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Abstract

In this work, we tackled the automatic gaze estimation problem in unconstrained
user environments. By using RGB-D sensor, we aimed to exploit the multi-modal
data to provide a su�ciently accurate and robust system. This work can be sum-
marized through 3 principle axes: model, paradigm and data.

In the �rst part of this thesis, we described in details Random Forest algorithm.
Through our investigation, we formulated some tasks as a learning problems, we used
decision forest as model to capture the mapping functions. We gave a global overview
of this tool, and compared it to some machine learning techniques under di�erent
tasks. We �nished this part by highlighting the recent achieved improvements of
this algorithm in computer vision and medical image analysis. Through this survey,
we reported some empirical proofs of the potential of Random Forest in handling
highly non linear problems such as gaze estimation.

The second axis of this work is about gaze estimation paradigms. We �rst de-
veloped two automatic gaze estimation systems following two classical approaches:
feature and semi appearance-based approaches. Our feature-based system is based
on a robust eye pupil localization component which allows to build a 3D eye model.
Combined with head pose estimation, a 3D gaze information can be inferred. The
second system is fundamentally based on building a frontal gaze manifold corrected
with the head pose parameters. This system aims to learn gaze information from eye
image appearance under frontal con�gurations then uses head pose-based geometric
transformation to infer the �nal gaze information. The major limitation of such
paradigms lies in their way of designing gaze systems which assume a total indepen-
dence between eye appearance and head pose blocks. To overcome this limitation,
we converged to a novel paradigm which aims at unifying the two previous compo-
nent and building a global gaze manifold. To achieve such uni�cation, we built an
input data from both RGB cue related to eye appearance, and depth cue related to
head pose. A robust mapping between such input space and gaze information space
is learned robustly. We performed a comprehensive comparisons between these sys-
tems under unconstrained environment and reported a deepen analysis about the
obtained results.

The �nal axis of this work represents the data. Providing su�cient input data
to learn mapping functions with a high ability of generalization is fundamental. We
explored two global approaches across the experiments by using synthetic and real
RGB-D gaze samples. For each type of data, we described the acquisition protocol
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and evaluated the ability of handling the task in hand. We �nished by performing a
synthetic/real learning comparison in terms of robustness and accuracy and inferred
some empirical correlations.



Résumé

Dans ce travail , nous avons abordé le problème de l'estimation automatique du
regard dans des environnements utilisateur sans contraintes. L'estimation du re-
gard joue un rôle dans plusieurs applications en vision par ordinateur spécialement
dans l'analyse du visage. Dans la reconnaissance d'expressions faciales, il peut re-
monter une information très parlante sur l'état expressif et cognitif de la personne.
Les interactions homme-machine IHM utilisent cette information comme métaphore
principale de communication. Le regard peut être exploité dans des thématiques
de contrôle et de surveillance, plusieurs constructeurs automobiles intègrent cette
technologie pour véri�er l'état de fatigue du conducteur. Récemment, certaines
recherches s'orientent vers l'utilisation du regard pour comprendre le comportement
des clients dans les magasins, les données récoltées permettent d'élaborer des straté-
gies marketing de plus en plus intelligentes.

Plusieurs solutions industrielles sont aujourd'hui commercialisées et donnent des
estimations précises du regard. Certaines ont des spéci�cations matérielles très com-
plexes (des caméras embarquées sur un casque ou sur des lunettes qui �lment le
mouvement des yeux) et présentent un niveau d'intrusivité important. Ces solu-
tions sont souvent non accessibles au grand public. D'autres utilisent un champ de
caméras infra-rouge et se basent intégralement sur le re�et cornéen pour estimer
le regard, seulement leur robustesse est fortement conditionnée par les conditions
d'éclairage. Récemment, deux approches ont émergé dans l'estimation du regard,
basée-caractéristique et basée apparence respectivement. Ces approches essaient à
la fois, de réduire le niveau d'intrusivité dans le but de fournir plus de mobilité à
l'utilisateur, et d'augmenter la robustesse de l'estimation. La première approche con-
sidère le regard comme un vecteur résultant d'un modèle géométrique de l'÷il. Pour
calibrer ce modèle pour chaque utilisateur, une étape d'extraction automatique de
points caractéristiques autour de l'÷il et une estimation de la pose de la tête est fon-
damentale. Pour s'a�ranchir de la calibration par utilisateur, la deuxième approche
modélise l'estimation comme un problème de régression. L'idée est de trouver une
fonction mapping su�samment précise entre l'espace d'entrée représenté par l'image
apparence de l'÷il, et l'espace de sortie représenté par le vecteur regard. Basés sur
ces deux dernières approches, les systèmes d'estimation automatique du regard ont
réalisé une avancée considérable en termes de précision et de robustesse. Néan-
moins, plusieurs verrous restent non résolus. Ce travail vise à produire un systéme
d'estimation automatique du regard capable d'augmenter la liberté de mouvement
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de l'utilisateur par rapport à la caméra (mouvement de la tête, distance par rap-
port au capteur), et de réduire la complexité du système en utilisant des capteurs
relativement simples et accessibles au grand public.

Dans le premier axe de cette thèse, nous nous sommes focalisés sur un algo-
rithme d'apprentissage automatique basé sur les champs aléatoires. En e�et, au
cours de nos études, nous avons formulé certaines tâches comme des problèmes de
régression. Nous avons utilisé les arbres de décisions comme modèle pour apprendre
les fonctions mapping. Nous avons commencé par donner un aperçu global de cet
outil en détaillant l'aspect mathématique permettant de comprendre sa �exibilité à
résoudre di�érentes problématiques d'apprentissages (classi�cation, régression, esti-
mation de densité ainsi que la réduction de dimension). Dans un deuxième temps,
nous avons réalisé une étude comparative étendue sur plusieurs problématiques des
champs aléatoires par rapport à d'autres algorithmes d'apprentissage (Machines à
vecteurs support, Processus Gaussiens..). Cette étude nous a permis de ressortir
rigoureusement les avantages de cette technique et de se prononcer objectivement
sur sa capacité à être projeté sur nos problématiques. Pour conclure cette partie,
nous avons mis en évidence les améliorations récentes apportées à cet algorithme
en vision par ordinateur et en analyse d'imagerie médicale. Cette analyse souligne
certaines limitations de l'algorithme original induisant des corrections de plus en
plus sophistiquées.

Le deuxième axe présente les paradigmes d'estimation du regard. Dans un pre-
mier temps, Nous avons mis au point deux systèmes basés sur deux approches clas-
siques: le premier basé caractéristiques et le deuxième basé semi-apparence. Nous
avons introduit pour la première fois cette notion de semi-apparence pour désigner
un système utilisant partiellement l'apparence pour estimer le regard. Notre sys-
tème basé caractéristiques repose sur une composante robuste de localisation de la
pupille permettant de construire un modèle géométrique de l'÷il. Cette composante
est le résultat d'un apprentissage en utilisant les champs aléatoires permettant de
construire un espace de vote global sur la position de la pupille. En fournissant un
corpus de données labélisé en position et classe de la pupille, les arbres sauvegardent
des informations à la fois de classi�cation et de régression permettant de construire
un espace dit de Hough encodant toutes les hypothèses plausibles de la position
de la pupille. Combinée à une autre composante qui est l'estimation de la pose de
la tête par transformations géométriques, l'information regard �nal peut être cal-
culée. Notre module de pose de la tête est basé également sur un apprentissage par
champs aléatoires sur des images RVB-P labélisées. Notre second système repose
principalement sur un paradigme semi-apparence. Ce paradigme vise à apprendre
l'information regard à partir d'images d'apparences de l'÷il dans une con�gura-
tion exclusivement frontale. Pour construire un espace regard frontal, une étape
de normalisation de pose permettant de construire une image frontale du visage de
l'utilisateur est appliquée.

Pour estimer le regard �nal, la prédiction dite frontale est convoluée aux paramètres
de la pose de la tête de facon géométrique. Dans notre système, nous avons détaillé
notre méthode de normalisation de pose tout en illustrant son importance dans la
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détection du visage sur deux di�érentes bases de données. Nous avons conclu cet
axe par des comparaisons de ces deux systèmes par rapport à l'état de l'art ainsi
qu'une comparaison directe de ces deux paradigmes. Cette analyse nous a permis
de ressortir un inconvénient majeur de ces paradigmes résidant dans la conception
des systèmes d'estimation du regard qui supposent une indépendance totale entre
l'image d'apparence de l'÷il et la pose de la tête. Ainsi, nous avons convergé vers un
nouveau paradigme qui vise à uni�er les composantes précédentes et construire un
espace global du regard. Pour parvenir à une telle uni�cation, nous avons modélisé
le vecteur d'entrée comme une combinaison d'informations RVB liées à l'apparence
des yeux, et de profondeur liée à la pose. Une fonction mapping entre cet espace
d'entrée et l'espace regard est apprise.

Dans le dernier axe de cette thèse, nous avons développé notre dernier système
d'estimation automatique du regard. Ce système repose sur un nouveau paradigme
qui est intégralement apparence. Cette appellation est choisie pour marquer davan-
tage la di�érence avec les systèmes décrits précédemment. En e�et, l'axiome prin-
cipal de ce paradigme est de coupler intégralement la composante de l'apparence de
l'÷il avec l'estimation de pose de la tête. Concrètement, nous exploitons la multi-
modalité de la Kinect pour extraire des informations RVB autour des yeux, ainsi
qu'une information de profondeur autour du visage. Cette extraction est appliquée
après une étape de détection du visage. Cette dernière nous permet de construire
des données multicanaux (deux canaux RVB-yeux et un canal Profondeur-visage)
encapsulant à la fois des informations regard et pose de la tête. Nous utilisons encore
une fois les champs aléatoires pour apprendre le passage entre l'espace d'entrée mul-
ticanaux de très grande dimension et l'espace de sortie du regard de faible dimension.
Dans cet axe, nous mettons en évidence l'importance des données d'apprentissage
et leur in�uence sur la qualité de la prédiction �nale. Pour entrainer des arbres de
décision su�samment robustes dotés d'une grande capacité de généralisation face
à des scénarios très di�érents de l'apprentissage, il faut impérativement s'assurer
de la pertinence des données d'apprentissage en termes de nombre et de variabil-
ité. Malheureusement, aucune base de données regard existante ne répond à ces
exigences. Aussi, nous avons décidé de construire nos propres données garantissant
aux champs aléatoires une grande généralisation pendant la prédiction. Nous avons
exploré deux principales approches à travers les expériences, en utilisant respective-
ment des échantillons RVB-P synthétiques et réels. Pour construire une base de
données regard synthétiques, nous avons utilisé un modèle 3D de visage statistique
déformable. Ce modèle a été construit à partir d'une analyse en composante prin-
cipale de scans de plusieurs personnes de di�érents âges, l'ACP permet de ressortir
des modes de variations contrôlant à la fois la forme et la texture du modèle in-
duisant une nouvelle identité synthétique. Nous avons ajouté à ce modèle un mode
de variation supplémentaire relatif au regard. Pour se faire, nous avons intégré un
modèle 3D paramétrable d'yeux. Ce modèle comporte deux sphères texturées et
un ensemble de points autour de l'÷il. Le paramétrage est dé�ni empiriquement
et permet de contrôler le mouvement des yeux et des paupières produisant une
labélisation automatique du regard. D'un autre côté, pour construire une base de
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données réelle, nous avons suivi un protocole de captation rigoureux. Plusieurs per-
sonnes ont été conviées à suivre un point mobile a�ché sur un écran intégralement
calibré par rapport à la Kinect permettant de construire une vérité terrain regard
su�samment précise. Plusieurs con�gurations ont été mises au point (assis/debout,
proche/loin du capteur) pour s'assurer de la variabilité des données RVB-P. Un
premier apprentissage global a été réalisé en utilisant exclusivement des données
synthétiques. Cet apprentissage a été testé dans des situations réelles avec de fortes
contraintes de pose de la tête et de distance par rapport au capteur. Une autre
expérimentation a été menée pour évaluer la pertinence de chaque canal dans la
prédiction, et plus particulièrement la profondeur. Pour valider la robustesse du
paradigme intégralement apparence vis-à-vis du semi-apparence, une étude basée
sur des données synthétiques a été conduite comparant la précision de la prédiction.
Pour �nir cet axe, une derniére analyse a été réalisée dans une optique de com-
paraison d'apprentissage réel/synthétique. Cette expérience nous a permis de faire
ressortir empiriquement un rapport de nombre de données d'apprentissage synthé-
tiquse/réelles permettant de produire, approximativement, la même estimation du
regard en termes de précision.

Nous avons conclu notre travail par une comparaison globale de nos trois sys-
tèmes d'estimation automatique du regard dans des environnements utilisateur dif-
férents. Cette comparaison montre les avantages et inconvénients de chaque système
permettant d'émettre des perspectives sur trois volets. Le premier volet concerne
directement la méthode d'apprentissage utilisée, plusieurs améliorations peuvent
être envisagées pour booster d'une part sa discrimination et d'autre sa capacité à
encapsuler de l'information sémantique. Le deuxième se projette sur les données
synthétiques dans une optique d'amélioration du rendu et de réalisme des données
d'apprentissage. En e�et, d'autres protocoles peuvent être conçus pour mieux syn-
thétiser les échantillons regard RVB-P. Une dernière perspective porte sur la con-
struction d'une base de données RVB-P regard réelle, certaines ré�exions peuvent
être conduites dans le but d'améliorer le protocole d'acquisition ainsi que la qualité
de labéllisation des données.

Ce travail a donné naissance à une autre collaboration entre le laboratoire Inter-
actions Immersives de l'IRT b<>com et l'équipe FAST de CentraleSupelec. Cette
collaboration se concrétise par une thèse reprenant les résultats de ce travail dans
un autre cadre applicatif.
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Introduction
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1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

Eyes are the most salient features of the human face, their movements play an im-
portant role in several computer vision applications. The geometric and photometric
characteristics of the eyes provide a discriminative visual features for face detection
and recognition. The learned Haar features in the primary stages in the famous
Viola and Jones detector correspond to the eye regions, which demonstrates the
involvement of the eyes in face detection.

Considered as the most relevant non verbal communication cue, gaze plays a
crucial role in cognitive, emotional and expressive state of humans according to the
rich information that can be extracted from it. These last years, the interest for
gaze estimation has grown signi�cantly due to the real potential of this technology
in providing elegant solutions in diverse domains such as:

• Human Computer Interaction Gaze estimation systems are widely inte-
grated in many computer interfaces to facilitate and improve the quality of
the interactions with users. Among these interfaces, new generation robots are
able to interact naturally with users thanks to automatic gaze estimation sys-
tems that e�ectively analyze and measure user engagement [Bickmore 2005].

• Psychological and cognitive Science Cognitive researchers aim to under-
stand how the brain executes diverse tasks and processes decision. The gaze
cues can provide relevant information about cognitive process [Wiener 2012].



2 Chapter 1. Introduction

fovea 

cornea 

pupil 

Figure 1.1: Visual illustration of user gaze information. The line connecting eye
and cornea centers represents optical axis, visual axis connects cornea and pupil
centers. The points of regard is described by the intersection of the two visual axes
corresponding to both eyes. More details are provided in the next chapters.

Furthermore, researchers used this information in many psychological experi-
ences to study and detect some social variables such as extraversion personality
trait measurement [Lepri 2010], dominance estimation in groups [Hung 2008],
autism detection in young children [Wetherby 2004]. To avoid biasing the sub-
jects behaviors by the gaze estimation system setup, these studies tend to use
a remote system to reduce the level of intrusion.

• Monitoring Systems In automotive industry, ensuring the driver security by
automatically monitoring his attention to reduce road accidents is a challeng-
ing task. Gaze estimation system can be used to infer where the driver is look-
ing and whether he has seen pedestrians or other tra�c signs [Ishikawa 2004] ,
and can be used to measure the fatigue using eye movements [Duchowski 2007].

• Marketing Research To improve and optimize the sale of some products,
gaze cues can be used to �nd the ideal disposal of these products on a super-
market shelf. In other words, gaze estimation system can monitor consumer
behavior towards di�erent products.

However, despite all these applications where the industrial gaze estimation sys-
tems seem to meet the expectations and provide signi�cant advantages this last
years, many real scenarios remain unsolved and can not be handled by such sys-
tems.

This thesis aims at developing a robust automatic gaze estimation system. Our
goal consists in providing users a fast and reliable tool to remotely interact with dis-
played objects in real and virtual environments using a 3D screen. Our work makes
the challenging assumptions according to user scenarios such as strong head pose
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(a) (b)

Figure 1.2: The most important challenges of the automatic gaze estimation systems.
(a) Some industrial systems presenting intrusiveness on the user. (b) Eye image
appearances cropped from real scenarios, the high variability is due to di�erent
factors such as illumination conditions or head pose variation.

variation, minimal user calibration and very low resolution imaging, consequently
large user-sensor distances.

1.2 Challenges

Automatic gaze estimation systems can refer to di�erent goals depending on the
context and the methodology. The majority of researches aim to determine the 3D
visual axis pointing out from the fovea passing through the corneal center. This
axis can be described by the 3D optical axis which represents the ray pointing the
eye center across the pupil center, as described in Fig.1.1. Some methods try to
determine the intersection between the visual and optical axis as the point of regard
of the user. In this work, our system is designed to automatically determine the
visual focus of attention to determine the target of the visual axis as [Mora 2012].

However, all these researches are facing with real technological obstacles which
can be listed as:

• Reducing systems intrusiveness: Many existing systems available on the
market are based on complex hardware speci�cations such as head mounted
sensor or infrared setups. As these sensors are very close to the eye regions,
they provide a very high image resolution with a uniform scale and no need
for head pose information. Some scenarios such as studying consumer behav-
ior, need more �exibility and consider these setups as very intrusive, what
could disturb the user's behavior and produce biased information. Fig.1.2a
illustrates some gaze systems with high level of intrusiveness.
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Figure 1.3: Microsoft Kinect sensor technology. It is composed of IR emitter which
projects di�erent patterns, reprojected by the scene the IR Depth sensor triangulates
these projections and infer the depth information, the Color sensor provides classic
RGB cues. Merging the two information (depth and RGB) with a predetermined
calibration, we build a textured mesh.

• Enhancing robustness to eye image appearances variability: Using
natural light reduces signi�cantly the intrusiveness of the automatic gaze es-
timation systems and represents an important solution for many potential
applications. However the variability of the eye image appearances remains
an important problem which is directly linked to the accuracy of this strat-
egy. This variability is due to several factors such as, illumination conditions,
head pose changes and image resolution according to the distance to the sen-
sor. Fig.1.2b illustrates some eye images under unconstrained environments,
notice the high variability in appearance which represents a real challenge.

Our work aims at tackling these challenges. By using a remote sensor (here
a Microsoft Kinect as shown in Fig.1.3), we aim to improve robustness of the
system in large user-sensor distances as well as free head pose movements and
unfavorable illumination conditions.

1.3 Contributions

During this work, we investigated the di�erent existing automatic gaze systems, and
noticed their advantages and limitations. First, we followed the existing approaches
in the perspective of enhancing the potential of the di�erent chain process elements.
Given the obtained results of this initiative, we converged into a novel paradigm to
build a more robust system. The contributions of this thesis can be projected into
four global axes as follows:

• Comprehensive comparison: we revisited the two relevant global approaches,



1.3. Contributions 5

RGB 

DEPTH 

INPUT 

3D TEXTURED MESH 

FRONTALIZATION ESTIMATION 

PUPIL TRACKING 

HEAD POSE TRACKING 

RGB 

DEPTH 
Gazing 3D tracked target 

INPUT TRACKING CALIBRATION ESTIMATION 

TRAINING 

INPUT ESTIMATION 

+ 

SY
ST

E
M

 1
 

SY
ST

E
M

 2
 

SY
ST

E
M

 3
* 

RGB 

DEPTH 

Figure 1.4: Automatic gaze estimation systems realized in this work. Each system
is based on a speci�c paradigm. The �rst system is based on a feature-based ap-
proach, the gaze information is inferred using some eye's key points and geometrical
assumptions. The second system is based on a semi appearance based approach, the
eye appearance is projected on a learned gaze manifold under frontal head assump-
tion. The third system corresponds to a new paradigm, for the �rst time, head pose
and eye blocs are grouped on a single component to build a global gaze manifold.

feature and semi appearance based approaches. For the �rst system, e�ciency
is strongly constrained by the features localization. We propose our own lo-
calization method which overcomes the existing methods and allowed us to
build our �rst system described in Fig.1.4. To build our second system, we
followed the semi appearance-based approach. The most important part of
such a system is the component yielding a frontal manifold. We propose our
method to perform this operation which produced interesting results compared
to methods exploiting the same strategy (illustrated by system 2 in Fig.1.4).
We established a comprehensive comparison between the two systems accord-
ing to our environment and showed advantages and limitations in terms of
robustness and accuracy.
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• Novel paradigm: the main contribution of our thesis is to consider gaze
estimation as a fully learning problem by unifying head pose and eye region
blocks (represented by the system 3 in Fig.1.4). In other words, we aimed
at �nding a robust mapping function between gaze information and an input
space which, implicitly, regroups all discriminative cues extracted from head
and eye appearances. In practice, we use a Kinect sensor to grab RGB and
depth cues and form the input vector. This paradigm is an extension of the
semi appearance based approach. Our main motivation relied in reducing
the high linearities between gaze space and the input space by adding novel
cues information. Our input vector is presented as a collection of di�erent
channels corresponding to di�erent cues. We apply a feature selection strategy
to measure the involvement of each channel of the multi-modal data and their
discriminative ability towards the problem. This strategy allows us to establish
a practical proof of the importance of each component in the global system,
and to validate the consistency of our processing chain.

