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Notation

Some notations and preliminary definitions used throughout the thesis are as follows:

• In is the set of the number of compartments, numbered from 1 to n;

• Iin ⊂ In is the index set of input compartments;

• Ĩin ⊂ Iin is the index set of input compartments receiving exogenous input flows only;

• Iout ⊂ In is the index set of outputs compartments;

• Di ⊂ In is the index set of downstream compartments connected directly to compart-
ment i (i.e. those compartments receiving flow from compartment i);

• Ui ⊂ In is the index set of upstream compartments connected directly to compartment
i (i.e. those compartments sending flow to compartment i);

• R ⊂ In is the index set of routing compartments (i.e. those compartments sending flow
to two or more downstream compartments);

• R
+ will denote the set of nonnegative real numbers;

• For any vector v, its dth component will be denoted vd. Given a matrix A, its transpose
will be denoted AT and its component at row i and column j will be denoted by Aij . 0

will denote the zero matrix of suitable dimension;

• The usual Euclidean norm in R
n is denoted by | · | and the associated matrix norm is

denoted ‖ · ‖;

• The set of all functions φ : [0, 1] → R
n such that

∫ 1
0 |φ(x)|2dx < ∞ is denoted by

L2([0, 1],Rn) that is equipped with the norm ‖ · ‖L2([0,1],Rn);

• The restriction of a function y : I → J on an open interval (x1, x2) ⊂ I is denoted by
y|(x1,x2);

• Given an interval I ⊆ R and a set J ⊆ R
n for some n ≥ 1, a piecewise left-continuous

function (resp. a piecewise right-continuous function) y : I → J is a function contin-
uous on each closed interval subset of I except maybe on a finite number of points
x0 < x1 < . . . < xp such that for all ∈ {0, .., p − 1} there exists yl continuous
on [xl, xl+1] and yl|(xl,xl+1) = y|(xl,xl+1). Moreover, at the points x0, · · · , xp the func-
tion is continuous from the left (resp. from the right). The set of all piecewise left-
continuous functions (resp. piecewise right-continuous functions) is denoted by Clpw(I, J)
(resp. Crpw(I, J)). In addition, we have the following inclusions Clpw([0, 1],Rn),
Crpw([0, 1],Rn) ⊂ L2([0, 1],Rn).

ix





Résumé détaillé

Contexte et motivation

Plusieurs systèmes physiques sont décrits par des systèmes de dimension infinie, notam-
ment par des équations aux dérivées partielles. Une classe très importante ressort: Celle
des equations aux dérivées partielles (EDP) hyperboliques. Les systèmes hyperboliques
ont été utiles spécifiquement pour la modélisation des systèmes physiques de différentes
natures: par exemple des réseaux hydrauliques [6], des réseaux trafic routier [9], des
réseaux de transport de gas [30], en mentionnant quelques-uns. Plus d’exemples illustrat-
ifs de systèmes régis par les équations hyperboliques peuvent être trouvés dans [3, Chapitre 1].

La commande et la stabilité de tels systèmes ont également attiré beaucoup l’attention
au cours de la dernière décennie. Au ce sujet, il y a deux moyens d’agir sur les systèmes:
la commande distribuée et la commande frontière. Pour la commande frontière, l’approche
backstepping [37, 12] et les techniques de Lyapunov [10, 26, 50, 46] sont les plus généralement
utilisées. Quelques applications, dont les actions de contrôle sont aux bornes, peuvent être
retrouvées par exemple dans [31, 5, 11, 20, 52] où la stabilité exponentielle des états au régime
permanent dépend de la dissipativité de la frontière. Plusieurs résultats sur la modélisation
de systèmes physiques dans le cadre des systèmes hyperboliques ainsi que la stabilisation de
tels systèmes sont largement condensés dans [3].

Alors que les systèmes hyperboliques font partie du coeur de cette thèse, un contexte math-
ématique bien détaillé n’ est pas fourni ici. Nous allons certainement référer les lecteurs à [3]
et quelques références qui se trouvent également pour apprécier les contributions principales
sur la stabilisation (globale et locale) des systèmes hyperboliques linéaires où quasi-linéaires
et leur analyse sous des normes différentes. Dans cette thèse, nous voulons premièrement
souligner un exemple motivant pour la modélisation et la commande des réseaux: tout par-
ticulièrement, les réseaux de communication. Comme nous le verrons dans la suite, étudier
les réseaux de communication va nous permettre de proposer une classe de systèmes dont
les systèmes hyperboliques peuvent être couplés aux équations aux dérivés ordinaires (EDO),
même possiblement avec une structure en cascade.

À ce titre, lorsqu’on traite les réseaux, un moyen pour les décrire est précisément grâce
à la modélisation “fluid-flow". À notre connaissance, la modélisation “fluid-flow" des réseaux
physiques est une façon de décrire le fluxe de matière à travers des différents éléments du
réseaux, qui consiste aussi bien d’une collection des noeuds lesquels se communiquent entre
eux, que des lignes qui les connectent. Une des propriétés les plus importantes de la mod-
élisation fluid-flow est la conservation de la masse. Divers modèles dont cette propriété est
préservée, peuvent tomber dans le cadre d’une description macroscopique. L’exemple le plus
connu est plus étudié est l’évolution du trafic des véhicules dans la route ([27]), dont les vari-
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2 Résumé detaillé

ables macroscopiques sont principalement la densité des voitures et la vitesse moyenne. Le
modèle dans ce cadre est donné par une équation hyperbolique de lois de conservation d’une
dimension ([9, 67, 3]). Nous présenterons brièvement le modèle ci-dessous:

∂tρ(t, x) + ∂xf(ρ(t, x)) = 0 (1)

aussi bien appelé équation de continuité où ρ est la densité des voitures (par exemple
#voitures/km) à chaque instant de temps t et position x tout au long de la route, et f(ρ)
représente le débit des voitures à (t, x). Le débit f est typiquement une fonction de la den-
sité et la vitesse des voitures v, c.a.d f(ρ) := ρv(t, x). Sous l’hypothèse que les conducteurs
adaptent leur vitesse à la densité du trafic local (v = V (ρ)), on a le modèle LWR (Lighthill
and Whitham in 1955 and then Richards 1956).

∂tρ(t, x) + ∂x(ρV (ρ)) = 0 (2)

D’où, en s’inspirant du flux de trafic sur les réseaux routiers brièvement décrit ci-dessus,
plusieurs études portent sur le flux d’information sur les réseaux de communication constitués
des lignes de transmission et des noeuds (voir par exemple [16]). Le modèle est exactement
comme (2) sauf que ρ est désormais la densité des paquets qui voyagent à travers de la ligne
de transmission et le flux est une fonction de la densité et la vitesse moyenne des paquets.
Un problème commun sur le trafic routier et les réseaux de communication dans le cadre
des EDPs est lié à la congestion. Pour les deux applications, il existe des densités critiques
qui divisent le fonctionnement du réseau en deux parties selon le diagrammme fondamental
du flux-densité: la première partie concerne la zone “ free-flow" et l’autre est la zone de
congestion. Cependant, la principale différence du modèle d’un réseau de communication par
rapport au réseau routier est que la vitesse moyenne des paquets est censée être constante.
Dans ce scénario, le diagramme fondamental est alors donné comme suit: Nous verrons qu’en

σ
ρ

ρmax

f(ρ)

Figure 1: Diagramme fundamental triangulaire de flux-densité pour la loi de conservation
scalaire.

raison de la linéarité par morceaux du diagramme fondamental et en supposant des conditions
“free-flow", nous finirons par travailler avec des systèmes hyperboliques linéaires de lois de
conservation. En plus des modèles macroscopiques, il y a des systèmes de compartiments qui
sont également très connus comme un cadre approprié pour décrire des réseaux dynamiques
conservatifs. On peut voir par exemple [36] pour l’étude de la dynamique des compartiments,
même avec des décalages en tant que retards qui s’avèrent être représentés par des équations



Résumé détaillé 3

de transport ou tout simplement, lois de conservations linéaires. Dans [4], le contrôle de
congestion des réseaux de compartiments est étudié, toujours sous la modélisation “fluid-flow",
dans lequel ils exploitent des propriétés des systèmes positifs pour bien établir la stabilité du
réseau et ainsi prévenir la congestion, grace aux contrôleurs non linéaires. Dans ces études,
chaque noeud représente un compartiment qui contient une quantité variable, par exemple,
l’information qui est en train d’être traitée. Conceptuellement, un compartiment c’est une
sorte de dispositif de stockage et typiquement modélisé par des EDOs ou par des EDPs lorsque
les quantités accumulées sont alors spatialement distribuées. Des travaux similaires à [4],
nous pouvons aussi trouver des modèles non linéaires en temps continu en utilisant l’approach
“fluid-flow", comme a été introduit dans [44] ou le “fluid-flow" basé sur la conservation pour
le contrôle de congestion comme dans [7].

La combinaison des réseaux de compartiments décrits soit par des EDOs ou EDPs, est
un sujet qui sera étudié dans cette thèse. Par consequence, quelques questions préliminaires
peuvent survenir concernant la stabilité des réseaux de communication:

• Pour des demandes de debit d’entrée au réseau, est-ce qu’on peut établir des propriétés
de stabilité dans un sens approprié pour le modèle linéaire résultant?

• En outre, sous des actions de contrôles appropriés, peut-on améliorer de quelque manière
la performance du réseau?

Pour répondre à ces questions, nous nous focaliserons sur le contrôle frontière des systèmes
EDP-EDO couplés comme nous regarderons dans le Chapitre 1.

D’autre part, en supposant que les contrôleurs aux bornes en temps continu sont conçus
de manière appropriée et sont capables de conduire le système vers un comportement désiré,
on peut se demander sur les implémentations possibles dans une plate-forme numérique. Plus
précisément, nous étudions le contrôle numérique des EDPs. Dans cette thèse, nous proposons
une approche à cette fin: la commande événementielle.

À propos de la commande événementielle

La commande événementielle est une stratégie de contrôle numérique qui a pour objectif
d’utiliser les ressources informatiques et de communication de façon efficiente tout en mettant
à jour les grandeurs de contrôle apériodiquement, seulement lorsqu’il est nécessaire. Plusieurs
travaux ont été développés dans ce domaine pour les systèmes de dimension finie (voir par
exemple les travaux précurseurs [1, 70] ou les plus récents [33, 49, 65] et les références qui y se
trouvent dedans). Il y a deux composantes qui sont essentielles dans le cadre de la commande
événementielle. Le premier est une loi de contrôle par retour ou “feedback" qui est conçue pour
stabiliser le système. Le deuxième composant est une stratégie de déclenchement ou “trigger"
qui détermine les instants quand le contrôleur a besoin d’être mis à jour. La stratégie de trigger
le plus souvent utilise une règle statique obtenue par une propriété de stabilité d’entrée-état
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(ISS en anglais) comme donné dans [59]. Une extension de cette stratégie est donnée dans
[28] où une variable interne dynamique est introduite dans la loi de trigger, pour laquelle il
est possible de réduire le nombre des instants de mise à jour du contrôle, par rapport à cela
statique. D’autres approaches reposent directement sur la dérivée par rapport au temps de la
fonction de Lyapunov ([45, 57]). En plus de l’intérêt de réduire des charges de communication
et informatiques, la commande événementielle est aussi connue comme une façon rigoureuse
de mettre en oeuvre numériquement les contrôles continus en temps.

En fait, la conception des stratégies de commande événementielle pour les systèmes de
dimension infinie est rarement étudiée dans la littérature. L’extension des résultats déjà
existant pour les EDOs à systèmes en retard peut être envisagée (dans le cadre et formulation
par exemple de [54]) comme a été proposé par exemple dans [21]; néanmoins, ceci est un
peu loin du problème que nous attaquerons dans cette thèse. Pour les systèmes paraboliques
d’autre part, la commande événementielle est considérée dans [55] et [69]. Beaucoup des
difficultés, qui surviennent dans le contexte de la commande événementielle, sont à cause
du fait qu’on introduit des discontinuités lorsqu’on met à jour le contrôle. Des contrôleurs de
retour de sortie discontinues pour les systèmes de dimension infinie ont été étudiés par exemple
dans [48], où un contrôle de retour unitaire et à son tour, une stabilisation globale asymptotique
ont été considérés. Bien que le cadre de systèmes hyperboliques à commutation [32, 53, 38] est
très inspirant - tout spécialement les travaux dans [38]- pour traiter les caractères bien posés
des solutions du système en boucle fermé sous les stratégies de commande événementielle.

En outre, pour la plupart des controlleurs frontière des systèmes hyperboliques, la com-
mande numérique n’a pas été bien étudiée en général. En fait, pour la commande des EDPs, la
commande numérique repose généralement sur la réduction du modèle en discrétisant l’espace
de façon à ce qu’on obtienne des équations ordinaires. Dans ce cas-là, les approches issues
de dimension finie pour la commande numérique peuvent être appliquées. Pourtant, sans
une réduction de modèle, ce n’est pas du tout clair à quelle vitesse on doit échantillonner,
de façon périodique, avec le but de faire une implementation sur une plateforme numérique.
Après, pour des scénarios de grande échelle dont les capteurs et actionneurs sont spatialement
distribués, l’information est transmise à travers des canaux de communication numérique.
Par consequence le besoin de réduire la consommation d’énergie et sauvegarder les ressources
informatiques est aussi un sujet central et clé.

Quelques questions arrivent naturellement lorsqu’ on pense à la commande aux bornes des
systèmes hyperboliques:

• À quelle vitesse doit-on échantillonner périodiquement les contrôleurs frontière du temps
continu, tout en préservant des propriétés du système EDP?

• Pouvons-nous étendre les stratégies de la commande événementielle issues des systèmes
de dimension finie pour les systèmes de dimension infinie?

• Peut-on garantir aussi bien les propriétés de stabilité que le caractère bien posé du sys-
tème qu’on considère sous contrôleurs événementiels?
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Soulignons brièvement les contributions principales de cette thèse.

Contributions et structure de la thèse

1. La première contribution de cette thèse concerne la modélisation et la commande fron-
tière des réseaux à grande échelle des compartiments sous la modélisation “fluid-flow"
appliqué aux réseaux de communication comme il sera présenté dans le Chapitre 1. Au
cours de l’étude dans ce chapitre-là, nous finirons avec le système linéaire couplé EDP-
EDO, pour étudier la stabilité et quelques aspects de la commande aux bornes via les
techniques de Lyapunov et la formulation des inégalités matricielles (LMIs):

{

∂ty(t, x) + Λ∂xy(t, x) = 0

Ż(t) = AZ(t) +Gyy(t, 1) +BwW (t) +Dd̃(t)
(3)

avec condition aux bornes

y(t, 0) = GzZ(t) +BuU(t) (4)

et condition initiale
{

y(0, x) = y0(x), x ∈ [0, 1]

Z(0) = Z0
(5)

Nous donnons une condition suffisante pour la stabilité ISS en boucle ouverte et nous
effectuons la synthèse de contrôle dans le cadre de boucle fermée. Des problèmes
d’optimisation sont également abordés.

2. Dans le Chapitre 2 , nous présentons la première approache pour la commande événemen-
tielle pour les systèmes hyperboliques de lois de conservation inspirés par des principales
stratégies sur les systèmes de dimension finie. On doit dire que les résultats dans ce
chapitre sont uniquement appliqués à un cas particulier du système (3)-(5) (réseaux de
communication sans buffers, c.a.d couplage EDO et sans des perturbations exogènes).
Ainsi, le système qui sera étudié a la forme suivante:

∂ty(t, x) + Λ∂xy(t, x) = 0, x ∈ [0, 1], t ∈ R
+ (6)

avec la condition aux bornes

y(t, 0) = Hy(t, 1) +Bu(t), t ∈ R
+ (7)

la condition initiale
y(0, x) = y0(x), x ∈ [0, 1] (8)

et la fonction de sortie
z(t) = y(t, 1) (9)

En utilisant les techniques de Lyapunov dans la norme L2, nous proposons trois stratégies
de commande événementielle dont la forme u = ϕ(z) (retour de sortie) en impliquant le
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temps d’exécution ou trigger qui détermine quand les valeurs du contrôle doivent être
mis à jour. Grosso modo, les instants sont donnés par:

tk+1 = inf{t ∈ R
+|t > tk ∧ quelque condition trigger appropriée}

L’analyse de la stabilité exponentielle globale est effectuée et on montre que sous les
trois lois de stabilisation événementielle, la solution du système en boucle fermé existe
et est unique, alors que le phénomène Zeno est évité.

3. Ensuite, dans le Chapitre 3, nous considérons le problème de stabilisation des EDPs
hyperboliques linéaires lorsque les mesures de sortie sont communiquées après avoir été
échantillonnées dans le temps et quantifiées dans l’espace. Des contrôleurs statiques et
dynamiques sont conçus, ce qui établit la stabilité dans les normes L2 et H1 par rapport
aux erreurs de mesure. Tout en utilisant des techniques de Lyapunov. Nous montrons
que la conception des algorithmes d’échantillonnage garantit une stabilité pratique.

4. Finalement, la dernière contribution concerne la commande événementielle des systèmes
hyperboliques linéaires via l’approche Backstepping. Il est prouvé qu’il n’ y a pas de
phénomène Zeno en raison de l’existence d’un temps minimal entre deux instants trigger
(appelé dwell-time) et ainsi le caractère bien posé des solutions et la stabilité sont garan-
tis. La commande événementielle se base sur l’analyse de Lyapunov sur le système cible,
ce qui permet de travailler avec une condition de trigger dynamique. Ceci est présenté
dans le Chapitre 4.



Introduction

Context and motivation

Several physical systems are described by infinite dimensional systems, namely by partial
differential equations (PDEs). A relevant class of infinite dimensional systems stands out:
Hyperbolic PDEs. They have been useful in specifically modeling physical networks of different
nature: e.g. hydraulic [6], road traffic [9], gas pipeline networks [30], to name a few. More
illustrative examples of systems governed by hyperbolic PDEs can be found in a recent book
[3, Chapter 1].
The control and stability analysis of such systems have also attracted a lot of attention in
the last decade. In this regard, two ways of acting on these systems exist: boundary and in
domain control. For boundary control, backstepping [37, 12] and Lyapunov techniques [10,
26, 50, 46] are the most commonly used. Some applications, in which control actions are on
the boundary, can be found for instance in [31, 5, 11, 20, 52] where the exponential stability of
steady-states depends on the dissipativity of the boundary conditions. Several results on the
modeling of physical systems in hyperbolic PDE setting along with the stability and boundary
stabilization of such systems are widely condensed in [3].

While hyperbolic systems are part of the core of this thesis, a detailed mathematical
background of them is not provided. We shall definitely refer the reader to [3] and some
references that are also therein to appreciate the main contributions about the stabilization
(global and local) of linear and quasi-linear hyperbolic systems and their analysis in different
norms. In this thesis however, we want firstly to highlight a motivating example for the
modeling and control of networks: particularly communication networks. As we will see in
the sequel, studying it will allow us to come up with a more general class of systems where
hyperbolic equations may be coupled with ordinary differential equations (ODEs), possibly in
cascade structure.

To that end, it is worth saying that when dealing with networks, one way to describe them
is by means of the fluid-flow modeling. To our understanding, fluid-flow modeling of physical
networks is a way of describing flow of matter through elements of the network consisting of
a finite collection of nodes communicating to each other and links that connect them. One
of the most important features of the fluid-flow modeling is the conservation of mass. Several
models in which this property is preserved, may result in a macroscopic description. The most
traditional and well-studied example is about the evolution of vehicular traffic in roads ([27]),
whose macroscopic variables are mainly the density of cars and the averaged velocity. The
model in that framework is then given by one dimensional hyperbolic equation of conservation
laws ([9, 67, 3]). Let us briefly introduce it as follows:

∂tρ(t, x) + ∂xf(ρ(t, x)) = 0 (1)

also called continuity equation where ρ is the density of cars (e.g. #cars/km) at time t and
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a position x along the road, and f(ρ) represents the flow rate of cars at (t, x). The flow f is
typically a function of the density and the velocity of cars v, i.e. f(ρ) := ρv(t, x). Under the
assumption that drivers adapt their speed to the local traffic density (v = V (ρ)), one has the
so-called LWR model (Lighthill and Whitham in 1955 and then Richards 1956).

∂tρ(t, x) + ∂x(ρV (ρ)) = 0 (2)

Hence, inspired by traffic flow on road networks briefly described above, several studies deal
with flow of information on telecommunication networks made up of transmission lines and
nodes (see e.g. [16]). The model is exactly as (2) but ρ is now the density of packets traveling
through the transmission line and the flow is a function of the density and the average velocity
of packets. One common issue on both road traffic and communication networks under PDE
setting is related to the congestion. For both applications, there exist critical densities that
split the operation of the network in two zones according to the so-called fundamental diagram
of flow-density : one is the free-flow zone and the other is the congestion zone. However, a
key difference of communication networks model with respect to the road traffic network one
is that the averaged velocity of packets is supposed to be constant. In that scenario, the
fundamental diagram is then given as follows:

σ
ρ

ρmax

f(ρ)

Figure 2: Fundamental triangular diagram of flow-density scalar conservation laws

We shall see that due to the piecewise linearity of the fundamental diagram and by as-
suming free-flow conditions, we will end up handling linear hyperbolic systems of conservation
laws.

In addition to macroscopic models, compartmental systems are also known as suitable
framework to describe conservation laws in networks. See for instance [36] for the study of the
dynamics of compartmental systems, even with lags representing delays which turn out to be
represented by linear transport equations or linear conservation laws. In [4], congestion control
of compartmental networks is studied, still under fluid-flow modeling, in which they exploit
properties of positive systems to establish stability of the network and prevent congestion by
means of nonlinear controls. In those studies, each node represents a compartment which
contains a variable quantity, e.g. information being processed. Conceptually, a compartment
is a kind of storage device and is typically modeled by ODEs or by PDEs when compartmental
networks have the particularity that the accumulated quantities are distributed on space. Re-
lated works to [4], one can also find nonlinear continuous-time model using fluid-flow approach,
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as introduced in [44] or conservation law-based fluid-flow for network congestion control as in
[7]. Combining network of compartments described either by ODEs or PDEs is an issue to be
address in this thesis. Therefore some preliminary questions may rise concerning the stability
of communication networks:

• Given input flow demands getting into the network, can we establish stability properties
in appropriate sense for the resulting linearized model?

• Moreover, under suitable control actions, can we improve somehow the performance of
the network?

To answer those questions, we will focus on boundary control of coupled PDE-ODEs as we
will see in Chapter 1.

On the other hand, assuming that continuous-time boundary controls of networks are
suitably designed and are able to lead the system to desired behaviors, one may wonder about
possible implementations into digital platforms. More precisely, what about digital control of
PDEs? In this thesis we propose an approach towards that end: event-based control.

About event-based control

Event-based control is a computer control strategy which aims to use communications and
computational resources efficiently by updating control inputs aperiodically, only when needed.
Several works have been developed in this area for finite-dimensional networked control systems
(see for instance the seminal work [1, 70] or the most recent ones [33, 49, 65] and the references
therein). Two components are essential in the framework of event-based control. The first
one is a feedback control law which has been designed to stabilize the system. The second
one is a triggering strategy which determines the time instants when the control needs to be
updated. The most commonly triggering strategy uses a static rule obtained by an Input-to-
State Stability (ISS) property as in [59]. An extension to this strategy is done in [28] where
an internal dynamic is introduced into the triggering rule for which it is possible to reduce the
number of control updates with respect to the static policy. Other approaches, among others,
rely directly on the time derivative of the Lyapunov function ([45, 57]). Besides the interest
of reducing communication and computational loads, event-based control is also known as a
rigorous way to digitally implement continuous-time controllers.

Actually, the design of event-based control strategies for infinite-dimensional systems is
rarely treated in the literature. Extending existing results for ODEs to time-delay systems
can be considered (following the results from e.g. [54]) as proposed for instance in [21];
however, this is quite far from the problem addressed in this thesis. For parabolic PDEs,
event-based control strategies are considered in [55] and [69]. Many difficulties that arise in
the context of event-based control are due to the introduction of discontinuities when updating
the control. Discontinuous output feedback controllers for infinite dimensional systems have



10 Introduction

been studied, for instance in [48], where unit feedback controller and in turn global asymptotic
stabilization are considered. Although, the framework of switched hyperbolic systems [32, 53,
38] is highly inspiring -especially the work in [38]- for dealing with the well-posedness of the
closed-loop solution of such systems under event-based control strategies. In addition, for the
most part of boundary controllers for hyperbolic systems, digital control without reducing the
model has not been studied in general. In fact, for control of PDEs, digital control synthesis
commonly relies on reducing the model by discretizing the space so as one gets ordinary
differential equations. In that case, finite-dimensional approaches for digital control can be
applied. However, without reducing the model, it is not sufficiently clear how fast boundary
continuous-time controllers of hyperbolic PDEs must be sampled in a periodic fashion so as to
implement them into a digital platform. Besides this, in large scale scenarios where sensors and
actuators are distributed, information is transmitted through digital communication channels.
Therefore, the need to reduce energy consumption and save communications resources is also
a key issue.

Naturally some questions may arise around this subject when thinking about boundary
control of hyperbolic PDEs:

• How fast should we sample in periodic fashion continuous-time boundary controllers while
preserving stability properties of the PDE system?

• Can we extend event-based control strategies already developed for finite-dimensional
systems to infinite dimensional systems?

• Can we guarantee both stability properties and the well-posedness of the system under
event-based controllers?

Highly motivated by all aforementioned and in order to answer the above questions, let us
briefly highlight the main contributions of this thesis.

Contributions and structure of the thesis

1. The first contribution of this thesis pertains to the modeling and boundary control of
large scale networks of compartments under fluid-flow modeling, applied to communi-
cation networks as it is going to be presented in Chapter 1. During the study in that
chapter, we will end up with the following coupled linear hyperbolic PDE-ODE, to sub-
sequently study stability analysis and boundary control issues by means of Lyapunov
techniques and LMI formulation:

{

∂ty(t, x) + Λ∂xy(t, x) = 0

Ż(t) = AZ(t) +Gyy(t, 1) +BwW (t) +Dd̃(t)
(3)

with boundary condition
y(t, 0) = GzZ(t) +BuU(t) (4)
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and initial condition
{

y(0, x) = y0(x), x ∈ [0, 1]

Z(0) = Z0
(5)

We give a sufficient condition for ISS stability in open loop, and we perform control
synthesis in a closed-loop setting. Optimization issues are also tackled.

2. In Chapter 2 we introduce the first event-based control approach for linear hyperbolic
systems of conservations laws inspired by the main strategies of event-based control for
finite-dimensional systems. We must say however that the results in that chapter are
only applied to a particular case of system (3)-(5) (communication networks without
buffers i.e. ODE coupling and without exogenous disturbance). Thus, the system to be
studied is of the following form:

∂ty(t, x) + Λ∂xy(t, x) = 0, x ∈ [0, 1], t ∈ R
+ (6)

with boundary condition

y(t, 0) = Hy(t, 1) +Bu(t), t ∈ R
+ (7)

initial condition
y(0, x) = y0(x), x ∈ [0, 1] (8)

and output function
z(t) = y(t, 1) (9)

Using Lyapunov-based techniques in L2-norm, we propose three event-based control
strategies of the form u = ϕ(z) (output feedback) involving the execution time which
determines when control values must be updated. Roughly, it has the following form:

tk+1 = inf{t ∈ R
+|t > tk ∧ some suitable triggering condition}

The analysis of global exponential stability is carried out and we prove that under the
three event-based stabilization approaches, the solution to the closed-loop system exists
and is unique while avoiding Zeno phenomena.

3. Then, in Chapter 3, we consider the problem of stabilization of boundary controlled
linear hyperbolic PDEs where the output measurements are communicated after be-
ing time-sampled and space-quantized. Static and dynamic controllers are designed,
which establish stability in L2- and H1-norms with respect to measurement errors using
Lyapunov-based techniques. We show that the design of sampling algorithms ensures
practical stability.

4. Finally, the last contribution relates to event-based control of linear hyperbolic systems
via Backstepping approach. It is proved that no Zeno phenomena is presented because of
the existence of a minimal dwel-time and then the well-posedness and global exponential
stability of the hyperbolic system are guaranteed. The event-based controller is based on
Lyapunov analysis on the so-called target system that allows to come up with a dynamic
triggering condition. This is presented in Chapter 4.
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Chapter 1

Fluid-flow modeling and boundary

control of communication networks
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This chapter is made up of two parts. The first part deals with fluid-flow modeling under
compartmental representation of networks of conservation laws. The motivating example is
a communication network made up of buffers and transmission lines. The resulting model is
a coupled linear hyperbolic partial differential equation (PDE) with an ordinary differential
equation (ODE) along with a dynamic boundary condition. Two specific control functions
with constraints are studied (namely, routing control and access control). The second part is
devoted to the dynamic boundary control of communication networks. The boundary control
synthesis of the resulting linearized coupled hyperbolic PDE-ODEs is carried by means of
Lyapunov techniques and LMIs formulation. Input-to-state stability of the linearized system
at an optimal equilibrium is guaranteed while minimizing the asymptotic gain due to the
control actions.

1.1 Introduction

We consider that the network studied in this chapter is made up of compartments: one for
the fluid dynamics of servers, composed mainly by buffers (modeled by ODEs), the other
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to represent delays in transmission (if there are), or simply transmission lines modeled by
hyperbolic PDEs. Since we combine both dynamics, the coupling is defined at the boundaries
of the hyperbolic PDEs. It results in what we call, coupled PDE-ODE with dynamic boundary
condition. We aim then at studying the stability of such systems under the assumption that one
wants the system to operate in free-flow zone to avoid congestion. The main contribution here
is the modeling of the network, the study of input-to-state stability properties when operating
at some optimal equilibrium point and the dynamic boundary control synthesis that is carried
out by Lyapunov analysis which leads to sufficient condition for input-to-state stability under
LMIs formulation. In fact, in open-loop setting, one can guarantee ISS without any control
action but the throughput of the networks remains quite far from the desired equilibrium point
and could lead the network to get congested. Then, by means of suitable control actions, we
intend to reduce the impact by allowing the network to operate as close as possible to the
optimal equilibrium. Formally, it translates in a minimization of the asymptotic gain in the
ISS framework. In addition, it turns out that constraints on the control variables must be
respected, thus limitation in amplitude of the gains has to be considered when solving the
LMIs involved in the synthesis. Optimization issues are also considered for the minimization
of the asymptotic gain when performing the control synthesis.

The main results of the first part of this chapter have been condensed in a work accepted
for presentation in [24].

1.2 Fluid-flow modeling

In this section, we present a model of communication networks under compartmental fluid-flow
dynamics using both partial differential equations and ordinary differential equations. Highly
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Figure 1.1: Example of a compartmental network.

inspired by [29], [4] and [5], let us consider an example of a general network depicted in Figure
1.1 where each node is illustrated in Figure 1.2 and represents a server in which a buffer stores
information to be processed. Variables appearing in Figure 1.2 will be described later on. The
other compartments considered in this network are the transmission lines when delays in time
may exist. Flow of information will be denoted by qij that will be properly characterized later
on. The fact of considering delays in transmission (not buffer delays) allows to enrich the
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Figure 1.2: Compartment: buffer.

model introduced in [29] where delays are not taken into account. Actually, they assume that
the flow transfer is instantaneous between buffers. In this work we will consider rather that
traffic flow takes a while in traveling from one buffer to another. We assume that the network
is a directed graph in which the directed arcs i → j of the network represent instantaneous
mass transfers between compartments (more precisely, between servers compartments and
transmission line compartments). As already mentioned, if there are time delays, they can be
enclosed into compartments representing the transmission lines by transport equations with
positive velocities. We assume that traffic flow may be routed to different compartments of
the network until reaching the destination. That routing mechanism is assumed to be located
the end of the server compartments.

Under the proposed general topology of compartments, transmission lines are modeled by
the following nonlinear conservation law ([16, 14])

∂tρij(t, x) + ∂xfij(ρij(t, x)) = 0, i ∈ In, j ∈ Di (1.1)

for all x ∈ [0, 1], t ∈ R
+, where ρij and fij(ρij) are the density and flow of packets respectively

and σij is a critical density closely related to the probability of loosing packets.
In is the set of the number of compartments, numbered from 1 to n and Di is the index set
of downstream compartments connected directly to compartment i.

fij(ρij) =

{

λijρij , if 0 ≤ ρij ≤ σij

λij(2σij − ρij), if σij ≤ ρij ≤ ρmax
ij , i ∈ In, j ∈ Di

(1.2)

Figure 1.3 shows the so-called fundamental diagram of flow-density.

For ρij ≤ σij , the network is said to be in free-flow. For ρij ≥ σij , the network is said to
be congested. Note that this fundamental diagram is quite similar to the one used in road
traffic networks (see e.g. [67, Chapter 8] for CTM models). In communication networks, the
averaged velocity of packets is supposed to be constant. The macroscopic model (1.1) has
been validated in [15].

