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ABSTRACT

Despite their great successes, cosmology and particle physics are facing deep issues that have been
puzzling physicists for a long time. In particular, 85% of the matter content in our Universe is in the
form of a cold, non-interacting component, whose impacts have only been probed through gravity. On
the other hand, the discovery of neutrino oscillations points towards the existence of tiny but non-
vanishing neutrino masses, a phenomenon that cannot be successfully explained within the Standard
Model of Particle Physics. This work tries to tackle the dark matter and neutrino masses conundrums
by looking for electromagnetic and gravitational signatures of peculiar massive relics in cosmological
probes. In particular, we study the impacts on i) CMB temperature and polarization anisotropies; ii)
Large Scale Structure surveys; iii) Spectral distortions of the CMB blackbody spectrum; iv) and Big
Bang Nucleosynthesis (BBN).
After a thorough review of all necessary tools to compute these observables, we make use of the

latest data from present experiments, and forecast the potential for detection of future ones. We firstly
focus on the purely gravitational effects of decaying massive relics, deriving the strongest constraints
to date and extending the phenomenology to multicomponent models with very high decay rate. These
constraints represent robust, largely model independent bounds that any massive relic has to satisfy.
In a second step, we switch to electromagnetic channels and compare the relative constraining

power of non-thermal BBN, CMB spectral distortions and statistics of CMB anisotropies. As an
example, we apply our methods to specific models taken from the literature, including exotic particle
physics models and astrophysical candidates such as Primordial Black Holes. Moreover, we show that
a loophole to the standard theory of e.m. cascade may allow one to solve the cosmological Lithium
problem thanks to photon injection. We then study the impact of annihilating relics, with a special
emphasis on annihilations in halos and their interplay with stars in reionizing our Universe.
The last part of this work is devoted to the cosmological determination of neutrino properties with

current and future data. We demonstrate that: i) it is possible to make a robust statement about the
detection of the cosmic neutrino background by CMB experiments; ii) the joint analysis of future CMB
and Large Scale Structure data should allow the first 5σ cosmological detection of neutrino masses.
Our results emphasize the complementarity of the different probes, and the need for combined analyses
when looking for new physics, especially in the era of precision cosmology.
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Est-ce que tu vois le printemps? Celui qui met nos terres au soleil.
Dis moi, est-ce que tu l’entends? De la fleur y’a l’épine qui sommeille.

Est-ce que tu vois le printemps? Celui qui fait couler les ruisseaux,
Entre les doigts des torrents, oui c’est sûr qu’ils sont ivres nos bateaux.
Est-ce que tu vois le printemps? Nos amours que l’on jette en patûre.

Dans les flots des océans, les lettres restent mortes, littérature.
.

— Damien Saez, Les Printemps.
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GENERAL INTRODUCTION

Cosmology, which literally means the study of the world in Greek, is probably one of the biggest en-
deavors of humanity. Historically, it was associated to the deepest questions such as "why and how are
we here?". Thus, before being a science, this subject was the realm of faith and religions, with many
Cosmologies and Cosmogonies (the creation of the world in Greek) being built throughout the history
of our species. Physical Cosmology, more modestly, consists of the study of the large-scale properties of
the universe as a whole, such as its global composition, its dynamics, or the clustering and formation
of structures in which galaxies, stars, and ultimately life appear. The transition from meta-physics
to physics was made possible thanks to Albert Einstein and his theory of General Relativity [228].
However, as could be said for any branch of Physics, its evolution has known many major contributors
and would deserve an entire book (at least, if not many) to be covered in a fair way. Here, rather, I
want to briefly recap some key parts of this history, in order to incorporate this work also, at a very
modest level, in a more global picture that started about a century ago and shall continue into the
far future.
The history of Cosmology is also interesting in that it shows nicely the great synergy between theoreti-
cal and observational advances. Soon after Einstein published his theory, attempts at finding solutions
to what he thought was an unsolvable equation began. In 1917, the classic work by Schwarzschild led
him to the discovery of the black hole solution. The same year, in the cosmological context, De Sitter
found the solution to Einstein’s field equations in a Universe filled with a cosmological constant Λ and
in the absence of matter ρ = p = 0 (today known as the De Sitter space). Friedmann in 1922 and
1924, Lemaître in 1927, with extensions by Robertson and Walker independently in 1935, reported a
solution that is of most importance for us, as it is the metric solution to an homogeneous and isotropic
Universe, dubbed “FLRW metric” hereafter.
At the same time, much technological progress was made, such as the development of photography
and reflecting telescopes. Those allowed Hubble in 1925 to answer the big question about the extra-
galactic nature of the “spiral nebulae”. Improvements in spectrometric survey by Vesto M. Slipher
(1917) enabled the inference of velocities of the galaxies from the Doppler shifts of their absorption
lines. His major finding was that they were i) much faster than any known objects; ii) moving away
from the Solar System, since their lines were redshifted to longer wavelengths, with stretching factor
at a redshift z defined as

1 + z ≡ λobs

λemit
.

Still, at that time people were not yet convinced that the Universe was expanding. As it is well
known, Einstein himself was convinced that the Universe was static, which led him to introduce the
cosmological constant in order to counteract the natural expansion dynamic encoded in his equation.
A milestone was set in 1929 by Hubble: using distance measurements of 24 galaxies (notably thanks
to Cepheid variability, absolute magnitude of the brightest stars and the mean luminosities of nebulae
in the Virgo cluster), he established his famous relation encoding the fact that galaxies are recessing
faster the further away from us they are,

v ≡ H0d ,

1
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with H0’s original value of about 500 km/s/Mpc. This was considered as the first convincing proof
of the Universe expansion, leading Einstein to call the introduction of the cosmological constant “his
biggest blunder” according to Gamow (1970).
The first evidence for Dark Matter in our Universe came soon. This term was introduced already in
1922 by J. Kapteyn in his paper First attempt at a theory of the arrangement and motion of the sidereal
system [359], in which he understood that inclusion of dark matter was necessary in order to explain
the rotating motions of stars. However, he thought at that time that this dark matter would represent
a subdominant fraction of the total mass. What is commonly presented as the first convincing evidence
for Dark Matter was introduced shortly after. In his seminal papers of 1933, Die rotverschiebung von
extragalaktischen Nebeln [610] and 1937, On the Masses of Nebulae and of Clusters of Nebulae [611],
Fritz Zwicky estimated the total mass of the Coma cluster assuming it to be mechanically stable such
that the virial theorem holds. The theorem relates the time-averaged total internal kinetic energy of
the galaxies in a cluster to its self-gravitational potential energy. Assuming the galaxies within the
cluster to be distributed homogeneously inside a sphere of radius R, he found

M =
5R〈v2〉

3G

where G = 6.708 · 10−45MeV−2.
Measuring the velocity dispersion of the galaxies in the Coma cluster, Zwicky established that the

ratio of the cluster mass extracted from virial theorem to the luminous mass was about 500, whereas
in a typical galaxy like ours J. Kapteyn found this value to be closer to 3. These results led him to con-
clude that there could be about 100 times more dark or hidden matter as compared to visible matter
in the cluster. With time, this number has been decreased by about one order of magnitude, but still,
all studied clusters have led to the similar conclusion that most of the matter in the Universe must be
invisible. Other probes, such as gravitational lensing, galaxy rotation curves, cosmological structure
formation and the cosmic microwave background have brought a wealth of convincing evidence for
this dark matter on very different scales, from galaxies to the whole observable Universe.
In the 30’s, it was realised that the abundances of cosmic light elements could not be explained by star
nucleosynthesis. In 1931, Lemaître suggested the existence of a very hot phase at the beginning of the
Universe, which he named "primaeval atom". Shortly after, George Gamow’s extended upon his idea
and, extrapolating Friedman’s universe to very early times, found that: i) densities and temperature
were sufficient for nucleosynthesis to happen; ii) the time scale for reaching equilibrium was such that
formation of a relic abundance of primordial nuclei would occur. The first computation of this relic
abundance was done by Alpher, Bethe and Gamow - the αβγ paper of 1948 [44]. Alpher and Hermann
in 1948 [45] improved upon this computation by taking into account the Universe expansion, finding
that at that epoch the Universe must have been radiation - and not matter - dominated. They pre-
dicted the presence of a thermal blackbody spectrum of photons as a remnant of the early hot phases
of the universe, at a temperature of about 5 K.
At that time, the expanding Universe picture had many detractors. Hermann Bondi, Thomas Gold
and Fred Hoyle in 1948 pioneered steady state cosmology by extending the cosmological principle
of spatial homogeneity and isotropy to the perfect cosmological principle, stating that all observers
should observe the same large-scale Universe at all time [113], [318]. Fred Hoyle in the late 1940’s
during a radio show introduced the term “Big Bang” to denigrate the evolving Universe model, which
has the serious issue of having a singularity at the origin, absent in his steady-state model. In 1965,
the accidental discovery of the remnant radiation - the so-called Cosmic Microwave Background - by
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Penzias and Wilson [476] provided strong evidence for what is now known as the Big Bang cosmology.
They were awarded the Nobel prize in 1978 for this discovery. This radiation has been studied inten-
sively afterwards. The most recent measurement of its energy spectrum has been performed thanks
to the Firas instrument, onboard the COBE satellite in 1996 [246]. It is the most perfect blackbody
ever detected with a temperature of T0 = 2.7255 ± 0.0006 K, in every direction of the sky. For this
outstanding measurement, George F. Smoot and John C. Mather received the Nobel prize in 2006.
Quickly, it was understood that tiny deviations from a perfect blackbody are actually expected even
within Big Bang cosmology [606], leading to the development of the physics of spectral distortions of
the CMB blackbody spectrum, that will be detailed later in this work.
However, the temperature of the blackbody turned out to show very slight anisotropies depending on
the direction of the sky at which one looks, at the level of ∆T/T ∼ 10−5. These small deviations from
perfect isotropy, believed to be the seeds of galaxies, have been measured with increasing precision up
to very small angular scales since COBE by balloon experiments BOOMERANG [450] and MAXIMA
[289], followed by the WMAP satellite (first data release in 2003 [562]) and in the very last years by the
Planck satellite (first data release in 2013 [17]). The link between temperature fluctuations and galaxy
seeds has been proved very recently with the measurements of the Baryonic Acoustic Oscillation by
the Sloan Digital Sky Survey (SDSS) [229]. The physics of these temperature fluctuations and density
perturbations is now very well understood and will be discussed in great details in this work as well.
The most recent history is also made of other major discoveries. In 1998, by analyzing supernovae
Ia data, which are thought to be good “standard candles” for measuring distances in our Universe,
the Supernova Cosmology Project led by Saul Perlmutter, and the Supernova Search Team led by
Adam Riess and Brian Schmidt found that the cosmic expansion was currently accelerating; usually
attributed to a non-zero cosmological constant that one can also interpret dynamically as a so-called
“Dark Energy” component with a negative equation of state. For this finding, later corroborated by
LSS and CMB experiments, they received the Nobel prize in 2012.
However, Cosmology is not the only field of Physics with such an amount of enigmas. For instance,
we know since the turn of the century and the SuperKamionkande and SNO oscillation experiments
that neutrinos are not massless as it was expected, but carry a very tiny mass, with mass splittings
of the order of ∼ O(10 − 100) meV. This observation has tremendous consequences as it cannot be
satisfactorily explained within the Standard Model of particle physics either. Interestingly, it is even
possible to link neutrino masses to the very existence of Dark Matter. Cosmology is currently the
most powerful probe of the neutrino mass. The discovery of the neutrino oscillation led Arthur. B.
MacDonald and Takaaki Kajita to receive the Nobel prize in 2015.
This work tries to tackle the Dark Matter and neutrino masses puzzles, by looking for electromag-
netic and gravitational signatures of peculiar massive relics in Cosmological probes that have been
developed over the years. In particular, we will study the impact on i) CMB temperature and polar-
ization anisotropies; ii) Large Scale Structure surveys; iii) Spectral distortions of the CMB blackbody
spectrum; iv) and Big Bang Nucleosynthesis. After a thorough review of all necessary tools to com-
pute those observables in chapter 1 to 3, we make use of the latest data from present experiments,
and forecast the potential for detection of future ones. We focus on the purely gravitational effects
of decaying massive relics in chapter 4 before switching to electromagnetic (e.m.) channels. Chapter
5 is devoted to early-time constraints due to non-thermal Big Bang nucleosynthesis induced by e.m.
energy injections, while chapter 6 focuses on CMB constraints. A detailed comparison of spectral
distortions, BBN, and anisotropies constraints is performed. As an example, we apply our methods to
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specific models taken from the literature, including exotic particle physics models and astrophysical
candidates such as Primordial Black Holes. We then study the impact of annihilating relics, with a
special emphasis on annihilations in halos and its synergy with stars in reionizing our Universe. The
last part of this work is devoted to the cosmological determination of neutrino properties with current
and future data. Our results emphasize the complementarity of the different probes, and the need for
combined analyses when looking for new physics, especially in the era of precision Cosmology.



Part I

INTRODUCTION TO PARTICLE COSMOLOGY

The first part of this Thesis is devoted to a presentation of the general features of the con-
cordance model of cosmology, introducing all necessary tools for our studies. In chapter
1 we discuss the homogeneous and isotropic Universe, including an extended description
of the process of e− − p recombination, a key era in this work. Chapter 2 is devoted to a
thorough description of the evolution of small perturbations on top of this background, as
well as the computation of the cosmic microwave background and matter power spectrum.
Our discussion is limited to linear regime but comments on the important higher-order
contributions are made, and relevant references introduced. Finally, chapter 3 introduces
the broad lines of the particle physics models that are studied, i.e. models incorporating
massive relics that can constitute Dark Matter and/or related to neutrino masses. A dis-
cussion on the physics of electromagnetic cascades, a fundamental process at play in many
of the studied scenarii, is also developed.





1
THE STANDARD COSMOLOGICAL MODEL

1.1 General Relativity in a homogeneous and isotropic Universe

The cornerstone of the standard model of Cosmology is the so-called "Cosmological Principle": it is
the assumption that the Universe is homogeneous and isotropic on sufficiently large scales, in such a
way that its metric is the standard "Friedmann-Lemaitre-Robertson-Walker" one. This is illustrated
in Fig. 1, where we show the temperature map of the Cosmic Microwave Background radiation as seen
by the Planck satellite, corresponding to the largest scales we can observe. Deviations from perfect
isotropy only appear at the level of 10−5!
Given a certain energy-matter content, and together with the the Einstein equations, the Cosmo-

logical Principle allows one to derive how the entire Universe has evolved and will be evolving in
the future. However, the homogeneous picture has its obvious limitations since it does not allow to
describe both i) the formation of galaxy and galaxy clusters as well as their structures in filaments,
illustrated in fig 2, and more generally the matter perturbations: in a perfectly homogeneous and
isotropic universe, we would not even be here to discuss it; ii) the small temperature and polarization
anisotropies of the cosmic microwave background (CMB) photons. Given a homogeneous and isotropic
energy-matter field with FLRW metric, it is possible to compute perturbatively the evolution of small
inhomogeneties and isotropies that live on top of this background. One first solves for the evolution
of the background quantities, as we shall see in this section, neglecting back-reaction of the density
and metric perturbations.
Once background quantities are known, one can solve the equations governing the evolution of the

Figure 1: The CMB temperature map as it is seen by Planck. Taken from ESA website:
https://www.cosmos.esa.int.

7
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Figure 2: The SDSS’s map of the Universe. Each dot is a galaxy; the color bar shows the local density. Taken
from SDSS website: http://www.sdss.org.

perturbations, which will be introduced in sec. 2.1. We shall do it starting either from the Einstein
equations and the stress-energy tensor conservation, or from the full perturbed Boltzmann equations
for the phase-space density, as required for non-perfect fluids. This perturbative approach also has
limitations. A standard result is that density perturbations during matter domination grow like the
scale factor and eventually

δρ

ρ
≡ ρ̄− ρ

ρ
> 1 . (1.1.1)

Hence, our assumption of small density perturbations breaks down when structure formation starts to
be efficient: one needs to go to the so-called "non-linear" perturbation theory, which is, however, be-
yond the scope of this work, although we will comment on it. One might wonder about the importance
of neglecting back-reaction in that case. This is indeed still an open problem, some authors arguing
that this could even be responsible for (at least part of) the accelerated expansion in our Universe
(e.g. [130] for a review). However, staying at the linear level, we shall see that the studies of matter
perturbations and CMB anisotropies are still a very powerful tool in our quest for understanding the
nature of DM, which shows a nice complementarity with the study of Big Bang nucleosynthesis and
spectral distortions of the CMB blackbody distribution.
This recap is based on textbooks [90], [217], [389], [391], [412] and references therein, to which the
reader is referred for more details. We will use Planck units ~ = c = 1 in this work, so for brevity,
those factors will not always be explicitly mentioned.

1.1.1 Geometry of the expanding Universe

The brilliant intuition of Einstein was to understand that gravity is not a force, in the common
“Newtonian” sense, acting to modify trajectory of particles moving in flat space. On the contrary,
he understood that particles are traveling freely in curved space, the exact geometry of which is
determined by the influence of the energy density of the particles themselves. The key equation from
which everything starts is the famous Einstein equation, relating the content in matter-energy at one
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point of the Universe xµ = (ct, xi) through the tensor Tµν , to its geometrical properties at the same
point encoded in the so-called Einstein tensor Gµν :

Gµν ≡ Rµν −
1

2
Rgµν − Λgµν = 8πGTµν . (1.1.2)

This is a non-linear equation for the metric gµν , which relates the invariant space-time interval ds2

and the coordinates dxµ:
ds2 = gµνdx

µdxν (1.1.3)

where Einstein’s implicit sum convention has been used. The Ricci tensor Rµν depends on the metric
and its derivatives; as well as the Ricci scalar R ≡ gµνRµν .
The Ricci tensor is usually expressed in terms of the Christoffel symbol Γµαβ as,

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβµα , (1.1.4)

where the Christoffel symbols Γµαβ are related to derivatives of the metric through the identity,

Γµαβ =
gµν

2

[
gαν,β + gβν,α − gαβ,ν

]
. (1.1.5)

Here, commas mean derivatives with respect to x.
The question now is: what is the metric of our Universe? Following the cosmological principal means
that our Universe can be represented by a time-ordered sequence of three-dimensional spatial slices,
each of which is homogeneous and isotropic. In this case, the most general form of the metric is the
FLRW solution that can be expressed in polar comoving coordinates and physical time:

ds2 = gµνdx
µdxν = dt2 − a(t)2

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
. (1.1.6)

Remarkably, the metric depends only on one time-dependent parameter, namely the scale factor
a(t), and a normalized constant spatial 3-curvature k, which can only take values 1,-1 or 0 for elliptical,
hyperbolic and euclidian (sometimes loosely dubbed flat) geometry respectively, as enforced by the
homogeneous and isotropic 3-spaces.
The physical coordinates xiphys are related to the comoving ones via xiphys = a(t)xi, and the physical
velocities are thus:

viphys ≡
dxiphys

dt
= vipec +Hxiphys . (1.1.7)

It has two parts: the peculiar velocity vipec and the Hubble flow Hxiphys, where H is the usual Hubble
parameter defined as H ≡ ȧ/a. One can see that we simply find again the law already introduced
by Hubble in 1929. Similarly, if we arbitrarily normalize the scale factor to 1 at present time, we can
re-introduce the redshift as

1 + z ≡ {a(t0) = 1}
a

(1.1.8)

since wavelengths are stretched with the Universe’s expansion as well. Introducing conformal time

τ =

∫
dt

a(t)
(1.1.9)

to which we shall give some meaningful sense later, one can rewrite the former metric in the nice way:

ds2 = a(t)2

(
dτ2 −

[
dr2

1− kr2
+ r2dΘ2 + r2 sin2 Θdφ2

])
. (1.1.10)
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The second key equation, equivalent to “F = ma” in Newtonian physics, is the geodesic equation. The
starting point is to impose the parallel transport of a freely falling partice in a given spacetime metric
with four velocity

Uµ =
dxµ

dλ
(1.1.11)

where λ is a monotonically increasing variable along the particle’s path.
It yields the following equation:

dUµ

dλ
+ ΓµαβU

αUβ = 0 . (1.1.12)

Note that it is possible to rewrite this equation in a more practical way since:

d

dλ
Uµ(xα(λ)) = Uα

∂Uµ

∂xα
⇒ Uα

(
∂Uµ

∂xα
+ ΓµαβU

αUβ
)

= 0 (1.1.13)

It is standard to introduce the energy-momentum 4-vector Pµ = mUµ, which verifies the “on-shell”
condition P 2 ≡ gµνP

µP ν = m2 for a massive particle (0 for a massless one with energy-momentum
4-vector now defined as Pµ = (E,P i)). One can thus rewrite eq. (1.1.12):

Pα
∂Pµ

∂xα
+ ΓµαβP

αP β = 0 . (1.1.14)

Furthermore, for a homogeneous FLRW background, ∂iPµ = 0 hence one finds that Pµ satisfies the
following geodesic equation:

P 0dP
µ

dt
+ ΓµαβP

αP β = 0 . (1.1.15)

For a homogeneous and isotropic fluid, described by the FLRW metric, the physical energy and
momentum measured by comoving observers are

E = P 0, pi = aP i , (1.1.16)

Combining the geodesic equation and the on-shell condition leads to the standard result that:

• For massless particles, p = E ∝ 1
a ,

• For massive particles, p = mv√
1−v2

∝ 1
a ,

where v2 is the magnitude of the physical peculiar velocity.

1.1.2 Dynamics of the expanding Universe

1.1.2.1 The continuity equation

The last fundamental quantity that has not been developed further is the stress-energy tensor on the
right-hand side (RHS) of eq. (1.1.2). Before considering perturbations with it, we will assume that
each species can be described as a perfect isotropic fluid. For such a species, the stress-energy tensor
is given by

Tµν = (ρ+ P)UµUν − Pgµν , (1.1.17)
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where ρ is the density of the fluid and P its pressure. If the fluid has 0 velocity in the comoving
frame, Uµ = dxµ/dt = (1,~0) = δ0

µ or in conformal time Uµ = a−1δ0
µ, the stress-energy tensor is also

commonly written as:
Tµν = diag(ρ,−P,−P,−P) . (1.1.18)

Quite interestingly, it is possible to add the cosmological constant directly inside the stress energy-
tensor as

T λµν =
Λ

8πG
gµν , (1.1.19)

where it is now interpreted as a new dark energy fluid with ρΛ = Λ8πG = −PΛ. Historically, it
was understood as a the energy/pressure of the vacuum itself, as predicted by quantum field theory.
However, the predicted vacuum energy density is off by about 120 orders of magnitude!! Such a
discrepancy still remains to be solved, and it could point to exotic physics or modifications of GR.
The conservation criterion in a expanding universe, following Bianchi identities, implies the vanishing
of the covariant derivative,

Tµν;µ ≡ Tµν,µ + ΓµαµT
α
ν − ΓανµT

µ
α . (1.1.20)

It is four separate equations which for ν = 0 yields the continuity equation,
∂ρ

∂t
+ 3

ȧ

a
[ρ+ P] = 0 (1.1.21)

⇔ a−3∂[ρa3]

∂t
= −3

ȧ

a
P (1.1.22)

and for ν = i the Euler equation (conservation of momentum, vanishing at zeroth order for a homo-
geneous background). We shall see a more general form of the stress-energy tensor in sec. 1.3.
In order to close the system of equations, one needs to postulate an equation of state, i.e. an equation
relating the “state variables” pressure and density, which in the case of a perfect fluid can be written
as:

P = wρ. (1.1.23)

From eq. (B.1.64), this means that

a−3∂[ρa3]

∂t
= −3

ȧ

a
ωρ ⇒ ρ ∝ a−3(1+ω) . (1.1.24)

Typically, non-relativistic particles (i.e. particles whose energy density is dominated by their mass)
such as baryons and dark matter have negligible pressure, w ' 0, meaning ρ ∝ a−3. On the other
hand, relativistic species such as photons and neutrinos before their non-relativistic transition have
w ' 1/3, leading to ρ ∝ a−4. Finally, by comparing TΛ

µν and eq. (1.1.18), one can see that the equation
of state for vacuum energy is w = −1, yielding indeed ρ = const. More exotic physics, for instance a
scalar field evolution, could result in a time-varying equation of state. This will be extensively studied
by the next generation LSS such as Euclid and LSST.

1.1.2.2 Friedmann-Lemaître equations

We now want an equation for the evolution of the scale factor. This is obtained by considering the
only non-zero components of the Einstein eq. (1.1.2), namely µ = ν = 0 and µ = ν = i. The (00)
component is:

G00 ≡ 3

[
k

a2
+

(
ȧ

a

)2]
= 8πG

{
T00 = ρ+ ρΛ

}
, (1.1.25)
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which can be rewritten as

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
.

where, from now on, · represents derivatives with respect to proper time t and ′ will denote derivatives
with respect to conformal time η defined in eq. (1.1.9). It is common to express this in terms of the
critical density today, i.e. the density of a flat universe (k = 0) today

ρcrit,0 =
3H2

0

8πG
= 1.9× 10−29h2 g cm−3 (1.1.26)

where the dimensionless parameter h has been introduced as

H0 ≡ 100 h km sec−1 Mpc−1 . (1.1.27)

The reduced Hubble parameter h is nowadays measured to be very close to 0.7. We define the dimen-
sionless density parameters

ΩI ≡
ρI,0
ρcrit,0

ΩΛ ≡
Λ

3H2
0

Ωk ≡ −
k

H2
0a

2
(1.1.28)

which verify
Ωtot ≡ {Ωr ≡ Ωγ + Ων}+ {ΩM ≡ Ωb + Ωcdm}+ ΩΛ = 1− Ωk . (1.1.29)

This parametrization allows one to write eq. (1.1.26) as

H2(a) = H2
0

[
Ωra

−4 + ΩMa
−3 + Ωka

−2 + ΩΛ

]
. (1.1.30)

For a Universe dominated by one of its components this equation can be readily integrated to give:

a(t) ∝
{
t

2
3(1+w) w 6= −1

eHt w = −1
(1.1.31)

Capital Ω’s represent the relative abundance of each fluid in the universe today. The physical density
of each species s, in units of the critical density today, is usually defined in the following way

ωs ≡ Ωsh
2 , (1.1.32)

which allows one to rewrite eq. (1.1.26) in yet another form:

H2(a) = 100
[
ωra

−4 + ωMa
−3 + ωka

−2 + ωΛ

]
. (1.1.33)

Anticipating a bit for the next chapter, we mention that the proportion of each fluid in our Universe
has been measured very precisely nowadays. They have been found to be:

ΩΛ = 0.69, ΩM = 0.31, Ωb = 0.05, Ωγ = 5.38× 10−5, Ων ≤ 0.016, Ωk ≤ 0.021 . (1.1.34)

From the measurement of ΩM and Ωb it is possible to deduce that about 90% of the matter content
today is in the form of cold dark matter (CDM). Cosmology thus constitutes one of the best indicators
for the presence of CDM. We develop on this measurement in chapter 2 and in chapter 3.
Two very important eras in this study are the time of matter-radiation and matter-Λ equality. As we
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Figure 3: The evolution of the species densities (left panel) and distances (right panel) in the Universe using
the best-fit parameters from Planck [19]. The redshifts of matter-radiation equality and Λ-matter
equality are also shown.

will see later, the change in the time-evolution of the expansion rate will induce a time-evolution of the
gravitational potential wells which are of utmost importance for the generation of CMB temperature
anisotropies. Matter-radiation equality happened at:

Ωrh
2a−4

eq
!

= ΩMh
2a−3

eq ⇔ a−1
eq =

ΩM

Ωr
⇔ 1 + zeq = 2.4× 104ΩMh

2 ' 3440 , (1.1.35)

whereas matter-Λ equality occurred around:

ΩMh
2a−3

Λ = ΩΛh
2 ⇔ a−1

Λ =

(
ΩΛ

ΩM

)1/3

⇔ 1 + zΛ ' 1.3 . (1.1.36)

The (ii) component of the Einstein equation, combined with the continuity eq. (B.1.64), leads to the
“acceleration equation":

Gii =

[
2
ä

a
+

(
ȧ

a

)2

+
k

a2

]
= 8πG

{
Tii = −P + Λ

}

⇔ ä

a
= −4πG

3
[ρ− 3P] +

Λ

3
. (1.1.37)

This equation indicates that the Universe’s expansion is adiabatic, i.e. that the total entropy is con-
stant, and we shall come back to that later. Introducing the deceleration parameter q as:

q = − ä
a

1

H2
0

, (1.1.38)

one can write former equation as

q =
Ωtot

2

(
1 + 3wtot

)
, (1.1.39)

where wtot ≡
∑

s Ps/
∑

s ρs. Those constitute the well-known Friedmann-Lemaître equations govern-
ing the expansion of the Universe.
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1.1.3 Distances in our Universe

In an expanding Universe, such as the one of GR, the notion of distance can be somewhat trickier
than the everyday life definition. The first distance that one can introduce is the comoving distance
traveled by photons between a distant object emitting them from (te, re, θe, φe) and us, which remains
fixed as the universe expands. It has the form:

χ(r) =

∫ re

0

dr√
1− kr2

(1.1.40)

which can readily be integrated to give

χ(r) =





sin−1(r) if k = 1

r if k = 0

sinh−1(r) if k = −1

(1.1.41)

Note that by using ds2 = 0 for photons, one can rewrite it as

χ(z) =

∫ t0

te

dt

a(t)
=

∫ a(t0)

a(te)

da

a2H(a)
=

∫ z(te)

0

dz

H(z)
(1.1.42)

and we can relate it to eq. (1.1.9) for te = 0, in which case it has been dubbed conformal time.
The evolution of the Hubble rate with redshift H(z) is related to the matter content of the Universe
through Friedmann eq. (1.1.30). This is a fundamental distance, as it is the maximum distance that
can have been crossed since the beginning of time, and thus plays the role of a comoving horizon.
For geodesics corresponding to propagation along the radial direction (i.e. fixed φ and θ) we have
dχ = dr/

√
1− kr2, and it is useful to rewrite the FLRW metric as

ds2 = gµνdx
µdxν = dt2 − a2(t)

[
dχ2 + r2(χ)(dθ2 + sin2θdφ2

]
(1.1.43)

where the function r2(χ) is

r2(χ) =





sinh2 χ if k = 1

χ2 if k = 0

sin2 χ if k = −1

(1.1.44)

A second very important distance enters the definition of the observed flux F emitted by an object
with known luminosity L (or “standard candle”) at a comoving distance χ. Assuming isotropy, from
conservation of the luminosity passing through a spherical shell of radius dL, one simply gets that the
flux is given by:

F =
L

4πdL(a)2
(1.1.45)

Considering now that the Universe’s expansion will affect both the wavelength (or energy) of the
emitted photons and the distance that they have to cross by a factor a, the observed flux will thus be:

F =
La2

4πχ(a)2
. (1.1.46)
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Figure 4: The Hubble diagram constructed from the observations of SNIa. The unit on the left axis is directly
related to the measured flux, and thus to the luminosity distance assuming the intrinsic luminosity
of the source is known. Taken from ref. [90].

Hence, the luminosity distance dL is defined as:

dL =
χ(a)

a
= χ(z)(1 + z) . (1.1.47)

Supernovae Ia (SNIa) are, for instance, such standard candles. If on top of the luminosity distance, the
redshift of the source is known (e.g. from spectral lines or information on the host of the SNIa), one
can construct a SNIa Hubble diagram (dL vs z), as represented in fig. 4, and try to adjust this relation
assuming a given energy content. It is possible to extract the expansion rate and the proportion of the
different species today from such analysis. As mentioned in the introduction, it is the study of such a
diagram that has led to the discovery of the accelerated expansion in our Universe.
A last distance we need to introduce is very useful when one disposes of a “standard ruler”, i.e. an
object of known intrinsic size D. One can decide to measure its angular size δθ, and assuming it to
fulfill δθ � 1, we can introduce the angular diameter distance of that object as

dA =
D

δθ
. (1.1.48)

The comoving size of the object is simply D/a, so the comoving distance to the object is χ(a) =

D/(aδθ). Thus, the angular diameter distance can be related to the comoving distance by:

dA = aχ(a) =
χ(z)

(1 + z)
(1.1.49)

which also implies the relation dA = a2dL. This distance will be of major interest in this work, as the
typical size of CMB fluctuations (also known as sound horizon at decoupling) can be computed from
first principles.
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Figure 5: Illustration of the Horizon Problem in standard cosmology and its inflationary solution. Adapted
from Ref. [90].

1.2 Inflation in a nutshell

We now wish to introduce the Inflation mechanism, i.e. a phase of accelerated expansion in the early
universe, necessary to solve several puzzles of the standard cosmological models, and able to explain
the origin of fluctuations that we shall describe later on. This section is mostly based on lectures notes
[89], [90].

1.2.1 Original motivations for Inflation

1.2.1.1 The Horizon Problem

It was soon realized that the FLRW Cosmology could not be complete. Indeed, it is based on the
hypothesis of isotropy and homogeneity of the Universe on large scales, which is well confirmed by
observations (for instance, the temperature varies only at the O(10−5) level everywhere in the sky).
However, it is necessary to make sure that different parts of the sky could have been in causal contact
far in the past in order to thermalize, which raises a conceptual problem: the size of a causal patch is
nothing but the distance that light can travel in a certain amount of time. It is given by eq. (1.1.42).
The maximum distance that can be traveled by light since the beginning of time has already been
introduced before: it is nothing but the definition of conformal time (in units with c = 1), sometimes
dubbed (comoving) particle horizon. The size of the causal region at a given time τ is thus given by
the intersection of the past light cone of a given observer with the spacelike surface τ = τi. This leads
to a fundamental problem in the standard model, which is known as the Horizon problem, represented
in fig. 5: The finiteness of the conformal time between ti = 0 and the time of CMB decoupling tdec
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implies that most spots in the CMB cannot be in thermal contact. Indeed, light cones of distant
points in space (straight 45◦ line in the space-time diagram) do not cross, and their causal regions,
represented in red in fig. 5 in the context of standard cosmology, do not overlap. Let us now see how
one can solve this puzzle with inflation.
It is possible to rewrite eq. (1.1.9) in an illuminating way

τ =

∫ t

0

dt

a(t)
=

∫ a

ai≡0

da

aȧ
=

∫ ln a

ln ai

H−1d ln a . (1.2.1)

In other words, the causal structure of spacetime can be related to H−1 = (aH)−1, the comoving
Hubble radius. As before, we consider a Universe dominated by a given fluid with constant equation
of state w ≡ P/ρ. Hence,

H−1 = H−1
0 a

1
2

(1+3w) . (1.2.2)

All standard forms of matter satisfy the strong energy condition (SEC), 1 + 3w > 0, which results in
an increasing comoving Hubble radius as the universe expands, and conversely if we go back in time,
the comoving Hubble radius was smaller and smaller 1. To solve the issue we need to postulate a phase
of decreasing Hubble radius in the early universe

d

dt
H−1 < 0 , (1.2.3)

which can be obtained only if the SEC is violated, 1 + 3w < 0. Now comes an important point: In
writing eq. (1.2.1), we have implicitly assumed that at ai = 0 (or ti = 0), conformal time τi goes to 0
as well. It can be easily checked that this is indeed the case as long as the SEC is verified, by slightly
generalizing eq. (1.2.1) in trading the lower integration bound for τi defined as

τi ≡
2H−1

0

(1 + 3w)
a

1
2

(1+3w)

i → 0 if ai → 0, w > −1

3
. (1.2.4)

However, once the SEC is violated, one can quickly realize that the Big Bang singularity is pushed to
negative conformal time

τi ≡
2H−1

0

(1 + 3w)
a

1
2

(1+3w)

i → −∞ if ai → 0, w < −1

3
. (1.2.5)

In practice, there is much more conformal time than previously thought between the singularity and
decoupling, as illustrated in fig. 5. The point τ = 0 has now become a transition point between
inflation and the standard Big Bang evolution, which corresponds to the phase of “reheating”, as we
will see. We can now give more sense to fig. 25. At early times, before inflation, all scales of interest
were deep inside the Hubble radius, and therefore able to interact. During inflation, the Hubble
radius decreases. Hence, scales exit the Hubble radius, meaning that they cannot communicate. When
standard cosmology takes over, the Hubble radius increases again, and modes can reenter it.

1.2.1.2 The flatness problem

Another historical problem associated to the standard Big Bang model is related to the smallness of
the spatial curvature Ωk. The Planck satellite, for instance, indicates that |1−Ωk| < 10−2 [19]. Should

1 We can readily perform integration of eq. (1.2.1) to get τ = 2
(1+3w)

H−1. In standard cosmology, it is common to trade
the word “particle Horizon” for “Hubble radius”, although their rigorous equality is only true for photons.
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we be surprised by this very small value? Let us consider the Friedmann equation with curvature but
no cosmological constant, eq. (1.1.30). Dividing both sides by the Hubble parameter, we can write

Ω(a) = 1− Ωk(a) with Ω(a) ≡ ρ(a)

ρcrit
, Ωk(a) ≡ − k

a2H2
. (1.2.6)

This implies
dΩ

dt
= −2

k

a2H2

{
ȧ

a
+
Ḣ

H

}
= −2ΩkH

{
1 +

Ḣ

H2

}
= −2ΩkH(1− ε) (1.2.7)

where the parameter ε ≡ − Ḣ
H2 has been defined.The Friedmann equation (1.1.26) and the continuity

equation (B.1.64) can be combined to obtain

ε = − Ḣ

H2
=

3

2

(
1 +
P
ρ

)
=

3

2

(
1 + w

)
(1.2.8)

For standard matter w > 0 and therefore ε > 1, as we have already stated. This implies that dΩk/dt >

0. Therefore, if we start away from null curvature, it will increase with time! To get such a tiny fraction
of curvature, one would need to start at early times with |1−Ωk| < 10−55. It is really hard to believe
that this was the case by the virtue of initial conditions. However, we see that when w < 1/3, i.e.
when the SEC is violated, dΩ

dt becomes negative: the solution with null curvature at late time is an
attractor, which is much more satisfying form the conceptual point of view.

1.2.1.3 Conditions for successful Inflation

The first important comment to make is that the shrinking Hubble sphere implies accelerated expan-
sion:

d

dt
H−1 =

d

dt
(aH)−1 =

d

dt
(ȧ)−1 =

ä

ȧ2
(1.2.9)

d

dt
H−1 < 0 ⇒ ä > 0 . (1.2.10)

We have already stated that it corresponds to a situation where ε = −Ḣ/H2 < 1, which requires
a small value of Ḣ or a slowly varying Hubble parameter. Perfect inflation corresponds to ε = 0, in
which case the spacetime metric becomes the historical De Sitter space

ds2 = dt2 − e2Htd~x2 (1.2.11)

where H = const. A small but finite ε 6= 0 is required in order for inflation to end. However, this line
element is still a good approximation, which is why inflation is often dubbed quasi-de Sitter period.
The parameter ε is often rewritten as

ε =
Ḣ

H2
= −d lnH

dN
where dN ≡ d ln a = Hdt . (1.2.12)

N measures the number of e-folds of inflation, i.e. the number of times a increase by a factor e. How
many e-folds of inflation do we need? At the very least, modes that are observable today should fit
inside the comoving Hubble radius at the beginning of inflation, i.e.

H−1
0 < H−1

I . (1.2.13)
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Assuming a radiation dominated universe (H = aH ∝ a−1) since the end of inflation for a simple
estimate, one obtains

H0

HE
=
aE
a0
∼ T0

TE
. (1.2.14)

The temperature at the end of inflation TE is unknown. Historically, values considered were of order
TE ∼ 1015 GeV, which corresponds to the energy scale of Grand Unified Theory (we comment a bit on
this in chapter 3). However, the only real lower constraints come from the requirement of a successful
BBN i.e. TE > O(10) MeV. Sticking to the historical estimate TE ∼ 1015 GeV, while T0 ∼ 10−4 eV,
we can write

H−1
I > H−1

E ∼ 1028H−1
E . (1.2.15)

We thus need the comoving Hubble radius to shrink by a factor 1028, or in other words assuming
H ∼ const. During inflation

aE
aI

> 1028 ⇒ ln

(
aE
aI

)
> 64 , (1.2.16)

which leads to the famous result that a successful solution to the horizon problem requires about
N = 60 e-folds of inflation.
The duration of inflation is measured by a second parameter

η ≡ d ln ε

dN
=

ε̇

Hε
. (1.2.17)

If |η| < 1, the fractional change of ε per Hubble time is small and inflation persists.
For inflation to be realized, it is required to have a violation of the SEC, w = P/ρ < 1/3. This means
that inflation requires negative pressure, and we will see how this can be realized thanks to a scalar
field. Note also that the condition on ε implies (via the continuity equation (B.1.64))

∣∣∣∣
d ln ρ

d ln a

∣∣∣∣ = 2ε < 2 , (1.2.18)

which means that, for small ε, the energy density is roughly constant with the expansion instead of
diluting.

1.2.2 Scalar field inflation and slow-roll conditions

1.2.2.1 Scalar field dynamics

The simplest inflation model invokes a single scalar field φ(t, ~x), the inflaton, minimally coupled to
Einstein gravity

S =

∫
d4x
√−g

[
M2

pl

2
R

︸ ︷︷ ︸
SEH

− 1

2
gµν∂µφ∂νφ− V (φ)
︸ ︷︷ ︸

Sφ

]
, (1.2.19)

where g ≡ det(gµν) and we have defined the (reduced) Planck mass

Mpl =

√
~c

8πG
= 2.4× 1018 GeV . (1.2.20)
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Figure 6: An arbitrary slow-roll potential. Adapted from Ref. [90].

The action eq. 1.2.19 is the sum of the Einstein-Hilbert action SEH and a scalar field Sφ with canonical
kinetic term and potential term V (φ), whose shape we will choose to be similar to fig. 6. The stress-
energy tensor for a scalar field is

T φµν ≡ −
2√−g

δSφ
δgµν

= ∂µφ∂νφ− gµν
(

1

2
gαβ∂αφ∂βφ− V (φ)

)
(1.2.21)

while the least action principle applied to Sφ leads to the standard Klein-Gordon equation of motion

∂Sφ
∂φ

=
1√−g∂µ(

√−g∂µφ) + V,φ = 0 . (1.2.22)

where V,φ ≡ dV/dφ. We now restrict the study to the FLRW metric. The symmetries of the FLRW
spacetime require φ = φ(t) while det(gµν) = −a8. Thus we infer

T 0
0 = ρφ =

1

2
φ̇+ V (φ) ,

T ij = −Pφδij = −
(

1

2
φ̇2 − V (φ)

)
δij ,

φ̈+ 3Hφ̇+ V,φ = 0.

(1.2.23a)

(1.2.23b)

(1.2.23c)

Furthermore, the Friedmann equations reduce to

H2 =
1

3M2
pl

[
1

2
φ̇2 + V

]
,

Ḣ = −(ρφ + Pφ)

2M2
pl

=
1

2

φ̇2

M2
pl

.

(1.2.24a)

(1.2.24b)
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This allows one to determine the ε and η parameters

ε = − Ḣ

H2
=

φ̇2/2

M2
plH

2
(1.2.25)

η =
ε̇

Hε
=

1

Hε

{
1

M2
plH

2

[
φ̈φ̇+

φ̇2Ḣ

H2

]}

= 2

[
φ̈

Hφ̇
− Ḣ

H2

]

= 2(ε− δ) , (1.2.26)

where the dimensionless acceleration per Hubble time δ ≡ −φ̈/(Hφ̇) has been introduced. The condi-
tions for inflation {ε, |η|} < 1 ⇔ {ε, |δ|} < 1 imply that the kinetic energy φ̇2/2 must make a small
contribution to the total energy density ρφ = 3M2

plH
2. This is known as slow-roll inflation. Under

the assumption that slow-roll is verified ε � 1 ⇒ φ̇2/2 � V , it is possible to write the Friedmann
equation (1.2.24a)

H2 ∼ V

3M2
pl

, (1.2.27)

while δ � 1 allows to write the KG equation (1.2.23c) as

3Hφ̇ ∼ −V,φ . (1.2.28)

Taking the time derivative of eq. (1.2.28) combined with eq. (1.2.27) allows one to rewrite the slow-
roll parameters as function of the potential V (φ) and its derivative; these new parameters are dubbed
potential slow-roll parameters

εV ≡
M2

pl

2

(
V,φ
V

)2

, |ηV | ≡M2
pl

|V,φφ|
V

. (1.2.29)

One can thus check whether slow-roll is verified, {εV , |ηV |} � 1, directly from the inflaton potential.
For instance, a toy model for inflation is

V (φ) =
1

2
m2φ2 . (1.2.30)

We can readily obtain the slow-roll parameters as V,φ = m2φ and V,φφ = m2. Those are

ηV (φ) = ηV (φ) = 2

(
Mpl

φ

)2

. (1.2.31)

Therefore, in this toy model, slow-roll is satisfied only for super-Planckian values of the inflaton
φ >
√

2Mpl.

1.2.2.2 Reheating

In order for standard cosmology to start, we need inflation to end. This is achieved when the potential
steepens and the inflaton field gets kinetic energy. After inflation, the inflaton field begins to oscillate
at the bottom of the potential V (φ), and the amplitude of φ is small. If we assume that it can be
locally approximated by V (φ) = 1

2m
2φ2, then the equation of motion is given by

φ̈+ 3Hφ̇ = −m2φ . (1.2.32)
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Both V (φ) and φ̇ are small, such that the expansion time scale, given by eq. (1.2.24a), has become
much longer than the oscillation period H−1 � m−1, and the friction term is negligible. We thus can
integrate

φ̈ = −m2φ⇒ dφ̇ = −m2φ
dt

dφ
dφ⇒ dφ̇φ̇ = −m2φdφ⇒ φ̇2 = −m2φ2 (1.2.33)

The continuity equation, combined with eqs. (1.2.23a), yields

ρ̇φ + 3Hρφ = −3HPφ = −3

2
H (m2φ2 − φ̇2)︸ ︷︷ ︸

time average →0

(1.2.34)

Hence, we see that the oscillating field behaves like pressureless matter, with ρφ ∝ a−3. However, if
we don’t want to end up with an empty universe, the energy of the inflaton has to be transferred to
standard model (SM) particles: this is the reheating phase. We assume that eventually the inflaton is
coupled to SM particles such that it will experiences decay at a constant rate Γφ. Hence, the energy
density follows the equation

ρ̇φ + 3Hρφ = −Γφρφ . (1.2.35)

The physics entering the computation of Γφ can be extremely involved, and while we will not detail
anything here, an interested reader can have a look at the review [87]. Let us just mention that if the
decay occurs into fermions, the decay is usually slow and our equation is valid.
The generic pictures however, is that particles will quickly be created by interactions with each other,
and the plasma will reach an equilibrium with some reheating temperature Trh, fixed by the energy
density of the inflaton at the end of the preheating epoch. It can eventually be much smaller than the
energy density at the end of inflation if the reheating phase is long. After the thermalization of the
standard model particles is complete, the hot Big Bang Cosmological model begins.

1.3 Thermal history of the Universe

In this section I would like to give an overview of the thermal history of the Universe, i.e. how
the thermodynamical properties and the particle content of the Universe evolved over time. Indeed,
typically any kind of electromagnetic energy injection can potentially lead to a modification of this
history and thus can leave traces in the observables that we have at hand.

1.3.1 From equilibrium to freeze-out

At some point after the end of inflation—that we shall describe a bit further on in this work as the
mechanism generating primordial fluctuations—baryogenesis and dark matter generation take place.
These topics are research fields of their own, so we will not enter in details. In particular, baryogenesis
is associated to the great mystery of “why is there more matter than anti-matter in the Universe?”.
Indeed, if the universe was initially filled with an equal amount of particles and antiparticles, it turns
out to be non-trivial to explain the observed asymmetry between baryons and antibaryons dynamically.
This asymmetry can be related to the inferred photon-baryon ratio η:

η =
nb
nγ
∼ 10−10 , (1.3.1)
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Figure 7: A sketch of our Universe History from the Big Bang until today. Taken from Ref. [90].

which can also be re-expressed in terms of the baryon fraction as

Ωb =
ρb
ρcrit

=
mbηnγ
ρcrit

= η
mb

ρcrit

2ζ(3)

π2
T 3

0 (1.3.2)

where mb is the sum of the masses of the different baryonic components weighted by their relative
abundance.
It is customary to write

η · 1010 =
273.49Ωbh

2

1− 0.007Yp

(
2.725 K

T0

)3(6.708 · 10−45MeV−2

G

)
. (1.3.3)

where the primordial Helium mass fraction Yp ≡ 4n4He/nb has been introduced. We will take η or Ωb

as a fitted parameter in the following, just like we have done with the dark matter abundance till now.
In the following chapter we will at least provide some basic ideas on the favored dynamical processes
for generating DM.
At least at sub-TeV temperatures corresponding to energies explored by known standard model pro-

cesses, for most considerations the primordial (or “primeval”) plasma can be thought to be constituted
of free elementary particles that can be described as an ideal gas, given that their kinetic energy is
much bigger than the potential energy due to mutual interactions. In practice, this is not always a
good approximation. For instance, it does not allow to describe the QCD phase transition, when the
strong interaction confines quarks in bound hadrons such as protons, neutrons and pions.

1.3.1.1 Equilibrium distribution, number density, energy density and pressure

During the first second following reheating, the temperature in the Universe is huge and collision rates
are so high that all SM particles follow Boltzmann distributions at the same temperature T and zero
chemical potential. Kinetic equilibrium will be achieved through processes such as

e±γ ↔ e±γ νee↔ νee pe± ↔ pe± (1.3.4)
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Moreover, the chemical potential µ of any species whose production is not constrained by some quan-
tum number conservation is driven to 0 at equilibrium through number changing processes such as:

e−p↔ e−pγ ⇒ µγ = 0 (1.3.5)

Similarly, any particle x at equilibrium with its antiparticles verifies µx = −µx̄. For instance,
e+e− → γγ ⇒ µe− = −µe+ . (1.3.6)

For a more quantitative description, it is worth introducing the phase-space distribution of any
species:

F (−→r ,−→p , t) =
dN

d3rd3p
, (1.3.7)

which is also written in a dimensionless way as:

f(−→r ,−→p , t) =
F

g/(2π~)3
, (1.3.8)

where g is the number of spin states for a species and (2π~)3 is the volume of a phase-space cell. The
well-known thermal equilibrium distributions at temperature T and with chemical potential µ are
either the Fermi-Dirac one (+) or the Bose-Einstein (-) one

f± =
1

e(E−µ)/T ± 1
, (1.3.9)

which only depend on the modulus p.
One can express the stress-energy tensor as well as the particle current density nµ in terms of the

phase-space distribution by:

Tµν(~x, t) = g

∫
d3P

(2π)3
(−det[gαβ])−1/2P

µPν
P 0

f(~x, P, t) , (1.3.10)

nµ = g

∫
d3P

(2π)3
(−det[gαβ])−1/2P

µ

P 0
f(~x, P, t) , (1.3.11)

where (−det[gαβ])−1/2 = a−3. The only non-zero components of these tensors give the number density
n, the energy density ρ and the pressure P:

n0 = n(t) =
g

(2π)3

∫
d3pfs(t, p) , (1.3.12)

T 0
0 = ρ(t) =

g

(2π)3

∫
d3pEsfs(t, p) , (1.3.13)

T ij = −P(t)δij = −δij
g

(2π)3

∫
d3p

p2

3Es
fs(t, p) . (1.3.14)

Note that in the previous equations, the phase-space distribution does not depend on ~x (as a con-
sequence of homogeneity) and only on the modulus of ~p (as a consequence of isotropy). The ultra-
relativistic limit T � m, which will be useful in this work, gives the explicit expressions:

n =
gζ(3)

π2
T 3 ×

{
1 bosons

3/4 fermions
(1.3.15)

ρ =
π2

15
gT 4 ×

{
1 bosons
7
8 fermions

(1.3.16)

P =
1

3
ρ (1.3.17)



1.3 thermal history of the universe 25

We thus find the typical behavior n ∝ T 3, ρ ∝ T 4 and w = 1/3 for relativistic particles. Similarly, the
non-relativistic limit leads to:

n = g

(
mT

2π

) 3
2

e−m/T (1.3.18)

ρ = mn+
3

2
nT '

T�m
mn (1.3.19)

P = nT � ρ (1.3.20)

In the non-relativistic case, a Boltzmann factor exp(−m/T ) suppresses particle distributions: particles
and antiparticles tend to annihilate but the bath does not have enough energy to recreate them.

1.3.1.2 Effective number of relativistic degrees of freedom

The total radiation density is the sum over the energy densities of all relativistic species:

ρr =
∑

i

ρi =
π2

30
geff(T )T 4 . (1.3.21)

The geff factor is the effective number of relativistic degrees of freedom at the temperature T . A
relativistic species i contributes to the number of degrees of freedom even if it is decoupled with a
different temperature from the thermal bath:

geff(T ) '
∑

bosons

gi

(
Ti
T

)4

Θ(T −mi) + (7/8)
∑

fermions

gi

(
Ti
T

)4

Θ(T −mi) . (1.3.22)

The second Friedmann-Lemaître law encodes the fact that the total entropy of the Universe is con-
served. From the second law of thermodynamics, TdS = dU +PdV −µN , we can express the entropy
density s ≡ S/V of a given species as

si(T, µ) =
ρi + Pi − µni

T
. (1.3.23)

From eq. (1.3.12), one can compute the total entropy of the primordial plasma:

s =
∑

i

si = heff(T )
2π2

45
T 3 . (1.3.24)

Again, this quantity is dominated by relativistic species, that do not receive a Bolzmann suppression.
Hence, heff is the effective number of degrees of freedom in entropy, which can be written as:

heff(T ) '
∑

bosons

gi

(
Ti
T

)3

Θ(T −mi) + (7/8)
∑

fermions

gi

(
Ti
T

)3

Θ(T −mi) . (1.3.25)

The evolution of geff and heff with time, which roughly corresponds to the evolution of the particle
contents of the cosmic plasma , is shown in Fig. 8. One can see the most important events happening
in the universe: i) The electroweak phase transition around 100 GeV, when particles acquire their
masses through the Higgs mechanism; ii) The QCD phase transition, around 150 MeV, when the
strong interaction mediated by gluons binds quarks together inside baryons (protons, neutrons ...)
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Figure 8: Evolution of relativistic degrees of freedom geff(T ) (full line) and effective degrees of freedom in
entropy heff(T ) assuming the Standard Model particle content. Figure taken from ref. [90].

and mesons (pions,...); iii) e+e− annihilations, which lead to a slight reheating of the photons with
respect to neutrinos, that decoupled from the thermal bath around MeV temperatures (see below)
Entropy conservation leads to d(sa3) = 0 i.e. s ∝ a−3. Hence we get

s(T )a3 ∝ heff(T )T 3a3 = const.

⇒ T ∝ h
−1/3
eff a−1 .

Thus, T ∝ a−1, except when a particle annihilates, leading to a decrease in heff and thus a heating
of photons with respect to decoupled species.

1.3.1.3 Equilibrium and departure from equilibrium: The case of neutrino decoupling

The formal tool to describe departures from equilibrium is the Boltzmann equation, which is introduced
in appendix A.1.
We can quickly verify that the plasma is indeed locally at thermal equilibrium (i.e kinetic and

chemical equilibria are realized). The rationale for this lies in the comparison between the expansion
rate of the Universe, or Hubble rate H, and the interaction rate of a given particle Γ with the thermal
bath. If Γ � H, or equivalently {τΓ ≡ Γ−1} � {τH = H−1} then particles attain equilibrium with
the thermal bath. According to Gamow criterion, when Γ = H, the processes becomes inefficient and
the particles decouple from the thermal bath. At temperature T ≥ O(100) GeV, all standard model
particles are relativistic. In that case,

Γ = nσv ∼ α2
AT (1.3.26)

where n ∝ T 3 is the number density of particles, v ' c their average relative velocity, σ the cross section
(proportional to the fourth power of the coupling with the gauge boson A, g4

A, for a diagram with two
vertices) and αA ≡ g2

A/4π is a generalized “fine-structure” constant. In the relativistic limit, the mass
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of particles is irrelevant and, on a dimensional basis, one also has [σ] = [E]−2, hence σ ∝ α2
A/T

2 since
T is the only energy scale available. Given that during radiation domination

H2 ' ρ

3M2
pl

∼ T 4

M2
pl

, (1.3.27)

one typically gets a ratio
Γ

H
∼ Mplα

2
A

T
∼ 1016 GeV

T
(1.3.28)

when αA ∼ 0.01 is used. Thus, we can safely assume that as long as 100 GeV ≤ T ≤ 1016 GeV, our
assumption of local thermal equilibrium is satisfied.

Once particles become non-relativistic and start to annihilate, their abundance does not asymptoti-
cally go to zero. In practice, the assumption of local thermal equilibrium is not always fulfilled because
of the Universe’s expansion. The Gamow criterion for the annihilation rate is eventually matched, pro-
cesses start to be inefficient and the abundance of a given species is said to freeze-out.
A textbook case for this are neutrinos. Neutrinos are coupled to the thermal bath via the weak inter-
action, inducing elastic and inelastic scattering processes of the type:

νi + ν̄i ↔ i+ ī (1.3.29)

νi + i↔ νi + i (1.3.30)

where i = e, µ, τ . The typical collision rate for a Fermi-type of interaction is given by

ΓF ' 〈σv〉n ∼ G2
FT

5 , (1.3.31)

where GF ' 1.166 × 10−5 GeV−2 is the Fermi constant. The Hubble rate is H ∼ T 2/M2
pl, thus, the

Gamow criterion gives
ΓF
H
' G2

FM
2
plT

3 ∼
(

T

1MeV

)3

. (1.3.32)

Neutrino decoupling roughly happens at Tν,dec ∼ 1 MeV. Afterwards, they propagate freely following
geodesics and their distribution remains frozen with

fν(p) =
1

exp
( p
Tν

)
+ 1

. (1.3.33)

The geodesic equation implies p ∝ a−1, thus the fact that the distribution remains frozen implies
Tν ∝ a−1 at all time. Before neutrinos become non-relativistic, their number density, energy density
and pressure is simply given by eq. (1.3.15). After neutrinos decoupling, the entropy of the universe
receives contributions from photons (2), electrons (4× 7/8) and neutrinos (6× 7/8× (T/Tν)3):

heff = heff

∣∣∣∣
plasma

+ heff

∣∣∣∣
ν

=

[
2 +

7

8
× 4

]
+

[
6× 7

8
×
(
Tν
T

)3]
=

11

2
+

[
42

8
×
(
Tν
T

)3]
(1.3.34)



28 the standard cosmological model

As long as T = Tν , nothing special happens for the plasma with respect to neutrinos and heff =

10.75. However at T ∼ me, e± annihilate, reheating the plasma with respect to neutrinos. Entropy
conservation applies separately to neutrinos and the plasma. For the plasma, it leads to

heff(Tbefore)

∣∣∣∣
plasma

T 3
beforea

3 = heff(Tafter)

∣∣∣∣
plasma

T 3
aftera

3

⇔ Tafter = Tbefore ×
(
heff(Tbefore) = 11/2

heff(Tafter) = 2

)1/3∣∣∣∣
plasma

⇔ Tafter = Tbefore ×
(

11

4

)1/3∣∣∣∣
plasma

(1.3.35)

At zero-th order, we can assume that neutrino decoupling is instantaneous, hence for neutrinos entropy
conservation simply gives Tν,after = Tν,before. Thus, we conclude that the temperature of the thermal
bath gets reheated with respect to neutrinos by a factor (11/4)1/3. This relation still holds today, and
the photon temperature has been measured very precisely. We can infer the neutrino temperature and
number density (for 3 neutrino families):

Tγ0 = 2.7255 K , Tν0 = 1.946 K , (1.3.36)

nγ0 = 410 cm3 , nν0 = 112 cm3 . (1.3.37)

After e± annihilation, the relativistic degrees of freedom populating the universe are photons and
neutrinos only. It is common to introduce the effective number of relativistic speciesNeff in the following
way:

ρr = ργ

(
1 +

7

8

(
11

4

)4/3

Neff

)
. (1.3.38)

Neff is equal to three if three conditions are fulfilled: i) There are no other relativistic particles than the
three neutrino species; ii) Neutrinos follow Fermi-Dirac distribution with vanishing chemical potential;
iii) The instantaneous decoupling limit is verified. In practice, we already know that iii) is not realized:
the standard model prediction for Neff is thus 3.046 instead of 3. As we will see further in this work,
cosmology, via measurements of CMB temperature and polarization anisotropies and BBN, is a very
powerful too to constrain any deviation from the standard value of Neff .
Given that neutrinos are non-relativistic today, we can express their relic density ρν0 =

∑
imν,inν0 as

Ων =
ρν0

ρcrit,0
'
∑

imν,i

94 eVh2
. (1.3.39)

The overclosure relation ΩM < 1 gave historically [198] the best bound on neutrino masses:
∑

i

mν,i < 94 eVh2 . (1.3.40)

Currently, significantly more stringent bounds can be derived from a detailed study of structure
formation in the presence of massive neutrinos, as we will see later on.

1.3.2 Big Bang Nucleosynthesis

Big Bang Nucleosynthesis (BBN) is one of the “observational pillars” of the hot Big Bang model, allow-
ing us to constrain properties of the Universe back to when it was a few seconds old, or equivalently
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at the MeV temperature scale. Thus, it corresponds currently to the earliest direct cosmological probe
available, although this might change if primordial B-mode polarization induced by inflation were to
be discovered by the next generation CMB experiments.

1.3.2.1 Theoretical basics

The theory of primordial nucleosynthesis, in its simplest scenario, only contains one free parameter:
the photon-to-baryon ratio η. Until the era of precision CMB physics, measurements of the observa-
tional abundance of deuterium yielded the most precise determination of η. Historically, it was the
first very compelling argument corroborating the non-baryonic nature of the dark matter invoked for
astrophysical dynamics.
BBN is in principle a complicated process of departure from equilibrium, that requires following many
coupled Boltzmann equations governing the evolution of all nuclear abundances, see below. Its main
results can, however, be understood with limited effort, and we shall describe them in the following.
First, it is worth summarizing BBN as the process of incorporation of neutrons inside nuclei, whose
dominant outcome is the production of 4-Helium, which is in fact to a large extent insensitive to the
exact BBN reaction network. Due to the low density, the main processes of neutron incorporation
inside nuclei are a sequence of two-body reactions

n p→ 2H γ

2H2 H→ 3Hen 2H2 H→ 3H p

3He 2H→ 4He p 3H 2H→ 4Hen 2H 2H→ 4He γ

The most important quantity, beside η, is the initial n/p ratio. At temperatures above few MeV,
neutrons and protons are in thermal equilibrium via reactions such as,

νen↔ e−p ν̄ep↔ e+n n↔ p+ e− + ν̄e

We have already seen, when talking about neutrino decoupling, that the weak interaction becomes
inefficient around Tν,dec ∼ 1 MeV. At that time, neutrons and protons are non-relativistic, thus their
ratio is given by:

nn
np

∼ exp(−∆m/Tν,dec) ∼ 0.2 with ∆m = mn −mp = 1.29 MeV . (1.3.41)

However, this ratio will not stay constant; neutrons start to decay when t ∼ τn = 886.7± 0.8 s. Thus,
we get

nn
np
∼ exp(−∆m/Tν,dec) exp(−t/τn) . (1.3.42)

This gives the value of the n/p ratio when BBN starts. One might expect nucleosynthesis to start
when the mean energy of the CMB photons is below the binding energy of the lightest nuclei 2H, i.e.
B2H = 2.22 MeV. However, at T ∼ MeV, the reaction rate is still much bigger than the Hubble rate,
given the very high number of high energy photons in the tail of the photon Boltzmann distribution.
Thus, the reaction n + p ↔ 2H + γ is at equilibrium and the vanishing photon chemical potential
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implies µn + µp = µ2H. Using the expression of the non-relativistic distribution, one can trade this
equality for the following equation:

n2H

nnnp

∣∣∣∣
eq

=
3

4

(
m2H

mnmp

2π

T

)3/2

exp(B2H/T )

⇔ n2H

np

∣∣∣∣
eq

=
3

4
nn|eq

(
4π

mpT

)3/2

exp(B2H/T ) with m2H ' 2mn ' 2mp

⇔ n2H

np

∣∣∣∣
eq

' η

(
T

mp

)3/2

exp(B2H/T ) with nn ∼ nb = ηnγ = η × 2ζ(3)

π2
T 3 . (1.3.43)

Hence, the creation of a significant fraction of deuterium is prohibited by the very small baryon-to-
photon ratio η until the term exp(B2H/T ) compensates, i.e. for T ∼ 70 keV. At that time, deuterium
is not destroyed efficiently anymore and BBN can start. This delay of the beginning of the BBN is
known as the deuterium bottleneck.
To get an estimate of the main BBN outcome, namely the amount of 4-Helium, one can simply assume
that all neutrons will be incorporated inside 4He. Hence, the number of Helium nuclei is n4He = nn/2

and the hydrogen one nH = np−nn. Introducing the primordial Helium mass fraction Yp leads to the
famous result:

Yp = 4× nn/2

np − nn
=

2nn/np
1− nn/np

∼ 2

1 + exp(∆m/Tν,dec) exp(−t/τn)
∼ 0.25 (η ∼ 6× 10−10).

BBN is not limited to 4-Helium formation. The isotopes 2H, 3H (eventually β-decaying into 3He)
and 3He also survive at the level of 10−5 number fraction as ashes of the chains leading to 4-Helium.
On the other hand, the main reactions beyond 4-Helium are:

3H 4He→ 7Li γ 4He3He→ 7Be γ 7Be e− → 7Li νe ,

which only yield 7-Lithium traces at the 10−10 level (number fraction). BBN stops quickly at A = 7

since there are no stable elements with A = 5 or A = 8, although BBN studies typically follow up to
the Oxygen isotopes to achieve sufficient precision. Furthermore, the Coulomb barrier between charged
nuclei highly suppresses production cross section for T < 60 keV. BBN stops around T ∼ 30 keV with
a relic density of nuclei that are in kinetic, but not in chemical (hence thermal) equilibrium with the
plasma. No heavy nuclei are produced during BBN and one has to wait for stellar nucleosynthesis, in
stellar cores or supernovae explosion, to produce all of the other chemical elements.
The typical set of differential equations ruling primordial nucleosynthesis is made of [339] i) the
Friedmann equation (1.1.26); ii) the continuity equation (B.1.64) for the sum of all species involved
in BBN, i.e. photons, electrons, neutrinos and baryons ; iii) a set of Nnuc Boltzmann equations for
Xi ≡ ni/nb of the form

Ẋi =
∑

j,k,l

NI

(
Γkl→ij

XNk
k XNl

l

Nk!Nl!
− Γij→kl

XNi
i X

Nj
j

Ni!Nj !

)
≡ Γi , (1.3.44)

which describe the density evolution of each nuclide species; iv) an equation stating the universe charge
neutrality in terms of the electron chemical potential,

nB
∑

j

ZjXj = ne− − ne+ ≡ L
(me

T
, φe
)
≡ T 3L̂

(me

T
, φe
)
, (1.3.45)
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with L(me/T, φe) the charge density in the lepton sector in unit of the electron charge; v) the Boltz-
mann equations for neutrinos species να

d

dt
fνα(|~p|, t) = Cνα [fνx , fν̄x , fe− , fe+ ] (1.3.46)

where Cνα [fνx , fν̄x , fe− , fe+ ] stands for the collisional integral which contains all microscopic processes
creating or destroying the species να. This set of equations is usually solved using numerical codes
such as PArthENoPE [481], and we make use of the outcome of this code (typically fitting functions
depending on the neutron lifetime, the effective number of relativistic species, the density of baryons
and the expansion rate today) for our studies.

1.3.2.2 Beyond standard model

The result of BBN depends on a number of input parameters (only η in the minimal model) and
assumptions, which allow to test modifications to the standard model. For instance

• Increasing η increases the number of baryons and therefore makes BBN happen earlier. This
will lead to a larger number of 4He, and therefore to lower number of 2H and 3He.

• Neff affects the expansion history of the universe and hence the freeze-out temperature Tν,dec.
If Neff increases, the freeze out temperature does as well, which in turn increases the n/p ratio
and the final 4-Helium abundance, while decreasing 2H and 3He. This fact is illustrated with
the red dot-dashed lines in fig. 9.

