
HAL Id: tel-01693054
https://theses.hal.science/tel-01693054v1

Submitted on 25 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approche logicielle pour améliorer la fiabilité
d’applications parallèles implémentées dans des

processeurs multi-cœur et many-cœur
Vanessa Carolina Vargas Vallejo

To cite this version:
Vanessa Carolina Vargas Vallejo. Approche logicielle pour améliorer la fiabilité d’applications
parallèles implémentées dans des processeurs multi-cœur et many-cœur. Micro et nanotechnolo-
gies/Microélectronique. Université Grenoble Alpes, 2017. Français. �NNT : 2017GREAT042�. �tel-
01693054�

https://theses.hal.science/tel-01693054v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ

GRENOBLE ALPES

Spécialité : NANO ÉLECTRONIQUE ET NANO TECHNOLOGIES

Arrêté ministérial : 25 mai 2016

Présentée par

Vanessa Carolina VARGAS VALLEJO

Thèse dirigée par Raoul VELAZCO, Directeur de Recherche, CNRS

et codirigée par Jean-François MÉHAUT, Professeur, Grenoble UJF

préparée au sein Laboratoire Techniques de l’informatique et de la Mi-

croélectronique pour l’Architecture des Systèmes Intégrées

et de l’École Doctorale Électronique, Électrotechnique, Automatique,

Traitement du Signal (EEATS)

Approche logicielle pour améliorer
la fiabilité d’applications parallèles
implémentées sur des processeurs
multi-cœur et many-cœur

Thèse soutenue publiquement le 28 avril 2017,

devant le jury composé de :

Monsieur Fréderic PÉTROT
Professeur, Président, Grenoble INP

Monsieur Luc GIRAUD
Directeur de recherche, Rapporteur, INRIA Délegation aquitaine

Monsieur Olivier ROMAIN
Professeur, Rapporteur, Université de Cergy-Pontoise

Monsieur Nacer-Eddine ZERGAINOH
Maître de conférences, Examinateur, Université Grenoble Alpes

Acknowledgement

First and all above, I would like to thank God , the almighty, for all the blessings He

shed in my life, without Him and his support this work would not be possible.

Special thanks to the Ecuadorian government through the Secretaría de Educación

Superior, Ciencia, Tecnología e Innovación del Ecuador and Universidad de las Fuerzas

Armadas ESPE for the confidence placed in me and my abilities to fulfill this challenge.

I would like to express my deep thankfulness and appreciation to my academic advisor,

Dr. Raoul Velazco for his helpful guidance, valuable availability and precious optimism

throughout the development of this research.

I want to express my deep gratitude to my academic co-advisor, Prof. Jean -François

Méhaut for his constant involvement, constructive advices, and priceless readiness during

this thesis.

Special thanks to my thesis reviewers Prof. Luc Giraud et Prof. Olivier Romain, for

their invaluable comments and relevant questions that help me to improve this document.

I acknowledge all the staff of TIMA and LIG laboratories for their hospitality and

cooperation, special thanks to Anne-Laure Fourneret, Fréderic Chevrot and Christian

Seguy for their availability and service.

I would like to greatly appreciate Maud Baylac, Francesca Villa and Solene Rey from

the LPSC laboratory for their long-lasting cooperation in the execution of the radiation

tests experiments.

I want to express my gratitude to Stéphane Gailhard and Renaud Stevens from Kalray

Company for their support in the applications’ development and the experiments on the

MPPA-256 many-core processor.

I would like to thank all my friends that I met during this stage of my life, specially

Robert, Jessica, Alejandro, Audrey, Martin, Anaïs, Adrien, Cristina et Edison.

Special deep thanks to my mother, my mother-in-law and my aunt Talita for all the

efforts and sacrifices that they have made on behalf of my family and for taking care with

love of my children during different periods along these research years.

I want to thank all my family for their prays, invaluable support and love, specially to

my parents, who have always trusted in me and encouraged me to fight for my dreams,

and my siblings for their unconditional availability, confidence and help during these

years.

I want to thank my little children, for their great comprehension and tenderness, for

their smiles, kisses and hugs that fortify my soul.

Lastly, I want to thank my wonderful husband for his motivation, encouragement,

and patience during the development of this thesis, for support me every time especially

in the tough moments, love me and make me happy.

Vanessa Vargas

Dedication

To the love of my life, Pablo, and my tresors, Matías and Emmanuel...

To my beloved parents Guido and Lorgia...

"The Lord is my strength and my shield;

my heart trusts in him, and he helps me"
Ps 28:7

Contents

List of Tables vi

List of Figures viii

List of abbreviations ix

1 Introduction 1

1.1 Research issues . 3

1.2 Context of the thesis . 4

1.3 Thesis outline . 4

2 Background 7

2.1 Radiation Effects on Electronic circuits 7

2.1.1 Radiation Environment . 7

2.1.2 Single Event Effects . 9

2.1.3 Consequences caused by transient effects 10

2.1.4 Evaluation of the radiation effects on electronic circuits 11

2.1.5 Mitigation of Radiation effects . 13

2.2 Multi-core and many-core processors . 14

2.2.1 Architectural concept . 14

2.2.2 Memory hierarchy models . 16

2.2.3 Software issues . 17

2.2.4 Sensitivity to neutron radiation 20

2.3 Reliability of multi-core and many-core 23

2.3.1 Conceptual basis . 23

2.3.2 Redundancy techniques . 26

i

2.3.3 Partitioning . 28

2.4 Discussion . 29

3 Experimental Methodology to evaluate the impact of SEEs Sensitivity 31

3.1 Generalities . 31

3.2 Evaluation strategies . 33

3.2.1 Fault-injection strategy . 34

3.2.2 Neutron-radiation facility . 35

3.3 Experimental Platforms . 36

3.3.1 P2041RDB Development Board 37

3.3.2 MPPA Developer . 37

3.4 Benchmark applications . 38

3.4.1 Traveling Salesman Problem . 38

3.4.2 Matrix Multiplication . 40

3.4.3 Intrinsic characteristic issues . 41

3.5 Concluding Remarks . 41

4 Case-studies based on the multi-core processor 43

4.1 Description of the P2041 multi-core processor 43

4.2 Case-study A: Multi-core processor running each core independently . . . 45

4.2.1 System configuration . 45

4.2.2 Experimental evaluation by neutron radiation 46

4.3 Case-study B: Multi-core implementing TMR as a fault-tolerant technique 47

4.3.1 System configuration . 48

4.3.2 Fault-injector details . 48

4.3.3 Experimental evaluation by fault injection 49

4.4 Case-study C: Multi-core sharing resources and maximizing inter-core com-

munication . 52

4.4.1 System configuration . 53

4.4.2 Fault-injector details . 54

4.4.3 Experimental evaluation by fault injection 55

4.4.4 Experimental evaluation by neutron radiation 59

4.5 Discussion of the obtained results . 63

ii

4.6 Concluding Remarks . 67

5 Case-studies based on the many-core processor 69

5.1 Description of the MPPA-256 many-core processor 69

5.1.1 Sensitive zones . 71

5.1.2 Programming MPPA issues . 72

5.2 Case-study D: Many-core execution with minimal use of Network-on-Chip

(NoC) services . 72

5.2.1 System configuration . 73

5.2.2 Fault-injector details . 74

5.2.3 Experimental evaluation by fault injection 75

5.2.4 Experimental evaluation by neutron radiation 76

5.3 Case-study E: Many-core execution with intensive use of NoC services. . 78

5.3.1 System configuration . 78

5.3.2 Benchmark details . 80

5.3.3 Fault-injector details . 83

5.3.4 Experimental evaluation by fault injection 83

5.4 Discussion of the overall results . 87

5.5 Concluding remarks . 90

6 NMR-MPar: a fault-tolerant approach 93

6.1 Description . 93

6.2 Case-Study F: NMR-MPar implemented on the MPPA-256 processor . . 95

6.2.1 System configuration . 95

6.2.2 Fault-injector details . 100

6.2.3 Experimental evaluation by fault injection 100

6.3 Overall result comparison . 103

6.4 Concluding remarks . 106

7 Related work 107

7.1 SEE sensitivity of multi-core and many-core processors 107

7.2 Reliability in multi-core and many-core processors 108

7.2.1 Fault-tolerance by redundancy . 109

iii

7.2.2 Fault-tolerance by partitioning . 110

7.3 Contributions to the state-of-the-art . 111

8 Conclusions and perspectives 113

8.1 Contributions . 114

8.2 Future Works . 115

Annexe 117

A Implementation details of case-study F . 117

B Publications during this thesis . 121

Extended Abstract in French 123

Projects references 137

Bibliography 139

iv

List of Tables

4.1 Sensitive areas of the P2041 targeted in this work 44

4.2 Results of radiation experiments for the P2041 working in AMP scenario 46

4.3 Results of fault injection at register level for TMR MM AMP 50

4.4 Results of fault injection in variables for TMR MM AMP 51

4.5 Injection Error-Rates in Variables for TMR MM AMP 52

4.6 Applications summary for TMR scenatio 55

4.7 Fault-injection campaigns’ details for TMR scenario 56

4.8 Results of fault injection in registers for SMP scenarios 56

4.9 Results of fault injection in memory for SMP scenarios 57

4.10 Error-rates for SMP scenarios in P2041 58

4.11 Test campaigns characteristics for TSP-SMP-P2041-NR scenario 59

4.12 Results of radiation experiments for TSP-SMP-P2041-NR scenario 60

4.13 Test campaigns characteristics for MM-SMP-P2041-NR scenario 61

4.14 Results of neutron radiation tests for MM-SMP-P2041-NR 62

5.1 Memory cells of the MPPA-256 many-core processor 71

5.2 Results of the fault-injection campaigns for MM-AMP-MPPA 75

5.3 Results of the dynamic radiation tests for MPPA scenarios 77

5.4 Standard execution time for different configuration of TSP on the MPPA 80

5.5 Fault-injection campaigns details for the Multi Purpose Processing Array

(MPPA) . 84

5.6 Results of the fault-injection campaigns on applications running on the

MPPA . 84

5.7 Error-rate by fault injection for POSIX scenarios in MPPA 85

5.8 Summary of the different fault-injection scenarios evaluated on the MPPA 88

v

6.1 Execution-time comparison for different Traveling Salesman Problem (TSP)

configurations on the MPPA . 99

6.2 NoC connections on applications running NMR-MPar on the MPPA . . . 99

6.3 Fault-injection campaigns details of the 4MR-8Par applications running

on the MPPA . 101

6.4 Results of fault-injection campaigns on 4MR-8Par applications with no TTY101

6.5 Exceptions produced by fault-injection on the 4MR-8Par applications . . 102

6.6 Error-Rates for 4-MoRePaR applications implemented on the MPPA . . 103

6.7 Failure rates per hour at 35000 feet for 4MR-8PaR applications imple-

mented on the MPPA . 104

6.8 FIT values at NYC for 4MR-8PaR applications implemented on the MPPA106

vi

List of Figures

2.1 Earth’s magnetosphere [NASA] . 8

2.2 Cosmic-ray air showers [NASA] . 9

2.3 Evolution of processor architecture . 15

2.4 Many-core processor architecture . 16

2.5 Memory architectural model in multi-core processors 17

2.6 AMP and SMP modes . 18

2.7 Algorithm for n x m matrix addition . 21

2.8 Comparison of reliability for different systems [Sho02] 25

2.9 Reliability of NMR containing 2n+1 circuits [Sho02] 28

3.1 P2041 Experiment at GENEPI2 facility 35

3.2 Pseudo-code for TSP sequential algorithm [FCP+15] 39

3.3 Pseudo-code for multi-threading TSP version [FCP+15] 39

3.4 Algorithm for n x n matrix multiplication 40

4.1 Memory hierarchy model for P2041 multi-core [Fre13b] 43

4.2 Proposed software fault-injector by fork principle 54

4.3 Fault-injection consequences when targeting registers on P2041 under SMP 56

4.4 Fault-injection consequences when targeting memory locations on P2041

under SMP . 58

4.5 Distribution of OS faults by zones affected by SEE in SMP P2041 NR

scenarios . 63

4.6 SEE consequences per scenario from fault-injection campaigns on P2041 . 64

4.7 SEE consequences per scenario from radiation testing on P2041 64

4.8 Evaluation of reliability under neutron radiation for the P2041 65

vii

4.9 Evaluation by fault-injection of the MM reliability implementing TMR on

P2041 . 66

5.1 MPPA-256 many-core processor components 70

5.2 Kalray software stack [Kal15] . 79

5.3 Generic master pseudo-code for the applications running on the MPPA . 81

5.4 Fault-injection consequences on MPPA when targeting registers 85

5.5 Example of erroneous result logged by the TSP 86

5.6 Evaluation of reliability by neutron radiation for MM -Bare-board running

on MPPA at 35000 ft . 87

5.7 Distribution of fault-injection consequences on MPPA for different scena-

rios . 89

5.8 Evaluation of reliability for MPPA-POSIX applications at 35000 ft 90

6.1 NMR-MPar Approach . 94

6.2 Proposed configuration for case-study F implemented on the MPPA-256 96

6.3 General flow diagram of the 4MR-8Par application 97

6.4 Proposed configuration for case-study F - part 2 97

6.5 Comparison of SEE consequences per scenario in NMR-MPar applications 103

6.6 Evaluation of reliability for MM application at 35000 ft 105

6.7 Evaluation of reliability for TSP application at 35000 ft 105

8.1 Pseudo-code for the implementation of the N-MoRePar applied to the MPPA118

8.2 Flow diagram of main function run in RM0 119

viii

List of abbreviations

ACROSS Advanced Cockpit for Reduction Of StreSs and workload

ALU Arithmetic Logic Unit

AMP Asymmetric Multi-Processing

API Application Programming Interface

ARINC Avionics Application Standard Software Interface

AVF Architectural Vulnerability Factor

BMP Bound Multi-Processing

BSP Board Support Package

CAPACITES Calcul Parallèle pour Applications Critiques en Temps et Sureté

CAST Certified Associate in Software Testing

CC Compute Cluster

CEU Code Emulated Upset

CL Confidence Level or Limit

CMOS Complementary Metal-Oxide Semiconductor

CMP Chip Multi-Processor

C-NoC Control NoC

CORSE Compiler Optimizations and Runtime Systems

ix

COTS Commercial Off-The-Shelf

CPU Central Process Unit

CR Condition Register

CRC Cyclic Redundancy Check

CS Compute Status

DCR Device Control Register

DECOS Dependable Embedded Components and Systems

DECC Double ECC

DMR Double Modular Redundancy

D-NoC Data NoC

DPAR Data Parity

DSU Debug Support Unit

DUT Device Under Test

EASA European Aviation Safety Agency

ECC Error Correcting Code

EDAC Error Detection And Correction

EMC2 Embedded Multi-Core systems for Mixed Criticality applications in dynamic and

changeable real time environments

EnergySFE Energy-aware Scheduling and Fault Tolerance Techniques for the Exascale

Era

FAA Federal Aviation Administration

FIT Failure In Time

FLOPS Floating-Point Operation per Second

x

FPGAs Field Programmable Gate Arrays

FPR Floating Point Register

GCC GNU Compiler Collection

GENEPI2 GEnerator of NEutron Pulsed and Intense

GPR General Purpose Register

GPU Graphic Processing Unit

GRP Guaranteed Resource Partition

HPC High Performance Computing

HWIFI Hardware-Implemented Fault Injection

IMA Integrated Modular Avionics

INRIA Institut National de Recherche en Informatique et en Automatique

IPAR Instruction Parity

JTAG Joint Test Action Group

LC Loop Counter

LE Loop Exit Address

LIG Laboratoire d’Informatique de Grenoble

LPSC Laboratoire de Physique Subatomique et Cosmologie

LS Loop Start Address

LR Link Register

MBU Multiple Bit Upset

MCE Machine Check Exception

MCU Multiple Cell Upset

xi

MIMD Multiple Instructions Multiple Data

MM Matrix Multiplication

MPPA Multi Purpose Processing Array

MPPA IPC MPPA inter process communication

MTTF Mean Time To Failure

MWBF Mean Workload Between Failures

MultiPARTES Multi-cores Partitioning for Trusted Embedded Systems

NMR N-Modular Redundancy

NMR-MPar N-Modular Redundancy M Partitions

NoC Network-on-Chip

NP Non-deterministic Polynomial

OpenMP Open Multi-Processing

OS Operating System

PC Program Counter

PCIe Peripheral Component Interconnect

PE Processing Engine

PID Process IDentification number

PLR Process-Level Redundancy

PMC Performance Monitor Control

PMR Performance Monitor Register

PS Processing Status

pSWP parallel Software Partition

xii

RA Return Address

RECOMP Reduced Certification Costs for Trusted Multi-core Platforms

RHBD Radiation Hardened By Design

RIS Robust Integrated Systems

RISC Reduced Instruction Set Computer

RM Resource Manager

RTEMS Real-Time Executive for Multiprocessor Systems

SDK Sofware Development Kit

SEB Single Event Burn-out

SECC Single ECC

SEE Single Event Effect

SEFI Single Event Failure Interrupt

SEGR Single Event Gate Rupture

SEL Single Event Latch-up

SENESCYT Secretaría de Educación Superior, Ciencia, Tecnología e Innovación del

Ecuador

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SFR System Function Register

SIFT Software Implemented Fault Tolerance

SMEM Static Memory

SMT Simultaneous multithreading

xiii

SMP Symmetric Multi-Processing

SOI Silicon-On-Insulator

SP Stack Pointer

SPC Shadow Program Counter

SPR Special Purpose Register

SPS Shadow Program Status

SRR0 Save/Restore Register 0

SRR1 Save/Restore Register 1

SSCA3 third Scalable Synthetic Compact Application

SWIFI Software-Implemented Fault Injection

TIMA Techniques de l’Informatique et de la Microeléctronique pour l’Architecture des

systèmes integrés

TMR Triple Modular Redundancy

TSMC Taiwan Semiconductor Manufacturing Company

TSP Traveling Salesman Problem

TTY Tele TYpewriter

TVF Thread Vulnerability Factor

VHDL VHSIC Hardware Description Language

VLIW Very Long Instruction Word

VR Vector Register

V-BSP Virtual Board Supporting Package

XER Exception register

xiv

Chapter 1

Introduction

Nowadays, advances in integrated circuit technologies allow having processors with

multiple cores which offer a very large computing capacity through the implementation

of massive parallelism within an affordable power budget. These devices also provide a

great flexibility because they allow implementing different multi-processing modes, pro-

gramming paradigms and types of applications. In addition, their inherent redundancy

capability makes them ideal for implementing fault-tolerant mechanisms. Consequently,

most modern computing systems use multi-core and many-core processors as a standard

solution to fulfill the increasing demand of performance and reliability without a critical

increase of power consumption.

For instance, in High Performance Computing (HPC) systems, the first two SUPER-

COMPUTERS Top500 (November 2016) are based on these devices: (1) 1er Top500 :

Sunway TaihuLight - Sunway MPP, based on the Sunway many-core processor SW26010

(260 cores) 1.45GHz , and (2) 2nd Top500 : Thiane-2, based on the multi-core processor

Intel Xeon E5-2692 (12 cores) 2.2GHz + Intel XeonPhi 31S1PL.

In addition, the use of multi-cores is widespread in embedded systems. However,

when critical tasks are required only one core is used [MEA+10]. Therefore, interna-

tional research projects 1 involving industrial and academic partners such as, ACROSS,

ARTEMIS - EMC2, CAPACITES, DECOS, MultiPARTES, are exploring the develop-

ment of new solutions that allow the use of multi-processors in critical systems. Hence,

avionics and spacecraft industries are interested in validating the use of these components

for their applications (e.g. international teams are working on this behalf: CAST, EASA,

1For further information see Projects References section

1

RECOMP project, etc).

The trend to promote the use of general purpose or Commercial Off-The-Shelf (COTS)

devices in critical systems is done mainly because: (1) the cost reduction by using stan-

dard components instead of custom-designed ones, and (2) the significant reduction in

the ratio performance to power consumption by using commercial components instead of

radiation hardened components [MSM+02, KSD+97].

Having more performing chips requires the improvement of circuit manufacturing

process by shrinking the die size. Unfortunately, the degree of miniaturization makes

these circuits potentially more sensitive to the effects of natural radiation. Its impact

is aggravated by the chip complexity and the huge amount of memory cells that they

contain. For this reason, physical designers are continuously searching for new methods

to improve manufacturing technologies to reduce Single Event Effect (SEE) consequences.

Additionally, manufacturers have implemented protection mechanisms such as parity and

Error Correcting Code (ECC) in devices’ memories. Besides, some mitigation techniques

based on hardware and software approaches are proposed in the literature to minimize

the consequences of this phenomenon.

In spite of the manufacturing efforts, there are some areas that remain vulnerable

to the effects of natural radiation. Several interesting works dealing with the sensitivity

of electronic components can be found in the literature. However, there are very few

available works regarding multi-core and many-core processors sensitivity to the radiation

effects. Therefore, it is mandatory to evaluate at what extent this sensitivity affects the

reliability of applications running on such devices. Furthermore, due to the massive

parallelism used for improving the performance of computing systems, the evaluation of

the impact on parallel applications becomes essential.

Software fault tolerance for parallel and distributed systems has been largely studied.

However, studies regarding systems-on-chip fault tolerance are limited. Taking in advan-

tage of the multiplicity of cores of multi/many-core processors, it is suitable to implement

redundancy techniques to improve the reliability of parallel applications.

In this context, the purpose of this thesis is, first, to evaluate the impact of SEEs

on parallel application running on multi-core and many-core processors and, second, to

propose an approach based on N- Modular Redundancy and partitioning to improve the

reliability of parallel applications running on many-core processors.

2

CHAPTER 1. INTRODUCTION

1.1 Research issues

Considering the wide range of possible software-environment configurations, the eva-

luation was done by multiple case-studies:

A) A multi-core running each core independently of the others.

B) A multi-core sharing resources and using inter-core communications.

C) A multi-core implementing Triple Modular Redundancy (TMR) as fault-tolerant

technique.

D) A many-core execution with minimal use of NoC services.

E) A many-core execution with intensive use of NoC services.

F) A many-core implementing a new proposed fault-tolerant approach on massive par-

allel applications.

The evaluation considers the use of Asymmetric Multi-Processing (AMP) and Sym-

metric Multi-Processing (SMP) modes, and two benchmark applications: the Trave-

ling Salesman Problem and the Matrix Multiplication. It was carried-out by Software-

Implemented Fault Injection (SWIFI) or by neutron radiation ground testing.

For the experimentation, two COTS devices were considered. The first one was the

Freescale PowerPC P2041 -core processor, which was selected because of its manufactu-

ring technology (SOI) and its capability to allow different multi-processing modes. The

second one was the KALRAY MPPA many-core processor, which was selected due to its

advanced CMOS 28nm manufacturing technology, its architecture, and the huge number

of processing cores (256) that it integrates.

The main contributions of this research are: (1) the evaluation of SEE sensitivity of

different parallel applications implemented on multi-core and many-core processors, (2)

the evaluation of the impact of the programming model and multi-processing mode on

the system’s SEE sensitivity (3) the development and evaluation of an approach based

on redundancy and partitioning called NMR-MPar to improve the reliability of parallel

applications running on multi/many-core processors.

3

1.2. CONTEXT OF THE THESIS

1.2 Context of the thesis

This thesis was carried out in the context of a collaboration of two research teams of

the University of Grenoble-Alpes: (1) the Robust Integrated Systems (RIS) team of TIMA

laboratory, and (2) the INRIA Compiler Optimizations and Runtime Systems (CORSE)

team of LIG laboratory. The RIS team has vast experience concerning the reliability of

circuits and systems, while the CORSE team has an extensive background on compiler

optimization and run-time systems for multi-core and many-core processors. The synergy

produced by the contribution of the know-how of both teams was fundamental in the

development and success of this research.

In addition, during the development of this thesis I have collaborated with members

of other international teams in the context of the project Stic-AMSUD Energy-aware

Scheduling and Fault Tolerance Techniques for the Exascale Era (EnergySFE) regarding

the development of parallel applications on multi/many-core processors.

Finally, this thesis was funded by two scholarships: (1) the Secretaría de Educación

Superior, Ciencia, Tecnología e Innovación del Ecuador (SENESCYT) Program "Convo-

catoria Abierta 2012 Segunda fase" grant 752-2012, and (2) by the Universidad de las

Fuerzas Armadas ESPE grant 14-005-LCS-DOC-ESPE-a2. It was also supported by the

French authorities through the "Investissement d’Avenir" program - Calcul Parallèle pour

Applications Critiques en Temps et Sureté (CAPACITES) project.

1.3 Thesis outline

The remaining of this document is organized as follows:

• Chapter 2: summarizes the concepts and principles needed for the understanding

of this research regarding: (1) radiation environment and its effects on electronic

circuits, (2) main characteristics of multi-core and many-core processors, and (3)

reliability issues concerning mentioned devices.

• Chapter 3: describes the methodology and tools used to evaluate the impact of

natural radiation on applications running on multi-core and many-core processors.

• Chapters 4 and 5: present the evaluation of the impact of neutron radiation on dif-

4

CHAPTER 1. INTRODUCTION

ferent scenarios implemented on the Freescale P2041 multi-core and the KALRAY

MPPA-256 many-core processor respectively.

• Chapter 6: proposes a fault-tolerant software-approach to improve the reliability of

applications running on multi-core and many-core processors. It also presents its

evaluation through a case study implemented on the MPPA-256 many-core proce-

ssor.

• Chapter 7: discuss the most relevant related work.

• Chapter 8: provides general conclusions and gives some future research perspectives.

5

1.3. THESIS OUTLINE

6

Chapter 2

Background

This chapter describes the principal concepts needed for a correct understanding of

this thesis. Three main topics are considered. The first one is related to radiation envi-

ronment, its effects and consequences on electronic systems. The second one is dedicated

to present the main characteristics of multi-core and many-core processors. The last

one summarizes key concepts on reliability and some useful techniques for improving it.

Finally, this chapter concludes with a discussion about the thesis subject.

2.1 Radiation Effects on Electronic circuits

The normal operation of electronic circuits and systems are affected by the envi-

ronment where they operate. One of the most important factors is the radiation that

decreases their reliability. Hence, it is essential to understand this phenomenon and its

possible consequences.

2.1.1 Radiation Environment

Natural and artificial radiation affecting electronic devices are present in atmospheric

and spatial environments. On the one hand, radiation in the space comes principally from

cosmic rays, solar wind and flares, and the Van Allen radiation belts. Cosmic rays are

high energy particles coming from the outer space including electrons, protons, heavy-

ions and other subatomic particles. Solar wind is a flux of particles originated by the high

temperatures of the solar corona which mainly consists in electrons, protons and alpha

7

2.1. RADIATION EFFECTS ON ELECTRONIC CIRCUITS

particles. A Solar flare is the product of the sudden release of magnetic energy from the

solar atmosphere. The radiation belts is a torus of charged and energetic particles around

the Earth held by its magnetic field. Figure 2.1 illustrates the Earth’s magnetosphere

which is formed by the interaction of solar wind and Earth’s magnetic field.

Figure 2.1: Earth’s magnetosphere [NASA]

On the other hand, the atmospheric radiation environment is the result of the inter-

action of cosmic rays with the atoms of the Earth’s atmosphere. Particles hit with a

nucleus of the air generating a shower of new particles that increase while descending in

the atmosphere. Figure 2.2 depicts the development of a cosmic-ray air shower.

Spatial and atmospheric radiation may produce transient, permanent and destructive

effects in integrated circuits. This radiation effects can be classified in two categories:

cumulative effects and Single Event Effects. Cumulative effects are the result of charges

trapped in the oxide volume of a semiconductor which appear after a long period of

radiation exposure. SEEs in turn, cause abrupt changes or transient behavior in circuits

if the amount of collected charge at a junction exceeds a threshold [MFMR08]. From

the sixties, there were observed several problems in space electronics. However, the first

proofs of malfunctions in electronic devices on spacecrafts due to space radiation were

reported in 1978 [MW79].

8

CHAPTER 2. BACKGROUND

Figure 2.2: Cosmic-ray air showers [NASA]

2.1.2 Single Event Effects

SEEs are all the effects induced by the interaction of a single energetic particle with

a semiconductor material. Typically, heavy-ions, protons and neutrons particles produce

SEEs when colliding with electronic devices compromising their reliability [Nic11].

• Single Event Transient (SET): An instantaneous voltage spike in a node (analog

devices or combinatorial logic) of an integrated circuit produced by a single energetic

particle strike.

• Single Event Upset (SEU): the impact of a ionizing particle on a memory cell

provoked the change of the bit content also called bit-flip.

– Multiple Bit Upset (MBU): When two or more bits are altered in the same

word.

– Multiple Cell Upset (MCU): When a single event upsets different storage cells.

• Single Event Failure Interrupt (SEFI): A malfunction state of a complex circuit

which can be caused by an upset in a control bit or register, forcing the component

9

2.1. RADIATION EFFECTS ON ELECTRONIC CIRCUITS

to be reset or reinitialised.

• Single Event Latch-up (SEL): A destructive event related to a high increase of

power supply current due to the activation of a parasitic PNPN structure induced

by the impact of an ionizing particle.

• Single Event Burn-out (SEB): A hard error affecting power MOSFET, IGBT or

power BJT transistors by inducing a current flow that turns-on the parasitic NPN

bipolar structure which leads to the destruction of the device.

• Single Event Gate Rupture (SEGR): A hard error produced when the incident

particle generates a conduction path in a gate oxide which leads to the component

damage.

2.1.3 Consequences caused by transient effects

Transient effects may cause dysfunctions in electronic devices, performance degrada-

tion and even partial or total destruction of the device. These perturbations can affect

directly a component of the device (clock line, memory cells, etc) or can be propagated to

other parts of the circuit. Sometimes a SET can be propagated in the system generating

a SEU or a SEFI [MFMR08].

This work deals with the consequences of bit-flips in memory cells ("soft error").

They can be classified as follows:

• Silent fault : there is no apparent effect on system, all the system and application

processes are terminated in a normal way and the results are correct.

• Application erroneous result : the result of the application is not the expected one.

• Timeout : when the program does not respond after a duration equal to the nominal

execution time.

• Exception: the application triggers an exception routine.

• System crash: the system stops working and it is necessary a restart.

• Segmentation fault : is a type of memory dysfunction error where the software

(system and application) tries to access a non-valid memory address.

10

CHAPTER 2. BACKGROUND

• Abnormal process termination: when the application is terminated in an abnormal

manner either by an abnormal code return or by the Operating System (OS).

