weicker (CentraleSupélec, Metz) and Mar-
tin Virte (VUB, Brussels) under the supervision of Delphine Wolfersberger,
Marc Sciamanna, and myself.
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3.1 evolution of the frequency of an external-cavity mode

Symbol Description Typical value(s)

Y Complex normalized electric field –

Z Real normalized carrier density –

t Time in units of τp –

τp Photon lifetime in the laser cavity 1.4 ps

α Linewidth enhancement factor 3

γ Normalized feedback rate 0 to 0.05

θ Delay in units of τp 1 to 958

T Ratio of carrier to photon lifetimes 1428

P Pump parameter above threshold 0.0417

Table 3.1: Signification and values of notations used for the study of ECMs with the nor-
malized equations (Eqs. (2.12), (2.13)) to model a semiconductor laser with
PCF.

For the work presented in this chapter, we choose values of the parameters
indicated in Table 3.1. This corresponds to a semiconductor laser working close
to threshold. The values of the dimensionless delay θ considered in this study
are in [1; 958] which corresponds to [0.0014; 1.34] ns in real time units. This range
is centered around θ = 476which is the value used in several studies that consid-
ered a fixed time-delay [81, 93, 102]. The experiment that reported observation
of the first orders of ECMs [24] had a time-delay around 1.4 ns and they only ob-
served ECMs for short EC cavities [72]. So we decided to limit the studied range
to a value close to that 1.4 ns time-delay. The values considered for the feedback
rate are in the range of commonly used values in other studies [72, 102] and
correspond to a maximum Phase-Conjugate Mirror (PCM) power reflectivity of
about 4 %.

We explore the effects of both the delay θ and the feedback strength γ on the
ECMs. To this end, our first step is to use our numerical integration algorithm
to compute a bifurcation diagram of the output power versus the feedback rate
for a given value of the time delay, as in Fig. 3.1. The typical behavior of a
laser with PCF is observed, i.e. steady-state operation for a very low feedback
rate, followed by a Hopf bifurcation leading to undamped oscillations at the
relaxation frequency of the laser and followed by a complicated succession of
bifurcations and a cascade of different dynamical regimes [87, 93]. For increasing
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3.1 evolution of the frequency of an external-cavity mode

Figure 3.1: We compute consecutive time traces for θ = 400 while increasing the feed-
back rate and report the extrema of the time traces on this bifurcation dia-
gram, showing different types of dynamics, including oscillations and chaos.

values of γ, the system exhibits successive ECMs interspersed with shrinking
regions of chaos. The transition from chaos to the next ECM occurs through a
chaos crisis [102].

From this bifurcation diagram, we identify the oscillating solutions and by
analyzing the associated time traces we measure their frequencies. We repeat the
process for values of the θ in the aforementioned range and report the measured
frequency of oscillations in Fig. 3.2, color-coded in the plane (θ,γ). The white
background corresponds to regions where there are either no dynamics (Steady-
State (SS) solution), quasi-periodicity or chaotic evolution of the output power.
Each band in the map corresponds to a unique ECM of order n (numerical labels),
for which the oscillating frequency is given by fn = n

θτp
.

We then explore the map by scanning it along different directions (see red ar-
rows on Fig. 3.2). First, we look at the evolution of the oscillation frequency with
a fixed time delay θ = θ1 = 400. We observe in Fig. 3.3-(a) that the frequency
of oscillations are close to harmonics of fEC, as expected from the literature [24,
102] and as introduced in Chapter 2. Increasing the feedback rate leads to a
strong increase in the frequency of oscillations, since the system visits a signifi-
cant number of ECMs of higher order, which is illustrated with the time traces in
Fig. 3.3-(b),(c).

When setting a fixed value of the feedback rate and increasing the time delay,
we expect to observe a decrease in the oscillation frequency of the system. But
interestingly, Fig. 3.4 illustrates that for two different values of the feedback rate

61



self-determining high-frequency self-pulsations

Figure 3.2: We compute bifurcation diagrams similar to Fig. 3.1 for different values of
the time delay and report the frequency of oscillations on this map. The color
bar on the right indicates the frequency of oscillation in gigahertz. The orders
of ECMs are labeled on the bands of hyperbolic shape and the red arrows and
crosses serve as indicators for Figs. 3.3 and 3.4.

(γ1 = 0.025 and γ2 = 0.05), we observe the same behavior. Increasing the delay
first leads to a slight decrease of the oscillation frequency, since we stay on the
same ECM but fEC decreases due to the increase in delay. The decrease is then
followed by a slight increase of frequency because the system jumps to an ECM

of higher order, and this pattern repeats itself. In the end, it seems that the
oscillation frequency tends to a constant value when increasing the delay.

Contrary to intuition, the laser with PCF has a different behavior from other
popular setups in that having a really short cavity does not necessarily yields
the highest possible frequency of oscillation. Having a short cavity can slightly
increase the frequency, but the most decisive parameter is the feedback rate. It
means that faster oscillations are attainable in the system by simply increasing
the reflectivity of the phase-conjugate mirror, rather than by decreasing the cavity
length which may be hard to implement. In addition, it means that the frequency
of oscillations is tunable to a precision of fEC by adjusting only the feedback rate.

To summarize this result, we can say that the value of γ approximately sets
a frequency of oscillation (fγ) of the laser with PCF, and that the system will
naturally find the order n of ECM that allows fn = n/θ to be the closest possible
to fγ. In addition, fγ is proportional to γ. To find a possible origin for this
behavior, we take a closer look at the bifurcations of our system.
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3.1 evolution of the frequency of an external-cavity mode

Figure 3.3: (a) We observe a significant increase in the oscillation frequency of ECMs

when increasing the feedback rate for a fixed value θ = 400. This is clearly
seen in (b), (c) which present time traces for γ = 0.025, γ = 0.05 respectively
and θ = 400 in both cases. We also see that oscillations are almost perfect
sinusoidal waveforms.

Figure 3.4: (a) Contrasting with Fig. 3.3, we don’t observe a significant variation of the
oscillation frequency of ECMs when changing the time delay for a fixed feed-
back rate. This is illustrated with time traces in (b), (c) for θ = 400, θ = 815

respectively, while γ = 0.5.
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3.2 birth of an external-cavity mode

We investigate Eqs. (2.12) and (2.13) using a continuation method [106] with
θ = 476. Figure 3.5 shows the upper (red line) and lower (blue line) branches
of SSs. Note that we only consider the interval of feedback strength [0.018,0.056],
for clarity, but other bifurcations exist outside this interval. Also, in this range of
feedback rates, both SS solutions are unstable. The Hopf bifurcations emerging
from the SS branches are marked by circles. The black curves correspond to the
maxima of the different ECMs and the thick purple lines correspond to the re-
gions where they are stable. They are delimited by red squares and stars which
are saddle-node and torus bifurcations, respectively. Green lines represent peri-
odic solution branches that link the ECM to the SS branches by Hopf bifurcations.
We observe that each branch of ECM is connected to two Hopf bifurcations. One
from the upper SS and one from the lower SS.

Normalized feedback rate γ

Figure 3.5: Bifurcation diagram obtained by continuation. Black lines are the maxima
ECM branches, red and blue lines are the upper and lower steady state
branches, respectively. Green lines corresponds to the periodic solution
branches linking the ECM to the steady-states branches by Hopf bifurcation.
Circles are Hopf bifurcations emerging from the steady states. Squares are
saddle-node bifurcation and stars are torus bifurcations. The purple lines
represent the areas where the ECM is stable. θ = 476 and the other parame-
ters are the same as in Fig. 3.1.
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3.2 birth of an external-cavity mode

Continuation reveals that the ECMs appear through Hopf bifurcations, so we
decide to specifically study the Hopf bifurcations and their frequencies in the
parameter plan (θ,γ) with numerical methods. To this end, we consider the
Hopf bifurcation conditions derived in Ref. [93] [Eqs. (B8) and (B9) reported in
this document as Eqs. (2.26) and (2.27)] and use the Newton-Raphson method
in order to find the different Hopf branches. We then follow each branch in
the range of feedback rate and delay previously mentioned and obtain the same
results obtained with continuation, which are displayed in Fig. 3.6-(a). In red, the
Hopf bifurcation points emerging from the upper SS branch and in blue from the
lower SS branch.
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Figure 3.6: (a) Hopf bifurcation points emerging from the upper steady-state branch
(dashed red) and from the lower steady-state branch (solid blue) in the
(θ,γ)-plan. A perfect match has been obtained between the Newton-Raphson
method and continuation techniques, thus only continuation results are
shown. Values of the parameters are the same as in Fig. 3.1. (b) Hopf bifurca-
tion frequency as function of θ. Crosses correspond to the Hopf bifurcation
points that emerge from the upper steady state whereas circles correspond to
the lower steady state. Grey and black colors correspond to γ1 = 0.025 and
γ2 = 0.05, respectively. Other parameters are the same as in Fig. 3.2.
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In comparison with Fig. 3.2, we first observe that the shape of the Hopf bifur-
cation branches follow the shape of the ECMs bands. Second, the total number of
Hopf bifurcations emerging from the upper and lower steady states is approxi-
matively twice the number of ECMs which is consistent from our observation in
Fig. 3.5.

Of particular interest is the frequency of the Hopf bifurcations. In Fig. 3.6-(b),
we represent the Hopf bifurcation frequencies at two given values of γ (0.025
in blue and 0.05 in black). The circles correspond to the one emerging from the
lower steady state whereas the crosses correspond to the upper steady state. As
observed for the ECMs frequencies (See Fig. 3.4-(a)), the value of γ sets the fre-
quency. For example, when γ = 0.025, the frequency of the Hopf bifurcations are
around 7.5 Ghz whereas when γ = 0.05 the frequency is around 15 Ghz. These
values are close to the ones found for the ECMs. Therefore, the ECM frequency
expected at a given value of γ can be deduced only by the study of the Hopf fre-
quency. Note that some of the Hopf bifurcation frequencies appear at low values.
They appear when a branch of Hopf bifurcation in the (θ,γ)-plan folds back.
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3.3 difference with conventional optical feedback

Figure 3.7: Similarly to Fig. 3.2 (recalled in (a) for a smaller range of time-delay values)
we map the frequencies of oscillating solutions for a laser with COF in (b).

In this section we use the same model, but for COF – i. e. without the complex
conjugate on the electric field variable – with the parameters of Table 3.1. Once
again, we compute bifurcation diagrams for several values of the time-delay. We
analyze time traces of the laser output power to detect oscillating solutions and
their frequencies which are then plotted in the plane (θ,γ) in Fig. 3.7.

Overall, we observe less regions with oscillating solutions for the case of COF

than we did for PCF. Figure 3.7 shows that the frequency of oscillating solutions
in the case of COF behaves very differently than in the case of PCF studied in
the previous sections of this chapter. The frequency of oscillations is mostly de-
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pendent on the value of the time-delay θ, with the largest values attained for
the small cavities. By contrast the value of the feedback rate γ does not have a
strong influence on the frequency of oscillating solutions, therefore with frequen-
cies scaling as 1θ where θ is the time delay.

This different behavior is due to the fact that in COF, there are no self-pulsating
ECMs as with PCF. Rather, the ECMs are SS solutions and the oscillating solutions
observed are either excitation of the relaxation oscillations or oscillations at the
EC frequency [113].

This behavior was expected for the laser diode with COF but it is interesting
to reproduce it here for comparison with the case of PCF to stress even more the
fundamental difference between the nature of ECMs. ECMs are SS solutions for the
laser with COF and self-pulsating solutions at self-determined harmonics of the
EC frequency for a laser diode with PCF.
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3.4 conclusion

This first study of the ECMs from the laser with PCF confirms their difference in
nature with the ECMs from the laser with COF. They are self-pulsating solutions
at harmonics of the EC frequency whereas ECMs in the case of COF are all SSs, and
they cannot be identified easily by looking at the time-trace only. The bifurcation
diagram in Fig. 3.1, confirmed by continuation results in Fig. 3.5, indicates that
there is only one stable SS in the case of PCF, and other solutions are either
oscillating or chaotic.

From a scientific standpoint, this is a really interesting difference, considering
the fact that the equations are almost the same and yet we have access to a lot
of self-pulsating solutions at different frequencies in the case of PCF which we
do not get with COF. Secondly, we found that the EC length does not have a
strong influence on the frequency of an ECM. Rather, adjusting the feedback rate
determines the frequency of oscillation and the system automatically selects the
ECM order that allows it to oscillate at the ECM frequency being the closest to the
self-determined frequency.

We expect these fundamental solutions to have a significant impact on the
dynamics investigated in chapters 4 and 5. As the feedback rate increases, we
can expect ECMs of higher frequencies to become excited which will lead to fast-
evolving chaos.

We will investigate experimentally in Chapter 7 the behavior of high-order
ECMs when changing the feedback rate.
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4
L O W- F R E Q U E N C Y F L U C T U AT I O N S A N D I T I N E R A N C Y O N
E X T E R N A L - C AV I T Y M O D E S

In this chapter, we simulate time traces of a laser diode with Phase-Conjugate
Feedback (PCF). We choose a longer cavity than in the previous chapter to reflect
the experimental observations of Low-Frequency Fluctuations (LFF) in Ref. [77].
This chaotic regime is interesting in that power dropouts happen at random
time intervals that are not linked to any of the time constants of the system.
Interestingly, for some values of the feedback rate, the power dropouts become
more regular in the experiment. The aim of this chapter is to provide a theoretical
explanation to the appearance of LFF in the case of a laser with PCF and how it
relates to External-Cavity Modes (ECMs) that we have analyzed in Chapter 3, as
well as investigate the resonance of power dropouts.

In Section 4.1 we introduce the LFF chaotic regime, which has been observed
with both Conventional Optical Feedback (COF) [27, 29] and PCF [32, 77]. In the
case of COF, a good theoretical explanation for the appearance of this dynami-
cal regime has been developed [28], but we think that the theory in the case of
PCF can be improved [94]. We propose to analyze the properties of LFF in Sec-
tion 4.2. In Section 4.3 we evidence an itinerancy mechanism similar to the one
for COF, but with motion on destabilized limit-cycles (the ruins of ECMs). More-
over, the fast pulsating dynamics that accompanies the onset of a power dropout
gets faster when increasing the feedback rate. This unique feature of LFF in a
laser diode with PCF is explained by the scaling of the ECM frequency with the
feedback strength evidenced in Chapter 3. Finally, we investigate the appearance
of coherence resonance where time intervals between power dropouts become
more regular in Section 4.4, before concluding in Section 4.5.

Part of the work presented in this chapter has been published in Ref. [35].
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4.1 a common type of dynamics in laser diodes with optical feed-
back

Figure 4.1: Schematic representation of the LFF phenomenon in a laser diode with COF.
The trajectory is represented in a possible phase-space of the system com-
posed of the phase difference Φ(t) −Φ(t− τ) and the carrier density, as men-
tioned in Section 2.3.

LFF refer to fluctuations of the output power – also called power dropouts – of a
laser with optical feedback, which occur at much lower frequencies than the laser
diode relaxation oscillation frequency or the External Cavity (EC) frequency [27].
In the case of COF, LFF have been identified as a deterministic high-dimensional
chaos that result from chaotic itinerancy with a drift among the attractor ruins
of destabilized fixed points [28, 29, 118] (the ECMs of the laser with COF). The
system trajectory consists of two competing motions schematically represented
in Fig. 4.1. One motion is a switching between the attractor ruins around each
of the laser fixed points called modes, in direction to the mode with maximum
output intensity. This motion is responsible for the fast pulsing dynamics that
underlies the low-frequency power dropouts. The other motion is a repelling tra-
jectory that is induced by the proximity of the many unstable fixed points called
antimodes and that is responsible for a power dropout. The complete mechanism
is illustrated in Fig. 4.1.

LFF have also been observed experimentally in a laser diode with PCF [32, 77]
as pictured in Fig. 4.2. As the reflectivity of the PCM increases, we can observe
the appearance of the power dropouts at random time intervals associated with
increased energy in the low frequencies (below the EC frequency). However, we
have seen in Chapter 2 that a laser diode with PCF admits only a single sta-
ble Steady-State (SS) that bifurcates to self-pulsating dynamics when increasing
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4.1 a common type of dynamics in laser diodes with optical feedback

Figure 4.2: Experimental observation of LFF in a laser diode with PCF. Increasing the
reflectivity R of the Phase-Conjugate Mirror (PCM) (boxed numbers) makes
power dropouts appear, evidenced also by the increase of energy in the lower
frequencies of the associated RF spectra. Figure from [72].

the feedback strength [81, 93, 102]. We have also seen that ECMs are different in
nature – self-pulsing solutions instead of SSs – for a laser with PCF and the bi-
furcations leading to their existence and stabilization have been well-studied [81,
93, 102]. Therefore, we know that the mechanism for explaining the LFF regime
cannot be exactly the same for the two different types of feedback. A previous
theoretical analysis suggests that ECMs in the case of PCF play a similar role than
the ECMs in the COF case, and therefore suggests a similar mechanism explain-
ing LFF [94]. However a detailed description of how the global chaotic attractor
originates from the bifurcations of the ECMs is still missing.

An interesting feature of the LFF regime as observed in Refs. [72, 77] is that
for certain values of the reflectivity, the authors observe a coherence resonance
where power dropouts become more regular. In the case of Fig. 4.2, this happens
around R = 6.1 % with the peaks of the RF spectra being sharper as a sign of
resonance appearing at the time scale of the EC frequency. Resonance is a phe-
nomenon observed in several physical systems where a defined event happens
with more regularity under the influence of noise. Stochastic resonance for ex-
ample is a phenomenon in which a nonlinear system shows an optimal response
to a modulated input (largest signal to noise ratio) in the presence of an optimal
amount of noise [119–122]. When the modulated input is replaced by an internal
oscillation in the system dynamics, it is called coherence resonance [123–127].
This is characterized by a minimum in the standard deviation σ of the distribu-
tion of time intervals between consecutive events when changing the noise level.
Instead of variance, it is common to use the normalized variance which is equal
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Figure 4.3: Normalized variance of the time intervals between power dropouts in the
LFF regime of a laser diode with PCF as a function of the reflectivity of the
PCM. The minimum of the normalized variances shows evidence of coherence
resonance around R = 6.1 %. Figure from [72].

to the ratio of the variance to the mean µ: V =
√
σ2

µ as illustrated in Fig. 4.3. It
has been observed in deterministic chaotic systems [128–130] and in the case pre-
sented here, the authors of Refs. [72, 77] have named the observed phenomenon
delay-induced deterministic coherence resonance because it is caused by a cer-
tain amount of time-delayed feedback, at the time-scale of the time-delay without
addition of noise. We investigate theoretically this dynamics in Section 4.4.

Traces obtained here were simulated with the model presented in Eqs. (2.12),
(2.13) numerically integrated with our Runge-Kutta (RK) algorithm, using the
parameters in Table 4.1. For the most part of this chapter we use a really long
delay θ = 3200 which corresponds to a value τ = 4.48 ns, which is close to the
value used in the experimental observations of Ref. [72] we aim at reproducing.
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Symbol Description Typical value(s)

Y Complex normalized electric field –

Z Real normalized carrier density –

t Time in units of τp –

τp Photon lifetime in the laser cavity 1.4 ps

α Linewidth enhancement factor 3

γ Normalized feedback rate 0 to 0.05

θ Delay in units of τp 3200

T Ratio of carrier to photon lifetimes 1428

P Pump parameter above threshold 0.0417

Table 4.1: Signification and values of notations used for the study of LFF with the nor-
malized equations (Eqs. (2.12), (2.13)) to model a semiconductor laser with
PCF.
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4.2 properties of lff in a laser diode with pcf

Figure 4.4: Simulated time traces low-pass filtered to show LFF for two different values
of the feedback rate: (a) γ = 0.03386 and (b) γ = 0.04460.

Fig. 4.4 shows a typical time trace of chaotic LFF for two different values of
the normalized feedback rate γ. The dynamics has been filtered with a moving
average over 7 ns in order to better visualize the low-frequency power dropouts.
Such dynamics looks qualitatively very similar to the one observed experimen-
tally [32, 77], and at first sight resembles very much the LFF dynamics observed
in a laser with COF. In particular the time between dropouts is a random variable
whose mean value increases with the increase of the feedback rate γ [131].

A closer inspection of the LFF dynamics and its underlying bifurcation shows
however unique features of LFF from a laser with PCF. Fig. 4.5-(a) is a bifurca-
tion diagram of the output optical power (|Y(t)|2) when increasing the feedback
rate γ. As γ increases the laser diode undergoes a sequence of bifurcations to
stable time-periodic dynamics in regions labeled A to J that correspond to the
ECMs of the laser with PCF [93, 102]. As γ increases the mode order increases: for
example the ECM in region D shows an order of n = 40, while in region E the
order is n = 42. It is worth noting that some ECMs do not appear as being sta-
ble solutions, e.g. ECM41 is not observed as a stable solution numerically. In this
configuration, the order of stable ECMs is quite high because the delay is large
– which means that fEC is small – and as we have seen in the previous Section,
the frequency of oscillation of the laser with PCF is determined primarily by the
value of γ.