• A larger neutron lifetime τn reduces the amount of neutron decay after freeze-out and therefore
increases the final 4-Helium abundance.

• A larger mass difference between neutrons and protons would decrease the n/p ratio at freeze-out
and thus decrease the final 4-Helium abundance.

• The strength of gravity G enters the freeze-out temperature. Increasing it would also increase
Tν,dec and in turn the final 4-Helium abundance.

• On the other hand, increasing the weak force GF would decrease the freeze-out temperature and
therefore the 4He abundance.

• It is possible to constrain exotic neutrino physics because BBN is a very good probe of the
neutrino sector. They can affect the BBN yields typically in two ways: i) the n−p conversion rate;
ii) the overall expansion rate. Electromagnetic (or more exotic) interaction would for instance
modify i). We refer to [339] for a review of the constraints.

• Electromagnetic energy injections in the form of e± and γ can destroy nuclei through photodis-
sociation reactions, while producing others as a product of the reaction. We will make use of
this important effect in chapter 5.

• Hadronic energy injections can affect the n−p conversion rate through charge exchange reactions
and the n/p ratio by (mostly) annihilating protons. Studies of these effects can be found in
refs. [349], [364].
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Figure 9: Left panel - The principal network of reaction happening during BBN [339]. Right panel - The most
recent estimates of 4He, D, 3He and 7Li abundances as a function of η calculated with the reduced
network presented on the left panel (light blue dashed) or with an extended one including C, N,
O nuclei (dark blue). The vertical areas correspond to the WMAP (dot, black) and Planck (solid,
yellow) baryonic densities. The horizontal areas (hatched a) represent the most recent observational
abundances while the horizontal dotted lines correspond to former estimates. The red dash-dotted
lines correspond to a primordial Helium fraction computed with a different value of the effective
number of relativistic species Neff = 3.30 ± 0.27 derived from Planck 2013 data. Figure taken from
Ref. [196].

1.3.2.3 Observational determination of BBN yields

The observational determination of these abundances is very involved. As the Universe is no longer
in the same state as after BBN, efforts devoted to measuring primordial yields are focused on very
old regions, believed to have experienced only little astrophysical evolution, or attempts to model the
influence of stars and astrophysical phenomena on these abundances.

Deuterium
The particularity of Deuterium is that stars only destroy it during stellar evolution and produce
negligible amounts of it. Thus, any astrophysical measurement can in principle produce a lower bound
on the amount of primordial deuterium. Historically, measurements of the local ISM in the Milky
Way have given by far the biggest numbers of measurements. However, the scattering in the value
of 2H/H pointed towards stellar reprocessing of the pristine value due to astration. It is possible to
get a much less contaminated estimate of the amount of primordial deuterium using the Lyman-α
forest: the presence of a hydrogen rich gas cloud crossed by photons emitted by a distant quasar
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Figure 10: Left panel - A compilation of nine measurements of 2H/H via Lymanα absorption along QSOs lines
of sight used in the analysis of Ref. [339]. The horizontal band represents their value of 2H/H,
very similar to the one used in this work taken from Ref. [455]. Right panel - Compilation of
3He/H measurements from HII region as a function of the metallicity O/H, together with the
two determination from PSM and LISM (taken from Ref. [339], original measurements are from
Ref. [78]).

induces absorption at the Ly-α frequency at the epoch of the cloud crossing, being thus observed at
a wavelength λ1

λ1/λLyα = (zcloud + 1)/(zquasar + 1) .

The amount of deuterium relative to the one of hydrogen is determined from the detailed study of the
line profile, close to its edge (due to the isotopic shift). In practice, a handful of measurements are
available as it is necessary to find clouds in a narrow range of optical depth such that the hydrogen
line absorption is not overwhelming and the effect of deuterium sufficiently strong to be detectable. A
compilation of QSOs estimates taken from Ref. [339] is shown in Fig. 10.
From these measurements, the ratio 2H/1H has been determined, and thus the value of η and Ωb

could be inferred. For 2H we adopt the 2-σ limit 2.56 × 10−5 < 2H/H < 3.48 × 10−5 from Ref.
[455]; similar results would follow by adopting the combination value compiled in Ref. [339], namely
2.45 × 10−5 < 2H/H < 3.31 × 10−5, which is also closer to the results of Ref. [480]; our interval also
overlaps with the recent determination in Ref. [507].

Helium
Two Helium isotopes are produced during BBN. The first and most important, as we have seen, is
4He. The difficulty is that Helium is produced inside stars at the same time as heavier elements.
However, a linear correlation between the amount of Helium and the metallicity has been observed,
and the extrapolation to "zero-metallicity" is thought as beeing a good estimator of the primordial
abundance (historically proposed in [473], [474]), although affected by systematic uncertainties such
as plasma temperature or stellar absorption [73], [344]. The abundance of 4He can be measured
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through recombination lines in low-metallicity extragalactic HII regions. This has been done for
various samples of Dwarf Irregular (DIrrs) and Blue Compact Galaxies (BCGs) [343], [346].

The most recent measurement comes from [74] and yields a 4-Helium mass fraction of 4He/H ∼
0.2465± 0.0097. Given that Helium is only produced by stars, it is safer to only use a lower limit on
its abundance, as we shall do later in this work.
Note that in principle the study of CMB anisotropies, sensitive to the Helium fraction, could give an
estimate of the primordial value. However, Planck data do not allow to get a measurement competitive
with direct measurements.

The second Helium isotope is 3He. It is a nucleus of utmost importance for BBN test as its abun-
dance, like deuterium, is extremely sensitive to the baryon density. The difficulty regarding this nucleus
is that it can be both produced or destroyed during stellar nucleosynthesis. It is possible to determine
the abundance of 3He in our solar system via meteorites and solar winds [273], although the most
accurate measurement was done in Jupiter’s atmosphere by the Galileo Probe [415] which allowed
researchers to deduce the amount of 3He in the proto-stellar material (PSM) out of which our Sun
formed, but it is clear that amount of 3He in the local environment has been modified by its influence.
Another measurement was obtained in the Local InterStellar Medium (LISM) thanks to the Ulysses
spacecraft [273]. However, the best observation of primordial 3He are done via the hyperfine transition
in the radio band at 3.46 cm. These very weak emissions is more easily observed in HII region or in
Planetary Nebulae within the Galaxy. Fig.10 - right panel reports these data as a function of the metal-
licity O/H together with the two determination from PSM and LISM (taken from Ref. [339], original
measurements are from Ref. [78]). Contrarily to 4-Helium, a dependence on the medium metallicity
has not been observed, albeit it was originally predicted by models of stellar and galactic evolution.
Although more involved 3D-models are now consistent with observations, the safest approach is to con-
sider only an upper limit on the 3He primordial abundance from Ref. [78] 3He/H < (1.1± 0.2)× 10−5.
This upper limit is also represented in Fig. 10, right panel.

Lithium and the “lithium problems”
Like in the case of Helium, two isotopes can potentially be produced during BBN: 7Li and 6Li. Let us
first consider 7Li. It is produced either directly, by fusion of 4-Helium and tritium nuclei, or indirectly,
by Beryllium production followed by decay through electronic capture. The production branching
ratios are highly dependent on the baryon-to-photon ratio η, and for η ∼ 6 · 10−10, the production
turns out to be dominated by the indirect channel. Now, the lifetime of Beryllium is rather long
(53,12 days ∼ 4.58 · 106 s). Thus, the electronic capture occurs well after the end of BBN. An accurate
computation, taking into account the high density of background photons and, therefore, the high
probability for high-energy photon to destroy Beryllium atoms before the electronic capture, allows one
to determine the temperature at which 50% of Beryllium has decayed. It is similar to the computation
of deuterium formation and it yields T = 8.83 eV⇔ 1.2 · 1010 s [367].
Many astrophysical processes have been proposed as possible sources of non-primordial Lithium. For
instance, Cosmic-rays by interacting with the ISM could produce both isotopes through spallation or
fusion reactions [243], whereas neutrino spallation in supernova could trigger formation of 7Li [301].
Finally, 7Li could even be produced in low mass stars, depending on their stellar evolution [139].
The abundance of 7-Lithium is estimated from absorption lines in metal-poor population II stars.

Spite and Spite [564] performed such observations in stars surrounded by a rather hot halos (T ≥ 6000
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Figure 11: The original Spite Plateau as measured by Spite and Spite [564]. The abscissa stands for the effective
temperature of the atmosphere surrounding the stars.

K). These stars have a thin convection zones avoiding the Li to be brought to regions hot enough to
destroy it. They exhibit two remarkable features: i) a substantially lower Li content than solar metal-
licity stars; ii) a Li abundance that does not vary with metallicity. This constant value, nowadays
called Spite plateau was supposed to be the primordial one, under the assumption that the host stars
had not destroyed any of their primordial lithium. Up to hundreds of these metal-poor stars have been
observed and this Spite plateau was thought to be very robust, until recently, when observations of
stars with even lower metallicity revealed a lowering of the plateau (see e.g. [203] for a recent review).
Today, it is still debated to which extent this plateau reflects a primordial value, but it seems that
at least some halo stars have destroyed their Li. If interpreted as primordial, recent analyses yield
7Li/H ∼ (1.6± 0.3)× 10−10 [527].
On the other hand, measurements of the very fragile isotope6Li are very involved. Abundances are
deduced from star halos that contain primordial 7Li: by looking very precisely at the λ 6.708 nm
resonance line, one can detect the presence of 6Li as a slight modification of the width and asymmetry
of the line profile (e.g. [66]). These are measurements at the edge of sensitivity, with limits at the
6Li/7Li < 0.1 level and some tentative detections around 6Li/7Li ∼ 0.05 which have been claimed.
Of course, if stellar destruction affects 7Li, a fortiori it will affect the more fragile 6Li. A further
complication is that 6-Lithium is also produced by fusions of helium nuclei αα → 6Li + ..., which is
certainly not primordial but comes from cosmic ray interacting with the ISM. What could be a few
percent astrophysical contribution via the αα channel to the measured 7Li might completely dominate
the observed value of 6Li.Thus, the determination of the 6Li abundance allows one at best to put an
upper limit on the primordial 6Li.
Hence, the comparisons of theory and observation for both Lithium isotopes is puzzling: for sure,
inferred values are statistically very different from standard BBN predictions. For instance, the 7Li

fraction predicted by a code like PArthENoPE, obtained assuming values of Ωbh measured by WMAP
and Planck, is [339] 7Li/1H ∼ (4.57± 0.4)× 10−10, a factor ∼ 4 above measurements. For 6-Lithium,
the observed ratio is three orders of magnitude above the value expected from standard BBN, where
the suppressed channel 4He 2H → 6Li γ dominates the production. Yet, this tension may be mostly
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attributed to observational issues, according to recent studies [406].
Those discrepancies, still under inspection nowadays, are known as “lithium problems”. We will ignore
6Li in this work, given recent indications of spurious detections in the direction of solving the discrep-
ancy, but we mention that using observations as an upper limit to its primordial value would provide
very powerful constraints to some regions of parameter space for exotic models.
Regarding 7Li, the situation is less clear. Many solutions for solving the tension have been proposed,
for a recent review on the subject one can look at ref. [242]. We can, however, say that reasons for the
difference are unlikely to originate from unresolved systematic errors, whereas underestimated errors
in the adopted nuclear reaction rates are now excluded (e.g. Ref. [129]). Hence, it seems that the
discrepancy comes from: i) either some modification to the BBN scenario (with e.g. some decaying
exotic particles as we shall explore further); ii) or, perhaps more likely, a reprocessing of the lithium
abundance in very metal-poor stars, contrary to what is commonly believed.

1.3.3 Recombination

When the temperature of the cosmic plasma is high enough, electrons and photons are tightly coupled
due to efficient Thomson scattering between them. As we have seen already, the Hubble expansion
tends to cool down the plasma, allowing BBN to happen. Eventually, the plasma temperature and
density will lower enough for Hydrogen to efficiently form, allowing at the same time photons to
propagate freely, causing the end of the “primordial plasma epoch”. CMB anisotropies that we observe
today, as we shall discuss later, are nothing but a “snapshot” of the universe at photon decoupling,
also called last scattering surface. The recombination era, which encodes the dynamics of the Thomson
scattering and especially of the photon freeze-out, is, therefore, a key era one has to understand in
order to compute meaningful CMB observables. As we will see later, the precision of an experiment
like Planck requires a theoretical knowledge of this era better than the per-mille level! This challenge
has been successfully taken on in the last ten years, and now we shall briefly describe the physics at
play. Furthermore, the recombination history in its whole will be of utmost importance in our study
of the impact of e.m. energy injection, as its modification with respect to the standard behavior will
lead to the biggest phenomenological impact.
This recap is based on ref. [90], [308].

1.3.3.1 Saha recombination and the redshift of decoupling

The key process to follow is the combination of protons and electrons into Hydrogen accompanied by
high energy photon emission. At sufficiently high temperature, or early times, the following “recombi-
nation process” is at equilibrium:

p+ + e− ↔ H + γ . (1.3.47)

Since the photon chemical potential is null, chemical equilibrium ensures that

µp + µe = µH . (1.3.48)

Thus, we can invert this equation to get a relation between the number density of particles at chemical
equilibrium, the so-called Saha equation:

npne
nH

=

(
meT

2π

)3/2

e−ε0/T , (1.3.49)
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where ε0 = mp + me − mH = 13.6 eV and gp = ge = 2 and gH = 4 has been used. The difference
between mp and mH is ignored, except in the exponential function. This very generic equation does
not only apply to cosmology, however in this context global neutrality ensures np = ne. It is common
to introduce the free electron fraction xe, i.e. the fraction of electrons that are not bound inside atoms,
as:

xe ≡
ne
nH

. (1.3.50)

Note that the number of electrons bound inside Helium is not taken into account, leading to a free
electron fraction bigger than one in a fully ionized universe. From previous BBN computations, we
know that (in mass fraction) 4He ' 25% H so xe can be as high as ∼ 1.16 when Helium is doubly
ionized. With this definition, the Saha equation becomes:

x2
e

1− xe
=

1

nH

(
meT

2π

)3/2

e−ε0/T . (1.3.51)

Similarly to the BBN computation, the huge number of photons significantly delays recombination:
one can estimate that when T ∼ ε0 ' 1.6 × 105 K, the RHS is of order 1015! If the reaction were
always at equilibrium, this would allow us to estimate that one has to wait for T ' 3100 K= 0.3 eV
or z = 1140 to have 99% of Hydrogen recombined (xe ∼ 10−2).
From this simple calculation it is possible to estimate the redshift of photon decoupling. Compton
scattering is a key process to understand CMB physics as it rules coupling between photons and
baryons. It corresponds to the following process:

e± + γ ↔ e± + γ . (1.3.52)

with the (non-relativistic) interaction rate given by

Γγ ' neσT , (1.3.53)

where σT ' 2 × 10−3 MeV−2 is the Thomson cross section, valid as the mean photon energy ∼ T is
very small compared to the electron rest mass me ∼ 511 keV at the time of interest. As recombination
progresses, the density of free electrons drops and eventually the interaction rate becomes smaller
than the expansion rate. We can determine when decoupling approximately happens:

Γγ(Tdec) ∼ H(Tdec)

⇔ nHxe(Tdec)σT = H(Tdec)

⇔ η
2ζ(3)

π2
T 3

decxe(Tdec)σT = H0

√
Ωm

(
Tdec

T0

)3/2

⇔ xe(Tdec)T
3/2
dec =

π2H0

√
Ωm

2ζ(3)ησTT
3/2
0

. (1.3.54)

Taking the Saha approximation for xe(Tdec), it is found

zdec ∼ 1320 ⇔ tdec ∼ 290 000 yrs . (1.3.55)

More advanced calculations within the concordance ΛCDM model find zdec ∼ 1090. It is common to
introduce the optical depth τ(z) and the visibility function g(z) as

τdepth(z) ≡
∫ z

0
ne(z)σT

dt

dz′
dz′ , (1.3.56)

g(z) ≡ e−τ
dτdepth

dz
, (1.3.57)
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as those are key functions entering the computation of CMB anisotropies. Typically, τ(z) represents
the opacity of the universe at a given time, when seen from today (z0 = 0). It tends to infinity in the
far past, falls below one at recombination and stabilizes at around 0.1, before the reionization of our
Universe, which we shall describe later. After reionization, it decreases smoothly and reaches 0 today
by definition. g(z) also has a very clear meaning, giving the probability that a CMB photon seen today
experienced its last scattering at redshift (z). In standard cosmology, it is exponentially suppressed in
the primordial universe, reaches its maximum with a very narrow peak around decoupling and then
falls again as the universe is mostly neutral. When reionization happens, g develops a second smaller
and broader peak. The width of the first peak corresponds to the so-called last scattering surface while
the maximum of the visibility function is usually used to define the time of photon decoupling.
A very high precision in the computation of these functions is necessary in order to get meaningful CMB
observables. Unfortunately, there are several important issues with the simple Saha result. Firstly, as
the universe expands, the rate for recombination falls, so that equilibrium becomes difficult to maintain.
In practice, a relic abundance of electrons will freeze-out. Modification of this freeze-out plateau in
the case of e.m. energy injection around and after recombination will have important consequences, as
we explain later on. Using the Saha equation, we can write the Boltzmann equation for the electron
density, including Universe’s expansion and the process (1.3.47), as (see appendix A.1 for derivation):

a−3d(nea
3)

dt
= −neq

e n
eq
p 〈σv〉

[
nH

neq
H

− n2
e

neq
e n

eq
p

]
. (1.3.58)

We can rewrite this equation in terms of the free electron fraction using the Saha eq. (1.3.51) valid at
equilibrium, in order to remove Hubble expansion

dxe
dt

=

[
(1− xe)β − x2

enHα

]
, (1.3.59)

where the ionization rate β has been introduced as

β ≡
(
meT

2π

)3/2

e−ε0/T , (1.3.60)

and the recombination rate α is
α ≡ 〈σv〉 . (1.3.61)

This is the standard form of the recombination equation. When β and α drop, xe freezes-out, leading
to departure from the Saha equation. There is, however, an important issue with this model: indeed,
if one considers recombination happening directly to the ground state, the emitted photon has enough
energy to reionize a neighbouring neutral hydrogen atom. A quick computation shows that the mean
free path of photon with energy just above 13.6 eV is

L0 ∼
1

x1snHσH(1s)γ↔pe
∼ 4× 1014x−1

1s cm (1.3.62)

where x1s is the fraction of atom recombined in the ground (1s) state, nH ∼ 200[(1 + z)/1000]3 cm−3

and σH(1s)γ↔pe ∼ 6× 10−18 cm2. The rate at which photons are reabsorbed is
c

L0
∼ 10−4x1s s−1 . (1.3.63)

Since around recombination H ∼ 10−18(1 + z)3/2 s−1 ∼ 10−14 s−1, if x1 > 10−9, ionization is much
faster than the Hubble expansion and recombination cannot happen efficiently. It is, therefore, nec-
essary to consider recombination in an excited state in order to understand the dynamics of this
era.
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1.3.3.2 Helium recombination

Before going to a more involved picture of recombination, it is mandatory to discuss the case of heavier
nuclei produce during BBN. In practice however, all species but Helium are irrelevant for understanding
CMB anisotropies as they represent only a very tiny fraction of the baryons. We shall therefore ignore
their recombination for simplicity. Helium abundance being about a quarter of that of hydrogen, CMB
anisotropies are sensitive at the % level (increasing with higher peaks) to modifications of the free
electron fraction due to their recombination. It is, therefore, crucial to model Helium recombination
in an accurate way for CMB anisotropy studies.
Helium has two electrons and therefore experiences a recombination in two steps: He2+ →He+ followed
by He+ →He, with ionization energy respectively given by εHe2+ = 54.4 eV and εHe+ = 24.6 eV.
Given that those energies are larger than H ionization energy, He will recombine first. Assuming
that recombination proceeds at equilibrium leads to the Saha equations for He+ and He2+. They are
respectively

nH
xex(He+)

x(He0)
=

(
meT

2π

)3/2

e−εHe2+/T , (1.3.64)

nH
xex(He2+)

x(He+)
= 4

(
meT

2π

)3/2

e−εHe+/T . (1.3.65)

The factor 4 in the second equation comes from statistical spin weight.
Although HeIII → HeII recombination can be understood as a generalization of HI recombination, a
key complication arises in HeII→ HeI recombination due to the non-hydrogenic nature of the Helium
atom: the three-body (two electrons one nucleus) problem does not have analytical solutions. More
involved computations, following singlet and triplet states have been developed in the last decade [310],
[532], [574], [575]. We will describe them in more details in the next section, but we can already an-
ticipate that the first helium recombination is accurately described by Saha’s equation, since reaction
rates are fast enough for it to proceed in equilibrium. It teaches us that 50 % of the He2+ atoms have
recombined by z ∼ 5800. However, important differences appear for the second helium recombination,
which can be significantly delayed with respect to Saha’s equation, predicting that half of the He+

has recombined by z ∼ 2500.

1.3.3.3 The three level atoms

The first realistic model for the recombination was developed first by Zeldovich, Kurt and Sunyaev
[605], [607], soon followed by Peebles [472] and is known as the three-level atom (TLA). Its schematic
representation can be found on the left panel of fig. 12. In this model, Hydrogen can be in the ground
state (1s), an excited state (mostly 2s and 2p) or ionized, i.e.H++e−. Recombination occurs primarily
through formation of an excited state H(nl, n ≥ 2), i.e. via the reaction

p+ + e− ↔ H(nl, n ≥ 2) + γ . (1.3.66)

followed by a very fast radiative cascade until n = 2. The subscript nl refers to the bound state
with principal quantum number n and angular momentum quantum number l. Assuming that all
collision rates and radiative transfers between level are sufficiently fast allows one to consider thermal
equilibrium between excitation states. Thus, the hydrogen density in the state nl is simply given by:

nnl = (2l + 1)n2se
ε2−εn
T , (1.3.67)
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Figure 12: Right panel − A schematic picture of the three-level atom. Left panel − Comparison of the ionization
fraction xe assuming, for both Helium and Hydrogen, that Saha equation is valid (i.e. Boltzmann
equilibrium is verified) or the “three-level atoms”.

where εn = {ε0 = 13.6 eV}/n2 and n2s is the atomic density in state 2s. For instance, the 2p (l = 1)

and 2s (l = 0) states verify n2p = 3n2s.
The production rate of a hydrogen atom in an excited state is given by αB(T )nenp, where

αB =

∞∑

n=2

n−1∑

l=0

〈σ[p+ + e− → H(nl) + γ]v〉 . (1.3.68)

This number is called Case B recombination coefficient, where case A includes the ground states. Once
the atom is in an excited state, we assume that it rapidly decays to n = 2, whereas the decay to the
ground state takes much longer. Ignoring it in a first step, the evolution of the number of atoms in
the n = 2 states is simply

dx2

dt
≡ d

dt

(
n2

nH

)
= αBx

2
e(nH)− βBx2 . (1.3.69)

The coefficient βB is the (Boltzmann averaged) thermal coefficient of photoionization from an excited
state. It can be determined by assuming detailed balance

βB/αB =

(
x2
enH

x2

)

eq.

=
1

4

(
meT

2π

)3/2

e−ε2/T . (1.3.70)

The factor 4 comes from the different spin statistics. In practice, an atom in the n = 2 state can also
decay through

H(2s) ↔ H(1s) + γ + γ , (1.3.71)

H(2s) ↔ H(1s) + γLyα , (1.3.72)

One might want to add those as simplest decay processes

dx2

dt
= αBx

2
enH − βBx2 −A2s1s{x2s = x2/4} −A2p1s{x2p = 3x2/4} , (1.3.73)
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with Einstein coefficients A2s1s ' 8.2 s−1 and A2p1s = 6.2× 108 s−1. However, this would be missing
important physics: the fact that part of the Lyα photons emitted will quickly be reabsorbed with
probability P , which we can relate to the optical depth:

τ =

∫
n1sσdt =

∫
n1sσ

dω

|ω̇| =

∫
n1sσ

dω

Hω
. (1.3.74)

Under the narrow width assumption (i.e. σ ∝ δ(ω − ωLyα)) and detailed balance for the reaction
2p↔ 1s, one obtains (e.g. [308]):

τSob =
3π2A2p1snHx1s

Hω3
Lyα

. (1.3.75)

This is the so-called Sobolev optical depth. Plugging some numbers give τ ∼ 108 during recombination.
For such optical thick line the probability for a Lyman-α to be reabsorbed is given by P ' 1/τSob.
It is remarkable that, although the forbidden transition is so slow, A2s1s ∼ 10−8 × A2p1s, the high
probability for a Lyman-α to be re-absorbed before redshifting away from the line make the two
processes contribute in an almost equal way to the recombination of our Universe. A more careful
computation shows that it even dominates, at 57% against 43%.
Finally, it is necessary to add a correction for thermal excitation of atoms in the (1s) state by CMB
photons that redshift into the Lyman-α resonance, which we do assuming detailed balance between
excitation and decay. Since we neglect direct recombination to the ground state, the evolution equation
of the 1s state is simply obtained by considering the same decay/excitation processes with opposite
sign. The final set of equations is thus:

dx2

dt
= αx2

enH − βx2 −
A2s1sx2

4
− 3A2p1sPx2

4
+
(
3A2p1sP +A2s1s

)
x1e
−νLyα/T

= αx2
enH − βx2 −

(
A2s1s + 3A2p1sP

)(
x2

4
− x1e

−νLyα/T

)
, (1.3.76)

dx1

dt
=

(
A2s1s + 3A2p1sP

)(
x2

4
− x1e

−νLyα/T

)
(1.3.77)

To solve this coupled system of equation, we assume that ẋ2 ' 0 so that:

x2 = 4
αBnHx

2
e + (A2s1s + 3A2p1sP )x1e

−νLyα/T

A2s1s + 3A2p1sP + 4βB
. (1.3.78)

Plugging into x1, we find that the net evolution of free electrons ẋe = −ẋrec
2 ' −ẋ1 is simply given

by:
dxe
dt

= −C
(
αBnHx

2
e − 4βBx1e

−νLyα/T

)
. (1.3.79)

with
C ≡ A2s1s + 3A2p1sP

A2s1s + 3A2p1sP + 4βB
. (1.3.80)

Introduced by Peebles, this factor represents the probability that an electron in the n = 2 shells
reaches the ground state before being photoionized. Eq. (1.3.79) is the three-level atom equation,
which predicts that recombination is delayed with respect to the Saha equation, and that the free
electron fraction freezes-out with non-zero value due to the Universe’s expansion. Typically, 99% of
the hydrogen recombines around z ∼ 820 instead of 1140 with Saha’s equation, while xf.o.

e ∼ 10−4.
Differences with the Saha equation are illustrated in fig. 12, right panel.
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The three-level atom can be generalized to singly ionized Helium including the ground state, n = 2

singlet states and the continuum, showing as well delayed recombinaison [532]. Since the 1970’s, there
have been many improvements allowing an increase in the precision of the recombination physics up
to the per-mille level around the peak of the visibility function, as it is necessary with Planck, and we
shall give an overview of these improvements later on.

1.3.3.4 The matter temperature evolution

Recombination physics requires to follow not only the evolution of the free electron fraction but also
the matter temperature, as it enters in several places in eq. (1.3.79). The assumption TM = Tγ is true
in the early universe, but certainly not later. The main processes that determine the gas temperature
are:

• adiabatic expansion, which tend to cool down matter and CMB photon at different rates. For a
massive non-relativistic particle the kinetic energy Ek = p2/2m ∝ a−2 and can be related to the
averaged energy of individual particles in a monoatomic gas Ek = 3/2kb T implying

dTM
dt

∣∣∣∣
adia

= −2
ȧ

a
TM = −2HTM . (1.3.81)

• Compton interaction between CMB photons and the gas. It is a textbook calculation to show
that (see e.g. [308])

dTM
dt

∣∣∣∣
Compton

= Hγ(Tγ − TM) (1.3.82)

where the dimensionless parameter γ, also called opacity of the gas, is defined as :

γ ≡ 8σTarT
4
CMB

3Hmec

xe
1 + fHe + xe

(1.3.83)

with ar the radiation constant.

The evolution of the matter temperature is thus ruled by the equation:

dTM
dz

= − 1

(1 + z)H(z)

[
dTM
dt

∣∣∣∣
adia

+
dTM
dt

∣∣∣∣
Compton

]
=

1

1 + z

[
2TM + γ(TM − Tγ)

]
. (1.3.84)

The evolution of TM, therefore, mainly depends on the second term, with the sign of the difference
TM−Tγ determining whether collisions heat or cool down the gas, and the value of γ is responsible for
the coupling strength: If γ � 1, the second term dominates and Compton scatterings thermally couple
CMB photons and baryons (TM ∝ Tγ ∝ (1 + z)), whereas TM adiabatically decays as TM ∝ (1 + z)2

when γ � 1. This transition typically occurs around z ∼ 150 when TM ∼ 400 K.
Those two processes are the dominant ones at high redshift (typically above z ≥ 50). Other processes
that can play a role depending on the physical context include bremsstrahlung, Photoionization heating,
Photorecombination cooling, Collisional ionization cooling, Collisionial recombination heating, Shocks
and Line cooling. Standard CMB codes usually ignore those processes since they impact the ionization
fraction only at the 10−3% level [532]. Electromagnetic energy injection can lead to important heating
as well, and we shall include this process later in this work.
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1.3.3.5 Beyond the first realistic model: numerical resolutions

In the late 1990’s and the beginning of this millenium, it was realized that correct interpretation of
the results from WMAP, and later Planck experiments would require percent and permille precision
respectively around the peak of the visibility function, i.e. the time of last scattering [327], [403],
[515], [532]. In order to overcome this challenge, the physics of recombination has been extensively
complexified, and numerical codes developed for solving the relevant sets of equations. In general,
an accurate recombination code should solve a very involved system of equations that couples: i) a
virtually infinite number of levels of the hydrogen atoms, including angular momentum substates; ii) a
virtually infinite number of levels of the Helium atoms singly and doubly ionized; iii) the photons field
through the radiative transfer equation; iv) the matter temperature. Entering in a full description of
the relevant physics, which took about a decade of hard work at the start of the millennium, goes well
beyond the scope of this work. It is, however, necessary to introduce the different recombination codes
used, namely Recfast [531], [532], HyRec [38] and CosmoRec [165], and to sketch the main differences
between them. This short review is mainly based on Refs. [38], [165], who introduced the two most
precise recombination codes available today. The main goal of these codes is to solve a generalized
version of eq. (1.3.79) under a certain number of assumptions (preferably as least as possible) (see e.g.
ref [38]), taking into account “bound-free”, “bound-bound” and ground state transitions. The standard
“multilevel atoms ” set of equation is

ẋnl = ẋrec
nl +

∑

n′≥2,l′

ẋnl↔n′l′ + ẋnl↔1s (1.3.85)

with ẋrec
nl the contributions from “bound-free” transitions given by

ẋrec
nl = nHx

2
eαnl(Tm, Tr)− xnlβnl(Tr) (1.3.86)

where αnl(Tm, Tr) is the recombination coefficient to the excited state nl, including stimulated recom-
binations, and βnl(Tr) is the rate of photoionizations from nl by blackbody photons. As in the TLA,
the photoionization rate is related to the recombination rate assuming detailed balanced is satisfied.
They are typically given by [38], [133], [532]

αnl(Tm, Tr) =
h3

(2πµeTm)3/2

∫ +∞

0
e−ε0κ

2/Tmγnl(κ)[1 + fbb(Eκn, Tr)]d(κ2) (1.3.87)

βnl(Tr) =
(2πµeTm)3/2

(2l + 1)h3
eεn/Trαnl(Tm = Tr, Tr) . (1.3.88)

with µe ≡ memp/(me +mp) the reduced mass of the electron-proton system, κ the momentum of the
outgoing electron in units of h/2πa0 with a0 the reduced-mass Bohr radius and εkn ≡ ε(κ2+n−2) = hν

according to the energy conservation law. The coefficient γnl(κ) encodes the transition probability from
bound state nl to free state with momentum κ (summing over momentum substates l′ = l± 1) and is
given in Refs. [38], [133].
The contributions from bound-bound transition is [38]

ẋnl↔n′l′ = −ẋn′l′↔nl = xn′l′Rn′l′→nl(Tr)− xnlRnl→n′l′(Tr) (1.3.89)

where Rnl→n′l′ is the transition rate from state nl to n′l′. In general it is given by the sum between
radiative and collisional processes:

Rnl→n′l′ = Rrad
nl→n′l′(Tr) +Rcoll

nl→n′l′(Tm, ne) , (1.3.90)
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However, collisionial excitations are usually negligible in the cosmological context. Rrad
nl→n′l′(Tr) is

either the rate of absorption of blackbody photons resonant with the transition if n′ < n, or the rate
of spontaneous and stimulated decays if n′ > n. It is given by

Rrad
nl→n′l′(Tr) =





An′l′→n′l′ [1 + fbb(εn − εn′ , Tr)] if n > n′

gl′
gl
e(ε′n−εn)/TrRrad

n′l′→nl if n < n′
(1.3.91)

where, as usual, An′l′→n′l′ is the Einstein A-coefficient for spontaneous emission. Stimulated emission,
accounted for via the term proportional to fbb, is an important process in our Universe, in particular
for the highly excited states.
Finally the transition to the ground states are accounted for by the ẋnl↔1s term. However, a large
number of transition are forbidden. At first sight, only the 2s and np (n ≥ 2) are relevant, given that
two-photons transitions from higher energy states are dominated by the so-called “1+1” photon decays
(i.e. cascade process), already accounted for in this treatment. They are given by :

ẋ2s↔1s = −A2s1s(x2s − x1se
−E21/Tr) (1.3.92)

ẋnp↔1s = Anp1s(1 + fbb
np1s)

[
xnp − 3x1sf

+
np

]
(1.3.93)

We have already encountered the first equation in the TLA model and we had introduced A2s1s as the
(forbidden) 2− γ decay rate from the 2s state to the ground state. In a similar fashion, Anp1s stands
for the spontaneous Lyman−n emission rate, fbb

np1s the blackbody photon occupation number and f+
np

is the photon occupation number with frequency higher than the Lyman−n one. Note that, like in
the TLA model, Lyman−n photons are very likely to be reabsorbed given the high optical depth of
those lines. Working in the Sobolev approximation allows to multiply each Anp1s coefficient by the
absorption probability Pnp1s = 1/τnp1s, which is just a generalization of our eq. (1.3.75), replacing the
Lyman−α wavelength by the Lyman−n one.
The number of free electrons, assuming that the number of electrons in excited states of hydrogen or
helium is negligible and that helium is singly ionized, is simply

xe ' 1− x1s + fHe − xHe
1s , (1.3.94)

where fHe ≡ Yp/(4(1− Yp)) represents the fraction of helium nuclei. Thus, ignoring here the contribu-
tion from Helium, we simply get 2

ẋe = −ẋ1s = ẋ2s↔1s +
∑

n≥2,

ẋnp↔1s . (1.3.95)

Transition rates involve integration over the photon number density and thus require to follow the
evolution of the background radiation with a radiative transfer equation. This will lead to departures
(or spectral distortions) from the standard blackbody distribution. Introducing ∆f(ν, t) = f(ν, t) −
fbb(ν, t), one can write the partial differential equation governing the evolution of the distortion as
[161], [165]:

1

c

d∆f(ν, t)

dt
=

1

c

[
∂∆f(ν, t)

∂t
− νH(t)

∂∆f(ν, t)

∂ν

]
= C[∆f(ν, t)]em/abs + C[∆f(ν, t)]scat , (1.3.96)

2 Hydrogenic (monoelectronic) Helium can be treated with the same set of equations and rescaled transition rates by Z4µ,
where µ is the helium nuclei-electron reduced mass. For a detailed multi-level treatment of HeI, see Ref. [163], [574].
Some complication arises due to the necessity of distinguishing singlet spin state and triplet spin state.
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where, in general, it is necessary to distinguish emission and absorption processes, taken into account
via C[∆f(ν, t)]em/abs and real scattering ones accounted for by C[∆f(ν, t)]scat.

The Recfast code
One of the first codes attempting to solve the full recombination problem is the Recfast code [531],
[532]. However, it makes use of a simplified version of the multi-level equations assuming: i) statistical
equilibrium among l substates; ii) that the photon field can be described by a blackbody distribution
expect near the Ly-α line. The first simplification is a major computational gain, as the number of
equations scales like ∼ n instead of ∼ n2. The nl substates are simply related by a generalization of
eq. (1.3.67):

nnl =
(2l + 1)

n2
nn (1.3.97)

with nn the total number of H atoms in a excited state with principal quantum number n. In practice,
their computation amounts to rescaling the equilibrium photoionization and recombination coefficient
of each state by the exact number density of the corresponding state. In its original version, the code
allows to describe recombination physics at the ±1.5% accuracy level. At the % level percent precision,
He2+ → He+ recombination is shown to be well described by an effective three-level atom, whereas
equilibrium is shown to be valid for He2+. However, this computation leads to an overlaping of the
recombination of hydrogen and helium. This is not correct and comes from neglecting HI absorption
process and spin-forbidden transition of helium, leading to ∼3% difference at helium recombination.
Their main result is that hydrogen recombination happens faster and the freeze-out fraction is lower
than in the standard case. This is due to the fact that the typical photoionization and recombination
rates are bigger than in the ‘case B’. Remarkably, most of the effects of the complicated calculations
can be captured by a single fudge factor F = 1.14, rescaling ionization and recombination coefficient
entering the TLA from the 1960’s! This allows to speed up the computation greatly with respect to
the multi-level case, without losing the required precision at that time.
Even nowadays, this code is still by far the most used one despite its (original) limited precision.
Indeed, it is possible to mimick the lacking physics by upgrading the fudge factors to fudge functions
[515], in order to get per-mille precision if the ionization history does not vary too much from the
referenced one [541]. Thus, it is possible to get accurate ionization history in a runtime of a fraction
of seconds, which makes it very interesting in the perspective of statistical analysis using Monte Carlo
Markov Chains.

HyRec and CosmoRec: towards a complete treatment of cosmological recombination
With the increasing precision of experiments, several groups have pointed out that early calculations
using original Recfast are not sufficently accurate for an unbiased estimate of cosmological parameters
[403], [515]. The main parameters affected being the amplitude As and tilt ns of the primordial power
spectrum, ultimately related to inflation modeling, and the density of baryons ωb. To summarize,
a nice quote attributed to D. Scott states that “getting 1016 GeV physics right means we have to
understand eV physics with high precision”. The significant physical effects that need to be included
beyond Recfast are:

• The computation of the non-equilibrium angular momentum substates of each level, relevant at
late times, which amounts to solving eqs. (1.3.85) and (1.3.95). It was first shown in Refs. [167],
[285] that it was necessary to go beyond equilibrium assumption as collisions are too little to
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smear out the electrons and distribute them in each angular momentum substate. Although
conceptually simple, this improvement is extremely demanding computationally as now the
number of equations scales like ∼ n2. To get results at the required accuracy, up to 500 levels
need to be followed, meaning about 250 000 equations need to be solved simultaneously! It was
made possible, however, to get runtime of the order of ∼ 2 seconds thanks to the “effective”
multilevel atom method introduce in Ref. [37]. The main idea is that one can solve eqs. (1.3.85)
and (1.3.95) only for a population of a few excited states (typically 2s and the lowest p levels)
and make use of precomputed transition tables for higher excited states, which are mediated by
CMB blackbody photons and therefore only depends on the photon and matter temperature,
independently of the Cosmology. Illustration of the modification in Hydrogen recombination
with 20, 50, 500 Hydrogen shells are plotted in fig. 13, left panel.

• Many subtle physical effects of the Lyman−α turns out to be important, which require solving
the full radiative transfer in the vicinity of the line. As we have seen, the most important
channels for hydrogen recombination are the 2p → 1s, controlled by the slow escape from
the line via redshifting of photon and the 2s → 1s, for which computation of the two-photons
absorption rate receives many corrections. In the historical TLA, the Sobolev approximation was
used to compute escape from the center of the resonnance, further implemented in the Recfast
code. The Sobolev approximation, introduced in the context of stars in order to describe the
probability of photons to escape the expanding envelopes [560], greatly simplifies the problem, as
it enables to separate the problem of the evolution of the photon field and the populations of the
hydrogen atom. It assumes that i) the populations of the levels and the radiation field are quasi-
stationary; ii) Each scattering leads to a complete redistribution of photons over the whole line
profile. However, computations beyond this approximation are required to get accurate results.
Indeed, time-dependent effects in the escape problem due to the evolution of the properties of
the medium (especially the ionization degree) can induce a 1.6-1.8% correction to xe around zrec

[162]. Atomic recoil, doppler boosting and broadening (as encoded in the Kompaneets equation
for Compton scattering) affect the frequency redistribution of the resonnant scattering, which
leads to partial redistribution of photons over the line profile. Meanwhile, a correct application of
detailed balance show a frequency-dependent asymmetry between the emission and absorption
profile. All these effect generate in turn important corrections to the Sobolev optical depth [162],
[281], [307].

• Moreover the 2s→ 1s absorption rate is also affected by subtle physics. The stimulated emission
due to ambient CMB photons slightly increases the total transition rate, leading to more than
1% difference of xe around recombination [180]. Soon after, it was realized that the excess of non-
thermal photons can also affect the 2s→ 1s process, as their absorption delay recombination and
introduce percent-level corrections [309], [369]. Sub-percent correction comes from considering
the feedback of Lyman−n photons [181]. Modifications to Hydrogen recombination by including
feedback and induced 2s1s transitions are shown in fig. 13, right panel.

• Two-photon decays from higher levels, initially neglected in the treatment of eq. (1.3.92), were
shown to have an important effect in Ref. [221], [597], with a treatment improved later on by
Refs. [160], [306]. The inclusion of possible Raman scattering tends to increase the number of
photons on the blue side of the Lyman−α line, in turn increasing the impact of Lyman−β
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feedback, while decreasing the Lyman−n one [165], [306]. All these effects must be included as
well in order to have reliable results.

• Helium HeII→ HeI recombination must also be extended, taking into account singlet and triplet
spin states, while corrections to HeIII → HeI Saha equilibrium recombination are negligeable.
It is usually solved in a standard multilevel atoms for up to few hundred levels and resolution
of the l substates up to n = 10 [310], [532]. Typically, a similar list of processes as the one
of hydrogen enters the problem, with further complications given that HeI is non-hydrogenic
[163], [310], [574], [575]. The effects of semi-forbidden transitions (i.e. spin-changing transitions)
are important for HeI recombination [221], [370], [574], [596]. The detailed feedback of Helium
photons has to be taken into account [163], [174], [574]. Furthermore, although the number of
neutral H during HeI recombination is tiny, the opacity of the HI continuum is very high. This
leads to the absorption of part of the photons emitted by Helium and thus decreases the level
of HeI feedback onto itself. HeI recombination is pushed closer to Saha equilibrium, henceforth
accelerating it with respect to the Recfast result [174], [310], [370], [520]. Effects of Helium
photon feedbacks when switching on/off HI continuum absorption are illustrated in fig. 14, left
panel. On the right panel of the same figure, we illustrate the impact of switching on/off the
spin semi-forbidden transition and HI continuum absorption of the 21P → 1s and 23P → 1s

photons.

HyRec and CosmoRec are the most precise codes, both based on the “effective” multi level approach,
although the later one includes more physical effects in particular related to Helium recombination and
radiative transfer [174], [541], which are especially relevant for the studies of spectral distortions [173].
Differences in the code also arise at the level of the resolution scheme. While CosmoRec solves iteratively
the coupled system of equations “recombination+radiative transfer”, HyRec simultaneously solves for
the radiation field and the recombination history thanks to validated analytic approximations.
All three codes are now implemented in the Boltzmann code CLASS, allowing to perform a detailed
comparison of these codes at the level of the ionization histories, illustrated here in Fig. 15 left panel
and later on at the level of the CMB power spectra. The difference with the improved treatments are
clearly visible as few percent corrections to the original Recfast. The most important corrections are
the ones arising around the peak of the visibility functions, namely the improved treatment of the
radiative transfer of Lyman−n lines. However, the main modifications to HeI recombination due to HI
continuum absorption are also important. The differences between HyRec, Recfast with fudge functions
and CosmoRec are further illustrated in the right panel of Fig. 15, and mainly consist in the improved
treatment of HeI recombination in CosmoRec, as well as a higher number of levels considered in the
2γ and Raman processes. However, these differences will stay below cosmic variance in the multipole
range of the CMB power spectra probed by Planck and, although CosmoRec includes more physical
effects, it is safe to use HyRec or a fudged version of Recfast for cosmological parameter extraction
[541].

1.3.3.6 Recombination as a tool for new physics: a first comment

It is remarkable that such a high precision on recombination physics has been achieved during the
last decade, while current cosmological data indicate an excellent agreement with standard physics ex-
pectations. Interesting consequences of such hard work is the possibility of constraining non-standard
scenario as we shall explore in this work, especially in the case of exotic electromagnetic energy injec-
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Figure 13: Comparison of some standard feature of CosmoRec in the Hydrogen physics. Left panel − Increas-
ing the number of Hydrogen shells. Right panel− Switching on feedback onto the 2s1s transition
(red dashed line) delays recombination while the induced 2s1s transition (red dashed-dotted line)
accelerates it. The net effect is acceleration (blue curve).
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Figure 14: Comparison of some standard feature of CosmoRec in the Helium physics. Left panel − Switching off
semi-forbidden spin transition (red dashed curve) or HI continuum absorption (red dashed-dotted
curve) tend to delay recobmination with respect to defaut case (blue curve). Right panel − Switching
on HeI feedback delay recombination (red dashed curve), however taking into account absorption
from HI continuum between lines tend to accelerate it again, with a net effect that is usually neglected
in standard recombination (blue curve).

tion, which can follow from particle decays or annihilations. Another nice repercussion is the possibility
of testing variations of fundamental constants, as has been done extensively in the past [72], [88], [260],
[292], [358], [424], [513], [530].
Recombination physics, as we have already argued, has a major impact on the studies of CMB
anisotropies, and it is through modifications of the CMB TT, EE and TE power spectrum that
most of the constraints come from. The impact of varying some cosmological parameters inside their
current (roughly) 1σ uncertainty as measured by Planck [19] is illustrated in Fig. 16. The degeneracy
between parameters in CMB power spectra analysis degrade the possible sensitivity that one could
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hope to have thanks to the subpercent precision on the recombination physics.
It is, however, important to recall that recombination physics is intrinsically linked to another ob-
servables, namely the spectral distortions from a perfect blackbody of the CMB. Indeed, we have
seen that solving the recombination problem in practice amounts to solving the coupled system of
equations “recombination physics + radiative transfer”, which means that an accurate code is able to
follow those distortions and predict the amount expected today due to both purely standard and non-
standard physics. A recent review of all standard processes leading to spectral distortions can be found
in Ref. [172]. Nowadays, simple analytical estimate as well as accurate numerical codes are available to
compute spectral distortions, and we discuss those in more details in sec. 3.6. However, in the context
of standard recombination physics, it is necessary to mention the most important ones, namely the
cosmological recombination lines (CRR), created by the large emissions of photons in bound-bound
and bound-free transitions. Many calculations have been carried out over the years [163], [167], [178],
[179], [222], [223], [368], [516], [520], [522], and it is nowadays possible to get % level prediction in a
few seconds runtime, thanks to the most recent one, namely the CosmoSpec code [173]. These tiny
distortions, at the nK-µK level, which should today be present at mm to dm wavelength, are sensitive
to the finest details of the recombination history. They represent a fingerprint from the recombina-
tion era, encoding very distinct spectral features of the recombination processes. Their amplitude
typically depends on the number density of baryons in the Universe, while the detailed shapes of the
CRR is affected by Helium recombination. Moreover, the positions and width of the line depends
on both when and how fast recombination occurs, thereby giving a tremendous leverage on recombi-
nation physics, while providing us with an independent way of measuring cosmological parameters
[159]. Unfortunately, in its current proposal to NASA, the PIXIE experiment lacks sensitivity by a
factor of a few [172], [209]. One needs to go for space experiments such as PRISM [48] and Millimetron
[556], or ground-based experiment in the cm to dm wavelength range [501] to measure these distortions.
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Figure 16: Impact of varying some cosmological parameters on the recombination history inside their current
(roughly) 1σ uncertainty as measured by Planck [19].

1.3.4 Reionization

1.3.4.1 General considerations

Although the recombination era is well under control from both the theoretical and the observational
point of view, the low-redshift evolution of the ionization fraction is affected by a major unknown: the
onset of star formation, which triggers the beginning of the so-called Epoch of reionization (EoR). The
EOR of the Universe, namely the era at which the cosmic gas mainly made of Hydrogen and Helium
atoms goes from (almost) fully neutral to fully reionized, is still largely unknown nowadays. Currently,
the best observation of this transition of the Universe is the so-called Gunn-Peterson trough: the
observation of redshifted Lyman-α absorption lines in quasar spectra is a very sensitive probe of the
presence of neutral hydrogen along the line of sight. Even a small fraction of neutral hydrogen leads
to a clear signature, and we expect quasars spectra to show a very small level of Lyman-α absorption
at redshift for which the Universe is reionized. Predicted in 1965 [286] and observed in Quasar spectra
much more recently (Fig. 17 shows the historical first measurement of the GP trough) [92], [94], [238],
[239], [585], it teaches us that the Hydrogen was almost fully reionized by z ' 6. Hence, in the standard
picture, Hydrogen reionization occurs across the entire Universe between z ' 12 to z ' 6, typically
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because of ionizing photons emmited by early star-forming galaxies. Quasars are then believed to be
responsible for Helium reionization from z ' 6 to z ' 2 (see e.g. [425] for a recent review).
Details of the EoR are strongly connected to many fundamental questions in cosmology and astro-

physics. It could teach us about many properties of the first galaxies and quasars, such as the time at
which they form and how the formation of very metal-poor stars proceeded, but we could also learn
about more exotic processes such as the nature of DM itself. It is usually accepted that a dominant
source of reionization would be given by Lyman continuum photons from UV sources in pristine star-
forming galaxies, but the fraction of photons produced by stellar populations that can escape to ionize
the IGM, or the efficiency of the stellar population to produce Lyman continuum photons, two key
quantities of our current reionization models, are still suffering orders of magnitude uncertainties.
Another question that has also puzzled the community is whether early galaxies were the only source
of reionization in the Universe. A key quantity measured by CMB experiments is the so called optical
depth to reionization τreio, quantifying the amount of Thomson scattering between CMB photons and
free electrons in the IGM. From eq. (1.3.56), one defines

τreio(z) ≡
∫ zbeg, reio

0
ne(z)σT

dt

dz′
dz′ . (1.3.98)

with zbeg, reio the redshift of the beginning of reionization3, ne(z) the number density of free elec-
trons and σT the Thomson cross-section. Measurements of the Gunn-Peterson trough seem to require
reionization to be centered around z 6 − 7, thus hinting to rather small optical depth to reioniza-
tion τ . However, this bound was in tension with the very high measurements of τreio = 0.17 ± 0.04

based on the temperature-polarization TE cross-power spectrum of WMAP after 1 year of data taking
[373], requiring reionization to be centered somewhere in between 11 < zreio < 30 (95% CL). Several
solutions to the problem have been invoked: i) One might need to reinterpret the Gunn-Peterson
bound, since they are model-dependent. In practice, they rely on a modelling of the IGM density
and temperature, the UV background from stars and some assumption about the homogeneity of the
reionization. Release of the tension has been achieved by questioning these modelisations [93], [421].
ii) This discrepancy could also indicate the need for a complexified star reionization picture (invoking
e.g several population of stars [153], [598]). iii) Finally, it was suggested that this could be a hint for
DM annihilations in halos or decay, since these processes would typically enhance the optical depth.
One of the first proposals was, for instance, the presence of decaying massive sterile neutrinos [294].
Over the years, this discrepancy has systematically decreased, and finally disappeared with Planck
measurements, but still improving our knowledge of this epoch could lead to unexpected discoveries,
while at the same time helping us to constrain exotic reionization models, as we shall do in this work.
In the near future, many experimental efforts will be devoted to measuring this era precisely, mostly
through the 21 cm line created by the hyperfine transition of the Hydrogen atom. Tomographic sur-
veys of the cosmological 21cm observable, sensitive both to xe(z) and TM(z), are certainly the most
promising avenue to progress in the knowledge of these redshift epochs. Experiments such as PAPER

3 In CAMB it is hardly coded at 50. In CLASS it can be set by the user. In our studies, we define it as the minimum of
the visibility function g(z) since in the absence of reionization it is a decreasing function of redshift. We comment on
this issue in appendix D.3.
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Figure 17: Optical spectra of z ≥ 5.8 quasars observed with Keck/ESI, in the observed frame. In each spectrum,
the expected wavelengths of prominent emission lines, as well as the Lyman limit, are indicated by
the dashed lines. The quasar spectrum at z = 6.28 is historically the first spectrum ever measured
exhibiting the Gunn-Peterson trough: its average transmitted flux in the band 8450 < λ < 8710

(Lyman-α forest region) is consistent with zero flux. Figure taken from ref. [94].
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64 4, 21CMA 5, MWA 6, LOFAR 7, HERA 8 or SKA 9, are now, or will be, attempting at measuring
the 21 cm signal. Although pathfinders and first generation instruments have given a few results [40],
[485], experiments having the good accuracy level in the redshift range of interest are not yet built,
and therefore far from shedding light on the EoR.
On the other hand, CMB experiments are also sensitive to the EoR. Indeed, the increase of free elec-
trons at low-z enhancing the Compton scattering rate of CMB photons off these free electrons will lead
to very peculiar pattern in the power spectra. The most characteristic ones, which we shall describe
in this section, are the step-like suppression of CMB TT modes inside hubble horizon at reionization,
typically above ` ∼ 20, accompanied by the big regeneration of power in the same multipole range of
the EE spectrum, the so-called reionization bump. Many studies in the past have tried to assess more
carefully what amount of information could be extracted from CMB power spectra (see e.g. [326], [356],
[403], [435] for more detailed studies). The CMB is mostly sensitive to the column density of electrons
along each line-of-sight10 and therefore to the Thomson optical depth to reionization τ . There are
well known degeneracies between τ and other cosmological parameters, e.g., when using temperature
data alone, with the amplitude of the primordial scalar perturbations11 As and the spectral index
ns. Moreover, in extensions of the ΛCDM model, there exists a degeneracy between τ and the sum
of neutrino masses

∑
mν , which gets strengthened by the addition of external datasets such as BAO

measurements [42], [407]. Thus, an accurate measurement of τ through the reionization bump at large
scales is essential for the determination of other cosmological parameters as well.
Let us also mention that different reionization histories do lead to differences in the low-` part of the
EE spectrum that can potentially give more insight on this epoch. Unfortunately, principal component
analysis (PCA) have revealed that CMB experiments, limited by cosmic variance in this multipole
range, would not be the best probe of this era although it can have some handle on the first five
eigenmodes [435].

1.3.4.2 Implementation in Boltzmann codes

In principle, in order to account for the reionization in our universe, one needs to modify the cou-
pled recombination equations by adding a source term quantifying the impact of stars (typically UV
photons background). This is, however, not the strategy that has been adopted until now by Boltz-
mann codes, based on the fact that: i) There are order of magnitudes uncertainties on the paramaters
quantifying the impact of stars; ii) The CMB is not so sensitive to the exact details of reionization,
affecting multipoles that are cosmic variance limited; iii) Although stellar reionization is believed to
have happened in “bubbles” embedded in neutral surroundings, and thus to be very inhomogenous, the
CMB is sensitive to the average over all sky directions of xe(1 + δb) and this complication only affects
the determination of cosmological parameters at a negligeable level [15]. Thus, simple prescriptions

4 http://eor.berkeley.edu
5 http://21cma.bao.ac.cn
6 http://www.mwatelescope.org
7 http://www.lofar.org
8 http://reionization.org
9 http://www.skatelescope.org

10 Note that potentially, the CMB is sensitive to inhomogeneous (or patchy) reionization. Measuring such traces would also
help in constraining models of reionization. It has been found, however, that the effect of patchy reionization, leading
to non-gaussianity at small scales, would be very challenging to detect with next-generation CMB experiments [444],
[557], [569].

11 The normalization of the ` > 20 part of the spectrum is mostly controlled by the product As exp−2τ .
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have been used to model the impact of stars, simply interpolating between a vanishing free electron
fractions at high-z to a fully reionized medium at low-z. Usually, reionization occurs in two steps: the
first step corresponds to the Hydrogen reionization and the first ionization of the Helium, while the
second, much smaller, corresponds to the Helium second reionization.
The most common parametrization of this first step is the so-called instantaneous (“camb-like”) reion-
ization, parametrized as [398]:

xe(z) =
f

2

[
1 + tanh

(
y − yre

∆y

)]
(1.3.99)

with f = 1 + nHe/nH, y = (1 + z)3/2 and ∆y = 3(1 + z)1/2∆z. The reionization is, therefore, redshift-
symmetric, centered around the key parameter zre with a width given by ∆z, both parameters being
free to vary. This parametrization has been used, for instance, by the Planck collaboration in their
recent data release in 2013 and 2015.
However, this redshift-symmetric behaviour is in tension with constraints from ionizing background
measurements of star-forming galaxies and from low-redshift line-of-sight probes such as quasars,
Lyman-α emitters, or γ-ray bursts [185], [237], [342], [511]. Thus, people have been investigating
redshift-asymmetric parametrization, the simplest ones being exponential or power-law functions. An
example of the latter one is given by [220] 12:

xe(z) = f ×





1−Qp

(1+zp)3−1

(
(1 + zp)3 − (1 + z)3

)
+Qp forz < zp

Qp exp
(
− λ(z − zp)

)
forz ≥ zp.

(1.3.100)

The parameters of the second model have been estimated to be close to zp = 6.1, Qp ≡ QHII(zp) =

0.99986 and λ = 0.73 by direct observations of the ionized hydrogen fraction QHII(z). Similarly to
Ref. [453], we fix zp and Qp to their best-fit values, and we let the evolution rate λ free to vary in
order to cover a large range of possible ionization histories.
For comparaison, it is possible to use the power-law asymmetric reionization suggested by Ref. [15]:

xe(z) =





f for z < zend,

f ×
(

zearly−z
zearly−zend

)α
for z ≥ zend,

(1.3.101)

where f = 1 + fHe = 1 + nHe/nH and we have checked explicitly that differences between the two
parameterizations are not visible at the current sensitivity level, and most probably even for future
CMB experiments.
Non-parametric reionization have also been proposed, with the ionization fraction let free to vary in
a given redshift bin [403], allowing to test exotic reionization scenarios happening in several steps, as
it could happen if several sources of reionization were around.
In all cases, helium second ionization is treated as a hyperbolic tangeant centered around z = 3.5 with
width δz = 0.5. Changing the helium reionization redshift between 2.5 and 4.5 is known to change the
total optical depth by less than 1 % [15].

Finally, we shall develop a new strategy in the following based on a somewhat important point:

12 Like the authors of Ref. [453], we replaced the argument of the exponent by −λ (z−zp)3

(z−zp)2+0.2
in order to improve the

smoothness of the transition.
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All these parametrizations neglect the fact that stars, while reionizing, also reheat the IGM. We shall
therefore explicitly check that this is safe when computing the CMB and matter power spectrum,
however this is of major importance for observables based on the temperature of the IGM, such as
the 21cm signal.
To account for Lyman continuum photons from UV sources in early star-forming galaxies, we add a
source term taken from [511], [512] of the form of Eq. (6.2.3) to the evolution equation of xe:

1

E

dE

dV dt

∣∣∣∣
dep

= A∗ fescξionρSFR(z)(1 + z)3 (1.3.102)

where fesc is the fraction of photons produced by stellar populations that escape to ionize the IGM,
ξion is the Lyman continuum photon production efficiency of the stellar population and ρSFR is the
comoving star formation rate density. The fiducial values for these parameters are taken from Ref. [511],
namely fesc = 0.2, ξion = 1053.14 s−1M−1

� yr. We also use the functional form for the star formation
density rate provided in Ref. [511],

ρSFR = ap
(1 + z)bp

1 + [(1 + z)/cp]dp
(1.3.103)

with fit parameters ap = 0.01376 ± 0.001 M�yr−1Mpc−3, bp = 3.26 ± 0.21, cp = 2.59 ± 0.14 and
dp = 5.68 ± 0.19 [511]. Given that we do not have the correlation matrix of the fitted parameters, it
is dangerous to vary more than one parameter at the same time within its confidence level. We thus
simply leave an overall fudge factor A∗ (expected to be of order one) free to match the measured
optical depth.
Anticipating a bit over chapter 6, we mention that a consistent treatment of such a source term
requires to specify energy repartition functions χ’s encoding how the power is distributed among
heating, ionization and excitation of the IGM. We follow the prescription of Refs. [155], [270] in which
χi = χα = (1 − xe)/3. To motivate this choice, we remind the reader that in the simple estimate
provided by Shull and Van Steenberg [548] approximatively 1/3 of the energy is effectively available
for ionization in a neutral gas (xe = 0). The adopted expression also fulfills the obvious physical
criterion that no energy is available to ionize (or excite) an already fully ionized gas (xe = 1). A
linear interpolation is used for values in between, which corresponds to the reasonable Ansatz that
the rate of ionization is proportional to the abundance of neutral hydrogen. The equality χi = χα
has been checked to be approximately true by Ref. [155]. Qualitatively, stellar phenomena should also
contribute to the heating of the IGM. In principle, one might expect this phenomenon to be captured
by a term similar to the one introduced above, modulo a different energy repartition fraction function.
However, it is sometimes argued that heating is most efficiently achieved thanks to harder photons
(X-ray band), see e.g. Ref. [485]. To account for this, we introduce a source term in the brackets at
the RHS of Eq. (1.3.84) with a different normalization, taken from Ref. [485],

dE

dV dt

∣∣∣∣
dep

= 3.4× 1040fXρSFR(z)(1 + z)3 erg s−1M−1
� yr. (1.3.104)

The X-ray efficiency fudge factor fX rescales the star formation rate/X-ray luminosity correlation and
it thus expected to be of order O(1). Recent studies have suggested that it could vary up to 1 order
of magnitude in the range [0.2− 2] [216], [252], [388], [428]–[430], and we thus set it to the benchmark
value fX = 0.2. Concerning the heating repartition function, for consistency with the approximation
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Figure 18: A comparison of the reionization and thermal history in each model used in this work. All models
share the same reionization optical depth τreio ' 0.0596, corresponding to Planck TTTTTE +
SIMlow bestfit [15].

used above for χi and χα we adopt χh = (1 + 2xe)/3 as suggested by [155], [270]. To our knowledge,
it is the first time that a stellar heating term like this one is accounted for in a study of cosmological
sensitivity to DM effects.
Let us note that similar modifications could also be done to the equations describing helium reioniza-
tion, but we leave that for future works since neither HyRec nor Recfast can be used in their current
form to model such subleading effects13. Throughout this thesis, we keep using a phenomenological
hyperbolic tangent function to describe helium reionization.
Fig. 18 illustrates the differences between reionization and thermal history in all models used in this
work. All models share the same reionization optical depth τreio ' 0.0596, corresponding to Planck
TTTTTE + SIMlow bestfit [15]. The exponential reionization is very similar to the power-law as
expected, both giving a free-electron fractions evolution rather close to the semi-analytical resolution.
However, none of the simple parametrizations encode the corresponding reheating that one can see
for the semi-analytical model.

13 CosmoRec could be used but it was not implemented in CLASS by the time the studies were done and therefore deserve
further work.



2
FROM PERTURBATIONS TO OBSERVABLES : CMB AND MATTER POWER
SPECTRUM

2.1 Cosmological perturbation theory at first order

We now want to describe the evolution of small (typically O(105) times smaller than background
quantities) inhomogeneities and anisotropies in the Universe. Those will lead to fluctuations of the
temperature and polarization of the CMB accross the sky, providing the seeds of galaxies and galaxy
cluster nowadays.
The basic idea is to consider small perturbations δgµν and δTµν around the FLRW metric ḡµν and the
smooth background stress-energy tensor T̄µν ,

gµν = ḡµν + δgµν , Tµν = T̄µν + δTµν . (2.1.1)

The Einstein equations will do the job of coupling metric perturbations to matter ones. We will limit
our computation to the linear regime, meaning that we will drop all second order terms in perturbed
quantities. This is a safe move for CMB physics, for which most of the relevant physics occur during the
early universe at a time where over-densities are small. However, we shall comment on non-linearities
(including second order corrections) in a later section. We will also go from real space to Fourier space,
in order to trade one equation with partial spatial derivatives against a set of equations with “k”
factors. The great advantage of linear theory is to obtain independent equations of evolution for each
Fourier mode. This is of course related to the fact that in flat space, plane waves are eigenfunctions
of the Laplacian operator, with eigenvalue given by the Fourier mode k. Our assumption of flat space
is justified a posteriori by Planck measurement of Ωk ' 0. From a continuous density distribution of
a given species s, we define

ρ̄s(t) = 〈ρs(~x, t)〉~x (2.1.2)

δρs(~x, t) = ρs(~x, t)− ρ̄s(t) (2.1.3)

δs(~x, t) =
δρs(~x, t)

ρ̄s(t)
(2.1.4)

δs(~k, t) =

∫
δse

i~k~x d3~x

(2π)3/2
(2.1.5)

In an expanding space, k refers to a comoving wavelength, and the associated physical wavelength is
simply obtained by

λ(t) = a(t)
2π

|~k|
(2.1.6)

57
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Figure 19: A schematic pictures of three wavelengths initially in causal contact, exiting the Hubble radius
during inflation and entering it again during radiation or matter domination.

A key criterion comes from the comparison of a given wavelength with the Hubble radius RH(t) =

H(t)−1. The ratio λ/RH ∝ ȧ. Hence, when the Universe expansion is accelerated (during Λ domination,
or inflation), modes “exit” the Hubble radius (which is very close to the photon horizon), while they
“enter” the Hubble radius when expansion is decelerated (during radiation/ matter domination). We
have already mentioned this key observation as a motivation for an inflation phase in order to explain
causal contact between different points in space. This is illustrated in Fig. 19. This section is based on
many textbooks [90], [217], [392] and seminal papers [353], [412], [534], to which the reader is referred
for further details. In this work, we will make use of the Boltzmann code CLASS 1 [390] to numerically
solve the relevant evolution equations and compute the important statistical quantities introduced in
next section.

2.1.1 Perturbed Einstein equations

2.1.1.1 Perturbations of the metric

A perturbed flat FLRW metric can be written in general as (careful we use from here on conformal
time):

g00 = a2(τ)(1 + 2φ)

g0i = −a2(τ)Bi (2.1.7)

gij = −a2(τ)(δij +Hij)

where φ, Bi and Hij are functions of space and time.

1 http://class-code.net
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Scalar, Vector and Tensor decomposition
Since the metric is symmetric, this object contains ten degrees of freedom (d.o.f.). It is extremely
useful to decompose these quantities into scalar, vector and tensor (with respect to spatial rotation
SO(3)) sectors. In fact, what makes this decomposition so powerful is that at linear order all sectors
do not mix and can therefore be treated separately.
We start by splitting Bi into its longitudinal and transverse part (it is called the Helmholtz decompo-
sition):

Bi = ~∇ζ + ~∇×~b , (2.1.8)

where ~b is a transverse 3-vector, meaning that it obeys div(~b) = ∂ibi = 0. Similarly, any rank-2
symmetric tensor can be written as

Hij = −2ψδij + 2
(
∂i∂j −

1

3
δij∇2

)
µ

+ (∂iaj + ∂jai) with ∂iai = 0 (2.1.9)

+ 2hij with ∂ihij = 0 and hii = 0 .

The 10 d.o.f. are now split between:

• scalars: φ,ζ,ψ,µ

• vectors: ~a and ~b

• tensors: hij .

In this manuscript, I will mostly describe scalar modes as they are the relevant degrees of freedom to
study the evolution of density perturbations. They generalize the notion of gravitational potential, re-
lated to density perturbations through Poisson equation. Vector perturbations represent gravitational
effects generated by the vorticity of the field. They are often called “gravito-magnetism” effect by anal-
ogy. They can be important in astrophysics, for instance in the context of Black Hole merging, but
in Cosmology they are usually neglected, given that they quickly decay with the Universe expansion.
On the other hand, tensor perturbations, which represent what is usually called gravitational waves
are very important in Cosmology. Indeed, they are predicted by inflation theories, and although it is
not the main topic of this work, some comments will be given in a further section.