Another important point in our paradigm is to make the assumption that
the user environment is highly unconstrained namely user-sensor distance.
Unlike previous works which, regardless of their approach, �x a relatively
small distance (< 1m), this work allows more importance distances (> 2m).

• Input data: an other important contribution of this work is related to the
data provided to learn a su�ciently robust mapping function. The ability of
the learning to handle unseen testing scenarios known as the generalization
ability, is directly linked to the quality of the database provided in terms of the
number of images and the variability available in the training set. According
to the existing gaze databases, their characteristics do not meet the require-
ments of our learning task. Sometimes, the number of training samples is not
enough to achieve a good generalization, sometimes, the labels information
does not match with our gaze vector information. To solve these limitations,
we decide to use computer graphic strategy to render an important amount of
automatically labeled RGB-D images. To guaranty a su�cient variability in
the database, we use a statistical morphable model designed for human face
with an integrated dynamic gaze model. In addition, we build a gaze database
with real RGB-D images using a Kinect sensor following a rigorous protocol
in order to achieve accurate labeling.

• Model understanding: in this work, we used Random Forest algorithm as
model to handle di�erent non-linear problems during our investigations. Some
promising results related to some speci�c experiments allow us to provide
semantic explanations according to our task which can be exploited in similar
problems. In addition, advanced understanding of some empirical parameters
related to the algorithm are established.
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1.4 Thesis Organization

We describe brie�y here the content of each chapter
Automatic gaze estimation: state-of-the-art: In this chapter, we describe

the existing systems and classify them according to the assumptions used in their
paradigm and underly their limitations according to our context. We provide a
comprehensive survey about some components such as head pose estimation and
eye pupil localization which are widely used in gaze estimation systems. We formu-
late the problem as a regression learning task by giving the existing gaze labeled
databases.

Random Forest algorithm: As we decided to handle gaze estimation prob-
lem by learning, we choose Random Forest algorithm as a tool to handle the task
at hand. We give an overview of the decision trees, then we provide some back-
ground and mathematical annotations about training and testing trees. We also
detail di�erent learning problems that can be handled by Random Forest and give
some real applications in computer vision. We conclude the chapter by highlighting
some recent theoretical improvements provided to this algorithm with successful
achievements in computer vision applications and medical image analysis.

Feature-based versus semi appearance-based approach In this chapter,
we develop our feature-based and semi appearance-based automatic gaze estimation
systems respectively. We present in the �rst system, the most important component
which is 2D eye pupil localization, according to the involvement of this component
in the estimation accuracy, we perform a comprehensive comparison to the state-
of-the-art. We present conjointly our head pose estimation system and evaluate
its robustness compared to existing systems. By combining these two components,
we build our �nal system. Di�erent experiences illustrate the potential of our sys-
tem compared to the baseline using the same approach. Second, we develop our
semi appearance-system by describing in details the processing chain. We report
the estimation accuracy compared to similar approaches. We �nish this chapter by
establishing a global comparison of these two approaches and showing some limita-
tions.

Fully appearance-based approach According to the limitations of the previ-
ous described systems, we develop our fully appearance-based automatic gaze sys-
tem. To our best knowledge, we use for the �rst time this term which means that
we consider the head pose and eye image as a single uni�ed block. We detail the
general paradigm of this approach. Since we treat this task as a global supervised
learning problem, the gaze data represents a primordial element directly involved
in the system e�ciency. We describe our protocol to generate reliable training
databases using synthetic and real approaches. We perform di�erent experiments
showing the robustness of our method under strongly unconstrained scenarios. To
provide a rigorous proof of the ability of synthetic data, we perform comparisons
with real samples under the same testing conditions. Finally, we establish a global
comparison of all the described systems according to the context of this thesis.

Conclusions In this chapter we conclude our work. The �rst part provides
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a global summary of the developed automatic gaze estimation systems during our
investigation. The second part highlights the limitations related to these systems
and reports some unsolved points and proposes future perspectives.
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As described previously, the automatic gaze estimation systems aim to infer
the 3D visual axis or the point of regard. This last decade, two main method-
ologies have been investigated by several researches, namely feature-based meth-
ods and appearance-based methods. A very comprehensive survey is described
by [Hansen 2010].

2.1 Feature-based methods

These methods use geometrical assumptions to infer the gaze information. To this
end, they build a person-speci�c geometrical model using a set of discriminative and
invariant features around the eye image such as the pupil. This model is usually
described as the eyeball geometry as illustrated in Fig.2.2 where a direct mapping
from the local features locations to the gaze point is established. Since the local
features of the eyes are very speci�c varying from one user to an other, a calibration
session is required to determine the parameters of the model by collecting a set of
gaze estimation samples.
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Figure 2.1: The two principal automatic gaze estimation approaches. (a) Feature-
based methods: combining eye features locations and head pose parameters, the
gaze information can be calculated. (b) Appearance-based methods: two paradigms
are possible, learning gaze based on the eye appearance in frontal con�guration,
then correct the �nal estimation using head pose parameters. The second paradigm
consists in learning gaze information using the full eye and face cues as uni�ed input.

To achieve a 3D gaze estimation, these methods use the head pose parameters
to project the 2D estimation in the world coordinates system. The head pose is
conventionally de�ned with two global parameters, R and T , representing the rota-
tion and translation of the user head respectively. Estimating accurately head pose
parameters enhances signi�cantly automatic gaze estimation system e�ciency. The
Wollaston illusion represented in Fig.2.3 illustrates the discriminative characteristic
of these components. Here, we describe a comprehensive surveys related to head
pose estimation and eye pupil localization methods reported these last years. Then
we describe gaze estimation systems combining these two components.

2.1.1 Head pose estimation

As mentioned previously, head pose estimation is a fundamental component for the
majority of automatic gaze estimation systems. A strong correlation exists between
the gaze direction and the head orientation, measuring accurately this information
can reduce the high-dimensionality of gaze estimation problem.

Head pose estimation has a variety of interpretations. In the context of computer
vision, head pose estimation is most commonly interpreted as the ability to infer the
orientation of a person's head relative to the view of a camera which is represented
by the full 3D orientation and translations. A visual representation is represented
in Fig.2.4
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Figure 2.2: Geometric eyeball model (extracted from [Guestrin 2006]).

Figure 2.3: Wollatson illusion: the appearance eye images are exactly the same. By
considering the head pose changes, the perception of the gaze direction is di�erent.

Several methods for automatic head pose estimation are proposed in the lit-
erature. With respect to the survey given in [Murphy-Chutorian 2009], we classify
these methods according to the global approach used and complete with more recent
methods. Fig.2.5 illustrates a visual representation of some head pose approaches
in computer vision this last decade.

• Appearance template approach This method is considered as the most
intuitive approach. A set of sparse head pose annotated images is collected
and used as templates. To infer the head pose, the RGB image test is
compared simultaneously to the de�ned template using a similarity measure-
ment. [Beymer 1994] used cross-similarity with a multi-scale strategy to com-
pute the similarity, [Niyogi 1996] performed a standard mean square error.
The major limitation of this approach remains in the discretization of the
head pose manifold.
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Figure 2.4: Head pose parameters. yaw, pitch and roll describe the orientation of the
head (usually de�ned as the Euler angles). Tx, Ty and Tz represent the translation
to the sensor which correspond to the head gravity center.

• Detector array approach This approach aims to train a single classi�er for
each speci�c head pose orientation. At the test step, the learned set of clas-
si�ers apply simultaneously to the image test, and the estimated head pose is
retrieved by the classi�er with the highest score. The main weakness of this ap-
proach is the same as the previous one. The works from [Rowley 1998], [Huang 1998]
and [Jones 2003] are based on this approach.

• Nonlinear approach By using a supervised strategy, this approach learns
the high non-linearity between the head appearances space and the pose pa-
rameters space. Unlike previous approaches, these methods gives a contin-
uous estimation. Nevertheless, to achieve a su�cient generalization, a very
representative training set is required. Di�erent machine learning techniques
are used to tackle this problem such as Support Vector Regression (SVR) in
[Li 2000], Neural Networks in [Bruske 1998], [Zhao 2002], [Stiefelhagen 2004]
and [Voit 2005], Particle Swarm in Optimization [Padeleris 2012], Random
Forest in [Fanelli 2011], Deep Neural Networks in [Ahn 2014] and K-Nearest
Neighbor with a triangular surface patch descriptor in [Papazov 2015].

• Manifold learning approach Instead of learning the mapping between
the input and output spaces, this approach aims to lie the samples on a
low-dimensional continuous space. Di�erent dimensionality reduction meth-
ods are used to learn the mapping from the head pose input images space
and the new low dimensional manifold, such as principle component analy-
sis (PCA) [McKenna 1998], [Sherrah 1999] and linear discriminative analysis
(LDA) [Chen 2003], [Wu 2008]. The fact that the assumption that head pose
is mainly the only variable responsible for dimensionality reduction is not
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Figure 2.5: A comprehensive illustration of the existing approaches of human head
pose estimation.

guaranteed, it represents a real weakness.

• Generic deformable models approach These methods rely on �tting a
non-rigid model to the test image of the facial structure. The �tting consists
in minimizing a cost function which evaluates the similarities between the
test data and the current instance generated by the model. The head pose
is estimated by comparing the current parameters of the model to a set of
prede�ned head pose con�gurations. The parameters of the models are learned
from a set of training data of the facial structure con�gurations. The most
representative approach using generic models are [Krüger 1997] and [Hu 2004].
Achieving a robust and accurate �tting is a challenging task which is directly
linked to the generalization of the generic model and the robustness in facial
feature localization.

• Geometric approach Inspired by the human perception of the head pose [Wilson 2000],
these methods are based on the localization of some key facial cues. The head
pose is determined by minimizing the distances between the projection of the
3D facial landmarks of 3 3D prede�ned model and the estimated landmarks.
The fact that the head pose estimation is directly linked to the localization of
the landmarks which is highly constrained by the resolution imaging and the
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facial expressing, makes achieving robustness across these conditions challeng-
ing. Among the representative methods we can cite [Horprasert 1997] [Xiong 2005] [Canton-Ferrer 2006].

• Tracking approach This approach considers the temporal information. By
measuring the change of head using temporal continuity and smooth motion
strategy, the head pose can be estimated. This approach presents a high accu-
racy compared to the previous methods but remains strongly constrained by
the estimation initialization namely the frontal con�guration. Several meth-
ods have used this strategy these last years. The tracking can be based on
facial features localization [Yang 2002] [Jang 2008] [Wang 2012], optical �ow
[Morency 2002], particle �lters [Oka 2005], rigid 3D model [La Cascia 2000]
and [Lefèvre 2009] and nonrigid 3D model, [Amberg 2008], [Weise 2011], [Papazov 2015].

• Hybrid approach To overcome the limitations of the previous methods, this
approach combines di�erent strategies. Nonlinear mapping and reduction di-
mension in [Huang 2004], manifold learning with �exible model in [Wu 2008],
tracking with geometrical assumptions [Heinzmann 1998] [Newman 2000],and
�nally tracking and dimensionality reduction [Baltruvsaitis 2012], [Morency 2003] [Morency 2010].

We perform a comprehensive comparison of these methods as done in [Murphy-Chutorian 2009]
in Tab.2.1. We complete this table with some recent approaches as follows:

Methods
Mean Absolute Error Classi�cation Number of discrete
Yaw Pitch Roll accuracy poses

[Beymer 1994] 21.2◦ 5.2◦ - -
[Krüger 1997] - - - 92.0% 5

[Stiefelhagen 2004] 9.5◦ 9.7◦ - - -
[Voit 2005] 8.5◦ 12.5◦ - - -
[Wu 2008] - - - 75.4% 86

[Lefèvre 2009] 4.4◦ 3.3◦ 2.0◦ - -
[Fanelli 2011] 5.7◦ 5.1◦ - - -
[Padeleris 2012] 1.62◦ 2.05◦ - - -

[Baltruvsaitis 2012] 6.29◦ 5.10◦ 11.29◦ - -
[Mora 2012] 4.53◦ 2.76◦ 3.95◦ - -
[Ahn 2014] 2.8◦ 3.4◦ 2.6◦ - -

[Papazov 2015] 3.8◦ 3.5◦ 5.4◦ - -

Table 2.1: Mean gaze estimation error across two user-sensor distances.

According to the results reported in Tab.2.1, the classi�cation [Krüger 1997]
and [Wu 2008] methods are not suitable for our task since we consider a continuous
user gaze space. [Lefèvre 2009] achieved promising results but still handles relatively
small distances. [Padeleris 2012] reported better results on large distances, neverthe-
less their method needs important computational time (they enhanced processing
time by using GPU's architecture). [Mora 2012] and [Baltruvsaitis 2012] presented
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real-time estimation with su�cient accuracy but need strong initialization assump-
tion. [Ahn 2014] and [Papazov 2015] achieved robustly good results by using heavy
complex architectures. By using Random Forest algorithm, the method presented
by [Fanelli 2011] represents a very interesting approach since it o�ers a good balance
between robustness, accuracy and runtime.

2.1.2 Eye pupil localization

Eye pupil location plays a key role in feature-based automatic gaze estimation sys-
tems and their movements give an important information in many applications men-
tioned previously such as cognitive and psychological processes.

Two global existing methods can conveniently be distinguished by the type of
data they rely on, infrared (IR) or visual (RGB) images. Here we describe the most
relevant methods reporting state-of-the-art results for each category.

2.1.2.1 IR-based methods

The majority of the commercial eye-tracking systems use infrared light (IR) (with
wavelength around 780− 880nm) to estimate the eye-pupil localization. The main
idea is about exploiting the light re�exion with regards to the light source location,
the pupil presents di�erent behavior, as illustrated in Fig.2.6. The pupil will be
bright if the light source location is close to the optical axis and dark otherwise,
making its segmentation and tracking simple. The main advantages of this approach
are e�ciency and simplicity, [Morimoto 2000], [Ji 2002] and [Hansen 2007] used the
di�erences between the dark and bright pupil images acquired from IR sources
synchronized with an RGB camera to produce a robust tracking. To reduce the
problem of the re�exion of IR light sources on glasses [Ebisawa 1998] proposed a
pupil brightness stabilization process. [Haro 2000] combined eye appearance with the
bright pupil e�ect to overcome the illumination variation and distinguish the pupil
from the objects with the same brightness present in the background. [Zhu 2002]
proposed a real-time pupil tracking using Support Vector Machine (SVM) to train
a robust classi�er for pupil blobs, the �nal pupil is detected by re�nement using a
tracking process based on Kalman �ltering and mean-shift clustering.

These methods achieved remarkable results on pupil tracking, however, many
challenging conditions are still unsolved such as illumination condition (constrained
by the indoor scenarios and low lighting), head pose variation (brightness of the
pupil is strongly a�ected by the head movements). The most common solution
used in the automatic gaze estimation systems based on IR lighting is to setup the
sensors in an embedded way as in the head mounted systems discussed previously.
This solution, nevertheless, represents a real intrusiveness. These last years, IR-
based methods are less and less popular giving way to the RGB-based methods.
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(a) (b)

Figure 2.6: IR imaging. (a) Illustration of a typical dark pupil when the light source
is away from the optical axis. (b) The light source is close to the optical axis making
a bright pupil.

2.1.2.2 RGB-based methods

Taking an RGB image as input, the pipeline of these methods consists in detecting
the face using the method from [Viola 2001], which extracts rough regions around
the eyes using anthropomorphic relations then estimates the spatial position of the
pupil on the image space. We describe below the most relevant methods from the-
state-of-the-art.

• Means of Gradients: The method from [Timm 2011] uses the geometric
aspect of the pupil by de�ning an objective function based on an image gra-
dient that takes its maximum at the intersection of the gradient vectors. This
method is very robust under illumination and scale variations. Nevertheless,
with signi�cant head pose variations, circularity of the pupil is not guaranteed
giving bad estimates.

• Curvature of Isophotes: Represents a set of curves that connect points of
equal intensity. The method from [Valenti 2008] uses these points to identify
each candidate location and extracts SIFT vector [Lowe 1999] and compares
it to a given template in a de�ned database to get the �nal decision. Like the
previous method, this solution su�ers signi�cantly from head pose variations
since vectors pointing to the isophotes centers give wrong estimates.

• Randomized Trees The method described in [Marku² 2014] ignores geomet-
rical assumptions. Instead, the authors trained in a cascaded way ensembles
of trees to learn the mapping between eyes images appearances and 2D pupil
locations. Each ensemble processes a given scale i and represents the input
of the following ensemble relative to the scale i − 1 up to the �nal output
(the number of scales de�nes the number of ensembles). Their �nal learning
includes one hundred trees organized in �ve ensembles trained with six mil-
lion images. This method seems to be the most robust and accurate approach
under di�erent constraints such as low resolution, illumination conditions and
head pose variations but it needs a strong initialization assumption due to
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Figure 2.7: State-of-the-art eye pupil localization. (a) Visualizing the objective
function used in [Timm 2011] to �nd the mean of gradients and its maximum corre-
sponding to the �nal estimation. (b) Some potential candidates vectors pointing to
the isophotes centers and their aggregation used in the method from [Valenti 2008].
(c) [Marku² 2014] describes the cascade strategy used to re�ne the eye-pupil local-
ization.

the designing of their processing model and it su�ers from some intra-user
variations.

Fig.2.7 summarizes these state-of-the-art methods, we notice again, that the
approach based on Random Forest decision presented by [Marku² 2014] achieved a
high estimation accuracy compared to the baseline methods.

2.1.3 Geometric gaze estimation

Many existing methods based on the components discussed previously can be re-
ported these last years. [Wang 2002] and [Kohlbecher 2008] inferred the gaze infor-
mation using the shape of the pupil estimated through an elliptic �tting. In addition
to the pupil location information, [Ishikawa 2004] uses the eye corners locations esti-
mated through an AAM [Cootes 2001] �tting. By combining these two information,
the center and the radius of the eye ball are estimated giving the two angles of the
visual axis. [Matsumoto 2000] proposed a 3D information of the eye ball to esti-
mate the 3D visual axis provided by a stereo setup, the same strategy is performed
by [Chen 2008] with a single camera by adding a calibration step. [Valenti 2012]
used a 3D prede�ned cylindrical head model with a tracking strategy to compute
the head pose rigid parameters and estimated the eye pupil localization using the
method described in [Valenti 2008] with a calibration plane inside the head �eld of
view. [Bär 2012] and [Jianfeng 2014] estimated gaze using a depth sensor, the �rst
method used a multi-template ICP algorithm to estimate the head pose and a tem-
plate matching approach based on an elliptical �tting to �x the eyeball parameters.
The second method used a �exible model �tting approach to estimate the head pose
parameters, coupled to a pupil detection and a calibration step by gazing a �xed
3D points, the visual axis is calculated.
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[Morimoto 2005], [Guestrin 2006] and [Zhu 2007] used the corneal re�exion in-
formation based on one or multiple IR light sources. The relative position of the
eye pupil to the corneal re�exion is exploited in a geometrical way to calculate the
gaze information. Usually these methods operate in a 2D screen scenario relying on
determining the gazed 2D point, without introducing head pose informations.