The ECMs destabilize to chaotic dynamics that correspond to LFF in the tiny
regions of chaos. By analogy to the case of COF, it is interesting to analyze the
trajectory of the system close to the onset of LFF in the plane of the carrier inver-
sion Z(t) versus the phase difference ∆Φ(t) = Φ(t)−Φ(t− θ). Fig. 4.5-(b) shows
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Figure 4.5: (a) Bifurcation diagram of the output power versus γ. When increasing the
feedback rate γ the laser stabilizes on ECMs labeled from A to J. These ECMs

are reported in the plane (Z,∆Φ) in (b) where they correspond to limit-cycle
attractors. The red crosses show the mean values of the state variables corre-
sponding to the ECMs. See Figure 4.6 for an inset of the area around ECMs E
and F.

in black the limit cycle attractors corresponding to the stable ECMs in regions A
to J, as we increase γ. Remarkably, the mean values of Z and ∆Φ for the different
stable ECMs lie on a straight line in that phase plane and the transition from one
ECM of order n to an ECM of order n+ 1 corresponds to a decrease of Z (and
therefore an increase of the mean output power) and to a shift of the phase dif-
ference ∆Φ equal to π (which is the phase-matching condition of constructive
interference between outgoing and incoming fields). This feature is emphasized
by the red crosses in Fig. 4.5-(b) that correspond to the mean values of the phase
variables corresponding to all ECMs in the depicted region, even the ones that do
not stabilize numerically – we have virtually positioned them in the phase-plane
as well. Although the bifurcating solutions of the laser with PCF are limit-cycle
attractors and not fixed points, we still observe – like with COF – that the increase
of γ leads to directional motion in the phase-plane towards an ECM with higher
output mean power [118].
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4.3 itinerancy

Figure 4.6: From left to right, (a) γ = 0.03300, (b) γ = 0.03384, (c) γ = 0.03386,
(d) γ = 0.03391 and (e) γ = 0.03500. Top: system trajectory in the plane Z
versus ∆Φ, middle: corresponding time-traces of |Y|2, bottom: corresponding
RF spectrum. The time-trace in (c.3) is filtered to show the dropout associated
with the LFF regime.

Fig. 4.6 analyzes then the transition from ECM40 (D) to ECM42 (E) as the feed-
back rate γ increases and therefore as we cross a parameter range corresponding
to LFF chaotic dynamics. The system trajectories in panels (a.1)-(e.1) are plotted
in an enlarged part of the phase plane of Fig. 4.5-(b) in the area around modes D
and E. The corresponding time-series and power spectra are shown in the pan-
els (a.2)-(e.2) and (a.3)-(e.3) respectively. The sequence starts at γ = 0.03300 for
which the laser diode shows a self-pulsating dynamics corresponding to a sta-
ble ECM in region D (panel a). As γ increases, this ECM undergoes a bifurcation
to quasi-periodicity, with side peaks appearing around the main frequency and
separated by the EC frequency; see Figs. 4.6 (b.1)-(b.3).

Further increasing the feedback rate destabilizes the ECM even more, and the
system finally switches to a chaotic dynamics in panel (c). The trajectory in the
phase-plane (c.1) is a global chaotic attractor visiting different destabilized ECMs

and it resembles the chaotic itinerancy scenario evidenced for LFF from the case
of COF [118]. The time-series in (c.2) corresponds to the trajectory (c.1) but low-
pass filtered to better visualize the corresponding power dropout. When oscillat-
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ing around the destabilized ECM in region D the trajectory is suddenly repelled
to a larger value of Z and ∆Φ, hence creating a power dropout. The dropout is
followed by a recovery process during which the system is successively attracted
by the attractor ruins of ECMs around D and E, and then repelled in the phase-
plane again, thus creating a succession of smaller dropouts that repeat every
2τ [panel (c.2)]. For a long enough time, the laser will finally stay around the
attractors labeled D and E, before being subject to a new intense dropout.

For a larger value of γ the dynamics is again quasi-periodic and then bifur-
cates to a regular self-pulsating dynamics but around the ECM E, i.e. a mode of
higher order and therefore of higher frequency as confirmed when comparing
the power spectra (d.3) and (e.3).

Figure 4.7: (a.1), (b.1): zoom on the fast pulsing dynamics accompanying the dropouts
indicated with arrows in Figs. 4.4 (a), (b), respectively. (a.2), (b.2): correspond-
ing trajectories in the phase plane.

A unique feature of the LFF from a laser diode with PCF is that the chaotic
itinerancy occurs among destabilized limit-cycle dynamics and not destabilized
fixed points. Although this is already clear from Fig. 4.6, the high-frequency sig-
nature is even more visible when comparing the fast pulsing dynamics under-
lying LFF for two increasing values of the feedback strength. Figure 4.7 shows
the fast pulsing dynamics and the corresponding system trajectory in the phase-
plane for a dropout event in Fig. 4.4. In both cases the dynamics is a chaotic
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itinerancy followed by a power-dropout corresponding to a repulsing trajectory
in phase-space. However since the involved ECMs in (b.2) are of higher mode
index – transition from mode H to I in Fig. 4.5-(b) – than those involved in the
dynamics of (a.2) – transition from mode D to E– the fast pulsing dynamics un-
derlying LFF in the case (b.1) is of higher frequency than the one of case (a.1): the
insets show pulsations with a dominant frequency of about 9 GHz for (a) and
12.5 GHz for (b).

Since this feature originates from the unique nature of ECMs from the laser
with PCF, it is very unlikely that it could be observed in the case of COF – at least
there has been no report of it to the best of our knowledge. Also, since it has
not been observed experimentally from a laser with PCF, it will be one of the
motivations for the experimental work presented in Chapter 6.
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Figure 4.8: Evolution of the mean duration of the transient LFF as a function of α. The
inset shows the evolution for the lowest values of α.

Finally, we analyze if LFF dynamics is maintained over a long time or is rather a
transient state. By simulating over 14ms we find that the LFF dynamics discussed
above is not sustained for more than about 10-100 µs and the dynamics then
switches to a regular pulsation corresponding to an ECM. This result contrasts
with the experimental observations of the same dynamics in a laser with PCF

over several seconds and more [77]. As is also true for the case of COF [132, 133],
we find that a small adjustment of α allows to significantly enlarge the duration
of the LFF dynamics. In Fig. 4.8 we measure the lifetime of the chaotic dynamics
as the time during which the signal is chaotic and not stabilized on an ECM (we
consider that an ECM is stabilized when the power of the unfiltered time trace
does not go above a threshold fixed at 0.12 for a duration of 1.4 µs) over 21

simulations for different values of the feedback rate near γ = 0.0415. The LFF

lifetime goes from about 10 µs to 3 ms when α increases from α = 3 to α = 3.7.
For α > 3.7, we observe no extinction of the chaotic dynamics over the duration
of the numerical simulation (14 ms).
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We also test the influence of spontaneous emission noise by adding
√
Rξ(t) as

an additive term to Eq. 2.12, while ignoring the minor influence on the carrier
density. With our parameters and similarly to the conclusions drawn from the
COF case in [132], we find that the inclusion of spontaneous emission noise with
R up to about 10−12 (which corresponds to D = 10−4 ns−1 in [132]) has little
impact on the duration of the transient LFF. As suggested in [133] for COF, the
impact of noise might be different when varying the laser parameters. This sug-
gests that a large Henry factor is responsible for preventing the dynamics from
vanishing. Also, it is possible that higher levels of noise or other sources of noise
might contribute to the persistence of LFF dynamics and prevent the system from
restabilizing on an ECM.
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4.4 deterministic coherence resonance

In this section, we investigate the coherence resonance presented in Section 4.1
and evidenced in Refs. [72, 77]. We first consider a shorter EC and use θ = 476,
the value used in Refs. [72, 84, 93, 102] and in Section 2.3.1

Figure 4.9: (a) Bifurcation diagram of the laser PCF for θ = 476. In the last bubble of chaos
(black box) appear LFF. Below are simulated time traces which have been low-
pass filtered for increasing values of the feedback rate inside the bubble of
chaos: (b) γ = 0.0336, (c) γ = 0.0337, (d) γ = 0.0338, and (e) γ = 0.0339.

Figure 4.9 shows the same bifurcation diagram as in Fig. 2.4-(a) since we work
with the same set of parameters. Along with it are low-pass-filtered time traces
for increasing values of the feedback rate inside the last bubble of chaos (in

1 The work presented in this section has been made in collaboration with master students Armelle
Even and Elodie Mirisola, under the supervision of Delphine Wolfersberger, Marc Sciamanna,
and myself.
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the black box). It shows LFF appearing in this region of parameters, and as the
value of γ increases inside the bubble of chaos, the dropouts appear more clearly,
with more depth. Interestingly, the time intervals TLFF between the dropouts also
seem to be more regular for γ = 0.0338 (see Fig 4.9-(d)). As a result, we use the
same tool as in Refs. [72, 77] to characterize this behavior: normalized variance
V =

√
σ2

µ , where σ2 is the variance of the distribution of TLFF and µ is its mean.

Figure 4.10: (a)-(c) Distributions of the time between consecutive power dropouts for
γ = 0.0336, γ = 0.0338, and γ = 0.03395 respectively. (d) Evolution of
the total number of dropouts and the normalized variance V of the time
between dropouts inside the bubble of chaos highlighted in Fig. 4.9-(a). All
measurements have been done on 280-µs-long simulations.

The results are presented in Fig. 4.10. Panels (a)-(c) show that as the feed-
back rate increases, the distribution of time between consecutive power dropouts
changes drastically. In panel (a) the distribution extends well beyond 300 ns –
larger values are not shown for clarity – and overall very few dropouts happen
(see panel (d) for the total number of dropouts over a 280-µs-long duration).
Increasing the feedback rate has three effects: 1/ it increases the number of
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dropouts happening over a fixed duration, 2/ it decreases the mean value of
TLFF, 3/ it makes the normalized variance V decrease (as we can see in panel
(d)). V reaches its minimum around γ = 0.0339, slightly off from the position
where we detect the maximum number of dropouts. Finally, as the feedback rate
continues to increase, the number of observed power dropouts decreases and the
normalized variances increases, indicating that the system has left the region of
coherence collapse. Overall, Fig. 4.10-(d) is very similar to Fig. 4.3 obtained with
experimental measurements of LFF in a laser diode with PCF.

These simulations have been made without noise, reinforcing the notion of
so-called delay-induced deterministic coherence resonance as the authors of
Refs. [72, 77] have named it. It is surprising to see that in such a small bub-
ble of chaos – i. e. for a small range of values of the feedback rate γ – we are able
to observe the same behavior that was measured over several percents of the
PCM power reflectivity value. It would be interesting to see how this resonance
evolves when changing the EC length up to values comparable with the one used
in the experiment for which the time delay was equal to 4.5 ns [72]. The system
would probably maintain some of the properties exhibited here and we would
see if the coherence resonance still appears over a tiny range of feedback rates or
if this range expands. Still, it is interesting to see that the model is able to repro-
duce one of the characteristics of the dynamics, even though it is for a different
set of parameters than the experimental one.
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4.5 conclusion

In this chapter, we have explained the appearance of LFF dynamics in a laser
diode with PCF via an itinerancy mechanism on ECMs similar to the LFF in the
case of COF. However, we have not been able to clearly identify the repelling
mechanism responsible for the power dropouts. In the case of COF there are
highly unstable antimodes. When the trajectory of the system comes too close to
one of these, the instability is so strong that the system is completely repelled
causing a power dropout. In the case of PCF, there are no known similar anti-
modes that would be responsible for this behavior but we suspect that unstable
limit cycles may play a role similar to the one played by the unstable SSs corre-
sponding to antimodes.

Additionally, we know from Chapter 3 that ECMs are fundamentally different
for a laser diode with PCF. Since ECMs are self-pulsating solutions, each with their
own frequency, we expect to observe their spectral signature in experimental RF

spectra. We investigate the experiment in Chapter 6 and provide some evidence
that the itinerancy is actually happening as predicted here.

A characteristic of the LFF observed in a laser diode with PCF in Refs. [72, 77]
was the delay-induced deterministic coherence resonance appearing when vary-
ing the feedback rate. In other words, power dropouts become regular for some
values of the feedback rate. We have been able to reproduce this behavior, albeit
for a shorter EC length and over a small range of feedback rate. Still, we find it
interesting that only a small bubble of chaos can contain a variety of dynamics
rich enough to observe the delay-induced deterministic coherence resonance.
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5
E X T R E M E E V E N T S I N T H E C H A O T I C D Y N A M I C S O F A
L A S E R W I T H P H A S E - C O N J U G AT E F E E D B A C K

By computing time traces of a laser diode with Phase-Conjugate Feedback (PCF)
modeled by Eqs. (2.12) and (2.13), we have been able to analyze the properties
of External-Cavity Modes (ECMs) as discussed in Chapter 3 and as observed ex-
perimentally in Ref. [24]. We have also been able to reproduce the emergence of
Low-Frequency Fluctuations (LFF) as observed experimentally in Ref. [77]. There
is one last type of dynamics we would like to reproduce with the same model
which is what we call extreme events, inspired by rogue waves on the surface of
the ocean and observed experimentally in a laser diode with PCF in Ref. [76].

In Section 5.1 we present the historical results that initiated the study of rogue
waves in optical systems, along with the experimental observations in a laser
diode with PCF and with the definition of an extreme event. In Section 5.2 we
analyze the intensity distribution of events in simulated time traces, as well as
distribution of the time between consecutive extreme events. Finally, we con-
clude on this chapter in Section 5.3.

Part of the work presented here has been published in Ref. [103]. It is the result
of a project initiated with master students Armelle Even and Elodie Mirisola,
which I supervised.
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5.1 history and definition of a criterion

Figure 5.1: Experimental observation of optical rogue waves. (a) Schematic of experi-
mental apparatus. (b)-(d) Single-shot time traces containing roughly 15000
pulses each and associated histograms (bottom of figure: left, b; middle, c;
right, d) for increasing power levels. The vast majority of events are buried
in the low-intensity range demarcated by the gray area. The rogue events
reach intensities of at least 30-40 times the average value. Figure and legend
from [134].

In this chapter, we focus on a specific dynamics of a laser diode with PCF,
which consists of extremely high-intensity pulses that exhibit statistical proper-
ties similar to those observed in so-called rogue waves [76]. Rogue waves are in-
spired from oceanographic studies [135] and are rare and high-amplitude waves
that appear randomly at the surface of an otherwise calm sea. They are not to
be confused with tsunami for example, which are also rare and high-amplitude
waves, but which have a clear origin of seismic nature. Rogue waves have been
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observed in optics first in non-linear propagation of light launched in an optical
fiber showing super-continuum [134].

Figure 5.1 shows the experimental setup used to evidence the apparition of
rogue events: a high-power laser pulse is launched into a nonlinear fiber and it
undergoes blue- and red-shift during propagation. Since it is difficult to record
simultaneously the pulse packages at different wavelengths, the authors used a
wavelength-to-time transformation technique to be able to acquire the time traces
in Fig. 5.1 on which appear extreme events. By considering each pulse in the time
trace as an event the authors plot the distribution of peak heights in the bottom
of Fig. 5.1. The shape of these histograms differ from the results expected from
a purely stochastic process which would give a Gaussian distribution. Deviation
from a Gaussian distribution is one criterion that allows to define rogue events.

Figure 5.2: (a) Snapshot of a simulated time trace of a laser diode with PCF and (b)
corresponding RF spectrum of a chaotic regime where pulses of high intensity
appear randomly. The red line corresponds to the threshold A = 2 above
which an event is considered extreme (see further down for details on this
criterion).

The concept of optical rogue waves has then been generalized to include the
study of extreme events in optics where a variation of a parameter leads to a
deviation of the intensity statistics to the otherwise Gaussian distribution hence
explaining the occurrence of rare and intense pulses. Even though rogue waves
and extreme events are different in nature, they may share statistical properties
owing to the fact that they both correspond to large deviations of the system
state away from its nominal value [136]. Examples of rogue waves and extreme
events include high-amplitude localized light peaks in the transverse plane of a
spatially extended nonlinear optical cavity [137–139], and high-intensity pulses
underlying chaotic dynamics in laser diodes with optical injection [140–142] or
optical feedback [76, 143] as shown in Fig. 5.2.
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Symbol Description Typical value(s)

Y Complex normalized electric field –

Z Real normalized carrier density –

t Time in units of τp –

τp Photon lifetime in the laser cavity 1.4 ps

α Linewidth enhancement factor 4

γ Normalized feedback rate 0 to 0.05

θ Delay in units of τp 1600

T Ratio of carrier to photon lifetimes 1428

P Pump parameter above threshold 0.0417

Table 5.1: Signification and values of notations used for the study of extreme events with
the normalized equations (Eqs. (2.12), (2.13)) to model a semiconductor laser
with PCF.

Our purpose is here to provide a theoretical framework to explain the emer-
gence of these extreme events in a laser diode with PCF as observed experimen-
tally in Ref. [76]. The authors of this study observed the appearance of extreme
events in the output power of the laser diode, with an increasing number of
them when increasing the feedback rate, associated with higher intensity of the
extreme events. They also reported a peculiar statistical distribution of the time
between consecutive extreme events and we will see how we can observe the
same characteristic theoretically.

In order to reproduce the experimental results, we again use numerical in-
tegration with Eqs. (2.12) and (2.13), this time using parameters in Table 5.1.
In this case, we use a normalized delay value θ = 1600 which corresponds to
τ = 2.24 ns, i. e. the value of time-delay for which extreme events were observed
experimentally in Ref. [76].

The study of extreme event requires also to define what we call an event and to
identify a criterion that discriminates what is extreme in this population. Several
definitions for extreme events can be found in the literature and appear as quite
arbitrary. However, as will be discussed in the following, we have checked that
our conclusions – and most importantly how the feedback strength in the PCF
time-delayed system influences the occurrence and number of extreme events –
are robust when applying the commonly suggested criteria for extreme events.

We first discuss the definition for extreme event applied in the corresponding
PCF experiment [76], which is illustrated in Fig. 5.3. As in Ref. [76], we define
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Figure 5.3: Illustration of the process used to compute the abnormality index A of an
event (details in text). We analyze here the event stressed with the thick dark
blue line. We find it has an abnormality index A = 2.62 > 2 so we consider it
to be an extreme event.

an event as a local maximum of the filtered time trace of the optical output
power of the laser diode. For each event k, we define the height of the peak
pk which is the optical output power of the local maximum. We then calculate
Hfk which is the difference between the peak height of the event k and the
mean height of our population of events: Hfk = pk − 〈pk〉k. We also define
the significant height H1/3 as the average value among one third of the highest
values of Hfk. Finally, the abnormality index of event k is Ak = Hfk

H1/3
. Any

event that yields an abnormality index greater than 2 is then considered in the
following as extreme. For example Fig. 5.3 illustrates an extreme event which has
an abnormality index equal to 2.62. These definition and criterion are inspired
from a proposal made to classify rogue waves in oceanographic studies [144]
and have been used in several experimental and theoretical works reporting on
extreme events in optics [139, 145–147].

Another definition of the significant height can be taken from a different pro-
posal made in oceanography [135]: Hs defined as four times the standard devi-
ation of the measured Hfk. An event is called extreme if the corresponding ab-
normality index Ak = Hfk

Hs
> 2. This definition has been applied in the analysis

of extreme events in the chaotic pulsing dynamics of a laser diode with optical
injection [140, 141]. Although we will mainly use the traditional definition of the
significant height H1/3, in the following we shall discuss the robustness of our
conclusions against the definition of an extreme event.
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Figure 5.2 shows a chaotic pulsing dynamics where some pulses show an in-
tensity much larger than the average intensity value. How many such extreme
events occur can be quantified by considering the definition of the abnormality
index relative to the third of the highest peaks. Pulses which have an abnormal-
ity factor greater than 2 are arbitrarily called extreme. This type of dynamics
with the occurrence of rare but intense pulses resembles qualitatively the one
observed recently in experiment [76]. We investigate in details these events in
the next sections to see if they qualify as extreme events.
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5.2 statistical characterization of extreme events

5.2.1 Counting and characterizing extreme events

Figure 5.4: Evolution of the distribution of extreme events versus the abnormality index.
Increasing the feedback rate leads to a greater deviation from a Gaussian dis-
tribution (from left to right), more extreme events, with a higher abnormality
index. The red line corresponds to the threshold A = 2.

In this Section, all simulations are performed over a fixed duration of 56 µs
and we observe how the number of extreme events evolves over this fixed dura-
tion when varying the feedback rate γ. The influence on the distribution of the
number of events versus their abnormality index is clearly seen in Fig. 5.4. It is
observed that the distribution deviates more and more from a Gaussian distribu-
tion when increasing γ. This tendency to deviate from a Gaussian distribution
while increasing the driving parameter – here the feedback rate – is consistent
with the experimental observations [76] and with other optical systems where
extreme events or rogue waves appear when increasing e.g. the optical pump
intensity [134, 137–139] or the optical injection strength [140].