In this work, we assume the specific case when each flow is a static monotonic increasing
function of the density ρij. Under this assumption, the flow fij(ρij) equals λijρij , for 0 ≤
ρij ≤ σij, where λij is the average velocity of packets among buffers traveling through the
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σij
ρijρmax

ij

f(ρij)

Figure 1.3: Fundamental triangular diagram of flow-density

transmission line. Let us denote the flow fij(ρij) := qij (as appeared in Figure 1.1). We
will focus on the case in which the network operates in free-flow and we will study Lyapunov
stability properties on the network when operating in this zone. This case implies that,
according to (1.2), qij = λijρij for 0 ≤ ρij ≤ σij. Therefore

∂tρij(t, x) =
1
λij
∂tqij(t, x).

Replacing it in (1.1), we obtain the linear hyperbolic system as kinematic wave equations (as
in [5]), that is

∂tqij(t, x) + λij∂xqij(t, x) = 0, i ∈ In, j ∈ Di (1.3)

Concerning the modeling of buffers (as illustrated in Figure 1.2), let us consider the balance
equation for each buffer i ∈ In as follows:

żi(t) = vi(t)− ri(zi(t)) (1.4)

where vi is the sum of all input flows getting into the buffer and ri is the output flow of the
buffer. It will be characterized later as the processing rate function. The traffic flow may
be routed to different compartments of the network until reaching the destination and can
be modulated by suitable actuators. On one hand, we have control actions uij(·) devoted
to route the flow of information through different paths of the network. In this work, they
are time-varying and represent continuous time control values, that we call routing splitting
controls. The routing takes place at the output of the server. On the other hand, we have
control actions wi(·), access control, devoted to reject packets (traffic flow) before they enter
to the buffers. Therefore, with vi(t) = wi(t)(di(t) +

∑

k 6=i
k∈Ui

qki(t, 1)), we obtain

żi(t) = wi(t)di(t) +
∑

k 6=i
k∈Ui

wi(t)qki(t, 1) − ri(zi(t)) (1.5)

where

• di(t) is the external input flow demands. Note that di ≡ 0 as long as i /∈ Iin;

• ∑ k 6=i
k∈Ui

qki(t, 1) are the flows coming from the transmission line connecting upstreams

compartments Ui;
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• wi(t) is the access control to buffer i, with 0 ≤ wi(t) ≤ 1,

It represents the rate of accumulation of quantity zi. Hence, we have that while di(t) is the
actual input flow demand, then widi is a fraction of such a demand and wi(t)qki(t, 1) is a
fraction of the incoming flow entering to the buffer i. The output flow ri(zi) (processing rate
function) of each buffer is considered as the ratio between the quantity zi and the residence
time. It is given as follows (see [29, Chapter 2])

ri(zi) =
zi

θi(zi)

The residence time is the averaged time at which packets stay in the server when being
processed:

θi(zi) =
1 + zi
ǫi

(1.6)

with ǫi > 0 as the maximal processing capacity of each server. Hence, the processing rate
function is given by

ri(zi) =
ǫizi

1 + zi
(1.7)

It can be can noticed that ri(zi) is a positive bounded function of the quantity zi (0 ≤ ri(zi) <

ǫi).

On the other hand, regarding the routing splitting control, the boundary condition for the
linear hyperbolic system (1.3) is as follows:

qij(t, 0) = uij(t)ri(zi(t)) (1.8)

with 0 ≤ uji(t) ≤ 1, j ∈ Di, i ∈ In. In fact i ∈ R (index set of routing compartments).
Note that the left boundary condition (1.8) depends on the state variable zi, being this one
a solution to the ODE system (1.5). In that sense, we shall consider in the sequel that
the boundary condition of the linear hyperbolic PDE is a dynamic boundary one. The left-
boundary condition itself is enough to be considered in the whole model for the study of
well-posedness and stability issues.

Finally, the output function for each output compartment i ∈ Iout (index set of outputs
compartments) is given by

ei(t) = ui(t)ri(zi(t)) (1.9)

with
∑

i6=j
j∈Di

uij(t) + ui(t) = 1 (ui(t) ≡ 0 if i /∈ Iout). The complete model, for the network as

depicted in Figures 1.1 and 1.2, is then:






∂tqij(t, x) + λij∂xqij(t, x) = 0, i ∈ In, j ∈ Di

żi(t) = wi(t)di(t) +
∑

k 6=i
k∈Ui

wi(t)qki(t, 1) − ri(zi(t))
(1.10)

with dynamic boundary condition

qij(t, 0) = uij(t)ri(zi(t)), ri ≥ 0 (1.11)
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output function
ei(t) = ui(t)ri(zi(t)) (1.12)

and initial conditions
{

qij(0, x) = q0ij(x), x ∈ [0, 1]

zi(0) = z0i
(1.13)

1.3 Optimal operating point characterization

On one hand, we want the network to operate at some equilibrium point, to be precise, at some
free-flow steady-state. On the other hand, since we are going to deal with input flow demands,
we aim at studying the influence of those inputs over the stability of the network. Therefore,
input-to-state stability (ISS) property with respect to those inputs by using Lyapunov analysis
will be addressed for the corresponding linearized system.

Let us first characterize the operating point.

1.3.1 Free-flow steady-state characterization

For a given constant input flow demand d∗i , system (1.10)-(1.13) has infinitely many equilib-
rium points {q∗ij , q∗ki, z∗i , u∗ij , u∗i , w∗

i , e
∗
i } with q∗ij time and space invariant. Decision variables

are u∗ij and w∗
i related to the routing control and the access control respectively. Equilibrium

points satisfy the following algebraic equations:














w∗
i d

∗
i +

∑

k 6=i
h∈Ui

w∗
i q

∗
ki − ri(z

∗
i ) = 0

q∗ij = u∗ijri(z
∗
i )

e∗i = u∗i ri(z
∗
i )

(1.14)

We assume then that the system admits a free-flow steady-state. Among all possible equilib-
rium points, we choose the free-flow steady-state that meets some performance criterion for
the network. Inspired by road traffic networks where two usual performance metrics such as
the total travel time (TTT) and total travel distance (TTD) are considered (see e.g. [67]),
here we focus on a particular static case:

1) Maximizing the total output flow rate of the network. The first optimization objective is
as follows:

maximize J1 =
∑

i∈Iout
e∗i (1.15)

2) Minimizing the total mean travel time (TMTT ). In each compartment i ∈ In, information
is processed and it takes some time according to the residence time θi(zi) before it is sent
through the transmission line. Besides this, there is a time propagation given by 1

λij
due

to the transport equation. Let us denote the total travel time in each compartment i by
Ti = θi(z

∗
i ). We do not give any explicit formula of the TMTT because of the complexity that
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the network topology might have, but we explain the approach to compute it. The first issue
worth remarking is that in this framework, there are no cycles in the network. It implies that
there is a finite number of possible paths that the information flow can follow from input
compartments until output compartments. Therefore, looking at each input-output path,
the sum of total times Ti of compartments involved in along with time propagation between
compartments 1

λij
, is weighted by the effective output flow which travels through them. In

order to homogenize, the result is divided by the sum of the output flows of the whole network.
Repeating the same procedure with every input-output path and adding the obtained weighted
average value, the total mean travel time can be deduced accordingly. In Section 1.6, a specific
example is provided to better illustrate the idea. Hence, the second optimization objective is
as follows:

minimize J2 = TMTT (1.16)

Let us call J = α(−J1) + (1 − α)J2 the cost function with weighting coefficient α ∈ [0, 1]. J
is a nonlinear function to be minimized subject to (1.14) along with the following constraints
related to:
(1) free-flow conditions over the linear hyperbolic system:

q∗ij ≤ σijλij

(2) control variables:

0 ≤ u∗ij ≤ 1, 0 ≤ w∗
i ≤ 1, 0 ≤ u∗i ≤ 1,

∑

i6=j
j∈Di

u∗ij + u∗i = 1

1.3.2 Linearization around the free-flow steady-state

Defining the deviations yij = qij − q∗ij , Zi = zi − z∗i , Uij = uij − u∗ij ,Wi = wi − w∗
i and

d̃i = di − d∗i , ẽi(t) = ei(t) − e∗i the linearization of the coupled PDE-ODE system in (1.10)
with dynamic boundary condition (1.11) and initial condition (1.13) around the optimal free-
flow equilibrium is given by






∂tyij(t, x) + λij∂xyij(t, x) = 0, i ∈ In, j ∈ Di

Żi(t) = d∗iWi(t) + w∗
i d̃i(t) +

∑

k 6=i
k∈Ui

q∗kiWi(t) +
∑

k 6=i
k∈Ui

w∗
i yki(t, 1)− r

′

i(z
∗
i )Zi(t)

(1.17)

with dynamic boundary condition

yij(t, 0) = u∗ijr
′

i(z
∗
i )Zi(t) + ri(z

∗
i )Uij(t), i ∈ In, j ∈ Di, (1.18)

output function
ẽi(t) = u∗i r

′

i(z
∗
i )Zi(t) + ri(z

∗
i )Ui(t), (1.19)

and initial conditions
{

yij(0, x) = y0ij(x), x ∈ [0, 1]

Zi(0) = Z0
i .

(1.20)
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Recall that
∑

i6=j
j∈Di

uij(t) + ui(t) = 1 and
∑

i6=j
j∈Di

Uij(t) + Ui(t) = 0. We remark that since

ui(t) ≡ 0, u∗i ≡ 0 if i /∈ Iout, thus, Ui(t) ≡ 0 as well.

The system (1.17)-(1.20) can be written in matrix form as
{

∂ty(t, x) + Λ∂xy(t, x) = 0

Ż(t) = AZ(t) +Gyy(t, 1) +BwW (t) +Dd̃(t)
(1.21)

with boundary condition
y(t, 0) = GzZ(t) +BuU(t) (1.22)

and initial condition
{

y(0, x) = y0(x), x ∈ [0, 1]

Z(0) = Z0
(1.23)

where y : R+ × [0, 1] → R
m with m given by

m :=
∑

i∈In
card(Di) (1.24)

Λ is a diagonal positive definite matrix in R
m×m such that Λ = diag(λij), i ∈ In, j ∈ Di.

W : R+ → R
n, Z : R+ → R

n and U : R+ → R
l where l is given by :

l :=
∑

i∈R
(card(Di)− 1) +

∑

i∈R∩Iout
card(Di)

and

• A := diag(−r′i(z∗i )) ∈ R
n×n;

• Gy ∈ R
n×m with Gy[i, j] = w∗

i if j ∈ Ui or Gy[i, j] = 0 otherwise;

• Bw := diag(d∗i +
∑

k 6=i
k∈Ui

q∗ki) in R
n×n (di ≡ 0 as long as i /∈ Iin);

• D is a diagonal matrix in R
n×n whose diagonal entries are w∗

i if i ∈ Iin or 0 otherwise.

The rest of matrices are of appropriate dimension and their detailed characterization are
given in [24].

Remark 1.1
U in (1.22) can be built by only taking into account certain constraints. For instance, at each
routing compartment i ∈ R, we would have Ui(t) = −∑ i6=j

j∈Di

Uij(t), j ∈ Di. This fact will

allow to reduce the dimension of the control function which might be helpful for simulation
tractability purposes, especially when the network has several routing compartments.

It remains to say that d̃(t) is the input flow that can be viewed in the sequel as an input
disturbance. We assume that d̃ is in Cpw(R+;Rn). Finally, y(0, x) = y0(x) ∈ L2([0, 1];Rm)

and Z(0) = Z0 ∈ R
n.
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1.4 Input-to-state stability analysis in open loop

Let us define the notion of input-to-state stability for the system (1.21)-(1.23).

Definition 1.1 (Input-to-state stability ISS)
The system (1.21)-(1.23) is input-to-state stable (ISS) with respect to d̃ ∈ Cpw(R+;Rn), if there
exist ν > 0, C1 > 0 and C2 > 0 such that, for every Z0 ∈ R

n, y0 ∈ L2([0, 1];Rm), the solution
to (1.21)-(1.23) satisfies, for all t ∈ R

+,

(

‖Z(t)‖2 + ‖y(t, ·)‖2L2([0,1],Rm)

)

≤ C1e
−2νt

(

‖Z0‖2 + ‖y0‖2L2([0,1];Rm)

)

+ C2 sup
0≤s≤t

‖d̃(s)‖2

(1.25)

C2 is called the asymptotic gain.

Theorem 1.1 (Input-to-state stability analysis in open-loop)
Let λ = min{λij} i∈In

j∈Di

. Assume that there exist µ, γ > 0, a symmetric positive definite matrix

P ∈ R
n×n and a diagonal positive matrix Q ∈ R

m×m such that the following matrix inequality
is satisfied:

Mo =





ATP + PA+GT
z QΛGz + 2µλP PGy PD

⋆ −e−2µQΛ 0

⋆ ⋆ −γI



 ≤ 0 (1.26)

Then, the system (1.21)-(1.23) is input-to-state stable (ISS) with respect to inputs d̃ ∈
Cpw(R+;Rn), and the asymptotic gain satisfies

C2 ≤
γ

2µλ
e2µ. (1.27)

Proof. Let us consider the following Lyapunov function V defined for all y ∈ L2([0, 1];Rn)

and Z ∈ R
n as follows:

V (y, Z) = ZTPZ +

∫ 1

0
yT e−2µxQydx (1.28)

Computing the time derivative of V along the solutions of (1.21) with the boundary condition
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(1.22) yields to:

V̇ =ŻTPZ + ZTPŻ + yT (·, 0)QΛy(·, 0) − yT (·, 1)e−2µQΛy(·, 1)

− 2µ

∫ 1

0
yT (Λe−2µxQ)ydx

=(AZ +Gyy(·, 1) +Dd̃)TPZ + ZTP (AZ +Gyy(·, 1) +Dd̃) + ZTGT
z QΛGzZ

− yT (·, 1)e−2µQΛy(·, 1)− 2µ

∫ 1

0
yT (Λe−2µxQ)ydx

=ZT (ATP + PA+GT
z QΛGz + 2µλP )Z + yT (·, 1)GT

y PZ + ZTPGyy(·, 1)
− yT (·, 1)e−2µQΛy(·, 1) + d̃TDTPZ + ZTPDd̃

− 2µλZTPZ − 2µ

∫ 1

0
yT (Λe−2µxQ)ydx

Since Q is a diagonal positive definite matrix, λQ ≤ ΛQ. Taking ν = µλ, it follows

V̇ ≤− 2νZTPZ − 2ν

∫ 1

0
yTQye−2µxdx

+ ZT (ATP + PA+GT
z QΛGz + 2µλP )Z

− yT (·, 1)e−2µQΛy(·, 1) + yT (·, 1)GT
y PZ + ZTPGyy(·, 1)

+ d̃TDTPZ + ZTPDd̃

(1.29)

Adding γ‖d̃‖2 − γ‖d̃‖2 to (1.29), for some γ > 0, we have

V̇ ≤− 2νV +





Z

y(·, 1)
d̃





T

Mo





Z

y(·, 1)
d̃



+ γ‖d̃‖2

where Mo is defined as (1.26). Therefore, as long as Mo ≤ 0, we have

V̇ ≤ −2νV + γ‖d̃‖2 (1.30)

On the other hand, the Lyapunov function (1.28) can be bounded as follows ([61]):

λmin(P )‖Z(t)‖2 + e−2µλmin(Q)‖y(t, ·)‖2L2([0,1];Rn) ≤ V (y(t, ·), Z(t))
≤ λmax(P )‖Z(t)‖2 + λmax(Q)‖y(t, ·)‖2L2([0,1];Rn)

(1.31)

where λmin(·) and λmax(·), are the minimum and maximum eigenvalues of the matrix under
consideration. Furthermore, without loss of generality, P and Q are such that the following
inequality holds:

e−2µ(‖Z(t)‖2 + ‖y(t, ·)‖2L2([0,1];Rm)) ≤ e−2µ(λmin(P )‖Z(t)‖2 + λmin(Q)‖y(t, ·)‖2L2([0,1];Rm))

≤ V (y(t, ·), Z(t))
≤ λmax(P )‖Z(t)‖2 + λmax(Q)‖y(t, ·)‖2L2([0,1];Rm)

(1.32)



1.5. Closed-loop setting: dynamic boundary control 23

From (1.30) and (1.32), one can claim that the Lyapunov function (1.28) is an ISS-
Lyapunov function. This implies global exponential stability as soon as d̃ ≡ 0. Moreover,
using the Comparison principle, from (1.30), we have

V (t) ≤e−2νtV (0) +

∫ t

0
e−2ν(t−s)γ‖d̃(s)‖2ds

≤e−2νtV (0) + e−2νt

∫ t

0
e2νsγ‖d̃(s)‖2ds

≤e−2νtV (0) + γ‖d̃‖2∞e−2νt

∫ t

0
e2νsds

≤e−2νtV (0) + γ
2ν ‖d̃‖2∞ − γ

2ν ‖d̃‖2∞e−2νt

with ‖d̃‖∞ = sups∈[0,t] ‖d̃(s)‖. Hence,

V (t) ≤ e−2νtV (0) + γ
2ν ‖d̃‖2∞ (1.33)

Using the bounds of the Lyapunov function as given in (1.32), it is deduced that

‖Z(t)‖2 + ‖y(t, ·)‖2L2([0,1];Rm)

≤ e2µe−2νt
(

λmax(P )‖Z0‖2 + λmax(Q)‖y0‖2L2([0,1];Rm)

)

+ γ
2ν e

2µ‖d̃‖2∞

(1.34)

Hence,

‖Z(t)‖2 + ‖y(t, ·)‖2L2([0,1];Rm)

≤C1e
−2νt

(

‖Z0‖2 + ‖y0‖2L2([0,1];Rm)

)

+ γ
2ν e

2µ‖d̃‖2∞ (1.35)

with C1 = max{λmax(P ), λmax(Q)}e2µ. Therefore, the system (1.21) satisfies the ISS property
with respect to the disturbance input d̃. The asymptotic gain satisfies

C2 ≤
γ

2ν
e2µ. (1.36)

It concludes the proof of Theorem 1.1.

1.5 Closed-loop setting: dynamic boundary control

Since we deal with input flows demands that are viewed as perturbations, it has been provided,
in the previous subsection, a sufficient condition for the system (1.21)-(1.23) to be ISS in open-
loop with respect to those inputs. In this section, we are interested in designing control actions
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in order to minimize the asymptotic gain obtained in open loop. It can be carried out by means
of a closed-loop setting using the following control functions,

W (t) =
[

Kz Ky

]

[

Z(t)

y(t, 1)

]

; U(t) =
[

Lz Ly

]

[

Z(t)

y(t, 1)

]

with Kz ∈ R
n×n, Ky ∈ R

n×m, Lz ∈ R
l×n and Ly ∈ R

l×m named as control gains in the
sequel. Therefore, the linearized coupled PDE-ODE system (1.21)-(1.23) becomes:

{

∂ty(t, x) + Λ∂xy(t, x) = 0

Ż(t) = (A+BwKz)Z(t) + (Gy +BwKy)y(t, 1) +Dd̃(t)
(1.37)

with dynamic boundary condition

y(t, 0) = (Gz +BuLz)Z(t) +BuLyy(t, 1) (1.38)

and initial condition
{

y(0, x) = y0(x), x ∈ [0, 1]

Z(0) = Z0.
(1.39)

1.5.1 Well-posedness of the system in closed loop

The existence and uniqueness of solutions for a coupled ODE-Hyperbolic system have been
studied in [3, Appendix A] in the case when no external inputs are present. In our frame-
work, we deal with external inputs d̃ that are assumed to be in Cpw and that introduce some
discontinuities, but the resulting solutions are absolutely continuous. This problem is in fact
quite similar to the one in [63] where the well-posedness has been deeply developed using the
semi-group approach. Hence, results in [63, Chapter 3] (in turn inspired by [13, Chapter 3])
may be applied to our framework. Without enter in full details about the proof, let us only
sketch the main ideas on how the claim may be verified:

• Consider first the operator A as follows:

dom(A) =
{

(y, Z) ∈ H1([0, 1];Rm)× R
n;

[

y(0)

Z

]

=

(

BuLy (Gz +BuLz)

0 I

)[

y(1)

Z

]

}

A

[

y

Z

]

=

( −Λyx
A+BwKz

)

along with a perturbation operator B : H1([0, 1];Rm) × R
n → H1([0, 1];Rm) × R

n as
follows:

B

[

y

Z

]

=

(

0 0

Gy +BwKy 0

)[

y(1)

Z

]

Setting X = (y, Z)T and using these operators, one can write the closed-loop system
(1.37)-(1.39) in abstract formulation as follows:

Ẋ (t) = AX (t) +BX (t) +

[

0

D

]

d̃(t)
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X 0 ∈ dom(A)

Having stated that, it can be proved that

– A is quasi-dissipative;

– the adjoint A
∗ is quasi-dissipative;

– the operator A is closed and dom(A) is dense in L2([0, 1];Rm)× R
n.

Consequently, one can use the Lumer-Phillips theorem (see e.g. [13, Corollary 2.2.3]) to
conclude that A is an infinitesimal generator of a C

0- semigroup.

• Then, it can be proved that B is a linear bounded operator. Hence, using [13, Theorem
3.2.1], it can be proved that the operator A +B is an infinitesimal generator of a C0−
semigroup as well.

• Finally, using [13, Theorem 3.1.7] and under suitable compatibility conditions, one could
end up with solutions y ∈ C0([0, T ];H1([0, 1];Rm)) and Z ∈ C0([0, T ];Rn).

Remark 1.2
In open loop, with W (t) = 0 and U(t) = 0, the previous result of well-posedness also applies.

1.5.2 ISS control synthesis without constraints

In this subsection we first study the control synthesis without any constraint on the control
gains. Next, we will add some optimization objective which results in the minimization of the
asymptotic gain.

Theorem 1.2 (Control synthesis)
Let λ = min{λij} i∈In

j∈Di

. Assume that there exist µ, γ > 0, a symmetric positive definite matrix

P ∈ R
n×n a diagonal positive matrix Q ∈ R

m×m, as well as control gains Kz ∈ R
n×n,

Ky ∈ R
n×m, Lz ∈ R

l×n and Ly ∈ R
l×m such that the following matrix inequality, holds :

Mc =





M1 M2 M3

⋆ M4 0

⋆ ⋆ M5



 ≤ 0 (1.40)

with

• M1 := ATP + PA+ 2µλP + GT
z QΛGz;

• M2 := PGy + GT
z QΛBuLy;

• M3 := PD;

• M4 := −e−2µQΛ+ LT
yB

T
uQΛBuLy;
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• M5 := −γI.

where














A := A+BwKz

Gz := Gz +BuLz

Gy := Gy +BwKy

(1.41)

Then, the closed-loop system (1.37)-(1.39) is input-to-state stable (ISS) with respect to
inputs d̃ ∈ Cpw(R+;Rn), and the asymptotic gain C2 satisfies

C2 ≤
γ

2ν
e2µ. (1.42)

with ν = µλ.

Remark 1.3
Particularizing the previous result with Kz = 0, Ky = 0, Lz = 0 and Ly = 0, we obtain
Theorem 1.1.

Proof. Proceeding similarly as the proof of Theorem 1.1, let us bring back the following
Lyapunov function V (as in (1.28)) defined for all y ∈ L2([0, 1];Rm) and Z ∈ R

n as follows:

V (y, Z) = ZTPZ +

∫ 1

0
yTQye−2µxdx (1.43)

Computing the time derivative of V along the solutions of (1.37), integrating by parts and
using the boundary condition (1.38) yields to:

V̇ =ZT
(

ATP + PA+KT
z B

T
wP + PBwKz + 2µλP +GT

z QΛGz

+GT
z QΛBuLz + LT

z B
T
uQΛGz + LT

z B
T
uQΛBuLz

)

Z

+ yT (·, 1)
(

− e−2µQΛ + LT
yB

T
uQΛBuLy

)

y(·, 1)
+ yT (·, 1)

(

GT
y P +KT

y B
T
wP + LT

yB
T
uQΛGz + LT

yB
T
uQΛBuLz

)

Z

+ ZT
(

PGy + PBwKy +GT
z QΛBuLy + LT

z B
T
uQΛBuLy

)

y(·, 1)

+ d̃TDTPZ + ZTPDd̃− 2µλZTPZ − 2µ

∫ 1

0
yT (ΛQ)ye−2µxdx

Since Q is a diagonal positive definite matrix, λQ ≤ ΛQ. Taking ν = µλ, it follows

V̇ ≤− 2νZTPZ − 2ν

∫ 1

0
yTQye−2µxdx

+ ZT
(

ATP + PA+KT
z B

T
wP + PBwKz + 2µλP +GT

z QΛGz

+GT
z QΛBuLz + LT

z B
T
uQΛGz + LT

z B
T
uQΛBuLz

)

Z

+ yT (·, 1)
(

− e−2µQΛ + LT
yB

T
uQΛBuLy

)

y(·, 1)
+ yT (·, 1)

(

GT
y P +KT

y B
T
wP + LT

yB
T
uQΛGz + LT

yB
T
uQΛBuLz

)

Z

+ ZT
(

PGy + PBwKy +GT
z QΛBuLy + LT

z B
T
uQΛBuLy

)

y(·, 1)
+ d̃TDTPZ + ZTPDd̃

(1.44)
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Adding γ‖d̃‖2 − γ‖d̃‖2 to (1.44), for some γ > 0, we have

V̇ ≤− 2νV +





Z

y(·, 1)
d̃





T

Mc





Z

y(·, 1)
d̃



+ γ‖d̃‖2

where Mc is defined as (1.40). Therefore, as long as Mc ≤ 0, we have

V̇ ≤ −2νV + γ‖d̃‖2

The rest of the proof follows the same lines of the proof of Theorem 1.1. Hence, we conclude
the proof of Theorem 1.2.

Remark 1.4
Finding the control gains for Theorem 1.2, may lead to obtain, in the worst case, the same
asymptotic gain as in the open-loop case. Let us recall that the control objective is to minimize
the asymptotic gain. One way to minimize it, is minimizing an estimate of an upper bound
of it. Therefore we could just take as objective function γ

2ν e
2µ, subject to Mc ≤ 0. We do not

handle directly this optimization problem but an extension of it while including some constraints
on the control gains. We are going to present it in the sequel.

1.5.3 ISS control synthesis with constraints

Due to the nature of the communication network (1.10)-(1.13) where the two control functions
are involved, it is important to point out that one must take into account the constraints on
those control variables, i.e. uij(t) ∈ [0, 1] and wi(t) ∈ [0, 1], j ∈ Di, i ∈ In. It implies
in turn constraints on the control functions for the linearized system (1.21)-(1.23). That is,
Uij(t) ∈ [−u∗ij, 1 − u∗ij ] and Wi(t) ∈ [−w∗

i , 1 − w∗
i ]. Therefore, putting suitable constraints on

the norm of the gains Kz, Ky, Lz and Ly, would result on the desired control constraints for
some initial conditions. It is important however to point out that we have to impose Ly = 0

in order to well handle some technical issues in our analysis as we will see in Proposition 1.1.

Let us first define the set of admissible initial conditions to be considered in the sequel.

Definition 1.2
Let E0 be the set of all admissible initial conditions and input disturbances for the closed-loop
system (1.37)-(1.39) as follows:

E0 =
{

Z0 ∈ R
n; y0 ∈ L2([0, 1];Rm); d̃ ∈ Cpw(R+;Rn)|

(

e2µλmax(P )‖Z0‖2 + e2µλmax(Q)‖y0‖2L2([0,1],Rm)

)

+ γ
2ν e

2µ sup
s∈[0,∞)

‖d̃(s)‖2 ≤ M2
}

for a given M > 0.
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The problem now is to find the control gains Kz, Ky, Lz with limitation on amplitude
such that the control functions for the closed-loop system (1.37)-(1.39) satisfy

{

‖Wi(t)‖ ≤ min{| − w∗
i |, |1 − w∗

i |} = δwi

‖Uij(t)‖ ≤ min{| − u∗ij|, |1 − u∗ij|} = δuij i ∈ In, j ∈ Di

(1.45)

and that hypothesis of Theorem 1.2 hold.

Proposition 1.1
Let Z0, y0, d̃ be in E0. Let δwi , δuij be given and p ∈ [0, 1]. If βz = M, βy =

√
∑m

k=1 ‖GT
z (k)‖2M

and ‖Kzi‖ ≤ pδwi
βz

, ‖Kyi‖ ≤ (1−p)δwi
βy

, ‖Lzi‖ ≤ δuij
βz

, then, for all t ≥ 0, ‖Z(t)‖ ≤ βz, ‖y(t, 1)‖ ≤
βy, and (1.45) holds.

Proof. From (1.34) note that, for all t ≥ 0,

‖Z(t)‖2 + ‖y(t, ·)‖2L2([0,1];Rm) ≤ e2µλmax(P )‖Z0‖2 + e2µλmax(Q)‖y0‖2L2([0,1];Rm) +
γ
2ν e

2µ‖d̃‖2∞

Since Z0, y0, d̃ are in E0, it follows from (1.45) that

‖Z(t)‖2 + ‖y(t, ·)‖2L2([0,1];Rm) ≤ M2 (1.46)

Therefore, from the previous inequality it holds also that, on one hand, for all t ≥ 0, ‖Z(t)‖2 ≤
M2. In particular, for t ≥ 1

λ
, ‖Z(t− 1

λ
)‖2 ≤ M2.

On the other hand, using the characteristic solutions of the linear hyperbolic system in
(1.37), we have, for t ≥ 1

λ
,

yk(t, 1) = yk(t− 1
λk
, 0), k = 1, ...,m (1.47)

using the boundary condition (1.38) with Ly = 0, and recalling the notation in (1.41), we
obtain

yk(t, 1) = GT
z [k]Z(t− 1

λk
) k = 1, ...,m (1.48)

Let us then deduce an upper bound for ‖y(t, 1)‖ as follows. Observe that

‖y(t, 1)‖2 =

m
∑

k=1

y2k(t, 1) (1.49)

Replacing (1.48) into (1.49), we get

‖y(t, 1)‖2 =
m
∑

k=1

(

GT
z [k]Z(t− 1

λk
)
)2

≤
m
∑

k=1

‖GT
z (k)‖2‖Z(t− 1

λk
)‖2

≤
m
∑

k=1

‖GT
z (k)‖2M2

(1.50)
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Therefore, ‖y(t, 1)‖ ≤ βy.

Next, by remarking that δwi ≥ pδwi
βz
βz +

(1−p)δwi
βy

βy and using the hypothesis, let us consider
the following inequalities:

pδwi
βz

βz +
(1− p)δwi

βy
βy ≥ pδwi

βz
‖Z(t)‖+ (1− p)δwi

βy
‖y(t, 1)‖

≥ ‖Kzi‖‖Z(t)‖ + ‖Kyi‖‖y(t, 1)‖
≥ ‖KziZ(t)‖+ ‖Kyiy(t, 1)‖
≥ ‖KziZ(t) +Kyiy(t, 1)‖

(1.51)

Knowing that W (t) =
[

Kz Ky

]

[

Z(t)

y(t, 1)

]

and that each component is given by Wi(t) =

KziZ(t) +Kyiy(t, 1), then, from (1.51) we finally obtain that

‖Wi(t)‖ ≤ δwi

The same analysis applies for Uij(t) to end up with ‖Uij(t)‖ ≤ δuij . It concludes the proof.

By just extending what was stated in Remark 1.4, the optimization problem can be for-
mulated as a constrained optimization one by putting the conditions on the control gains
provided in Proposition 1.1, that is,

Problem 1.1

minimize
γ

2ν
e2µ

subject to Mc ≤ 0; (1.52)

‖Kzi‖ ≤ pδwi
βz

; ‖Kyi‖ ≤ (1− p)δwi
βy

; ‖Lzi‖ ≤
δuij
βz

The constraints of this problem however must be well transformed in order to handle them
numerically. This concerns the main result of this subsection. Before we state the main result,
let us consider the following proposition which is a variation of the result in [25, Proposition
2.6] or in [51, Section 3.2] and is going to be useful during the proof of Theorem 1.3 .

Proposition 1.2
Let δ̃ > 0 be given. If there exist matrices S and T of appropriate dimension and a positive
scalar η̃ such that

(

η̃He(S)− η̃2I T

⋆ δ̃2I

)

≥ 0 (1.53)

then ‖TS−1‖ ≤ δ̃. (He(S) := ST + S).
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Theorem 1.3
Assume that there exist µ, γ > 0, a symmetric positive definite matrix X ∈ R

n×n, a diagonal
positive matrix Q3 ∈ R

m×m, as well as matrices YKz ∈ R
n×n, YKy ∈ R

n×m and YLz ∈ R
l×n

such that:

M̃c =









XAT +AX + 2µλX + Y T
Kz
BT

w +BwYKz GyQ3 +BwYKy D XGT
z + Y T

Lz
BT

u

⋆ −e−2µQ3 0 0

⋆ ⋆ −γI 0

⋆ ⋆ ⋆ −Q3









≤ 0

(1.54)
and

(

ηHe(X)−η2I YKz

⋆

(

pδwi
βz

)2

I

)

≥ 0;

(

ηHe(X)−η2I YLz

⋆

(

δuij
βz

)2

I

)

≥ 0

(

ηHe(Q3)−η2I YKy

⋆

(

(1−p)δwi
βy

)2

I

)

≥ 0; (1.55)

for some η > 0 and δwi , δuij , βz, βy given in Proposition 1.1.

