B. Dunn, H. Kamath, and J. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices, Science, vol.21, issue.8, pp.928-935, 2011.
DOI : 10.1039/c0jm04222f

M. Armand and J. M. Tarascon, Building better batteries, Nature, vol.128, issue.7179, pp.652-657, 2008.
DOI : 10.1038/451652a

URL : https://hal.archives-ouvertes.fr/hal-00258391

D. Larcher and J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nature Chemistry, vol.13, issue.1, pp.19-29, 2015.
DOI : 10.1039/c0gc90047h

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.81, issue.8, pp.359-367, 2001.
DOI : 10.1016/S0378-7753(98)00241-9

L. P. Wang, L. Yu, X. Wang, M. Srinivasan, and Z. J. Xu, Recent developments in electrode materials for sodium-ion batteries, Journal of Materials Chemistry A, vol.7, issue.30, pp.9353-9378, 2015.
DOI : 10.1038/nchem.2085

W. Rüdorff, Einlagerungsverbindungen mit Alkali- und Erdalkalimetallen, Angewandte Chemie, vol.25, issue.15-16, pp.487-491, 1959.
DOI : 10.1002/ange.19590711504

J. B. Goodenough and K. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, vol.135, issue.4, pp.1167-1176, 2013.
DOI : 10.1021/ja3091438

P. Gurunathan, P. M. Ette, and K. Ramesha, Microspheres and Performance Evaluation as Li-Ion Battery Anode by Using Different Binders, ACS Applied Materials & Interfaces, vol.6, issue.19, pp.16556-16564, 2014.
DOI : 10.1021/am502852x

C. Wang, G. Du, K. Ståhl, H. Huang, Y. Zhong et al., Nanosheets: Oriented Attachment Mechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances, The Journal of Physical Chemistry C, vol.116, issue.6, pp.4000-4011, 2012.
DOI : 10.1021/jp300136p

URL : http://orbit.dtu.dk/files/9748632/KS_117_SnO2_nanosheets.pdf

A. Jahel, C. M. Ghimbeu, L. Monconduit, C. Vix-guterl-zhao, C. Wei et al., Advanced Energy Materials, 2014, 4. 16 Advanced Science, Journal of Materials Chemistry Advanced Materials Journal of Power Sources, vol.22, issue.299, pp.2851-2854, 2008.

J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang et al., @Graphene Porous Composite for High Capacity Lithium-Ion Batteries, Chemistry of Materials, vol.27, issue.13, pp.4594-4603, 2015.
DOI : 10.1021/acs.chemmater.5b00885

Y. Chen, B. Qu, L. Mei, D. Lei, L. Chen et al., Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries, Journal of Materials Chemistry, vol.2, issue.48, pp.25373-25379, 2012.
DOI : 10.1039/c1sc00307k

X. Ye, W. Zhang, Q. Liu, S. Wang, Y. Yang et al., nanospheres with enhanced lithium ion storage performance, New Journal of Chemistry, vol.111, issue.1, pp.130-135, 2015.
DOI : 10.1016/j.electacta.2013.08.122

J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu et al., In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode, Science, vol.312, issue.5771, pp.1515-1520, 2010.
DOI : 10.1126/science.1124005

Z. Zhu, F. Cheng, Z. Hu, Z. Niu, and J. Chen, Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries, Journal of Power Sources, vol.293, pp.626-634, 2015.
DOI : 10.1016/j.jpowsour.2015.05.116

M. V. Reddy, G. V. Rao, and B. V. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries, Chemical Reviews, vol.113, issue.7, pp.5364-5457, 2013.
DOI : 10.1021/cr3001884

M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, and S. Komaba, Negative electrodes for Na-ion batteries, Physical Chemistry Chemical Physics, vol.24, issue.part 1, pp.15007-15028, 2014.
DOI : 10.1002/adma.201201205

V. Aravindan, Y. Lee, and S. Madhavi, Sony's New Nexelion Hybrid Lithium Ion Batteries http://www.sony.net/SonyInfo, Journal of Materials Chemistry A, vol.5, issue.3, pp.9353-9378, 2015.

M. H. Han, E. Gonzalo, G. Singh, and T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy & Environmental Science, vol.1, issue.4, pp.81-102, 2015.
DOI : 10.1039/c3ta01430d

G. Ali, J. Lee, D. Susanto, S. Choi, B. W. Cho et al., as a Cathode for Na-Ion Batteries, ACS Applied Materials & Interfaces, vol.8, issue.24, pp.15422-15429, 2016.
DOI : 10.1021/acsami.6b04014

K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi, and H. Iba, First-principles study of alkali metal-graphite intercalation compounds, Journal of Power Sources, vol.243, pp.585-587, 2013.
DOI : 10.1016/j.jpowsour.2013.06.057