• Unreliable condition: when an application or system process is affected by the fault.

From the above list, the most critical one is the "Application erroneous result" because

it is not detected by the system and can cause unpredictable consequences. Throughout

the analysis of the results, in some cases the last five types were grouped as Exceptions.

2.1.4 Evaluation of the radiation effects on electronic circuits

Accelerated radiation ground tests and real-life tests are widely used to evaluate me-

mory devices and processor-based architectures in terms of SEE cross-section. The cross-

section provides the average number of particles needed to cause a bit-flip in a memory

cell, and is defined as follows:

σ =
Number of Upsets

F luence
(2.1)

Where fluence is the integration of the flux of particles φ in the time.

Real-life tests

Real-life tests are the only and trustworthy way to study the effects of radiation on

electronic circuits and to measure the soft-error rate of a device, since it is tested in

the radiation environment where it is supposed to work (terrestrial atmosphere or space)

[PVH09]. It consists in gathering as many devices as possible with the aim of increasing

the number of SEEs to obtain valid statistics. The drawback of this evaluation strategy is

the necessity of a huge number of devices and the long exposure time to obtain satisfactory

results.

Radiation ground tests

There are many ways to characterize integrated circuits to radiation at ground level.

Particle accelerators, laser beams and equipments based on fission decay sources are useful

to obtain significant results in a short time. The more particles interact with the device,

11

2.1. RADIATION EFFECTS ON ELECTRONIC CIRCUITS

the more SEE can be obtained. The drawbacks of this evaluation strategy are: particle

beam spectrum is not really that of the natural radiation, there are few facilities around

the world, high cost in experiment setup and tests1.

• Particle accelerator : is a machine that uses electric fields to accelerate elementary

particles such as heavy-ions, protons, electrons to very high energies producing a

beam of charged particles. There are two main types of accelerators: linear acce-

lerators, where particle travel along a straight beam line, and circular accelerators

where a beam travels in a loop [Dot].

• Laser beam: is a narrow and coherent light beam produced by optical amplification

that focus its energy in a single tiny spot with intense power [Eri17].

• Fission sources : The radiation emission is produced by a spontaneous fission of

certain radioactive isotopes such as californium-252 or Cf-252, or by alpha particles

impinging upon a low atomic weight isotope such as beryllium, carbon and oxygen

[OLA96].

Fault Injection

Due to the high cost of accelerated testing and the long-lasting exposures in real-life

tests, fault-injection technique has been rapidly adopted for evaluating the dependability

of an electronic device or system. It accelerates the occurrence of faults allowing designers

assessing and improving detection and protection mechanisms [HTI97]. Fault-injection

campaigns in processor-based architectures are typically performed for simulating the

consequences of SEUs at application level to estimate its SEE sensitivity. For devices

intended to be used in safety-critical applications, the evaluation of the reliability of the

application is a mandatory step.

In the literature, it can be found five categories of fault injection:

• Hardware-Implemented Fault Injection (HWIFI): this technique allows injecting

faults in the target system by means of a dedicated hardware platform. HWIFI

includes several approaches being the most used the pin-level injection. Pin-level

injection is based on stuck-at operations where pins are forced to a particular value
1Only as reference the cost of radiating heavy-ions per hour is around 650 USD.

12

CHAPTER 2. BACKGROUND

to generate a soft error. Other approaches such as electromagnetic interference and

power supply alteration are also used to produce soft errors [Ini11].

• Software-Implemented Fault Injection: is a fault injection technique used to emulate

the effects of faults in an electronic device by means of software [Sch10]. Faults can

be emulated in Central Process Unit (CPU) registers, Arithmetic Logic Unit (ALU)

or main memory by producing bit-flips, and can be classified in compile-time and

run-time injection. Other approaches corrupt the function call parameters.

• Simulation-Based Fault Injection: this technique use a fault-simulator for modeling

and simulating the target device and the faults [KN14]. The simulation models are

built using hardware description language such as VHDL.

• Emulation-Based Fault Injection: This technique is based on the use of Field Pro-

grammable Gate Arrays (FPGAs) with the aim of reducing the simulation time

compared to simulation-based fault injection [KN14].

• Hybrid Fault Injection: this technique is based on the combination of two or more

of the above techniques aiming at improving the fault injection time. It can benefit

of the versatility of software fault injection and the accuracy of hardware measuring

[ZAV04].

2.1.5 Mitigation of Radiation effects

The continuous technology scaling in integrated circuits makes them more sensitive

to the effects of natural radiation [DM03]. For this reason, physical designers are contin-

uously searching for new methods to improve manufacturing technologies to reduce SEE

consequences.

In the literature there are different approaches that deal with hardening radiation

components. These can be grouped as follows:

• Hardening during conception and fabrication: during the design stage, the manu-

facturers improve the fault tolerance capabilities of the devices by modifying the

technological parameters, applying additional layouts, and changing the electrical

construction.

13

2.2. MULTI-CORE AND MANY-CORE PROCESSORS

• Radiation Hardened By Design (RHBD): also called hardening-by-system, these

techniques do not modify the fabrication process nor the electrical design. They

mitigate errors by applying to COTS components some approaches including dupli-

cation in logic modules, implementation of error detection and correction circuits,

memory cell interleaving, among others.

• Shielding : increases the reliability and useful life-time of devices that operate in ra-

diation environments. For protecting against neutron and gamma radiation, heavy

and large shielding blocks of lead and concrete can be used.

2.2 Multi-core and many-core processors

A consensus has been reached in the computing community: the only viable way to

keep performance improvement rates within a given power budget is by building multi-

core processors and exploiting massive paralleling [GPA+11]. Consequently, most of

computing systems are nowadays using multi-core processors as a standard solution to

fulfill the increasing demand of performance and reliability without a critical increase

of power consumption. Moreover, multi-core and many-core processors can reduce the

execution time of an application by performing parallel processing instead of increasing

system frequency.

In this context, it would seem that increasing the number of cores per chip would be

the most suitable solution to improve performance. Nevertheless, there are other factors

affecting multi-core performance that should be analyzed, such as the latency produced

by complex inter-core communications due to shared workloads, the scalability based on

the increasing of workloads, the cache coherency among cores, and the memory and I/O

bandwidth.

2.2.1 Architectural concept

Amulti-core processor is an electronic circuit which integrates on a single chip multiple

processor cores running in parallel. It can integrate multiple dies in the same package

or several cores in a single die, Chip Multi-Processor (CMP). Figure 2.3 illustrates the

processor evolution from the first conceptual model proposed by Von Neuman in 1945.

14

CHAPTER 2. BACKGROUND

Typically, the Reduced Instruction Set Computer (RISC) is implemented on multi-core

processors. There is an instruction-level paralleling implemented in the core architecture

to increase the speed up of processing based on pipelined.

Figure 2.3: Evolution of processor architecture

Inside the chip, each core acts as an independent processor. The OS manages the

internal resources and its scheduler assigns the processes to cores. Reference [Vaj11]

details the architectural issues of both multi-core and many-core processors. Regarding

the many-core processor, the large increase in the number of cores implies considerable

evolution in the architecture of the device. The main constraints are related with the

inter-core communications and the management of memory resources and I/O devices.

Regarding the intercore communication mechanisms, traditionally in a multi-core proce-

ssor each core communicates by a common shared bus with the other cores; however, in

many-core processor the use of NoC is indispensable. On the other hand, for managing

efficiently the memory resources some approaches are proposed such as ring, mesh and

crossbar interconnections. Figure 2.4 illustrates a many-core processor architecture.

15

2.2. MULTI-CORE AND MANY-CORE PROCESSORS

Figure 2.4: Many-core processor architecture

2.2.2 Memory hierarchy models

Multi-core and many-core processors include the use of cache memories as fast memo-

ries to reduce the memory access time by minimizing the access to main memory. Indeed,

its use increases significantly the performance of the system, so several levels of caches are

proposed. Figure 2.5 illustrates a typical hierarchy memory model used in these devices.

L1 caches memories are always private while L2 can be private or shared depending

on the specific architecture device. The main advantages of private caches is its closer

location to the processing unit which reduces access time. Also, its implementation

minimizes contention. In contrast, by using shared cache, if few threads run on the device,

the system performance could be improved due to the more cache space availability. On

the other hand, by implementing private caches, the problem of keeping data consistent

across cache memories arises. For solving this cache coherence problem, many solutions

based on algorithms and coherence protocols are proposed.

16

CHAPTER 2. BACKGROUND

Figure 2.5: Memory architectural model in multi-core processors

Multi-core and many-core processors use shared and distributed memory models. In

shared memory models, there is one common shared memory accessed by all processors

while in distributed memory each processor or group of processors has its own local

memory. Typically, multi-core processors use shared memory model and many-core pro-

cessors use a mixed model. Some manufacturers group several cores in clusters. Inside

each cluster, they implement a shared memory.

2.2.3 Software issues

To exploit massive paralleling, the application developers have to move from serial

to parallel execution model and choose the appropriate system configuration to achieve

maximum concurrency and consequently performance improvement. In addition, some

capabilities need to be isolated to guarantee the dependability of the system. This implies

that the software designer has to take into account issues such as multi-processing mode,

programming model and the access level to hardware resources to better deploy the

application.

17

2.2. MULTI-CORE AND MANY-CORE PROCESSORS

Multi-processing modes

Regarding the multi-processing modes, there are two principal models: a) Symmetric

Multi-Processing (SMP) and b) Asymmetric Multi-Processing (AMP). Figure 2.6 depicts

these two Multi-Processing modes.

Figure 2.6: AMP and SMP modes

In AMP mode, the processor cores in the device are largely independent of each other.

It can be configured with or without OS. Each core has its own private memory space,

although there is a common infrastructure for inter-core communications. Hence, each

core is managed by a separated OS image that exists in the main memory. Therefore, the

OS can be different for each core which may be very useful when working with embedded

systems. Typically, each software process is locked to a single core. Also, resources can

be dedicated to critical tasks, resulting in more deterministic performance [Fre12].

On the contrary, in SMP mode a single OS manages all processors and schedules the

processes. It is the simplest model. For the user, it seems that the program runs on

a single core. In SMP mode, a single OS that runs on all the cores is responsible for

achieving paralleling in the application. It dynamically distributes the tasks among the

cores, manages the organization of task completion, and controls the shared resources.

The main advantages of these modes can be summarized as: (1) SMP provides greater

scalability and paralleling than AMP, along with simpler shared resource management, (2)

AMP is the only approach that works with two separate OSs, thus allows that resources

can be dedicated to critical tasks resulting in more deterministic performance, and (3)

18

CHAPTER 2. BACKGROUND

AMP often has higher performance than SMP since the cores spend less time handshaking

one with another [Fre12].

Programming models

A programming model refers to the manner that the software assigns the applica-

tion tasks to the hardware. Throughout the development of this research, the following

programming models were used:

• Bare-metal: no OS is used, the programmer uses the Board Support Package (BSP)

functions provided by the manufacturer to access hardware resources. There is

no abstraction layer from hardware architecture. All the configurations and the

distribution of the tasks must be programmed. The programmer has the control of

each function.

• Low Level: no OS is used; however, there are a set of libraries that can be used.

It provides a little abstraction from hardware architecture. The functions and

commands used are closely related to the specific device capabilities on which the

application is implemented.

• POSIX: is a low-level Application Programming Interface (API) defined on top of

OS. It allows the control of parallel tasks (threads) where the programmer must

control the management of threads. It is independent of the hardware architecture

[IEE01].

• OpenMP: is a higher level of multi-threading API defined on top of POSIX which is

easier and more portable. It consists on a group of compiler directives that can be

executed on shared memory architectures, and its implementation is independent

of hardware and the OS [Ope15].

Access levels to hardware resources

Multi-core and many-core processors provide different levels of protection that allow

software access to hardware resources and configurations. These levels are also called

privilege modes. The most common privilege modes are:

19

2.2. MULTI-CORE AND MANY-CORE PROCESSORS

• Hypervisor: is the highest level and has access to all instructions and resources.

This state provides partitioning and virtualization for OS software. It serves as a

host of the possible OSs managing any shared resource and prevents from interfering

one with the others.

• Supervisor or Guest supervisor : has a medium privilege level that concerns the OS

which is a guest to the hypervisor. This state allows to perform several privileged

operations that are not hypervisor privileged. When it attempts to access hyper-

visor privileged resources and instructions, an hypervisor interrupt is produced, so

the hypervisor has to provide an appropriate emulation.

• User: has no privileges and commonly has access to the majority of instructions.

In this state a program can run under the control of an OS guest to a hypervisor,

of an OS running in bare-metal or under control of a hypervisor. These cases differ

in the manner that some interrupts are managed when the user program tries to

access a privileged resource.

2.2.4 Sensitivity to neutron radiation

The SEE sensitivity of multi/many-core devices can be evaluated through static and

dynamic radiation tests. The first one is considered as the worst-case sensitivity of the

device since all the accessible memory cells are monitored. The test consists in writing

fixed patterns, and while the Device Under Test (DUT) is exposed to radiation, a program

continuously reads the memory-cells to verify their content. If ECC is implemented

in the device, the machine-check error-architecture reports Single ECCs (SECCs) and

Double ECCs (DECCs) events. At the end of the test, the static cross-section (σStatic)

that characterizes the intrinsic sensitivity of the device’s manufacturing technology is

obtained.

On the side, the dynamic test consists in exposing to radiation the DUT while it exe-

cutes the selected application to obtain the dynamic cross-section (σDyn). This straight-

forward method described in [FVM+07] is performed to evaluate the behavior of an

application implemented in processor-based devices.

Several works dealing with the sensitivity of electronic components to neutron radia-

tion can be found in the literature. Reference [ND10] summarizes the sensitivity to SEEs

20

CHAPTER 2. BACKGROUND

induced by neutrons of different integrated circuits (i.e., SRAMs, microprocessors and

FPGAs) applicable to avionics. However, there are very few works available regarding

multi-core and many-core processors sensitivity.

Some factors coming from emerging technologies increase this sensitivity to natural

radiation: (1) the voltage scaling permits low energy particles produce SEE [Nor96],

(2) the increase in size of cache memories produces a spline increase in soft error-rates

[AVTK05, CSE+06], (3) the vulnerability on non-volatile memories [NAR+13].

Vulnerable zones

In a general way, every memory cell inside a device is a potential target of a SEE.

However, the randomise in time (when) and space (where) of the bit-flip, and how the

memory cell is used, affect the vulnerability of the system. The vulnerability to SEE is

defined as the inability to resist the effects of radiation. In the context of this thesis the

term SEEs refers to SEUs, MBUs, MCUs and SEFIs.

In order to modelling the vulnerability, in the literature there are several works that

propose different metrics [MV16]. The Architectural Vulnerability Factor (AVF) proposed

by [MWE+03] is one of the most used. The AVF is defined as the probability that a bit-

flip in a component does not produce an error. Concerning the improvement of the

reliability by reducing the system vulnerability, some approaches are also proposed in

[MMM12, FZLF08].

The vulnerable zone of an application depends on the used resources and the exposure

time of the data stored in memory cells. For a better comprehension of the problem of

the vulnerability of an application, one could consider a simple example, such as a matrix

addition, C = A + B of size n ×m. The algorithm for this application is illustrated in

figure 2.7.

for i ← 0 to n-1

 do ൝
for j ← 0 to m-1
 do C[i][j] = A[i][j] +B[i][j]

Figure 2.7: Algorithm for n x m matrix addition

In a bare-metal version running sequentially , the code section of this application is

small and there are few registers (i,j, accumulator) used by the compiler for computing

it. Therefore, the register-sensitive zone is minimal being the memory occupied by the

21

2.2. MULTI-CORE AND MANY-CORE PROCESSORS

variables (A,B,C) the main sensitive zone. However, when the same application is exe-

cuted on the same device but managed by an OS, the determination of the vulnerable

zone becomes complicated due to the analysis difficulty of the functions and resources

used by the kernel services and scheduling during the execution of the application. This

determination becomes even more difficult when a parallel algorithm is applied and multi-

threading is used due to factors such as synchronization between threads, data coherence,

among others. Hence, authors of [OTKT12] propose a methodology for measuring the

Thread Vulnerability Factor (TVF).

Moreover, if a multi-core or a many-core is used, additional issues should be consid-

ered:(1) the complexity of system configuration, such as distributed memory systems, (2)

the use of many special registers at hardware level that are hidden to the programmer

(3) the dynamic allocation of resources and processing cores used by the application.

Protection Mechanisms

The complexity of multicore architectures, due to the number of cores, concurrency

issues, shared resources and interconnections among cores is a potential source of a wide

range of errors. In order to facilitate error handling, the manufacturers have introduced

the error reporting architecture by the machine check error registers to provide infor-

mation of the possible sources of errors. A fault injection framework was proposed in

[LPC+12] for supporting dependability analysis of multi-core systems, where machine-

check-errors are emulated to analyze how the system responds to errors.

Reference [GPA+11] summarizes the most representative error detection and repair

techniques that have been proposed in the literature for dependable multicore architec-

tures. Mentioned work focused on dependable multicore-processor’s architectures that

integrate solutions for online error-detection, diagnosis, recovery, and repair during field

operation.

Designers continuously improve the reliability of computing systems. Some techniques

are proposed for microarchitectural components, such as processor registers, functional

units, cache and main memories. Indeed, additional hardware implementations have been

included at architecture level for improving their reliability. Examples of these protection

mechanisms are the implementation of ECC and parity in memories. Hamming codes are

very useful to mitigate SEUs since they can detect double errors and correct single ones.

22

CHAPTER 2. BACKGROUND

Nevertheless, new hardware introduces an extra area with the corresponding increase in

power consumption and performance degradation [AVTK05].

To reduce the overhead of the implementation of these mechanisms in cache memories,

there are some approaches that proposes mixed mechanisms. For instance, in [Kim09] is

proposed the use of ECC to only dirty cache lines 2 while clean lines are protected by

parity. Also, authors of [LSI+06] propose partially protected caches by ECC and the use

of selective data protection criteria. That means, critical functions use the protected area

whereas the non-critical used the not protected one.

2.3 Reliability of multi-core and many-core

The impact of faults produced by SEE in the reliability of computing systems is wor-

rying all domains since a single particle can produce system malfunction with important

financial consequences. In reference [MV16] several examples of SEE consequences are

referred.

The high demand of reliability for several applications implies that device manufac-

turers implement complex error-detection and correction circuits. Nevertheless, these

implementations lead to an overhead that causes unpredictable slowdowns to the sys-

tem [MV16]. For this reason, it is not possible to protect all the sensitive areas even

if a physical protection is feasible. Furthermore, device vendors search to decrease the

cost of designing and testing circuits for critical/embedded applications. Therefore, it is

essential to improve the reliability of the system by using a fault-tolerance technique that

minimizes the impact of its implementation cost.

2.3.1 Conceptual basis

Shooman in [Sho02] defines the reliability as the probability of no failure within a

given operation time. It can be expressed in terms of the hazard function z(t) which is

also called failure rate.

2Dirty cache lines contain data that have been modified only at cache memory level and must be

written back in main memory.

23

2.3. RELIABILITY OF MULTI-CORE AND MANY-CORE

R(t) = e−
∫
z(t)dt (2.2)

The description of the failure rate function becomes complicated for complex systems

with many components. Therefore, the Mean Time To Failure (MTTF) was introduced to

simplify the interpretation of the system reliability. It is defined as the expected time to

operate until a failure occurs. Considering a constant failure rate z(t) = λ, the reliability

function R(t) and the MTTF become the following expressions:

R(t) = e−λt (2.3)

MTTF =
1

λ
(2.4)

If failure rate increases with time z(t) = kt, the reliability and MTTF can be expressed

as follows [Sho90]:

R(t) = e−kt
2/2 (2.5)

MTTF =

√
π

2k
(2.6)

From [Vig], the behavior of the failure rate on semiconductors, typically considers

that its value slightly decreases over early life, then stabilizes during its useful life, and

increases outside the limit of useful life. Hence in semiconductors, the failure rate is

considered as a constant λ in most of the cases. Additionally, there are other terms used

to describe failure rate in semiconductors:

• Failure In Time (FIT) : Measure of failure rate in 109 device hours.

• Confidence Level or Limit (CL) : Upper confidence interval level of the estimation

of the probability of a population failure rate.

24

CHAPTER 2. BACKGROUND

Generally, when a particular radiation environment is known, the Soft Error Rate

(SER) is expressed in terms of FIT value. It is computed as follows [Gai11]:

FITvalue = σ × φ× 109 (2.7)

Where σ is the cross-section of the device expressed in cm2/device, and φ is the flux of

neutrons n in the real environment expressed in n/cm2/h. In FIT calculations, the flux

at New York φref = 14n/cm2/h is considered as a reference.

In order to have an idea of the reliability of a system composed by various elements, a

comparison of the system reliability under three different scenarios is illustrated in Figure

2.8. In all the cases the systems comprise the same element with a constant failure rate

λ: (1) a system with a single element, (2) a system composed by two elements in series,

and (3) a system with two elements in parallel.

Figure 2.8: Comparison of reliability for different systems [Sho02]

From the above figure, one can see that the reliability is improved by the use of

parallel systems. In contrast, the reliability decreases when the system uses two elements

configured in series mode.

In the literature can be found several techniques used for modeling and improving the

reliability of computing systems. Reference [MV16] presents an interesting survey of a

considerable number of techniques. Techniques based on redundancy have been largely

studied to improve the reliability of computing systems for both permanent and transient

25

2.3. RELIABILITY OF MULTI-CORE AND MANY-CORE

faults. Furthermore, the partitioning concept is being applied to multi-core systems to

guarantee the reliability in mixed-criticality systems.

2.3.2 Redundancy techniques

Redundancy allows a system to continue working properly in case of one or more

components fail. This is possible due to the fact that parallel components added to the

system provide an alternative path to operate. In general, the improvement in reliability

can be achieved by parallel or standby redundancy. In the first case, the parallel com-

ponents are powered-up and operating, while in the standby case some components are

powered-down and they are turned-on when the main system fails. Regarding the nature

of the replication, redundancy can be classified as:

• Spatial Redundancy : uses different physical components. It can separate identical

data signals in space. The main advantage is that there is no inherent maximum

operating frequency. The latter depends on the components characteristics. The

main disadvantage is the overhead.

• Temporal Redundancy : uses the same physical components. It separates identical

data signals in time. The maximum operating frequency depends on the technique

implemented. The main advantage is the use of fewer components while the main

disadvantage is the latency penalty.

• Redundancy in data: replicates the information. It stores the data in different

memory spaces. The main advantage is the error detection and correction during

the execution. The main disadvantage is the latency in memory access.

• Redundancy in execution: it replicates states machines. It performs copies of the

same process. The main advantage is the transparency for the user. The main dis-

advantages are: (1) it deals with divergent causes on processes such as asynchronous

signals and non-deterministic functions, and (2) the access to shared memory is a

constraint.

Traditionally, the cost of implementing redundant systems has been significant. How-

ever in multi-core and many-core processors, various approaches based on redundancy

26

CHAPTER 2. BACKGROUND

techniques can be considered due to the multiplicity of cores. Reference [HBR11] ex-

ploits several redundancy techniques to improve the reliability in multi-core processors.

Its authors propose the use of redundancy in all the stages involving the device, from its

design to the execution of applications.

There are several approaches that improve the reliability by the replication of contents

of processor components during the execution of an application without modifying the

hardware: caches [KS99, ZGKS03, Zha05, SIM07], instructions [SAL+08], and registers

contents [MKO05, TS12]. In contrast, other redundancy techniques modify the hardware.

Among them, the TMR [LV62] is a well-known fault-tolerant technique that implements

triplication of modules and majority voting. This technique has been largely used to

avoid errors in integrated circuits but imposes very high hardware overhead. Nevertheless,

this method becomes more attractive when implemented on multi-core and many-core

processor architectures.

N-Modular redundancy

A N-Modular Redundancy system consists of N identical parallel systems with the

same input. It also includes a voter to obtain the system output. The voter compares

the outputs of each parallel systems and applies majority criteria to select the response.

In general N is an odd integer to simplify voting operation. However, it is possible to use

an even integer depending on the characteristics of the system [Sho02].

Regarding the reliability of the system, it is important to note that N-modular redun-

dancy is better to a single module only for λt < 0.69. Figure 2.9 illustrates the reliability

for diverse N-modular redundancy parallel-systems implementing 2n + 1 modules. The

curves consider a perfect voter with reliability Rv = 1.

It is clear that the reliability of a N-modular redundancy systems depends on the

voter [KS79]. Therefore, considering the limitations of an imperfect voter, it is also

possible to implement redundant voters. The most common implementations of this kind

of systems are the Double Modular Redundancy (DMR) that allows error’s detection,

and the TMR that masks faults by detecting and correcting errors. Reference [Sho02]

presents an extensive analysis of the reliability and availability of parallel TMR, standby

TMR and repair TMR, and the corresponding voting systems.

27

2.3. RELIABILITY OF MULTI-CORE AND MANY-CORE

Figure 2.9: Reliability of NMR containing 2n+1 circuits [Sho02]

2.3.3 Partitioning

Mixed-criticality systems use partitioning to increase reliability of embedded systems

[TCAP14]. For achieving fault tolerance by partitioning, the behavior of one partition

must not be affected by other partitions. Hence, time and spatial partitioning must be

satisfied.

• Time partitioning : the use of resources are exclusively assigned to a partition during

a scheduled period of time. In a general manner, this is associated with the CPU

time assigned to each partition.

• Space partitioning : a function can not change the code or data of another partition.

This is associated with the memory space assigned to each partition.

Robust partitioning is a traditional concept used by Federal Aviation Administra-

tion (FAA) and European Aviation Safety Agency (EASA) to certify safety-critical avion-

ics applications. It is defined in the standard RTCA/DO-297. However, according to

[JFG+12], with the introduction of Integrated Modular Avionics (IMA) and multi-cores

this concept must be clarified.

28

CHAPTER 2. BACKGROUND

Space partitioning can be easily carried out by multi-core and many-core processors

since the system can prevent invalid memory accesses while achieving spatial partitioning

in such devices, which is not a trivial issue. Reference [LNT14] gives some directions

concerning temporal partitioning on multi-core processors used for avionics.

2.4 Discussion

The use of multi-core and many-core processors allows improving the overall per-

formance in terms of: (1) speed, performing parallel processing, (2) efficiency, choosing

the appropriate mode of multi-processing and programming paradigm to achieve maxi-

mum concurrency, and (3) reliability, implementing fault tolerant applications through

redundancy and partitioning.

Expensive dedicated devices combined with the high cost of the implementation of

spatial and aircraft applications, makes suitable the use of COTS for their applications.

However, in spite of the efforts done by the researchers to improve the security of applica-

tions running on COTS devices, it usage is limited due to the high reliability requirements.

Regarding multi-cores, to the author knowledge, until now only dual cores are certified

for being used in cockpit application in a mono-core configuration [Cer16].

Considering the multiplicity of cores and the use of redundancy techniques to im-

prove reliability, it is important to determine the possibility of using multi/many-core

COTS processors for running applications in harsh radiation environments. For that, it

is necessary to study the degree of sensitivity to radiation of multi-core and many-core

processors, evaluate how these effects impact the reliability of applications running on

these devices, and improve the reliability of the system.

There are very few works in the literature that evaluates the SEE sensitivity of

multi/many cores which are summarized in section 2.2.4. It is well known that the

reliability of the application is intimately related to the reliability of the platform where

it runs. However, there are other issues related to hardware and software configurations

that may influence this sensitivity (e.g. the configuration of cache memories, management

of interrupts, traps and exceptions). Moreover, if paralleling is performed, factors coming

from the implementation of the multi-threading or distributed paradigms can also alter

this sensitivity. Therefore, this thesis focuses on the evaluation of the SEE sensitivity of

29

2.4. DISCUSSION

applications running on multi-core and many-core processors considering different scena-

rios. Chapter 3 describes the methodology and tools used by this research to address this

issue.

Finally, considering the current efforts for improving the reliability of COTS systems

in order to use them in embedded and critical systems, the main goal of this thesis

is to propose an approach that improves the system reliability profiting of its intrinsic

redundancy capability and the partitioning concept. This approach was applied only at

user level without involving the OS, aiming at overcoming the SEE consequences in the

system.

30

Chapter 3

Experimental Methodology to evaluate

the impact of SEEs Sensitivity

This chapter describes the methodology and tools used for assessing the impact of

Single Event Effects on applications implemented in multi-core and many-core proce-

ssors. This research proposes multiple case-studies applied to two different experimental

platforms. The selection of the case-studies is done using a bottom-up strategy. The fault

injection strategy as well as the radiation facility used to evaluate them are also detailed.

3.1 Generalities

It is well known that the reliability of a computing system depends on software,

hardware and operator reliability and their interdependency [Sho02]. For the purpose of

this thesis, the human operator reliability Ro was considered independently of the others.

Moreover, due to human reliability is beyond the scope of this research, it was considered

an ideal case where Ro = 1. Hence, only the dependency on software and hardware

reliability is considered for assessing the impact of SEEs on the reliability of applications

running in multi-core and many-core processors.

For accomplishing an adequate evaluation, it is important to take into account aspects

such as hardware complexity and device configurations in terms of software environment.

In this work, the problem is addressed using quantitative theory applied to multiple case-

studies. The objective is to observe to what extent the dynamic chip response depends

on the application, programming paradigm, multi-processing mode, and the usage of

31

3.1. GENERALITIES

resources. In order to design the experiments, the parameters to be considered are:

a) Hardware Parameters : (1) number of cores and resources, (2) manufacturing tech-

nology, and (3) inter-core communications

b) Software parameters: (1) type of application, (2) multi-processing mode, and (3)

application levels and libraries.

For the experiments, two test platforms were selected: the first one is based on a

multi-core processor and the second one is based on a many-core processor. AMP or

SMP were adopted as multi-processing modes depending on the case-study.

The bottom-up strategy was used to select the case-studies. The first case, which is

the simpler one, considers a multi-core processor running a bare-metal application where

each core executes independently of the others. In contrast, the last case proposes a

many-core processor running a redundant massive parallel application under POSIX. Six

case-studies were evaluated:

A) The multi-core running each core independently of the others

B) The multi-core implementing TMR as a fault-tolerant technique

C) The multi-core sharing resources and maximizing inter-core communication

D) The many-core execution with minimal use of NoC services.

E) The many-core execution with intensive use of NoC services.