The Gauge Freedom
Cosmological perturbation theory (like GR itself) is a gauge theory, in the mathematical sense that one
needs to choose a reference frame (in a so-called fiber bundle) in which to describe the perturbations,
i.e. a way to slice the space-time in equal-time hyper-surfaces and a specific spatial coordinate choice
on these hyper-surfaces. Physical quantities do not depend on the gauge choice, but intermediate
quantities in this calculation constructed from the perturbations do! A clever gauge choice thus usually
aims at simplifying computations depending on the problem to solve. On the other hand, it is easily
possible to create “fictitious perturbations” from a unperturbed distribution with an inconvenient
gauge choice. One very common way of creating perturbations is “the time shifting” τ → τ + ξ0(τ, ~x),
with ξ0(τ, ~x) being very small. The homogeneous density of the Universe then gets perturbed, ρ(τ)→
ρ(τ + ξ0(τ, ~x)) = ρ̄(τ) +

{
δρ ≡ ρ̄′ξ0(τ, ~x)

}
. A change of the time coordinate can therefore introduce

such fake density perturbations.
In practice, they are two ways of dealing with the gauge freedom:
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• one choose (or fix) the gauge, i.e. introduce a condition that completely defines the space-time
reference frame. In any case, this is safe as the physical quantities are always independent of the
gauge choice.

• one can work with gauge-invariant quantities (i.e. non trivial integro-differential combinations
of the metric and stress-energy tensor components left invariant by a gauge transformation) and
derive gauge-invariant equations of motions for these quantities.

Gauge fixing

• Synchronous gauge: Historically, this gauge choice was first introduced by Lifshitz [405] and is
defined by the prescription φ = 0 and Bi = 0. This gauge allows a description simultaneously
of scalars, vectors and tensors as µ, ψ, ~a and hij are free. For scalar perturbations, we further
restrict the degrees of freedom to µ and ψ only. Traditionally, one introduces the function η and
h such that :

2∇2µ = 6η + h (2.1.10)

with h being defined as the trace of Hij : H i
i = −6ψ ≡ h. This gives in Fourier space :

−2k2µ = 6η + h (2.1.11)

Hij =
h

3
δij − 2

(
kikj −

1

3
δijk

2
)
µ = k̂ik̂jh+ (k̂ik̂j −

1

3
δij)6η (2.1.12)

In this gauge, a convenient way of writing the metric is therefore :

ds2 = a2(τ)
{
dτ2 − (δij +Hij)dx

idxj
}

. (2.1.13)

There is a complication associated to this gauge. Indeed, all the d.o.f. have not been fixed, as
the prescription fixes the hyper-surfaces of simultaneity relative to each other, with a remaining
freedom to choose their origin. It is still possible to perform a gauge transformation, leaving φ
and Bi equal to zero, to define a new coordinate frame as we will see in the next part.

• Newtonian gauge: It is defined by µ = 0, Bi = ai = 0 and hij = 0. In this gauge, the world-line
of an observer at rest is simply orthogonal to hyper-surfaces of simultaneity (since Bi is 0), those
hyper-surfaces of constant time having furthermore isotropic induced geometries (since hij , ai
and µ are 0). This gives for the metric :

ds2 = a2(τ)
{
dτ2(1 + 2φ)− (1− 2ψ)δijdx

idxj
}

. (2.1.14)

Note that it is only suitable to describe scalar modes, but can be generalized to describe vectors
and tensors. In the Newtonian (or weak-field) limit, for sub-horizon scales, φ coincides with the
Newtonian gravitational potential (hence the name).

Other gauges exist in the literature, that can be more practical depending on the computation, but
those two gauges are the ones we have been working with in this study. Since observables do not de-
pend on the gauge, having a code that work in both gauges allow to consistently check the result of a
computation. In order to go from one gauge to another, one needs to perform a gauge transformation.
Let see now how this is done.
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Gauge Transformation
As already explained, a gauge is nothing but a specific time slicing of the space-time of General
Relativity, with a specific choice of spatial coordinates on these time slices. Therefore, a gauge trans-
formation will corresponds to a coordinate transformations, although very small since we deal with
perturbations, and with a certain subtlety compared to standard coordinate transformations. Let see
why.
We want to study the space-time U (a Lorentzian manifold in geometric terms which represents the
base of a fiber bundle, while the fibers are simply the tangent spaces), supplied with a map F on R:

F : R4 → U

x → X

To linearize Einstein equation, we compare the physical space-time U to a “fake” reference space-time
Ū , homogeneous and isotropic, supplied with a map f on R4 together with a FLRW metric. We
decompose the map F = j ◦ f , where j is a diffeomorphism between U and Ū , to compare physical
quantities to the background ones and hence to define the perturbations.

Figure 20: left panel: coordinate transformation, right panel: gauge transformation. Adapted from Julien Les-
gourgues’s master course.

The usual coordinate change means changing the map f ; all quantities on U and Ū would change under
the Lorentz group and this would not have any interest, as it could destroy homogeneity and isotropy
of the “background” Universe (see fig. 20, left panel). Rather, we would like to change the coordinate
frame without destroying these properties of the background Universe. This means changing the map
j between Ū and U . In other words, by choosing another diffeomorphism j′, we change the coordinate
frame on U (with new map j′ ◦ f) without changing the one on Ū (fig 20, right panel). After this
transformation, the quantities in X correspond to the coordinate x′ instead of x and are not compared
to the homogeneous quantities in M but in M ′.
Now, let see how this is done mathematically. We consider the coordinate transformation

Xµ → X̃µ ≡ Xµ + ξµ(τ, ~x), where ξ0 ≡ T, ξi ≡ Si = ∂iS + Ŝi . (2.1.15)
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The spatial shift Si has been split again into a scalar, S, and a divergenceless vector, Ŝi. We now
want to know how the metric transforms under this change of coordinates. Using the invariance of ds2

under a coordinate transformation, we can write :

ds2 = gµν(X)dXµdXν = g̃αβ(X̃)dX̃αdX̃β . (2.1.16)

Using dXα =
(
∂X̃α

∂Xµ

)
dXµ one relats old and new metrics via

gµν(X) =
∂X̃α

∂Xµ

∂X̃β

∂Xν
g̃αβ(X̃) (2.1.17)

The explicit computation is done in appendix B.1.1. The result is that metric variables transform as:

φ→ φ̃ = φ− T ′ −HT (2.1.18)

Bi → B̃i = Bi + ∂iT − S′i (2.1.19)

Hij → H̃ij = Hij − 2HT −
{
∂iSj + ∂jSi

}
. (2.1.20)

where H ≡ a′/a = aH is the Hubble parameter in conformal time. In terms of the SVT-decomposition,
we have

φ → φ− T ′ −HT (2.1.21)

ζ → ζ + T − S′ , bi → bi − Ŝ′i , (2.1.22)

ψ → ψ −HT − 1

3
∇2S , (2.1.23)

µ → µ− S , ai → ai − Ŝi , hij → hij . (2.1.24)

Gauge-invariant perturbations
As already explained, to avoid the gauge problem, it is possible to define special combinations of
metric perturbations that do not transform under a change of coordinates. These are the Bardeen
variables [79]:

Ψ ≡ φ+H(ζ − µ′) + (ζ − µ′)′ Φ ≡ −ψ −H(ζ − µ′) +
1

3
∇2µ (2.1.25)

Φ̂i ≡ a′i − bi hij (2.1.26)

Indeed, if we perform a gauge transformation on Ψ we have :

Ψ→ Ψ̃ = φ̃+H(ζ̃ − µ̃′) + (ζ̃ − µ̃′)′

= φ− T ′ −HT +H(ζ + T − S′ − µ′ + S′) + (ζ + T − S′ − µ′ + S′)′

= φ+H(ζ − µ′) + (ζ − µ′)′︸ ︷︷ ︸
Ψ

−T ′ −HT +HT + T ′

= Ψ (2.1.27)

and the same calculations can be easily performed on other variables to show their invariance under
gauge transformations.
They can be considered as being the “physical” spacetime perturbations since they cannot be removed
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by a gauge transformation. Unfortunately, the equations in these variables can be quite tricky. Thus, it
is usual to perform computation in a special gauge that makes it easier, then form the gauge-invariant
variables and finally, if needed, turn these into the perturbations in any other gauges. The question
is now, what are their expressions in the two special gauges we saw before, namely the synchronous
and newtonian gauges.
Using the prescriptions defined above, restricted to scalar modes, it is immediate to show:

• synchronous gauge:

Ψ = −µ′′ −Hµ′
FS
= H (6η + h)′

2k2
+

(6η + h)′′

2k2
(2.1.28)

Φ =
h

6
− 1

3
∇2µ−Hµ′

FS
= −η +H (6η + h)′

2k2
(2.1.29)

• newtonian gauge:
Ψ = φ Φ = −ψ (2.1.30)

This makes the newtonian gauge so useful: the perturbation variables are identical to the gauge-
invariant variables up to a minus sign ! Equating variables in both gauges yields the way to go
from one to the other very quickly.

2.1.1.2 Perturbations of the stress-energy tensor

We start from the background, homogeneous and isotropic stress-energy tensor of the Universe T̄µν ,
which takes the form a perfect fluid as given by (1.1.17) and consider small perturbations δTµν . Using
the notation ρ = ρ̄+ δρ, P = P̄ + δP, Uµ = Ūµ + δUµ and introducing the anisotropic stress tensor
Πµ

ν , we develop equation (1.1.17) keeping only first order terms. It reads

δTµν = (δρ+ δP)ŪµŪν + (ρ̄+ P̄)(δUµŪν + ŪµδUν)− δPδµν −Πµ
ν (2.1.31)

In appendix B.1.2, the 4-vector velocity is shown to be given by Uµ = a
[
1+φ,−(vi+Bi)

]
. The velocity

vi will couple through Einstein equations to both scalar and vectorial perturbations. It could be useful
to perform the scalar-vector-tensor decomposition also for the stress-energy tensor variables, as it is
defined by equation (2.1.8) and (2.1.9). However, only the longitudinal part of vi will be involved in
the scalar sector, which we usually write : v‖i = ∂iυ. Traditionally, we prefer to take as scalar degrees
of freedom the divergence θ:

θ ≡ ∂ivi = ∇2υ (2.1.32)

where the last equality holds since the orthogonal part is, by definition, divergenceless.
In the same way, instead of introducing a potential through the longitudinal part of Πi

j as Π
i‖
j =

(∂i∂j − 1
3∇2δij)σ̃, it is common to define the scalar degrees of freedom σ (called shear or anisotropic

stress) by

(ρ̄+ P̄)∇2σ = −(∂i∂j −
1

3
∇2δij)Π

i
j = −∂i∂jΠi

j (2.1.33)
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So, together with δ ≡ δρ/ρ̄, it is shown also in appendix B.1.2 that the scalar degrees of freedom of
the stress-energy tensor are

T 0
0 = ρ̄(1 + δ) , (2.1.34)

∂iT
i
0 = (ρ̄+ P̄)θ , (2.1.35)

T ii = −3(P̄ + δP) , (2.1.36)

(∂i∂j −
1

3
∇2δij)T

i
j = (ρ̄+ P̄)∇2σ . (2.1.37)

If there are several species in the Universe, hence several contributions to the stress-energy tensor,
they are added such that Tµν =

∑
s
T sµν . This implies

δρ =
∑

s

δρs , δP =
∑

s

δPs , qi =
∑

s

qis , Πij =
∑

s

Πij
s . (2.1.38)

where the momentum density qi ≡ (ρ̄ + P̄)vi has been introduced. Density perturbations, pressure
perturbations and anisotropic stress simply add. It is the momentum densities that add, and not the
velocities though.
Adiabatic pressure perturbations are defined as

δPad ≡
˙̄P
˙̄ρ
δρ (2.1.39)

while the non-adiabatic, or entropic, pressure perturbations are simply

δPen ≡ δP − δPad . (2.1.40)

Gauge freedom, gauge transformations and gauge invariant variables
Just as for the metric perturbations, the gauge freedom can be used to simplify calculations in the
matter sector. Very common gauges are

• Uniform density gauge : It is define by setting δρ = 0. Therefore it is a gauge choice in which
there is no density perturbation.

• Comoving gauge : It is the gauge comoving with a given fluid. For a given species, the scalar
momentum density q, or equivalently the divergence θ is asked to vanish q = θ = 0.

There are several ways of defining these gauges, depending on how degrees of freedom are kept or
killed in the metric sector. One common way is to combine synchronous and comoving gauges as we
will do later on. In CLASS, the synchronous gauge is written in the gauge comoving with the DM.
To motivate this choice, we will see in chapter 4, that this will lead to very simple equations for the
decaying DM and its daughter particle.



2.1 cosmological perturbation theory at first order 65

Relevant d.o.f. inside the stress-energy tensor transforms under a gauge-transformation as (see ap-
pendix B.1.2):

δ → δ̃ = δ − ρ̄′

ρ̄
T (2.1.41)

δP → δP̃ = δP − T P̄ ′ (2.1.42)

qi → q̃i = qi +
(
ρ̄+ P̄

)
S′i (2.1.43)

⇔ θ → θ̃ = θ + ∂iS′i (2.1.44)

⇔ υ → υ̃ = υ + S′ (2.1.45)

Πij → Πij (2.1.46)

Like for the metric, one can build gauge-invariant combination of previous variables. For instance, the
comoving-gauge density perturbation ∆ (called like that since it is equal to the density perturbation
in the gauge comoving with the fluid) is defined as

∆ ≡ δ +
ρ̄′

ρ̄
(υ + ζ) . (2.1.47)

We prove in appendix B.1.2 that it is indeed gauge invariant. Its interest lies in the fact that the
Poisson equation will take a trivial form thanks to it. This is however not the most used variable.
The usual matter gauge-invariant variables can be constructed from relations (2.1.21), (B.1.28-B.1.31)
and are :

δgi = δ − ρ̄′

ρ̄
(µ′ − ζ)

θgi = θ +∇2(µ′ − ζ)

δPgi = δP − P̄ ′(µ′ − ζ) (2.1.48)

where the second equality holds since, at first order ∂iT = S′i. Note that by construction δPen is gauge
invariant.

From gauge to gauge
Using the gauge-invariant variables, we can now immediately go from the newtonian to the synchronous
gauge and vice versa. In fact, all newtonian variables are identical to the invariant ones since ζ = µ = 0

in this gauge. We only need to express them in synchronous gauge to have our relations. Setting ζ = 0

and µ = −(6η + h)/(2k2) (in Fourier space) we have

δ(new) = δ(syn) + ρ̄′

ρ̄
6η′+h′

2k2 (2.1.49)

θ(new) = θ(syn) + 1
2(6η′ + h′) (2.1.50)

δP(new) = δP(syn) + P̄ ′ 6η′+h′
2k2 (2.1.51)

2.1.1.3 Summary of the important relations in newtonian and synchronous gauge

In appendix B.1.3, we explicitly relate, at first order, metric perturbations to matter ones by means
of i) Einstein equations (1.1.2); ii) the conservation of the stress-energy tensor. To do so, one needs to
perturb the Christoffels Γµαβ , the Ricci tensor Rµν and Ricci scalar R. The strategy adopted is to work
in the newtonian gauge restricted to scalar modes given by eq. (2.1.14), and then form the Bardeen
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variables to be able to change the gauge easily. Using Einstein equations, one finds four relations
between the two metric variables φ and ψ, and the two matter variables δ and θ. These four equations
are (in Fourier space)

k2ψ + 3H(Hφ+ ψ′) = −4πGa2ρ̄δ (00)

−k2(ψ′ +Hφ) = 4πGa2(ρ̄+ P̄)θ (0i)

ψ′′ + (2H′ +H2)φ+Hφ′ + 2Hψ′ − 1

3
k2(φ− ψ) = 4πGa2δP (ii)

k2(φ− ψ) = 12πGa2(ρ̄+ P̄)σ (ij)

(2.1.52a)

(2.1.52b)

(2.1.52c)

(2.1.52d)

The Poisson equation (B.1.55) can be rewritten in a particularly simple form by introducing the
comoving gauge density contrast

− k2ψ = 4πGa2ρ̄∆ . (2.1.53)

In some cases, it might be easier to use the conservation of the stress-energy tensor, which yields two
other equations (redundant with previous ones)

δ′ = 3Hδ
(
ω − δP

δρ

)
+ (3ψ′ − θ)(1 + ω) Continuity equation

θ′ = (3ω − 1)Hθ −
(

ω′

1 + ω

)
θ +

k2

1 + ω

δP
δρ
δ + k2φ− k2σ Euler equation

(2.1.54a)

(2.1.54b)

Here we have made use of the equation of state P̄ = ωρ̄.
All these relations can be rewritten in other gauges by means of the gauge invariant variables Φ, Ψ,

δgi, θgi, δPgi through the relations

Ψ = φ+H(ζ − µ′) + (ζ − µ′)′ Φ = −ψ −H(ζ − µ′) +
1

3
∇2

δgi = δ − ρ̄′

ρ̄
(µ̇− ζ) θgi = θ +∇2(µ̇− ζ) δPgi = δP − P̄ ′(µ̇− ζ)

(2.1.55a)

(2.1.55b)

Recalling that the metric in the synchronous gauge is given by eq. (2.1.13), we have for the particular
example of switching between newtonian and synchronous gauges, in Fourier space,

φ = H (6η + h)′

2k2
+

(6η + h)′′

2k2

ψ = η −H (6η + h)′

2k2

δ(new) = δ(syn) +
ρ̄′

ρ̄

6η′ + h′

2k2

θ(new) = θ(syn) +
1

2
(6η′ + h′)

δP(new) = δP(syn) + P̄ ′ 6η
′ + h′

2k2

(2.1.56a)

(2.1.56b)

(2.1.56c)

(2.1.56d)

(2.1.56e)
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This enables us to obtain Einstein equations as well as the Euler and continuity equations in the
synchronous gauge:

k2η − 1

2
Hh′ = −4πGa2ρ̄δ (00)

−k2η′ = 4πGa2(ρ̄+ P̄)θ (0i)

−1

2
h′′ −Hh′ + k2η = 12πGa2δP (ii)

1

2
(6η′′ + h′′) +H(6η′ + h′)− k2η = 12πGa2(ρ̄+ P̄)σ (ij)

(2.1.57a)

(2.1.57b)

(2.1.57c)

(2.1.57d)

δ′ = 3Hδ
(
ω − δP

δρ

)
− (θ +

h′

2
)(1 + ω) Continuity equation

θ′ = (3ω − 1)Hθ −
(

ω′

1 + ω

)
θ − k2

1 + ω

δP
δρ
δ − k2σ Euler equation

(2.1.58a)

(2.1.58b)

2.1.2 Perturbed collisionless Boltzmann equations

In previous section, we have determined evolution equations for the global cosmic fluid perturbations.
They can be used to describe separate fluids if they are uncoupled by simply summing every compo-
nents. However, in the Universe all species are not isolated and therefore does not participate to the

Figure 21: A schematic picture of the interactions between the different component of the universe. Adapted
from [90].

evolution of perturbations in the same way. The only common point is that all species are affected
by gravity, i.e. they are all coupled to each other through their influence on the spacetime metric.
Photons and baryons are also strongly coupled together through Compton and Coulomb scattering,
whereas neutrinos are only collisionally coupled (through weak interactions) very early in the history
of the Universe. Dark Matter in the standard picture is never collisionally coupled to other species,
even though in principle it could have very tiny interactions with them. In chapter 4, we will play the
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game of adding a decaying term in its evolution equation. Figure 21 sums up the way in which the
different components of the Universe interact with each other.
To describe all these coupling, one needs to write down a Boltzmann equation for each species in the
Universe, similar to the one introduced in sec. A.1. We recall that it takes the schematic form

df

dt
= C[f ] . (2.1.59)

where the LHS is the Liouville operator, while the RHS is the collision operator, containing all possible
interactions terms. We now aim at developing the total derivative in terms of partial ones, in order to
derive (in a first step) the collisionless Boltzmann equation df/dt = 0.

2.1.2.1 The general collisionless Boltzmann equation

In principle the distribution f lives in a 8 dimensional space f(xµ, Pµ). However, we can use some
constraints to reduce the dimension. Indeed, imposing P 2 = gµνP

µP ν = m2, where Pµ is define in
eq. (1.1.16), allows to express one of the 4-momentum component as a function of the others. Since
gµν appears here, we will need to work in a given gauge. In this section for simplicity we shall make
use of the Newtonian gauge in cosmic time. Practically, it means that there are no more a2 term in
g00 (see eq. (2.1.7)) and that τ → t. The generalization of eq. (1.1.16) in presence of perturbations in
the metric is therefore (in cosmic time)

Pµ =

(
E(1− φ),

pni

a
(1 + ψ)

)
⇔ Pµ =

(
E(1 + φ),−apni(1− ψ)

)
(2.1.60)

Thanks to the mass-shell constraint, we only need to include a term proportional to ∂f/∂~p, which we
usually split between the magnitude p and the direction ni. We thus have

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂ni
dni

dt
(2.1.61)

or in term of the energy E

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂E

dE

dt
+
∂f

∂ni
dni

dt
(2.1.62)

We prove in appendix B.2.1.1, by using properties of the isotropic zero-order distribution and the
geodesic equation (1.1.12), that the collisionless Boltzmann equation can be rewritten as

df

dt
=
∂f

∂t
+
∂f

∂xi
p

E

ni

a
− ∂f

∂E

[
∂φ

∂xi
pni

a
+

[
H − ∂ψ

∂t

]
p2

E

]

!
= 0 collisionless

(2.1.63a)

(2.1.63b)

Up to this point we have made no simplifications about the nature of the species, apart that it is col-
lisionless. To include collisions will be our task in section 2.1.3, while a decay term will be considered
in chapter 4. First of all, let’s see what are the perturbation equations for collisionless species.
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2.1.2.2 Cold Dark Matter

To describe collisionless cold Dark Matter (CDM) (or non-interacting baryons), we neither needed
such a careful treatment of the distribution, nor to include a collision term, since by definition i) it
is cold so it has virtually no phase space distribution, ii) it is collisionless. For the moment we can
either integrate over f in previous equations (a bit lengthy, see [217] for instance), or directly use
the perturbed continuity and Euler equations (2.1.54) and (2.1.58), to obtain the evolution of the
perturbation in the CDM fluid in both newtonian and synchronous gauges (here again in conformal
time).

• Newtonian gauge : We only need to set ω = ω′ = 0, σ = 0 and δP/δρ = 0

δ′CDM = −θCDM + 3ψ′ , θ′CDM = −HθCDM + k2φ (2.1.64a)

• Synchronous gauge : If we use the CDM particles to define the synchronous coordinates we can
even set θ = 0

δ′CDM = −1

2
h′ (2.1.65a)

2.1.2.3 Relativistic-massless species

Photons and massless neutrinos for instance enter this category.2 However, given that we do not have
yet switched on the collision term, the set of equations we will derive only apply to massless neutrinos.
In this case, the phase-space distribution is non-zero and the degrees of freedom δ, θ and σ aren’t
enough to describe the full distribution. To go further, we expand the photon distribution f about its
zero-order value. We first write

f(~x, p, ~n, t) =

[
exp

{
E(p)

T (t)[1 + Θ(~x, ~n, t)]

}
− 1

]−1

, (2.1.66)

with E(p) = p in the massless case. The zero-order temperature T is a function of time only and neither
of space nor of p and ~n. Θ ≡ δT/T is a inhomogeneous and anistropic perturbation to the distribution
function. We simply assume that it doesn’t depend on the magnitude p of the momentum, which
follows from the fact that the magnitude of the photon momentum is virtually unchanged during a
Compton scatter at low energies. Under the massless condition E(p) = p, eq. (2.1.63) simplifies greatly
and becomes

df

dt
=
∂f

∂t
+
∂f

∂xi
ni

a
− p∂f

∂p

[
∂φ

∂xi
ni

a
− ∂ψ

∂t
+H

]
. (2.1.67)

We can then split between zero and first order. It is shown in appendix B.2.1.2 that the zero-order
equation is

df

dt

∣∣∣∣
zero−order

=
∂f (0)

∂t
−Hp∂f

(0)

∂p

!
= 0 , (2.1.68)

which leads to the famous result

T ∝ 1

a
. (2.1.69)

2 Massive neutrinos will get a slight complication due to their mass. We will treat them just after.



70 from perturbations to observables: cmb and matter power spectrum

The first order equation on the other hand is

df

dt

∣∣∣∣
first−order

= −p∂f
(0)

∂p

[
∂Θ

∂t
+
∂φ

∂xi
ni

a
− ∂ψ

∂t
+
∂Θ

∂xi
ni

a

]
, (2.1.70)

and assuming collisionless species

∂Θ

∂t
+
∂φ

∂xi
ni

a
− ∂ψ

∂t
+
∂Θ

∂xi
ni

a
= 0 . (2.1.71)

Using the definition of the stress-energy tensor (1.1.18) and that in the newtonian gauge (−det[gαβ]−1/2) =

a−3(1−φ+3ψ) and d3P = a3(1−3ψ)p2dpdΩ, we can relate the distribution to the degrees of freedom
we have defined previously :

T 0
0 = ρ̄(1 + δ) = gs

∫
p2dpdΩ

(2π)3
p

[
f (0) − p∂f

(0)

∂p
Θ

]
, (2.1.72)

∂iT 0
i = −(ρ̄+ P̄)θ = ∂i

{
− gs

∫
p2dpdΩ

(2π)3
pni

[
f (0) − p∂f

(0)

∂p
Θ

]}
, (2.1.73)

T ii = −3(P̄ + δP) = −gs
∫
p2dpdΩ

(2π)3
p

[
f (0) − p∂f

(0)

∂p
Θ

]
, (2.1.74)

(∂i∂j −
1

3
∇2δij)T

i
j = (ρ̄+ P̄)∇2σ = (∂i∂j −

1

3
∇2δij)

{
− gs

∫
p2dpdΩ

(2π)3
p2ninj

[
f (0) − p∂f

(0)

∂p
Θ

]}
.

(2.1.75)

To go further, it is common to reduce the number of variables by integrating out the p−dependence
in the distribution and to expand the angular dependence of the perturbations in a series of Legendre
polynomials P`(µ), with µ ≡ ~k ·~n/‖~k‖:

Θ(~k, µ, t) =
∑

`

(−i)`(2`+ 1)Θ`(t,~k)P`(µ) , (2.1.76)

Θ`(t,~k) =
1

(−i)`
∫ 1

−1

dµ

2
Θ(~k, µ, t)P`(µ) . (2.1.77)

We show explicitly in appendix B.2.1.2 that splitting between ` = 0, ` = 1 and ` ≥ 2 gives the
following hierarchy of moments for Θ

Θ̇0 = −kΘ1 + ψ̇

Θ̇1 =
k

3a

[
Θ0 − 2Θ2 + φ

]

Θ̇` =
k

(2`+ 1)a

[
`Θ`−1 − (`+ 1)Θ`+1

]
, ` ≥ 2 ,

(2.1.78a)

(2.1.78b)

(2.1.78c)

which we can immediately relate to the scalar degrees of freedom introduced in previous section
through (proof is in appendix B.2.1.2)

δ = 4Θ0 , θ = 3kΘ1 , σ = 2Θ2 . (2.1.79)

The equations now in conformal time dt = adτ read



2.1 cosmological perturbation theory at first order 71

• Newtonian gauge:

δ′ = −4

3
θ + 4ψ′

θ′ = k2

[
δ

4
− σ + φ

]

Θ′` =
k

(2`+ 1)

[
lΘ`−1 − (l + 1)Θl+1

]
l ≥ 2 .

(2.1.80a)

(2.1.80b)

(2.1.80c)

• Synchronous gauge: It is straight forward to obtain the same set of equations in synchronous
gauge using eq. (2.1.56).

δ′ = −4

3
θ − 2

3
h′

θ′ = k2

[
δ

4
− σ

]

σ′ =
16

15
θ − 6

5
kΘ3 +

8

15
h′ +

16

5
η′

Θ′` =
k

(2`+ 1)

[
lΘ`−1 − (`+ 1)Θ`+1

]
l ≥ 3 .

(2.1.81a)

(2.1.81b)

(2.1.81c)

(2.1.81d)

Truncation Scheme
Of course, we cannot follow an infinite number of equations. Hence, these sets of equations need to

be truncated at some maximum multipole `max. For understanding CMB temperature and polarisation
anisotropies, we will see that only the first few multipoles enter the relevant quantities. For a perfect
fluid, which does not develop any shear, nor higher momenta, it could be sufficient to cut at `max = 2.
However, this wouldn’t be accurate for a species such as neutrinos. Typically, perturbations in a free-
streaming species are populating higher multipoles until ` ∼ kη, and thus in principle a safe scheme
would be to cut for instance at ` ∼ 2kη0, where η0 is the conformal age of the Universe today. However,
this is very time consuming and it is found that setting brutally Ψ` or Θ` to 0 above a too low `max

will generate errors at higher `’s that propagate to lower ones. It is thus common to use the improved
truncation scheme from Ref. [412]. It is based on the solution of these equations in the absence of
gravitational source term and cosmic shear (i.e. ∂τ (φ + ψ) = 0). In this case, the time dependence
of the analytical solution of the Boltzmann hierarchy is given by a bessel function j`(kτ) for all `’s
(only two being non-zero). From this, we assume that the solution still approximately holds even if the
condition ∂τ (φ+ ψ) = 0 is not fulfilled anymore and make use of the recurrence relation for spherical
Bessel functions to get

Θ(`max+1) '
(2`max + 1)

kτ
Θ`max −Θ(`max−1) . (2.1.82)

This improved truncation scheme has been generalized to include spatial curvature in Ref. [397].

2.1.2.4 Massive neutrinos

Before complexifying the Boltzmann equations, we finish by discussing the case of massive neutrinos.
The difficulty for massive neutrinos is that it is no longer possible to do simplifications of eq. (2.1.63)
into eq. (2.1.67). In general, it is possible to formally define the perturbed phase-space distribution :

f(~x, p, ~n, t) = f (0)(p, t)(1 + Ψ(~x, p, ~n, t)) , (2.1.83)
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To relate to the massless limit, it is possible to define the perturbations of the integrated phase-space
distribution function as

F ≡
∫
dpp3f (0)Ψ∫
dpp3f (0)

≡
∑

`

(−i)`(2`+ 1)F`(t,~k)P`(µ) , (2.1.84)

and F can easily be related to Θ, introduced in eq. (2.1.66), when plugging eq. (B.2.17) into (2.1.83).
It yields

F =

∫
dpp3f (0)Ψ∫
dpp3f (0)

=

∫
dpp3

(
f − f (0)

)
∫
dpp3f (0)

=

∫
dpp3

(
f (0) − p∂f (0)

∂p Θ− f (0)
)

∫
dpp3f (0)

= −
∫
dpp4 ∂f (0)

∂p Θ
∫
dpp3f (0)

= 4

∫
dpp3f (0)Θ∫
dpp3f (0)

= 4Θ . (2.1.85)

However, given that such integration of the Boltzmann equation is not possible for massive neutrinos,
it is more convenient to directly expand the angular dependence in a Legendre series:

Ψ(~k, p, µ, t) =
∑

`

(−i)`(2`+ 1)Ψ`(t,~k)P`(µ) . (2.1.86)

The perturbed energy density, pressure, energy flux and shear stress are related to Ψ through

δρ =

∫
p2dpdΩ

(2π)3
Ef (0)Ψ0 ,

δP =

∫
p2dpdΩ

(2π)3

p2

3ε
f (0)Ψ0 ,

−(ρ̄+ P̄)θ = ∂i
∫
p2dpdΩ

(2π)3
pf (0)Ψ1 ,

−(ρ̄+ P̄)θ = ∂i
∫
p2dpdΩ

(2π)3

p2

3ε
f (0)f (0)Ψ2 .

(2.1.87a)

(2.1.87b)

(2.1.87c)

(2.1.87d)

Keeping only the first order terms, the general collisionless Boltzmann equation (2.1.63) can be written
in terms of the perturbations of the phase-space distribution:

∂Ψ

∂t
+
∂Ψ

∂xi
p

E

ni

a
− ∂ ln f (0)

∂ ln p

[
φ

xi
E

p

ni

a
− ∂ψ

∂t

]
= 0 . (2.1.88)

By following the same steps as for the massless case, one can write the following hierarchy for massive
neutrinos in Fourier space (where we safely trade ∂ for d in the derivative of the unperturbed phase
space distribution):

Ψ̇0 = −k p
E

Ψ1 − ψ̇
d ln f (0)

d ln p

Ψ̇1 =
k

3

[
p

E
(Ψ0 − 2Ψ2)− E

p
φ
d ln f (0)

d ln p

]

Ψ̇` =
p

E

k

(2`+ 1)

[
`Ψ`−1 − (`+ 1)Ψ`+1

]
, ` ≥ 2.

(2.1.89a)

(2.1.89b)

(2.1.89c)
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We then can conveniently rewrite this equation in terms of conformal quantity y = ap, ε = aE and
dτ = dt/a to obtain:

• Newtonian gauge:

Ψ′0 = −ky
ε

Ψ1 − ψ̇
d ln f (0)

d ln y

Ψ′1 =
k

3

[
y

ε
(Ψ0 − 2Ψ2)− ε

y
φ
d ln f (0)

d ln y

]

Ψ′` =
y

ε

k

(2`+ 1)

[
`Ψ`−1 − (`+ 1)Ψ`+1

]
, ` ≥ 2.

(2.1.90a)

(2.1.90b)

(2.1.90c)

• Synchronous gauge: The same set of equations is readily obtained in synchronous gauge thanks
to the standard gauge transformations (2.1.56).

Ψ′0 = −ky
ε

Ψ1 −
1

6
h′
d ln f (0)

d ln y

Ψ′1 =
k

3

y

ε
(Ψ0 − 2Ψ2)

Ψ′2 =
k

5

y

ε
(2Ψ1 − 3Ψ3)−

(
1

15
h′ +

2

5
η′
)
d ln f (0)

d ln y

Ψ′` =
y

ε

k

(2`+ 1)

[
`Ψ`−1 − (`+ 1)Ψ`+1

]
, ` ≥ 3.

(2.1.91a)

(2.1.91b)

(2.1.91c)

(2.1.91d)

Former truncation scheme can be readily adapted for massive neutrinos [412]

Θ(`max+1) '
(2`max + 1)ε

ykτ
Θ`max −Θ(`max−1) . (2.1.92)

2.1.3 Thomson scattering collision term and polarization anisotropies

2.1.3.1 A first word on CMB Polarization

We now will explain the link between section 1.3.3 and the evolution of photons and baryons pertur-
bations. Before recombination, photons and baryons are interacting through Compton scattering. We
consider here times well after neutrino decoupling, i.e. T � me, such that the interactions happen in
the low energy Thomson limit. We thus need to add a collision term for the process

e−(~q) + γ(~p)↔ e−(~q′) + γ(~p′) .

The key point here is that Thomson scattering holds a strong dependence on the polarization of
the photon: typically, for photons polarized in the scattering plane, the amplitude of the scattering is
suppressed by a factor cos(~p · ~p′), while it is unsuppressed for photons polarized normal to the scattering
plane. This implies that the radiation in the CMB is expected to be (linearly) polarized because of
Compton scattering. However, given that the CMB is globally isotropic the sum of all incoming photons
will result in not net polarisation. In fact, only a quadrupole pattern can generate a net polarization.
This fact is sketched in fig. 22, assuming radiations coming only from two perpendicular directions as a
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Figure 22: A schematic picture of the generation of linear polarization due to Thomson scattering. Left panel
− An isotropic flux generates not net polarization. Middle panel − A dipole does not produce net
polarization neither. Right panel − Only a quadripolar pattern can generate a net polarization. In
this case, a positive Q component is generated since Ez > Ex. Adapted from Refs. [217], [330].

proof of principle. Because a quadrupole moment is generated only when photons start to free-stream,
the polarization patterns seen today are created around the time of decoupling.
Just like temperature, one can derive evolution equations for polarization in the very same way as

we just did. Polarization anisotropies can be generated by each type of perturbations, scalar vector or
tensor, but we shall as well limit ourself to scalar perturbations, which are the most important ones for
our study. The fundamental equations have been introduced by Refs. [111], [486] with large extension
and all mathematical details of the statistics of these anisotropies by Refs. [331], [353], [378], [604].
We start with a monochromatic electromagnetic wave of frequency ν propagating in the z-direction.
The components of the wave’s electric field vector at a given point in space can be written as [347]

Ex = ax(t) cos[2πνt− θx(t)] Ey = ay(t) cos[2πνt− θy(t)] . (2.1.93)

It is common to express the Stokes parameters, introduced to describe the shape of the ellipse in which
the polarization vector evolves and more easily accessible experimentally. Their time averages are

I ≡ 〈a2
x〉+ 〈a2

y〉 ,
Q ≡ 〈a2

x〉 − 〈a2
y〉 ,

U ≡ 〈2axay cos(θx − θy)〉 ,
V ≡ 〈2axay sin(θx − θy)〉 .

(2.1.94a)

(2.1.94b)

(2.1.94c)

(2.1.94d)

The I parameter is a physical observable that gives the intensity of the radiation, and is thus nothing
but the temperature T we have already encountered. We shall make use of temperature perturbation
units and measure intensity and polarization with respect to the mean CMB temperature. Q and U
describe the linear polarization while V describes circular polarization. In general, it is trivial to show
that they satisfy the relation

I2 = Q2 + U2 + V 2 , (2.1.95)
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thus there’s only three degrees of freedom. In the early Universe, we do not expect any phase shift
θx = θy, and equivalently there are no circularly polarized waves, thus we set V to 0. The sense
and magnitude of the polarization is defined by the angle between the orientation of the quadrupole
moment and the scattering direction. Setting the north pole at θ = 0 (i.e. along z in Fig. 22), a
polarisation component with Q > 0 (resp. Q < 0) is usually called a N-S (E-W), while a polarisation
component U > 0 (resp. U < 0) is called a NE-SW (NW-SE).
Under a rotation α in the polarization plane, I and V remain invariant while Q and U transform

as

Q′ = cos(2α)Q+ sin(2α)U (2.1.96)

U ′ = − sin(2α)Q+ cos(2α)U (2.1.97)

This non-invariance of the Stoke parameter makes the study much more complicated when looking
at photons coming at every direction in the sky. It is more convenient to build two quantities that
transform as spin 2 objects under the action of rotation (here around a random direction n̂)

(Q± iU)′(n̂) = e∓2iα(Q± iU)(n̂) (2.1.98)

and then to use properties of the spherical harmonics of spin 2 to construct spin 0 (rotation invariant)
quantitites. Such observation will be used when building the statistics of CMB, as we will construct
the so-called CMB E and B modes as linear combination of the spherical harmonic expansion coeffi-
cients.

2.1.3.2 Photon hierarchy

We wish now to write the equations governing the evolution of temperature and polarization anisotropies
for photons, i.e. for ΘT , Q and U .
However, for scalar modes, which are plane wave perturbations only characterized by a given wave
vector, it is always possible to choose our basis in the direction of the wave vector. The key point
is that azimuthal symmetry around this axis ensures that only Q polarization can be generated. Its
amplitude is thus Q ≡ ΘP (τ, k, µ) where µ is the cosinus of the angle between the photon and the
perturbation wave vector, µ ≡ n̂ · k̂. In order to know how it evolves, we need to write down the
linearized Boltzmann equation for both ΘT and ΘP with Thomson scattering collisions. Most of the
work for ΘT has already been done in previous section, and the collisionless part for ΘP is even simpler
as polarization is already a first order quantity and thus does not contain any metric contribution. In
appendix B.2.2, we derive the Boltzmann equations for ΘT including the angular dependence of the
Thomson scattering. The evolution equation for ΘP , and its contribution to the ΘT equation, requires
to follow a coupled system ~T = (ΘT ,ΘP ) with a more involved collision term. The full expression
is given in Ref. [328] (eqs. (21) and (22) therein) while the detailed computation can be found in
Ref. [378] and in textbooks [226], [479]. In the usual case of vanishing U and V terms, it simplifies to
(in Newtonian gauge and Fourier space)

Θ̇T + ikµΘT = −ψ̇ − ikµφ− neσT [ΘT0 −ΘT + n̂ ·~vb −
1

2
P2(µ)Π] ,

Π = ΘT2 + ΘP2 + ΘP0 ,

Θ̇P + ikµΘP = −neσT
[
−ΘP +

1

2
(1− P2(µ))Π

]
.

(2.1.99a)

(2.1.99b)

(2.1.99c)
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These equations can be recast in the usual hierarchy, augmented by one equation for ΘP`, now in
terms of conformal time.

• Newtonian gauge:

δ′ = −4

3
θ + 4ψ′ ,

θ′ = k2

[
δ

4
− σ + φ

]
+ aneσT (θb − θγ) ,

σ′ =
16

15
θγ −

6

5
kΘ3 −

18

10
aneσTσ +

2

10
aneσT (ΘP0 + ΘP2) ,

Θ′T l =
k

(2`+ 1)

[
lΘT (`−1) − (`+ 1)ΘT (`+1)

]
− aneσTΘT` l ≥ 3,

Θ′P` =
k

(2`+ 1)

[
lΘP (`−1) − (`+ 1)ΘP (`+1)

]
+ aneσT

[
−ΘP` +

1

2
Π

(
δl0 +

δl2
5

)]
.

(2.1.100a)

(2.1.100b)

(2.1.100c)

(2.1.100d)

(2.1.100e)

• Synchronous gauge:

δ′ = −4

3
θ − 2

3
h′

θ′ = k2

[
δ

4
− σ

]
+ aneσT (θb − θγ)

σ′ =
16

15
θ − 6

5
kΘ3 +

8

15
h′ +

16

5
η′ − 18

10
aneσTσ +

2

10
aneσT (ΘP0 + ΘP2)

Θ′T` =
k

(2`+ 1)

[
lΘT (`−1) − (`+ 1)ΘT (`+1)

]
− aneσTΘT` l ≥ 3,

Θ′P` =
k

(2`+ 1)

[
lΘP (`−1) − (`+ 1)ΘP (`+1)

]
+ aneσT

[
−ΘP` +

1

2
Π

(
δl0 +

δl2
5

)]
.

(2.1.101a)

(2.1.101b)

(2.1.101c)

(2.1.101d)

(2.1.101e)

The truncation scheme used is now modified to incorporate the effect of Thomson scattering. For
` = `max, we use again the Ma&Bertschinger scheme [412], generalized to spatial curvature [397]

Θ̇T` = kΘT (`−1) −
`+ 1

τ
ΘT` − aneσTΘT`

Θ̇P` = kΘP (`−1) −
(`+ 1)

τ
ΘP` − aneσTΘP` .

(2.1.102a)

(2.1.102b)

2.1.3.3 Baryon hierarchy

For baryons, it is not necessary to make use of a full Boltzmann hierarchy. Indeed, as Baryons are
non-relativistic, they have negligible pressure (or equation of state parameter ω = 0) and develop no
anisotropic stress σ. Thus it is enough to make use of the continuity and Euler equation, similarly to
DM, however augmented to incorporate Thomson scattering. The Thomson scattering term can be
simply obtained by considering momentum conservation between the photon and baryon fluid.
In practice, it is common to keep also the δP/δρ term when it is multiplied by k2, as it encodes effect
of the baryons pressure below their Jeans length. In this work we shall work with isentropic primordial
perturbations (this will be defined in 2.1.4.1). In that case, δP and δρ verifies

δP = c2
sδρ where c2

s ≡
Ṗ
ρ̇

= ω + ρ
dω

dρ
. (2.1.103)
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In general, Thermodynamics teaches us that an ideal gas verifies P = nkBT = ρkBT/µ where n = ρ/µ

has been used with µ the mean molecular weight in the gas (including e− and H and He ions). We
can thus readily compute c2

s

Ṗ =
dP

dt
= kB

{
dn

dt
T + n

dT

dt

}

=
kB
µ
T ρ̇

{
1 +H

ρ

ρ̇

d lnT

d ln a

}

=
kB
µ
T ρ̇

{
1− 1

3

d lnT

d ln a

}

⇒ c2
s =

Ṗ
ρ̇

=
kB
µ
T

{
1− 1

3

d lnT

d ln a

}
. (2.1.104)

Although the CLASS code incorporates such a term, we checked that it matters only for very high
range of k (typically k ≥ 104). Note that a similar test could be done for σ, but it would require to
follow also higher moments of the distribution, and in any case it can be safely neglected in the range
of k that matters for our observables. The set of equations for baryons thus takes the form

• Newtonian gauge:

δ′b = −θCDM + 3ψ′ ,

θ′b = −HθCDM + k2φ+ c2
sk

2δb +R−1aneσT (θγ − θb) .
(2.1.105a)

(2.1.105b)

• Synchronous gauge:

δ′b = −1

2
h′ − θb ,

θ′b = −Hθb + c2
sk

2δb +R−1aneσT (θγ − θb) .

(2.1.106a)

(2.1.106b)

We have introduced the baryon to photon ratio rescaled by 3/4 R

R ≡ 3

4

ρ̄b
ρ̄γ
. (2.1.107)

2.1.4 Initial conditions from Inflation

We now want to describe how these perturbations can be produced in the first place. As we will see,
this is related to the inflation mechanism, already introduced in sec. 1.2. The field φ(t) governs the
energy density of the early universe ρ(t), as well as the end of inflation. However, quantum mechanics
teaches us that arbitrarily precise timing is not possible: hence the inflaton will have spatially varying
fluctuations δφ(t, ~x) ≡ φ(t, ~x) − φ̄(t) related to the local differences δt(~x) in the time when inflation
ends. In other words, different regions of space inflate by slightly different amounts, which in turn
leads to macroscopic δρ(t, ~x). The beauty of this mechanism is that inflation is not tuned to generate
primordial fluctuations: it is a prediction in remarkable agreement with observations.

2.1.4.1 Adiabatic and isocurvature fluctuations

If the universe is composed initially of N uncoupled perfect fluids with N known sound speeds c2
s =

δPs/δρs, then there are 2N independent initial conditions corresponding to possible initial values of δs
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and δ′s. The simple picture that we just described leads to adiabatic initial fluctuations the local state
of matter at some spacetime point (t, ~x) is the same as in the background universe at some slightly
different time t+ δt(~x). δt(~x) is a common, local shift in time of all background quantities due to the
slight time difference at the end of inflation. Densities and pressures are thus described as

ρi(t, ~x) = ρ̄i(t+ δt(~x)) ' ρ̄i + ˙̄ρi(t)δt(~x) (2.1.108)

Pi(t, ~x) = P̄i(t+ δt(~x)) ' P̄i + ˙̄Pi(t)δt(~x) , (2.1.109)

where δt is the same for all species i. This implies

δt =
δρi
ρ̇i

=
δρj
ρ̇j

, (2.1.110)

for all species i and j. Assuming no energy transfer between species at the background level, then the
continuity equation is verified for all species separately ˙̄ρi = −3H(1 + wi)ρ̄i, which allows to write

δi
1 + wi

=
δj

1 + wj
, (2.1.111)

for all species i and j. Remarkable properties emerge: all matter/radiation components have the same
fractional perturbations, and they are related by

δr =
4

3
δm . (2.1.112)

For all species, we can define an adiabatic sound speed3

δPi(t, ~x)

δρi(t, ~x)
=

˙̄Pi(t)
˙̄ρi(t)

≡ c2
ad,i(t) , (2.1.113)

and the total perturbations can as well be described by an effective sound speed

δP = c2
s(t)δρ(t, ~x) with c2

s(t) ≡
∑

i
˙̄ρi(t)c

2
ad,i(t)∑

i
˙̄ρi(t)

. (2.1.114)

In practice, adiabatic perturbations correspond to a change in the total energy density,

δρ =
∑

ρ̄iδi . (2.1.115)

δρ is dominated by the species that is dominant in the background since all δi are comparable.
The complement of adiabatic perturbations are entropy or isocurvature perturbations. They correspond
to perturbations between the different components. The names come from the fact that, for each
species, the total density (and therefore the spatial curvature) perturbation vanishes in the super-
Hubble limit, except for two species having opposite density perturbations exactly compensating each
other. Their definition is simply

δSij =
δi

1 + wi
− δj

1 + wj
, (2.1.116)

and it is common to use the photons as the reference species, thus defining isocurvatures modes with
respect to them. In general the total pressure perturbations is

δP = c2
s,i(t)δρ(t, ~x)

= c2
s(t)δρ(t, ~x) +

∑

i 6=j

∂P
∂Sij

Sij . (2.1.117)

3 This feature gives the name to this type of initial conditions.
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A good basis of independent initial conditions is thus composed of one growing adiabatic mode, (N−1)

non-decaying isocurvature modes, N decaying modes that are irrelevant since they cannot be observed.
Single-field inflation predicts purely adiabatic perturbations, in perfect agreement with current obser-
vations, and thus we won’t discuss isocurvature fluctuations further.
We can relate these density perturbations to metric perturbations thanks to Einstein equations and
it takes a particularly trivial form under the assumption of adiabatic initial conditions. Indeed, since
eq. (2.1.113) holds, we can combine Einstein equation (00) and (ii) to get

ψ′′ + (2H′ +H2)φ+Hφ′ + 2Hφ′ − 1

3
k2(φ− ψ) = −c2

s[k
2ψ + 3H(Hφ+ ψ′)] . (2.1.118)

This simplifies further under the assumption of negligible anisotropic shear, ψ = φ and constant
equation of state w ∼ c2

s

ψ′′ + 3(1 + w)Hψ′ + wk2ψ = 0 . (2.1.119)

On super-Hubble scales, the growing solution is ψ = const. Through the Poisson equation in New-
tonian gauge (or its generalized version, the (00) Einstein equation) we immediately get that for
superhorizon scales

δ ' −2ψ = −2φ = const. (2.1.120)

This means that for adiabatic initial conditions we have at the end of inflation for a radiation-
dominated universe

δm =
3

4
δr ' −

3

2
ψ . (2.1.121)

We will now make the link between these fluctuations and the inflaton ones.

2.1.4.2 The conserved comoving curvature perturbation

The first thing to discuss is a very important quantity which is conserved on super-Hubble scales for
adiabatic fluctuations: the comoving curvature perturbation R. The fact that it is conserved is essential
as it allows to choose our “initial time” arbitrarily, provided that all modes of interest are outside of
the Hubble radius, which is the case after inflation.
We start by computing the Ricci scalar R (or intrinsic curvature) associated to the spatial part of the
general metric (2.1.7) restricted to scalar modes, which we call γij

γij = (1− 2ψ)δij + 2
(
∂i∂j −

1

3
δij∇2

)
µ . (2.1.122)

A lengthy but straight-forward computation yields

a2R(3) = −4∇2(−ψ − 1

3
∇2µ) (2.1.123)

The quantity −ψ − 1
3∇2µ is called curvature perturbation. In the comoving gauge it is equal to R

(hence the name). However, the usual expression of R is gauge-invariant, so one can easily express it
in any gauge. Using eq. (2.1.56), one can construct the good gauge invariant expression for R given
by

R = −ψ − 1

3
∇2µ+H(B + v) . (2.1.124)

In the newtonian gauge, using Einstein equation (0i), it reduces to

R = −ψ +Hv = −ψ − H(ψ′ +Hψ)

4πGa2(ρ̄+ P̄)
. (2.1.125)
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Taking the time derivative of eq. (2.1.125), using the homogeneous Friedmann and continuity equation
and the Poisson equation leads to

− 4πGa2(ρ̄+ P̄)R′ = 4πGa2δPen +HP̄
′

ρ̄′
∇2ψ . (2.1.126)

where δPen was defined in eq. (2.1.40). Under the assumption of adiabatic fluctuations δPen = 0 and
on super-Hubble scales k � H, we find that R′ ∼ const. This means that the value of the comoving
curvature perturbations at horizon crossing during inflation is conserved for those scales after inflation.
It is possible to make use of the continuity equation to write

R = −ψ +Hv = −ψ − 2

3(1 + w)

(
φ′

H + φ

)
, (2.1.127)

and in the superhorizon limits ψ′ = 0 such that

R = −5 + 3w

3 + 3w
ψ . (2.1.128)

So we can immediately relate superhorizon fluctuation in R to the metric potentials. In the radiation-
dominated era w = 1/3, while w = 0 in the matter dominated era such that

R = −3

2
ψRD = −5

3
ψMD → ψMD =

9

10
ψRD . (2.1.129)

Let’s now relate R to the inflaton perturbations. In the spatially flat gauge, ψ and µ are taken to be
0. The gauge-invariant comoving curvature perturbation thus becomes

R = H(B + v) . (2.1.130)

By computing the off diagonal part of the stress-energy tensor for a scalar field (1.2.21) we have

∂T 0
j = gµ0∂µφ∂jδφ = ḡ00∂0φ̄∂jδφ =

φ̄′

a2
∂jδφ , (2.1.131)

which we can relate to the (scalar) perturbations of the stress-energy tensor

δT 0
j = −(ρ̄+ P̄)∂j(B + v)

⇒ B + v = −δφ
φ̄′
. (2.1.132)

This allows to link the comoving curvature perturbation to the fluctuations of the inflaton

R = −H
φ̄′
δφ . (2.1.133)

This very important result will be used to deduce the initial conditions for all perturbations directly
from the inflaton later on.
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2.2 The CMB and matter power spectrum

Now that all necessary tools have been derived, we need to relate these theoretically useful equations
to real observable quantities. It means that we need to calculate the evolution of inhomogeneities and
anisotropies in the universe, and then build observable quantities that we want to measure. We will
see that this is done thanks to the power spectrum, which quantifies the amplitude of the variance
of each Fourier mode. In other words, power spectra are the “harmonic transforms” of the two-point
correlation functions in real space. We will argue that knowledges of the power spectrum, within the
minimal cosmological model, is enough to fully characterise the perturbations.
In linear perturbation theory, the power spectrum at a time t will be related to the initial power
spectrum at t0 times a transfer function which encodes all information about the evolution of each
Fourier mode. In this chapter, we aim at a complete, self-contained, description of the CMB and matter
power spectrum and its computation. After a brief introduction, we derive the initial conditions or so
called primordial power spectrum. We then describe how to measure power spectra in practice thanks
to CMB maps or galaxy surveys and show how to compute the power spectrum at an arbitrary time
thanks to transfer functions, related to the equations we derived above. Finally, we discuss the physics
behind the measured power spectra to understand the signatures that peculiar massive relics can
create.

2.2.1 Cosmology as a stochastic theory

First of all, one needs to realize that, because of the stochastic nature of the initial conditions, the
theory of cosmological perturbations is a stochastic theory, i.e. a theory for the evolution of random
quantities. Cosmology cannot predict the value of perturbations of each fluid at each point in the
universe, or what is the exact position of each galaxy around us, rather it can predict the statistical
properties of the fluctuations at each time. Instead of describing the state of the universe at a given
time by a definite spatial distribution of various functions, one describes it by the statistical properties
of these distributions. Since we treat perturbations of a homogeneous and isotropic universe, these
properties are invariant by translation and rotation: hence, it is convenient to go to Fourier space and
to discuss the statistical properties of a Fourier mode k. Isotropy ensures that each Fourier mode with
the same modulus k will have the same statistical properties, independently of the direction of the
wave vector ~k.
To describe the statistical properties of the distribution PA(A, t, ~x) of a given perturbations A(t, ~x)

with no complete knowledge of it, one can evaluate its moments. Thus, cosmologists interest themselves
in estimating these moments by computing the two-point correlation function, three-point correlation
function and higher correlation functions, or conversely power spectrum, bi-spectrum and so on.
Standard inflation predicts that perturbations follow a Gaussian probability distribution. This simpli-
fies a lot the job, since a Gaussian distribution is fully characterized by its first and second moment.
Furthermore, since we deal with perturbations, we already know that the first moment is zero, hence
only the variance of the distribution is important. It is encoded in the second moment of the distribu-
tion, which can be estimated via the 2-point correlation function.
To begin with, let’s consider any given perturbations A(~x, τ) (e.g. ρ, θ, Θ ...). The 2-point correlation
function is given by

〈A(t, ~x)A(t, ~x′)〉 ≡ ξ(t, ~r) (2.2.1)
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with ~r = ~x′ − ~x. Homogeneity and isotropy ensures that the 2-point correlation function depend
only on |~r|. This real quantity can be expanded in complex comoving Fourier modes δ(~k, τ), with the
symmetry δ(~k, τ)∗ = δ(−~k, τ). Our FS definition is

A(t,~k) =

∫
d3~x

(2π)3/2
A(t, ~x)e−i

~k~x

A(t, ~x) =

∫
d3~k

(2π)3/2
A(t,~k)e+i~k~x

(2.2.2a)

(2.2.2b)

and the 2-point correlation function in FS is

〈A(t,~k)A∗(t,~k′)〉 =

∫
d3~xd3~x′

(2π)3
〈A(t, ~x)A(t, ~x′)〉e−i~k~x+i~k′~x′ (2.2.3)

We perform the change of variable ~x′ → ~r = ~x′ − ~x and make use of the fact that
∫

d3~x

(2π)3
ei(
~k−~k′)~x = δ(3)(~k − ~k′) (2.2.4)

in order to get

〈A(t,~k)A∗(t,~k′)〉 =

∫
d3rξ(t, r)ei

~k′~rδ(3)(~k − ~k′) . (2.2.5)

After performing integration over the angular part of ~r in a spherical coordinate system such that
~k′ = (k, 0, 0), we simply get

∫
d3~rζ(t, r)ei

~k′~r = 2π

∫
drr2ξ(t, r)

sin(kr)

kr
(2.2.6)

and it is common to define the power spectrum of A as

PA(t, k) ≡ 4π

∫
r2drζA(t, r)

sin(kr)

kr
(2.2.7)

to get the standard result
〈A(t,~k)A∗(t,~k′)〉 = PA(t, k)δ(3)(~k − ~k′) . (2.2.8)

Hence, the properties of A(t, k) at a given time t are entirely described by the variance σ(t, k), encoded
inside PA(t, k). Thanks to the linearity of the equations of motions, we are sure that the shape of the
probability distribution of each mode will be preserved: only the variance can increase with time.
Linearity allows the solution for A to be cast in the form

A(k, t) = A(k, ti)T (k, t) , (2.2.9)

where A(k, ti) is the initial perturbations for each k and T (k, t), which encodes the evolution of each
Fourier mode, is called the transfer function. At the power spectrum level, we have

PA(k, t) =
〈
|A(k, ti)|2

〉
T 2(k, t) . (2.2.10)

Therefore, to get the power spectrum of a variable at any given time, one only needs its initial condition,
predicted from some starting assumptions or given by a theory such as inflation and the corresponding
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transfer function.
Finally, it is common to introduce the “dimensionless power spectrum” as

P(k) ≡ k3

2π2
P (k) . (2.2.11)

because observable quantities always derive from convolution of the power spectrum with a window
function f(k) in the following way

∫
d3~k

(2π)3
PA(k)f(k) =

4π

(2π)3

∫
dkk2PA(k)f(k)

=

∫
d ln k P(k)f(k) . (2.2.12)

P(k) stands for the weight of each logarithmic interval in the integral and is a dimensionless quan-
tity. The term “scale-invariant power spectrum” refers to P(k) being independent of k, i.e. P (k) ∝ k−3.

2.2.2 Primordial power spectrum from inflation

We will not do the explicit derivation of the Primordial Power spectrum as it is a model dependent
quantity. However, we know how to link fluctuations in φ (the inflaton field) to fluctuations in the
comoving curvature perturbations R, and thus we can compute the variance of a given mode

〈|Rk|2〉 =

(H
φ̄′

)2

〈|δφk|2〉 (2.2.13)

where δφ are the inflation fluctuations in the spatially flat gauge. The reason |δφk|2 is non-zero in
the first place is that quantum fluctuations induce a non-vanishing variance in the amplitudes of the
oscillations

〈|δφk|2〉 ≡ 〈0||δφk|2|0〉 . (2.2.14)

Outside the horizon, the quantum nature of the field becomes undistinguishable [371], and quantum
expectation values are identified with the ensemble average of a classical stochastic field, i.e. actual
macroscopic fluctuations.
For a single scalar-field, the (dimensionless) scalar power spectrum of δφ at horizon crossing is (see
e.g. chapter 6 of Ref. [90] for a derivation)

Pδφ(k) ∼
(
H

2π

)2∣∣∣∣
k=aH

. (2.2.15)

This implies that

PR(k) =
1

8π2

1

ε

H

M2
pl

∣∣∣∣
k=aH

, where ε =
1
2 φ̇

M2
plH

2
, (2.2.16)

which is a pure function of k. If H and ε does not vary with time, one gets a pure scale-invariant
power spectrum. However, (slow-roll) inflation does predict that both quantities slowly vary in time
and thus should deviate from the scale invariant form. It is practical to parametrize the shape of the
power spectrum as

PR(k) ≡ As
(
k

k?

)ns−1

, (2.2.17)
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where As and ns are respectively the amplitude and the tilt of the primordial scalar power spectrum,
while k? is a reference (or pivot) scale, often taken to be 0.05 Mpc−1. ns quantifies deviation from
scale-invariance (ns = 1), which has been detected by observations [19]. For small ε, we can relate ns
and the Hubble slow-roll parameters as

ns − 1 = −2ε− η (2.2.18)

It is possible to quantify deviation from a power-law by introducing the running of the scalar index

αs ≡
dns
d ln k

(2.2.19)

as well as the running of the running and so on.
The cleanest prediction of inflation is a spectrum of primordial gravitational waves, which are tensor
perturbations to the spatial part of the metric (2.1.7). We refer again to textbooks such as ref. [89],
[90], [438] for the full derivation. The most important model-independent prediction of inflation is the
power spectrum of tensor perturbations

Pt(k) =
2

π2

H2

M2
pl

∣∣∣∣
k=aH

. (2.2.20)

Contrary to the scalar power spectrum, its amplitude is a direct measurement of the expansion rate
H during inflation. In analogy to the scalar counterpart, we define

Pt(k) ≡ At
(
k

k?

)nt
(2.2.21)

where At and nt are respectively the tensor amplitude and spectral index. Note the different (historical)
convention: scale-invariance now corresponds to nt = 0. The amplitude of the tensors normalized to
the scalar one is called tensor-to-scalar ratio

r ≡ At
As

. (2.2.22)

Current limit are at the level of r ≤ 0.11 [19]. It is straightforwards to relate those parameters to ε.
One gets

r = 16ε (2.2.23)

nt = −2ε (2.2.24)

which implies a very important consistency relation allowing to test inflation, nt = −r/8.

2.2.3 The CMB power spectra

2.2.3.1 Generalities on the CMB power spectrum

We wish now to explicitly relate temperature and polarization anisotropies computed in sec. 2.1.3.2 to
the power spectrum. In order to perform the expansion on the sphere, it is better to work with quanti-
ties that have a definite value of spin, namely (Θ(n̂), (Q+ iU)(n̂), (Q− iU)(n̂)), respectively of spin 0
and 2. The question we wish to develop here is how to measure it and how to compute it theoretically?
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Experimental determination of the CMB power spectrum
An experiment like Planck measures temperature and polarization anisotropies of the CMB over the
full sky, at a number of incoming directions or “spots on the sky”. On the sphere, one can expend
anisotropies in terms of spin-weighted spherical harmonics (equivalent of the Fourier space for flat
space) [328], [353], [604]

Θ(n̂) =
∑

`,m

aT,`mY`m(n̂) ,

(Q+ iU)(n̂) =
∑

`,m

a2,`m2Y`m(n̂) ,

(Q+ iU)(n̂) =
∑

`,m

a−2,`m−2Y`m(n̂) .

(2.2.25a)

(2.2.25b)

(2.2.25c)

More details on the basis of spherical harmonics of spin s, namely the sY`m, can be found in appendix
of ref. [479]. As explained in sec 2.1.3, the main difficulty with the polarization power spectrum is that
Q and U are not rotationally invariant, which leads to complicated calculation when considering not a
single mode but a superposition coming from all directions in the sky. Thus, although a±2,`m are actual
observables whose power spectrum can be predicted, one usually performs two more transformations.
First, we rather make use of the linear combination

aE,`m = −(a2,`m + a−2,`m)/2 (2.2.26)

aB,`m = −(a2,`m − a−2,`m)/2i (2.2.27)

which transforms differently under parity operation. aE,`m will remain the same while aB,`m changes
sign, in analogy with the electric and magnetic field. Secondly, we can construct rotational invariant
quantities using the relation between the spherical harmonics (e.g. [479])

(∂±)2(Q± iU)(n̂) =

√
(`+ 2)!

(`− 2)!

∑

`m

a
(±2)
`m Y`m(n̂) . (2.2.28)

and we define the scalar quantites as

Ẽ(n̂) =
∑

`m

aẼ,`mY`m(n̂) , (2.2.29)

B̃(n̂) =
∑

`m

aB̃,`mY`m(n̂) . (2.2.30)

Thus, Ẽ is parity even and measures gradient (curl-free) contribution while B̃ is parity odd and
measures curl (divergence-free) contribution. Those properties are illustrated in fig. 23. We have seen
in sec. 2.1.3.2 that the azimuthal symmetry of scalar anisotropies enforces that they can only generate
Q types of polarization. Hence, a fundamental properties of scalar anisotropies is that they cannot
generate B-modes! Actually, B-modes can only be generated by vector (which do not generate E-
modes) and tensor perturbations (which can also generate E-modes) [330]4. The coefficients can be

4 This is rigorously true only at first order in perturbation theory and neglecting CMB lensing, which we shall briefly
describe later.
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Figure 23: A schematic view of the E-polarization (top) and B-polarization (bottom) around the photon di-
rection indicated as the center. A parity operation let the top two configurations unchanged while
bottom ones are exchanged, in analogy with the electric and magnetic field.

extracted from the sky map through the relation

a`m =

∫
dn̂Y ∗`m(n̂)Θ(n̂) , (2.2.31)

a
(±2)
`m =

∫
dn̂±2Y

∗
`m(n̂)(Q± iU)(n̂) =

√
(`+ 2)!

(`− 2)!

∫
dn̂Y ∗`m(n̂)(∂∓)2(Q± iU)(n̂) , (2.2.32)

and eq. (2.2.28) implies that

a(Ẽ,B̃),`m =

√
(`+ 2)!

(`− 2)!
a(E,B),`m . (2.2.33)

The isotropy of the process generating the initial perturbations ensures that the distributions of the
perturbations are the same in each direction of the sky. In analogy with the (Fourier) power spectrum,
we have that the correlators of the expansion coefficients a`m are diagonal (we call them C`) and their
mean value vanishes. For the special case of CMB observables, we have

〈aT,`m〉 = 0 ; 〈aT,`ma∗T,`′m′〉 = δ``′δmm′C
TT
` , (2.2.34)

〈aẼ,`m〉 = 0 ; 〈aẼ,`ma∗Ẽ,`′m′〉 = δ``′δmm′C
EE
` , (2.2.35)

〈aB̃,`m〉 = 0 ; 〈aB̃,`ma∗B̃,`′m′〉 = δ``′δmm′C
BB
` , (2.2.36)

while the parity properties ensures that the only non-vanishing cross-correlation is

〈aT,`ma∗E,`′m′〉 = δ``′δmm′C
TE
` . (2.2.37)
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It is important to note that, for a given `, each a`m has the same variance, independently of m.
Hence, to obtain an estimator of the C`, one computes the average of all aobs

`m ’s with fixed ` over m

D` ≡ Cobs
` =

1

2`+ 1

∑

−`≤m≤`
|aobs
`m |2 . (2.2.38)

The estimator or “pseudo-C`” D` is obtained by averaging over (2`+1) independent gaussian numbers
centered at zero, each with variance C`. Hence, it obeys a χ2 distribution with (2` + 1) degrees of
freedom, a mean equal to C` and a variance

√
2/(2`+ 1)C`. We see here the result of the cosmic

variance. As already explained before, the theoretical errors on C` increases at large angular scales
(low multipole `), since we cannot average over a big number of independent realizations of the same
stochastic process.