B. Jache and P. Adelhelm, Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena, Angewandte Chemie, vol.43, issue.38, pp.10333-10337, 2014.
DOI : 10.1016/S0013-4686(97)10043-3

H. Kim, E. Lim, C. Jo, G. Yoon, J. Hwang et al., Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material, Nano Energy, vol.16, issue.114, pp.62-70, 2010.
DOI : 10.1016/j.nanoen.2015.05.015

D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson et al., Effect of Particle Size on Lithium Intercalation into ??-Fe[sub 2]O[sub 3], Journal of The Electrochemical Society, vol.142, issue.1, pp.133-139, 2003.
DOI : 10.1149/1.2048726

C. Arrouvel, S. C. Parker, and M. S. Islam, ???B Anode Material: A Computational Study, Advanced Energy Materials, 2012, pp.4778-4783, 2009.
DOI : 10.1021/cm900373u

W. J. Borghols, D. Lützenkirchen-hecht, U. Haake, W. Chan, U. Lafont et al., Lithium Storage in Amorphous TiO[sub 2] Nanoparticles, Journal of The Electrochemical Society, vol.15, issue.5, pp.582-588, 2010.
DOI : 10.1039/b309130a

URL : https://repository.tudelft.nl/islandora/object/uuid%3A4e038105-a11a-46f4-8079-35b3b115aaba/datastream/OBJ/download

H. G. Jung, S. T. Myung, C. S. Yoon, S. B. Son, K. H. Oh et al., Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries, Energy & Environmental Science, vol.145, issue.82, pp.1345-1351, 1870.
DOI : 10.1149/1.1838689

P. Senguttuvan, G. Rousse, V. Seznec, J. Tarascon, and M. R. Palacín, : Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries, Chemistry of Materials, vol.23, issue.18, pp.4109-4111, 2011.
DOI : 10.1021/cm202076g

P. Arunkumar, A. G. Ashish, S. Sarang, S. Abhin, and M. M. Shaijumon, Meeting Abstracts, Journal of Energy Chemistry, vol.2014, issue.22, pp.2014-2015, 2013.

J. Chen, L. Xu, W. Li, and X. Gou, ?-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications, Advanced Materials, vol.42, issue.5, pp.582-586, 2005.
DOI : 10.1002/adma.200401101

M. H. Chen, J. L. Liu, D. L. Chao, J. Wang, J. H. Yin et al., Porous ??-Fe 2 O 3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries, Nano Energy, vol.9, pp.364-372, 2014.
DOI : 10.1016/j.nanoen.2014.08.011

J. Read, D. Foster, J. Wolfenstine, and W. Behl, SnO2-carbon composites for lithium-ion battery anodes, Journal of Power Sources, vol.96, issue.2, pp.277-281, 2001.
DOI : 10.1016/S0378-7753(00)00569-3

Z. Wang, D. Luan, F. Y. Boey, and X. W. Lou, Nanoboxes with Enhanced Lithium Storage Capability, Journal of the American Chemical Society, vol.133, issue.13, pp.4738-4741, 2011.
DOI : 10.1021/ja2004329

J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries, The Journal of Physical Chemistry C, vol.115, issue.22, pp.11302-11305, 2011.
DOI : 10.1021/jp203168p

I. A. Courtney and J. R. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites, Journal of The Electrochemical Society, vol.144, issue.6, pp.2045-2052, 1997.
DOI : 10.1149/1.1837740

J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu et al., In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode, Science, vol.312, issue.5771, pp.1515-1520, 2010.
DOI : 10.1126/science.1124005

X. Zhou, L. Yu, X. W. Lou-zhao, C. Wei, S. Sun et al., Advanced Science, Electrochimica Acta Z. Cao Nano Energy, vol.64, issue.1, pp.228-234, 2012.

K. Chang, Z. Wang, G. Huang, H. Li, W. Chen et al., Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode, Journal of Power Sources, vol.201, pp.259-266, 2012.
DOI : 10.1016/j.jpowsour.2011.10.132

Q. N. Chen, W. X. Chen, J. B. Ye, Z. Wang, and J. Y. Lee, l -Cysteine-assisted hydrothermal synthesis of nickel disulfide/graphene composite with enhanced electrochemical performance for reversible lithium storage, Journal of Power Sources, vol.294, issue.2, pp.51-58, 2013.
DOI : 10.1016/j.jpowsour.2015.06.071

Y. Chen, B. H. Song, X. S. Tang, L. Lu, and J. M. Xue, One-step synthesis of hollow porous Fe3O4 beads???reduced graphene oxide composites with superior battery performance, Journal of Materials Chemistry, vol.5, issue.34, pp.17656-17662, 2012.
DOI : 10.1021/nn202878f

X. Ye, W. Zhang, Q. Liu, S. Wang, Y. Yang et al., nanospheres with enhanced lithium ion storage performance, New Journal of Chemistry, vol.111, issue.1, pp.130-135, 2015.
DOI : 10.1016/j.electacta.2013.08.122