Time traces of the optical output power present a strong pulsing behavior. In
Fig. 5.5(a) where γ = 0.004, there are only few events above the threshold A = 2

and Fig. 5.4 tells us that the most extreme ones reach only A = 4. In Fig. 5.5(b)
where γ = 0.024, there are more extreme events and they reach an high abnor-
mality index, some of them going above A = 6 according to Fig. 5.4. The insets
on the right in Fig. 5.5 show an interesting feature. For low feedback rates, ex-
treme events appear isolated, which is the expected behavior of rogue waves. But
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Figure 5.5: (a) and (b) illustrate the tendency of extreme events appearing more often for
strong feedback values with snapshots of the time traces where the horizontal
red line indicates the threshold over which an event is considered extreme.
The insets on the right show the tendency for extreme events to appear in
bunches with repetitions at the delay for some values of the feedback rate.

for higher values of the feedback rate, extreme events tend to appear in bunches
of pulses that repeat at a period close to the time-delay value. The bifurcation
study of the PCF laser system that we have previously explained [91, 93, 102, 148]
tells us indeed that as the feedback rate increases, the laser experiences a cascade
of bifurcations. The first one is a Hopf bifurcation close to the frequency of the
laser relaxation oscillations. A further increase of the feedback strength leads
to a cascade of Hopf bifurcations whose frequencies are close to harmonics of
the External Cavity (EC) frequency; hence explaining the modulation of the laser
intensity at the period of the time-delay. We will classify these events in two
distinct categories: lone pulses will be labeled type I, and bunches of pulses will
be labeled type II in agreement with the experimental observations of [76]. More
specifically through an analysis of the time separating extreme events (which is
detailed in Section 5.2.2), we shall consider in the following that any sequence
of successive extreme events whose time separation is smaller than twice the
time-delay value is called type II.
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Figure 5.6: Analysis of the correlation between consecutive extreme events. Blue dots are
637 time traces centered around extreme events with the largest amplitude
and plotted on a 11.2 ns time window for a feedback rate γ = 0.025. The red
thick line is the averaged time trace of the 637 plotted time traces and the red
horizontal line represents the A = 2 threshold.

Similarly to the corresponding experiment [76], we have also analyzed the
correlation properties of successive extreme events in the laser time-series. For
this purpose, in Fig. 5.6, we have superimposed 637 extreme events and cen-
tered them on a time window of 11.2 ns. In agreement with the experimental
observation, successive extreme events are characterized by an extreme pulse of
similar shape and duration, which is preceded and followed by pulses that are
correlated and repeat at the period of the delay, with some of these pulses also
being extreme events. The pulses that repeat at the period of the external-cavity
therefore appear as precursors and replica of an extreme event. This property is
highlighted by the red thick line showing the average time trace.

We can learn interesting facts by looking more carefully to the count of ex-
treme events. Figure 5.7(a) confirms what we observed in Fig. 5.4: as the feed-
back rate increases, extreme events are more numerous in agreement with the
experimental observations [76]. However Fig. 5.7(b) shows that extreme events
never represent more than 4 % of the total number of events and this number
saturates when further increasing the feedback rate, which is consistent with
the fact that extreme events are supposed to be rare. This can be qualitatively
explained by the bifurcations of the laser diode with PCF. Indeed it is known the-
oretically from Chapters 3 and 4 that as the feedback rate increases the PCF laser
system oscillates around one or several ECMs with an increasing harmonic value
of the EC frequency. Therefore the dynamics observed on the same time-interval
shows a larger number of pulses and thus a larger number of events among
which to count the extreme events. Both the number of events and the number
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Figure 5.7: Evolution of the number of extreme events with the feedback rate: (a) ab-
solute count over a fixed duration; (b) count relatively to the total number
of maxima; (c) absolute count with distinction of types I and II (see text for
details).

of extreme events increase with the increase of feedback rate and with approx-
imately the same rate, such that the ratio of extreme events to total number of
events remains roughly the same when increasing the feedback rate. In addition,
Fig. 5.7(c) shows that although type I extreme events dominate for small values
of the feedback rate, increasing the feedback rate leads to not only a larger pro-
portion of type II extreme events (bunches of pulses) but even to a majority of
type II extreme events for large values of γ.

This result agrees with the experimental observations of Ref. [76] where were
reported an increasing number of extreme events and a larger proportion of type
I extreme events when increasing the feedback rate. The crossing point around
γ = 0.02 in Fig. 5.7(c) beyond which type II extreme events dominate over type
I extreme events was not reached in the experimental study of Ref. [76], most
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probably due to the limited feedback strength (related to the gain of the four-
wave mixing in the photorefractive crystal).

As γ increases, we saw that more extreme events are detected over the same
fixed duration. This implies that they are more frequent. In the following section,
we will discuss how the time intervals between extreme events evolve when
varying the feedback rate.

5.2.2 Time between extreme events

Experiments on a laser diode with optical feedback [76] but also on temporally-
driven optical speckles [138, 149] suggest that the process generating extreme
events behaves according to a Log-Poisson law described in Ref. [150]. To check
this feature we define tk as the time at which the extreme event k occurs, and we
measure the logarithmic waiting time between two consecutive extreme events,
as follows: wk = ln(tk) − ln(tk−1) = ln( tktk−1 ). If the logarithmic waiting times
follows an exponential distribution – or a linear distribution when plotted in
log-scale – then the appearance of extreme events follows a Log-Poisson law.

Figure 5.8: Logarithmic waiting times between consecutive extreme events plotted in
log-scale. (a) γ = 0.004: distribution of the logarithmic waiting times is expo-
nential – linear in log-scale – meaning that the generation of extreme events
follows a Log-Poisson law. (b) γ = 0.044: the distribution of logarithmic wait-
ing times splits into two linear portions in log-scale, suggesting two concur-
rent Log-Poisson processes at different time scales.

For low feedback rates [Fig. 5.8-(a)], we observe that the waiting times wk
are distributed exponentially, which is consistent with experimental observa-
tions [76, 138] and confirms that extreme events are generated according to a
Log-Poisson law. However, as also observed in experiment [76], increasing the
feedback rate leads to a deviation of the statistics of the waiting times wk; see

97



theoretical investigation into dynamics

Fig. 5.8-(b). The best fitting unveils two different distributions depending on the
time-separation between extreme events. The law for the longest waiting times
represents the waiting times that would be normally observed, as in the case of a
low feedback rate, while the distribution for the shortest waiting times accounts
for repetitions of an extreme event at time intervals close to the time-delay. In-
deed, increasing the feedback rate leads to a larger number of extreme events of
type II for which not only a main pulse overshoots the threshold A = 2 but also
do the smaller pulses that repeat at a time smaller or about the value of the time-
delay. This yields an increasing proportion of counts of values of time-separation
between extreme events smaller or close to the time-delay value, hence modify-
ing the statistical distribution.

5.2.3 Bifurcation to extreme events

Figure 5.9: Bifurcation diagrams plotting extrema of the output power low-pass filtered
at 4 GHz against the feedback rate γ for different EC lengths: (a) θ = 1600,
(b) θ = 476. The red line is the A = 2 level. Extreme events seem to already
appear for a short cavity. Labels A, B and C refer to three particular bubbles
of chaos on which we focus in the text and in Fig. 5.10.

The rate-equation model reproduces qualitatively well the experimental ob-
servation of the role played by the feedback rate in modifying the number of
extreme events, the type of extreme events (type I or type II) and the statistics of
the time between extreme events. We will thus use it to bring new light into the
sequence of bifurcations that yields extreme events.

Figure 5.9(a) shows the bifurcation diagram in the case of θ = 1600where local
extrema of the filtered time traces are plotted versus the feedback rate γ. The bi-
furcations leading to chaotic dynamics in a PCF laser system have been analyzed
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in depth by several groups, including with the use of so-called continuation
methods for delay-differential equations [87, 91, 93, 102, 148]. Our purpose is
here to identify the parameter range where extreme events are detected and to
relate these regions of extreme pulses with the sequence of bifurcations leading
to chaos. The evolution of the power for which A = 2 has also been plotted
as the threshold above which we consider the intensity pulse as being extreme.
This figure brings several new insights. First, it confirms that extreme events
are observed in a large interval of feedback rate γ that corresponds to a region
of parameters leading to chaotic dynamics, as also evidenced experimentally in
Ref. [76]. This chaotic dynamics appears from a sequence of period-doubling and
quasi-periodic bifurcations at small feedback rates and experiences a chaos crisis
at larger values of the feedback rate, leading to ECMs [102]. Secondly, this figure
confirms that as the feedback rate increases, the intensity pulses exceed more
and more the threshold value for extreme events, hence increasing the number
of counted extreme events when increasing γ.

To clarify the role played by the ECMs it is interesting to compare the bifur-
cation diagram with the one computed for a smaller value of θ, for example
θ = 476 in Fig. 5.9-(b). It corresponds to the situation analyzed theoretically in
Ref. [102] and in other publications analyzing in depth the bifurcation scenar-
ios of the PCF laser system [87, 93] as well as in Section 2.3. As γ increases, the
first steady-state destabilizes to chaos and the laser experiences a cascade of
bubbles of chaos that originate on self-pulsating dynamics and that terminate
with chaos crisis leading to another ECM of higher frequency. The chaos crisis
was analyzed in detail through continuation methods in Ref. [102] and the suc-
cession of ECM with increasing frequencies being harmonic of the EC frequency
was evidenced in Chapter 3. This figure brings the same conclusions on first,
the increasing number of extreme events when increasing γ, and secondly on
the fact that extreme events appear in parameter ranges leading to chaos and
close to the onset of a chaos crisis. The important role played by a chaos crisis in
generating extreme events was also identified theoretically in a laser diode with
optical injection [141].

Still, this figure brings an interesting new message into the mechanism that
is responsible for an increasing number of extreme events when increasing the
feedback rate. For this purpose we look more carefully into the pulsating dy-
namics in three different ranges of feedback strength corresponding to the three
regions labeled A, B, and C in Fig. 5.9(b). Figure 5.10 compares the pulsating
dynamics (with a zoom in the right panels) for increasing values of γ, respec-
tively in regions A, B, C. Two ingredients contribute to increasing the number of
extreme events from (a) to (c).
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Figure 5.10: Snapshots of time traces in the case of θ = 476 in three different bubbles
of chaos labeled A, B and C in Fig. 5.9: (a) γ = 0.015, (b) γ = 0.0202 and
(c) γ = 0.025. Left column are snapshots of 100 ns that show the evolution
of the A = 2 level for similar waveforms. Middle column presents zooms on
those time traces that show fast oscillations close to the mean power, with a
frequency that increases with the feedback rate. This increase in frequency
is responsible for lowering the A = 2 level, thus increasing the number
of extreme events detected, which can be confirmed in the right column
where power spectra of the output power are plotted, showing more higher-
frequency content for high feedback rates.

100



5.2 statistical characterization of extreme events

First, as is known in any optical feedback configuration and also identified
in PCF [35], increasing the feedback strength leads to an increased level of the
average output power. Figure 5.10 furthermore shows that not only the averaged
level of the power increases but also does the maximum power when increasing
γ. Secondly, a specific feature of PCF is that when increasing γ the laser bifur-
cates to new ECMs with increasing (harmonic) frequencies [24, 102]. This is clear
from panels (a.2)-(c.2). Although the time duration of a pulse that reaches the
extreme event threshold remains similar, the dynamics pulsates faster in (c.2.)
than in (b.2) or (a.2) for a smaller value of γ and this is mostly visible in the time
interval that separates two extreme events. This is also clear in the correspond-
ing spectra where we identify more higher-frequency content while increasing
the feedback rate.

Indeed, as stated before, increasing γ means that the system has access to
ECMs of higher frequencies. Because of the higher frequency in the dynamics
of (c.2.), more pulses and therefore more events are counted in the same time-
interval in (c.2.) than in (b.2) or (a.2) hence contributing to decreasing the average
value of the pulse intensities among one third of the highest intensity pulses.
To say this differently, this explains why the level A = 2 decreases with the
increase of γ when comparing (a.1), (a.2)-(c.1), (c.2). The decreasing level of the
threshold for defining an event as extreme and the larger value of the peak pulse
intensity when increasing γ explain the increasing number of extreme events
when increasing the feedback rate.

The conclusion drawn from Fig. 5.10 remains true when the criterion for an
extreme event uses the definition of the significant height Hs instead of H1/3.
According to this new definition, the power values corresponding to the A = 2

change to 0.73, 0.60, 0.45 from (a) to (c), respectively. As mentioned before, in-
creasing the feedback strength from (a) to (c) leads to a larger amount of events
corresponding to pulsing intensities with higher frequencies. Since these high-
frequency pulses typically have a small amplitude around the mean value of the
output power, increasing the feedback strength leads to a decreasing value of the
standard deviation of recorded events, hence to a decreasing value of the A = 2

level and to a larger amount of detected extreme events.
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5.3 conclusion

In summary, our numerical simulations are in good qualitative agreement with
the three main conclusions of the experiment: when increasing the feedback
rate 1) the deviation of the intensity statistics to the Gaussian statistics increases
leading to a heavy-tailed or L-shaped statistics with a larger proportion of high-
intensity pulses, as observed in general in rogue wave statistical studies [134],
2) the number of extreme events increases with an increasing proportion of so-
called type II extreme events that consist of extreme intensity pulses repeating
at a time smaller or of the order of the time-delay value, 3) the statistics of the
time between extreme events deviates from a Log-Poissonian distribution due to
the larger contribution of type II extreme events.

A good qualitative matching with all experimental observations is obtained
although the rate equation model does not account for several features, as we
have seen in Chapter 2. To our opinion this demonstrates the essential role played
by the two basic ingredients of the system, the phase-conjugation and the time-
delay, in explaining the emergence of extreme events and the corresponding
statistics in our system.
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Overall, we have seen in this first part that by using a simple model of a laser
with Phase-Conjugate Feedback (PCF) (see Eqs. 2.12 and 2.13) we are capable
of qualitatively reproducing the different dynamics that had been reported ex-
perimentally: namely External-Cavity Modes (ECMs) which are oscillating solu-
tions at harmonics of the External Cavity (EC) frequency, Low-Frequency Fluctu-
ations (LFF) and the associated itinerancy among destabilized ECMs, and extreme
events. Not only the general behavior is correct, with the correct dynamics ap-
pearing for ranges of parameters realistic in respect of the experimental config-
urations, but the model also catches the subtle characteristics of said dynamics:
e. g. the difference between type-I and type-II extreme events is present. The only
subtle characteristic that was not reproduced for a set of parameters correspond-
ing exactly to the experiment is the coherence resonance in the LFF regime that
has been shown to happen in a small bubble of chaos for a shorter cavity.

Since the model only includes the rate-equations of a laser diode with time-
delayed feedback of phase-conjugate nature, this leads us to think that PCF is the
main ingredient responsible for all the dynamics observed experimentally and
that this model is suitable for reproducing the behavior of a laser diode with
PCF.

There are several features that the model could include to maybe make it more
accurate or to try to reach a more quantitative agreement. Among them, we can
cite modeling of the gain saturation, which would probably limit the maximum
abnormality index reached for extreme events. We could include the possibility
of multiple round-trips in the EC, especially when we study the largest values
of the feedback rate. The model would also be more general with the inclusion
of frequency detuning between the laser and the phase-conjugated wave, which
would lead to different regimes of operation whether the laser locks onto the
feedback frequency or not. Finally, we could consider the finite penetration depth
inside the photorefractive medium, which would have a filtering effect. But other
studies have been made with this assumption and the conclusion seems to be
that the filtering effect does not have a strong influence on the behavior of the
system as long as the penetration depth is not too long, i. e. 1 cm or less, which
is usually the case in the experiment that uses typically an 8-mm long photore-
fractive crystal [99, 101, 148].
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In addition to reproducing the experimentally observed dynamics, we have
discovered several things:

• We have confirmed the specific natures of ECMs in a laser diode with PCF.
They are self-pulsating solutions at harmonics of the EC frequency and not
Steady-State (SS) as in Conventional Optical Feedback (COF).

• ECMs behave surprisingly when changing parameters. Even though they
are harmonics of the EC frequency, the actual value of the time-delay has
little influence on the frequency of oscillations measured. Instead, the fre-
quency increases with the feedback rate.

• The onset of high-frequency ECMs is responsible for the fast dynamics we
observe – LFF and extreme events.

• In particular, an itinerancy among ruins of the ECM attractors happens be-
fore a dropout in the LFF regime.

These findings now motivate us to go back to the experiment in Part II to
check whether these features unveiled theoretically can be observed in the real
system.

For this, we explore a first experimental setup in Chapter 6 – the same as
the one used in Refs. [24, 72, 76, 77] – to test the behavior of the system in
the LFF regime and investigate the itinerancy. We also use this setup to begin
the characterization of the optical chaos from a laser diode with PCF and find
indications that it could perform better than a laser with COF for chaos-based
applications.

In Chapter 7, we will explore a second original setup – similar to the one
used in Ref. [32] – for which smaller cavities and larger feedback rates can be
obtained. This setup allows us to observe high-order ECMs and to reproduce the
whole succession of bifurcations that leads a laser diode with PCF from the SS, to
chaotic dynamics, then to ECMs and finally back to a SS.
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Part II

E X P E R I M E N T





6
I T I N E R A N C Y A M O N G E X T E R N A L - C AV I T Y M O D E S A N D
C H A O S B A N D W I D T H O F A L A S E R D I O D E W I T H
P H A S E - C O N J U G AT E F E E D B A C K

We have explored in Part I the richness of dynamics that a laser diode with
Phase-Conjugate Feedback (PCF) can exhibit. Through simulation of a simple
rate-equation model (see Eqs. 2.12 and 2.13), we have been able to reproduce the
dynamics that had been previously observed experimentally [24, 32, 72, 75–77].
However, in the process, we have discovered new properties of dynamics of a
laser diode with PCF that were not observed experimentally before.

Here, we investigate experimentally the itinerancy among destabilized External-
Cavity Modes (ECMs) occurring in the Low-Frequency Fluctuations (LFF) regime,
more specifically during the time intervals preceding power dropouts. This was
unveiled theoretically in Chapter 3 and we explore it in this chapter with the
same experiment that was used recently in Refs [24, 72, 76, 77] on which we base
most of our work .

In Sections 6.1, 6.2, and 6.3 we present the different components used in the
experiment, how they interact with each other and what measurement tools we
can use to analyze the dynamics of the laser output. In Section 6.4 we observe
experimentally LFF and we compute spectrograms of the time traces to provide
evidence of the itinerancy among ECMs. In Section 6.5, knowing that the fre-
quency of ECMs scales with the feedback rate (see Chapter 3), we investigate the
possibility to take advantage of this property in order to generate chaos with a
large chaotic bandwidth. In Section 6.6 we introduce a theoretical study in which
we confirm the experimental results presented in this chapter, before concluding
on this study in Section 6.7.

Throughout this chapter, we also make comparisons with the same laser but
with Conventional Optical Feedback (COF) in order to provide more evidence of
the differences between the two types of feedback. We make sure to have the
same External Cavity (EC) length in both cases to guarantee a fair comparison.

Part of the work presented in this chapter has been published in Ref. [151].
Another part has been done in collaboration with Dr. Damien Rontani and has
been submitted for publication with the title “Enhanced complexity of optical
chaos in a laser diode with phase-conjugate feedback”.
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6.1 laser diode

Nowadays, laser diodes based on semiconductor materials come in all sizes and
geometries, for a wide range of wavelengths and different output powers. Here,
we use a commercially available JDS Uniphase DL-SDL-5400. It is an edge-
emitting laser which has an active layer based on quantum wells made of Al-
GaAs in proportions such that the emitting wavelength is λ = 852± 4 nm, which
is in the near infrared domain. Typical applications of such a laser include print-
ing, spectral analysis and optical data storage. This specific laser can emit up to
50 mW, but the one we will use in Chapter 7 can emit up to 150 mW.

Figure 6.1: Characteristic plot of the optical power emitted by the solitary laser diode
depending on the injection current. The dashed black line is a linear fit to the
affine portion of the curve. We use it to determine the threshold of the laser
where it crosses the horizontal axis: Jth = 14.2 mA.

The emitted power is varied by adjusting the injection current J of the diode
and Fig. 6.1 shows the light-current characteristics of the solitary laser diode. The
threshold current is measured as Jth = 14.2 mA and we will typically operate
the laser diode between 25 to 35 mA, because close to the threshold, there is
generally not enough power to activate the self-pumping nature of the four-wave
mixing configuration in which we operate the Phase-Conjugate Mirror (PCM).

Through the range of injection currents used here, the solitary laser diode
always emits in a Steady-State (SS), and in this Chapter, we will use a PCM to
destabilize the laser diode and investigate some peculiar features of the dynam-
ics that we unveiled in Chapter 4. Of interest here is the itinerancy among high-
frequency ECMs in the LFF regime that our model predicted in Section 4.3.
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However, we have not been able to verify if our laser is longitudinally monomode,
as we have been assuming in our theoretical modeling in Part II. Indeed, for a
semiconductor laser, the frequency interval ∆ν between two longitudinal modes
can be calculated with the formula

∆ν =
c

2Lcavng
, (6.1)

where Lcav is the length of the laser cavity and ng is the group index of the
active medium, in our case AlGaAs. We used a typical value of Lcav = 300 µm
and ng = 3.8 which gives ∆ν = 132 GHz. We can convert the frequency interval
into a wavelength interval:

∆λ =
c∆ν

λ2
. (6.2)

In our case, ∆λ = 0.3 nm. As we will see in Section 6.3.4, it is difficult to
measure such a frequency interval with our equipment. The resolution of the
optical spectrum analyzer is 0.1 nm and the free spectral range of our interfer-
ometer is only 10 GHz. We thus cannot conclude with absolute certainty on the
monomode or multimode characteristic of our laser diode. Our measurements
seem to indicate that the laser is longitudinally monomode for injection currents
under 25 mA but we otherwise rely on the information provided by the data
sheet which states that “the SDL-5400 series laser diodes operate in single longi-
tudinal mode under some conditions.”
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6.2 phase-conjugate mirror

We have seen in Section 1.3 that there are multiple ways to experimentally realize
a PCM. We decide here to make the mirror using the four-wave mixing process in
a photorefractive crystal. For our experiment, we choose a SPS photorefractive
crystal, placed in a self-pumped ring cavity setup. This section presents in more
details the sample and the configuration it is used in, the motivations behind the
choices made, and the characteristics of the mirror we obtain.