Theoretical determination of the CMB power spectrum
Since perturbation equations give us the evolution of Θ`, we need to relate these functions to the C`’s.
We start by expanding Θ(τ0, ~x0, n̂) in Fourier space and over Legendre polynomes as before thanks to
eq. (2.1.76). Thus, we can express the two-point correlation function as

〈Θ`(τ0,~k)Θ`(τ0, ~k′)〉 =
2π2

k3
PR(k)[Θ`(τ0, k)]2δ(3)(~k − ~k′) (2.2.39)

where PR(k) has been defined with respect to the conserved curvature perturbation R, as introduced
in previous section. In that case, we can insert the Legendre and Fourier expansion of Θ(τ0, ~x0, n̂)

directly in eq. (2.2.34) to express the a`m as

a`m(τ0, ~x0) = (−i)`
∫
d3k

2π2
Y`m(k̂)Θ`(τ0,~k) . (2.2.40)

where we have used the fact that the angular integral is non zero only if ` = `′, in which case it is equal
to 4πY`m(k̂)/(2`+ 1). We can also relate the two-point correlation function of Θ(τ0, ~x0, n̂) directly to
the C`’s by

〈Θ(τ0, ~x0, n̂)Θ(τ0, ~x0, n̂
′)〉 =

∑

`,`′,m,m′

〈a`ma∗`′m′〉Y`m(n̂)Y ∗`′m′(n̂
′)

=
∑

`

C`
∑̀

m=−`
Y`m(n̂)Y ∗`′m′(n̂

′)

︸ ︷︷ ︸
2`+1
4π

P`(n̂ · n̂′=µ)

=
1

4π

∑

`

(2`+ 1)C`P`(µ) . (2.2.41)

We simply need to invert this equation to have our theoretical estimate of C`. Using eqs. (2.2.34),
(2.2.39) and (2.2.40), we obtain

C` =

∫
dk

k
PR(k)[Θ`(τ0, k)]2 (2.2.42)

A brute-force approach for computing the temperature anisotropy spectrum up to some multipole
`max consists in integrating all equations with at least `max multipoles in the Boltzmann hierarchy
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for the evolution of the photon distribution. This is very time consuming and does not really help
in understanding the underlying physics. The alternative - standard - method is to use the so-called
“line-of-sight” formalism introduced by Ref. [534], which helps to give an intuitive expression for the
various expressions to each C` and speeds up Boltzmann codes in a spectacular way as it is usually
enough to cut equations at `max ∼ 10.

2.2.3.2 The line-of-sight formalism

Our goal is to integrate this Boltzmann equation (2.1.99) along the photon past light cone, or in other
words along the line-of-sight. To get some insight on the results, we first will perform the integral
in real space, ignoring the effect of polarization, along the line of ref. [392]. We shall then readily
generalize to the full equations in Fourier space. In real space and in terms of conformal time, the
generalized Boltzmann equation for photons (2.1.99), neglecting polarization contribution, reads

Θ′T + n̂ · ~∇ΘT + ψ′ + n̂ · ~∇φ = aneσT (ΘT0 −ΘT + n̂ ·~vB) . (2.2.43)

To start with, we will compute the total derivative of the function e−κ(ΘT +ψ) along the trajectory
between the last scattering surface and us. We add the exponential pre-factor to easily simplify terms
in the Boltzmann equation. The total derivative of a function F(τ, ~x, n̂) along the past light cone of
a photon coming from direction n̂ reads

d

dτ
F(τ, ~x, n̂) = F ′ + dxi

dτ

∂F
∂xi

+
dni
dτ

∂F
∂ni

. (2.2.44)

However, since in our case F is a first order quantity, only the first two terms will remain so. Indeed, in
an unperturbed universe photons travel in straight line and dni

dτ = 0. Hence, the last term is a second
order quantity and can be neglected. Furthermore, at first order dxi

dτ = n̂. Hence, we can write

d

dτ
F(τ, ~x, n̂) = F ′ + n̂ · ~∇F . (2.2.45)

Putting our function inside previous equation, we get

d

dτ

[
e−κ
(
ΘT + φ

)]
= −κe−κ

(
ΘT + φ

)
+ e−κ

[
Θ′T + φ′ + n̂ · ~∇

(
ΘT + φ

)]
. (2.2.46)

If we now multiply eq. (2.2.43) by e−κ, we can equal it with previous equation to get

d

dτ

[
e−κ
(
ΘT + φ

)]
= g
(
ΘT0 + φ+ n̂ ·~vB

)
+ e−κ

(
φ′ + ψ′

)
, (2.2.47)

where we have used the fact that κ′ = −aneσT and make use of already introduced visibility function
g(τ) ≡ −κ(τ)′e−κ(τ).
We now integrate this equation along the line-of-sight. This yields

(
ΘT + φ

)
|obs =

∫ τ0

τ
dτ
[
g
(
ΘT0 + φ+ n̂ ·~vB

)
+ e−κ

(
φ′ + ψ′

)]
(2.2.48)

where the index “obs” means evaluated at the coordinate (τ0, ~x0, n̂). The first term on the LHS is the
temperature fluctuation for photons coming from a direction n̂ observed today. The second term is the
metric fluctuation today at the observer location, causing a local blueshifting of incoming photons as
we live in a potential well. However, since this term is isotropic, a CMB experiment cannot distinguish
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between this contribution and a shift in the average photon temperature. Furthermore, this effect is
very tiny, of order O(10−5) and hence we will neglect it from now on.
It is physically instructive to make the “instantaneous decoupling approximation”, which consists
in replacing the visibility function by a Dirac delta δD(τ − τdec) and the e−κ term by a heavyside
H(τ − τdec). We can rearrange the term to obtain the very explicit expression

ΘT |obs = (ΘT0 + φ)|dec︸ ︷︷ ︸
SW

+ n̂ ·~vB|dec︸ ︷︷ ︸
Doppler

+

∫ τ0

τdec

dτ
(
φ′ + ψ′)

︸ ︷︷ ︸
ISW

. (2.2.49)

(i) The first term is called the Sachs-Wolfe (SW) term, in honor of the first persons who worked it
out. It includes the intrinsic temperature term ΘT0 and the “gravitational Doppler shift” term ψ

at one point on the last scattering surface. It is the dominant effect for describing large angular
patterns on CMB maps, for which the microphysics is irrelevant. This expression would describe
very well the map of the COBE satellite, which had limited angular resolution.
Now comes an important result. We have seen that adiabatic initial conditions ensures

δγ =
4

3
δB . (2.2.50)

On super-hubble scales, the transfer functions are constant and using (00) component of Einstein
equations, we get:

4ΘT0 = δγ =
4

3
δB = −2φ = −2ψ radiation dominated universe ,

4ΘT0 = δγ =
4

3
δB = −8

3
φ = −8

3
ψ matter dominated universe . (2.2.51)

At decoupling, the universe is matter dominated. Then, assuming that the SW term dominates
we have:

ΘT |obs = (ΘT0 + φ)|dec =
1

3
φ|dec = −1

8
δγ |dec (2.2.52)

This little calculation indicates that gravitation wins against pressure ! Indeed, an overdensity
(δγ > 0) on the last scattering surface, corresponding to a potential well (φ < 0), leads to a cold
spot in the observed map (Θ < 0).

(ii) The second term is the standard Doppler term. Photons are emitted from a tightly coupled
baryon-electron fluid with a different peculiar velocity at each point on the last scattering surface.
The projection along the line of sight introduces a Doppler shift in the photon wavelength.

(iii) The last term is called the Integrated Sachs-Wolfe (ISW) term and contains all non-conservative
gravitational effects occurring in a universe with non-static metric fluctuations. Photons going
down a potential well (up a hill) gain (lose) energy and, if the value of the potentials don’t
change, lose (gain) it as they go up (down). On the other hand, a variation of the amplitude of
the potentials will lead to a slight change in the photon energy.

This expression, although instructive, is not directly useful to compute the CMB power spectrum
from eq. (2.2.42). One rather needs it in Fourier space and for each multipole moment `. We will now
perform the generalization to the full Boltzmann equation (2.1.99) along the line of ref. [534].
A very similar approach can be followed, expressing all terms involving Θ inside a total time derivative
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and integrating along the line of sights. The exponential factor of the Fourier transform is replaced
by exp

(
ikµ(τ − τ0)

)
. Hence one gets

ΘT (τ0, k) =

∫ τ0

τ
dτeikµ(τ−τ0)

[
g
(
ΘT0 + φ+ µ~vB +

1

2
P2(µ)Π

)
+ e−κ

(
φ′ + ψ′

)]
,

ΘP (τ0, k) = −1

2

∫ τ0

τ
dτeikµ(τ−τ0)e−κκ̇[1− P2(µ)Π] .

(2.2.53a)

(2.2.53b)

From this, we want to go in multipole space and thus, we expand the exponential pre-factor in terms
of Bessel functions and Legendre polynomials:

e−iµ(τ−τ0) =

∞∑

`=0

(2`+ 1)i`j`(k(τ0 − τ))P`(µ) . (2.2.54)

To express the full hierarchy of moments, we plug this in previous equation and perform an integration
by parts of µ, dropping all boundary terms since they either vanish when τ → 0 or are unobservable
at τ = τ0, affecting only the monopole. So in practice, when a term is multiplied by µ, it is simply
changed by its time derivative. We end up with [534]:

Θ`,(T,P )(τ0, k) =

∫ τ0

τ
dτST,P (τ, k)j`(k(τ0 − τ)) ,

ST (k, τ) ≡ g(ΘT0 + φ)︸ ︷︷ ︸
SW

+ (gk−2θB)′︸ ︷︷ ︸
Doppler

+ e−κ(φ′ + ψ′)︸ ︷︷ ︸
ISW

+ g
Π

4
−
(
g

3Π̇

4k2

)′′

︸ ︷︷ ︸
Polarization

,

SP (k, τ) ≡ −g3Π

4
−
(
g

3Π̇

4k2

)′′
.

(2.2.55a)

(2.2.55b)

(2.2.55c)

(2.2.55d)

This is the equation we wanted ! It allows to get the C` by plugging it into eq. (2.2.42). In the
instanteneous decoupling approximation, Θ`,T reduces to :

Θ`,T (τ0, k) ' [ΘT0(τdec, k) + φ(τdec, k)]j`(k(τ0 − τdec))

+ k−1θB(τdec, k)j′`(k(τ0 − τdec))

+

∫ τ0

τdec

dτ [φ′(τ, k) + ψ′(τ, k)]j`(k(τ0 − τ))

+ Polarization . (2.2.56)

In the second line, the derivative of j` is taken with respect to its argument not conformal time.
This result shows that the total C` can be decomposed into few contributions: the power spectrum
of the SW term (first line), that of the Doppler term (second line), that of the ISW (third line), a
subdominant polarization contribution and all cross terms (since it is the square of eq. (2.2.56) that
enters in eq. (2.2.42)). Furthermore, for high `’s the bessel function and its derivative are very peaked
near x ' `, hence the integral over k will pick up mainly modes with k = `/(τ0 − τdec). This can
also be geometrically justified from the definition of the multipole ` = π/θ, where θ is the angle
that subtends the physical scale θ × da(zdec) on the last scattering surface, with da(zdec) the angular
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diameter distance to objects of redshift z. For spherical harmonics, θ is the angle between a maximum
and a minimum of the density wave. Hence, we have the following relation between k and `:

λ

2
= a(τdec)

π

k
= θda(zdec)

⇒ a(τdec)

k
=
da(zdec)

`
. (2.2.57)

In a flat universe, the angular diameter distance at decoupling is given by da(zdec) = a(τdec)(τ0− τdec)

and we find the result
k =

`

(τ0 − τdec)
. (2.2.58)

Hence, in the instantaneous decoupling limit and for large `’s (small angles), the SW contribution to
the power spectrum can be approximated by

CSW
` ∼ 〈|ΘT0 + φ|2〉 at (τ, k) ' (τdec, l/(τ0 − τdec) . (2.2.59)

In the same limits, the Doppler term depends on the power spectrum of the baryon velocity divergence
θB at the same time and scale

CDoppler
` ∼ 〈|θB|2〉 at (τ, k) ' (τdec, l/(τ0 − τdec) , (2.2.60)

while the ISW term can be written approximately in terms of the integral

CISW
` ∼

∫ τ

τdec

dτ(τ0 − τ)〈|φ′ + ψ′|2〉 for all (τ, k) ' (τ, l/(τ0 − τ)) . (2.2.61)

Of course accurate computation require us to go beyond these approximations. We plot the power
spectra computed with CLASS for the bestfit ΛCDMmodel of Planck 2016 high-` TT,TE,EE + SIMlow
[27] in fig. 63.

2.2.3.3 Aspects of CMB physics: The tight-coupling approximation

We wish here to describe the main features of the CMB power spectrum and some standard approxi-
mations, in order to get insight on the physics behind the acoustic peaks. This will allow us to better
understand the modifications to the standard evolution that are introduced in models with decay-
ing/annihilating relics and massive neutrinos.
At early times, when the Thomson opacity is large aneσT ≡ Γγ � H, photons and baryons are
tightly coupled, which means that Thomson interaction drives vb → vγ , while σγ ' 0. It it thus
straight-forward to combine equations (2.1.100) and (2.1.105) to eliminate the interaction term (or
their equivalent in synchronous gauge) to get a simple equation for the photon temperature fluctuation

Θ′′T0 +
R′

1 +R
ΘT0 + k2c2

sΘT0 = −k
2

3
φ+

R′

1 +R
ψ′ + ψ′′ . (2.2.62)

We have used the fact that R′ = aHR and introduced a fundamental quantity: the sound speed at
which density waves propagate in the effective photons-baryons fluid

c2
s =

δpγ + δpb
δργ + δρb

=
1

3(1 +R)
. (2.2.63)
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Figure 24: Left panel: Unlensed TT, TE, EE Power spectrum for the ΛCDM model bestfit of Planck 2016 high-`
TT,TE,EE + SIMlow [27] computed with the Boltzmann code CLASS. Right panel: Decomposition
of the TT power spectrum per contribution.



2.2 the cmb and matter power spectrum 93

Figure 25: A sketch of the different evolution of k with time depending on the region in the (k, τ) plane. Adapted
from Ref. [391].

This equation is the equation of a damped, driven harmonic oscillator. We can identify a pressure
term with time-dependent characteristic frequency given by ω2 = k2c2

s, the damping term is induced
by R′

1+RΘT0 and increases with increase baryonic density. The driving forces are due to gravitational
effects, the first term is the standard gravitational force, while the others account for the so-called
“dilation” effects.
In the R � 1 limit, i.e. when the universe is dominated by radiation, and in the absence of forces,
eq. (2.2.62) reduces to

Θ′′T0 + k2c2
sΘT0 = 0 ⇒ ΘT0 ∝ cos(kcsτ) . (2.2.64)

We can introduce a fundamental quantity: the comoving sound horizon

rs ≡
∫ τ

τini

csdτ '
τini�τ

csτ . (2.2.65)

It represents the comoving distance travelled by a wavefront since some arbitrary time deep inside
the radiation-dominated regime. Because of the Universe’s expansion, it is typically dominated by the
upper limit of the integral. Its maximum value, attained at decoupling, is a correlation length between
density fluctuations (or temperature in CMB maps), which can be calculated within our Cosmological
model. Hence, it constitutes a standard ruler, as we defined them in sec. 1.1.3, and can be used to
measure cosmological distances and deduce information on the background expansion of our Universe.

From the argument of the cosinusoidal function, we see that if the wavelength λ = 2aπ/k � ars,
then the solution is a constant, while λ < ars corresponds to the oscillatory regime typical of the
propagation of acoustic waves. Modes start oscillating when their wavelength becomes smaller than
the sound horizon, and later on, the number of oscillations is given by the ratio between these two
scales.
We sketch the evolution of wavelengths with time in fig. 25.
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• Super-Hubble modes today, i.e. modes with k ≥ H0 are and remain frozen at all times in the past,
their value is given by their initial value, up to some rescaling when the species that dominates
the expansion rate of the universe changes.

• Modes in region 1○ experiences driven oscillations due to the gravitational terms. It typically
enhances their amplitude and shifts the zero point of oscillations. Indeed, assuming equilibrium
we have

Θeq.
T0 =

1

3c2
s

φ = −(1 +R)φ . (2.2.66)

However, metric potential quickly decays inside the sound horizon as illustrated in fig. 26 right
panel, thus it reaches asymptotically zero on sub-sound-horizon scales. This shifting of the zero-
point of oscillations towards negative values has important consequences phenomenologically.
Indeed, we have seen in previous section that the power spectrum is obtained by summing the
square of ΘT0 + ψ. Thus, odd peaks will appear higher than even peaks and the relative height
of the peaks allows a measurement of ωb/ωγ .

• Region 2○ represents modes deep inside sound-horizon during radiation domination. The metric
terms are negligible and R� 1. Those are the modes experiencing acoustic oscillations we have
already discussed, whose solutions are given by eq. (2.2.64).

• Modes in region 3○ are inside sound horizon during the intermediate stage between matter-
radiation equality and photon decoupling. Hence, R cannot be neglected anymore and the os-
cillator has a friction term and a decreasing time-varying frequency, as cs decreases with time.
The solution corresponds to damped acoustic oscillations.

• Finally, region 4○ corresponds to modes with a diffusion length smaller than the (comoving)
diffusion length rd. Indeed, close to recombination, the tight-coupling approximation breaks
down. Photon start to travel a non-negligible mean free path rγ before interacting. If we treat
the photon diffusion as a random walk, the mean free path is then given by rγ = Γ−1

γ and thus

rd ∼
∫ τ

τini

dτΓγr
2
γ =

∫ τ

τini

dτΓ−1
γ =

∫ τ

τini

dτ

aneσT
. (2.2.67)

Photon perturbations will erase perturbations with a wavelength smaller than λd ≡ ard. In
Fourier space, scattering processes introduce an exponential cutoff in ΘT0(τ, k) shaped like
exp[−(k/kd)

2], with kd = 2π/rd and in multipole space like exp[−(`/`d)
2] with `d = π/θd and

θd = λd/ds(τdec) = adecrd(τdec)/ds(τdec). This effect is known as diffusion damping or Silk
damping.

• Once baryons are decoupled from the photons, they start falling into the DM potential wells
and perturbations start to grow, asymptotically reaching the DM ones.

In fig. 25 is also shown as shaded grey area the region in which gravitational (or metric) potential
decays. Gravitational potential decays at early time, deep inside sound horizon, while they are static
on all scales during matter domination. Moreover, they decay on all scales around the time at which
the equation of state of the universe varies, i.e. zeq and zΛ. The decay of the potential at zeq is a
first source of early ISW (EISW) effect. One might expect that, since photon decouples in the matter-
dominated era, this is the only one. However, because decoupling happens not too long after zeq, metric
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Figure 26: Left panel − Linear evolution of the density transfer functions for photons, baryons and cold dark
matter. Right panel − Linear evolution of the gravitational potentials.

potentials have not yet had time to reach their freeze-out value when photon decouples, leading to
a second source of EISW. The late ISW (LISW) on the other hand corresponds to variations due to
the beginning of Λ domination. We will see in our study that non-standard relics (i.e. different from
standard CDM) that interact only gravitationally (e.g. massive neutrinos, DM decaying into dark
radiation) modify the evolution equation for the metric potential and tend to increase the ISW terms.
We show in Fig. (26) a summary plot of the evolutions of the gauge-invariant metric potentials (AKA
gravitational potentials) and transfer functions obtained thanks to the Boltzmann code CLASS for two
modes: one much smaller than sound horizon during radiation domination which experiences a high
number of acoustic oscillations and diffusion damping; another which enters sound horizon around the
time equality and thus shows no acoustic oscillations in the baryon fluid, and no diffusion damping
in the photon one. The difference between the two gravitational potentials on the right panel at early
time is due to the anisotropic shear that develops in the presence of neutrinos (or more generally for
any imperfect fluid).

2.2.3.4 The ΛCDM model

The shape of the CMB temperature power spectrum can be readily understood from previous discus-
sions.

• For `� 100, modes are still outside sound horizon at decoupling. The spectrum is described by
a SW plateau, that depends on the amplitude of the primordial power spectrum and the tilt,
and is slightly affected by the effect of the LISW that tends to tilt the SW plateau.

• For ` ≥ 100, the spectrum exhibits a series of acoustic peaks, corrected by the Doppler peaks,
which corresponds to the fundamental mode and harmonic decomposition of the sound horizon
at decoupling. The modes are furthermore affected by various effects: their amplitude is globally
suppressed due to the damping term that increases when R is non negligible, i.e. after matter-
radiation equality; odd peaks are enhanced with respect to even peaks because of the shift of
the zero-point of oscillation when R and φ are non-negligible; the first peak is further enhanced
due to the EISW effect; diffusion damping exponentially suppresses anisotropies at high-`.
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• Reionization, which we had introduced in sec. 1.3.4, leads to a scale independent suppression of
power for all scales inside the Hubble horizon at reionization, i.e. with ` ≥ 40, accounted for by
a factor exp(−τreio), where τreio is the optical depth at reionization.

It is remarkable that the CMB power spectra can be extremely well fitted using only 6 free param-
eters

• The amplitude of the primordial power spectrum As and the primordial tilt ns;

• The baryon density ωb = Ωbh
2;

• The total non relativistic matter density ωM = (ΩB + Ωcdm)h2;

• The Hubble rate today H0 = 100 h km s−1 Mpc−1. In the minimal model, Ωk = 0, hence there
is a one-to-one correspondence h =

√
ωm/(1− ΩΛ) and one can also work with the cosmological

constant density fraction ΩΛ.

• The optical depth to reionization τreio.

An important caveat to emphasize is that ωγ = Ωγh
2 is taken to be a fixed parameter because the

CMB temperature today is accurately measured. However, in reality, CMB is (almost5) only sensitive
to the ratio of densities ωb/ωγ , ωm/ωγ and Ωm/ΩΛ. Thus in practice the CMB temperature and
polarisation unlensed spectra are determined by a number of effects which remains identical as long
as one fixes quantities usually depending on distance and density ratios. The real degrees of freedom
controlling the shape of the CMB temperature spectrum are often called (C1-C8). Those are

(C1) The sound horizon angular scale, given by the peak location, θs(zdec) = rs(zdec)/dA(zdec). The
sound horizon depends on the pre-decoupling expansion history and sound speed, and it thus
affect by changes in ωb and ωm. The angular diameter distance depends on the post-decoupling
expansion era and is controlled by ΩΛ or h.

(C2) The ratio odd/even peak depends on R because it enters the zero-point of oscillation and thus
on ωb/ωγ .

(C3) The overall peak amplitude depends on the amount of expansion between equality and decou-
pling because of the damped oscillation during matter domination, and is thus controlled by
ωM/ωγ . Smaller peaks means earlier equality and thus higher ωm. In addition the EISW would
be smaller because metric fluctuations have more time to stabilize.

(C4) The damping envelope at large ` is controlled by λd, which depends on the pre-decoupling
expansion and recombination history. It is non-negligible only close to decoupling and thus
depends mostly on ωb (setting the number of free electrons) and ωm (setting the expansion
rate).

(C5) The global amplitude of the C`’s is proportional to the amplitude of the primordial power
spectrum As.

5 The absolute photon density controls the number of photons in the Wien tail of the distribution, thereby affecting the
time of decoupling. Hence, an exquisite measurement of the peak location θs can potentially carry information about
the photon temperature. However, this measurement is degraded by the Doppler contribution in the TT spectrum and
the current sensitivity on the EE spectrum is too low to allow a determination of the photon temperature.
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(C6) The global tilt of the C`’s depends trivially on the tilt of the primordial power spectrum ns.

(C7) The slope of the SW plateau is affected by the tilt of the primordial power spectrum ns and the
LISW, thus depends also on ΩΛ/Ωm. A larger ΩΛ implies a longer Λ domination and thus an
enhanced LISW effect.

(C8) Finally, the global amplitude of the spectrum at ` ≥ 40 is exponentially suppressed by the
amount of photon rescattering after reionization, which is controlled by τreio.

The EE power spectrum is affected by similar (and even simpler!) effects as (C1-C7), but receives a
much bigger correction around reionization known as the “reionization bump” (on top of the step-like
suppression). It is typically out of phase with the TT spectrum because it contains mostly information
on the quadrupole on the last scattering surface, which is correlated with the Doppler term.

2.2.3.5 A quick word on vector and tensor perturbations

We have not discussed vector and tensor perturbations. This is safe because different types of per-
turbations are decoupled at first order in perturbation theory. However they can potentially lead
to additional temperature and polarization anisotropies. Vector modes can mostly produce B-modes
polarization but we have already mentioned that they quickly decay in standard cosmology and are
thus neglected. Tensor modes, which are related to gravitational waves, can be produced by several
exotic mechanisms during the primordial universe. The most famous one being inflation. If tensor
perturbations are sufficiently large at recombination or later, they can generate CMB temperature
anisotropies, creating effects similar to the SW and ISW terms, and polarization anisotropies (both E
and B-modes). At the current level of constraint on their amplitude, they are negligible for tempera-
ture anisotropies because they affect modes well below cosmic variance. However, tensor perturbations
are still extensively studied nowadays because they can excite B-modes of polarization, which are ab-
sent in the presence of those perturbations, since scalar anisotropies cannot produce them (we have
seen that they produce pure Q mode polarization) and vector modes decay6. The B-modes power
spectrum is related to the primordial tensor power spectrum Pt(k) as follows

CBB` =

∫
dk

k
Pt(k)Θ2

B`(k) . (2.2.68)

It has not yet been observed and despite current limits, it is still the best probe we have on inflation
and many experiments are under construction to detect it.

2.2.3.6 A quick word on secondary anisotropies and CMB lensing

The distinction between primary and secondary anisotropies refers to phenomena pre- and post-
decoupling respectively. However, this is purely artificial and any actual measurements is composed of
both. We have already seen some sources of secondary anisotropies, those are the late ISW and stellar
reionization. It would be meaningless to give here a list of all other secondary effects, which are how-
ever very important at the experimental level7. On the other hand, for our studies, the effect of CMB

6 Actually, they receive a contribution because E-modes can leak into B-modes due to lensing effects. This lensing
contamination lead to a major foreground which limits the potential for detection of primordial gravitational waves.

7 More complete lists can for instance be found in Refs. [226], [323]
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(weak) lensing caused by large-scale structure is of utmost importance and therefore deserves a short
discussion. For an interested reader, a thorough review of CMB lensing can be found in Refs. [226],
[401].
The basic idea is that the trajectories of CMB photons are slightly deflected by matter fluctuations
localized at low redshifts, typically z ≤ 3 in our ΛCDM universe. At leading order in perturbations,
one can describe CMB lensing in terms of a two-dimensional deflection field d̂(n̂), representing the
difference between the direction n̂ in which photons have been emitted from the last scattering surface,
and the direction n̂+ d̂(n̂) in which they are actually observed. It is therefore perpendicular to n̂ and
at lowest order induces a change δT = d̂(n̂) ·∇n̂T (n̂), which is a second order quantity. Indeed, an
important observation is that if the CMB were perfectly isotropic, the net effect of this deflection
would vanish, since, by the conservation of photon number, as many photons would be deflected out
of a small solid angle as into it. On the other hand, if there is no perturbation in the gravitational field,
the latter is perfectly isotropic and the effect also vanishes. Hence, gravitational lensing of the CMB
is a second-order effect and is not discussed within linear perturbation theory, to which we restricted
our main calculation.
The deflection field is usually written in terms of a lensing potential ϕ to which it is simply related
as the gradient (on the sphere perpendicular to n̂) of the potential d̂(n̂) ≡ ∇⊥ϕ. One can relate ϕ to
the Newtonian metric perturbations ψ and φ through a convolution along the line of sight [392]

ϕ(n̂) = −
∫ τ0

τLS

dτ
χ(τLS)− χ(τ)

χ(τ)χ(τLS)
(φ+ ψ)|(τ,~x=r(τ)n̂) (2.2.69)

where χ(τ) and r(τ) are defined in eqs. (1.1.41) and (1.1.44) respectively. During matter domination,
one can relate φ and ψ (which are typically equal) to matter density fluctuations through the gener-
alized Poisson equation. It is important to note that, because lensing is an effect happening at low
redshift, it is completely uncorrelated with CMB anisotropies generated during the early Universe, i.e.
on very small scales. On the other hand, the effect of lensing is usually negligible on large scales. We
show the smoothing of small scale peaks and slight modification of the damping tail, typical impact
of lensing on the CMB anisotropies and polarization power spectrum, in fig. 27. Moreover, lensing
induces the leakage of E-modes into B-modes, an effect that has been discovered recently by the SPT
collaboration [295], a major foreground for primordial gravitational wave searches.
Finally, it is also possible to construct the harmonic power spectrum Cφφ` from the matter power
spectrum P (z, k) by convolving a given map ϕ(n̂) in redshift space with an appropriate kernel. It can
therefore be estimated from the 4-point correlation function of temperature maps [17]. The explicit
computation of Cφφ` is introduced in the context of forecast for neutrino masses detection in chapter
9, under the so-called “Limber approximation”8, valid for small scales integrated over a (relatively)
broad range of redshift.

2.2.4 The matter power spectrum

The power spectrum of the matter perturbation is also a very powerful probe of the models we study,
either by itself because growth of structure is altered in those models, or because it helps to break
degeneracies between cosmological parameters. In the following section, we describe in more details

8 It typically assumes that P (k, z) is a slowly varying function of k and make use of orthogonal properties of spherical
Bessel functions to simplify an integral over momentum.
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Figure 27: Comparaison of the lensed and delensed autocorrelation power spectrum (temperature and E-
polarization) as predicted by the bestfit ΛCDM model of Planck high-l TT, EE, TE + SimLow
[27].

its main properties to better understand the peculiar signatures of models under investigation. Our
discussion is based on Refs. [391], [392], where the reader is referred for further details.

2.2.4.1 Definition

We have already introduced the total energy perturbation in the universe as

δρtot =
∑

i

δρi . (2.2.70)

However, all the LSS observations probe the power spectrum when photons are subdominant and
δργ can be neglected, while δρν could matter for non-vanishing neutrino masses. Most of the Dark
Energy (DE) models predict negligible amount of DE perturbations, for instance it vanishes in the
cosmological constant scenario. Hence, in the context of LSS observations, one usually refers to the
power spectrum P (z, k) of the non-relativistic matter fluctuation δM defined as

〈δM (z,~k)δ∗M (z,~k′)〉 = δ(~k − ~k′)P (z, k) , with δM =
δρM
ρ̄M

=
δρb + δρcdm

ρ̄b + ρ̄cdm
. (2.2.71)

We have already seen that for Gaussian initial conditions, as long as perturbations are linear, the
power spectrum at any given time can be written as

P (z, k) =
2π2

k3
PR(k)δ2

M (z, k) , (2.2.72)

where δM is the matter transfer function and PR(k) the primordial scalar power spectrum given by
eq. (2.2.17).
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2.2.4.2 Transfer function evolution

CDM evolution
We first start by neglecting baryons. In the newtonian gauge, we can combine the continuity and Euler
equations (2.1.64) to get a master equation for δcdm

δ′′cdm +Hδcdm = −k2φ− 3Hψ′ − 3ψ′′ (2.2.73)

which resembles the one we had for photons density perturbations, without the pressure term, neg-
ligible for CDM. We know that on super-horizon scales, all perturbations are frozen and related by
simple expressions (2.1.120) and (2.1.121). What we want is the sub-horizon evolution.
To go further, we need first to get some insight on the evolution of metric perturbations. Under the
(wrong9) assumption that ψ = φ, we have already obtained the master equation (2.1.118), and we
plotted their (true) evolution thanks to numerical resolution in fig. (2.1.118) - right panel. During ra-
diation domination, super-horizon scales are constant, while subhorizon ones oscillate with a quickly
decaying amplitude. During matter domination, metric potentials are frozen on all scales. We can
therefore safely neglect dilation effects. Quite surprisingly, it is possible to neglect radiation pertur-
bations even if they are big, because below horizon they rapidly oscillate and therefore average to 0
over time (the so-called fast modes by Weinberg [589]). Using Poisson equation, we get the Mészáros
equation (roughly) valid during all regime

δ′′cdm +Hδcdm − 4πGa2ρ̄cdmδcdm = 0 . (2.2.74)

Analytical solutions to this equation can be obtained, but the numerical one is plotted in fig. (2.1.118) -
left panel - for two modes. The important behaviour is that during radiation domination, a ∝ τ and the
growing mode scales like δcdm ∝ log(kτ), while during matter domination a ∝ τ2 and δcdm ∝ τ2 ∝ a.
Nowadays, during Λ domination, one should use the full Friedmann equation with both ρcdm and ρΛ,
which would lead to a k-independent growth rate suppression. We can therefore readily understand
the shape of the power spectrum plotted in fig. 28:

• The primordial power spectrum scales like k−3kns−1 = kns−4;

• All modes entering the horizon during the radiation domination era are enhanced by a fac-
tor [δcdm(τeq, k)/δcdm(τini, k)]2 ' [log(kτeq)]2. The k > keq asymptote, with keq = aeqHeq, is
therefore P (k) ∝ kns−4[log(k)]2;

• Before Λ start to dominate at τΛ, modes inside the horizon grow like τ2. Hence, the power
spectrum for all modes that are inside the Hubble horizon at τeq is enhanced by the same factor
(τeq/τΛ)4. Since this is scale independent, the asymptotic shape for k > keq stays the same.
Modes that enter the horizon during matter domination however receive more or less enhance-
ment depending on their time of horizon crossing τ∗ ∼ 1/k. Hence, the power spectrum receives
a scale-dependent enhancement (τΛ/τ∗)

4 ∝ (kτΛ)4 and the asymptotic behaviour of modes with
k < keq is P (k) ∝ kns−4k4 = kns . Modes outside Horizon at τΛ are still shape like P (k) ∝ kns−4.

9 This is valid only if the anisotropic stress vanishes, which isn’t the case in the radiation domination era due to free-
streaming neutrinos. This is however a good approximation in the matter domination era.
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• Finally the scale-independent reduced growth rate during Λ domination does not change the
asymptotic shape of the power spectrum for modes already inside the horizon at τΛ. It only
changes for the very small k’s that enter horizon during Λ domination, which we do not detail
here.

Baryonic corrections
Of course, the matter in the Universe is not only made of cdm. Hence, we must incorporate the effects
of baryons on the power spectrum (at least) at the linear order. We know already that at early times,
baryons are coupled to the photons and δb = 3

4δγ . The question is, until when? The naive answer would
be until photon decoupling. However, given the huge number of photons with respect to baryons, the
laters keep track of the photon density until much later: the baryon drag time, where the drag depth
τdr defined as10

τdr(τ) =

∫ τ0

τ
dτ ′R−1aneσT , (2.2.75)

is roughly equal to 1. When baryons and photons are coupled this quantity tends to infinity, while it
goes to 0 in the decoupled limit. Because R � 1, the release of baryons takes place after decoupling,
typically at redshift of order zdr ∼ 200. Before this redshift, CDM perturbations follow eq. (2.2.74)
because δb are oscillating with the photons and are therefore negligible. After baryon drag, baryons
collapse in the CDM potential gravitational wells and their perturbation start to grow, such that CDM
will start to feel the gravity of baryons. On scales large enough to neglect the baryon pressure, one
can write down coupled Mészáros equations

δ′′b +Hδb = 4πGa2(ρ̄bδb + ρ̄cdmδcdm) (2.2.76)

δ′′cdm +Hδcdm = 4πGa2(ρ̄bδb + ρ̄cdmδcdm) . (2.2.77)

Introducing D ≡ δb− δc and δM = δb + δcdm, we can decouple the equations, which take the following
form during matter domination

D′′ +
2

τ
D′ = 0 (2.2.78)

δ′′M +
2

τ
δ′M −

6

τ2
δM = 0 . (2.2.79)

The growing solutions are thus D = const and δM ∝ τ2, which means that

δb
δc

=
ρ̄MδM + ¯ρcdmD

ρ̄MδM − ρ̄bD
→ 1 (2.2.80)

and δb approaches δc during matter domination. On scales smaller than the baryon Jeans length,
baryon pressure prevents such collapse and baryonic perturbations are highly suppressed.
The important point is that baryons will have two effects on the total matter power spectrum: i) they
slightly reduce the amplitude with respect to a pure cdm universe; ii) the oscillating behaviour of
δb leaves a small imprint in the late time δM as an oscillation with scales called baryonic acoustic
oscillations (BAO). Those are nothing but the counterpart of the photon oscillations observed in the
CMB power spectra, and as such represent an important consistency check of the cosmological model.
The BAO has been detected recently in LSS observations [229] and can be seen in fig. 28.

10 The name comes from the tendency for baryons to drag photons towards gravitational potential wells. However it is
misleading as it corresponds to the end of baryon drag.
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Figure 28: The matter power spectrum in a hypothetical CDM Universe compared to the one deduced from
the best fit of Planck data [19]. The Non-Linear contribution is computed with HaloFit [558], [577].

2.2.4.3 Parameter dependence

Similarly to the CMB power spectrum, the Matter power spectrum can be accurately described within
the ΛCDM models. In fact, it even depends on fewer parameters: the optical depth to reionization
τreio does not play any role here. The parameters that matter are therefore

{As, ns, ωb, ωM ,ΩΛ} . (2.2.81)

The important effects that determine the shape of the Matter power spectrum are often called (P1-
P5).Those are

(P1) The time of matter-radiation equality, which determines the scale keq of the power spectrum
peak. In the usual convention, the scale is expressed in units of hMpc−1, such that it depends
on both zeq and ΩM , or in our parameter basis on ωM and ΩΛ.

(P2) The baryon-to-CDM fraction (ωb/ωc) alters the large-scale asymptote. When this fraction in-
creases, the spectrum is suppressed for k ≥ keq and BAOs are more pronounced.

(P3) The phase of the BAO’s depends on the sound horizon at baryon drag rs(τdr), while the exponen-
tial diffusion damping depends on the damping scale rd(τdr). Both parameters depend strongly
on ωb.

(P4) The overall amplitude depends on the primordial amplitude and on the scale independent sup-
pression of the growth-rate during Λ domination. Hence it depends on As and ΩΛ.

(P5) The overall tilt of the power spectrum depends trivially on the primordial tilt ns.

In the future, experiments such as Euclid [386] and LSST [9] will perform accurate measurements of
the power spectrum at different redshifts. This is crucial as one can deduce the low-redshift expansion
history and thus tests model of dark energy versus a cosmological constant.
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2.2.4.4 A quick word on non linearities

The linear theory used until now cannot describe small scale matter fluctuations at small redshift.
Indeed, when perturbations δM on a given scale k become of the same order as ρ̄M , our formalism is
not adapted as this scale becomes non-linear. Structure formation in the ΛCDM is said to be “bottom-
top”, i.e. that smaller scales enters earlier into the non-linear regime.
The midly non-linear power spectrum can be computed analytically (e.g. [100], [108]), but non-linear
structure formation requires numerical simulation. It can be simulated with N -body codes based on
newtonian gravity, such as gadget-2 [566], and including many subtle baryonic effects, or pure cdm
simulation based on GR such as the recent gevolution [16].
In the Boltzmann code CLASS, we make use of an accurate fitting formula based on the result of the
gadget-2 code called halofit [558], [577] and improved to incorporate the effect of neutrino masses [105].
It is based on the assumption that all the matter content in the Universe is bound in dark matter
halos. Then, the power spectrum is decomposed into two terms, the so-called one- and two-halo terms:

P(k) = PQ(k) + PH(k) (2.2.82)

The one-halo term PQ(k) describes matter correlations within the same dark matter halo, and is
determined by the density profile of each halo. It typically dominates at small scales. On the other
hand, the two-halo term PH(k) arises from the correlation between two distinct halos and dominates
at large scales. Their functional form can be found in the appendix of ref. [577]. We plot in fig. 28 the
impact of non-linear structure formation on the matter power spectrum.





3
MASS IVE REL ICS IN THE UNIVERSE

3.1 The Standard Model of Particle Physics in a nutshell

3.1.1 The Standard Model and its main successes

The Standard Model of Particle Physics (SMPP) is the model that describes the interactions among
fundamental constituents of matter. It is a quantum field theory (QFT) obeying an action principle, i.e.
its basic objects are quantum—operator valued—fields defined at spacetime points, with very specific
symmetry properties: translational plus Lorentz-invariance (hence it is said to be a relativistic QFT),
plus some local symmetries describing the dynamics. The latter are gauge symmetries, characterized by
the non-abelian symmetry group GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y. Matter is described by fermionic
fields, transforming differently under (i.e. belonging to different representations of) GSM: the six quark
species (or flavors) are the only fermions interacting via strong interactions with the so-called QCD
coupling constant, i.e. they transform non-trivially under SU(3)c. The group SU(2)L ⊗ U(1)Y describes
in a unified way electromagnetism and weak interactions via two additional coupling constants. The
empirical observation that parity is violated in weak interactions has led to the insight that all known
fermions are chiral fields, with the left-handed partners, arranged in doublets, also charged under
SU(2)L, while the right-handed partners are only charged under U(1)Y. The symmetry SU(2)L ⊗ U(1)Y
is spontaneously broken at low-energy, i.e. the vacuum does not obey the same symmetry properties
of the full Lagrangian. Only the U(1)e.m. gauge symmetry describing electromagnetism survives at
more familiar low energies. If classified in terms of electric charge, leptons, i.e. the other fermions not
charged under SU(3)c, can either be electrically charged (electron, muon and tau particle), or neutral
(three types of neutrinos). Neutrinos thus only interact via weak interactions, arranged in a doublet
with their charged lepton partner. As a result of general properties, each particle of the SMPP has
an antiparticle of the same mass and opposite quantum numbers. Also note that the SMPP matter
content appears arranged in three families (or generations), each containing a quark doublet, a lep-
ton doublet, two quark singlets and one lepton singlet. Only particle masses distinguish a generation
from another. The SMPP is a local theory (there is no instantaneous interaction at distance!) whose
interactions are mediated by bosonic, vector fields, associated to the generators of the gauge group.
Mathematically, the action of the SMPP is built via a Lagrangian density, under the further require-
ment that the theory is renormalizable, i.e. predictive up to arbitrarily high energies once a finite
number of parameters are experimentally fixed. This condition essentially specifies most of the terms
of the Lagrangian LSM, given the particle and gauge content. However, the above-mentioned fact that
the SU(2)L ⊗ U(1)Y symmetry is broken to U(1)e.m. (which is associated to the fact that the weak
force carriers, W± and Z, are very massive, contrarily to the massless photon associated to U(1)e.m.),
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Fermions SU(3)c U(1)Q (e) T3 Mass (MeV)

Leptons(
e−

νe

)

L

(
µ−

νµ

)

L

(
τ−

ντ

)

L

1
−1

0

−1/2

1/2

0.511

0(?)

105

0(?)

1777

0(?)

e−R µ−R τ−R 1 −1 0 id. L-particles

Quarks(
u

d

)

L

(
c

s

)

L

(
t

b

)

L

3
2/3

−1/3

1/2

−1/2

3

7

1200

120

1.74× 105

4300

uR cR tR 3̄ 2/3 0 id. L-particles

dR sR tR 3̄ −1/3 0 id. L-particles

I II III Generation

Table 1: The Standard Model fermion families after EW symmetry breaking and corresponding properties of
the particles. Masses are given at a precision level enough for our studies but are known with much
better accuracy. “id. L-particles” means âĂĲidentical to left-handed particlesâĂİ.

together with the fact that all fermions are massive (but for neutrinos, which have no right-handed
field and no mass in the SMPP) requires additional ingredients for the mathematical consistency of the
model. The SMPP is then fully specified by the requirement that this additional sector only contains
a single SUL(2) scalar (or Higgs) doublet H, responsible at the same time for both mass-generating
mechanisms. In particular, when spontaneous symmetry breaking occurs—associated to the fact that
H acquires a non-zero vacuum expectation value—three out of the four degrees of freedom (dof) of
the complex Higgs doublet are absorbed to create massive W±, Z bosons, the last remaining dof be-
ing the Higgs boson. This is the so-called Brout-Englert-Higgs-Guralnik-Hagen-Kibble mechanism. A
short summary of the standard model particles after EW symmetry breaking is given in tables 1 and 2.

The SMPP is beyond any doubt a huge experimental success. Nowadays, all its particles 1 have been
observed at accelerators, including the Higgs boson, for a long time the missing piece of the puzzle.
The Higgs was discovered in 2012 by the CMS and Atlas experiments [1], [154] and associated to the
2013 Nobel Prize awarded to Englert and Higgs. From a theoretical point of view, it is extremely
satisfactory because it is renormalisable and automatically conserves baryon and lepton quantum
numbers without invoking any discrete symmetry. However, the Standard Model fails to explain some
observables, and gives rise to deep theoretical questions regarding some of its properties.

3.1.2 Main issues with the Standard Model

We give here a non-exhaustive list of the main issues of the SMPP, divided into empirical, observational
and theoretical/aesthetic problems.

1 Technically, if you consider a particle distinct by its antiparticle, the ν̄τ has not been observed, yet. It is one goal of the
proposed SHiP experiment [34].
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Bosons U(1)Q (e) SU(3)c Spin Mass (GeV) Role

γ 0 1 1 0 Electromagnetic Interaction

W± ±1 1 1 80 Weak Interaction

Z0 0 1 1 91

g1, · · · , g8 0 8 1 0 Strong Interaction

H 0 1 0 125 Higgs Mechanism

Table 2: The Standard Model Bosons after EW symmetry breaking and corresponding properties of the par-
ticles. Masses are given at a precision level enough for our studies but are known with much better
accuracy.

3.1.2.1 Empirical Problems

• Neutrinos: In the SMPP, neutrinos are massless and left-handed only. However, the observations
of neutrino flavour oscillation requires neutrinos to be massive. This will be discussed in sec. 3.2.1.
The existence of at least two sterile right-handed neutrinos could lead to a simple explanation
of the neutrino masses. One sterile neutrino may also provide a viable DM candidate.

• Muon anomalous magnetic moment: There are a number of tensions between predicted and
observed quantities in the SMPP. None of them has attained a high significance till now, and most
past anomalies have disappeared with better data. However, it is not excluded that one or more
of these will turn into a discovery, at some point. Currently, perhaps the most intriguing and long-
standing tension is related to one of the greatest success of the SMPP: the agreement between
theoretical predictions and experimental values for the magnetic moment of the electron ge. At
tree level ge = 2, but 5 loop computations lead to (ge − 2)/2 = 0.001159652181643(764) [469]
while the experimental determination is (ge − 2)/2 = 0.00115965218073(28) [291] in extremely
good agreement. However, when one performs the same computation for the muon, the value
is (gµ − 2)/2 = 0.00116591803(69) [469] while the experimental determination is (gµ − 2)/2 =

0.00116592091(9) [432] which represents a difference of order 4σ. The theoretical prediction
could be affected by new physics entering the loop corrections, but QCD corrections might be
responsible for the discrepancy. This ambiguity between possible new physics interpretations
and systematic effects in SMPP computations is quite typical of several anomalies currently
under scrutiny.

3.1.2.2 Observational (astrophysical and cosmological) Problems

• Dark Matter: We have already discussed observations requiring the existence of a massive stable
neutral particle. No particles within the SM fulfill this property, except neutrinos if they are
massive. However, they do not have neither the good relic density, nor the good level of “coldness”,
i.e. before becoming non-relativistic they free-stream and suppress structure formation on scales
below their free-streaming length. We will comment more extensively on this in chapter 9.

• Matter-Antimatter asymmetry: The non-zero value of the photon-to-baryon ratio η implies a tiny,
but non-zero, asymmetry in the matter and antimatter production mechanism. The Sakharov
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conditions [523] for such asymmetry to be produced are: i) Baryon number violation processes
in order to produce an excess of barons over anti-baryons; ii) C- and CP-symmetry violation
to avoid counterbalancing the previous asymmetry; iii) Interactions out of thermal equilibrium
such that a relic abundance can be produced. The SMPP predicts some level of CP-asymmetry
through weak interactions, but in too little amount to explain η. Also the expected departures
from equilibrium and non-perturbative B violation present in the SMPP are quantitatively
insufficient. Hence, this hints towards new sources of CP-symmetry breaking and/or new stronger
departures from equilibrium (e.g. in decays, or during phase transitions), and/or possible new
sources of B-violation at high energies. Here also, the existence of sterile neutrinos with specific
interactions is often invoked to solve the problem. We shall comment on that later on.

• Inflation: If the paradigm is correct, new physics is required. Indeed, even if the Higgs, the only
fundamental scalar field of the standard model, is the inflaton, a successful inflation demands non
minimal coupling to Gravity [103]. Furthermore, the required value of the non-minimal coupling
leads to a violation of Unitarity in the theory and therefore points to new physics below the
Planck scale [134]. This model is known to be equivalent to the Starobinsky’s inflation model
[567], which as well requires extension of GR. Most of the models in the literature therefore
make use of (at least) one new scalar field which has yet to be discovered.

3.1.2.3 Theoretical/aesthetic problems

• Hierarchy Problem : The large difference between the EW scale (O(100 GeV)) and the Planck
scale (O(1018 GeV)) is not very satisfactory. Even assuming that new degrees of freedom only
appear at the Planck scale, in relation to quantum gravity, nothing prevents the Higgs mass to
receive corrections from loops involving these new dof’s, and acquire a mass of order of the Planck
scale. Hence, the cancellation of the loop induced corrections to the propagator and the “bare”
mass have to be exact at the incredible 10−32 precision level in order to get the right Higgs mass.
Although this poses no phenomenological problem, this “coincidence” makes most theoretical
physicists uncomfortable. However, if new physics exists at a scale Λ not too far above the
electroweak one, it might prevent the running of the mass up to very high scale because of some
symmetries. In SuperSymmetry (SUSY), this is naturally achieved thanks to the co-existence of
fermionic and scalar loop corrections which exactly cancel each other, bringing the Higgs mass
not far below the level Λ at which SUSY is broken, and which should also set the scale of some
SUSY partner particles of the SMPP ones. This observation has motivated intense experimental
efforts in searching for TeV-scale SUSY through the construction of the Large Electron-Positron
Collider (LEP) first, the Tevatron next, and currently the Large Hadron Collider (LHC), hosted
in the same tunnel of the former LEP. Unfortunately no SUSY particles have yet been observed
and strong constraints nowadays apply to TeV-scale SUSY. We will return to SUSY later on
as it naturally accommodates DM candidates. Another solution to this issue is achieved in the
context of theory of extra-dimensions. Those extra dimensions allows to correct the apparent
4D value of the Planck mass and bring it back to the TeV scale. Those theories also naturally
incorporate DM candidates and, as for the SUSY case, all searches for the new predicted states
have come out empty handed till now.

• Strong CP problem: A CP-violating term is not prohibited in the Lagrangian of the strong
sector. However, experimental measurements of the neutron electric dipole moment constrain
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its amplitude to be smaller than 10−9. Again, since this coefficient gets contributed to by a
topological QCD term as well as by the argument of the determinant of the quark mass matrix,
two apparently unrelated sectors of the SMPP, such a degree of cancellation is astonishing.
A famous solution by Peccei and Quinn [470] to the problem is to invoke a new global U(1)
symmetry, whose spontaneous breaking is associated to a pseudo-scalar (Nambu-Goldston) field
called the axion. Non-perturbative effects at the QCD phase transition then ensure that the
axion field dynamically relaxes to a vacuum expectation value that cancels the CP-violating term.
Interestingly, the axion is another potential DM candidate. Also, some inflationary potentials
have been inspired by the axion model.

• Unification of Gauge Coupling: Unification of forces is an old dream of theoretical physicists.
Following the path of Maxwell unifying electric and magnetic forces and later on Glashow,
Weinberg and Salam unifying electromagnetism and weak forces, people have tried to go further,
aiming at the description of all interactions (or, at least, of all but gravity) within a single one. In
the SMPP, the running of the three coupling constants under the action of the renormalisation
group points towards a unification at very high energy scale, ∼ O(1015 GeV). However, although
they almost converge to a common value, there is still some difference. New physics could help
in “focusing” the evolution of the gauge coupling towards the same point. This is for instance
the case within SUSY, provided it is restored at sufficiently low scales. Evidently, this cannot
be considered a problem, at best an “aesthetic” argument which is suggestive of new physics.
These Grand Unified Theories (GUT) are extremely difficult to test at accessible energies, with
the best hope clinging to the relatively generic prediction of proton decay. Unfortunately, no
evidence in favor of this has been obtained, with current limits excluding the simplest and most
predictive scenarios.

• Parameters problem: On a similar footing as the above-mentioned one, the SMPP contains
about twenty free parameters. Unfortunately, nothing explain their values, nor their hierarchy.
Hence, the huge difference (∼ 104) between the top mass and the electron mass is extremely
unsatisfactory. (Actually, the mass difference becomes even 1013 if we wish explain tiny masses of
neutrinos through the Higgs mechanism). Moreover, there is no explanations to the fact that the
standard model particle content is made of three generations, which also gives rise to questions
about the fundamental nature of the model. Note that most of the new physics models introduce
above tend to even increase the number of free parameters.

3.2 Neutrino masses in Cosmology

In this section, we review the (recent) historical discovery of the neutrino oscillations, pointing to (at
least) two non-zero neutrino masses, as well as the most common neutrino mass mechanisms. This
section is based on the textbook [392] and review [22].

3.2.1 Neutrino oscillations: evidence for neutrino masses

Neutrinos are neutral spin 1/2 fermions whose existence has been postulated in 1930 by W. Pauli to
explain the continuous spectrum observed in the beta decay of nuclei. They come in three flavours to
accompany leptons within SU(2)L doublet and are only charged under the weak interaction. Because
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of that, they can travel a very long distance through matter without interacting and are therefore
very hard to detect. Electron neutrinos were discovered by Reines and Cowan in 1956, muon neutrinos
in 1962 at Brookhaven and tau neutrinos in 2000 at Fermilab, by the DONUT experiment. Until
recently, no finite mass effect had been observed in processes involving neutrinos. Since in the SMPP
mass arises from the Higgs mechanism, which couples left- and right-handed particles, neutrinos were
thought to have no right-handed partner.
The situation has started to change with the observation of the solar neutrino flux. The Sun is a
powerful source of MeV electron neutrinos, produced in the thermonuclear fusion reactions occurring
in the core. As soon as technology able to detect the solar neutrino flux was developed in the 1970’s,
measurements showed a large discrepancy with the predicted flux, and in particular a deficit in νe.
This was known as Solar Neutrino Problem. This issue was settled more recently thanks to the Su-
perKamiokande experiment, measuring the elastic scattering reaction να + e− → να + e− (which is
enhanced for νe) and in particular the Sudbury Neutrino Observatory (SNO) measuring at the same
time charged and neutral current, as well as the elastic scattering reaction. Those combined observa-
tions allow to compare the total flux, regardless of the flavor, to the electron neutrino flux: the first
one was in agreement with models, while the second still show the same deficit, pointing at neutrino
flavour conversions during their propagation. By far, the most plausible explanation invoked neutrino
oscillations, and has hence been confirmed in numerous other experiments.

Neutrino oscillations have been postulated in the late 1950’s by Pontecorvo [487], [488]. They are a
quantum mechanical phenomenon due to neutrinos being produced via charged current interaction as
flavour states, which are not mass eigenstates, and can be expressed as a linear combination of them.
Introducing the Pontecorve-Maki-Nakagawa-Sakata (PMNS) matrix U , a 3×3 unitary mixing matrix,
a particular ket state can be written as (generalizing to potential sterile degrees of freedom is trivial
3→ 3 +Ns)

|να〉 =
3∑

k=1

U∗αk|νk〉 with α = e, µ, τ. (3.2.1)

where greek indices label flavour states, latin indices mass states and we assume the normalisation
〈να|νβ〉 = δαβ and 〈νi|νj〉 = δij . A useful quantity experimentally is the so-called survival probability
Pνα→να , considering here oscillations in vacuum and expressed as a function of the distance of the
detection point from the neutrino source [392]:

Pνα→να(L) = 1− 4
∑

k>j

|U2
αk||U2

αj | sin2

(
∆m2

kj

2|~p|
L

c

)
. (3.2.2)

while the total transition probability 1 − Pνα→να follows from unitarity. From the sinusoidal terms,
we clearly see that experiment located at different L will be sensitive to a value of ∆m2 such that
∆m2L/(2E) ∼ 1. There are two typical regimes of oscillations: a slow one, governed by ν1 ↔ ν2 and
a fast one corresponding to other oscillations. Solar oscillations are governed by the slow component
ν1 ↔ ν2, and one can explain observations in a two neutrinos model νe, νx, with νx an undetermined
mixture of νµ and ντ .
In fact, the Sun is not the only source of neutrinos available. Nuclear reactors typically produce electron
neutrinos with energy in the MeV range, and are classifed between short (∼ 10m) (SBL), long (∼ 1km)
(LBL) and very long (∼ 102 km) (VLBL) baseline experiments, sensitive to ∆m2 ≥ 0.1, 10−3 and 10−5

eV2 respectively. A similar classification can be made for neutrino beams produced by accelerators in
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the energy range 1-100 GeV due to the pion, kaon and muon decays and hence composed of both muon
and electron neutrinos and antineutrinos. However, SBL are now characterized by L ∼ 1 km, LBL
by L ∼ 103 km, while VLBL are still under study. Finally atmospheric neutrinos are produced when
cosmic-rays, consisting mainly of protons or heavier nuclei, interact with atoms in our atmosphere.
Those interactions create a lot of pions which decay into muons and neutrinos. The produced muons
can subsequently decay into electrons and create additional neutrinos. For energy below GeV, the
ratio of fluxes of muon neutrinos or antineutrinos over electron neutrinos should be almost equal to
two.
The PMNS matrix is often parametrized in the following way to reflect the sensitivity of experiments
to some of its terms:

U =




1 0 0

0 c23 s23

0 −s23 c23




︸ ︷︷ ︸
Atm. or LBL




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




︸ ︷︷ ︸
SBL Reactor



c12 s12 0

−s12 c12 0

0 0 1




︸ ︷︷ ︸
Solar and LBL Reactor



eiα1 0 0

0 eiα2 0

0 0 1




︸ ︷︷ ︸
0ν2β decay

. (3.2.3)

The parameters entering this matrix are cij = cos(θij) and sij = sin(θij) with θij the mixing angle of
mass states i and j, the Majorana α1,2 (probed by 0ν2β decay experiments) and Dirac δ CP violating
phases. The mass differences are taken to be

δm2 = m2
2 −m2

1 > 0 and ∆m2 = m2
3 −

m2
2 +m2

1

2
. (3.2.4)

Solar and LBL reactor neutrino experiments (e.g. SNO, KamLAND) have measured the mass-
mixing parameters (δm2, θ12) in the νe → νe channel, while atmospheric and LBL experiments (e.g.
SuperKamionkande, K2K and MINOS) have measured (∆m2, θ23) in the νµ → νµ channel. Finally,
SBL reactor experiments (e.g. Daya Bay, RENO and Double Chooz), which are mainly sensitive to
(∆m2, θ13), have provided information on the allowed range for the mixing angle θ13. In matter, the
presence of a high density of electrons can increase the effective mixing angle (see e.g. Ref. [392] for
an introduction), an effect known at the Mikheyev-Smirnov-Wolfenstein (MSW) effect [427], [595]2.
Thanks to the correction to the above vacuum mixing picture due to the refraction in solar matter,
solar neutrino studies have been able to deduce the sign of δm2. On the other hand, the sign of ∆m2

is still unknown, which led to the introduction of a normal hierarchy (NH), if m1 < m2 < m3 and
inverted hierarchy (IH) if m3 < m1 < m2. Recent determinations of these parameters are summarized
in tab. 3.
The absolute scale of the neutrino mass is unknown as well. Cosmology is currently the best probe
of it, through the effect of the sum of the neutrino masses Mν =

∑
imi. One can relate Mν to the

measured mass difference via

Mν = m1 +
√
m2

1 + δm2 +

√
m2

1 +
δm2

2
+ ∆m2. (3.2.5)

This number actually depends on the mass ordering. If NH is realised in nature, setting m1 to 0 gives
the minimal value it can take,Mν |min ∼ 60 meV. On the other, if IH is realised, one can set m3 to 0 to
get Mν |min ∼ 110 meV. Cosmological bounds are somewhat dependent on the choice of cosmological

2 In general, this effect is very important for the study of neutrino physics in the early Universe, when the electron density
was very high. See e.g. Ref. [339] for more details in the context of BBN.



112 massive relics in the universe

models and datasets. However, the most optimistic current bounds are very close to the minimum
value of the IH [27], [199], [466].
Laboratory measurements of the absolute neutrino mass scale are also possible. Experiments typically
look at the electron energy spectrum from tritium beta decay

3H→ 3He + e− + ν̄e , (3.2.6)

which has Qβ = 18.591 keV. By looking at the end point of the spectrum, one can hope to detect a
small shift Qβ −mβ where

m2
β =

3∑

k=1

|Uek|2m2
k . (3.2.7)

The present experimental bound is mβ ≤ 2.2 eV at 95%C.L [115]. The future KArlsruhe TRItium
Neutrino (KATRIN) β-experiment will be able to reduce such a limit by one order of magnitude [457].
Those experiments are not sensitive to the Majorana or Dirac nature of neutrinos—i.e. if neutrinos
are their own antiparticles or not, see below—as information on the phases is lost when taking the
square of the mixing matrix. To do so, 0ν2β (neutrinoless double beta decay) experiments are studying
processes of the type (A,Z)→ (A,Z + 2) + e−+ e−, only possible if neutrinos are Majorana particles
since the process violate lepton number by 2 units. If the effect of finite neutrino mass dominates
these nuclear transitions, those experiments are also sensitive to the absolute mass scale through the
effective Majorana mass mee

mee =

∣∣∣∣∣
∑

i

miU
2
ei

∣∣∣∣∣ . (3.2.8)

Current bounds from GERDA, KamLAND and EXO-200 are at the levelmee ≤ 0.2−0.4 eV at 90%C.L.
New experiments could reach the me ∼ 0.01 eV level, but those bounds assume that neutrinos are
Majorana particles and are therefore to be taken with caution.
Besides the mass scale, mass hierarchy and Majorana/Dirac nature of neutrinos, open questions in
the neutrino sector include : i) the unitarity of the matrix U , as it could indicate that new (sterile3)
neutrino(s) exist(s), or that new physics is at play; ii) possible CP violation in the leptonic sector:
In particular, depending on the parameter δ and α1,2, neutrinos and antineutrinos may oscillate
differently.
Neutrinos are definitely one of the hottest subjects nowadays, stimulating intense theoretical and
experimental efforts. In the cosmological context, future LSS survey such as Euclid and LSST will
aim at a cosmological neutrino mass detection. Chapter 9 is devoted to a forecast of the potential for
detection in future cosmological data. The impact of neutrino mass on the CMB and matter power
spectrum is reviewed in sec. 9.2, with a special emphasis on the phenomenology of very small neutrino
masses, close to their minimal values allowed by oscillation data.

3 LEP data and Cosmology restrict the number of active neutrinos to three.
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Parameters best-fit (±1σ) 3σ range

δm2/10−5 eV2 7.54+0.26
−0.22 6.99-8.18

sin2 θ21 0.308±0.017 0.259-0.369

∆m2/10−3 eV2 (NH) 2.43±0.06 2.23-2.61

∆m2/10−3 eV2 (IH) 2.38±0.06 2.19-2.56

sin2 θ13 (NH) 0.0234+0.0020
−0.0019 0.0176-0.0295

sin2 θ13 (IH) 0.0240+0.0019
−0.0022 0.0178-0.0298

sin2 θ23 (NH) 0.437+0.033
−0.023 0.374-0.628

sin2 θ23 (IH) 0.455+0.039
−0.031 0.380-0.641

δ/π (NH) 1.39+0.38
−0.27 -

δ/π (IH) 1.31+0.29
−0.33 -

Table 3: The best-fit values and 3σ allowed ranges of the 3-neutrino oscillation parameters, derived from a
global fit analysis of oscillation data by Ref. [247]. At 3σ, no physical values of δ are disfavored. Table
adapted from Ref. [469].

3.2.2 Sterile neutrinos and neutrino mass mechanisms

We have discussed observations that requires neutrinos to be massive, however we are still lacking a
theoretical mechanism for such masses. First of all, it is possible to write down a Dirac mass term by
simply introducing Ns sterile (i.e. a SM gauge singlet) right-handed neutrinos νsR, such that

LD = −(ν̄sRM
D
sαναL) + h.c. , (3.2.9)

where ν̄sR ≡ (ν)†sRγ
0 is the Dirac adjoint andMD

sα is a Ns×3 complex matrix.MD cannot be a matrix
of bare mass since this term violates weak isospin by 1/2 unit . However, it can be generated for instance
through the Higgs mechanism, in which case the diagonalised mass term is mα = yαv with v = 174

GeV the Higgs vacuum expectation value and yα the Yukawa couplings. It could be the only mass term
provided that νsR has puzzling extremely weak Higgs-Yukawa coupling yα ∼ 3× 10−13mα/(0.05 eV).
However, the introduction of RH sterile neutrinos has more interesting consequences in Cosmology,
including in the context of our DM searches. Indeed, no gauge symmetries prevent the lepton number
L from being explicitly violated. Since neutrinos are uncharged under unbroken gauge symmetries, one
can write a Majorana mass term which connects a Weyl spinor with its own CP conjugate (ν)c ≡ Cν̄T
where C = iγ2γ0 is the charge conjugation in the Weyl representation

LM =
1

2
ν̄TsRM

R
ss′νs′R + h.c. . (3.2.10)

where MR
ss′ is a complex Ns × Ns matrix. Defining the row vector NT

L ≡ (ναL, ν
C
siR

) where α runs
over the active neutrino flavours and i runs up to Ns, one can rewrite all mass terms in the single
expression

LD+M
mass =

1

2
NT
LC
†MD+MNL + h.c. . (3.2.11)
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The mass matrix MD+M is

MD+M =

(
0 MDT

MD MR

)
, (3.2.12)

which one can diagonalize as

M =

(
Mν 0

0 Mνs

)
, (3.2.13)

by introducing the unitary transformations V ν
L and V ν

R acting on active and sterile degrees of freedom
respectively, such that

Mν = −V νT
L MDT 1

MR
MDV ν

L Mνs = V νT
R MRV ν

R . (3.2.14)

If responsible for the breaking of the (accidental) L symmetry, MR is expected to be connected to a
high mass scale. It is therefore common to consider the limit MR � MD, which corresponds to the
so-called type I seesaw mechanism. In this case, the simplest realisation of such model corresponding
to a single left- and right-handed neutrino state, and previous relations boil down to

mν ∼
mD

2

mR
, mνs ∼ mR , θ =

mD

mR
. (3.2.15)

We emphasize that the number of new states is unconstrained and might have little to do with
the neutrino mass mechanisms4. Without entering details, we just mention that depending on their
mass, sterile neutrinos can play many different roles in Cosmology and Particle Physics. At the eV
scale, their presence solve a mysterious disappearance of ν̄e in observation of ν̄e → ν̄e by the SBL
experiments LSND and MiniBooNE. Given the corresponding mixing angle, those would be produced
and thermalized in the very early Universe, and are therefore in strong tension with cosmological
data through bounds on Neff [19]. At the keV scale, they could provide a viable DM candidate, whose
correct relic abundance can be achieved through resonant production of sterile neutrinos in matter
[543]. They are often invoke to explain the 3.5 keV line observed in some clusters of galaxies [123], [132].
Moreover, at MeV-TeV scale, they can decay at early times and yield detectable signal in Cosmological
data. Finally, neutrino oscillations can be linked to leptogenesis [22], [32]. We will extensively develop
the search for sterile neutrinos in the keV-MeV scale in chapter 6.