Y. Wang, I. Djerdj, B. Smarsly, and M. Antonietti, Nanopowders with High Crystallinity for Lithium-Ion Battery Electrode, Chemistry of Materials, vol.21, issue.14, pp.3202-3209, 2009.
DOI : 10.1021/cm9007014

Y. Xu, M. Zhou, X. Wang, C. Wang, L. Liang et al., Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies, Angewandte Chemie, vol.22, issue.4, pp.8892-8895, 2015.
DOI : 10.1002/adma.200903951

J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang et al., @Graphene Porous Composite for High Capacity Lithium-Ion Batteries, Chemistry of Materials, vol.27, issue.13, pp.4594-4603, 2015.
DOI : 10.1021/acs.chemmater.5b00885

C. Yuan, H. B. Wu, Y. Xie, and X. W. Lou, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications, Angewandte Chemie International Edition, vol.22, issue.98, pp.1488-1504, 2014.
DOI : 10.1002/adfm.201200766

P. F. Teh, S. S. Pramana, Y. Sharma, Y. W. Ko, and S. Madhavi, Nanofibers As Anodes for Lithium-Ion Batteries and the Impact of Mixed Transition Metallic Oxides on Battery Performance, ACS Applied Materials & Interfaces, vol.5, issue.12, pp.5461-5467, 2013.
DOI : 10.1021/am400497v

H. J. Huang, Y. Huang, M. Y. Wang, X. F. Chen, Y. Zhao et al., Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries, Electrochimica Acta, vol.147, pp.201-208, 2014.
DOI : 10.1016/j.electacta.2014.09.117

W. Song, J. Xie, S. Liu, G. Cao, T. Zhu et al., Graphene-induced confined crystal growth of octahedral Zn2SnO4 and its improved Li-storage properties, Journal of Materials Research, vol.111, issue.24, pp.3096-3102, 2012.
DOI : 10.1016/j.electacta.2011.08.050

G. Fang, S. Kaneko, W. Liu, B. Xia, H. Sun et al., Facile synthesis of nitrogen-doped carbon coated CoSnO3 via hydrothermal carbonization of carboxylated chitosan as anode materials for lithium-ion batteries, Applied Surface Science, vol.283, pp.963-967, 2013.
DOI : 10.1016/j.apsusc.2013.07.053

Z. Wang, Z. Wang, W. Liu, W. Xiao, and X. W. Lou, @C nanoboxes with superior lithium storage capability, Energy Environ. Sci., vol.4, issue.1, pp.87-91, 2013.
DOI : 10.1149/1.1388178

R. Alcántara, M. Jaraba, P. Lavela, and J. L. Tirado, Spinel:?? First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries, Chemistry of Materials, vol.14, issue.7, pp.2847-2848, 2002.
DOI : 10.1021/cm025556v

Y. Chen, B. Qu, L. Mei, D. Lei, L. Chen et al., Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries, Journal of Materials Chemistry, vol.2, issue.48, pp.25373-25379, 2012.
DOI : 10.1039/c1sc00307k

L. Li, S. Peng, Y. L. Cheah, J. Wang, P. Teh et al., nanotubes with high lithium storage performance, Nanoscale, vol.43, issue.1, pp.134-138, 2013.
DOI : 10.1021/ic034551c

Z. H. Wen, Q. Wang, Q. Zhang, and J. H. Li, In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous-Tube Structure as Anode for Lithium Batteries, Advanced Functional Materials, vol.364, issue.15, pp.2772-2778, 2007.
DOI : 10.1002/adfm.200600739

Z. Y. Wang, G. Chen, and D. G. Xia, Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery, Journal of Power Sources, vol.184, issue.2, pp.432-436, 2008.
DOI : 10.1016/j.jpowsour.2008.03.028

Y. Wang, H. C. Zeng, and J. Y. Lee, Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers, Advanced Materials, vol.15, issue.5, p.645, 2006.
DOI : 10.1002/adma.200501883

X. Liu, M. H. Wu, M. R. Li, X. L. Pan, J. Chen et al., Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries, Journal of Materials Chemistry A, vol.438, issue.33, pp.9527-9535, 2013.
DOI : 10.1038/438044a

S. J. Ding, J. S. Chen, and X. W. Lou, One-Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties, Advanced Functional Materials, vol.184, issue.21, pp.4120-4125, 2011.
DOI : 10.1016/j.jpowsour.2008.03.028

X. W. Lou, C. M. Li, and L. A. Archer, @carbon Hollow Nanospheres for Highly Reversible Lithium Storage, Advanced Materials, vol.26, issue.24, p.2536, 2009.
DOI : 10.1002/adma.200803439

URL : http://ecommons.cornell.edu/bitstream/1813/22641/2/2009-09%20Publication%20-%20Lynden%20Archer%20-%20Designed%20Synthesis%20of%20Coaxial%20SnO2%20at%20carbon%20Hollow%20Nanospheres%20for%20Highly%20Reversible%20Lithium%20Storage.pdf