On one hand, these recent years, the eye-tracking technology tends more and
more towards a wide consumer market uncontrolled environments, on the other
hand, the feature-based methods still requires a high resolution imaging and a very
heavy and constrained calibration process, allowing more interest to appearance-
based methods.

2.2 Appearance-based methods

Unlike feature-based methods which rely on performing eye features explicit extrac-
tion and assuming prior geometrical assumptions, these approaches aim to learn a
direct mapping from the high dimensional eye images to the low dimensional space
of the gaze information, as illustrated in Fig.2.1. [Baluja 1994] and [Xu 1998] trained
a neural network using 2k and 4k labeled training samples respectively. [Tan 2002]
collected 252 training samples to build a manifold using the local linearity of the
eye appearance and estimated an unknown testing sample using a linear interpola-
tion. [Hansen 2002] exploited the Markov model interpolation to enhance the gener-
alization across unseen scenarios such as gaze sample under head movement. [Williams 2006]
introduced a Sparse Semi-Supervised Gaussian Process S3GP completing the la-
beled training data with unlabeled samples. Due to the fact that the approach
is fully Bayesian, the estimation is given with an uncertainty measurement for an
unknown test gaze sample. [Sugano 2008] proposed an incremental learning strat-
egy using an on-line sample acquisition from a video stream updating the mapping
function for a number of limited head pose con�gurations. [Sugano 2010] proposed
a visual saliency map-based strategy to generate the training data through a video
stream. The saliency maps are considered as the probability distribution of gaze
points for a speci�c user, the function mapping is established using a Gaussian
Process regression. To further reduce the number of training samples, [Lu 2011b]
introduced the adaptive linear to learn the mapping function on a very sparse train-
ing set. To decrease the non linearities of the mapping function due to head pose
movements which introduce a very representative distortion in the appearance of the
eye images, [Lu 2011a] proposed to compensate adaptive linear regression mapping
under frontal scenarios with a geometrical calculation. Using the same paradigm as
the last method, [Mora 2012] projected the training gaze sample in a frontal con-
�guration manifold and then applied a regression mapping. This method seems the
closest to our approach, we will further discuss in details in the next chapters. Very
recently [Zhang 2015] introduced a deep learning strategy using convolutional neu-
ronal network to learn the mapping function on a representative set of gaze training
samples from very unconstrained scenarios.
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One of the most important limitation of the majority of these previous methods
is the assumption of the �xed head con�guration when the human gazing process
in naturally under head movements, which decrease drastically the estimation ac-
curacy (error jumps from 4◦ on frontal con�guration to more than 10◦ under head
pose changes scenarios). [Mora 2012] and [Lu 2011a] achieved better results (error
less than 3◦) in such scenarios and by considering that the head pose component
is fully decoupled from the gaze training samples manifold, the �nal gaze estima-
tion accuracy is strongly linked to head pose estimation accuracy which depends
on the user-sensor distance, so these methods rely on a relatively low user-sensor
distances. [Zhang 2015] performed an acceptable gaze estimation accuracy under
these conditions, however, this method needs an important computational time in
the testing step and is still not real-time. In addition to these limitations, the num-
ber and nature of training samples required to achieve a good generalization of the
mapping function under unconstrained environment are frequently encountered.

Moreover, all these described methods treat the gaze estimation with a strong
assumption of the head-eye blocks independence. We decided to de�ne them as a
semi appearance based since we will develop in chapter.5, a novel approach which
ignores such assumption. We describe below, the di�erent training gaze samples
available in public.

2.3 Gaze databases

For both approaches described previously, annotated gaze samples are needed to
train the system and evaluate the accuracy of the gaze estimation. The majority of
the methods based on the localization of facial feature points use speci�c databases
to estimate robustly their locations. The appearance-based methods need training
datasets with the gaze information as ground truth to build the mapping function.
The representativity of these databases in terms of variability and quantity is directly
involved in the e�ciency of the system.

We describe some public gaze databases frequently used to train or evaluate
automatic gaze estimation systems. For each database, we detail the acquisition
setup used during the experiments.

2.3.1 Feature-based databases

• Gi4E: [Villanueva 2013] recorded 1339 images with a standard webcam cor-
responding to 103 di�erent subjects with 13 images each. The images are
manually annotated with eye feature points (pupil and corners).

The images are provided in (800 × 600) resolution corresponding to di�erent
gazing points displayed on a 2D screen. The ground truth contains only the
2D locations of the eye facial points with no gaze information making this
database available for eye-pupil detection learning algorithm and unsupervised
appearance-based gaze methods. In Fig.2.8, we illustrate some samples from
this database.
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(a) (b)

Figure 2.8: Gi4E gaze database. (a) The annotated 2D eye feature locations for
a given participants. (b) For each participant, di�erent gazing con�gurations are
recorded.

• BioID: consists of 1521 gray scale images of 23 di�erent persons annotated
manually with the 2D location of the eye-pupil and 18 2D facial points.

The resolution of the images is (384×286) under important illumination, head
pose changes and user-sensor distance variability. Initially used to compare the
quality of face detection algorithms in unconstrained environment, it is used
subsequently to evaluate the accuracy and robustness of eye-pupil localization
algorithm, we give more details about the evaluation metrics performed in
chapter.4. Fig.2.9 describes some extracted examples from this database with
the facial annotated points, notice the apparent variabilities in the image.

• MUCT: to train a 2D �exible model able to capture the localization of the
facial landmarks, [Milborrow 2010] recorded 3755 images with 76 facial points.
The dabase contains a high diversity of lightning, age and ethnicity.

The images are provided in (480 × 640) resolution corresponding to di�erent
head pose con�guration. This database is usually used to train model to
localize with a su�cient accuracy the eye points including pupils and corners.
Fig.2.10 shows some sample with the corresponding landmarks.

• Facial features-LFW: Based on The Large database of Faces in the Wild de-
signed by [Huang 2007] for studying the problem of unconstrained face recog-
nition, [Dantone 2012] labels 13231 images of faces (including 1680 di�erent
persons) collected from the web with 10 facial feature points. This database
is usually used to learn a robust mapping between the face appearance and
the facial features location, yielding accurate eye points for feature-based gaze
systems.

The database presents a high appearance variability such as lightning condi-
tion, scale, head pose and presence of glasses. Fig.2.11 reports the nature of
the existing variability in the annotated images.
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(a) (b)

Figure 2.9: BioID database. (a) A total of 20 facial points are annotated includ-
ing eye's points. (b) Each participants performs di�erent conditions (user-sensor
distance, head pose changes and illumination variation) to introduce variability in
terms of appearance.

2.3.2 Appearance-based databases

• UULM database: [Weidenbacher 2007] recorded an extended dataset of 20

subjects including faces in various head pose con�gurations and eye gaze di-
rections leading to a total amount of 2220 images. The images acquisition
was under controlled conditions to adjust appropriately the subjects head and
eyes. The images are manually labeled with landmarks indicating important
features of the face.

A digital camera with (1600× 1200) resolution is used under three spotlights
in a white canvas. To monitor the head pose, a laser pointer is mounted on
the head of each subject displaying a red dot on the wall, leading to accurate
head adjustment. For each head pose con�guration, di�erent gaze samples
are performed (with two angular dimensions) using a laser water-level. For
the head pose, 3 con�gurations are used for the pitch angle {−20◦, 0◦,+20◦}
and 10 con�gurations for the yaw angle (from 0◦ to 90◦). 9 gaze samples
are recorded for each head pose con�guration. Fig.2.12 shows some examples
extracted from this database.

• Columbia database: [Smith 2013] collected 5880 high-resolution images of
56 di�erent people (32 male, 24 female). Di�erent subjects appearance pa-
rameters are considered such as ethnicity (21 Asian, 19 White, 8 South Asian,
7 Black and 4 Hispanic), age (ranged from 18 to 36) and wearing glasses (21

with glasses).

The acquisition was performed using a digital camera with a resolution of
(5184×3456), the subjects used an adjustable chin rest to stabilize their faces.
A [7× 3] �xed grid of red dots is attached to a wall under a black background
environment. The subjects were asked to �x the di�erent red spots under
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(a) (b)

Figure 2.10: MUCT database. (a) To build an Active Shape Model
(ASM), [Milborrow 2010] used a et of 76 facial points. (b) Illustration of the anno-
tated 2D eye feature locations .

di�erent head pose con�gurations. For each subject, 5 gaze samples were
recorded according to the 5 yaw values (0◦,±15◦,±30◦). The experimental
protocol and the �nal gaze sample images are shown in Fig.2.13.

• EYEDIAP database: Unlike the previous discussed databases, [Mora 2014]
used an RGB-D camera (Microsoft Kinect sensor) coupled with an HD-camera
to record gaze samples under di�erent session scenarios. The database con-
tains 16 di�erent people (12 male, 4 female). A total of 94 sessions were
recorded containing both RGB and depth video stream, HD video stream and
ground truth �les indicating the gaze information and the head pose param-
eters (estimated using a multiple instance �tting on a 3D morphable model
strategy and ICP).

The subjects were requested to gaze a prede�ned target (a 2D displayed point
in the screen or a 3D tracked ball) with static and moving head pose activity
under di�erent illumination conditions and user-sensor distances. To synchro-
nize the RGB-D (with 640× 480 RGB resolution and 320× 240 depth resolu-
tion) and the HD sensors, a set of 5 LEDs visible by both cameras was used.
2.14 illustrates the experiments setup and the obtained RGB-D samples.

• MPIIGaze [Zhang 2015] collected 213659 eye images of 15 participants dur-
ing natural everyday laptop use over more than 3 months. Each participant
performs between 1498 to 34745 samples. Each sample is annotated with
6 facial landmarks, and the corresponding 2D and 3D gaze point displayed
on a screen (knowing the camera intrinsic parameters, a 3D position can be
obtained).

To obtain gaze samples, a speci�c software was implemented as a background
service in the laptop of the user, asking to look at a random sequence of 20
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(a) (b)

Figure 2.11: Facial features-LFW databse. (a) Each face is labeled with 10 facial
landmarks including eye corners. (b) Annotated faces examples extracted from
highly unconstrained environments.

(a) (b) (c)

Figure 2.12: UULM gaze and head pose database. (a) Overview of the setup used
for the experiments. (b) Each image is labeled with 9 facial landmarks. (c) Some
example of the �nal result images.

positions. To ensure that participant are concentrated on the task, they con-
�rm by pressing the spacebar. This dataset presents more variability in terms
of appearance compared to the previous databases. The main motivation of
the authors was to provide a signi�cantly important training set to train a
convolutional neural networks as a mapping function between the di�erent
eye appearances and gaze information.

Despite the e�orts provided in building the previous discussed databases, some
challenging problems in training gaze estimation systems are still unsolved. Indeed,
providing su�ciently representative training gaze samples in terms of quality (accu-
rate ground truth and high appearance variabilities) and quantity is a very tedious
task taking an important time to achieve reliable data.
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(a) (b) (c)

Figure 2.13: c. (a) Illustration of the setup used for the experiments. (b) An
adjustable chin rest is used to stabilize the head. (c) Some example of the �nal gaze
sample images.

(a) (b) (c)

Figure 2.14: EYEDIAP gaze database. (a)The setup used for the experiments. (b)
Multiple instance �tting to get a speci�c 3D head pose model to estimate the head
pose parameters in 3D eyeball gazing session. (c) shows some of the �nal result
images with RGB-D information.

2.4 Conclusion

The automatic gaze estimation systems have recently experienced an important pro-
gression in terms of algorithm robustness and hardware acceptability. Nevertheless
both feature-based and appearance-based approaches are still presenting some lim-
itations under unconstrained environment. For the �rst category, the accuracy is
strongly constrained by the facial points extraction and localization. Despite the re-
cent promising results obtained in this �eld such as in [Dantone 2012], [Xiong 2013],
localizing such features under strong head pose variations is still a very challenging
task. To get around this problem, the second family formalizes the gaze estimation
as a learning problem achieving slightly more accuracy in head pose scenarios.

Appearance-based methods solved the problem of feature localization by for-
mulating the problem di�erently. One of the most challenging problem of such
approach lies in providing reliable data. Indeed, to achieve a robust mapping func-
tion with high ability of generalization, the training data have to satisfy su�cient
variability in terms of appearance and high cardinality. Moreover, these methods
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(a) (b) (c)

Figure 2.15: MPIIGaze database. (a) a designed software asks the participant to
look at a speci�c position on the laptop screen. (b) in addition to the 2D and 3D
gaze estimation, 6 facial points are given (estimated automatically using the method
from [Baltru²aitis 2014]). (c) illustrates participant with high appearance variability
(right column) and the extracted eye image provided in the database used for the
learning.

as the feature-based, usually assume head pose and eye appearance as independent
blocks. Concretely, they learn the mapping in frontal con�guration then perform
a geometric correction based on head pose parameters. Such paradigm produces a
cumulated error which is a direct consequence of cascading the two components. In
addition the accuracy of these methods decreases signi�cantly in large user-sensor
distance scenarios.

In our case, as we want to deal with highly unconstrained environments, we de-
cide to revisit the classical approaches. We target in each approach the important
components in the processing chain and propose ameliorations. Then, we propose
a novel paradigm that can overcome the limitations of the traditional designing of
automatic gaze estimation systems. We make the assumption of a global gaze man-
ifold with head and eyes cues uni�ed in a single block. To capture the distribution
of such manifold, existing gaze databases do not meet our learning requirements.
Thus, we decided to use computer graphic rendering techniques to generate a su�-
cient amount of labeled data to obtain su�ciently robust gaze estimation. We also
build our own real RGB-D gaze database which follows a rigorous protocol to obtain
su�ciently reliable gaze samples data.
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All the investigations and experiments achieved in this work are strongly based
on Random Forest algorithm. In this chapter we describe in details this machine
learning tool. In Sec. 3.1 we give a comprehensive overview and provide the math-
ematical notations which formalize analytically Random Forest tasks in Sec. 3.2.
Sec. 3.3 compares Random Forest discriminative performance to some alternative
algorithms. Sec. 3.4 reports some recent improvements on this algorithm especially
in computer vision and medical image analysis �elds. We conclude this chapter in
Sec. 3.5.
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3.1 Overview

Learning decision trees from data has been a long standing problem. One of the
pioneering works trying to solve such problem is Classi�cation And Regression Trees
(CART) in [Olshen 1984] describing the basics of decision trees and their use in
classi�cation and regression tasks. Several ameliorations were proposed in order to
enhance the accuracy of the decision such as C4.5 presented in [Quinlan 1993] which
are considered as the most popular algorithms in this �eld. To make a �nal decision,
the trees are used as individual predictors.

One of the important limitation of this earlier work in decision trees is the abil-
ity of generalization, which measures the accuracy of the prediction across unseen
scenarios (testing data which are not used during the learning step). Recently, the
use of trees as an ensemble of predictors has emerged producing more robust and
accurate �nal prediction. In this case, each tree is considered as a weak learner, a
typical method using this idea is the boosting algorithm presented in [Schapire 1990]
which performs an iterative re-weighting on training data to learn trees as weak pre-
dictors, a linear combinations of these trees is performed to build a strong classi�er.
In computer vision, one of the most poplar work following such strategy is the Viola
and Jones face detector described in [Viola 2001].

Breiman introduces Random Forest model in his work [Breiman 2001] which is
an ensemble on randomly trained trees. The author introduces two levels to inject
randomness during the learning of the trees which are then grouped in a single forest.
First via randomizing feature selection, second by randomly sampling the labeled
training data. Merging all the trees decision yields superior generalization compared
to the other decision trees models. To measure the robustness and correlation be-
tween predictors, the author describes some cost functions based on prediction error
for this purpose.

These last years, using Random Forest decision in machine learning, computer
vision and medical image analysis have seen an explosive growth. Among the most
successful applications of the Random Forest algorithm, we notice the human body
part classi�cation using Kinect sensor in [Shotton 2013].

3.2 Mathematical model

We describe here Random Forest as a mathematical tool, we present a uni�ed no-
tation which allows us to formalize clearly some machine learning tasks such as
classi�cation, regression, density estimation or manifold learning.

3.2.1 Decision tree basics

A decision tree is a technique which splits the initial problem into two low complex
problems in a recursive way. At each node, a simple binary test is performed.
According to the result of the test, a data sample is directed towards the left or the
right child. The tests are selected to achieve an optimal clustering. The terminal
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Figure 3.1: The hierarchical structure of a binary tree. The nodes are represented
by circles, the root node in red, internal nodes (split nodes) in blue and terminal
nodes (leaves) in green. An illustrative example of a decision tree, each split node
stores (at the training step) and performs (at the testing step) a binary test to the
incoming data, the leaves save the prediction model. In this example, we show a
simple way of using a decision tree for a face detection problem.

nodes of the tree, called leaves, store the estimation models approximating the best
desired output. In Fig. 3.1 we formalize a face detection problem using a decision
tree. At the testing step, a di�erence of integral images (between red and blue
boxes) extracted from an image test is compared to a random threshold value τ at
each node. Each node is associated to a unique binary test. According to the results
of these tests, the data is directed following a path toward a given leaf (represented
in an orange arrow) which gives the prediction answer, namely classifying the image
as face or not. The binary tests and the prediction parameters are �xed during the
training phase in an optimal way which maximizes the data clustering.

3.2.2 Random Forest notation

A prede�ned notation is primordial to formalize clearly a given problem tackled
with Random Forest algorithm.

We denote a generic input data point by a vector x = (x0, x1, ..., xd) ∈ Rd where
d represents the dimensionality of x, also called feature space dimensionality. y

represents the output data which describes the associated information related to x
(also called the label, it can be discrete, continuous or not provided depending on
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Figure 3.2: Information gain for discrete distribution. For each binary test (split-
ting) φi, a correspondent information gain Ei is calculated. The optimal splitting
corresponds to the highest value.

the handled task)
Training is an o�-line step which �xes as mentioned previously, the binary tests

at the internal nodes and the prediction decision at the leaves.
Given a training set Pj of data points {(x,y)} at a given node j, a binary test

h(x, φ) ∈ {0, 1} is applied at the node j to split data into two subsets PLj and PRj
going to the left and right children of that node respectively. φ = (ψ, τ) de�nes
the splitting parameters with ψ describing a feature selection function and τ is a
random scalar value. The ensemble of possible φ cardinality is de�ned by ρ which
controls the level of randomness allowed to the trees.

The fact that the trees are binary implies the following properties Sj = PLj ∪PRj
and PLj ∩PRj = ∅. To optimize the node parameters by �nding the optimal test φ∗,
an energy function E is used as a training objective function. The information gain
is widely used in decision forest optimization as energy function de�ned as follows:

φ∗ = argmax(Ej) (3.1)

with

Ej = H(Pj)−
∑

i∈{L,R}

|P ij |
|Pj |

H(P ij) (3.2)

where H(Pj) de�nes the entropy which depends on the tackled task.
In Fig.3.2, we illustrate, for a classi�cation problem where the entropy is de-

�ned as the Shanon entropy −
∑
c
p(c) log2(p(c)), the existing correlation between

the splitting discrimination and information gain. A good separation of the data
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re�ected by clustering a minimum of classes in each node gives the highest informa-
tion gain. This characteristic is also known as the node impurity. All the tree nodes
are optimized in the same way sequentially. To stop growing a tree, many criteria
can be used such as maximum depth tree D which is a prede�ned value, or when
the number of training data |P| let down a prede�ned threshold.

Testing is a runtime step, once all the nodes parameters for each tree in the
forest are optimized, a decision forest can be applied. Given an unseen testing point
x', each tree applies at each node the �xed split function to x' starting from the
root. This operation is repeated until reaching a terminal node which contains a
prediction model. All the returned leaves of the trees are averaged for a global
decision. For instance, in a discrete distribution as discussed in Fig.3.2, each tree
χ in the forest casts a prediction pχ(c|x). The �nal decision can be expressed as
follows:

p(c|x) =
1

T

T∑
t=1

pχ(c|x) (3.3)

where T is the number of the trees in the forest. The fact that the trees are trained
separately verifying statistical independence, an other way to average the decision
from all the trees can be expressed as follows:

p(c|x) =
1

K

T∏
t=1

pχ(c|x) (3.4)

K is a probabilistic normalization constant.

3.2.3 Random Forest tasks

As the global notation is de�ned, Random Forest can be considered as a �exible
model able to handle di�erent problems according to the nature of the input data.
Fig.3.3 summarizes some problems that can be tackled successfully by Random
Forest.