6.2.1 SPS crystal

Figure 6.2: Absorption constant of SPS-based crystals with different compositions versus
the wavelength. Figure from [152].

Among all the photorefractive crystals that exist, barium titanate (BaTiO3) and
SBN (SrxBa1−xNb2O6) are probably the most commonly used, because they are
transparent in the visible domain, they can be doped with several different chem-
ical elements to enhance their properties at some particular wavelengths and
they can be used for a lot of different experiments. A less-used, more-recent,
but still interesting type of crystal, especially for us, is tin hypothiodiphosphate
(Sn2P2S6 simply referred to as SPS), which presents low absorption for wave-
lengths corresponding to red and into the infrared domain, as illustrated in
Fig. 6.2. The crystal we use has been doped with 1 % of tellurium to enhance
its photorefractive properties in the near-infrared [152], the wavelength of our
laser diode. This crystal has been grown for us by A. Grabar from Uzghorod
University who we thank here.
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6.2 phase-conjugate mirror

Another interesting feature of SPS crystals is their faster response time by
comparison to BaTiO3 or SBN. These crystals typically have a response time
on the order of several seconds. Constructing a PCM with this kind of material
can lead to build-up times of the mirror attaining several minutes before being
completely stable [32]. SPS crystals are expected to respond a thousand times
faster, on the order of milliseconds [153]. The original motivation for using this
type of crystal was to check whether or not the build-up time of the PCM would
have an influence on the laser dynamics when compared to experiments using a
BaTiO3 crystal. Furthermore, this type of crystal was available in our laboratory.

6.2.2 Self-pumped ring cavity setup

We have seen in Chapter 1 that several experimental configurations can be used
with a photorefractive crystal to create a PCM[70]. Here, we put our tellurium-
doped SPS crystal in a self-pumped ring cavity to perform the four-wave mixing
necessary for creating the phase-conjugate of the output beam of the laser diode.
This setup requires two conventional mirrors, but is quite easy to realize ex-
perimentally [69, 152]. The CAT configuration would probably have been the
easiest to implement, but our SPS crystal does not have enough polished facets,
required to make use of the total internal reflection. For comparison, in Chap-
ter 7 we propose an experimental setup based on a barium titanate crystal with
polished facets used in the CAT configuration.

SPS ring cavity

laser

incident beam
transmitted beam
beam fanning
phase-conjugate beam phase-conjugate mirror

c-axis

Figure 6.3: Ring-cavity configuration with the SPS crystal. The c-axis is perpendicular
to the incident beam and in the plane of the laser polarization: this axis of
spontaneous polarization deviates part of the incident beam to create what
is called the beam fanning. Four-wave mixing inside the photorefractive SPS
crystal creates a refractive-index grating in transmission (dashed gray lines
inside the crystal), where the incident and fanning beams are the pumps, the
transmitted beam is the signal and the phase-conjugate beam is created.
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It is important for us to choose a self-pumped configuration because we want to
study only the impact of phase-conjugation and not the impact of a wavelength
detuning between the output beam of the laser and the beam reflected by the
PCM. It is even more important because all our theoretical predictions have been
made with a simple model for which we supposed that there was no detuning.

Figure 6.3 shows the ring-cavity experimental configuration with the SPS crys-
tal. It also shows the direction of the c-axis, the spontaneous-polarization axis
of the crystal. By having the c-axis parallel to the polarization axis of the laser,
part of the beam power is spontaneously deviated in the direction of the c-axis:
this effect is known as beam fanning. The dashed gray lines show the internal
refractive-index grating that is created in transmission inside the crystal due to
the four-wave mixing process1. The diffraction on this grating yields the PCF

field.

E*(t-τ)

phase-conjugate
mirror equivalent

laser

laser

phase-conjugate mirror

Figure 6.4: Due to the experimental configuration inducing a transmission grating in the
photorefractive crystal, the EC length includes the path of light along the ring
behind the SPS. The setup on top is thus equivalent in terms of EC length –
and thus delay – to the setup on the bottom with a virtual PCM, would it be
possible to have such a mirror available as a single component.

In this configuration, the effective length of the EC is equal to the sum of
the round-trip length between the laser and the crystal plus the length of the
ring behind the crystal. The equivalent setup with a virtual PCM is illustrated
in Fig. 6.4. This configuration thus brings a problem to one who wants to study
short EC lengths because one cannot get rid of the length introduced by the ring

1 It is possible to create a reflection grating inside crystal, normal to the propagation axis, which
is interesting because in this case the effective length of the cavity is only the round-trip between
the laser and the crystal. This configuration allows for shorter delays. It has been reported previ-
ously [24, 73].
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6.2 phase-conjugate mirror

portion of the setup. In Chapter 7 we use the CAT configuration to obtain shorter
EC lengths.
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6.3 operation and measurements

6.3.1 Complete experimental setup

optical isolator

power-meter

oscilloscope

fast
photodetector

laser

Figure 6.5: Complete experimental setup, with a beam-splitter inserted between the laser
and the PCM to either pick up the output signal of the laser and send it
through an optical isolator to a fast photodetector or to deviate part of the
feedback beam to a power-meter in order to monitor the reflectivity of the
PCM.

The complete experimental setup includes a beam splitter in-between the SPS
crystal and the laser diode, as depicted in Fig. 6.5. It allows us to have two
measurement arms. First, part of the light coming out of the laser is deviated
towards an optical isolator, composed of two polarizers and a Faraday rotator.
This prevents any reflection from what is placed behind the isolator to be fed
back into the laser cavity. Thus we ensure that everything that we observe is
due to the PCF and not any other kind of parasitic optical feedback. Figure 6.5
illustrates coupling to a fast photodetector and to an oscilloscope, but we will
see in the following sections the different types of measurement available to us.

Secondly, the beam splitter also allows to deviate part of the phase-conjugate
beam. This is useful to us because by placing a power-meter in this second arm,
we can measure the mean power PPCM coming from the PCM and thus, know-

114



6.3 operation and measurements

ing the output power Pout of our laser, to estimate the feedback fraction Rext at
which we operate. The feedback fraction is defined as the ratio of power effec-
tively going back into the cavity to the power emitted by the laser:

Rext = η
TBS
RBS

PPCM
Pout

, (6.3)

where η is the coupling efficiency of the collimating optics, TBS and RBS are
respectively the fractions of transmitted and reflected power from the beam split-
ter.

The authors of Ref. [100] estimated the value of the coupling efficiency in
the case of PCF to be 0.7 ± 0.1. This estimation is based on comparing power
measurements of the laser with feedback to predictions obtained with equations
from Refs. [154, 155]. These equations have been derived from an EC feedback
model that takes into account multiple reflections for the case of COF. In one of
the equations used to estimate the coupling efficiency the authors have to use
an approximation of the value of the effective reflectivity of the external mirror
which is only valid for small reflectivities and for an EC longer than the coherence
length of the laser. As such, there is no guarantee that these equations are still
valid when using PCF with large feedback fractions. In the work presented in
this thesis, we constantly work with large values of the feedback fraction (up
to about 10 %). So we prefer to not use this method due to its uncertainty and
we consider η = 1 as predicted by the phase-conjugated nature of the feedback
beam which is auto-aligned with the output beam of the laser. When discussing
our conclusions we keep in mind that the coupling efficiency can be lower than
unity.

In this Chapter, we adjust the total EC length to be 119 cm, which corresponds
to a delay τ = 3.97 ns or a EC frequency fEC = 252 MHz. This delay corresponds
to a cavity long enough to observe LFF with a large number of ECMs which will
be useful to analyze itinerancy predicted in Section 4.3. It is close to the value
used in a previous experiment observing LFF [72] and to the value used in Chap-
ter 4. Further into the study, we will also make comparisons with an equivalent
setup using COF instead of PCF. To this end, we also use the experimental setup
shown in Fig. 6.6 where we put a conventional mirror in place of the virtual
equivalent PCM previously described in Fig. 6.4. In the case of COF, we know that
the coupling efficiency is probably not higher than 0.3 [100], so we will take this
fact into account when discussing our conclusions.

Using this setup, we can make several types of measurements to gain insight
in the dynamics of the system, which can be broken down into three categories:
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E(t-τ)

conventional mirror

laser

E*(t-τ)

phase-conjugate
mirror equivalent

laser

Figure 6.6: For comparing the effect of PCF in the experiment relatively to the effect of
COF, we use the same experimental setup with a conventional mirror (bottom)
put in place of the equivalent virtual PCM. Placing the conventional mirror in
this position takes into account the fact that the total EC length in the case of
the PCM is composed of a round-trip plus the length of the ring. See Fig. 6.4.

• Acquiring time traces: it requires to convert the optical signal into an elec-
trical signal and use an oscilloscope to follow the evolution of the output
of a photodetector.

• Measurements in the Radio-Frequency (RF) domain: we use an RF spectrum
analyzer in place of the oscilloscope.

• Visualization of the optical spectrum of the output.

We detail these types of measurements and the instruments we use in the
following sections.

6.3.2 Measurements in the time domain

Contrary to the case of theory that we explored previously, it is not possible to
measure the electric field E(t) of the output beam of the laser diode. However, it
is experimentally possible to measure the optical power proportional to |E(t)|2.
By using a fast photodetector, we are able to convert variations in the optical
power into variations of the output voltage of the detector, which can then be
acquired with an oscilloscope.

Since the dynamics we want to measure is typically really fast, we need to use
photodetectors with a large bandwidth. In our case, it is a NewFocus 1554-B
with a 12-GHz-bandwidth which allows us to capture most of the dynamics we
are interested in. To attain such a high electrical bandwidth, this kind of detectors
need to have a really small sensing area, which means that they usually rely
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on fiber – monomode for this model – input and that they have low sensitivity
values. We thus need to couple light into a fiber before measuring, which implies
that there are additional losses. Since we work with a high-power laser diode,
this is not really an issue, even when taking into account the low sensitivity.

The output of the photodetector is then measured and acquired with a Tek-
tronix DPO 71604C which is a 16 GHz-bandwidth oscilloscope with a large
sampling-rate of 100 GSa.s−1. We make full use of these high-end specifications
later in this chapter to compute spectrograms of our signals with quite good
time and frequency resolutions.

The oscilloscope has a memory depth of up to 100 million points, which cor-
responds to time traces 1-ms-long at the fastest sampling rate. This duration is
long compared to the time constants of the dynamics we are interested in and
this means that one time trace is usually enough to make statistics on different
properties of the signal.

6.3.3 Measurements in the radio-frequency domain

To acquire the RF spectrum associated with the observed dynamics, we have two
solutions.

The first one simply consists in computing it from the time traces acquired,
by using Fast Fourier Transform (FFT), as we did for simulated time traces previ-
ously. Given the specifications of our oscilloscope and the duration of the signals
acquired, this method usually yields good results.

The other technique consists in connecting an RF spectrum analyzer in place
of the oscilloscope – or to split the output of the photodetector to connect the
two instruments at the same time. Here, we can use a Rohde & Schwarz FSW43

which has a 43.5 GHz electrical bandwidth. The downside of using this instru-
ment lies in the fact that it takes some time to scan and measure the whole
bandwidth of the dynamics – up to hundreds of milliseconds for the finest reso-
lutions. As such, it is not suitable for measuring transient dynamics, but it can be
used in established regimes to offer a better resolution with a better dynamical
range than when extracting the dynamics from the time trace.

6.3.4 Measurements of the optical spectrum

There are two different tools that we can use to measure the optical spectrum of
the laser.
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The first one is to use a confocal Fabry-Pérot interferometer, such as a Thor-
labs SA210-8B with the corresponding controller SA201-EC. It has a Free Spec-
tral Range (FSR) of 10 GHz and a finesse of 150. This kind of measurement tool
is useful to determine the shape of the envelope of the optical spectrum. It mea-
sures the optical frequency difference relatively to a reference but it does not give
information on the absolute wavelength of the laser output. It can be used at the
same time as the photodetector by simply adding a second beam splitter behind
the optical isolator to deviate a small part of the power into the interferometer
cavity.

The second tool available is an Anritsu MS9740A which is an optical spec-
trum analyzer. This equipment has the advantage of giving the wavelength of
emission with a good precision, but its resolution (0.1 nm or 41 GHz) is not fine
enough to detect the details in the envelope of the optical spectrum. Also, it re-
quires a fiber input so it cannot be used at the same time as the photodetector,
unless we add a second fiber coupler.

Both tools are thus complimentary, the first one to know the details of the
shape of the optical spectrum, and the second one to measure the wavelength of
emission.

6.3.5 Clarification about the mirror dynamics

The dynamics responsible for the creation of the PCM are slow when compared
to the dynamics of the laser diode – milliseconds compared to nanoseconds.
So one could ask if the laser can be sensitive to PCF from a slow mirror. The
reasoning would be that since the photorefractive material used to enable phase-
conjugation – SPS in our case, barium titanate in others – has a slow response
time when compared to the dynamics of the laser diode then it is not physically
possible for the material to create a phase-conjugate wave at the nanosecond
scale.

On the other hand, our view on the matter was that the timescale of the pho-
torefractive material is only important during a transient duration, necessary for
the refractive-index grating to build up in the crystal and thus create the PCM.
Once the mirror is constructed, phase-conjugation is only produced by the prop-
agation of signal and pump beams inside the grating and the timescale of the
material is not important anymore.

In addition, self-pulsing ECMs theoretically shown to be exclusive to the laser
with PCF and not possible in a laser with COF had already been reported [24,
72] with this same experimental setup. But we do not know if the PCM responds
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instantaneously or if it creates a filtering effect. In order to address this question,
we made a simultaneous measurement of the output of the laser and of the
beam coming back from the SPS crystal. Instead of measuring the reflectivity
with the power-meter, we put a second fiber coupler, which we connected to a
second photodetector of the same model and we connected both detectors to our
oscilloscope and acquired two time traces simultaneously.

Figure 6.7: Simultaneous acquisitions of (a) the output signal of the laser diode and (b)
the signal coming from the PCM. On the left are time traces and on the right
the associated RF spectra.

The simultaneous acquisitions are presented in Fig. 6.7: they show that the
time traces are almost identical. A small time-shift between the two traces can be
seen but it is simply due to the fact that the two measurement arms do not have
exactly the same length. When looking at the associated RF spectra in Fig. 6.7-
(a.2), (b.2) we observe a very similar frequency content between the output signal
of the laser and the signal reflected by the PCM. It shows clearly that the slow
response time of the crystal does not have a filtering effect on the reflected signal.
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6.4 low-frequency fluctuations

6.4.1 Radio-frequency content of the signal

Figure 6.8: Time trace acquired in the experimental conditions described in Section 6.3
where the laser emits in the LFF chaotic regime. The snapshot represented
here focuses on a single dropout event. The black line shows the low-pass-
filtered signal that we use to identify the appearance of the dropout. Green
and dark red dashed boxes represent 10 ns-long windows respectively before
and after the dropout that are used to compute partial RF spectra in Fig. 6.9.

With the experimental parameters described in Section 6.3 the laser is destabi-
lized into a well-known dynamical regime called LFF [27, 29, 77]. In this regime,
the output power of the laser is chaotic and power dropouts occur randomly.
This dynamics can be explained theoretically by an itinerancy among destabi-
lized ECMs [28, 35], as we have seen in Section 4.3. A typical time trace is shown
in Fig. 6.8 in blue. Superimposed in black is the low-pass filtered trace that allows
us to identify the power dropouts.

The purpose of the following analysis is to gain insight into the frequency
dynamics underlying LFF in the cases of both PCF and COF. To that end, we wish
to discriminate the frequency content before a dropout and just after a dropout.
Therefore, we developed a concatenation technique: for each dropout appearing
in the time traces, we extract the 10 ns before the dropout (green dashed box
in Fig. 6.8). We concatenate these 10-ns-long extracts together and compute the
RF spectrum of the concatenated trace to obtain the green spectrum shown in
Fig. 6.9. We use the same technique for the 10 ns of time trace following the
dropout (dark red dashed box) and obtain the dark red spectra. The downside
of this technique is that it introduces concatenating artifacts in the spectra at
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Figure 6.9: Using a concatenating technique (described in the text), we are able to clearly
identify two different dynamics that take place in the LFF regime before a
dropout (in green) and after a dropout (in dark red).

multiples of 0.1 ns−1. But these artificial peaks are negligible because they are
very narrow, usually no more than one point among the thousands of points the
total spectrum is composed of.

We are then able to distinguish between the two different dynamics before
and after a dropout. Before a dropout the dynamics is mainly dominated by
resonances of destabilized high-frequency ECMs (dark red partial RF spectrum
in Fig. 6.9), which we theoretically explained as an itinerancy among the ruins
of ECMs of large order. We believe that these high-frequency oscillations in a
chaotic regime can be useful for potential applications. We will develop that
point further into this Chapter in Section 6.5.

After a dropout, the system enters a recovery (or refractory) phase where the
laser returns to its average power value and during which no additional dropout
can occur. During this phase, the green partial RF spectrum in Fig. 6.9 shows
oscillations mainly at the natural relaxation oscillation frequency of the laser
diode. This behavior is similar to the one observed for LFF in a semiconductor
laser with COF [29].

6.4.2 Spectrogram – observing the itinerancy experimentally

In order to observe the itinerancy predicted in Chapter 4, it is interesting to get a
closer look into the frequency dynamics on short time scales around a dropout.
For that purpose we apply a STFT analysis on samples from the time traces. STFT

consists of computing the RF spectrum on a small window of a signal (we use
a 10 ns window, the same value that was used for the concatenation technique),
then shifting this window to the next portion of the signal, and repeat the process
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Figure 6.10: We compare the dynamics of PCF on the left and COF on the right. (a),
(d) Time traces showing LFF. (b), (e) STFT of the previous time traces allow
to follow the temporal evolution of the frequency content of the signals. (c),
(f) We follow the highest frequency contributions in the panels of the bot-
tom row, which show the peak with the highest magnitude and the peaks
within 3 dB of this maximum.
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to scan the entire time trace. Overlapping between consecutive windows (here
taken as 95 %) and zero-padding are used to improve the time and frequency
resolutions of the resulting spectrograms. Figure 6.10 only show snapshots of
time traces but we observed a similar behavior over a lot of dropouts, for several
values of experimental parameters (J and Rext).

Figure 6.10 shows the evolution of the output power of the laser versus time,
the associated spectrogram and the evolution of the dominant frequencies versus
time in the PCF configuration. Dominant frequencies are those that share the fre-
quency with the maximum power, within a 2 dB tolerance. Just after a dropout,
i.e. for the first and last nanoseconds of the sample shown in Fig. 6.10-(a), the dy-
namics is dominated by frequency components around the relaxation oscillation
frequency. However, before a dropout, the frequency content is always changing,
with specific frequencies close to harmonics of fEC starting or ending to resonate.
Especially, panel Fig. 6.10-(c) indicates that there is a tendency for the system to
build up higher and higher frequencies as time goes on, with erratic evolution.
This erratic onset of harmonic frequencies of the EC frequency with a directional
motion in favor of high frequencies is in good agreement with the theoretical
predictions in Chapter 4 where in the LFF regime, the system is predicted to
have a chaotic itinerancy among the ruins of self-pulsing ECMs, each with their
own frequency being a multiple of fEC.

In the case of COF, shown on the right side of Fig. 6.10, the behavior of the
system after a dropout is similar to the PCF case, with frequencies around fRO
being dominant. However, before a dropout, we observe (Fig. 6.10-(e)) simulta-
neous resonance of frequency components close to multiples of fEC, which is
significantly different from the erratic behavior observed in the PCF case. LFF in
a laser with COF have been described as a chaotic itinerancy with a drift [28,
29] which excites destabilized SSs. All of these destabilized modes have a similar
frequency signature which is the result of non-linear frequency mixing between
fRO and sidebands at multiples of fEC. Therefore when the system jumps from
the ruin of a mode to the next one, the frequency spectrum does not vary much.

This analysis confirms our theory about the itinerancy among destabilized
ECMs happening in the LFF regime, independently of the type of feedback con-
sidered, and stresses the fact that the nature of ECMs – self-pulsating in one case,
SSs in the other – has a clear impact on the spectral signature of the dynamics,
even though the time traces of the laser power in the LFF regime appear similar
at first glance.
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6.5 chaos bandwidth and properties

Dynamical instabilities due to optical feedback have been known since the early
laser developments in the 1970’s[27]. Since then, numerous studies allowed for
the development of applications using chaos [16] in semiconductor lasers with
feedback, including random number generation[48] and encrypted communica-
tions[44, 156].

Random number generators need a fast entropy growth, and encryption must
have a high data rate, meaning that these applications require high frequencies
and large bandwidths to operate [20, 33]. The security of the encryption also
relies on chaos complexity and the robustness of synchronization. Time-delayed
feedback in a semiconductor laser generates chaos that has these properties. Non-
linear frequency mixing leads to high harmonics of the EC frequency [20] and
large bandwidths that can exceed the frequency of relaxation oscillations of the
laser. Various techniques have been suggested to further enhance the chaos band-
width [20, 36, 37] including optical injection or adapting the shape of the RF spec-
trum by using a fiber ring resonator. The time-delayed nature of the system also
ensures a chaos of high dimension, with a large number of positive Lyapunov
exponents[31].

COF has been used in numerous schemes designed for encrypted communica-
tions[16, 20, 36, 37, 44, 157]. In this Chapter, we focus on the properties of chaos
from a laser with PCF, and how it compares to chaos from a laser with COF, which
consists of feeding the phase-conjugate of the emitted beam back into the laser
cavity. We will show that we can extract a chaotic signal with a wider bandwidth
from the PCF configuration. In the range of feedback strengths that are achiev-
able with the phase-conjugate mirror, we observe a chaos bandwidth enhanced
by up to 27 %.