J. Fan, T. Wang, C. Z. Yu, B. Tu, Z. Y. Jiang et al., Ordered, Nanostructured Tin-Based Oxides/Carbon Composite as the Negative-Electrode Material for Lithium-Ion Batteries, Advanced Materials, vol.16, issue.16, p.1432, 2004.
DOI : 10.1002/adma.200400106

F. Han, W. C. Li, M. R. Li, and A. H. Lu, Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume, Journal of Materials Chemistry, vol.17, issue.19, pp.9645-9651, 2012.
DOI : 10.1021/cm048003o

X. S. Zhou, Z. H. Dai, S. H. Liu, J. C. Bao, and Y. G. Guo, /Carbon Nanohybrids toward Advanced Lithium-Ion Battery Anodes, Advanced Materials, vol.101, issue.82, pp.3943-3949, 2014.
DOI : 10.1021/jp9701909

C. Guan, X. H. Wang, Q. Zhang, Z. X. Fan, H. Zhang et al., Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition, Nano Letters, vol.14, issue.8, pp.4852-4858, 2014.
DOI : 10.1021/nl502192p

S. M. Paek, E. Yoo, and I. Honma, /Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure, Nano Letters, vol.9, issue.1, pp.72-75, 2009.
DOI : 10.1021/nl802484w

X. Y. Wang, X. F. Zhou, K. Yao, J. G. Zhang, and Z. P. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon, vol.49, issue.1, pp.133-139, 2011.
DOI : 10.1016/j.carbon.2010.08.052

X. S. Zhou, L. J. Wan, and Y. G. Guo, Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries, Advanced Materials, vol.80, issue.82, pp.2152-2157, 2013.
DOI : 10.1021/ja01539a017

S. Yang, W. B. Yue, J. Zhu, Y. Ren, and X. J. Yang, with Enhanced Electrochemical Performance for Lithium-Ion Batteries, Advanced Functional Materials, vol.80, issue.28, pp.3570-3576, 2013.
DOI : 10.1021/ja01539a017

J. Zhu, Z. Lu, M. O. Oo, H. H. Hng, J. Ma et al., Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2???Fe2O3/rGO composite nanostructures, Journal of Materials Chemistry, vol.17, issue.34, pp.12770-12776, 2011.
DOI : 10.1002/adfm.200601186

P. Wu, N. Du, H. Zhang, J. X. Yu, and D. R. Yang, @C Coaxial Nanocables with Highly Reversible Lithium Storage, The Journal of Physical Chemistry C, vol.114, issue.51, pp.22535-22538, 2010.
DOI : 10.1021/jp1102109

Y. Z. Su, S. Li, D. Q. Wu, F. Zhang, H. W. Liang et al., Two-Dimensional Carbon-Coated Graphene/Metal Oxide Hybrids for Enhanced Lithium Storage, ACS Nano, vol.6, issue.9, pp.8349-8356, 2012.
DOI : 10.1021/nn303091t

B. A. Zhang, Q. B. Zheng, Z. D. Huang, S. W. Oh, and J. K. Kim, SnO2???graphene???carbon nanotube mixture for anode material with improved rate capacities, Carbon, vol.49, issue.13, pp.4524-4534, 2011.
DOI : 10.1016/j.carbon.2011.06.059

J. Zhu, D. N. Lei, G. H. Zhang, Q. H. Li, B. G. Lu et al., Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries, Nanoscale, vol.115, issue.22, pp.5499-5505, 2013.
DOI : 10.1021/jp203168p

Y. Zhao, C. Wei, S. Sun, L. P. Wang, and Z. J. Xu, Advanced Science, 2015.

Y. Wang, D. W. Su, C. Y. Wang, and G. X. Wang, SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochemistry Communications, vol.29, pp.8-11, 2013.
DOI : 10.1016/j.elecom.2013.01.001

A. Jahel, C. M. Ghimbeu, A. Darwiche, L. Vidal, S. Hajjar-garreau et al., nanoparticles confined in mesoporous carbon, Journal of Materials Chemistry A, vol.8, issue.22, pp.11960-11969, 2015.
DOI : 10.1038/nmat2460

URL : https://hal.archives-ouvertes.fr/hal-01195907

Y. H. Liu, X. Fang, M. Y. Ge, J. P. Rong, and C. , SnO2 coated carbon cloth with surface modification as Na-ion battery anode, Nano Energy, vol.16, pp.399-407, 2015.
DOI : 10.1016/j.nanoen.2015.07.010

D. W. Su, H. J. Ahn, and G. X. Wang, SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance, Chemical Communications, vol.225, issue.30, pp.3131-3133, 2013.
DOI : 10.1016/j.jpowsour.2012.10.014