3.3 Evidence for Dark Matter

3.3.1 Galaxy rotation curves and density profiles

We have already mentioned in the introduction that in the first half of the 20th century many signs
attesting to the existence of a dark component of matter were found. Those came first from i) the study
of the rotation of stars within our Galaxy by J. Kapteyn [359], ii) the study of the thermodynamic
properties of Galaxy cluster by F. Zwicky [610], [611], in particular their mass under the assumption
that the virial theorem holds. However, the community really started to take this problem seriously

4 In fact, such a term might have nothing to do with sterile neutrinos. It could be generated in extended Higgs sector,
e.g. from the expectation value of a scalar triplet (as known as type II seesaw), or by the exchange of triplet fermions
(as known as type III seesaw). However, in the following we shall restrict the discussion to mechanisms involving sterile
neutrino.
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only later on, in the 1970’s, when V. Rubin, K. Ford and N. Thonnard published their result on the
observation of galaxy rotation curves within spiral galaxies [518], [519]. Of course at that time the
non-baryonic nature of this DM was not yet established, since the BBN and CMB evidence arrived
only later, but we will comment on these results with our recent knowledge and assume that the DM
component is non-baryonic.
Applying standard Newtonian gravity to a test body at a distance r from the center of the galaxy,
one can compute the orbital velocity v (assuming that the orbit is stable)

GmM(r)

r2
= m

v2

r
. (3.3.1)

The galaxy is described as a bulge of radius R1 and (visible) density ρ1, extended by a disc of radius
R2, thickness d and (visible) density ρ2. Well inside the bulge, r � R1 and the mass of the visible
stars is

M(r) ' 4

3
r3ρ1 ⇒ v(r) =

√
Gρ1

4

3
πr . (3.3.2)

On the opposite limit, far outside the disc r � R2 one typically gets

M(r) = Mtot =
4

3
πR3

1ρ1 + πR2
2dρ2 ⇒ v(r) =

√
GMtot

r
. (3.3.3)

This famous result shows that the velocity of stars far away from the center should decay as v ∝ 1/
√
r.

However, thanks to the observation of redshifted Hydrogen Lyman-α line, they found that v(r) ∼
const, which immediately implies that there should be a DM component M(r) ∝ r even far away
from the center. This is illustrated with more recent observations by Ref. [95] in fig. 29.
Although these observations have been made in spiral galaxies, we generalize our discussion to

other types (including e.g. Dwarf spheroidal galaxies). In terms of density, assuming spherical DM
halos (typical of the isotropic and spherical collapse of a self-gravitating distribution of collisionless
particles), one gets

M(r) = 4π

∫ r

0
ρ(r′)r′2dr′ ∝ r ⇒ ρ(r) ∝ 1

r2
. (3.3.4)

A lot of efforts is devoted to the determination of the halo density profile ρ(r). The most common
models used are

• The isothermal profile: It is based on the solution of the Liouville equation for the DM distri-
bution assuming a uniform velocity distribution (or “temperature” in microscopic terms), whose
solution is the Maxwell-Boltzmann law

f(~x,~v) = C exp

(
− E

mσ2

)
, (3.3.5)

with C a normalization constant, E = mv2/2+mφ with φ the Newtonian gravitational potential
and σ2 the velocity dispersion, playing the role of a temperature identical (hence the name) in
each point of the halo. This result can also be obtained from considering the hydrostatic pressure
equilibrium of an ideal gas with gravity. From the Poisson equation for φ, this leads to a profile

ρ(r) =
σ2

2πG

1

r2
, (3.3.6)
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Figure 29: Rotation curves of spiral galaxies. Newtonian results from visible stars and gas give the long-dashed
and dotted curves respectively. The dark matter halo corresponds to the dotted dashed curve and
the solid line corresponds to the sum of the three components. Taken from Ref. [95]

which is in agreement with our guess (3.3.4). However, this profile diverges, therefore it is usual
to introduce a constant density core ρs within a given radius rs, such that

ρ(r) =
ρs

1 +
(
r
rs

)2 . (3.3.7)

• The Burkert profile: It is also a cored profile. It has been introduced to fit rotation curves better
in ref. [135]. It is given by

ρ(r) =
ρs[

1 + r
rs

][
1 +

(
r
rs

)2] . (3.3.8)

The problem with the two former profiles is that M diverges when going at infinity from the
center, they therefore cannot be the full solution.

• N-body motivated profiles: Numerical simulations allow us to estimate density profiles as well.
The major finding of CDM only simulations is that profiles are universal. There are two types
of profile, depending on the fitting function that has been used. The first one is

ρ(r) = ρs

(
rs
r

)γ[
1 +

(
r

rs

)α](γ−β)/α

where ρs = ρ�

(
r�
rs

)γ[
1 +

(
r�
rs

)α]−(γ−β)/α

, (3.3.9)

with α = 1 and β = 3. The NFW profile [448] corresponds to γ = 1 and the Moore profile [215]
to γ = 1.16. However, they both tend to diverge at low r and do not reproduce well the evolution
of the slope of the profile when compared to simulations. To avoid that, an other class of profile
has been introduced [449]

ρ(r) = ρs exp

{
− 2

α

[(
r

rs

)α
− 1

]}
where ρs = ρ� exp

{
2

α

[(
r�
rs

)α
− 1

]}
. (3.3.10)
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Figure 30: Radial DM density profile. The full lines represent the profiles as is, while the dashed lines correspond
to modification of these profile to the remove Galactic center divergence. Taken from ref. [188].

where α = 0.17 correspond to the Einasto profile and 0.11 to the EinastoB profile. When applied
to our Galaxy, the parameters entering those profiles are the distance of the Sun from the Galactic
center r�, the local DM density ρ� and the normalisation, fixed by the total mass within a radius
r = 60 kpc. Typical values are r� = 8.33 kpc, ρ� = 0.3 GeV/cm3 and M60 = 4.7× 1011M�.
More recently, simulations with baryons have shown that this universality can be spoiled by the
presence of a significant baryonic fraction within the galaxy [581].

Those profiles are illustrated in fig. 30. Large uncertainties in the profile close to the Galactic center
will lead to strong uncertainties on the signal coming from DM annihilations and decay in the context
of indirect dark matter searches with cosmic-rays (especially for γ-rays) on which we comment further
on. The satellite GAIA [478] launched in 2013 by ESA, which aims at a 3D mapping of more than a
billion objects within our Galaxy, should be help in shedding light on the halo profile in our Galaxy
a few kpc away from the solar system.

3.3.2 Clusters of galaxy : X-rays and weak lensing

Following the work of F. Zwicky, people have been interested in DM on the scale of galaxy clusters.
There are several ways to learn more about their thermodynamics properties.
X-ray astronomy, developed in the 80’s, allows one to measure the thermal emission of the ionized
gas, which constitutes the dominant baryonic component of the cluster mass. From the spectral com-
position, one can get the temperature of the gas, while the intensity of the emission is linked to its
density. Assuming that the gas is in thermodynamics equilibrium, i.e. that pressure forces equal grav-
itational ones, it is possible to deduce that the visible mass only represents about 10% of the total
mass of the cluster. Experiments nowadays allow tracing the distribution of the gas within clusters.
Another possibility is to use the Sunyaev-Zeldovich distortion of the CMB blackbody spectrum due
to upscattering of photons by hot electrons. The satellite Planck has provided a map of the galaxy
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Figure 31: The Bullet Cluster seen by Hubble. The ionised gas distribution observed by Chandra in X-rays is
represented in pink. The mass distribution deduced from gravitational lensing is represented in blue.
Taken from the website http://apod.nasa.gov.

cluster seen via this effect [18].
Finally, one can infer the total mass of the cluster thanks to the gravitational lensing effect. GR pre-
dicts that the trajectory of light emitted by a distant object should be bent due to intense gravitational
potential along the way. From the deformation of the shape of objects, one can deduce the spatial
distribution of the gravitational potential, and therefore of the mass. A “smoking gun” signal of DM
has been claimed to be detected recently by Ref. [195] when observing the Bullet cluster. This object
is actually a pair of colliding galaxy clusters. On one hand, it is possible to trace the gas distribution
of the object thanks to X-ray emission. On the other hand, lensing provides a distribution of the
total amount of matter. The result of this procedure is represented in fig. 31. It clearly shows that
the two components do not coincide, giving a (new) strong hint of the existence of DM. Interestingly,
the analysis of the Bullet cluster also allows us to derive an upper limit on the DM self-interaction
cross-section [500]:

σ

mχ
< 0.7 cm2/g . (3.3.11)

3.3.3 The Dark Matter relic abundance and the WIMP miracle

We have already discussed the fact that BBN is sensitive to the photon-to-baryon ratio η. Measure-
ments of the primordial elements abundances indicate that η ∼ 6× 10−10, which allows to determine
ωb once ωγ is determined by an experiment such as COBE/Firas. We have also seen that the study
of CMB anisotropies allows to determine at the same time ωb and ωM . The important point is that
these numbers are very different, typically with the last Planck measurement we have

ωb = 0.02218± 0.00015 , ωM = 0.14268± 0.00155 . (3.3.12)

Those numbers being far off, they point to the existence of DM not only at the scales of galaxies
and clusters of galaxies, but also at the cosmological scales. The very interesting point being that the
amounts of DM needed are mutually consistent: For instance, the ratio of the two components in the
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bullet cluster is compatible within errors to the above figures [195]. The relic abundance of DM is
therefore

ωcdm = 0.1205± 0.0014 . (3.3.13)

However, what properties of the DM are necessary in order to produce such a relic density? We wish
now to introduce the most common mechanism, inspired by the standard freeze-out of other particles
that we have already discussed. We assume that a massive, stable or long-lived DM particle χ can
annihilate with its antiparticle χ̄ into some particle f of the SMPP and that interactions between
three or more particles are very unlikely. We thus consider the process

χ+ χ̄↔ f + f̄ . (3.3.14)

The density of a non-relativistic DM particle χ is governed by the following Boltzmann equation

dnχ
dt

= −3Hnχ︸ ︷︷ ︸
dilution

+n2
f 〈σff̄→χχ̄v〉︸ ︷︷ ︸
production

−n2
χ〈σχχ̄→ff̄v〉︸ ︷︷ ︸
destruction

, (3.3.15)

where 〈σff̄→χχ̄v〉 and 〈σχχ̄→ff̄v〉 are the thermally averaged creation and destruction cross section
times velocity respectively. Since the collisions term has to vanish at chemical equilibrium, we find

〈σff̄→χχ̄v〉 =

(
n

(eq)
χ

n
(eq)
f

)2

〈σχχ̄→ff̄v〉 . (3.3.16)

and we usually write
〈σv〉 ≡ 〈σχχ̄→ff̄v〉 . (3.3.17)

We assume that the species f is at equilibrium such that nf = n
(eq)
f . Hence, eq. (3.3.15) reduces to

dnχ
dt

= −3Hn− 〈σv〉[n2
χ − (n(eq)

χ )2] . (3.3.18)

We introduce the time variable x = mχ/T and the comoving density Yχ = nχ/s. If we assume that
T ∝ a−1, i.e. that heff ∼ const = heff(Mχ), we can write

dYχ
dx

= − λ

x2
[χ2 − (Y (eq)

χ )2] , λ ≡ 2π2

45
heff(Mχ)

M3
χ〈σv〉

H(Mχ)
. (3.3.19)

It is possible to solve eq. (3.3.19) numerically, and we plot a solution in fig. 32. We see that at high
temperature Y → Yeq, while at low temperature the equibrilibrium abundance becomes exponentially
suppressed as the particles becomes non-relativistic, Y ∝ e−x. At some point, the χ particles become
so rare that they are unable to find each other to annihilate and maintain the equilibrium abundance:
this is the freeze-out. It is practical to perform the development of 〈σv〉 as

〈σv〉 = a+ bv2 +O(v4), (3.3.20)

where a and b are independent of v and represent the so-called s- and p-wave annihilation channels.
Assuming that the s-wave channel dominates the annihilations, we can deduce the comoving density
today

Yχ,0 '
xf
λ
, (3.3.21)
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Figure 32: Evolution comoving abundance of DM particles as an illustration of the freeze-out mechanism.
Adapted from J. Feng website http://www.ps.uci.edu/˜jlf.

where xf = mχ/Tf is the freeze-out time and Tf is the freeze-out temperature. By computing H(xf ) =

Γ(xf ), or thanks to numerical resolution, it is possible to get xf ∼ O(10) and typically xf ∝ ln(〈σv〉).
Due to the dependence in λ, the higher 〈σv〉, the later the freeze-out. Hence, the abundance today
is smaller in models with more efficient annihilations: it is referred to as the survival of the weakest.
Let’s now relate the freeze-out abundance to the DM density today:

Ωcdm ≡
ρcdm,0

ρcrit,0
=

Mχnχ,0
3M2

plH
2
0

=
MχYχ,0s0

3M2
plH

2
0

. (3.3.22)

If we now plug Yχ,0 = xf/λ and s0 ≡ s(T0) given by eq. (1.3.24), we can write ωcdm ≡ Ωcdmh
2 as

ωcdm ' 0.12× 3× 10−26cm3s−1

〈σv〉 . (3.3.23)

One can therefore get the good DM relic density for 〈σv〉 ∼ 3×10−26cm3s−1 which is typical for weakly
interacting particles with masses of the order of the electroweak scale and has therefore become a
benchmark value. The fact that a thermal relic with such a cross section gives the right DM abundance
is called the WIMP miracle, where WIMP stands for Weakly Interactive Massive Particle.

3.4 Models predicting massive relics

Cosmology requires at least one new neutral stable particle, produced with the correct density and
non-relativistic enough to initiate the formation of large scale structures. We have seen that the
vanilla thermal production mechanism is associated with a WIMP particle. However, are there models
predicting such particles? Indeed, there are many, and a large part of this thesis is devoted to finding
some phenomenological consequences of them. However, in many extensions of the SMPP, there are
other relics either unstable to processes injecting electromagnetic energy, or decaying into SM invisible
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products. In fact, Cosmology has the potential to shed lights on those decaying relics as well, and we
therefore shall not restrict ourself to the study of relics being DM candidates.
In the following, without entering mathematical details, we shall introduce broad lines of such models.

3.4.1 WIMP Dark Matter candidates

We first review some models proposed to solve issues of the SMPP, that gives a viable WIMP candidate
whose main channel of detection is through potential annihilations into SM, as we have discussed in
sec. 3.3.3.

3.4.1.1 Supersymmetric candidates

SUSY is a tentative to extend the Poincaré algebra, generating the group of the isometries of Minkowski’s
space-time, which includes translations and Lorentz transformations. The famous Coleman-Mandula
theorem forbids any non-trivial extension of the Poincaré algebra. However, it is possible to extend
it into a superalgebra, i.e. by adding new generators which anticommute. These operators change a
boson into a fermion and vice-versa.
In the Minimal SuperSymmetric Model (MSSM), only one super partner is introduced and the minimal
amount of extra symmetry is assumed. Each SM particle is grouped within chiral or vector supermul-
tiplets with their supersymmetric partner, to which they differ by half a spin unit. To gauge bosons are
associated new Majorana fermions called gauginos ( the bino, the winos and the gluinos), and to SM
fermions new scalar bosons called sfermions (selectron, smuon, stau, sneutrinos, squarks). Contrarily
to the SM, a minimal Higgs sector consistent with SUSY requires two Higgs doublets, e.g. to avoid
anomalies; their partners are called higgsinos. However, SUSY predicts that partners should have the
same mass as the SM particles. Those have not been observed and thus SUSY must be broken at a
scale higher than the EW scale. Therefore, mixing of particles can happen between neutral higgsinos
and gauginos, those are called neutralinos χ0 , as well as among charged ones, called charginos χ±. The
precise phenomenology of SUSY depends on the symmetry breaking mechanism, hence it is difficult
to draw general conclusions.
An important point is that SUSY implies fast decay of protons because lepton and baryon number
are not conserved anymore. This issue is solved by means of the new R-parity conservation law, which
states that the number R = (−1)3B+3L−2s is conserved, with B the baryon number, L the lepton
number and s the spin. Each SM particle has R = +1 while their superpartners have R = −1, which
in turn stabilizes the proton. For the same reason SUSY particles can only annihilate and be created
in pairs, while the lightest SUSY particle (LSP) is automatically stable. The key point is that if the
LSP is a neutralino, it is a suitable WIMP dark matter candidates as it is stable, neutral and ranges
in the EW scale, while its annihilations into SM particles produce a signal that we can look for in the
context of indirect detection with Cosmology. More details on SUSY can be found in Ref. [417].

3.4.1.2 Extra-dimensions

Models of extra-dimensions are based on the seminal idea of T. Kaluza [352] to unify electromagnetism
and gravity, extended to include quantum aspects by O. Klein [372]. Kaluza postulates the existence
of a fourth compactified space dimension. This idea has been generalized to a arbitrary number of
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dimension n, each of them having an arbitrary size Ri. By Gauss theorem, we can relate the effective
4D Planck mass to the n dimensional Planck mass Mn as

M2
p =

(
c

~

)n
VnM

n+2
n (3.4.1)

with Vn the volume of the extra space. Depending on the value of Vn, one can get M2
p to be as low as

the TeV scale and thus solve the hierarchy problem.
In the ADD models (Arkani-Hamed, Dimopoulos, Dvali) [61], the particles of the SM are bound to a 3-
dimensional submanifold (the SM brane), while gravity can propagate in the whole higher dimensional
spacetime (the bulk). The volume of the extra space is Vn = (2π)n

∏n
i=1Ri with Ri sufficiently large

to solve the Hierarchy problem. Since the gravitational potential falls off faster at small distances,
short scale tests of gravity constrain n to be greater than 2. From the compactification of the extra
dimension, the momentum of the graviton in the extra dimension is quantized, and appears in the
brane as a mass term. These states are called Kaluza-Klein excitations and the exact mass hierarchy
KK-tower. Often however, the SM couplings are so low that those models are difficult to observe in
the context of indirect detection.
An alternative to ADD are Universal Extra Dimension models (UED) [50], which contains both large
and small compactified dimensions. In that case, all particles can propagate in the whole higher
dimensional spacetime, therefore generating KK-excitations for all SM particles. In both cases the
phenomenology depends strongly on the assumed boundary conditions. However, because of these
KK-towers for SM particles, EW precision tests might be spoiled. A Kaluza-Klein parity (which can
appear naturally from geometrical effect in some theory) can be introduced to suppress the effect of
some excitations onto the SM particles. The side effect is to make the lightest excited particle (LKP)
stable, neutral, with mass in the EW range, making it a perfect DM candidate.

3.4.2 Decaying massive relics

We extend the previous discussion to the case of unstable massive relics, not necessarily being long-
lived, in which case they can represent only a fraction of the total DM in our Universe.

3.4.2.1 Sterile neutrinos

As mentioned already in sec. 3.2.2, Majorana RH sterile neutrinos are decaying massive relics. Actu-
ally, below the MeV scale, they lifetime is typically long enough for them to be a priori viable DM
candidates, while at higher masses they can decay during the history of the Universe, leaving potential
traces of their existence in CMB and BBN datasets. Although the main decay channel is through neu-
trinos, a decay into a neutrino and a photon with a branching ratio at the % level is always possible,
and above the MeV mass a decay into electrons with larger branching ratio opens up. We look for
these signals in chapter 6.
However, e.m. channels are not necessarily always open. In chapter 4, we consider the case in which
the decay products consist either of non-standard particles, or of standard model neutrinos produced
with typical momenta much larger than their mass. A notable case of such a DM candidate is rep-
resented by the majoron J with mass mJ in the keV range, a pseudo-goldstone boson associated to
the breaking of the global lepton number symmetry, acquiring a small mass plausibly due to quantum
gravity effects, whose cosmological interest in a modern context has been revisited in Ref. [385] and
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references therein. It is an example of DM models linked to sterile neutrino, whose leading decay
channel is in two relativistic neutrinos. The majoron lifetime is then inversely proportional to the
square of standard active neutrino masses mν and to the lepton number breaking scale v. Bounds on
τJ can be used to constrain the value of v as a function of the standard neutrino mass scale.

3.4.2.2 Primordial Black Holes

Black holes in a wide range of masses could have formed in the early universe due to the collapse of
O(1) primordial inhomogeneities [146], [147], [296], usually associated to either extended inflationary
models (such as hybrid inflation [131], [192], [263], [411], curvaton scenarios [363], [375], single-field
and multi-field models in various frameworks [219], [236], [262], [264], [269], [355], [365], [436]), or to
first and second-order phase transitions [348], [517]. PBH with masses M ≤ 10−17M� evaporate into
standard model particles with a blackbody spectrum (the so-called Hawking radiation [298], [299]),
leading to energetic particle injection which can be looked for in cosmic rays [82], γ rays [145] or
CMB analysis (as we have develop). The intermediate mass range up to stellar masses is covered by
a number of lensing constraints. From low to high masses, we mention femtolensing in gamma-ray
bursts [80], microlensing in high-cadence observations of M31 [451] and of the Magellanic clouds [33],
[463], [580]. The latter are however still controversial (e.g. Ref. [284], [300]), depending on the PBH
clustering properties [192]; some results even point at a possible detection of anomalous microlensing
events [33], [463]. Additional constraints from neutron stars and white dwarfs in globular clusters
also exist in this range [140], [141], but depend on astrophysical assumptions. Stellar mass or heavier
PBH are constrained by dynamical properties of ultra-faint dwarf galaxies [126], [283], [379], [404], by
halo wide binaries [433], by X-ray or radio emission [257], [337], as well as by the cosmic microwave
background (CMB) bounds discussed in the following5. Indeed, due to their gravitational attraction
on the surrounding medium, such massive objects accrete matter, which heats up, gets eventually
ionized and emits high-energy radiation. In turn, these energetic photons can alter the ionization and
thermal history of the universe, affecting the statistical properties of CMB anisotropies.
However, in the case where such processes are negligible, our study in chapter 4 can be useful. Indeed,

when PBH are experiencing a merging event, a non-negligible fraction of the PBH mass converts into
gravitational waves, a form of dark radiation subject to the constraint discussed in this thesis. Hence,
the time evolution of the initial mass function due to merging events can be strongly constrained by
purely gravitational CMB bounds: in each merger with comparable BH masses, a few percent of their
mass is converted into gravitational waves, i.e. “dark” radiation, a phenomenon that cannot involve
more than a small fraction of the DM, due to alterations to the Sachs-Wolfe effect. Essentially no
more than one merger per PBH on average is allowed between recombination and now, as we discuss
in chapter 4.

3.4.2.3 Other models

Although we do not explicitly discuss them, the results of our studies apply to many more models. For
instance, decaying massive particles can be the progenitors of the DM in ‘superWIMP’ models [240],
or the DM itself can be unstable, provided its lifetime is much longer than the lifetime of the universe,

5 Further constraints exist, e.g. based on the emitted gravitational wave background [184], [193], [440], [529] or non-
gaussianities in the primordial fluctuations [576], [602], which—while often quite stringent—are model dependent.
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as in R-parity breaking SUSY models (see e.g. [120]). Our considerations also apply to an excited
DM component [245], injecting energy when the metastable state de-excites. Other candidates also
includes unstable supersymmetric particles such as gravitinos (e.g. [137], [524]). Many of these models
typically lead to photons and leptons among their final states, with peculiar time evolution depending
on the model considered.
However, in some scenarios, decay products might not always be electromagnetically charged. For
instance, invisible daughters can be produced if the LSP and the next-to-lightest particle (NLSP)
are respectively gravitinos and right-handed sneutrinos (see e.g. [41]), or in the presence of multiple
sneutrino states (for a recent example see [77]). Moreover, in scenarios incorporating the Peccei-Quinn
mechanism [470], [471] to solve the strong CP problem, the axion [588], [593] can play the role of an
invisible radiation produced by the decay of its supersymmetric partner the axino or by gravitinos
(see for instance [183] for an early proposal in this sense, or [75] for a modern review).

3.4.3 A word on detection strategies

Several strategies have been developed over the years to detect non-gravitational signatures of DM.
In the context of WIMP particles, the thermal production mechanism requires a four-particle weak-
like interaction between the DM and the SMPP. This gives rise to several avenues for DM searches,
illustrated in fig. 33. This short recap is based on Refs. [187], [384].

Figure 33: A schematic diagram of the four-point interaction between DM particles and the SMPP, and the
link with the various search strategies.

3.4.3.1 Indirect Detection

The first strategy, which is of utmost interest in this work, is to look for the products of relic anni-
hilations (or even possible decays) all along the history of the Universe. In the particle astrophysics
context, DM annihilations within the halo which surrounds our Galaxy can contribute to the fluxes of
Cosmic Rays measure on Earth. Cosmic Rays (CR), whose discovery dates from the beginning of the
20th century, are charged particles composed at 99% by nuclei (typically 90% of which are protons)
and 1% of electrons. The origin of these CR is still debated, but it is commonly accepted that there
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should be both a Galactic and an extra Galactic component. The first component, which corresponds
to energy below roughly 1015 eV, could be produced by supernovae, while the main source of high-
energy extra Galactic CR is attributed to active galactic nuclei. A very tiny fraction of Galactic CR
is also made of antiparticles, whose origin is even more mysterious, part of which could be due to
DM annihilations. It is believed that antiparticles are mainly of secondary origin, i.e. produced by the
spallation onto hydrogen and helium nuclei of primary particles coming directly from the source. The
key point is that, once primary fluxes and hydrogen/helium abundances in the galaxy are known, one
can predict the (relatively small) background of secondary antiparticles.
The main difficulty with this strategy arises from the so-called propagation of CR within the galaxy:
our Galaxy is embedded within a magnetic halo which imprints (what is believed to be) a random
walk to charged particles. Many more processes can affect the initial distribution of CR (depending on
the CR type and energy), including energy losses, diffusive re-acceleration (due to the motion of the
magnetic diffusion centers), destruction and decay processes, and the interaction with the magnetic
field of the Sun (an effect known as solar modulation) and the Earth. All this complicated physics,
modelled with a semi-empirical diffusion equation which depends on a certain number of parameters,
makes it in practice more complicated to have an accurate prediction. The usual strategy is to use the
fluxes of pure secondary particles (historically the Boron flux of the Boron-to-Carbon ratio, its main
progenitor, as well as ratios of unstable-over-stable nuclei) to fix the propagation parameters, predict
the antiparticle fluxes (typically positrons, antiprotons and anti-deuterons) and look for deviation
from these predictions within measurements.
Recently, it has been realized that particles that were thought to be pure secondaries in the histor-
ical paradigm might in fact receive primary contributions, whose normalisation is unknown. This is
for instance the case of positrons. If positrons were pure secondaries, the so-called positron fraction,
i.e. the quantity e+/(e+ + e−) is predicted to be a decreasing function of energy. Since the Pamela
experiment [24] (which confirmed the first hints of the HEAT [83] and AMS-01 [29] experiments), it
is clear that the positron fraction rises above a few GeV. The latest measurement by the AMS-02
experiment, which yielded the most precise measurement of the positron fraction [30], did not change
the picture. This motivated a high activity of theoretical research, part of which attributes this excess
to possible DM annihilations within our Galactic halo (e.g. [62] for a review of possible models). The
main difficulty with such explication is that the best fit (restricting the data to the excess above 10
GeV) is for a TeV candidate annihilating preferably to leptons (to avoid antiprotons constraints) with
a cross-section of order ∼ 10−23cm2/s (see e.g. [118], [119] for recent work). This is not only 3 orders
of magnitude above the benchmark cross-section, thus requiring some peculiar boosting mechanism,
but also excluded by the most recent CMB searches [19], [552]. Note that a decaying DM particle
has also been suggested as a possible explanation to the excess, with lifetime of order 1026 − 1027

and main decay channel to leptons (e.g. [334]). Those are as well in tension with CMB data, as we
shall see in chapter 6. Alternatives to the DM explanations are numerous, the most common one
being probably the Pulsar scenario [313], in which high energy electrons and positrons are produced
within the Pulsar Wind Nebula due to the presence of very high magnetic and electric fields. One or
several pulsars could participate in giving the measured flux (e.g. [119]), and it will be very difficult
to disentangle between this explanation and the DM one. It is however very likely that most of the
rise comes from pulsars given current constraints on the DM scenario.
Other “golden” channels include antiprotons and anti-deuterons (with the GAPS experiment soon to
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come6) but no clear detection has yet been made, allowing us to derive strong constraints on the DM
annihilation cross-section and lifetime (e.g [271]). However, the recent literature is made of interesting
positive signal [200] after the exquisite measurement of the antiproton flux and antiproton-to-proton
ratio by AMS-02 [31].
Finally, we mention the possibility of looking within neutral particle fluxes as well (γ−rays, neutrinos),
which have the advantage of propagating in straight lines (or rather geodesics). The γ−ray signal from
DM is usually decomposed into a prompt component, produced directly by DM annihilations them-
selves, and a secondary component due to the ICS, bremsstrahlung and synchrotron radiation of the
daughter particles. Line searches, which enter the first category, are motivated by the possibility of di-
rect annihilations through a loop into two photons (or one photon plus a massive particle, like a Z or a
Higgs), which would produce a line at the DM mass, or due to internal bremsstrahlung which produces
a sharp feature. Depending on the energy range, a line feature is believed to be a smoking-gun signa-
ture of DM. The only known astrophysical mechanisms that could mimic such signals are atomic lines,
expected to be emitted up to X-rays, and nuclear lines up to the MeV range. Numerous detections of
such unexpected lines have been claimed in the literature, including the 130 GeV [127], [568], [591] and
511 keV line at the Galactic center (e.g. [549]) and more recently, the so-called 3.5 keV line [122], [350]
in galaxy clusters. However, none of them could be attributed unambiguously to DM annihilations
or decays. The secondary component and the decay of unstable daughter particles which composes
the primary component lead to a continuous emission spectrum. The most investigated targets are
(i) regions with high DM densities and/or (ii) regions where the signal from astrophysical origins is
(believed to be) small and therefore the signal/noise ratio is enhanced. Example of such targets are: the
Galactic center (i), which has already given a plethora of unexpected signals, including the recent GeV
excess (e.g. [138]), and is known to be holding a potentially large number of unresolved sources like
millisecond pulsars (e.g. [387]); satellite galaxies of the Milky Way (i)+(ii), mostly of the spheroidal
dwarf galaxy type, expected to be DM-dominated (e.g. [13] for recent analysis); the Galactic halo (ii),
where searches for prompt emission and secondary component of DM annihilations and decays are
undertaken [11]. Of interest for us, we can also mention the isotropic γ−ray background (ii), which
is the residual in the extragalactic γ−ray background after subtracting resolved extragalactic sources
[14].
Neutrinos are also promising probes for looking at DM annihilations/decays. They are produced in
the same cascade processes as the one producing other particles, have the advantage of propagating in
straight line, but interact only very weakly with matter, which makes them difficult to detect. Nowa-
days, neutrinos are observed in very large underground (or under-ice/water) telescope thanks to the
Cherenkov light that they emit when interacting with the material inside the detector or in its sur-
rounding environment. The main background for these searches comes from atmospheric muons, such
that experiments use the whole Earth width as a shield and focus on neutrinos that have traversed
the Earth before interacting in the detector. Detectors have similar targets as for γ−ray searches, but
also look at possible annihilations of DM within the center of the Sun (or even the Earth), where
WIMP particles might have been gravitationally captured. Detection of high-energy neutrinos from
the Sun, on top of the MeV scale neutrinos from nuclear reactions, would constitute a “smoking gun”
for DM detection, as no known nuclear/astrophysical processes could produce them. No detection of
such neutrinos has yet been reported, but the IceCube [3], SuperKamiokande [182] and Antares [23]
collaborations produced stringent constraints on the DM annihilation cross-section and lifetime. Let

6 http://gamma0.astro.ucla.edu/gaps/
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us also mention that the discovery of PeV-energy neutrinos by IceCube [2] opens the possibility of
testing very heavy DM scenarios, as a decaying PeV DM could explain such events [439].
A summary plots of recent constraints, mostly for illustration and to get ideas on the relative power

of each probe, is shown in fig. 34. Typically, for the channels and masses considered, antiproton and
γ−ray searches yield the strongest constraints. This picture would change for annihilations into γ-rays
and e± (depending on the mass, CMB bounds can be the strongest), or into neutrinos (IceCuce and
Antares would be the most sensitive detectors).

Figure 34: Illustrative summary plot of the current upper limits on the DM annihilation cross-section vs DM
mass for different channels using the various probes discussed in the text. Although most of the
bounds correspond to “official” ones (i.e. produced by the collaboration), some limits have been
rescaled to account for the different assumptions (e.g. on the DM profile). Conservative limits have
been chosen when several were available. Figure taken from [187], where the reader is referred for
more details.

3.4.3.2 Direct detection

Another search strategy extensively followed by the community is the possibility of looking for the
recoil of a nucleus (eventually an electron) hit by a DM particle within ultra-clean and ultra-sensitive
direct detection experiments. Given the very low interaction cross-section of DM with standard matter,
such events are extremely rare and the experiments have to be shielded as much as possible from cosmic
rays, which correspond to the primary foreground for these searches. The strategy is therefore to locate
these detectors in deep underground caverns, or deep under the Antarctic ice and to look for events
virtually above zero background. However, instead of measuring the absolute number of events, it is
also possible to look for the so-called annual modulation of the signal. Indeed, due to the rotation
of the Galactic disk, itself embedded in an essentially non-rotating halo of DM particles, the solar
system experiences an effective “wind” of WIMP particles. This in turn leads to an annual modulation
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of the signal depending on the orientation of the Earth motion with respect to the WIMP wind. For
standard assumptions, the maximum of the modulation happens at the beginning of June, while the
minimum is predicted to be at the beginning of December. Numerous positive detections (both from
the annual modulation and the absolute signal) have been reported over the years, none of them
having been confirmed, and the current consensus is that there are stringent limits on a possible
nucleus-DM interaction above 10 GeV masses. There is an irreducible background to these searches
due to interaction of the detector with neutrinos coming from the Sun, the atmosphere, as well as the
diffuse supernova neutrino background. A possibility advocated to go beyond this neutrino floor is to
exploit the variation of the direction of the signal, which has a very peculiar signature because of the
WIMP wind, but such experiments are still under development. We refer to Refs. [201], [253], [420]
for more details on current and future direct detection experiments.

3.4.3.3 Searches at collider

Finally, we mention the possibility to produce DM particles at colliders, if such interaction is allowed.
However, because of their very low interaction with matter, DM particles are not seen in the standard
detectors. Rather, they are expected to be detected in the form of missing (transverse) energy or
momentum, when produced along with initial or final state radiation in the form of SM particles. The
main difficulties lie in the correct reconstruction of the particles belonging to a given event (which can
be a single photon, or a jet of particles) and on the presence of a standard “invisible” background in the
form of neutrinos. Alternatively, within specific theoretical scenarios (e.g. neutralino DM candidates
in constrained MSSM) model-dependent searches can be performed, where constraints on the lack of
signatures of observable particles (e.g. gluino, squarks...) can be linked to DM-relevant quantities via
theoretical relations among the parameters. No detection has yet been reported, and such searches
produce the strongest constraints at energies below the reach of direct detection (for a review see
Refs. [65], [277]). Both strategies are therefore extremely complementary.

3.5 Electromagnetic cascade: an overview

It is well known that electrons and photons injected by some sources in the cosmological plasma can
modify key observables of the Cosmological model, such as BBN and the CMB. However, because of
the huge number of photons per baryon, an injected photon or electron will not directly interact with
baryons. Rather, it will initiate an electromagnetic cascade (e.m. cascade) by interacting with thermal
photons, that will lead to the establishment of a non-thermal distributions of photons and electrons
able to interact with baryons. The term e.m. cascade refers to the evolution of γ, e± particle numbers
and energy distribution following the injection of a energetic γ or e in a medium filled with radiation,
magnetic fields and matter. It is one of the physical processes most frequently encountered in particle
astrophysics, in various domains from high-energy gamma-ray astrophysics to ultra-high-energy cos-
mic ray propagation, including the physics of the early universe which concerns us.
However, there are key differences between the e.m. cascade in the BBN context and the CMB ones,
linked to the different epochs at which they take place. Indeed, e.m. reaction rates will always be
much bigger than the Hubble rate when modifications to BBN yields are important (i.e. roughly be-
fore decoupling). This leads to a major simplification of the problem at hand, since one can neglect
the Universe expansion and derive an accurate solution in the quasi-static approximation. On the
other hand, this approximation is poor when computing modifications to CMB anisotropies as cooling
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reaction rates can be smaller than the expansion rate. More involved numerical codes are then needed,
often based on Monte Carlo resolution. This fact is illustrated in fig. 35 - right panel with a compar-
ison of the total photon cooling time to the Hubble time, including all relevant processes (introduce
hereafter).
We review now the broad line of the development of the cascade, describing the usual approximations
that are made depending on the probe one is interested at, and present the main analytical and
numerical results that we have used for our studies.

Figure 35: Left panel: A comparison of the photon cooling time to the Hubble time at z = 1000, for different
photon energies. Right panel: A comparison of the photon cooling time (from all processes) to the
Hubble time over the entire redshift range of interest. Both plots assume a He mass fraction of
1/4, with a density of 2.57 × 107 amu/cm3 today and a standard reionization history. Taken from
Ref. [554].

3.5.1 Electromagnetic cascade at high redshift (z � 1000)

We start by discussing a case in which the Universe expansion term is negligible compared to reaction
rates. This regime is valid for instance well before decoupling, corresponding to the context of non-
thermal BBN. Once a source has injected photons and electrons in a thermal bath, they can experience
a bunch of reactions which will modify the shape of the non-thermal distributions fγ and fe. The
most important processes entering the development of the e.m. cascade, ordered by their relative
contributions, are

∂fγ(Eγ)

∂t
=

∂fγ(Eγ)

∂t

∣∣∣∣
S

+
∂fγ(Eγ)

∂t

∣∣∣∣
γγ→e+e−

+
∂fγ(Eγ)

∂t

∣∣∣∣
e−γ→e−γ

(3.5.1)

+
∂fγ(Eγ)

∂t

∣∣∣∣
γe−→γe−

∂fγ(Eγ)

∂t

∣∣∣∣
γγ→γγ

+
∂fγ(Eγ)

∂t

∣∣∣∣
γN→e+e−N

+
∂fγ(Eγ)

∂t

∣∣∣∣
exp.

∂fe(Ee)

∂t
=

∂fe(Ee)

∂t

∣∣∣∣
S

+
∂fe(Ee)

∂t

∣∣∣∣
γγ→e+e−

+
∂fe(Ee)

∂t

∣∣∣∣
e−γ→e−γ

(3.5.2)

+
∂fe(Ee)

∂t

∣∣∣∣
γe−→γe−

+
∂fe(Ee)

∂t

∣∣∣∣
γN→e+e−N

+
∂fe(Ee)

∂t

∣∣∣∣
exp.

.



130 massive relics in the universe

First of all, following the e.m. energy injection, a chain of pair production reactions takes place onto
CMB photons followed by inverse Compton scattering (ICS) (if only electrons are injected, the cascade
starts by an initial ICS event). Pair production has a threshold, and the spectrum will exhibit a sharp
cutoff above

εc = m2
e/ε

max
γ , (3.5.3)

where εmax
γ denotes the highest energy of the photon background onto which pairs can be effectively

created. Indeed, all photons with energy higher than εc create a pair and therefore do not escape from
the source.
The cascade starts at high-energy, where one of the particles (alternatively a photon and an electron)
carries most of the incoming energy [437]. Once it reaches low energies, e± produced in pairs have the
same energy Eγ/2, while the average energy loss fraction in an ICS event is [279]

f =
∆Ee
Ee
' 4

3

Ee
εc

(3.5.4)

where Ee is the incoming electron energy. Eventually, the energy of the outgoing γ-ray falls below the
lowest possible energy for initiating a pair production. We thus expect the cascade to exhibit a tran-
sition at that energy εX . This transition corresponds to the energy of a outgoing photon experiencing
a ICS event by a pair-produced e± at the lowest energy εc/2:

εX = fEe =
4

3

E2
e

εc
=
εc
3
. (3.5.5)

Above the transition energy the cascade is in a regime of “energy conservation” such thatEdN(E)/dE =

const. On the other hand, below the threshold, the leading processes are γγ-scattering and ICS
which do not create new particles. It corresponds to a regime of “particle number conservation”
dN(E)/dE = const. Eventually, at very low energy γγ-scattering scales as E6

γ and thus Compton
scattering and pair-creation in nuclei start to play a role.
From previous considerations, one can readily show (e.g. Chapter VIII in [218]) that the cascade will
lead to a universal “meta-stable” photon spectrum —attained on timescales much shorter than the
thermodynamical equilibration scale— of the form:
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for εX ≤ Eγ ≤ εc ,

0 for E > εc .

(3.5.6)

Refs. [231], [362], [498] are numerical studies leading to further justification of these parameters. The
first two are based on Monte Carlo solutions while the last one works in the steady-state approximation
allowing to find an integral solution to the Boltzmann equation. We shall adopt this approximation,
well justified at high redshift, in chapter 5.
Once the non-thermal spectrum is computed, one can use it as an input for non-thermal BBN induced
by nuclei photodissociation. Let us just emphasize again the main assumption behind the standard
theory of e.m. cascade, namely that the injected energy is high enough for pair production. A key
point that has been missed in the context of MeV to GeV energy injection is that this condition is
not always fulfilled. Therefore, the standard result (3.5.6) is not always realised, in which case a new
resolution of the set of Boltzmann equation is required with pair production switched off. Non-thermal
BBN and this loophole to the standard theory of e.m. cascade are presented in chapter 5.
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3.5.2 Electromagnetic cascade close to and after recombination

The second application that interests us concerns the generation of CMB anisotropies following any
e.m. energy injection at redshift close to recombination and below. The problem at hand is now much
more involved for a couple of reasons :

• One needs to follow the development of the cascade until atomic level energies, i.e. eV scale, while
taking into account additional processes namely collisional heating, excitation and ionization for
electrons/positrons and photoionizations for photons. At the lowest energies, e± annihilations
must also be included.

• The Hubble rate is no longer much bigger than the total photon cooling rate (see fig. 35 - right
panel) and the steady state approximation is no longer valid.

To accomodate for these complications, authors of Ref. [554] (refined in Refs. [261], [551]) have tackled
the problem thanks to Monte Carlo simulations under a “factorization hypothesis” motivated by the
observation of Fig. 35 - left panel: atomic processes (ionization, excitation, cooling) dominate over
energy cooling processes at low energies, while they are irrelevant at high energies, where all the
dynamics is dictated by the e.m. cascade development that we have discussed previously. Hence, the
computation can be splitted in two parts.

• First, the high-energy cooling part, dealing with the redshifting due to Hubble expansion and
the fact that the energy is not necessarly absorbed “on-the-spot”, i.e. at the injection redshift.
Note that now pair production is (almost) always off and the dominant cooling process is CS on
electrons, whether free or bound. The outcome of the code is the fraction of the initial energy
“deposited” to the medium, where the word “deposited” refers to low-energy particles below a
given threshold (typically 3 keV, see Ref. [261] for a careful study of this threshold) which will
subsequently lead to CMB spectral distortions and ionization, excitation and heating of the
gas. The remaining energy corresponds to high-energy particles that can either free-stream until
today, or be deposited at a lower redshift.

• Once the spectrum of low energy particles is known, another code takes care of the repartition
between ionization, excitation and heating, which happens again at a rate much faster than the
Hubble expansion. Eventually, particles with energy below the Lyman-α transition (10.2 eV) are
considered lost and would contribute as spectral distortions of the CMB nowadays.

In practice, the high energy part is assumed to be independent of the ionization level xe, but is
highly redshift-dependent, while the low-energy part does not depend on the redshift but only on xe.
In fact, the low-energy code assumes that all initial particles are electrons at the threshold energy,
the functions fitted on the output of the code are therefore independent of the injected high energy
particles7. Anticipating a bit over our studies, we present the result of the low energy code from
Ref. [261] compared to the older “SSCK” (Shull, Van Steenberg, Chen, Kamionkowski [155], [547])
prescription for the energy repartitions function χ in fig. 36. In Ref [261], this had been found to
be rather accurate since the fraction of power deposited as ionization is relatively stable for ∼ 100
eV to 3 keV electrons. In this ref., it was shown that this approximation breaks down only for low

7 Photons between 10.2 eV and 3 keV do not behave like 3 keV electrons, but since O(keV) photons mostly photoionize
and then produce secondary electrons, this turns out not to be a too bad approximation [553].
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Figure 36: A comparison of the energy repartitions functions in the simple “SSCK” approximation and from
the numerical resolution of Ref. [261]. The excitation fraction in the former case is equal to the
ionization one and therefore it is not shown.

energy photons close to the Lyman-α transition, but such photons are produced in a relatively small
quantity by high-energy particles. However, a more careful computation in Refs. [552], [553] showed
that this factorization hypothesis could lead to wrong result for a specific energy range: at redshift
below decoupling, photons upscattered by mildly relativistic electrons (i.e. below MeV kinetic energy)
have too little energy to further interact with the gas. As a result, for such injected particles, the
amount of energy going into ionization, excitation or heating of the gas is suppressed, relative to
the case for 3 keV electrons, while lost photons are more numerous. In order to account for these
complications, two strategies were adopted in Refs. [552], [553]: first going for the full resolution,
dropping the factorization hypothesis, but assuming a fixed (standard) ionization history (ignoring
reionization at low redshift); or relying on the 3 keV prescription, but correcting the deposited fraction
to incorporate particles lost during the high energy cooling. This new scheme was dubbed “corrected
3 keV prescription” and those two approaches have been shown to yield similar results.
Another assumption that is still debated is whether neglecting the impact of the DM decay on the
free electron fraction for the purpose of computing the efficiency of the energy deposition is reliable.
Ref. [408], which extended the computation to include reionization, could test such hypothesis with
an iterative approach. Obviously, increasing the ionization level tends to transfer energy devoted to
ionization to heating. For CMB constraints, mostly dependent on the power going to ionization, the
hypothesis is rather safe. However, for observables related to the IGM temperature (e.g. 21 cm), such
an hypothesis could be poor, but this will require further (and harder) investigations. Note that, in
the context of this approximation, one could argue that besides its limitations, the second approach
(corrected 3 keV prescription) is more reliable in that it naturally incorporates the effect of a rising
free electron fraction through the xe-dependent low energy code (but not in the high-energy cooling
code).
Alternatively, the authors of Ref. [233] have developed the MEDEA2 code which does not make the
factorization hypothesis. Although very accurate in its low-energy part, the high-energy relies on
the assumption of local energy deposition (or on-the-spot approximation), which leads to strong
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overestimate of the deposited energy [554].
Analytical approach have also been introduced in Refs. [96], [189], [270], [445], which are unable to
follow secondary cascade particles and assume either interaction only through ICS [270], [445] or take
into account separately photoionization, ICS and Bethe-Heitler pair production [96], [189]. Those
approaches typically lead to an overestimate of the impact of the e.m. energy injection, as in practice
part of the energy is redshifted away or lost to sub-10.2 eV energy photons. More comments on these
approaches are given in chapter 7.
In our studies we rely on the result of Ref. [553] under the “corrected 3 keV prescription”, except when
specified otherwise.

3.6 CMB spectral distortions

CMB spectral distortions, namely the fact that the actual CMB energy spectrum can have slight
departure from a perfect blackbody, is a very important phenomenon that holds a wealth of information
about cosmology and particle physics in the late and early universe. The main difficulty with their
studies comes from the fact that the high accuracy measurement of the CMB blackbody spectrum
by COBE/FIRAS in the 90’s limits their amplitude to be smaller that one part in 105, i.e. those are
smaller than temperature anisotropies [246]. This short review is based on Refs. [164], [168], [226].

3.6.1 Basics of the thermalization problem

The question one in practice wants to answer is “what processes led to the creation of the CMB
spectrum that we observed today?” The first thing to say is that, if everything starts after reheating
from a perfect blackbody, the uniform adiabatic expansion of the Universe alone (assuming no collisions
and spatial perturbations) leaves the spectrum unchanged and simply shifts the temperature according
to the famous law T (z) = T0(1+z). However, as soon as energy is injected into/taken from the thermal
bath, a spectral distortion will momentarily be created, and the question is thus “was there enough
time/were the processes efficient enough to restore the blackbody spectrum?” Typically following an
energy injection (or removal) ∆ργ/ργ , in order to thermalize the distortions, the photon field needs
to rearrange its number density ∆Nγ/Nγ ∼ (3/4)∆ργ/ργ . Hence, photon changing number processes
are needed, the most important ones being double Compton scattering e±+ γ ↔ e±+ γ+ γ (DC) and
bremsstrahlung e± +X ↔ e± +X + γ where X can be any nucleus or a free e±. Those processes are
efficient mainly at low photon energies. Hence, energy transport is required from the low to high energy
part of the spectrum: this is achieved through Compton scattering, which we have already encountered
in the context of CMB anisotropies. While those processes are efficient, any energy injection will simply
result in changing the temperature of the blackbody, not creating any distortions. However those
processes are not efficient at all epochs. Below zµ ∼ few × 106, photon-number changing processes
turn off, and energy injections typically lead to the creation of a chemical potential µ. On the other
hand, Compton scattering becomes inefficient at redshift below z < 50000 and energy re-distribution
is not achieved, leading to the creation of a non-zero comptonization-y parameter. Because no spectral
distortion survives before z ∼ 107, we restrict the discussion to T < me, i.e. after e± annihilations,
when the thermal bath is simply composed of free e−, p and γ. One might argue that if instead
high energy photons are injected by some exotic processes, their energy will not fulfill this condition,
however high-energy cooling mechanism (typically CS and ICS) are very efficient and on a very short
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time scale bring those particles to energies to which our discussion applies.
We start by writing the Boltzmann equation for the background photons including the most important
processes [164], [168], [226], [323], [329]
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The collisional terms now include Compton scattering (in the non-relativistic limit T � me), double
Compton scattering and bremsstrahlung. Trading Eγ for xe = Eγ/Te, they are given by (see e.g. Refs
[164], [168], [226], [323], [329])
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e−xe ḡff(xe)

x3
e

[1− f(exe − 1)] , (3.6.3)

τ−1
ff = 2π

√
2π

3
neσTnB

α

T 3
e

√
me

Te
.

∂fγ(xe)

∂t

∣∣∣∣
e−γ→e−γγ

=
1

τ2γ

1

x3
e

[1− f(exe − 1)]I2γ , (3.6.4)

τ2γ =
3π

4ασTne

(
me

Te

)2

, I2γ =

∫
dx′e(x

′
e)

4f(x′e)[1 + f(x′e)] .

(3.6.5)

The first equation is the well known Kompaneets equation, and at equilibrium if other processes are
irrelevant its solution is the Bose-Einstein distribution fBE = 1/(exe+µ − 1). One can check that it
verifies photon number conservation since
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The second equation describing bremsstrahlung includes a Gaunt factor ḡff (xe) related to the range
of possible impact parameters in an event, whose value is typically [360]
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for xe ≤ 0.37 ,
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(3.6.7)

The last equation represents double Compton scattering in the soft photon limit (xe < 1 implies no
recoil and a soft emitted photon). Actually, it is possible to go beyond the soft photon limit (i.e. for
an arbitrary energy of the emitted photon) analytically by introducing the double Compton Gould
factor gdc, which would modify the form of I2γ (e.g. Ref [164]).
The characteristic timescales for the processes are (almost) given by τK , τff and τ2γ . In fact, because
of the additional frequency dependence in the equations, one expects that a process will freeze-out at
different time for different frequencies, and typically the very low energy part of the spectrum tends
to stay in full equilibrium longer. A comparison of these times with Hubble expansion shows that
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DC is the dominant process above zµ ∼ 1.98 × 106(Ωbh
2/0.022)−2/5[(1 − Yp/2)/0.88]−2/5, because it

holds a high temperature dependence. Below this redshift both DC and bremsstrahlung are typically
inefficient while comptonization still works. Because of the e−xe term in the DC equation, its efficiency
is exponentially suppressed in the Wien tail of the distribution, and comptonization, i.e. doppler
boosting of the photons due to scattering by electrons, is necessary to achieve thermalization. Below
zµ, in the so-called µ-era, DC and bremsstrahlung become inefficient and a µ distortion can be created
as we work out in the next section.
However, before that, we should mention that comptonization can become inefficient as well. By
computing the rate of change of the photon energy density due to Compton scattering dργ/dt ∝∫
x2df/dt|CSdx one finds,

dργ
dt

=
4

tK
ργ

[
1− Teq

Te

]
with Teq =

h

4k

∫
dνf(1 + f)ν4

∫
dνν3f

(3.6.8)

which means that when tK/4 becomes longer than the Hubble time, comptonization effectively turns
off, further scattering will happen as a pure elastic event. This transition happens below zK ∼ 5×104,
and the regime of spectral distortions therefore changes, entering in the so-called y-era.

3.6.2 Usual analytical estimates: the µ and y parameters

We now restrict the discussion to z < zµ, where only Compton scattering is relevant. As long as
z > zK , we know that a Bose-Einstein distribution is established rapidly at some temperature Te and
with chemical potential µ. The question we ask is, given an energy injection with δργ and δnγ , can
we compute the temperature and the chemical potential of the distribution? For small µ� 1, we may
compute ρ and n and expand them around the Planck distribution in the following way

ργ ≈ T 4
e

π2

∫
x3
edxe

exe − 1

!
= ρbb

γ + δργ =
π2

15
T 4
γ (1 + ε) , (3.6.9)

nγ ≈ T 3
e

π2

∫
x2
edxe

exe+µ − 1

!
= nbb

γ + δnγ =
2ζ(3)

π2
T 3
γ (1 + α) , (3.6.10)

where the quantity ε ≡ δργ/ρbb
γ and α ≡ δnγ/nbb

γ have been introduced. On the other hand, one can
expand the integrals as

ργ =
T 4
e

π2

∫
x3
edxe

exe+µ − 1
=
T 4
e

π2

[ ∫
x3
edxe

exe+µ − 1
− 3µ

∫
x2
edxe

exe − 1

]
=
T 4
e

π2

[
π4

15
− 6ζ(3)µ

]
(3.6.11)

nγ =
T 3
e

π2

∫
x2
edxe

exe+µ − 1
=
T 3
e

π2

[ ∫
x2
edxe

exe − 1
− 2µ

∫
xedxe
exe − 1

]
=
T 3
e

π2

[
2ζ(3)− µπ

2

3

]
. (3.6.12)

It is possible to invert the equations to isolate µ and δ = Te/Tγ − 1

δ ' 0.64
δργ
ρbb
γ

− 0.52
δnγ
nbb
γ

, µ ' 1.4

(
δργ
ρbb
γ

− 4

3

δnγ
nbb
γ

)
. (3.6.13)

In the absence of photon number changing processes, then δnγ = 0, which leads to the standard
estimate [571]

µ ' 1.4
δργ
ρbbγ

. (3.6.14)
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We can also compute what the distortions look like in frequency space at the level of the distribution
itself, i.e. δf ≈ fbb − fBE. A small complication comes from the fact fBE depends both on Te and
µ. In order to isolate the spectral shape of the “pure” µ component M(x), one needs to use the fact
that Compton scattering conserves the photon number

∫
x2M(x)dx = 0 and to normalise the relative

change of the photon energy density to unity (δρµ/ρbb = 1). This yields

M(x) ≈ 1.4
ex

(ex − 1)2

[
0.4561x− 1

]
. (3.6.15)

We now focus on the opposite limit at z < zK . We first write the Kompaneets equation as a function
of x ≡ Eγ/Tγ = (Te/Tγ)xe and switch for a new pseudo-time variable, the optical depth τ = cσTnedt

∂fγ(xe)

∂τ

∣∣∣∣
γe−→γe−

=
Te
x2me

∂

∂x

[
x4

(
∂

∂x
f +

Tγ
Te
f(1 + f)

)]
. (3.6.16)

Let us start with a blackbody distribution at τ = 0 and consider the distortion after a very short
pseudo-time δτ � 1

δf ≈ δτ × Te
x2me

∂

∂x

[
x4

(
∂fbb

∂x
+
Tγ
Te
fbb(1 + fbb)

)]
(3.6.17)

Since ∂xfbb = −fbb(1 + fbb) we can rewrite

δf ≈ δτ(Tγ − Te)
x2

∂

∂x
x4fbb(1 + fbb)

⇔ δf ≈ δτ
(Tγ − Te)

me

[
4xfbb(1 + fbb)− x2fbb(1 + fbb)(1 + 2fbb)

]

≡ δτ
(Te − Tγ)

me
YSZ(x) , (3.6.18)

where we have introduced the Compton-y distortion YSZ(x) (originally discussed in Ref. [606]) which
can be explicitly computed thanks to the useful relations fbb(1+fbb) = ex/(ex−1)2 and (1+2fbb) =

coth(x/2)

YSZ(x) = x
ex

(ex − 1)2

[
x coth(x/2)− 4

]
. (3.6.19)

The important time scale of the problem is determined by the Compton-y parameter

y =

∫ τ

0

(Te − Tγ)

me
dτ ′ =

∫ t

0

(Te − Tγ)

me
σTnedt

′ . (3.6.20)

Like the µ distortion, we can quickly relate the y parameter to any energy injection δργ by

δργ = y

∫
x3YSZ(x)dx = 4yρbb

γ (3.6.21)

while of course we still have δnγ ∝
∫
x2YSZ(x)dx = 0. We plot in fig. 37 the spectral shape of the

“pure” µ and y distortions compared to the blackbody spectrum. Of course in a real case, one would
observe a superpositions of those. The simple approximations that we have introduced can be refined
to take into account that i) the thermalization efficiency does not abruptly vanish at z ' zµ; ii) the
transition between the µ and y era at zK is not abrupt either. Fits calibrated to numerical solutions
yield [170]:

µ

1.401
=

[
∆ργ
ργ

]

µ

'
∫
JbbJµ

1

ργ

dE

dt

∣∣∣∣
e.m.

dt,
y

4
=

[
∆ργ
ργ

]

y

'
∫
JbbJy

1

ργ

dE

dt

∣∣∣∣
e.m.

dt . (3.6.22)
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Figure 37: Left panel: Comparison of the y and µ spectral distortions to the blackbody spectrum. The
spectra are normalized to the blackbody specific intensity I0(T ) = (2h/c2)(kT/h)3 ≈ 270 MJy
sr−1(T/2.725K)3. Adapted from Ref. [168]. Right panel: The corresponding visibility functions.

where the visibility functions are given by

Jbb(z) ≈ exp[−(z/zµ)5/2] , Jy(z) ≈
[
1 +

(
1 + z

6× 104

)2.58]−1

, Jµ(z) ≈ 1− Jy . (3.6.23)

and Jµ was chosen to ensure energy conservation. These equations can be trusted until the baryon
drag time, for z ≥ 200, but this is sufficient for our purpose. We show the visibility functions used in
this analysis in fig. 37, right panel.
One can go beyond these simple analytical considerations thanks to numerical solutions. In our analysis,
we neglect the fact that the exact transition era between y and µ is not simply a superposition of the
two spectral distortions. From principal component analysis (PCA) one can define eigenvectors of the
distortions, as done in Ref. [175]. The residual distortions created in µ-y transition era are usually
dubbed r-distortions and enable to probe the history of the energy injection [169], [175]. Finally, let
us mention the subtlety that the µ distortion as we defined it does not exactly correspond to an
eigenvector: There is a slight deviation below z ≤ few×105, which will be neglected in the following.
This is safe to derive constraints. However, if a signal is found, adopting the full Green’s / PCA
formulation would be needed [170], [175].

3.6.3 Some sources of spectral distortions

There are many potential sources of spectral distortions both from standard and exotic processes.
We shall simply give a list of the ones expected within ΛCDM (or very basic extensions) based on
Ref. [172], and discussed their potential discovery with the proposed next generation experiment for
spectral distortion PIXIE, which improves sensitivity on the µ and y parameters by about three orders
of magnitude [374].

• A major signal is expected from the reionization era. Once the Universe is reionized below
zre ∼ 10, a y-distortion is expected to be created by the up-scattering of photons by free-
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electrons. A simple estimate assuming a sharp reionization at zre and fixed electron temperature
Tre (in a purely matter-dominated universe) gives

y =
σT
Tren0

e

me(1 + zre + 1)2

∫ zre

0
dz
dt

dz
(1 + z)5

' 6.8× 10−8

(
ωb

0.022

)(
0.13

ωM

)1/2(1 + zre

11

)3/2( Tre

10 eV

)
. (3.6.24)

The COBE/Firas limit y < 10−5 translates into a bound on the reionization redshift

zre < 50

(
Tre

10 eV

)2/3

. (3.6.25)

• Moreover, in cluster of galaxies, one expects the temperature of the electron to be much higher,
typically T ∼few keV, while densities are enhanced with respect to the background Universe. This
leads to the so-called thermal Sunyaev-Zeldovich effect (tSZ), as originally studied in Ref. [572],
which can be used to map the galaxy clusters by CMB experiments such as Planck [18]. Moreover,
the motion of cluters induces in addition a kinetic contribution to the SZ effect (kSZ), which is
often several times smaller than the tSZ.
The signal actually depends on the cluster one looks at, but one can define an average over all
sky (or y monopole), in which case the total signal expected depends on the cluster distribution
or halo function dn/dM . Typically one expects to see a total distortion at the order of 〈y〉clust ∼
2 × 10−6, a guaranteed discovery with a PIXIE-like experiment [172], [303], but also constitutes
a major foreground for more exotic searches8. In our studies, we assume that this signal can be
disentangled, and we therefore neglect this contribution.

• As originally introduced by authors of Ref. [570], another exotic signal corresponds to the damp-
ing of small-scale density fluctuations set up by inflation. The approximate heating rate is given
by [176]

1

ργ

dE

dt
≈ 4A2∂zk

−2
D

∫ ∞

kmin

k4dk

2π2
Pζ(k)e

−2 k
2

k2
D , (3.6.26)

where Pζ defines the usual curvature power spectrum of scalar perturbations and kD is the
photon damping scales, both quantities beeing described in chapter 2. A is a heating efficiency,
which is equal to A2 ≈ 0.813 for adiabatic modes. The minimal scale k that contributes to the
integral is usually set at k ≈ 0.1Mpc−1 [169]. Within ΛCDM at its actual best-fit values this
signal lies between a µ and a y distortion (smaller scales damp earlier), and is right at the edge
of PIXIE’s sensitivity, µ ∼ 2×10−8 [172]. A null detection of µ could teach us about a significant
negative running of the spectral index [136].

• Because the temperature of baryonic matter decreases at a faster pace than radiation ((1 + z)2

instead of (1 + z)), one expects that the coupling of baryons to photons until the baryon drag
time leads to a negative µ and y distortion, since photons need to transfer their energy to heat
the baryons. The effective energy extraction term is given by [164]

1

ργ

dE

dt
≈ −3

2

nH(1 + fHe + xe)kTγ
ργ(1 + z)

. (3.6.27)

8 At these high temperatures small relativistic corrections become noticeable. These corrections as well are well detectable
by PIXIE [303] and allow to break the degeneracy between the electron density and temperature in the intracluster
medium.
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The difficulty is that it is a very weak signal, one order of magnitude below the damping one,
and unfortunately it partially compensates it [172].

• We have already mentioned in section 1.3.3.6 the cosmological recombination lines, which are
fingerprint of the recombination era, encoding very distinct spectral features of the recombination
processes. We refer to that section and ref. [173] for more details.

• Exotic decays and annihilations of course provide an important source of spectral distortions.
We compare current and future sensitivity on those models, together with other cosmological
probes, in chapter 5 and 6.





Part II

S IGNATURES OF DECAY AND ANNIH ILAT IONS OF MASS IVE
REL ICS IN COSMOLOGICAL OBSERVABLES

It has been known for a long time that Big Bang Nucleosynthesis and the Cosmic Mi-
crowave Background are very sensitive probes of physics beyond the Standard Model,
being sensitive even to purely gravitational effects. In the case of BBN, we have identified
a loophole in the standard theory of electromagnetic cascades onto a photon background,
with consequences of utmost importance for new physics searches. First of all, it can in-
crease current non-thermal BBN bounds by up to more than one order of magnitude. But
perhaps the most spectacular consequence of this loophole is the possibility of purely elec-
tromagnetic solutions to the so-called “cosmological lithium problem”, which were thought
to be excluded by other cosmological constraints. We present our studies of non-thermal
BBN and a solution to the lithium problem in chapter 5, including a comparison with
contraints coming from spectral distortions of the CMB blackbody spectrum. Those con-
straints are the dominant ones when the electromagnetic energy injection occurs below
τ ∼ 1012 s.
On the other hand, CMB anisotropies constitute by far the most sensitive probe available
of massive relics after that time. First of all, as we have seen in sec. 2.2.3 it yields the most
precise measurements of ωcdm to date. But more information can potentially be extracted
from their study, especially about hypothetic decays or annihilations of those relics in the
Universe.
For instance, one can see from the result of the line of sight formalism, eq. (2.2.55a), that
any modifications of the gravitational potential wells at the last scattering surface, or their
time evolution, can in turn lead to a modification of the SW and ISW terms. These effects
are studied in chapter 4 in order to characterize the impact of a massive relic decaying
into invisible radiation.
However, the CMB power spectra also depend on the visibility function g and optical
depth τdepth. This means that modifications of the background ionization history can
as well have a strong impact on the observed C`’s. The effects of a electromagnetically
decaying particles are studied in chapter 6, while annihilations of DM particles, with a
special emphasize on the impact of halo formations at late time and its synergy with star
reionization, is the topic of chapter 7. Chapter 5 is adapted from publications in Physical
Review Letters [491] and Physical Review D [495], while chapters 4, 6 and 7 are adapted
from papers published in JCAP, namely Refs. [490], [493], [494] and PRD [492].





4
DARK MATTER INV IS IBLE DECAY

This chapter is adapted from a publication in JCAP [494].

4.1 Introduction and models

The current concordance model of cosmology (ΛCDM, supplemented by the inflationary paradigm)
discussed in previous chapters has been established very robustly over the past couple of decades,
surviving a large number of tests and cross-checks. Nonetheless, it remains a parametric model, with
most of the energy content of the universe in a “dark” sector whose nature remains puzzling. In
particular, although there are plenty of proposed candidates for what makes the dark matter (DM)
of the Universe, none of them have been detected through smoking gun probes independent from the
gravitational ones, and thus DM lacks identification.
In the quest for the nature of DM, cosmology itself provides useful diagnostics, being sensitive

to a large range of spatial and time scales. We have argued in sec. 3.4.2 that, at the very least,
a finite DM lifetime would leave (mostly) linear cosmological signatures, purely via gravitational
effects. Often, cosmological constraints are not as constraining as observables targeted to specific DM
models (such as gamma-ray fluxes for vanilla WIMP DM models). Yet, they are valuable as essentially
based on linear theory, thus setting the robust and model-independent yardstick against which we can
gauge the strength of other constraints—in general depending on non-linear physics, non-gravitational
interactions, and a number of astrophysical assumptions.
In this work, we provide several improvements as well as an important generalisation over the

treatment in Ref [70]. First and foremost, we allow for a fraction fdcdm of decaying DM smaller than
unity. One immediate consequence is that a much larger parameter space for the decay width (or
inverse lifetime) Γdcdm is now open, with a richer set of consequences on the CMB anisotropy pattern
and power spectrum modifications which we shall duly describe. One (perhaps phenomenologically
compelling) motivation for such a refined study is the recurring recent claim that some tensions in
global fits of cosmological observables, like CMB ones vs. the low-redshift determination of σ8 and
the Hubble parameter [18], [302], [508], [509], may be resolved due to a non-trivial time evolution
of the DM content of the universe, such as the one associated with a (partial) decay of the DM
constituents [99], [186], [232]. From a theoretical point of view, the case fdcdm < 1 is also interesting,
with several possible physical interpretations: 1) DM may be multi-component, with one unstable
component disintegrating into (dark) radiation; 2) DM may decay into several particles, including
a fraction (1 − fdcdm) of cold daughter particles and a fraction fdcdm of (dark) relativistic daughter
particles, such as neutrinos, gravitons, or some BSM (beyond the standard model) species.
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Throughout the study, we shall assume that the stable fraction of the DM (or byproduct of the DM
disintegration) is exactly cold. This can be certainly achieved in scenario 1), while being an approx-
imation in scenario 2): the recoil received by the daughter non-relativistic particle(s) is responsible
for some velocity dispersion in the daughter DM phase-space distribution. A number of specific im-
plications of these so-called superWIMP candidates have been known since more than a decade [152].
Dealing with this scenario would require making specific assumption on the final state kinematics.
Qualitatively, we expect our bounds to be still valid for scenarios of type 2) as well, since the sizable
DM free streaming would impose further and typically more stringent constraints. The analysis pre-
sented in [49], which focuses on a scenario of type 2) (i.e. with a specific choice of DM two-body decay
into radiation plus one massive relic) obtains indeed tighter constraints than the present work.
The generality of purely gravitational constraints does not imply, however, that such bounds are

always “weak”: for several particle physics candidates without sizable signals in non-gravitational
channels, they are the strongest available ones. For instance, this is the case for a number of models,
including the Majoron scenario and merging PBH, we introduced in sec. 3.4.2. This work is struc-
tured as follows: in Sec. 4.2, for the sake of completeness and in order to correct an error present in
past literature, we explicitly report the key equations solved. In Sec. 4.3 we describe the effects of
the decaying DM models on CMB and power spectrum observables. We also discuss some potential
degeneracies with other physical effects, notably the one of massive neutrinos. In Sec. 4.4 we present
our results, while in section 4.5, after a discussion, we report our conclusions.