Then, by setting Kz = YKzX
−1, Ky = YKyQ

−1
3 and Lz = YLzX

−1 it holds ‖YKzX
−1‖ ≤

pδwi
βz

, ‖YKyQ
−1
3 ‖ ≤ (1−p)δwi

βy
and ‖YLzX

−1‖ ≤ δuij
βz

, the constraints on (1.52) are satisfied and
Theorem 1.2 applies.

Proof. The inequality Mc ≤ 0 in (1.52) is a BMI that can be transformed into a proper LMI
(provided µ fixed). To do so, first note that, even with Ly = 0 as we have imposed for our
analysis, Mc given by (1.40) can be rewritten as follows:

Mc =





ATP + PA+ 2µλP PGy PD

⋆ −e−2µQΛ 0

⋆ ⋆ −γI



+





GT
z

0

0



QΛ
(

Gz 0 0
)

≤ 0 (1.56)

Applying the Schur Complement on (1.56) and performing the change of variable Q2 = QΛ

(being Q2 still diagonal), we get that ATP + PA+ 2µλP ≤ 0 and









ATP + PA+ 2µλP PGy PD GT
z

⋆ −e−2µQ2 0 0

⋆ ⋆ −γI 0

⋆ ⋆ ⋆ −Q−1
2









≤ 0 (1.57)

Multiplying on both sides of the previous matrix by a diagonal matrix diag(I,Q−1
2 , I, I), and

performing the change of variable Q3 = Q−1
2 (being Q3 still diagonal), we obtain the following

equivalent matrix inequality








ATP + PA+ 2µλP PGyQ3 PD GT
z

⋆ −e−2µQ3 0 0

⋆ ⋆ −γI 0

⋆ ⋆ ⋆ −Q3









≤ 0 (1.58)
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Now, multiplying on both sides of the previous matrix by a diagonal matrix diag(P−1, I, I, I),
using (1.41) and performing the following change of variables X = P−1, YKz = KzX,
YLz = LzX and YKy = KyQ3, we obtain M̃c given by (1.54). Hence, it can be noticed
that (1.54) is now a LMI (provided µ fixed). Next, applying Proposition 1.2 we have that if
(

ηHe(X)−η2I YKz

⋆ (
pδwi
βz

)2I

)

≥ 0,
(

ηHe(X)−η2I YLz

⋆ (
δuij
βz

)2I

)

≥ 0 and
(

ηHe(Q3)−η2I YKy

⋆ (
(1−p)δwi

βy
)2I

)

≥ 0, for

some η > 0, then ‖YKzX
−1‖ ≤ δwi

pβz
, ‖YLzX

−1‖ ≤ δuij
βz

and ‖YKyQ
−1
3 ‖ ≤ (1−p)δwi

βy
respectively.

Note that the constraints on (1.52) hold for the original variables. An immediate consequence
is that Theorem 1.2 holds. With this, we conclude the proof.

Remark 1.5
When considering the following problem (Problem 1.2) where the objective function in (1.59)
is the same as in Problem 1.1, one can obtain a sub-optimal solution of the Problem 1.1.

Problem 1.2

minimize
γ

2ν
e2µ

subject to M̃c ≤ 0; (M̃c as in (1.54))
(

ηHe(X)−η2I YKz

⋆

(

pδwi
βz

)2

I

)

≥ 0;

(

ηHe(X)−η2I YLz

⋆

(

δuij
βz

)2

I

)

≥ 0

(

ηHe(Q3)−η2I YKy

⋆

(

(1−p)δwi
βy

)2

I

)

≥ 0; (1.59)

Remark 1.6
Note that the objective function in Problem 1.2 is nonlinear, involving variables γ and µ

(ν = λµ). However, in order to numerically handle this optimization problem, we combine
the line search algorithm on µ. In that case, we deal with an optimization problem within the
semi-definite programming framework where the line search on µ leads to successive LMIs.

1.6 Numerical simulations

Let us consider a network under compartmental setting as represented in Figure 1.4 which is
made up of 4 buffers along with 5 transmission lines.

The index sets involved in the example are: In = {1, 2, 3, 4}, Iin = {1}, Iout = {4},
U1 = ∅, U2 = {1}; U3 = {1, 2}, U4 = {2, 3}, D1 = {2, 3}, D2 = {3, 4}, D3 = {4}, D4 = ∅.
Consider then the model (1.10)-(1.12) introduced in Section 1.2. We assume that the system
admits a free-flow steady-state satisfying (1.14) and according to the constrained optimization
problem described in Subsection 1.3.1. Recall that the cost function to be minimized is
J = α(−J1) + (1 − α)J2 with α chosen according to some decision-maker criteria by means
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z3(t)

q23(t, x)
z4(t)

q24(t, x)

e4(t)

z1(t)

q12(t, x)

z2(t)

q13(t, x)

d1(t)

(1− w1(t))d1(t)

(1− w2(t))q12(t, 1)

(1− w3(t))(q13(t, 1) + q23(t, 1))

(1− w4(t))(q24(t, 1) + q34(t, 1))

q34(t, x)

u24(t)r2(z2(t))

u23(t)r2(z2(t))
u12(t)r1(z1(t))

u13(t)r1(z1(t))

Figure 1.4: Network of compartments made up of 4 buffers and 5 transmission lines.

of the so-called Pareto fronts. Here, J1 = e∗4 according to (1.15). Following the procedure to
compute J2 = TMTT that we have explained in Subsection 1.3.1, we have

TMTT =
(T4 + T2 + T1 +

1
λ24

+ 1
λ12

)(w∗
4(1− u∗23)w

∗
2u

∗
12w

∗
1d

∗
1)

e∗4

+
(T4 + T3 + T1 +

1
λ34

+ 1
λ13

)(w∗
4w

∗
3(1− u∗12)w

∗
1d

∗
1)

e∗4

+
(T4 + T3 + T2 + T1 +

1
λ34

+ 1
λ23

+ 1
λ12

)(w∗
4w

∗
3u

∗
23w

∗
2u

∗
12w

∗
1d

∗
1)

e∗4

with Ti = θi(z
∗
i ), i ∈ In (θi given by (1.6)) that can be obtained using the minimizers

of J , i.e. (w∗
1, w

∗
2, w

∗
3 , u

∗
12, u

∗
23) and d∗1. The linearized system (1.21) around the free-flow

equilibrium has the following matrices: Λ = diag(λ12, λ13, λ23, λ24, λ34), A = diag(−r′i(z∗i ))

with r
′

i(z
∗
i ) = ǫi

(1+z∗i )
2 . Gz =











u∗
12r

′

1(z
∗
1 ) 0 0 0

(1−u∗
12)r

′

1(z
∗
1 ) 0 0 0

0 u∗
23r

′

2(z
∗
2 ) 0 0

0 (1−u∗
23)r

′

2(z
∗
2 ) 0 0

0 0 r
′

3(z
∗
3 ) 0











Gy =

( 0 0 0 0 0
w∗

2 0 0 0 0
0 w∗

3 w∗
3 0 0

0 0 0 w∗
4 w∗

4

)

,

Bw =





d∗1 0 0 0
0 q∗12 0 0
0 0 q∗13+q∗23 0
0 0 0 q∗24+q∗34



, D =

(

w∗
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)

, and Bu =







w∗
1d

∗
1 0

−w∗
1d

∗
1 0

0 w∗
2u

∗
12w

∗
1d

∗
1

0 −w∗
2u

∗
12w

∗
1d

∗
1

0 0






. As initial

conditions, we have taken Z0 = 0.1z∗ and y0(x) = 0.1q∗ for all x ∈ [0, 1].

Let us consider the following network parameters for: i) for the processing capacities; ii)
the transport velocities; and iii) the critical traffic densities for free-flow condition as reported
in Tables 1.1, 1.2 and 1.3. For a given constant input flow demand d∗1 = 100, equilibrium

i)
ǫ1 ǫ2 ǫ3 ǫ4
100 50 80 100

Table 1.1: Processing capacities ǫi, i ∈ In.
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ii)
λ12 λ13 λ23 λ24 λ34
1 1.2 1.7 0.5 2

Table 1.2: Transport velocities λij , i ∈ In, j ∈ Di.

iii)
σ12 σ13 σ23 σ24 σ34
50 50 50 30 100

Table 1.3: Critical traffic densities for free-flow condition σij, i ∈ In, j ∈ Di.

points were found by solving the constrained optimization problem described in Subsection
1.3.1 using the optimization toolbox in Matlab fgoalattain. Nevertheless, one is not able to
guarantee a global minimizer but a local one because the cost function is not convex. We use
a Pareto front of the multi-objective optimization problem J as illustrated in Figure 1.5. We
have chosen α = 0.5. Therefore, we obtained minimizer decision variables for J as reported

z∗1 z∗2 z∗3 z∗4 q∗12 q∗13 q∗23 q∗24 q∗34
19 1.98 13.12 5.6 35 60 18.25 15 74.3

Table 1.4: Steady-states z∗i , q
∗
ij, i ∈ In, j ∈ Di.

in Tables 1.4 and 1.5. With these values, we obtain that J1 = 84.8 and that J2 = 2.19, being
J1 the maximal flow of the network.

We aim first at minimizing the asymptotic gain in open loop subject to (1.26). This
can be formulated as an optimization problem involving a bilinear matrix inequality (BMI),
which can be solved by a line search algorithm (on µ) to get successive LMIs to be solved using
semi-definite programing. At each iteration, hypothesis of Theorem 1.1 are satisfied. Once the

optimization problem is solved, Theorem 1.1 holds with optimal matrices P =

(

1 0 0 0
0 20.96 0 0
0 0 1 0
0 0 0 1.40

)

,

Q =

(

4.25 0 0 0 0
0 3.41 0 0 0
0 0 7.023 0 0
0 0 0 1 0
0 0 0 0 1

)

along with optimal values µ = 0.11, ν = 0.055 and γ = 3.59. Then,

a bound of the asymptotic gain obtained is γ
2ν e

2µ = 40.48.

Then, in closed loop, when solving Problem 1.2, at each iteration, hypothesis of Theorem
1.3 are satisfied. Once the optimization problem is solved, Theorem 1.2 holds with optimal
matrices

P =

(

1 0 0 0
0 1.55 0 0
0 0 1.13 0
0 0 0 1.11

)

, Q =

(

1 0 0 0 0
0 1 0 0 0
0 0 1.08 0 0
0 0 0 1.07 0
0 0 0 0 1.1

)

along with µ = 0.38 and ν = 0.19. γ = 0.58. The values of control gains Kz, Ky and Lz are
given as follows:

Kz =

(−7.26×10−3 0 0 0
0 −2.22×10−3 0 0
0 0 −4.74×10−3 0
0 0 0 −1.65×10−3

)

,
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Figure 1.5: Pareto front.

w∗
1 w∗

2 w∗
3 w∗

4 u∗12 u∗23
0.95 0.95 0.95 0.95 0.36 0.54

Table 1.5: decision variables w∗
i , u

∗
ij , i ∈ In, j ∈ Di.

Ky =

(

0 0 0 0 0
−8.76×10−3 0 0 0 0

0 −8.70×10−3 −8.61×10−3 0 0
0 0 0 −5.24×10−3 −4.99×10−3

)

and

Lz =
(

−4.65×10−4 0 0 0
0 −4.25×10−2 0 0

)

The asymptotic gain is bounded by C2 ≤ γ
2ν e

2µ = 3.3. As we have seen previously, in
open loop (i.e. when Lz = Ky = Kz = 0) such a bound was given by 40.48. Therefore, it
can be observed the benefits of the closed loop setting because we reduced considerably the
asymptotic gain, thus the impact of the input flow demands on the behavior of the network
while converging to desired equilibrium point in free-flow. On a frame of 40s, we close the
loop at t = 1

λ
= 2. Figure 1.7 shows that, as expected from Theorem 1.5.2, V̇ − 2νV − γ‖d̃‖2

is less or equal than zero.

Figure 1.8 shows the total output of the network in open loop (black line) and in closed
loop (red dashed line). It can be observed that thanks to the control actions, we can guarantee
a faster convergence to the equilibrium and it remains closer than the open loop case. For
both cases, the input flow demand has the profile depicted in Figure 1.6. In addition, Figure
1.9 shows the control functions (access control) devoted to reject traffic flow. It can be noticed
that they respect the constraints.
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Figure 1.6: Input flow demand d1(t).
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Figure 1.7: Graph of the function V̇ − 2νV − γ‖d̃‖2.

To finish, let us briefly comment that it turned out that the routing controls do not
contribute too much on the minimization of the asymptotic gain. In fact, the gains are too
small, besides the fact that we also had to impose Ly = 0. Perhaps, when thinking about
other control objectives, the routing control could impact better.

Remark 1.7
Algorithms 1 and 2 in the appendix show how to handle the optimization issues treated in this
chapter.



36
Chapter 1. Fluid-flow modeling and boundary control of communication

networks

5 10 15 20 25 30 35 40

79

80

81

82

83

84

85

86

87

Time[s]

e
4

Figure 1.8: Total output flow of the network: in open loop (black line) and in closed loop (red
dashed line).
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In this chapter, we introduce event-based boundary controls for 1-dimensional linear hy-
perbolic systems of conservation laws. Inspired by event-triggered controls developed for
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punov techniques, is studied. The main contribution of the chapter lies in the definition of
three event-triggering conditions, by which global exponential stability and well-posedness of
the system under investigation is achieved. Some numerical simulations are performed for the
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network considered in Section 1.6 when no buffer dynamics are taken into account.
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2.1 Introduction

We consider in this chapter a particular case of the system dealt in Chapter 1. As we have
mentioned, several example of physical networks modeled by hyperbolic PDEs motivate the
use of boundary control. They all motivate the use of boundary control, specially on event-
based fashion which is actually a realistic approach for the actuator in those systems. In
this chapter we focus on boundary control using Lyapunov techniques where the dissipativity
property of the boundary conditions is an important issue to be taken into account. We
have mentioned also that the framework of switched hyperbolic systems [32, 53, 38] is highly
inspiring -especially the work in [38]- for dealing with the well-posedness of the closed-loop
solution of such systems under event-based control strategies. The main difference of [38]
with respect to the current work is that in [38], no boundary control inputs are considered
but rather switching boundary conditions governed by a switching signal, given as a output
feedback, that imposes the mode in which the system must evolve.

The main contribution that can be highlighted in this chapter is to propose a rigorous
framework for event-based control of linear hyperbolic systems of conservation laws, as well
as three event-based stabilization strategies based on the main triggering strategies developed
for systems described by ODEs called ISS static event-based stabilization, D+V event-based
stabilization and ISS dynamic event-based stabilization in the sequel. The notion of existence
and uniqueness of the solution is treated. It is also established that the number of events in a
bounded time interval is necessarily bounded avoiding the well known Zeno phenomena. To
the author’s knowledge, this work is the first contribution to event-based control for hyper-
bolic PDE systems proposed in the literature. For PDEs, a well known approach for digital
controller synthesis relies on numerical approximations by discretizing the space in order to
get an ODE (see e.g. [19]) on which finite dimensional approaches can be applied. In this
work, the method is completely different and adresses directly the boundary control without
model reduction and the sampling in time of continuous controllers so that implementations
on a digital platform may be carried out in an aperiodic fashion.

The work condensed in this chapter was published in [22] and [23].

2.2 Linear Hyperbolic Systems

Let us consider the linear hyperbolic system of conservation laws (given in Riemann coordi-
nates):

∂ty(t, x) + Λ∂xy(t, x) = 0 x ∈ [0, 1], t ∈ R
+ (2.1)

where y : R+ × [0, 1] → R
n, Λ is a diagonal matrix in R

n×n such that Λ = diag(λ1, · · · , λn)
with 0 < λ1 < λ2 < · · · < λn. We consider the following boundary condition:

y(t, 0) = Hy(t, 1) +Bu(t), t ∈ R
+ (2.2)

where H ∈ R
n×n, B ∈ R

n×m and u : R+ → R
m.

In addition to the partial differential equation (2.1) and the boundary condition (2.2), we
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consider the initial condition given by

y(0, x) = y0(x), x ∈ [0, 1] (2.3)

where y0 ∈ Clpw([0, 1],Rn).

Remark 2.1
The results in this chapter can be extended to first order linear hyperbolic systems with both
negative and positive speeds (λ1 < · · ·λm < 0 < λm+1 < · · · < λn) by defining the state
description y = [y− y+]

T , where y− ∈ R
m and y+ ∈ R

n−m, and applying the change of
variable ỹ(t, x) = [y−(t, 1− x) y+(t, x)]

T .

We shall consider possibly discontinuous inputs u ∈ Crpw(R+,Rm), therefore solutions of
(2.1)-(2.3) may not be differentiable everywhere. Thus, we introduce a notion of weak solutions
(generalized ones) (in Subsection 2.2.1) as well as a sufficient condition for the existence and
uniqueness of the solution for a class of discontinuous initial conditions and feedback laws (in
Subsection 2.2.2).

2.2.1 Solution of the system

We consider solutions of (2.1)-(2.3) in the sense of characteristics [41]. For each component yd
of (2.1), one can define the characteristic curve solution of the differential equation ẋ(t) = λd
which is rewritten as x(t) = x0 + λdt. By doing this, we obtain the following definition (see
[38, Definition 4] for a more general case):

Definition 2.1
Let y0 ∈ Clpw([0, 1],Rn) and u ∈ Crpw(R+,Rm). A solution to (2.1)-(2.3) is a function y :

R
+ × [0, 1] → R

n such that, for all t in R
+ and x0 ∈ [−λdt, 1− λdt],

d

dt
yd(t, x0 + λdt) = 0 (2.4)

with the initial condition
yd(0, x) = y0d(x), ∀x ∈ [0, 1] (2.5)

and the boundary condition

yd(t, 0) =

n
∑

j=1

Hdjyj(t, 1) +

m
∑

j=1

Bdjuj(t), ∀t ∈ R
+ (2.6)

for all d = 1, .., n.

Note that for classical differentiable solutions, (2.1)-(2.3) are equivalent to (2.4)-(2.6) and
note that y does not need to be differentiable nor continuous in general but only differentiable
along the characteristics as given by (2.4).
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In this chapter, we assume that the linear hyperbolic system is only observed at the point
x = 1 at any time. Therefore we define the output function as follows:

z(t) = y(t, 1) (2.7)

2.2.2 A sufficient condition for the existence and uniqueness of the solution

Now that solutions intended in this chapter are properly defined, we will consider the following
causality assumption:

Assumption 2.1
Let ϕ be an operator from Crpw(R+,Rn) to Crpw(R+,Rm) satisfying the following causality
property: for all s in R

+, for all z, z∗ ∈ Crpw(R+,Rn)

(∀t ∈ [0, s], z(t) = z∗(t)) =⇒ (∀t ∈ [0, s], u(t) = u∗(t))

where u = ϕ(z) and u∗ = ϕ(z∗).

This assumption enables us to state the following result on existence of solutions:

Proposition 2.1
Let ϕ satisfy Assumption 2.1 and y0 ∈ Clpw([0, 1],Rn). Then, there exists a unique solution
to the closed-loop system (2.1)-(2.3) with controller u = ϕ(z) where z is defined by (2.7).
Moreover, for all t ∈ R

+ y(t, ·) ∈ Clpw([0, 1],Rn) and for all x ∈ [0, 1] y(·, x) ∈ Crpw(R+,Rn).

Proof. Let us consider λ = max1≤i≤n{λi} and let δ = 1/λ be the minimum time for a
characteristic, with velocity λ, to cross the spatial domain [0,1]. For p ∈ N, let ∆p ⊂ R+

be defined by ∆p = [pδ, (p+ 1)δ]. We will proceed by induction over the interval ∆p with the
following induction property:

• y is defined on ∆p × [0, 1];

• y(·, x) ∈ Crpw(∆p,R
n);

• y(t, ·) ∈ Clpw([0, 1],Rn).

Let us consider, for p = 0, the interval ∆0 = [0, δ]. We first check that y given, for all
(t, x) ∈ ∆0 × [0, 1] and d ∈ {1, . . . , n}, by

yd(t, x) =

{

yd(t− x
λd
, 0), if λdt ≥ x

y0d (x− λdt) , if λdt < x
(2.8)
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is the solution to system (2.1)-(2.3). Equation (2.8) can be written in an equivalent way; that
is, for all t in ∆0, x0 in [−λdt, 1− λdt], the solution at each component is given by

yd(t, x0 + λdt) =

{

yd(
−x0
λd
, 0), if x0 ≤ 0

y0d (x0) , if x0 > 0
(2.9)

Since (2.9) does not depend on t, it is clear that d
dt
yd(t, x0 + λdt) satisfies Definition 2.1,

and hence y is solution to (2.1)-(2.3). Conversely, d
dt
yd(t, x0 + λdt) = 0 implies f(x0) =

yd(t, x0 + λdt) for all t ∈ [0, δ] and x0 ∈ [−λdt, 1 − λdt]. In particular, by setting t = 0, one
gets

f(x0) = yd(0, x0) if x0 > 0

On the other hand, by setting t = −x0
λd

,

f(x0) = yd(−x0
λd
, 0) if x0 ≤ 0

Therefore, we have obtained equation (2.9) and then, shown that it is the unique solution to
(2.1)-(2.3) in the sense of characteristics on ∆0 × [0, 1]. Furthermore, when x = 1, λdt < 1

and for all t ∈ ∆0, one gets
zd(t) = yd(t, 1) = y0d(1− λdt) (2.10)

Since z is well defined on ∆0, using the causality property, one can claim that u is well defined
on ∆0. In addition, using (2.10) and boundary condition (2.6), (2.8) can be rewritten as
follows,

yd(t, x) =

{

∑n
j=1Hdjzj(t− x

λd
) +

∑m
j=1Bdjuj(t− x

λd
), if λdt ≥ x

y0d (x− λdt) , if λdt < x
(2.11)

It is worth remarking that zj(t − x
λd
) = y0j (1 − λdt + x). Then, it is proved that yd depends

uniquely on y0d on ∆0 × [0, 1].
Since y0 belongs to Clpw([0, 1],Rn), z belongs to Crpw(∆0,R

n). Therefore, by Assumption
2.1, u belongs to Crpw(∆0,R

m). It follows then, from (2.11), that y is defined on ∆0 × [0, 1].
Moreover,

• zj(t − x
λd
) belongs to Crpw with respect to t and belongs to Clpw with respect to x due

to the opposite sign in the argument;

• uj(t − x
λd
) belongs to Crpw with respect to t and belongs to Clpw with respect to x due

to the opposite sign in the argument;

• y0d (x− λdt) belongs to Clpw with respect to x and belongs to Crpw with respect to t due
to the opposite sign in the argument.

It follows from (2.11) that y(t, ·) ∈ Clpw([0, 1],Rn) for all t in ∆0 and that y(·, x) ∈ Crpw(∆0,R
n)

for all x ∈ [0, 1]. Thus, induction property holds at p = 0.

Now, assume that induction property holds for a given p ∈ N. We are now going to prove
the same property for p + 1 > 0. For that purpose, let us take y((p + 1)δ, ·) as the initial
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condition of the system. Applying the same arguments as above; and by means of hypothesis
of induction, one gets that z ∈ Crpw(∆p+1,R

n), u ∈ Crpw(∆p+1,R
m). In addition, y is defined

on ∆p+1× [0, 1], y(t, ·) exists for all t in ∆p+1 and belongs to Clpw([0, 1],Rn) and y(·, x) belongs
to Crpw(∆p+1,R

n) for every x ∈ [0, 1].

Therefore, we have proved by induction that, for each p ∈ N, z ∈ Crpw(∆p,R
n) and y(t, ·)

exists for all t in ∆p, and belongs to Clpw([0, 1],Rn) and y(·, x) belongs to Crpw(∆p,R
n) for

every x ∈ [0, 1]. Thus, there exists an unique solution to the closed-loop system (2.1)-(2.3)
with u = ϕ(z). Hence, this concludes the proof.

2.3 Event-based Stabilization

2.3.1 Some issues related to stability

We define the notion of stability considered in the chapter and state one existing result on
stability of linear hyperbolic systems of conservation laws.

Definition 2.2
The linear hyperbolic system (2.1)-(2.3),(2.7) with controller u = ϕ(z) is globally exponentially
stable (GES) if there exist ν > 0 and C > 0 such that, for every y0 ∈ Clpw([0, 1];Rn), the
solution satisfies, for all t in R

+,

‖y(t, ·)‖L2([0,1]);Rn) ≤ Ce−νt‖y0‖L2([0,1];Rn) (2.12)

We want to point out that a particular case studied in literature (see e.g. [31]) is when ϕ

is given by u = ϕ0(z) as u(t) = Kz(t). This corresponds to continuous time control for which
it holds,

y(t, 0) = Gz(t) t ∈ R
+ (2.13)

with G = H +BK.

The following assumption is stated in [11] as a sufficient condition, usually called dissipative
boundary condition, which guarantees that the system (2.1)-(2.3) with boundary condition
(2.13) is globally exponentially stable. In this thesis, such a sufficient condition is assumed to
be satisfied.

Assumption 2.2
The following inequality holds:

ρ1(G) = Inf
{

‖∆G∆−1‖;∆ ∈ Dn,+

}

< 1 (2.14)

where ‖ · ‖ denotes the usual 2-norm of matrices in R
n×n and Dn,+ denotes the set of diagonal

matrices whose elements on the diagonal are strictly positive.
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Recall the following result:

Proposition 2.2 ([18])
Under Assumption 2.2, there exist µ > 0, and a diagonal positive definite matrix Q ∈ R

n×n

(with Q = Λ−1∆2) such that the following matrix inequality holds

GTQΛG < e−2µQΛ. (2.15)

Then, the linear hyperbolic system (2.1)-(2.3),(2.7),(2.13) is GES and (4.29) holds for some
C > 0 and ν = µλ where λ = min1≤i≤n {λi}.

Under the assumption of Proposition 2.2, inspired by [18, Theorem 1], let us recall that
the function defined, for all y(·) ∈ L2([0, 1],Rn), by

V (y) =

∫ 1

0
y(x)TQy(x)e−2µxdx (2.16)

satisfies, along the classical solutions of (2.1)-(2.3),(2.7) and (2.13), that

V̇ ≤ yT (·, 1)
[

GTQΛG− e−2µQΛ
]

y(·, 1) − 2ν

∫ 1

0
yTQye−2µxdx

thus in regard of (2.15), it is a Lyapunov function. The global exponential stability along L2

solutions follows by density (see [18] for more details).

2.3.2 ISS static event-based stabilization

We introduce in this section a first event-based control scheme for hyperbolic systems of
conservation laws and discuss the existence of solutions and their stability under this control
strategy. This approach relies on both the Input-to-State Stability property with respect to
deviations to sampling and Lyapunov techniques. It is mainly inspired by [59] where the
sampling error is restricted to satisfy a state-dependent inequality. It guarantees that the
ISS-Lyapunov function is strictly decreasing. In this paper, we will seek for ISS property
with respect to a deviation between the continuous controller and the event-based controller,
combined with a strict Lyapunov condition using (2.16).

Definition 2.3 (Definition of ϕ1)
Let ς1, κ, η, µ > 0, K in R

m×n, Q a diagonal positive matrix in R
n×n. Let us define ϕ1 the

operator which maps z to u as follows:

Let z be in Crpw(R+,Rn) and let Ṽ be given, at t = 1
λ
, by

Ṽ ( 1
λ
) =

n
∑

i=1

Qii

∫ 1

0

(

Hiz(
1
λ
− x

λi
)
)2
e−2µxdx (2.17)
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and, for all t > 1
λ
, by

Ṽ (t)=

n
∑

i=1

Qii

∫ 1

0

(

Hiz(t− x
λi
) +Biu(t− x

λi
)
)2
e−2µxdx (2.18)

Let ε1(t) = ς1Ṽ ( 1
λ
)e−ηt for all t ≥ 1

λ
. If Ṽ ( 1

λ
) > 0, let the increasing sequence of time instants

(tuk) be defined iteratively by tu0 = 0, tu1 = 1
λ
, and for all k ≥ 1,

tuk+1 = inf{t ∈ R
+|t > tuk ∧ ‖BK(−z(t) + z(tuk))‖2 ≥ κṼ (t) + ε1(t)} (2.19)

If Ṽ ( 1
λ
) = 0, let the time instants be defined by tu0 = 0, tu1 = 1

λ
and tu2 = ∞.

Finally, let the control function, z 7→ ϕ1(z)(t) = u(t), be defined by:

u(t) = 0 ∀t ∈ [tu0 , t
u
1)

u(t) = Kz(tuk) ∀t ∈ [tuk , t
u
k+1), k ≥ 1

(2.20)

Remark 2.2
The boundary condition (2.2) with controller u = ϕ1(z) as defined in Definition 2.3 can be
rewritten as:

y(t, 0) = Gz(t) + d(t) t ∈ R
+ (2.21)

where
d(t) = BK(−z(t) + z(tuk)) t ∈ [tuk , t

u
k+1) (2.22)

which can be seen as a deviation between the continuous controller u = Kz and the event-based
controller of Definition 2.3. Hence, we follow the perturbed system approach as in [59], [39]
and [33] that we will call in the sequel ISS static event-based stabilization. The event triggering
condition (2.19) ensures that, for all t, ‖d(t)‖2 ≤ κṼ (t) + ε1(t).

In addition, we point out the possible case when Ṽ ( 1
λ
) = 0, then ε1(t) = 0. From (2.17), it

means that for all i = 1, .., n, z(s) = 0 with s = t− x
λi

for all s ∈ [t− 1
λi
, t]. In particular, for

all i = 1, .., n, z(s) = 0 for all s ∈ [t− 1
λ
, t] which means that the system has already achieved

the steady state in finite time. In that scenario, event-based stabilization would not be required.

The following proposition shows that Ṽ given by (2.18) is an estimate of V .

Proposition 2.3
Let y be a solution to (2.1)-(2.3). It holds that, for all t ≥ 1

λ
, V (y(t, ·)) = Ṽ (t), where Ṽ (t) is

given by (2.18).

Proof. Along solutions y to the system (2.1)-(2.3) and since Q is diagonal, (2.16) gives:

V (y(t, ·)) =
n
∑

i=1

Qii

∫ 1

0
y2i (t, x)e

−2µxdx
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Using the first line of (2.8), in particular for all t ≥ 1
λ
, the boundary condition (2.6) and output

function (2.7) one has that yi(t, x) = yi(t− x
λi
, 0) = Hiz(t− x

λi
) +Biu(t− x

λi
). Therefore, for

all t ≥ 1
λ
,

V (y(t, ·))=
n
∑

i=1

Qii

∫ 1

0

[

Hiz(t− x
λi
) +Biu(t− x

λi
)
]2
e−2µxdx

= Ṽ (t)

This concludes the proof.

Due to the previous proposition, Ṽ can be seen as an estimation of the Lyapunov function
V . It is based only on the measured output function and the input value. As a consequence,
the triggering condition in (2.19) depends on the measured output function and the input
value as well. In addition, it will be discussed in Subsection 2.3.2.1 that ε1 is to guarantee the
existence and uniqueness of the closed-loop system.

In the next section, we will prove that operator ϕ1 satisfies Assumption 2.1.

2.3.2.1 Existence and uniqueness of the closed-loop solution

The goal is to prove that u = ϕ1(z) belongs to Crpw(R+,Rm) provided z is in Crpw(R+,Rn)

and that ϕ1 is a causal operator.

Lemma 2.1
The operator ϕ1 considered in Definition 2.3 satisfies Assumption 2.1.

Proof. Let z in Crpw(R+,Rn) and u = ϕ1(z) where ϕ1 is the operator given in Definition 2.3.
Let J be a closed interval subset of R+. By hypothesis, z has a finite number of discontinuities
on J . Let tz1, · · · , tzM ∈ J be the increasing sequence of these discontinuity time instants; and
tz0 and tzM+1 are respectively the lower bound and the upper bound of the interval J . We
want to prove that u has a finite number of discontinuities on the time interval [tzi , t

z
i+1],

with i ∈ {0, ...,M}. If Ṽ ( 1
λ
) = 0, there is only at most one discontinuity which is tu1 = 1

λ
.

If Ṽ ( 1
λ
) > 0, let us remark that it is sufficient to show that there is a finite number of

discontinuities on the open time interval (tzi , t
z
i+1), with i ∈ {0, ...,M}.

Let wi
1(t) be the continuation of BKz(t) on the interval [tzi , t

z
i+1] with the left limit of

BKz(t) in tzi+1, that is

wi
1(t) = BKz(t), if t ∈ [tzi , t

z
i+1) (2.23)

wi
1(t

z
i+1) = lim

t→(tzi+1)
−
BKz(t) (2.24)

The definition of Crpw(R+,Rn) ensures that the left limit of BKz(t) exists and that wi
1(t) is

continuous on the closed interval [tzi , t
z
i+1]. Therefore, it is uniformly continuous. It means
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that for all ζ > 0, there exists τ > 0 such that

∀t, t′ ∈ [tzi , t
z
i+1] : |t− t′| < τ → ‖wi

1(t)− wi
1(t

′)‖2 < ζ

We denote τi the value of τ when ζ = ε1(t
z
i+1). Let the sequence (tuk) defined by Equation

(2.19) in Definition 2.3. Assume first that there exists at least two consecutive discontinuity
instants in (tzi , t

z
i+1) and let tuk be the first one of these instants. We will deal later on whether

only one time instant exists within this interval.