URL : https://opus.lib.uts.edu.au/bitstream/10453/24051/4/477678.pdf

X. Q. Xie, S. Q. Chen, B. Sun, C. Y. Wang, and G. X. Wang, 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries, ChemSusChem, vol.80, issue.17, pp.2948-2955, 2015.
DOI : 10.1021/ja01539a017

M. Dirican, Y. Lu, Y. Ge, O. Yildiz, and X. Zhang, -Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material, ACS Applied Materials & Interfaces, vol.7, issue.33, pp.18387-18396, 2015.
DOI : 10.1021/acsami.5b04338

K. E. Lewis, D. M. Golden, and G. P. Smith, Organometallic bond dissociation energies: laser pyrolysis of iron pentacarbonyl, chromium hexacarbonyl, molybdenum hexacarbonyl, and tungsten hexacarbonyl, Journal of the American Chemical Society, vol.106, issue.14, pp.3905-3912, 1984.
DOI : 10.1021/ja00326a004

S. Kim, C. Hwang, S. Y. Park, S. Ko, H. Park et al., High-yield synthesis of single-crystal silicon nanoparticles as anode materials of lithium ion batteries via photosensitizer-assisted laser pyrolysis, J. Mater. Chem. A, vol.11, issue.42, pp.18070-18075, 2014.
DOI : 10.1021/nl201787r

S. Veintemillas-verdaguer, M. P. Morales, and C. J. Serna, Continuous production of ??-Fe2O3 ultrafine powders by laser pyrolysis, Materials Letters, vol.35, issue.3-4, pp.227-231, 1998.
DOI : 10.1016/S0167-577X(97)00251-6

H. R. Bachmann, H. Nörth, R. Rinck, and K. L. Kompa, Infrared laser specific reactions of boranes. Conversion of diborane to icosaborane(16), B20H16, Chemical Physics Letters, vol.29, issue.4, pp.627-629, 1974.
DOI : 10.1016/0009-2614(74)85107-9

J. Förster, M. Von-hoesslin, and J. Uhlenbusch, Temperature measurements in CO2-laser-induced pyrolysis flames for SiC and ternary SiC/C/B powder synthesis by means of CARS, Applied Physics B, vol.56, issue.6, pp.609-612, 1996.
DOI : 10.1007/BF01081699

Y. Leconte, H. Maskrot, L. Combemale, N. Herlin-boime, and C. Reynaud, Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nanopowders, Journal of Analytical and Applied Pyrolysis, vol.79, issue.1-2, pp.465-470, 2007.
DOI : 10.1016/j.jaap.2006.11.009

URL : https://hal.archives-ouvertes.fr/hal-00141259

J. L. Duncan, D. C. Mckean, and P. D. Mallinson, Infrared crystal spectra of C2H4, C2D4, and as-C2H2D2 and the general harmonic force field of ethylene, Journal of Molecular Spectroscopy, vol.45, issue.2, pp.221-246, 1973.
DOI : 10.1016/0022-2852(73)90154-9

Y. Wang, D. Su, C. Wang, and G. Wang, SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochemistry Communications, vol.29, pp.8-11, 2013.
DOI : 10.1016/j.elecom.2013.01.001

H. Cao, X. Zhou, C. Zheng, and Z. Liu, Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide, ACS Applied Materials & Interfaces, vol.7, issue.22, pp.11984-11990, 2015.
DOI : 10.1021/acsami.5b02014

S. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao et al., Nanostructured carbon for energy storage and conversion, Nano Energy, vol.1, issue.2, pp.195-220, 2012.
DOI : 10.1016/j.nanoen.2011.11.006

K. Chen, S. Song, F. Liu, and D. Xue, Structural design of graphene for use in electrochemical energy storage devices, Chemical Society Reviews, vol.43, issue.17, pp.6230-6257, 2015.
DOI : 10.1039/C4CS00102H

K. Chang and W. Chen, /Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries, ACS Nano, vol.5, issue.6, pp.4720-4728, 2011.
DOI : 10.1021/nn200659w

K. E. Lewis, D. M. Golden, and G. P. Smith, Organometallic bond dissociation energies: laser pyrolysis of iron pentacarbonyl, chromium hexacarbonyl, molybdenum hexacarbonyl, and tungsten hexacarbonyl, Journal of the American Chemical Society, vol.106, issue.14, pp.3905-3912, 1984.
DOI : 10.1021/ja00326a004

S. Kim, C. Hwang, S. Y. Park, S. Ko, H. Park et al., High-yield synthesis of single-crystal silicon nanoparticles as anode materials of lithium ion batteries via photosensitizer-assisted laser pyrolysis, 10. S. Veintemillas-Verdaguer, pp.18070-18075, 1998.
DOI : 10.1021/nl201787r