F) The many-core implementing a fault-tolerant approach on massive parallel appli-

cations

Throughout this thesis, fault-injection based on SWIFI and neutron radiation ground

testing were used to evaluate the different cases. On the other side, for analyzing the

experimental results, the consequences of a bit-flip in a memory cell were classified in:

silent faults, erroneous results, timeouts and exceptions.

A mandatory step prior to the design of the test experiments, was to get familiar

with the methods and tools required to perform experiments in the radiation facility.

Hence, radiation experiments on SRAM memories were performed to asses their neutron

radiation sensitivity. Some of the obtained results were presented in [CFV+15, CFV+16].

32

CHAPTER 3. EXPERIMENTAL METHODOLOGY TO EVALUATE THE IMPACT
OF SEES SENSITIVITY

A significant consideration for the analysis of the results issued from radiation cam-

paigns is the addition of uncertainty margins to the results, due to the scarcity of experi-

mental data. For numerous events (typically >100), the Poisson distribution can be used

to calculate such margins. However, for fewer events the most accurate and universal way

to calculate the uncertainty margins consists in using the relationship between the cu-

mulative distribution functions of the Poisson and chi-squared distributions as described

in [AMRG14]. Therefore, the following equation has been applied:

1

2
χ2(

α

2
, 2Nerr) < µ <

1

2
χ2(1− α

2
, 2(Nerr + 1)) (3.1)

where χ2(p, n) is the quantile function of the chi-square distribution with n degrees of

freedom, α is a parameter that defines the 100(1-α) percent confidence interval, and Nerr

is the number of errors detected. In general, this thesis uses a confidence level of 0.95

(α = 0.05).

This study considers the evaluation of the reliability of a system only during its useful

life. Hence, the failure rate function (λ) is assumed to be constant and the reliability

function is characterized by the expression 2.3.

R(t) = e−λt (2.3 revisited)

Where λ = σ × φ, being σ the cross-section of the system, and φ the flux of particles

at the specific operation environment. For computing the reliability, the upper limit

of the cross-section confidence-interval was used. In addition, it was considered that

applications are intended to be used in avionics domain, being the neutron flux at 35000

ft of altitude (φev = 2993.2n/cm2/h) with a system life time of 50000 h 1.

3.2 Evaluation strategies

Fault injection in processor-based architectures was a topic largely addressed by the

scientific community to validate the reliability of critical applications. In this thesis,

the Code Emulated Upset (CEU) approach principles have been adapted to multi-core

and many-core processors. This approach based on interrupt signals, provides error-rate

1Commercial airlines fly over 10 km and the mean of economic life-time is 50000 fly hours

33

3.2. EVALUATION STRATEGIES

results close to those obtained in radiation tests, as demonstrated in [RVE+01, VFP10].

Its applicability to a complex processors as the PowerPC4748, allowed validating this

device for aeronautical applications [PEP+08].

This research proposes to evaluate the different cases under neutron radiation. The

radiation ground tests were conducted at the GEnerator of NEutron Pulsed and Intense

(GENEPI2) facility located at the Laboratoire de Physique Subatomique et Cosmologie

(LPSC) in Grenoble, France [VBR+14]. This accelerator was originally developed for

nuclear physics experiments, and recently it has been used to irradiate integrated circuits

from different technologies.

3.2.1 Fault-injection strategy

The CEU approach is summarized in equation (3.2). It combines the static cross-

section of the device (σStatic) with the error-rate issued from fault injection campaigns

(τInj) to estimate the error-rate (τSEU) of an application implemented in a processor.

τSEU = τInj × σStatic (3.2)

On one hand, the error-rate of an application is derived from SEU fault-injection

campaigns. This quantity is defined as the average number of injected faults needed to

produce an error in the result of the application. On the other hand, the static cross-

section of the device (σStatic) is obtained from radiation experiments.

τInj =
Number of Errors

Number of Injected Faults
(3.3)

It is important to note that the objective of this approach is to reproduce, without

intrusion, the effects of SEU faults. It was done by setting asynchronous interrupt signals.

The execution of the interrupt handler produces the error in a randomly chosen target.

In previous work, the interruption was produced by an external device. In the case of

multi/many-core processors, it is possible to benefit of the multiplicity of cores for using

one of them as a fault-injector while the others run the chosen application.

A compulsory prior step to the fault-injection campaign is to set the number of cycles

needed to execute the application. It is done in order to know the range of time in which

34

CHAPTER 3. EXPERIMENTAL METHODOLOGY TO EVALUATE THE IMPACT
OF SEES SENSITIVITY

the fault should be injected. While the application is running on the processing cores, the

fault-injector selects in a random way the core, the memory-cell, the injection instant,

and the bit to be changed. At the injection instant, if the memory-cell is accessible to

the fault-injector, it changes directly its value, opposite case it sends an inter-processor

interrupt to the selected core. The latter performs the corresponding bit-flip.

This kind of fault-injector is architectural dependent. The approach was adapted

in each case-study depending on the software environment and the used development

platform. The details of implementation are described in the concerned case-study.

3.2.2 Neutron-radiation facility

GENEPI2 is an electrostatic accelerator producing neutrons by impinging a deuteron

beam onto a Tritium (T) target. After acceleration at 220 keV, deuterons (d) produce

neutrons (n) by the fusion reaction d+ T → n+4 He.

From the target, neutrons are emitted in all directions. The DUT is set facing directly

the target at a distance determined to adjust the neutron flux. While the DUT is fully

exposed to neutrons, a dedicated neutron shielding can be used to protect the readout

electronic platform as depicted in Figure 3.1.

Figure 3.1: P2041 Experiment at GENEPI2 facility

Neutrons are produced with an average energy of 14 MeV. For the radiation campaigns

35

3.3. EXPERIMENTAL PLATFORMS

it was considered, to first approximation, that only neutrons emitted fully forward will

impact the DUT. In this case, the neutron energy is maximal at 15 MeV. Reference

[MWC+13] discusses the relevance of using 14 MeV neutron test to characterize the SEU

sensitivity of digital devices.

Neutron production is monitored throughout the experiments to determine the neu-

tron dose for each irradiation. An online Si detector, located within the beam pipe 1

meter upstream of the target, collects the recoil particles back-scattered from the tar-

get during the fusion reaction. Early 2015, a fresh T target was installed, generating a

maximum neutron flux of 4.5× 107 n · cm−2 · s−1.

3.3 Experimental Platforms

The multi-core experimental platform is the P2041RDB development board which

based on the Freescale PowerPC P2041 quad-core. It was selected as the target device

mainly due to:

1. The device is built in Silicon-On-Insulator (SOI) technology which has been proved

to be less sensitive than CMOS bulk technology [GFCB+02].

2. In past years, the COTS Freescale PowerPC4748 based on the same Power Archi-

tecture Technology was validated for aeronautical applications [PEP+08].

3. This multi-core processor allows different multi-processing modes: AMP, SMP,

Bound Multi-Processing (BMP) [Fre12].

The MPPA Developer which is based on the KALRAY MPPA-256 many-core proce-

ssor that was selected due to:

1. The manufacturing technology is advanced CMOS 28nm.

2. The architecture and the number of cores is similar to the many-core processor

ShenWei SW26010 (260 cores). The latter is the base of the Sunway TaihuLight

Supercomputer, which was ranked in the first position of the TOP500 list on June

2016. More details of the SW26010 can be found in reference [Don16].

36

CHAPTER 3. EXPERIMENTAL METHODOLOGY TO EVALUATE THE IMPACT
OF SEES SENSITIVITY

3. The MPPA many-core was considered by semiconductor manufacturers and the

real-time community for discussing the challenges of using many-core processors in

embedded systems [SEU+15]. In addition, the project CAPACITES that gathers

French academics and industrial partners uses this device to analyze the possibility

of using many-cores for critical real-time embedded systems.

3.3.1 P2041RDB Development Board

The P2041RDB is a compact (micro-ATX) design board that features the quad-core

P2041. It is designed for evaluating the P2041 in several kind of applications including

aerospace and defense fields. This board comprises several IO lines comprising ether-

net and Peripheral Component Interconnect (PCIe). The P2041RDB memory system

supports 4 GB of DDR3. It is provided of NOR, I2C EEPROM and SPI memories.

The P2041RDB is delivered with an Embedded Linux Essentials kit. This kit includes

a 2.6 SMP Linux kernel, hugetlbfs2 for applications with a large memory footprint, user

space Data Path Acceleration for high-performance packet handling, u-boot, the GCC

tool chain and Mentor System Builder, among other features [Fre11].

3.3.2 MPPA Developer

The MPPA Developer is a development platform based on an Intel core I7 CPU

operating at 3.6 GHz and running a Linux OS. The MPPA many-core is available within

the Developer as an accelerator of the X86 Host CPU connected through 16 PCIe Gen3

lanes. In addition to the PCIe board, MPPA-256 Processor, the platform includes a PCIe

board for debug and probe.

The MPPA Developer is delivered with a user environment and configuration con-

taining Linux CentOS 7 x86 64 , Eclipse 4.3 and MPPA ACCESSCORE SDK v2.5 for

developing, optimizing and evaluating applications. The latter includes three program-

ming models for developing an application: POSIX, Kalray OpenCL and Lowlevel.

2Linux function to support the memory management for huge pages.

37

3.4. BENCHMARK APPLICATIONS

3.4 Benchmark applications

This thesis proposes the use of two types of parallel applications: a CPU-bound and

a memory bound. In a CPU-bound application, the computation time is the bottleneck

in the performance evaluation. On the contrary, in a Memory-bound application the

execution time depends primarily on the time needed for accessing memory.

The selected CPU-bound application was the Traveling Salesman Problem (TSP), a

Non-deterministic Polynomial (NP) hard problem very used for evaluating computing

system optimization [ABCC07]. In [JP95], it is affirmed that "The TSP is probably the

most important among hard problems. It has served as a testbed for almost every new

algorithmic idea, and it was one of the first optimization problems conjectured to be

"hard" in a specific technical sense". The TSP is used in problems of traffic routing,

planning, logistic, manufacture among others.

On the other hand, the well-knownMatrix Multiplication (MM) was chosen as memory-

bound application. The MM is widely used for solving scientific problems related to linear

algebra, such as systems of equations, calculus of structures, determinants among others.

Also, the parallel version of Matrix Multiplication (MM) is one of the most fundamental

problems in distributed and High Performance Computing (HPC).

3.4.1 Traveling Salesman Problem

This application aims at finding the shortest possible route to visit n cities, visiting

each city exactly once and returning to the departure city. In a formal way, the problem

is represented by a graph of the cities including the distance among them, where the cost

c(i, j) ≥ 0 represents the distance from city i to j. The goal is to find a Hamiltonian

cycle with minimum cost for the travel.

To solve the problem there are several proposals. In this thesis, the implemented

version by authors of [FCP+15] was used as a basis. They used a brute force exact

algorithm based on a simple heuristic. The algorithm performs an in-depth search to find

the shortest path. It does not explore the paths that are already know as longer than

the current best path. This is done to improve performance. Each possibility of path is

seen as a branch of the search tree. The pseudo-code for the sequential version of this

algorithm is illustrated in figure 3.2.

38

CHAPTER 3. EXPERIMENTAL METHODOLOGY TO EVALUATE THE IMPACT
OF SEES SENSITIVITY

Figure 3.2: Pseudo-code for TSP sequential algorithm [FCP+15]

Figure 3.3: Pseudo-code for multi-threading TSP version [FCP+15]

For this work, two versions of the algorithm were used: the multi-threading and the

distributed versions to be implemented in the multi-core and the many-core processors

respectively.

39

3.4. BENCHMARK APPLICATIONS

Multi-threading algorithm

A multi-threading algorithm fills a queue of tasks. Each task is one of the branches

of the search tree. Each thread takes tasks from the queue and executes the search. The

minimum distance is a global variable shared by all the threads. The number of tasks is

a function of the levels of the search tree and the number of cities. The pseudo-code for

the multi-threading version of this code is illustrated in figure 3.3.

Distributed algorithm

Since the MPPA has a distributed memory, it is necessary to apply a distributed

algorithm. In general, this one is very similar to the multi-threading one. Inside each

Compute Cluster (CC), the algorithm runs as the multi-threading version. The main

difference between the two versions occurs when a new minimum distance is found as the

new value and the corresponding path is broadcast to the others CCs. The total number

of tasks is the number of threads per CC times the number of CC used.

3.4.2 Matrix Multiplication

In this thesis a n×n matrix was used, being A and B the inputs and C the resulting

matrix. Due to the data type is single precision (4 bytes per matrix element), each matrix

occupies 4 × n2 bytes. Hence, the size n of the matrix for each scenario was chosen to

maximise the memory occupation. The classical sequential algorithm for this application

is illustrated in figure 3.4.

for i ← 0 to n-1

 do

⎩
⎪
⎨

⎪
⎧

for j ← 0 to n-1

 do ൞
C[i][j] ← 0
for k ← 0 to n-1
 do C[i][j] += A[i][k] x B[k][j]

Figure 3.4: Algorithm for n x n matrix multiplication

The MM has some characteristics that makes it appropriate for being implemented

in parallel architectures:

• Each element of the resulting matrix is computed independently of the others.

40

CHAPTER 3. EXPERIMENTAL METHODOLOGY TO EVALUATE THE IMPACT
OF SEES SENSITIVITY

• The algorithm follows the Single Program - Multiple Data (SPMD) model.

• The number and type of operations to be carried out is independent of data.

• Regularity of the organization of data and operations performed on the data.

The parallelization of the algorithm has been extensively studied in [BDH+12]. There

are many approaches proposed to optimize performance. In this work, the approach

divide and conquer was used.

3.4.3 Intrinsic characteristic issues

The nature of the program and the parallel algorithm applied on each benchmark

affects their vulnerability to radiation effects. In the TSP all the cores work together using

some common data to find a unique result, while in MM each core works independently

on a small part of the total result. This behavior implies a continuous information

interchange between cores in the case of TSP. However, if one core stops functioning, the

others can achieve a possible correct response. On the contrary, in the MM if one core

stops, the correct response is not achieved. This fact can be considered as an intrinsic

fault-tolerance characteristic of the TSP application.

The vulnerability of the n×nMatrix Multiplication application implemented on bare-

metal can be easily derived from its algorithm. For instance, a bit flip affecting an input

variable could produce an extensive propagation of errors in the results ranging from 1

to n being n the size of the matrix. Other critical variables are the counters used in the

processing loops that could also produce exceptions.

Another important point in parallel and distributed algorithms for both applications

is the distribution of the tasks. In the implemented TSP version the master dynami-

cally changes the granularity of the jobs to obtain a good load balancing, while in the

implemented MM the granularity is fixed. This fact affects also the use of resources for

transferring data during execution.

3.5 Concluding Remarks

This chapter summarizes the methodology proposed by this research. One should

consider that the fault-injection strategy based on SWIFI techniques can not cover the

41

3.5. CONCLUDING REMARKS

sensitive zones non-writable by software means of the device. In addition, the effectiveness

of this strategy strongly depends on the intrinsic characteristics of the target device. Thus,

it was suitable that all case-studies were evaluated by neutron radiation ground testing.

However, it was not possible because of the high cost and the availability of the radiation

facility.

The case-studies implemented on the P2041 multi-core processor are detailed in chap-

ter 4. Chapter 5 presents the first two cases concerning the MPPA many-core processor

while chapter 6 described the last case-study.

42

Chapter 4

Case-studies based on the multi-core

processor

This chapter describes the case-studies implemented on the quad-core P2041 built in

45nm SOI technology. At the beginning of the chapter some specific details of this device

are given. Then, the three case-studies for evaluating the SEE sensitivity on applications

running on this multi-core are presented. Each case summarizes the system configuration

and the obtained results.

4.1 Description of the P2041 multi-core processor

Figure 4.1: Memory hierarchy model for P2041 multi-core [Fre13b]

43

4.1. DESCRIPTION OF THE P2041 MULTI-CORE PROCESSOR

The targeted multi-core processor was the Freescale P2041 [Fre13b], which is based on

four e500mc cores built on Power Architectures and manufactured in 45nm SOI techno-

logy. This quad-core can operate up to 1.5 GHz and includes a three-level cache hierarchy.

Figure 4.1 depicts the memory architecture of the studied multi-core processor.

The e-500mc core is a 32-bit super-scalar processor with classic RISC architecture

that includes independent on-chip 32 KB L1 caches for instruction and data, and a

unified 128 KB backside L2 cache. Additionally, the P2041 includes a 1024 KB L3 cache

shared between the four cores. The L1 instruction and data caches are implemented

with automatic cache invalidation when a parity error is detected. Both, the L2 backside

cache and the L3 shared front-side cache are protected with configurable ECC or parity

for the data array, and parity for the tag array. This architecture corrects single-bit

errors and detects double-bit ones [Fre13a]. Table 4.1 gives details about the sensitive

areas of the multi-core processor that were targeted during the evaluation. They include

L1, L2 and L3 cache memories and General Purpose Registers (GPRs), Floating Point

Registers (FPRs) and Special Purpose Registers (SPRs).

Table 4.1: Sensitive areas of the P2041 targeted in this work

Sensitive zone Location Capacity Description

L1 Cores 0, 1, 2, 3 32 KB / D and 32

KB / I per core

Data / Instruction

Cache

L2 Cores 0, 1, 2, 3 128 KB per core Backside Unified

Cache
L3 Multi-core 1024 KB per chip Frontside cache

GPR Cores 0, 1, 2, 3 32 registers of 32

bits

General purpose

register

FPR Cores 0, 1, 2, 3 32 registers of 64

bits

Floating point

register

SPR Cores 0, 1, 2, 3 5 registers of

32/64 bits

Special purpose

register - user

mode access

This device provides three different levels of protection for software operations: Hyper-

visor, Guest supervisor and User. It implements a machine-check error-report architec-

44

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

ture that alerts the system through exceptions. A machine-check exception is produced

when a hardware or software failure performs actions for which the hardware has not

been designed to handle or cannot provide a suitable result.

4.2 Case-study A: Multi-core processor running each

core independently

This case-study evaluates the dynamic response in terms of SEE sensitivity of the

multi-core P2041 when the use of memory resources is the main issue. For that, the

processor was configured to operate in AMP mode without OS and the MM memory -

bound application was implemented. The evaluation of the system was done by radiation

experiments. For the purpose of this thesis, this case-study was called MM-AMP-P2041

scenario.

4.2.1 System configuration

For the experimental tests, the multi-core was set-up in bare-metal where each core

performs independently of the others. Only at the start up configuration the core 0 is

responsible to launch the other cores. The four cores were configured in write shadow

mode where all modified data in the L1 cache is written through into the L2 cache. This

ensures that, if data or parity tags are corrupted in the L1 cache, it can be invalidated

and repopulated with the valid data from the rest of the memory hierarchy [Fre13a].

To log all the SEEs occurred during the radiation experiments, the machine-check

error interrupt and the Cache Error Checking bits were enabled.

Benchmark details

Each core executes the same 80x80 Matrix Multiplication (MM) and compares its

results with a predefined value in order to identify errors. The size of the matrix was

selected in order to maintain a trade-off between the amount of memory used and the

execution time. The matrices A, B and C were located in consecutive memory vectors.

Matrix A was filled up with 1’s and B was filled up with 2’s, thus the expected result

was 160 for all the elements of matrix C. The matrices were filled up with fixed values in

45

4.2. CASE-STUDY A: MULTI-CORE PROCESSOR RUNNING EACH CORE
INDEPENDENTLY

order to simplify the data analysis since a known value helps to identify which bit or bits

have been changed during the test. In this way, MBUs and MCUs can be easily detected.

4.2.2 Experimental evaluation by neutron radiation

A radiation test campaign was carried out to obtain the dynamic cross section in MM-

AMP scenario (σDYN_MM_AMP_P2041). The device was set at a distance of ∼ 19.1 cm

from the target. The neutron energy was 14Mev with a flux of ∼ 1.96×105 n ·cm−2 ·s−1

at a 500 Hz frequency. Two tests, each one lasting 2 hours were performed.

Table 4.2: Results of radiation experiments for the P2041 working in AMP scenario

SEE Type Type of error Test 1 Test 2 Consequences

SEFI Load

Instruction

1 0 Hang

SEU L1 Data

parity

19 17 None

SEU L2 Single-bit

ECC

9 20 None

SEFI
L2 Tag parity

0 4 Hang

SEU 3 1 None

SEU Multiple L2

errors

3 1 None

SEU L3 Single-bit

ECC

3 2 None

SEFI Instruction

fetch

0 1 Hang

MBU Other errors 6 0 Erroneous

result
Total 44 46

Table 4.2 shows the events produced in L1, L2 and L3 caches. The Load Instruction

and Instruction fetch errors are the most critical ones since they produced processor hang.

Half of the observed L2 Tag parity errors lead to processor hang. L1 Data cache parity

errors are not critical since L1 cache is invalidated when parity fails. Finally, L2 and L3

46

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

Single-bit errors are not critical as the ECC corrects them.

From the results observed in Table 4.2, only 12 of the 90 detected events produced

errors: (1) one SEFI in test 1 and five SEFIs in test 2, (2) six application erroneous

results in test 1 that were not detected by the multi-core machine-check error report.

These errors that produce application erroneous results and hangs were considered to

calculate the dynamic cross section with a total fluence of 2.82× 109n · cm−2.

As it was presented in [RVB+15, RVB+16], the application erroneous results were

produced by a MBU modifying different address tags of the device. These perturbations

in the cache memories were not detected since the parity remains the same when two bits

change in the same word.

Applying Equations (2.1) and (3.1) for a confidence level of 0.95 (α = 0.05), the lower

and upper limits for the dynamic cross-section in MM-AMP-P2041 scenario without OS

are:

2.17× 10−9 cm2

device
< σDYN_MM_AMP_P2041 < 7.33× 10−9 cm2

device
(4.1)

4.3 Case-study B: Multi-core implementing TMR as a

fault-tolerant technique

In the previous case-study, it was shown that hardware protection mechanisms are

not enough to protect independent parallel application from erroneous results. For this

reason, the present case-study implements a state-of-the-art fault-tolerant architecture:

the Triple Modular Redundancy (TMR) benefiting of the multiplicity of cores of the

processor. In this case, the system was evaluated through fault injection where three

cores execute in parallel the same task while the other plays the role of fault injector.

This case-study considers two scenarios: fault injection in memory variables and fault

injection in registers. Fault injection in memory variables was considered due to the fact

that during radiation experiments there were observed errors in the cache memories in

spite of the implemented ECC and parity. In contrast, fault injection in registers was

considered since these memory cells do not have any protection mechanism. These results

were also presented in [VRM+14].

47

4.3. CASE-STUDY B: MULTI-CORE IMPLEMENTING TMR AS A
FAULT-TOLERANT TECHNIQUE

4.3.1 System configuration

Similarly with the previous case-study, the multi-core processor was configured in

AMP mode in bare-meta. The synchronization between the cores is guaranteed for the

main core using a Master-Slave scheme. It is thus, necessary to have a shared memory lo-

cation for inter-processor communications [Fre12]. The slave cores perform the redundant

execution while master core votes, saves correct data and reports errors.

Benchmark Details

The selected benchmark algorithm to be tested via the proposed fault injection method

was a 40 × 40MM. The implementation of the algorithm minimizes the use of internal

variables to manage the loops and store some intermediate results. The total number

of variables used for the implementation of the 40x40 matrix multiplication is 4803,

distributed as follows: 3200 input variables, 1600 output variables and 3 indexes for loop

operations. The nominal duration of the executed program was 95605 clock cycles.

4.3.2 Fault-injector details

The experiment begins when the main core initializes data that is going to be used

by other cores. After that, it sends a message through an inter-processor interrupt, to

start the execution of the application in the slave cores. Once the message is received by

the slaves, they confirm the reception and continue with the execution of the application.

While the application is running on the slave cores, the main core performs the fault

injection.

When a slave core finishes its task, it sends a message to master core indicating that

execution was completed. The master core waits until the three messages arrive and

then compares the obtained results from each core and selects the final result based on a

majority vote.

In order to allow fault injection in variables while executing the studied application,

it was required to place, by programming means, all the variables used by the application

in a shared global array [MRAV14]. For this case, that array was physically allocated in

an external DDR3 memory of the target board. This strategy permits that all variables

are shared by all the processor cores. Thus, the fault injector core is able to modify the

48

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

content of the targeted address.

For performing fault injection in processor registers, the fault injector interrupts the

other cores via the set of instructions, since it does not have access to their registers. An

interruption handler is launched in order to perform the fault injection in the selected

core. Note that this strategy can be applied to any tested application.

4.3.3 Experimental evaluation by fault injection

Two fault injection campaigns were performed to validate the robustness of the soft-

ware TMR technique against SEU and to identify potential weaknesses. The first one

targeted the 37 processor registers which are accessible by software. The registers to be

tested are 32-bits sized, and thus the target sensitive area is about 1Kbits.

The second fault injection campaign is related to fault injection in variables. Each

variable is implemented in 32 bits, thus the targeted sensitive area for this campaign was

about 150 Kbits.

Fault injection in processor registers

The target registers to be perturbed by this campaign were the following: 32 general

purpose registers numbered from 0 to 31, and 5 of the special purpose registers that

may cause critical failures in program execution: Save/Restore Register 0 (SRR0) (that

contains the next instruction to execute), Save/Restore Register 1 (SRR1) (that contains

the machine state register), Link Register (LR), Condition Register (CR), and Exception

register (XER).

Table 4.3 shows the results of the first test campaign that targets the processor reg-

isters where 500 faults were injected due to the criticality of certain registers in which

faults may result in synchronization loss or exceptions.

From these results, it was calculated the application error-rate of the registers applying

(3.3), and considering as errors the erroneous results, timeouts and exceptions.

τInj_Reg_P2041 =
Nb of Errors

Nb of Fault Inj
=

63

500
= 12.6%

In addition, the results in table 4.3 show that 25 errors were corrected by the TMR,

and thus the total error rate was reduced to 7.6%. It is important to note that ma-

49

4.3. CASE-STUDY B: MULTI-CORE IMPLEMENTING TMR AS A
FAULT-TOLERANT TECHNIQUE

Table 4.3: Results of fault injection at register level for TMR MM AMP

Targeted

Registers

Runs Silent

faults

Erro-

neous

results

Time

outs

Excep

tions

Errors

corrected

by TMR

GPR 0-

7,9,10,12

145 128 17 0 0 16

GPR 8 19 12 4 0 3 4

GPR 11 16 9 4 0 3 4

GPR

13-31

235 235 0 0 0 0

SRR1 26 18 0 8 0 0

SRR0 27 3 1 16 7 1

LC/CRF

/XER

32 32 0 0 0 0

Total 500 437 26 24 13 25

nipulating certain processor registers become critical because it produces a high rate of

timeouts and exceptions. Hence, the performance of the whole system is dramatically

affected. Nevertheless, the occurrence of a fault in such critical processor registers has

a low probability since the corresponding physical area is very small: about 0.6% of the

area occupied by program variables and data.

The most critical register is SRR0. This register saves the context of the program

before the interruption subroutine. 59% of injected faults in the SRR0 register lead to

a timeout and 26% produce exceptions. This can be explained as the program counter

contains the address of the next instruction to be executed after the interruption, and

perturbing its content will cause a loss of sequence. Another critical register is SRR1.

It stores the content of the machine state register when an interruption occurs. A fault

injected in this register may produce a timeout when processor state is performing an

address translation for instruction and data memory access. On the other hand, the ex-

periment proves that for this application, bit flips injected in special registers LR, CR and

XER have no incidence in the program execution. Regarding GPRs, they present different

types of results depending on how often are used by the compiler for this application.

50

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

Fault injection in global variables

The experiment considers the emulation of one or two bit flips per execution. When

two bit-flips are injected, the bit flip are produced in space memories corresponding to

different variables from different cores. It emulates the behavior occurred in the radiation

experiments described in section 4.2.2 when an application erroneous result was produced

by the same particle affecting the tag of the caches of two different cores.

Table 4.4 shows a general overview of the second test campaign where 50000 faults

were injected. As shown in Table 4.4, the standard MM algorithm is sensitive to SEU

errors targeting the variables of the program. However, results show that approximately

20% of injected faults were silent.

Table 4.4: Results of fault injection in variables for TMR MM AMP

Bit-flip

per run

Runs Silent

fault

Erro-

neous

results

Time

outs

Excep

tions

Errors

corrected

by TMR

1 43104 9288 33814 1 1 33812

2 6896 455 6439 1 1 5503

When one SEU was injected per execution, the obtained error rate was about 78%.

However, thanks to the TMR implementation, the 99.99% of errors were corrected. There

were just two errors that could not be corrected by TMR; the errors caused by faults

injected in an index variable during the loop execution. On the other hand, when two bit-

flips were injected, the error rate reached 93% while the error correction factor decreased

to 85%. It is possible to determine the silent faults thanks of the Machine-check-error

report architecture that allows logging the detected ECC and parity errors.

Table 4.5 summarizes the calculated error-rates of program variables with one and

two bit-flips injections by applying equation (3.3), and considering as errors the erroneous

results, timeouts and exceptions.

These results demonstrate that by applying the TMR, the probability of having errors

in the application is significantly reduced. Even in the case where 2 bit-flips were injected,

there is a significant reduction of the error rate. Note that the probability of occurrence

of this phenomenon is very low.

51

4.4. CASE-STUDY C: MULTI-CORE SHARING RESOURCES AND MAXIMIZING
INTER-CORE COMMUNICATION

Table 4.5: Injection Error-Rates in Variables for TMR MM AMP

Bit-flip per run τInj_var τInj_var_TMR

1 78.45% < 0.01 %

2 93.40 % 13.60%

However, for this specific scenario, there are two cases in which the implemented TMR

cannot provide correct results:

• When fault injections are performed in the first input matrix of one core, and in

the second input matrix of another core. This will produce an error propagation in

one row and one column of the output matrix of each core respectively.

• When the fault injections are performed in the same corresponding input-matrix

row or column for the two cores.

Both fault injection campaigns in registers and variables provide a good feedback

about the error detection and correction capabilities of the TMR algorithm. Results show

that the effectiveness of implementing TMR to improve the reliability of an application

depends on the affected zone and the multiplicity of the bit-flips. Also, it is possible to

verify that its efficiency is reduced when the SPR registers are touched, since they are

more liable to produce timeouts and exceptions that can not be recovered. Reference

[Sho02] deeply analyzes the reliability of this redundancy technique.