4.2 Boltzmann equations for the decaying Dark Matter

We wish here to recall the main equations describing the gravitational impact of the DM decay,
assuming that the decay products are ultrarelativistic and invisible—hence dubbed “dark radiation”,
denoted with the subscript “dr”. Following the standard procedure, we consider small perturbations
over a homogeneous background and hence, we split up the evolution equations for the energy density
and momenta of the decaying cold DM (denoted with the subscript “dcdm”) and its daughter radiation
between zeroth and first order contributions. Higher orders terms are neglected. The overall DM
abundance is denoted with the subscript “dm”; fdcdm is the ratio of the decaying DM fraction to the
total one. Its complement to one is also dubbed stable DM fraction, denoted with subscript “sdm”. A
full derivation can be found in appendix C.

4.2.1 Background equations

To take dark matter decay into account, one can for instance modify the stress energy tensor of
cold DM and dark radiation by respectively subtracting and adding a decay term. By considering
the covariant conservation of Tµν that follows from Bianchi identities, one would arrive at [354] (see
also [70])

ρ′dcdm = −3
a′

a
ρdcdm − aΓdcdmρdcdm , (4.2.1)

ρ′dr = −4
a′

a
ρdr + aΓdcdmρdcdm . (4.2.2)

Above and henceforth, prime quantities denote a derivative with respect to conformal time; Γdcdm

is the decay rate defined with respect to proper time, which in a specific model can be computed
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as customary by integrating over the phase space (the modulus square of) the transition matrix
element. Using the public version of the class1 [109], [390] Einstein-Boltzmann solver, it is possible
to specify the total fractional energy density in both dcdm and dr, either today (Ωdcdm+Ωdr) or initially
((Ωdcdm + Ωdr)

ini). The latter parameter is defined precisely in [70], but can be loosely understood as
“the value of the initial densities ρdcdm(tini) and ρdr(tini) such that if we were to take Γdcdm = 0, we
would get a fractional density Ωdcdm + Ωdr = (Ωdcdm + Ωdr)

ini today”; the splitting between ρdcdm(tini)

and ρdr(tini) is computed automatically in order to take consistently into account the tiny amount of
transfer of energy from dcdm to dr between t −→ 0 and tini, assuming that there is no dark radiation
for t −→ 0. This parametrisation has the advantage of preserving the early cosmological evolution
until DM starts to decay.

4.2.2 Perturbation equations in gauge invariant variables

In ref. [70], the scalar perturbations equations at zeroth and first order had been obtained starting from
the continuity and Euler equations, which describes the exchange of energy and momenta between the
decaying DM and the dark radiation. Here, we report the result starting from the Boltzmann equation
describing the evolution of the two species, which is also needed to derive the Boltzmann hierarchy
of the dark radiation. The full Boltzmann equation, with decay term, written in terms of conformal
time and momentum is

df

dτ
=
∂f

∂τ
+
∂f

∂xi
dxi

dτ
+
∂f

∂q

dq

dτ
+
∂f

∂ni
dni

dt
= ±aΓdcdmfdcdm ≡ ±D , (4.2.3)

where the − (+) sign refers to the decaying DM (dark radiation). Let us stress an important point,
that has been overlooked in a previous study deriving bounds on the model we are dealing with [335].
As long as one does not consider perturbations in the distribution, the previous form of the decay term
still holds. However, the decay term D is not a gauge invariant quantity. At the level of perturbations,
such a simple form of the decay rate is only valid in the gauge comoving with the decaying DM, which
is a restriction of the synchronous gauge to a system in which the velocity divergence of the decaying
DM vanishes. Note that, as pointed out in Ref. [70], the comoving gauge of the DM and decaying DM
are the same for adiabatic initial conditions. Hence we can work with the synchronous gauge comoving
with all DM, in which metric perturbations read

ds2 = a2(τ)

{
− dτ2 + (δij +Hij)dx

idxj
}

(4.2.4)

(with in Fourier space Hij = k̂ik̂jh + (k̂ik̂j − 1
3δij)6η ), and with the newtonian gauge with metric

perturbations

ds2 = a2(τ)

{
− (1 + 2ψ)dτ2 + (1− 2φ)dxidxj

}
. (4.2.5)

One can relate both gauges via the following identities

ψ = Hα+ α′ (4.2.6)

φ = η −Hα (4.2.7)

δ(new) = δ(syn) + ρ̄′

ρ̄ α (4.2.8)

θ(new) = θ(syn) + k2α (4.2.9)

1 class-code.net
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where α ≡ (6η+h)′

2k2 . All definitions of the potentials and perturbations variables can be found in
Ref. [412]. We will use these relations later in order to get the evolution equations in the newto-
nian gauge. Starting with the decaying DM, in the comoving synchronous gauge one can re-express
eq. (4.2.3) in the following form:

∂fdcdm

∂τ
+
∂fdcdm

∂xi
pi

E
+ p

∂fdcdm

∂p

[
η′ − 1

2

(
h′ + 6η′

)(
k̂ ·n

)2 −H
]

= −D (4.2.10)

where we have now traded q for p (the physical momentum) to let the expansion term appear explicitly.
Integrating the distribution over the phase-space and using the fact that decaying DM is pressureless,
it is straightforward to get

ρ′dcdm +
∂(ρdcdmv

i
dcdm)

∂xi
+

1

2
h′ρdcdm + 3Hρdcdm = −aΓρdcdm . (4.2.11)

We introduce the usual notation ρdcdm = ρ̄dcdm[1 + δdcdm] and set in our gauge θdcdm = ∂iv
i
dcdm = 0.

At this level, if we were to collect all zeroth order terms, we would arrive at Eq. (4.2.1). Collecting
instead all first order terms and dividing by ρ̄dcdm, one gets

δ′dcdm = −h
′

2
. (4.2.12)

In a similar way, taking the divergence of the first moment of eq. (4.2.11) leads to

θ′dcdm = −Hθdcdm, (4.2.13)

which is consistent with keeping θdcdm = 0 in the comoving synchronous gauge. We can make use of
relations (4.2.6-4.2.9) to express previous equations in the newtonian gauge:

δ
(n)′

dcdm = −aΓφ+ 3ψ − θ(n)
dcdm , (4.2.14)

θ
(n)′

dcdm = −Hθ(n)
dcdm + k2φ . (4.2.15)

Following the development of Ref. [70], we introduce the gauge invariant variables mcont and mψ to
write these equations as

δ′dcdm = −θdcdm −mcont − aΓmψ , (4.2.16)

θ′dcdm = −Hθdcdm + k2mψ (4.2.17)

where the expression of the metric source terms in the synchronous and newtonian gauges are given
in table 10.

Synchronous Newtonian

mcont h′/2 −3φ′

mψ 0 ψ

mshear (h′ + 6η′)/2 0

Table 4: Continuity and euler type of metric source terms for scalar perturbations in synchronous and Newto-
nian gauge.
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Although these equations are sufficient to describe the dynamics of the decaying DM, one needs
to write the full Boltzmann hierarchy to follow the perturbations in the dark radiation. For that
purpose, several strategies can be adopted; we follow again the formalism of Ref. [70]. We introduce
the perturbations of the integrated phase-space distribution function and expand it over Legendre
polynomials P` in the following way

Fdr ≡
∫
dqq3f

(0)
dr Ψdr∫

dqq3f
(0)
dr

rdr ≡
∑

`

(−i)`(2`+ 1)Fdr,`(t,~k)P`(µ) (4.2.18)

where Ψdr is defined at the level of the perturbed phase-space distribution:

fdr(~x, p, ~n, τ) = f
(0)
dr (p, τ)(1 + Ψdr(~x, p, ~n, τ)) ,

(4.2.19)

and rdr is defined as

rdr ≡
ρ̄dra

4

ρcr,0
. (4.2.20)

ρcr,0 is the critical energy density today (where a0 = 1), introduced to make rdr dimensionless. The use
of rdr will help us to cancel the time-dependence of Fdr due to the background distribution function
f0
dr. The derivative of rdr is simply

r′dr = aΓdcdm
ρ̄dcdm

ρ̄dr
rdr , (4.2.21)

(here we corrected a typo with respect to eq. (2.16) Ref. [70]). Splitting between m = 0, 1, 2 and m > 2

leads to the following gauge-independent hierarchy

F ′dr,0 = −kFdr,1 −
4

3
rdrmcont + r′dr(δdcdm + mψ) , (4.2.22)

F ′dr,1 =
k

3
Fdr,0 −

2k

3
Fdr,2 +

4k

3
rdrmψ +

r′dr

k
θdcdm , (4.2.23)

F ′dr,2 =
2k

5
Fdr,1 −

3k

5
Fdr,3 +

8

15
rdrmshear , (4.2.24)

F ′dr,` =
k

2`+ 1

(
`Fdr,`−1 − (`+ 1)Fdr,`+1

)
` > 2. (4.2.25)

The expression for mshear in newtonian and synchronous gauge is given in table 10. This set of equations
must be truncated at some maximum multipole order `max. To do so, we use the improved truncation
scheme of Ref. [412] which has been generalised to spatial curvature in Ref. [397].
To check how the multipole moments transform, one can use their relations to the standard variables
δ and θ, as well as the gauge-invariant variable σ, which describes the anisotropic stress developing in
the fluid:

Fdr,0 = rdrδdr , Fdr,1 =
4rdr

3k
θdr , Fdr,2 = 2σrdr . (4.2.26)

Eqs. (4.2.6-4.2.9) then immediately tell us how these moments change under a transformation from
the synchronous to newtonian gauge:

F
(s)
dr,0 = F

(n)
dr,0 − rdr

ρ̄′dr

ρ̄dr
α , F

(s)
dr,1 = F

(n)
dr,1 −

4rdrk

3
α , (4.2.27)
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whereas Fdr,2 is gauge invariant. Using eq. (4.2.26), one can easily check that we get the same equations
as the ones coming from considering energy and momentum conservation:

δ′dr = −4

3
(θdr + mcont) + aΓdcdm

ρdcdm

ρdr
(δdcdm − δdr + mψ) , (4.2.28)

θ′dr =
k2

4
δdr − k2σdr + k2mψ − aΓdcdm

3ρdcdm

4ρdr

(
4

3
θdr − θdcdm

)
. (4.2.29)

(4.2.30)

Finally, one can compare our final set of equations in the newtonian gauge with the one of Ref. [335]. It
turns out that this reference omitted the mψ term in the evolution equations of δdcdm and δdr. Hence,
even besides the fact that we are using more recent data, we do not expect our results to match the
ones reported in [335].

4.3 Cosmological effects of a decaying Dark Matter fraction

In this section we show the impact of the decaying DM on the CMB and matter power spectra from
purely gravitational effects, as a function of the DM lifetime. This was already described in Ref. [70]
in the case of long-lived fully-decaying DM, but we aim at generalizing this study to the case of multi-
component DM splitted as Ωdm = Ωsdm + Ωdcdm. In such models, the important parameters are the
fraction of decaying DM, fdcdm = Ωdcdm/Ωdm, and its decay rate Γdcdm, which we report in units2 of
Gyr−1. When fdcdm is small enough, the decay rate can in principle be very large, leading to different
comsological effects than in the fully-decaying DM model.

4.3.1 Impact of Dark Matter decay on the CMB

In order to show the effect of varying Γdcdm on the CMB angular power spectra, some choice must
be made about what to keep constant. Here we choose to set all the parameters so that the early
cosmological history stays the same as in the standard ΛCDM (until the decay starts). To do so, as in
ref. [70], we compare decaying models with a given value of ωini

dm = ωsdm + ωini
dcdm with ΛCDM models

having the same ωcdm. We also keep fixed the baryon abundance ωb ≡ Ωb h
2, the amplitude of primor-

dial perturbation accounting for the late-time absorption exp(−2τreio)As, the index of the primordial
perturbation spectrum ns, the redshift of reionisation zreio

3 and the angular size of the sound horizon
θs. This choice implies that if the decay happens at late times, the small-scale / high-` part of the
CMB spectra, influenced mainly by the early evolution, should be preserved up to lensing effects. We
fix all parameters to their best-fit value for Planck 2015 TT,TE, EE+low-P [19]: {θs=1.04077, ωini

dm
or ωcdm = 0.1198, ωb = 0.02225, ln(1010As exp(−2τreio))=1.882, ns=0.9645, zreio=9.9}. Note that by
fixing these parameters and varying Γdcdm and fdcdm, we expect to obtain different values for the
actual ωdm today, for H0 and for τreio. Hence Γdcdm and fdcdm can in principle be constrained by
the data and lead to different predictions for H0, σ8 and Ωm, that may either increase or reduce the
tension with astronomical data, see our comments in section 4.4.2.2.

2 For translation with other works making use of km s−1Mpc−1, we recall that 1 km s−1Mpc−1 = 1.02×10−3 Gyr−1.
3 We follow the standard parameterisation of reionisation with a sharp hyperbolic tangent step in the ionisation fraction,
centered at zreio and of width ∆zreio = 0.5.
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For illustration purposes, let us set the fraction of decaying DM to 20% and compute the TT and EE
CMB power spectra for three typical decay rates Γdcdm = 0.1, 103, 106 Gyr−1. The spectra and their
residuals are plotted in Fig. 38, together with the (binned) cosmic variance uncertainty. These rates
were chosen to highlight three qualitatively different regimes:

• The first regime (Fig. (38), blue curve, Γdcdm = 0.1 Gyr−1) corresponds to a DM decaying
well after recombination. At the background level, the decrease of a3ρm with time would tend
to increase the angular diameter distance to the last scattering surface. Since we are fixing θs,
this effect gets compensated by an increase in ρΛ and ΩΛ, which in turn shifts the matter-Λ
equality redshift zΛ to higher values, and enhances the Late Integrated Sachs-Wolfe (LISW)
effect, as can be seen in the low-` part of the curve. On top of this, at the perturbation level,
the modification of the DM density at late times generates a damping of the metric fluctuations
through the Poisson equation, which further contributes to the LISW enhancement. Finally, the
amount of lensing is significantly reduced. The consequences at high-` (contrast between minima
and maxima and damping tail) are hardly visible by eye on the figure, but the data is sensitive
to this effect.
In the EE spectrum, the different late-time evolution of ρm + ρΛ induces a peculiar pattern
around l ∼ 10. Indeed, the reionisation optical depth τreio

4 is an integrated quantity along z,
and therefore also feels modification in the background expansion. Hence, for a fixed parameter
zreio, the value of the optical depth τreio and the details of the reionisation history slightly depend
on Γdcdm. For a fixed product exp (−2τreio)As, this has consequences in the low-` part of the EE
(and also TT) spectra. However, this effect is unimportant because for a given (small) Γdcdm the
LISW effect is stronger. For the maximal allowed values of Γdcdm, reionisation effects remain
below cosmic variance.
On the other hand, lensing impacts the CEE` more strongly than CTT` [258]. Hence, the high-`
part of the polarisation spectrum is expected to help for better constraining the lifetime and
fraction of the dcdm component. This statement will be explicitly checked in section 4.4.
In summary, in this regime, the DM lifetime is probed through the LISW and lensing effect. We
can further distinguish two sub-cases depending on the value of Γdcdm:
(i) for Γdcdm > H0 ∼ 0.7 Gyr−1, most of the decaying DM has disappeared nowadays, and even
before the redhsifts range 0 < z < 3 which is important for the LISW and lensing effects. So in
this regime we expect to get bounds on fdcdm nearly independent of Γdcdm.
(ii) for very small Γdcdm < H0, only a fraction of dcdm had time to disappear. Factorizing out
the expansion term, it is possible to write the evolution of the background DM density as

Ωdm = Ωsdm + Ωdcdm

= (1− fdcdm)Ωini
dm + fdcdm exp(−Γdcdmt)Ω

ini
dm

= (1− fdcdm)Ωini
dm + fdcdm[1− Γdcdmt+O((Γdcdmt)

2)]Ωini
dm

= [1− fdcdmΓdcdmt+O((Γdcdmt)
2)]Ωini

dm . (4.3.1)

In the limit Γdcdm � H0, terms of order two or higher can be neglected, and the remaining
relevant parameter is simply ξdcdm ≡ fdcdmΓdcdm: multiplied by the age of the universe, it fully
encodes the fraction of DM density which decayed into dark radiation until today. Hence this
should be the quantity constrained by the data.

4 defined using τ(z) =
∫ z

0
σTxe(z

′)nH(z′) dt
dz′ dz

′, with dt
dz′ = −((1 + z′)H(z′))−1.
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Figure 38: Comparison of the lensed TT (top) and EE (bottom) power spectra for several decaying DM
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• The second regime (Fig. (38), green curve, Γdcdm = 103 Gyr−1) is an intermediate regime for
which the unstable DM component would start to decay around the recombination epoch and
has fully disappeared by now. In the CMB power spectra, one can see, on top of previously
described effects, the impact of a bigger Early Integrated Sachs Wolfe (EISW) effect, since the
metric terms are further damped due to the DM decay. The affected multipole ` depends on the
DM lifetime whereas the amplitude of the variation depends on the fraction allowed to decay.
The angular power spectra are sensitive to the two independent parameters fdcdm and Γdcdm.

• In the third case, for very large Γdcdm (Fig. (38), red curve, Γdcdm = 106 Gyr−1), the unstable
component of DM has decayed well before recombination, and eventually even before matter-
radiation equality. One can see the admixture of previous effects together with a bigger Sachs
Wolfe term, because in models with smaller Ωdm, the growth of potential wells is reduced and
therefore their amplitudes at the time of last scattering is smaller. Eventually, there is also a
modification of the gravitationally driven oscillations that affect modes well inside the sound
horizon during radiation domination, leading to small wiggles at high-`’s (visible even in the
unlensed spectrum ratios). Finally, although not very pronounced in our case, if the matter
radiation equality is shifted, the different expansion evolution would result in a different sound
horizon at decoupling. Since we have fixed the peak scale, the code has to adapt the angular
diameter distance at recoupling dA(zrec) by adjusting ΩΛ. However, dA(zrec) also enters the
diffusion damping angular scale, resulting in a small decrease in the slope at high-`’s.
Let us note an important point in this regime. The spectra of a model with early decaying DM
are very close to those of a stable ΛCDM model, with a different value of Ωdm corresponding
to the density after the decay (compare the red and black-dashed curves in figure 38). Hence
models of this type must be allowed, provided that the final DM density is close to the best-fit
value for ΛCDM. Therefore we expect that the constraints on fdcdm start to relax as one moves
to shorter and shorter lifetimes, accompanied however by an increase in the value of Ωini

dcdm.
Different regimes are also expected, depending if the DM decays before or after matter radiation
equality. Indeed a shift of zeq induces very peculiar effects, see section 4.4.

4.3.2 Impact of the decaying Dark Matter on the matter power spectrum

Let us now discuss the effects on the matter power spectrum, an essential step in view of including data
on Large Scale Structure (LSS). We adopt the same strategy as for the description of the CMB power
spectra, i.e. we fix {θs, ωini

dm, ωb, As exp(−2τreio), ns, zreio} to the Planck 2015 TT, EE, TE+low-P
best fit parameters (which means that we consider a fixed early cosmological history).
As for the CMB power spectra, we show in Fig. 39 (top panel) the impact of DM decay for three

different regimes:

• For lifetimes comparable or longer than the age of the Universe (blue curve), the impact on
the matter power spectrum is relatively small. Mostly, one finds a small shift of the matter
power spectrum towards larger scales/smaller wavenumbers. Indeed, the DM decay shortens
slightly the matter dominated era5. Hence the ratio keq/(a0H0) governing the location of the

5 the DM decay at late time implies a smaller conformal age of the universe τ0, while the time of radiation–matter equality
τeq is fixed. This implies smaller ratios τ0/τeq and keq/(a0H0).
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maximum in the matter power spectrum6 is smaller. Apart from this small shift, the shape of
the matter power spectrum is unchanged, because all the cosmological evolution until the time
of recombination and of baryon drag is fixed.

• For a decay starting around the time of baryon drag (green curve in Fig. 39), the impact is much
stronger and can be decomposed in three effects:
(i) we observe the same shift to larger scales/smaller wavenumbers as in the previous case,
occurring for the same reason, but much more pronounced.
(ii) the amplitude on large scales is bigger. Indeed, the amplitude of the matter power spectrum
P (k) (expressed in units of h−3Mpc3 versus k in hMpc−1) on scales k � keq depends on the
primordial spectrum multiplied by (g(a0,Ωm)/Ωm)2 [392]. Here g(a,Ω) is the function expressing
how much the growth rate of structures D(a) is suppressed during Λ domination: it is the ratio
D(a)/a normalised to one before Λ domination, and in a flat FLRW universe, it depends only on
a and Ωm = 1−ΩΛ. So g(a0,Ωm) is a simple function of Ωm, growing with Ωm and reaching one
for Ωm = 1. However g(a0,Ωm) does not increase as much as Ω2

m, so the ratio (g(a0,Ωm)/Ωm)2

decreases with Ωm. In the dcdm model that we are considering now, the decay leads to a
smaller matter density at late times, and to maintain a constant angular diameter distance to
recombination and a constant θs, one needs to increase Λ. Hence Ωm is smaller and the large–
scale power spectrum is enhanced.
(iii) the small-scale power spectrum is suppressed and has a different shape. Indeed we are
considering a fixed value of Ωb, while Ωdm is smaller in the dcdm model. This means that the
ratio Ωb/Ωdm is bigger. Since baryons are coupled to photons until the baryon drag epoch, a
larger Ωb/Ωdm implies a strong small-scale suppression and larger Baryon Acoustic Oscillations
(BAOs). There is also a slight shift of the BAO phase, due to the change in the value of the
sound horizon at baryon drag.

• The effects described in the previous regime do not keep increasing monotonically when the
lifetime decreases. On the contrary, for a decay happening well before baryon drag, the impact
of the decay becomes smaller (red curve in Fig. 39). This is related to the variation of Ωm with
the dcdm lifetime, when θs and all other cosmological parameters are kept fixed. As long as
the DM lifetime is longer than the recombination time, it impacts θs = ds/dA only through
the angular diameter distance to the last scattering surface dA, because the expansion history
is different after decoupling. Once the DM lifetime becomes smaller than the recombination
time, the time of radiation–matter equality changes, and θs is also impacted through the value
of the sound horizon at decoupling ds. In all cases ΩΛ is automatically adjusted in order to
get the same θs, but in a non-monotonic way. This is true also for Ωm = 1 − ΩΛ, which first
decreases with Γdcdm and then increases. This explains why in the left panel of Fig. 39, the
amplitude of the small-scale matter power spectrum first goes up with Γdcdm, and then goes
down. The bottom panel helps to understand what is going on with the background evolution in
the different models. On top of this effect, the different value of the sound horizon at decoupling
leads to further shift in the BAO phase.

6 We recall that keq is defined through the relation keq ≡ aeqHeq where the subscript “eq” stands for matter-radiation
equality. The horizontal axis in Figure 39 displays k in units of [h/Mpc], with the implicit assumption that a0 = 1. In
fact, this axis represents the ratio k/(a0H0), and the peak position is given by keq/(a0H0) [394].
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Finally and as expected, in the limit of a very small DM lifetime, the matter power spectrum
asymptotes to the limit of a stable CDM model with a smaller Ωdm (dashed black curve),
corresponding to the DM density of the dcdm model after full decay.

4.3.3 Potential degeneracy with the neutrino mass

In the past literature, the DM lifetime has been found to be partially degenerate with several other
parameters. For instance, ref. [70] studied extensively the degeneracy between Γdcdm, the curvature of
the universe and the tensor mode amplitude. They found some degeneracy at the level of primary CMB
anisotropies, fortunately broken by CMB lensing and matter power spectrum data. Other authors, for
instance ref. [99], [232], have found some correlation between Γdcdm and (H0, σ8), as expected from
the previous discussion. They pointed out that this could be helpful in resolving tensions with low
redshift astronomical data. In the next section, we scrutinize this claim.
Moreover, in principle, one could expect a degeneracy between the DM decay and neutrino mass

effects. This has been paid virtually no attention till now, hence we discuss it in the following. Neutrinos
are relativistic at early time, and then experience a non-relativistic transition. Schematically, one could
say that decaying DM goes the opposite, since the model features a non-relativistic species which,
through its decay into dark radiation, undergoes a sort of “relativistic transition”. For a fixed value of
neutrino mass, one can play with the fraction of dark matter that decays in order to cancel exactly
the increase in Ωm coming from the neutrino sector. At the same time, one can adjust the time of the
decay to match the neutrino non-relativistic transition time.
We wish to check this simple statement by looking at the power spectra. As it is well known, the

effects of the neutrino mass on the CMB power spectra highly depends on the epoch at which the
non-relativistic transition occurs, and therefore on the value of the neutrino mass (see e.g. Ref. [392],
[394] reviews). The larger it is, the earlier the transition happens, eventually even before matter
radiation equality for mν > 1.5 eV. Such high masses are completely ruled out by observations7

and our discussion will be restricted to masses for which the non-relativistic transition happens after
recombination, mν < 0.6 eV.
For such masses, neutrinos simply affect the CMB through post-recombination effects: EISW and

LISW, lensing, and a modification of the angular diameter distance to the last scattering surface.
We want to check whether we can cancel these effects with some appropriate amount of DM decay.
Hence we compare different models with common parameters {θs, ωini

dm or ωdm, ωb, As, ns, τreio}, three
degenerate massive neutrino species, and different values of Mν = 3mν , Γdcdm and fdcdm. Note that
all these models share the same cosmological evolution until the time at which either DM decays, or
neutrinos become non-relativistic (in particular, for m� 1.5 eV and a lifetime much bigger than the
time of radiation–matter equality, τeq is the constant). Moreover, by fixing θs, we remove one of the
potential effects of neutrino masses listed above. Fixed values of θs are obtained by adjusting ΩΛ in
each model, which only leaves a signature at the level of the late ISW effect.

• CMB temperature spectrum. In Fig. 40, top panel, one can check that while varying the neutrino
mass with only stable CDM, the lensed TT spectrum is only affected in the late ISW region
(depletion for ` ≤ 20), early ISW region (depletion for 20 ≤ ` ≤ 200) and lensing region (small

7 We anticipate that there is no need to put this conclusion to renewed scrutiny, since the potential degeneracy between
DM decay and neutrino mass effects is in fact lifted given current data.
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Figure 40: Comparison of the lensed TT (top), EE (middle) and matter (bottom) power spectra for several
decaying DM lifetimes and several neutrino masses. The value fdcdm = 0.027 (resp. 0.08) has been
chosen in order to compensate the effect of Mν = 0.3 eV (resp. 0.9 eV) and obtain the same total
dark matter density today, ωm. The inverse of Γdcdm has been adjusted to the time of the neutrino
non-relativistic transition. Boxes show the (binned) cosmic variance uncertainty.

wiggles for ` ≥ 1000). Then, for a given neutrino mass, we increased fdcdm in order to obtain
roughly the same total ωm = ωb+ωsdm+ωdcdm+ων today, and choose a value of Γdcdm cancelling
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as much as possible the neutrino effects. This allows to counter–act neutrino masses at the level
of the unlensed spectrum: the ISW effects nearly disappear. However, the lensing effects remain
at large `.

• CMB polarisation spectrum. In the EE spectrum (Fig. 40, middle panel), the degeneracy is not as
effective as one could expect. This is mainly because the EE spectrum is very sensitive to modifi-
cations in the reionisation history at late time. As already argued in section 4.3, even for a fixed
thermal history and ionisation function versus redhsift xe(z), changes in the background densi-
ties affect the redshift–to–time relation z(t). The effect of neutrinos becoming non–relativistic
and of decaying DM can never exactly cancel each other in the expansion history a(t), hence
xe(t) is always slightly different, and this can be seen in the EE spectrum, for ` ≤ 30 (i.e., for
modes entering the Hubble radius around the reionisation time). Features are present on those
scales even if we try to fix τreio instead of zreio. So, despite the magnitude of cosmic variance on
those scales and our ignorance on the cosmic reionisation history, we expect the EE spectrum
to contribute somewhat to the breaking of the degeneracy. Besides, like for temperature, the
degeneracy is broken at large ` by lensing effects.

• Matter power spectrum. Since CMB lensing effects depend on the matter power spectrum, we
now look at P (k) for the same models (bottom panel of fig. 40). It is well-known that the direct
effect of neutrino masses is a step–like suppression of the small-scale matter power spectrum,
coming mainly from a reduction of the growth rate of CDM fluctuations in presence of a free-
streaming component. This effect in the matter power spectrum is best seen by fixing both Ωm

and ωm, in order to get the same behaviour of fluctuations on scales bigger than the neutrino
free-streaming scale, in the regime where neutrino and cdm perturbations are equivalent. With
fixed (Ωm, ωm), or equivalently, fixed (Ωm, h), one clearly sees that neutrino masses suppress
P (k) only on small scales. However, in the matter power spectrum comparison presented in this
section, we wish to keep the same choice as in our previous CMB spectrum comparison: namely,
we fix θs, since this quantity is very accurately measured by the CMB, and we also fix ωdm and
ωb, in order to keep the same early cosmological evolution. In that case, models with different
neutrino masses will also have different values of Ωm and of h =

√
(ωdm + ωb + ων)/Ωm, in

order to achieve the same θs. Since the value of Ωm affects the amplitude of the matter power
spectrum on small scales k � keq, we do not expect to see the usual step-like suppression on
small scales.

To explain the variation of the matter power spectrum with respect to the neutrino mass when
θs, ωb, ωdm and the primordial spectrum are fixed, we need to remember that in the ΛCDM
model, the regime k � keq of P (k) depends only on Ωm, while that of the small-scale power
spectrum depends only on zeq and on the baryon fraction (this can be checked e.g. in [392], from
equation (6.39); to obtain the dependence on zeq, on needs to eliminate k̃eq in favour of zeq using
equations (6.32, 6.35, 6.36)). Suppose that we first increase Ωm while keeping ωb, ωdm and ων
fixed. This will suppress the power spectrum at large scales, while keeping the same amplitude
on small scales, since zeq is not changing. Now let us increase neutrino masses. We add another
step-like suppression, this times acting on small scales. After these two transformations, it is not
obvious if the power spectrum gets more suppressed on small or large scales.

It turns out that when the neutrino mass is varied for fixed θs, ωb, ωdm, the amplitude of the
suppression on small and large scales is nearly the same. In that case, the neutrino mass does
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not manifest itself as a step–like suppression, but as a decrease in the global amplitude. In other
words, in this basis, neutrino masses are responsible for a shift in the amplitude of the matter
power spectrum, while the amplitude of the CMB spectra remains constant. This effect comes
together with a shift in BAO phases, because the angular diameter distance to small redshifts
is changing (unlike the angular diameter distance to recombination).

We can now turn on DM decay with the same motivation as before: by adjusting the dcdm
fraction, we can get the same total matter density ωm today. The quantity of DM decaying
into radiation gets exactly compensated by the amount of neutrinos becoming non-relativistic.
In that case, the background history becomes much closer to that of the initial model, and we
have seen that ISW effects in the CMB are also compensated. For the matter power spectrum,
the story is different. We now have the same ωm and nearly the same (H0, Ω) in the original
ΛCDM model and in the mixed DM decay + massive neutrino model. Hence the amplitude of
the matter power spectrum is preserved on large scales, the BAO scale readjusted, and the usual
step-like suppression caused by neutrino masses appears clearly, not masked by other large–scale
effects. This is why the difference between these two models in Fig. 40, lower panel, looks like in
a canonical comparison between models with massive or massless neutrinos for fixed (Ωm, ωm).

In summary, the degeneracy which is superficially present in CMB angular spectra is clearly broken
at the level of the matter power spectrum, and hence also at the level of the lensed CMB spectra,
even neglecting the small distinctive features in the polarisation spectra on large angular scales. To
cross–check this conclusion, we performed some fits to the data with free Mν , fdcdm and Γdcdm si-
multaneously. We found no significant correlations between these parameters, and got neutrino mass
bounds extremely close to those obtained with stable DM. We can conclude that the bounds of the next
sections, obtained with massless neutrinos, are very robust against the addition of neutrino masses.

4.4 Application of the decaying Dark Matter model

4.4.1 Constraints from the CMB power spectra only

It is well known that ΛCDM provides a good fit to Planck results, suggesting that bounds on decaying
DM (rather than evidence in favour of it) should be achievable by an appropriate analysis of the data.
We compare the constraining power of the TT, TE and EE spectra, since the Planck collaboration
made available several likelihoods, corresponding to differents data sets [26]. For `’s >30, we can use
data from the TT spectrum only, or use data coming from TT, TE and EE spectra at the same
time. For the small `’s however, it would not make sense to consider such decomposition since the
TT spectrum alone is very weakly sensitive to τreio: more precisely, its effect is highly degenerate with
As. We thus simply consider the combination of all data sets {TT, TE, EE} which allows one to
break the As/τreio degeneracy. Further cosmological information is encoded in the likelihood of the
lensing reconstruction, which we also use in the following. We refer to the combination of high-`’s
TT + low-`’s + lensing reconstruction as PlanckTT, and to high-`’s TT,TE,EE + low-`’s + lensing
reconstruction as PlanckTTTEEE. Ref. [258] has found that despite their rather poor signal-to-noise
ratio, the constraining power of the EE and TE spectra alone is as good as or even better than the
TT alone. In fact, they found that CTE` improves the determination of ωdm by 15%. One therefore
expects similar improvements when using PlanckTTTEEE with respect to PlanckTT.
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We run Monte Carlo Markov chains using the public code Monte Python [68]. The basics of Bayesian
statistics and other mandatory details on parameter extraction and convergence technicalities are
described in appendix B.3. We perform the analysis with a Metropolis Hasting algorithm and assumed
flat priors on the following parameters:

{ωb, θs, As, ns, τreio, ω
ini
cdm, fdcdm,Γdcdm} .

Although not specified here for brevity, there are many nuisance parameters that we analyse together
with the cosmological ones. To this end, we make use of a Choleski decomposition which helps in
handling the large number of nuisance parameters [399]. We consider chains to be converged using the
Gelman-Rubin [265] criterium R− 1 < 0.01, except if specified otherwise.
As extensively discussed in section 4.3, the effects of the decay are very different depending on the
lifetime of the decaying DM. Therefore, the parameter space should have a non-trivial shape: we
therefore split our analysis in three different parts, corresponding to different decay epochs. In Fig. 41
and Fig. 42, with blue curves and contours, we show the constraints in the {fdcdm,Γdcdm} plane for
each regime from the PlanckTT dataset only.

0.0001 3.41 6.81 10.2 13.6

fdcdmΓdcdm

high-` TT
high-` TT+TE+EE

Figure 41: Constraints on the decaying dark matter fraction fdcdm as a function of the lifetime Γdcdm in the
long-lived and intermediate regime. All datasets also include CMB low-` data from each spectrum
and the lensing reconstruction. Blue (red) lines and contours refer to the case without (with) high-`
polarization data. Inner and outer coloured regions denote 1σ and 2 σ contours, respectively.
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Figure 42: Constraints as in Fig. 41, but for the short-lived dcdm regime. We also show how the distribution
of the initial cdm density evolves when the decay rate and dcdm fraction increase.

• The constraints in the long-lived dark matter regime (Γdcdm < H0) is represented on the upper
and bottom-left panels of Fig. 41. In that regime, a sizable fraction of the decaying DM compo-
nent is still present today. As anticipated in section 4.3.1, first bullet, the key parameter in that
case is the product fdcdmΓdcdm, with an exact two parameters description leading to less than
10% differences in the bounds. The constraints on this parameter is fdcdmΓdcdm < 6.7 × 10−3

Gyr−1 at 95% CL with PlanckTT dataset.

• We argued in section 4.3.1, second bullet, that there is an intermediate regime given roughly
by Γdcdm ∈ [10−1, 103] Gyr−1, for which the DM decay starts after recombination and decaying
DM has totally disappeared by now. Results for this case are shown in the bottom-right panel
of Fig. 41. In that case, the CMB is mostly insensitive to the time of the decay. Our runs show
that in this regime, the CMB can tolerate up to 4.2% of dcdm at 95% CL. This is an important
number, standing for the fraction of dark matter that can be converted entirely into a dark
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radiation after recombination, without causing tensions with the data. Although we do not show
the full parameter space up to Γdcdm ' 103 Gyr−1, we have checked that the behaviour stays
the same (this can also be inferred from the smallest values of Γdcdm plotted in Fig. 42.)

• Finally, we show in Fig. 42 the constraints applicable to the short-lived regime, Γdcdm >

103 Gyr−1, for which the decay happens before recombination. To accelerate the exploration of
the parameter space, we scan over log10(Γdcdm) with a flat prior. We however cut at 106 Gyr−1

for obvious convergence issues, and consider chains as converged when R − 1 < 0.1. Changing
the upper bound would not change at all our conclusions. Note that with such a bound, we
are also covering the region of parameter space for which the decay happens before the onset of
matter domination. One can see a very interesting behaviour in that regime: the bound on fdcdm

starts to relax, accompanied by an increase in the initial total dark matter density. In principle,
cosmologies with a large initial cold DM abundance are acceptable, provided that the decaying
DM, in excess with respect to Planck ΛCDM best fit value for ωdm, had time to decay before
recombination. In practice, we see two different regimes, responsible for non-monotonic features
in the contours of Fig. 42 in the {fdcdm, log10(Γdcdm)} plane. The first regime, for which the con-
straints relax more slowly, corresponds to decay happening mostly in between matter-radiation
equality and recombination. The second regime corresponds to decay happening mostly before
matter-radiation equality. The difference in the slope of the relaxation of the constraints is there-
fore mostly due to the fact that, in the first regime, the matter-radiation equality redshift zeq

is shifted towards earlier time. This in turn modifies the background evolution—therefore the
sound horizon and the diffusion damping scale—but also directly affects the growth of both
metric and density perturbations. Indeed during matter domination, the growth of matter per-
turbations deep inside the sound horizon is linear, whereas it is only logarithmic in the radiation
domination era. Hence, a longer matter domination results in a bigger amplitude of the matter
density perturbations. On the other hand, as already explained, if matter-radiation equality
happens earlier, metric perturbations have more time to stabilize resulting in a suppression of
the EISW term.

Going from PlanckTT to PlanckTTTEEE datasets (i.e. switching between Fig. 41 and Fig. 42 from
blue curves and contours to orange/red ones) does not alter the picture very much, but helps tighten
further the allowed decaying DM fraction. In the long-lived regime, the product fdcdmΓdcdm is now
constrained to fdcdmΓdcdm < 6.3× 10−3 Gyr−1, which is an improvement of 7%. In the intermediate
lifetime case, one can see a O(10%) improvement: the fraction of dcdm has to be as small as 3.8%
for Γdcdm > 0.3 Gyr−1. This results is also in agreement with Ref. [186], which found a bound of
4% on fdcdm in this regime for Planck TT,TE,EE + low-P but no lensing likelihood. Finally, in the
short-lived regime the constraint tightens more, by about O(20−30%), or even up to a factor 2 below
Γ ' 104 Gyr−1. This was expected from the previous discussion, since the impact of a varying Ωdm is
strong on both EE and TE spectra, either through lensing or reionisation effects.

4.4.2 Adding low redshift astronomical data

Let us now add data from BAO, H0 and matter power spectrum measurements to our dataset, in order
to tighten the diagnostic power on decaying DM models. This turns out not to be very straightforward,
for at least a couple of reasons: i) a technical one is that some of these “low redshift” data, notably
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the CFHT ones [302], provide weak lensing measurements of the matter power spectrum up to k ' 5

h/Mpc. Unfortunately the calculation of the decaying DM model matter power spectrum in the
non-linear regime raises some concerns, which will be described in Sec. 4.4.2.1 below. ii) At face
value, the measurements of H0, σ8, Ωm from low-redshift probes seem to be in tension with CMB-
inferred determinations. For instance, the reduced Hubble parameter today derived by Planck is
h = 0.6727 ± 0.0066 (Planck 2015 TT,TE,EE+lowP [19]). This is about 3.0σ lower than the most
recent value of Ref. [509], h = 0.7302 ± 0.0179, obtained from the Hubble Space Telescope (HST)
data. The CMB-inferred values of σ8 and Ωm also at more than 2σ than the ones coming from
cluster counts [18] or weak lensing CFHT tomographic analysis [302]. There are two ways out to this
tension: a) Since the comparison can only be done within a given cosmological model, it may be that
ΛCDM is incomplete, and the tension would be eventually resolved if data were analyzed within “the
true” cosmological model. Perhaps the decaying DM hypothesis works exactly in the sense wanted.
Further considerations on this important issue will be the topic of sec. 4.4.2.2. b) Alternatively, there
are perhaps underestimated systematics in one or several of the datasets used. Without entering the
difficult question of what those errors may be, in Sec. 4.4.2.3 we explore the implications for decaying
DM constraints of combining only data which are mutually consistent.

4.4.2.1 Linear vs Non-linear matter power spectrum
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Figure 43: The non-linear matter power spectrum computed using halofit for a universe with dcdm compared to
the standard ΛCDM cosmology. We fix all parameters to their best-fit value for Planck 2015 TT,TE,
EE+low-P [19]: {θs=1.04077, ωini

dm or ωcdm = 0.1198, ωb = 0.02225, ln(1010As)=3.094, ns=0.9645,
zreio=9.9}.

The most straightforward way to deduce the non-linear matter power spectrum in presence of
decaying DM is obviously via N-body simulations. This approach has been considered in Ref. [232], in
which the N-body code Gadget2 [566] has been modified by considering an evolving “N-body particles”
mass. Unfortunately we cannot rely fully on their results for a couple of reasons: first, they only
consider a model in which the whole DM is decaying (i.e. fdcdm = 1); hence, by definition their results
only apply to long-lived decaying DM, leaving out most of the parameter space of interest for us. The
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second one is perhaps more subtle: for the specific case at hand, it is unclear to which extent one can
fully rely on simulations of relatively small cosmological “boxes”. To understand why, let us remind the
reader that linear theory essentially predicts that decaying DM yields a power-spectrum suppression,
almost constant in fraction, at sufficiently large k (see solid curve in the bottom panel of Fig. 43).
Numerical simulations of Ref. [232] match this behaviour, eventually showing a stronger suppression
at larger k (see dot-dashed curve in Fig. 43, based on the fitting formula reported in [232].) However
we also know that: i) A strong impact of the decaying DM is to enhance the amplitude of the matter
power spectrum on very large scales (very small k’s), as discussed in section 4.3.2. This is again visible
in the solid curve in the bottom panel of Fig. 43, reporting the linear result. ii) Deeply in non-linear
regime, IR and UV mode-mode coupling is potentially important. Unfortunately, the size of boxes
adopted in [232] is insufficiently large to capture this behaviour at small k, hence may be also missing
its consequence at large k. A further caveat may be added if one compares the results of the simulations
with a simple-minded use of the halofit function [558], see dashed curves in Fig. 43. Although this
fitting function has been derived in the context of standard ΛCDM cosmology (extended to non-zero
neutrino mass [577]), the main impact of the decaying DM on the DM properties should be to slightly
modify the (1 + z)3 dilution term, without a priori changing any of its clustering properties. One
could argue that halofit is still reliable for such models, but unfortunately the result departs from the
one of the simulations of ref. [232]: On small scales, the non-linear power spectrum in the decaying
DM universe increases and even exceeds the one in a ΛCDM cosmology. The bottom line is that it is
unclear up to which values of k one can rely either on the simulations of [232] or halofit results. A safe
bet is to limit the analysis to modes k < 0.4 − 0.5h/Mpc, where all results agree and the departure
from linear theory is minor. One implication of this cautionary approach is that we cannot rely on the
full P (k) from CFHT, extending to k ' 5 h/Mpc. For our considerations in the next section, we will
simply make use of the inferred values of σ8Ωα

m, which are at the hearth of the claimed discrepancies.
Of course, in models departing from ΛCDM the whole procedure used by CFHT to extract σ8Ωα

m
should also be affected, and a different value of σ8Ωα

m might result. Unfortunately, we cannot check
this point explicitly, and we will limit ourselves to perform analyses similar to the existing literature
on this subject.

4.4.2.2 The low-redshift data discrepancies

In this section, let us assume that the discrepancies are physical, and thus hint to departures from
the ΛCDM model. Numerous alternative explanations are available in the literature: we can mention
a possible interaction between dark matter and dark radiation [393] or in the dark energy sector [496],
or adding sterile neutrinos with pseudoscalar self-interactions [60]. Actually, it has been pointed out
that even decaying DM could help in solving these discrepancies [99], [186], [232]. Here we wish
to revisit these claims. Qualitatively, it is easy to understand why decaying DM may provide the
needed ingredient. Since Ωdcdm and Ωm decrease with time and CMB data pins down very precisely
the value of ωcdm ≡ Ωcdmh

2, the value of h has to be bigger than in ΛCDM to compensate for
the decay. Similarly, cluster count and weak lensing data8 measure the combination σ8Ωα

m. Hence,
a smaller Ωm has to be accompanied by a bigger σ8. Thus, one could in principle hope to find a
model which satisfies both CMB and low redshift astronomical data. In fact, this seems to be the

8 In reality, CFHT is a measure of the P (k) up to scales deep in the non-linear regime. As explained in section 4.4.2.1,
we cannot reliably modelize the non-linear growth of structure in the dcdm universe and therefore only make use of the
σ8Ωαm measurement.
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case according to Ref. [99], where best-fit models were found for {fdcdm,Γdcdm} ' {10%, 1 Gyr−1}. In
practice, however, we have seen that CMB is still very sensitive to modification of cosmology below
the redshift of recombination, so that our analysis based on all CMB datasets disfavours a fraction
of DM decaying between recombination and today larger than about 3.8%; it is then reasonable to
anticipate that in a global analysis no fully satisfactory solution to the tension can be found, at best
marginal improvements. Yet, in the recent article [186] a fit of a decaying DM model to Planck TT,
TE, EE, lensing and cluster counts, as well as to an earlier H0 determination [508], has been claimed
to improve over ΛCDM by almost 2.5σ9. On the other hand, Ref. [232] fitted a model with fdcdm = 1

to Planck TT spectrum, WMAP09 polarisations, CFHT and BAO data, and did not find more than
∼ 1σ improvement over ΛCDM. As a contribution to clarify the situation, we repeat the analysis,
combining Planck CMB data with CFHT [302] and Planck cluster [18] constraints on σ8Ωα

m, BAO
measurements from [47] and the H0 determination from [509], which is an update of the former 2011
result of ref. [508]. Results are summarized in Table 5 and shown in Figs. 44, 45, 46. These figures
just illustrate how we can reproduce, at least qualitatively, results of the past literature: Fig. 44
shows the tension in ΛCDM vs. low-redshift data, Fig. 45 the improvement in a short-lived dcdm
cosmology and Fig. 46 in a long-lived dcdm cosmology. To gauge how important the discrepancy and
the improvement are, however, let us inspect more in detail the numerical entries in Table 5. Within
ΛCDM, one can see that the addition of the data in tension, namely HST, CFHT and Planck clusters
(only 3 datapoints, dubbed dataset ExtA), degrades the χ2

min,eff , defined as −2 log (Likelihood), by 31.2
(cf. PlanckTTTEEE+ExtB vs PlanckTTTEEE+ExtA+ExtB in Table 5; the dataset ExtB is composed
of BAO data and the WiggleZ galaxy power spectrum, in agreement with Planck CMB data). When
turning to the dcdm model, we qualitatively confirm the previous claims in that an improvement
is present, corresponding to a shift in the best–fit value of h, and a small preference for lower Ωm

and bigger σ8 values. However, χ2
min,eff improves at most by 6.7 (slightly above 2σ) at the price

of adding two new parameters to the model; had we dealt with a satisfactory physical model, we
should have expected an improvement in χ2

min,eff of about 30. We therefore conclude that global fits to
current data are only marginally improved when switching to a decaying DM cosmology, at the price
of complexifying the model by the addition of two new parameters. However, since there is a weak
preference for a non-vanishing decaying DM fraction, in this framework the bound on fdcdmΓdcdm (not
surprisingly) weakens to fdcdmΓdcdm < 15.9× 10−3 Gyr−1 at 95% CL.

4.4.2.3 Bounds on the decaying DM fraction and lifetime from mutually consistent data

Finally, if assuming that the tension between CMB and low redshift astronomical measurements are
due to unknown systematics in the latter ones, one may ask what is the improvement on decaying DM
constraints in a global analysis of mutually consistent datasets. We thus add to the PlanckTTTEEE

dataset defined previously the BAO measurements at z = 0.32 and 0.57 of the BOSS collaboration [47]
and the P (k) data from WiggleZ [468]10, collectively dubbed ExtB. The result for the different regimes
are shown in Fig. (47).

9 These authors also underline that improvements are very sensitive to small tensions between Planck’s best estimation
of the lensing amplitude from the TT, TE, EE spectra and from the full lensing reconstruction using 4-point correlation
functions. We do not wish to enter here into these details and refer interested readers to that study. We simply quote
their best fit result to all datasets.

10 It is safe for us to use this dataset since it only probes k ≤ 0.5 h/Mpc, which is only a weakly non-linear regime, as
discussed in Sec. 4.4.2.1.
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dataset ΛCDM DCDM (Γdcdm > H0) DCDM (Γdcdm < H0)

χ2
min,eff χ2

min,eff fdcdm χ2
min,eff fdcdmΓdcdm (Gyr−1)

PlanckTT 11272.3 11272.3 < 4.2% 11272.3 < 6.7×10−3

PlanckTTTEEE 12952.4 12952.4 < 3.8% 12952.2 < 6.3×10−3

ExtA 4.665 4.19 − 3.691 < 0.14

PlanckTTTEEE+ExtB 13775.5 13775.5 < 3-3.6% 13775.5 < 5.9×10−3

PlanckTTTEEE+ExtA+ExtB 13806.7 13804.1 < 3.5-4.2% 13800.0 < 15.9×10−3

Table 5: Comparaison of the χ2
min,eff and constraints on fdcdm or fdcdmΓdcdm as a function of the dataset, in

the ΛCDM and the DCDM models. The dataset ExtA is composed of CFHT, BAO, HST and Planck
Clusters, which we refer as the discrepant dataset in the text. The dataset ExtB is instead composed
of BAO data and the WiggleZ galaxy power spectrum, all in agreement with Planck CMB data.
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Figure 44: Illustration of the discrepancies between measurements of σ8, Ωm and H0 coming from the CMB
and low-redshift experiments in the ΛCDM model. Inner and outer coloured regions denote 1σ and
2 σ contours, respectively.

The bounds on fdcdmΓdcdm now tightens to fdcdmΓdcdm < 5.8 × 10−3 Gyr−1, or equivalently
τdcdm/fdcdm > 170 Gyr. If we compare to previous result [70], the use of Planck 2015 data improves
only by about 6% previous bounds derived with Planck 2013 and polarisation data from WMAP9
[304]. In the intermediate regime, the additional data improve the bound, but now in a way slightly
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Figure 45: As in Fig. 44, but in the dcdm model with Γdcdm > H0.

dependent on the lifetime: Roughly, the 95% CL bound on fdcdm evolves from 3% for Γdcdm ' 10

Gyr−1 up to 3.6% at Γdcdm ' 0.5 Gyr−1, and then relaxes as CMB-only bounds for longer lifetimes. Fi-
nally, in the short-lived regime constraints are improved for particles decaying around matter-radiation
equality by up to a factor 2. For other lifetimes, LSS data do not tighten CMB bounds.

4.5 Conclusions

In this work, we have revisited the issue of cosmological bounds on decay of a fraction of dark matter
into some form of inert, or “dark” radiation, i.e. relativistic degrees of freedom not interacting elec-
tromagnetically. Within the standard model, neutrinos or gravitational waves are the only candidates
with the right properties, but beyond the standard model, additional particles may play this role.
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Figure 46: As in Fig. 44, but in the dcdm model with Γdcdm < H0.

With respect to the past literature, we have improved in several respects: The most obvious one
is that we have been using the most recent datasets available, which should ideally lead to tighter
constraints. Note also that we have corrected a mistake in the older work of [335] with a similar aim,
which implies that we do not expect our constraints to match those of this reference, and does not
justify a direct comparison. We have described in detail the impact of the DM decay on the TT and
EE CMB power spectra, and on the matter power spectrum. This impact depends a lot on the order
of magnitude of the DM lifetime. We have extended the parameter space to much smaller lifetimes,
which provides a very rich phenomenology. For the first time, we also checked that degeneracies with
massive neutrinos are broken when information from the large scale structure is used. Even secondary
effects like CMB lensing suffice to this purpose. All constraints were derived using the most recent
data of Planck [19], BAO [47] and WiggleZ [468]. Our results suggest that the bounds derived from
2015/16 CMB data are slightly stronger than 2013 ones derived in [70]: basically CMB alone is now
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Figure 47: Strongest constraints on the decaying dark matter fraction fdcdm as a function of the lifetime Γdcdm

in the long-lived and intermediate regime.

as constraining as the global combination used in [70]. A global analysis of mutually consistent data
improves the bounds further, albeit not by much: roughly by 6% at large lifetime, reaching as much
as a 25% improvement at intermediate ones, before slowly degrading to the CMB-only ones for very
early decays. While this points to a substantial robustness of the cosmological bound, when adding low-
redshift measurements of σ8 [18], [302] and H0 [509], the situation is more puzzling: A tension emerges,
as noted in the recent past. Although some amount of decaying DM goes in the right direction to
reconcile the discrepancy, quantitatively the situation improves only marginally: no evidence in favour
of decaying DM can be thus inferred, but at the same time the existing tension (not surprisingly)
degrades the derived bounds by a factor of ∼ 3. It appears more likely that the discrepancy requires
either a different (and possibly major) alteration of the ΛCDM model, or derives from some yet
unknown systematic effect.
Compared to the bounds applying to the case where the totality of the DM is assumed to be

unstable, the implications of our bounds on a decaying fraction of DM are much broader and possibly
far reaching. Although we do not aim at an exhaustive review of the model-dependent consequences of
our results, let us just mention one interesting implication: Recently the possibility that a sizable if not
dominant fraction of the DM is in fact in the form of stellar mass primordial black holes (BH) has been
reconsidered, see for instance [104], [192], [194]. Naively, this possibility is in contradiction with existing
bounds (see e.g. [506]), which however could be evaded for instance if the current BH population is
much more massive than the initial one, due to a rich merger history [194]. In BH mergers, however,
a sizable fraction of their mass is converted into gravitational waves. In the only merger detected to
date by the LIGO detectors [7], about 5% of the mass was converted into gravitational radiation!
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Figure 48: Strongest constraints on the decaying dark matter fraction fdcdm as a function of the lifetime Γdcdm

in the short-lived dcdm regime.

Remarkably, our CMB bound for the DM fraction converting into dark radiation has two features: i)
for a large range of decay timescales, it is largely independent of the decay rate, suggesting that the
bound may apply also to more complicated evolution histories than those described by a simple decay,
at least to the DM fraction converted in radiation between recombination time to recent epoch. ii)
numerically, if all of the DM is made of primordial BH, it excludes that in average they could have
undergone even a single merger event with a fractional gravitational wave energy release comparable
to the one detected by LIGO [7]. While a specific study for a given merger history would be needed
to draw strong conclusions, qualitatively this is a new powerful argument to disfavor that a sizable
fraction of DM is in the form of primordial black holes, if they undergo substantial reprocessing of the
initial mass function. Actually, this is perhaps the only generic constraint that applies to primordial
black hole DM candidates of any mass.
Let us conclude with a comment: In this work, we have ignored effects associated to the recoil

velocity of daughter particles in what we dubbed “scenario 2” in Sec. 7.1. While our CMB bounds also
apply to this case, typically (but this is a model-dependent statement!) more stringent cosmological
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and astrophysical constraints apply. This is suggested by a number of publications, such as [49], [156]—
-which incidentally also conclude that in those decaying DM models it is challenging to reconcile CMB
tension with {σ8, Ωm} determinations from clusters—or [106]—where an effective equation of state
for the semi-relativistic daughter particle is derived and constrained with the SN Ia Hubble expansion
diagram. It is also expected that these models have a rich phenomenology at non-linear scales, possibly
associated to the resolution of long-standing issues in the comparison of observed properties of small-
scale structures with ΛCDM expectations. These studies require however dedicated simulations, which
have recently started to be performed, see e.g. [587]. Definitely, the study of decaying DM scenarios,
notably in the non-linear clustering regime, may still reserve some surprises.





5
NON-THERMAL BBN FROM ELECTROMAGNETICALLY DECAYING
PARTICLES

This chapter is adapted from publications in Physical Review Letters [491] and Physical Review D
[495].

5.1 Introduction

Electromagnetic cascade, namely the evolution of γ, e± particle numbers and energy distributions fol-
lowing the injection of energetic γ or e into a medium filled with radiation, magnetic fields and matter,
are one of the physical processes most frequently encountered in astroparticle physics, in domains as
disparate as high-energy gamma-ray astrophysics, ultra-high-energy cosmic ray propagation, or the
physics of the early universe. As discussed in sec. 3.5, the elementary theory of such a cascade onto a
photon background has been well known since decades, and can be shown via a textbook derivation
(see Chapter VIII in [218], for instance) to lead to a universal “meta-stable” spectrum—attained on
timescales much shorter than the thermodynamical equilibration scale—of the form:

dNγ

dEγ
=





K0

(
Eγ
εX

)−3/2
for Eγ < εX ,

K0

(
Eγ
εX

)−2
for εX ≤ Eγ ≤ εc ,

0 for E > εc .

(5.1.1)

In the above expression, K0 = E0ε
−2
X [2 + ln(εc/εX)]−1 is a normalization constant enforcing that

the total energy is equal to the injected electromagnetic energy, E0; the characteristic energy εc =

m2
e/ε

max
γ denotes the effective threshold for pair-production (εmax

γ being the highest energy of the
photon background onto which pairs can be effectively created); εX ≤ εc/3 is the maximum energy of
up-scattered inverse Compton (IC) photons.
A notable application of this formalism concerns the possibility of a non-thermal nucleosynthesis

phase in the early universe (for recent review on this and other aspects of primordial nucleosynthesis,
or BBN, see [339], [489]). The determination of the baryon energy density of the universe Ωb inferred
from the CMB acoustic peaks measurements can be used in fact to turn the standard BBN into
a parameter-free theory. The resulting predictions for the deuterium abundance (or 2H, the most
sensitive nuclide to Ωb) are in remarkable agreement with observations, providing a tight consistency
check for the standard cosmological scenario. As discussed in sec. 1.3.2.3, The 4He and 3He yields
too are, broadly speaking, consistent with this value, although affected by larger uncertainties. The
7Li prediction, however, is a factor ∼ 3 above its determination in the atmosphere of metal-poor
halo stars. If this is interpreted as reflecting a cosmological value—as opposed to a post-primordial
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astrophysical reprocessing, a question which is far from settled [338], [565]—it requires a non-standard
BBN mechanism, for which a number of possibilities have been explored [339], [489].
In particular, cosmological solutions of the lithium problem based on electromagnetic cascades have

been proposed in the last decade, see for instance [202]. However, typically they do not appear to be
viable [489], as confirmed also in recent investigations (see for instance Fig. 4 in [251], dealing with
massive “paraphotons”) due to the fact that whenever the cascade is efficient in destroying enough
7Li, the destruction of 2H is too extreme, and spoils the agreement with the CMB observations
mentioned above. Actually, this tension also affects some non-e.m. non-thermal BBN models, see for
instance [383].
This difficulty can be evaded if one exploits the property that 7Be (from which most of 7Li come

from for the currently preferred value of Ωb, via late electron capture decays) has the lowest photodis-
sociation threshold among light nuclei, of about 1.59MeV vs. 2.22MeV for next to most fragile, 2H.
Hence, to avoid any constraint from 2H while being still able to photo-disintegrate some 7Be, it is
sufficient to inject photons with energy 1.6 < Eγ/MeV < 2.2, with a “fine-tuned” solution (see e.g.
the remark in [489] or the discussion in [382]). Nonetheless, it turns out to be hard or impossible to
produce a sizable reduction of the final 7Li yield, while respecting other cosmological bounds, such as
those coming from extra relativistic degrees of freedom (Neff) or spectral distortions of the CMB. A
recent concrete example of these difficulties has been illustrated in [341], which tried such a fine-tuned
solution by studying the effects of O(10) MeV sterile neutrino decays.
In this work, we point out that, depending on the epoch, at sufficiently low energies of injection the

cascade develops differently and the final spectrum is significantly altered with respect to Eq. (5.1.1),
which has been incorrectly used till recently, see e.g. [341], [382]. This corresponds to the situation when
the photons injected at energy Eγ are not sufficiently energetic to induce pairs onto the background
photons at temperature T , and can be translated in the condition Eγ ≤ 10T−1

keV MeV (we use natural
units with c = kB = 1). For T of order O(keV) down to O(eV) characteristic of the period between the
end of BBN to the formation of the cosmic microwave background (CMB), these energies are typically
higher than the photodisintegration thresholds of light nuclei, denoted by Eth.
As a concrete application, we show first the impact on the constraints in the abundance vs lifetime

plane for unstable early Universe relics, decaying electromagnetically, and derived from the deuterium,
4He and 3He measurements. Our main conclusion is that the bounds are non universal and that they
may be significantly more stringent than commonly thought. In the following, we will compare the
constraints obtained from different elements in the hypothesis of the universal spectrum with the
actual constraints obtained for monochromatic photon injections at different energies, below the pair
production threshold εc. This parametrization is used solely for the sake of clarity; the differences
would persist for any spectrum (either primary photons or secondary due e.g. to upscattering of
background photons via the IC by energetic e±) injected below the critical energy.
Secondly, we show that this re-opens a window to a cosmological solution to the 7Li problem via e.m.
decays. Additionally, one expects peculiar signatures associated to such scenarios, which can be probed
with cosmological observations. We will discuss this both in a proof-of-principle example and in the
context of a particle physics model, involving one sterile neutrino. This was chosen for its simplicity
and to allow for a direct comparison with the results of [341], which studied a similar model.
This work is structured as follows. In Sec. 5.2, we describe the features of the electromagnetic (e.m.)

cascades and the breakdown of the universal nonthermal spectrum, as well as our method to solve the
relevant Boltzmann equations. In Sec. 5.3, we describe the nonthermal nucleosynthesis formalism and
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the observational constraints being used in the following. In Sec. 5.4 we review the constraints coming
from the CMB, notably from its spectral distortions, to which we will compare the BBN ones. We
present our non-universal constraint in Sec. 5.5, while the solution to the Lithium problem is described
in Sec. 5.6. Finally, Sec. 5.7 contains a discussion with our conclusions.

5.2 E.m. cascades and breakdown of universal nonthermal spectrum

In general, in order to compute the nonthermal photon spectrum which can photodisintegrate nuclei,
one has to follow the coupled equations of both photon and electron-positron populations presented
in sec. 3.5. For the problem at hand, however, where we limit ourselves to inject photons incapable of
pair production, it is a good first approximation to ignore the nonthermal electrons; while the injected
photons will in general Compton scatter and produce them, a further process, typically IC onto the
photon background, is needed to channel back part of their energy in the photon channel. The energy
of these photons is significantly lower than the injected photon one: whenever they are reinjected below
nuclear photodissociation thresholds they are actually lost for nonthermal nucleosynthesis; otherwise
they would contribute to strengthening the bounds, although only by a few percent, for the cases
discussed below. For simplicity, let us also start by assuming that all photon interactions are destructive;
i.e. photons are not downscattered to a lower energy. Within this approximation, the Boltzmann
equation describing the nonthermal photon distribution function fγ reads

∂fγ(Eγ)

∂t
= −Γγ(Eγ , T (t))fγ(Eγ , T (t)) + S(Eγ , t) , (5.2.1)

where S(Eγ , t) is the source injection term, Γγ is the total interaction rate, and we neglected the
Hubble expansion rate since interaction rates are much faster and rapidly drive fγ to a quasistatic
equilibrium, ∂fγ(εγ)

∂t ≈ 0. Thus, we simply have

fSγ (Eγ , t) =
S(Eγ , t)

Γγ(Eγ , t)
, (5.2.2)

where the term S for an exponentially decaying species with lifetime τX and density nX(t), of which
the total e.m. energy injected per particle is E0, can be written as

S(Eγ , t) =
n0
γζX(1 + z(t))3 e−t/τX

E0τX
pγ(Eγ , t) , (5.2.3)

with z(t) being the redshift at time t and the energy parameter ζX (conventionally used in the
literature) is simply defined in terms of the initial comoving density of the X particle n0

X and the
actual one of the CMB, n0

γ , via n0
X = n0

γζX/E0. We shall use as a reference spectrum the one for
a two body decay X → γ U leading to a single monochromatic line of energy E0, corresponding
to pγ(Eγ) = δ(Eγ − E0). If the unspecified particle U is (quasi)massless, like a neutrino, one has
E0 = mX/2, where mX is the mass of the decaying particle. Note that here, we will be interested in
masses mX between a few and O(100) MeV, and at temperatures of order few keV or lower, hence
the thermal broadening is negligible, and a Dirac delta spectrum as the one above is appropriate.
We calculate Γγ by summing the rates of processes that degrade the injection spectrum, namely:
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• Scattering off thermal background photons, γth: γ + γth → γ + γ.
This has been studied in Ref. [573], and the scattering rate of a γ-ray with energy Eγ over a
blackbody with temperature T is given by

Γγγ = −0.1513α4me

(
Eγ
me

)3( T

me

)6

. (5.2.4)

• Bethe-Heitler pair creation : γ +N → e± +N .
The cross section for this process is given by [349]

σBH '
3

8

α

π
σTh

(
28

9
ln

(
2Eγ
me

)
− 218

27

)
Z2 . (5.2.5)

• Compton scattering over a thermal electron : γ + e±th → γ + e±. For the temperature of interest
of O(keV), one can consider electrons to be at rest. In this case, we have [362]

ΓCS = n̄e
3σTh
4x

[(
1− 4

x
− 8

x2

)
ln (1 + x) +

1

2
+

8

x
− 1

2(1 + x)2

]
,

where x =
2Eγ
me

and n̄e is the number density of background electrons and positrons.