Y. Leconte, H. Maskrot, L. Combemale, N. Herlin-boime, and C. Reynaud, Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nanopowders, 13. S. Veintemillas-Verdaguer, M. Morales and C. Serna, Materials letters, pp.465-470, 1998.
DOI : 10.1016/j.jaap.2006.11.009

URL : https://hal.archives-ouvertes.fr/hal-00141259

J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie et al., Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon???Carbon Composites, Thermodynamics of tin, Nuclear Energy Agency of the OECD (NEA), 2012. 18. L. P. Wang, L. Yu, R. Satish, J. Zhu, Q. Yan, M. Srinivasan and Z. Xu, RSC Advances, pp.1765-1774, 2001.
DOI : 10.1002/adfm.200600937

URL : https://hal.archives-ouvertes.fr/hal-00169730

M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb Carbon: A Review of Graphene, Chemical Reviews, vol.110, issue.1, pp.132-145, 2010.
DOI : 10.1021/cr900070d

Y. Zhao, J. X. Li, N. Wang, C. X. Wu, G. F. Dong et al., @PPy Coaxial Nanocable As High Performance Anode Material for Lithium Ion Batteries, The Journal of Physical Chemistry C, vol.116, issue.35, pp.18612-18617, 2012.
DOI : 10.1021/jp304095y

J. H. Yu, S. Kwon, Z. Petrá?ek, O. K. Park, S. W. Jun et al., High-resolution three-photon biomedical imaging using doped ZnS nanocrystals, Nature Materials, vol.6, issue.4, pp.359-366, 2013.
DOI : 10.1002/smll.200900626

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang et al., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, Nature, vol.50, issue.7284, pp.1061-1065, 2010.
DOI : 10.1038/nature08777

X. Ye, W. Zhang, Q. Liu, S. Wang, Y. Yang et al., nanospheres with enhanced lithium ion storage performance, New Journal of Chemistry, vol.111, issue.1, pp.130-135, 2015.
DOI : 10.1016/j.electacta.2013.08.122

Y. Wang, I. Djerdj, B. Smarsly, and M. Antonietti, Nanopowders with High Crystallinity for Lithium-Ion Battery Electrode, Chemistry of Materials, vol.21, issue.14, pp.3202-3209, 2009.
DOI : 10.1021/cm9007014

X. Wang, Z. Li, Z. Zhang, Q. Li, E. Guo et al., mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries, Nanoscale, vol.21, issue.8, pp.3604-3613, 2015.
DOI : 10.1039/c0jm03132a

F. Mueller, D. Bresser, V. S. Chakravadhanula, and S. Passerini, Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries, Journal of Power Sources, vol.299, pp.398-402, 2015.
DOI : 10.1016/j.jpowsour.2015.08.018

URL : https://doi.org/10.1016/j.jpowsour.2015.08.018

J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang et al., @Graphene Porous Composite for High Capacity Lithium-Ion Batteries, Chemistry of Materials, vol.27, issue.13, pp.4594-4603, 2015.
DOI : 10.1021/acs.chemmater.5b00885

D. O. Scanlon and G. W. Watson, On the possibility of p-type SnO2, Journal of Materials Chemistry, vol.16, issue.13, pp.25236-25245, 2012.
DOI : 10.1088/0953-8984/16/28/036

E. Albanese, C. D. Valentin, G. Pacchioni, F. Sauvage, S. Livraghi et al., : A Combined Electron Paramagnetic Resonance and Density Functional Theory Study, The Journal of Physical Chemistry C, vol.119, issue.48, pp.26895-26903, 2015.
DOI : 10.1021/acs.jpcc.5b09613

Y. Zhao, C. Wei, S. Sun, L. P. Wang, and Z. J. Xu, Advanced Science, Journal of Materials Chemistry A, vol.3, issue.2, pp.14033-14038, 2015.

V. Bonu, A. Das, S. Amirthapandian, S. Dhara, and A. K. Tyagi, nanoparticles, Physical Chemistry Chemical Physics, vol.59, issue.15, pp.9794-9801, 2009.
DOI : 10.1002/pssb.2220590208

X. Feng, C. Shen, N. Ding, and C. Chen, Lithium chromium oxide modified spinel LiCrTiO4 with improved electrochemical properties, Journal of Materials Chemistry, vol.44, issue.39, pp.20861-20865, 2012.
DOI : 10.1007/s10853-008-3104-1

Z. Li, A. Mikula, and Z. Qiao, Surface Properties of the Sn-9Zn Alloy with the Trace Addition of Lanthanum, Monatshefte f??r Chemie - Chemical Monthly, vol.3, issue.11, pp.1835-1840, 2005.
DOI : 10.1007/s00706-005-0395-7

Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock et al., Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries, Nano Letters, vol.13, issue.2, pp.470-474, 2013.
DOI : 10.1021/nl303823k

V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science, vol.1, issue.88, pp.1597-1614, 2014.
DOI : 10.1039/C3MH00070B