We focus here on one specific property of the signal, which we call the chaos
bandwidth. The usual definition of the bandwidth at −3 dB for systems with
a flat response and a cut-off frequency cannot be used for systems exhibiting
chaos, since the shape of the RF spectrum is much more complicated, as shown
in Fig. 6.11. In the field that studies applications of chaos, the bandwidth is often
defined as the frequency that contains 80 % of the total power of the spectra,
as commonly used in the literature[36, 37], even though other definitions have
been proposed recently [38]. The concatenating artifacts mentioned earlier would
influence our results here but as already stated, they are negligible because they
represent only a few points. Even if they had an influence, they would lower
the bandwidth since they are present at low frequencies. In addition, we also
calculated the spectra of the 10 ns before each dropout individually and then
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6.5 chaos bandwidth and properties

Figure 6.11: RF spectrum of the chaotic signal displayed in Fig. 6.8 shows excitation of
harmonics of the EC frequency, and a shape that is not adapted to the classi-
cal definition of bandwidth at −3 dB.

averaged them to obtain the mean spectrum, repeating the same process for the
10 ns after each dropout. The resulting averaged spectra yielded conclusions
similar to the ones obtained with the concatenation technique.

The concatenation technique is used to compute the spectra in Fig. 6.12. We ob-
serve that oscillations after the dropout are dominated by the relaxation-oscillation
frequency fRO [29], accompanied by some period-doubling with fRO

2 resonating,
especially in the case of PCF (Fig. 6.12 (a)-(d)). From the literature[95], we know
that increasing the reflectivity can shift fRO toward higher frequencies: fRO goes
from 4.5 to 6.5 GHz when increasing Rext from 6.68 % to 9.65 % in the case of
PCF, and from 7 to 8 GHz in the case of COF when increasing Rext from 33.44 %
to 77.39 %. We should note here that in our experiment, we optimized the COF

alignment by maximizing the threshold reduction, assuring the maximum cou-
pling efficiency achievable.

The RF spectra after dropouts are similar when comparing PCF with COF. How-
ever, the frequency content before dropouts is quite different. In the case of PCF,
the spectrum extends up to higher frequencies than in the case of COF. Also,
the high-frequency content increases with Rext, whereas in the case of COF, the
frequency content before dropouts remains relatively independent from Rext.

To illustrate this conclusion, we compute the bandwidths of the spectra be-
fore dropouts and report them in Fig. 6.13 (a). We observe that over the course
of a few percents of feedback-fraction increase, the bandwidth before dropouts
increases drastically in the case of PCF, whereas in the case of COF, to observe
the same bandwidth improvement, we have to increase Rext from 20 to 80 %
(comparing PCF with COF at J = 30 mA). In the range of feedback fractions
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itinerancy and chaos bandwidth

Figure 6.12: Comparison of RF spectra before (green) and after (dark red) dropouts from
concatenated time traces between the PCF configuration on the left ((a)-(d))
and the case of COF on the right ((e)-(h)). Values of feedback fraction are
indicated in the top right corner of each panel. Similarities and differences
from the two types of feedback are commented in the text.
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where comparison holds, i.e. being limited to about 14 % due to the limited non-
linear interaction strength of the PCF configuration, the bandwidth enhancement
ranges from 21 % for Rext = 5.9 % to 27 % for Rext = 12.1 %.

Figure 6.13: Chaotic bandwidth measured from the computed RF spectra (a) for the por-
tion of signal before dropouts and (b) for the whole signal in different con-
figurations: PCF, COF, different injection currents.

Interestingly, when comparing the evolution of bandwidth before dropouts
(Fig. 6.13 (a)) and the evolution of bandwidth of the whole signal (Fig. 6.13 (b))
in the two different configurations, we see that they follow the same trends, with
almost the same values. This suggests that the increase of the total bandwidth is
driven by the frequency content before dropouts, which is consistent with what
we observed in spectrograms in Section 6.4, where we demonstrated the itiner-
ancy among high-frequency destabilized ECMs in the case of PCF. This itinerancy
is shown here to drive the increase in the chaotic bandwidth of the signal.

For the sake of completeness, we also compare the bandwidth with the one
achieved when COF occurs at the position of the crystal, i.e. with a shorter cavity.
The results show that the bandwidth is much lower than in the case of the longer
external cavity, i.e. the bandwidth increases with the time-delay. We could not
test a shorter cavity in the case of PCF because of the way phase-conjugation is
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made, we cannot get rid of the length of the cavity ring, and the crystal was
already at the nearest possible position from the laser diode.
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6.6 theoretical investigation of chaos properties

In Part I we did not investigate the chaos bandwidth nor the complexity proper-
ties of the chaos generated by a laser diode with PCF. After obtaining the exper-
imental results presented in this chapter we initiated a theoretical study to see
if simulated time traces reflect the same properties in terms of chaos bandwidth
when compared to COF. Additionally, although the chaos from PCF reaches larger
bandwidth, one could argue that this is achieved through excitation of several
ECMs at higher frequencies. As a result, the chaotic time-trace might exhibit more
regular self-pulsation corresponding to these ECMs. We test this hypothesis here
with a theoretical study made in collaboration with Dr. Damien Rontani and
results have been submitted for publication [158].

We measured the chaos bandwidth and permutation entropy on time traces of
the output power simulated with a non-normalized rate-equation model similar
to the model introduced in Chapter 2 except it now includes gain saturation:

dE(t)
dt

=
1+ ıα

2

[
gN
N(t) −N0
1+ ε|E|2

−
1

τp

]
+ ηE∗(t− τ), (6.4)

dN(t)

dt
= J−

N

τe
− gN

N(t) −N0
1+ ε|E|2

|E|2 , (6.5)

where E(t) is the slowly-varying amplitude of the electric field and N(t) is the
population inversion. α is the Henry factor, gN is the differential gain, ε is the
saturation factor, τ is the time-delay of the feedback, J is the pumping current
and τe is the carrier lifetime. Our purpose is to compare the properties of chaos
generated from PCF with the ones of chaos from COF. An article published re-
cently presented the analysis of the complexity of chaos in the COF case using
permutation entropy [43]. For the sake of comparison, we choose here to work
with the same model and parameters as in Ref. [43]: the time-delay is taken as
τ = 1 ns – although it is different from our experiment – and the pumping cur-
rent is equal to 1.5 times its threshold value. The model for the case of COF is
the same except that in the feedback term the complex electric field is not conju-
gated. Equations (6.4) and (6.5) are integrated with the same method described
in Section 2.3.

With the parameter values used, the laser is quickly destabilized into a chaotic
regime. As we have done for the experiment, we simulate time traces for in-
creasing values of the feedback rate η and compute the RF spectra associated
on which we measure the chaos bandwidth at 80 %. Figure 6.14-(a)-(c) show
three RF spectra for increasing values of the feedback rate and we observe an in-
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Figure 6.14: (a)-(c) Simulated RF spectra of chaotic dynamics of a laser diode with PCF for
increasing values of the feedback rate – η = 15, 30, and 45 GHz respectively
– show increase of the frequency content towards high frequencies. (d) Com-
parison of the bandwidth at 80 % for increasing values of the feedback rate
for a laser diode with PCF and COF. Blue triangles indicate the values for
which the RF spectra are shown on the left.

creasing amount of energy into high frequencies reminiscent of our experimental
observations in Fig. 6.12.

Figure 6.14-(d) confirms the experimental observations of Fig. 6.13: the chaos
bandwidth of a laser diode with PCF can go beyond the bandwidth of a laser
with COF. The chaos-bandwidth rate of increase in the case of PCF is about twenty
times larger than for COF. In this theoretical study, we find that only for really
low values of the feedback rate – under η = 10 GHz – can the bandwidth be
higher in the case of COF than it is for PCF.

Then, we investigate a measure of the chaos complexity called the permutation
entropy to see if the increase of chaos bandwidth attributed to using PCF instead
of COF can be associated with an increased complexity. Permutation entropy is
a useful tool to characterize the chaos complexity of a system since it can be
computed directly on time traces and provides good results even in the presence
of a small amount of noise and it has been shown to give similar insight into
the dynamics as Lyapunov exponents which are usually more complicated to
obtain [159]. It is based on the analysis of fixed-length ordinal patterns inside
the time traces and the apparition probability of each pattern.

Before giving the general definition of permutation entropy, let us take a sim-
ple example of a time series of length l = 7 s to explain how it works.
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{xi}i∈[1,l] = {5, 8, 4, 9, 7, 3, 1} . (6.6)

First, we consider patterns of length De = 2 called the embedding dimension,
meaning that there are only De! = 2 possible ordinal patterns (noted π): 01 if
xi < xi+1 and 10 when xi < xi+1. In our example, the first pattern 01 appears
twice and the second pattern 10 appears four times. This gives us the probabili-
ties p(π) of apparition of each pattern, respectively 2/6 and 4/6, which allows to
compute the permutation entropy of {xi}:

H = −
∑

p(π) log(π) = −
2

6
log(

2

6
) −

4

6
log(

4

6
) ≈ 0.918, (6.7)

where we use the base-2 logarithm giving a result in bit. The same can be done
for higher embedding dimensions, e. g. De = 3 for which possible ordinal pat-
terns are 012, 021, 102, 120, 201, and 210. We typically use values of De between
4 and 7.

For a time series {xi}i∈[1,l] of arbitrary length l, we define vectors:

XDe,τe
i = (xi, . . . , xi−(De−1)τe), (6.8)

with i = 1, . . . , (De − 1)τe. We add here the parameter τe called the time-
delay embedding. It represents the time-delay between two consecutive values
considered for a pattern and it is a multiple of the sampling period. In the case
of time-delayed feedback systems, the permutation entropy is usually measured
with a time-delay embedding close to the time-delay of the system [43, 160] to re-
produce results given by another quantifier, the Kolmogorov-Sinai entropy [42].
To each of these XDe,τe

i vectors we attribute an ordinal pattern π of lengthDe. We
then compute the empirical probability of apparition of each pattern in the con-
sidered time series. This allows us to finally compute the permutation entropy
H and its associated normalized value h:

H = −
∑

p(π) log(π),h =
H

Hmax
, (6.9)

where Hmax = log(De!). Therefore h = 1 corresponds to the case of equiprob-
ability for all the patterns.

In the case of a laser diode with PCF, Fig. 6.15 shows that over a large range of
feedback rates, the permutation entropy is larger than in the case of COF. Only
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Figure 6.15: Permutation entropy of a laser with PCF and with COF measured as a func-
tion of the feedback rate η.

for the lowest feedback rates – below η = 15 GHz – is the permutation entropy
higher in the case of COF. Interestingly, the crossing point of the two curves rep-
resenting PCF and COF does not happen for the same value of the feedback rate
when measuring the bandwidth and when computing the permutation entropy.
This suggests that the permutation entropy is not directly correlated with the
value of the chaos bandwidth at 80 %. But in the case of a laser diode with
PCF, according to these simulations, we can obtain simultaneously a larger chaos
bandwidth and a greater complexity than in a laser with COF.

Although it is only a preliminary study of the impact of phase-conjugation in
a laser diode with optical feedback, this additional theoretical result confirms the
results obtained experimentally. We have been able to reproduce the results of
Ref. [43] and compare them to the same configuration but with PCF. Even though
the time delay is different than in our experiment, we think that the properties
of chaos exhibited in this section can be found for a large range of parameters
of the system. In addition to RF spectra and permutation entropy, we have also
analyzed the autocorrelation of the signal and the flatness of the spectra. We
have found that overall, the laser with PCF shows a smaller autocorrelation at
the time-delay which varies slowly with the increase of feedback rate. The RF

spectra in the case of PCF have also been found to be more flat than for a laser
with COF.

These first results encourage us to analyze the impact of PCF on chaos prop-
erties in more details in the future, i. e. with more indicators and a study of the
influence of other parameters.
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6.7 conclusion

In summary, we have investigated chaotic behavior (LFF regime) of a semicon-
ductor laser subjected to PCF and COF in a 120-cm-long cavity with moderate to
strong feedback strength. We have confirmed the itinerancy among destabilized
ECMs of the laser with PCF predicted in Chapter 4. In addition we have shown
that the bandwidth of a system with optical feedback can be improved by using
PCF instead of COF. We have attributed this bandwidth improvement mainly to
the high-frequency dynamics that takes place before dropouts.

As evidenced here and besides its fundamental interest, the physics underly-
ing PCF dynamics yields chaotic dynamics at higher frequencies than with COF.
Still the present experiment does not aim at setting a new record on optical
chaos bandwdith. Optical chaos extending up to 26.5 GHz bandwidth has for ex-
ample been achieved by injecting the chaos light from a DFB laser with COF into
a fiber ring resonator[36]. The bandwidth is however not related to the physics
of the laser diode with feedback but to the filter frequency inserted into the
ring resonator. It is known also that schemes using optical injection can further
extend the chaos bandwidth up to 20 GHz [20] and even further (32.3 GHz) us-
ing dual wavelength injection scheme [37]. Injection schemes require however
a careful matching of the coupled laser multiple parameters. These and simi-
lar bandwidth enhancement techniques [161, 162] can also be applied to further
optimize the chaos bandwidth achieved here with PCF.

Additionally, we have shown here that the improvement of bandwidth lies
in the self-pulsing nature of the ECMs in PCF. Since adjusting the EC length and
more specifically the reflectivity has an impact on the frequencies of the ECMs [24,
93, 102], one can reasonably expect that obtaining a larger range of reflectivities
could also improve the bandwidth of our system. Other configurations for the
phase-conjugate mirror exist, e. g. using total internal reflection in the crystal [69],
and could lead to higher values of the reflectivity. We will test this hypothesis in
Chapter 7.

These results have been confirmed with a measurement of the chaos band-
width in time traces simulated with a model very similar to the one introduced
in Chapter 2. We have also introduced the permutation entropy used to charac-
terize the complexity of the chaos emitted by the laser diode.

Finally, although the main focus here is on the fundamental properties of the
dynamics of a laser with PCF, we believe this work motivates research in other di-
rections. Since sequences of chaotic high-frequency pulses at harmonic frequen-
cies appear in the recorded chaotic time-trace – due to onset of the destabilized
ECMs of the PCF laser system – it would be interesting to check if this property
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reflects itself into the spectrum of the Lyapunov exponents and the resulting
entropy growth for random number generation[16, 48]. The theoretical study
presented in Section 6.6 suggests that it might be the case since simulated time
traces of a laser diode with PCF show an increase of bandwidth and complex-
ity when compared to COF. Both theoretical and experimental cases should be
analyzed with more details.

134



7
B I F U R C AT I O N S T O H I G H - O R D E R E X T E R N A L - C AV I T Y
M O D E S

With the ring-cavity setup studied in Chapter 6 we have observed Low-Frequency
Fluctuations (LFF) and we have brought evidence of the itinerancy on destabi-
lized External-Cavity Modes (ECMs) predicted in Chapter 4. We have also mea-
sured the bandwidth of the chaos emitted by a laser diode with Phase-Conjugate
Feedback (PCF) and we have found that it can be up to 27 % larger than for Con-
ventional Optical Feedback (COF).

However, we were limited in our experiment by the maximum reflectivity of
our Phase-Conjugate Mirror (PCM) which did not allow to observe the chaos
crisis [87, 102]. It was also difficult to study the case of a short cavity because the
length of the ring has to be taken into account for the time-delay induced by the
External Cavity (EC). We originally wanted to study short cavities because we
thought that would be where we can observe the highest frequency of ECMs. But
we learned in Chapter 3 that the feedback rate drives the frequency of the ECM

oscillating solutions, regardless of the EC length.
In this Chapter, we propose to study a second PCM configuration, which is

the CAT configuration we mentioned in Section 1.3. The facets of the crystal
used in this chapter are polished and we use total internal reflection inside the
photorefractive medium to enable the four-wave mixing process. This allows to
obtain shorter ECs – which turns out to not be necessary for observing high-
frequency ECMs – and more importantly larger reflectivity values.

In Section 7.1 we present the experimental setup, with the similarities and
differences from the setup used in Chapter 6. In Section 7.2 we explore the
range of dynamics that appear in a laser diode with PCF while increasing the
feedback rate. We observe the excitation of relaxation oscillations, destabilized
through quasiperiodicity to a chaotic regime. For large values of the feedback
fraction we observe a chaos crisis and the appearance of high-order ECMs – up
to ECM13 which means a frequency f13 = 13fEC. We conclude on this chapter in
Section 7.3.
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7.1 experimental setup

We propose now to study a second experimental setup, designed to obtain higher
reflectivities, which was a limitation of the setup used in Chapter 6. We use
a similar laser diode. The PCM is still made through self-pumped four-wave
mixing in a photorefractive medium, but this time we use the CAT configuration
introduced in Section 1.3 in a Rhodium-doped BaTiO3 crystal. Incidentally, this
setup also allows us to study shorter cavities.

7.1.1 Laser diode

Figure 7.1: Light-current characteristic of the laser diode we use for the second experi-
ment. We measured a threshold current Jth = 15.9 mA.

The laser diode we use here is a JDS Uniphase DL-SDL-5420, which has the
same design as the laser diode used in Chapter 6, but this time its nominal
power is 150 mW when biased at J = 200 mA. We can therefore expect to have
similar dynamics but this time, we have more power available for the four-wave
mixing process needed to achieve PCF. The light-current curve in Fig. 7.1 shows
a threshold current Jth = 15.9 mA, which is similar to the value for the laser
diode in the first experimental setup. According to the data sheet, the operating
wavelength is λ = 852± 4 nm.

In addition, we have also measured the frequency of relaxation oscillations as
a function of the injection current in Fig. 7.2 by measuring the Radio-Frequency
(RF) spectrum of the solitary laser at different injection currents, subtracting the
frequency content due to the noise in the measurement line. This allows to detect
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Figure 7.2: Evolution of the frequency of relaxation oscillations as a function of the in-
jection current of the laser diode. The measurements were made with the
NewFocus 1554-B photodetector and the Rohde&Schwarz FSW43 radiofre-
quency spectrum analyzer.

quite precisely the frequency of relaxation oscillations. It mostly follows a square
root evolution of the injection current, as predicted by Eq. (1.3).

7.1.2 CAT configuration

The PCM of Chapter 6 is quite efficient, except that it is limited in reflectivity and
we would like to operate at higher PCF strength. In addition, the major drawback
of using the ring cavity setup is that it is not really practical to realign a crys-
tal and two mirrors (for the ring cavity) every time one wants to change the EC

length. That is why we propose here to use the CAT configuration, briefly men-
tioned in Fig. 1.15 and first introduced in 1982 [74, 163, 164]. Beam fanning inside
the crystal and total internal reflection generate the two pump beams required
for four-wave mixing. Figure 7.3 is a photograph from the original experiment
showing the beams inside the crystal alongside a scheme of the principle of to-
tal internal reflection. This type of mirror has been successfully used for PCF

experiments in Refs. [32, 75, 100].
Figure 7.3 shows that this setup is easier to use because there is only one

element – the photorefractive crystal – to align for the PCM to work, instead
of three different elements in the ring-cavity setup used in Chapter 6. Addi-
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Figure 7.3: (a) Experimental photograph and (b) schematic representation of the beam
trajectory inside the crystal in the CAT configuration. The incident beam
(1) enters the crystal from top left. Beam 2 splits off due to fanning and is
internally reflected twice near the crystal edge and becomes beam 3’, which
then intersects beam 1 slightly upstream. Beam 2’ has also split off from beam
1 and travels around the loop in the opposite direction. Beams 1-3 generate
beam 4 by four-wave mixing in the interaction region circled on the right, as
do beams 1, 2’, and 3’ in the interaction region circled on the left. Beam 4 is
the phase-conjugate replica of beam 1, and it leaves the crystal exactly back
along the direction of the incident beam. Figure and legend from [163].

tionally, we have seen previously that we generally have to take into account
the round-trip time inside the ring cavity as part of the total time-delay of the
feedback. Since the physical space necessary to implement the ring cavity can-
not be reduced infinitely, it is hard to study the short-cavity regime – unless
the refractive-index grating is a reflection grating instead of a transmission one
which has been observed only once with the ring-cavity setup [24] and is quite
difficult to reproduce. Therefore, it is beneficial to use the CAT configuration
since it allows obtaining a shorter EC without being constrained by the size and
alignment of the ring cavity.

7.1.3 Barium titanate crystal

The original study of the CAT configuration in a photorefractive material used
a non-doped BaTiO3 crystal with an incident light from an argon-ion laser at
514.5 nm [163]. But this type of sample has a bad sensitivity to the wavelength
we use. Previous PCF experiments used cerium-doped barium titanate with a red
laser [75] or rhodium-doped barium titanate with a near-infrared laser [32, 100].
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Through a project for which I supervised master students Cesare Alfieri and
Oulfa Chellai, we studied the possibility of making a PCM in the CAT con-
figuration with BaTiO3. We used a barium titanate crystal doped with cobalt
(10 ppm) and we were able to create an efficient PCM with an argon laser – 35 %
power reflectivity with a reasonable response time on the order of ten seconds.
Knowing how to do it with visible light, we decided to test the configuration
with our infrared laser diode. Unfortunately, we were not able to achieve similar
performance for the PCM in the near-infrared domain: the reflectivity was too
low – 1 % at most – and the response time was really long – up to 15 minutes.
This bad performance was due to the low doping concentration in the crystal.
To perform adequately in the near infrared, we would need at least a 1000 ppm
concentration of dopant in the barium titanate crystal [74].