Let us consider ‖ − wi
1(t) + wi

1(t
u
k)‖2 for all t ∈ [tzi , t

z
i+1] where wi is given in (2.23) and

(2.24). Combined with (2.19) of Definition 2.3 and using the continuity of Ṽ , ε1 and wi
1, it

holds at time t = tuk+1:

‖wi
1(t

u
k)− wi

1(t
u
k+1)‖2 ≥ κṼ (tuk+1) + ε1(t

u
k+1)

Using the non-negativity of Ṽ , the fact that ε1 is a decreasing function, the uniform continuity
argument and the definition of τi, one gets

‖wi
1(t

u
k)− wi

1(t
u
k+1)‖2 ≥ ε1(t

u
k+1) ≥ ε1(t

z
i+1)

=⇒ |tuk − tuk+1| ≥ τi

Thus, τi gives a lower bound for the duration between two input updates, depending only on
the interval (tzi , t

z
i+1).

Finally, an upper bound for the maximal number of input updates on (tzi , t
z
i+1) is given

by:

si =

⌊

tzi+1 − tzi
τi

⌋

If there is at most one element of the sequence (tuk) in (tzi , t
z
i+1) then si can be chosen equal to

1. To conclude, the number of discontinuities of u on J is bounded by S =
∑M

i=1 si +M + 2

which is finite.

In addition, from (2.20) in Definition 2.3, u is piecewise constant, which yields u ∈
Crpw(R+,Rm).

Let us now prove that our operator ϕ1 satisfies the causality property. Let s ∈ R
+ and z,

z∗ ∈ Crpw(R+,Rn) be given such that

z(t) = z∗(t) ∀t ∈ [0, s] (2.25)

Let u = ϕ1(z) and u∗ = ϕ1(z
∗). It will be shown that u(t) = u∗(t) for all t ∈ [0, s]. Let

us first consider t ∈ [0, s). It follows that u(t) = Kz(tuk) where tuk is the previous triggering
time associated to u. It follows also from (2.25) that z(tuk) = z∗(tu

∗

k ), and tuk = tu
∗

k where tu
∗

k

is the previous triggering time associated to u∗. Therefore u(t) = Kz∗(tu
∗

k ) = u∗(t) for all
t ∈ [0, s). Let Ṽ be defined by (2.18) and Ṽ ∗ be defined similarly replacing z and u by z∗ and
u∗ respectively. Therefore Ṽ (t) = Ṽ ∗(t) for all t ∈ [0, s].

Let us consider what happens at t = s. Three cases are pointed out:
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1. Suppose that there is no triggering time at t = s. In this case, u(s) = Kz(tuk) where
tuk = tu

∗

k is the previous triggering time. Clearly, u∗(s) = Kz∗(tu
∗

k ) = Kz(tuk) = u(s).

2. Suposse that there is a triggering time for both u and u∗, that is at s = tuk+1 = tu
∗

k+1.
Then, with (2.25)

u(tuk+1) = Kz(tuk+1) = Kz(s)

= Kz∗(s) = Kz∗(tu
∗

k+1) = u∗(tu
∗

k+1)

3. Suppose that there is a triggering time at time s. Assume without loss of generality
that s = tuk+1. Consider f(t) = ‖BK(−z(t) + z(tuk))‖2 − κṼ (t) − ε1(t) and f∗(t) =

‖BK(−z∗(t) + z∗(tu
∗

k ))‖2 − κṼ ∗(t) − ε1(t). Then there exists a sequence of time (sn),
sn ≥ s with sn → s and f(sn) ≥ 0. Since f is in Crpw(R+,Rn), f(s) ≥ 0. According to
(2.25) and using Ṽ (s) = Ṽ ∗(s) it follows that f(s) = f∗(s) ≥ 0. It means that a trigger
happens at the same time for u∗ and then tu

∗

k+1 = tuk+1 = s. Consequently, one comes
back to the previous case and hence u(s) = u∗(s).

Since u is in Crpw(R+,Rm) and the causality property is satisfied, Assumption 2.1 holds. It
concludes the proof.

Combining the previous lemma with Proposition 2.1, we get

Corollary 2.1
For any y0 in Clpw([0, 1],Rn), there exists a unique solution to the closed-loop system (2.1)-
(2.3),(2.7) and controller u = ϕ1(z).

2.3.2.2 Stability of the closed-loop system

Let us now state our first main result.

Theorem 2.1
Let K be in R

m×n such that Assumption 2.2 holds for G = H +BK. Let µ > 0, Q a diagonal
positive matrix in R

n×n and ν = µλ be as in Proposition 2.2. Let σ be in (0, 1) and α > 0

such that (1 + α)GTQΛG ≤ e−2µQΛ. Let ρ be the largest eigenvalue of (1 + 1
α
)QΛ, κ = 2νσ

ρ
,

η > 2ν(1 − σ) and ε1 and ϕ1 be given in Definition 2.3. Let V be given by (2.16). Then the
system (2.1)-(2.3),(2.7) with the controller u = ϕ1(z) has a unique solution and is globally
exponentially stable. Moreover, it holds for all t ≥ 1

λ
,

D+V (t) ≤ −2ν(1− σ)V (t) + ρε1(t) (2.26)

Proof. The existence and uniqueness of a solution to system (2.1)-(2.3),(2.7) with controller
u = ϕ1(z) is given by Corollary 2.1.
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We are here going to show that the system is globally exponentially stable. Assume for
the time-being that Ṽ ( 1

λ
) > 0.

First, we establish the following lemma which will be necessary for the proof of Theo-
rem 2.1.

Lemma 2.2
Let y be a solution to (2.1)-(2.3) and let V (y) be given by (2.16). Then, t 7→ V (y(t, ·)) is
continuous and right differentiable on R

+ and its right time-derivative is given by:

D+V = yT (·, 0)QΛy(·, 0) − yT (·, 1)e−2µQΛy(·, 1)

− 2µ

∫ 1

0
yT (Λe−2µxQ)ydx

(2.27)

The proof of Lemma 2.2 is given in Appendix 2.5.

Using the boundary condition (2.2) with u = ϕ1(z), we obtain from its equivalent form
(2.21) that (2.27) can be rewritten as follows:

D+V = (Gy(·, 1) + d)TQΛ(Gy(·, 1) + d)

−yT (·, 1)e−2µQΛy(·, 1)− 2µ

∫ 1

0
yT (Λe−2µxQ)ydx

Using the output function given by (2.7), it gives:

D+V = (Gz)TQΛGz + 2(Gz)TQΛd+ dTQΛd

−zT e−2µQΛz − 2µ

∫ 1

0
yT (Λe−2µxQ)ydx (2.28)

By means of a decoupling procedure between d and z using the Young’s inequality one gets
that (Gz)TQΛGz+2(Gz)TQΛd+ dTQΛd ≤ (1 +α)(Gz)TQΛGz + (1+ 1

α
)dTQΛd. Since α is

such that (1 + α)GTQΛG ≤ e−2µQΛ, from (2.28) it follows:

D+V ≤ −2µ

∫ 1

0
yTΛQye−2µxdx+ (1 + 1

α
)dTQΛd

Since Q is diagonal positive definite, it holds ΛQ ≥ λQ. Thus, taking ν = µλ, it yields,

D+V ≤ −2νV + (1 + 1
α
)dTQΛd

which can be rewritten as follows:

D+V ≤ −2νV + ρ‖d‖2

= −2ν(1− σ)V − 2νσV + ρ‖d‖2, σ ∈ (0, 1)

For all t ≥ 1
λ
, Proposition 2.3 implies that

D+V ≤ −2ν(1− σ)V − 2νσṼ + ρ‖d‖2
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In order to guarantee D+V is strictly negative, −2νσṼ + ρ‖d‖2 must be strictly negative.
Therefore, from the definition of ϕ1, events are triggered so as to guarantee for all t ≥ 1

λ
,

‖d‖2 ≤ κṼ + ε1. Using κ = 2νσ
ρ

, we obtain for all t ≥ 1
λ
,

D+V (t) ≤ −2ν(1− σ)V (t) + ρε1(t)

Which gives inequality (2.26) of Theorem 2.1. Then, using the Comparison principle, one
gets, for all t ≥ 1

λ
,

V (y(t, ·)) ≤ e
−2ν(1−σ)(t− 1

λ
)
V (y( 1

λ
, ·)) + ρ

∫ t

1
λ

e−2ν(1−σ)(t−s)ε1(s)ds

and thus,

V (y(t, ·)) ≤V (y( 1
λ
, ·))e−2ν(1−σ)(t− 1

λ
)
+

ρς1Ṽ ( 1
λ
)

2ν(1 − σ)− η
e−ηt

−
ρς1Ṽ ( 1

λ
)

2ν(1− σ)− η
e
−2ν(1−σ)(t− 1

λ
)−η

1
λ

Select η > 2ν(1− σ). Thus, we get, for all t ≥ 1
λ
,

V (y(t, ·)) ≤ V (y( 1
λ
, ·))e−2ν(1−σ)(t− 1

λ
)
+
ρς1V (y( 1

λ
, ·))

η − 2ν(1− σ)
e
−2ν(1−σ)(t− 1

λ
)−η

1
λ (2.29)

with V (y( 1
λ
, ·)) = Ṽ ( 1

λ
) due to Proposition 2.3. The previous inequality holds even if Ṽ ( 1

λ
) = 0

since in this case V (y( 1
λ
, ·)) = 0 for all t ≥ 1

λ
.

Let us see what happens for all t in [0, 1
λ
) so as the right hand side of the inequality depends

on the initial condition y0. For that purpose, let us consider the following function:

V(y) =
∫ 1

0
y(x)TQy(x)e2θxdx (2.30)

where θ > 0. In addition, from Definition 2.3, u = 0 for all t ∈ [0, 1
λ
). It implies that the

boundary condition given by (2.2) is y(t, 0) = Hy(t, 1). Computing the right time-derivative
of (2.30), it yields

D+V(y(t, ·)) = yT (t, 1)
[

HTQΛH − e2θQΛ
]

y(t, 1) +

∫ 1

0
2θyTQΛye2θdx

There exists θ ≥ 0 such that HTQΛH < e2θQΛ. In addition, since Q is a diagonal positive
matrix, ΛQ ≤ λQ holds. Therefore, D+V ≤ 2θλV. Hence, the solution of the previous
differential inequality thanks to the comparison principle satisfies V(y(t, ·)) ≤ e2θλtV(y0). In

particular, V(y( 1
λ
, ·)) ≤ e

2θ λ
λV(y0). On the other hand, (2.16) and (2.30) imply

V (y) ≤ V(y) =
∫ 1

0
y(x)TQy(x)e2(θ+µ)xe−2µxdx

≤ e2(θ+µ)V (y)
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and thus, one gets for all t ∈ [0, 1
λ
),

V (y(t, ·)) ≤ V(y(t, ·)) ≤ e2θλtV(y0) ≤ e2θλte2(θ+µ)V (y0)

In particular, at t = 1
λ

we have,

V (y( 1
λ
, ·)) ≤ e

2θ λ
λ e2(θ+µ)V (y0) (2.31)

Replacing (2.31) in (2.29) we get for all t ≥ 1
λ
,

V (y(t, ·)) ≤e2θ
λ
λ e2(θ+µ)e

−2ν(1−σ)(t− 1
λ
)
V (y0) +

ρς1e
2θ λ

λ e2(θ+µ)V (y0)

η − 2ν(1− σ)
e
−2ν(1−σ)(t− 1

λ
)−η

1
λ

Reorganizing, we finally get,

V (y(t, ·)) ≤ e

(

2θ
λ
λ
+2(θ+µ)+2ν(1−σ)

1
λ

)



1 + ρ
ς1e

−η
1
λ

η − 2ν(1− σ)



 e−2ν(1−σ)tV (y0)

This ends the proof of Theorem 2.1.

Remark 2.3
We emphasize again that it was crucial that u ∈ Crpw(R+,Rm) just to be able to apply Propo-
sition 1 and to prove existence and uniqueness of solution.

The decreasing function ε1 has been added within the triggering law with the aim to prove
that the control value, under the triggering condition (2.19), has a finite number of disconti-
nuities as it could be seen in the proof of Lemma 2.1. Indeed, one was able to apply uniform
continuity arguments thanks, precisely, to the function ε1.

2.3.3 D+V event-based stabilization

Let us consider in this section an event-triggered control similar to the one proposed in [45].
This triggering condition is not based on the existence of an Input-to-State stability assump-
tion but relies on the time derivative of a Lyapunov function. This approach can also be found
in an implicit form in [33] for a linear plant, in which it is required that the solution of an
event-based implementation satisfies what they call weaker inequality. The control value is
then only updated when such an inequality is violated. Without entering into further details
about the aforementioned approaches for finite-dimensional systems, we will just point out
that, in this work, the weaker inequality that causes an event when violated is of the following
form:

D+Vev ≤ (1− σ)D+Vcont + ε, σ ∈ (0, 1)

where D+Vev is the right time-derivative of the Lyapunov function candidate of the system
when the control is updated only on events and D+Vcont the right time-derivative of the
same Lyapunov function candidate but for a control that is continuously updated and ε a
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non-negative decreasing function of the time. Following the same idea, we will consider the
Lyapunov function candidate V given by (2.16). Since d will here again denote the deviation
between the continuously updated control and the event-triggered ones (as is (2.22)), D+Vev
denotes the right time-derivative of V when d 6= 0:

D+Vev = zT
[

GTQΛG− e−2µQΛ
]

z + 2(Gz)TQΛd

+dTQΛd+

∫ 1

0
yT (−2µΛe−2µxQ)ydx

whereas D+Vcont denotes the right time-derivative of V when d = 0:

D+Vcont = zT
[

GTQΛG− e−2µQΛ
]

z +

∫ 1

0
yT (−2µΛe−2µxQ)ydx (2.32)

Now that the main idea has been stated, let us formulate this in a more rigorous way with
the definition of the following operator that plays the same role as Definition 2.3 for the ISS
static based approach presented in Section 2.3.2. Before we state the definition, let us note
that, using (2.32) and (2.32), D+Vev ≤ (1− σ)D+Vcont + ε is equivalent to the following, for
all t ≥ 0 and tuk to be defined later on,

σz(t)T
[

GTQΛG− e−2µQΛ
]

z(t) + 2(Gz(t))TQΛBK(z(tuk)− z(t))

+(BK(z(tuk)− z(t)))TQΛBK(z(tuk)− z(t))

≤ 2µσ

∫ 1

0
yTQΛye−2µxdx+ ε(t)

Definition 2.4 (Definition of ϕ2)
Let ς2, η > 0, σ ∈ (0, 1), K in R

m×n, G = H + BK in R
n×n, D a diagonal positive definite

matrix in R
n×n, µ > 0 such that GTDG − e−2µD is a negative symmetric matrix in R

n×n,
V given by (2.16) and ε2(t) = ς2V ( 1

λ
)e−ηt for all t ≥ 1

λ
. Let us define ϕ2 the operator which

maps z to u as follows:

Let z in Crpw(R+,Rn) and the time function Ṽ2 be defined similarly to (2.18), for all t ≥ 1
λ

by:

Ṽ2(t) =

n
∑

i=1

Dii

∫ 1

0

(

Hiz(t− x
λi
) +Biu(t− x

λi
)
)2
e−2µxdx

If V ( 1
λ
) > 0, let the increasing sequence of time instants (tuk) be defined iteratively by tu0 = 0,

tu1 = 1
λ
, and for all k ≥ 1,

tuk+1 = inf{t ∈ R
+|t > tuk ∧ σzT (t)

[

GTDG− e−2µD
]

z(t)

+2(Gz(t))TDBK(z(tuk)− z(t))

+(BK(z(tuk)− z(t)))TDBK(z(tuk)− z(t))

≥ 2µσṼ2(t) + ε2(t)} (2.33)

If V ( 1
λ
) = 0, let the time instants be defined by tu0 = 0, tu1 = 1

λ
and tu2 = ∞.

Finally, let the control function, z 7→ ϕ2(z)(t) = u(t), be defined by:

u(t) = 0 ∀t ∈ [tu0 , t
u
1)

u(t) = Kz(tuk) ∀t ∈ [tuk , t
u
k+1), k ≥ 1

(2.34)
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Remark 2.4
Following the same arguments as in the second part of Remark 2.2, whenever V ( 1

λ
) = 0,

event-based stabilization would not be required.

The purpose of next two subsections is to prove that system (2.1)-(2.3),(2.7), with the
same boundary condition (2.21) as before and under the event-triggered control of Definition
2.4, has a unique solution for any given initial conditions and is globally exponentially stable
in the sense of Definition 4.1.

2.3.3.1 Existence and uniqueness of the closed-loop solution

As in Section 2.3.2.1, the goal here is to prove that u = ϕ2(z) belongs to Crpw(R+,Rm)

whenever z is in Crpw(R+,Rn) and that ϕ2 is a causal operator. As in Subsection 2.3.2, a
decreasing function ε2 is added into the triggering law which will be helpful to prove the
aforementioned assertion.

Lemma 2.3
The operator ϕ2 defined in Definition 2.4 satisfies Assumption 2.1.

Proof. The proof follows essentially the same steps as proof of Lemma 2.1. Let z in
Crpw(R+,Rn) and u = ϕ2(z) where ϕ2 is the operator given in Definition 2.4. Let J be a
closed interval subset of R+. By assumption, z has a finite number of discontinuities on J .
As previously, tz1, · · · , tzM ∈ J will be the increasing sequence of these discontinuity time in-
stants to which we add the the extremities tz0 and tzM+1 of the interval J . As in the proof
of Lemma 2.1, our aim is to prove that u has a finite number of discontinuities on the time
interval [tzi , t

z
i+1], with i ∈ {0, ...,M} and therefore, it is sufficient to show that there is a finite

number of discontinuities on the open time interval (tzi , t
z
i+1), with i ∈ {0, ...,M}. If V ( 1

λ
) = 0,

there is only at most one discontinuity which is tu1 = 1
λ
.

If V ( 1
λ
) > 0, let γ be a strictly positive real number such that the following inequality

matrix holds:
GTDG <

σ

γ + σ
e−2µD (2.35)

Note that taking γ sufficiently small, this inequality can always be satisfied. Let w2 ∈
Crpw(R+,Rn) be defined by:

w2(t) :=
√
DBKz(t) (2.36)

where D is as in Definition 2.4 (since D is a diagonal positive definite matrix, D has an unique
positive-definite diagonal square root matrix, denoted

√
D, whose diagonal elements are equal

to square roots of the diagonal elements of D). Let wi
2(t) be the continuation of w2(t) given

by (2.36), on the interval [tzi , t
z
i+1] with the left limit of w2(t) in tzi+1, that is:

wi
2(t) = w2(t), if t ∈ [tzi , t

z
i+1) (2.37)

wi
2(t

z
i+1) = lim

t→(tzi+1)
−
w2(t) (2.38)



2.3. Event-based Stabilization 53

The definition of Crpw(R+,Rn) ensures that the left limit of w2(t) exists and that wi
2(t) is

continuous on the closed interval [tzi , t
z
i+1]. Therefore, it is uniformly continuous. It means

that for all ζ > 0, there exists τ > 0 such that

∀t, t′ ∈ [tzi , t
z
i+1] : |t− t′| < τ → ‖wi

2(t)− wi
2(t

′)‖2 < ζ

As in the proof of Lemma 1, we denote τi the value of τ when ζ = γ
γ+1ε2(t

z
i+1). Here again,

we assume first that there are at least two consecutive discontinuity instants in (tzi , t
z
i+1) and

let tuk be the first one.

Let us consider the triggering condition (2.33) in Definition 2.4 and using the continuity
of W2, ε2 and wi

2, it holds at time t = tuk+1:

σzT (tuk+1)
[

GTDG− e−2µD
]

z(tuk+1) + 2(Gz(tuk+1))
TDBK(z(tuk)− z(tuk+1))

+(BK(z(tuk)− z(tuk+1)))
TDBK(z(tuk)− z(tuk+1))

≥ 2µσṼ2(t
u
k+1) + ε2(t

u
k+1)

Using the Young’s inequality, one has for γ as in (2.35):

zT (tuk+1)
[

(γ + σ)GTDG− σe−2µD
]

z(tuk+1)

+(1 + 1
γ
)(BK(z(tuk)− z(tuk+1)))

TDBK(z(tuk)− z(tuk+1))

≥ 2µσṼ2(t
u
k+1) + ε2(t

u
k+1)

Knowing that (BK(z(tuk) − z(tuk+1)))
TDBK(z(tuk) − z(tuk+1)) = ‖

√
DBK(z(tuk) − z(tuk+1))‖2

and according to (2.37) and (2.38), one gets

‖wi
2(t

u
k)− wi

2(t
u
k+1)‖2 ≥ γ

1+γ

(

− zT (tuk+1)
[

(γ + σ)GTDG− σe−2µD
]

z(tuk+1)

+2µσṼ2(t
u
k+1) + ε2(t

u
k+1)

)

Moreover, using the non-negativity of Ṽ2 and −zT (tuk+1)
[

(γ + σ)GTDG− σe−2µD
]

z(tuk+1),
the fact that ε2 is a decreasing function, the uniform continuity argument and the definition
of τi, one gets

‖wi
2(t

u
k+1)− wi

2(t
u
k)‖2 ≥ γ

1+γ
ε2(t

u
k+1) ≥ γ

1+γ
ε2(t

z
i+1)

=⇒ |tuk − tuk+1| ≥ τi

Thus, τi gives a lower bound for the duration between two input updates, depending only on
the interval (tzi , t

z
i+1). The remaining part of the proof that u is in Crpw(R+,Rm) follows the

lines of Lemma 2.1.

For proving the causality property of the operator ϕ2, it is sufficient to follow
the same steps as in proof of Lemma 2.1 but considering, at the final step of the
proof, f(t) = σzT (t)

[

GTDG− e−2µD
]

z(t) + 2(Gz(t))TDBK(z(tuk) − z(t)) + (BK(z(tuk) −
z(t)))TDBK(z(tuk)− z(t))− 2µσṼ2(t)− ε2(t) and f∗(t) = σ(z∗)T (t)

[

GTDG− e−2µD
]

z∗(t)+
2(Gz∗(t))TDBK(z∗(tu

∗

k )−z∗(t))+(BK(z∗(tu
∗

k )−z∗(t)))TDBK(z∗(tu
∗

k )−z∗(t))−2µσṼ ∗
2 (t)−

ε2(t).

Since u is in Crpw(R+,Rm) and the causality property is satisfied, Assumption 2.1 holds.
It concludes the proof.
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Combining the previous lemma with Proposition 2.1, we get

Corollary 2.2
For any y0 in Clpw([0, 1],Rn), there exists a unique solution to the closed-loop system (2.1)-
(2.3),(2.7) and controller u = ϕ2(z).

2.3.3.2 Stability of the closed-loop system

Let us now state our second main result.

Theorem 2.2
Let K be in R

m×n such that Assumption 2.2 holds for G = H +BK. Let µ > 0, Q a diagonal
positive matrix in R

n×n and ν = µλ be as in Proposition 2.2. Let σ be in (0, 1), η > 0 and
ε2 and ϕ2 be given in Definition 2.4. Let V be given by (2.16) and d given by (2.22). Then
the system (2.1)-(2.3),(2.7) with the controller u = ϕ2(z) has a unique solution and is globally
exponentially stable. Moreover, it holds for all t ≥ 1

λ
,

D+V (t) ≤ −2ν(1− σ)V (t) + ε2(t) (2.39)

Proof. The existence and uniqueness of a solution to system (2.1)-(2.3),(2.7), with u = ϕ2(z)

is given by Corollary 2.2.

We are now going to show that the system is globally exponentially stable. Assume that
V ( 1

λ
) > 0 (the other case is studied as in Theorem 2.1).

From the definition of ϕ2, events are triggered so as to guarantee for all t ≥ 1
λ
,

σzT (t)
[

GTQΛG− e−2µQΛ
]

z(t) + 2(Gz(t))TQΛd(t) + dT (t)QΛd(t) ≤ 2µṼ2(t) + ε2(t) and
therefore D+Vev(t) ≤ (1 − σ)D+Vcont(t) + ε(t) by taking into account that D = QΛ and
ε = ε2. By construction, it follows that, for all t ≥ 1

λ
,

D+V (t) = D+Vev(t) ≤ (1− σ)D+Vcont(t) + ε2(t) (2.40)

Using ΛQ ≥ λQ and Proposition 2.2, it is clear that D+Vcont ≤ −2νV .

Therefore, in (2.40), for all t ≥ 1
λ
,

D+V (t) ≤ −2ν(1− σ)V (t) + ε2(t)

Now, proceeding exactly as in the proof of Theorem 2.1 when using the Comparision prin-
ciple and analyzing what happens for all t ∈ [0, 1

λ
), the final result which proves the global

exponential stability, is the following for all t ≥ 1
λ
,

V (y(t, ·)) ≤ e

(

2θ
λ
λ
+2(θ+µ)+2ν(1−σ)

1
λ

)



1 +
ς2e

−η
1
λ

η − 2ν(1− σ)



 e−2ν(1−σ)tV (y0)

This ends the proof of Theorem 2.2.
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2.3.3.3 Comparison between ISS event-based stabilization and D+V event-based
stabilization

The following proposition links the two event-based control approaches that we have proposed
until now.

Proposition 2.4
Let σ be in (0, 1), α, ρ, ν, κ and Q be as in Theorem 2.1. Let V be given by (2.16), D+Vev and
D+Vcont be given by (2.32) and (2.32) respectively, d given by (2.22), and Ṽ as in Definition
2.3. The following implication holds, for all t ≥ 1

λ
,

D+Vev ≥ (1− σ)D+Vcont + ε2 ⇒ ‖d‖2 ≥ 2νσ
ρ
Ṽ + ε2

ρ
(2.41)

Therefore for all solutions to (2.1)-(2.3) and (2.7) in closed-loop, respectively with controllers
u = ϕ1(z) and u = ϕ2(z), by selecting ς1 = ς2

ρ
and having the same initial condition, the first

triggering time occurs with ϕ1 and not with ϕ2.

Proof. It holds that D+Vev ≥ (1− σ)D+Vcont + ε2 is equivalent to:

σzT
[

GTQΛG− e−2µQΛ
]

z + 2(Gz)TQΛd+ dTQΛd

≥ −σ
∫ 1

0
yT (−2µΛe−2µxQ)ydx+ ε2

Using ΛQ ≥ λQ and the Young’s inequality we obtain that D+Vev ≥ (1 − σ)D+Vcont + ε2
implies,

zT
[

(σ + α)GTQΛG− σe−2µQΛ
]

z + (1 + 1
α
)dTQΛd

≥ σzT
[

GTQΛG− e−2µQΛ
]

z + 2(Gz)TQΛd+ dTQΛd

≥ 2νσV + ε2

for any α > 0 and ν = λµ. Due to Assumption 2.14 and Proposition 2.2, there exists α > 0

such that (σ + α)GTQΛG− σe−2µQΛ < 0, hence,

D+Vev ≥ (1− σ)D+Vcont + ε2 → (1 + 1
α
)dTQΛd ≥ 2νσV + ε2

Taking ρ as the largest eigenvalue of matrix (1 + 1
α
)QΛ one gets,

D+Vev ≥ (1− σ)D+Vcont + ε2 → ρ‖d‖2 ≥ 2νσV + ε2

Finally, using Proposition 2.3, one gets, for all t ≥ 1
λ
,

‖d‖2 ≥ κṼ + ε1

and thus inequality (2.41) holds, with ε1 = ε2
ρ

and κ = 2νσ
ρ

.
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Remark 2.5
One consequence of Proposition 2.4 is that controller u = ϕ1(z) generates the first triggering
time before the controller u = ϕ2(z). Of course this does not imply that we have less triggering
times with ϕ2 than ϕ1. However, this property and in turn, larger inter-execution times in
average under ϕ2 times, are observed on numerical simulations as we will see in the next
section.

2.3.4 ISS dynamic event-based stabilization

In this section we introduce a third event-based control strategy relying on the ISS static
event-based one introduced in subsection 2.3.2. It is inspired by [28] (for finite dimensional
systems) where an internal dynamic variable is added to the event triggering condition in
order to reduce the number of triggering times while guaranteeing the exponential stability.
We recall that in ISS static event-based stabilization, events are triggered so that ‖d‖2−κṼ is
always less than ε1 (see (2.19)). In this new approach, we will rather impose that the weighted
average value of ‖d‖2 − κṼ − ε1 is less than 0. Then, an internal dynamic will be presented

under the form m(t) = e−ηt
∫ t

1
λ
eηs
(

−κṼ (s)− ε1(s) + ‖d(s)‖2
)

ds for all t ≥ 1
λ
. Here, d will

again denote the deviation between the continuously updated control and the event-triggered
one as in (2.22).

Now that the main idea has been stated, let us formulate this in a more rigorous way with
the definition of the following operator that plays the same role as Definition 2.3 for the ISS
static based approach presented in Section 2.3.2.

Definition 2.5 (Definition of ϕ3)
Let σ be in (0, 1), Ṽ (t), ε1(t) given as in Definition 2.3 for all t ≥ 1

λ
, and ρ and κ as in

Theorem 2.1. Let us define ϕ3 the operator which maps z to u as follows:

Let z be in Crpw(R+,Rn). If Ṽ ( 1
λ
) > 0 , let the increasing sequence of time instants (tuk)

be defined iteratively by tu0 = 0, tu1 = 1
λ
, and for all k ≥ 1,

tuk+1 = inf{t ∈ R
+|t > tuk ∧m(t) ≥ 0} (2.42)

where m satisfies the differential equation,

ṁ(t) = −ηm(t) +
(

−κṼ (t)− ε1(t) + ‖BK(−z(t) + z(tuk))‖2
)

m( 1
λ
) = 0

(2.43)

for all t ∈ [tuk , t
u
k+1) for a given η > 2ν(1− σ).

If Ṽ ( 1
λ
) = 0, the time instants are tu0 = 0, tu1 = 1

λ
and tu2 = ∞.

Finally, let the control function be defined by:

u(t) = 0 ∀t ∈ [tu0 , t
u
1)

u(t) = Kz(tuk) ∀t ∈ [tuk , t
u
k+1), k ≥ 1

(2.44)
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Note that m(tuk) = 0 for all k ≥ 1.

2.3.4.1 Existence and uniqueness of the closed-loop solution

As in both Sections 2.3.2.1 and 2.3.3.1, the goal here is to prove that u = ϕ3(z) belongs to
Crpw(R+,Rm) whenever z is in Crpw(R+,Rn) and that ϕ3 is a causal operator. The proof will
follow the same steps as in the proofs of Lemmas 2.1 and 2.3. It is worth recalling some of
those of steps back here.

Lemma 2.4
The operator ϕ3 defined in Definition 2.5 satisfies Assumption 2.1.

Proof. Let us then prove that u = ϕ3(z) belongs to Crpw(R+,Rm) provided z is in
Crpw(R+,Rn). Consider again J a closed interval subset of R+. Since z is in Crpw(R+,Rn),
z has a finite number of discontinuities on J . We denote tz1, · · · , tzM ∈ J as the increasing
sequence of these discontinuity time instants to which we add the extremities tz0 and tzM+1

of the interval J . Once again, the goal is to prove that u has a finite number of discontinu-
ities on the time interval [tzi , t

z
i+1], with i ∈ {0, ...,M}. We have seen that it is sufficient to

show that there is a finite number of discontinuities on the open time interval (tzi , t
z
i+1), with

i ∈ {0, ...,M}. If Ṽ ( 1
λ
) = 0, there is only at most one discontinuity which is tu1 = 1

λ
. Let us

see the case Ṽ ( 1
λ
) > 0.

As in the proof of Lemma 2.1, we define wi(t) as the continuation of BKz(t) on the interval
[tzi , t

z
i+1] with the left limit of BKz(t) in tzi+1, that is

wi(t) = BKz(t), if t ∈ [tzi , t
z
i+1) (2.45)

wi(tzi+1) = lim
t→(tzi+1)

−
BKz(t) (2.46)

The definition of Crpw(R+,Rn) ensures that the left limit of BKz(t) exists and that wi(t) is
continuous on the closed interval [tzi , t

z
i+1]. Then, it is uniformly continuous. It means that

for all ζ > 0, there exists τ > 0 such that

∀t, t′ ∈ [tzi , t
z
i+1] : |t− t′| < τ ⇒ ‖wi(t)− wi(t′)‖2 < ζ

We denote τ the value of τ when ζ = ε1(t
z
i+1).