URL : https://hal.archives-ouvertes.fr/hal-01171774

M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, A review of conduction phenomena in Li-ion batteries, Journal of Power Sources, vol.195, issue.24, pp.7904-7929, 2010.
DOI : 10.1016/j.jpowsour.2010.06.060

L. Y. Lim, N. Liu, Y. Cui, and M. F. Toney, Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries, Chemistry of Materials, vol.26, issue.12, pp.3739-3746, 2014.
DOI : 10.1021/cm501233k

Y. Wang, D. Su, C. Wang, and G. Wang, SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochemistry Communications, vol.29, pp.8-11, 2013.
DOI : 10.1016/j.elecom.2013.01.001

L. Zhang, H. B. Wu, B. Liu, and X. W. Lou, Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage, Energy & Environmental Science, vol.25, issue.3, pp.1013-1017, 2014.
DOI : 10.1002/adma.201300105

R. Alcántara, M. Jaraba, P. Lavela, and J. L. Tirado, Spinel:?? First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries, Chemistry of Materials, vol.14, issue.7, pp.2847-2848, 2002.
DOI : 10.1021/cm025556v

A. V. Chadwick, S. L. Savin, S. Fiddy, R. Alcántara, D. Fernández-lisbona et al., :??? X-ray Absorption Spectroscopic Study, The Journal of Physical Chemistry C, vol.111, issue.12, pp.4636-4642, 2007.
DOI : 10.1021/jp066417u

H. Fan, Y. Zeng, X. Xu, N. Lv, and T. Zhang, Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane, Sensors and Actuators B: Chemical, vol.153, issue.1, pp.170-175, 2011.
DOI : 10.1016/j.snb.2010.10.026

Y. Wang, P. Gao, D. Bao, L. Wang, Y. Chen et al., Obtained Synchronously in One Solution, Inorganic Chemistry, vol.53, issue.23, pp.12289-12296, 2014.
DOI : 10.1021/ic5014126

X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang et al., Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery, The Journal of Physical Chemistry B, vol.108, issue.18, pp.5547-5551, 2004.
DOI : 10.1021/jp037075k

C. Yuan, H. B. Wu, Y. Xie, and X. W. Lou, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications, Angewandte Chemie International Edition, vol.22, issue.98, pp.1488-1504, 2014.
DOI : 10.1002/adfm.201200766

J. Sangster and C. W. Bale, The Na-Sn (Sodium-Tin) System, Journal of Phase Equilibria and Diffusion, vol.17, issue.7, pp.76-81, 1998.
DOI : 10.1016/0021-9614(85)90113-2

H. Wang, Q. Pan, Y. Cheng, J. Zhao, and G. Yin, Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries, Electrochimica Acta, vol.54, issue.10, pp.2851-2855, 2009.
DOI : 10.1016/j.electacta.2008.11.019

C. Zhu, P. Yang, D. Chao, W. Mai, and H. J. Fan, DOI: 10.1002/cnma, 2015.

Y. Deng, C. Fang, and G. Chen, The developments of SnO 2 /graphene nanocomposites as anode materials for high performance lithium ion batteries: A review, Journal of Power Sources, vol.304, pp.81-101, 2016.
DOI : 10.1016/j.jpowsour.2015.11.017

Y. J. Hong, M. Y. Son, and Y. C. Kang, Yolk-Shell-Structured Powders by Continuous Process as Anode Materials for Li-ion Batteries, Advanced Materials, vol.57, issue.16, pp.2279-2283, 2013.
DOI : 10.1351/pac198557040603

C. J. Pelliccione, E. V. Timofeeva, and C. U. Segre, Nanomaterial Anodes for Lithium-Ion Batteries, The Journal of Physical Chemistry C, vol.120, issue.10, pp.5331-5339, 2016.
DOI : 10.1021/acs.jpcc.5b12279

R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen et al., -based electrodes: the effect of nanostructure on high initial reversible capacity, Energy & Environmental Science, vol.136, issue.2, pp.595-603, 2016.
DOI : 10.1021/ja410137s

T. Bora, M. H. Al-hinai, A. T. Hinai, and J. Dutta, Temperature-Dependent Raman Spectroscopy, Journal of the American Ceramic Society, vol.18, issue.3, pp.4044-4049, 2015.
DOI : 10.1088/0953-8984/18/3/014

*. Theoretical and E. M. , F of the conversion reaction is calculated with thermodynamic data using Nernst equation: ?G = ?[y?Gf(Li2O/Na2O) -?Gf(MxOy)] = nFE , where ?Gf corresponds to the Gibbs free energy of formation of each individual compound taken at 298K

D. C. Cronemeyer, Electrical and Optical Properties of Rutile Single Crystals, Physical Review, vol.61, issue.5, pp.876-886, 1952.
DOI : 10.1103/PhysRev.61.56