4.4 Case-study C: Multi-core sharing resources and max-

imizing inter-core communication

This case-study evaluates the dynamic response of the multi-core P2041 when proce-

ssor cores share resources. For that, both applications the TSP CPU-bound and the MM

memory-bound were implemented when the processor operates in SMP. The evaluation

of the system was done by radiation experiments and fault injection. Then, four scenarios

were analyzed:

• The TSP evaluated by fault injection: TSP-SMP-P2041-FI

52

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

• The MM evaluated by fault injection: MM-SMP-P2041-FI

• The TSP evaluated by neutron radiation: TSP-SMP-P2041-NR

• The MM evaluated by neutron radiation: MM-SMP-P2041-NR

4.4.1 System configuration

The multi-core processor was configured in SMP mode in which the OS manages the

resources in order to maximize the processing capacity of the cores. The OS was the

embedded Linux SDK V1.6. For the purpose of this work, it was necessary to modify the

original traps code in the kernel and in the u-boot of the Linux OS. The traps code is the

code that is executed by the system when an exception or a fault occurs. In this approach,

the traps code was modified to log all the events detected by the machine-check error

report. Additionally, when detecting L2 cache errors, the L2 error registers values were

logged to obtain more details about the event. It is important to note that, the original

traps code logs the recoverable and unrecoverable conditions that cause a machine-check

exception. If the condition is recoverable by the machine check, then it returns to the

previous state and its operation is resumed.

For the experimental tests, all cores were configured in write shadow mode. To log

all the SEEs occurred during the experiments, the machine-check error interrupt and the

Cache Error Checking bits were enabled.

Benchmark details

The TSP CPU-bound application was implemented to maximize the use of CPU

resources and scheduling. In contrast, the MM was implemented to maximise the memory

occupation. Both executions were distributed among the cores.

The parallel versions of the studied applications were implemented by using the

pthread library in the TSP case, and the OMP library for the MM. The implemented

version of the TSP application makes this benchmark intrinsically fault-tolerant since if

one core is stopped by any reason, another core could find the correct result.

53

4.4. CASE-STUDY C: MULTI-CORE SHARING RESOURCES AND MAXIMIZING
INTER-CORE COMMUNICATION

4.4.2 Fault-injector details

In this case-study, an application based on Linux PTRACE-Process trace functions

was implemented to monitor and/or inject faults on multithreading applications. The

fault injector can inject SEU faults in GPRs, selected SPRs and in memory regions used

by the application under test. It uses the fork principle, where the parent process is the

fault injector and the child process executes the target application.

In order to inject faults, PTRACE functions were used to access the memory and

registers of the child process. Using this method, it is not necessary to have the source

code of the tested application since it works directly on the executable file.

Figure 4.2: Proposed software fault-injector by fork principle

Since the multi-core processor is configured in SMP mode, instead of selecting a target

core, the fault injector randomly selects a target thread. This experiment only considers

the injection of one SEU per execution, even if the proposed approach allows injecting

multiple SEUs. Figure 4.2 illustrates the proposed fault injection mechanism.

54

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

The fault injector creates a child process that executes the application. The child pro-

cess starts its execution, and at the selected instant the fault injector reads the information

about the number of tasks and the corresponding Process IDentification number (PID)

of each thread associated with the child process. Then, it stops all the child processes

threads via the SIGSTOP signal. After that, it injects the fault using specific PTRACE

functions. Concerning SEUs injected in memory locations, the fault injector reads the

memory regions used by the child process from the PID maps file. It randomly selects

the memory region and the memory address where the fault should be injected.

Once the fault injection is accomplished, the fault injector sends SIGCONT signals

to all threads to resume the operation. Then, it waits until the timeout parameter is

reached. Afterwards, it checks the status of each PID thread application and analyzes

the consequences of the injected fault based on the exit status. Finally, to avoid any

"zombie" process, the fault injector kills all the child process.

4.4.3 Experimental evaluation by fault injection

This experiment comprises a TSP problem with 15 cities and a 80 × 80 MM. In

Table 4.6, it can be seen that in TSP the code section predominates over data section,

while in MM the data section predominates. This work was presented in [VRV+15]. Two

fault injection campaigns per target application were performed on a quad-core processor:

(1) Fault injection in processor GPRs and selected SPRs, (2) fault injection in memory

regions of the tested application. Table 4.7 provides the parameters of the two fault

injection campaigns.

Table 4.6: Applications summary for TMR scenatio

Target

DATA CODE

Input

Variables

Output

Variables

Internal

Variables

Work

Threads

Tasks

TSP 260 17 88 4 2200

approx.

MM 12800 6400 12 4 4

55

4.4. CASE-STUDY C: MULTI-CORE SHARING RESOURCES AND MAXIMIZING
INTER-CORE COMMUNICATION

Table 4.7: Fault-injection campaigns’ details for TMR scenario

Target Standard exec. Exec time with fault injection
Runs per

time [ms]
Register

Campaign[ms]

Memory

Campaign

[ms]

campaign

TSP 2977.8 3287.6 3472.4 7500

MM 21.0 23.2 24.8 50000

Fault injection in processor registers

These fault injection campaigns target 44 Processor Registers which are accessible by

software: 32 GPRs and 12 SPRs. It is important to note that in this work the Program

Counter (PC) and the Stack Pointer (SP) registers were not considered as fault injection

targets since they are not accessible by software means. The considered registers are

32-bits sized, and thus the target sensitive area is about 1.4 Kbits. The results of this

campaign are summarized in Table 4.8.

Table 4.8: Results of fault injection in registers for SMP scenarios

Application Bit flips

injected

Silent

faults

Erroneous

results

Timeouts Exceptions

TSP 7500 4904 12 20 2564

MM 50000 42191 735 6758 316

Figure 4.3: Fault-injection consequences when targeting registers on P2041 under SMP

56

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

Figure 4.3 illustrates the distribution of the fault injection consequences in the tested

applications when targeting registers. The results show that regarding exceptions, TSP

application is about 50 times more sensitive to SEUs than MM application. This can be

explained by the fact that TSP uses a greater number of registers compared to MM. Also,

it is important to consider the type of application. In TSP, processor registers access more

frequently to the code section than data section while MM does the opposite. Concerning

timeouts, MM algorithm is about 50 times more sensitive than TSP because in MM all

the threads work together to determine the result. In the case of TSP, a thread can find

the right result by itself.

Fault injection in memory region

These fault injection campaigns target only the private code memory sections of the

corresponding process: the initial process stack memory, the thread’s stacks memory and

the process’ heap memory. Other regions included the shared library memory were not

considered.

The memory regions are dynamically assigned by the OS during the process execution.

It is important to note that for each run, a new process is generated by the operating

system. Therefore, the sensitive area of the target memory region dynamically changes

in time. The results of this campaign are summarized in Table 4.9.

Table 4.9: Results of fault injection in memory for SMP scenarios

Application Bit-flip

injected

Silent fault Erroneous

results

Timeouts Exceptions

TSP 7500 7244 0 144 112

MM 50000 29911 1302 7127 11660

The probability of injecting a fault in a memory cell that is being occupied by the

process is lower than the probability of injecting a fault in a register that is being used.

Figure 4.4 shows the distribution of the fault injection consequences when targeting me-

mory.

57

4.4. CASE-STUDY C: MULTI-CORE SHARING RESOURCES AND MAXIMIZING
INTER-CORE COMMUNICATION

Figure 4.4: Fault-injection consequences when targeting memory locations on P2041

under SMP

In this fault injection campaign, exceptions and timeouts are respectively 15 and 7 times

more frequently in MM than in TSP. This can be explained by the following reasons:

• MM data is about 50 times greater than TSP data.

• TSP accesses shared library functions more frequently than MM.

Concerning result errors, MM presents 130 times more errors than TSP. This is ex-

plained due to the area occupied by the variables in MM is considerably higher than the

one of TSP, and also, due to the fact that TSP has an intrinsic fault tolerance characte-

ristic.

The injection error-rates are calculated from the fault-injection results applying (3.3),

and considering as errors the erroneous results, timeouts and exceptions. The results of

the four campaigns are summarized in Table 4.10.

Table 4.10: Error-rates for SMP scenarios in P2041
Application Nb. of

faults

injected

Nb. of

errors in

Registers

Nb. of

errors in

Memory

τInj_Reg τInj_Mem

TSP 7500 2596 256 34.61% 3.41%

MM 50000 7809 24846 15.62 % 40.18%

58

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

4.4.4 Experimental evaluation by neutron radiation

Both applications were evaluated by neutron radiation ground testing. The details

and the results of each scenario are discussed in the respective sections. At the end of

the MM section, a comparison of both scenarios is presented.

Evaluation of TSP-SMP-P2041-NR scenario

Three radiation campaigns were carried out to calculate the dynamic cross section in

SMP scenario (σDYN_TSP_SMP_P2041) for a 16-cities TSP. In the first campaign the code

was loaded from the NOR flash memory provided in the design board. During the test,

the application definitely stopped due to a fatal crash in the OS after only 22 minutes.

When a reboot of the system was performed, the image of the OS could not be loaded

since the NOR flash memory was corrupted as well. Once the OS image was restored,

the test continued but a fatal crash in the OS occurred again after 28 minutes, giving a

total test time of 50 minutes. That is the reason why for the other two campaigns the

OS image was loaded from a hard disk. The second and the third campaigns lasted one

and four hours respectively. Table 4.11 shows the characteristics of the radiation test

campaigns.

Table 4.11: Test campaigns characteristics for TSP-SMP-P2041-NR scenario

Test Flux Time Fluence

Campaign [n · cm−2 · s−1] [min] [n · cm−2]

Test 1 ∼ 1.96× 105 50 6.00× 108

Test 2 ∼ 1.62× 105 60 5.83× 108

Test 3 ∼ 1.45× 105 240 20.88× 108

Table 4.12 summarizes the obtained results for the three tests. The fault classification

was done based on the OS fault-handling messages and the monitor application. Faults

with multiple indications were scored at the most critical level. The order of the rows in

this table depends on the criticality of the fault, being the last one the most critical. It

is important to note that the results include the messages obtained during the execution

of the application and during the idle time.

Most of the Machine Check Exceptions (MCEs) were produced by errors affecting the

59

4.4. CASE-STUDY C: MULTI-CORE SHARING RESOURCES AND MAXIMIZING
INTER-CORE COMMUNICATION

Table 4.12: Results of radiation experiments for TSP-SMP-P2041-NR scenario

SEE Type of OS

fault

Test1 Test2 Test3 Consequences

Type

SEU Machine

Check

6 10 53 None

exception -

Cache

0 0 1 Unreliable

sys.

SEU Machine

check

0 0 1 None

exception -

Code lost

1 2 0 Timeout

SEU Other error 1 0 0 Timeout

messages 0 0 1 Unreliable

sys.

SEU Abnormal

process

6 3 11 Timeout

termination 2 3 22 Unreliable

sys.

SEFI System

hang

3 3 17 System

crash

SEFI Automatic

system

1 1 8 System

crash
restart

Total 20 22 114

cache memories. When the condition exception was recoverable by the system, there were

no consequences neither in the application nor in the system. However, there was one

case in which a system process of the scheduler was affected. A Machine check exception -

Code lost occurs when the MCE routine has lost the raised error code that has produced

the exception; consequently there is no possibility to determine the source of the error.

An Abnormal process termination occurs when the monitor detects a timeout in the

application, or when the MCE logs an exception in kernel code which causes an unreliable

60

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

system condition. A System hang is produced when the system shell does not respond

to any command, or when the MCE logs a message showing that a rebooting is needed.

In the most critical level, the MCE logs an Automatic system restart message. Finally,

there were errors that did not come neither from the MCE nor the monitor application.

They were classified as Other error messages and have caused, in one case an application

timeout, and in the other case a killing of a system process.

To estimate the dynamic cross-section, only faults that led to unreliable system con-

dition, application timeouts and system crashes were considered. The total number of

events for the three tests was 156, and among them 86 produced errors. The total fluence

was 3.27× 109n · cm−2. Applying Equations (2.1) and (3.1) for a confidence level of 0.95,

the dynamic cross section in SMP scenario is:

2.10× 10−8 cm2

device
< σDYN_TSP_SMP_P2041 < 3.25× 10−8 cm2

device
(4.2)

Evaluation of the MM-SMP-P2041-NR scenario

Two radiation campaigns were carried out to evaluate the dynamic cross-section in

SMP scenario (σDYN_MM_SMP_P2041) for a 80 × 80 MM. Table 4.13 shows the charac-

teristics of the radiation test campaigns.

Table 4.13: Test campaigns characteristics for MM-SMP-P2041-NR scenario

Test Flux Time Fluence

Campaign [n · cm−2 · s−1] [min] [n · cm−2]

Test 1 ∼ 1.62× 105 33 3.21× 108

Test 2 ∼ 1.45× 105 90 7.83× 108

Table 4.14 summarizes the obtained results for the two tests. The fault classification

was done based on the OS fault-handling messages and the monitor application. Faults

with multiple indications were scored at the most critical level. The order of the rows in

this table depends on the criticity of the fault, being the last one the most critical. It is

important to note that the results include the messages obtained during the execution of

the application and during the idle time.

To estimate the dynamic cross-section, only faults that led to unreliable system con-

dition, application timeouts and system crashes were considered. The total number of

61

4.4. CASE-STUDY C: MULTI-CORE SHARING RESOURCES AND MAXIMIZING
INTER-CORE COMMUNICATION

Table 4.14: Results of neutron radiation tests for MM-SMP-P2041-NR
SEE Type Type of OS

fault

Test1 Test2 Consequences

SEU Machine

Check

1 11 None

exception -

Cache

0 4 Unreliable sys.

SEU Machine check 0 0 None

exception -

Code lost

1 1 Timeout

SEU Abnormal

process

3 13 Timeout

termination 1 4 Unreliable sys.

SEFI System hang 1 9 System crash

SEFI Automatic

system

1 4 System crash

restart

Total 8 46

events for the three tests was 54, and among them 42 produced errors. The total fluence

was 1.104×109n ·cm−2. Applying Equations (2.1) and (3.1) for a confidence level of 0.95,

the dynamic cross section for MM running on SMP is:

2.74× 10−8 cm2

device
< σDYN_MM_SMP_P2041 < 5.14× 10−8 cm2

device
(4.3)

The machine-check-error report and the traps implemented in the OS allowed deter-

mining the source of the errors of these faults. Figure 4.5 illustrates the distribution

of OS depending on the zone affected by the SEE. One can easily verify that the zone

including protection mechanisms (in the left side of the figure) has minimum fatal con-

sequences on the system, while particles affecting not protected zones (right side of the

figure) produced the majority of fatal consequences. Also the figure gives an idea of the

distribution of particles affecting different zones according to the resources used by the

system or application. For this specific scenario, around 20% of faults affects processor

and chip resources that are not protected and cause errors in application.

62

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

Figure 4.5: Distribution of OS faults by zones affected by SEE in SMP P2041 NR scenarios

4.5 Discussion of the obtained results

The P2041 multi-core processor has been evaluated through different scenarios. A

comparison of the obtained results provide interesting clues about the variables that affect

the reliability of parallel applications running in a system exposed to neutron radiation.

Figure 4.6 summarizes the results obtained in section 4.4.3 concerning fault-injection

campaigns on TSP and MM applications where data and code memory sections were tar-

geted. Note that shared libraries as well as OS were not modified during these campaigns.

From the results issued from fault injection, it is possible to see that when targeting the

MM, 15.62% and 40.18% of the injected faults produced errors in registers and memory

respectively. On the other hand, for the TSP application, 34.61% and 3.41% of the

injected faults produced errors in registers and memory respectively .

63

4.5. DISCUSSION OF THE OBTAINED RESULTS

Figure 4.6: SEE consequences per scenario from fault-injection campaigns on P2041

In contrast, the distribution of the SEEs consequences from the three dynamic scena-

rios evaluated under neutron radiation is shown in Figure 4.7. In the MM-AMP scenario,

13.33% of events caused errors. Among them, 6.67% produced erroneous results and

6.67% caused exceptions (system hangs). On the other hand, 77.78% of the observed

events in the MM-SMP produced errors. 29.63% of them caused timeouts, and 48.15%

caused exceptions (unreliable condition and system crash). Finally, in the TSP-SMP,

55.13% of detected events lead to errors on the system or application. 13.46 % of them

produced timeouts and 41.67% exceptions (unreliable condition in system and system

crash).

Figure 4.7: SEE consequences per scenario from radiation testing on P2041

64

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

Comparing the results issued from radiation experiments with those obtained from

fault-injection campaigns, one can see that the use of OS has a significant impact in the

SEE consequences on a parallel application, since the OS performs kernel services and

manages the ensemble of resources involving sensitive zones that can not be targeted by

fault injection because they could be affected by software means. Indeed, the obtained

results reveal that errors may occur in SMP mode, even if the OS is in IDLE mode.

For evaluating the reliability of the three scenarios tested under neutron radiation, as

it was stated in section 3.1 the expression used is equation (2.3).

R(t) = e−λt (2.3 revisited)

Where λ = σ × φ, being σ the cross-section of the system, and φ the flux of particles

at the specific operation environment. It was considered as an example, the radiation

environment at avionic altitude (35000 feet). The upper limit of the confidence interval of

their corresponding dynamic cross-sections was taken into account to provide the worst-

case reliability of the applications. Figure 4.8 illustrates the reliability of the application

evaluated for avionics. These results suggest that the great difference in the reliability of

the application for both AMP and SMP scenarios comes not only from the fact that SMP

uses OS functions, but also due to the parallel algorithm implemented. It is important

to note that in the AMP scenario, the implemented MM is a sequential version.

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time [h]

R
el

ia
bi

lit
y

MM−AMP
MM−SMP
TSP−SMP

Figure 4.8: Evaluation of reliability under neutron radiation for the P2041

65

4.5. DISCUSSION OF THE OBTAINED RESULTS

On the other hand, to establish the reliability of the TMR technique evaluated by

fault injection, one should consider the failure rate obtained by the application of CEU

approach expressed as follows:

λCEU = τSEU × φ

λCEU = τInj × σStatic × φ
(4.4)

Results from reference [RVB+16] allows determining the static cross-section of the

multi-core P2041 as 8.51× 10−9cm2/device being its confidence interval [4.40− 14.90]×

10−9cm2/device. To compute the failure rate, the upper limit of the confidence interval

was used as well as the injection error rate only considering single bit-injection per execu-

tion. Figure 4.9 illustrates the reliability of this application evaluated for avionics. In the

figure, they are plotted the reliability computed using the obtained static-cross section,

and using the upper confidence limit(CI).

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Time [h]

R
el

ia
bi

lit
y

MM
MM−TMR
MM−CI
MM−TMR−CI

Figure 4.9: Evaluation by fault-injection of the MM reliability implementing TMR on

P2041

From the results one can verify the effectiveness of the TMR fault-tolerant approach

to improve the reliability of the applications. Due to the fact that fault injection and

radiation ground testing campaigns implement the same application, both results can

be briefly compared. This comparison shows that the behavior of the application under

66

CHAPTER 4. CASE-STUDIES BASED ON THE MULTI-CORE PROCESSOR

radiation and fault injection is basically the same. The slightly difference in the reliability

value is due to the size of the targeted sensitive area for each case 1.

4.6 Concluding Remarks

The dynamic AMP tests have demonstrated that in spite of the parity and ECC

protection mechanisms, errors have been occurred in the application results. A deeper

analysis allowed determining that errors were caused by MBUs in the address tags and

data of the targeted device.

Radiation and fault injection campaigns confirm that the impact of SEUs on parallel

applications strongly depends on the software environment: (1) Operating System ca-

pabilities, (2) multi-processing mode and (3) intrinsic characteristics of the application

(including the used multi-processing paradigms (pthread or OMP)).

In the literature, there is an interesting work that compares the performance of the

SMP and AMP modes both using operating systems for a dual-core, concluding that SMP

outperforms AMP mode [DWVVL+13]. Inferring this affirmation to results presented in

the previous discussion, which demonstrate that AMP is more reliable, it is possible to

suggest the existence of a trade-off between reliability and performance according to the

selected multi-processing mode.

In spite of the significant reliability improvement achieved when applying TMR, the

implementation of this redundancy technique for a quad-core processor limits its parallel

processing capability. Per contra, due to the high number of cores existent in many-core

processors, its implementation can be an interesting solution to mitigate the impact of

SEE on applications running on such devices.

From the above mentioned, it is desirable to evaluate this redundancy technique for

improving the reliability of parallel applications running on a many-core processors. How-

ever, a mandatory step prior to propose an approach based on redundancy is to evaluate

the SEE sensitivity of the selected application. Chapter 5 will discuss this evaluation

through the case-studies applied to the MPPA many-core.

1Matrix size of 40× 40 for fault-injection versus 80× 80 for neutron radiation

67

4.6. CONCLUDING REMARKS

68

Chapter 5

Case-studies based on the many-core

processor

For evaluating the impact of SEEs on applications running on the MPPA many-core

processor, two case-studies were proposed. The first one maximizes the use of inter-

nal compute-clusters resources while the second one exploits massive paralleling. The

evaluation platform used to appraise the many-core processor is the MPPA Developer.

The evaluation was achieved through fault injection campaigns and/or neutron radiation

testing. Details of each case are described in the related sections.

5.1 Description of the MPPA-256 many-core processor

The KALRAY MPPA-256 is a 64 bit many-core processor manufactured in TSMC

CMOS 28nm technology. The processor operates between 100 MHz and 600 MHz, for a

typical power ranging between 15 W and 25 W. Its peak floating-point performances at

600 MHz are 634 GFLOPS and 316 GFLOPS for single and double-precision respectively.

The second version of this processor, called Bostan, is considered in this work. This

device is based on an array of 16 CC and 2 I/O clusters that are connected to the 32

nodes of NoC with a toroidal 2D topology. The 16 inner nodes of the NoC are connected

to the CC while the 16 peripheral nodes are connected to the I/O subsystems. The NoC

is comprised of 2 parallel networks: the Data NoC (D-NoC) that is optimized for bulk

data transfers while the Control NoC (C-NoC) is optimized for small messages at low

latency [Kal16, dDAB+13]. Figure 5.1 illustrates an overview of the device.

69

5.1. DESCRIPTION OF THE MPPA-256 MANY-CORE PROCESSOR

Figure 5.1: MPPA-256 many-core processor components

The MPPA is a distributed memory system. Each Compute Cluster (CC) is built

around a multi-banked local Static Memory (SMEM) of 2MB shared by 17 identical

Very Long Instruction Word (VLIW) cores: 16 Processing Engine (PE) + 1 Resource

Manager (RM) without cache coherency. This configuration creates an interconnection

with high bandwidth and throughput between PEs. The PEs are dedicated to execute

the application code while the RM is in charge of managing the NoC interfaces by means

of dedicated event lines and interrupts.

Each IO cluster features 2 I/O subsystems. Each I/O subsystem comprises 4 network

interfaces and a quad-core of RMs in a Symmetric Multi-Processing (SMP) configuration

connected to two main banks of 2 MB and to a 4-lane Interlaken controller. One of the

I/O subsystem in the IO cluster is connected to a DDR interface (access to 2 GB) and

8-lane PCIe controller. The other is connected to a quad 10Gb/s Ethernet controller.

The MPPA integrates 256 PE cores and 32 RM cores. Both types of cores are based on

the same VLIW 32-bit/64-bit architecture. The VLIW core implements separate 2-way

associative instruction and data cache memories. There is no hardware cache coherency

mechanism between cores, nor between data cache and instruction cache. However, to

enforce memory coherency, several software mechanisms are available to programmers.

70

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

5.1.1 Sensitive zones

The main memory areas of the many-core processor are covered by error protection

mechanisms except the instruction and data cache memories of the VLIW core that are

protected by parity. The SMEM of the clusters interleaves bits of 8 adjacent 64-bit words

which allow localized errors spread as multiple SECC errors. They are detected and

corrected on the fly. The NoC router queues (512 of 32-bit flits each) are also protected

by ECC. Note that SECC errors are silently corrected while DECC errors are signaled.

The registers do not implement any protection mechanism.

Table 5.1: Memory cells of the MPPA-256 many-core processor

Sensitive zone Location Capacity Description

SMEM Computing

Cluster

2 MB per cluster Static Shared

Memory

SMEM I/O Cluster 4 MB per cluster Static Shared

Memory

IC-CC CC VLIW core 8 KB per core Instruction Cache

DC-CC CC VLIW core 8 KB per core Separated Data

cache
IC-IO IO VLIW core 32 KB per core Instruction Cache

DC-IO I/O cluster 128 KB per core Shared/Separated

Data cache
GPR VLIW Core 64 registers of 32

bits per core

General Purpose

Registers

SFR VLIW Core 51 registers of 32

bits per core

System Function

Registers

The VLIW core includes General Purpose Registers (GPRs) and System Function

Registers (SFRs). Outside the processor, the MPPA comprises different types of specific

registers for controlling DMA, D-NoC ,C-NoC, cluster power controller, trace, debug, and

the different I/O. Table 5.1 summarizes the sensitive areas of the many-core processor

that were targeted during this work.

71

5.2. CASE-STUDY D: MANY-CORE EXECUTION WITH MINIMAL USE OF NoC
SERVICES

5.1.2 Programming MPPA issues

In order to program the MPPA Developer, the application is commonly divided into

a HOST part and a MPPA part. However, it is also possible to run applications only

on the MPPA. The HOST part can use full Linux capabilities available on the CPU

host. For the MPPA part, each Compute Cluster or IO cluster can run an executable file.

Therefore, the many-core processor can simultaneously run as many executable codes

as there are clusters. The execution of a multi-binary file on the hardware or on the

Platform simulator can be accomplished either by Joint Test Action Group (JTAG) or

PCIe expansion bus [dDdML+13, Kal15].

The MPPA provides a great configuration flexibility. It allows running independent

applications per cluster or to program multi-cluster applications in a classic master/slave

scheme, where the IO cluster performs as the master.

Communication between the HOST and the MPPA is achieved using specific drivers

provided by the manufacturer. For inter-clusters communication, it is also provided

a library with a set of functions for data exchanges through the MPPA Network-on-

Chip (NoC).

The main challenges the programmers face when adapting parallel applications to this

device are the following: (1) the use of NoC primitives for communication, (2) the cache

coherence must be guaranteed by the programmer, and (3) the limited memory inside

the cluster (2MB for OS, code and data).

5.2 Case-study D: Many-core execution with minimal

use of NoC services

This case-study aims at evaluating the sensitivity of the internal computing-cluster

resources. To do this, the many-core processor is configured in bare-metal where each

cluster executes independently the same application. Its behavior was evaluated by fault

injection and neutron radiation tests.

Results presented in [VRR+16] show that during the radiation test campaigns on the

MPPA, no errors were produced in SMEMs of the clusters since they implement ECC

and interleaving. Consequently, this thesis only considers fault injection in processors’

72

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

registers. On the other side, for the evaluation of the device under neutron radiation, two

scenarios are considered: the first one with cache memories enabled and the second one

with cache memories disabled.

5.2.1 System configuration

The many-core was configured in AMP mode and has implemented a bare-metal appli-

cation to minimize the use of libraries. The dynamic response of the device was evaluated

through the execution of a testing application that must accomplish the following char-

acteristics: (1)intensive use of the cluster resources, (2) code and data size maximum of

2 MB, (3) evenly load distribution among PEs, (4) enough execution time to ensure all

PEs running in parallel.

In general, there are no shared resources between compute clusters. However, the

NoC resources are used for inter-cluster communications when the IO cluster spawns the

executable code to the compute clusters, and when the clusters log the results.

The code is loaded by means of the JTAG in the SMEM of the IO cluster 0. This

cluster then spawns the same executable into the 16 compute clusters and orders them

to start the execution of the program. Within each cluster, the RM core wakes-up the

16 PE cores, and each one of them starts the execution of the application.

Benchmark Details

The application to be tested within each compute cluster of the device is an assembler

optimized version of a cooperative 256× 256 matrix multiplication. The matrix multipli-

cation is performed 256 times, and the result C is the summation of these computations

as stated in (5.1). The iteration of the matrix operation is done to guarantee that each

cluster computes enough time so that all the clusters work in parallel during a consider-

able time slice. For a 256 matrix size, it takes around 1M IO cycles to spawn 1 cluster.

Since clusters are spawned one after another, cluster 15 starts execution around 15M IO

cycles after cluster 0.

C =
256∑
n=1

A×B (5.1)

A, B and C are single precision floating-point matrices. The size of the matrix was cho-

73

5.2. CASE-STUDY D: MANY-CORE EXECUTION WITH MINIMAL USE OF NoC
SERVICES

sen so that data remain in the local SMEM memory. Each compute cluster is configured

in AMP mode and the computational work is distributed evenly among the processing

cores, so each PE belonging to the cluster computes 1/16 of the cluster result. The syn-

chronization of the computation is done by events between the RM and the PE cores. The

RM wakes up the 16 PEs and sends a notification to each one to start the computation.

Then, it waits for a notification from each PE indicating the work was done.

Once all PEs computations have finished, the RM core compares the result matrix

with a reference result-matrix E, and reports any mismatch including the associated

addresses and values. Then, the matrix C is filled up with zeros and the PEs start again

the computation. The program executes continuously the same algorithm in each cluster

along the radiation test.

Since there is no hardware memory coherency in the compute cluster, each PE ensures

memory coherency by software means, by updating shared data before (read coherency)

and after the computation (write coherency). In addition, the RM calls the memory

coherency functions when using the shared data.

5.2.2 Fault-injector details

The fault injector used in this case-study is similar to the one presented in [VRM+14]

and described in chapter 4. It uses inter-processor interrupts to inject faults in other cores.

However, in the case of the MPPA processor, it is possible to benefit of the multiplicity

of cores for using some of them as fault injectors.

This case-study considers one fault injector per cluster due to each CC performs

the application independently of the others. While the application is running on the

processing engine cores, the resource manager core of each compute cluster performs the

fault injection. It randomly selects the target core (any of the processing engine or itself),

register, injection instant (in terms of clock cycles), and the bit to be inverted. At the

injection instant, the RM sends an inter-processor interrupt to the selected core. The

latter performs the bit-flip in its register.

This work only considers SEU emulation where one SEU per cluster and per run is

injected. The fault injection procedure is repeated several times in order to obtain enough

amount of samples to calculate the injection error-rate τinj.

The fault-injection campaign is devoted to inject faults in GPRs and SFRs of the

74

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

compute cluster’s cores (PEs or RM). Since some SFRs are non-writable by software

means, only 34 SFRs of 51 SFRs are targeted. Among the targeted SFRs, the most critical

ones are the 8 registers saved during context switching: Shadow Program Counter (SPC),

Shadow Program Status (SPS) Return Address (RA), Compute Status (CS), Processing

Status (PS) , Loop Counter (LC), Loop Start Address (LS) and Loop Exit Address (LE).