We assume that there are at least two consecutive discontinuity instants in (tzi , t
z
i+1) and

let tuk be the first one. Considering (2.42) and (4.42) in Definition 2.5 and using the continuity
of m, ε and wi, it holds at time t = tuk+1:

m(tuk+1) ≥ 0 (2.47)

Let us prove by contradiction that |tuk−tuk+1| ≥ τ . To do that, let us assume that |tuk−tuk+1| < τ .
Then, by uniform continuity, we have ‖wi(tuk)−wi(s)‖2 < ε1(t

z
i+1) for all s ∈ [tuk , t

u
k+1]. Since ε1
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is a decreasing function, it holds also that ‖wi(tuk)−wi(s)‖2 < ε1(s). Due to the non-negativity
of Ṽ , we have

‖wi(tuk)− wi(s)‖2 < ε1(s) + κṼ (s) (2.48)

Multiplying both sides of (2.48) by eηs and integrating on [tuk , t
u
k+1], it yields,

∫ tuk+1

tu
k

eηs‖wi(tuk)− wi(s)‖2ds <
∫ tuk+1

tu
k

eηsε1(s)ds+

∫ tuk+1

tu
k

eηsκṼ (s)ds

Multiplying both sides by e−ηtu
k+1 and re-organizing the previous inequality, one gets,

e−ηtuk+1

∫ tuk+1

tuk

eηs(‖wi(tuk)− wi(s)‖2 − κṼ (s)− ε1(s))ds < 0 (2.49)

Using (4.42) and m(tuk) = 0, for all t ≥ tuk , we have that

m(t) = e−ηt

∫ t

tuk

eηs
(

−κṼ (s)− ε1(s) + ‖wi(tuk)− wi(s)‖2
)

ds

Then, (2.49) is equivalent to
m(tuk+1) < 0

which contradicts (2.47). Hence, |tuk − tuk+1| ≥ τ . Therefore, τ gives a lower bound for the
duration between two input updates, depending only on the interval (tzi , t

z
i+1). Finally, an

upper bound for the maximal number of input updates on (tzi , t
z
i+1) is given by:

si =

⌊

tzi+1 − tzi
τ

⌋

If there is at most one element of the sequence (tuk) in (tzi , t
z
i+1) then si can be chosen equal

to 1. The number of discontinuities of u on J is bounded by S =
∑M

i=1 si +M + 2 which
is finite. To conclude, from (2.44) in Definition 2.5, u is piecewise constant, which yields
u ∈ Crpw(R+,Rm).

For proving the causality property of the operator ϕ3, it is sufficient to follow the same
steps as in proof of Lemma 2.1

We conclude then that Assumption 2.1 holds. It concludes the proof.

Combining the previous lemma with Proposition 2.1, we get

Corollary 2.3
For any y0 in Clpw([0, 1],Rn), there exists a unique solution to the closed-loop system (2.1)-
(2.3),(2.7) and controller u = ϕ3(z).

Let us now state our third main result of the chapter.
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Theorem 2.3
Let K be in R

m×n such that Assumption 2.2 holds for G = H +BK. Let µ > 0, Q a diagonal
positive matrix in R

n×n and ν = µλ be as in Proposition 2.2. Let σ be in (0, 1), η and ε

and ϕd be given in Definition 2.5. Let V be given by (2.16) and d given by (2.22). Then the
system (2.1)-(2.3),(2.7) with the controller u = ϕ3(z) has a unique solution and is globally
exponentially stable.

Proof. The existence and uniqueness of a solution to system (2.1)-(2.3),(2.7), with u = ϕ3(z)

is given by Corollary 2.3. Let us show that the system is globally exponentially stable. We
use the result of Lemma 2.2 and assume first that Ṽ ( 1

λ
) > 0. By the same arguments of the

proof of Theorem 2.1, here we get also that

D+V ≤ −2νV + ρ‖d‖2 (2.50)

To show the global exponential stability of the closed-loop system, we consider the following
candidate Lyapunov function W for the augmented dynamical system defined, for all y(·) ∈
Clpw([0, 1],Rn) and m ∈ R

−, ε1 ∈ R
+ by

W (y,m, ε1) = V (y) +
ρ

η − 2ν(1− σ)
ε1 − ρm (2.51)

Computing the right time-derivative of (2.51), it yields,

D+W = D+V − η ρ
η−2ν(1−σ)ε1 − ρ(−ηm− κṼ − ε1 + ‖d‖2) (2.52)

Then, replacing (2.50) in (2.52), using κ = 2σν
ρ

and applying Proposition 2.3, we obtain for
all t ≥ 1

λ
,

D+W (t) ≤ −2ν(1− σ)V (t) + ρηm(t) + ρε1(t)− η ρ
η−2ν(1−σ)ε1(t)

which can be rewritten as follows:

D+W (t) ≤ −2ν(1− σ)(W − ρ
η−2ν(1−σ)ε1 + ρm)

+ρηm(t) + ρε1(t)− η ρ
η−2ν(1−σ)ε1(t)

Simplifying the previous inequality, one gets,

D+W (t) ≤ −2ν(1− σ)W + ρ(−2ν(1 − σ) + η)m(t)

From the definition of ϕ3, events are triggered in order to guarantee for all t ≥ 1
λ
, that

m(t) ≤ 0. We obtain accordingly, for all t ≥ 1
λ
,

D+W (t) ≤ −2ν(1− σ)W

Now, using the Comparison principle, for all t ≥ 1
λ
, we have

V (y(t, ·)) ≤ W (y(t, ·),m, ε1)
≤ e

−2ν(1−σ)(t− 1
λ
)
W (y( 1

λ
, ·),m, ε1) (2.53)
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The previous inequality holds even if Ṽ ( 1
λ
) = 0 since in this case W (y( 1

λ
, ·),m, ε1) = 0 for

all t ≥ 1
λ
. Knowing that m( 1

λ
) = 0 and ε1(

1
λ
) = ς1V (y( 1

λ
, ·))e−η

1
λ , inequality (2.53) can be

rewritten as follows,

V (y(t, ·)) ≤ e
−2ν(1−σ)(t− 1

λ
)
(

V (y( 1
λ
, ·)) + ρς1

η−2ν(1−σ)V (y( 1
λ
, ·))e−η 1

λ

)

(2.54)

In addition, V (y( 1
λ
, ·)) is given as follows according to (2.31):

V (y( 1
λ
, ·)) ≤ e

2θ λ
λ e2(θ+µ)V (y0) (2.55)

Therefore, replacing (2.55) in (2.54) we get for all t ≥ 1
λ
,

V (y(t, ·)) ≤ e

(

2θ
λ
λ
+2(θ+µ)

)

[

1 +
ρς1e

−η 1
λ

η − 2ν(1− σ)

]

e−2ν(1−σ)tV (y0)

This ends the proof of Theorem 2.3.

The following proposition states that the first triggering time after t = 1
λ

occurs with ϕ1

than with ϕ3.

Proposition 2.5
Let tu2,ϕ1

be given by the rule (2.19) and let tu2,ϕ3
be given by the rule (2.42). It holds that after

t = 1
λ
, tu2,ϕ1

≤ tu2,ϕ3
.

Proof. We want to prove by contradiction that tu2,ϕ1
≤ tu2,ϕ3

. To do that, let us suppose that
the first triggering time after t = 1

λ
occurs with ϕ3, i.e. tu2,ϕ1

> tu2,ϕ3
. On one hand, by (2.42),

we have
m(tu2,ϕ3

) ≥ 0 (2.56)

On the other hand, by (2.19), we have

‖BK(z( 1
λ
)− z(s)‖2 − κṼ (s) < ε1(t

u
2,ϕ3

) ≤ ε1(s) (2.57)

for all s ∈ [ 1
λ
, tu2,ϕ3

]. Therefore, after some operations on both sides of previous inequality, and

integrating on [ 1
λ
, tu2,ϕ3

], we obtain, for all tu2,ϕ3
∈ [ 1

λ
, 1
λ
+ τ̃ ],

e−ηtu2,ϕ3

∫ tu2,ϕ3

1
λ

eηs(−κṼ (s) + ‖BK(z( 1
λ
)− z(s))‖2)ds

< e−ηtu2,ϕ3

∫ tu2,ϕ3

1
λ

eηsε1(s)ds

where τ̃ is a lower bound of the duration between tu2,ϕ1
and 1

λ
i.e. tu2,ϕ1

− 1
λ
≥ τ̃ . It is worth

remarking that such inter-execution time exists due to Lemma 2.1. Hence, using (4.42), we
finally get,

m(tu2,ϕ3
) < 0 (2.58)

leading to a contradiction of (2.56). Then, we must have that tu2,ϕ1
≤ tu2,ϕ3

.
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2.4 Numerical simulation

Numerical simulations were done by discretizing an example of linear hyperbolic system. For
that purpose we have used a two-step variant of the Lax–Friedrichs numerical method pre-
sented in [58] and the solver on Matlab in [40]. We selected the parameters of the numerical
scheme so that the Courant-Friedrich-Levy condition for the numerical stability holds. In
addition, the sufficient stability condition is achieved using classical numerical tools for semi-
definite programming (see e.g. Yalmip toolbox [43] with SeDuMi solver).

2.4.1 Example 1

As a matter of example, we consider a system of 2×2 hyperbolic conservation laws describing
the vehicle traffic flow on a roundabout made up of only two inputs/exits. Inspired by [5],
where an example of ramp-meetering control in road traffic networks is treated, we consider the
structure of Figure 2.1 for a network in compartmental system representation describing flows
on conservative networks. Each compartment or node represents a segment of the roundabout.
Based on LWR model (see e.g. [9]), let us consider the special case where the dynamic of the
system is written as a set of kinematic wave equations,

∂tq + C(q)∂xq = 0 (2.59)

where q = [q1 q2]
T is the flux. C(q) = diag(c1(q1) c2(q2)) is the matrix of characteristic

velocities. The boundary conditions are

Figure 2.1: Network of 2 conservation laws for a roundabout.

q1(t, 0) = γq2(t, 1) + v1(t)

q2(t, 0) = βq1(t, 1) + v2(t) (2.60)

where γ and β are traffic splitting factors at the two exits of the roundabout and v1(t) and
v2(t) are the influxes injected from outside into compartments 1 and 2 respectively. They can
be viewed as control inputs (e.g. when modulating with traffic lights). With these control
actions, one intends to prevent the appearance of traffic jams on the roundabout or to achieve
a desired steady-state without congestion. As in [5], we assume free-flow conditions. In that
case, characteristic velocities are all positives. In addition, a steady-state for the system
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{q∗, v∗} is space invariant and satisfies (2.60), that is q∗1 = γq∗2 + v∗1 and q∗2 = βq∗1 + v∗2 . We
select the steady-state {q∗, v∗} as a free-flow steady-state. We want to stabilize it under linear
output feedback control of the form

v1(t) = v∗1 + k1(q2(t, 1) − q∗2)

v2(t) = v∗2 + k2(q1(t, 1) − q∗1)

where k1, k2 are tuning control parameters. Defining the deviations y = q− q∗ and u = v−v∗,
the linearization of system (2.59) at the equilibrium is given by

∂ty + C(q∗)∂xy = 0 (2.61)

with y = [y1 y2]
T , C(q∗) = diag(c1(q∗1) c2(q

∗
2)) and the boundary condition given by

y(t, 0) = Hy(t, 1) +Bu(t) (2.62)

where H =
(

0 γ
β 0

)

, B = I2 and u(t) = Ky(t, 1) with K =
(

0 k1
k2 0

)

. We then perform

simulations setting c1(q
∗
1) = 1, c2(q∗2) =

√
2, γ = 0.7, β = 0.9. The initial condition is

y(0, x) = [ 4x(x−1) sin(8πx) ]T for all x ∈ [0, 1].

It is worth remarking that due to the nature of this problem, the system in open-loop
converges to the equilibrium, i.e. ρ1(H) < 1 holds, thus the system (2.61) in open-loop
is GES. Therefore, the design of the control u(t) would be rather devoted to improve the
performance of the network (e.g. to accelerate the time convergence to the steady-state, by
decreasing the ρ1−norm of the boundary condition).

2.4.1.1 Continuous stabilization: controller u = ϕ0(z)

The boundary condition is y(t, 0) = Hy(t, 1) + Bu(t) where u(t) = ϕ0(z)(t) = Kz(t) is the
continuous controller acting from t ≥ 1

λ
= 1. The initial condition was chosen such that the

zero-order compatibility condition is satisfied i.e. y(0, 0) = (H+BK)y(0, 1). Condition (2.14)
holds since ‖∆HH∆−1

H ‖ = 0.8079 < 1 with ∆H = ( 1.2729 0
0 1.1426 ) and thus ρ1(H) < 1. Then,

K has been designed such that ρ1(G) < ρ1(H) < 1 with G = H + BK. To be more specific,
with K =

(

0 0.3
−0.9 0

)

and ∆G = ( 0.9134 0
0 1.2580 ), ‖∆GG∆

−1
G ‖ = 0.7262 < 1. It implies that the

closed-loop system is GES and the ρ1-norm of the boundary condition is smaller than the
open-loop case. Besides this, condition (2.15) in Proposition 2.2 was also checked getting as a
result the existence of scalars µ = 0.1, ν = 0.1 and one symmetric matrix Q = ( 0.8346 0

0 1.1191 ).

2.4.1.2 ISS static event-based stabilization: controller u = ϕ1(z)

The boundary condition is now y(t, 0) = Hy(t, 1)+Bu(t) where u(t) = ϕ1(z)(t). The param-
eters for the triggering algorithm were chosen to be α = 0.5, σ = 0.9. Therefore, ρ = 4.7481,
κ = 0.0379 and [(1+α)GTQΛG−e−2µQΛ] =

(−0.6833 0
0 −0.0439

)

is a symmetric negative definite
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matrix. Hence, Theorem 2.1 holds. The function ε1 used in the triggering condition (2.19) is
chosen to be

ε1(t) = ς1V (1)e−ηt, t ∈ R
+ (2.63)

with η = 0.4, V (1) = 0.6390, and ς1 is such that ς1V (1) = 5×10−3. Figure 2.2 shows the time
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‖d‖2
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Figure 2.2: Trajectories involved in triggering condition (2.19) for controller u = ϕ1(z).

evolution of the functions appearing in the triggering condition (2.19). Once the trajectory
‖d‖2 reaches the trajectory κV + ε1, an event is generated, the control value is updated and
d is reset to zero. The number of events under this event-based approach was 89, counting
them from t ≥ 1

λ
= 1. It is considerable less with respect to continuous stabilization, since the

number of discretization points in time is NT = 8000 with a discretization step ∆t = 1×10−3.

2.4.1.3 D+V event-based stabilization: controller u = ϕ2(z)

The boundary condition is now y(t, 0) = Hy(t, 1) + Bu(t) where u(t) = ϕ2(z)(t). The only
parameter to be chosen here is σ and it is as before, σ = 0.9. The function ε2 used in the
triggering condition (2.33) is ε2 = ρε1 with ρ = 4.7481 and ε1 given by (2.63). The number
of events under this event-based approach was 30, counting them from t ≥ 1.
A comparison of the functions V when stabilizing with ϕ0, ϕ1 and ϕ2 is done as shown in
Figure 2.4.

It can be noticed that under the two event-based stabilization approaches, global asymp-
totic stability is achieved with different observed rates despite similar theoretical guarantees.
D+V event-based stabilization results in slower convergence but leads to larger inter-execution
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Figure 2.3: Numerical solution of the first component y1 of the closed-loop system with con-
troller u = ϕ1(z) (left) and with controller u = ϕ2(z) (right).

times than the ISS static one which results in faster convergence. Moreover, the first triggering
time occurs with ϕ1. This is consistent with Proposition 2.4. For both approaches, σ has
been chosen to reduce as much as possible the number of triggering times. The closer σ is to
zero, the faster triggering is required. Figure 2.3 shows the first component of solution when
stabilizing with both ϕ1 (left) and ϕ2 (right). Note that for both approaches, oscillations are
presented near the equilibrium and asymptotic stability is achieved. It is worth remarking
that under continuous stabilization with ϕ0, it is possible to achieve the convergence to the
equilibrium in finite time. Such a time, for this particular illustrating example, is given by
TF = 1

λ
+ 1

λ1
+ 1

λ2
= 4+

√
2

2 s.

2.4.1.4 ISS dynamic event-based stabilization: controller u = ϕ3(z)

The boundary condition is now y(t, 0) = Hy(t, 1)+Bu(t) where u(t) = ϕ3(z)(t). The number
of events under this event-based approach was 86, counting them from t ≥ 1. Figure 2.5 shows
functions V when stabilizing with ϕ1 and ϕ3.

Under the event-based controllers ϕ1, and ϕ3, global asymptotic stability is also achieved
with quite different observed rates despite similar theoretical guarantees. Besides this, the first
triggering time occurs with ϕ1 which is exactly what expected according to Proposition 2.5.

Moreover, for event-based approaches, ϕ1, ϕ2 and ϕ3, we ran simulations for several initial
conditions given by y0a,b(x) = [ax(1 − x) b

2 sin((2a)πx)]
T , a = 1, ..., 5 and b = 1, ..., 10 on a

frame of 8s. Note that these initial conditions satisfy the zero-order compatibility condition.
We have computed the duration intervals between two triggering times (inter-execution times).
The mean value, standard deviation and the coefficient of variation of inter-execution times
for all approaches are reported in Table 2.1 and the density of such inter-execution times is
given in Figure 2.6 (for ϕ1 and ϕ2) and in Figure 2.7 (for ϕ1 and ϕ3).

The mean value number of triggering times with ϕ1 was 121.1 events whereas with ϕ2
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Figure 2.4: Time-evolution of functions V . Legend: Dashed-dotted black line for continuous
stabilization with controller u = ϕ0(z), dashed red line with red diamond marker for ISS
event-based stabilization with controller u = ϕ1(z) and blue line with blue circle marker for
D+V event-based stabilization with controller u = ϕ2(z).

was 45.72 events and with ϕ3 was 109.1 events. They are considerable less with respect to
continuous time approach ϕ0 since the discretization time for all simulations was NT = 8000

with ∆t = 1 × 10−3. It can be seen that using ϕ2 results in larger inter-execution times in
average than ϕ1. In addition, ϕ2 reduces the variability of the inter execution times and with
ϕ1 it is needed to sample faster than with ϕ2. The same comparison can be done for ϕ1 and
ϕ3. Indeed, t can be observed that stabilization with ϕ3 results in larger inter-execution times
than with ϕ1 which was expected because events generated according to ϕ3-event-triggered
rule, are a weighted average of those generated according to ϕ1-event-triggered rule.

2.4.2 Example 2

Fully in line with networks of compartments introduced in Chapter 1, let us consider here
the particular case of the network illustrated in Figure 1.4 of Section 1.6 for which there are
no buffers as can be seen here in Figure 2.8. It means that we have a network of hyperbolic
systems of conservation laws interconnected which is the core of this chapter. Assume that
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Figure 2.5: Time-evolution of functions V . Legend: Dashed red line with red diamond marker
for ISS static event-based stabilization with controller u = ϕ1(z) and blue line with blue circle
marker for ISS dynamic event-based stabilization with controller u = ϕ3(z).

for a constant input demand, the systems admits a free-flow steady state (we take the same
values as in Subsection 1.3.1). The linearized model is as follows:

∂ty + Λ∂xy = 0

with y(t, x) ∈ R
5, Λ = diag(1, 1.2, 1.7, 0.5, 2). The boundary condition is given by

y(t, 0) = Hy(t, 1) +Bu(t)

where H =

( 0 0 0 0 0
0 0 0 0 0

u23 0 0 0 0
1−u23 0 0 0 0

0 1 1 0 0

)

, where u23 = 0.548. B =







d∗1 0
−d∗1 0
0 q∗1
0 −q∗1
0 0






where d∗1 = 100 and

q∗1 = 35. In addition, u(t) = Ky(t, 1) with K ∈ R
2×5 (continuous time stabilization ϕ0).

In order to illustrate the results of this chapter, we assume that in the linearized system, no
external disturbance is presented, i.e. d1(t) = d∗1. For the control synthesis, one can carry out
a particular case of the procedure in Section 1.5.3 leading to to find K such that ρ1(G) < 1

with G = H +BK.

Remark 2.6
It is important to point out that due to the nature of this network, the system in open-loop is
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Figure 2.6: Density of the inter-execution times with controller u = ϕ1(z) (left) and with
controller u = ϕ2(z) (right).
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Figure 2.7: Density of the inter-execution times with controller u = ϕ1(z) (left) and with
controller u = ϕ3(z) (right).

GES (when no external disturbances are present). Indeed, it can be checked that ρ1(H) < 1.
For this network, control actions could be contemplated in order to accelerate the convergence
as it has been done in the previous example. Nevertheless, it turned out that when closing
the loop with event-based controllers, we fall in the case that no event-based stabilization is
required because the systems converges very fast to the origin and the deviation when sampling
does not actually affect the dissipativity of the boundary.

We aim at comparing continuous time control implementation with respect to the event-
based control proposed in this chapter. To do so, we propose a control gain K that, as
explained, does not improve the performance of the network but allows to appreciate the
behaviour of the system under event-based control schemes.
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Mean value Standard deviation Coefficient of variation
ISS static event-based 0.0448 0.1702 3.8024
D+V event-based 0.1361 0.1972 1.4489

ISS dynamic event-based 0.0640 0.0538 0.8411

Table 2.1: Mean value, standard deviation and variability of inter-execution times for ISS
static event-based stabilization approach (ϕ1), D+V event-based stabilization approach (ϕ2)
and ISS dynamic event-based stabilization approach (ϕ3).

q3(t, x)

q4(t, x)

e4(t)

q1(t, x)

q2(t, x)

d1(t)

q5(t, x)

u24(t)q1(t, x)

u23(t)q1(t, x)
u12(t)d1(t)

u13(t)d1(t)

Figure 2.8: Network of compartments made up of 5 transmission lines.

2.4.2.1 Event-based stabilization: controllers (ϕ1, ϕ2 and ϕ3)

Let us take K =
(

0 0 0 0 0
0 −0.00285 0.00285 0.00571 0.00714

)

. The closed-loop system is GES. We can
obtain Q = diag(4586, 4176, 131.6, 199, 39.3) and µ = 0.39. We close the loop from t1 = 2.
Figure 2.9 shows the output flow of the network q4(t) + q5(t) when closing the loop with the
continuous time control u = ϕ0(z) = Kz, and with the three event-based controllers. Under
ϕ1, ϕ2 and ϕ3, the number of triggering times obtained are 72, 4 and 41 respectively. The
behavior of the output flow is similar and it remains close to the steady-state with different
observed rates of convergence. It can also be observed that, the first triggering time after t1
always happens with ϕ1-strategy and that with ϕ2 we obtain very long inter-execution times.

2.5 Appendix of Chapter 2

2.5.1 Proof of Lemma 2.2

Let us prove that V is continuous and right differentiable on R
+. From (2.16), it follows that

V (y) =

n
∑

d=1

QddVd(y) (2.64)
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Figure 2.9: Total output flow under continuous time controller ϕ0 (black line), ISS-static
event-based controller ϕ1 (red line), D+-event-based controller ϕ2 (blue dashed-dot line) and
ISS-dynamic event-based controller ϕ3 (green dashed line).

where Vd(y) =
∫ 1
0 y

2
d(x)e

−2µxdx. Let y be a solution of (2.1)-(2.3), let t in R
+, x ∈ [0, 1],

h > 0 then

yd(t+ h, x) =

{

yd(t+ h− x
λd
, 0), if λdh ≥ x

yd (t, x− λdh) , if λdh < x
(2.65)

Let V (t) = V (y(t, ·)) and Vd(t) = Vd(yd(t, ·)). Using (2.65), Vd(t+ h)− Vd(t) is computed as
follows:

Vd(t+ h)− Vd(t) =

∫ λdh

0
y2d(t+ h− x

λd
, 0)e−2µxdx

+

∫ 1

λdh

y2d(t, x− λdh)e
−2µxdx

−
∫ 1

0
y2d(t, x)e

−2µxdx

=

∫ λdh

0
y2d(t+ h− x

λd
, 0)e−2µxdx

+

∫ 1−λdh

0
y2d(t, x)e

−2µxe−2µλdhdx

−
∫ 1

0
y2d(t, x)e

−2µxdx
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Hence,

Vd(t+ h)− Vd(t) =

∫ λdh

0
y2d(t+ h− x

λd
, 0)e−2µxdx

− e−2µλdh

∫ 1

1−λdh

y2d(t, x)e
−2µxdx

+ (e−2µλdh − 1)

∫ 1

0
y2d(t, x)e

−2µxdx

Since yd(·, 0) ∈ Crpw(R+,Rn), we have

lim
h→0+

1
h

∫ λdh

0
y2d(t+ h− x

λd
, 0)e−2µxdx = λdy

2
d(t, 0)

Now, due to the fact that yd(t, ·) ∈ Clpw([0, 1],Rn), for all t ≥ 0,

lim
h→0+

1
h
e−2µλdh

∫ 1

1−λdh

y2d(t, x)e
−2µxdx = λdy

2
d(t, 1)e

−2µ

In addition, on gets

lim
h→0+

1
h
(e−2µλdh − 1) = −2µλd

therefore,

lim
h→0+

Vd(t+h)−Vd(t)
h

=λdy
2
d(t, 0)− λdy

2
d(t, 1)e

−2µ

− 2µλd

∫ 1

0
y2d(t, x)e

−2µxdx
(2.66)

From (2.64) and (2.66) we get,

lim
h→0+

V (t+h)−V (t)
h

=

n
∑

d=1

Qdd

(

λdy
2
d(t, 0)

− λdy
2
d(t, 1)e

−2µ

− 2µλd

∫ 1

0
y2d(t, x)e

−2µxdx

)

which proves that V is right differentiable and in turn right continuous. Moreover, since
D+V = limh→0+

V (t+h)−V (t)
h

, (2.27) holds. In order to prove that V is left continuous, let us
consider the case when h < 0. Then,

yd(t+ h, x) =

{

yd(t+ h− (x−1)
λd

, 1), if x ≥ λdh+ 1

yd (t, x− λdh) , if x < λdh+ 1
(2.67)
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and

Vd(t+ h)− Vd(t) =

∫ 1

−λdh

y2d(t, x)e
−2µxe−2µλdhdx

+

∫ 1

λdh+1
y2d(t+ h− (x−1)

λd
, 1)e−2µxdx

−
∫ 1

0
y2d(t, x)e

−2µxdx

which can be rewritten as follows,

Vd(t+ h)− Vd(t) =
∫ 1
λdh+1 y

2
d(t+ h− (x−1)

λd
, 1)e−2µxdx

−e−2µλdh
∫ −λdh

0 y2d(t, x)e
−2µxdx

+(e−2µλdh − 1)
∫ 1
0 y

2
d(t, x)e

−2µxdx

(2.68)

From (2.68) it can be noticed that,

lim
h→0−

Vd(t+ h)− Vd(t) = 0

Therefore, V is left continuous. Since it is also right continuous, it is continuous on R
+. This

concludes the proof of Lemma 2.2.
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In this chapter we consider the problem of stabilization of boundary controlled linear hy-
perbolic partial differential equations where the output measurements are communicated after
being time-sampled and space-quantized. Static and dynamic controllers are designed, which
establish stability in different norms with respect to measurement errors using Lyapunov-
based techniques. For practical purposes, stability in the presence of event-based sampling
and quantization errors is analyzed. The design of sampling algorithms ensures practical
stability.

3.1 Introduction

We have developed in Chapter 2, event-based sampling algorithms for boundary control of
linear hyperbolic systems of conservation laws. The proposed rigorous framework establishes

73
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well-posedness of the closed-loop system and uses Lyapunov techniques for sampling algo-
rithms to ensure exponential stability of the system. On the other hand, in [64, 63], boundary
control of linear hyperbolic systems is treated when the output measurements are quantized.

We know that when considering sampling and quantization issues, measurement errors
are introduced which in most cases can cause the hyperbolic system to become unstable.
Therefore, ISS properties with respect to those errors must be properly addressed. In Chapter
2, more precisely in Section 2.3.2 , a static boundary control yields ISS in L2-norm by means of
Lyapunov analysis. While in [64, 63], ISS in H1-norm leading to practical stability is obtained.
The use of H1-norm is motivated by the fact that the output function to be quantized, must
remain within the range of the quantizer, which is considered to be bounded.

This chapter builds on the ISS notions developed in Chapter 2 and [64] to solve the
stabilization problem of linear hyperbolic PDEs when the output is subjected to event-based
sampling, and quantization. The main contribution lies on the fact that even under event-
triggered sampling of the output, one can still obtain ISS stability in both L2 and H1 norms
and the well-posedness of the system. In the first instance, assuming the quantizers do not
have limitations on data rate, a static control is used and bounds on L2-norm of the state are
obtained. For finite data-rate quantizers, it turns out to be necessary to work with a dynamic
controller, and stability in H1-norm is established.

3.2 Problem formulation

As in Section 3.2, let us consider the linear hyperbolic PDE:

∂ty(t, x) + Λ∂xy(t, x) = 0 (3.1)

where x ∈ [0, 1], t ∈ R
+ and Λ = diag(λi) is a diagonal positive definite matrix in R

n. The
boundary condition is given by

y(t, 0) = Hy(t, 1) +Bu(t) (3.2)

and the initial condition is
y(0, x) = y0(x), x ∈ (0, 1). (3.3)

where y : Rn × [0, 1] → R
n, the input u : R+ → R

m, H ∈ R
n×n and B ∈ R

n×m. We consider
the output of this system to be

z(t) = y(t, 1). (3.4)

The objective is to design the control input u in (3.2) as function of the output measurements
such that the resulting closed-loop system is asymptotically stable in appropriate sense. In
our setup, we impose certain restrictions on the transmission of output to the controller.

Motivated by the fact that the output is communicated to the controller via a commu-
nication channel, we determine the sampling instants, tk ∈ R+, k ∈ N, such that y(tk, 1) is
transmitted to the controller for t ∈ [tk, tk+1). Additionally, after the sampling instants have
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been computed, a quantizer q : Rn → Q encodes each output sample y(tk, 1) to a discrete
alphabet set Q. We consider two cases:

• For Q countably infinite, where there are no constraints on the domain of the quantizer.

• For quantizers with compact domain, where Q is possibly finite.

In both cases, we solve the design problem where we compute the sampling instants tk, k ∈ N.
In order to save communication resources, our objective is to employ event-based strategy for
computing the sampling times. We provide the sampling algorithms for both aforementioned
cases, and show that the closed-loop system is ISS with respect to the quantization error with
appropriate norms.

3.3 Static Control with Infinite Data Rate

To highlight the fundamental ideas behind our approach, we first treat the case where quan-
tization error is assumed to be bounded for all possible values of the output, for example,
q(x) = ⌊x + 0.5⌋. In that case, we can talk about stability of y in L2-norm without requir-
ing any bounds on z(t). We first describe how ISS in L2-norm is achieved via static output
feedback, and then present the sampling algorithm.

3.3.1 ISS via static output feedback

We start by introducing perturbations in the output measurements by letting

zd(t) = y(t, 1) + d(t) (3.5)

with d ∈ L∞(R+;Rn). We are interested in designing an output feedback which achieves ISS
with respect to d in the following sense:

Definition 3.1 (L2 input-to-state stability)
The system (3.1)-(3.3),(3.5), with controller u = ϕ(z) is input-to-state stable (ISS) with respect
to disturbance d ∈ L∞(R+;Rn), if there exist ν > 0, C1 > 0 and C2 > 0 such that, for every
y0 ∈ L2([0, 1];Rn), the solution satisfies, for all t ∈ R

+,

‖y(t, ·)‖2L2([0,1],Rn) ≤ C1e
−νt(‖y0‖2L2([0,1];Rn)) + C2‖d[0,t]‖2∞. (3.6)

In the case there are no perturbation, i.e. d ≡ 0, a particular case of ϕ is a static output
feedback control u(t) = Kz(t). Setting G = H +BK, the boundary condition (3.2) is

y(t, 0) = Gz(t). (3.7)

The design ofK ∈ R
m×n relies on the following assumption which states a sufficient (dissipative

boundary) condition for the global exponential stability of the system. Let us bring it back
here as follows:



76
Chapter 3. Stabilization of boundary controlled linear hyperbolic systems via

Lyapunov-based event triggered sampling and quantization

Assumption 3.1 (see Assumption 2.2)
The following inequality holds:

ρ2(G) = inf
{

‖∆G∆−1‖; ∆ ∈ Dn,+

}

< 1 (3.8)

where ‖ · ‖ denotes the induced Euclidean-norm of matrices in R
n×n and Dn,+ denotes the set

of diagonal positive definite matrices.

In case there are perturbations, and u = Kzd, the resulting boundary condition can be
expressed as

y(t, 0) = Gz(t) +BKd(t). (3.9)

Under Assumption 3.1, let us recall that the function defined for all y(·) ∈ L2([0, 1];Rn), by

V (y) =

∫ 1

0
y(x)TQy(x)e−2µxdx (3.10)

is a Lyapunov function for system (3.1)-(3.3), (3.4),(3.7) where Q is a diagonal positive definite
matrix and µ > 0 (see [18]). Even in the presence of perturbations, the system (3.1)-(3.3),
(3.5) with control u = Kzd, is ISS in L2-norm. The result follows using (3.10) as well.