Z. Fan, X. Wen, S. Yang, and J. G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors, Applied Physics Letters, vol.87, issue.1, p.13113, 2005.
DOI : 10.1088/0508-3443/17/1/304

S. Sakamoto, M. Yoshinaka, K. Hirota, and O. Yamaguchi, Fabrication, Mechanical Properties, and Electrical Conductivity of Co3O4 Ceramics, Journal of the American Ceramic Society, vol.31, issue.2, pp.267-268, 1997.
DOI : 10.1016/0927-0248(93)90058-B

B. Wang, X. Wu, C. Shu, Y. Guo, and C. Wang, Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries, Journal of Materials Chemistry, vol.94, issue.47, pp.10661-10664, 2010.
DOI : 10.1039/c0jm01941k

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. Hu et al., Materials with Highly Reversible Lithium Storage Capacity, Nano Letters, vol.9, issue.12, pp.4215-4220, 2009.
DOI : 10.1021/nl902423a

Z. Hu, C. Zhou, M. Zheng, J. Lu, B. Varghese et al., Nanobundles: A Layered Structure with High Electric Conductivity, The Journal of Physical Chemistry C, vol.116, issue.6, pp.3962-3967, 2012.
DOI : 10.1021/jp211079b

M. Pai and J. M. Honig, Electrical and thermoelectric properties of undoped MnO single crystals, Journal of Solid State Chemistry, vol.40, issue.1, pp.59-63, 1981.
DOI : 10.1016/0022-4596(81)90361-3

C. Wang, L. Yin, D. Xiang, and Y. Qi, Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries, ACS Applied Materials & Interfaces, vol.4, issue.3, pp.1636-1642, 2006.
DOI : 10.1021/am2017909

Y. Ma, Q. Xie, X. Liu, Y. Zhao, D. Zeng et al., Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries, Electrochimica Acta, vol.182, pp.327-333, 2015.
DOI : 10.1016/j.electacta.2015.09.102

H. Bryngelsson, J. Eskhult, L. Nyholm, M. Herranen, O. Alm et al., Nanoparticle Coatings as Anode Materials for Li-Ion Batteries, Chemistry of Materials, vol.19, issue.5, pp.1170-1180, 2007.
DOI : 10.1021/cm0624769

H. Li, P. Balaya, and J. Maier, Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides, Journal of The Electrochemical Society, vol.15, issue.98, pp.1878-1885, 2004.
DOI : 10.1149/1.1801451

C. Marino, M. T. Sougrati, A. Darwiche, J. Fullenwarth, B. Fraisse et al., Study of the series Ti1???yNbySnSb with 0???????y???????1 as anode material for Li-ion batteries, Journal of Power Sources, vol.244, pp.736-741, 2013.
DOI : 10.1016/j.jpowsour.2012.11.061

URL : https://hal.archives-ouvertes.fr/hal-00815527

M. Mouyane, M. Womes, J. C. Jumas, J. Olivier-fourcade, and P. E. Lippens, Tin dispersed in a calcium silicate matrix: A composite oxide as anode material for Li-ion batteries, Journal of Power Sources, vol.204, pp.139-148, 2012.
DOI : 10.1016/j.jpowsour.2011.12.022

URL : https://hal.archives-ouvertes.fr/hal-00666202

M. Chamas, P. Lippens, J. Jumas, K. Boukerma, R. Dedryvère et al., Comparison between microparticles and nanostructured particles of FeSn2 as anode materials for Li-ion batteries, Journal of Power Sources, vol.196, issue.16, pp.7011-7015, 2007.
DOI : 10.1016/j.jpowsour.2010.09.113

URL : https://hal.archives-ouvertes.fr/hal-00666194

W. Choi, J. Y. Lee, B. H. Jung, and H. S. Lim, Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries, Journal of Power Sources, vol.136, issue.1, pp.154-159, 2004.
DOI : 10.1016/j.jpowsour.2004.05.026

Y. Zhang, J. Xie, S. Zhang, P. Zhu, G. Cao et al., Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries, Electrochimica Acta, vol.151, pp.8-15, 2015.
DOI : 10.1016/j.electacta.2014.11.009

Y. Wang, D. Su, C. Wang, and G. Wang, SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochemistry Communications, vol.29, pp.8-11, 2013.
DOI : 10.1016/j.elecom.2013.01.001

D. Su, H. Ahn, and G. Wang, SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance, Chemical Communications, vol.225, issue.30, pp.3131-3133, 2013.
DOI : 10.1016/j.jpowsour.2012.10.014

URL : https://opus.lib.uts.edu.au/bitstream/10453/24051/4/477678.pdf

D. Su, C. Wang, H. Ahn, and G. Wang, Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries, Physical Chemistry Chemical Physics, vol.22, issue.30, pp.12543-12550, 2013.
DOI : 10.1002/adma.201000717

URL : https://opus.lib.uts.edu.au/bitstream/10453/27553/1/2012004677OK.pdf