Classi�cation A classi�cation forest aims to learn a mapping which associates
unseen test data with their correct classes. The mapping is learned from a labeled
training set P = {(x, c)} where c represents a discrete value (instead of using y, c de-
scribes the class of x). The information gain de�ned in Eq.3.2 is calculated using the
Shannon entropy. The mapping between an unseen point and its class is expressed
in a probabilistic way through the Eq.3.3 or Eq.3.4. Fig.3.3 illustrates a Random
Forest classi�cation problem with 2D data organized in 03 classes. Some relevant
works in computer vision using classi�cation forest are presented in [Lepetit 2005]
and [Marée 2007].

Regression A regression forest aims to learn a mapping which associates unseen
test data with their correct continuous prediction. The mapping is learned from a
labeled training set P = {(x,y)} where y represents a continuous variable in Rn
describing the label of x. y is usually assigned to a random continuous variable
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Figure 3.3: Random Forest framework presents a high �exibility, di�erent tasks can
be tackled depending on the nature of the input data.

which allows to re-write the information gain for the nodes optimization as follows:

Ej = log(|Σy(Pj)|)−
∑

i∈{L,R}

|P ij |
|Pj |

log(|Σy(P ij)|) (3.5)

where Σy(Pj) is the covariance matrix related to y at the node j and |.| is the
determinant operator. Another error based on euclidean distance can be used as
follows:

Ej =
∑
y∈Pj

(y − ȳj)2 −
∑

i∈{L,R}

( ∑
y∈Pij

(y − ȳj)2

)
(3.6)

where ȳj indicates the mean of the random variable y at the node j. To perform
a regression prediction for an unseen point x, the leaves store mostly a multi-variate
Gaussian distribution of y, then each tree prediction pχ(y|x) can be assigned to a
distribution N (y, ȳ,Σy). Then, the �nal estimation is given by averaging all the
trees following Eq.3.3. Fig.3.3 gives an overview of random forest-based 1D regres-
sion. Some popular works achieving good regression generalization [Fanelli 2011]
and [Shotton 2013].

Density estimation A density forest aims to estimate a density function from
which unlabeled data have been generated. From the unlabeled training set P =

{x}, the density function p(x), in contrast with tree prediction, is learned. To
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optimize node parameters for each tree, the same objective function as in regression
is used. Knowing that the ground truth labels are not provided, the determinant of
the covariance matrix |Σ(Sj)| corresponds to the volume of the ellipsoid generated
by data at the node j. A �nal clustering is given by averaging the density of each
tree predictor. In Fig.3.3, we show an example of density forest with the same
set of training data as in classi�cation but with no ground truth labels, as done
in [Moosmann 2007] and [Ram 2011].

Manifold learning A manifold learning forest aims to project the input data
x = (x0, x1, ..., xd) into a novel space represented by x′ = (x′0, x

′
1, ..., x

′
d′) such that

d′ << d with preserving the relative geodesic distances in the initial space. From
a set of training data P = {x}, a novel representation can be learned. The same
objective function as in the density estimation forest is used to optimize the nodes,
to preserve the geodesic distances, a measure of similarity between the initial points
and their projections is performed. Each tree χ captures the similarity of the reached
data as a k×k a�nity matrix Wχ (k de�nes the cardinal of the set of training data
|P|) whereWχ

ij = eQ
χ(xi,xj) . Q is a metric distance, [Criminisi 2011] de�nes di�erent

ways of calculation, Mahalanobis, Gaussian and binary. Fig.3.3 gives an illustrative
example of a manifold learning forest projecting input data from 2D space into 1D.
An application of this forest can be found in [Gray 2013].

3.3 Random Forest versus alternative algorithms

To compare decision forest to di�erent machine learning algorithms, we follow the
same approach as in [Criminisi 2011]. We reproduce their illustrative results using
similar training data. We �rst use the Microsoft sherwood1 library to train our
model, we use in a second time, our own implementation to validate the result for
each comparison.

3.3.1 Support Vector Machine

We perform the comparison using two training data sets. Each training set is a
four-class 2D point cloud easily separable. We train the SVM model2 in a one-
vs-all con�guration. According to the results reported in Fig.3.4, both techniques
produce good separation for both experiments. Based on these separations, one
relevant di�erence can be established, Random Forest model produces an important
additional information which is uncertainty. This characteristic is naturally linked to
the appearance of the training samples, uncertainty increases as moving away from
the data. Unlike the separation learned by the forest, SVM model assigns an equal
con�dence and produces a hard boundary between the classes. [Gall 2013] compares
Random Forest and SVM accuracy under action recognition task, and [Shotton 2013]
performs a comparison under a human 3D body part classi�cation.

1https://www.microsoft.com/en-us/download/details.aspx?id=52340
2We use the publicly available code http://asi.insa-rouen.fr/enseignants/ arakoto/toolbox/
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Figure 3.4: 4-classes classi�cation problem using Random Forest and SVM respec-
tively. Random Forest produces smoother separation between classes.

3.3.2 Gaussian Process

To illustrate the ability of the regression forest to regress continuous output, we
perform two experiments under di�erent training datasets and compare to Gaussian
process model. To perform the GP learning, we use the publicly available library
Gaussian Process for Machine Learning (GPML3) with optimal parameters.

According to Fig.3.5, both Random Forest and Gaussian Process capture the
global regression pattern of the points distribution (represented by the green curve).
The two models capture the uncertainty as moving from the training data (repre-
sented by brown regions). For the Random Forest, gray curves represent the esti-
mated mode which demonstrates the ability to capture multi-modal distributions
(bi-modal distribution in the example) while GP produces uni-modal predictions.
These results can be explained by the piece-wise nature of the trees which is more
apt to model behaviors with di�erent modalities. One of the intrinsic characteris-
tics of the GP is the uni-modality which can be a real limitation in ambiguous data
con�gurations.

3http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Figure 3.5: 1-D regression using Random Forest and Gaussian Process under two
two training data sets. Both models produce uncertainty around regions with less
training data, however Random Forest captures the multi-modality of the data dis-
tribution when GP is highly constrained by uni-modal predictions.

3.3.3 K-Nearest Neighbour

Fig.3.6 shows a comparison between Random Forest and k-Nearest Neighbour (KNN)
density estimation under two training sets. To perform the KNN clustering, we use
Statistics Matlab Toolbox4. The �rst experiment points are sampled from �ve-
Gaussian distributions, the second point cloud is repartitioned along four spiral
distributions. The �gure illustrates the ability of the forest to build smooth outputs
that capture nicely the input points for both experiments. The KNN estimator
produces some artifacts and deformations in the �nal output, as �nding the optimal
value of k is very challenging, which directly a�ects the prediction. The smoothness
ability of forest is the result of the involvement of several decorrelated tree predic-
tors. Using a highly optimized single tree will produce similar problems as in KNN.

3.3.4 Gaussian Mixture Model

We compare Random Forest density estimation to Mixture Gaussian Model (GMM)
using the same two training sets as in the previous comparison, and under a third
training set arranged in 'S' shape as described in Fig.3.7. We trained our GMM

4http://fr.mathworks.com/help/stats/kmeans.html
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Figure 3.6: Density estimation comparison between Random Forest and non-
parametric estimator. Random Forest parameters are �xed to 200 trees with a
maximum depth of 5. For k-Nearest Neighbour, we �x k to 15 and 60 respectively
(these values seem to achieve the best result). For both distributions, Random
Forest prediction is more smoother than KNN.

models using the same Matlab toolbox as in the previous comparison with an
Expectation-Maximization (EM) optimization. According to the reported results
in Fig.3.7, both Random Forest and GMM capture nicely the distribution of points
sampled from the two last training sets (the smoothness is globally similar). How-
ever, for the �rst con�guration, the GMM prediction produces slight artifacts com-
pared to the Random Forest output. This GMM behavior under this con�guration
is probably linked to the EM convergence. Indeed, the EM optimization is very
constrained by the Gaussian parameters initialization, the convergence can fail in
local minima.

[Criminisi 2009] reported a Random Forest and GMM comparison under an
automatic 3D localization of human organs using CT volumes as input.

3.4 Advanced Random Forest

Recently, Random Forest experienced many improvements especially in computer
vision and medical image analysis according to the growing challenges. We describe
here some relevant contributions allowing to enhance the potential of this technique
and to overcome some limitations.
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Figure 3.7: Density estimation comparison between Random Forest and Gaussian
Mixture Model. We use the same parameters as the previous comparison for the for-
est. For the GMM, we �x the number of Gaussian to 17, 7 and 6 across the di�erent
experiments respectively. The two models capture nicely the di�erent distributions
with a good amount of smoothness. Nevertheless, GMM produces some artifacts in
some con�gurations as in the �rst experiment compared to Random Forest.

3.4.1 Extremely Randomized Forest

Introduced by [Geurts 2006], Extremely Randomized Forest is an ensemble of highly
decorrelated predictors trained under a very weak node parameters optimization.
This decision forest can be considered as particular instance of the initial Random
Forest algorithm. To illustrate the amount of randomness introduced for each tree
at each node, we use an additional parameter ρ as done in [Criminisi 2011] and
de�ned previously. ρ describes the entire ensemble of the possible values of φ. In
standard Random Forest decisions, ρ takes a relatively high value (100 ∼ 10k) which
presents a reasonable randomness. Such characteristic produces a high probability
of sharing similar behavior across di�erent nodes and di�erent trees (i.e., by sharing
similar features and thresholds at the splitting). In the case of extremely randomized
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Figure 3.8: Some important contributions on Random Forest algorithm this last
decade. Extremely randomized trees is a speci�c instantiation of Random Forest
with a maximal randomness in node optimization process ( [Marée 2007] applied
it for medical image retrieval). Random ferns is another instantiation constrained
by the assumption of performing the same node optimization parameters at each
tree level ( [Ozuysal 2010] applied it for image classi�cation task). Hough forest is
a combination of standard trees and Hough voting strategy, each tree saves regres-
sion and classi�cation information ( [Kacete 2016] applied it for human eye pupil
localization). Conditional forest decision, trees are selected using prior knowledge
to infer the �nal estimation ( [Dantone 2012] used head pose parameters as prior to
estimate facial points robustly). In neuronal forest, a novel representation of data
is learned in the splitting nodes using Multi Layer Perceptron ( [Bulo 2014] applied
it to semantic image labelling). [Kontschieder 2015] used a deep approach based on
convolutional neural network to learn the novel representation.

trees, randomness is maximal (ρ → 1). Moreover, the trees are learned on the
entire training set with no bootstrapping. Fig.3.9 gives an example of extremely
randomized trees, notice the apparent di�erence between the predictor in terms of
maximum depth and number of leaves (represented as yellow circles).

Such approach can be found in [Marée 2007] for image classi�cation and retrieval
task.

3.4.2 Random Ferns Forest

To recognize and localize some key points in images, [Ozuysal 2010] learned speci�c
trees called ferns. The fundamental assumption of this approach lies in the fact that
nodes belonging to the same level in the tree are forced to share the same splitting
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Figure 3.9: An example of an ensemble of extremely randomized trees. Increasing
the amount of randomness at each node optimization produces highly decorrelated
trees. The di�erence lies in maximum depth reached or in the number of leaves.

parameters φ. One of the advantages of this modi�cation of the initial algorithm
is reducing the training step computational time without losing any discriminative
performance. Fig.3.10 establishes the di�erence between a standard tree and a fern
under classi�cation problem. To separate the di�erent classes, a standard tree per-
forms less processing in terms of levels to capture the classes boundaries compared
to the fern. As a direct consequence of sharing φ across the di�erent nodes, the split-
ting form is necessarily a complete hyperplane. According to this behavior, ferns
require more depth to capture the di�erent classes con�gurations as performed by
the standard trees. Facing the problem of lack of training data, ferns su�er less from
over�tting problems than Random Forest.

[Pauly 2011] performed the same approach under human organ localization task
formulated a regression problem.

3.4.3 Hough Random Forest

Introduced by [Gall 2013], Hough Random Forest is a combination of a classical
decision forest discussed previously and Hough-transform voting strategy. The prin-
cipal motivation of this method is to detect object parts with a very discriminative
codebook. To build such codebook, the authors trained trees able to capture both
classi�cation and regression information. Instead of making decision based on the
whole image as input, an ensemble of patches is extracted and processed separately
by the trees. At training step, the trees are built based on a collection of patches,
the leaves store a prediction model allowing to cast a probabilistic vote about the
class and the localization of the object with small uncertainty. A Hough image, as
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Figure 3.10: Random ferns paradigm. Unlike standard tree, the splitting nodes of
the fern share the same optimization parameters φ. For a classi�cation problem,
trees capture di�erent classes boundaries where ferns require more depth to achieve
best results.

a voting space is built with accumulating all votes related to the patches. To �nd
the maxima in this space which correspond to the object location, a non-parametric
clustering is usually used. The authors used a Parzen-windowing with a Gaussian
kernel, each tree prediction can be re-written as follows:

p(y|x) =

(
1

|DL|
∑
m∈DL

1

2πσ2
exp

(
− ||(y0 − y)−m||2

2σ2

))
.CL (3.7)

where σ represents the covariance matrix of the Gaussian kernel. DL is a set con-
taining all the o�set distances between the patches centers reaching a leaf during
the training step (with m as a single o�set). y0 is the center of the patch x. CL is
a classi�cation quantity measuring the proportion of the object class.

3.4.4 Conditional Random Forest

[Dantone 2012] and [Sun 2012] injected a conditional model to the regression forest
decision to handle facial landmarks and human body parts detection. The main idea
of this method is about making the assumption that the leaves outputs are depen-
dent through a global latent variable, unlike previous random forest methods which
work under the strong assumption that the outputs are independent variables. The
authors trained trees able to incorporate prior knowledge about the tackled prob-
lem (for instance head pose parameters for the �rst work and body measurements
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Figure 3.11: Example of Hough tree, each leaf contains classi�cation (the classes
probabilities), regression (multivariate Gaussian distribution) and o�sets (set of dis-
tances between patches centers and object centroid) information.

for the second one) in order to build a conditioned relation between each leaf node
decision and the latent global. In others words, the trees do not have to deal with
all variability (facial or body variability respectively) which yields a more robust
and accurate decision. pχ(y|x) can be formulated as follows:

pχ(y|x) =

∫
pχ(y|ω,x)pχ(ω|x)dω (3.8)

where ω is an auxiliary variable which encodes prior knowledge in practice. ω
corresponds to the head pose in [Dantone 2012] and body measurement such as
height in [Sun 2012]. pχ(y|ω,x) is learned in both works while pχ(ω|x) is learned
in the �rst work and given in the second one.

3.4.5 Neural Random Forest

[Bulo 2014] presented a novel approach using Random Forest with Multi Layer
Perceptrons (MLP) for a semantic image labeling. Unlike previous methods where
the input space (data representation) is left unchanged throughout training and
testing step, the authors proposed to use the MLP as a split function within the
internal nodes. These split nodes learn possible novel non-linear representations of
the data for a better optimization of the nodes parameters and a more discriminative
prediction at the leaves level. Unlike standard decision forest which considers a
deterministic splitting at each node, neural tree performs a stochastic separation fi
on the data reaching each node. fi represents the non linear activation response to
the �nal representation of x de�ned as follows:

fi = σ(θ>i x) (3.9)
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Figure 3.12: An illustration of a conditional decision with an ensemble of trees. For
each con�guration j, which relates to an auxiliary variable, an ensemble of speci�c
trees ∪tji is trained. At the testing time, an information according to the auxiliary
variable is injected in the global prediction selecting the right proportion of trees
for each con�guration.

where:

σ(x) =
1

1 + e−x
(3.10)

This separation yields a data distribution π = {πR, πL} related to right and left
child respectively. Fig.3.13 illustrates an example of a neural trees with a stochastic
splitting. To �nd the best split choice, the likelihood Q(Θ) corresponding to a
possible choice of Θ and π is performed as a loss function:

Q(Θ) = max
π

P(y|x, π,Θ) (3.11)

where P(y|x, π,Θ) encodes a single tree decision which can be expressed as fol-
lows:

P(y|x, π,Θ) =
∑

d∈{R,L}

π(d)fd(x,Θ). (3.12)

The MLP parameters Θ and distributions π are optimized alternatively using a reg-
ularized Back-Propagation and a concave maximization (based on a multiplicative
update) respectively.

3.4.6 Deep Random Forest

Introduced by [Kontschieder 2015], Deep decision forests is a novel approach that
uni�es the ability of discrimination of the standard classi�cation trees and the learn-
ing of novel data representation ability of the deep convolutional networks. One
major di�erence compared to the neural decision forest lies in the learning strat-
egy. Instead of optimizing Θ and π (the parameters related to the network and
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Figure 3.13: Visual illustration of a neural tree. Each binary splitting node is
performed by a Multi Layer Perceptron described by the parameters Θ. The MLP
learns a possible novel data presentation which allows more discriminative separation
( described here by the two distribution πR and πL)

trees respectively) alternatively, the training is performed in an end-to-end man-
ner. Fig.3.14 describes the overview of this approach. The �nal outputs di of the
network are directly linked to forest splitting nodes after performing a sigmoid op-
eration with: .

di(x,Θ) = σ(fi(x,Θ)) (3.13)

where σ = (1 + e−x)−1.

An other di�erence compared to the neural decision forest is the �nal tree re-
sponse, the authors introduced a di�erential stochastic decision which assigns for
each leaf l a probability of a sample reaching that leaf πl, and µl de�nes the proba-
bility of the performed path by the sample until reaching that leaf. Fig.3.15 gives an
example of µl calculation. The �nal tree decision P(y|x, π,Θ) expressed in Eq.3.12
is rewritten as follows:

P(y|x, π,Θ) =
∑
l∈L

πlµl(x,Θ) (3.14)

and the �nal decision forest is performed as in the neural decision one. The trees
are learned by minimizing a loss function R(Θ, π) de�ned as follows:

R(Θ, π) =
1

|X |
∑
x∈X
− log(P(y|x,Θ, π)) (3.15)

where X represents the global initial dataset. The optimization is performed in the
same way as in the neural decision forest, Θ and π are optimized alternatively.
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Figure 3.14: Instead of learning a novel representation at each node with MLP,
deep forest performs a convolutional neural networks in end-to-end meaner (The
fully connected layer is directly injected to the splitting nodes). The network and
forest parameters are optimized alternatively.

 𝑙1: {𝜇1, 𝜋1} 

𝑑1 𝑑 1 

𝑑2 𝑑 2 

𝑑3 𝑑 3  𝑙2: {𝜇2, 𝜋2} 

 𝑙3: {𝜇3, 𝜋3}  𝑙4: {𝜇4, 𝜋4} 

Figure 3.15: Di�erential and stochastic routing. Each node i performs a splitting
operation via function di. The blue path shows an example of a sample x reaching
the leaf l3. The probability of the path l3 encoded by µ3 is equal to d1.d2.d̄3

3.5 Conclusion

In this chapter we presented the Random Forest framework by establishing math-
ematical notations. We detailed the training and testing modes of the ensemble
of trees. We showed that this framework presents a high �exibility in handling
di�erent tasks depending on the nature of the input data. We performed di�er-
ent experiments to compare Random Forest to some alternative algorithms. For a
classi�cation problem, we noticed that Random Forest provides a prediction with
uncertainty information, unlike SVM which produces a hard classi�cation predic-
tion. With continuous output, we compared the framework to the GP. Facing with
multi-modal distributions, Random Forest presents better results. For a density
estimation task, we performed a comparison between KNN and GMM. We noticed
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that both models capture nicely the di�erent distributions across the experiments.
Nevertheless, Random Forest presented less artifacts. Even if the comparison ex-
periments are based on relatively low dimension data, we provided real application
with successful results of Random Forest in computer vision and medical image
analysis. In the last section, we highlighted some recent ameliorations to overcome
the limitation of the initial algorithm. Some modi�cations aim at randomness at
node level which produces extremely randomized trees and ferns. Some solutions
changed the prediction model part of the initial algorithm, for instance by combining
both regression and classi�cation information with Hough trees or by making the
ability of introducing prior knowledge with conditional trees. A last modi�cation is
performed to enhance the discriminative ability of the trees by learning novel data
presentation at each node with neural and deep trees.