On the contrast, other registers such as processing identification, system reserved and

performance monitor are not targeted. The SPC and the SPS registers serve to emulate

bit-flips in the PC and PS registers respectively. This is done due to the fact that in the

context switching of the interruption routine, the value of the PC and PS are saved in

the shadow registers (SPC and SPS) and when the program flow exits from this routine,

it uses the values of these registers to be restored in the PC and PS to continue with the

current program execution.

5.2.3 Experimental evaluation by fault injection

In these experiments, the SEU faults were injected at a random instant within the

nominal duration of the executed program which was around 5.3× 108 clock cycles.

Table 5.2 shows a general overview of the fault injection campaign where 94316 faults

were injected in the GPRs and accessible SFRs.

Table 5.2: Results of the fault-injection campaigns for MM-AMP-MPPA

Targeted

Registers

Silent faults Erroneous

results

Timeouts Exceptions

GPRs 36472 16387 6678 1996

SFRs 22745 2034 6365 1639

TOTAL 59217 18421 13043 3635

From these results, it was calculated the application error-rate applying (3.3), and

considering as errors the erroneous results, timeouts and exceptions.

τInj =
Nb of Errors

Nb of Fault Inj
=

35099

94316
= 37.21%

This result shows that 37.21% of the injected SEUs in the accessible registers cause

75

5.2. CASE-STUDY D: MANY-CORE EXECUTION WITH MINIMAL USE OF NoC
SERVICES

errors in the application. Since registers have no protection mechanisms, this campaign

is very useful to emulate the behavior of the application in presence of SEUs.

5.2.4 Experimental evaluation by neutron radiation

The goal of this test is to evaluate the dynamic behavior of the many-core processor

when no operating system is used. To do this, two different scenarios are considered.

In the first scenario, the cache memories of the VLIW cores are all enabled and

configured in write-through mode. In the second one, the cache memories are all disabled.

In both cases, the application cross-section (σDYN) and the average execution time are

obtained. The SECC and other errors such as Data Parity (DPAR) and Instruction

Parity (IPAR) are reported with a message.

Test parameters

The device under test was decapsulated and placed facing the center of the target

perpendicularly to the beam axis at a distance of 15.2 ± 0.5 cm. The DUT fan was

placed laterally to cool-down the device under test, rather than being placed on the

device. Consequently, the computing cluster frequency was set to 100 MHz to reduce

power consumption. The bias voltage of the device was set to 0.9V. The neutron beam

energy was 14 MeV with an estimated flux of 1.2× 105 n · cm−2 · s−1 at 500 Hz frequency

with an error of ± 0.1× 105 n · cm−2 · s−1.

Experimental Results

One radiation test campaign per scenario was carried-out. For the first scenario, both

instruction and data cache memories were enabled in the compute cluster’ cores. In the

second scenario cache memories were all disabled. Each test campaign had an exposure

time of one hour providing a fluence of about 4.32×108 n·cm−2. Table 5.3 summarizes the

results of both dynamic radiation campaigns. Test CE means test with caches enabled

while Test DE means test caches disabled.

From table 5.3, it is possible to identify five different types of errors. Among them, the

SECC and the Instruction and Data Cache Parity errors were all corrected by the ECC

and parity protections. On the contrary, Register Trap and Memory-Comparison Failed

76

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

Table 5.3: Results of the dynamic radiation tests for MPPA scenarios

Detected

Error

SEE Type Occurrences

Test CE

Occurrences

Test CD

Consequences

SECC SEU 676 602 None

Data Cache

Parity

SEU 36 N/A None

Inst. Cache

Parity

SEU 6 N/A None

Register Trap SEFI 1 1 Hang

Memory

Comp. Failed

SEU 2 1 Erroneous

Result

Total 721 604

errors are non-correctable errors since processor registers do not implement protection

mechanisms. The Memory Comparison Failed error was detected by the RM core when

it identifies differences between the results of the application and the expected values.

Note that these errors observed during radiation tests were similar to those occurred

during fault injection campaigns in GPRs.

To determine the dynamic cross-section only the non correctable errors; 3 for Test CE

and 2 for Test CD were taken into account. For a 95 % confidence interval (α = 0.05),

the lower and upper limits for the dynamic cross-section when cache enabled were:

1.43× 10−9 cm2

device
< σDynce < 20.29× 10−9 cm2

device

Since the code is quite small and only occupies around 400 bytes that easily fit in

the PEs’ caches, there were no cache misses for the instruction caches. Concerning data

caches, the miss rate was roughly 2.5%. Even though the 256 PEs are working all the

time fully loaded, 30% of the execution time is spent waiting for missing data to arrive

from the SMEM.

Regarding the caches disabled scenario, the confidence interval of the dynamic cross-

section is:

0.56× 10−9 cm2

device
< σDyncd

< 16.72× 10−9 cm2

device

77

5.3. CASE-STUDY E: MANY-CORE EXECUTION WITH INTENSIVE USE OF
NoC SERVICES.

With regard to performance of the application when both instruction and data cache

memories are enabled, 679 computations of the matrix multiplication were completed

per cluster in one hour. The average computation time was ∼ 5.30 seconds at 100 MHz

frequency. On the contrary, in the cache disabled scenario 348 computations of the matrix

multiplication were completed per cluster in one hour and the average computation time

was ∼ 10.34 seconds at the same frequency.

Comparing the results of the two dynamic test campaigns, it can be seen that the

matrix multiplication algorithm performs twice as fast when cache memories were en-

abled without reliability penalty, since the detected errors were corrected by the parity

protection.

5.3 Case-study E: Many-core execution with intensive

use of NoC services.

This case-study aims at evaluating the sensitivity of the MPPA when massive parallel-

ing is used. For that, a CPU-bound (TSP) and a memory-bound (MM) were implemented

as parallel inter-cluster applications. The programming paradigm used intra-cluster was

POSIX and the inter-cluster communication were done by NoC services. However, due

to certain constraints, a Lowlevel configuration was used in the IO cluster.

The dynamic response of the TSP and the MM were only evaluated through fault

injection in processors’ registers, since the SMEM of the MPPA many-core implement

effective protection mechanisms.

5.3.1 System configuration

The many-core processor was configured in a typical master/slave scheme for running

parallel multi-cluster applications. The master runs on the IO cluster while the slaves run

on the Compute Cluster (CC). In this case study, the application was configured without

a HOST part. The MPPA part was loaded through the JTAG port to the IO-DDR0. For

this scheme, 3 RM cores of the IO-DDR0 were configured:

• The RM1 is the master of the application.

78

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

• The RM3 is the fault injector.

• The RM0 coordinates the actions between the application and the fault injector.

Also, it is in charged of configuring all the inter-cluster communication.

Figure 5.2: Kalray software stack [Kal15]

At present, the Real-Time Executive for Multiprocessor Systems (RTEMS) OS which

runs on IOs is only capable of using one RM. For this reason, the Lowlevel programming

model was selected for the IO cluster. The IO was configured in bare-metal without OS,

including the Virtual Board Supporting Package (V-BSP) and LibNOC libraries. Figure

5.2 allows a better understanding of the software configuration details. It illustrates the

several abstraction layers included in the software stack of the MPPA ACCESSCORE

SDK. These libraries can co-exist independently, and the user can mix and match the

libraries he wish to use [Kal15].

On the other hand, the intra-cluster application was configured with the POSIX

model. The main process runs on the RM1 and is responsible to spawn the sub-processes

from the IO to the target CCs. Each sub-process is a multi-thread program based on

POSIX. The CCs were configured for using the NodeOS, an OS POSIX standard. The

NodeOS implements an asymmetric multi-processing architecture, where the RM per-

forms the kernel routines and NoC interface services while the PEs run one user thread

79

5.3. CASE-STUDY E: MANY-CORE EXECUTION WITH INTENSIVE USE OF
NoC SERVICES.

per PE. All the inter-cluster communications are done through the NoC using the MPPA

inter process communication (MPPA IPC). This library contains the routing functions,

an API for the power-on and spawning of CCs and the communication primitives: the

classic POSIX IPC and some specific primitives for the MPPA many-core [Kal15].

Since there is no shared memory between clusters in the MPPA architecture, the im-

plementation of an inter-cluster application requires distributed algorithms. The following

specific MPPA communication primitives were used during inter-cluster communications:

Sync: N senders /M receivers, Portal : N senders /M receivers, and Queue: N senders/1

receiver.

To use these primitives, the device must prior initialize some properties of the com-

munication. Any RM can transmit data to the selected CC(s) by using any of the men-

tioned primitives. However, the IPC library configures the RM0 as the default receiver

for portals and queues. Therefore, in this work the RM0 is in charge of initializing the

communication primitives and update the related data when receiving information from

the CC(s) by the NoC interrupt service.

5.3.2 Benchmark details

The implementation of both applications allows configuring the number of CCs from

one to four as well as the problem size. Table 5.4 illustrates the execution time of

different possible configurations for the TSP application. The time in seconds is done for

a configuration of the device with an operating frequency of 400 MHz.

Table 5.4: Standard execution time for different configuration of TSP on the MPPA

Nb cities
1 cluster 2 clusters 3 clusters 4 clusters

[Gcycles] [s] [Gcycles] [s] [Gcycles] [s] [Gcycles] [s]

16 30.8 77 16.2 40.5 11.3 28.3 8.6 21.5

17 188.8 472 102.8 257 71.2 178 58.1 145.2

18 521.9 1304.2 260.3 650.8 188.2 470.5 159.8 399.5

80

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

global portals, queues
procedure RUN_APPLICATION(nb_threads, application_variables, nb_clusters)
 sync ← CREATES_SYNC_CONNECTION()
 INITIALIZE_VARIABLES()
 for i ← 1 to nb_clusters
 do SPAWN_CLUSTER(SLAVE_WORK(application_variables, nb_threads))
 WAIT_BARRIER(sync)
 finished_clusters ← 0
 while finished_clusters < nb_clusters

 do

⎩
⎪
⎨

⎪
⎧

TX_RX(portals)
TX_RX (queues)
 if CLUSTER_FINISHED() = 1
 then { finished_clusters ++

 WAIT_BARRIER(sync)
 LOG_RESULTS()
 CLOSE_SYNC_CONNECTION(sync)

 Figure 5.3: Generic master pseudo-code for the applications running on the MPPA

For performing both applications, this case-study considers 4 CCs as slaves of the

RM1 of the IO cluster. Thus, 5 RMs and 64 PEs are involved on the application itself

plus the RM0 that starts, monitors, and manages the messages received by the NoC.

Before starting the distributed application, the RM0 initializes the primitives needed for

the communication, then wakes up the other RMs, the master of the application and the

fault injector on the IO cluster. Once the RM1 is started, it performs the run_application

function, which pseudo-code is shown in figure 5.3. It is important to note that, if any

cluster does not finish its job in the normal execution time, the RM0 logs an timeout and

ends the application.

The TSP was configured to solve a 17 cities problem in order to have enough proce-

ssing time to observe errors within a reasonable overall simulation time. For this appli-

cation the RM0 creates the following MPPA connections for the master : (1) two sync

for synchronization with the slaves, (2) one queue for job request, (3) four queues for

job response (one per cluster), (4) one portal for receiving the results of the minimum

distance and its path, and (5) four portals for transmitting the results.

The details of the stages of the generic master code are the following:

• During the initialization, the master populates a queue of jobs from which each

cluster takes the tasks to be executed by its PEs.

81

5.3. CASE-STUDY E: MANY-CORE EXECUTION WITH INTENSIVE USE OF
NoC SERVICES.

• The first barrier serves to wait that all clusters wake up.

• In the loop the master waits for job requests done by the CCs and then assigns

jobs to slaves.

• The second barrier waits for the end of the task of all the involved clusters.

• A consolidation of results is done before logging the minimum distance and the

corresponding path.

Regarding the code performed by the slaves, it corresponds to the multi-threading

TSP version detailed in chapter 3 section 3.4.1. Each cluster performs the slave code

almost independently of the others. It has its own minimum distance and path variables.

The only moment when they interact with each other is when a new minimum distance

is found by a CC. The latter broadcasts this information to the master and other slaves

so that each one of them updates its related variables. Both synchronization barriers,

are intended to synchronize the slaves with the master. Inside the cluster, each PE uses

MUTEX directives for accessing global CC variables.

Each CC executing the slave code uses the following MPPA connections: (1) two sync

for synchronization with the master, (2) one queue for job request, (3) one queue for job

response, (4) one portal for receiving the results of the minimum distance and its path,

and (5) four portals for broadcasting the results.

On the other hand, the MM is practically the same cooperative 256 × 256 matrix

multiplication described in section 5.2.1. The main difference is that the computation is

iterated 8192 times. Each slave computes 1/4 of the result. The main process of each

CC creates 16 POSIX threads, one for each PE. Therefore, each PE calculates 1/64 of the

result by executing the same assembler optimized version of the cooperative MM used in

the previous case-study.

The MPPA connections created for each cluster, the master in the IO cluster and the

slaves in the CC cluster for the MM are: (1) two sync for synchronization, (2) one portal

for receiving the results, and (3) four portals for broadcasting the results.

82

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

5.3.3 Fault-injector details

This case-study implements one core of the device as fault-injector, being the RM3

core of the IO cluster 0 that performs this function. Fault-injection campaigns target

only processor registers as stated in the previous case-study. In order to interrupt the

targeted core, it is used the portal primitive. Thus, the configuration of one portal per

cluster (portal_fi) is needed for fault-injection purposes. In the case of the master, the

RM0 is in charged of its configuration.

To emulate a bit-flip in the selected register, the fault injector must interrupt the

selected core. For achieving this goal, at the random instant, the fault-injector writes the

fault-injection variables, random PE, random address and random bit in the portal_fi of

the CC that contains the selected core. This causes an interruption of the RM which

immediately assigns the execution of the interruption handler to any one of the PEs.

The assigned PE reads the information in the portal_fi, that contains the selected core,

register and bit to change. If it is the targeted core, it changes the bit in the selected

register. Otherwise, it sends an inter-processor interrupt to the corresponding PE which

performs the bit-flip emulation.

The fault injection campaigns of both applications are devoted to inject faults in

GPRs and 15 SFRs of the PEs belonging to the compute clusters. The targeted SFRs

are: (1) the 8 registers saved during context switching: SPC, SPS RA, CS, PS , LC, LS

and LE, (2) the 6 event registers, and the Performance Monitor Control (PMC) register.

The other SFR could not be targeted due to the following reasons: (1) 5 SFRs are

hardwired and 2 are unused by the current Bostan version of the MPPA processor, (2)

the 4 performance monitor registers cannot be modified by software, (3) the 5 registers

used by the debugger can only be accessed in debug mode, (4) the exception vector is

non-writable by the user, and (5) the other SFR are managed by the OS so when the

user changes any of them, the OS produces always an exception.

5.3.4 Experimental evaluation by fault injection

The following experiments only consider the emulation of one SEU per execution, so

that one SEU is injected in the targeted register belonging to one of the 64 PE cores

used by the application. The fault is generated at a random instant within the nominal

83

5.3. CASE-STUDY E: MANY-CORE EXECUTION WITH INTENSIVE USE OF
NoC SERVICES.

duration of the application. In order to avoid the propagation of errors to the next

execution, the HOST resets the platform and reloads the code to the MPPA processor

after each run. Hence, the random variables required by the fault-injector are provided

by the HOST, being the random instant, core, register and bit additional arguments of

the main function. Table 5.5 provides details about the two fault-injection campaigns.

Table 5.5: Fault-injection campaigns details for the MPPA

Application
Standard exec. time Runs per

[Gcycles] [s] campaign

TSP 58.06 145.2 8417

MM 4.55 11.4 72497

Table 5.6 shows a general overview of the fault-injection campaigns on the TSP and

MM applications. These results confirm the intrinsic fault-tolerant capability of the TSP

application.

Table 5.6: Results of the fault-injection campaigns on applications running on the MPPA

Application Silent faults Erroneous

results

Timeouts Exceptions

TSP 8197 2 21 197

MM 62071 5215 112 5099

From these results, the error-rates of both applications were calculated by using equa-

tion (3.3). The erroneous results, timeouts and exceptions were considered as errors.

Table 5.7 summarizes the obtained results. Three types of exceptions were produced: (1)

the PE targeted by the fault-injector was completely stuck and does not respond anymore

to the JTAG requests "core stuck", (2) the bit-flip caused the core tried to access a me-

mory not allocated producing a "segmentation fault", and (3) the MPPA device stopped

its execution and produced an exit of the process "device exit". Figure 5.4 illustrates the

details of the error consequences in both application during fault-injection campaigns.

84

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

Table 5.7: Error-rate by fault injection for POSIX scenarios in MPPA

Application Nb. of faults

injected

Nb. of errors in

Registers

τInj

TSP 8417 220 2.61%

MM 72497 10426 14.38%

Figure 5.4: Fault-injection consequences on MPPA when targeting registers

As expected, during the fault-injection campaigns, it was observed that the critical

registers are application dependent. For instance, in the case of TSP the most critical

SFRs registers were: the Shadow Program Counter, the Shadow Program Status and the

Return Address. Also, some of the errors were produced by bit-flips in Processing Status

and Loop Counter. Concerning the GPRs, the most critical was the GPR13 followed

by GPR43, GPR54 and GPR60. On the other hand, in the MM application, the most

critical SFRs were: the Shadow Program Counter, the Shadow Program Status, the

Return Address, the Loop Start Address and the LE. Regarding the GPRs: the most

critical was the GPR13 followed by GPR10, GPR16, GPR34, GPR35, GPR39, GPR42,

85

5.3. CASE-STUDY E: MANY-CORE EXECUTION WITH INTENSIVE USE OF
NoC SERVICES.

and GPR50.

Concerning the type of errors, the most critical one is the erroneous result since this

error is ignored by the application which considers it as a valid result. The timeouts and

exceptions are not so critical since they are detected and the application/system is able

to manage them. For instance, this case-study implements an application with a timeout

principle, so if the execution time of the application is greater than the standard execution

time, the application is finished. In addition, the system exceptions are managed using

traps in the OS and/or by a monitor in the HOST that kills the process in the MPPA if

the application does not respond.

Figure 5.5: Example of erroneous result logged by the TSP

Figure 5.5 illustrates an erroneous result produced in the TSP when a fault injection was

performed on core 57, Cluster 3, PE 9, Return Address register, bit 7 at instant ∼ 6.45

Gcycle clock. The correct response of the distance is 347, however the application has

logged 300. The error is easily observable due to the presence of invalid cities in the path.

86

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

5.4 Discussion of the overall results

In this chapter, three scenarios were evaluated:

• A parallel MM running independently on each computing cluster configured on

a bare-metal system with shared memory. Two scenarios were proposed: cache

memories enabled and cache memories disabled.

• A MM running on a distributed system using a master/slave scheme, where the

master runs on the IO Cluster, while each one of the 4 slaves runs in a Compute

Cluster. Each slave is an AMP system programmed with POSIX which computes

a part of the total result.

• A TSP running on a distributed system using a master/slave scheme, where the

master runs on the IO Cluster, while each one of the 4 slaves runs in a Compute

Cluster. Each slave is an AMP system programmed with POSIX which computes

a part of the total result.

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Time [h]

R
el

ia
bi

lit
y

MM−ce
MM−cd
MM−ce−CI
MM−cd−CI

Figure 5.6: Evaluation of reliability by neutron radiation for MM -Bare-board running

on MPPA at 35000 ft

The reliability of MM-Bare-board for these scenarios was evaluated under neutron

radiation. Results are summarize in Figure 5.6. Two curves per scenario were plotted

considering the upper value of the confidence interval and the measured cross-section

87

5.4. DISCUSSION OF THE OVERALL RESULTS

value. Note that: (1) ce stands for cache memories enabled, (2) cd stands for cache

memories disabled, and (3) CI stands for Confidence Interval. These curves confirm the

assertion mentioned in section 5.2.4 which states that by enabling the cache memories

there is no reliability penalty. Consequently, for this many-core processor, it is convenient

to enable cache memories even in harsh radiation environments.

Regarding fault-injection experiments, the used and targeted resources per scenario

are summarized in Table 5.8. Unfortunately, it was not possible to target all the resources

used by each scenario for the following reasons: (1) some registers are not-writable by

software means, (2) the RM interrupt routine should not be modified by the program-

mer to guarantee a correct operation of NoC services. On distributed applications, the

communication between clusters is achieved by the use of NoC libraries provided by the

manufacturer which use interrupts. Thus, it is not possible to overwrite the interrupt

routine to program inter-processor interrupts which allow injecting faults in the RM.

Table 5.8: Summary of the different fault-injection scenarios evaluated on the MPPA

Scenario Registers

Targeted per

core

Cores

Targeted per

CC cluster

Resources

used by the

application

Resources

targeted

MM -

Bare-board

64 GPRs +

34 SFRs

RM + 16 PEs CCs CCs

MM - Posix 64 GPRs +

15 SFRs

16 PEs IO + CCs +

NOC

CCs

TSP - Posix 64 GPRs +

15 SFRs

16 PEs IO + CCs +

NOC

CCs

On systems configured in bare-metal, it is possible to target more registers by software

means since there are no restrictions caused by the use of an OS. A distribution of

the consequences of fault-injection campaigns on the tested applications when targeting

registers is shown in Figure 5.7.

88

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

Figure 5.7: Distribution of fault-injection consequences on MPPA for different scenarios

From the above results, MM-Posix scenario seems to be less sensitive than MM-Bare-

board. However, it can not be concluded based only on the results obtained from the

fault-injection campaigns due to the considerable underestimation of errors in POSIX

scenarios. Note that IO clusters and NoC resources used in POSIX cannot be targeted

by fault-injection means. Consequently, further radiation experiments are needed: (1)

to evaluate at what extent this fault injection limitation affects the results, considering

that RMs are in charge of manage the OS, and (2) to provide a fair comparison of both

scenarios.

Concerning the evaluation of the reliability of the three scenarios by fault-injection,

the failure rate was obtained applying equation 4.4 as follows:

λCEU = τInj × σStatic × φ (4.4 revisited)

The σstatic of the device was obtained from work [VRR+16], which value is 12.71 ×

10−9cm2/device. Figure 5.8 compares the reliability of POSIX applications evaluated

for avionics. From these results, it is clearly observable that the TSP has an intrinsic

fault-tolerance capability.

89

5.5. CONCLUDING REMARKS

0 10000 20000 30000 40000 50000

0.
80

0.
85

0.
90

0.
95

1.
00

Time [h]

R
el

ia
bi

lit
y

TSP
MM

Figure 5.8: Evaluation of reliability for MPPA-POSIX applications at 35000 ft

5.5 Concluding remarks

Once evaluated the dynamic response of the device under neutron radiation, it is

shown that by enabling the cache memories is possible to increase the performance of the

application without affecting the reliability. It is due to parity protection mechanisms

have detected all the errors produced in data and instruction cache memories, and have

performed the corresponding cache invalidation. Uncorrected errors encountered in dif-

ferent dynamic tests came from bit-flips in processor registers as they do not implement

any protection mechanism.

Results presented in work [VRR+16] show that the predicted application error-rate is

reasonably close to the measured one. Consequently, in spite of the hardware complexity

of the many-core processor, the mentioned work support the relevance of the use of the

CEU approach to estimate the error-rate of applications implemented in such devices.

Although the application error-rate is underestimated because of the inaccessibility of

certain registers depending on the configuration of the system, fault-injection campaigns

targeting registers are meaningful to emulate the behavior of the application in presence

of SEUs.

Considering the redundancy capability of the MPPA many-core processor as well as

the lack of protection mechanism at register level, it is imperative to implement a fault-

90

CHAPTER 5. CASE-STUDIES BASED ON THE MANY-CORE PROCESSOR

tolerant approach to reduce the SEE impact on the running application. The goal is

to have a reinforced system to be considered for safety-critical and embedded parallel

applications. Chapter 6 presents the NMR-MPar approach applied to the case-study E

and its evaluation.

91

5.5. CONCLUDING REMARKS

92

Chapter 6

NMR-MPar: a fault-tolerant approach

This chapter describes a fault-tolerant approach developed and evaluated in this the-

sis called NMR-MPar. The name stands for N-Modular Redundancy and M-Partitions.

Redundancy and partitioning are the basic concepts used to improve the reliability of ap-

plications running on multi-core and many-core processors. A prototype is implemented

on the MPPA-256 processor performing two parallel benchmark applications. The effec-

tiveness of this approach is evaluated by fault-injection campaigns.

6.1 Description

Combining the partitioning concept with the modular redundancy technique, NMR-

MPar allows multi/many-core processors to perform critical functions in mixed- criticality

systems. Benefiting of the capabilities of multi-core and many-core processors, NMR-

MPar approach uses the partitioning principle to create different partitions that co-exist

in the same device. This is typically done by the hypervisor which provides virtual Central

Process Units (CPUs) to each partition. In contrast, this approach proposes a physical

resource distribution to each partition, to minimize the propagation of faults producing

dysfunction in other resources or cores. Each partition can be setup as a mono or multi-

core running on bare-metal, AMP or SMP mode. Consequently, there is a considerable

versatility on the system configuration that is enhanced by the number of cores comprised

in the device.

Furthermore, it is proposed for critical functions, that N partitions with the same

configuration participate of a N-Modular Redundancy system. Thus, several partitions

93

6.1. DESCRIPTION

execute the same application and their results are used by a voter to build a fault tolerant

system. The voter system can include one or more cores of the device or an external one if

desired. Depending on the partition of the device, several N-Modular redundancy systems

may run on it concurrently.

Figure 6.1 illustrates an example of this approach implemented on a multi-core having

16 processor cores. The example establishes seven partitions (M=7). Partitions P0 until

P2 are quad-core while P3 to P6 are mono-core. The quad-core partitions are part of

a TMR system. Each one of them runs in SMP mode the same parallel application. On

the other side, mono-core partitions (P3 to P5) are also part of another TMR running

another application. Finally, in this configuration the mono-core of the partition P6 is

the voter of both TMRs. The voter system was configured in bare-metal to reduce the

use of resources minimizing the impact of faults.

Figure 6.1: NMR-MPar Approach

Through this approach, temporal and spatial isolation of the applications are guaran-

teed by this type of partitioning. The security of each partition against access and data

modification can be obtained by the configuration of the system.

94

CHAPTER 6. NMR-MPAR: A FAULT-TOLERANT APPROACH

6.2 Case-Study F: NMR-MPar implemented on the MPPA-

256 processor

This case-study implements the NMR-MPar approach to improve the reliability on

parallel applications running on the MPPA-256 many-core processor being N=4 and

M=8. In N-modular redundancy systems, N is typically an odd integer. However, it is

possible to select N as an even integer depending on extra information that this could lock-

out malfunctioning systems [Sho02]. The present work takes advantage of the intrinsic

architecture of the device that allows dividing the chip in two global independent hardware

parts. Each part is used in master/slave scheme. In this case a symmetric division is

proposed, so each IO cluster manages a half of the cores, thus, 8 CCs are the slaves of each

IO cluster. To maximize the paralleling used and due to the fact that the minimal possible

partitioning is a Compute Cluster, this case-study implements two modules per IO cluster.

In this way, it is like having one system configured as a double DMR. Consequently, if

one IO cluster has a dysfunction, the other is able to continue working. In addition, this

division guarantees the spatial and temporal isolation for critical systems.

Another interesting point of this case-study is that the many-core processor provides

a great level of security in their Processing Engines, since each CC has its private 2MB

SMEM memory. It is not possible to access directly the SMEM. When an executable

is loaded in memory, the only way to modify data from the outside is through the use

of communication primitives of the NoC that involves the permission of the RM of the

corresponding cluster.

For this case study, the NMR-MPar approach was applied to the TSP and the MM

applications. Both implementations were evaluated through fault injection. Similarly

to the case-study E described in chapter 5 section 5.3, fault injection campaigns only

targeted PE registers.

6.2.1 System configuration

The system is partitioned in eight partitions. Four are multi-core partitions and

the other four are mono-core partitions. Each multi-core partition is composed of one

RM of the IO cluster and 4 CC running on AMP mode. The RM of the IO cluster

95

6.2. CASE-STUDY F: NMR-MPAR IMPLEMENTED ON THE MPPA-256
PROCESSOR

is configured in bare-board while the CC run the NodeOS with POSIX. Regarding the

mono-core partitions, each one is configured in bare-board. This configuration uses only

one quad-core of each IO cluster. Figure 6.2 illustrates this configuration.

Figure 6.2: Proposed configuration for case-study F implemented on the MPPA-256

Each multi-core partition P0 to P3 runs independently one instance of the proposed

4-modular redundancy. It is thus, in charged of computing the same parallel application.

The RM of the IO cluster is the master of the application, while the CCs are the slaves.

It means that 5 RMs (4 RM of the CC+ 1 RM of the IO cluster) and 64 PEs cores work

together. The remaining RMs runs the kernel services, schedule the tasks inside each

cluster, and manages the inter-cluster communication through the NoC services. All the

PE cores included in the slaves (CCs) are used to compute the result. Both applications

were configured without a HOST part, the multi-binary executable file was loaded to

both IO clusters through the JTAG port. Figure 6.3 illustrates the general flow diagram

of the 4MR-8Par application.

96

CHAPTER 6. NMR-MPAR: A FAULT-TOLERANT APPROACH

Figure 6.3: General flow diagram of the 4MR-8Par application

The RM 0 of each IO cluster is used to configure all the MPPA connections and to

interface the fault-injector and the application. The RM 3 of each IO cluster is the voter.

Finally, the RM3 of the IO cluster 0 is also used as the fault-injector.

Figure 6.4: Proposed configuration for case-study F - part 2

97

6.2. CASE-STUDY F: NMR-MPAR IMPLEMENTED ON THE MPPA-256
PROCESSOR

This configuration allows having redundancy in data results, due to the fact that when

each partition has solved the problem it sends its results to both IO clusters. In this way,

the results are saved in two different physical locations as shown in Figure 6.4. Each

voter uses its local data to apply majority voting to obtain the correct result. The voter

that completes first the operation, logs the correct results to the HOST. The details of

its implementation are shown in annexe A.

Benchmarks Applications

The NMR-MPar approach was applied to the applications detailed in chapter 5 section

5.3.2: (1) The TSP was configured to solve a 17 cities problem, and (2) the cooperative

256× 256 MM iterated n times with n = 8192.