3.3.2 Static control with event-based sampling and quantizer

In this section, we analyze the stability of the closed-loop system when the output is subject
to event-triggered sampling and quantization. Highly inspired by [65] and what we have intro-
duced in Chapter 2, we design the sampling algorithm so that L2-norm of ‖y(t, ·)‖ converges
to a bound parameterized by quantization error. In the sequel, we use the boundary controller
as u = ϕs(z). The operator ϕs encloses the triggering condition, the quantizer and the control
function. This requires us to first recall a result from Proposition 2.3 that allows us to express
V from (3.10) in terms of measured output.

Denoting λ = min1≤i≤n{λi}, we define the function Ṽ : [ 1
λ
,∞) → R

+, at t = 1
λ
, by

Ṽ (t) =
n
∑

i=1

Qii

∫ 1

0

(

Hiz

(

t− x

λi

))2

e−2µxdx, (3.11)

and for all t > 1
λ
, by

Ṽ (t) =

n
∑

i=1

Qii

∫ 1

0

(

Hiz

(

t− x

λi

)

+Biu

(

t− x

λi

))2

e−2µxdx (3.12)

with Q ∈ R
n×n a diagonal positive definite matrix.

Proposition 3.1 (see Proposition 2.3)
Let y be a solution to (3.1)-(3.3),(3.4). It holds that for all t ≥ 1

λ
, Ṽ (t) = V (y(t, ·)) with Ṽ

given by (3.12).
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Having stated the above issues, let us now characterize ϕs as follows:

Definition 3.2 (Defintion of ϕs)
Let σ ∈ (0, 1), γs, ξ, δ, µ, ν > 0, K ∈ R

m×n. Let εs(t) = εs(0)e
−δt, εs(0) ≤ ξṼ ( 1

λ
) for all

t ≥ 1
λ
.

We define ϕs the operator that maps the output function z to u for which we have:

• The increasing sequence of time instants (tk) that is defined iteratively by t0 = 0, t1 = 1
λ
,

and for all k ≥ 1,

tk+1 = inf{t ∈ R
+|t > tk ∧ γs‖BK(−z(t) + z(tk))‖2 ≥ 2νσṼ (t) + εs(t)}. (3.13)

If Ṽ ( 1
λ
) = 0, the time instants are t0 = 0, t1 = 1

λ
and t2 = ∞.

• The quantizer q : Rn → Q has the property that |q(x)− x| ≤ ∆q, for some countable set
Q, and a scalar ∆q > 0.

• The static control function ϕs is described by:

u(t) = 0 ∀t ∈ [t0, t1),

u(t) = Kq(z(tk)) ∀t ∈ [tk, tk+1), k ≥ 1.
(3.14)

Remark 3.1
The boundary condition (3.2), with (3.4), under static boundary control, u = ϕs(z) as u(t) =
Kq(z(tk)), for all t ≥ 1

λ
, can be rewritten as:

y(t, 0) = (H +BK)z(t) + dq(t) + ds(t) (3.15)

where
{

dq(t) = BK(q(z(tk))− z(tk))

ds(t) = BK(z(tk)− z(t)) ∀t ∈ [tk, tk+1)
(3.16)

can be seen as errors related to the quantization and to the sampling respectively.

3.3.2.1 Well-posedness of the closed-loop system

In order to establish the existence and uniqueness of solutions in this section, we use the
notion of piecewise continuous solutions as in Chapter 2. As a matter of fact, the controller ϕs

introduced in this section has the same nature as the operator defined in Definition 2.3. Using
Crpw (resp. Clpw) to denote piecewise right (resp. left) continuous functions, it follows from the
arguments presented in Section 2.2.1 that ϕs satisfies Assumption 2.1, thus u ∈ Crpw(R+,Rm)

provided z ∈ Crpw(R+,Rn). It allows us to state the following result on the existence of
solutions:

Proposition 3.2 (Existence of solutions)
For any y0 ∈ Clpw([0, 1],Rn), there exists a unique solution to the closed-loop system (3.1)-
(3.3), (3.4) with controller u = ϕs(z).
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3.3.2.2 Stability result

Let us state the main result of this section.

Theorem 3.1 (L2-stability)
Let K ∈ R

m×n be such that Assumption 3.1 holds. Let µ > 0, Q ∈ R
n×n a diagonal positive

matrix and ν = µλ. Let σ ∈ (0, 1), δ > 2ν(1 − σ). Let εs(t) be the decreasing function as in
Definition 3.2 and assume that there exist γq and γs > 0 such that

Mc =





GTQΛG−QΛe−2µ GTQΛ GTQΛ

⋆ QΛ− γqI QΛ

⋆ QΛ QΛ− γsI



 ≤ 0 (3.17)

Then the closed-loop system (3.1)-(3.3),(3.4),(3.15) under controller ϕs, has a unique solution
and is ISS in L2-norm with respect to dq.

Proof. The existence and uniqueness of solution is given by Proposition 3.2. Let us show that
the system is ISS with respect to dq. Consider the Lyapunov function candidate given by
(3.10). The right-time derivative of the Lyapunov function along the characteristic solutions
is given as follows (see Lemma 2.2):

DV + = yT (·, 0)QΛy(·, 0) − yT (·, 1)e−2µQΛy(·, 1)
−2µ

∫ 1
0 y(·, x)T (Λe−2µxQ)y(·, x)dx.

In the sequel, to write more compact equation, the time and space dependence may be omitted.
Using the output function (3.4) and the boundary condition (3.15) under u = ϕs(z), we obtain
that

DV + = (Gz + dq + ds)
TQΛ(Gz + dq + ds)− zT e−2µQΛz

−2µ
∫ 1
0 y

T (Λe−2µxQ)ydx.

Since Q is diagonal positive definite, it holds λQ ≤ ΛQ and taking ν = µλ yields,

DV + ≤ −2νV +





z

dq
ds





T 



GTQΛG−QΛe−2µ GTQΛ GTQΛ

⋆ QΛ QΛ

⋆ QΛ QΛ









z

dq
ds



 . (3.18)

Adding γq‖dq‖2−γq‖dq‖2 and γs‖ds‖2−γs‖ds‖2 (for suitable and large enough γs and γq > 0)
to (3.18) we get,

DV + ≤ −2νV +





z

dq
ds





T

Mc





z

dq
ds



+ γq‖dq‖2 + γs‖ds‖2 (3.19)

As soon as Mc ≤ 0, we obtain

DV + ≤ −2νV + γq‖dq‖2 + γs‖ds‖2 (3.20)
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which in turn, can be rewritten as follows:

DV + ≤ −2ν(1− σ)V + γq‖dq‖2 − 2νσV + γs‖ds‖2

for some σ ∈ (0, 1). By Proposition 3.1, for all t ≥ 1
λ
, the last two terms of the inequality can

be rewritten as −2νσṼ + γs‖ds‖2. Using the definition of ϕs, events are triggered in order to
guarantee for all t ≥ 1

λ
, γs‖ds‖2 ≤ 2νσṼ + εs. Therefore, it guarantees that

DV + ≤ −2ν(1− σ)V + γq‖dq‖2 + εs (3.21)

Then, using the Comparison principle, for all t ≥ 1
λ
, we get

V (y(t, ·)) ≤ e
−2ν(1−σ)(t− 1

λ
)
V (y( 1

λ
, ·))

+

∫ t

1
λ

e−2ν(1−σ)(t−s)
(

γq‖dq(s)‖2 + εs(s)
)

ds

and thus, with εs(s) = εs(0)e
−δs where εs(0) ≤ ξṼ ( 1

λ
) (as in Definition 3.2), integrating the

last term and selecting δ > 2ν(1− σ), we get, for all t ≥ 1
λ
,

V (y(t, ·)) ≤e−2ν(1−σ)(t− 1
λ
)
V (y( 1

λ
, ·)) + γq

2ν(1−σ) sup
s∈[ 1

λ
,t]

‖dq(s)‖2

+
ξV (y(

1
λ
,·))

δ−2ν(1−σ)e
−2ν(1−σ)(t− 1

λ
)−δ

1
λ

(3.22)

Analyzing what happens for all t ∈ [0, 1
λ
) with the aim that the right-hand side of (3.22)

depends on the initial condition y0, exactly as it has been done in the proof of Theorem 2.1
we obtain that: there exists θ > 0 so that V (y( 1

λ
, ·)) is given as follows (see (2.31)),

V (y( 1
λ
, ·)) ≤ e

2θ λ
λ e2(θ+µ)V (y0) (3.23)

with λ = max1≤i≤n{λi}. Therefore, replacing (3.23) in (3.22) we get for all t ≥ 1
λ
,

V (y(t, ·)) ≤e−2ν(1−σ)(t− 1
λ
)
e
2θ λ

λ e2(θ+µ)V (y0) +
γq

2ν(1−σ) sup
s∈[ 1

λ
,t]

‖dq(s)‖2

+ ξe
2θ λ

λ e2(θ+µ)V (y0)
δ−2ν(1−σ) e

−2ν(1−σ)(t− 1
λ
)−δ

1
λ

Hence, for all t ≥ 1
λ
,

V (y(t, ·)) ≤ C̃1e
−2ν(1−σ)tV (y0) +

γq
2ν(1−σ) sup

s∈[ 1
λ
,t]

‖dq(s)‖2 (3.24)

with

C̃1 = e
2ν(1−σ)

1
λ e

2θ
λ
λ e2(θ+µ)

(

1 + ξ e
−δ

1
λ

δ−2ν(1−σ)

)

(3.25)
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Since sup
s∈[ 1

λ
,t]
‖dq(s)‖2 ≤ sups∈[0,t] ‖dq(s)‖2, we finally get,

V (y(t, ·)) ≤ C̃1e
−2ν(1−σ)tV (y0) +

γq
2ν(1− σ)

sup
s∈[0,t]

‖dq(s)‖2. (3.26)

It concludes the proof.

3.4 Dynamic control with finite data rate

In this section, we consider the case when the sampled-output is subject to a quantizer which
has constraints on the domain. We define a finite-rate uniform quantizer q : Rn → Q where
Q := {q1, q2, ..., qN} is a set of finite alphabets. It has the following property:

|q(x)− x| ≤ ∆q if |x| ≤Mq (3.27a)

and
|q(x)| ≥Mq −∆q if |x| > Mq (3.27b)

where ∆q > 0 is the sensitivity of the quantizer and Mq is the range of the quantizer. We refer
to [65] or [42] for further details. With the quantizer specified in (3.27), the sampled-output
y(tk, 1) (for some tk to be defined in the sequel), must be bounded in a proper sense. It turns
out that it can be only bounded if the H1-norm of y(t, ·), defined as

‖y‖2H1([0,1];Rn) = ‖y‖2L2([0,1];Rn) + ‖∂y‖2L2([0,1];Rn)

is bounded, as explained in Section 3.4.2. Thus, it is necessary for y ∈ H1([0, 1];Rn) to be
absolutely continuous. When dealing with quantized and sampled output, a static control
would introduce discontinuous inputs at the boundary, which result in y being discontinuous.
To overcome this problem, we use a dynamic controller as proposed in [64, 63], which helps in
smoothing the discontinuities caused by the quantization and sampling. We introduce then
the dynamic η ∈ R

n satisfying the following ordinary differential equation,

η̇(t) = −αη(t) + αzd(t) η(0) = η0 (3.28)

for some α > 0 to be chosen later and zd(t) given by (3.5) where d will be characterized later
on. Once again, we shall consider ISS issues with respect to d.

Definition 3.3 (H1 input-to-state stability)
The system (3.1)-(3.3),(3.5),(3.28) with controller u = ϕ(z) is ISS with respect to distur-
bance d ∈ L∞(R+,Rn), if there exist ν > 0, C1 > 0 and C2 > 0 such that, for every
y0 ∈ H1([0, 1];Rn), η0 ∈ R

n, the solution satisfies, for all t ∈ R
+,

|η(t)− y(t, 1)|2 + ‖y(t, ·)‖2H1([0,1],Rn) ≤ C1‖d[0,t]‖2∞
+ C2e

−νt(|η0 − y(0, 1)|2 + ‖y0‖2H1([0,1];Rn)). (3.29)
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3.4.1 Event-based and quantized dynamic boundary control

Proceeding similarly as in Section 3.3.2, we will call the dynamic boundary controller as ϕd,
where this operator encloses the triggering condition, the quantizer and the dynamic control
function. It is rigorously characterized as follows:

Definition 3.4 (Definition of ϕd)
Let σ ∈ (0, 1), κ1 > 0, γs, ξ, µ > 0, K ∈ R

m×n and P a symmetric positive definite
matrix. Let Ṽ be given, at t = 1

λ
by (3.11) and for all t > 1

λ
, by (3.12). Let εd(t) =

ξ(Ṽ ( 1
λ
) + (η( 1

λ
)− z( 1

λ
))TP (η( 1

λ
)− z( 1

λ
)))e−δt for all t ≥ 1

λ
.

We define ϕd the operator that maps the output function z to u for which we have:

• The increasing sequence of time instants (tk) that is defined iteratively by t0 = 0, t1 = 1
λ
,

and for all k ≥ 1,

tk+1 = inf{t ∈ R
+|t > tk∧

γs‖α(−z(t) + z(tk))‖2 ≥
κ1(η(t)− z(t))TP (η(t) − z(t)) + κ1Ṽ (t) + εd(t)}.

(3.30)

where η is obtained from (3.28) by setting zd(t) = q(y(tk, 1)), with t ∈ [tk, tk+1), and q
defined in (3.27).

If Ṽ ( 1
λ
) = 0 and (η( 1

λ
)−z( 1

λ
))TP (η( 1

λ
)−z( 1

λ
)) = 0, the time instants are t0 = 0, t1 = 1

λ

and t2 = ∞.

• The dynamic control function that is defined by:

u(t) = ũ(η0, y0) ∀t ∈ [t0, t1)

u(t) = Kη(t) ∀t ∈ [tk, tk+1), k ≥ 1
(3.31)

where, ũi(η0, y0) =
∑n

j=1Kije
−αt1

(

η0j +
∫ t1
0 eαsαy0j (1− λjs)ds

)

, i=1,...,m, with η0,

y0 satisfying the compatibility condition y0(0) = Hy0(1) + Bũ(η0, y0) and u(t1) =

ũ(η0, y0) = Kη(t1).

Remark 3.2
Under u = ϕd(z) , and (3.4), we can rewrite (3.28), for all t > t1, as follows:

η̇(t) = −αη(t) + αz(t) + dq(t) + ds(t) (3.32)

where
{

dq(t) = α(q(z(tk))− z(tk))

ds(t) = α(z(tk)− z(t)) ∀t ∈ [tk, tk+1)
(3.33)

can be seen as the measurement errors resulting from the quantization and sampling, respec-
tively.



82
Chapter 3. Stabilization of boundary controlled linear hyperbolic systems via

Lyapunov-based event triggered sampling and quantization

3.4.1.1 Well-posedness of the closed-loop system

In order to establish the existence and uniqueness of solutions in this section, we use the
notion of piecewise differentiable solutions (C1

pw) whose derivatives are piecewise continuous
functions (as those treated in Chapter 2). Let us remark that C1

pw([0, 1],R
n) ⊂ H1([0, 1],R+).

Following an analogue methodology as in Chapter 2 (see Subsection 2.2.2), let us first
introduce the following assumption:

Assumption 3.2
Let ϕ̃ be an operator from C1

pw(R
+,Rn) to C1

pw(R
+,Rm) satisfying:

1. the following causality property: for all s in R
+, for all z, z∗ ∈ C1

pw(R
+,Rn)

(∀t ∈ [0, s], z(t) = z∗(t)) =⇒ (∀t ∈ [0, s], u(t) = u∗(t))

where u = ϕ̃(z) and u∗ = ϕ̃(z∗);

2. the following compatibility condition: y0(0) = Hy0(1) +Bu(0).

It will enable us to state the existence of solutions for the linear hyperbolic system in the
following sense:

Proposition 3.3
Let ϕ̃ satisfy Assumption 3.2 and y0 ∈ C1

pw([0, 1],R
n). Then, there exists a unique solution

to the closed-loop system (3.1)-(3.3),(3.4) with controller u = ϕ̃(z). Moreover, for all t ∈ R
+

y(t, ·) ∈ C1
pw([0, 1],R

n), and for all x ∈ [0, 1] y(·, x) ∈ C1
pw(R

+,Rn).

Proof. The proof follows the essentials of proof of Proposition 2.1. It is worth bringing up
some of its lines as we adapt it to the current case.

Let us consider λ = max1≤i≤n{λi} and let δ = 1/λ be the minimum time for a character-
istic, with velocity λ, to cross the spatial domain [0,1]. For p ∈ N, let ∆p ⊂ R

+ be defined
by ∆p = [pδ, (p + 1)δ]. We will proceed by induction over the interval ∆p with the following
induction property:

• y is defined on ∆p × [0, 1];

• y(·, x) ∈ C1
pw(∆p,R

n);

• y(t, ·) ∈ C1
pw([0, 1],R

n).

Let us consider, for p = 0, the interval ∆0 = [0, δ]. Following the same arguments as in the
first part of proof of Proposition 2.1, we get that y is given, for all (t, x) ∈ ∆0 × [0, 1], by
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yi(t, x) =

{

∑n
j=1Hijzj(t− x

λi
) +

∑m
j=1Bijuj(t− x

λi
), if λit ≥ x

y0i (x− λit) , if λit < x
(3.34)

where it has stated that z is well-defined on ∆0 and by causality property, u is well-defined
on ∆0 as well.

It is worth remarking that zj(t− x
λi
) = y0j (1− λit+ x). Then, it is proved that yi depends

uniquely on y0i on ∆0 × [0, 1].
Since y0 belongs to C1

pw([0, 1],R
n), z belongs to C1

pw(∆0,R
n). Therefore, by Assumption 3.2, u

belongs to C1
pw(∆0,R

m). It follows then, from (3.34), that y is defined on ∆0×[0, 1]. Moreover,

• zj(t− x
λd
) belongs to C1

pw;

• uj(t− x
λd
) belongs to C1

pw;

• y0i (x− λdt) belongs to C1
pw;

Observe that yi(t, x) is continuous at x = λit. Indeed, from (3.34), at x = λit, we have

yi(t, λit) =

{

∑n
j=1Hijy

0
j (0) +

∑m
j=1Bijuj(0)

y0i (0)
(3.35)

where clearly, the two lines of (3.35) are equivalent due to the compatibility condition.

It follows from (3.34) that y(t, ·) ∈ C1
pw([0, 1],R

n) for all t ∈ ∆0 and that y(·, x) ∈
C1
pw(∆0,R

n) for all x ∈ [0, 1]. Thus, induction property holds at p = 0.

Now, assume that induction property holds for a given p ∈ N. We are now going to prove
the same property for p + 1 > 0. For that purpose, let us take y((p + 1)δ, ·) as the initial
condition of the system. Applying the same arguments as above; and by means of hypothesis
of induction, one gets that z ∈ C1

pw(∆p+1,R
n), u ∈ C1

pw(∆p+1,R
m). In addition, y is defined

on ∆p+1× [0, 1], y(t, ·) exists for all t in ∆p+1 and belongs to C1
pw([0, 1],R

n) and y(·, x) belongs
to C1

pw(∆p+1,R
n) for every x ∈ [0, 1].

Therefore, we have proved by induction that, for each p ∈ N, z ∈ C1
pw(∆p,R

n) and y(t, ·)
exists for all t in ∆p, and belongs to C1

pw([0, 1],R
n) and y(·, x) belongs to C1

pw(∆p,R
n) for every

x ∈ [0, 1]. Thus, there exists an unique solution to the closed-loop system (3.1)-(3.3),(3.4)
with u = ϕ̃(z). Hence, this concludes the proof.

Lemma 3.1
The operator ϕd considered in Definition 3.4 satisfies Assumption 3.2.

Proof. Let J = [a, b] be a closed interval subset of R+ and let z ∈ C1
pw(R

+,Rn). Let us prove
that under the triggering condition (3.30) of ϕd, there is a finite number of sampling times on
J . If (η( 1

λ
) − z( 1

λ
))TP (η( 1

λ
) − z( 1

λ
)) = 0 and Ṽ ( 1

λ
) = 0, there is only at most one sampling
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time instant and that is t1. Let us see the case Ṽ ( 1
λ
) + (η( 1

λ
) − z( 1

λ
))TP (η( 1

λ
) − z( 1

λ
)) > 0.

We define f on J as f(t) = αz(t). Note that f ∈ C1
pw(J,R

n), and also uniformly continuous
on J . It means that for all ζ > 0, there exists τ > 0 such that

∀t, t′ ∈ [a, b] : |t− t′| < τ =⇒ ‖f(t)− f(t′)‖2 ≤ ζ (3.36)

We denote τ the value of τ when ζ = 1
γs
εd(b). Assume that there are at least two consecutive

sampling time instants in J and let tk be the first one. Consider γs‖f(t)−f(tk)‖2 for all t ∈ J

in such a way that, combined with (3.30), the following holds at time t = tk+1:

‖f(tk+1)−f(tk)‖2 ≥ κ1
γs
Ṽ (tk+1)+

1
γs
εd(tk+1)+

κ1
γs
(η(tk+1)−z(tk+1))

TP (η(tk+1)−z(tk+1)).

Using the non-negativity of (η− y)TP (η− z) and Ṽ , the fact that εd is a decreasing function,
the definition of τ and the uniform continuity arguments, we have that

‖f(tk+1)− f(tk)‖2 ≥ 1
γs
εd(tk+1) ≥ 1

γs
εd(b)

=⇒ |tk+1 − tk| ≥ τ

Therefore, τ gives a lower bound for the duration between two sampling times, but depends
upon the interval under consideration J . We can conclude that the maximal number of
triggering times on J may be given by

s =

⌊

b− a

τ

⌋

which is finite.

Moreover, from (3.28), we obtain that η ∈ C1
pw(R

+;Rn). Hence, from (3.31), u ∈
C1
pw(R

+;Rm) for which, by construction, compatibility conditions are satisfied, i.e. y0(0) =

Hy0(1) +Bu(0) and u(t1) = Kη(t1).

For proving the causality property of the operator ϕd, it is sufficient to follow the same
steps as in proof of Lemma 2.1. We conclude the proof.

Remark 3.3
It can be noticed that both ds and dq from (3.33), are in Crpw(J,Rn).

Combining the previous lemma with Proposition 3.3, we get

Corollary 3.1
For any y0 in C1

pw([0, 1],R
n), η0 ∈ C1

pw(R
+,Rn) satisfying the compatibility conditions, there

exists a unique solution to the closed-loop system (3.1)-(3.3),(3.4), (3.32) and controller u =

ϕd(z).
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3.4.1.2 ISS stability result

Remark first that the boundary condition (3.2), with (3.4) under the dynamic boundary
controller u = ϕd(z) as u = Kη is then rewritten as follows:

y(t, 0) = Hz(t) +BKη(t)

= Gz(t) +BK(η(t)− z(t)) (3.37)

with G = H + BK. In order to state the main result, let us introduce some notation. We
denote

F0 := Λ2GTΛ−1Q2GΛ
2 − ΛTQ2Λ

2e−2µ;

F1 := KTBTΛ−1Q2GΛ
2;

F2 := KTBTΛ−1Q2BK.

(3.38)

for scalars µ > 0, α > 0, λ = min1≤i≤n{λi}, diagonal positive definite matrices Q1, Q2 and a
symmetric positive matrix P . In addition, we denote by Mc the matrix in (3.39), and finally,

Mc =





GTQ1ΛG−Q1Λe
−2µ 0 GTQ1ΛBK

0 F0 − F1 − F T
1 + F2 −αF T

1 + αF2 − P

⋆ ⋆ α2F2 − 2αP + 2µλP +KTBTQ1ΛBK



(3.39)

define the matrix Md
c , for some scalars γq and γs > 0, as

Md
c =







Mc

0 0
FT
1 −F2 FT

1 −F2

−αF2 −αF2

⋆ F2−γqI F2

F2 F2−γsI






(3.40)

Let us now present the main result of the second part of this chapter.

Theorem 3.2 (H1-stability)
Assume that there exist Q1,Q2 diagonal positive matrices in R

n×n, P a symmetric positive
definite matrix in R

n×n, K in R
m×n, α > 0, µ > 0, ν = µλ , σ ∈ (0, 1), δ > 2ν(1 − σ) such

that the Assumption 3.1 holds. Also, suppose that

Mc ≤ 0 (3.41)

and that there exist γq and γs > 0 such that

Md
c ≤ 0. (3.42)

Then, the closed-loop system (3.1)-(3.3),(3.4),(3.32) under controller ϕd, has a unique solution
and is ISS in H1 norm with respect to dq.

Proof. The existence and uniqueness of solution follow from Corollary 3.1. Let us show
that the system is ISS with respect to dq. Consider the Lyapunov function candidate
V : H1([0, 1],Rn)× R

n → R
+ given by

V := V1 + V2 + V3 (3.43)
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where V1 : H1([0, 1],Rn) → R
+ is defined as,

V1(y) =

∫ 1

0
y(x)TQ1y(x)e

−2µxdx (3.44)

V2 : H
1([0, 1],Rn) → R

+ is defined as,

V2(y) =

∫ 1

0
yx(x)

TQ2yx(x)e
−2µxdx (3.45)

where yx := ∂y
∂x

. Finally, V3 : H1([0, 1],Rn)× R
n → R

+ is defined as,

V3(y, η) = (η − y(·, 1))TP (η − y(·, 1)) (3.46)

Let us first analyze V1. Computing the time-derivative of V1 along the solutions to (3.1) and
integrating by parts yields

V̇1 = yT (·, 0)Q1Λy(·, 0) − yT (·, 1)e−2µQ1Λy(·, 1)

−2µ

∫ 1

0
yT (ΛQ1)ye

−2µxdx.

Using the boundary condition (3.37) with (3.4), we get

V̇1 =

[

y(·, 1)
(η − y(·, 1))

]T (
GTQ1ΛG−Q1Λe

−2µ GTQ1ΛBK

⋆ KTBTQ1ΛBK

)[

y(·, 1)
(η − y(·, 1))

]

− 2µ

∫ 1

0
yT (ΛQ1)ye

−2µxdx.

Since Q1 is diagonal positive definite, it holds λQ1 ≤ ΛQ1 and taking ν = µλ, yields

V̇1 ≤ −2νV1 +

[

y(·, 1)
(η − y(·, 1))

]T (
GTQ1ΛG−Q1Λe

−2µ GTQ1ΛBK

⋆ KTBTQ1ΛBK

)[

y(·, 1)
(η − y(·, 1))

]

Let us now analyze V2. To do so, it is important to consider the dynamics of yx. Therefore,
differentiating system (3.1) with respect to x yields

∂yx
∂t

(t, x) + Λ
∂yx
∂x

(t, x) = 0 (3.47)

Differentiating (3.37) with respect to t and using (3.1), the boundary condition is

yx(t, 0) = Λ−1HΛyx(t, 1) − Λ−1BKη̇(t) (3.48)

Computing the time-derivative of V2 along the solutions to (3.47) and integrating by parts
yields

V̇2 ≤ −2νV2 + yTx (·, 0)Q2Λyx(·, 0) − yTx (·, 1)e−2µQ2Λyx(·, 1)

Using (3.1), the boundary condition (3.48) can be rewritten as

yx(t, 0) = Λ−1(H +BK)Λyx(t, 1) − Λ−1BK(η̇ − yt(t, 1)) (3.49)
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Therefore,

V̇2 ≤− 2νV2

+ yTx (·, 1)ΛTGT (Λ−1)TQ2GΛyx(·, 1) − yx(·, 1)TQ2Λe
−2µyx(·, 1)

− (η̇ − yt(·, 1))TKTBT (Λ−1)TQ2GΛy
T
x (·, 1)

− yx(·, 1)ΛTGT (Λ−1)TQ2BK(η̇ − yt(·, 1))
where we also use (3.1) to write yx(t, 1) = −Λyt(t, 1). Using the η-dynamics from (3.32), and
recalling the notation in (3.38), we get the following after some lengthy development,

V̇2 ≤− 2νV2+








yt(·, 1)
(η − y(·, 1))

dq
ds









T




F0 − F1 − F T
1 + F2 −αF T

1 + αF2 (F T
1 − F2)[1 1]

⋆ α2F2 −αF2[1 1]

⋆ ⋆ [1 1]TF2[1 1]













yt(·, 1)
(η − y(·, 1))

dq
ds









.

Let us finally analyze V3. Computing the time-derivative along the solutions yields,

V̇3 = −2νV3 +









yt(·, 1)
(η − y(·, 1))

dq
ds









T




0 −P 0

⋆ −2αP + 2µλP P [1 1]

⋆ ⋆ 0













yt(·, 1)
(η − y(·, 1))

dq
ds









Combining V̇1, V̇2, V̇3 and adding γq‖dq‖2 − γq‖dq‖2 and γs‖ds‖2 − γs‖ds‖2, for γq, γs
positive scalars, we obtain that

V̇ ≤ −2νV +















y(·, 1)
yt(·, 1)

(η − y(·, 1))
dq
ds















T

Md
c















y(·, 1)
yt(·, 1)

(η − y(·, 1))
dq
ds















+ γq‖dq‖2 + γs‖ds‖2 (3.50)

with Md
c given by (3.40).

Assuming that Mc ≤ 0 (Mc given by (3.39)), there exist γq and γs > 0 sufficiently large
such that Md

c is still negative semidefinite. Therefore, from (3.50) we get

V̇ ≤ −2νV + γq‖dq‖2 + γs‖ds‖2 (3.51)

which in turn, can be rewritten as follows:

V̇ ≤ −2(1− σ)νV + γq‖dq‖2 − 2νσV + γs‖ds‖2 (3.52)

for some σ ∈ (0, 1). From the definition of ϕd, events are triggered such that for all t ≥ 1
λ
, it

holds that

V̇ ≤ −2(1− σ)νV + γq‖dq‖2

− 2νσ(V1 + V2 + V3) + κ1V3 + κ1Ṽ + εd.
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Using Proposition 3.1, for t ≥ 1
λ

we have that V1(y(t, ·)) = Ṽ (t), and setting κ1 = 2σν, we get

V̇ ≤ −2ν(1− σ)V + γq‖dq‖2 − 2σνV2 + εd.

Due to the non-negativity of V2, it holds

V̇ ≤ −2ν(1− σ)V + γq‖dq‖2 + εd.

The remaining part of the proof follows exactly the same arguments as in the proof of Theorem
3.1 right after using the Comparison principle to end up with,

V (y(t, ·), η(t)) ≤ C̃1e
−2ν(1−σ)tV (y0, η0) +

γq
2ν(1− σ)

sup
s∈[0,t]

‖dq(s)‖2 (3.53)

with C̃1 given also by (3.25). Hence, we conclude the proof.

3.4.2 Quantized control and practical stability

Until now we have established that even under event-triggered sampling of the output it is
possible to achieve ISS property with respect to dq. Let us consider now the study of practical
stability of the system under quantization errors. (see [64] for further details). As mentioned
earlier, in order to apply quantized control with finite data rate, according to rule (3.27), we
have to find a bound for z(t) = y(t, 1). It would hold also for z(tk) for the time instants
defined in (3.30). The main reason of having used H1 norm stability analysis, is because a
suitable bound for z(t) can be deduced as follows: Observe that

|z(t)|2 =

(

∣

∣

∣

∫ 1

0
syx(t, s) + y(t, s)ds

∣

∣

∣

)2

≤
(
∫ 1

0
|syx(t, s)|ds +

∫ 1

0
|y(t, s)|ds|

)2

≤ 2

(
∫ 1

0
|syx(t, s)|ds

)2

+ 2

(
∫ 1

0
|y(t, s)|ds

)2

≤ 2

(
∫ 1

0
|syx(t, s)|2ds +

∫ 1

0
|y(t, s)|2ds

)

≤ 2

(
∫ 1

0
|yx(t, s)|2ds+

∫ 1

0
|y(t, s)|2ds

)

= 2‖y(t, ·)‖2H1([0,1],Rn). (3.54)

Moreover, from (3.54), it also holds that

|z(t)|2 ≤ 2(‖yx(t, ·)‖2L2([0,1],Rn) + ‖y(t, ·)‖2L2([0,1],Rn)) + 2|η(t) − z(t)|2. (3.55)

Next, for all y ∈ H1([0, 1],Rn) and η ∈ R
n, the Lyapunov function V given by (3.43) may be

bounded as follows:

e−2µc1

(

‖y(t, ·)‖2L2 + ‖yx(t, ·)‖2L2 + |η(t)− y(t, 1)|2
)

≤ V (y(t, ·), η(t)) ≤ λmax(Q1)‖y(t, ·)‖2L2

+ λmax(Q2)‖yx(t, ·)‖2L2 + λmax(P )|η(t) − y(t, 1)|2
(3.56)
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where c1 = min{λmin(Q1), λmin(Q2), λmin(P )}, and λmin(·), λmax(·), are the minimum and
maximum eigenvalues of the matrix under consideration. Therefore, using (3.56) with (3.55)
we obtain that

|z(t)|2 ≤ 2e2µ

c1
V (y(t, ·), η(t)). (3.57)

Inequality (3.57) will be useful when determining the ultimate boundedness of the system.
To that end, let us prove first that the output remains within the range of the quantizer.
Following the same arguments provided in [63, Section 5.2], assume that the initial conditions
y0 and η0 are such that

2e2µ

c1
V (y0, η0) ≤M2

q . (3.58)

where Mq is the range of the quantizer defined in (3.27). In addition, suppose that we design
the quantizer such that

M2
q

∆2
q

≥ 2e2µ

c1

γq
2ν(1− σ)

(3.59)

From (3.59), one can always find some ǫ > 0 small enough such that
c1

2e2µ
M2

q >
γq

2ν(1− σ)
∆2

q(1 + ǫ) (3.60)

Having said that, let us introduce two regions in H1([0, 1];Rn)× R
n as follows:

SMq :=
{

(y, η)|V (y, η) ≤ c1
2e2µ

M2
q

}

S∆q :=
{

(y, η)|V (y, η) ≤ γq
2ν(1 − σ)

∆2
q(1 + ǫ)

}

Note that due to (3.60), S∆q ⊂ SMq . It has been proved in [63] that SMq and S∆q are forward
invariant. Moreover, it has been proved that if for some t0 ≥ 0, (y(t0), η(t0)) ∈ SMq \ S∆q ,
there exists a time Tǫ > t0, such that (y(Tǫ), η(Tǫ)) ∈ S∆q .