According to the following points:

• Several promising results in computer vision and medical image analysis, high-
lighted in the previous chapter, are based on Random Forest algorithm;

• The previous discussed experiments, which compare Random Forest to alter-
native techniques, showed the great potential of the tree in terms of general-
ization and robustness;

• The nature of our task in terms of non linearities and formulation, meets some
similar problems which are already solved using this technique;

we decided to treat all the problems, that we formulate as learning ones in this
thesis, with this algorithm.
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In this chapter we compare the potential of two recent approaches of automatic
gaze estimation, feature-based and semi appearance-based approaches. The e�-
ciency of the estimation of the �rst system is directly and strongly linked to the
feature points localization accuracy. The e�ciency of the second one depends on
the robustness of gaze learning in frontal con�guration and on the accuracy of the
head estimation which allows the geometric correction yielding to the �nal estima-
tion.

To achieve an accurate evaluation of the two approaches, we build two systems
based on each strategy. We will discuss in the following sections the components
of each system pointing the limitations which allow us to establish an objective
comparison.

4.1 Feature-based approach

As mentioned previously, the main challenge in this approach is estimating accu-
rately user eye key points locations and head pose. To build our feature-based system
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Figure 4.1: Visual illustration of the gaze vector ~g. θ and γ angles represent the
horizontal and vertical rotations respectively.

we use a 3D eye model to determine the 3D optical axis and infer the 3D visual axis.
For this, we robustly estimate user head pose parameters and eye pupil locations
using an ensemble of randomized trees trained with an important annotated training
sets. Firstly, we project the eye pupil locations in the world coordinate system using
the sensor intrinsic parameters. Based on a one-time simple calibration by gazing a
known 3D target under di�erent directions, the 3D eyeball centers are determined
for a speci�c user for both eyes yielding to the determination of the visual axis ex-
pressed with two angles (θ, γ) (Fig. 4.2 shows the meaning of these angle according
to the gaze vector g).

4.1.1 System architecture

Fig.4.1 shows an overview of our system composed of four components, each com-
ponent can be described as follows:

• Input We grab the RGB and depth map at (1280 × 960) and (320 × 240)
resolutions respectively at 15 fps (the fps is a hardware limitation of the sensor
at these resolutions). Using the known Kinect intrinsic parameters and a
prede�ned rigid transformation between the RGB and depth sensors, each
depth value can be projected in 3D using the pinhole model as follows:

xd =
d.(ud − cx)

fx

yd =
d.(vd − cy)

fy

zd = d

(4.1)
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Figure 4.2: Overview of our approach. Four principal blocks can be distinguished.
Input block describes the data grabbed from the depth sensor. Tracking block
illustrates two global components, head pose and eye pupils estimation respectively
using RGB-D cues. Using the computed information from the previous blocks,
Calibration �xes for a speci�c user some parameters related to the eye geometry
(performed by gazing an known target in 3D). Finally, estimation block gives gaze
vectors for each eye.

where d represents a depth value with its coordinates {ud, vd} and sensor
intrinsic parameters {fx, fy, cx, cy}. (xd, yd, zd) represent the �nal 3D projec-
tions. To produce a textured mesh as illustrated in Fig.4.1, a rigid mapping
between RGB and depth sensor has to be established.

• Detection We use an ensemble of trees to train our head pose Thead and
eye pupils Tpupils able to accurately and robustly estimate these parameters
{(R, T ), (up, vp)}, where R and T represent the head rotation and transla-
tion matrix respectively according to the sensor coordinates space, up and vp
correspond to the pupil coordinates in the image space. We will discuss and
evaluate in details these two components in the next sections. The detec-
tion block in Fig.4.1 describes the �nal estimations (red circles as eye pupils
locations and red cylinder as head pose orientation).

• Calibration To compute the eyeball centers C represented in Fig.4.3, we
assume a known target gaze point G = (xG, yG, zG) as illustrated in the cal-
ibration part of Fig.4.1. When the user is focusing at G, the angle between
the optical axis

−−→
CpP and the visual axis

−−→
CpG would be α which is a constant

value. [Guestrin 2006] describes an additional relation between the two axes
as follows: −−→

CpG.
−−→
CpP

||
−−→
CpG||.||

−−→
CpP ||

= cos(α) (4.2)

As the distances K0 and K are constant, a relation between C and Cp can be
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Figure 4.3: 3D eyeball model used in our method. C, Cp and P represent eye,
cornea and pupil centers respectively. For human eye, [CCp] and [CP ] distances
are constants. Visual and optical axes are represented in blue connecting Cp − G
and Cp − P respectively. The dotted bow represents the angular relation between
optical and visual axis (only vertical angle θ is illustrated here)

established as follows:

Cp = C +
K0

K
(P − C) (4.3)

Using Levenberg-Marquardt optimization, the non-linear Eq.4.3 can be solved.
By using the Eq.4.4 the eyeball center can be initialized at C0 and transformed
to the Kinect coordinate system as follows :

C = R.[C0] + T. (4.4)

• Estimation Knowing eyeball center C and the pupil P at each frame, cornea
center Cp can be calculated. Thus, the optical axis can be estimated. By
adding the constant angles values, the visual axis can be calculated and the
gaze vectors can be expressed as vertical and horizontal angles (θ, γ) for each
eye. As illustrated in Fig. 4.1, the estimation is represented in blue line for
each eye.

4.1.1.1 Hough random forest for eye pupil localization

We detail here our method for eye-pupil localization in 2D images acquired from a
simple uncalibrated monocular camera. We train an ensemble of trees able to learn
the spatial relation between pupil image appearances and their corresponding 2D
locations from a set of training samples. Our trees are trained in a way that they are
able to capture both regression (estimating the 2D o�set distance between a patch
center and the hypothetic pupil location) and classi�cation (predicting a patch class,
positive or negative according to belonging to the eye image or not) from the training
set. The �nal estimation is performed using a voting space (Hough image) which
groups all the trees outputs. The 2D pupil location corresponds to the maxima
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Figure 4.4: Training data for eye pupil localization. (a) describes the �nal positive
patches obtained after a spacial and scale perturbation on eye images. (b) shows
some negatives training patches extracted from facial images with opposite to the
eye regions.

in the voting space. To handle scale variations, we perform a pyramidal strategy
by building an image pyramid at each testing step and the corresponding Hough
image. We give more details about training data, learning and testing process in
the following sections.

• Training data: Instead of learning of the whole images, our trees learn on
a set of patches which represent a set of small groups of nearby pixels. We
collect our training set {Pi = (Ioi , yi, ci)} from the databases [Villanueva 2013]
and [Weidenbacher 2007] discussed previously where:

� Ioi represents the extracted visual features vector from a given patch Pi
where o de�nes the feature channel, we used 1 channel namely the gray
scale intensity of the eye regions. Theses regions are extracted using
anthropomorphic relations after performing a face detection.

� yi describes the o�set vector stretching from the patch center to the pupil
center. This variable describes the regression information.

� ci represents the class of the patch, ci equal to 1 if the patch is positive
(extracted from pupil images), or ci equal to 0 if the patch is negative
(extracted from background images). For all the negatives patches, yi is
set to zero.

To enhance the generalization of our trees, we introduce some perturbations in
the extracted regions as [Marku² 2014] in scale with [+30%,−30%] and in 2D
pupil location by [−25%,+25%] from the original. We collect 10k perturbed
eye region samples from which we extract 50 patches of a �xed size (16× 16)
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σ𝑛 
σ2 σ1 

+ 

Figure 4.5: The pyramidal estimation strategy of our forest. Given a testing sample,
we perform a pyramidal image using four scales, a set of patches is extracted from
each scale and processed by the trees yielding a voting map per scale Hk. A linear
weighted combination of all these maps yields to a �nal Hough image H. Finally,
the 2D pupil location corresponds to the global maxima in this space.

per sample. Thus, we obtain 500k positive images. According to our problem,
we extract a set of negative patches from regions belonging to the face but
di�erent from the eyes regions, we collect a total of 400k negative images.
Our global training dataset consists of 900k while [Marku² 2014] learned on a
corpus of 6M samples. Fig. 4.4 shows some examples from the training data.

• Training: each tree χ in the forest Tpupils = {χt} is trained on a set of
training patches randomly selected from the global set {Pi = (Ioi , yi, ci)}. At
each splitting node, we de�ne the binary test h(x, φ) discussed in the previous
chapter as follows: {

1, if Ioi (x1, y1)− Ioi (x2, y2) ≤ τ
0, otherwise

with ψ = (x1, y1, x2, y2, o). The expression (Ioi (x1, y1)−Ioi (x2, y2)) represents
the di�erence of intensity between two locations (x1, y1) and (x2, y2) in the
channel o ( in this case o represents the grayscale intensities). To supervise
each tree and �nd the optimal φ∗, we maximize the information gain de�ned in
Eq.3.5 and minimize the distance de�ned in Eq.3.6 at each node alternatively
(randomly selected) until reaching the leaves. We �x the trees depth to 15

and generate for each splitting node a total of 10k binary tests. Each leaf l
stores the following information:

� p(c|l) captures the probability of each class in the reached leaf l.

� N (yl, ȳl,Σ
y
l ) represents the Gaussian distribution of all the o�set vectors

reaching the leaf l. ȳl and Σy
l represent the mean and the covariance of

the o�set vectors respectively .

� {yi}i∈l represents the set of all the o�set vectors reaching the leaf l.

• Testing: given an unseen sample, �rst we build an image pyramid. For each
scale of the image pyramid, we extract a set of �xed size patches. Each patch
is passed through all the trees of the forest. Each tree in the forest processes
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(a)

Figure 4.6: Results of our method on BioID database. First row: good estimations
on images under favorable conditions. Second and third rows: robust estimations
under some unfavorable conditions. Last row shows some typical bad estimations.

the patch using all �xed binary tests. Using all the reached leaves, we build
the Hough image Hs for each scale from the pyramid as a voting space. We
project the set of pupil location candidates by adding all the o�set vectors
{yi}i∈l to the each patch center y′. For a single tree, the candidates are
represented as the sum of a Dirac weighted by the probability of belonging to
the eye p(c = 1|l) in the reached leaf. Then, we average all the outputs over
the forest. For a given number Ω of patches extracted from a given image
from the pyramid, the Hough image Hk is represented as follows :

Hk =
∑
P∈Ω

(∑
t∈T

(∑
i∈l

p(c = 1|l)
|T |.|l|

δ(yi + y′)

))
(4.5)

All the non-informative leaves presenting a high variance de�ned as trace(Σy
l )

and a low probability p(c = 1|l) are discarded.

Finally, we aggregate all the Hough images (resized to the same size) in a
global Hough image H

H =
∑
k∈Sc

σsHk (4.6)

where:

σk =
max(Hk)∑

k∈Sc
max(Hk)

(4.7)
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(a)

Figure 4.7: Qualitative successful results on di�erent databases. First row: Yale-
extended database. Second row: Pointing 04. Third row: synthetic images and last
row is multi-users images.

Sc de�nes the number of scale in the pyramid, we use 4 scales: 1.5, 1.0, 0.5, 0.25

according to the original image respectively. Fig. 4.5 illustrates an overview
of the testing step and shows the mapping between the global maximum in
the voting space and the pupil location in the 2D test sample space.

• Results: we provide here quantitative results of our experiments on still
images and videos. Then we discuss the e�ect of some forest parameters on
the estimation.

To evaluate our method on still images, we compare it to the state-of-the-art
on the BioID database. It contains 1521 annotated gray-scale images. BioID
is considered among the most challenging databases for pupil localization due
to its signi�cant variations in terms of head pose variations, scale and illu-
mination conditions. Like the majority of pupil localization algorithms, the
metric introduced by [Jesorsky 2001] is used. It is de�ned by :

e =
max{DL, DR}

D
(4.8)

where DL and DR represent the Euclidean distances from the estimated pupil
locations to those in the ground truth for left and right eyes. D is the Euclidean
ground truth distance between right and left pupil locations.

Tab.4.1 shows the comparison of our method with the state-of- the-art accord-
ing to Eq.4.8. It represents the percentage of correct estimations for the given
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Figure 4.8: (a) Comparison of the accuracy curve between our method
and [Marku² 2014] for the talking video database. (b) distribution of the normalized
error over 1000 frames.

threshold(we use the same values provided by [Timm 2011], [Valenti 2008]
and [Marku² 2014]).

Methods e ≤ 0.05 e ≤ 0.10 e ≤ 0.15 e ≤ 0.25

[Jesorsky 2001] 38.0 78.8 84.7 91.8

[Timm 2011] 82.5 93.4 95.2 98.0

[Valenti 2008] 84.1 91.0 94.0 96.6

[Marku² 2014] 89.9 97.1 − 99.7

Our method 91.3 97.9 98.5 99.6

Table 4.1: Comparison of pupil 2D localization on the BioID database. The authors
of [Marku² 2014] do not provide the result for e ≤ 0.15 but we point it out as an
empty case.

� e ≤ 0.25: Usually used for face matching, it corresponds to the distances
between the pupil center and the eye corner. It indicates that the estima-
tion belongs to the eye region which represents a low level of precision.
The majority of methods gives approximately the same results.

� e ≤ 0.15 and e ≤ 0.10: Our method yields better results compared
to [Valenti 2008] and [Timm 2011]. The circularity of the pupil which
represents a strong assumption of the last two methods is not guaranteed
due to signi�cant changes in the head pose. The presence of eye images
under head pose variations in our training data makes our method robust
to this kind of constraint.

� e ≤ 0.05: Corresponds to a high level of precision in estimation. It indi-
cates very low distances from the pupil center. Compared to [Marku² 2014]
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Figure 4.9: The forest parameters e�ect on the pupil location estimation on 500

frames from the BioID database labeled in blue and the talking video database
labeled in red. a) The normalized error behavior under trees number variation with
the number of patches extracted �xed to 30. b) The normalized error variation as a
function of the number of patches extracted when the number of trees is �xed to 15.
c) and d) represent the time needed to regress the output of all 500 frames under
number of trees and the number of patches variations extracted respectively.

our method gives better results. The projection on Hough space implies
an extension in the regression space of the forest. In addition, the ab-
sence of some typical examples like the presence of glasses in the training
data in [Marku² 2014] paralyzes this method in some scenarios.

Fig. 4.6 and Fig. 4.7 shows a visual a illustration of 2D pupil estimation.
The failures represented in the last row of Fig. 4.6 can be explained by the
following:

� The failure of the face detector as shown in the �rst example of the last
row which distorts the research area.

� The eyes appearance distorted by highlights on the glasses, dark illumi-
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Figure 4.10: Examples of labeled head pose samples extracted from the Biwi
database. For each user an RGB-D cue is provided with the corresponding an-
notation (illustrated by a green cylinder)

nation or eye closure.

For video scenarios, as done in [Marku² 2014], we evaluate our method with
the public database Talking Face video. It contains 5000 frames of a person
engaged in a conversation. A speci�c active appearance model [Cootes 2001]
is trained to annotate the frames accurately. The forest trained in the previous
section and the metric of Eq.4.8 are used for the evaluation of our method.

We average the normalized error over all the frames. We obtain a mean error
equal to 0.190. Because the authors of [Marku² 2014] did not provide numer-
ical results for their method, we tried to reproduce their accuracy curve at
best and compare it to our approach. Fig. 4.8a illustrates the comparison
indicating that both methods give an estimation belonging to the pupil-radius
(e < 0.10) over all the frames. The closure of eyes and the wrong annotations
in some frames as shown in Fig. 4.8b explain the peaks on the distribution of
the normalized error.

Our method is controlled by some parameters. The previous experiments were
performed under optimal values of these parameters.

� The number of trees used for the estimation. Fig. 4.9a illustrates the
variation of the normalized error de�ned in Eq.4.8 for 500 images from
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the BioID and talking video databases under di�erent values of forest
size. The error decreases by increasing the number of trees used for both
databases (note the apparent gap between the two curves due to the dif-
ferent resolution of the images in the two databases). The normalized
error is reduced by approximatively 30% compared to the initial value
(from 0.055 to 0.040 for BioID and from 0.032 to 0.170 for the talking
video) which is the result of output smoothing by the di�erent trees. We
noticed that, using more than 25 trees does not produce more precision,
so we �x the optimal forest size to 25. Fig.4.9c shows the time in sec-
onds needed to process the 500 frames under di�erent sizes in the forest
approach. The use of 25 trees gives an average fps of 30.

� The number of patches extracted from the testing image. Fig.4.9b rep-
resents the variation of the normalized error under di�erent numbers of
patches used for the estimation. The normalized error is reduced ap-
proximatively by 75% for the talking video database (from 0.082 to 0.02)
and 45% for the BioID database (from 0.078 to 0.044). By increasing
the number of patches, the trees get more information about the input
test image which consequently gives more accurate estimations. In our
experiments, according to the dimension of the image test (80× 70), we
noticed that 35 patches cover approximatively all the input information.
Fig.4.9d shows the time needed to process 500 frames for di�erent num-
bers of extracted patches.

� The maximum variance which is represented by the trace of the covari-
ance of the o�sets reaching each leaf is �xed to 800 and the probability
p(c/w) is �xed to 0.7. These values seem to provide good estimation re-
sults, a variance of 800 de�nes a voting area of approximatively (20×20)
from the pupil center. The patch size of (16 × 16) gives an acceptable
appearance which allows a good discrimination and generalization of the
forest during the estimation.

4.1.1.2 Regression Forest for head pose estimation

According to the promising results obtained in [Fanelli 2011] with Random Forest
algorithm, we decided to train our forest to robustly estimate the head pose param-
eters. As done for the eye-pupil localization component, we develop the training
and testing steps.

• Training data: As done for pupil localization, we extract a set of patches
{Pi = (Ioi , yi)} from Biwi database developed in [Fanelli 2013] described in
Fig.4.10 (Each head pose sample is a couple of RGB and depth image, the
green line represents the ground truth) where:

� Ioi de�nes visual features vector extracted from Pi, with o = 2 (I0
i :

represents the depth values and I1
i : describes the gray-scale intensities).
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Figure 4.11: Patch extraction from RGB-D sample (red rectangles). The blues
rectangles describe a possible choice of the binary test di�erence.

� yi describes the head-sensor rigid transformation with 6 parameters {Tx, Ty, Tz}
as the translation parameters and {roll, pitch, yaw} as the rotation pa-
rameters.

• Training: To split the data at each node, we de�ne at each node the following
binary tests h(x, φ) as follows: 1, if 1

|F1|
∑
q∈F1

Ioi (q)− 1
|F2|

∑
q∈F2

Ioi (q) ≤ τ

0, otherwise

with ψ = (F1, F2, o). Unlike in pupil localization, a normalized di�erence
is performed on a sum of the pixels within two rectangles F1, F2. Fig.4.11
illustrates a path example with two channels. To supervise each tree, we
maximize the regression information gain de�ned in Eq.??. By assuming the
covariance matrix Σ a block-diagonal, the information gain can be re-written
as follows:

Ej = log(|Σa|+ |Σb|)−
∑

i∈{L,R}

|P ij |
|Pj |

log(|Σa|+ Σb|) (4.9)

where Σa and Σb encodes the covariances of the translation and the rotation
parameters of the head pose respectively.
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To train a total of 25 trees, 8k RGB-D samples are used, which represents 2
3

of the global database. From each sample, 20 patches are extracted, providing
an amount of 160k head pose RGB-D patches of a �xed size of (80×80). Each
predictor is trained on 50% of the initial training set with a maximum depth
of 15 and 20k binary tests.

• Testing: given an unseen RGB-D sample, we extract patches after performing
a face detection. Each patch is passed through all the trees of the forest.
Instead of performing the same strategy as done in pupil localization forest,
we perform a non-parametric clustering of the votes. We used 5 mean-shift
iterations with a spherical kernel to �nd the global maxima for both translation
and rotation outputs. The leaves with high variance are non informative, so
we discarded them.

To evaluate the accuracy of our forest, we perform experiments following the
same protocol as done in [Fanelli 2011]. We report the results of the head
pose estimation errors on the remaining 1

3 of the Biwi database. Tab.4.2
illustrates the errors related to two angles of the head pose under two user-
sensor distances. Under 75 cm from the sensor, the two methods achieve
approximatively similar accuracy, while our method slightly outperforms the
method in [Fanelli 2011] for yaw and picth respectively. Indeed, for large
distances, depth cue su�ers from real noise presence, using grayscale channel
conjointly with depth compensates this trouble, yielding better results.

Methods
Mean Absolute Error

75 cm 150 cm
Yaw Pitch Yaw Pitch

[Fanelli 2011] 5.7◦ 5.1◦ 8.7◦ 9.7◦

Our method 6.0◦ 5.2◦ 8.3◦ 9.2◦

Table 4.2: Comparison of our head pose estimation to [Fanelli 2011] across two
user-sensor distances, 75 cm and 150 cm respectively. .