In reality, not all scattered photons will be “lost”: even ignoring the energy transferred to e− and e+,
Compton scattering and γγ scattering still leave lower-energy photons in the final state. This effect
can be accounted for by replacing the rhs of Eq. (5.2.1) by the following term:

S(Eγ , t)→ S(Eγ , t) +

∫ ∞

Eγ

dxKγ(Eγ , x, t)fγ(x , t) . (5.2.6)

The additional term of which the kernel is K accounts for scattered photons and is obtained by sum-
ming the differential rates for the γγ scattering off background photons and the Compton scattering
over thermal electrons, respectively given by [573]

dΓγγ(Eγ , E
′
γ)

dE′γ
=

1112

10125π
α2r2

εm
−6
e ×

8π4T 6

63
E′2γ

[
1− Eγ

E′γ
+

(
Eγ
E′γ

)2
]2

, (5.2.7)

dΓCS(Eγ , E
′
γ)

dE′γ
= πr2

e n̄e
me

E′2γ

[
E′γ
Eγ

+
Eγ
E′γ

+

(
me

Eγ′
− me

Eγ
− 1

)2

− 1

]
. (5.2.8)

The integral in Eq. (5.2.6) now depends on fγ . We numerically solve this Boltzmann equation using
an iterative method: we start from the Dirac distribution and the algebraic solution of Eqs. (5.2.2)
and (5.2.3), plug in the result thus obtained in Eq. (5.2.6) to estimate the new “effective” source term,
and proceed. Note that the zeroth-order solution of Eqs. (5.2.2) and (5.2.3) is exact at the end point
Eγ = E0, with further iterations essentially improving the description at lower and lower energies. We
stop iterating when the resulting improvement on the constraints is smaller than 3%. Figure 49-left
panel shows the resulting spectrum proportional to fγ according to the prefactor of Eq. (5.2.3)] for
an injected monochromatic photon of 70 MeV at the temperature T = 100 eV in the commonly used
universal spectrum approximation (long-dashed red line) and for the actual solution of the Boltzmann
equation, as a function of the iteration (short-dashed blue lines). For this example, one can estimate
εc ' 100MeV and εX ' 30MeV. Two features are clearly visible: i) the universal spectrum grossly
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Figure 49: Left panel: Spectrum computed in this work (solid black line) compared with approximated one
used in the literature (long-dashed red line), for the case E0 = 70MeV at T = 100 eV. The short-
dashed, blue lines show the contribution from the photon population as computed in our iterative
treatment, with the number of iterations increasing from 1 to 7 from bottom to top. The dot-dashed
curve is the estimated contribution to the photon spectrum from the nonthermal population of
electrons excited by the energy loss channels of the photons. Right panel: Cross sections for the
relevant photodisintegration processes.

fails for Eγ ≥ εX , as expected, since it imposes an artificial suppression; ii) the exact solution is
significantly harder at intermediate energies, but attains the same slope as the universal spectrum
at low energies. However, the low-energy normalization is altered, since the universal spectrum is
unphysical in pushing too many photons to low energies (below nuclear thresholds).
Although neglected so far, an analogous treatment can be applied to the nonthermal electron dis-

tribution fe: the source term will be given by the Compton scattering and Bethe-Heitler processes of
nonthermal photons, and the “loss term” into the photon channel essentially by IC scattering. The
latter will in turn correspond to a new source term in Eq. (5.2.6), the impact on the photon spectrum
is reported in Figure 49-left panel with a dot-dashed green line. It is clear that, unless the injected pho-
ton energies are too high, this only brings a modest correction to the low-energy tail of the spectrum,
with the expected improvement in the constraints being even less prominent. The iterative solution
technique adopted above would still perform correctly, although a detailed evaluation would render
the calculation unnecessarily lengthy, and will not be pursued further here. We checked in fact that,
for the cases discussed in the following, four iterations for the photon spectrum are enough to obtain
bounds accurate at the 10% level (and often better) and always on the conservative side.
Since the critical energy for pair production is a dynamical quantity that increases at later times due

to the cooling of the Universe, it may happen that the primary photons energy E0 is above threshold
for pair production at early times and below it at late times (we do take into account that the decay is
not instantaneous). In general, at each time we will compare E0 with εc and use the universal spectrum
when E0 > εc or the monochromatic spectrum with the complete expression for S when E0 < εc. This
gives always a qualitatively correct solution, albeit it is somewhat approximate when E0 ∼ εc. Since
this is realized only in a very narrow interval of time, however, the final results are also quantitatively
robust, barring artificial "fine-tuned" results in a specific region of the parameter space.
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5.3 Nonthermal nucleosynthesis

5.3.1 Review of the formalism

At temperatures of few keV or lower, the standard BBN is over, and the additional nucleosynthesis
can be simply dealt with as a postprocessing of the abundances computed in the standard scenario,
for which we use the input values from Parthenope [481], with the updated value of Ωb coming from
Ref. [19].
As long as the amount of injected energy is small compared to the density of background CMB

photons, one can neglect its impact on the expansion history. Thus, the nonthermal nucleosynthesis
due to electromagnetic cascades can be described by a system of coupled differential equations of the
type

dYA
dt

=
∑

T

YT

∫ ∞

0
dEγfγ(Eγ , t)σγ+T→A(Eγ)− YA

∑

P

∫ ∞

0
dEγfγ(Eγ , t)σγ+A→P (Eγ) ,(5.3.1)

where: YA ≡ nA/nb is the ratio of the number density of the nucleus A to the total baryon number
density nb (this factors out the trivial evolution due to the expansion of the Universe); and σγ+T→A
is the photodissociation cross section of the nucleus T into the nucleus A, i.e. the production channel
for A; σγ+A→P is the analogous destruction channel. Both cross sections are actually vanishing below
the corresponding thresholds. In general one also needs to follow secondary reactions of the nuclear
byproducts of the photodissociation, which can spallate on or fuse with background thermalized
target nuclei, but none of that is relevant for the problem at hand. According to Ref. [202], the
only signification secondary production is that of 6Li. Despite extensive work in the past, the current
observational status of 6Li as a reliable nuclide for cosmological constraints is doubtful, given than
most claimed detections have not been robustly confirmed, and a handful of cases are insufficient to
start talking of a “cosmological” detection, see [338]. We shall thus conservatively ignore these nuclide
and the secondary reactions in the following.
With standard manipulations, namely by transforming Eq. (5.3.1) into redshift space, defining

H(z) = H0
r (1 + z)2 as appropriate for a Universe dominated by radiation (with H0

r ≡ H0

√
Ω0
r , H0

and Ω0
r being the present Hubble expansion rate and fractional radiation energy density, respectively),

one arrives at

dYA
dz

=
−1

H0
r (z + 1)3

×
[∑

T

YT

∫ ∞

0
dEγfγ(Eγ , z)σγ+T→A(Eγ)− YA

∑

P

∫ ∞

0
dEγfγ(Eγ , z)σγ+A→P (Eγ)

]
,(5.3.2)

which is solved numerically for the cases of interest.

5.3.2 Light element abundances

Among light elements, as discussed in section 1.3.2.3, we can broadly speak of an agreement of standard
BBN predictions with observations for the case of 4He, 3He, and 2H, while at face value the 7Li yield is
overpredicted by a factor ∼ 3 with respect to observations. Since the interpretation of 7Li observations
in terms of a primordial yield is still a subject of debate, see Refs. [338], [339], [489], one can consider
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two possibilities: either the observed values are not representative of the cosmological production
mechanism, in which case it would be meaningless to derive constraints based on those observations,
or alternatively, modifications to the standard BBN scenario, including electromagnetic cascades, could
reconcile the envelope of 7Li observed values with a primordial origin. In the following, we will adopt
the former, more conservative option, and hence we will not use 7Li for constraints on e.m. cascades.
We discuss the latter possibility in sec. 5.6.

For the observationally imposed limits, we use the following (already introduced in section 1.3.2.3):
for 4He, which can only be destroyed by nonthermal BBN, we just impose the 2-σ lower limit on
the mass fraction Yp > 0.2368 from Ref.[74]. For 2H we adopt the 2-σ limit 2.56 × 10−5 < 2H/H <

3.48×10−5 from Ref. [455]; similar results would follow by adopting the combination value compiled in
Ref. [339], namely 2.45×10−5 < 2H/H < 3.31×10−5, which is also closer to the results of Ref. [480]; our
interval also overlaps with the recent determination in Ref. [507]. For 3He we impose no observational
lower limit, but the 2-σ upper limit from [78] 3He/H < 1.5×10−5. It is worth noting that, had we used
some alternative recent determinations such as [345] for 4He or [197] for 2H, some mild tension with the
standard BBN predictions for the value of η recently reported, e.g., by Planck would have appeared.
These discrepancies are much smaller than the one affecting 7Li, and could be easily accommodated
with a more conservative error attribution: for 4He this is the conclusion supported, e.g., in Ref. [455]
or the recent Ref. [203], essentially consistent with the value we quoted above; for 2H it is also a
possibility suggested by the slightly anomalous dispersion of several measurements around the mean
(see e.g. the discussion in Ref. [339]). Alternative possibilities to reduce the tension with one or several
of these determinations include a slightly different value of η between the BBN epoch and the CMB
one, the addition of exotic phenomena such as cascades, and possibly others. In the following we
shall adopt a similar attitude to the one adopted before for 7Li and consider conservatively the more
generous observational ranges reported above. This is also justified to ease the comparison with earlier
analyses of cascade nucleosynthesis bounds, which used similar ranges. Our main emphasis here is in
fact to gauge the impact of a more correct treatment of electromagnetic cascades, rather than deriving
the most aggressive bounds achievable. Needless to say, should more precise observational values be
confirmed in future studies, if in agreement with standard BBN expectations, it would be worth it to
derive updated stringent bounds; if not, it would be interesting to rediscuss possible explanations in
the context for instance of cascade nucleosynthesis, as we do for 7Li in sec. 5.6.
For the current application, the network of reactions used is reported in Fig. 49-right panel, and

follows the parametrization in the appendix of [202]. (Actually, the reaction 4He(γ, 2H)2H is signifi-
cantly suppressed with respect to the others and thus not shown in the figure but is included in our
numerical treatment.) Note that all cross section share the same qualitative features: they rise fast
just above threshold, go through a peak (the so-called giant dipole resonance), eventually showing a
decreasing tail at higher energies. We shall compare the bounds thus obtained with the ones coming
from CMB spectral distortions and entropy production, briefly recalled in the following section.

5.4 Constraints from the CMB

It is well known that a late injection of photons in the thermal bath can lead to additional measurable
cosmological alterations.
For instance, the injection of a significant amount of energy can lead to modification of the photon-

baryon ratio η or equivalently to the increase of the comoving entropy. Since the inferred values of Ωb
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at the BBN and CMB epoch are compatible, no major entropy release could have taken place between
nucleosynthesis and decoupling. It can be shown that, in a Universe dominated by radiation and by
considering that the decays have happened at t ∼ τ , we have for a small fractional change in entropy
(see e.g. Ref. [341])

∆S

S
' ln

Sf
Si

= 2.14× 10−4

(
ζX→γ

10−9 GeV

)(
τx

106 s

)1/2

, (5.4.1)

with a slight abuse of notation since ζX→γ now has to be intended to include any electromagnetically
interacting decay products, all of which contribute to modify the photon-baryon ratio. To derive
a statistically sound constraint, one should combine BBN and CMB data, allowing for an entropy
increase between the two epochs. Since, as we shall see, this constraint is typically much weaker than
others, such an exercise would bring us far beyond the scope of this study adding a lengthy and
unnecessary complication. We shall thus limit ourselves to illustrate the constraint that would follow
by allowing a maximal 2% increase in the entropy between the two periods. This is an educated guess
of the order of the bounds that one can expect, roughly corresponding to the 2-σ error bars on Ωb

from Planck 2015 [19].
Furthermore, as discussed in sec. 3.6, the spectrum of the CMB itself can also be affected through two

types of deformation: a modification of the chemical potential µ and a modification of the Compton-y
parameter, which are related to the energy gained by a photon after a Compton scattering. For the
relatively early time we focus on, the constraints come essentially from µ-type distortions. We follow
here the results of Ref. [164], which contains improvements with respect to the ones given in Ref. [322],
notably for z ≤ 2 × 106, while Ref. [322] is accurate enough at late times (see Fig. 16 in Ref. [164]).
Hence, we adopt

µ ' 8.01× 102

(
τX
1 s

)1/2

× J ×
(
ζX→γ
1 GeV

)
, (5.4.2)

with

J =





exp
[
−( τdC

τX
)

5
4

]
for z < 2× 106

2.082
(
τdC
τX

) 10
18

exp

[
−1.988

(
τdC
τX

) 10
18

]
, otherwise,

(5.4.3)

where τdC = 1.46 × 108 (T0/2.7 K)−12/5(Ωbh
2)4/5(1 − Yp/2)4/5 is the “double Compton” interaction

time in terms of the current CMB temperature T0, with Yp ' 0.25 the primordial mass fraction of 4He.
We use the limit given by COBE on the chemical potential: |µ| ≤ 9×10−5 [246], but we will also show
the sensitivity that should characterize the future experiment PIXIE, of the order of µ ≥ 5× 10−8, at
1-σ [374].

5.5 Non Universal constraints from BBN

One of the most peculiar features of the spectral nonuniversality of photons injected below the pair
production threshold is that the final outcome reflects the energy distribution of the injected photons
with respect to the shape of the relevant photodisintegration cross sections, shown in Fig. 49- right
panel. This motivated us to choose in the following for each nuclide, the results for two representative
examples of monochromatic injection: one close to the resonant peak and another one well after it. The
markedly different outcomes obtained in the two cases should thus convincingly argue that constraints
of actual models are going to be determined not only by the decay time and the overall energy injected
but also by the energy range at which the bulk of the photons lies.
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5.5.1 Constraints from 4He

The simplest situation is certainly the one concerning 4He: being the only abundant nucleus subject
to photodisintegration, its nonthermal e.m. production is irrelevant, and one only has to care about
its destruction; i.e. only the term proportional to YA at the rhs of Eq. (5.3.2) is important. The results
obtained by using a monochromatic injection at 70 MeV (hatched/light shaded red), at 30 MeV (dark
shaded red), and the universal spectrum are shown in Fig. 50. The vertical lines indicate the time at
which the threshold energy for pair production εc starts exceeding the corresponding injected energy.
One might naively expect that this is the time at which the constraints obtained from the incorrect use
of the universal spectrum start to deviate from the actual ones. However, when taking into account
the fact that the decay is not instantaneous, it turns out that constraints already start to deviate
at ∼ τX/5, and the closer to the post-threshold cross section resonance we inject energy, the earlier
deviations appear.
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Figure 50: Constraints from 4He depletion in the standard case (black line) and for a non-universal spectrum
with E0 = 30 MeV (dark shaded red) and E0=70 MeV (hatched/light shaded red). We also show the
sensitivity to the entropy variation constraint (green dashed line), current constraints from CMB
spectral distortions (excluded above the short-dashed blue line), and the sensitivity reach of the
future mission PIXIE [374] (above the red dot-dashed line).

Although the BBN bounds coming from excessive depletion are typically (but not always!) weaker
than CMB distortion bounds, also reported in the figure, note that in both cases bounds can differ
from the ones derived with the universal spectrum by a large factor, up to an order of magnitude if the
energy of the photons is around the peak of the photodissociation cross section. For higher-injected
energies, they tend to become closer to the universal spectrum constraints, as it should. In fact one
can envisage fine-tuned situations in which they become slightly weaker, albeit this conclusion does
depend on the extrapolation of the photodisintegration cross sections, of which the reliability at high
energy has never been quantitatively assessed in the context of BBN applications.
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Figure 51: Left panel: Constraints from deuterium depletion in the standard case, with E0 ≤ 20 MeV (black
solid line) and for a nonuniversal spectrum with E0 = 4 MeV (dark shaded red) and E0=20 MeV
(hatched/light shaded red). All other constraints/sensitivities shown as in Fig. 50. Right panel:
Constraints from Deuterium depletion and production in the standard case, with E0 ≥ 20 MeV
(black solid line) and for a nonuniversal spectrum with E0 = 30 MeV (dark shaded red) and E0=70
MeV (hatched/light shaded red). All other constraints/sensitivities shown as in Fig. 50.

5.5.2 Constraints from 2H

For deuterium, the situation is more complicated because several regimes are present. At low τX , εc
is below 4He photodissociation threshold (and in some cases also below A = 3 nuclei photodissocia-
tion thresholds, which are, however, less relevant). Hence, only constraints from overdestructions are
present. At high τX , however, what dominates is the overproduction from 4He destruction.
Figure 51-left panel, shows the illustrative case where production channels are turned off: this is

exact for E0 ≤ 8MeV, but a good approximation till E0 ≤ 20MeV. Note the qualitative similarity to
the 4He case, apart for the modifications due to the different features of the respective cross sections.
Whenever production channels from 4He are open, which requires E0 ≥ 20MeV, the constraints

are significantly stronger at large τX , as shown in Fig. 51-right panel. Once again, a violation of
universality (and a sensitivity to the energy dependence of the cross section) is clearly manifest by
the two cases shown, E0 = 30MeV and E0 = 70MeV.
It is also worth noting that for deuterium the constraints are significantly stronger than the ones

coming from CMB spectral distortions. By improving the sensitivity to µ down to µ ≥ 5× 10−8, the
sensitivity expected by the future mission PIXIE [374] (shown by the red, dot-dashed curve) would
greatly strengthen these constraints, with the exception of very small lifetimes where deuterium overde-
struction would still provide the dominant bounds.

5.5.3 Constraints from 3He

First of all, a premise is necessary: there are in fact two nuclei with A = 3, 3He, and 3H, the latter
being unstable to beta decay into 3He with a half-time of over 12 years, or about 4×108 s. Practically,
however, for the purposes of the constraints discussed here, one can sum the equations for 3He and
3H and treat them as a single effective nucleus with A = 3. The reason is twofold: first, we only
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Figure 52: Left panel: Constraints from the 3He production in the standard case (black line) and for a nonuni-
versal spectrum with E0 = 30 MeV (dark shaded red) and E0=70 MeV (hatched/light shaded red).
All other constraints/sensitivities shown as in Fig. 50. Right panel: Global BBN best constraints in
the standard case (black line) and for a nonuniversal spectrum with E0 = 30 MeV (dark shaded red)
and E0=70 MeV (hatched/light shaded red). All other constraints/sensitivities shown as in Fig. 50.

require 3He not to be overproduced with respect to the observational upper limit. Hence, the key
reactions are the production channels by single nucleon photodisintegration from 4He, which are only
open above 20 MeV, rather than the destruction ones. Second, 3He and 3H are “mirror nuclei” under
the isospin symmetry n ↔ p, and their nuclear properties are in fact very similar: the corresponding
thresholds in nuclear cross sections, for instance, only differ by some 0.8 MeV (compare the two
curves in Fig. 49-right panel.) From Fig. 52-left panel, where we report our results, it is clear that the
photodisintegration cross section for single nucleon emission from 4He, when open, is so important that
very stringent nucleosynthesis constraints follow. In fact, they are much stronger than the current ones
coming from CMB spectral distortions, although future PIXIE sensitivity might improve over them
over most of the parameter space.
Notice the importance of the nonuniversality: the two cases with 30 or 70 MeV monochromatic

injections lead to significantly different constraints, and in both cases depart from the “universal
spectrum” ones.

5.6 A solution to the cosmological lithium problem

5.6.1 Proof of principle

If the injected energy is 1.59 < E0/MeV < 2.22, the only open non-thermal BBN channel is γ+7Be→
3He+4He, whose cross-section 1 we denote with σ?. Furthermore, the problem at hand is much simpler
for a couple of reasons: i) The resulting secondary or tertiary photon are typically at too low-energies
to contribute to photo-dissociations and can be neglected. We thus rely on eq. 5.2.3. The results that
we obtain are in this respect slightly conservative, by an amount which we estimated to be of the
order of a few %. ii) There are no relevant nuclei that can act as a source term and only one evolving

1 It is worth reporting that the cross-section for this process reported in the appendix of [202] is erroneous. This has
already been pointed out in [341], which we agree with. The correct formula is used in the following.
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species (since Y7 � Y3,4). From eq. 5.3.2, we have for the final (at zf ) to initial (at zi) abundance
ratio

ln

(
Y7Be(zi)

Y7Be(zf )

)
=

∫ zi

zf

n0
γζX σ?(E0) c e−1/(2H0

r τX(z′+1)2)

E0H0
r τXΓ(E0, z)

dz′ . (5.6.1)

By construction, equating the suppression factor given by the RHS of the Eq. (5.6.1) to ∼ 1/3 provides
a solution to the 7Li problem which is in agreement with all other constraints from BBN. In Fig. 53-left
panel, the lower band shows for each τX the range of ζX corresponding to a depletion from 40% to
70%, for the case E0 = 2MeV. Similar results would follow by varying E0 by 10% about this value,
i.e. provided one is not too close to the reaction threshold. The upper band represents the analogous
region if we had distributed the same injected energy according to the spectrum of Eq. (5.1.1), up
to min[εc , E0]. It is clear that in the correct treatment a large portion of this region survives other
cosmological constraints, described below, while none survives in the incorrect treatment.
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Figure 53: Left panel: The lower band is the range of abundance parameter ζX→γ vs. lifetime τX , for which
the primordial lithium is depleted to 40% to 70% of its standard value, for a monochromatic photon
injection with energy E0 = 2 MeV. The upper band represents the analogous region if we had
distributed the same injected energy, up to E0 = 2MeV, according to the erroneous spectrum of
Eq. (5.1.1). Above the solid green curve, a change in entropy (and Ωb) between BBN and CMB time
larger than the 2σ error inferred from CMB would be obtained. The region to the right of the short-
dashed cyan curve is excluded by current constraints from µ-distortions in the CMB spectrum [246]
according to the computation of [164]. The dot-dashed red curve is the forecasted sensitivity of the
future experiment PIXIE, corresponding to |µ| ∼ 5 × 10−8[374]. Right panel: Constraints for the
sterile neutrino model discussed in the text. The legend is the same as for case 1.

For illustration, in Fig. 53 the solid blue line represent the level of entropy release associated to a
variation of 2σ around the best-fit measured value of Ωb by Planck, ∆S/S ' 0.022 [17]. Since the level
of injected energy needed to solve the lithium problem via a monochromatic line is up to two orders of
magnitude below the bounds, it is clear that this constraint is very weak, but for very short lifetimes
of the order of 104 s.
The µ-type spectral distortion bound excludes the region to the right of the dot-dashed, green curve in
Fig. 53. For comparison, the dashed cyan curve reports the much weaker bound that would follow from
the approximations in [322]. We also checked that the extra constraint due to extra “dark radiation”
parameterized by Neff is irrelevant as long as the branching ratio in extra relativistic species is not
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larger than a couple of orders of magnitudes with respect to the photon one. We thus conclude that
there is a significant interval of lifetimes (104 ≤ τX/s < 106) and corresponding energy injection
parameter 10−3 > ζX→γ/MeV > 1.3 × 10−6 for which a perfectly viable solution is possible. We
remind once again that this possibility appeared to be closed due to the use of Eq. (5.1.1) beyond its
regime of applicability.

5.6.2 A concrete realisation with a sterile neutrino

One may wonder how realistic such a situation is in a concrete particle physics model. Although we
refrain here from detailed model-building considerations, it is worth showing as a proof-of-principle
that models realizing the mechanism described here while fulfilling the other cosmological constraints
(as well as laboratory ones) can be actually constructed. Let us take the simplest case of a sterile
Majorana neutrino, as introduced in sec. 3.2.2, with mass in the range 3.2 < Ms/MeV < 4.4, mixing
mainly with flavour α neutrinos via an angle θα. We also define Θ2 ≡ ∑α θ

2
α. The three main decay

channels of this neutrino are (see e.g. [102] and refs. therein):

• νs → 3ν, with rate Γνs→3ν ' G2
FM

5
sΘ2

192π3 ;

• νs → ναe
+e−, with a rate depending on single θα’s;

• νs → νγ, with a rate Γνs→νγ '
9G2

FαM
5
s

256π4 Θ2 .

The resulting branching ratios for the masses of interest and θe � Θ are of the level of 0.9 : 0.1 : 0.01,
respectively. It is physically more instructive to normalize the abundance of the νs, n0

s, in terms of
one thermalized neutrino (plus antineutrino) flavour species, n0

ν . In Fig. 53 - right panel, we show
the corresponding range of parameters in the Θ − n0

s/n
0
ν plane, for Ms = 4.4MeV, for which the

7Li problem is solved, fulfills cosmological constraints and, provided that θe � Θ, also laboratory
ones [266]. It is worth noting that: i) the entropy release bound is now close to the region of interest,
since the decay mode νs → ναe

+e−, which is useless as far as the 7Be dissociation is concerned,
dominates the e.m. energy injection. ii) A non-negligible fraction of relativistic “dark energy” is now
injected, mostly via the dominant decay mode νs → 3ν; hence we added the current 1σ sensitivity
of Planck to Neff [17], with ∆Neff computed similarly to what done in [341]. The needed abundance
could be obtained in scenarios with low reheating temperature [266].

5.7 Conclusions

We have argued that the universality of the photon spectral shape in electromagnetic cascades has
often been used in cosmology even beyond its regime of applicability. When the energy of the in-
jected photons falls below the pair production threshold, i.e. approximately when Eγ ≤ m2

e/(22T ) ∼
10T−1

keV MeV, the universal form breaks down.
In sec. 5.5, we showed how important the modifications to the photon spectrum in this regime are for
the constraints from nonthermal BBN. This required the numerical solution of the relevant Boltzmann
equations, which we attacked by an iterative scheme. The constraints we obtained, for illustrative cases
of monochromatic energy injection at different epochs, are often much stronger than the ones presented
in the literature (up to an order of magnitude), notably when the injected photon energy falls close to
the peak of the photodisintegration cross section of the relevant nucleus. In fact, the breaking of the
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nonuniversality is nontrivial and is essentially controlled by the energy behavior of the cross sections:
in the universal limit, most of the photons lie at relatively low-energies, so that the cross-section be-
haviour at the resonance just above threshold is what matters the most. In the actual treatment, the
photons may be also sensitive to the high-energy tail of the process. Future studies aiming at assessing
the nuclear physics uncertainties affecting these types of bounds would benefit from this insight. It
cannot be excluded that in some cases constraints weaken a bit with respect to what is considered in
the literature.
We also compared BBN bounds with constraints coming from CMB spectral distortions. A summary

plot of the “best constraints” is reported in Fig. 52-right panel, for two choices of the monochromatic
photon energy. We concluded that BBN limits are improving over current constraints from COBE via
the requirement not to underproduce 2H (at low injection lifetime τX), or not to overproduce 3He
(at high τX), while 4He is never competitive. The bounds from a future CMB spectral probe such
as PIXIE would not only greatly improve current CMB constraints but would also reach the level of
current constraints from 3He (often improving over them) allowing for an independent consistency
check. This is reassuring, since the cosmological reliability of 3He constraints does stand on some
astrophysical assumptions. Below τX ∼ 5× 105 s, however, 2H constraints would probably remain the
most stringent ones for a long time to come. Fortunately they are i) quite robust, relying on the single,
well-known cross section 2H(γ, n)p, and ii) easy to compute, since no coupled network of equations
needs to be solved, the problem reducing to the numerical evaluation of a single integral. This is
also the region where constraints coming from hadronic decay modes (not revisited here) are quite
stringent. A synergy between BBN and CMB is thus going to be necessary for this kind of physics
even in the decades to come.
However, the most striking consequences of our better treatment of the E.M. cascade problem in
the early universe is perhaps that it can potentially re-open the possibility of electromagnetic cacade
solutions to the so-called “lithium problem”, which were thought to be excluded by other cosmological
constraints. In sec. 5.6, we substantiated this point with a proof-of-principle example of a photon
line injection at ∼ 2MeV from a particle decay, satisfying by construction all other BBN constraints
but, not trivially, also all other cosmological bounds plaguing previous attempts. Although we did not
indulge into particle model building, we proved that the right conditions can be actually satisfied in
a simple scenario involving a ∼ 4MeV sterile neutrino mostly mixed with ντ and/or νµ with effective
mixing angle Θ ∼ 10−2.
The possibility to find new mechanisms to deplete the standard BBN prediction of lithium abun-

dance in a consistent way is probably the most spectacular consequence of our investigation. In turn,
this could stimulate more specific model-building activities. For instance, decays of relatively light new
neutral fermionic particles X for which the ν+γ channel is the only two body SM channel opened—as
it is the case for the light gravitinos in supergravity models—constitute a natural class of candidates.
Alternatively, one may think of decaying scenarios involving a pair of quasi degenerate mass states
X and Y , which are potentially much heavier than the MeV scale. Some of these scenarios may be
motivated by other astroparticle or particle physics reasons and certainly deserve further investigation.
We also showed how improvements in the determination of µ−type spectral distortions bounds of the
CMB might be crucial to test these scenarios: testing frameworks for the particle physics solutions
to the lithium problem may thus provide additional scientific motivations for future instruments like
PIXIE [374]. Computations of distortions corresponding to specific injection histories may also be re-
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fined: for instance, for short lifetimes relativistic corrections to the double Compton and Compton
scattering may be important to improve the theoretical accuracy [171].
In conclusion, our work suggests that models in the literature that fulfilled the BBN constraints

with less than an order of magnitude margin should perhaps be reconsidered. In particular, those char-
acterized by soft gamma-ray emissions and/or at relatively late times should have been more prone
to incorrect conclusions about their viability. Our study also suggests that actual bounds should be
derived via a case-by-case analysis. Finally, we provided further arguments supporting the usefulness
of an improved constraint from CMB spectral distortion of the µ type, since it would not manifest
the unexpected sensitivity to the shape of the energy injection that we have uncovered.





6
COSMOLOGICAL CONSTRAINTS ON EXOTIC INJECT ION OF
ELECTROMAGNETIC ENERGY

This chapter is adapter from publications in JCAP [490] and PRD [492].

6.1 Introduction

We have presented in chapters 2 and 3 the astrophysical and cosmological evidences for a sizable dark
matter component, whose nature is however still largely unknown. It is even possible for instance that
light and “dark” relativistic particles are present in the cosmic soup, whose cosmological properties
are partially degenerate with neutrino ones, or that DM is made of different components with wildly
different nature and properties such as coupling with ordinary matter or lifetime. We have presented
in chapter 4, the purely gravitational constraints from CMB anisotropies and LSS, i.e. the minimum
requirement to fulfill for any model. However, a large number of relics from the early universe have
been proposed in many extensions of the standard model of particle physics, in some cases unstable to
processes injecting electromagnetic (e.m.) forms of energy. We introduced some of them in sec. 3.4.2.
We have seen in chapter 5 that BBN and/or CMB spectral distortions provide constraints to the
amount of energy injected at early epochs. We will now show that CMB anisotropy considerations
become more relevant for longer lifetimes. It is important to assess the relative constraining power
of these different tools, which is the main task we address in the following. Also, forthcoming 21 cm
surveys promise to open a window on the yet unconstrained “Dark Ages”. It is interesting to estimate
whether this probe has the potential to improve over current CMB constraints. For DM annihilation, it
has been shown recently [409] that, as long as astrophysical uncertainties on star formation dominate,
CMB anisotropies would have a better sensitivity than 21 cm. However, the situation may be different
for exotic physics entering the game at specific ages, as we will discuss in the following.
In section 6.2, we focus on CMB power spectra constraints, describing for the first time the effects

of the e.m. energy injection onto the CMB power spectra as a function of the lifetime of the decaying
particles. In section 6.3, we briefly review how to compute spectral distortions and BBN constraints,
introduced in section 3.6 and chapter 5 respectively. Those typically dominate when the lifetime is
below 1012 s, whereas CMB anisotropies are very powerful at constraining energy injection after this
time. The lifetime dependence of the CMB anisotropy bounds that we derived also inspired us in
proposing an on-the-spot approximation to the more accurate treatment, whose accuracy we tested.
In section 6.4, we apply our treatment to a few candidates of interest introduced in section 3.4.2:
first, we deal with PBHs of relatively low mass, 1013.5 g ≤ M ≤ 1016.8 g, that can affect CMB power
spectra due to their evaporation. To our knowledge, realistic constraints on this scenario have never
been computed so far, yet our results show that the bounds are competitive with existing ones. We
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also develop the large mass PBH scenario (M ≥ M�), which, due to matter accretion, lead to e.m.
energy injection in the surrounding plasma/gas. Then, we show the application of our results to sterile
neutrinos with keV-MeV mass scale. Finally, we provide a first estimate of the room for improvement
left for forthcoming 21 cm experiment SKA 1, comparing it with the reach of a proposed satellite
targeting CMB spectral distortions (PiXiE [374]) and the CMB angular power spectrum accuracy
achievable with a next-generation satellite (CORE-like [117]). We show that the best and most realistic
opportunity to look for this signal (or to improve over current constraints) in the 21 cm probe is to
focus on the Cosmic Dawn epoch, 15 ≤ z ≤ 30, where the qualitatively unambiguous signature of a
spectrum in emission can be present, with negligible effects expected from astrophysical sources. We
finally report our conclusions in section 6.5.

6.2 CMB power spectra constraints

In this section, we describe our treatment of the injection of electromagnetic energy in the cosmological
medium and its effects on the CMB power-spectra. Although the injection history is model dependent,
a useful proxy is to assume the decay of an exotic ‘particle’. Since this also describes the scenario
most commonly found in the literature, henceforth we will thus refer to a decaying particle. Our
considerations are however more generic than that, as we will show later on with a specific example.
Also, we neglect gravitational effects, i.e. we assume that only a small fraction of the total dark matter
density is decaying (or that its lifetime is much longer than the age of the universe, if its abundance
is not small). In general, whenever an e.m. decay channel is non-negligible, the bounds obtained
are many orders of magnitude stronger than the purely gravitational ones (see refs [70], [494] for
recent treatments). The main effect of the decay byproducts is then their impact on the free electron
fraction, which in turn affects CMB anisotropy angular spectra. The separation of scales between
purely gravitational effects and e.m. ones also allow us to isolate the latter, described in details in
what follows.

6.2.1 Standard equations

Both stable and unstable standard model (anti)particles are found among the final states of the exotic
particle decay. The latter decay into standard model stable (anti)particles very quickly compared to
other relevant timescales, hence one can limit oneself to treat only the energy deposition problem of
stable standard model particles and antiparticles. These particle are either “inert”, simply losing energy
adiabatically via redshift, or interact with the gas (primordial plasma) after (before) recombination,
transferring their energy to the photons and light element atoms (electrons and nuclei). It is usual to
neglect the energy deposited by protons/antiprotons and neutrinos: The latter are basically invisible
to the medium and simply carry away part of the energy, hence neglecting them is an excellent
approximation. Ignoring the energy deposition by protons and antiprotons has also been checked to
loosen the bounds at the 10% level [592]. Neglecting those processes thus leads only to modestly
conservative bounds, while permitting a significant reduction of the computing time. As a result, the
deposition process essentially concerns energetic photons and electrons/positrons [155]. Their injection
in the medium initiates the development of a high energy electromagnetic (e.m.) cascade, reviewed in

1 https://www.skatelescope.org/



6.2 cmb power spectra constraints 189

sec. 3.5, which proceeds in the following schematic way: i) the number of non-thermal particles grows,
while their average energy decreases, mostly due to interactions with relic photons; ii) when the non-
thermal particles energy reach the keV range, they start interacting with atoms, mostly hydrogen.
Some interaction also involves helium atoms (but this has been shown to be a sub-leading, often
negligible effect [261]) and free electrons. An accurate description of the evolution of the daughter
particle spectra over many energy and time scales is necessary in order to correctly capture the energy
deposition process. Indeed, it has been shown that at redshift around and below recombination the
injected energy is often not absorbed on-the-spot, rather can redshift away before being deposited [554].
As discussed in sec 3.5.2, dedicated numerical tools have been developed to deal with the relevant
physical processes, and we shall make use of the results from Ref. [554] recently updated in Ref. [552].
The main e.m. impact of exotic particle decay is to modify the fraction of free electrons xe, either
through direct ionization or collisional excitation followed by photoionization by a CMB photon. An
indirect effect is via the heating of the intergalactic medium (IGM), whose temperature we denote
with TM, and which has a feedback on the evolution of xe. This in turn modifies the optical depth
and visibility function and thus affects CMB anisotropy power spectra.
In order to follow the evolution equations for xe and TM we use the numerical code Recfast [531] v1.5,
which we extensively discussed in sec. 1.3.3, as implemented in the Boltzmann code CLASS v2.5. We
recall that in this code, the evolution of the free electron fraction is ruled by a system of coupled
differential equations of the type2

dxe(z)

dz
=

1

(1 + z)H(z)
(R(z)− I(z)− IX(z)) ,

dTM
dz

=
1

1 + z

[
2TM + γ(TM − TCMB)

]
+Kh . (6.2.1)

where the R and I terms are the standard recombination and ionization rates given by

R(z) = C

[
αHx

2
enH

]
, I(z) = C

[
βH(1− xe)e−

hνα
kbTM

]
. (6.2.2)

IX(z) = IXi(z) + IXα(z) is an effective ionization rate where the rate of direct ionization IXi and
excitation+ionization IXα are given by:

IXi = − 1

nH(z)Ei

dE

dV dt

∣∣∣∣
dep,i

, IXα = − (1− C)

nH(z)Eα

dE

dV dt

∣∣∣∣
dep,α

, (6.2.3)

where Ei and Eα are respectively the average ionization energy per baryon, and the Lyman-α energy.
Finally, the rate Kh at which DM decays or annihilations heat the plasma is defined as:

Kh = − 2

H(z)(1 + z)3kbnH(z)(1 + fHe + xe)

dE

dV dt

∣∣∣∣
dep,h

. (6.2.4)

We refer to sec. 1.3.3 for further definitions and more details on each coefficient.
We recall that the energy deposited in the plasma at redshift z, dE

dV dt

∣∣
dep is split between ionization,

2 In reality Recfast contains equations that are modified with fudge factors calibrated on more accurate code such as
CosmoRec [165], [180] and HyRec [38]. It is not necessary to go beyond the use of Recfast as long as the ionization
history around recombination, for which high precision calculation is mandatory, is not too far away from ΛCDM. Since
large energy injections around recombination are ruled out, it is safe for us to work with Recfast only. We have checked
this explicitly by comparing results with the last public version of HyRec.
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excitation of the Lyman-α transition, heating and very low energy photons (≤10.2 eV) unable to
interact. In case of a decaying particle with lifetime τ , the rate of energy injection per unit volume is
given by

dE

dV dt

∣∣∣∣
inj

= (1 + z)3Ξ ΩDMρcc
2Γ e−Γ t , (6.2.5)

where ρc is the current critical density, Γ is the width (inverse lifetime), Ξ is the relative amount
of energy released into e.m. for a single decay, arbitrarily normalized to the current total cold DM
abundance, ΩDM. For instance, a species constituting 1% of the total DM abundance decaying into
νγ corresponds to Ξ = 1/200. We follow the by now standard method of Refs. [244], [551] to take into
account e.m. energy injection in the periods concerned. In that case, the deposited energy is related
to the injected one by:

dE

dV dt

∣∣∣∣
dep,c

= fc(z, xe)
dE

dV dt

∣∣∣∣
inj, long-lived

. (6.2.6)

where the subscript c denotes the “channel” (ionization, excitation,. . . ). Here, dE
dV dt |inj, long-lived corre-

sponds to the injection rate in case of a long-lived particle and the exponential factor e−Γ t is absorbed
in the definition of the fc(z, xe) functions. These functions encode all the physics of the energy de-
position, introduced in sec. 3.5.2 and we will describe them in the following. In principle, transport
equations accounting for all standard model electromagnetic processes (from high-energy QED ones
to atomic processes) allow one to compute the functions fc(z, xe) “case by case”. In practice, at very
least for computing time limitations, some simplifications are needed if one wants to study a large
range of models. For instance, it is standard to perform the factorization approximation

fc(z, xe) ' f(z)χc(xe) (6.2.7)

which has been shown to work very well for injection energies ≥10 MeV [553] and that corresponds
to a factorization between high-energy processes (determining f(z)) and low-energy processes, ap-
proximately universal, responsible for the absorption repartition fractions χc(xe). We have already
introduced and plotted the χc(xe) functions in sec. 3.5.2. Those have been computed in several refer-
ences, the most recent one being Ref. [261], which we adopt.
The f(z) functions are usually obtained in terms of the transfer functions Ti(E, z, z′), describing

what fraction of the initial energy E of a particle i (in practice either e± or γ’s) injected at z′ is
deposited at z. The transfer functions are then simply convoluted with the energy spectrum of each
particle i, dNi/dE, integrated in time for z′ > z, hence accounting for the time evolution of the density
of the decaying particles, and finally summed over the species, i.e. according to the formula:

f(z) = H(z)

∑
`

∫ d ln(1+z′)
H(z′) e(−Γ t(z′))

∫
T (`)(z′, z, E)E dN(`)

dE

∣∣
inj
dE

∑
`

∫
E dN(`)

dE

∣∣
inj
dE

. (6.2.8)

The transfer functions have been computed in Refs. [551], [554] and updated recently in Refs. [552],
[553]. As explained in section 3.5.2, the main update of latter references over the former is to take
into account low energy photons (below 10.2 eV and therefore unable to interact) produced during
the cooling of the high energy particles. Technically, Refs. [552], [553] give the transfer functions per
channel for a given ionization history (Recfast-like, without reionization). We cannot make use of
the transfer function per channel directly since a large part of the parameter space we are dealing
with consists in modification of the reionization history, for which xe ' 0.1 − 1. However, we can
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use what the authors of the above mentioned references call simplified scheme with (corrected) 3 keV
prescription, i.e. we rely on the factorization introduced in Eq. (6.2.7) and that gives very good result
for energy injected above ∼ 10 MeV. Our treatment corresponds thus to state-of-the art methods
of recent literature, although for specific applications ad hoc calculations might still be needed. In
the following, we will limit ourselves to the injection of e± and γ with a monochromatic energy
spectrum. This is not necessarily unphysical, since there are many models with a dominant e.m. two
body final state. The γ ν mode is for instance relevant to unstable gravitinos with mass below the
W gauge boson one; it is also the only “visible” decay of a sterile neutrino lighter than 1 MeV. The
γ γ final state is the paradigmatic decay channel of the well-known axions/axionlike particles, but
it also applies to other cases: One example is a light scalar linearly coupled to matter through the
trace of the standard energy-momentum tensor, proposed e.g. as a dark matter candidate from R2

gravity in [151]. In the same model, if the scalar is heavier than 1 MeV, the e± mode we consider
below is the phenomenologically dominant one. Our choice is however mostly dictated by simplicity,
since in most decay models a continuous spectrum of e.m. particles is emitted: while our formalism
can be applied to any final state with a generic e± and γ energy distribution (see Eq. (6.2.8)), it
would necessarily be more model-dependent and time-consuming to compute the actual bounds in
those cases. Nonetheless, the results obtained in the following are indicative also of cases with a more
complicated energy distribution for the final state particles: Since the energy deposition efficiency is
typically a smooth function of the particle energy, the energy distributions of the daughter particles
can be fairly approximated by replacing them with the deterministic average value, and just correcting
for the average energy fractions in e.m. particles. This approximation can be suitably encoded in the
parameter Ξ previously introduced. For instance, consider the decay mode X → νe+e−: if we denote
with x the average energy fraction carried away by the neutrino, often a fair proxy of the bound can be
obtained from the constraint on the decay of a particle Y into a monochromatic final state, Y → e+e−,
provided one adoptsmY = (1−x)mX , and downscales the parameter Ξ by a factor (1−x). In sec. 6.4.3,
we will apply this approximate treatment to the specific case of a ∼ 130 MeV sterile neutrinos whose
dominant e.m. decay mode is νs → ν e+e−. In Fig. 54 we plot the functions f(z) for decays into
electrons and photons, for several injected (kinetic) energies (chosen to bracket the energy deposition
efficiency) and for three lifetimes (1013 s, 1015 s, and 1020 s). For comparison, in the two cases for
which the lifetime is shorter than the age of the universe, we also plot the decay law exp(−t(z)/τ)

(green curve, with rapid drop at low z) to illustrate its difference with f(z), due to peculiar effects of
energy deposition. Obviously, unless the lifetime is very long, f(z) drops dramatically with decreasing
z due to the exponential decay factor (top panels). However, even for very long lifetimes such that
exp(−t(z)/τ) ∼ 1, f(z) can have a substantial evolution caused by significant changes in the efficiency
of energy transfer for particles in a given energy range (bottom panel for the 100 GeV case).
In order to speed up the evaluation of constraints involving different particle physics parameters,

such as different masses or final state channels, further approximations are often introduced. A very
popular one is the effective on-the-spot approximation. In the context of decaying particles, this ap-
proach relies on two assumptions: first, that energy deposition happens at the same redshift as energy
injection (T (`)(z′, z, E) ∝ δ(z′ − z) in Eq. (6.2.8)); second, that the energy deposition efficiency is
constant over time up to a factor e−Γt, which amounts in assuming that the function f(z) is simply
of the form

f(z) = feffe
−Γ t(z), (6.2.9)
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Figure 54: f(z) functions for particles decaying into electrons and photons, for several injected (kinetic) energies
and for three different lifetimes. In the top panels, the simple exponential decay law for the same
lifetime is also reported, for comparison.

where the factor feff only depends on the mass mχ and on the e.m. branching ratios (i.e. decay
channel(s)). One can think of different Ansätze for relating this effective coefficient to the particle
properties.
In section 6.3.2, we will compute bounds on the e.m. decay model without such an approximation.

Then we will use the beyond-on-the-spot results to physically motivate one particular ansatz for feff .
Finally we will discuss the accuracy of the effective on-the-spot approximation with this ansatz. We
can already anticipate here that we will define feff as the value of the beyond-on-the-spot function
f(z)eΓt(z) evaluated at z ' 300. We will see that this gives approximate bounds correct at the 20%

level for lifetimes > 1014 s, despite the fact that the exact impact of the decay on xe, for instance,
might be poorly described. For shorter lifetimes, no easy criterion emerges.
Let us conclude this section by a technical note. We have modified the Recfast [531] v1.5 routine of

the Boltzmann code CLASS [109], [390] v2.5 following recommendations of Refs. [177], [453], namely
we consistently evaluate the photon ionization coefficient using the photon temperature instead of the
electron one. However, we neglect collisional heating, since this will never be relevant for the level of
energy injection not excluded by the CMB constraints: for all the allowed cases of interest, TM never
increases above 104 K.
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6.2.2 Effects of electromagnetic decays on the ionization history and the CMB power spectra

In this section, we describe the impact of the exotic particle decay on the ionization history and on
the CMB TT and EE angular power spectra as a function of the lifetime Γ−1. We show some TT and
EE spectra for models whose basic cosmological parameters {θs, ωb, ωDM , As, ns, zreio} have been fixed
to Planck 2016 TTTEEE+SIMlow best fit [27]. We illustrate the impact of energy injection for the
specific case of a decay into e±, but very similar conclusions can be reached for photons and therefore
for any e.m. decay product. For each lifetime, we take two different injected energies, that were chosen
to roughly bracket the possible energy deposition efficiencies. A general comment is that, for a given
lifetime, different energy deposition histories might lead to slightly different effects on the C`’s, giving
thereby a potential handle to identify the decay channel and the mass of the decaying particle. Hence,
in case of detection, there would be a possibility to pin down the particle physics scenario causing the
signal, rather than just measuring the lifetime and abundance of the mother particle. A more careful
“case-by-case” analysis for interesting scenarios would be needed to further support this statement.

We wish to test already in this section the accuracy of the on-the-spot approximation, used in most
of past literature, but with our updated ansatz for feff that will be motivated in section 6.3.2. As
already hinted above, this consists in replacing f(z) by f(z = 300)e−Γ[t(z)−t(300)].
Let us consider separately different possible orders of magnitude for the particle lifetime:

• as found in previous literature (see e.g. Refs. [155], [214], [453]), for a lifetime bigger than the
age of the universe, τu ' 1018 s, the main effect of the particle decay is to initiate slowly the
reionization of the IGM at high redshift z > 100 (Fig. 55, top-left panel). Looking at the CMB
power spectra plotted on Fig. 56–upper panels, the decay of long-lived particles imply a step-like
suppression of the TT and EE power spectra, plus a much stronger and wider reionization bump
in the case of the EE spectrum.
In the case of long-lived particles, most of the effect of the decay on the CMB spectra is well
captured by our on-the-spot approximation, as can be seen on the same figure, red curve. The
exponential factor is very close to unity even at z = 0, and the effect of the decay can be fully
described by the unique combination of parameters

ξ ≡ feff Ξ Γ (6.2.10)

which has the dimension of a rate.
The CMB temperature spectrum probes the reionization history after recombination mostly
through the integrated quantity τreio. Hence, the scenarios presented in the figure (all sharing
the same zreio) give identical temperature spectra up to corrections below the percent level,
despite of differences in the ionization history in the range zreio ≤ z ≤ 103. However, the EE
spectra is more sensitive to the ionization history and we can see variations of the order of 50%

at ` < 10 for the 100 GeV case. Note that the quality of the on-the-spot approximation decreases
when the injected energy increases and the energy deposition efficiency goes down.

• For Γ−1 ≥ 1014 s (Fig. 55, top-right panel), a bump in the free electron fraction appears,
localized around the time of the decay. However, the recombination history is not impacted. The
enhancement of the optical depth integrated up to the surface of last scattering leads to a larger
step-like suppression of the TT and EE spectrum on small angular scales (Fig. 56, bottom panels).
The slightly increased probability of photons to re-scatter at intermediate redshifts (between
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recombination and reionization) generates extra polarization, and leads to a characteristic bump
in the EE spectrum, peaking on smaller angular scales than the usual reionization bump (around
` ' 20 in the examples displayed in Fig. 56–bottom-right panel, instead of ` = 3 for reionization).
This could be a rather unique signature of the peculiar reionization history in these models, and
the measurement of the bump location in multipole space would give a direct indication on the
DM lifetime.
Comparing now the results of the accurate treatment with the on-the-spot approximate version,
we find that the latter works well for particles decaying with substantial energy deposition
efficiency (here for 100 MeV), but not for high injected energies (100 GeV in the example of
Fig. 56, bottom panel, green curve). At 100 GeV, the error is as large as 10% around ` ' 50 in
the TT spectrum, and 100% around ` ' 20 in the EE spectrum.

• Finally, for very short lifetimes Γ−1 ≤ 1013 s (Fig. 55–bottom-left panel), the decay starts to
modify also the recombination era, eventually delaying it. The most visible consequence in the
CMB temperature spectra is a stronger damping tail (Fig. 57, top panels). This comes from the
enhanced Silk damping effect caused by a larger width of the last scattering surface. The bump
coming from extra re-scattering and polarization is also visible, but is less sharp than in the
previous case. For a lifetime of Γ−1 ' 1012 s, some more peculiar patterns appear even on large
angular scales (Fig. 57–bottom panels). The reason is that we are running CLASS with a fixed
angular sound horizon scale θs. In these models, recombination is delayed significantly, and the
sound horizon at recombination is larger. The code automatically adapts the angular diameter
distance to the last scattering surface by decreasing H0, to maintain the same θs. Hence the late-
time expansion history is modified and this results in a smaller “late integrated Sachs-Wolfe”
effect on large scales.
Fig. 55 shows again the results obtained using the on-the-spot approximation with our Ansatz
feff = f(300)eΓt(300). In the short lifetime limit, we see that this approach does not capture
the effects of the decay, and would not lead to reliable constraints, which is not surprising
because most particles decay before z = 300. Hence one would need to adapt the ansatz for
each lifetime. In the specific case of Γ−1 = 1013 s, we have been able to find by trial and
error that the ansatz feff = f(zdecay)eΓt(zdecay) (with t(zdecay) = Γ−1 by definition) leads to
effects similar to the beyond-on-the-spot result. In that case, the curves are still in reasonable
agreement, especially in the TT spectrum where the agreement reaches the percent level, while
differences in the EE spectrum are kept below 30%. On the other hand, in the case of Γ−1 ∼ 1012

s, the on-the-spot spectra fails even to predict the correct shape for the effect of the decay on
the CMB spectra. For such small lifetimes, the lack of a meaningful physical criterion to even
define an on-the-spot approximation makes any simplification attempt hazardous. A more refined
search for a phenomenological criterion, e.g. via a principal component analysis as done in the
DM annihilation case [551], would probably be useless. In that case, in order to get reliable
constraints, one has to do MCMC scans for each lifetime, as we shall perform in the following.

In summary, we have illustrated the discrepancy between the on-the-spot approximation and the
more accurate beyond-on-the-spot treatment, for different lifetimes, injected energies and decay prod-
ucts. These discrepancies are more obvious in xe(z) than in the C`’s. We found that for lifetimes
≥ 1013 s the approximation can reach the % level agreement if an appropriate criterion is chosen,
like our ansatz feff = f(300)eΓt(300) that we will further justify in the next section. However, the
error increases when the energy deposition efficiency is very different from an exponentially decaying
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Figure 55: Comparison of the on-the-spot and beyond on-the-spot treatment on the ionization history. We
assume a decaying DM model χ→ e+e−, with Ekin

e = 100 MeV, 100 GeV with lifetimes Γ−1 = 1020

s and 1015 s (top-left and top-right panels respectively), Ekin
e = 1 MeV, 100 GeV with lifetime

τ = 1013 s bottom-left panel) and Ekin
e = 1 MeV, 100 MeV with lifetime Γ−1 = 1012 s (bottom-right

panel). The blue curves on each plot represent result in the Planck 2016 ΛCDM model.

function: this is the case for large injected energies and thus high DM masses. The error can largely
exceed the 10-20% accuracy expected from a state-of-the-art treatment in terms of tabulated transfer
functions. Furthermore, for shorter lifetimes —although we did not investigate deeper in this issue—no
simple criterion emerges which is at the same time accurate and universal enough to be of practical
use. Hence, the on-the-spot approximation should only be used for estimating the order of magnitude
of the CMB bounds in a restricted window in parameter space. In the next section we will work with
the beyond-on-the-spot approach, in order to get results accurate at the 10-20% level.
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Figure 56: Comparison of the on-the-spot and beyond on-the-spot treatment on the lensed temperature and
E-mode polarization power spectra, as well as their residuals. We assume a decaying DM model
χ → e+e−, with Ekin

e = 100 MeV, 100 GeV with lifetimes Γ−1 = 1020 s (top panels) and 1015 s
(bottom panels).

6.3 Results: Summary of constraints and comparison with other probes

6.3.1 Methodology

We perform our study of CMB anisotropy constraints with Monte Carlo Markov chains, using the
public code Monte Python [68] and the Metropolis Hasting algorithm, as explained in appendix B.3.
Beyond the on-the-spot approximation and for each decay channel, the sector of e.m. decaying particles
can be described by three independent parameters, e.g. the particle mass, lifetime and effective energy
density parameter Ξ defined in section 6.2.1. For a better efficiency of MCMC runs, our strategy
consists in scanning a grid of values for the lifetime τ ≡ Γ−1 in the range [1012s; 1026s], and for values
of the mass m leading to byproducts with (kinetic) energies in the range [10 MeV; 1 TeV]. For each
set of (τ,m) values, we perform a fit to the data with flat priors on the following set of parameters:

ΛCDM ≡ {ωb, θs, As, ns, τreio, ωDM}+ Ξ .
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Figure 57: As in Fig. 56 for decaying DM χ→ e+e− with lifetime Γ−1 = 1013 s and injected energies Ee = 1
MeV and 100 MeV (top panels), as well as lifetime Γ−1 = 1012 s and injected energies Ee = 1 MeV
and 100 GeV (bottom panels).

We use a Choleski decomposition to handle the large number of nuisance parameters in the Planck
likelihood [399]. We consider chains to be converged when the Gelman-Rubin [265] criterium gives
R − 1 < 0.05. We use the Planck 2015 high-` TT,TE,EE likelihood, a prior on τreio taken from the
Planck 2016 results based on the new SimLow likelihood [27], and the Planck 2015 lensing likelihood.
Since the effect of a long-lived decay is similar to modifications of the reionization history, one might
expect constraints to depend on the way in which reionization itself is modelled. Thus we first per-
form a couple of runs in order to assess the impact of assuming either instantaneous (“camb-like”)
reionization, or the redshift-asymmetric parametrization of [220], discussed in sec. 1.3.4. For these test
runs, we use for simplicity the on-the-spot approximation, and we are only interested in long-lived
particles. Hence the only relevant parameter describing the e.m. decay sector is the combination ξ

defined in Eq. (6.2.10). With camb-like reionization, we obtain ξ < 5.28×10−26 s−1 (95% CL), whereas
the use of the redshift-asymmetric parameterization yields ξ < 6.03 × 10−26 s−1 (95% CL), which is
comparable to the results of Ref. [453]. The difference is only at the level of 15%, which is anyway the
accuracy level expected for the theoretical calculation of transfer functions in the beyond-on-the-spot
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approximation, and hence the precision with which we expect to estimate the decay lifetime in general
using CMB data. We conclude that assumptions on the reionization history have a marginal impact on
lifetime bounds, and from now on we will always rely on the instantaneous camb-like parametrization.

6.3.2 Results and comparison of various constraints

We summarise the constraints on massive particles decaying into photons and e± with kinetic energies
in [10 MeV; 1 TeV] in Fig. 58. In fact, due to the behaviour of injection efficiency with energy, see [553],
the range of CMB constraints thus obtained also covers the case of smaller injected energies, down
to about 10 keV. Hence, we can safely assume that the band displayed gives a very good estimate of
constraints for energies in the range [10 keV; 1 TeV]. For each lifetime, we report lower bounds on the
effective energy density parameter Ξ, defined in section 6.2.1. Given this definition, if the decaying
particle accounts for 100% of cold dark matter, Ξ is expected to be equal to one or at least of order
one, unless no sizable amount of e± and photons are produced by the decay (e.g. the particle may
decay entirely into neutrinos or dark radiation, a case considered separately in Ref. [494]). If at least
a small fraction of the injected energy goes into photons, electrons and positrons, a bound Ξ � 1

implies that the particle contributes to the total dark matter density by a negligible amount.
For each assumed lifetime, injected energy and decay channel (γ or e±), our MontePython run

gives a CMB upper bound on Ξ that we report on the figure. We obtain two bands, one for each decay
channel, with a width corresponding to extreme assumptions on the injected energy. We also repeat
the analysis with the on-the-spot approximation and show the results with dashed lines.
The bounds from CMB angular power spectra are not the only cosmological bounds available. In

order to assess their relevance, we compare them with: i) the constraints from CMB spectral distortions,
based on the experimental FIRAS bounds, and obtained by integrating equations (3.6.22) as discussed
in sec. 3.6; ii) the constraints from light nuclei overproduction/destruction with respect to standard
BBN prediction computed in chapter 5.
The complementarity of the CMB anisotropy constraints with those from CMB spectral distortions

and BBN is obvious. The constraints from the angular power spectra dominate for long lifetimes,
Γ−1 ≥ 1012 s. They reach a remarkable sensitivity around Γ−1 ∼ tc ≡ Γ−1

c ≡ 1014 s, excluding values
of Ξ as low as ∼ 10−11−10−10. For smaller lifetimes, they degrades roughly by a factor Γc/Γ. Hence the
CMB is maximally sensitive to particles decaying during the dark ages following photon decoupling,
around a redshift zc ' 300 corresponding to the time-redshift conversion of tc.
This suggests that the impact of e.m. decay on CMB anisotropies depends in first approximation

on the amount of energy deposited around the time t ∼ tc, i.e. around the redshift zc. A posteriori,
we can thus propose f(z) −→ f(zc)e

−Γ(t(z)−tc) as a physically motivated ansatz for the on-the-spot
scheme: this approximation captures the quasi-exponential shape of f(z), and goes through the true
value of f(z) near the most relevant epoch t ' tc. Following the definition of feff in Eq. (6.2.9), this
corresponds to feff = f(300)eΓt(300).
Figure 58 summarises the accuracy of this fast approximation scheme (dashed lines). The on-the-spot

bounds are found to be biased at the 10− 50% level for the channels, energies and lifetimes (≥ 1014s)
considered here. For shorter lifetimes, one would need to change Ansatz, which we did empirically in
sec. 6.2 by adjusting feff to f(zdecay)eΓt(zdecay) = f(zdecay)e for τ ' 1013 s. With this new Ansatz, we
checked that the on-the-spot bound (not shown explicitly on the plot) is correct at the 20− 50% level.
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Figure 58: Cosmological constraints on the effective energy density parameter Ξ of exotic particles with e.m.
decay channels. The effective energy density Ξ is normalised to the CDM energy density, and incor-
porates an efficiency factor (thus Ξ = 1 means that the particle makes up 100% of CDM, and that
100% of the decay energy goes into stable photons and e±). We report bounds coming from Big
Bang Nucleosynthesis (shaded red area), CMB spectral distortions (full lines) and CMB anisotropies
measured by Planck (shaded blue area for e± and shaded green area for γ; the width of the band is
obtained by scanning over the kinetic energy of the injected particles in the range [10 keV; 1 TeV]).
In the case of CMB anisotropies, we compare the use of the full treatment for the energy deposition
with the on-the-spot approximation (dashed lines).

For lifetimes below 1013 s, as illustrated in sec. 6.2, the on-the-spot approximation fails at describing
correctly the physical effects of the decay. We conclude that the on-the-spot approximation is barely
sufficient for deriving order-of-magnitude estimates of the bounds in the range τ ≥ 1013 s.
Not surprisingly, earlier universe probes are more sensitive to shorter lifetimes, although the bounds

are never as strong as from the CMB angular power spectra for Γ−1 ∼ 1014 s. It is remarkable that
cosmological probes, combined, achieve a sensitivity over more than 20 orders of magnitude in lifetime!
A few comments are in order:

• There exist other bounds of astrophysical nature (e.g. from gamma-ray flux measurements, see
for instance [190]), which we do not discuss here in details. For energy injection happening mostly
in the late universe (z � 1) and involving sufficiently high energy particles (E �MeV), these
bounds can be more constraining than the cosmological ones. This is why we do not indulge
here in the otherwise interesting parameter space in the upper-right part of Fig. 58.

• Although we kept the point implicit until now, different probes are sensitive to different energies
ranges. BBN is the most limited in this sense, since only photons or e± more energetic than
the disintegration thresholds of light nuclei (from few to few tens of MeV) may have an effect.
The CMB angular spectra constraints apply in principle to a much broader range of energies,
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virtually as low as ∼ 10.2 eV, below which no ionization can be induced. However, the range of
validity of the transfer functions can be questioned below the keV scale, and the factorization
approximation of Eq. (6.2.7) might not be reliable below the ∼10 MeV scale [408]. In practice,
unless one wants to run a “case by case” simulation, one is limited by the regime of validity
of the approximations used. Finally, the CMB spectral distortions, although yielding the least
restrictive of the constrains reported here, are in principle sensitive to a wide range of injected
energies, even very low ones (although, to the best of our knowledge, bounds have always been
derived under the restrictive assumption of injected particles being more energetic than the ones
of the medium). Thus, even if we summarized the bounds in a larger parameter space with one
extra dimension for the injected energy, the different cosmological probes would remain very
complementary.

Let us finish this section by a comparison with previous works. In Ref. [551], CMB anisotropies
constraints have been derived for DM decaying into e± and photons, for several masses and lifetimes.
We can compare our results to their Fig. 7, in which a forecast for Planck was presented. This forecast
turns out to be in fairly good agreements with our results for lifetimes ≥ 1013 s, with a factor ∼2
difference in the long lifetime limit. However, differences are larger for very short lifetimes. We attribute
them to i) the new energy deposition functions; ii) the known fact that Planck slightly underperformed
with respect to earlier expectations regarding polarization errors. Nonetheless, Planck has improved by
nearly one order of magnitude over the pre-existing WMAP 7 constraints. Another estimate of these
constraints in the on-the-spot approximation has been made in Ref. [608]. If we take into account the
limitations of their treatment, our results are in agreement with their Planck forecast (c.f. their Fig.
2).

6.4 Applications and forecasts

6.4.1 Low mass primordial black holes

We have argued in sec. 3.4.2 that a notable application of our results concerns the possibility of
constraining the abundances of PBH at high (≥ M�) and low (≤ 10−15M�) masses. We focus first
on the “low mass” PBH case, for which energy injection is due to the evaporation of the PBH (the so-
called Hawking radiation), a regime which is rather well understood and straightforward to implement.
Quite interestingly, with the exceptions of Refs. [97], [144] on which we will comment below, CMB
constraints to this scenario have been overlooked in the past. A proper computation, to the best of
our knowledge, was never performed so far, which is rather surprising since the bounds we derive (see
below) turn to be competitive with the best ones in the mass range 1015 g to 1016.6 g, which are given
by the extragalactic gamma-ray background (EGB) [144], [148] 3, and to be the dominant ones in the
range 1013.3 g to 1014.4 g.
We summarize here the basic results of PBH evaporation, following ref. [144]. In a seminal couple

of papers [298], [299], Hawking showed that a Schwarzschild black hole of mass M should emit black
body spectra of particles at a temperature

TBH =
1

8πGM
' 1.06

(
1013 g

M

)
GeV . (6.4.1)

3 Note that other gamma-ray bounds exist, like the Galactic ones considered in [145]. While potentially stronger, they
are more model-dependent, as also argued in [148], and we will not consider them in the following.
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The mass-loss rate of an evaporating black holes can be expressed as

dM

dt
= −5.34× 10−11F(M)

(
M

1013 g

)−2

s−1 , (6.4.2)

where the function F(M), normalized to 1 if M > 1017 g, counts the number of (relativistic) particles
species emitted by the PBH, and increases with decreasing mass. For instance, at 1015 g also electrons
and positrons (besides photons, neutrinos and gravitons) can be emitted, and F(M) ' 1.568 [413],
which further rises (due to muon production) to about 2.1 for M ' 1014 g. The number of degrees of
freedom quickly rises for lower masses (when temperatures above the QCD phase transition one are
attained) with F saturating at 15.35 when M ≤ few× 1010 g, assuming the standard model to be the
correct theory. By integration of Eq. (6.4.2) over time, one obtains the lifetime

Γ−1
PBH ' 4.07× 1011

(F(M)

15.35

)−1( M

1013g

)3

s . (6.4.3)

and the energy injection rate for low mass PBH is given in full generality by

dE

dV dt

∣∣∣∣
inj, PBH

=
ΩDMρcc

2(1 + z)3fPBHc
2

M ini
PBH

dM

dt

∣∣∣∣
e.m.

, (6.4.4)

where dM/dt
∣∣
e.m.

= fe.m.dM/dt with fe.m. the e.m. branching ratio of an evaporating PBH, which
depends on its mass. If M ≥ 1015 g, the PBH lifetime is longer than the age of the universe, and its
mass and lifetime are roughly time-independent parameters: for instance, a PBH of initial mass 1015

g would weight 9.6× 1014 g today. Since we do not aim anyway at better than O(10%) level accuracy,
in this mass range we assume that both M and the lifetime Γ−1 are time independent, which leads
to a simple exponential decay law, similar to the case of decaying particles with lifetime given by
Eq. (6.4.3). On the other hand, in this range, we do calculate the ionization and heating efficiency on
the basis of a reasonable approximation for the spectrum of emitted particles. The spectra of particles
emitted by the BH per unit of time with energy between E and E + dE are given by:

dṄs

dE
∝ Γs

eE/TBH − 1(−1)2s
, (6.4.5)

where s is the spin of the particle, and the dimensionless absorption coefficient Γs can be written in
the high-energy limit E � TBH as [461]:

Γs(M,E) = 27E2G2M2 . (6.4.6)

It is also known that the spectra fall rapidly at low energy. To avoid unnecessary complication, in
what follows we thus approximate the spectra as vanishing below E = 3TBH, while sticking to the
high energy limit formula above this energy. Note that a slightly different choice would not have
changed our conclusions significantly, since in most cases the energy deposition functions are not
strongly dependent on the energy. Also note that we do not need to worry about the normalization
in Eq. (6.4.5), since we use it to compute the deposition functions, which only depend on the energy
shape (See Eq. (2.8)). Put otherwise, the correct normalization is assured by using the appropriate
M , Γ, and the correct branching ratio in e.m. channels. On the other hand, the above-mentioned
approximations for the spectra assume relativistic particles. For e±, this becomes too crude for masses
above ∼ 1016.8 g, hence we limit our considerations to lighter PBHs. Also note that EGB constraints
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tend to dominate anyway at these masses, and beyond that GRB femtolensing constraints at the level
of ΩPBH ≤ 0.1 ΩDM take over [81], [148], making a detailed computation of CMB bounds less appealing
for such high masses. For a few cases in the mass interval 1015 g ≤ M ≤ 1016.8 g we recompute the
energy deposition functions fc(z, xe) without relying on the factorization hypothesis, since it breaks
down for some of the injection energies of interest. We conservatively assume the standard reionization
scenario to compute the fc(z, xe)’s 4. Our results for M = 1015g and 1016.7g are shown in Fig. 59,
together with the resulting free electron fractions.
For massesM ≤ 1013 g, the evaporation takes place before 1012 s, hence we expect CMB anisotropies

to be insensitive in that range (see Fig. 58). In the range 1013 g � M � 1015 g, the actual time
dependence of the evaporation is important. The emitted spectrum is rapidly changing with the mass,
which complicates substantially the treatment, in particular in terms of computational time. While
leaving a complete computation of the constraints to a future work, it is however interesting to show
how the non-trivial time dependence of the mass affects the bounds. To make this effect apparent, we
simplify the treatment of the energy deposition function and resort to the on-the-spot approximation.
Indeed, for PBHs with masses ≥ 1014.5 g, most of the evaporation happens at times ≥ 1014 s. Hence, we
expect the effective criterion derived in sec. 6.3 to apply relatively well. We can estimate the efficiency
of this approximation by comparing with the full treatment for masses > 1015 g, finding a reasonably
good agreement.
In order to compute a value of the effective energy deposition efficiency in the on-the-spot limit,

we perform further approximations: a) we only consider the branching ratio into e± and γ, neglecting
the energy eventually deposited by the decay products of heavier particles like muons and pions (if
kinematically allowed). b) We fix this branching ratio to the initial one (i.e. given the initial mass of
the PBH). c) We neglect the evolution in energy of the injected spectra, fixing it to the initial value.
Eventually, in the very last stages of the life of the PBH all standard model particles are produced, and
the energy spectra of the emitted particles change, so all these approximations break down. However,
most of the PBH mass has been radiated away at an earlier epoch, hence on a purely “calorimetric”
ground our choices are reasonable and should capture the bulk of the effect. Note that approximation
a) should slightly underestimate the bounds. Approximation b) should push towards overestimating a
bit the bound, while approximation c) can play in either sense, but is expected to be rather mild: For
most of the time the typical particle energies range from ∼ 10 MeV to few hundreds of MeV, hence the
time evolution in deposition functions should not be extreme. By performing such simplifications, one
can readily integrate Eq. (6.4.2) and find an analytical solution (different from previous constant decay
rate) for the time evolution of the PBH mass. We plot the free-electron fraction for the illustrating
caseMPBH = 1013.7 g in Fig. 59–left panel. It shows a very singular behavior with a peak coming from
the peculiar energy injection history, making it in principle distinguishable from an exotic particle
decay.
Using CLASS and MontePython, we run ΛCDM + fPBH ≡ ΩPBH/ΩDM for 10 different PBH masses

distributed between 1013.5 g and 1016.8 g, using Planck high-` TT,TE,EE + simlow (prior on τreio) and
lensing likelihood. The results of the MCMC scan in the plane {fPBH,MPBH} are shown in Fig. 60,
together with constraints coming from the EGB from Ref. [144], as well as CMB constraints from
Ref. [608] applied to the case of low-mass PBH in Ref. [144] via a simple prescription. Our constraints

4 This is not strictly correct, but only approximately true as long as xe stays very small. Also, an iterative treatment,
starting from a recfast-like ionization history and recomputing the transfer functions once the effects of the decay on
the ionization fraction have been included, showed not only a quick convergence but that the approximate results are,
if anything, conservative [408].
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PBH of masses 1× 1015g and 1016.7g. Right panel − Corresponding free electron fractions.

turn out to be very competitive with γ-ray background one in the range 1015 g to 1016.6 g and to
dominate in the range 1013.5 g to 1014.4 g. We do not extend the study to lower masses since the
on-the-spot approximation is known to fail. We expect however the constraints to rapidly degrade at
lower masses. Note that the constraint in the low mass range, while very strong, is not simply the
prolongation of the high-mass one: the “shoulder” below 1015 g is due to the combined effect of new
channels like muon pairs opening up (which, being less effective in releasing energy, lower the “useful”
e.m. branching ratio), and on the slightly less efficient energy deposition at the correspondingly higher
injection energies. Also note that the similarity of the constraints with those derived in Ref. [144] is
accidental: the data available almost a decade ago where significantly less constraining, but the treat-
ment in [144] overestimated the constraining power due to a number of approximations: for instance
they did not follow the proper time-evolution of the mass; they did not estimate the efficiency of the
energy deposition (they implicitly worked with feff = 1) which overestimates the energy deposition
by a factor 2 to 3 depending on the PBH mass. Finally, our constraints are not nearly as good as
γ-ray background one in the range 1014.4 g − 1015 g. That said, there is still room for improvement
with respect to our current treatment, notably for masses below 1015 g.