Let us focus on SMq . Since SMq is invariant and (y0, η0) ∈ SMq due to (3.58), then it
follows that (y, η) ∈ SMq . Therefore, using (3.57), we obtain that |z(t)| ≤ Mq holds (in
particular |z(tk)| ≤Mq for all t ∈ [tk, tk+1)). Applying the quantization rule (3.27) we obtain
that quantization error is always upper bounded by ∆q, i.e. |dq(t)| ≤ ∆q.

From (3.53), (3.58) and the what we have just stated above, it follows that

V (y(t, ·), η(t)) ≤
M2

q c1

2e2µ
C̃1e

−2ν(1−σ)t +
γq

2ν(1− σ)
∆2

q

Using again the bound on V from (3.56), we get also that

‖y(t, ·)‖2H1([0,1],Rn) + |η − y(t, 1)|2 ≤ M2
q

2 C̃1e
−2ν(1−σ)t +

γqe
2µ

2ν(1− σ)c1
∆2

q

Considering finally the behavior for t sufficiently large, we obtain the practical stability with
ultimate boundedness of the closed-loop system (3.1)-(3.3),(3.4) with controller ϕd,

limt→∞{‖y(t, ·)‖2H1([0,1],Rn) + |η − y(t, 1)|2} ≤ γqe
2µ∆2

q

2ν(1− σ)c1
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Comments on the solvability of BMIs (3.17) and (3.40).

For solving (3.17) one can use the line search algorithm on µ which leads to successive
LMIs that can be solved under SDP. As a result, we would obtain a diagonal positive matrix
Q, µ > 0 (when line search stops when optimization problem is no longer feasible) and γq and
γs sufficiently large.

On the other hand, checking the feasibility of (3.40) is not that straightforward. As we
will proceed in the numerical example, we have first to compute K such that the dissipativity
condition (Assumption 3.1) holds. Then, fixing α and performing a line search on µ will lead
to successive LMIs that can be solved under SDP. The result of the optimization problem
gives Q1, Q2, P , µ (of the line search before the problem becomes infeasible) and γq and γs
sufficiently large.

Finally, let us briefly comment that as the number of hyperbolic PDEs increases, one might
have issues of complexity due to the increasing of number of decision variables. At the moment
we do not have a characterization of the complexity which would be a polynomial function of
the number of decision variables and the number of lines of the resulting LMIs (see e.g. [66]).

3.5 Simulations

3.5.1 Example 1

We illustrate the results of Section 3.4 by considering the following example of a linear system
of 2× 2 hyperbolic conservation laws

∂y

∂t
(t, x) + Λ

∂y

∂x
(t, x) = 0 (3.61)

with y = [y1 y2]
T , Λ = diag(1 ;

√
2), initial condition y(0, x) = [ cos(4πx)−1 cos(2πx)−1 ]T for all

x ∈ [0, 1] and dynamic boundary condition given by y(t, 0) = Hz(t)+Bu(t) where H = ( 0 1.1
1 0 ),

B = I2 and u(t) = Kη(t). Let us consider first the case when stabilization is carried out using
a dynamic controller without any measurement error, that is, we set dq ≡ 0 and ds ≡ 0 in
(3.33). Therefore, η just satisfies

η̇(t) = −αη(t) + αz(t),

where we choose α = 10. Furthermore, the gain of the dynamic controller K has been designed
such that ρ2(G) < 1 with G = H+BK. Indeed with K =

(

0 −0.7
−1 0

)

, ρ2(G) = 3.82×10−1 and
∆ =

(

9.96×10−1 0
0 1.04

)

. Hence, the dissipativity condition holds, which is a necessary condition
for the result in Theorem 3.2. Note that, without control action at the boundary, the system
is unstable.

In addition, condition (3.41) is verified for suitableQ1, Q2 and P . In fact, by choosing prop-
erly K and α and performing a line search on µ, one leads to several LMIs (linear in variables
P , Q1, and Q2) to be solved via semi-definite programming. With K and α given as before,
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Figure 3.1: Evolution of y1 with ds = dq = 0 (left). Evolution of y1 with quantized samples
(right).

1 2 3 4 5 6 7 8

50

100

150

200

250

300

350

400

450

Time[s]

V

Figure 3.2: Time-evolution of functions V .

we obtain P =
(

3.64×101 0
0 2.51×101

)

, Q1 =
(

1.24×102 0
0 1.34×102

)

, Q2 =
(

4.41×10−2 0
0 4.67×10−2

)

and

scalars µ = ν = 1.4×10−1. If the output was neither sampled nor quantized, we would obtain
global exponential stability under u = Kη.

Consider now the case of event-triggered sampling and quantized output. We use the
following uniform quantizer

q(x) = ∆q

⌊

x
∆q

+ 0.5
⌋

whose sensitivity is given by ∆q. We choose ∆q = 1 and, for the sake of simplicity, we
assume the range of the quantizer to be large. The parameters for the triggering condition are
σ = 0.9, ε(0) = 0.1 and δ = 0.28. Condition Md

c ≤ 0 in (3.42) is verified with γs = 22.4 and
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Figure 3.3: Density of the inter-execution times with σ = 0.9, ∆q = 0.1 (left) and ∆q = 0.5

(right)
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Figure 3.4: Density of the inter-execution times with σ = 0.9, ∆q = 1 (left) and ∆q = 2

(right)

γq = 67.4. Then, Theorem 3.2 applies. We close the loop from t1 = 1
λ
= 1. Figure 3.1 shows

the plot of y1 with a dynamic controller without measurement errors on the left, and with the
same controller in the presence of sampling and quantization errors on the right. Moreover,
Figure 3.2 shows the time-evolution of function V given by (3.43) with ds = dq = 0 (black
line) and with under ϕd (red dashed line with circle markers) using sampled and quantized
measurements. It can be noticed that in the later case, no convergence to the origin is achieved
but to a ball characterized by the quantization error.

In order to observe whether there is a relationship between the sampling parameter with
the quantization error in terms of sampling speed and length of inter-execution times, we
performed simulations on a frame of 8s for 60 different initial conditions satisfying the com-
patibility condition. We compute then the inter-execution times by fixing σ ∈ {0.9, 0.1}
(event-triggered parameter in (3.30)) and varying ∆q ∈ {0.1, 0.5, 1, 2}. Figures 3.3, 3.4, 3.5
and 3.6 show the density of inter-execution times for the eight possible cases. In addition,
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Figure 3.5: Density of the inter-execution times with σ = 0.1, ∆q = 0.1 (left) and ∆q = 0.5

(right)
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Figure 3.6: Density of the inter-execution times with σ = 0.1, ∆q = 1 (left) and ∆q = 2

(right)

Table 3.1 reports the mean value of the number of sampling times or events. Hence, what
it is interesting to point out from the observed simulations results is that, when fixing σ

and increasing ∆q, one can reduce slightly the number of executions times, and that the size
of inter-execution times remains quite the same. The reduction of events is not prominent,
therefore, we believe that ∆q does not affect too much the sampling speed and the inter-
execution times. Note however that, as expected, σ is indeed the key parameter that impacts
the sampling speed. The closer σ is to zero, the faster we should sample. It results in shorter
inter-execution times as it can be compared from Figures 3.3 and 3.4 with respect to Figures
3.5 and 3.6.

Finally, we obtained from the numerical simulations, an estimative of the ultimate bound-
edness of the Lyapunov function as reported in Table 3.2. It can be observed that we obtained
bigger ultimate boundedness when σ = 0.1 for different values of ∆q than σ = 0.9. In other
words, when sampling faster (as in the case σ = 0.1), the Lyapunov function converges to a
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Mean value of number of sampling times (events) ∆q = 0.1 ∆q = 0.5 ∆q = 1 ∆q = 2

σ = 0.9 193 160 154 144
σ = 0.1 679 466 452 412

Table 3.1: Mean value of number of events.

bigger attracting ball. It seems then that the influence of the sensitivity of the quantizer is
more relevant in this case, thus in the presence of quantized measurements, sampling faster
would not always mean that the system will converge to a smaller ball around the origin.
It could be interesting to continue studying this issue by changing initial conditions, sys-
tem dynamics as well as event-trigger parameters, with the aim to provide better and more
clear conclusions about the relationship between event-triggered parameters along with the
sensitivity of quantizer and the ultimate boundedness.

Estimation of the attracting ball ∆q = 0.1 ∆q = 0.5 ∆q = 1 ∆q = 2

σ = 0.9 0.16 1.78 7.28 25.2
σ = 0.1 0.23 4.6 7.94 33.19

Table 3.2: Size of the attracting ball of the Lyapunov function.

3.5.2 Example 2

In this example we take again the particular case of communication networks just like (2.4.2)
considered in Chapter 2 as depicted in Figure 3.7. Let us recall the linearized model:

q3(t, x)

q4(t, x)

e4(t)

q1(t, x)

q2(t, x)

d1(t)

q5(t, x)

u24(t)q1(t, x)

u23(t)q1(t, x)
u12(t)d1(t)

u13(t)d1(t)

Figure 3.7: Network of compartments made up of 5 transmission lines.

∂ty + Λ∂xy = 0

with y(t, x) ∈ R
5, Λ = diag(1, 1.2, 1.7, 0.5, 2). The boundary condition is given by

y(t, 0) = Hy(t, 1) +Bu(t)
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Figure 3.8: Total output flow without measurements errors (black line) and in the presence
of event-based sampling and quantization (red dashed line).

where H =

( 0 0 0 0 0
0 0 0 0 0

u23 0 0 0 0
1−u23 0 0 0 0

0 1 1 0 0

)

, where u23 = 0.548. B =







d∗1 0
−d∗1 0
0 q∗1
0 −q∗1
0 0






where d∗1 = 100 and

q∗1 = 35.

In addition, u(t) = Kη(t) with K ∈ R
2×5 (dynamic controller) where η satisfies, without

measurements errors,
η̇(t) = −αη(t) + αz(t),

We take K as in example 2.4.2 such that G = H +BK is dissipative. We choose also α = 10.

Hence, condition (3.41) is verified and we obtain P =

( 17.1 0 0 0 0
0 21.4 −4.32 −8.64 −10.8
0 −4.32 21.4 8.64 10.8
0 −8.64 8.64 34.4 21.6
0 −10.8 10.8 21.6 44.1

)

, Q1 =

diag(331.4, 332.7, 157.2, 299.4, 49.5), Q2 = diag(214.6, 164.9, 0.87, 0, 58, 0.62) and µ = 0.12.
We close the loop from t1 = 2. Using the same triggering parameters as in the previous
example and the same quantization function, we get that Md

c ≤ 0 in (3.42) is also verified
γq = 133, γs = 44.3, thus Theorem 3.2 applies.

Figure 3.8 shows the output flow q4(t) + q5(t) of the network when closing the loop with
the dynamic continuous time control u = Kη without measurements errors (black line) and
in the presence of event-based sampling and quantization (red dashed line).
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In this chapter, we introduce an event-based boundary control for a 2 × 2 coupled linear
hyperbolic system. We use a well established backstepping controller which stabilizes the
system along with a dynamic triggering condition which determines when the controller must
be updated. The main contributions rely on the definition of an event-based controller under
which global exponential stability of the system is achieved and furthermore, the existence of
a minimal dwell-time between two triggering times is guaranteed. Since no Zeno phenomenon
is presented, the well-posedness of the system under the event-based controller is stated. A
simulation example is presented to illustrate the results.

4.1 Introduction

In Chapter 2 we have studied event-based controllers using output feedback by following
Lyapunov techniques and taking into account the dissipativity condition on the boundary for
stability of systems of conservations laws. In this chapter, we will consider 2×2 coupled linear
hyperbolic system of balance laws, or simply named as non-uniform linear hyperbolic systems.

The linear hyperbolic system of balance law in open loop that we will consider in the sequel
is unstable. As it is clearly stated in [3, Chapter 7], this kind of systems has an intrinsic limit
of stabilizability and can not be stabilized by means of linear boundary output feedback laws
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because there is no control Lyapunov function of the diagonal form (as (2.16) in Chapter 2)
that allows to obtain a static output feedback. This important issue has been established in
[2].

Therefore, in this chapter, we use rather a full state-feedback control which is designed
following the backstepping approach for stabilizing a linear hyperbolic system of balance laws.

The main contribution of this work relies on the study of an event-based controller using
a dynamic triggering condition. We introduce such a triggering policy using the Lyapunov
function candidate for the so-called target system along with the deviation between continuous
time controller and the event-based one when sampling. We prove then that there exists a
minimal dwell-time between triggering times and no Zeno phenomena is presented. Conse-
quently, we prove the well-posedness of the system and finally the global exponential stability
of the closed-loop system.

This work has been condensed in IEEE-TAC paper which is conditionally accepted.

4.2 Preliminaries on backstepping boundary control of 2 × 2

linear hyperbolic PDEs

Let us consider the linear hyperbolic system

ut(t, x) + λ1ux(t, x) = c1v(t, x) (4.1)

vt(t, x)− λ2vx(t, x) = c2u(t, x) (4.2)

along with the following boundary conditions:

u(t, 0) = qv(t, 0) (4.3)

v(t, 1) = U(t) (4.4)

where u, v : R+ × [0, 1] → R are the system states with x ∈ [0, 1], t ≥ 0, U(t) is the control
input and λ1 > 0, λ2 > 0. In addition, for technical issues related to the existence of
solutions, we assume that c1, c2 6= 0, q 6= 0, cos(w) − q λ1

c1
w sin(w) 6= 0 if c1c2 > 0 and

cosh(w) + q λ1
c1
w sinh(w) 6= 0 if c1c2 < 0, where w =

√

|c1c2|
λ1λ2

.

In order to stabilize this system, the backstepping method has been considered for instance
in [68] and [12]. Roughly, the idea of the backstepping method is to use an invertible Volterra
integral transformation to convert the unstable linear hyperbolic PDE (4.1)-(4.4) into a stable
linear hyperbolic of conservation laws, which is usually called target system and is given as
follows:

αt(t, x) + λ1αx(t, x) = 0 (4.5)

βt(t, x)− λ2βx(t, x) = 0 (4.6)
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with the following boundary conditions:

α(t, 0) = qβ(t, 0) (4.7)

β(t, 1) = 0 (4.8)

where α, β : R+ × [0, 1] → R. Hence, U(t) can be chosen to realize the transformation.

4.2.1 Backstepping transformation and kernel equations

The following backstepping Volterra transformation has been used to map the system (4.1)-
(4.4) into the system (4.5)-(4.8):

α(t, x) = u(t, x)−
∫ x

0
Kuu(x, ξ)u(t, ξ)dξ −

∫ x

0
Kuv(x, ξ)v(t, ξ)dξ (4.9)

β(t, x) = v(t, x) −
∫ x

0
Kvu(x, ξ)u(t, ξ)dξ −

∫ x

0
Kvv(x, ξ)v(t, ξ)dξ (4.10)

It has been shown that by introducing (4.9)-(4.10) into (4.5)-(4.6), integrating by parts and
using the boundary conditions, the original system is transformed to the target system with
the kernel K =

(

Kuu(x,ξ) Kuv(x,ξ)
Kvu(x,ξ) Kvv(x,ξ)

)

, of the Volterra transformation, satisfying the following
linear hyperbolic equations:

λ1K
uu
x (x, ξ) + λ1K

uu
ξ (x, ξ) = −c2Kuv(x, ξ) (4.11)

λ1K
uv
x (x, ξ)− λ2K

uv
ξ (x, ξ) = −c1Kuu(x, ξ) (4.12)

λ2K
vu
x (x, ξ)− λ1K

vu
ξ (x, ξ) = c2K

vv(x, ξ) (4.13)

λ2K
vv
x (x, ξ) + λ2K

vv
ξ (x, ξ) = c1K

vu(x, ξ) (4.14)

with boundary conditions

Kuu(x, 0) = λ2
qλ1

Kuv(x, 0) (4.15)

Kuv(x, x) = c1
λ1+λ2

(4.16)

Kvu(x, x) = − c2
λ1+λ2

(4.17)

Kvv(x, 0) = qλ1

λ2
Kvu(x, 0) (4.18)

The kernel equations evolve in a triangular domain given by T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}. It is
known that there exists a unique solution to (4.11)-(4.18), that the transformation is invertible,
and that the inverse transformation, which maps the target system into the original system
(4.1)-(4.4), is given by [12]:

u(t, x) = α(t, x) +

∫ x

0
Lαα(x, ξ)α(t, ξ)dξ +

∫ x

0
Lαβ(x, ξ)β(t, ξ)dξ (4.19)

v(t, x) = β(t, x) +

∫ x

0
Lβα(x, ξ)α(t, ξ)dξ +

∫ x

0
Lββ(x, ξ)β(t, ξ)dξ (4.20)
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Moreover, the kernel L =
(

Lαα(x,ξ) Lαβ(x,ξ)

Lβα(x,ξ) Lββ(x,ξ)

)

of this transformation satisfies the following
linear hyperbolic equations whose solution exists and is unique:

λ1L
αα
x (x, ξ) + λ1L

αα
ξ (x, ξ) = c1L

βα(x, ξ) (4.21)

λ1L
αβ
x (x, ξ)− λ2L

αβ
ξ (x, ξ) = c1L

ββ(x, ξ) (4.22)

λ2L
βα
x (x, ξ)− λ1L

βα
ξ (x, ξ) = −c2Lαα(x, ξ) (4.23)

λ2L
ββ
x (x, ξ) + λ2L

ββ
ξ (x, ξ) = −c2Lαβ(x, ξ) (4.24)

with boundary conditions

Lαα(x, 0) = λ2
qλ1

Lαβ(x, 0) (4.25)

Lαβ(x, x) = c1
λ1+λ2

(4.26)

Lβα(x, x) = − c2
λ1+λ2

(4.27)

Lββ(x, 0) = qλ1

λ2
Lβα(x, 0) (4.28)

Definition 4.1 (L2-norm stability)
The linear hyperbolic system (4.1)-(4.4) with controller U is globally exponentially stable (GES)
if there exist υ̃ > 0 and C > 0 such that, for every (u0, v0)T ∈ L2([0, 1];R2), the solution
satisfies, for all t in R

+,

‖(u(t, ·), v(t, ·))T ‖L2([0,1];R2) ≤ Ce−υ̃t‖(u0, v0)T ‖L2([0,1];R2) (4.29)

As it can be seen in [12], U(t) is a continuous full-state feedback control which is designed
to ensure that the closed-loop system is GES in L2 norm. The aforementioned backstepping
transformation is used to get U(t) under the form

U(t) =

∫ 1

0
Kvu(1, ξ)u(t, ξ)dξ +

∫ 1

0
Kvv(1, ξ)v(t, ξ)dξ (4.30)

Equivalently, (4.30) can be expressed as follows:

U(t) =

∫ 1

0
Lβα(1, ξ)α(t, ξ)dξ +

∫ 1

0
Lββ(1, ξ)β(t, ξ)dξ (4.31)

Note that the gains of the controller are the kernels satisfying (4.21)-(4.28).

Furthermore, in [12], the following Lyapunov function candidate is considered to show that
the system (4.5)-(4.8) is GES:

V (α, β) =

∫ 1

0
(Aα2(x)

e−µx

λ1
+Bβ2(x)

eµx

λ2
)dx (4.32)

with A = eµ, B = q2eµ + 1 and µ > 0. Since the system (4.5)-(4.8) is GES, so is the system
(4.1)-(4.4). Indeed, since the transformation (4.9)-(4.10) is invertible, when applying either
the continuous control (4.30) or (4.31), the original system has the same stability properties
as the target system.
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4.3 Event-based stabilization

In this section, we introduce an event-based control scheme for stabilization of the hyperbolic
system (4.1)-(4.2). It relies on both the backstepping continuous-time control (4.31) that will
be sampled on events and a triggering condition which determines when the event should
occur. For that, we slightly modify the boundary conditions in both systems (4.1)-(4.4) and
(4.5)-(4.7) by considering a perturbation on one of the boundaries. More precisely, let us
consider the following linear hyperbolic system,

ut(t, x) + λ1ux(t, x) = c1v(t, x) (4.33)

vt(t, x)− λ2vx(t, x) = c2u(t, x) (4.34)

u(t, 0) = qv(t, 0) (4.35)

v(t, 1) = Ud(t) (4.36)

where Ud(t) = U(t) + d(t) with U(t) given by (4.31) and d(t) can be seen as a disturbance
that will be rigorously characterized later on. It is worth remarking that here, d will not be an
external disturbance (as considered for instance in [60] where the equations considered there
are similar to (4.33)-(4.40) but the problem statement is quite different to the one in this
chapter) and is not intended to be rejected. Here, d can be viewed as a deviation between a
continuous controller and an event-based one.

Then, applying the backstepping transformation (4.9)-(4.10), one has the equivalent system
(Target perturbed system):

αt(t, x) + λ1αx(t, x) = 0 (4.37)

βt(t, x)− λ2βx(t, x) = 0 (4.38)

α(t, 0) = qβ(t, 0) (4.39)

β(t, 1) = d(t) (4.40)

In addition, the function (4.32) will be used in the sequel in order to introduce the triggering
condition. In fact, the event triggering law can be achieved using a strict Lyapunov condition
along with an ISS property with respect to a deviation between the continuous controller
and the event-based one, as introduced in Chapter 2. Actually, developing ideas from that
chapter, we can end up with a triggering condition which depends only on the current state
and the deviation between controllers. For that reason, it can be called static triggering
condition. However, in the present framework, it turned out that it is very difficult to find a
minimal dwell-time between two event times when considering a static triggering condition.
To overcome this problem, we will propose a dynamic triggering condition for which we are
able to prove the existence of a minimal dwell-time and in turn, the well-posedness of the
system under investigation.

It is worth mentioning that guaranteeing the existence of a minimal dwell-time avoids the
so-called Zeno phenomenon that means infinite triggering times in a finite-time interval. In
practice, Zeno phenomenon would represent infeasible implementation into digital platforms
since one would require to sample infinitely fast.
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Therefore, inspired by [28] and [23] (see Chapter 2 ), let us define the event-based controller
considered in this chapter. In the sequel we will call it ϕ and it encloses both the triggering
condition and the backstepping feedback controller and Lyapunov analysis will be carried out
for the target perturbed system.

Definition 4.2 (Definition of ϕ)
Let σ ∈ (0, 1), θ ≥ 0 η > 0, µ > 0, υ = µmin{λ1, λ2}, κ1, κ2 > 0, m0 ∈ R

−, B = q2eµ + 1.
Let L the kernel of the inverse backstepping transformation (4.19)-(4.20) which is solution to
the system (4.21)-(4.28). Let t 7→ V (α(t, ·), β(t, ·)) be given by (4.32).

We define ϕ the functional from C0(R+;L2([0, 1];R2)) to Cpw(R+,R) that maps (α, β)T to
Ud as follows:

• Let the increasing sequence of time instants (tk) be defined iteratively by t0 = 0 , and for
all k ≥ 1,

tk+1 = inf{t ∈ R
+|t > tk ∧ θBeµ

(

∫ 1

0
Lβα(1, ξ)(α(tk , ξ)− α(t, ξ))dξ

+

∫ 1

0
Lββ(1, ξ)(β(tk , ξ)− β(t, ξ))dξ

)2

≥ θσυV (t)−m(t)}

(4.41)

where m satisfies the ordinary differential equation,

ṁ(t) = −ηm(t) +

(

Beµ
(

∫ 1

0
Lβα(1, ξ)(α(tk , ξ)− α(t, ξ))dξ

+

∫ 1

0
Lββ(1, ξ)(β(tk , ξ)− β(t, ξ))dξ

)2

−συV (t)− κ1α
2(t, 1) − κ2β

2(t, 0)

)

for a given η ≥ υ(1 − σ) and m(0) = m0.

• Let the control function be defined by:

Ud(t) =

∫ 1

0
Lβα(1, ξ)α(tk , ξ)dξ +

∫ 1

0
Lββ(1, ξ)β(tk, ξ)dξ (4.42)

for all t ∈ [tk, tk+1).

Remark 4.1
Let us remark that d in (4.40), given by

d(t) =
∫ 1
0 L

βα(1, ξ)α(tk , ξ)dξ +
∫ 1
0 L

ββ(1, ξ)β(tk , ξ)dξ

−
∫ 1
0 L

βα(1, ξ)α(t, ξ)dξ −
∫ 1
0 L

ββ(1, ξ)β(t, ξ)dξ

(4.43)
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for all t ∈ [tk, tk+1), can be seen as a deviation between the continuous controller (4.31) and
the event-based controller (4.42). As in [22], we follow the perturbed approach inspired by [59],
[39] and [33] from finite-dimensional systems. In this setting, the event triggering condition
ensures that, for all t ≥ 0, θBeµd2(t) ≤ θσκV (t) −m(t) which in turn guarantees m(t) ≤ 0

as stated in the following lemma. In addition, m(t) can be seen as a weighted averaged value
of Beµd2 − συV − κ1α

2(·, 1) − κ2β
2(·, 0).

Lemma 4.1
Under the definition of ϕ, it holds that θBeµd2(t)− θσυV (t) +m(t) ≤ 0 and m(t) ≤ 0.

Proof. By construction, from Definition 4.2, with (4.43), events are triggered to guarantee,
for all t ≥ 0,

θBeµd2(t)− θσυV (t) ≤ −m(t) (4.44)

If θ = 0, we obtain m(t) ≤ 0. In the case θ > 0, it follows from (4.44) that

Beµd2(t)− συV (t) ≤ −1

θ
m(t) (4.45)

Then, using (4.42), we have that for all t ≥ 0,

ṁ ≤ −ηm− 1

θ
m− κ1α

2(·, 1) − κ2β
2(·, 0)

Hence, by the Comparison principle, we conclude that m(t) ≤ 0, for all t ≥ 0.

Proposition 4.1
There exists a unique solution (u, v)T ∈ C0([tk, tk+1];L

2([0, 1];R2)) to the system (4.33)-(4.36)
between two time instants tk and tk+1.

Proof. For a constant input Ud(t) = U(tk) for all t ∈ [tk, tk+1), the system admits a unique
equilibrium point {u∗, v∗} satisfying:

u∗x = c1
λ1
v∗

v∗x = −c2
λ2
u∗

u∗(0) = qv∗(0) (4.46)

v∗(1) = Ud = U(tk) (4.47)

Let us consider u∗xx(x) = −w2u∗(x), with w =
√

|c1c2|
λ1λ2

, whose solution is given, in the case
when c1c2 > 0, by u∗(x) = a cos(wx) + b sin(wx). Similarly, we can obtain that v∗(x) =
λ1
c1
(−aw sin(wx)+ bw cos(wx)). Using (4.46) and (4.47) one can uniquely obtain a and b, that

is, a = q U(tk)

cosw−q
λ1
c1

w sinw
and b = c1

λ1w
U(tk)

cosw−q
λ1
c1

w sinw
. In the case when c1c2 < 0, we would

obtain u∗(x) = a cosh(wx) + b sinh(wx) and v∗(x) = λ1
c1
(aw sinh(wx) + bw cosh(wx)) with

a = q U(tk)

coshw+q
λ1
c1

w sinhw
and b = c1

λ1w
U(tk)

coshw+q
λ1
c1

w sinhw
.
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By performing the change of variable ũ = u − u∗ and ṽ = v − v∗, we obtain the following
hyperbolic system of balance laws, for all t ∈ [tk, tk+1):

ũt(t, x) + λ1ũx(t, x) = c1ṽ(t, x) (4.48)

ṽt(t, x)− λ2ṽx(t, x) = c2ũ(t, x) (4.49)

ũ(t, 0) = qṽ(t, 0) (4.50)

ṽ(t, 1) = 0 (4.51)

This system is a particular case of the system considered in [18]. Therefore, the classical defi-
nition of solution in L2 can be applied, thus (ũ, ṽ)T ∈ C0([tk, tk+1];L

2([0, 1];R2)) (see [18, Def-
inition 1]). Hence, for the original variables, it holds that (u, v)T ∈ C0([tk, tk+1];L

2([0, 1];R2)).
It concludes the proof.

Using (4.9)-(4.10), it follows straightforwardly that there exists a unique solution (α, β)T ∈
C0([tk, tk+1];L

2([0, 1];R2)) to the system (4.37)-(4.40) between two time instants tk and tk+1.
This allows to state the following result which will be useful for the sequel.

Proposition 4.2
The function d given by (4.43) and the function V given by (4.32), are continuous on [tk, tk+1].

Proof. One one hand, by the definition of the inner product, it can be noticed that d in (4.43)
is as follows:

d(t) =
〈

(

Lβα(1, ·)
Lββ(1, ·)

)

,

(

α(tk, ·)
β(tk, ·)

)

〉

L2([0,1];R2)
−
〈

(

Lβα(1, ·)
Lββ(1, ·)

)

,

(

α(t, ·)
β(t, ·)

)

〉

L2([0,1];R2)

for all t ∈ [tk, tk+1). Since α(t, ·) and β(t, ·) are continuous with respect to time due to Proposi-
tion 4.1, and the inner product preserves the continuity, it follows that d is in C0([tk, tk+1],R).
On the other hand, V given by (4.32), can be viewed as

V (α(t, ·), β(t, ·)) =

∥

∥

∥

∥

∥

∥





√

Ae−µ·

λ1
α(t, ·)

√

Beµ·

λ2
β(t, ·)





∥

∥

∥

∥

∥

∥

2

L2([0,1];R2)

Again, due to continuity arguments for α(t, ·) and β(t, ·), and the L2-norm preserving the
continuity, we conclude that V (α(t, ·), β(t, ·)) is a continuous function with respect to t.