To validate the result of the TSP application, the verification of the response includes

a valid path. This means that each city must be included in the response only once. On

the other hand, for the MM application a standard Cyclic Redundancy Check (CRC)

code was applied line by line of the resulting matrix. Since the size of each matrix ele-

ment is 32 bits, the CRC-32 set by IEEE 802.3 was used. It was configured as follows:

(1) POLYNOMIAL = 0x04C11DB7, (2) INITIAL_REMAINDER = 0xFFFFFFFF, (3)

FINAL_XOR_VALUE = 0xFFFFFFFF, (4) REFLECT_DATA = YES, and (5) RE-

FLECT_REMAINDER = YES.

The implementation of both parallel applications allows configuring the number of

slaves and the problem size. Table 6.1 compares the execution time in Mega clock cy-

cles for the TSP application running only one instance and applying the NMR-MPar

approach. From this information one can see that the overhead produced by the NMR-

MPar approach only depends on the number of clusters.

Similarly to the case-study described in chapter 5 section 5.3, both parallel appli-

cations were configured with 4 CCs in order to maximize the use of resources. Table

6.2 summarizes the number of MPPA inter-cluster communications for each application.

The number of the connections gives an idea of the degree of complexity of the collec-

tive communications and their costs. From the casting point of view, some of them are

used to broadcast information to all the slaves, other to multi-cast information to some

clusters and other to uni-cast information to a specific cluster. The majority of these

connections are configured in asynchronous mode so that a notify function is configured

98

CHAPTER 6. NMR-MPAR: A FAULT-TOLERANT APPROACH

Table 6.1: Execution-time comparison for different TSP configurations on the MPPA

Nb cities
1 cluster 2 clusters 3 clusters 4 clusters

Standard 4-MR Standard 4-MR Standard 4-MR Standard 4-MR

16 30816 31372 16234 16941 11329 12183 8630 9639

17 188755 189310 102829 103537 71175 72038 58055 59060

18 521856 522411 260320 261027 188176 189035 159754 160767

Overhead 556 708 854 1010

Note: All values are expressed in Mega clock cycles.

to interrupt the cluster when data is received. Most of them configure 4 senders and 4

receivers. One should also know that the use of portal primitive requires the allocation

of some hardware resources. Furthermore, due to the paralleling, there are some connec-

tions trying to access the same NoC resources at the same time. Therefore, the lack of

resources is frequent in default configuration [Kal13]. This was solved by changing the

setup configuration of the functions and by adding delays in the application. The fact of

waiting for new available resources degrades the performance of the application.

Table 6.2: NoC connections on applications running NMR-MPar on the MPPA

Application sync portal queue

TSP 10 24 20

MM 10 24 0

Fault injector 0 16 0

Total TSP 10 40 20

Total MM 10 40 0

On the other hand, the use of resources is extremely related with the amount of data

sent by the connection. The use of the NoC resources is completely different for both

applications. While the MM maximizes the use of resources at the beginning and at the

end of the computation, the TSP use continuously the NoC for requesting tasks and for

broadcasting the new minimum distance and the path that was found.

99

6.2. CASE-STUDY F: NMR-MPAR IMPLEMENTED ON THE MPPA-256
PROCESSOR

6.2.2 Fault-injector details

The fault-injector is very similar to the fault-injector implemented in the case-study

E that was described in chapter 5 section 5.3.3. In this case, the RM3 core of the IO

cluster 0 performs fault injection in any of the 256 PE cores of the MPPA many-core

processor. In order to interrupt the selected core, the portal primitive in asynchronous

mode is used, so one portal per cluster (portal_fi) is configured for this purpose. The

RM0 of IO cluster 0 is in charged of configuring the master part of each portal. Note

that, although the device is divided in two independent global parts, the communication

between clusters is always possible, so that IO cluster 0 could communicate with the

16 CCs. The portal is used to interrupt the CC that contains the selected PE core for

performing the fault-injection.

Likewise, in case-study E, the fault injection campaigns of both applications are de-

voted to inject faults in the GPRs and 15 SFRs of the PEs in compute cluster’s. The

targeted SFRs are: (1) the 8 registers saved during context switching: SPC, SPS, RA,

CS, PS , LC, LS and LE, (2) the 6 event registers, and the PMC register. The other

registers could not be targeted.

6.2.3 Experimental evaluation by fault injection

The fault-injection campaigns consider the emulation of one SEU per execution. For

this reason, only one bit-flip was injected in the targeted register of one of the 256 PE

cores used by the NMR-MPar application. Table 6.3 provides details about the two

fault-injection campaigns. For preventing the propagation of errors between successive

executions, at the end of each run the HOST resets the platform and reloads the code

in the many-core processor. To evaluate the effectiveness of the approach, it is essential

to consider the behavior of the system in presence of an exception. When an exception

occurs in one of the cores of the MPPA many-core processor, the k1-jtag-runner 1 takes

the control. There are two possibilities:

• With Supervision: If the STDOUT of the process is a TTY, it prints the reason of

the exception occurred on a given core and waits for the debugger connection while

allowing the other cores, that did not halt, to continue working.
1Command used in the HOST to execute a process in the MPPA processor through the JTAG

100

CHAPTER 6. NMR-MPAR: A FAULT-TOLERANT APPROACH

• Without Supervision:If the STDOUT is not a TTY or no debugger option is passed

to the k1-jtag-runner command, it considers that the user is not present. Hence, it

does not print the exception cause and tries to continue the execution of the halted

core(s).

Table 6.3: Fault-injection campaigns details of the 4MR-8Par applications running on

the MPPA

Application
Standard exec. time Runs per

[Gcycles] [s] campaign

TSP 59.06 147.78 8328

MM 5.53 13.83 72697

If the core where the exception was produced is completely stuck, it does not respond

anymore to the k1-jtag-runner request to continue the execution. Then, the k1-jtag-

runner kills the process in the MPPA [Kal13].

Taking into account these two options, fault-injection campaigns consider also two

scenarios: 4MR-8Par-not-tty (without supervisor) and 4MR-8Par-tty (with supervisor).

The main difference between them is the behavior of the system when an exception

occurs.In the 4MR-8Par-not-tty scenario, the system tries to continue immediately with

the execution of the halted core, while in 4MR-8Par-tty the system allows the other cores

continue working, waits for the standard execution of the application, and then continues

the execution of the halted core. Table 6.4 shows a general overview of the fault-injection

campaigns on the TSP and the MM application considering the absence of supervisor.

8328 and 72696 faults were injected respectively. This significant difference in the number

of injected faults is due to the larger execution time of the TSP application.

Table 6.4: Results of fault-injection campaigns on 4MR-8Par applications with no TTY

Application Silent faults Erroneous

results

Timeouts Exceptions

TSP 8124 0 0 204

MM 68303 0 0 4393

101

6.2. CASE-STUDY F: NMR-MPAR IMPLEMENTED ON THE MPPA-256
PROCESSOR

On the other hand, for the scenario including a TTY device, only the fault injections

resulting in exceptions were re-executed with the same parameters. It was thus necessary

to inject 204 additional faults in the TSP and 4393 in the MM. Under this scenario,

the number of exceptions was drastically reduced to 1 and 141 respectively. The details

regarding the exceptions for both scenarios are summarized in Table 6.5.

Table 6.5: Exceptions produced by fault-injection on the 4MR-8Par applications

Scenario Core stuck Segmentation

fault

Device

exit

Total

Exceptions

TSP-no-tty 39 165 0 204

TSP-tty 0 0 1 1

MM-no-tty 402 3948 43 4393

MM-tty 0 95 46 141

From these results, it is possible to verify that injecting a fault with the same para-

meters of a previous fault injection, does not necessarily produce the same consequence.

This is explained by the fact that the program is not guaranteed to be in the same con-

ditions at the same operation cycle, due to scheduling policies and other factors related

to multi/many-core processors and the execution of parallel tasks.

The considerable decrease in number of errors in the TTY scenario can be explained

as follows: (1) in all the executions where a "core stuck" was produced, the device could

find the correct result thanks to redundant instances, and (2) most of the faults producing

"segmentation fault" were also overcame by the redundancy. Previous cases are possible

since the exception does not affect the whole device, so that other cores could continue

working until the HOST kill the process when the standard execution time has run out.

Answering why the halted processor is not able to continue is not a trivial issue. Generally,

it depends on the exception cause. There are some clues that need further investigation,

such as: it could be a double trap, maybe the trap routine did not do its job, not all the

causes are recoverable, or the trap routine does not have the chance to be executed.

Applying the fault-injection results to equation (3.3) allows computing the error-rate

on registers for both applications. In general, erroneous results, timeouts and exceptions

are considered as errors. However, in this case-study only exceptions were produced.

Table 6.6 summarizes the obtained values.

102

CHAPTER 6. NMR-MPAR: A FAULT-TOLERANT APPROACH

Table 6.6: Error-Rates for 4-MoRePaR applications implemented on the MPPA

Application τInj_no_tty τInj_tty

TSP 2.45 % 0.01 %

MM 6.04 % 0.19 %

6.3 Overall result comparison

The MPPA many-core processor running massive parallel applications on POSIX

was evaluated trough different scenarios: (1) the application without redundancy, (2)

the application with NMR-MPar approach without TTY, and (3) the application with

NMR-MPar approach with TTY. This section presents a comparison between the fault-

injection results obtained for the first scenario in the case-study E described in chapter 5

section 5.3.4, and the results obtained from the application of the 4MR-8Par approach on

the same applications: (1) the TSP -17 cities, and (2) the 256×256 Matrix Multiplication

iterated n = 8192. Figure 6.5 illustrates the SEE consequences.

Figure 6.5: Comparison of SEE consequences per scenario in NMR-MPar applications

103

6.3. OVERALL RESULT COMPARISON

Regarding the error-rate values obtained by fault-injection, there is a potential under-

estimation since not all sensitive zones were targeted for the reason mentioned in chapter

5. However, taking into account that authors from [TS12] state that typically GPRs

are frequently used and thus more susceptible to errors than SFRs which remain mostly

unused, this underestimation could be minimal. Similarly to case-study E, for obtaining

the failure rate the equation 4.4 was applied.

λCEU = τInj × σStatic × φ (4.4 revisited)

The σStatic = 12.71 × 10−9cm2/device was obtained from work [VRR+16]. Table

6.7 summarizes the estimated failure rates per hour at avionique altitude for both ap-

plications under three scenarios: (1) implemented without fault-tolerant approach 2, (2)

implemented with NMR-MPar running with TTY, and (3) implemented with NMR-MPar

running without TTY device.

Table 6.7: Failure rates per hour at 35000 feet for 4MR-8PaR applications implemented

on the MPPA
Application without_FT no_tty tty

TSP 9.93× 10−7 9.32× 10−7 3.80× 10−9

MM 5.47× 10−6 2.30× 10−6 7.23× 10−8

The comparison of these values to those provided by the avionics standard DO-178B

Software Considerations in Airborne Systems and Equipment Certification 3 allows having

an idea of the potential use of the approach in the avionic domain depending on the

criticity of the tested application.

From the failure rates, the reliability of the MM application under the three mentioned

scenarios was obtained. Figure 6.6 compares the results.

2Case-study E described in chapter 5
3DO-178B defines the failure rates per hour required for certifying avionics applications with different

criticity.

104

CHAPTER 6. NMR-MPAR: A FAULT-TOLERANT APPROACH

0 10000 20000 30000 40000 50000

0.
80

0.
85

0.
90

0.
95

1.
00

Time [h]

R
el

ia
bi

lit
y

MM−NMR−MPar−tty
MM−NMR−MPar−no−tty
MM

Figure 6.6: Evaluation of reliability for MM application at 35000 ft

A similar comparison was done for the TSP application. Figure 6.7 illustrates the re-

liability for the three scenarios. From both results, it is possible to confirm the important

improvement on the reliability by the use of the NMR-MPar approach.

0 10000 20000 30000 40000 50000

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Time [h]

R
el

ia
bi

lit
y

TSP−NMR−MPar−tty
TSP−NMR−MPar−no−tty
TSP

Figure 6.7: Evaluation of reliability for TSP application at 35000 ft

In order to compare the improvement on the reliability of both applications, the best

case was considered. Considering the implementation of both applications with NMR-

MPar running with TTY scenario, the reliability of the TSP is 0.9998 at 50000 h while

105

6.4. CONCLUDING REMARKS

the corresponding in the MM case is 0.9964 4.

Regarding the FIT value referenced at New York city (14nċm−2ḣ−1), Table 6.8 sum-

marizes the results for both applications.

Table 6.8: FIT values at NYC for 4MR-8PaR applications implemented on the MPPA

Application without_FT no_tty tty

TSP 4.64 4.36 0.02

MM 25.59 10.75 0.34

6.4 Concluding remarks

The NMR-MPar is a generic software-approach developed for improving the reliability

of the applications running in multi/many-core processors by using spatial redundancy.

It can be easily implemented in other multiprocessors being the implementation specific

for each device.

It can be proved that there is a significant decrease of application error-rate about

two orders of magnitude when implementing the NMR-MPar approach on the MPPA

many-core processor. However, considering the underestimation of the error-rate obtained

by fault-injection campaigns, it is advisable to evaluate the approach under neutron

radiation.

Taking into account the improvements obtained by applying the N-MoRePAR to the

benchmarks, and considering that: (1) there were no erroneous results and timeouts

occurred, (2) all the errors were produced by exceptions, (3) all the exceptions were

detected, and (4) exceptions can be easily managed by the system through a reset, this

approach is very useful for applications that do not have a critical time constraint. Its

reliability could be improved by implementing Software Implemented Fault Tolerance

(SIFT) techniques on application level. For instance, the results shows that one of the

most critical registers is the return address. Consequently, it could be useful to combine

this approach with others such as [SAL+08] that proposes selective instruction replication

that protects address calculations and conditional branches to reduce segmentation faults

or loading incorrect data values.
4Only for reference, typical required reliability for space mission applications is > 0.9995 [VRSCH11].

106

Chapter 7

Related work

This chapter summarizes the most relevant works related to the main topics covered in

this thesis. The literature is grouped in two main subjects regarding the SEE sensitivity

evaluation and the reliability of multi-core and many-core processors. Concerning the

reliability issue, two axes were taken into account: fault-tolerance by software redundancy

and fault-tolerance by partitioning. The contribution to the state-of-the-art done during

the development of this thesis is also presented.

7.1 SEE sensitivity of multi-core and many-core pro-

cessors

In the literature, there are a few works dealing with the SEE sensitivity of multi/many-

core processors. The research done in [JAC+02] compares the errors issued from fault

injection at software level on a single core using Linux, with the errors provided by a

Stanford real fault database. This work provides useful guidelines for similar works on

multi-cores. Reference [MSM+02] evaluates a COTS system based on two PowerPC750

processors and LynxOS by fault injection. The evaluation comprises OS and user level

applications. It concludes that the easiest transient faults to deal with are those related

to OS due to its tendency to crash system.

The work presented in [JSKI08] describes the first step towards a framework to eva-

luate operating system’s behavior under faulty conditions (single or multiple bit flips) in

multi-core environment. A fault-injection framework is proposed in [LPC+12] for support-

107

7.2. RELIABILITY IN MULTI-CORE AND MANY-CORE PROCESSORS

ing dependability analysis of multicore systems. It takes advantage of the error reporting

architecture that includes the machine-check error registers. It emulates machine-check

errors and analyzes how the system responds to them.

Reference [Gue12] presents the SEE test results under 15 and 25 MeV ions of the

49-core Maestro ITC microprocessor. Maestro many-core is a RHBD processor based on

the Tilera TILE64 processor intended to be used in space applications. Radiation tests

targeted L1 and L2 cache memories as well as registers of the tile core. Results have

demonstrated that the L1 and L2 caches are handled by an effective Error Detection And

Correction (EDAC) mechanism comprised in the Maestro design.

In [SN12] is presented a relevant work that establishes a dynamic cross-section model

for a multi-core server based on quad-core processors built-in 45nm bulk CMOS tech-

nology. In addition, it provides a fault handling comparison between Windows 5.2 and

Linux 5.1 operating systems.

Reference [ORQ+14] presents the radiation sensitivity evaluation of a modern Graphic

Processing Units (GPUs) designed in 28nm technology node, and composed by an array of

streaming multi-processors which share the L2 cache memory. It also provides a hardening

strategy based on Duplication with Comparison.

7.2 Reliability in multi-core and many-core processors

Since performance and reliability are significant characteristics of systems based on

multi-core and many-core processors, it is essential to propose techniques for improving

the reliability while keeping the minimum degradation of system performance. Reference

[KA11] discusses the possibility of using many-core processors on space applications.

They implement a real space sensor application: the third Scalable Synthetic Compact

Application (SSCA3) on a platform based on Nehalem CPUs Intel Xeon 6 cores to prove

the relevance of using many-cores on space applications.

Reference [Huy12] explores the possibility of using multi-core processor to implement

an application that satisfies the standard Avionics Application Standard Software Inter-

face (ARINC) 653. An analysis of both AMP and SMP configurations is considered. It

stands out the capabilities of shared resource contention and module-level health moni-

toring for the AMP case, and concurrency for the SMP case. The author also notes that

108

CHAPTER 7. RELATED WORK

the needed preemption could diminish the usage of multi-cores.

Authors of [RRV03] propose to disable cache memories of high-end processors in

safety-critical applications in order to gain in reliability in spite of the increase of the

execution time. This work also presents an analysis of the effects of soft-error in data

and instruction cache memories.

A more recent work [SRN+14] demonstrates that by enabling the L1 cache, it is

possible to improve the performance of the system without compromising the reliability.

They introduce a generic metric MeanWorkload Between Failures (MWBF) for evaluating

the reliability of a embedded processor devoted to execute safety-critical applications.

This metric takes into account both cross-section and exposure time.

7.2.1 Fault-tolerance by redundancy

There are significant works regarding fault tolerance which include redundant multi-

threading techniques for transient fault detection and recovery for multicore processors

working on SMP mode [VPC02, BI06, MAAB13, RM00, MKR02]. Some of them are

based on Simultaneous multithreading (SMT) where the systems run identical copies of

a process as independent threads. However, in these works details about the validation

of the proposed techniques by fault-injection campaigns are not provided. Moreover,

the principle of redundancy in multi-core processors is used to recover the system from

permanent hardware faults [HRI+16],

In reference [SBM+09] is presented a software technique for transient-fault tolerance:

the Process-Level Redundancy (PLR), which leverages multiple cores for low overhead.

This approach is evaluated by SEU fault-injection on the redundant processes. The faults

are injected by means of the Intel tool called Intel Pin dynamic binary instrumentation

which changes one bit of a randomly selected instruction.

Authors of [WKS+11] implement four independent fault-tolerance techniques on the

RHBD Maestro processor aiming at mitigating hardware and software error. This work

describes the implementation of these techniques that include a kernel-level checkpoint/

rollback, a process and thread level redundancy and a heartbeat. Nonetheless, there is

no evaluation of the effectiveness of their proposal.

Reference [BMS12] proposed a reliable resource management layer applied to many-

core architectures. The scheduler applies a TMR on multi-threading applications, detects

109

7.2. RELIABILITY IN MULTI-CORE AND MANY-CORE PROCESSORS

error and isolates faulty processing elements. This approach is evaluated at simulator level

by injecting one fault per run. The evaluation was done on a single cluster of 16 cores.

Authors from [AML+15] proposes a framework for improving the reliability of COTS

many-core processors. The framework is illustrated through an adaptive N-Modular

Redundancy (NMR) system that selects the better number of replicas to maximize the

system reliability. For achieving it, they present an analysis of the reliability of the system

that shows a trade-off between the reliability of the voter and the number of replicas.

This analysis is only theoretical and has not been evaluated.

Finally, reference [KS12] proposes a Soft NMR that improves the robustness of clas-

sical NMR systems by using error statistics. It effectiveness is illustrates by an example

in image coding.

7.2.2 Fault-tolerance by partitioning

Reference [LNT14] recaps the main challenges of the migration from federated systems

to IMA in avionics and gives some guidance in temporal partitioning. [MEA+10] proposes

temporal isolation between tasks for scheduling mixed-criticality works on multi-core

processors.

Authors of [PnZ+14] introduce the concept of parallel Software Partition (pSWP)

supported on a Guaranteed Resource Partition (GRP) applied to many-cores. Their

proposal consists in defining a set of physical resources where the pSWP runs in order to

guarantee the time isolation for IMA systems. The proposal is evaluated in a simulator

compatible with PowerPC ISA.

The work presented in [TCAP14] implements multiple partitions with rigorous tem-

poral and spatial isolation. This approach supports mixed-criticality based on the Xtra-

tumM virtualization layer. A methodology and tools are described.

Reference [GPm+16] is probably the most related work to the NMR-MPar approach

proposed in this thesis. Authors propose an hybridization between duplex execution at

task level on COTS and time and space partitioning provided by the bare-board hypervi-

sor XtratuM 1. The authors have implemented their proposal on a ZYNQ processor that

hosts an ARM dual-core Cortex A9. The main differences between this work and our

1Xtratum OS a bare-metal hypervisor owned by Fentiss

110

CHAPTER 7. RELATED WORK

approach are: (1) redundancy in NMR-MPar approach is totally independent at system

and user level, (2) in NMR-MPar there is an independent hypervisor for each partition,

(3) our proposal has been implemented on a many-core processor and, (4) our proposal

has been evaluated by fault-injection.

7.3 Contributions to the state-of-the-art

Concerning the evaluation of SEE sensitivity and the improvement of reliability on

COTS systems based on multi/many-core processors, this thesis contributes to the state

of the art as follows:

• In work [RVB+16], the evaluation of the dynamic sensitivity of different scenarios

running on the P2041 multi-core was presented. From the results, it can be seen

that the dynamic sensitivity of the device strongly depends on the multi-processing

mode used. In addition, this work illustrates that the 45nm SOI quad-core processor

is about four times less sensitive to SEE that its CMOS counterpart.

• The work [VRR+16] presents the 14 MeV neutron sensitivity of the MPPA-256

many-core processor. The results suggest that ECC and interleaving implemented

in the SMEMs of the clusters are very effective to mitigate SEUs consequences as

all detected events of this type were corrected. Furthermore, the evaluation of the

device dynamic response shows that by enabling the cache memories, it is possible

to increase the performance of the application without compromising reliability.

• The results presented in chapters 4 and 5 illustrate the response of different sce-

narios implemented on COTS multi/many-core processor face to SEE transient

consequences. From the results, it was possible to evaluate the effectiveness of the

protection mechanisms implemented by manufacturers in such devices. Moreover,

it was possible to observe how the algorithm and the programming model affect the

reliability of the system. Besides, the evaluation under neutron radiation of COTS

system based on multi-core processors at OS and user level was presented.

• Chapter 6 describes NMR-MPar approach, the first work implementing redundancy

and partitioning on a many-core processor to improve its reliability. The obtained

111

7.3. CONTRIBUTIONS TO THE STATE-OF-THE-ART

results by fault-injection are very promising. For instance, it is possible to observe

from figures 6.6 and 6.7 that the worst case system reliability (at t = 50000h)

were increased from 0.95 to 0.9998 for the TSP, and from 0.75 to 0.9964 for the

MM. Therefore, the results persuade the usage of COTS many-core processor in

mixed-criticality systems. However for avionics and spacecraft applications, comple-

mentary techniques at application level must be adopted to mitigate the exceptions

that affect their reliability.

• References [CFV+15, CFV+16] aim at evaluating the sensitivity to neutron radi-

ation on devices with emerging technologies. They present the SEE sensitivity of

advanced low-power SRAM Renesas memories operating at low bias voltage. The

results show that at low voltage, clusters of bit-flips and hard errors can be pro-

duced.

• The literature proposes several approaches to improve the reliability through re-

dundancy and partitioning criteria. However, only very few works evaluate them

through simulation or fault-injection. This research uses fault injection based on

the CEU approach as an evaluation mean for the present proposal for many-core

processors.

• Lastly, different variations of the CEU fault-injection method were developed. These

variations include a fault-injector based on fork principle, a fault-injector on bare-

board based on inter-processor interrupts, and a fault-injector for distributed sys-

tems based on NoC and inter-processor interrupts [VRM+14, VRV+15]. The fault-

injectors also served as monitor applications to end the application in case of time-

outs.

112

Chapter 8

Conclusions and perspectives

The widespread use of COTS multi-core and many-core processors in computing sys-

tems is a consequence of their flexibility, low-power consumption, intrinsic redundancy

and high performance. However, there are some dependability issues that have to be

overcome. Indeed, the reliability, availability and security of systems based on these de-

vices are reduced due to their increasing complexity, integration scale and sensitivity to

natural radiation. Consequently, manufacturers, industrial and academic partners are

working together to improve their characteristics to permit its usage in critical embedded

systems.

In this context, the work done throughout this thesis provides valuable information

about the SEE sensitivity of applications running on multi/many-core processors. The

proposed methodology based on multiple case-studies allowed investigating the impact

of SEEs on COTS systems based on multi/many-core processors under diverse scenarios.

The design of the case-studies has taken into account a wide range of possible configura-

tions in terms of multi-processing mode, programming model, manufacturing technology,

number of cores, memory model, and used resources. The obtained results can serve

as a helpful guideline to developers for choosing the most reliable system configuration

according to their needs. In addition, the proposed fault-tolerant approach reduces sig-

nificantly the impact of SEE sensitivity and opens up the possibility of its adoption in

mixed-criticality systems.

113

8.1. CONTRIBUTIONS

8.1 Contributions

The evaluation done on the Freescale P2041 multi-core under neutron radiation has

proved that despite of SOI manufacturing technology and the protection mechanisms

implemented on memory, erroneous results occurred. Additionally, results confirm the

sensitivity dependence on software environment. It has been demonstrated that the

AMP mode is more reliable than the SMP mode. Also, one can verify that the intrinsic

application characteristics play an important role on the system sensitivity. In addition,

it can be observed a considerable vulnerability of the OS specially concerning system

crashes and exceptions. This vulnerability has put in evidence that the implementation

of redundancy at user level is not enough to overcome dependability issues. Therefore,

it is clear the imperative necessity of using the partitioning concept to guarantee both

reliability and availability of the system.

On the other hand, the evaluation under neutron radiation of the implemented scena-

rios on the KALRAY MPPA-256 many-core processor has proved the effectiveness of the

protection mechanisms implemented on its memories. Furthermore, it was also possible

to determine the pertinence of enabling the cache memories of this device for improving

its performance with minimum reliability consequences. These results also corroborate

the SEE sensitivity dependency on software environment. Moreover, through the imple-

mentation of parallel applications in the many-core processor, it was possible to confirm

that the migration of an application to a distributed system communicating by NoC

services is a non trivial task.

Furthermore, one of the mainstay for migrating from uni-processors to multi/many-

core processors in criticality systems is the possibility to take advantage of the inherent

redundancy to implement fault-tolerance by replication. As expected, the implementation

of the TMR on the quad-core has improved significantly the system reliability. However,

it has reduced its parallel computing capability. Nevertheless, the redundancy applied to

the many-core processor is a promising solution.

The NMR-MPar approach, developed during this thesis, based on NMR and parti-

tioning concepts has proved to be very efficient to improve the reliability on applications

running on many-core COTS processors. The obtained results show that only excep-

tions cannot be completely overcome by this approach. This issue can be surpassed by

114

CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

implementing SIFT tecniques on application and OS level. For instance, [SAL+08] pro-

poses selective instruction replication that protects address calculations and conditional

branches to reduce segmentation faults or loading incorrect data values. Therefore, by

combining NMR-MPar with complementary SIFT techniques, it will be possible to use

multi-core and many-core COTS processors in harsh radiation environments

8.2 Future Works

Regarding future directions, this work opens up various possibilities to continue the

investigation in the following areas:

• Evaluate the NMR-MPar approach under particles radiation. This step is indis-

pensable to ratify the results obtained from fault-injection. Furthermore, neutron

and heavy-ion radiation testing are suitable to validate its applicability to avionics

and spacecraft applications.

• Conjugate this approach with other SIFT techniques. The implementation of fault-

tolerant techniques at OS and user level will deal with the main concern of NMR-

MPar approach, the exceptions. Some of these techniques comprise compiler tech-

niques and replication of instructions, registers and cache-lines. It is, thus interest-

ing to improve the reliability of the system by combining NMR-MPar with other

fault-tolerant approaches.

• Evaluate NMR-MPar on other system configurations. Benefiting of the large num-

ber of cores in the selected many-core processor, it is suitable to evaluate other

systems configurations. For instance, the implementation of two independent TMR

running different applications. Also, it can be interesting to implement this ap-

proach on other platforms to evaluate its broad applicability on systems based on

multi/many-core processors.

• Appraise its overhead in terms of energy and power consumption. This is essential

to boost its usage on embedded and critical systems.

115

8.2. FUTURE WORKS

116

Annexe

A Implementation details of case-study F

This Annexe presents the details regarding the implementation of the code for the

applications implementing the N-MoRePar approach. The pseudo-code of the master

code that runs on each IO cluster of the MPPA is shown in figure 8.1.

Each IO cluster manages two instances (NUMBER_LOCAL_IO_INSTANCES) of

the 4-MoRePar implemented on the MPPA many-core processor. Nevertheless, it con-

figures a memory space for saving the results of the four instances (RESULT [NUM-

BER_INSTANCES]). Some details of main function of master code that runs on the

RM0 of each IO cluster are listed in the following:

• The function create_mppa_connections_for_instance creates the portal and queue

connections used for the inter-cluster communication of each instance of the appli-

cation that was detailed in chapter 5 section 5.3.2.

• The function create_fault_injection_portal_connection allows opening a channel

of communication if fault-injection is performed.

• The function create_mppa_compl_connections creates: (1) two sync primitive for

synchronization with the other IO cluster, (2) two portals for sending and receiving

the results of each LOCAL_IO_INSTANCE to/from the other IO cluster, (3) two

portals for sending and receiving the results of the voter and the program_ended

variable to/from the other IO cluster.