Fig.4.12 shows some successful head pose estimations using our forest Thead
on unseen RGB-D samples acquired from the Kinect.

4.1.2 Gaze estimation results

In our experiments some parameters related to eyeball geometry are �xed before-
hand. The constants K0 and K inside the eyeball are �xed at the average human
values to 5.3cm and 13.1cm respectively. The horizontal and vertical angles be-
tween visual axis and optical axes are �xed to 5◦ and 1.5◦ respectively as done
in [Guestrin 2006]. We calibrate the eyeball for a speci�c user by solving the non-
linear Eq.4.3 with 5 gaze samples recorded under di�erent directions.
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Figure 4.12: Head pose estimation based on random regression forest (established
by the red lines). The depth images are acquired from the Kinect sensor using
(320× 240) resolution.

To evaluate our method, we design a target point represented by a green marker
cap which can be easily tracked in 3D (based on color segmentation as done for the
calibration step) moving in front of the user. We tested gaze estimation accuracy
when the target is moving upward and rightward with two user-sensor distances (75

cm and 150 cm). Fig.4.13 shows the comparison diagram between ground truth
and our estimation for the upward scenario, where only θ is changing while γ is
changing for the rightward one for both eyes. As we can see our estimation is close
to the ground truth. Comparing to [Mora 2012], our method gives better results and
the average error remains below 5.5◦. For 150 cm distance, RGB and depth image
resolutions decrease signi�cantly giving a less accurate head and pupils tracking,
producing higher gaze estimation errors. Fig.4.14 shows the gap between estimation
and ground truth. However errors are still acceptable (less than 7.5◦). Despite
robustness of our tracking component, the di�erence in RGB and depth resolutions
(which is a hardware limitation) makes projection of the 2D pupil locations in the
sensor coordinate system very sensitive and gives sometimes instable gaze vectors.

Methods
75 cm 150 cm

upward rightward upward rightward
θ γ θ γ θ γ θ γ

[Jianfeng 2014] 5.81◦ 2.68◦ 5.44◦ 5.19◦ - - - -
Our method 3.46◦ 4.09◦ 4.70◦ 3.15◦ 4.61◦ 5.53◦ 5.65◦ 4.16◦

Table 4.3: Mean gaze estimation error across two user-sensor distances.

In Tab.4.3 we compare our method to [Jianfeng 2014] which used the same strat-
egy. We report the mean gaze estimation error over the two eyes for the two direc-
tions θ and γ respectively.
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Figure 4.13: Gaze estimation error at 75 cm. (a) and (c) describe gaze estimation
errors for upward and rightward moving of the target for right eye. (b) and (d)
illustrate errors for left eye under the same scenarios.

4.2 Semi appearance-based approach

To overcome the feature points localization problem, this approach learns a di-
rect mapping from the eye appearance to the gaze vector space. To achieve su�-
cient accuracy, the methods which are based on this approach decorrelate the head
pose component from the global automatic gaze system. By assuming that the
eye appearances are extracted from a frontal face manifold, a geometric correction
based on the head pose parameters is performed to infer the �nal gaze information.
The operation of building a manifold of frontal appearances is called frontaliza-
tion. [Mora 2012] and [Lu 2011a] achieved promising results using this approach.
`

4.2.1 System architecture

We present in Fig.4.16 our semi-appearance automatic gaze estimation represented
with 3 global blocs. We exploit the multi-modality of the Kinect sensor by using
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Figure 4.14: Gaze estimation error at 150 cm. (a) and (c) describe gaze estimation
errors for upward and rightward moving of the target for right eye. (b) and (d)
illustrate errors for left eye under the same scenarios.

RGB and Depth streams (at SXGA and VGA resolutions respectively). We build a
3D textured mesh as explained previously, which represents the principal input of
our system. We perform a head pose normalization as done in [Mora 2012], instead
of using a 3D face model to extract the eye regions. We perform a face detection
and use anthropomorphic relations which represent a projection instance on a map-
ping function learned from frontal gaze samples. Unlike in [Lu 2011b], [Lu 2011a]
and [Mora 2012] which use ALR (Adaptive Linear Regression) to capture the map-
ping function f between the eye appearance space and the gaze estimation, we train
a set of tree predictors learned on a set of annotated training gaze samples. We will
detail the frontalization and gaze learning step in the following sections.

4.2.1.1 Frontalization

Face frontalization describes the process of recovering the frontal views of faces by
normalizing the pose in 2D or 3D. These recent years, several researches focus on
this task according to its importance on many face analysis application such as gaze
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Figure 4.15: Some results of the �nal gaze estimation using our feature-based system.
The green lines de�ne the ground truth and blue lines represent the estimation, the
red point shows the tracked object.

estimation. [Ding 2015] gives a comprehensive survey.
Among the methods relying on the 2D images, we report the piece-wise warp-

ing. This approach normalizes the pose in a piecewise manner by projecting the
face shape to a speci�c pose. By performing a Delaunay triangulation, each piece
is assigned to a single triangle. To transform each triangle from the original to the
target, a linear warping is generally performed as done in [González-Jiménez 2007]
and [Gao 2009]. Instead of geometric assumptions, [Asthana 2009] proposed to learn
the correspondence between facial landmarks in frontal and non-frontal con�gura-
tions with a Gaussian Process Regression. Recently, [Ding 2015] used a generic 3D
face model with prede�ned landmarks which are aligned to those of the 2D image
with a compensation strategy to preserve the identity. Another way to perform such
operation relies on patch-wise warping strategy. Introduced by [Ashraf 2008], the
authors proposed to learn the optimal a�ne between a collection of patches from
the frontal to the non-frontal domain using Lucas-Kanade algorithm. [Ho 2013] in-
jected consistency at the overlapped pixels between nearby patches and proposed
to globally learn optimal set of local warps using Markov random �elds. A last way
to frontalize in 2D is the pixel-wise displacement. Introduced by [Li 2012], the main
idea of this approach consists in establishing a dense pixel-wise correspondence be-
tween images of di�erent poses using optical �ow as template displacement �elds.
Given a testing image, the frontal face is synthesized using a linear combination of
these template �elds.

In contrast to the approaches discussed above, some methods employ the 3D
information to normalize the pose. The general principle consists in aligning the 2D
face image with a 3D face model using some invariant facial landmarks locations.
Then the 2D texture is mapped on the 3D model and rotate to a frontal pose, a �nal
projection of the model is performed to obtain the 2D result image. The most famous
and relevant method is the proposed approach in [Vetter 1998] and [Blanz 2003]
which consists in aligning a semantic 3D morphable model to the single 2D image
using a coarse �tting strategy (we will discuss this model in details in the next
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Figure 4.16: Our semi-appearance automatic gaze estimation system. As the previ-
ous system, we grab the multi-modal data from the Kinect sensor and build a 3D
textured mesh. A processing step is performed to normalize the head pose to obtain
a frontal view of the face to extract the eye regions RGB information. These regions
represent the input vector of a learned forest which yields the �nal estimation.

(a) (b)

Figure 4.17: 2D frontalization.(a) describes the piece-wise warping method, each tri-
angle is warped to get the �nal frontal 2D image. (b) instead triangulation, patches-
wise warping method warps some extracted patches to reconstruct the frontal view.

chapter).
In our semi-appearance automatic gaze estimation, we perform a pose normaliza-

tion using the inverse head pose parameters estimated by the forest Thead. Assuming
the following head-sensor rigid transformation:

A =

[
R T

0 1

]
the inverse transformation A−1 can be written as follows:

A−1 =

[
R> −R>.T
0 1

]
Instead of using a 3D face model, we use the multi-modal data grabbed from the
kinect (after establishing a rigorous calibration between depth and RGB sensors)



64 Chapter 4. Feature-based versus semi appearance-based approach

Input 2D image 

3D Morphable Model 

3D Textured Mesh 2D frontal rendered image 

2𝐷 − 3𝐷 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑟𝑠𝑒  𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

Figure 4.18: 3D frontalization. Given a 2D image and a 2D face model with the
same landmarks respectively, a �tting 3D-2D is performed (align the projection of
the 3D model to match with 2D image using the landmarks), the initial 2D texture
is then mapped to the 3D model. The obtained textured mesh is then transformed
using head pose parameters to a frontal view.

to build a textured mesh. Each vertex vi in the global mesh M is transformed to
v′i using A

−1. The �nal frontal mesh M′ = {v′i} is projected in an orthographic
manner to obtain the 2D frontal image.

To illustrate the importance of the pose normalization and its involvement in
enhancing the performances in face analysis problems, we proposed to evaluate its
in�uence on the face detection task. For this purpose, we �rst evaluate the face
detection rate on the Biwi database and their correspondent frontalized images
(using a ground truth head pose parameters). We perform the same procedure on
our own frontalized samples based on estimated head pose parameters. A total
of 7250 images from Biwi (representing 24 di�erent participants) are used, and
2727 from our data (representing 42 participants). Fig.4.20 describes some face
detection results with and without pose normalization. To quantify the involvement
of the frontalization, we performed face detection using the well known method
from [Viola 2004] under 5 di�erent head pose con�gurations. Fig.4.21 reports the
obtained results and details the head pose changes used during the experiment.
These results strongly con�rm the importance of this component in face analysis
tasks such as gaze tracking.

4.2.1.2 Frontal gaze learning

Once the head pose normalization is performed, we detect the face and extracted
eye regions from the obtained frontal 2D image. We collect a set of samples (P =

{Ii, gi}) where I encodes appearance of the eye image i as the grayscale values, g
represents the gaze information as two angles (θ, γ).

To collect the gaze information, we established a simple setup which consists on
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Figure 4.19: Our face frontalization. Using the multi-modal kinect data, we �rst
build a 3D textured mesh. Then our forest takes the depth map as input and
compute the head pose transformation A, each vertex from the 3D mesh is then
transformed using the inverse transformation A−1 to obtain a frontal view.

gazing at a moving point in a 2D screen. Knowing the sensor-screen rigid trans-
formation and the Kinect intrinsic parameters, the 2D point can be projected and
expressed in the Kinect world coordinates. We estimated the head pose of each
participant and performed a frontalization. g(θ, γ) represents the existing angles
between the 3D projection of the moving target (transformed with head translation
and rotation in the frontal manifold) and a reference point extracted from a given
eye region (in our case, we take the center of the extracted eye region). Fig.4.22
describes in details our protocol to collect gaze samples, and shows some eye images
appearances (the apparent white artifacts are due to the frontalization).

4.2.2 Gaze estimation results

To evaluate our semi-appearance gaze system, we perform di�erent testing gaze
samples through 10 users using the same setup. We compare our method to a
similar approach achieved in [Mora 2012] under 2 user-sensor distances, 75cm and
150cm respectively.

Table 4.4: Mean semi-appearance gaze estimation error across two user-sensor dis-
tances.

Methods

75cm 150cm

θ γ θ γ

[Mora 2012] 6.6◦ 7.6◦ - -

Our Semi.app-based 6.9◦ 7.1◦ 7.2◦ 7.4◦
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(a) (b)

Figure 4.20: Face detection improvement using frontalization. (a) shows some ex-
amples from the Biwi database. We �rst search for a face on the original images with
no results unlike frontalized images in the second row, each green rectangle indicates
a face presence. (b) illustrates the same experience on our RGB-D samples.

Tab.4.4 reports the gaze estimation errors. We take the best results from the
method in [Mora 2012] through the participants, and the mean error over 10 users
in our case. Our method gives slightly better results. As the frontalization step is
applied using relatively the same head pose parameters in terms of accuracy, the
di�erence can be explained by the robustness of our learned trees to capture the
mapping between the corrected eye image appearance and the gaze information.
We also notice that our system still gives slightly important errors for a larger
user-sensor distance namely 150cm (the errors are not provided for this distance
in [Mora 2012]).

4.3 Comparison

We have developed our feature-based and semi-appearance based approaches and
have compared them separately to some state-of-art methods. To identify the rele-
vance of each system, we achieve experiments using the same input data (same 10

participants) under identical environments conditions, we report in Fig.4.23a the
gaze estimation errors performed by each system.

Fig.4.23a compares our two systems under frontal con�guration with a user-
sensor distance of 150cm. The feature-based system presents better results with
mean errors of 5.6◦ and 5.7◦ on the two directions θ and γ respectively. The eye-pupil
localization presents high accuracy under frontal con�guration achieving good gaze
estimation. The semi-appearance based system produces more important errors,
7.1◦ and 7.4◦ for the two directions due to the di�culty of generalization of our
learned trees (especially for some participants such as 3,5 and 6 who wear glasses).

In Fig.4.24a we perform the same experiments with strong head pose changes.
The semi-appearance based system presents better results with 8.2◦ and 8.1◦ as
mean errors. Performing a frontalization producing a frontal view yields a consistent
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Figure 4.21: Face detection improvement under 5 di�erent head pose con�gurations.
(a) illustrates quantitative results of the face detection using Biwi and our RGB-D
samples, we reported an improvement of 9.9% and 11.16% for our data and Biwi
respectively. (b) details the range of each head pose con�guration.

manifold for the obtained eye image appearances which gives acceptable results even
with a high eye image appearance variability. Unlike the previous, the accuracy of
feature-based system decreases drastically giving 9.6◦ and 9.8◦ for the two directions
respectively. This behavior can be explained by the eye-pupil localization accuracy
which decreases with important head pose changes giving a very instable projections
in the Kinect coordinates system that produces very sensitive gaze estimations.

4.4 Conclusions

In this chapter, we built two automatic gaze estimation systems following two dif-
ferent approaches, feature-based and semi appearance-based approaches.

To build a robust feature-based system, we trained an ensemble of regression
trees coupled with a Hough space voting to localize the eye-pupil center and pro-
jected it into the Kinect coordinate system. Using a one-time speci�c user calibration
and the head pose parameters estimated with another trained regression forest, we
obtained the visual axis for each eye. Our semi appearance-based system follows
the standard pipeline with a frontalization step which consists in reconstructing at
each frame the frontal face view. This approach aims at reducing the eye images ap-
pearance manifold across head pose changes and learns a robust mapping function.
Our system use tree predictors to capture this mapping and produce visual axes.

We achieved di�erent experiments to evaluate the accuracy of each system. The
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(a) (b)

Figure 4.22: Frontal gaze estimation learning.

results show that our methods perform slightly better compared to the state-of-the-
art but still present high gaze estimation errors in large user-sensor distances and
strong head pose changes. In addition, we identify the advantages of each system
across the di�erent scenarios, we conclude that the semi appearance presents relevant
behavior under head pose variations.

To overcome this limitation, one solution can be considered which consists in
considering the head pose and eye appearance as a single block. We describe this
approach as fully appearance automatic gaze estimation, we give more details in the
next chapter.
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Figure 4.23: feature-based and semi appearance system gaze estimation comparison
under relatively favorable conditions with low head pose movements.

1 2 3 4 5 6 7 8 9 10

user ID

6

7

8

9

10

11

12

13

er
ro

r 
aa

ng
le

 (
de

gr
ee

s)

θ (feature based)

γ (feature based)

θ (semi-appearance based)

γ (semi-appearance based)

,
(a)

Figure 4.24: feature-based and semi appearance system gaze estimation comparison
highly unconstrained environment with important head pose variations
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The analysis and comparison of the feature-based and semi appearance-based
approaches in the previous chapter yielded some limitations in handling uncon-
strained gaze estimation task. In such strategies, the head pose estimation and eye
image analysis are processed and considered as separate blocks, each block produces
a speci�c error giving a global accumulated gaze error. Nevertheless, performing a
pose normalization in the second system achieves relatively good estimation results
especially in strong head pose con�gurations.

In this chapter we present our third system de�ned as a fully appearance-based
approach since the head pose and eye image analysis are treated implicitly as a single
part. In the next sections, we give a global overview of this approach and discuss in
details each part of the system. Our experiments demonstrate the potential of such
paradigm in handling unconstrained gaze estimation (i, e., : important head pose
changes and large user-sensor distances). The obtained results in terms of accuracy
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Gaze 

𝑓(𝑥) 
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𝑥0 

𝑥𝑛 

Figure 5.1: Example of automatic gaze estimation based on our approach. We build
a 3-channels global vector represented by the two RGB eye images and the face
depth information using the depth sensor multimodal data. We extract a set of
patches and project it through the forest represented here as the mapping function
f(x) (the learned gaze sample clusters are de�ned as the red centroid points). Each
single tree casts votes for each patch (de�ned as the green points). By performing
a non-parametric clustering technique, a �nal estimation is calculated (represented
as the green line, the red one de�nes the ground truth).

meet the technical requirements of our environment context discussed previously
in chapter 1. We also perform an objective comparison with the semi appearance-
based approach to establish a global conclusion through the di�erent automatic gaze
estimation strategies.

5.1 Overview

We consider the high non-linear problem of gaze estimation under head pose changes
and large user-sensor distances as a regression task. To learn a robust high non-linear
mapping function between human gaze and di�erent gaze sample appearances, our
fully appearance-based approach considers a global gaze manifold instead of learning
in frontal con�gurations and geometrically correct the �nal estimation using head
pose parameters, as usually is done. We train an ensemble of regression trees able
to robustly capture gaze information on an important 3-channels training samples
(channel(0):RGB-eyel, channel(1):RGB-eyer, channel(2):depth-face) organized as a
set of patches (where a patch de�nes a small group of nearby pixels). We apply a
channel-selection during the training to evaluate the importance and involvement
of each channel in the �nal estimation. We de�ne the gaze vector g as the vector
stretching the gravity center of the face and the gazed 3D point. To provide a
signi�cant set of training data for the trees, we render a very important amount of
gaze samples using a 3D statistical morphable model with integrating parametric
gaze model. By parametric, we mean that our gaze model represented by two
synthetic textured spheres, can be monitored yielding di�erent gaze directions (we
give more details in the next sections). We also build an important gaze database
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Figure 5.2: Data generation. (a) represents synthetic data rendering using the 3D
morphable model of [Paysan 2009]. By introducing some variabilities such as iden-
tity, head pose changes and lightning conditions, we integrate a parametric gaze
model (represented by two global textured spheres). We rendered the �nal RGB-
D gaze training samples with the correspondent gaze annotation illustrated in red
line. (b) We perform the same strategy using real data grabbed from the multimodal
Kinect sensor by introducing the same previous variabilities. To obtain gaze anno-
tation, a 2D moving point is gazed by the user (knowing the rigid transformation
sensor-screen, the stretching vector from user head gravity center and the projection
of the moving point in the world coordinates can be calculated). These real data
are principally used as testing samples to evaluate accurately our forest trained on
synthetic training set.

recorded with the Microsoft Kinect sensor. Rendered synthetic data and real data
are used for both learning and testing, depending on the experiment.

Fig.5.1 describes an overview of our fully appearance automatic gaze estimation
system that we de�ne as S2. We extract multi-channel patches from the multi-modal
Kinect data, each patch is projected through a learned mapping function which
gives a �nal estimation corresponding to the input. The mapping function, which
corresponds to an ensemble of tree predictors f(x) illustrated in Fig.5.1, represents
the most signi�cant part of the system. The estimation accuracy is directly linked to
the ability of generalization of the learned trees. Providing representative training
set in terms of quality and quantity is primordial. Fig.5.2 describes our generated
training data used for the training.

5.2 Data generation

As noticed previously, the quality of the training set is primordial to ensure a suf-
�cient gaze estimation accuracy and generalization of our regression trees. In this
section we describe, as a �rst step, how we render synthetic gaze samples using mor-
phable model to obtain a huge training set. Then, we detail how we recorded real
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gaze training samples using the Kinect sensor. We describe the followed protocol
to obtain ground truth information with a high reliability. In Fig.5.2, we present
a global overview of the synthetic and real RGB-D gaze samples used as input to
train our fully appearance-based automatic gaze estimation.

5.2.1 Synthetic data

To highlight the importance of using synthetic data in computer vision, we give a
short survey of some relevant works based on this kind of data, then we detail our
synthetic gaze samples based on a face 3DMM with an integrated dynamic gaze
model.