After this project, we knew we needed a strong doping in the crystal for it
to perform efficiently in the near infrared. After discussions with the German
company FEE to see what crystal they could grow for us and we asked them
to make a BaTiO3 crystal doped with rhodium at 1000 ppm. This new crystal
will allow us to obtain a greater reflectivity than we were able to do with the
first BaTiO3 crystal or with the SPS crystal in the ring-cavity setup. This will be
useful for exploring the behavior of the system closer to the limit of dynamical
instabilities (see Section 1.4).

7.1.4 Experimental setup and phase-conjugation performance

Besides the fact that we use a different PCM configuration and a slightly different
laser diode, the setup is essentially the same as in Chapter 6: we will use the same
equipment for measurements in the time-domain, in the RF domain, and optical
measurements (details can be found in Section 6.3).

The first step when aligning this setup was to make sure that the lens used
to collimate the laser beam was properly aligned, allowing the most efficient
coupling of light emitted by the laser. As for the ring cavity setup, this is tricky
because our laser is an edge-emitting device, meaning that the output beam
is highly divergent in one direction, owing to the fact that the thin active re-
gion clad between higher-index regions acts as a slit and diffracts light. For this
reason, we know that it is probably impossible to couple all the light, already
limiting the maximum feedback fraction that we can obtain.

For maximizing the coupling efficiency, we put a conventional mirror after the
coupling lens and align the lens and the mirror so that there is some light fed
back into the laser cavity. Adding feedback to a laser brings more light in the
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optical isolator

power-meter

oscilloscope

fast
photodetector

laser
c-axis

Figure 7.4: We use a similar setup as in Chapter 6, but this time with a barium titanate
crystal doped with cobalt in a CAT configuration. We use the same measure-
ments tools as presented in Section 6.3.

laser cavity. This reduces the losses inside the lasing medium. The gain can there-
fore be used to produce more light, which actually reduces the lasing threshold
of the device. This can actually be used as a tool to measure the amount of light
going back into the laser cavity: the more the threshold is reduced, the higher is
the feedback fraction.

We use this effect here, not to measure quantitatively the feedback fraction, but
to align our lens and mirror to maximize the threshold reduction, i. e. to lower
the threshold as much as possible. This way, we determine the conditions when
we have optimize the lens alignment so that most of the power emitted by the
laser is actually coupled back in the laser, and the beam is well collimated so that
even a conventional mirror can produce an effective feedback. Figure 7.5 shows
that we have reduced the threshold to JCOFth = 12.1 mA with a conventional
mirror in front of the coupling lens. This amounts to 24 % reduction of the
injection current threshold of the laser1.

After the initial alignment of the coupling lens, we put the barium titanate
crystal in place and began testing of the optimal configuration. We determined

1 We have been able to reduce the threshold even further – about 30 % reduction – but the direction
of propagation of the beam after the coupling lens was not parallel enough with respect to the
table and it was causing problems to align properly the optical isolator and fiber coupler.
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Figure 7.5: Adding conventional feedback to the laser causes a reduction of the lasing
threshold – 24 % in this case – measured on LI curves of the laser. We use
this technique to optimize the alignment of the coupling lens placed in front
of the laser to focus the output beam.

that an incident angle of the laser beam on the crystal in the range of 70-80° pro-
duced the best reflectivity results. With such a high angle of incidence, the beam
inside the crystal is already close to the critical angle and fanning in the photore-
fractive medium bends the beam slightly more so that the angle of incidence on
the opposite facet is just above the critical angle, thus allowing for total internal
reflection needed for the CAT configuration (see again the scheme in Fig. 7.3-(b)).

In Figure 7.6, we present the maximum reflectivity we were able to obtain
with an incident angle around 75° for several values of the injection current
of the laser. Below J = 20 mA the laser does not emit enough power and the
four-wave mixing process cannot be initiated, therefore we did not detect any
backward phase-conjugated wave. At J = 20 mA the crystal begins to act as a
PCM but the reflectivity R is not high enough for unlocking the dynamics we
wish to analyze, i. e. how the laser with PCF behaves for large feedback fractions.
Starting with J = 35 mA the PCM reflectivity reaches levels above 20 % which
is probably high enough to drive the laser up to regime V. Between J = 35 mA
and J = 65 mA it is relatively easy to obtain values of R between 20 % and 30 %,
so we will usually bias the laser diode in this range of injection currents. Above
J = 65 mA good values for the PCM reflectivity can still be achieved – 10 % and
more – but the PCM is more difficult to stabilize, hence the huge variations of
reflectivity with large injection currents. This could be due to a saturation of
the photorefractive process in the crystal or more complex mechanisms such as

141



bifurcations to high-order external-cavity modes

Figure 7.6: With an incident angle of 75° of the laser beam on the photorefractive crystal,
we have been able to obtain the maximum stable reflectivity reported on this
plot, depending on the injection current of the laser.

competition between gratings in the crystal or the competition between different
interacting regions in the crystal which can potentially lead to chaotic behavior
of the PCM [165, 166].

It should also be noted that we were able to obtain peak reflectivities slightly
higher than the values reported in Fig 7.6 – up to 40 % – but we were never
able to stabilize the mirror with such a high reflectivity. Finally, after taking into
account the power lost with the beam splitter – TBS = 79% of power transmitted,
RBS = 18 % of power reflected – the feedback fraction F, i. e. the ratio of the
amount of power that is fed back into the laser cavity to the amount of power
emitted by the laser, is F = T2R. As an example, R = 30 % corresponds to a
feedback fraction F = 18.7 %, considering that the coupling efficiency of the
feedback beam is η = 1.

Finally, to easily control the amount of feedback, instead of adjusting the gain
of the four-wave mixing by changing the position or tilt of the crystal – which
would probably give erratic control – we insert a variable attenuator between
the beam splitter and the crystal, allowing for precise control of the feedback
fraction.
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7.2 bifurcations from steady-state operation to regime v

In this Section, we drive the laser with a constant injection current of 40 mA,
and the total EC length – i. e. for the whole round-trip – is fixed at 48 cm. This
corresponds to a frequency of relaxation oscillations fRO = 3.3 GHz and a time-
delay τ = 1.6 ns or fEC = 616 MHz. We should note here that we measured
the frequency of relaxation oscillations at 3.3 GHz but the RF spectrum of the
solitary laser diode at that current is really broad, so that in reality it would be
better to describe the relaxation oscillations as a range of frequencies between
2.6 and 4.2 GHz as we can see in Fig. 7.7. We should keep that in mind when
looking for the presence of relaxation oscillations in the RF spectra of the laser
diode with PCF.

Figure 7.7: Measurement of the RF spectrum of the solitary laser without the noise due to
measurement apparatus with an injection current J = 40 mA. The relaxation
oscillations manifest themselves over a large range of frequencies between
2.6 and 4.2 GHz, with a maximum at fRO = 3.3 GHz.

With the variable attenuator, we change the feedback fraction and we observe
the dynamics of the system mainly in the time domain, with the photodetector
NewFocus 1554-B connected to our oscilloscope Tektronix DPO 71604C. The
corresponding RF spectra are computed off-line.
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Figure 7.8: (a) Time trace and (b) corresponding RF spectrum of the laser with PCF with
no feedback. We can see the laser relaxation oscillations being excited even
without feedback.

7.2.1 Evolution of dynamics with mirror reflectivity

No feedback

Without the presence of feedback, the laser is in a Steady-State (SS) as seen in
Fig. 7.8-(a). Note that the output power is equal to zero because we have cut the
DC for these measurements. Though the time trace seems to show only noise, the
RF spectrum in Fig. 7.8-(b) reveals the presence of relaxation oscillations. These
are most probably excited by the noise naturally present in the laser diode.

There are unfortunately some sharp peaks appearing on the RF spectrum,
which are manifestations of the working frequency of the Analog to Digital
Converters (ADCs) and its harmonics. However, for most of our measurement
they are not really a problem because the signal we are interested in is powerful
enough so that those peaks are drowned in the rest of the frequency content.
Moreover, we know their position and they have a sharper linewidth that any
frequency component we shall measure so it is easy to know if what we see is
due to the frequency of ADCs or is a feature of the dynamics.

Destabilization through quasiperiodicity

For a really low value of the feedback fraction (F = 0.027 %), the laser is already
destabilized from its initial SS (see Fig. 7.9-(a)). The addition of feedback excites
the laser at frequencies 2.92 and 3.42 GHz, which are both well within the range
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Figure 7.9: Time traces (left side) and corresponding RF spectra (right side) for different
values of the feedback fraction. (a) F = 0.027 %, (b) F = 0.031 %, (c) F =

0.044 %. We observe a route to chaos through quasiperiodicity.

of frequencies we defined as the relaxation oscillation frequency in the previous
section. As we have seen in Chapter 2, the laser diode with weak PCF undergoes
first an undamping of the relaxation oscillations pulsations before entering into
a sequence of bifurcations to chaos and ECMs.

Figure. 7.9-(b.1), (b.2) show a clearly quasiperiodic time trace. The associated
RF spectrum tells us that more and more harmonics of the EC frequency are
being excited as we increase the feedback fraction, mixed with the frequency of
relaxation oscillations around which the peaks are the strongest.

Finally, in Fig. 7.9-(c.1), (c.2) we can see that the system is already transition-
ing to chaos with a lot of excited harmonics of the EC frequency and most im-
portantly the base line of the spectrum is gaining some power. This is indica-
tive of frequency content present over a large range of frequencies with signifi-
cant energy suggesting chaotic behavior. This represents the boundary between
quasiperiodicity and fully-developed chaos.
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Chaos

Figure 7.10: Time traces (left side) and corresponding RF spectra (right side) for different
values of the feedback fraction. (a) F = 0.101 %, (b) F = 0.502 %, (c) F =

1.42 %. Fully-developed chaos gets more energy for high frequencies as the
feedback fraction increases.

For values of the feedback fraction over 0.044 %, the system is completely
chaotic. As we increase the feedback fraction we observe an evolution consistent
with the picture depicted with the first experiment in Chapter 6. Figures 7.10-
(a.1), (a.2) show a chaotic time trace and its associated RF spectrum where all the
peaks observed in the quasiperiodic regime have fully merged into a continuous
spectrum with a strong bump around the frequency of relaxation oscillations.

Figures 7.10-(b.1)-(c.2) show the evolution when we increase the feedback frac-
tion up to F = 1.42 %. We can see on the time traces that the chaotic oscillations
have a larger amplitude. This is consistent with the RF spectra where there is
more and more energy, especially in the high frequencies. For frequencies over
5 GHz peaks corresponding to the excitation of high-order ECMs are also more
and more present. In Chapter 6, we showed that this increase in energy at high
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frequencies led to a bandwidth increase of the optical chaos emitted by the sys-
tem [151]. Even though the time-delay is really different in this case – 1.6 ns here
and 4 ns in Chapter 6 – we observe a similar evolution of behavior in the two
experiments.

Figure 7.11: Evolution of the chaos bandwidth at 80 % when varying the feedback frac-
tion. We observe a quasi-monotonous increase of the bandwidth, as in Chap-
ter 6, but the values reached are lower and it seems to reach saturation here.

Figure 7.11 presents our measurements of the bandwidth at 80 % in the range
of feedback fractions for which the signal is chaotic – between F = 0.1 % and F =
1.42 %. The trend is the same as the one observed in Chapter 6: the bandwidth
increases with the feedback fraction, though saturation is reached slightly below
9 GHz. In the case of the ring-cavity setup, the largest bandwidth obtained was
around 11 GHz and we did not reach saturation. We might observe here the
influence of the time delay on the properties of chaos, where decreasing the EC

length seems to make the chaos bandwidth decrease too. It would be interesting
to make an in-depth experimental analysis of the influence of the EC length, since
it is easier to do now with the CAT configuration than it was for the ring cavity
in terms of alignment. Additionally, the measurements should be made with a
photodetector of larger electrical bandwidth to make sure that the detection fully
captures the dynamics created by the laser with PCF. Using a faster photodetector
requires to have more power in the detection branch of the setup, which requires
further adjustment. So far, our measurements with a faster photodetector have
not yield satisfying results due to a low level of optical power.
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Figure 7.12: Time traces (left side) and corresponding RF spectra (right side) for different
values of the feedback fraction. (a) F = 4.08 %, (b) F = 5.77 %, (c) F =

6.21 %. We observe here ECMs of high order for the first time. Note that
we changed the axes compared to Figs. 7.8-7.10 so that we see more clearly
what happens.

7.2.2 High-order external-cavity modes

By increasing the feedback fraction even further, we observe the predicted chaos
crisis [102]. There is no longer chaos and we report here the observation of three
different ECMs illustrated in Fig. 7.12-(a.1)-(c.2). The time traces show almost per-
fect sinusoidal waveforms, which is confirmed by the corresponding RF spectra
– only on Fig. 7.12-(c.2) can we observe a second peak near the position of the
next ECM which is indicative of some quasiperiodicity or the transition between
the two ECMs.

Figures 7.12-(a.1),(a.2) show an ECM solution at a frequency f = 6.299 GHz
which gives f

fEC
= 10.24 ≈ 10 meaning that this is ECM10 at a feedback fraction

F = 4.08 %. Next at F = 5.77 % we have a jump of two orders to ECM12 with a
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frequency f = 7.507 GHz (see Figs. 7.12-(b.1),(b.2)). Finally, we observe a jump to
ECM13 at a frequency f = 8.154 GHz for F = 6.21 % in Figs. 7.12-(c.1),(c.2). This is
a strong improvement from our previous experimental setup where the limited
reflectivity did not allow us to observe these high-order ECMs – ECMs of order up
to 5 had been reported [24, 72].

7.2.3 Regime V

Figure 7.13: (a) Time trace and (b) corresponding RF spectra for feedback fraction F =

9.62 %. The laser stabilizes on a SS for large feedback fractions, which is
called regime V.

For larger values of the feedback fraction, we do not observe any dynamics,
the feedback is too strong and the laser restabilizes on a SS, which is what we
called the regime V (see Fig. 7.13). Increasing the feedback fraction further –
we were able to reach F = 25 % with this setup – does not have any impact
on the dynamics and the laser stays in this SS. This behavior is not predicted
by the theory we developed in Part I, where we only predicted a succession of
ECMs of higher and higher order after the chaos crisis. This is not so surprising
when considering that the Lang-Kobayashi model [8] for a laser with COF – from
which Eqs. (2.12) and (2.13) are adapted – does not predict the apparition of this
regime V. However, what can be surprising here is the fact that a laser diode
with PCF can restabilize on a SS, when all the other solutions of the system –
the ECMs – are self-pulsating solutions except for the initial SS that is quickly
destabilized to chaos. This surprising finding will require further classification,
however beyond the purpose of this thesis.
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The possibility to observe these high-order ECMs is a crucial achievement of
this thesis. It was a long-time goal of our group to show that they were ex-
perimentally observable. Lower orders had been observed before in the same
experiment as the one described in Chapter 6: ECMs of orders up to 5 had been
observed with an EC frequency of 680 MHz. Here, with a similar EC frequency
fEC = 616 MHz, we observe orders up to 13, but we lack the observation of the
low-order ones. Another study that mapped the frequency of dynamics in a laser
with PCF did not report on the observation of high-order ECMs even though they
went up to regime V [32] and reported some intriguing behavior at the transi-
tion from regime IV to V. They suggested that this might be due to bifurcations
on high-frequency solutions. They only clearly observed the first ECM during
the route to chaos but not the quasiperiodicity following self-pulsation at the
frequency of relaxation oscillations.

We attribute this success to the fact that we use a design optimized to allow
us to explore the largest values of the feedback fraction – up to regime V – and
also to the fact that we now have better tools for measurement that allow us to
observe oscillations at frequencies up to 16 GHz in our case.

7.2.4 Instability of the mirror

Figure 7.12 shows ECMs of orders 10, 12, and 13 with increasing values of the
feedback fraction, respectively 4.08, 5.77, and 6.21 %, but the order 11 is missing.
If we had made a measurement at F ≈ 5 %, we would probably have been able
to catch it. This brings us to one actual problem with this experimental setup:
the instability of the PCM.

Up to feedback fractions where the system is chaotic – around F = 2 % – the
mirror behaves nicely. The response time is quite slow due to fact that we use a
BaTiO3 crystal for which time constants are of the order of the second. It is thus
easy to precisely tune the feedback fraction to the desired value and to make all
the needed measurements.

However, the situation changes for F > 2 % when the reflectivity of the mirror
starts to drastically and erratically increase over a few seconds resulting in a
feedback fraction increase of more than 10 %. After this quick evolution, the
feedback fraction stabilizes again around 15 % and begins to slowly decrease,
until the four-wave mixing process inside the crystal completely stops and the
mirror is destroyed, thus falling back to a feedback fraction of 0 %. Then the
mirror builds up again and the cycle is repeated, sometimes almost periodically.
Figure. 7.14 illustrates this behavior.
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Figure 7.14: Evolution of the feedback fraction versus time when we try to reach F >
2 %. The mirror behaves erratically for a time until the feedback fraction
stabilizes to a level above 8 %, then it starts to slowly decrease and finally
drops off suddenly.

During the rapid increase of the feedback fraction, we can observe the high-
order ECMs reported in the previous sections, sometimes mixed with quasiperi-
odicity – due to the fact that the system jumps from one ECM to another. By
precisely timing a measurement of the feedback fraction and an acquisition on
the oscilloscope we have been able to observe the measurements of Fig. 7.12 but
it is impossible to finely tune the feedback fraction in this case. That is why we
have not been able to obtain a measurement of ECM11.

We have no clear understanding of the reasons for this behavior but a possible
explanation would be the presence of chaos in self-pumped photorefractive ma-
terials which has been reported previously [167] with similar waveforms [166].
Other explanations would include a modification of the intensity profile of the
laser at the transition from chaos to ECMs which would result in a change of the
refractive-index grating inside the crystal which would make it unstable.
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7.3 conclusion

In this chapter, we have designed a second experiment which makes use of the
CAT configuration and a rhodium-doped BaTiO3 photorefractive crystal which
has a good sensitivity to the near-infrared wavelength of the laser diode – a
similar but more powerful version of the diode used in Chapter 6. The CAT
configuration is based on total internal reflection inside the crystal, meaning that
there is no more need for an additional ring cavity. This means that it is easier to
investigate configurations with a smaller EC cavity length and therefore a smaller
time-delay. By choosing a material highly sensitive to the 852 nm wavelength,
we can also build a PCM with a greater reflectivity than obtained with the first
experiment. This allows us to explore the full range of dynamics that our laser
can exhibit.

We have observed the relaxation oscillation frequency of our laser being stimu-
lated even when solitary. We have experimentally reported on the cascade of dy-
namics when increasing the feedback: excitation of relaxation oscillations, desta-
bilization through quasiperiodicity, chaos and its expansion towards excitation
of high frequencies, and finally observation of high-order ECMs. This evolution
matches predictions from the theory (see Ref. [102], Chapter 2) and the experi-
mental observations of Chapter 6.

ECMs of frequencies up to 8 GHz (ECM13) have never been reported experimen-
tally and offer a good confirmation of the prediction of a chaos crisis for large
values of the feedback rate. This finding possibly opens the way to applications
where optical oscillators of high-frequency are needed [114], a role that is usually
filled by lasers with an integrated Distributed Feedback (DFB) cavity.

However, we also report on a technical difficulty of the experimental setup that
makes the PCM unstable for the larger values of the feedback fraction. We have no
clear reason as to why this happens. Leads include: an effect of temperature since
our crystal is not cooled, additional non-linear effects inside the photorefractive
crystal, changes in the spatial profile of the laser beam under strong feedback,
chaotic or oscillating behavior of the PCM [166, 167]. Adding an optical isolator
in front of the laser diode and see if this behavior can be reproduced would
allow to identify the source of the problem. If the same observations are made,
then we would know this is due to a physical effect inside the photorefractive
crystal. If the same behavior is not observed, then this is due to a change in the
laser-beam properties due to optical feedback.
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8
C O N T R I B U T I O N S A N D P E R S P E C T I V E S

8.1 summary of the results

The work of this thesis is part of an ongoing field of research studying the im-
pact of optical feedback on laser diode dynamics and more specifically Phase-
Conjugate Feedback (PCF). We have seen in Chapter 1 that only a few studies
have been published about PCF, in contrast to similar works related to Conven-
tional Optical Feedback (COF). Feedback from a Phase-Conjugate Mirror (PCM)
has an interesting feature in that it generates External-Cavity Modes (ECMs)
which are self-pulsating solutions at harmonics of the frequency of the External
Cavity (EC). This feature, specific to PCF is the first motivation for us to analyze
this system.

The second motivation came from recent experimental results which showed
that a laser with PCF can exhibit a whole range of chaotic dynamics. But there
was a lack of theoretical understanding of the physics of the system. Our second
motivation was therefore to analyze with more depth the theory to reproduce
and to explain the experimental observations.

In this context, we decided to take a look at a simple rate-equation model
taking only into account a time-delayed contribution to the electric field which
is phase-conjugated with respect to the output of the laser. This model was pri-
marily investigated through numerical simulations. Here are a summary of the
theoretical results:

• with the help of analytical calculations and continuation, we first showed
that ECMs of a laser diode with PCF can be stable for a large range of feed-
back rates, allowing to obtain self-pulsating solutions at frequencies up to
several gigahertz and higher, potentially corresponding to more than ten
times the EC frequency.