• Due to the possibility of having a crash in a part of the system, the application

used the principle of timeout, so if the execution time is greater than the standard

117

execution time, the main application continues with the next stage. The different

stages of the main function are outlined in Figure 8.2.

global fault_injection_variables, portals, queues, program_ended

procedure MAIN_SLAVE (nb_threads, application_variables, nb_clusters)

WAIT_BARRIER()
RUN_APPLICATION(nb_threads, application_variables, nb_clusters)
SEND_RESULTS_OTHER_IO(portal)
WAIT_FOR (VOTER_OR_TIMEOUT)
WAIT_FOR(program_ended OR TIMEOUT)

procedure MAIN_VOTER_FAULT_INJECTOR

WAIT_BARRIER()
while program_end != OR NO_TIMEOUT

 do

⎩
⎪⎪
⎨

⎪⎪
⎧

 if cycles_applic == rand_inst AND io_cluster_0
 then { INJECT_FAULT()
 if every_instance_finished OR TIMEOUT

then

⎩
⎪
⎨

⎪
⎧

TASK_VOTER()
SEND_VOTER_RESULTS_TO_OTHER_IO (portal)
if other_io_not_log
 then { LOG_RESULTS()

WAIT_FOR(program_ended OR TIMEOUT)

procedure MAIN (fault_injection_parameters, application_variables, nb_clusters)

for i ← 1 to NUMBER_INSTANCES
 do INITIALIZE_RESULTS(i)
for i ← 1 to NUMBER_LOCAL_IO_ INSTANCES
 do CREATE_MPPA_CONNECTIONS_FOR_INSTANCES(i,port,nb_clusters)
if fault_injection = 1

 then ൝
fault_injection_variables ← fault_injection_parameters
CREATE_FAULT_INJECTION_PORTAL_CONNECTIONS()

CREATE_MPPA_COMPL_CONNECTIONS()
START_RM(1, & MAIN_SLAVE)
START_RM(2, & MAIN_SLAVE)
START_RM(3, & MAIN_VOTER_FAULT_INJECTOR)
WAIT_BARRIER()
WAIT_FOR (END_RUN_APPLIC_IN_SLAVES OR TIMEOUT)
WAIT_FOR (VOTER_OR_TIMEOUT)
program_ended ← 1
SEND_TO_OTHER_IO (program_ended)
WAIT_FOR(program_end_other_io OR TIMEOUT)
CLOSE_MPPA_CONNECTIONS()

Figure 8.1: Pseudo-code for the implementation of the N-MoRePar applied to the

MPPA

118

ANNEXES

Regarding the main_slave code executed by the RM1 and the RM2 of each cluster,

the details of the code of the function run_application were presented in chapter 5 section

5.3.2.

Figure 8.2: Flow diagram of main function run in RM0

On the other hand, concerning the function main_voter_fault_injector it is impor-

tant to note that only the RM3 of IO cluster 0 performs the function inject_fault at

the random instant rand_inst. The voter applies majority voting criteria; the correct

response can be determined if 3 or 4 results are equal. Also, it is possible to establish

the correct response if 2 results are equal and the other 2 are different between them.

119

However, if there are 2 pairs of 2 equal results, the voter logs an error. It is important

to note that the result include the response of the application plus the validation data of

the result.

120

ANNEXES

B Publications during this thesis

Journals

1. Vargas, V., Ramos, P., Ray, V., Jalier, C., Stevens, R., Dupont de Dinechin, B.,

Baylac, M., Villa, F., Rey, S., Zergainoh, N. E., Méhaut, J. F. and Velazco, R.,

"Radiation Experiments on a 28nm Single-Chip Many-core Processor and SEU

error-rate prediction", IEEE Trans. Nucl. Sci., vol.64, no 1, pp . 483-490 , January

2017.

2. Ramos, P., Vargas, V., Baylac, M., Villa, F., Rey, S., Clemente, J. A., Zergainoh,

N. E., Méhaut, J. F. and Velazco, R., "Evaluating the SEE Sensitivity of a 45 nm

SOI Multi-Core Processor Due to 14 MeV Neutrons", IEEE Trans. Nucl. Sci., vol.

63, no 4, pp. 2193-2200, August 2016.

3. Clemente, J. A., Franco, F., Villa, F., Baylac, M., Ramos, P.,Vargas, V., Mecha,

H., Agapito, J. and Velazco, R., "Single Events in a COTS Soft-Error Free SRAM

at Low Bias Voltage Induced by 15-MeV Neutrons", IEEE Trans. Nucl. Sci., vol.

63, no 4, pp. 2072-2079, August 2016.

Conferences

4. Vargas, V., Ramos, P., Ray, V., Jalier, C., D. de Dinechin, B., Baylac, M., Villa,

Rey, S., Minguez, B. and Velazco, R., "First Results of Radiation Experiments on a

28nm Single-Chip Many-core Processor", IEEE 53rd Nuclear and Space Radiation

Effects Conference (NSREC), Portland, Oregon, July, 2016.

5. Vargas, V., Ramos, P., Velazco, R., Méhaut, J. F. and Zergainoh, N. E., "Evaluat-

ing SEU fault-injection on parallel applications implemented on multi-core proce-

ssors", In Proc. 6th Latin American Symposium on Circuits & Systems (LASCAS),

February 2015, DOI:10.1109/LASCAS.2015.7250449.

6. Ramos, P., Vargas, V., Baylac, M., Villa, F., Rey, S., Clemente, J. A., Zergainoh,

N. E., Méhaut, J. F. and Velazco R., "Sensitivity to Neutron Radiation of a 45 nm

SOI Multi-Core Processor", In Proc. Radiation and its Effects on Components and

Systems (RADECS), pp. 135-138, September 2015.

121

7. Clemente, J. A., Franco, F., Villa, F., Baylac, M., Ramos, P., Vargas, V., Mecha,

H., Agapito, J. and Velazco, R., "Neutron-Induced Single Events in a COTS Soft-

Error Free SRAM at Low Bias Voltage", In Proceedings of Radiation and its Effects

on Components and Systems (RADECS), pp 162-165, September 2015.

8. Vargas, V., Ramos, P., Mansour, W., Velazco, R., Zergainoh, N. E. and Méhaut,

J. F., "Preliminary results of SEU fault-injection on multicore processors in AMP

mode", In Proc. 20th International On-Line Testing Symposium (IOLTS), pp. 194-

197, September 2014.

122

Résumé de la thèse

i. Introduction

Contexte et motivation

De nos jours, les avancées dans les technologies de fabrication de circuits intégrés

permettent de disposer de processeurs à multiples cœurs qui offrent une grande capacité

de calcul grâce à la mise en œuvre d’un parallélisme massif dans un budget limité en

consommation énergétique. Ces dispositifs offrent également une grande flexibilité car ils

permettent l’implémentation de différents modes d’exécution parallèle (multi-processing),

de plusieurs paradigmes de programmation et d’une grande variété d’applications. En

outre, leur architecture est basée sur une redondance des ressources, ce qui les rend

idéales pour la mise en œuvre de mécanismes de tolérance aux fautes. Le constat est

qu’aujourd’hui la plupart des architectures informatiques utilisent des processeurs multi-

cœur et many-cœur comme solution standard pour répondre à la demande croissante en

performance et en fiabilité, sans augmentation critique de la consommation d’énergie.

Par exemple, dans le domaine du calcul haute performance (High Performance Com-

puting, HPC), les deux premières plates-formes du classement Top500 (novembre 2016)

sont basés sur des architectures multi ou many cœurs. Par ailleurs, il existe un intérêt

croissant pour l’utilisation de processeurs multi-cœur et many-cœur dans des systèmes

embarqués et critiques. La tendance à favoriser l’utilisation de composants généralistes

et/ou commerciaaux dans les systèmes spécifiques est principalement motivée par des

coûts réduits de conception en utilisant des composants standard plutôt que des com-

posants spécialisée, et grâce à la réduction significative du rapport performance vs. con-

sommation d’énergie par l’utilisation de composantes commerciales au lieu de composants

résistant aux effets de radiation [MSM+02, KSD+97].

123

Actuellement, l’utilisation de processueur multi-cœur est largement répandue dans les

systèmes embarqués mais lorsque des tâches critiques sont nécessaires, seul un cœurs est

utilisé [MEA+10]. Par conséquent, plusieurs projets de recherche internationaux asso-

ciant des partenaires industriels et universitaires comme ACROSS, ARTEMIS - EMC2,

CAPACITES, DECOS, MultiPARTES explorent le développement de nouvelles solutions

qui permettent l’utilisation de multi-processeurs dans des systèmes critiques. Ainsi, les

industries de l’avionique et spatiales sont intéressées à valider l’utilisation de ces com-

posants pour leurs applications (par exemple, des équipes internationales travaillant sur

ces questions sont: CAST, EASA, projet RECOMP, etc.).

Avoir des puces plus performantes nécessitent l’amélioration du processus de fabri-

cation de circuits en augmentant l’intégration d’échelle. Malheureusement, le degré de

miniaturisation rend ces circuits potentiellement plus sensibles aux effets des radiations

naturelles. L’impact des radiations est aggravé par la complexité de la puce et la quan-

tité énorme de cellules mémoire qu’ils contiennent. Pour cette raison, les concepteurs

d’architectures sont continuellement à la recherche de nouvelles méthodes pour améliorer

les technologies de fabrication afin de réduire les conséquences des erreurs produites par

l’impact d’une particule dans une zone sensible de la puce.

En outre, les fabricants ont mis en place des mécanismes de protection tels que le

contrÃťle de parité et des codes de correction d’erreurs (ECC) dans les cellules mémoires

des composants. Par ailleurs, certaines techniques d’atténuation basées sur des approches

matérielles et logicielles sont proposées dans la littérature pour minimiser les conséquences

de ce phénomène. Malgré les efforts de fabrication, il existe certaines zones qui restent

particulièrement vulnérables aux effets des radiations naturelles.

Plusieurs travaux pertinents traitant de la sensibilité des composants électroniques

sont disponibles dans la littérature scientifique. Cependant, il existe très peu de travaux

traitant de la sensibilité aux effets de radiation des processeurs multi-cœur et many-

cœur. Par conséquent, il est obligatoire d’évaluer dans quelle mesure cette sensibilité

affecte la fiabilité des applications fonctionnant sur de tels circuits. En outre, en raison

du parallélisme massif utilisé pour améliorer les performances des systèmes informatiques,

l’évaluation de l’impact sur les applications parallèles devient essentielle. La tolérance

aux fautes pour les systèmes parallèles et distribués a été largement étudiée au niveau du

logiciel. Cependant, les études concernant la tolérance aux fautes de systèmes sur puce

124

RÉSUMÉ

sont limitées. Profitant de la multiplicité de cœurs de processeurs multi/many-cœur, il

est tout à fait envisageable d’implémenter des techniques de redondance pour améliorer

la fiabilité des applications.

Objectifs de la thèse

Dans ce contexte, les objectifs de cette thèse sont:

1. Évaluer la sensibilité face aux SEE de différentes applications parallèles implémen-

tées sur des processeurs multi/many-cœur.

2. Évaluer l’impact du modèle de programmation et du mode d’exécution (multi-

processing) sur la sensibilité SEE du système.

3. Développer et évaluer une approche basée sur la redondance et le partitionnement

appelée NMR-MPar pour améliorer la fiabilité des applications parallèles tournant

sur les processeurs multi/many-cœur.

Contexte de préparation de cette thèse

Cette thèse a été préparée dans le cadre d’une collaboration scientifiques entre deux

équipes de recherche de l’Université de Grenoble-Alpes:

1. L’équipe RIS du laboratoire TIMA. Cette équipe RIS possède une solide expérience

en matière de fiabilité des circuits et des systèmes

2. l’équipe INRIA CORSE du laboratoire LIG. L’équipe CORSE a une longue expéri-

ence sur l’optimisation des compilateurs et des environnements d’exécution pour les

processeurs multi-cœur et many-cœur.

La synergie produite par le savoir-faire des deux équipes a été fondamentale dans le

développement et la réussite de cette thèse.

Organisation du manuscrit

La suite du document est organisée de la manière suivante. Le chapitre 2 décrit les

concepts scientifiques et technologiques nécessaires à la compréhension de cette recherche.

125

La méthodologie et les outils utilisés pour évaluer l’impact des effets des radiations na-

turelles sur les applications exécutées sur des processeurs multi-cœur et many-cœur sont

décrites dans le chapitre 3. Les chapitres 4 et 5 présentent l’évaluation des impacts des

radiations neutroniques sur plusieurs scénarios mis en œuvre sur deux processeurs cibles:

le Freescale P2041 multi- cœurs et le many-cœur processeur KALRAY MPPA (Multi

Purpose Processing Array) -256. Le chapitre 6 décrit une nouvelle approche logicielle de

tolérance aux fautes développée dans le cadre de cette thèse, appelé NMR-MPar, et son

évaluation à travers une étude de cas mise en œuvre sur le processeur many-cœur MPPA-

256. Les travaux les plus proches sur cette thématique sont résumés dans le chapitre 7.

Finalement le chapitre 8 dresse des conclusions générales et propose des perspectives à

cette thèse.

ii. Chapitre 2 : Cadre théorique

Ce chapitre décrit les principaux concepts nécessaires à une bonne compréhension de

cette thèse. Trois thèmes principaux sont abordés. Le premier est lié à l’environnement

de radiation, ses effets et ses conséquences sur les systèmes électroniques. Le second

est consacré à la présentation des principales caractéristiques et fonctionnalités des pro-

cesseurs multi-cœur et many-cœur. Letroisième thème résume les concepts clés sur la

fiabilité etquelques techniques pour l’améliorer.

Compte tenu de la multiplicité des cœurs et de l’utilisation de techniques de redon-

dance pour améliorer la fiabilité, il est important de déterminer la possibilité d’utiliser

des processeurs généralistes (COTS, Commercial-Off-The-Shelf) pour exécuter des appli-

cations dans des environnements avec des radiations sévères.

iii. Chapitre 3: Méthodologie et outils pour évaluer

l’impact des SEE sur la fiabilité des applications

Ce chapitre décrit la méthodologie et les outils utilisés pour évaluer l’impact des SEEs

(Single Event Effects) sur des applications parallèles développées sur des processeurs

multi-cœur et many-cœur. Cette étude propose l’utilisation de la théorie quantitative

avec des études de cas multiples appliquées à deux plates-formes expérimentales dif-

126

RÉSUMÉ

férentes. Compte tenu de la large palette de configurations d’environnements logiciels

possibles, la sélection des études de cas a été effectuée en utilisant une stratégie bottom-

up. Le premier cas, qui est le plus simple, considère un processeur multi-cœur exécutant

une application bare-board où chaque cœur s’exécute indépendamment des autres. En

revanche, le dernier cas propose un processeur multi-core exécutant une application par-

allèle massive redondante sous POSIX. Six études de cas ont été évaluées pendant cette

thèse:

A) Chaque cœur supporte l’exécution d’une application séquentielle sans aucune coor-

dination entre les différents cœurs.

B) Un multi-cœur en partageant ressources et utilisant des communications inter-cœur.

C) Un multi-cœur sur lequel est implémenté TMR (Triple Modular Redundancy) comme

technique de tolérance aux fautes.

D) Un many-cœur qui supporte l’exécution d’une application avec une utilisation min-

imale des communications NoC (Network-on-Chip).

E) Un many-cœur qui supporte l’éxécution d’une application avec une utilisation in-

tensive des communications NoC.

F) Un many-cœur sur lequel est implémenté la nouvelle approche proposée de tolérance

aux fautes sur des applications parallèles.

L’évaluation prend en compte l’utilisation des modes Asymmetric Multi-Processing

(AMP) et Symmetric Multi-Processing (SMP) et deux applications de référence: Tra-

veling Salesman Problem (TSP) et Matrix Multiplication (MM). L’évaluation a été ef-

fectuée par la technique Software-Implemented Fault Injection (SWIFI) et/ou par des

expériences de tests sous neutrons en accélérateur de particules. Pour analyser les résul-

tats expérimentaux, les conséquences d’un bit-flip dans une cellule de mémoire ont été

classées: fautes silencieuses, résultats erronés, timeouts et exceptions.

127

Concernant l’injection de fautes, dans cette thèse, les principes de l’approche Code

Emulating Upset (CEU), développée à TIMA dans des thèses précédentes, ont été adap-

tés aux processeurs multi-cœur et many-cœur. Cette approche basée sur des signaux

d’interruption fournit des résultats de taux d’erreur proches de ceux obtenus en accéléra-

teur de particules. Ce résultat a été présenté dans [RVE+01, VFP10]. Son applicabilité à

un processeur complexe, tel que le Power PC4748, a permis de valider ce dispositif pour

des applications aéronautiques [PEP+08].

Il est important de noter que l’objectif de cette approche est de reproduire, sans in-

trusion, les effets des fautes SEU (Single Event Upset). Cela a été effectué en activant des

signaux d’interruption asynchrones. L’exécution du gestionnaire d’interruption produit

l’erreur dans une cible choisie aléatoirement. Dans les travaux précédents, l’interruption

a été produite par un dispositif externe. Dans le cas de processeurs multi / many-cœur, il

est possible de bénéficier de la multiplicité de cœurs pour utiliser l’un d’entre eux comme

un injecteur de fautes, tandis que les autres exécutent l’application. Ce type d’injecteur

de fautes est dépendant de l’architecture. L’approche a été adaptée dans chaque étude de

cas en fonction de l’environnement logiciel et de la plate-forme de développement utilisée.

Concernant l’expérimentation, deux dispositifs COTS ont été considérés. Le premier

a été le processeur Freescale PowerPC P2041-core, qui a été sélectionné en raison de sa

technologie de fabrication (SOI-Silicon-On-Insulator) et sa capacité à permettre différents

modes de multi-processing. Le second a été le processeur many-cœur KALRAY MPPA-

256, qui a été sélectionné en raison de sa technologie de fabrication avancée CMOS 28nm,

de son architecture et du grand nombre de cœurs de traitement (256) qu’il intègre.

Cette recherche considère l’évaluation de la fiabilité d’un système seulement pendant

sa durée de vie. Pour calculer le taux d’erreur utilisé pour évaluer la fiabilité, il a été

utilisé la limite supérieure de l’intervalle de confiance. En outre, il a été considéré que

les applications sont destinées à être utilisées dans le domaine de l’avionique, soit le flux

neutronique à 35000 pieds d’altitude avec une durée de vie du système de 50000 h 1.

1Les lignes aériennes commerciales volent plus de 10 km et la durée de vie économique est de 50000

heures de vol

128

RÉSUMÉ

iv. Chapitre 4: Ètudes de cas basées sur le processeur

multi-cœur

Ce chapitre traite des études de cas réalisées sur le quad-cœur P2041 construit en

technologie 45nm SOI. Au début du chapitre, certains détails spécifiques de ce dispositif

sont présentés. Ensuite, les trois études de cas permettront d’évaluer la sensibilité aux

SEE des applications exécutée sur ce multi-cœur. Chaque cas résume la configuration du

système et les résultats obtenus.

L’évaluation réalisée sur le multi-cœur Freescale P2041 a démontré, que malgré la

technologie de fabrication SOI, qui est plus robuste que le CMOS traditionnel, et les

mécanismes de protection mis en œuvre sur la mémoire, des résultats erronés se sont

quand même produits. De plus, les résultats confirment la dépendance de la sensibilité

à l’environnement logiciel. Il a été démontré que le mode AMP était plus fiable que le

mode SMP. De plus, il a été possible de vérifier que les caractéristiques intrinsèques de

l’application jouent un rôle important sur la sensibilité du système.

En outre, il a été observé une vulnérabilité considérable du système d’exploitation,

plus particulièrement en ce qui concerne les exceptions du système. Cette vulnérabilité

a mis en évidence que la mise en œuvre de la redondance au niveau applicatif ne suffit

pas à surmonter les problèmes de fiabilité. Par conséquent, il est clair qu’il est impératif

d’utiliser le concept de partitionnement pour garantir, à la fois la fiabilité mais aussi la

disponibilité du système.

v. Chapitre 5: Ètudes de cas basées sur le processeur

many-cœur

Pour évaluer l’impact des SEE sur des applications fonctionnant sur le processeur

MPPA, deux études de cas ont été proposées. La première maximise l’utilisation des

ressources internes des clusters de calcul, tandis que la deuxième exploite le parallélisme

massif. La plate-forme d’évaluation utilisée pour évaluer le processeur many-cœur est le

MPPA Developer.

L’évaluation a été réalisée grâce à des campagnes d’injection des fautes et/ou à des

129

campagnes de tests sous neutrons. Les détails de chaque cas sont décrits dans les sections

correspondantes. L’évaluation des scénarios mis en œuvre sur le processeur many-cœur

MPPA-256 a prouvé l’efficacité des mécanismes de protection implémentés dans ses mé-

moires. De plus, il a été également possible de déterminer la pertinence d’activer les

mémoires cache de ce dispositif afin d’améliorer ses performances avec des conséquences

minimales sur la fiabilité. Ces résultats corroborent également que la sensibilité aux

SEE du dispositif dépend de l’environnement logiciel. De plus, grâce à la mise en œuvre

d’applications parallèles sur le processeur many-cœur, il a été possible de confirmer que

la migration d’une application vers un système distribué communiquant par les services

NoC est une tâche non triviale.

vi. Chapitre 6: NMR-MPar: une approche tolérante

aux fautes

Ce chapitre décrit une approche de tolérance aux fautes développée et évaluée dans

cette thèse appelée NMR-MPar. Ce nom provient de deux concepts de base utilisés:

N-Modular Redundancy and Partitioning, pour améliorer la fiabilité des applications

s’exécutant sur des processeurs multi-cœur et many-cœur. En combinant ces deux con-

cepts, cette approche permet aux processeurs multi/many-cœur d’effectuer des fonctions

critiques dans des systèmes à criticité mixte. Profitant des capacités des processeurs

multi/many-cœur, NMR-MPar utilise le principe du partitionnement pour créer dif-

férentes partitions qui coexistent dans le même dispositif. Cela est généralement effectué

par l’hyperviseur qui fournit des CPUs virtuels à chaque partition.

En revanche, NMR-MPar propose une distribution de ressources physiques à chaque

partition, afin de minimiser la propagation de fautes produisant des dysfonctionnements

d’autres ressources ou cœurs. Chaque partition peut être configurée en tant que mono

ou multi-cœur en mode bare-board, AMP ou SMP. Par conséquent, il existe une grande

flexibilité pour la configuration du système qui est améliorée par le nombre de cœurs du

dispositif.

En outre, pour des fonctions critiques, il est proposé que N partitions avec la même

configuration participent au système NMR. Ainsi, plusieurs partitions exécutent la même

130

RÉSUMÉ

application et leurs résultats sont utilisés par un voteur pour construire un système

tolérant aux fautes. Le système voteur peut comprendre un ou plusieurs cœurs du dis-

positif ou un dispositif externe, si on le souhaite. Selon la partition du dispositif, plusieurs

systèmes de redondance N-Modular peuvent s’exécuter simultanément.

Un prototype logiciel a été implémenté sur le processeur MPPA-256, exécutant deux

applications de référence. Il met en œuvre l’approche NMR-MPar pour améliorer la

fiabilité des applications parallèles exécutées sur le processeur cœurs MPPA-256 avec

N = 4.

Nos contributions profitent des capacités de l’architecture du MPPA-256 qui permet de

diviser la puce en deux parties matérielles indépendantes. Chaque partie est utilisée avec

un schéma maître/esclave. Dans ce cas, une séparation symétrique est proposée, de sorte

que chaque cluster IO gère une moitié des cœurs. Pour maximiser le parallélisme utilisé

et en raison du fait que le partitionnement minimal possible est un compute cluster. Le

prototype implémente deux modules par IO cluster. De cette façon, c’est comme avoir un

système configuré comme un double Dual Modular Redundancy (DMR). Par conséquent,

si un cluster IO a un dysfonctionnement, l’autre est capable de continuer à travailler. De

plus, cette division garantit l’isolation spatiale et temporelle des systèmes critiques.

L’efficacité de cette approche a été analysée à travers l’évaluation par des campagnes

d’injection de fautes. D’après les résultats obtenus, l’approche NMR-MPar s’est avérée

très efficace pour améliorer la fiabilité des applications testées. Par exemple, on peut

observer que la fiabilité au pire des cas du système (à t = 50000h) a été augmentée

de 0,95 à 0,9998 pour le TSP et de 0,75 à 0,9964 pour le MM. En outre, la fiabilité

du système pourrait être encore améliorée en mettant en œuvre des techniques SIFT

(Software Implemented Fault Tolerance) au niveau de l’application. Par exemple, il

pourrait être utile de combiner cette approche avec d’autres approches telles que [SAL+08]

qui propose une réplication sélective d’instructions qui protège les calculs d’adresses et

les branchements conditionnelles qui pourraient générer des erreurs de segmentation ou

charger des valeurs de données incorrectes.

131

vii. Chapitre 7: Travaux connexes

Ce chapitre résume les principaux travaux concernant les thèmes abordés dans cette

thèse. La littérature est regroupée autour de deux sujets:

• l’évaluation de la sensibilité face aux SEE.

• La fiabilité des processeurs multi- cœurs et many-cœur. Deux voies ont été ex-

plorées: tolérance aux fautes par redondance logicielle et tolérance aux fautes par

partitionnement.

La référence [GPm+16] est probablement le travail le plus proche de NMR-MPar

développé dans cette thèse. Les auteurs proposent une hybridation entre l’exécution

duplex au niveau tâche sur COTS et le temps et l’espace de partitionnement fourni par

l’hyperviseur bare-board XtratuM 2. Les auteurs ont mis en œuvre leur proposition sur

un processeur ZYNQ qui héberge un ARM à deux cœurs Cortex A9. Les principales

différences entre ce travail est le notre sont:

1. la redondance dans l’approche NMR-MPar est totalement indépendante au niveau

du système et de l’utilisateur,

2. NMR-MPar a un hyperviseur indépendant pour chaque partition,

3. notre proposition a été mise en œuvre sur un processeur many-cœur,

4. notre proposition a été évaluée par injection de fautes.

La littérature comprend d’autres approches pour améliorer la fiabilité par des critères

de redondance et de partitionnement. Cependant, peu de travaux les évaluent par sim-

ulation ou par injection de fautes. Cette recherche utilise l’injection de fautes basée

sur l’approche CEU comme moyen d’évaluation pour la présente proposition pour les

processeurs many-cœur.

132

RÉSUMÉ

viii. Conclusions et perspectives

La méthodologie proposée, basée sur des études de cas multiples, a permis d’étudier

l’impact des SEE sur les systèmes COTS basés sur des processeurs multi/many-cœur avec

différents scénarios. Les différentes études de cas ont tenu compte d’un large éventail de

configurations possibles en termes de mode de multi-processing, modèle de program-

mation, technologie de fabrication, nombre de cœurs, modèle de mémoire et ressources

utilisées. Les résultats obtenus peuvent servir de guide utile aux développeurs pour choisir

la configuration de système la plus fiable en fonction de leurs besoins.

L’un des piliers de la migration des processeurs mono-cœurs vers les processeurs multi

/ many-cœur dans les systèmes critiques est la possibilité de profiter de la redondance

inhérente pour implémenter la tolérance aux fautes par réplication. Comme prévu, la

mise en œuvre de la TMR sur le quad-core a amélioré de manière significative la fiabilité

du système. Cependant, le TMR réduit la capacité de calcul parallèle. A l’opposé, le

NMR-MPar est une solution très prometteuse pour améliorer la fiabilité des applications

parallèles fonctionnant sur les processeurs COTS many-cœur.

Contributions à l’état de l’art

Les principales contributions de cette thèse peuvent être résumées comme suit:

• L’approche NMR-MPar, développée au cours de cette thèse, basée sur les concepts

du NMR et de partitionnement s’est révélée très efficace pour améliorer la fiabilité

des applications fonctionnant sur des processeurs COTS many-cœur. Les résultats

obtenus montrent que seules les exceptions ne peuvent être complètement surmon-

tées par cette approche. Ce problème peut être surpassé en mettant en œuvre

des techniques Software Implemented Fault Tolerance (SIFT) sur l’application et le

niveau OS. Par exemple, [SAL+08] propose une réplication d’instructions sélectives

qui protège les calculs d’adresses et les branchements conditionnelles afin de réduire

les défauts de segmentation ou de charger des valeurs de données incorrectes. Par

conséquent, en combinant NMR-MPar avec des techniques SIFT complémentaires,

il sera possible d’utiliser des processeurs COTS multi-cœur et many-cœur dans des

environnements de rayonnement sévères tels que l’espace et la haute atmosphère.

133

• Dans les références [RVB+16, RVB+15], l’évaluation de la sensibilité dynamique des

différents scénarios du P2041 multi-cœur a été présentée. A partir des résultats, on

peut constater que la sensibilité dynamique du dispositif dépend fortement du mode

multi-processing utilisé. De plus, ces travaux montrent que le processeur quadri-

cœurs SOI 45nm est environ quatre fois moins sensible aux SEE que sa contrepartie

CMOS.

• Le travail [VRR+16] présente la sensibilité aux neutrons à 14 MeV du processeur

many-cœur MPPA-256. Les résultats montrent que l’ECC et le bit-interleaving mis

en œuvre dans les SMEM des clusters sont très efficaces pour atténuer les effets

des SEUs car tous les événements détectés de ce type sont corrigés. En outre,

l’évaluation de la réponse du dispositif montre qu’en activant les mémoires caches,

il est possible d’augmenter les performances de l’application, sans compromettre la

fiabilité.

• Les références [CFV+15, CFV+16] visent à évaluer la sensibilité aux radiations

neutroniques sur les dispositifs dotés de technologies émergentes. Elles présentent la

sensibilité aux SEE des mémoires avancées low-power SRAM Renesas fonctionnant

à faible tension de polarisation. Les résultats montrent que, à basse tension, on

peut produire une série de retournements de bits et d’erreurs sévères.

• Enfin, différentes variantes d’injection des fautes CEU ont été développées. Ces

variantes comprennent un injecteur de fautes basé sur le principe fork, un injecteur

de fautes en bare-board basé sur des interruptions entre processeurs, et un injecteur

de fautes distribués basé sur les interruptions NoC et inter-processeur [VRM+14,

VRV+15].

Directions futures

En ce qui concerne les orientations futures, les travaux de cette thèse ouvrent plusiurs

pistes sur les aspects suivants:

• Èvaluer la efficacité de l’approche NMR-MPar avec des tests sous radiation. Cette

étape est indispensable pour raffiner les résultats obtenus par l’injection des fautes.

134

RÉSUMÉ

Les essais de neutrons et d’ions lourds sont appropriés pour valider l’applicabilité

aux applications avioniques et spatiales.

• Conjuguer cette approche avec d’autres techniques SIFT. La mise en œuvre de tech-

niques de tolérance aux fautes au niveau du système d’exploitation et de l’utilisateur

minimisera la principale soucis de l’approche NMR-MPar: les exceptions. Cer-

taines de ces techniques comprennent des techniques de compilation et de réplica-

tion d’instructions, de la gestion optimisée des registres et des lignes de cache. Il

est donc intéressant d’améliorer la fiabilité du système en combinant NMR-MPar

avec d’autres approches de tolérance aux pannes.