Lemma 4.2
For d given by (4.43) and V given by (4.32), it holds that

(ḋ(t))2 ≤ ε1α
2(t, 1) + ε2d

2(t) + ε3V (t) (4.52)

for ε1, ε2 and ε3 > 0 and for all t ∈ (tk, tk+1).
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Proof. From (4.43), let us take its time derivative as follows:

ḋ(t) = −
∫ 1

0
Lβα(1, ξ)αt(t, ξ)dξ −

∫ 1

0
Lββ(1, ξ)βt(t, ξ)dξ

Using the dynamics (4.37) and (4.38), it clearly follows that

ḋ(t) = λ1

∫ 1

0
Lβα(1, ξ)αx(t, ξ)dξ − λ2

∫ 1

0
Lββ(1, ξ)βx(t, ξ)dξ

Integrating by parts, one gets

ḋ(t) = λ1α(t, 1)L
βα(1, 1) − λ1α(t, 0)L

βα(1, 0) − λ1

∫ 1

0
Lβα
x (1ξ)α(t, ξ)dξ − λ2β(t, 1)L

ββ(1, 1)

+λ2β(t, 0)L
ββ(1, 0) + λ2

∫ 1

0
Lββ
x (1, ξ)β(t, ξ)dξ

Due to (4.39), we have

ḋ(t) = λ1α(t, 1)L
βα(1, 1) − λ2β(t, 1)L

ββ(1, 1) + β(t, 0)(−λ1qLβα(1, 0) + λ2L
ββ(1, 0))

−λ1
∫ 1

0
Lβα
x (1ξ)α(t, ξ)dξ + λ2

∫ 1

0
Lββ
x (1, ξ)β(t, ξ)dξ

(4.53)

Recalling from (4.27)-(4.28) that Lβα(1, 1) = − c2
λ1+λ2

and Lββ(1, 0) = q λ1
λ2
Lβα(1, 0), we replace

them into (4.53), thus

ḋ(t) = λ1α(t, 1)
−c2

λ1 + λ2
− λ2β(t, 1)L

ββ(1, 1)

−λ1
∫ 1

0
Lβα
x (1ξ)α(t, ξ)dξ + λ2

∫ 1

0
Lββ
x (1, ξ)β(t, ξ)dξ (4.54)

Now, taking the square of ḋ and using the Young’s inequality, we can bound it as follows:

(ḋ(t))2 ≤ 2

(

λ1c2
λ1 + λ2

α(t, 1) + λ2L
ββ(1, 1)β(t, 1)

)2

+2
(

− λ1

∫ 1

0
Lβα
x (1, ξ)α(t, ξ)dξ + λ2

∫ 1

0
Lββ
x (1, ξ)β(t, ξ)

)2

≤ 4( λ1c2
λ1+λ2

α(t, 1))2 + 4(λ2L
ββ(1, 1)β(t, 1))2

+4λ21

(∫ 1

0
Lβα
x (1, ξ)α(t, ξ)dξ

)2

+ 4λ22

(∫ 1

0
Lββ
x (1, ξ)β(t, ξ)dξ

)2

By the Cauchy Schwarz inequality, one gets

(ḋ(t))2 ≤ 4( λ1c2
λ1+λ2

)2α2(t, 1) + 4λ22(L
ββ(1, 1))2β2(t, 1)

+4λ21

∫ 1

0

(

Lβα
x (1, ξ)

)2
dξ

∫ 1

0
α2(t, ξ)dξ + 4λ22

∫ 1

0

(

Lββ
x (1, ξ)

)2
dξ

∫ 1

0
β2(t, ξ)dξ
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Let us remark that,
∫ 1
0 (L

βα
x (1, ξ))2dξ and

∫ 1
0 (L

ββ
x (1, ξ))2dξ exist and let us call them ˜

Lβα
x and

˜
Lββ
x respectively. In fact, this is due to the regularity of the Kernels on the domain T as

proved in [68, Theorem 5]. Therefore,

(ḋ(t))2 ≤ ( 2λ1c2
λ1+λ2

)2α2(t, 1) + (2λ2L
ββ(1, 1))2β2(t, 1)

+4max{λ21
˜
Lβα
x , λ22

˜
Lββ
x }

(
∫ 1

0
α2(t, ξ) + β2(t, ξ)dξ

)

In addition, let us remark that for (4.32), there exists r1 > 0 (depending on µ) such that
1
r1

∫ 1
0 (α

2(t, x) + β2(t, x))dx ≤ V (α(t, ·), β(t, ·)) ≤ r1
∫ 1
0 (α

2(t, x) + β2(t, x))dx (see e.g. [62]

for a more general quadratic Lyapunov function candidate). Hence (ḋ)2 is finally bounded as
follows:

(ḋ(t))2 ≤ ( 2λ1c2
λ1+λ2

)2α2(t, 1) + (2λ2L
ββ(1, 1))2d2(t) + 4max{λ21

˜
Lβα
x , λ22

˜
Lββ
x }r1V (4.55)

with d2 = β2(t, 1) due to (4.40). Setting ε1 = ( 2λ1c2
λ1+λ2

)2, ε2 = (2λ2L
ββ(1, 1))2 and ε3 =

4max{λ21
˜
Lβα
x , λ22

˜
Lββ
x }r1, we finish the proof.

Theorem 4.1
Under the event-based controller ϕ in Definiton 4.2, with positive scalars θ, σ, µ, υ, B, κ1,
κ2 and ε1 (from Lemma 4.2) satisfying the following conditions,

κ1 ≥ max{2θBeµε1, 2θσυ} (4.56)

κ2 ≥ 2θσυ (4.57)

There exists a minimal dwell-time τ > 0 between two triggering times, i.e. tk+1 − tk ≥ τ , for
all k ≥ 0.

Proof. From the definition of ϕ, events are triggered to guarantee, for all t ≥ 0,

θBeµd2(t) ≤ θσυV (t)−m(t) (4.58)

Let us consider the following function involving the functions in (4.58).

ψ =
θBeµd2 + 1

2m

θσυV − 1
2m

A lower bound for the inter-execution times according to (4.41) is given by the time it takes
for the function ψ to go from ψ(tk) to ψ(tk+1) = 1, where ψ(tk) ≤ 0 (virtue of m(tk) ≤ 0 due
to Lemma 4.1 and d(tk) = 0). Note that ψ is a continuous function on [tk, tk+1] thanks to
Proposition 4.2 and the fact that m ∈ C0(R+,R−). Then, by the intermediate value theorem,
there exists t

′

k > tk such that for all t ∈ [t
′

k, tk+1], ψ(t) ∈ [0, 1]. We have then that for all
t ∈ [t

′

k, tk+1], the time derivative of ψ is given as follows:

ψ̇ =
2θBeµdḋ+ 1

2ṁ

θσυV − 1
2m

− (θσυV̇ − 1
2ṁ)

θσυV − 1
2m

ψ
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Using the Young’s inequality as 2dḋ ≤ d2 + (ḋ)2, and from (4.42) we have that

ψ̇ ≤ θBeµd2

θσυV − 1
2m

+
θBeµ(ḋ)2

θσυV − 1
2m

+
1
2

(

−ηm+Beµd2 − συV − κ1α
2(·, 1) − κ2β

2(·, 0)
)

θσυV − 1
2m

− θσυV̇

θσυV − 1
2m

ψ +
1
2

(

− ηm+Beµd2 − συV
)

θσυV − 1
2m

ψ

+
1
2

(

− κ1α
2(·, 1) − κ2β

2(·, 0)
)

θσυV − 1
2m

ψ (4.59)

where V̇ in (4.59) is the time derivative of (4.32) along the solutions (4.37)-(4.38). Indeed, by
integrating by parts and using the boundary conditions (4.39)-(4.40), V̇ is given as follows:

V̇ = −α2(t, 1)Ae−µ + β2(t, 0)(q2A−B)

+Beµd2(t)− µ

∫ 1

0
(α2(x)Ae−µx + β2(x)Beµx)dx

with A = eµ and B = q2eµ + 1. Replacing V̇ in (4.59) and using (4.52) we obtain

ψ̇ ≤ θBeµd2

θσυV − 1
2m

+
θBeµε1α

2(·, 1)
θσυV − 1

2m
+

θBeµε2d
2

θσυV − 1
2m

+
θBeµε3V

θσυV − 1
2m

+
1
2

(

−ηm+Beµd2 − συV − κ1α
2(·, 1) − κ2β

2(·, 0)
)

θσυV − 1
2m

−
θσυ

(

− (α2(·, 1) + β2(·, 0))
)

θσυV − 1
2m

ψ

−
θσυ

(

Beµd2 − µ
∫ 1
0 (α

2Ae−µx + β2Beµx)dx
)

θσυV − 1
2m

ψ

+
1
2

(

− ηm+Beµd2 − συV
)

θσυV − 1
2m

ψ +
1
2

(

− κ1α
2(·, 1) − κ2β

2(·, 0)
)

θσυV − 1
2m

ψ (4.60)

Re-organizing terms and knowing that µ
∫ 1
0 (α

2Ae−µx + β2Beµx) ≤ µmax{λ1, λ2}V , (4.60) is
rewritten as follows

ψ̇ ≤ θBeµ(1 + ε2 +
1
2θ )d

2

θσυV − 1
2m

+
(θBeµε1 − 1

2κ1)α
2(·, 1)

θσυV − 1
2m

+
(θBeµε3 − 1

2συ)V

θσυV − 1
2m

−
1
2ηm

θσυV − 1
2m

−
1
2κ2β

2(·, 0)
θσυV − 1

2m

+

(

θσυα2(·, 1) − 1
2κ1α

2(·, 1)
)

θσυV − 1
2m

ψ

+

(

θσυβ2(·, 0) − 1
2κ2β

2(·, 0)
)

θσυV − 1
2m

ψ +
(−θσυ + 1

2)Be
µd2

θσυV − 1
2m

ψ

+
(θσυµmax{λ1, λ2} − 1

2συ)V

θσυV − 1
2m

ψ −
1
2ηm

θσυV − 1
2m

ψ
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Setting κ1 ≥ max{2θBeµε1, 2θσυ} and κ2 ≥ 2θσυ in light of (4.56)-(4.57), we have

ψ̇ ≤ θBeµ(1 + ε2 +
1
2θ )d

2

θσυV − 1
2m

+
(θBeµε3 − 1

2συ)V

θσυV − 1
2m

−
1
2ηm

θσυV − 1
2m

(4.61)

+
(−θσυ + 1

2)Be
µd2

θσυV − 1
2m

ψ +
(θσυµmax{λ1, λ2} − 1

2συ)V

θσυV − 1
2m

ψ

−
1
2ηm

θσυV − 1
2m

ψ (4.62)

By remarking that
(

−
1
2 ηm

θσυV−1
2m

)

≤ η,
(

(θBeµε3−1
2συ)V

θσυV −1
2m

)

≤ θBeµε3−1
2συ

θσυ
and

(θσυµmax{λ1,λ2}−1
2συ)V

θσυV −1
2m

≤ (θσυµmax{λ1,λ2}−1
2συ)

θσυ
, (4.61) yields

ψ̇ ≤ θBeµ(1 + ε2 +
1
2θ )d

2

θσυV − 1
2m

+
θBeµε3 − 1

2συ

θσυ
+ η

+
(−θσυ + 1

2)Be
µd2

θσυV − 1
2m

ψ +
(θσυµmax{λ1, λ2} − 1

2συ)

θσυ
ψ + ηψ

which is rewritten as follows,

ψ̇ ≤ (1 + ε2 +
1
2θ )(θBe

µd2 + 1
2m− 1

2m)

θσυV − 1
2m

+

(

θBeµε3 − 1
2συ

θσυ
+ η

)

+
(−θσυ + 1

2)(θBe
µd2 + 1

2m− 1
2m)

θ(θσυV − 1
2m)

ψ +

(

θσυµmax{λ1, λ2} − 1
2συ

θσυ
+ η

)

ψ

By remarking that
− 1

2
m(1+ε2+

1
2θ

)

θσυV − 1
2
m

≤ (1 + ε2 +
1
2θ ),

− 1
2
m

θσυV − 1
2
m

(−θσυ+ 1
2
)

θ
≤ (−θσυ+ 1

2
)

θ
and that ψ

is given by
θBeµd2+

1
2m

θσυV −1
2m

, it can be finally deduced that

ψ̇ ≤
(

θBeµε3 − 1
2συ

θσυ
+ η + (1 + ε2 +

1
2θ )

)

+

(

(−θσυ + 1
2)

θ
+
θσυµmax{λ1, λ2} − 1

2συ

θσυ
+ η + (1 + ε2 +

1
2θ )

)

ψ

+
(−θσυ + 1

2)

θ
ψ2

This differential inequality has the form

ψ̇ ≤ a0 + a1ψ + a2ψ
2

where, after some simplifications,

a0 = Beµε3
συ

+ η + ε2 + 1

a1 = −συ + µmax{λ1, λ2}+ η + ε2 + 1 + 1
2θ

a2 = −συ + 1
2θ



4.3. Event-based stabilization 109

where a0, a1 are a2 turn out to be positive scalars (as soon as θ < 1
2σν ).

Then, by the Comparison principle, it follows that the time needed by ψ to go from
ψ(t

′

k) = 0 to ψ(tk+1) = 1 is at least

τ =

∫ 1

0

1

a0 + a1s+ a2s2
ds

which is well-defined due to the positivity of a0, a1 and a2.

Thus, tk+1− t
′

k ≥ τ . Consequently, as tk+1− tk ≥ tk+1− t
′

k, we achieve that tk+1− tk ≥ τ ,
being then τ a lower bound of the inter-execution times or minimal dwell-time. It concludes
the proof.

Now that we have proved that there is a minimal dwell-time, no Zeno solution can appear.
Therefore we are able to state the following result on the the existence of solutions of the
system (4.33)-(4.36) for all t ∈ R

+.

Corollary 4.1
There exists a unique solution (u, v)T ∈ C0(R+, L2([0, 1];R2)) to the system (4.33)-(4.36).

Proof. This is an immediate consequence of Proposition 4.1 and Theorem 4.1. The solution
is iteratively built between successive triggering times.

Remark 4.2
Due to the backstepping transformation (4.9)-(4.10), the well-posedness of the target perturbed
system (4.37)-(4.40) immediately follows as well.

Let us state the main result of this chapter.

Theorem 4.2
Let σ ∈ (0, 1), µ > 0, υ = µmin{λ1, λ2}, A = eµ, B = eµq2 + 1, ε1 (from Lemma 4.2). Let
η ≥ υ(1− σ) and 0 < θ ≤ min{ 1

2συ ,
1

2Beµε1
}, κ1 and κ2 such that

max{2θBeµε1, 2θσυ} ≤ κ1 ≤ 1 (4.63)

2θσυ ≤ κ2 ≤ 1 (4.64)

holds. Let V be given by (4.32) and d given by (4.43). Then the system (4.33)-(4.36) with
event-based controller Ud = ϕ has a unique solution and is globally exponentially stable.

Proof. The existence and uniqueness of a solution to the system (4.33)-(4.36) with controller
ϕ is given by Corollary 4.1. Let us show that the system is globally exponential stable.

Consider the following Lyapunov function candidate for the augmented system (4.37)-
(4.40) with (4.42), defined for all (α(t, ·), β(t, ·)) ∈ L2([0, 1];R2) and m ∈ R

− by

W (α, β,m) = V (α, β) −m (4.65)
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Taking the time derivative of (4.65) along the solutions, it yields,

Ẇ = −α2(·, 1)Ae−µ + β2(·, 0)(q2A−B) +Beµd2

−µ
∫ 1

0
(α2(x)Ae−µx + β2(x)Beµx)dx− ṁ (4.66)

Setting υ = µmin{λ1, λ2}, note that −µ
∫ 1
0 (α

2(x)Ae−µx + β2(x)Beµx)dx <

−υ
∫ 1
0 (α

2(x)A e−µx

λ1
+ β2(x)B eµx

λ2
)dx. Moreover, setting A = eµ, B = q2eµ + 1, and using

(4.42), from (4.66) one gets,

Ẇ ≤ −υV − α2(·, 1) − β2(·, 0) +Beµd2 + ηm−Beµd2 + συV

+κ1α
2(·, 1) + κ2β

2(·, 0) (4.67)

which can be rewritten as follows:

Ẇ ≤ −υ(1− σ)W + (−υ(1− σ) + η)m

+(κ1 − 1)α2(·, 1) + (κ2 − 1)β2(·, 0)

Setting κ1 and κ2 in light of (4.63)-(4.64) we have that κ1 ≤ 1 and κ2 ≤ 1 and that meet
the constraints (4.56)-(4.57) i.e. κ1 ≥ max{2θBeµε1, 2θσυ} and κ2 ≥ 2θσυ (conditions to be
satisfied to guarantee the existence of a minimal dwell-time).

Therefore, it follows that

Ẇ ≤ −υ(1− σ)W + (−υ(1 − σ) + η)m

From the definition of ϕ, events are triggered to guarantee, for all t > 0, θBeµd2(t) ≤
θσυV (t) − m(t). Then, by Lemma 4.1, we guarantee also that m ≤ 0. Recalling that
η ≥ υ(1− σ), we obtain

Ẇ ≤ −υ(1− σ)W

By the Comparison principle, and remarking that V (α, β) ≤W (α, β,m) we have, for all t ≥ 0,

V (α(t, ·), β(t, ·)) ≤ e−υ(1−σ)tW (α0, β0,m0)

With m0 = 0, we just obtain

V (α(t, ·), β(t, ·)) ≤ e−υ(1−σ)tV (α0, β0) (4.68)

which in fact proves that the system (4.37)-(4.40) is GES in L2 norm. Therefore, as it has
been well established in backstepping approach for hyperbolic PDEs, using the inverse trans-
formation of (4.9)-(4.10) (i.e. (4.19)-(4.20)), the system (4.33)-(4.36) is also GES in L2 norm.
More precisely, an estimate of the the L2 norm of system (4.33)-(4.36) in terms of the L2 norm
of system (4.37)-(4.40) can be done as follows (see e.g. [17] for further details):

‖(u(t, ·), v(t, ·))T ‖2L2([0,1];R2) ≤ (1+2‖L‖∞)2(1+2‖K‖∞)2r21e
−υ(1−σ)t‖(u0(·), v0(·))T ‖2L2([0,1];R2)

where ‖K‖∞ = max(x,ξ)∈T |K(x, ξ)|, ‖L‖∞ = max(x,ξ)∈T |L(x, ξ)|. Hence, this concludes
the proof.
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Comments on the choice of parameters.
Note that while υ and B are given by stability issues, and σ is related to the decay rate, θ is a
free parameter to be properly chosen as given in hypothesis of Theorem 4.2, then one can set
κ1 and κ2 meeting (4.63)-(4.64). Let us remark however that in this work, an optimal choice
of parameters regarding conservatism or sampling speed, is not tackled. We leave the study
of the influence of parameters to the performance of the system for future investigations. In
this chapter we namely focus on the stability result and well-posedness.

Final remarks

Remark 4.3
Let us remark that if a periodic sampling scheme is intended to be applied to the system (4.33)-
(4.36) instead of an event-based scheme as presented throughout the chapter, one suitable period
could be the minimal dwell-time τ obtained from Theorem 4.1.

Remark 4.4
Results in this chapter may be extended to systems with space-varying coefficients (based on
e.g. [68] for the computation of Kernels L to be used in Definition 4.2) or even to m + n

hyperbolic equations (inspired by e.g. [35]). However, the result on the existence of a minimal
dwell-time provided in Theorem 4.1 must be carefully addressed due to complexity of technical
details and some assumptions that may be given in terms of matrix inequalities.

Remark 4.5
Both the triggering condition (4.41) and the control function (4.42) given in Definition 4.2
depend on the target system states. This fact is helpful in proving the global exponential stability
using Lyapunov analysis as well as in stating the existence of the minimal dwell-time. Note
however that the triggering condition and the control function may of course be reformulated
in terms of the actual (u, v)- system states thanks to the backstepping transformation.

4.4 Numerical simulations

Consider the system (4.33)-(4.36) with λ1 = 1, λ2 =
√
2, c1 = 1.5, c2 = 2 and q = 1/4. The

initial conditions are u0(x) = qv0(x) with v0(x) = 10(1 − x) for all x ∈ [0, 1].

4.4.1 Event-based stabilization

The boundary conditions are u(t, 0) = qv(t, 0) and v(t, 1) = Ud(t) where Ud(t) = U(t) + d(t).
In addition, υ = 0.1, µ = 0.0707 and B = 0.533, ε1 = 2.745. Concerning the triggering
algorithm, we choose the following parameters: σ = 0.9, θ = 8× 10−3, η = 0.1, κ1 = 2.75×
10−2 and κ2 = 7.8723× 10−4. They satisfy the constraints (4.56)-(4.57).

The number of events under this approach is 9 on a frame of 4s meaning that the control
value needed to be updated only 9 times.



112
Chapter 4. Event-based boundary control of a linear 2× 2 hyperbolic system via

backstepping approach

Figure 4.1: Numerical solution of the second component v of the closed-loop system with
continuous time controller U (left) and with event-based controller Ud (right).

Figure 4.1 shows the second component of solution v(t, x) when stabilizing with continuous
time controller U (left) and the event-based controller Ud (right). Note that attractivity to
the origin is achieved and the overall behavior for both solutions is similar. Nevertheless,
for the continuous case, it is well known that the system converges to the origin in finite
time. In the event-based case, no conclusion in this issue can be provided yet. Note also the
discontinuities introduced on the right boundary according to Ud and the propagation from
the right to the left across the spacial domain. Figure 4.2 shows the time evolution of the
functions appearing in the triggering condition (4.41). Once the trajectory θBeµd2 reaches
the trajectory θσνV −m, an event is generated, the control value is updated and d is reset to
zero.

Figure 4.3 shows the continuous-time backstepping controller U and the discontinuous
backstepping controller (event-based one) Ud.

Finally, we run simulations for 100 different initial conditions given by u0(x) = qv0(x)

with v0(x) = 4 sin( 4π
a
√
b
x), a = 1, ..., 10 and b = 1, ..., 10 on a frame of 4s. As in Section 2.4

of Chapter 2, we have computed the inter-execution times between two triggering times. We
compare the cases when σ = 0.9 and σ = 0.1. Figure 4.4 shows the density of inter-execution
times. It is worth mentioning that the discretization step in time for all simulations was 0.001,
therefore, it can be noticed from Figure 4.4 that the observed minimal-inter execution time
for both cases is much longer that such a value. In addition, as expected, with σ = 0.1 one
has to sample faster and one gets shorter inter-execution times.
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Figure 4.2: Trajectories involved in triggering condition (4.41) for controller Ud = ϕ(α, β).
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Figure 4.4: Density of the inter-execution times, with σ = 0.1 (left) and σ = 0.9 (right).



Conclusion and perspectives

Conclusion

In this thesis, we have studied the modeling and boundary control of networks described by
a class of infinite dimensional systems: networks of hyperbolic partial differential equations
of conservation laws. Highly inspired by macroscopic models in communication networks and
under fluid-flow modeling, we dealt with a coupled PDE-ODE, where the nodes (servers) are
modeled by ODEs whereas transmission lines are described by hyperbolic equations when
communication delays may be taken into account. For the resulting linearized system around
an optimal equilibrium point, input-to state stability (ISS) analysis as well as asymptotic gain
control synthesis were carried out by means of Lyapunov techniques and LMI formulation.

We have then dealt with a particular case of the previous model: considering only the lin-
ear hyperbolic system of conservation laws (without the ODE coupling and without exogenous
disturbance), preliminary results on event-based boundary control were introduced. To the
best of our knowledge, digital control, in particular, sampled-data control for PDEs is not well
developed and determining the sampling period while guaranteeing asymptotic stability is still
a challenge. Therefore, we combined boundary control - quite well established for linear hy-
perbolic systems- with some of the main strategies of event-based control of finite-dimensional
systems. We considered also the case when the output-state is subject to quantization. It
turns out that event-based control is a suitable approach to sample aperiodically continuous
time boundary controllers. We considered that, under event-based controllers, one can guar-
antee both the well-posedness and stability (in appropriate sense) of the linear hyperbolic
PDE.

More precisely we addressed some of the questions that have risen during the work and
that have motivated this thesis. As a matter of example:

• In Chapter 1, we came up with control-oriented model of networks and with dynamic
boundary control, namely access control and routing control to minimize the asymptotic
gain while guaranteeing ISS properties. It translates into the fact that, even in the
presence of input flow disturbances, the system converges fast enough to an optimal
equilibrium point and remains close to it, thus good performance of the network without
congestion can be guaranteed;

• In Chapter 2 we have introduced three event-based controllers highly inspired by the
event-based strategies from finite-dimensional systems. We confirm that it is possible to
sample aperiodically continuous-time boundary controllers of linear hyperbolic PDEs.
Actuating on event-based fashion would be a realistic approach of the actuation on the
systems;

• In Chapter 3 we introduced quantization issues. Static and dynamic controllers are

115
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designed, which establish stability in L2- and H1- norms with respect to measurement
errors using Lyapunov-based techniques;

• Finally, in Chapter 4, we combined the Backstepping approach, well-developed tool
for boundary control of PDEs, with the event-based notions that we developed in the
previous chapters. We believe that this is the first contribution on event-based control
for hyperbolic systems under Backtepping approach.

Perspectives

A lot of work on both boundary control of PDEs and event-based control needs still to be
done. Let us mention some perspectives as follows:

• Event-based controllers could be introduced for the whole coupled PDE-ODE model that
we have studied in Chapter 1. In fact, extending the ISS static event-based approach,
could turn out natural. Roughly, the sequence of triggering times would be as follows:
tu0 = 0, tu1 = 1

λ
and for all k ≥ 1,

tk+1 = inf{t ∈ R
+|t > tk ∧ ρ1‖BwKz(−Z(t) + Z(tk))‖2 + ρ2‖BwKy(−y(t, 1) + y(tk, 1))‖2

+ ρ3‖BuLz(−Z(t) + Z(tk))‖2 + ρ4‖BuLy(−y(t, 1) + y(tk, 1))‖2

≥ 2σνṼ (t) + ε(t)}

Nevertheless, some technical difficulties came up when dealing again with the well-
posedness of solutions. This is an issue worth to continue working on;

• Another interesting point is to apply the event-based control strategies to open channels
modeled by the Saint-Venant equations (see e.g. [31]). Indeed, actuation might be
expensive due to the actuator inertia when regulating the water level and the water
flow rate by using gates opening as the control actions. Then, event-based control would
suggest to modulate efficiently the gates opening, only when needed. Another interesting
application could be flow control on vehicle highway traffic networks with junctions as
considered in [9]. It would generalize what has been done in Section 4. The rate inflow
might be controlled throughout traffic lights modulation in strategies such as ramp-
metering on event-based fashion which is actually a realistic approach for the actuator
in the system;

• Regarding the Backstepping approach studied in Chapter 4, since in more realistic sce-
narios, backstepping controllers are designed using observed states, for event-based con-
trol under backstepping, triggering laws should also include an estimate of the state.
Based on [68], the output feedback control can be used as a continuous control to be
sampled on events. It is important however to guarantee that under the triggering
condition depending only on the observed states, there is no Zeno phenomenon.

• It could be interesting to extend many of tools used in sampled-data finite-dimensional
systems for the stabilization with aperiodic sampling as provided in [34] and references
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therein. In particular, we could be inspired by looped functionals introduced in [56]
in order to establish a period that can be used to force a dwell-time when proposing
event-triggered strategies for hyperbolic PDEs.

• It could be interesting to study other classes of infinite dimensional systems, for instance,
parabolic partial differential equations. In fact, when diffusion phenomena might be
present in networks, we could consider the approach addressed in [8] for the modeling of
large networks. Then, stabilization and control of these systems can be tackled following
for instance well-known analysis tools via semi-group theory as in [13];

• Finally, inspired by the results of Chapter 4, it could be interesting to introduce
event-based boundary control for parabolic PDEs, via Backstepping and flatness based
method, as addressed for instance in [47].





Appendix A

Algorithms

Solving BMIs involved in Chapter 1

In this section, we illustrate the algorithms used to solve optimization issues in Chapter 1.
First, Algorithm 1 is related to Theorem 1.1 for the open-loop case. Performing line search
on µ, leads to successive LMIs that can be solve under Semi-Definite Programming.

Input: Λ, A, Gy, Bw, Bu, D, Gz.
Output: Popt, Qopt, µopt, Asymtp gain opt.
begin

for µ in line search do
Setting variables: P , Q, γ ;
Solve SDP convex optimization problem ;
minimize γ

2µλe
2µ;

s.t Mo (1.26) ≤ 0;
P ≥ I;
Q ≥ I;
if Status = “Solved" then

Gainopt =
γ

2µλe
2µ;

Popt = P ;
Qopt = Q;
µopt = µ

else
break;

end
end
Asymtp gain opt =Gainopt;

end
return Popt, Qopt, µopt, Asymtp gain opt.

Algorithm 1: Solving MIs for ISS stability (minimizing the asymptotic gain) in Theorem
1.1

Then, Algorithm 2 is related to Theorems 1.2 and 1.3 for the closed-loop case.
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Input: Λ, A, Gy, Bw, Bu, D, Gz, M, βz, βy, η, δwi and δuij .
Output: Popt, Qopt, Kzopt, Kyopt, Lzopt, µopt, Asymtp gain opt.
begin

for µ in line search do
Setting variables: X, YKz , YKy , YLy , Q3, γ;
Solve SDP convex optimization problem ;
minimize γ

2µλe
2µ;

s.t M̃c (1.54) ≤ 0;
X ≤ I;
Q3Λ ≤ I;
and (1.55) ;
if Status = “Solved" then

Gainopt =
γ

2µλe
2µ;

Xopt = X;
Q3opt = Q3;
YKzopt;
YKyopt;
YLyopt;
µopt = µ

else
break;

end
end
Asymtp gain opt =Gainopt;
Setting original variables Popt = X−1;
Qopt = Λ−1Q−1

3opt;
Kzopt = YKzoptX

−1
opt;

Kyopt = YKyoptX
−1
opt;

Lzopt = YLzoptX
−1
opt;

end
return Popt, Qopt, Kzopt, Kyopt, Lzopt, µopt, Asymtp gain opt.

Algorithm 2: Solving MIs for control synthesis (minimizing the asymptotic gain) in
Theorems 1.2 and 1.3

Event-triggered algorithm related to event-based controllers ϕ1,
ϕ2 and ϕ3 in Chapter 2

In this section, we illustrate the algorithm used to solve numerically the linear hyperbolic
system on events when closing the loop with event-based controllers ϕ1, ϕ2 and ϕ3. We refer
the reader to [40] to see the details about the setting of the PDE solver. Here, we use the
fact that the PDE solver integrates the solution via sol = hpde(sol,howfar, time step) after
defining the problem to be solved sol=setup(form,pdfun,t,x,y,method,bcd,Newman) along with
boundary condition set as [YR,YL]=bcfn(t,y,YLex,Yrex).
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Input: y(0, x) (Initial conditions), Λ,H,B,K,Q, µ, Thorizon, mesh discretization,
other parameters depending of the triggering condition.

Output: y(t, x) (solution), V (y) (Lyapunov function), ev (event function)
begin

Setting the system to be solved;
sol = setup(form,@pdefun,t,x,Y,method,[],@bcfun);
yt + Λyx = 0;
while t ≤ Thorizon do

if there is no event then
for i = j to NT(length time mesh) do

if there is no event then
Solving pde before event-detection;
Using @bcfun for boundary condition;
y(t, 1) = (H +BK)y(t, 0) + d (Dissipative boundary condition with
disturbance);
sol = hpde(sol,howfar,timestep);
t = sol.t;
y = sol.y;
Computing deviations when sampling;
d(t)=BK ∗ (y(ti, 1)− y(t, 1)) ;
computing Lyapunov function;
V ((2.18));
monitoring event-triggering condition;
ev ;
either from ϕ1, ϕ2 or ϕ3 ((2.19), (2.33) and (2.42) respectively) ;

else
there is an event;
j=i;
stop the integration;
break;

end
end

end
Updating;
d(ti) = 0 ;
Using @bcfun for boundary condition;
y(t, 1) = (H +BK)y(t, 0) ;
monitoring event-triggering condition;
ev;
either from ϕ1, ϕ2 or ϕ3 ((2.19), (2.33) and (2.42) respectively) ;

end
return y(t, x) V (y) ev

end

Algorithm 3: Event-Trigger algorithm for linear hyperbolic systems
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Résumé – Cette thèse propose des contributions sur la commande événementielle pour
des réseaux modélisés par une classe des systèmes de dimension infinie. Premièrement nous
nous focalisons sur la modélisation et contrôle frontière des réseaux qui sont décrits par des
systèmes hyperboliques de lois de conservation. En nous inspirant de modèles macroscopiques
dans le cadre des réseaux de communications, nous traitons des systèmes couplés EDP-EDO,
dont les noeuds (les serveurs) sont modélisés par des EDO non-linéaires alors que des lignes
de transmission sont décrites par des systèmes hyperboliques lorsque des retards peuvent être
pris en compte. Pour le système linéarisé resultant, autour d’un point d’équilibre optimal,
on effectue aussi bien une analyse de stabilité "Input-to-state stable" que de la synthèse
du contrôle pour le gain asymptotique grâce à une analyse de fonction de Lyapunov et une
formulation LMI.

Ensuite, nous considérons des aspects théoriques de la commande évènementielle aux
frontières pour les systèmes hyperboliques. D’un côté, avec cette stratégie de contrôle,
nous ciblons la réduction de la consommation d’ énergie en traitant les contraintes de
communication et de calcul. D’ autre part, nous utilisons cette stratégie comme une manière
rigoureuse pour échantillonner temporellement lorsqu’ on a besoin de mettre en oeuvre les
contrôleurs continus sur une plateforme numérique. Une étude mathématique sur l’existence
et l’ unicité des solutions ainsi que sur les aspects de stabilité est réalisée.

Mots clés : Réseaux de lois de conservation , equations aux dérivées partielles hyper-
boliques linéaires, commande évènementielle, techniques de Lyapunov, conditions de trigger.

Abstract — This thesis provides contributions on event-based control of networks modeled
by a class of infinite dimensional systems. We first focus on the modeling and boundary
control of networks described by hyperbolic systems of conservation laws. Highly inspired by
macroscopic models in communication networks, we deal with a coupled PDE-ODE, where
the nodes (servers) are modeled by nonlinear ODEs whereas transmission lines are described
by hyperbolic equations when communication delays may be taken into account. For the
resulting linearized system around an optimal equilibrium point, Input-to state stability (ISS)
analysis as well as asymptotic gain control synthesis are carried out by means of Lyapunov
techniques and LMI formulation.

We then address some theoretical aspects of event-based boundary control of hyperbolic
systems. One one hand, with this computer control strategy, we intend to reduce energy
consumption when dealing with communication and computational constraints. On the other
hand, we use this strategy as a rigorous way of sampling in time when implementation of
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continuous time controllers on a digital platform is required. A mathematical study regarding
well-posedness of the solutions as well as stability issues is conducted.

Keywords: Networks of conservation laws, linear hyperbolic partial differential equa-
tions, event-based control, Lyapunov techniques, triggering conditions
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