• these ECMs show peculiar self-pulsation properties: the system self-deter-
mines its frequency of oscillation depending on the value of the feedback
rate and independently from the value of the EC. This leads to oscillating
solutions for which the frequency is equal to more than ten times the EC

frequency. It is a counterintuitive result for a laser diode with an EC in
which oscillating solutions usually happen at the EC frequency.
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• the model reproduces the Low-Frequency Fluctuations (LFF) regime where
dropouts of power occur at random time intervals. We showed that a
dropout was associated with a repulsive trajectory in the phase space of the
system, and that the recovery process involved itinerancy among the ruins
of destabilized ECMs attractors. Knowing that each ECM is a self-pulsating
solution with a different frequency that scales with the feedback rate, we
can analyze the time traces of the output power and therefore visualize the
evolution of the frequency content over time during the itinerancy or when
changing the feedback rate.

• the model also reproduces a chaotic regime where extreme events appear.
We show that the statistics of the height of the events follows a deviation
from a Gaussian law, typical from rogue waves or extreme events. Subtle
features of the dynamics are well reproduced, such as the separation into
two types of events: the ones repeating at the time-delay and the ones
happening at random time intervals.

To us, all these results put together show that a simple model is enough to
reproduce qualitatively the experimental observations. Additionally, this also
shows that PCF alone can account for the reported observations, and therefore
that said observations were indeed the result of PCF and do not come from other
sources such as noise, nor other nonlinear phenomena in the photorefractive
crystal.

With this new theoretical knowledge in mind, we went back to the experiment
to see especially how we could take advantage of the high-frequency dynamics
coming from high-order ECMs, and if we could indeed observe the aforemen-
tioned itinerancy. For this, we relied on the same setup that was used for the
recent experimental observations and we also designed a second experiment to
test the behavior of the system at larger feedback rates. Here are the main exper-
imental results:

• we actually observed the itinerancy among ruins of ECMs in a LFF regime
by using a large-sampling-rate oscilloscope and a technique called Short-
Time Fourier Transform (STFT) which allows us to compute spectrograms
with fairly good frequency and time resolutions. We showed that ECMs

exhibit their different spectral signature as time goes on before a dropout.
We also contrasted this result with a study of COF where there is clearly
no observation of similar spectral signatures, owing to the Steady-State (SS)
nature of ECMs in the case of COF.
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• we showed, again by contrasting with COF, that a laser with PCF could
perform better in terms of chaos bandwidth. Up to 27 % increase of the
chaos bandwidth has been recorded for PCF in comparison with COF for
the same laser and feedback parameters. This opens the way for using PCF

in chaos-based applications that require a large bandwidth such as chaos-
encrypted communications and random number generation.

• this experimental measurement was followed by a short theoretical study
which confirmed the trends we observed. The bandwidth measured on
simulated time traces was larger for PCF than COF and associated with a
higher complexity, measured by the permutation entropy.

• we have observed a signal coming back from the PCM and compared it to
the output of the signal, showing that the high-frequency features of the
signal are present in the reflected beam. This clarifies definitively that the
time constant of the photorefractive material has no filtering effect on the
laser dynamics.

• we were able to reproduce entirely the succession of bifurcations the sys-
tem undergoes when increasing the feedback rate. We report on the ex-
perimental observation of the predicted chaos crisis that happens for large
values of the feedback rate as well as ECMs of order up to 13, correspond-
ing to an oscillation frequency of about 8 GHz for an EC frequency of
616 MHz. This is a great achievement when considering that ECMs have
been observed only once in experiment and their observation was limited
to low-order ECMs (nearby ECM2 and ECM3).

When compiling these experimental results, we believe that we have brought
significant new light into the understanding of the dynamics of a laser diode
with PCF, their richness, and their differences when compared to a laser diode
with COF. By going back and forth between experiment and theory, we have
proven that the model used is qualitatively accurate, without taking into ac-
count complex phenomena (e. g. influence of the process responsible for phase-
conjugation, multiple round-trips in the EC). Finally, we have showed that chaos
from a laser diode with PCF exhibits interesting features that might be advanta-
geous to applications using optical chaos as a physical source of entropy. The
peculiar nature of ECMs of the laser diode with PCF could make it a source for
tunable microwave oscillations.
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8.2 perspectives

Looking at the work presented in this thesis, in particular the main achievements
that we have summarized, we suggest perspectives for further studies that we
deem interesting.

8.2.1 Chaos properties

Work could be done in further analyzing the complexity and the properties of
optical chaos from a laser with PCF. By measuring the chaos bandwidth and hav-
ing a look at the permutation entropy of the system, we have only analyzed part
of the complexity issues. For example, it would be helpful to test, at least nu-
merically, how a random number generator behaves when simply replacing COF

with PCF. There would probably be some parameters to tune but it would give
a good overview of whether this alternative type of feedback could effectively
yield interesting or better results.

On the same subject, experimental analysis of the chaos complexity would
be interesting. Since permutation entropy has been shown to characterize the
complexity of chaotic time traces faithfully, even in the presence of noise, it is
reasonable to think that we could measure it on experimental time traces. Ad-
ditionally, we now have a setup capable of attaining large reflectivity values of
the PCM thanks to the CAT configuration. By recording the output of the laser
diode with photodetectors of larger bandwidth, we could see if even the chaos
bandwidth could be increased even further, as suggested by our theoretical pre-
dictions.

Having this second setup with the CAT configuration allows to change the
ECs length easily. It would be interesting to see how our conclusions hold up
when working with a short EC. How would the chaos bandwidth evolve when
changing the time-delay? Are ECMs more or less stable experimentally in the case
of a short EC?

8.2.2 Understanding the physics

In our theoretical investigations of the chaotic dynamics of the laser diode with
PCF, we have focused on LFF and extreme events, which have been observed for
two different sets of parameters. Experimental observations prior to this thesis
work have also focused on LFF and extreme events for different configurations.
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It would be interesting to study the link and transition between these two types
of dynamics.

We have experimentally observed the signal coming back from the PCM and
we noticed no filtering effect due to the response time of the photorefractive
crystal or the penetration depth inside it. But theoretical studies on models in-
cluding the effect of the penetration depth inside the phase-conjugating medium
suggest that a large interaction length in the crystal could have a filtering effect
on the dynamics. With our relatively short crystals we have not evidenced this
effect. Studying longer crystals would allow to conclude on the accuracy of these
models.

8.2.3 Other perspectives

Other ways of making the PCM could be explored. In particular, the digital op-
tical phase-conjugation method presented in Section 1.3.2 could give interesting
results. It uses a camera to record the phase profile of the incident beam and
computes the image to input into an Spatial Light Modulator (SLM) so that it
produces the phase-conjugate wave of the incident beam upon reflection. We
have experimentally observed that the response time of the photorefractive ma-
terial had no influence on the dynamics of the phase-conjugated signal. Even if
the refresh rate of the SLM is slow when compared to the time scale of laser dy-
namics, it would be interesting to test if, as for a relatively slow photorefractive
crystal, digital optical phase-conjugation could be used to make a PCM. Provided
that it works, this would remove the need of a four-wave mixing process, which
requires a pumping beam of high intensity and is sometimes difficult to control,
as we have observed in Section 7.2.4.
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A
N O R M A L I Z AT I O N O F T H E M O D E L

Considering Eqs. (2.10) and (2.11) and the simplifications mentioned in Sec-
tion 2.2, the equations are now:

dE(t)
dt

=
1

2

[
(1+ ıα)

(
GN(N(t) −N0) −

1

τp

)]
E(t) + κE∗(t− τ), (A.1)

dN(t)
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I

q
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τe
−GN(N(t) −N0)|E(t)|2. (A.2)

Now, as has been done before by Erneux et al. [93], we introduce new variables:
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1
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q is the carrier density at threshold for the
solitary laser and Isol the corresponding injection current. Equation (A.1) be-
comes:
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and Eq. (A.2) becomes:
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Finally, we introduce new parameters:

γ = κτp, θ =
τ

τp
, T =

τe

τp
and P =

GNτpτe

2q
(I− Isol),

and we redefine the normalized time as t (instead of s) to obtain the nor-
malized equations modeling a semiconductor laser with Phase-Conjugate Feed-
back (PCF):

dY(t)
dt

= (1+ ıα)Y(t)Z(t) + γY∗(t− θ),

T
dZ(t)

dt
= P−Z(t) − (1+ 2Z(t))|Y(t)|2,

(A.5)

(A.6)

which are the same as Eqs. (2.12) and (2.13) in the main text.
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We describe here the general concept of numerical integration of a set of ordinary
differential equations with a Runge-Kutta (RK) method.

Let us take an ordinary differential equation

dy

dt
= f(t,y), (B.1)

and an initial value

y(t0) = y0. (B.2)

y(t) is an unknown vectorial function of t (time, for example) that we want to
approximate, f(y, t), t0 and y0 are known. We choose a fixed-size step h and we
can compute approximations yn of y(t) at every step n = 1,2,3, . . . by using the
formula for the sth order:

yn+1 =yn +

s∑
i=1

biki, (B.3)

ki =f

tn + cih,yn +

i−1∑
j=1

aijkj

 , (B.4)

tn+1 =tn + h, (B.5)

where values of coefficients a, b and c are given by the general Butcher
tableau:
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c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

In our case here, we choose the 3/8-rule fourth order (s = 4) RK algorithm, for
which the Butcher tableau is:

0 0 0 0 0

1/3 1/3 0 0 0

2/3 −1/3 1 0 0

1 1 −1 1 0

1/8 3/8 3/8 1/8

As presented here, the method can be applied to approximate the solution of
a set of ordinary differential equations. However, it is easy to adapt it to a set
of ordinary time-delayed differential equations: one simply needs to provide a
vector of initial values corresponding to the past of the system over a duration
equal to the time-delay of the system.

In terms of implementation, the RK algorithm in itself is done in C to speed up
the computing. We choose to use Matlab for interfacing the inputs and outputs
of the function and to plot the results we are interested in. The code we use to
apply this algorithm to our model (Eqs. (2.28), (2.29), (2.30)) is presented below.

1 #include "mex.h"

#include "math.h"

#include "stdlib.h"

5 //Matlab I/O

double *params_laser, *params_temp, *PAST, *RESULTS, *X, *Xd, *dX, *K;

//Parameters

double alpha, T, P, theta, gamma, h, horizon;

int steps, delay;

10 //RK coefficients and parameters

double a[4] =

{ 0.0, 1.0/3.0, 2.0/3.0, 1.0};

double b[4][4] = {

{ 0.0, 0.0, 0.0, 0.0},
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15 { 1.0/3.0, 0.0, 0.0, 0.0},

{ -1.0/3.0, 1.0, 0.0, 0.0},

{ 1.0, -1.0, 1.0, 0.0}};

double c[4] =

{ 1.0/8.0, 3.0/8.0, 3.0/8.0, 1.0/8.0};

20 int DIM = 3, S = 4;

//Equations of the system

void eval(double *dX, double *X, double *Xd) {

dX[0] = X[0]*X[2] + gamma*Xd[0]*cos(X[1]+Xd[1]);

25 dX[1] = alpha*X[2] - gamma*(Xd[0]/X[0])*sin(X[1]+Xd[1]);

dX[2] = (1.0/T)*(P - X[2] - (1.0+2.0*X[2])*X[0]*X[0]);

}

//Runge-Kutta

30 void simu() {

int i, j, s, n;

X = (double *)malloc(DIM *sizeof(double)); //input of eval

Xd = (double *)malloc(DIM *sizeof(double)); //delayed input of eval

dX = (double *)malloc(DIM *sizeof(double)); //output of eval

35 K = (double *)malloc(S*DIM *sizeof(double));//increment values

//RESULTS initialized with PAST

for (i=0; i<delay+1; i++){

for (n=0; n<DIM; n++){

40 RESULTS[n+DIM*i] = PAST[n+DIM*i];

}

}

//K initialized to zero

for (s=0; s<S; s++){

45 for (n=0; n<DIM; n++){

K[n+DIM*s] = 0;

}

}

//RK algorithm for specified horizon (steps)

50 for (i=delay; i<steps+delay+1; i++){

//Computing all increments K for all the variables of the system

for (s=0; s<S; s++){

for (n=0; n<DIM; n++){

X[n] = RESULTS[n+DIM*i];

55 Xd[n] = RESULTS[n+DIM*(i-delay)]*(1-a[s]) + RESULTS[n+DIM*(i

-delay+1)]*a[s];

}

for (j=0; j<s; j++){
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for (n=0; n<DIM; n++)

X[n] += h*b[s][j]*K[n+DIM*j];

60 }

eval(dX, X, Xd);

for (n=0; n<DIM; n++)

K[n+DIM*s] = dX[n];

}

65 //Evaluating next approximate value of the variables based on K

for (n=0; n<DIM; n++){

RESULTS[n+DIM*(i+1)] = RESULTS[n+DIM*i];

for (s=0; s<S; s++)

RESULTS[n+DIM*(i+1)] += h*c[s]*K[n+DIM*s];

70 }

}

free(dX);

free(X);

free(Xd);

75 free(K);

}

//Adapt Matlab and C I/O

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray * prhs

[]) {

80 //Check number of inputs and outputs

if (nlhs != 1)

mexErrMsgTxt("Wrong number of outputs!");

if (nrhs !=3)

mexErrMsgTxt("Wrong number of inputs!");

85 //Get inputs

params_laser = mxGetPr(prhs[0]);

params_temp = mxGetPr(prhs[1]);

PAST = mxGetPr(prhs[2]);

//Parameters

90 alpha = params_laser[0];

T = params_laser[1];

P = params_laser[2];

theta = params_laser[3];

gamma = params_laser[4];

95 h = params_temp[0];

horizon = params_temp[1];

steps = floor(horizon/h);

delay = floor(theta/h);

//Prepare OUTPUT matrix

100 plhs[0] = mxCreateDoubleMatrix(DIM*(steps+delay+1), 1, mxREAL);
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RESULTS = mxGetPr(plhs[0]);

//MAIN

simu();

}

And below is the Matlab function used to adapt inputs and outputs to call
the function written in C. Results are presented in a matrix with three columns,
storing values of Y, Φ and Z with each row corresponding to an iteration of the
RK algorithm.

1 function OUTPUT = sim_laser_PCF(params_laser, params_temp, INPUT)

%SIM_LASER_PCF interfaces with fast_sim_laser_PCF in C which simulates the

%temporal evolution of a laser diode subject to PCF modeled with LK

%equations, using RK4 method.

5 %

%Inputs params_laser and params_temp are used to provide parameters for the

%simulation and are necessary:

% #params_laser is a vector formatted as follows:

% [alpha, T, P, theta, gamma]

10 % *alpha: linewidth enhancement factor

% *T: electron to photon lifetime ratio

% *P: normalized pump current above threshold, (I-I_th)/I_th

% *theta: normalized value of the delay of the external cavity

% *gamma: normalized value of feedback rate

15 % #params_temp is a vector formatted as follows:

% [h, horizon]

% *h: normalized time step for numerical integration with RK4 method

% *horizon: normalized duration of simulation

%

20 %Input INPUT is optional and used to provide the past temporal evolution of

%the system. If no value is provided, past is considered to be constant and

%equal to zero.

% INPUT is a matrix with three columns, corresponding to iterations of E,

% phi and N.

25 %

%Output consists of matrix OUTPUT which stores values computed by the

%RK4 algorithm.

% OUTPUT is a matrix with three columns, corresponding to iterations of E,

% phi and N.

30

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% Read the input parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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35 theta = params_laser(4);

h = params_temp(1);

horizon = params_temp(2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

40 %%%%% Prepare indices values and storage

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Dimensions variables

delay = floor(theta/h); %number of indices corresponding to the delay

45 steps = floor(horizon/h); %number of lines of the OUTPUT matrix

%Preparation of the past values of variables

%If no INPUT is provided

%PAST is set to a value near zero

50 %If the past provided in INPUT is shorter than the delay

%PAST is created from INPUT completed with values near zero

%If the past provided in INPUT is long enough

%PAST is extracted from INPUT, keeping only the values needed

if (nargin<3) || isempty(INPUT)

55 PAST = zeros(delay+1, 3) + 1e-5;

elseif length(INPUT) < delay+2

PAST = vertcat(zeros(delay+1-size(INPUT,1),3) + 1e-5, INPUT);

else

PAST = INPUT(end-delay:end,:);

60 end

PAST = reshape(PAST.’,(delay+1)*3,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

65 %%%%% Call fast function in C

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

RESULTS = fast_sim_laser_PCF(params_laser,params_temp,PAST);

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% Return OUTPUT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Only return the initial value and new simulated output

75 RESULTS = RESULTS(3*(delay+1)-2:end);

OUTPUT = reshape(RESULTS,3,steps+1).’;

end
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C
F R E N C H S U M M A RY – R É S U M É E N F R A N Ç A I S

Ce manuscrit relatant mon travail en vue de l’obtention du diplôme de doctorat
a été rédigé en langue anglaise, simplement car la majorité de la communauté
est anglophone. La plupart du travail réalisé avant moi se trouve en anglais
et les publications relatives au travail décrit ici n’ont été publiées qu’en anglais.
Cela garantit que le manuscrit puisse être lu par la majorité du public intéressé, à
commencer par les membres du jury de thèse qui ne sont pas tous francophones.

Le but de cette annexe est d’offrir en quelques pages un résumé en français du
travail décrit dans la partie principale du manuscrit. Nous introduirons en sec-
tion C.1 les concepts forts qui ont mené à se poser les questions auxquelles nous
avons répondu durant les trois années de travail. Nous détaillerons particulière-
ment les résultats théoriques en section C.2, puis les résultats expérimentaux
visant à valider la théorie en section C.3. Enfin, nous conclurons sur l’impact de
ce travail en section C.4.
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c.1 introduction

c.1.1 Diode laser

Depuis leur invention en 1960, les lasers ont connu un succès fulgurant en termes
d’applications, ainsi qu’une grande diversification. De nombreuses technologies
ont été développées pour fabriquer des lasers, utilisant du gaz, un cristal solide,
un matériau semiconducteur, avec pompage optique ou électrique. Cela a per-
mis de fabriquer des lasers à de nombreuses longueurs d’onde avec différents
niveaux de puissance. Toutes ces technologies partagent cependant le même
principe de fonctionnement : l’amplification de lumière par émission stimulée de
radiation (d’où vient l’acronyme en anglais Light Amplification by Stimulated
Emission of Radiation (LASER)). Les applications des lasers incluent la visée, le
guidage, la découpe, la chirurgie, la mesure de différentes grandeurs, les télé-
communications et bien d’autres.

Conduction
band

Valence
band

Electrons

Holes
n+

p
p+

Photons
E(t)

Rf Rf
p+

p

n+

J

Figure C.1: À gauche, schéma de principe de la double hétérostructure permettant
l’émission laser dans une diode. À droite, représentation du bandgap à
l’intérieur du matériau, agencé de manière à créer un puits d’énergie dans la
région centrale afin de concenter l’émission stimulée dans une fine couche.

Ce qui nous intéresse ici est d’étudier le comportement dynamique d’une
diode laser, composée de matériaux semiconducteurs. La configuration la plus
répandue pour fabriquer une diode laser est la double hétérostructure, représen-
tée en figure C.1. En choisissant des dopants et des concentrations de dopage
différents selon la couche, il est possible de créer une structure de bande simi-
laire à ce qui est représenté dans la partie droite de la figure. Le puits d’énergie
dans la couche centrale capture les porteurs de charge injectés électriquement,
qui se recombinent en émettant un photon d’énergie correspondant au bandgap

172



C.1 introduction

entre la bande de conduction et la bande de valence dans cette couche. Une fois
que quelques photons sont présents dans la cavité, l’émission stimulée peut dé-
marrer et créer de nombreux photons identiques en terme de direction, phase et
énergie, ce qui donne la cohérence propre aux faisceaux laser.

Figure C.2: La réponse du laser à une consigne en intensité fixe donne une émission
de pics successifs à une fréquence nommée fréquence des oscillations de
relaxation. Après quelques cycles d’oscillation, l’équilibre entre photons et
charges est atteint et le système émet de manière continue.

En terme de dynamique, il est intéressant d’observer l’évolution de la puis-
sance en sortie du laser lors de l’allumage du composant en figure C.2. Durant
les premiers instants, il n’y a pas d’émission de photons car il faut du temps
pour que la population de charges dans le composant soit suffisamment élevée
pour permettre l’émission stimulée. Une fois ce seuil atteint, l’émission stimulée
démarre et consomme tous les porteurs, créant un premier pic, puis le cycle se
répète en s’atténuant à chaque fois, jusqu’à atteindre l’équilibre entre les popu-
lations de porteurs de charge et les photons. Le laser émet alors une puissance
continue. Ces simples oscillations de relaxation ne présentent pas de grand in-
térêt en terme de richesse dynamique, surtout du point de vue de l’étude des
dynamiques non-linéaires, que nous allons désormais aborder.

c.1.2 Dynamique non-linéaire – Chaos

En 1963, Lorenz découvre la notion de chaos en faisant des simulations numériques
sur le système d’équations suivant, basé sur les équations de Navier-Stokes :
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dx

dt
= σ(x− y), (C.1)

dy

dt
= ρx− xz− y, (C.2)

dz

dt
= xy−βz. (C.3)

Ce système de dimension 3 peut être le siège de dynamiques chaotiques. Le
chaos peut-être défini par les trois propriétés suivantes :

• Déterminisme : le comportement chaotique du système est intrinsèque à
son mécanisme de fonctionnement. Une simulation est capable de repro-
duire les dynamiques observées sans ajout de bruit ou perturbation ex-
térieure.