• Èvaluer NMR-MPar sur d’autres configurations de système. Bénéficiant du grand

nombre de cœurs dans le processeur many-cœur, il convient d’évaluer d’autres con-

figurations de systèmes. Par exemple, la mise en œuvre de deux TMR indépendants

exécutant des applications différentes. En outre, il peut être intéressant de mettre

en œuvre cette approche sur d’autres plates-formes pour évaluer son applicabilité à

d’autres systèmes basés sur des processeurs multi/many-cœur.

• Èvaluer l’overhead en termes d’énergie et de consommation de puissance. Ceci est

essentiel pour renforcer son utilisation dans des systèmes embarqués et critiques.

135

136

Projects References

ACROSS Advanced Cockpit for Reduction Of StreSs and workload

Online: http://www.across-fp7.eu

ARTEMIS EMC2 Embedded Multi-Core systems for Mixed Criticality applications

in dynamic and changeable real time environments

Online: https://www.artemis-emc2.eu/

CAPACITES Calcul Parallèle pour Applications Critiques en Temps et Sûreté

"Investissement d’Avenir" program

Online : http://capacites.minalogic.net/en/

DECOS Dependable Embedded Components and Systems

Online : http://cordis.europa.eu/project/rcn/71582_en.html

MultiPARTES Multi-cores Partitioning for Trusted Embedded Systems

Online : http://www.multipartes.eu

CAST Certified Associate in Software Testing

Online : https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/

EASA European Aviation Safety Agency

Online : https://www.easa.europa.eu .

RECOMP Reduced Certification Costs for Trusted Multi-core Platforms

Online : https://artemis-ia.eu/project/21-recomp.html .

137

138

Bibliography

[ABCC07] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Trave-

ling Salesman Problem: A Computational Study, pages 49–53. Princeton

University Press, Princeton, USA, September 2007.

[AML+15] M. S. Alhakeem, P. Munk, R. Lisicki, H. Parzyjegla, H. Parzyjegla, and

G. Muehl. A framework for adaptive software-based reliability in cots

many-core processors. In ARCS 2015 - The 28th International Conference

on Architecture of Computing Systems. Proceedings, pages 1–4, March

2015.

[AMRG14] J. Autran, P. Munteanu, P. Roche, and G Gasiot. Real-time Soft- Error

Rate Measurements: A Review. Microelectronics Reliability, 54(8):1455–

1476, Feb. 2014.

[AVTK05] G.H. Asadi, S. Vilas, M.B. Tahoori, and D. Kaeli. Balancing performance

and reliability in the memory hierarchy. In Proc. Performance Analysis

of Systems and Software, pages 269–279, Mar. 2005.

[BDH+12] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.

Communication-optimal parallel algorithm for strassen’s matrix multipli-

cation. In Proc. of the Twenty-fourth Annual ACM Symposium on Para-

llelism in Algorithms and Architectures, SPAA ’12, pages 193–204, New

York, NY, USA, 2012. ACM.

[BI06] Z. Basile, C.and Kalbarczyk and R. K. Iyer. Active Replication of Mul-

tithreaded Applications. IEEE Trans. Parallel And Distributed Systems,

17(5):448–465, May 2006.

139

BIBLIOGRAPHY

[BMS12] C. Bolchini, A. Miele, and D. Sciuto. An adaptive approach for online fault

management in many-core architectures. In 2012 Design, Automation Test

in Europe Conference Exhibition (DATE), pages 1429–1432, March 2012.

[Cer16] Certification Authorities Software Team (CAST) . Position paper cast-32

multi-core processors, Nov. 2016.

[CFV+15] J. A. Clemente, F. J. Franco, F. Villa, M. Baylac, P. Ramos, V. Vargas,

H. Mecha, J. A. Agapito, and R. Velazco. Neutron-Induced Single Events

in a COTS Soft-Error Free SRAM at Low Bias Voltage. In Proceedings

of IEEE European Conferences on Radiation Effects on Components and

Systems (RADECS2015), pages 162–165, Sep. 2015.

[CFV+16] J. A. Clemente, F. J. Franco, F. Villa, M. Baylac, P. Ramos, V. Vargas,

H. Mecha, J. A. Agapito, and R. Velazco. Single Events in a COTS Soft-

Error Free SRAM at Low Bias Voltage Induced by 15-MeV Neutrons.

IEEE Trans. Nucl. Sci., 63(4):2072 – 2079, Aug. 2016.

[CSE+06] Y. Cai, M. T. Schmitz, A. Ejlali, B. M. Al-Hashimi, and S. M. Reddy.

Cache size selection for performance, energy and reliability of time-

constrained systems. In Asia and South Pacific Conference on Design

Automation, 2006., pages 6 pp.–, Jan 2006.

[dDAB+13] B. D. de Dinechin, R. Ayrignac, P. E. Beaucamps, P. Couvert, B. Ganne,

P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and

T. Strudel. A clustered manycore processor architecture for embedded

and accelerated applications. In 2013 IEEE High Performance Extreme

Computing Conference (HPEC), pages 1–6, Sept 2013.

[dDdML+13] Benoît Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume

Lager, Clément Léger, Benjamin Orgogozo, Jérôme Reybert, and Thierry

Strudel. A distributed run-time environment for the kalray mppaÂő-256

integrated manycore processor. Procedia Computer Science, 18:1654 –

1663, 2013. 2013 International Conference on Computational Science.

140

BIBLIOGRAPHY

[DM03] P.E. Dodd and L.W. Massengill. Basic mechanisms and modeling of single-

event upset in digital microelectronics. IEEE Trans. Nucl. Sci., 50(3):583–

602, June 2003.

[Don16] Dongarra, J. Report on the Sunway TaihuLight System, June 2016.

[Dot] B. Dotson. How particle accelerators work. Online:

https://energy.gov/articles/how-particle-accelerators-work.

[DWVVL+13] N. De Witte, R. Vincke, S. Van Landschoot, E. Steegmans, and J. Boy-

dens. Comparing Dual-Core SMP/AMP Performance on a Telecom Ar-

chitecture. Journal of Electronics, 7:72–75, Dec. 2013.

[Eri17] Erickson, K. . What is a laser. Online:

http://spaceplace.nasa.gov/laser/en/, Jan 2017.

[FCP+15] E. Francesquini, M. Castro, P. Penna, F. Dupros, H. Freitas, P. Navaux,

and J.F. Méhaut. On the energy efficiency and performance of irregu-

lar application executions on multicore, NUMA and manycore platforms.

Journal of Parallel and Distributed Computing, 76:32–48, Feb. 2015.

[Fre11] Freescale. P2041 Reference Design Board, 2011.

[Fre12] Freescale. Running AMP, SMP or BMP Mode for Multicore Embedded

Systems, 2012.

[Fre13a] Freescale. e500mc Core Reference Manual, 2013.

[Fre13b] Freescale. P2040/P2041 QorIQ Integrated Multicore Communication Pro-

cessor Family Reference Manual, 2013.

[FVM+07] P.A. Ferreyra, G. Viganotti, C.A. Marques, R. Velazco, and R.T. Ferreyra.

Failure and Coverage Factors Based Markoff Models: A New Approach

for Improving the Dependability Estimation in Complex Fault Tolerant

Systems Exposed to SEUs. IEEE Trans. Nucl. Sci., 54(4):912–919, Aug.

2007.

141

BIBLIOGRAPHY

[FZLF08] X. Fu, W. Zhang, T. Li, and J. Fortes. Optimizing issue queue relia-

bility to soft errors on simultaneous multithreaded architectures. In 2008

37th International Conference on Parallel Processing, pages 190–197, Sept

2008.

[Gai11] R. Gaillard. Single Event Effects: Mechanisms and Classification, pages

27–54. 2011.

[GFCB+02] G. Gasiot, V. Ferlet-Cavrois, J. Baggio, P. Roche, P. Flatresse, A. Guyot,

P. Morel, O. Bersillon, and J. du Port de Pontcharra. SEU Sensitivity of

Bulk and SOI Technologies to 14-MeV Neutrons. IEEE Trans. Nucl. Sci.,

49(6):3032–3037, Dec. 2002.

[GPA+11] D Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. Sastry,

D. Sorin, A. Meixner, A. Biswas, and X. Vera. Architectures for online

error detection and recovery in multicore processors. In Proc. Design,

Automation & Test in Europe Conference, March 2011.

[GPm+16] J. Galizzi, M. Pignol, M. masmano, M. Munoz, J. Coronel, T. Parrain, and

P. Combettes. Temporal duplex-triplex on cots processors with xtratum.

In 2016 Eurospace DASIA Conference, pages 1–5, May 2016.

[Gue12] S. Guertin. Initial SEE Test of Maestro. Pasadena, CA: Jet Propulsion

Laboratory, National Aeronautics and Space Administration, Jul. 2012.

[HBR11] R. Hyman, K. Bhattacharya, and N. Ranganathan. Redundancy Mining

for Soft Error Detection in Multicore Processors. IEEE Trans. Comp.,

60(8):1114–1125, Aug. 2011.

[HRI+16] A. Holler, T. Rauter, J. Iber, G. F. H. Macher, and C. J. Kreiner. Software-

Based Fault Recovery via Adaptive Diversity for Reliable COTS Multi-Core

Processors, pages 1–6. 1 2016.

[HTI97] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques

and tools. Computer, 30(4):75–82, Apr 1997.

142

BIBLIOGRAPHY

[Huy12] P. Huyck. Arinc 653 and multi-core microprocessors x2014; considerations

and potential impacts. In 2012 IEEE/AIAA 31st Digital Avionics Systems

Conference (DASC), pages 6B4–1–6B4–7, Oct 2012.

[IEE01] IEEE Computer Society . 1003.1-2001 - IEEE Standard for IEEE Infor-

mation Technology - Portable Operating System Interface (POSIX(R)).

Online : http://standards.ieee.org/findstds/standard/1003.1-2001.html,

2001.

[Ini11] K. Iniewski. Radiation Effects in Semiconductors. CRC Press Taylor ’I&’

Francis Group, Boca Raton, FL, USA, 2011.

[JAC+02] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, and T. Marteau. Analysis of

the Effects of Real and Injected Software Faults: Linux as a Case Study. In

Proc. of Pacific Rim International Symposium on Dependable Computing

PRDC2002, pages 51–58, December 2002.

[JFG+12] X. Jean, D. Faura, M. Gatti, L. Pautet, and T. Robert. Ensuring robust

partitioning in multicore platforms for ima systems. In 2012 IEEE/AIAA

31st Digital Avionics Systems Conference (DASC), pages 7A4–1–7A4–9,

Oct 2012.

[JP95] D.S. Johnson and C.H. Paadimitriou. Computational Complexity, pages

37–85. Wiley Series in Discrete Mathematics and Optimization . Wiley

and Sons, Chichester, USA, September 1995.

[JSKI08] G. Jacques-Silva, Z Kalbarczyk, and R. K. Iyer. Dependability Assessment

of Operating Systems in Multi-core Architectures. In Proc. Int. Symp. on

Dependable Systems and Networks, June 2008.

[KA11] F. Kraja and G. Acher. Using many-core processors to improve the per-

formance of space computing platforms. In 2011 Aerospace Conference,

pages 1–17, March 2011.

[Kal13] Kalray. MPPA Process Management and Communication API, 2013.

[Kal15] Kalray. MPPA ACCESSCORE V1.4 Introductory Manual, 2015.

143

BIBLIOGRAPHY

[Kal16] Kalray. MPPA-256 Bostan Cluster and I/O Subsystem Architecture, 2016.

[Kim09] S. Kim. Reducing area overhead for error-protecting large l2/l3 caches.

IEEE Transactions on Computers, 58(3):300–310, March 2009.

[KN14] M. Kooli and G. Di Natale. A survey on simulation-based fault injection

tools for complex systems. In 2014 9th IEEE International Conference on

Design Technology of Integrated Systems in Nanoscale Era (DTIS), pages

1–6, May 2014.

[KS79] I. Koren and S. Y. H. Su. Reliability analysis of n-modular redundancy

systems with intermittent and permanen faults. IEEE Transactions on

Computers, c-28(7):514–520, July 1979.

[KS99] S. Kim and A. K. Somani. Area efficient architectures for information

integrity in cache memories. In Proceedings of the 26th International Sym-

posium on Computer Architecture (Cat. No.99CB36367), pages 246–255,

1999.

[KS12] E. P. Kim and N. R. Shanbhag. Soft n-modular redundancy. IEEE Trans-

actions on Computers, 61(3):323–336, March 2012.

[KSD+97] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz. Com-

paring operating systems using robustness benchmarks. In Proc. Reliable

Distributed Systems, October 1997.

[LNT14] A. Löfwenmark and S. Nadjm-Tehrani. Challenges in future avionic sys-

tems on multi-core platforms. In 2014 IEEE International Symposium on

Software Reliability Engineering Workshops, pages 115–119, Nov 2014.

[LPC+12] A. Lanzaro, A. Pecchia, M. Cinque, D. Cotroneo, R. Barbosa, and N. Silva.

A Preliminary Fault Injection Framework for Evaluating Multicore Sys-

tems, pages 106–116. Springer Berlin Heidelberg, Berlin, Heidelberg,

September 2012.

[LSI+06] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubrama-

nian. Mitigating soft error failures for multimedia applications by selective

144

BIBLIOGRAPHY

data protection. In Proceedings of the 2006 International Conference on

Compilers, Architecture and Synthesis for Embedded Systems, CASES ’06,

pages 411–420, New York, NY, USA, 2006. ACM.

[LV62] R.E. Lyons and W. Vanderkulk. The use of triple modular redundancy to

improve computer reliability. IBM Journal of Research and Development,

6(2):200–209, April 1962.

[MAAB13] H. Mushtaq, Z. Al-Ars, and K. Bertels. Efficient Software-Based Fault

Tolerance Approach on Multicore Platforms. In Proc. Design, Automation

& Test in Europe Conference, pages 921–926, March 2013.

[MEA+10] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.

Scoredos. Mixed-criticality real-time scheduling for multicore systems. In

2010 10th IEEE International Conference on Computer and Information

Technology, pages 1864–1871, June 2010.

[MFMR08] R. Maurer, M. Fraeman, M. Martin, and D. Roth. Harsh Environments:

Space Radiation Environment, Effects and Mitigation. John Hopkins APL

Technical Digest, 28(1):17–29, 2008.

[MKO05] G. Memik, M. T. Kandemir, and O. Ozturk. Increasing register file im-

munity to transient errors. In Design, Automation and Test in Europe,

pages 586–591 Vol. 1, March 2005.

[MKR02] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed design and

evaluation of redundant multi-threading alternatives. In Proceedings 29th

Annual International Symposium on Computer Architecture, pages 99–

110, 2002.

[MMM12] M. Maniatakos, M. K. Michael, and Y. Makris. Vulnerability-based inter-

leaving for multi-bit upset (mbu) protection in modern microprocessors.

In 2012 IEEE International Test Conference, pages 1–8, Nov 2012.

[MRAV14] W. Mansour, P. Ramos, R. Ayoubi, and R. Velazco. SEU fault-injection

at system level: method, tools and preliminary results. In Proc. Latin

American Test Workshop LATW, March 2014.

145

BIBLIOGRAPHY

[MSM+02] H. Madeira, R.R. Some, F. Moreira, D. Costa, and D Rennels. Experimen-

tal evaluation of a COTS system for space applications. In Proc. Interna-

tional Conference on Dependable Systems and Networks, pages 325–330,

June 2002.

[MV16] S. Mittal and J.S. Vetter. A survey of techniques for modeling and im-

proving reliability of computing systems. IEEE Transactions on Parallel

and Distributed Systems, 27(4):1226–1238, April 2016.

[MW79] T. C. May and M. H. Woods. Alpha-particle-induced soft errors in dy-

namic memories. IEEE Trans. Elec. Dev., 26(1):2 – 9, Jan. 1979.

[MWC+13] F. Miller, C. Weulersse, T. Carriere, N. Guibbaud, S. Morand, and R. Gail-

lard. Investigation of 14 MeV Neutron Capabilities for SEU Hardness

Evaluation. IEEE Trans. Nucl. Sci., 60(4):2789–2796, Aug. 2013.

[MWE+03] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A

systematic methodology to compute the architectural vulnerability fac-

tors for a high-performance microprocessor. In Proceedings. 36th An-

nual IEEE/ACM International Symposium on Microarchitecture, 2003.

MICRO-36., pages 29–40, Dec 2003.

[NAR+13] H Naeimi, C. Augustine, A. Raychowdhury, S.L. Lu, and J. Tschanz.

Sttram scaling and retention failure. Intel Technology Journal, 17(1):54–

75, May 2013.

[ND10] E. Normand and L. Dominik. Cross Comparison Guide for Results of

Neutron SEE Testing of Microelectronics Applicable to Avionics. In Proc.

Radiation Effects Data Workshop, pages 50–57, July 2010.

[Nic11] M. Nicolaidis. Soft Errors in Modern Electronic Systems. Frontiers in

Electronic Testing. Springer US, 2011.

[Nor96] E. Normand. Single-event effects in avionics. IEEE Transactions on Nu-

clear Science, 43(2):461–474, Apr 1996.

146

BIBLIOGRAPHY

[OLA96] I. Osborne-Lee and C. Alexander. CALIFORNIUM-252: A Remarkable

Versatil Radioisotope. ORNL/TM-12706, pages 1–37, 1996.

[Ope15] OpenMP Architecture Review Board . OpenMP Application

Programming Interface. Online : http://www.openmp.org/wp-

content/uploads/openmp-4.5.pdf, 2015.

[ORQ+14] D.A.G. Oliveira, P. Rech, H.M. Quinn, T.D. Fairbanks, L. Monroe,

S.E. Michalak, C. Anderson-Cook, P.O.A. Navaux, and L. Carro. Modern

GPUs Radiation Sensitivity Evaluation and Mitigation Through Duplica-

tion With Comparison. IEEE Trans. Nucl. Sci., 61(6):3115–3122, Dec.

2014.

[OTKT12] I. Oz, H. R. Topcuoglu, M. Kandemir, and O. Tosun. Performance-

reliability tradeoff analysis for multithreaded applications. In 2012 De-

sign, Automation Test in Europe Conference Exhibition (DATE), pages

893–898, March 2012.

[PEP+08] P. Peronnard, R. Ecoffet, M. Pignol, D. Bellin, and R. Velazco. Predicting

the SEU Error Rate through Fault Injection for a Complex Microprocessor.

In Proc. 2008 IEEE International Symposium on Industrial Electronics,

pages 2288–2292, Sep. 2008.

[PnZ+14] M. Panić, E. Qui nones, P. G. Zavkov, C. Hernandez, J. Abella, and

F. J. Cazorla. Parallel many-core avionics systems. In 2014 International

Conference on Embedded Software (EMSOFT), pages 1–10, Oct 2014.

[PVH09] P. Peronnard, R. Velazco, and G. Hubert. Real-Life SEU Experiments on

90 nm SRAMs in Atmospheric Environment: Measures Versus Predictions

Done by Means of MUSCA SEP3 Platform. IEEE Transactions on Nuclear

Science, 56(6):3450–3455, 2009.

[RM00] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via simul-

taneous multithreading. In Proceedings of 27th International Symposium

on Computer Architecture (IEEE Cat. No.RS00201), pages 25–36, June

2000.

147

BIBLIOGRAPHY

[RRV03] M. Rebaudengo, M. Reorda, and M. Violante. An accurate analysis of the

effects of soft errors in the instruction and data caches of a pipelined mi-

croprocessor. In Proc. Design, Automation and Test in Europe Conference

and Exhibition, pages 602–607, 2003.

[RVB+15] P. Ramos, V. Vargas, M. Baylac, F. Villa, S. Rey, J.A Clemente, N.E. Zer-

gainoh, and R. Velazco. Sensitivity to Neutron Radiation of a 45nm SOI

Multi-core Processor. In Proc. Radiation Effects on Components and Sys-

tems, pages 135–138, Sep. 2015.

[RVB+16] P. Ramos, V. Vargas, M. Baylac, F. Villa, S. Rey, J.A Clemente, N.E. Zer-

gainoh, J.F. Méhaut, and R. Velazco. Evaluating the SEE sensitivity of

a 45nm SOI Multi-core Processor due to 14 MeV Neutrons. IEEE Trans.

Nucl. Sci., 63(4):2193 – 2200, Aug. 2016.

[RVE+01] S. Rezgui, R. Velazco, R. Ecoffet, S. Rodriguez, and J. Mingo. Estimating

Error Rates in Processor-Based Architectures. IEEE Trans. Nucl. Sci.,

48(5):1680–1687, Dec. 2001.

[SAL+08] A. Sundaram, A. Aakel, D. Lockhart, D. Thaker, and D. Franklin. Efficient

fault tolerance in multi-media applications through selective instruction

replication. In Proceedings of the 2008 Workshop on Radiation Effects

and Fault Tolerance in Nanometer Technologies, WREFT ’08, pages 339–

346, New York, NY, USA, 2008. ACM.

[SBM+09] A. Shye, J. Blomstedt, T. Moseley, V. Janapa Reddi, and D. A. Con-

nors. PLR: A Software Approach to Transient Fault Tolerance for Multi-

core Architectures. IEEE Trans. On Dependable And Secure Computing,

6(2):135–148, April 2009.

[Sch10] E. Schoitsch. Computer Safety, Reliability and Security. Springer, Vienna,

Austria, 2010.

[SEU+15] S. Saidi, R Ernst, S. Uhrig, H. Theiling, and B. Dupont de Dinechin.

The shift to multicores in real-time and safety-critical systems. In

148

BIBLIOGRAPHY

Proc. Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 220–229, Oct. 2015.

[Sho90] M.L. Shooman. Probabilistic Reliability: An Engineering Approach.

Krieger, Melbourne, FL, USA, 1990.

[Sho02] M.L. Shooman. Reliability of Computer Systems and Networks: Fault

Tolerance,Analysis,and Design. John Wiley & Sons, Inc., New York, NY,

USA, 2002.

[SIM07] M. Sugihara, T. Ishihara, and K. Murakami. Task scheduling for reliable

cache architectures of multiprocessor systems. In 2007 Design, Automation

Test in Europe Conference Exhibition, pages 1–6, April 2007.

[SN12] S.S. Stolt and E. Normand. A Multicore Server SEE Cross Section Model.

IEEE Trans. Nucl. Sci., 59(6):2803–2810, Dec. 2012.

[SRN+14] T. Santini, P. Rech, G. Nazar, L. Carro, and F. Rech Wagner. Reducing

Embedded Software Radiation-Induced Failures Through Cache Memo-

ries. Proc. European Test Symposium, DOI:10.1109/ETS.2014.6847793,

May. 2014.

[TCAP14] S. Trujillo, A. Crespo, A. Alonso, and J. Pérez. Multipartes: Multi-

core partitioning and virtualization for easing the certification of mixed-

criticality systems. Microprocessors and Microsystems, 38(8, Part B):921

– 932, 2014.

[TS12] H. Tabkhi and G. Schirner. Application-specific power-efficient approach

for reducing register file vulnerability. In 2012 Design, Automation Test

in Europe Conference Exhibition (DATE), pages 574–577, March 2012.

[Vaj11] András Vajda. Multi-core and many-core processor architectures. In Pro-

gramming Many-Core Chips, pages 9–43. Springer, 2011.

[VBR+14] F. Villa, M. Baylac, S. Rey, O. Rossetto, W. Mansour, P. Ramos, R. Ve-

lazco, and G. Hubert. Accelerator-Based Neutron Irradiation of Integrated

149

BIBLIOGRAPHY

Circuits at GENEPI2 (France). Proc. Radiation Effects Data Workshop,

DOI:10.1109/REDW.2014.7004511, July. 2014.

[VFP10] R. Velazco, G. Foucard, and P. Peronnard. Combining Results of Accel-

erated Radiation Tests and Fault Injections to Predict the Error Rate of

an Application Implemented in SRAM-Based FPGAs. IEEE Trans. Nucl.

Sci., 57(6):3500–3505, Dec. 2010.

[Vig] W.J. Vigrass. Calculation of Semiconductor Failure Rates. On-

line: http://www.intersil.com/content/dam/Intersil/quality/rel/ calcula-

tion_of_semiconductor_failure_rates.pdf.

[VPC02] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient Fault Recovery

using Simultaneous Multithreading. In Proc. 29th Annual Int’l Symp. on

Computer Architecture, pages 87–98, May 2002.

[VRM+14] V. Vargas, P. Ramos, W. Mansour, R. Velazco, N. E. Zergainoh, and

J. F. Méhaut. Preliminary results of SEU fault-injection on multicore

processors in AMP mode. In Proc. IEEE 20th International On-Line

Testing Symposium (IOLTS), pages 194–197, Sep. 2014.

[VRR+16] V. Vargas, P. Ramos, V. Ray, C. Jalier, R. Stevens, B. Dupont de

Dinechin, M. Baylac, F. Villa, S. Rey, N. E. Zergainoh, J. F. Méhaut,

and R. Velazco. Radiation Experiments on a 28nm Single-Chip Many-

core Processor and SEU error-rate prediction,. IEEE Trans. Nucl. Sci.,

99(4):1 – 8, Dec. 2016.

[VRSCH11] C. Villalpando, D. Rennels, R. Some, and M. Cabanas-Holmen. Reliable

Multicore Processors for NASA Space Missions. In Proc. Aerospace Con-

ference, pages 1–12, Mar. 2011.

[VRV+15] V. Vargas, P. Ramos, R. Velazco, J. F. Méhaut, and N. E. Zergainoh.

Evaluating SEU fault-injection on parallel applications implemented on

multicore processors. In Proc. 6th Latin American Symposium on Circuits

& Systems (LASCAS), pages 181–184, Feb. 2015.

150

BIBLIOGRAPHY

[WKS+11] J. P. Walters, R. Kost, K. Singh, J. Suh, and S. P. Crago. Software-

based fault tolerance for the Maestro many-core processor. In Proc. 2011

Aerospace Conference, March 2011.

[ZAV04] H. Ziade, R. Ayoubi, and R. Velazco. A survey on fault injection

techniques. The International Arab Journal of Information Technology,

1(2):171–186, 2004.

[ZGKS03] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubramaniam. Icr:

in-cache replication for enhancing data cache reliability. In 2003 Interna-

tional Conference on Dependable Systems and Networks, 2003. Proceed-

ings., pages 291–300, June 2003.

[Zha05] W Zhang. Replication cache: a small fully associative cache to improve

data cache reliability. IEEE Transactions on Computers, 54(12):1547–

1555, Dec 2005.

151

Approche logicielle pour améliorer la fiabilité d’applications parallèles implémentées
sur des processeurs multi-coeur et many-coeur

Résumé - La grande capacité de calcul, flexibilité, faible consommation d’énergie, redondance intrinsèque et la
haute performance fournie par les processeurs multi / many-coeur les rendent idéaux pour surmonter les
nouveaux défis dans les systèmes informatiques. Cependant, le degré d’intégration de ces dispositifs augmente
leur sensibilité aux effets des radiations naturelles. Par conséquent, des fabricants, partenaires industriels et
universitaires travaillent ensemble pour améliorer les caractéristiques de ces dispositifs ce qui permettrait leur
utilisation dans des domaines embarqués et critiques. Dans ce contexte, le travail effectué dans le cadre de cette
thèse vise à évaluer l’impact des SEEs (Single Event Effects) dans des applications parallèles s’exécutant sur des
processeurs multi-coeur et many-coeur, et développer et valider une approche logicielle pour améliorer la
fiabilité du système appelée NMR-MPar. La méthodologie utilisée pour l’évaluation était fondée sur des études
de cas multiples et leur analyses. Les différents scénarios mis en oeuvre envisagent une large gamme de
configurations de système en termes de mode de multi-processing, modéle de programmation, modèle de
mémoire et des ressources utilisées. Pour l’expérimentation, deux dispositifs COTS ont été sélectionnés: le
quadcore Freescale PowerPC P2041 en technologie SOI 45nm, et le processeur multi-coeur KALRAY MPPA-
256 en CMOS 28nm. Les études de cas ont été évaluées par l’injection de fautes et par des campagnes des tests
sur neutron. Les résultats obtenus servent de guide aux développeurs pour choisir la configuration du système la
plus fiable en fonction de leurs besoins. En outre, les résultats de l’évaluation de l’approche NMR-MPar basée
sur des critères de redondance et de partitionnement augmente l’utilisation des processeurs COTS multi/many-
coeur dans des systèmes qui requièrent de la haute fiabilité.

Mots Clés: Architectures parallèles, Programmation Multi-core et many-core, Fiabilité, Redondance,
Partitionnement, Injection de fautes.

Software approach to improve the reliability of parallel applications implemented on
multi-core and many-core processors

Abstract -The large computing capacity, great flexibility, low-power consumption, intrinsic redundancy and
high performance provided by multi/many-core processors make them ideal to overcome with the new
challenges in computing systems. However, the degree of scale integration of these devices increases their
sensitivity to the effects of natural radiation. Consequently manufacturers, industrial and university partners are
working together to improve their characteristics which allow their usage in critical embedded domains. In this
context, the work done throughout this thesis aims at evaluating the impact of SEEs on parallel applications
running on multi-core and many-core processors, and proposing a software approach to improve the system
reliability called NMR-MPar. The methodology used for evaluation was based on multiple-case studies and their
analysis. The different scenarios implemented consider a wide range of system configurations in terms of multi-
processing mode, programming model, memory model, and resources used. For the experimentation, two COTS
devices were selected: the Freescale PowerPC P2041 quad-core built in 45nm SOI technology, and the
KALRAY MPPA-256 many-core processor built in 28nm CMOS technology. The case-studies were evaluated
through fault-injection and neutron radiation testing. The obtained results serve as useful guidelines to
developers for choosing the most reliable system configuration according to their requirements. Furthermore, the
evaluation results of the proposed NMR-MPar fault-tolerant approach based on redundancy and partitioning
criteria boost the usage of COTS multi/many-core processors in high-level dependability systems.

Keywords: Reliability, Parallel Architectures, Multi-core and many-core programming, Redundancy,
Partitioning, Fault injection

Thèse préparée au laboratoire TIMA (Techniques de l’Informatique et de la Microélectronique pour
l’Architecture des systèmes intégrés), 46 Avenue Félix Viallet, 38031, Grenoble Cedex, France

ISBN: 978-2-11-129227-7