5.2.1.1 Synthetic data in computer vision

This last decade, machine learning techniques are considered as a very elegant way
to tackle many problems in computer vision. Fig.5.3 illustrates some relevant works
based on synthetic data. These data demonstrated a great potential in terms of ef-
�ciency and robustness. Nevertheless to achieve a high generalization across unseen
scenarios, these methods often require a very representative training data set. But,
the building of high amount of labeled data is a very tedious process. So synthetic
data represents a promising solution as the annotation is performed automatically
instead of manual labeling. [Cappelli 2000] developed an iterative model based on
Gabor-�lters applied on an empty image containing some seed points to render �n-
gerprint training samples. [Zuo 2007] rendered iris image samples obtained from a
2D polar projection of a cylindrical representation of continuous �bers. [Thian 2003]
improved face authentication by generating multiple virtual images using simple ge-
ometric transformations. [Shotton 2013] used a motion capture strategy to record
RGB and depth cues of the body part movements, by varying body size and shape,
scene position, camera position and mirroring the recorded data. They synthesize a
highly varied training allowing a robust body part pose estimation. [Fanelli 2011]
tackled the head pose estimation problem with synthetic depth images by render-
ing an important amount of training data using a 3D statistical morphable model
(3DMM).

5.2.1.2 Synthetic data for gaze estimation

In our method, we �rst generate our synthetic training gaze samples by rendering
a face 3DMM proposed by [Paysan 2009] which is the same model used for head
pose estimation in [Fanelli 2011]. Concretely, this 3D morphable model consists in
a set of texture and shape variation modes constructed from around 200 scans of
human faces. These modes of variation represent an orthogonal basis able to model
di�erent face identities according to a linear interpolation. In Fig.5.4, we illustrate
the deformations according to the texture and shape respectively starting from a
mean con�guration. To generate di�erent face appearances, the model is deformed
according to both directions.
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(a) (b) (c) (d)

Figure 5.3: Some illustrative examples of using synthetic samples in computer vision.
(a) �ngerprint sample generation. (b) iris sample generation. (c) depth head pose
sample generation (red line represents the head orientation). (d) body part sample
generation (each part is represented as a single class with a speci�c color).

To build a such model, [Paysan 2009] performed 3 step as follows:

• 3D scans collection: a total of 200 face scans are captured (100 female and 100

male persons mostly Europeans, with ages between 8 and 62 years with an
average of 25 years). To capture the face intrinsic characteristics, a structured
light system is used including two projectors and 3 cameras producing 4 depth
images. To achieve homogeneous illumination, 3 high �delity cameras are
used. Each scan is then preprocessed to remove air occlusions and di�erent
extraneous. In Fig.5.5a we shows un example of a raw and preprocessed scan
used to train the 3DMM.

• 3D registration: the operation of registration means that all the preprocessed
scans are re-parametrized such that corresponding points share the same po-
sition (for instance, the nose tips of two di�erent scans share the same spatial
information). To establish such correspondences, a non-rigid ICP algorithm is
used which �lls holes in missing regions by using robust distance measure. In
addition, some landmarks (lips, eyebrows..) are manually added to improve
the precision of registration. Fig.5.5b. illustrates some scans after performing
the registration.

• Model training: After the parametrization, all the scans share the same topol-
ogy. A face sample can be represented with two 3m vectors as follows:

sh = (x1, y1, z1, x2, y2, z2, ..., xm, ym, zm)> (5.1)

tex = (r1, g1, b1, r2, g2, b2, ..., rm, gm, bm)> (5.2)

where each vertex (xk, yk, zk)
> ∈ R3 with the associated color (rk, gk, bk)

> ∈
[0 1]3, and a total number of vertices m = 53490.

Assuming independence between shape and texture, a Principle Component
Analysis (PCA) is performed to the data yielding two linear models. The
parametrization can be expressed as follows:

Msh = (µsh, σsh, Ush) Mtex = (µtex, σtex, Utex) (5.3)
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Figure 5.4: 3D morphable model of faces developed in [Paysan 2009]. The model
is deformed from the mean con�guration (in terms of shape and texture) according
to two directions, texture and shape respectively. The texture dimension changes
the RGB information of each vertex v belonging to the model, whereas, the shape
changes the spatial information (x, y, z) of each vertex. Deforming the model in
both directions yields di�erent face identities.

where µj∈{sh,tex} ∈ R3m×1 encodes the texture and shape mean respectively,
σj∈{sh,tex} ∈ Rn−1 × 1 the standard deviation and Uj∈{sh,tex} ∈ R3m×n−1 are
the orthogonal basis encoding the variation modes of the model. To generate
a random face, a linear combination of the principle components is applied as
follows:

sh(α) = µsh + Ush.diag(σsh).α (5.4)

tex(β) = µtex + Utex.diag(σtex).β (5.5)

where α, β ∈ Rn−1×1 are random coe�cients.

Unfortunately, there are no principle components (in both texture and shape
information) responsible of gaze variability. Since the scans are captured with natu-
ral con�guration under no eyes movements, the PCA encodes no information about
gaze.

As can be seen, the 3D face morphable model procedure is a very tedious task
which can take a very long time to obtain su�cient precision and good quality.
Instead of building a new model, we decided to integrate to the 3DMM (described
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Figure 5.5: 3D morphable model, acquisition and registration. (a) describes the
original scan and the preprocessing one used to train the model. (b) illustrates ex-
amples of face scan after registration, the texture and shape information is organized
as vectors tex and sh respectively (represented as one column vector with a dimen-
sion 3m,m is the total number of vertices). The same points in the parametrization
domain (sharing the same index), extracted from di�erent scans, correspond to the
same semantic regions.

Figure 5.6: Eyes vertices removing. On the right, the original model and on the
left, the model with empty eyes region. The red images describes triangulation of
the model.

above) a dynamic gaze model able to generate di�erent gaze samples (which can
be considered as an extension of the basis component) and to maintain the same
parametrization and topology.

We integrate our gaze model in 3 steps as follows:

• Eyes vertices removing: we identify manually all the vertices inside eye regions
(580 vertices identi�ed), and remove all the triangles which include at least
one vertice in its edges (we reduce the number of triangles from 106466 to
105151). Fig.5.6 illustrates the model before and after removing eyes regions.

• Eyelids managing: to control the eyelids movements resulting from an upward
and downward gazing, we introduce a linear translation for each vertex sur-
rounding the eye regions. We express the localization of these vertices as a
function of latent variable ε as follows:

vi(ε) = ai + biε (5.6)
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ε = 0 ε = 0,25 ε = 0,75 ε = 1 

Figure 5.7: Eye lids movements managing. By selecting a set of points around the
eyes, we de�ne blendshapes able to monitor eyes closure through a global parameter
ε

with ε ∈ [0 1], ε =0 corresponds to the starting position of the vertices and
ε = 1 to the �nal position which are manually �xed (gazing down and up
are treated as separate con�gurations with di�erent starting and �nal local-
ization). All the coe�cients of the linear translations (ai, bi) can be expressed
as (vi(0), vi(1)− vi(0)). Thanks to the topology of the model, all these modi-
�cations keep the same behavior under identity variation. Fig.5.7 shows some
results of eyelids movements according to the de�ned linear parametrization.

• Eyeballs setting: we place two spheres as eyeballs. We �x the diameter to
the human average eyeball namely 25 mm. We use di�erent textures for the
eyeballs to handle the iris appearance variability. To generate gaze sample, we
generate a virtual 3D point on which the two eyeballs turn toward, the gaze
information angles can be easily calculated knowing the location of the eyeballs
centers. To integrate the eyelids movements in the gaze samples, we establish
a linear correlation between ε and the gaze vertical angle γ for downward and
upward gazing separately.

Fig.5.8 illustrates some examples of the �nal RGB-D gaze samples used to train
our system.

5.2.2 Real data

Our major motivation for building real gaze RGB-D samples is to evaluate the
synthetic training data through di�erent objectives comparisons. Our experiments
allow us to de�ne an existing empiric relation between synthetic and real data in
terms of quality and quantity in handling the task in hand.

To record real RGB-D gaze samples, we use a Kinect sensor with (1280×960) and
(320× 240) resolutions, for RGB and depth streams respectively (the depth map is
re-sampled to the same resolution as the RGB to establish the mapping between the
two maps). Our database contains 42 peoples, 15 females and 27 males, 4 wearing
glasses and 38 without glasses. A total of 17k RGB-D samples is recorded.

The participants are asked to gaze a moving 2D points m(u, v) (expressed in the
image space) displayed on a planar screen under 8 con�gurations as follows:
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Figure 5.8: Some gaze sample examples. Notice the eyelids behavior according to
gaze direction especially to the last three faces.

• Seated-frontal: the user gazes di�erent points mi with no head movements.
The distance user-sensor is �xed to 150 cm, a total of 30 RGB-D samples per
user is recorded.

• Seated-head pose changes: under the same distance as the previous con�g-
uration, the user gazes the point with performing a continuous head pose
movement at the same time. The user remains seated, a total of 70 samples
per user is recorded.

• Standing-frontal: the same conditions as in the �rst con�guration are applied
except that the user is standing. A total of 40 samples is recorded.

• Standing-head pose changes: the user performs the same instructions as in
con�guration two in a standing way. A total of 80 samples is recorded.

The four last con�gurations are similar to the previous ones under a user-sensor
distance of 200cm. The number of samples per con�guration and per user are kept
�x. In Fig.5.9, we show for a given participant, the RGB-D gaze samples result
under the four �rst con�gurations.

As we can see in Fig.5.9, the �nal gaze ground truth is represented as a red
cylinder stretching the face gravity center and the 3D projection M(xM , yM , zM )

of m(um, vm). To perform the projection of the target point m into the Kinect
coordinate system, we initially project m to M ′ using the pinhole projection as
illustrated in the equation. 5.7. with :

xM ′ =
dm.(um − cx)

fx

yM ′ =
dm.(vm − cy)

fy

zM ′ = dm

(5.7)

where dm de�nes correspondent depth value of m.
Knowing the rigid transformation [R′|T ′] between the planar screen (with a

dimensions of 187 cm and 105cm in width and height respectively) and the Kinect
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configuration 1 configuration 2 

configuration 4 configuration 3 

Figure 5.9: Examples of our RGB-D gaze samples under di�erent con�gurations
using Kinect sensor. Using RGB-D stream, a textured mesh is constructed, the red
cylinder describes the gaze information ground truth.

sensor, the point M ′ can be transformed to M as follows: xM
yM
zM

 =

 r00 r01 r02

r10 r11 r12

r20 r21 r22

×
 xM ′

yM ′

zM ′

> +

 T ′x
T ′y
T ′z

 (5.8)

In our case, we setup the Kinect to approximate the maximum R′ as the identity
matrix I. The translation matrix T ′ is estimated to (93.3, 99.1,−4.0). In Fig.5.10
we show the experiments setup. We illustrate the position of the sensor (in green)
according to the screen (in red). The user is gazing a target point m initially
expressed in the image space then projected into the Kinect space (represented in
white dotted lines) giving the gaze information. Fig.5.10 also describes some �nal
RGB-D gaze samples relative to some participants, including the gaze ground truth
(green cylinders).

To express the gaze information g as two angles (θ, γ) as performed in the pre-
vious chapter, we de�ne a reference point O(xO, yO, zO) as the displacement of the
face gravity center G along the z axis. We �nally compute the angles between (θ, γ)−−→
GM and

−−→
GO.

5.3 System training

We train di�erent gaze estimation forests Tg depending on the nature and the num-
ber of training data used. Each tree χ in each forest is trained in a supervised way as
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Figure 5.10: Establishing gaze ground truth. Knowing the screen-sensor rigid trans-
formation, each gazed target can be projected in the world coordinate system using
pinhole model. The �nal gaze vector is de�ned as the vector stretching the user
head gravity center and the 3D gazed point (illustrated with the green cylinder).

described previously. We provide for each a signi�cant training set {Pi = (Ioi , yi)}
with:

• Ici the extracted visual features vector contains 3 channels (o = {0, 1, 2}).The
channels correspond to the two RGB intensities extracted from the two eye
images and the depth values extracted from the face.

• gi represents the output gaze vector represented with two components (θ, γ).

The face depth image size is �xed to (150× 150) (the red face rectangle represents
the output of the Viola Jones face detection performed on the RGB image repre-
sented in Fig.5.11). The two eye images size is �xed to (80× 70) (we use the same
anthropomorphic relations as performed in the pupil localization described in the
previous chapter). Each channel Io size is �xed to (16 × 16). Fig.5.11 illustrates
how we perform multi-channel patches extraction as input to train our trees.

We describes the di�erent forests Tg trained as follows:

• Tg0 represents our principal gaze estimation forest. We provide 400k synthetic
training RGB-D gaze samples under strong head pose changes and scale varia-
tion. We extract 15 3-channels from each sample giving a total of 6M training
patches. Each tree predictor is trained on 60% of the global set giving 3.6M
training data. Some training parameters are �xed to some empirical observa-
tions, e.g., the stopping criteria are �xed to 18 and 100 for maximum depth
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ℐ0 
ℐ1 
ℐ2 

Figure 5.11: 3-channel patch extraction example. Face detection is performed on
the RGB image which is mapped on the depth image. Using geometric assumptions,
we extract two rough regions around the eyes, a multi channel input is then built
including two RGB eyes and depth face. From each region, we randomly extract a
�xed size patch producing the �nal 3-channel patch Io.

tree and minimum samples at leaves respectively. To optimize the splitting
at each node, we generate a pool of 400 candidates with 50 threshold values
giving 20k binary tests. Tg0 contains a total of 40 trees.

• Tg1 is a gaze estimation forest trained on synthetic patches extracted from
RGB-D in exclusively frontal con�guration with scale variation. Each tree is
trained in the same way as performed in Tg0 with exactly the same number of
training data.

• Tg2 represents a gaze estimation forest trained exclusively on real RGB-D gaze
samples described previously. Our main motivation of training this forest is
to perform an objective comparison with a forest trained on synthetic data in
terms of gaze estimation accuracy. We provided for each tree 200k training
patches extracted from a global set of 500k. We generate 1k binary tests
at each node which is considerably low comparing to Tg0 and a�ects directly
estimation accuracy. The principal reason of alleviating the node optimization
is to build di�erent trees with synthetic data able to be compared in reasonable
time. The stopping criteria is kept �x.

• Tgs represents di�erent forests trained on di�erent number of synthetic data
namely 200k, 500k, 1M and 5M (the RGB-D sample are under head pose
changes and scale variation). Each predictor from each forest takes 60% from
the correspondent training set and is trained in the same way as Tg0 .

In addition to these gaze estimation forests, we trained another head pose forest
Tgh following the same learning strategy discussed in the previous chapter. We
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Figure 5.12: Test instance example: the votes selected by mean-shift �ltering are
represented in green, the non-informative leaves responses are in red and the �nal
estimation is in blue.

provided a training set of 50k synthetic training RGB-D head samples with 20k

binary tests. We �xed the depth tree to 15 with a minimum samples to 50.

5.4 Experiments

To estimate the gaze vector from an unseen instance, we extract a set of patches
from the RGB eye regions and the face depth information after a face detection step.
Each patch is passed through all the learned trees in the forest using the optimal
stored binary tests as described previously.

All the estimations corresponding to the extracted patches are regrouped in
votes. Before performing the clustering of these votes, we discard the estimations
from the leaves with high variance considered as non-informative. To locate the
centroid of the cluster of the votes, we perform 5 mean-shift iterations using a
Gaussian kernel. Fig.5.12 shows an example of the �nal estimation, the green ones
represent the votes casted by the forest which are selected by the mean-shift. The
red lines correspond to some casted votes with a high variance discarded by the
mean-shift. The �nal estimation is given by the blue line corresponding to the
centroid of the selected votes.

We perform experiments with di�erent scenarios. First we evaluate the gaze
accuracy as a function of the testing forest parameters (number of patches and
trees), then we quantify the precision of our main forest and its ability to handle
real unconstrained con�gurations (even if the predictors are exclusively trained on
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Figure 5.13: Forest parameters e�ect on the gaze estimation accuracy. (a) describes
the behavior of the gaze mean error over 25 users (according to the two directions θ
and γ respectively) as a function of the number of patches extracted as input for the
forest. (b) illustrates the same errors by varying the total number of trees included
in the �nal decision casted by the forest.

synthetic data). We also evaluate the involvement of each channel and provide
concrete results of the importance of the depth information. We �nally achieve an
objective comparison on synthetic-real learning.

5.4.1 Forest decision parameters e�ect

We use the forest Tg0 to determine the optimal testing forest parameters namely
the number of extracted patches and the forest size. We perform our tests over 25

participants provided with the gaze ground truth as explained in the data generation
section. The user-sensor distance is �xed to 150cm with low head pose variations.
Fig.5.13 summarizes the obtained results of our experiments.

Fig.5.13a illustrates the gaze mean error (through θ and γ) over all the par-
ticipants under di�erent number of extracted patches values. The error decreases
by increasing the numbers of patches. These errors are reduced approximatively by
40% (from 6.5◦ to 3.9◦ for θ, and 6.5◦ to 4.0◦ for γ). This result is expected since the
forest captures more information about input when increasing the number patches
as noticed for the pupil localization. Increasing the value over 30 has insigni�cant
e�ect on the estimation, so we decided to �x the number of patches for testing for
the next experiments to this value.

Fig.5.13b describes the behavior of the mean gaze error as a function of the
number of trees included in the �nal decision forest Tg2 (the number of the extracted
patches is �xed to 30). The error decreases by approximatively 12% (from 4.5◦ to
3.8◦ for θ, and 4.7◦ to 4.1◦ for γ). As shown in the pupil localization forest analysis,



84 Chapter 5. Fully appearance-based approach

0 5 10 15 20 25

user ID

0

2

4

6

8

10

12

14

16

18

20

e
rr

o
r 

a
n
g
le

 (
d
e
g
re

e
s
)

θ (HeadPose)

γ (HeadPose)

θ (Frontal)

γ (Frontal)

(a)

0 5 10 15 20 25
user ID

0

1

2

3

4

5

6

7

8

9

e
rr

o
r 

a
n
g
le

 (
d
e
g
re

e
s
)

θ (200cm)

γ (200cm)

θ (150cm)

γ (150cm)

(b)

Figure 5.14: Evaluation of the gaze estimation accuracy under unconstrained sce-
narios using using Tg0 . (a) the mean error for the two gaze directions under frontal
and head pose changes. (b) the mean error for the two gaze directions under two
distances from the sensor.

increasing the forest size performs more generalization hence produces more robust
and accurate output. We �xed the optimal number of trees to 15.

5.4.2 Robustness to head pose and distance variation

We evaluate the gaze estimation accuracy using our trained forest Tg0 under un-
constrained environment. Our estimation is based on the forest Tg0 with 30 and 15

as number of extracted patches and forest size respectively. In these experiments
we show the in�uence of head pose movements and the user-sensor distance on the
estimation accuracy. Fig.5.14 resumes the obtained results.

Fig.5.14a represents the global error of gaze estimation over 25 users under
frontal and head changes con�gurations. For each user, a mean error across dif-
ferent gaze samples performed under two distances is computed. In frontal case, the
mean error over all the users is less than 3◦ for the two directions whereas the error
is less than 6.5◦ for head pose changes case. This di�erence in accuracy between the
two con�gurations is directly linked to the high eye image appearance variability
across head pose con�gurations, making the trees prediction less accurate.

In Fig.5.14b we report the error as a function of distance from the sensor for a
frontal con�guration. The experiments show a mean error of 2.9◦ and 3.1◦ for θ and γ
respectively at 150 cm from the sensor. At 200cm, we noti�ed slightly higher errors,
4.8◦ and 5.0◦ for the two directions respectively. The di�erence in accuracy between
the two distances is related to the RGB eye images and face depth appearance which
are signi�cantly variable depending on the distance to the sensor.
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Figure 5.15: The involvement of each channel in the gaze estimation decision casted
by the forest. (a) mean error of the two directions over head pose variations (yaw
angle variation) with di�erent channels combinations. (b) mean error over the two
directions with and without using depth information in frontal and head pose con-
�gurations respectively.

5.4.3 Channel selection importance

To evaluate the involvement of each channel (from the two eye RGB images and
face depth information) in our fully appearance based automatic gaze estimation
system, we perform experiments using a speci�c trained forest T ∗i∈{0,1,2} as follows:

• T ∗0 : trained as Tg0 on a set of patches with only the two RGB channels and
no depth information.

• T ∗1 : trained on a set of patches with two channels, depth information and
RGB extracted from the left eye.

• T ∗2 : trained on a set of patches with two channels, depth information and
RGB extracted from the right eye.

Fig.5.15 reports the obtained results on gaze estimation accuracy using these speci�c
forests.