• Sensibilité aux conditions initiales : deux conditions initiales très proches
donneront lieu à un comportement similaire dans les premiers instants,
mais les trajectoires finissent par diverger de manière exponentielle.

• Attracteur étrange : représenter la trajectoire du système dans un espace
des phases approprié donne lieu à la création d’un objet de dimension
non entière, appelé attracteur étrange et dont l’étude fait le lien avec les
fractales.

Et ce comportement ne peut être observé que dans des systèmes de dimension
supérieur ou égale à 3. Dans les systèmes de dimension inférieur, le théorème
de Poincaré-Bendixon prouve que la dynamique à long terme d’un système est
soit un point fixe (solution stationnaire) ou un cycle limite (solution oscillante).

c.1.3 Chaos dans une diode laser

Une diode laser peut-être modélisée avec un système d’équations de dimension
2 seulement et ne peut donc pas être le siège de dynamiques chaotiques si elle est
seule. En revanche, il existe plusieurs méthodes qui permettent de déstabiliser
une diode laser afin de débloquer des dynamiques non linéaires. La méthode
qui nous intéresse ici est appelée rétroaction optique et consiste à simplement
placer un miroir devant le laser afin de renvoyer une partie de la lumière dans
la cavité laser avec un retard proportionnel à la distance L entre le miroir et le
composant (illustration en figure C.3). Dans la configuration étudiée dans cette
thèse, nous utilisons un miroir à conjugaison de phase.
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E(t)

Laser diode External mirror

Rf Rf
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Figure C.3: En ajoutant un miroir à une distance L du laser, on renvoie une partie de la
lumière dans le laser avec un délai τ = 2L

c .

Cela crée un système dont la dimension est théoriquement infinie. Cela est
visible dans les équations que nous utilisons pour modéliser ce système :

dY(t)
dt

= (1+ ıα)Y(t)Z(t) + γY∗(t− θ),

T
dZ(t)

dt
= P−Z(t) − (1+ 2Z(t))|Y(t)|2,

(C.4)

(C.5)

où Y est la valeur complexe normalisée du champ électrique, Z est la valeur
normalisée de la densité de porteurs de charges. α est le facteur de Henry, γ est
le taux de rétroaction, mesurant la quantité de lumière retournant dans le laser,
θ est la valeur normalisée du retard, T est le ratio du temps de vie des charges
sur le temps de vie des photons, et P est le courant d’injection au-delà du seuil.
Ici, on voit que le terme modélisant la rétroaction inclue le conjugué de l’onde
réfléchie, puisque nous utilisons un miroir à conjugaison de phase.

Même si à première vue ce système semble être de dimension 2, la dimension
infinie vient de la dépendance dans Eq. (C.4) de la valeur retardée du champ
électrique. Cela peut se comprendre car si l’on imagine résoudre ce système
d’équations différentielles, alors la condition initiale n’est plus seulement un
vecteur de 2 coordonnées mais un segment contenant l’évolution passée du sys-
tème pendant une durée τ avant le temps t = 0. Et un segment comprend une
infinité de points.

En ajoutant simplement cette rétroaction optique à conjugaison de phase, nous
avons donc désormais accès à une multitude de dynamiques intéressantes, qui
n’étaient pas présentes avec la diode laser seule. Le diagramme de bifurcation en
figure C.4 permet de s’en convaincre puisque l’on voit pour un taux de rétroac-
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Figure C.4: Un diagramme de bifurcations permet de se rendre compte de l’ensemble
des dynamiques émises par une diode laser avec rétroaction à conjugaison
de phase.

tion très faible le seul état stationnaire d’un laser avec conjugaison de phase. En
augmentant le taux de rétroaction, on voit l’excitation des oscillations de relax-
ation, puis leur déstabilisation par quasipériodicité jusqu’à atteindre le chaos. En-
fin, on observe une alternance de fenêtres chaotiques et de solutions oscillantes
à des fréquences multiples de la fréquence de cavité externe. Ces solutions sont
appelées modes de cavité externe, et leur observation est limitée aux premiers
ordres dans une expérience récente. Nous verrons qu’il est possible d’observer
des ordres plus élevés. Également, nous verrons les dynamiques qui peuvent
être reproduites par notre modèle en section C.2. Enfin, nous retournerons à
l’expérience dans la section C.3 avant de conclure en section C.4.
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c.2 résultats théoriques

c.2.1 Modes de cavité externe

Comme nous venons de le présenter, une diode laser avec rétroaction optique à
conjugaison de phase peut produire des modes de cavité externe qui sont des
solutions oscillantes à des fréquences proches des multiples de la fréquence de
cavité externe. Ces solutions sont spécifiques au type de rétroaction étudié et
nous nous intéressons dans un premier temps à l’évolution de ces fréquences vis
à vis des paramètres γ et θ.

Figure C.5: Carte représentant la fréquence des solutions oscillantes d’un laser avec
rétroaction optique à conjugaison de phase. Le fond blanc correspond à des
solutions stationnaires ou chaotiques.

Pour cela, nous faisons de nombreuses simulations pour des valeurs de θ
comprises entre 0 et 0.05 et des valeurs de délai comprises entre 1 et 1000 (entre
0.0014 et 1.4 ns en temps réel). Nous identifions les traces où la puissance de
sortie du laser est oscillante, nous mesurons cette fréquence et la reportons sur
la carte reproduite en figure C.5.

Nous observons un comportement intéressant ici :

1. à délai fixé, augmenter le taux de rétroaction fait croître la fréquence de
manière linéaire.

2. à taux de rétroaction fixé, changer la valeur du délai a une influence min-
ime sur la fréquence d’oscillation, qui reste quasiment la même.
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Ainsi, pour obtenir des solutions oscillantes à hautes fréquences, il suffit d’avoir
un fort taux de rétroaction, quelle que soit la valeur du délai. Cela est contre-
intuitif car dans le cas d’une rétroaction classique, on aurait des solutions à
la fréquence de cavité externe (et non aux multiples), et il est donc nécessaire
d’avoir une longueur de cavité externe très courte pour atteindre les mêmes
valeurs de fréquence.

c.2.2 Fluctuations à basses fréquences

Un des régimes chaotiques auquel nous nous intéressons est appelé fluctuations
à basses fréquences durant lequel des chutes de puissance se produisent aléa-
toirement dans l’évolution du signal. Cette dynamique n’est pas propre à la
rétroaction optique à conjugaison de phase, mais son mécanisme n’a pas été
déterminé dans ce cas. C’est pourquoi nous nous y intéressons ici, dans le cas
d’un délai θ = 3200, soit 4.5 ns en temps réel.

Figure C.6: Traces simulées pour des valeurs de taux de rétroaction : (a) γ = 0.03386 et
(b) γ = 0.04460.

La simulation reproduit correctement ce type de comportement, comme en
témoignent les traces représentées en figure C.6. Désormais, nous nous intéres-
sons au mécanisme responsable de ce comportement. Pour cela, nous décidons
de représenter l’évolution du système au sein d’un espace de phase, composé
sur l’axe horizontal de la différence de phase du faisceau sortant (∆Φ = Φ(t) −

Φ(t− τ)) et sur l’axe vertical de la densité de porteurs de charges Z.
On voit sur la figure C.7 que lorsque l’on augmente le taux de rétroaction, on

passe d’un mode de cavité externe, par un régime chaotique avec des fluctua-
tions à basses fréquences, à un mode de cavité externe de fréquence plus élevée.
Dans l’espace de phase, nous observons le cycle limite se déstabiliser d’abord,
avant d’exploser dans le régime chaotique. La trajectoire de la trace chaotique
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Figure C.7: De gauche à droite, (a) γ = 0.03300, (b) γ = 0.03384, (c) γ = 0.03386,
(d) γ = 0.03391 et (e) γ = 0.03500. Haut: trajectoire dans l’espace de
phase, milieu: traces temporelles correspondantes de |Y|2, bas: spectres ra-
diofréquences correspondants.

passe en fait par les endroits où se trouvent les modes de cavité externe d’ordres
inférieurs. On observe ainsi une itinérance sur les modes de cavité externe, sim-
ilaire au cas de la rétroaction conventionnelle. La grosse différence étant que,
comme chaque mode de cavité externe a sa propre signature spectrale, alors
cette itinérance sera observable dans un spectrogramme de la trace temporelle,
ce que nous verrons expérimentalement en section C.3.

Ce résultat montre que les fluctuations à basses fréquences sont un phénomène
commun à différents types de rétroactions, que les mécanismes impliqués peu-
vent être similaire, mais que la manière de les observer peut-être différente, ici à
cause de la nature différent des modes de cavité externe.

c.2.3 Événements extrêmes

L’étude des événements extrêmes est inspirée des vagues scélérates à la surface
de l’océan. Ce type de vague est caractérisé par une amplitude grande par rap-
port à l’amplitude moyenne des autres vagues, ainsi que par leur apparition
soudaine, difficilement prédictible, et rare. Les vagues scélérates apparaissent
donc de manière aléatoire dans le temps et l’espace. Les événements extrêmes
sont leur équivalent dans un système où l’on ne s’intéresse qu’à l’évolution tem-
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porelle d’une grandeur physique, ici la puissance optique émise par le laser. Il
y a donc deux critères majeurs permettant d’identifier la présence d’événements
extrêmes au sein d’une trace temporelle :

• des événements intenses et rares se produisent, modifiant la distribution
des intensités mesurées et provoquant une déviation par rapport à une
distribution gaussienne.

• la durée entre ces événements est aléatoire et obéit, par exemple à un pro-
cessus de Poisson, ou un processus similaire.

Figure C.8: Illustration d’un événement extrême et de la méthode utilisée pour calculer
l’indice d’anormalité A permettant de déterminer si l’événement est extrême
ou non.

Dans le cas, de l’étude présentée ici, un événement est un pic dans la trace
temporelle, et nous choisissons d’utiliser l’indice d’anormalité A comme critère
caractérisant l’aspect extrême ou non d’un événement. À partir d’une population
pk d’événements, l’indice d’anormalité se calcule comme suit (voir figure C.8
illustrant le procédé avec un exemple) :

1. Calcul de la moyenne de cette population < pk >k. Cela correspondrait au
niveau moyen de notre mer d’événements.

2. La hauteur d’un pic est ensuite définie comme sa hauteur relative par rap-
port au niveau moyen Hk = pk− < pk >k.

3. On définit H1/3 comme étant la moyenne du tiers des hauteurs les plus
grandes.
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4. L’indice d’anormalité est alors défini par Ak = Hk
H1/3

.

Si l’indice d’anormalité d’un événement est supérieur à 2, alors celui-ci est
considéré comme extrême.

Figure C.9: Évolution de la distribution des intensités des événements en augmentant
le taux de rétroaction γ. La ligne rouge indique le seuil à partir duquel un
événement est considéré comme étant extrême. Evolution of the distribution
of extreme events versus the abnormality index. Increasing the feedback rate
leads to a greater deviation from a Gaussian distribution (from left to right),
more extreme events, with a higher abnormality index. The red line corre-
sponds to the threshold A = 2.

Afin de se placer proche des conditions expérimentales, nous utilisons une
valeur de délai θ = 1600 correspondant à un retard de 2.25 ns en temps réel.
Dans ces conditions, le modèle reproduit effectivement des événements extrêmes,
comme l’illustre la figure C.9. On observe bien la déviation depuis une distribu-
tion gaussienne pour les valeurs de γ les plus faibles, vers une distribution très
déformée et des pics atteignant des indices d’anormalité supérieurs à 8, large-
ment au-dessus du seuil A = 2. Ainsi, le taux de rétroaction favorise l’apparition
d’événements extrêmes, ainsi que leur intensité, comme observée expérimentale-
ment dans des études antérieures.

Ensuite, nous nous intéressons temps d’attente entre deux événements succes-
sifs, en échelle logarithmique, soit wk = ln( tktk−1 ). La figure C.10-(a) montre que
le temps logarithmique entre événements successifs suit une loi de Poisson pour
les faibles taux de rétroaction, on dit alors que le temps entre événements ex-
trêmes successifs suit une loi de log-Poisson. Le panneau (b) de la figure montre
que pour un taux de rétroaction élevé, cette distribution se casse en deux dis-
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Figure C.10: Distribution du temps d’attente logarithmique entre deux événements suc-
cessifs pour (a) γ = 0.004, (b) γ = 0.044.

tributions de log-Poisson, avec de nombreux événements étant séparés par des
durées courtes. Cela s’explique par le fait que pour de larges taux de rétroaction,
la dynamique du laser est dominée par de nombreuses répétitions de pics à la
valeur du retard, ce qui implique qu’un événement extrême est généralement
suivi de plusieurs répliques. Pour de faibles taux de rétroaction, la dynamique
est constituée uniquement d’événements extrêmes solitaires. Cela correspond
encore une fois aux observations expérimentales antérieures.
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c.3 résultats expérimentaux

Afin de valider certains aspects explorés théoriquement, nous avons utilisé deux
montages expérimentaux légèrement différents. Le premier est un montage hérité
de l’étudiant présent avant moi et travaillant sur le même sujet, qui sert à ex-
plorer les dynamiques chaotiques, et notamment l’itinérance dans le régime des
fluctuations à basses fréquences. Le second utilise un miroir légèrement différent
et est utilisé pour explorer les bifurcations menant à l’observation de modes de
cavité externe à des ordres élevés.

c.3.1 Itinérance

optical isolator

power-meter

oscilloscope

fast
photodetector

laser

Figure C.11: Montage expérimental utilisant un cristal SPS en configuration ’anneau’
pour réaliser le mélange à quatre ondes générant le conjugué de l’onde
émise par le laser. Grâce à une photodiode rapide et un oscilloscope à larges
bande passante et taux d’échantillonnage, nous pouvons mesurer avec une
bonne fidélité les dynamiques de notre laser.

Le premier montage expérimental est présenté en figure C.11. La diode laser
utilisée émet à 850 nm et le délai associé est égal à 4 ns. La fraction de puissance
retournant dans le laser est réglable entre 0 et 14 %. Cette limitation est due
au gain limité du mélange à quatre ondes servant à générer l’onde conjuguée.
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Dans cette configuration, le laser émet dans un régime de fluctuations à basses
fréquences. Afin d’observer l’itinérance, nous calculons des spectrogrammes du
signal grâce à une méthode de transformée de Fourier à court terme et fenêtre
glissante.

Figure C.12: Dynamiques d’un laser avec rétroaction à conjugaison de phase à gauche
et rétroaction classique à droite. (a), (d) Traces temporelles. (b), (e) Spec-
trogrammes correspondants. (c), (f) Modes dominants, i. e. le pic ayant
l’intensité la plus forte et les pics d’intensité comparable (tolérance de 3 dB).

Cela nous permet de suivre l’évolution temporelle du contenu fréquentiel du
signal, grâce notamment aux spectrogrammes en figure C.12, mais aussi grâce
à l’évolution des modes dominants. Nous appelons modes dominants le pic de
magnitude le plus élevé dans le spectre radiofréquence, ainsi que les pics ayant
la même magnitude, ou une magnitude jusqu’à 3 dB plus faible. Ainsi, nous ob-
servons dans le cas de la rétroaction optique à conjugaison de phase un contenu
fréquentiel évoluant sans cesse, de manière cyclique, avec une tendance à aller
vers les fréquences les plus élevés. Nous interprétons cela comme la signature
de l’itinérance sur les modes de cavité externe déstabilisés, ayant chacun leur
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signature fréquentielle propre. Dans le cas de la rétroaction classique, le contenu
fréquentiel ne change que très peu avec le temps, car l’itinérance a aussi lieu
sur les modes de cavité externe déstabilisés, mais ceux-ci n’ont pas de signature
propre.

Ce premier résultat est déjà satisfaisant vis à vis de nos prédictions théoriques.
Cependant, nous décidons de nous intéresser à la bande passante du signal chao-
tique dans le cas de notre rétroaction particulière. La bande passante chaotique
est définie comme la fréquence en-dessous de laquelle 80 % de la puissance du
signal est comprise.

Figure C.13: Bande passante chaotique mesurée (a) pour la portion de signal comprise
juste avant une chute de puissance et (b) pour le signal entier dans deux con-
figurations différentes : rétroaction à conjugaison de phase (PCF) et rétroac-
tion classique (COF) et pour des courants d’injection différents.

La figure C.13-(b) montre que la bande passante évolue bien rapidement lorsque
l’on augmente le taux de rétroaction dans le cas de la rétroaction à conjugaison
de phase. D’autant plus, la bande passante sature dans le cas de la rétroaction
classique, alors qu’elle n’atteint pas encore cette saturation dans le cas de la
rétroaction à conjugaison de phase. Malheureusement, nous n’avons pas pu véri-
fier cette tendance plus loin, due aux réflectivités limitées atteignables avec cette
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expérience. Pour des fractions de rétroaction comparables, la rétroaction à con-
jugaison de phase donne des résultats jusqu’à 27 % plus grands. Le panneau
(a) montre l’évolution de la bande passante mesurée sur une portion du signal
comprise juste avant les chutes de puissances et montre une évolution similaire
au panneau (b). Cela suggère que l’augmentation de la bande passante est bien
due à l’itinérance sur des modes de cavité externe à hautes fréquences.
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c.3.2 Bifurcations

optical isolator

power-meter

oscilloscope

fast
photodetector

laser
c-axis

Figure C.14: Le second montage utilise une diode similair, mais une technique différente
pour générer le miroir à conjugaison de phase, puisque le cristal pho-
toréfractif est en configuration de réflection totale interne.

Avec ce second montage, nous avons pu obtenir des fractions de rétroaction
plus élevées et grâce à un réglage plus fin, nous avons ainsi retracé toute la
succession de bifurcations subies par un laser soumis à rétroaction à conjugaison
de phase pour un délai égal à 1.6 ns. Pour les taux de rétroaction faibles, nous
observons l’état stationnaire, puis l’excitation des oscillations de relaxation et
sa déstabilisation par quasipériodicité vers des dynamiques chaotiques. Nous
n’analysons pas plus ici les dynamiques chaotiques car cela a été fait dans la
section précédente.

Pour des taux de rétroaction plus forts, nous observons alors la transition vers
des modes de cavité externe d’ordres élevés. La figure C.15 montre la stabilisa-
tion de modes de cavités externes à des fréquences égales à 6, 3, 7, 5 et 8, 1 GHz,
soient des ordres 10, 12 et 13. Cela constitue un résultat majeur de ce travail car
la restabilisation de modes de cavités externe pour de grands taux de rétroaction
était un résultat anticipé par la théorie depuis plusieurs années.

Enfin, pour des taux de rétroaction encore plus élevés, nous avons observé la
restabilisation d’un état stationnaire. Ceci est inattendu car le seul état station-
naire d’un laser avec rétroaction optique à conjugaison de phase est sensé être
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Figure C.15: Traces temporelles (gauche) et spectres radiofréquence correspondants
(droite) pour différentes valeurs de la fraction de rétroaction. (a) F = 4.08 %,
(b) F = 5.77 %, (c) F = 6.21 %.

celui qui est stables pour des taux de rétroaction proches de 0. Ce résultat pour-
rait être expliqué par un effet filtrant du miroir, dû à la longueur de pénétration à
l’intérieur du milieu photoréfractif. Cette supposition est en train d’être explorée
actuellement.
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c.4 conclusion

Pour résumer, le travail réalisé durant ces trois dernières années et présenté dans
cette thèse nous a permis de réaliser plusieurs avancées dans la connaissance des
dynamiques de laser soumis à rétroaction. Nous avons en effet pu :

• reproduire les observations expérimentales de publications antérieures à
notre travail en utilisant un modèle simple, prouvant ainsi que les observa-
tions effectuées étaient en effet dues à la nature de la rétroaction.

• découvrir de nouvelles propriétés du signal non identifiées précédemment
dans l’expérience.

• montrer que ces nouvelles propriétés étaient bien présentes dans l’expérience,
en mesurant les dynamiques chaotiques avec des outils plus performants.

• explorer la richesse dynamique d’une diode laser avec rétroaction à conju-
gaison de phase, ainsi que la succession de bifurcations liant les différents
régimes. Nous avons également découvert un résultat inattendu qui est la
restabilisation d’un état stationnaire pour un fort taux de rétroaction.

Ce travail laisse la porte ouverte à de nombreuses perspectives. En effet, il
serait utile d’explorer certains aspects nouveaux, ou inexplorés par manque de
temps, notamment :

• analyser plus en détail les propriétés du chaos optique émis grâce à ce type
de rétroaction, et notamment l’influence du retard.

• tester les signaux chaotiques à large bande passante dans des cas d’applications
à des communications cryptées par chaos ou à de la génération de nombres
aléatoires.

• analyser expérimentalement l’évolution de la fréquences des modes de cav-
ité externe. Ceci est rendu réalisable aisément grâce au second montage
expérimental.

• étudier le lien entre les différentes dynamiques : fluctuations à basses
fréquences et événements extrêmes notamment.

• étudier l’influence du type de cristal et de la longueur du cristal, afin de
voir si la restabilisation est liée à ce phénomène.

• dans le même temps, reproduire les résultats expérimentaux avec un mod-
èle prenant en compte cet effet de filtrage.
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• trouver d’autres moyens de réaliser le miroir à conjugaison de phase, no-
tamment pour le rendre encore plus pratique à aligner ou pour le rendre
plus stable et faciliter le réglage fin du taux de rétroaction.
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