Fig.5.15a describes the in�uence of the two RGB channels (corresponding to
right and left eyes) on gaze estimation accuracy across di�erent yaw angle values.
We evaluate the accuracy using T ∗1 and T ∗2 respectively. These results are expected
since eye appearance is very sensitive to head pose changes especially for yaw an-
gle variation. For instance, positive values of yaw deform the left eye appearance
until a complete disappearance giving high estimation errors for the two directions
without the visible channel namely right eye (i, e., dotted lines in Fig5.15a) and
reciprocally. Using the channel selection strategy introduced on the forest learning,
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(a) (b)

Figure 5.16: Visualizing some clusters captured during the training step of Tg0 and
Tg2 using only depth cue (I2). (a) describes the reached real data on 3 leaves
(represented with red circles). (b) illustrates the same experience with synthetic
samples.

we can quantify the involvement of each RGB channel in the �nal gaze estimation
across head pose changes.

Fig.5.15b illustrates the importance of depth information in our approach espe-
cially in head pose changes scenarios. We test on previous participants gaze accuracy
with T ∗0 and Tg0 respectively. Gaze estimation errors are very close with and without
depth information in frontal scenario whereas the error gap is approximatively 1.5◦

in head pose changes con�guration proving the importance of this channel in such
case. Depth information is more suitable to encode geometric similarities between
data samples which represent the head pose information. In Fig.5.16, we show some
clusters with low variances captured by the forest T ∗0 using real and synthetic data
respectively. As we can see in both cases, the data which reach the speci�ed leaves
(with red circles) present semantic information about the gaze (for each cluster,
the participants look approximatively in the same direction). In reality, the data
reaching leaves are patches. For this experiment each patch P〉 is represented as
(Ioi , gi, xi) where xi is the original RGB-D sample where the patch is extracted. xi
allows us to illustrate the data for each cluster as RGB-D samples.

5.4.4 Learning with real data versus learning with synthetic data

In this section, we evaluate the realism of our rendered synthetic data and their
ability to handle unconstrained gaze estimation problem. We perform experiments
using the forest Tg2 trained on real data and forests Tgs trained on di�erent number
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Figure 5.17: Visual comparison between real and synthetic RGB-D sample.

of synthetic training data. The forests are tested on the same participants described
previously. The main motivation of these experiments is to quantify empirically the
existing ratio between the numbers of real and synthetic training sets producing
similar results.

In Fig.5.17 we show a visual comparison between real and synthetic RGB-D sam-
ples. The real sample is a testing participant extracted from our database described
before, the synthetic one is generated using the 3DMM with our parametric-gaze
model with the mean shape and texture. We choose two RGB-D corresponding
approximatively to the same gaze direction which gives a �rst opinion about the
similitude between the two data. The depth information looks globally similar in
both cases except the existing noise on the real data (due to noisy depth imaging
of the Kinect sensor). For the two eye regions, the similarity is more apparent on
the patches near to the pupils (which represent the most important information
about the gaze). The patches surrounding the pupils present di�erences which can
be explained by the lightness of the 3DMM texture.

In Fig.5.18 we report quantitative results on the gaze estimation accuracy per-
formed by Tg0 and Tgs . We average the gaze error over θ and γ and over the two
distances 150cm and 200cm respectively. By using the same number of training
data namely 200k, Tg2 and Tgs produce di�erent error curves with an apparent gap
(the mean errors are 6.4◦ and 11.1◦ for the real and synthetic forest respectively).
This signi�cant di�erence in accuracy (∼ 4◦) is directly linked to the di�erence in
the representativity of the training example. Since synthetic data aims to reproduce
the same appearance as the real data but with some di�erences, their correspond-
ing gaze manifold learned at the training step does not cover all the real scenarios.
Unlike real samples which build a manifold more closer to the testing con�guration.
Increasing the training set provided for Tgs decreases the gaze estimation error (9.5◦,
8.3◦, 7.1◦ for 500k, 1M and 5M training data respectively). Increasing the cardi-
nal of the training set enhances generalization ability of the learned tree predictors
across unseen testing scenarios. The empiric ratio between synthetic and real data
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Figure 5.18: gaze estimation error (over the two directions and over the two distances
150 cm and 200 cm)under learning with real and synthetic data (N is the number
of training data used)

producing approximatively the same performance in terms of accuracy is estimated
to 1/9. This results presents an important meaning for our purpose. Since the gen-
eration of labeled synthetic RGB-D gaze samples is more e�ortless and faster with
more accurate ground truth compared to the real samples, they can at the same
time produce similar performance for gaze estimation by enhancing the training set
following this empirical ratio.

In Fig.5.19 we report the gaze estimation error distribution across the 5 best
testing participants using Tg2 and Tg0 respectively. In Fig.5.19a we describe globally
a uniform distribution with high values for θ superior to 20◦ corresponding to the
right gazing. This result explains the limitation of the generalization of forest Tg2 in
handling some extreme unseen scenarios. The gaze error distribution is represented
in Fig.5.19b.We can distinguish 3 regions as follows:

• γ < −20◦ represents the highest error range. These γ values correspond to
the eyes closure making the eye image appearance very similar even if θ is
varying which produces bad gaze estimations. Furthermore, our dynamic gaze
model performs a linear shifting on the eyelid vertices to cover the new eye
shape and stretches the original eyelid texture to cover the new texture giving
a rough approximation of the real eye appearance. Our choice of the dynamic
gaze model is strongly constrained by the 3DMM topology.



5.5. Fully appearance-based versus semi appearance-based approach 89

-20       -15        -10        -5        0        5        10      15       20       25      

 20 
 
 15 
 
 10 
 
   5 
 
   0 
 
 -5 
 
-10 
 
-15 
 
-20 
 
-25   
  0° 

6° 

θ 

γ 

(a)

-20       -15        -10        -5        0        5        10      15       20       25      

 20 
 
 15 
 
 10 
 
   5 
 
   0 
 
 -5 
 
-10 
 
-15 
 
-20 
 
-25   
  0° 

6° 

θ 

γ 

(b)

Figure 5.19: Mean gaze error distribution over 25 participants across di�erent gaze
directions ((a) real testing samples, (b) synthetic testing samples).

• |θ| < −7◦ describes a region with a relatively important error. Our forest is
weakly discriminative with straight gazing samples under large distances. In
addition, we noticed, for some users, an important error for upward gazing
con�guration(γ > 10◦ and θ < 5◦) which can be explained by an elliptical
deformation of the high part of the eyes. In fact, this deformation is very
person-speci�c and our dynamic model performs the same deformation over
the di�erent face shapes generated by the 3DMM, the forest gives less accurate
results.

• γ > −20◦ and |θ| > 5◦ cover the range of good gaze estimation (error less
than 4◦) which represents more than 50% of the total area. The appearance
of the patches extracted from these gaze samples are very discriminative. In
addition, for these con�gurations, our synthetic training data present a very
high realism.

5.5 Fully appearance-based versus semi appearance-based

approach

To achieve a comprehensive comparison between fully and semi appearance-based
approaches in handling of unconstrained gaze estimation, we perform experiments
over the 25 synthetic users under 3 scenarios:

• Estimation performed using the forest Tg0 under a user-sensor distance of
150cm.

• Estimation performed using Tg1 (trained only on frontal appearances), using
the head-sensor rigid transformation, the �nal gaze estimation is obtained as
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Figure 5.20: Comparison of our approach to semi appearance-based approach using
exclusively synthetic data. Our approach (in red) performs gaze estimation using
RGB-D cues assuming a global gaze manifold(under head pose changes) in red. Semi
appearance-based approach (in green) performs gaze estimation assuming frontal
con�guration with a geometrical correction using estimated head pose parameters. In
blue: a semi appearance-based approach with ideal head pose parameters. (a) and
(b): gaze errors in frontal con�guration for θ and γ respectively. (c) and (d): gaze
errors in head pose change con�gurations.

explained in the previous chapter. The head pose parameters are directly
driven from the OpenGL camera model which is considered as a ground truth
value.

• Estimation is performed following the same strategy as in the scenario 2 except
that in this case, the head pose parameters are estimated using the forest Tgh .

The main objective of this experiment is to provide an empirical proof of the ad-
vantages of the fully appearance-based approaches. We report the obtained results
in Fig.5.20.

Fig.5.20 illustrates the estimation errors under the three described scenarios
under frontal con�gurations through θ and γ respectively. In this �gure we represent
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the semi-appearance based system using g⊗H∗ and g⊗H ′, this notation describes
the correction of the frontal gaze g using ideal head pose H∗ and estimated head
pose H ′ respectively. The three scenarios present mean errors of 2.4◦, 2.3◦ and
2.7◦ for θ and 2.6◦, 2.4◦ and 3.0◦ for γ (these errors are sensibly low which is the
result of using synthetic instead of real samples for the testing, and the forests used
are trained on the same nature of data). The errors are very close which can be
explained by the fact that the di�erent systems perform the same behavior under
frontal con�guration. For Tg0 , the testing samples reach the leaves with frontal
appearance samples where the depth information is slightly used during the training.
The head pose parameters are estimated with a su�cient accuracy by Tgh in frontal
appearance for the third system (and absolutely correct for the second one), giving
an accurate geometric correction for the �nal estimation.

Fig.5.20c and 5.20d describe the behavior of the previous systems using the
same testing samples generated under strong head changes. We noticed gaze es-
timation errors of 3.8◦, 4.0◦ and 5.9◦ for θ, and 3.5◦, 3.5◦ and 5.3◦ for γ. The
fully appearance-based approach presents the lowest errors through the two gaze
directions. Gaze estimation in head pose changes involves strongly head pose cues,
thanks to the depth information discrimination, Tg0 achieves good estimation even
with head pose changes as illustrated in the channel selection importance section.
Correcting gaze with head pose parameters produces a cumulative error related to
the frontal estimation and head-sensor rigid transformation respectively. For strong
head appearances, the third system performs a head pose estimation with an impor-
tant making a high �nal gaze estimation. This experiment gives a strong empirical
proof of an optimal automatic gaze estimation system, according to our results
and our environmental conditions. Considering head pose and gaze information as
two independent blocks produces important errors for relatively high user-sensor
distances.

Methods 75cm 150cm 200cm

[Chen 2008](F) 2.35◦(< 75cm) - -

[Jianfeng 2014](F) 4.8◦ - -

[Mora 2012](H) 7.1◦ - -

Our feature-based(F) 3.8◦ 5.1◦ -

Our feature-based(H) 7.8◦ 9.8◦ -

Our Semi.App-based(F) 7.0◦ 7.3◦ -

Our Semi.App-based(H) - 8.1◦ 11.3◦

Our Fully.App-based(H) 6.1◦ 7.1◦ 7.6◦

Table 5.1: Comparison of our automatic gaze estimation systems with the state-of-
art methods under di�erent user-sensor distances. The Gaze error is expressed as
the mean across the two directions θ and γ.
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Tab.5.1 performs a global comparison of our gaze estimation systems to the state-
of-the-art methods. Some methods report the results only under speci�c distances
and frontal con�gurations.

5.6 Conclusion

In this chapter, we described the fully appearance-based approach for a robust and
unconstrained gaze estimation. This approach is a promising solution to overcome
the limitations of the existing systems described previously.

In the previous chapters, we highlighted the importance of the head pose com-
ponent in automatic gaze estimation systems. Designing an optimal system which
exploits both eyes and face cues was a challenging task. We proposed to use a
multi-channel containing both information as training sample to robustly learn the
mapping between gaze and appearance spaces using regression tree predictors.

To boost the ability of generalization of the trees, we used a 3D face morphable
model with an integrated parametric gaze model to render RGB-D gaze samples.
We described the integration of the gaze model to the 3DMM allowing us to generate
su�ciently accurate gaze ground truth. In addition to synthetic RGB-D samples,
we recorded real samples using Kinect sensor and described the followed protocol.

Di�erent experiments were performed to evaluate the accuracy of this approach.
A principal forest was trained using exclusively synthetic data and tested on real sce-
narios. The obtained results on unconstrained con�gurations demonstrate the great
potential of this approach in handling gaze estimation. To illustrate the importance
of each cue in the global system, we trained di�erent forests on data targeting at each
time a speci�c channel. The di�erent obtained estimations showed the involvement
of both RGB and depth information of the �nal estimation, especially for depth
cue under strong head pose con�guration. To evaluate the realism of our rendered
training samples, we compare the estimation accuracy with a forest trained on real
data and forests trained on di�erent numbers of synthetic samples. We deducted an
empirical ratio between the cardinal of real and synthetic set yielding comparable
performance.

Finally, we compared this approach to the semi appearance-based approach
which assumes and considers gaze information and head pose as two independent
blocks. We describe the di�erent forests used to perform an objective compari-
son. Testing gaze estimation under strong head pose changes showed that our fully
appearance-based approach provides better results and meets the requirement of
our environment in terms of accuracy and robustness. A global comparison of our
systems and the state-of-art method was provided.
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6.1 Conclusions

In this work, we tackled automatic gaze estimation problem. Our context was
about pointing objects displayed in real/virtual environment. Strong assumptions
were established beforehand. The user is allowed to perform free movement including
important head pose variation and large distances to the sensors. According to these
unfavorable conditions, this work belongs on highly unconstrained gaze estimation
systems.

During our investigation, we explored the existing approaches in gaze tracking
and analysis �eld with a view to enhancing accuracy and performance. For each
approach, we developed a speci�c automatic gaze estimation system and performed
evaluation experiments. To overcome the limitations presented by these approaches,
we established a novel paradigm and proposed a �nal automatic gaze estimation sys-
tem. All the presented systems share a common dominator in their processing which
is the involvement of Random Forest algorithm. These systems can be summarized
as follows:

• Feature-based system: in this approach, we presented a system principally
based on eye-pupil localization and head pose parameters estimation. To de-
termine the gaze information, our method follows, as usually performed, a 3D
eye model to calibrate accurately the user's eye features (eye centers, cornea
center..etc.). To infer the 3D gaze information, we used the head pose compo-
nent to project eye feature points into world coordinates system. To provide
the potential of this approach, we compared separately each component to the
state-of-art methods yielding a �nal evaluation.
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• Semi appearance-based system: instead of considering the eye as a geo-
metric model, this approach aims to infer the gaze information using the eye
image as appearance. The problem is formulated as a regression one. Recent
methods try to learn a robust mapping function between high dimensional
eye image space and gaze space. One of the particular assumption of these
methods is to consider only eye image under frontal con�guration and to use
head pose parameters as a geometric correctional tool to establish a �nal gaze
estimation. We presented our system following this assumption and performed
a comprehensive comparison to some recent methods.

• Fully appearance-based system: according to the results of the previous
systems, we developed our �nal system which follows a novel paradigm. Ad-
mittedly, classical approaches tackle automatic gaze estimation problem by
assuming eye and head pose parameters as two independent blocks. One di-
rect consequence of such design is to cumulate error of each component in the
�nal estimation. In our system, we proposed a way to unify these two blocs
through a global gaze manifold with no geometric assumptions. We formulate
the problem as a regression one by using Random Forest as a tool to learn
the mapping. By using RGB conjointly with depth cues which encode eye
appearance and head pose information respectively as input, we achieved an
uni�ed block producing a robust and e�cient gaze estimation. This system
meets our requirement related to the user environment in terms of distance to
sensor, head pose changes, illumination variation and appearance variability.

Another highlight of this work was the importance of the data. Indeed, as we used
Random Forest as a main tool to tackle learning problems through di�erent systems
especially for the last one, building a signi�cant training dataset is fundamental to
ensure robustness and generalization. Two global approaches related to the type of
data exploited can be reported as follows:

• Synthetic data approach: the main motivation was about providing a very
important amount of training samples automatically labeled in a reasonable
time. We used a human face 3DMM able to synthesize di�erent shapes and
textures as an inter-user appearance variability. To provide such model with a
supplementary ability of synthesizing di�erent gaze directions, we integrated a
dynamic gaze system. The �nal rendered gaze RGB-D samples demonstrated
a great potential in handling of unconstrained gaze estimation task.

• Real data approach: by using the Kinect as depth sensor, we recorded
a signi�cant real RGB-D gaze database. We followed a rigorous protocol
to record di�erent participants and obtained reliable labeled samples after a
tedious preprocessing step. This database allowed us to perform a comparison
with synthetic data in terms of robustness and accuracy. We �nished our
experiments by establishing an empirical real/synthetic ratio producing similar
performance.
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6.2 Limitations and perspectives

During our investigation, some points have not been deepened su�ciently. Some-
times, they are related to the learning model, sometimes to the data. We consider
that treating these points would enhance e�ciency, we report them as follows:

• Random Forest: in this work, for each learning task, we kept the input
data unchanged. For instance, in eye pupil localization, trees are learned
on the raw gray intensities of the patches, in head pose estimation, trees
learn from di�erence on integral raw depth intensities, in fully appearance,
trees learn from both raw RGB and depth cues. Instead of keeping the same
representation of the data, introducing a deep strategy to learn the optimal
input features can enhance discriminative ability of the trees. Usually, this
strategy is applied within neuronal network. [Kontschieder 2015] demonstrated
an elegant way to conjointly learn the mapping and the data representation.

We already demonstrated in our experiments the importance of depth infor-
mation in the �nal estimation. To quantify the degree of involvement of each
cue, a counting parameter in addition to the selection strategy at each node,
would establish a histogram related to cues weighting at the leaves.

• Synthetic data: in this work we used a 3DMM exclusively designed for face
reconstruction and recognition tasks. To adapt such model to gaze estimation,
we introduced a simpli�ed dynamic gaze model. For instance, we modeled the
eyelids movements as uniform blendshapes. A more rigorous way would be
to analyze eyelids points movement as a function of the gaze direction across
signi�cant participants. Such analysis allows more accurate modeling of the
eyelids behavior and covers speci�c gazing scenarios.

A radical solution would be to build a speci�c gaze 3DMM. With highly ac-
curate scanning technique, di�erent persons gazing targets in 2D/3D can be
recorded, then applying a PCA for both shape/texture information would pro-
vide speci�c modes of variation related to gaze. Such modes would synthesize
more naturally eyelids movements.

• Real data: in our work we obtained su�cient amount of real training sam-
ples to perform the comparison to synthetic data using Kinect v.1. The second
version of this sensor presents considerable advantages in terms of data reso-
lution and acquisition time. Using this version would allow larger user-sensor
distance and allow to overcome the limitation related to computational time.

This work gives rise to another collaboration between Interactions Immersives
and FAST teams. The main topic of this future work will be about 3D object
estimation and camera re-localization. This new thesis would exploit the results of
our work and, through our perspectives, would produce more successful results.
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A.1 Information gain for continuous distribution

The objective function (information gain) for each node j in the random forest
framework is expressed as

Ej = H(Pj)−
∑

i∈{L,R}

|P ij |
|Pj |

H(P ij)

The entropy H for a continuous variable y is de�ned as :

H(P) = −
1

|P|
∑
x∈P

∫
y
p(y|x) log(p(y|x))dy

By modeling p(y|x) as a Gaussian distribution:

p(y|x) = N (y, ȳ, σ2)

An explicit description of p(y|x) as a normal distribution f(y) is expressed:

f(y) =
1

2
√

2πσ2
exp{−

(y − ȳ)2

2σ2
}

we can rewrite the entropy as follows:

H(P) = −
1

|P|

(∑∫
f(y) log(

1
2
√

2πσ2
exp{−

(y − ȳ)2

2σ2
})
)

= −
1

|P|

(∑
P

∫
y
f(y)

[
log(exp{−

(y − ȳ)2

2σ2
}) + log(

1
2
√

2πσ2
)
]
dy
)

= −
1

|P|

(∑
P

∫
y
f(y)

[
−

(y − ȳ)2

2σ2
+

1

2
log(2πσ2)

]
dy
)

= −
1

|P|

(∑
P

( 1

2σ2

∫
y
f(y)

(
y − ȳ)2dy +

1

2
log(2πσ2)

∫
y
f(y)dy

))

= −
1

|P|

(∑
P

( 1

2σ2
σ2 +

1

2
log(2πσ2)

))

= −
1

|P|
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(1

2
log(2πeσ2)
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Finally, the information gain can be expressed as follows:

Ej ∝
∑
x∈P

log
(
σy(x)

)
−

∑
i∈{L,R}

( ∑
x∈Pi

log
(
σy(x)

))
For a multivariate Gaussian distribution, we obtain the following formula:

Ej =
∑
x∈P

log
(
|Λy(x)|)

)
−

∑
i∈{L,R}

( ∑
x∈Pi

log
(
|Λy(x)|

))
where |Λ| represents the determinant of the covariance matrix.
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