Let us finish this section with a quick comparison with Ref. [97]. In this work, an estimate of the
impact of PBH within the mass range 1016 g−1017 g was made. They assumed an effective “on-the-spot”
approximation, working out the value of the absorption efficiency (which would roughly correspond to
our feff) under some simplified assumptions for the energy losses and spectra of evaporated particles.
However, what might lead to the biggest difference with our work is that they compute xe(z) using Saha
formula. Hence, the energy injected to the medium affect the ionization history only through reheating,
which in turns lead to very different evolution for xe as can be seen from our Fig. 59− right panel,
compared to their Fig. 6. Our more accurate computation, that takes into account both the impact
of energy injection through heating and the ionization (as well as excitation) of the atoms, shows
that the free electron fraction evolution departs significantly from Saha equation, with a reionization
starting already at redshift of few hundreds. Thus, the constraints of Ref. [97] should not be considered
quantitatively reliable.
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6.4.2 High mass primordial black holes

6.4.2.1 Introduction

The scenario of high masses primordial black holes beeing DM has received a lot of attention after
the aLIGO discovery of three or four binary black hole (BH) mergers of tens of solar masses [6]–
[8], including one with a progenitor spin misaligned with the orbital momentum. Intriguingly, their
merging rate is compatible with the expectation from binaries formed in present-day halos by a
BH population whose density is comparable to the DM one [104], [194], although Refs. [499], [526]
argue that this is significantly lower than the merger rate of binaries formed in the early universe,
which would thus overshoot the aLIGO observed rate. Very stringent constraints (excluding PBH as
DM with M ≥ 0.1 M�) have been thus derived on this scenario by studying the impact of PBH
accretion onto the CMB statistics already a decade ago [506]. These bounds (as well as their update
in Ref. [314]) have been recently revisited and corrected in Ref. [39] (see also Ref. [43]), yielding
significantly weaker constraintsM ≤ 10−100 M� if PBH constitute the totality of the DM, depending
on the assumption on radiation feedback. In this section, we revisit the CMB anisotropy constraints
on the PBH abundance, which have been derived until now assuming spherical accretion of matter
onto BH. We revisit this hypothesis and find plausible arguments suggesting that an an accretion
disk generically forms in the dark ages, between recombination and reionization possibly already at
z ∼ O(1000). A firm proof in that sense would require deeper studies of the non-linear growth
of structures at small scales, accounting for the peculiarities of PBH clustering and for the time-
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dependent building-up of the baryonic component of halos. A first step to motivate such studies,
however, is to prove that they have a potentially large impact: in presence of disks, CMB constraints
on PBH improve by (at least) two orders of magnitude, excluding the possibility that PBH with
masses M ≥ 2 M� account for the totality of the DM. As we will argue, we expect the bounds to
be greatly improved if the baryon velocity at small scales is not coherent and comparable with (or
smaller than) their cosmological thermal velocity, and/or if a sizable baryon filling of the PBH halos
is present already at z ≥ O(100).
This section is structured as follows: In Sec. 6.4.2.2, we provide a short—and necessarily incomplete—

review of the current understanding of accretion, and discuss its applicability in the cosmological
context. The crucial arguments on why we think plausible that the accretion (at least the one relevant
for CMB bounds) should proceed via disks is discussed in Sec. 6.4.2.3. In Sec. 6.4.2.4 we review the
expected high-energy luminosity associated to these accretion phenomena and describe benchmark
prescriptions used afterwards. Section 6.4.2.5 described our procedure on obtaining CMB bounds. In
section 6.5, we summarize our results and draw our conclusions.

6.4.2.2 Essentials on accretion in cosmology

The problem of accretion of a point mass M moving at a constant speed vrel in a homogeneous gas
of number density n∞ (and mass density ρ∞, where the subscript ∞ means far away from the point
mass) was first studied by Hoyle and Lyttleton [319]–[321] in a purely ballistic limit, i.e. accounting
only for gravitational effects but no hydrodynamical or thermodynamical considerations. They found
the accretion rate (natural units c = ~ = kB = 1 are used throughout, unless stated otherwise)

ṀHL ≡ πr2
HLρ∞vrel ≡ 4πρ∞

(GM)2

v3
rel

, (6.4.7)

where we introduced the Hoyle-Lyttleton radius rHL, the radius of the cylinder effectively sweeping the
medium. This model does not describe the motion of the particles once they reach the (infinitely thin
and dense) accretion line in the wake of the point mass, when pressure and dissipation effects prevail.
Also, it is clearly meaningless in the limit of very small velocity vrel. A first attempt to address the
former problem and account for the accretion column was done by Bondi and Hoyle [114], suggesting
a reduced accretion by up to a factor two. The second problem is linked to neglecting pressure. It
has only been solved exactly for an accreting body at rest in a homogeneous gas, when the accretion
is spherical by symmetry. Its rate has been computed by Bondi [112], yielding the so-called Bondi
accretion rate:

ṀB ≡ 4πλ ρ∞cs,∞r
2
B ≡ 4πλ ρ∞

(GM)2

c3
s,∞

, (6.4.8)

where rB is the Bondi radius, i.e. the radius of the equivalent accreting sphere (as opposed to a cylinder,
hence the 4π geometric factor), cs,∞ is the sound speed far away from the point mass, depending on
the pressure P∞ and density ρ∞ and λ is a parameter that describes the deviation of the accretion
from the Bondi idealised regime. In the cosmological plasma, one typically has:

cs,∞ =

√
γP∞
ρ∞

=

√
γ(1 + xe)T

mp
' 6

km

s

√
1 + z

1000
, (6.4.9)

⇒ rB ≡
GM

c2
s,∞
' 1.2× 10−4pc

M

M�

103

1 + z
, (6.4.10)
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mp being the proton mass, and γ is the polytropic equation of state coefficient for monoatomic ideal
gas. The approximation at the RHS of Eq. (6.4.9) typically holds for 100 ≤ z ≤ 1000. The mean
cosmic gas density in the early universe is given by:

n∞ '
ρ∞
mp
' 200 cm−3

(
1 + z

1000

)3

. (6.4.11)

Finally, λ is a numerical parameter which quantifies non-gravitational forces (pressure, viscosity, ra-
diation feedbacks, etc.) partially counteracting the gravitational attraction of the object. Historically,
Bondi computed the maximal value of λ as a function of the equation of state of the gas, finding
λ ∼ O(1), ranging from 0.25 (γ = 5/3, adiabatic case) to 1.12 (γ = 1, isothermal case).
There is no exact computation of the accretion rate accounting for the finite sound speed and a

displacement of the accreting object. However, as argued by Bondi in Ref. [112], a reasonable proxy
can be obtained by the quadratic sum of the relative velocity and the sound speed at infinity, which
leads to an effective velocity v2

eff = c2
s,∞ + v2

rel. We thus define the Hoyle-Bondi radius and rate5

ṀHB ≡ 4πλ ρ∞veffr
2
HB ≡ 4πλ ρ∞

(GM)2

v3
eff

. (6.4.12)

Despite the fact that the Bondi analysis was originally limited to spherical accretion, this formalism
is commonly used to treat non-spherical cases, with e.g. formation of an accretion disk, by choosing
an appropriate value for λ. Although it has been shown for instance that the simple analytical for-
mulae can overestimate accretion in presence of vorticity [380] or underestimates it in presence of
turbulence [381], typically Eq. (6.4.12) provides a reasonable order-of-magnitude description of the
simulations (see for instance [230] for a recent simulation and interpolation formulae).

6.4.2.3 Relative baryon-PBH velocity and disk accretion in the early universe

In the cosmological context, one might naively estimate the relative velocity between DM and baryons
to be of the order of the thermal baryon velocity or of the speed of sound, Eq. (6.4.9). In that case,
the appropriate accretion rate would be the Bondi one, Eq. (6.4.8). The situation is however more
complicated, since at the time of recombination the sound velocity drops abruptly and the baryons,
which were initially tightly coupled to the photons in a standing acoustic wave, acquire what is an
eventually supersonic relative stream with respect to DM, coherent over tens of Mpc scales. In linear
theory, one finds that the square root of the variance of the relative baryon-DM velocity is basically
constant before recombination and then drops linearly with z [227], [583]:

√
〈v2

L〉 ' min

[
1,

1 + z

1000

]
× 30 km/s . (6.4.13)

Yet, this is a linear theory result, and it is unclear if it can shed any light on the accretion, which
depends on very small, sub-pc scales (Bondi radius, see Eq. (6.4.10)). In Ref. [583], the authors first
studied the problem of small-scale perturbation growth into such a configuration, by a perturbative
expansion of the fluid equations for DM, baryons, and the Poisson equation around the exact solution
with uniform bulk motion given by Eq. (6.4.13), further assuming zero density contrast, and zero
Poisson potential. Their results suggest that small-scale structure formation and the baryon settling

5 Actually, our rate definition is a factor 2 larger than the original proposal, but has been confirmed as more appropriate
even with numerical simulations, see Ref. [544].
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into DM potential wells is significantly delayed with respect to simple expectations. Equation (6.4.13)
has also entered recent treatments of the Hoyle-Bondi PBH accretion rate, see Ref. [39], yielding a
correspondingly suppressed accretion. In particular, by taking the appropriate moment of the function
of velocity entering the luminosity of accreting BH over the velocity distribution, Ref. [39] found

veff ≡
〈

1

(c2
s,∞ + v2

L)3

〉−1/6

'
√
cs,∞

√
〈v2

L〉 , (6.4.14)

with the last approximation only valid if cs,∞ �
√
〈v2

L〉, which is acceptable at early epochs after
recombination, of major interest in the following.
The application of the above perturbative (but non-linear) theory to the relative motion between

PBH and the baryon fluid down to sub-pc scales appears problematic. A first consideration is that
the behavior of an ensemble of PBH of stellar masses is very different from the “fluid-like” behavior
adopted for microscopic DM candidates like WIMPs. The discreteness of PBHs is associated to a
“Poissonian noise”, enhancing the DM power spectrum at small scale, down to the horizon formation
one [25], [157], [274], [609]. Our own computation suggests that a density contrast of O(1) is attained
at z ' 1000 at a comoving scale as large as kNL ∼ 103 Mpc−1 for a population of 1M� PBH whose
number density is comparable to the DM one. Even allowing for fudge factors (e.g. fPBH ∼ 0.1,
different mass) the non-linearity scale is unavoidably pertinent to the scales of interest. In fact, the
PBH formation mechanism itself is a non-linear phenomenon, and peaks theory suggests that PBH are
likely already born in clusters, on the verge of forming bound systems [157], [158]. Our first conclusion
is that the application of the scenario considered in Refs. [227], [583] to the PBH case is not at
all straightforward. In particular, a more meaningful background solution around which to perturb
would be the one of vanishing initial baryon perturbations in the presence of an already formed halo
(and corresponding gravitational potential) at a scale kNL ≥ 103 Mpc−1. A second caveat is that
the treatment in Refs. [227], [583] uses a fluid approximation, i.e. it does not account for “kinetic”
effects such as the random (thermal) velocity distribution around the bulk motion velocity given by
Eq. (6.4.13). One expects that “cold” baryons (statistically colder than the average) would already
settle in the existing PBH halo at early time, forming a virialized system—albeit still under-dense in
baryons, with respect to the cosmological baryon to DM ratio. One may also worry about other effects,
such as shocks and instabilities, which may hamper the applicability of the approach of Ref. [583] to
too small scales and too long times.
Assuming that the overall picture remains nevertheless correct in a more realistic treatment, we

expect that the PBH can generically accrete from two components: the high-velocity, free-streaming
fraction at cosmological density and diminished rate of Eqs. (6.4.12) and (6.4.14), as considered in
Ref. [39], and a virialized component, of initial negligible density but growing with time and eventually
dominating, with typical relative velocity of the order of the virial ones. If we normalize to the Milky
Way halo (1012M�) value vvir ∼ 10−3 c, and adopt the simple scaling of the velocity with the halo
mass over size, vvir(Mhalo) ∝ (Mhalo/dhalo)1/2 ∝ M

1/3
halo, we estimate vvir ∼ 0.3 km/s to 3 km/s for a

halo mass of 103M� to 106M�. The latter roughly corresponds to the smallest dwarf galaxies one
is aware of, see e.g. [116] 6. At z ' O(1000), it is likely that the fast, unbound baryons constitute
the dominating source of accretion. But at latest when the density of the virialized baryon compo-
nent attains values comparable to the cosmological average density—which given the z-dependences

6 The PBH distribution can hardly be dominated by heavier clumps, or the lack of predicted structures at the dwarf
scales would automatically exclude them as dominant DM component.
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Eq. (6.4.9) and Eq. (6.4.13) appears unavoidable for z ≤ O(100)—the accretion is dominated by this
halo-bound component.
After these preliminary considerations, we are ready to discuss disk formation. The basic criterion

used to assess if a disk forms is to estimate the angular momentum of the material at the accretion
distance: if this is sufficient to keep the matter in Keplerian rotation at a distance rD � 3 rS (i.e.
well beyond the innermost stable orbit, where we introduced the Schwarzschild radius rS ≡ 2GM) at
least for BH luminosity purposes, dominated by the region close to the BH, a disk will form [28], [340],
[521], [540]. To build up angular momentum, the material accreted at the Hoyle-Bondi distance along
different directions must have appreciable velocity or density differences. The angular momentum per
unit mass of the accreted gas scales like

l '
(
δρ

ρ
+
δv

veff

)
veffrHB , (6.4.15)

where δρ/ρ represent typical inhomogeneities at the scale rHB in the direction orthogonal to the
relative motion PBH-baryons, and δv/veff the analogous typical velocity gradient at the same scale
(see e.g. [28]). The above quantity can be compared to the specific angular momentum of a Keplerian
orbit,

lD ' rDvKep(rD) '
√
GMrD , (6.4.16)

to extract rD. For instance, in the case of inhomogeneities, if we adopt the effective velocity at the
RHS of Eq. (6.4.14) as a benchmark, as in Ref. [39], we obtain:

rD
rS
'
(
δρ

ρ

)2 c2

2 v2
eff

' 2.5× 108

(
δρ

ρ

)2( 1000

1 + z

)3/2

, (6.4.17)

so that, already soon after recombination, gradients δρ/ρ � 10−4 in the baryon flow on the scale
of the Bondi radius are sufficient for a disk to form. We find this to be largely satisfied already at
z ∼ 1000 because of the “granular” potential due to neighboring PBHs.
Equivalently, given the similar way the fractional fluctuation of velocity and density enter Eq. (6.4.15),

the condition for a disk to form can be written as a lower limit on the absolute value of the velocity
perturbation amounting to

δv � 1.5

(
1 + z

1000

)3/2

m/s . (6.4.18)

At least the component of virialized baryons, whose velocity dispersion is ≥ 0.1 km/s as argued above,
should easily match this criterion.
But even for a “ideal”, free-streaming homogeneous gas moving at a bulk motion comparable to

Eq. (6.4.13) without any velocity dispersion, the disk formation criterion is likely satisfied, if the
non-linear PBH motions at small scales are taken into account. Since this is in general a complicated
problem, we cannot provide a cogent proof, but the following argument makes us confident that this
is a likely circumstance. In general, the BH motion within its halo at very small scale is influenced by
its nearest neighbors. The simplest scenario (see for instance [526]) amenable to analytical estimates
is that a sizable fraction of PBH forms binary systems with their nearest partner, under the tidal
effect of the next-to-nearest. According to [526], for PBH constituting a sizable fraction of the DM, it
is enough for their distance to be only slightly below the average distance at matter-radiation equality
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for a binary to form. Under the assumption of an isotropic PBH distribution and monochromatic PBH
mass function of mass M , this distance can be estimated as

d ∼
(

3M

4πρPBH

)1/3

=
1

1 + zeq

(
2GM

H2
0fPBHΩDM

)1/3

, (6.4.19)

i.e.

d ∼ 0.05 pc

(
M

fPBHM�

)1/3 3400

1 + zeq
. (6.4.20)

If bound, the two PBH (each of mass M) orbit around the common center of mass on an elliptical
orbit whose major semi-axis is a with the Keplerian angular velocity

ω =

√
2GM

a3
. (6.4.21)

We conservatively assume a = d/2 for a quasi-circular orbit, although for the very elongated orbits
usually predicted for PBH a value a = d/4 is closer to reality. Note that the orbital size of the order
of Eq. (6.4.20) is typically larger than (or at most comparable to) the Bondi-Hoyle radius, so that to
a good approximation the gas—assumed to have a bulk motion with respect to the PBH pair center
of mass—accretes around a single PBH, which is however rotating with respect to it.
In the PBH rest-frame, Eq. (6.4.15) is simply replaced by

l ' ω r2
HB , (6.4.22)

or, equivalently, one can apply Eq. (6.4.18) with δv = ω rHB.
If we adopt the effective velocity at the RHS of Eq. (6.4.14), this leads to the disk formation

condition (z ≤ 1000):

f
1/2
PBH

M

M�
�
(

1 + z

730

)3

. (6.4.23)

Whenever M ≥M� and PBH constitute a sizable fraction of the DM, this is satisfied at the epoch of
interest for CMB bounds.
In fact, we have shown in previous section that most of the constraining power of CMB anisotropies

on exotic energy injection does not come from redshift 1000 and above, rather around a typical redshift
of ∼ 300 for an energy injection rate scaling like ∝ (1 + z)3. In the problem at hand, the constraining
power should be further skewed towards lower redshifts, given the growth of the signal at smaller z
due to the virializing component.
We believe that these examples show that disk formation at relatively early times after recombi-

nation is a rather plausible scenario, with spherical accretion which would rather require physical
justification. Note that we have improved upon the earlier discussion of this point in Ref. [506] by
taking into account the essential ingredient that stellar mass PBH are clustered in non-linear struc-
tures at small scales and early times, greatly differing from WIMPs in that respect. In the following,
we shall assume that the disk forms at all relevant epochs for setting CMB bounds, and deduce the
consequences of this Ansatz. In the conclusions, we will comment on the margins for improvements
over the current treatment.
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6.4.2.4 Luminosity

In addition to Ṁ , the second crucial quantity for accretion luminosity is the radiative efficiency factor
ε, which simply relates the accretion luminosity Lacc to the accretion rate in the following way:

Lacc = εṀ . (6.4.24)

The radiative efficiency is itself tightly correlated with the accretion geometry and thus the accretion
rate, since it directly depends on the temperature, density and optical thickness of the accretion region.
Hence, a coherent analysis determines both parameters λ and ε jointly. In practice, no complete, first-
principle theory exists, although a number of models have been developed to compute Lacc (which
is the main observable in BH physics) under different assumptions and approximations. A typical
fiducial value is ε = 0.1, to be justified below. A useful benchmark upper limit to Lacc is the so-called
Eddington luminosity, LE = 4πGMmp/σT = 1.26 × 1038 (M/M�) erg/s, which is the luminosity at
which electromagnetic radiation pressure (entering via the Thomson cross section σT ) balances the
inward gravitational force in a hydrogen gas, preventing larger accretion, unless special conditions are
realized. In practice, for the parameters of cosmological interest, it turns out that we will always be
below LE .
The simplest and most complete theoretical treatment applies to spherical accretion, going back

to Shapiro in Refs. [537], [538] in the case of non-rotating BHs and Ref. [539] for rotating (Kerr)
BHs, accounting for relativistic effects. Since we have argued that this case is unlikely to apply to the
cosmological context of interest, we will not review it here, but address for instance to Ref. [39] for a
recent and detailed treatment. We will only refer to this case for comparison purposes, and for these
cases we follow the equations in Ref. [39].
For moderate or low disk accretion rate, which is the case of interest here, there are two main models:
If the radiative cooling of the gas is efficient, a geometrically thin disk forms, which radiates very

efficiently. This is the “classical” disk solution obtained almost half a century ago by Shakura and
Sunyaev [536]. In this case, the maximal energy per unit mass available is uniquely determined by the
binding energy at the innermost stable orbit. This can be computed accurately in General Relativity,
yielding ε from 0.06 to 0.4 when going from a Schwarzschild to a maximally rotating Kerr BH. This
range, which justifies the benchmark value ε = 0.1 mentioned above, is often an upper limit to
the radiative efficiency actually inferred from BH observations. Also note that, since the disk can
efficiently emit radiation, the temperatures characterizing the disk emission are relatively low, below
a few hundreds of keV.
If the radiative cooling of the gas is inefficient, then hot and thick/inflated disks (or torii) form,

with advection and/or convective motions dominating the gas dynamics and inefficient equilibration
of ion and electron temperature, with the former that is much higher and can easily reach tens of
MeV. This regime is widely (albeit with a little abuse of notation) known under the acronym ADAF,
“advection-dominated accretion flow” (see [603] for a review). It has been discovered in the pioneering
articles [336] and later [503], but has been extensively studied only after its “rediscovery” and 1D
self-similar analytical treatment in Ref. [443]. It is worth noting that in the ADAF solution, the
viscosity α plays a fundamental role in accretion: Indeed the viscously liberated energy is not radiated
and dissipated away, but instead is conveyed into the optically thick gas towards the center. As a
consequence, the accretion rate is typically diminished by an order of magnitude with respect to the
Bondi rate with λ = 1 (see [442] for a short pedagogical overview). In practice, α is degenerate with
the previously introduced parameter λ, so that one might roughly capture this effect by assuming
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as benchmark λ = 0.1. In “classical” ADAF models, the efficiency scales roughly linearly with Ṁ ,
attaining (and stabilizing at) a value of the order of 0.1 only for a critical accretion which is about
0.1LE . Overall, this class of models provides a moderately satisfactory description (at least for α ≤
0.1) of “median” X-ray observations of nuclear regions of supermassive black holes, see e.g. [475] (in
particular the lower dashed curve in Fig. 3).
A further refinement takes into account that gas outflows and jets typically accompany this regime,

so that the accretion rate becomes in general a function of radius [107]. We will still normalize the
(diminished) accretion rate responsible for the bulk of the luminosity to the one at the Bondi radius.
For a specific example, we rely on some recent numerical solutions [599] which suggest: i) On the
one hand, a more significant role of outflows, so that only ∼ 1% of the accretion rate at the Bondi
radius is ultimately accreted in the inner region most relevant for the luminosity of the disk. We shall
model that by benchmarking λ = 0.01. ii) On the other hand, an increase of the fraction, δ, of the
ion energy shared by electrons. Typically, in classical ADAF models, such a fraction is considered to
be very small, δ � 1. A greater efficiency δ implies a corresponding higher efficiency ε, somewhat
intermediate between the thin disk and the classical ADAF solution, also scaling with a milder power
of the mass accretion (ε ∝ Ṁ0.7) at low accretion rates. In Ref. [599], suitable fitting formulae have
been provided, which we rely upon in the following. In particular, we adopt the parameterization in
Eq. (11), with parameters taken from Tab. 1 for the ADAF accretion rate regime. In Fig. 61, we

compare the spherical case with veff =
√
cs,∞〈vL〉1/2 to our benchmark δ = 0.1, as well as a more

optimistic δ = 0.5 and a more pessimistic7 δ = 10−3: the accretion rate (top panel) reduces when a
disk forms (independently of δ), but the luminosity (bottom panel) is enhanced. Since in the redshift
range of interest (blue band in bottom panel of Fig. 61, as we show in previous section) the latter is
enhanced despite the fact that the former is reduced (whatever the value of δ), we expect the CMB
bound to improve appreciably in our more realistic disk accretion scenario.

6.4.2.5 Computing the CMB bound

The total energy injection rate per unit volume is:

dE

dV dt
= Laccnpbh = Laccfpbh

ρDM

M
. (6.4.25)

which can be related to the deposited rate thanks to the usual treatment 6.2.8. The only ingredient
left is thus the spectrum of the radiation emitted via BH accretion. Note that it is only the shape that
enters Eq. (6.2.8), which is indeed an efficiency function, while the overall normalization was discussed
in Sec. 6.4.2.4. In the spherical accretion scenario (see [39], [537], [538]) the spectrum is dominated by
Bremsstrahlung emission, with a mildly decreasing frequency dependence over several decades and a
cutoff given by the temperature of the medium near the Schwarzschild radius Ts

Lω ∝ ω−a exp(−ω/Ts) , (6.4.26)

where Ts ∼ O(me) (we used 200 keV in the following for definiteness) and |a| ≤ 0.5 (a = 0 was used
in [39]).

7 It is worth noting that such a low value is reported in Ref. [599] rather for historical reasons, being associated to the
early analytical solutions of Ref. [443] and thus being an old benchmark, than because of theoretical or observational
arguments related e.g. to Sgr A∗: The authors of Ref. [599] make clear that all evidence points to a higher range for δ,
with δ = 0.1 being on the conservative side, and any δ ≤ 0.3 is in agreement with data from Sgr A∗ [442].
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For consistency with our discussion in Sec. 6.4.2.4, we base our disk accretion spectra on the nu-
merical results for ADAF models reported in Ref. [603], Fig. 1. In particular, we adopt

Lω ∝ Θ(ω − ωmin)ω−a exp(−ω/Ts) , (6.4.27)

with a choice for Ts as above. We ignore the dependence of Ts upon accretion rate and PBH mass,
which is very mild in the range of concern for us. We consider a ∈ [−1.3;−0.7] , with a hardening
linear in the log of Ṁ (as from the caption in that figure) with −0.7 corresponding almost to the
limiting case of the thick disk. We take ωmin = (10M�/M)1/2 eV. Note that such cutoff at low energy
only affects the normalization at the denominator of Eq. (6.2.8), i.e. the “useful” photon fraction of
the bolometric luminosity, normalized as described in Sec. 6.4.2.4. On the other hand, the cutoff at
the numerator in Eq. (6.2.8) is in principle given by the ionization or excitation threshold (depending
on the channel), since photons of lower energy do not contribute to the efficiency. In practice, the
transfer functions are only directly available for energy injection above 5 keV. However, we can safely
extrapolate the transfer function down to ∼ 100 eV: It has been shown in Ref. [261] that the energy
repartition fractions are to an extremely good approximation independent of the initial particle energy
in the range between ∼ 100 eV and a few keV. In fact, this behaviour is at the heart of the “low energy
code” used by authors of Ref. [553] to compute their transfer functions. Below ∼ 100 eV, the power
devoted to ionization starts to drop, and we conservatively cut the integral at the numerator at this
energy. We show the fc(z, xe)-functions for the spherical accretion scenario and the disk accretion
scenario in Fig. 62 - top panel (we chose a mass which we estimate to be among the least efficient
at depositing energy). We incorporated the effects of accretion into a modified version of the Recfast
module [531] of the Boltzmann solver CLASS [109]. It is enough for our purpose to work with a modified
Recfast that has been fudged to reproduce the more accurate calculation from CosmoRec [166] and
HyRec [35]. The impact of the accretion on the free-electron fraction for a PBH mass of 500M� is
shown in the bottom panel of Fig. 62: It is much more pronounced in the disk accretion scenario
(we chose a PBH fraction ∼ 300 times smaller!), even if the energy deposition efficiency is lower. In
Fig. 63, the corresponding impact on the CMB power spectra is illustrated. The effects are typical of
an electromagnetic energy injection: The delayed recombination slightly shifts acoustic peaks and thus
generates small wiggles at high multipoles ` in the residuals with respect to a standard ΛCDM scenario.
Meanwhile, the increased freeze-out fraction leads to additional Thomson scattering of photons off
free electrons along the line-of-sight, which manifests itself as a damping of temperature anisotropies
and an enhanced power in the polarization spectrum. Note that in principle the different accretion
recipes could be distinguished via a CMB anisotropy analysis. Indeed, each accretion scenario has a
peculiar energy injection history which does not lead to a simple difference in the normalization: the
actual shape of the power spectra slightly changes. This behavior is also present when changing the
PBH mass, but is much less pronounced, albeit still above cosmic variance in the EE spectrum (not
shown here to avoid cluttering). Hence, if a signal were found, it is conceivable that some constraints
could be put on the PBH mass and (especially) accretion mechanism, but a strong statement would
require better characterization of the signal, which goes beyond our present goals.
We compute the 95% CL bounds using data from Planck high-` TT TE EE+lensing [19] and a prior

on τreio [27], by running an MCMC using the MontePython package [68] associated to CLASS. For ten
PBH masses log-spaced in the range [Mmin, 1000M�] we perform a fit to the data with flat priors on
the following set of parameters:

ΛCDM ≡ {ωb, θs, As, ns, τreio, ωDM}+ fPBH ,
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with Mmin fixed by a preliminary run where fPBH has been set to one, and the PBH mass MPBH

has been let free to vary (with a flat prior as well)8. We use a Choleski decomposition to handle
the large number of nuisance parameters in the Planck likelihood [399]. We consider chains to have
converged when the Gelman-Rubin [265] criterium gives R − 1 < 0.01. First, to check our code, we
run it under the same hypotheses as [39] (the conservative, collisional ionization case), finding the
constraint MPBH < 150M� for fPBH = 1, as opposed to their MPBH ≤ 100M�. We attribute the
50% degradation of our bound compared to Ref. [39] to our more refined energy deposition treatment.
We checked that an agreement at a similar level with Refs. [314], [505] is obtained if we implement
their prescriptions, but since some equations in Ref. [505] (re-used in Ref. [314]) have been shown to
be erroneous [39], we do not discuss them further.
Our fiducial conservative constraints (at 95% C.L.) are represented in Fig. 64 with the blue-shaded

region in the plane (MPBH, fPBH): We exclude PBH with masses above ∼ 2M� as the dominant form
of DM. The constraints can be roughly cast in the form:

fPBH <

(
2M�
M

)1.6(0.01

λ

)1.6

. (6.4.28)

This is two orders of magnitudes better than the spherical accretion scenario, and it improves sig-
nificantly over the radio and X-ray constraints from Ref. [257], without dependence on the DM halo
profile as those ones. Lensing constraints are nominally better only at M ≤ 6M�. Note also the
importance of the relative velocity between PBH and accreting baryons: If instead of Eq. (6.4.14) we
were to adopt veff ' cs,∞—representative of a case where a density of baryons comparable to the
cosmological one is captured by halos at high redshift—the bound would improve by a further order
of magnitude, toM ≤ 0.2M� (light-red shaded region in Fig. 64). This is also true, by the way, for the
spherical accretion scenario, where—all other conditions being the same—adopting veff ' cs,∞ would
imply M ≤ 15M�, to be compared to M ≤ 150M� previously quoted. The “known” uncertainties
in disk accretion physics are probably smaller: When varying—at fixed accretion eigenvalue λ—the
electrons heating parameter δ within the range described in section 6.4.2.3, for the 30 M� benchmark
case reported in the bottom panel of Fig. 61, the radiative efficiency ε varies by a factor ∼ 3, reflecting
correspondingly on the constraints. To help the readers grasp the dependence of the bound upon
different parameters, we also derive a parametric bound, obtained from a run where we assumed that
veff is constant over time (and the accretion rate is always small, i.e. ṀB < 10−3LEd), scaling as

fPBH <

(
4M�
M

)1.6( veff

10 km/s

)4.8(0.01

λ

)1.6

. (6.4.29)

We have also extended the constraints to a broad log-normal mass distribution of the type

M
dn

dM
=

1√
2πσM

exp

(− log10(M/µPBH)2

2σ2
pbh

)
. (6.4.30)

i.e. with mean mass µPBH and width σpbh. Our constraints in the plane (σpbh, µPBH) assuming that
PBH represent 100% of the DM are shown in Fig. 65. It is clear that the bound on the median PBH
mass is robust and can only get more stringent if a broad, log-normal mass function is considered,

8 We have checked that making use of a logarithmic prior improves the bound by roughly 50%. We thus conservatively
stick to the linear prior, which also eases comparison to previous works.
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Figure 64: Constraints on accreting PBH as DM. Our constraints, derived from a disk accretion history (blue
region: Eq. (6.4.14); light-red region: veff ' cs,∞), are compared to: i) the CMB constraints obtained
assuming that spherical accretion holds as in Ref. [39] (red full line); ii) the non observation of micro-
lensing events in the Large Magellanic Cloud as derived by the EROS-2 collaboration [580] (black
dot-dashed line); iii) the non observation of disk-accreting PBH at the Galactic Center in the radio
band, extrapolated from Ref. [257] (green long-dashed line); iv) constraints from the disruption of
the star cluster in Eridanus II [283] (blue short-dashed line, see text for details).

confirming the overall trend discussed in Ref. [149]. However, we estimate that the tightening of the
constraints for a broad mass function is more modest than the corresponding one from some dynamical
probes. This is illustrated by the blue dashed line in Fig. 65, which is the result of our calculation
of the constraints from the disruption of the star cluster in Eridanus II, following the method and
parameters of Ref. [283] (cluster mass of 3000 M�, timescale of 12 Gyr, initial and final radius of 2

pc and 13 pc respectively and a cored DM density of ρDM = 1M�pc−3).

6.4.3 Sterile neutrinos

As discussed in sec. 3.2, the discovery that neutrinos oscillate, hence that at least two of them are
massive, is one of the few hints (and the only laboratory one) for physics beyond the standard model.
The most minimal extension of the SM is probably the one presented in sec. 3.2.2, requiring right-
handed neutrinos, which are SM gauge singlets (hence ‘sterile’) and so weakly interacting that usually
astrophysical and cosmological observables are better suited to probe them than laboratory ones. If
these neutrinos are of Majorana type, they can have an extra mass term whose parametric size is a
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priori unconstrained by theoretical considerations. Obviously, the weaker their coupling, the harder
they are to constrain. These neutrinos are however unstable: provided that they are light enough,
cosmology can help, since it can probe very long timescales. As long as the sterile neutrino (νs) mass
is below ∼ 1MeV, the only channels open are [278], [351], [462], [546]

• νs → 3ν, with Γ3ν ' G2
FM

5
sΘ2

192π3 '
[
3× 104 s

(
MeV
Ms

)5
Θ−2

]−1

;

• νs → να + γ, with Γνγ ' 9G2
FαM

5
sΘ2

256π4 ' 0.016 Γ3ν .

In the above formulae, we introduced Θ2 ≡∑α θ
2
α, where θα is the mixing angle with active neutrino

of flavour α. When the νs mass exceeds 2me a third channel, νs → ναe
+e−, is also open, with a rate

depending on single θα’s, but in general with a b.r. of ∼ 30% as long as its mass does not exceed
mπ0 ' 135 MeV above which pionic channels are also open. These relations imply that, as long as
(Ms/MeV)5 Θ2 � 1, these particles decay at “cosmologically interesting times”, with an associated b.r.
into e.m. channels ranging from 1.6% at masses below the MeV to O(30%) at masses up to ∼ 130 MeV.
The CMB is capable of constraining such particles even if they only constitute a negligible fraction
of the DM. It is straightforward to translate the Ξ-lifetime constraints derived in Fig. 58 in more
meaningful parameters for sterile neutrinos, such as their mixing angle and relative abundance with
respect to the total active neutrino species (including antineutrinos), which we do in Fig. 66 for two
values of the masses. Note that we have assumed monochromatic spectra for the daughter particles.
This is basically exact in the 10 keV case, for which the only visible decay mode is νs → να + γ

and the doppler broadening is negligible. In the 130 MeV case, the dominant e.m. decay mode is
νs → ναe

+e−, which was treated as described in Sec. 6.2.1. For the typical 10 keV mass scale required
for sterile neutrino to be the DM, we obtain bounds comparable to [453], which are typically weaker
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Figure 65: Constraints on the width σpbh of a broad mass spectrum of accreting PBH as from Eq. (6.4.30) as
a function of the mean mass µPBH, assuming that they represent 100% of the DM. For comparison
the dashed blue line represents our calculation of the best constraint from the dynamical heating of
the star cluster in the faint dwarf Eridanus II, following the method and parameters of Ref. [283].



6.4 applications and forecasts 219

Figure 66: Cosmological constraints on the abundance of sterile neutrinos (including antineutrinos) normalized
to the total active neutrino density, with no prior on their production mechanism. We consider a
sterile neutrino mass of 10 keV, the typical scale for sterile neutrinos being DM candidates, as well
as the heavier scale of 130 MeV for much weaker couplings, a parameter space usually ignored.The
solid horizontal lines indicate the condition Ωνs = ΩDM, which is only a function of the mass: The
bounds above those lines, for the corresponding shaded areas, are only nominal, since the parameter
space is most excluded by the overclosure condition Ωνs > ΩDM. Red vertical lines correspond to
direct laboratory constraints from nuclear β decay [280] and π decay [128], assuming mixing with
electron neutrino species.

than bounds from astrophysical probes, notably X-ray lines. In general, however, even higher masses
and lower abundances can be constrained. For instance, a 130 MeV sterile neutrino would represent
a sizable amount of DM only if its population is larger than a fraction ≥ 10−8 of the active neutrino
one 9, yet the CMB can constrain a fraction up to a billion times smaller than that, for incredibly
tiny mixing angles smaller than 10−10! To put the latter constraints into a context, one may compare
them with the ones reported in Fig. 7 of Ref. [5]. In particular, our new constraints are relevant in the
upper-left corner of the parameter space (labelled as τ < ttoday) i.e. the region where sterile neutrino
relics from the early universe were indicated as decaying “without constrainable effects and make no
contribution to the present matter density”. Note that the laboratory constraints from β decay nuclei
[280] and π decay [128], are far from being competitive with our cosmological ones. For reference, in
Fig. 66 we have indicated with vertical red lines the best laboratory upper bounds available for the
two masses assuming mixing with electron neutrino species, since direct bounds on other mixings are
much weaker: For the heavier mass case, see [456], [600]; for the 10 keV neutrino mass case, it is argued
in [280] that no model-independent laboratory bounds exist on those mixings.
Are these parameter values of any interest, given the masses and mixing knowledge on active neu-

trinos? In fact, some relations between mass-scale and mixing angles exist, once the phenomenological

9 Note that in the upper part of the parameter space of Fig. 66, above the solid horizontal lines indicating the condition
Ωνs = ΩDM (which is only a function of the mass), our constraints are only nominal, since we are assuming no major
departure from the standard history of ΛCDM. That parameter range is likely excluded by an unacceptably large
modification of the expansion history of the universe due to the “overclosure” condition Ωνs > ΩDM, although we do not
compute these constraints in detail here.
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knowledge on the smallness of (active) neutrino mass is factored in. This is nicely reviewed in [34], no-
tably in its chapter 4. The Yukawa couplings, or equivalently a combination the mixing angle elements
U and masses MI of the right-handed neutrinos should obey the relation

∑

α,I

U2
αIM

2
I ≥Mmin

∑
mν = 10−5MeV2 mν

0.1 eV

Mmin

1 MeV
, (6.4.31)

where Mmin is the lightest sterile neutrino contributing to the mass of the standard model neutrinos.
Ignoring for the moment any cosmological or particle physics constraints, this relation together with
the empirically constrained mass scale of neutrinos suggests that the lightest extra neutrino mass
eigenstate involved in the active neutrino mass mechanism should have an effective mixing element
U2
αI ' Θ2 ≥ 10−5M−1

MeV. We conclude that cosmology is typically sensitive to neutrinos more weakly
coupled than those implied in the mechanism giving mass to the active neutrinos. This is a qual-
itatively important point: while the existence of two right handed neutrinos is needed to account
for the observed oscillation phenomenology, and is remarkably sufficient to account for leptogenesis
via the oscillation mechanism first described in [32], the number, masses and mixing of additional
right-handed neutrinos are not otherwise constrained by particle physics constraints or fundamental
physics conditions, rather must be suggested by observational arguments. For instance, in the so-called
νMSM [63], [64], a three right handed neutrino scenario is invoked, with the lightest one being respon-
sible for the DM of the universe, not certainly for the particle physics consistency; the third state
must then essentially be decoupled from the active ones, contributing negligibly to their mass gener-
ation mechanism. This example shows that additional decoupled states might be only be relevant for
cosmological consequences. Our calculations above shows that the potentially interesting parameter
range to alter recombination or reionization history is much wider than the one invoked to account for
sterile neutrino DM, extending to MeV or GeV masses. Needless to say, from the conceptual point of
view, having as many handles as possible on the existence of extra sterile neutrino states is important,
since they could give us hints or constraints on the underlying symmetries of these extensions of the
standard model.

6.4.4 The 21 cm signal from the Dark Ages

We have considered scenarios where e.m. energy injection takes place at some time in the history of
the Universe. We saw that the CMB is particularly sensitive to energy injected around or just after
recombination, while BBN and CMB spectral distortions probe earlier times. What about cosmological
probes of the more recent universe? Just after recombination, the universe is dark, cold and almost
structureless, hence the name of “Dark Ages” for this period. When z drops below ∼300, however, the
baryons thermally decouple from the CMB photons, and start cooling more rapidly. The gas eventually
warms up significantly above the CMB temperature around the epoch of reionization (z ∼ 10), where
a significant contribution of stellar and astrophysical sources is expected to take over the dynamical
evolution of the gas. Thus, at redshift z ≤300 the conditions of temperature and ionization of the
(mostly neutral) cosmic gas can be in principle probed via the hyperfine transition in neutral hydrogen
atoms: it is natural to ask oneself whether significant exotic traces can be found in this highly redshifted
21 cm signal. Although the detection of the 21 cm signal from very high redshifts will probably stay
beyond reach for a long time to come, prospects for the SKA experiment should allow detection
capability up to z ' 27 [377]. Such a sensitivity would be sufficient to open a yet unexplored window
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in the history of the universe. But is it useful to probe non-standard processes as well? For the most
widely studied signals of DM annihilation, earlier results were rather encouraging about the discovery
perspectives [234], [255], [584]. The authors of the recent paper [409] have reinvestigated these forecasts
with the most up-to-date tools, unfortunately finding them to be very challenging. In particular, due
to the large uncertainties in the reionization modeling, it appears hard to unambiguously isolate an
exotic DM annihilation signal.
However, the situation may be significantly better for energy injection processes concentrated at an

earlier epoch, as for instance associated to a fraction of DM decaying in the so-called “Cosmic Dawn”
period 15 ≤ z ≤ 30. The astrophysical processes are expected to be relatively mild at that epoch. In
fact, observationally we know that they should not perturb too much the medium, e.g. triggering a
too early ionization epoch, in order to be in agreement with the optical depth measurement by Planck.
In addition, all modern parametric studies of astrophysical effects at this epoch indicate that they
should be unable to reheat the gas above the CMB temperature, i.e. the 21 cm should be seen “in
absorption” with respect to the CMB (see for instance [431], Fig. 1). This is also the case for exotic
signals such as annihilating DM in halos [409] above redshift z ' 20. Here, we wish to briefly assess the
possibility that models where a fraction of DM decays via e.m. channels, not yet excluded by CMB or
other probes, can be uniquely tested via 21 cm observations at the Cosmic Dawn. While we certainly
expect peculiar signatures in the power-spectrum (and possibly higher order statistics) of the 21 cm
signal, for this preliminary study we will content ourselves with showing that a smoking gun signal is
potentially present already at the level of the average differential brightness temperature δTb(ν). This
quantity is obtained by comparing lines of sight through a neutral hydrogen cloud to patches of the
sky with clear view of the CMB. Following a textbook calculation (see e.g. Ref. [256]), one can easily
compute the theoretical average signal (neglecting perturbations):

δTb(ν) =
TS − TCMB

1 + z
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1− e−τν21

)
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(
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)√(
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10
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Ωmh2

)(
Ωbh

2

0.023

)
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where xHI is the neutral hydrogen fraction and TS the spin temperature, the excitation temperature
of the 21 cm transition. It is defined via n1/n0 = 3 exp(−T21/TS) with T21 = 0.068K. Assuming
equilibrium between excitation processes (typically CMB photons absorption, collisions within atoms
and scattering of UV photons from stars) and de-excitations ones, one can write a solution to the
radiative transfer equation and get the evolution of the spin temperature:

T−1
S =

T−1
CMB + xcT

−1
M + xαT

−1
c

1 + xc + xα
(6.4.33)

where xc and xα are coupling coefficients for collisions and UV scattering respectively and Tc is the
effective color temperature of the UV radiation field. Radiative transfer typically drives Tc to TM [256],
but in our case (z > 20) we expect a negligible stellar contribution and simply set xα to zero (this
is a conservative assumption given the point we want to make).The collisional coupling xc can be
computed as:

xc = A−1
10

T21

TCMB
(nHκ

HH
10 + neκ

eH
10 ) . (6.4.34)

In Eq. (6.4.34), A10 = 2.85 × 10−15s−1 is the Einstein spontaneous emission coefficient of the 21 cm
transition and the κiH10 are the de-excitiation rates in hydrogen atom collisions 10 with species i. They

10 The role of Helium is not expected to change qualitatively this picture and is neglected here.



222 cosmological constraints on exotic injection of electromagnetic energy

are tabulated in Ref. [256]. We have computed the temperature history and the mean differential
brightness temperature for decays of exotic particles with different lifetimes. The typical result is
shown in Fig. 67 for the two cases Γ−1 = 1015 s and Γ−1 = 1018 s. For definitiveness, we consider a
2-body decay into electrons with the fraction of decaying DM fixed to its upper limit from previous
analysis. With respect to the conventional evolution in the Cosmic Dawn, characterized by a negative
δTb (see solid black curve in the bottom panel), the models considered here show a positive δTb, i.e.
would be associated to a 21 cm signal seen in emission already at z ' 20 − 25 (for the case of PBH,
this peculiar feature was already noted in [414]). The effect is particularly noticeable for the shorter
lifetime case, Γ−1 = 1015 s, but remains appreciable also for timescales comparable with the universe
lifetime, Γ−1 = 1018 s, due to the small fraction of decays happening early on. The appearance of a
signal in emission should constitute a smoking gun: if SKA were to observe an absorption signal from
Cosmic Dawn, as expected, it would put constraints on these exotic scenarios. At the same time, it
also means that 21 cm studies have significant room for discovery. To gauge the level of the effect, it is
worth bearing in mind that the SKA should have a sensitivity to δTb at O(1-10) mK level at z ' 25, see
Fig. 4 in [377]. The orange band of Fig. 68 shows the parameter range creating a 5 to 10 mK increase
in δTb with respect to standard model expectation, which as argued would also lead to a change of
sign in the signal. Here we limit ourselves to the specific case of the 2-body decay into electrons with
decaying particle mass m = 200 MeV, but it is clear that even these crude considerations show great
potential to go beyond the parameter space currently constrained. Also note that we have not included
informations on the power spectrum of the 21 cm signal, so that the true reach should be actually
deeper.
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Figure 67: Temperature history and mean differential brightness temperature during the Dark Ages for χ →
e+e− with decaying particle mass m = 200 MeV, compared to the standard ΛCDM model. The
decaying particle abundance is just within the currently allowed range.
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Figure 68: A comparison between current constraints on e.m. decaying exotic particles and a forecast using
the sensitivity of SKA on the global differential brightness temperature δTb in the redshift range
[20, 25], PiXiE sensitivity on µ and y distortions, as well as a CORE-like experiment. The blue shaded
area, labeled as Planck constraints, now regroups e± and γ results. The orange band is obtained for
χ→ e+e− with decaying particle mass m = 200 MeV.

To put this result into some context, we also compare it with a forecast for the sensitivity reach
in CMB spectral distortions with PiXiE [374] and CMB temperature and polarization anisotropies
measurements by a CORE-like experiment [117] with sky coverage fsky = 0.70. We find that PiXiE would
give constraints up to one order of magnitude better than BBN ones, whereas minimal information
from an approved 21 cm experiment would already have comparable sensitivity to the proposed next
generation CMB experiment, making it indeed a very powerful probe. Note that CMB experiment
would however still dominate in the energy injection regime corresponding to modifications at the
recombination era or shortly thereafter, so the complementarity of different techniques will still be
holding in the future.

6.5 Conclusion

Cosmological probes (BBN, CMB spectral distortions and CMB angular power spectra) lead to strin-
gent bounds on the e.m. decay of exotic particles, spanning about 12 orders of magnitude in abundance
and more than 20 orders of magnitude in lifetime. We have re-evaluated these constraints with state-
of-the-art tools: Our main results are summarized in Fig. 58. The main focus of our work has been
the computation of CMB anisotropy constraints. For that purpose we have used the most up-to-date
available tools, and we expect our bounds to be realistic within the parameter space covered by this
analysis. Instead, the BBN and spectral distortions have been reported mostly for comparative pur-
poses. They were derived under conservative assumptions, and in specific cases the actual bounds
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may be stronger: for instance one could go beyond the simplistic µ and y type of CMB distortions, or
take into account the actual photon spectrum leading to photo-hadronic dissociation of light elements,
rather than the approximate “universal spectrum” limit.
One of the major novelties of our work is the throughout description of the physical effects leading

to the CMB bounds, notably for the case of particles whose lifetime is much shorter than the age of
the universe. In particular, CMB is sensitive to particles decaying around the time of recombination,
a phenomenon that can lead to peculiar modifications of the power spectra. Based on our results, we
also proposed a physical criterion for an approximate “on-the-spot” treatment of the problem. This
approximation can be used to derive order-of-magnitude estimates of upper bounds, but should be
considered with caution if an actual signal was discovered, since it may lead to significant errors with
respect to a full calculation of the free electron fraction and CMB power spectra.
The results we obtained can be applied to numerous models, of which we provided a few exam-

ples: We computed the constraints on evaporating low-mass PBHs, whose strength happens to be
comparable or stronger than the ones following from extragalactic gamma-ray background limits for
masses a couple of orders of magnitude around 1015 g. Our results provide for instance an independent
cosmological argument excluding that the totality of DM can be made of PBHs lighter than ∼ 1016.8 g.
A second application concerns PBH with masses above ∼M�. Pure cosmological constraints on high
mass PBH as DM are essential are they do not rely on any “local” measurements and are thus very
hard to evade. However, they are affected by a large uncertainty associated to the accretion recipe.
Until now, studies have focused on the case of spherical accretion. In this work, we argued that, based
on a standard criterion for disk formation, all plausible estimates suggest that a disk forms soon after
recombination. This is essentially due to the fact that stellar-mass PBH are in a non-linear regime
(i.e. clustered in halos of bound objects, from binaries to clumps of thousands of PBH) at scales en-
compassing the Bondi radius already before recombination. This feature was ignored in the pioneering
article [506], which assumed that massive PBH cluster like WIMPs and deduced the adequacy of the
spherical accretion approximation, eventually adopted by all subsequent studies. Our 95% CL fiducial
bounds preclude PBH from accounting for the totality of DM if having a monochromatic distribution
of masses above ∼ 2M�, the bound on fPBH improving roughly like M1.6 with the mass. All in all,
the formation of disks improves over the spherical approximation of Ref. [39] by two orders of magni-
tude. We also checked that the constraints derived on the monochromatic mass function apply to the
average mass value of a broad, log-normal mass distribution too, actually becoming more stringent if
the distribution is broader than a decade.
A realistic assessment of “known” astrophysical uncertainties, like for instance the electron share of

the energy in ADAF models, suggests that our quantitative results can only vary within a factor of a
few, not enough to change qualitatively our conclusions. Nonetheless, we believe that our constraints
are conservative rather than optimistic. In particular, we assumed accretion from an environment
at the average cosmological density: This is less and less true when PBH halos gradually capture
baryonic gas in their potential wells. Alone, capturing from a pool of baryons of density comparable
to the cosmological one, but bound to PBH halos, would reduce the relative PBH-baryon velocity
and improve the bounds to ∼ 0.2M�. Once baryons accumulate well above the cosmological average,
the accretion rate Ṁ from this bound component grows correspondingly, and the constraining power
more than linearly with it. It would be interesting to reconsider the CMB bounds on stellar-mass
PBH once a better understanding of the halo assembly history in these scenario is achieved, a task
probably requiring dedicated hydrodynamical simulations.
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Together with other constraints discussed recently (see for instance [126], [257], [283], [337], [379],
[433]) our bounds suggest that the possibility that PBH of stellar masses could account for an ap-
preciable fraction of the DM is excluded. It remains to be seen if the small fPBH allowed by present
constraints may still be sufficient to explain LIGO observations in terms of PBH and, in that case, to
find signatures of their primordial nature, possibly peculiar of some specific production mechanism:
Such signatures become all the more crucial since both PBH mass (of stellar size) and their small
DM fraction (for instance, in a halo of the Milky Way size about 0.1% of the DM should be made of
astrophysical BH) cannot be easily used as diagnostic tools to discriminate PBH from astrophysical
ones. It is worth noting that we expect forthcoming CMB polarization experiments (very sensitive
to energy injection) and 21 cm experiments [274], [578] (the golden channel for searches looking at
energy-injection during the Dark Ages) will be able to give more insights on PBH scenarios, including
stellar mass ones, even if the possibility that they may contribute to a high fraction of the DM has
faded away.
We have also applied our results to sterile neutrinos: while the past literature has been focusing on

masses of a few keV typically invoked for sterile neutrino DM, we have shown that cosmological bounds
are also relevant for heavier and more weakly coupled relics, which are usually overlooked. Finally, we
have studied some perspectives for future improvements over the current cosmological constraints. In
particular, we sketched why we expect forthcoming 21 cm surveys to have some discovery potential,
or to improve somewhat over existing bounds. The most promising window to overcome astrophysical
uncertainties and aiming at a smoking gun feature is to look for an emission signal in the “Cosmic
Dawn” epoch 15 ≤ z ≤ 30. The perspectives to discover this kind of exotic physics are certainly cleaner
than those for DM annihilation, see [409]. We also briefly discussed the good chances for improvements
over the current status achievable with future missions proposed to study CMB spectral distortions
(PiXiE) and CMB angular power spectrum (CORE), as well as their complementarity.

The above examples do not obviously exhaust the list of applications. Even limiting oneself to the
above topics, however, it is clear that each of them would deserve dedicated and deeper studies. For
instance, given the limitations of the existing study [506], a revisitation of the cosmological bounds
to PBHs of stellar mass (or heavier) is of high priority. A proper exploration of the cosmologically
interesting sterile neutrino parameter space (well beyond the DM-inspired mass-coupling usually con-
sidered) remains to be tackled. The actual reach of the 21 cm window should be reassessed with a
calculation of the modified power spectrum, a task which we expect will lead to an improved sensitivity
to these models.

Let us finally comment on very recent work, appeared during or after the final completion of this
study. Firstly, we find that our results are comparable with the one from article [555] (see in particular
their Fig. 11 and compare with our Fig. 58), whenever referring to similar models. Also note that our
physical prescription for the effective f(z) function, inspired by inspection of the results in Fig. 58,
finds a technical justification in the principal component analysis developed in [555]. For the rest, the
two articles are rather complementary in the applications: for instance ref. [555] develops a detailed
study for very long lived DM, which we chose here to barely treat for the reasons recalled in Sec. 6.3.
On the other hand, we also describe applications to non-decaying DM relics, such as PBH, and also
cover in better details the constraints on short lifetimes, coming either from CMB or other channels,
as well as some perspectives for future cosmological probes. We also present a throughout description
of the physics involved in the CMB effects (Sec. 6.2).
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Secondly, after our work has appeared in preprint form, ref. [191] was finalized. Its content largely
overlaps with the one of our Sec. 6.4.1. Apart for minor technical differences and their focus only on
the higher range of the PBH masses considered by us, we agree qualitatively with their results. Yet,
an appreciable quantitative difference exists, with their bounds being systematically stronger than
ours. We believe that the main reason for the difference is that we run our chains by leaving all the
cosmological parameters of the extended ΛCDM model free, while they explicitly state (Sec. IV.C)
that they fix the ΛCDM parameters to their fiducial values. For a specific mass, they estimate this
effect to be a factor 3; we checked that in some cases it can easily reach a factor ∼ 5. Accounting for
this difference, the results are mutually consistent.
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DARK MATTER ANNIH ILAT IONS IN HALOS AND HIGH -REDSH IFT
SOURCES OF RE ION IZAT ION

This chapter is adapted from a publication in JCAP [493].

7.1 Introduction

We have presented in section 3.3.3 the so-called “WIMP miracle”, in which the thermal freeze-out of
a massive relics with electroweak type of interaction allows to achieve the right relic density. We then
introduced in section 3.4.1 some of the (many) extensions of the standard models of particle physics
(including electroweak scale supersymmetry) which naturally accommodate a (quasi-)stable weakly
interacting massive particle, that can act as excellent dark matter candidate. Additionally, WIMP
residual annihilations (or, in some models, decays) can inject sufficient “visible” energy that can be
searched for. Notably, we discussed in sec. 3.4.3 that high energy cosmic ray and gamma rays fluxes
are routinely analysed to reveal excesses that could be attributed to a DM origin, or conservatively
to constrain particle physics parameters such as the annihilation cross-section times velocity 〈σv〉
(averaged over the velocity distribution, hereafter called “the cross-section”).

We have already argued that CMB observations can in fact tell us more about the nature of DM.
We have shown in chapter 4 that purely gravitational arguments can lead to robust constraints on its
lifetime, independently of the particle physics models (see e.g. [70], [205], [335], [357]). On the other
hand, we studied in chapter 6, how constraints on the DM lifetime evolve as soon as one switch on
e.m. branching ratio, showing that they improve dramatically. Similarly, annihilations of relics inject
non-thermal photons and electrons in the intergalactic medium (IGM) that can delay recombination
and change the relic abundance of free electrons after decoupling. Hence, WIMP annihilations can
jeopardize the observed CMB temperature and polarization anisotropy angular power spectra and
therefore can be constrained by an experiment like Planck.
DM annihilations in the homogenous smooth background have been well studied and documented

in the last decade [96], [155], [189], [235], [244], [259], [261], [270], [332], [333], [361], [410], [447], [460],
[551], [552], [554], [601], [608]. The most realistic calculations for WIMPs have been done by Refs. [235],
[554] and updated recently in Ref. [553], where authors carefully computed how much of the initial
DM particle energy is deposited into the medium, as well as how this energy is separated between
ionization of hydrogen atoms, excitation of these atoms and heating of the plasma. They also found
that the impact of DM annihilations depend sizably on the mass and the produced particles (electrons,
quarks, etc.). The Planck collaboration in a very recent paper [19] has reported very strong bounds on
the cross-section, excluding thermal WIMPs for any standard model annihilation channel for masses
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up to 10 GeV, also ruling out WIMP explanations of cosmic ray lepton spectral features discussed in
recent years.
Previous CMB studies mostly focused on the impact of annihilations in the averaged cosmological

density field of DM. However, at relatively low redshift, the DM fluid clusters under the action of
gravity into virialised structures, so-called “DM halos”. This process increases the averaged density
square 〈ρ2〉 with respect to the square of the smooth background density, 〈ρ〉2, while the two are
nearly equal at high redshift. One could naively expect that this results in a large enhancement of
the annihilation rate and therefore in a significantly bigger impact of DM annihilation on the CMB
power spectra. But the effects of halos are more subtle since, as we will see, the way in which energy is
deposited into the medium changes as well. Thus, the modification of the bounds on DM annihilation
cross-section cannot be trivially obtained.
Another interesting feature of DM halos is their possible impact on the ionization history. In the

standard picture, it is assumed that stars are the only reionization sources. Unfortunately, our knowl-
edge of first stars formation in the universe is very rudimentary, and hence also is our knowledge of
the ionization history. The formation of halos, if it increases significantly the DM annihilation rate,
could introduce a new source of reionization in the universe and leave a very peculiar imprint on the
history of the ionization fraction xe(z) and temperature of the IGM TM, also referred to as the matter
temperature. In the past, this has been invoked as a way to solve a tension on the measurement of
the reionization optical depth τreio coming from WMAP data [304] (preferring a high value of τreio

and therefore a relatively high ionization fraction at redshift z > 10) and the so-called Gunn-Peterson
effect as it is measured in astrophysics [238], [422], [528] (requiring a relatively high neutral hydrogen
fraction above z ' 6.5 and hence pointing towards smaller values of τreio) [96], [189]. The new Planck
data in the most conservative case yield τreio = 0.079± 0.017 (Planck TT,TE,EE+lowP, 95%CL [19])
and therefore have reduced this tension to a ∼2σ level, since now a single-step reionization ending
at z = 6.5 is marginally compatible with Gunn-Peterson bounds [19]. Yet, it remains interesting to
quantify the potential contribution of DM halos to this observable.
Only a handful of articles have investigated the impact of DM annihilation in halos, notably [96],

[189], [270], [332], [410], [445]–[447]. Unfortunately, previous authors follow different formalisms and
are difficult to compare with each other. More importantly, they arrived at different conclusions.
For instance, the impact of annihilation on reionization is substantial even for baseline parameters
according to Ref. [270], relevant for light particles models according to [445], [447]; while Refs. [96],
[189], [332], and [410] find it to be negligible. One of the few points on which all agree is that DM
annihilation in halos cannot be the only source of reionization in the universe: even in ref. [270], an
astrophysical contribution is needed at least to account for the Gunn-Peterson observations. What is
less well understood is the role that DM annihilation in halos can play in mixed reionization scenarios,
perhaps easing tensions between Gunn-Peterson observations and CMB ones. In order to clarify this
situation, we first evaluate the impact of DM annihilation in halos on the ionization history and
compute the optical depth to reionization τreio in models with conventional reionization from stars:
We find that halos can play only a minor role, confirming the conclusions found in most previous
literature. We check that Planck data do not alter the sensitivity to the halo contribution. To clearly
explain why it is so, we also characterize the impact of the annihilation in halos onto the CMB
temperature and polarization power spectra, thus updating the study [447]. In doing that, we identify
and correct a few mistakes and oversimplifying assumptions used in the previous literature [270], [447].
We also provide two major improvements over previous works: first, by adopting a phenomenological



7.2 ionization and thermal evolution equations 229

model for the star formation rate and corresponding injection of high-energy photons, we study the
dependence of the signals of interest from the astrophysical model adopted. In fact, till now all works
have studied the problem within a single type of parameterization for the astrophysical reionization
history. Second, we amend an unjustified simplification in the treatment of the IGM temperature
evolution, by adding an astrophysical source term reflecting the corresponding one in the reionization
history. Finally, we discuss how and why both the ionization history and IGM temperature evolution
provide more promising perpectives as DM probes via the halo term.
This chapter is structured as follow. In section 7.2, we present our formalism, emphasizing the

differences between the DM annihilation and decay scenarios, and describing how to compute DM
annihilations in presence of halo formation. In section 7.3, we compare the impact of annihilations
in halos on the reionization history to the more realistic star reionization modelling introduced in
sec. 1.3.4. We also revisit the question about the possible contribution of halos to solve the slight
tension between CMB and Gunn-Peterson concerning the reionization optical depth τreio. In section 7.4,
we present our results concerning the impact of DM annihilation in halos on the CMB power spectra.
Section 7.5 contains a summary of our results, as well as a discussion of possible observables where
DM halos can play a non-negligible role, that would be worth studying in the future. Some remarks
on the energy deposition functions and a complete comparison between the formalisms followed by
different authors is developped in appendix D.1. Appendix D.2 summarizes our treatment of halo
formation. Finally, appendix D.3 contains a discussion of the reionization optical depth τreio measured
by Planck, compared to the real optical depth to reionization, which aims at justifying (to the best of
our knowledge, for the first time) within which errors one can assume them to coincide.

7.2 Ionization and thermal evolution equations

We have already introduced in sec. 1.3.3 and 6.2.1 the standard recombination equations and we refer
to those sections for necessary details. In the absence of stars and annihilating/decaying DM, the high-
z evolution of xe and TM is the result of solving Eqs. (6.2.1), without additional source terms. However,
the resulting evolution would be clearly unphysical in the range z ≤ O(10). At very least, we know
that the low-z universe is ionized and relatively hot. This is due to the reionization of our Universe,
as described in sec. 1.3.4. In cosmological applications, (the bulk of) this is implicitly attributed to
unspecified astrophysical sources, either unaccounted for or described by some prescription by hand.
Apart from using such a modified xe(z), no modification at all is included in the evolution of TM, i.e.
no astrophysical sources of heating are considered. Basically all previous treatments have followed a
similar approach. As explained in sec. 1.3.4, we attempt for the first time to quantify the effect of
these approximations, comparing them with a more realistic treatment of the astrophysical source
terms, inspired by recent literature. All the formalism is described in section 1.3.4 and we refer to
this section for the technical details. Once star reionization is modelled, we can add to this picture
DM annihilations. We now described in more details the difference with the decaying DM scenario
developed in chapter 6.



230 dark matter annihilations in halos and high-redshift sources of reionization

7.2.1 Dark Matter annihilation in the smooth background

The only difference actually lies in the energy density injection rate dE
dV dt |inj. It can be readily computed

as the product among the number density of pairs of DM particles npairs, the annihilation probability
per time unit Pann, and the released energy per annihiliation Eann:

dE

dV dt

∣∣∣∣
inj

(z) =

(
npairs = κ

nDM

2

)
·
(
Pann = 〈σannv〉nDM

)
·
(
Eann = 2mDMc

2

)
. (7.2.1)

Taking only into account the smooth cosmological DM distribution, we can write this rate as

dE

dV dt

∣∣∣∣
inj,smooth

(z) = κρ2
cc

2Ω2
DM(1 + z)6 〈σannv〉

mDM
. (7.2.2)

In the equations above, 〈σannv〉 is the cross-section, nDM = ρcΩDM(1 + z)3 the number density of DM
particles, ρc = 3H2

0/8πG the critical density of the Universe today, ΩDM the current DM abundance
relative to the critical density and mDM the DM mass. If DM is made of self-conjugated particles,
such as Majorana fermions, one has κ = 1, which is what we shall assume in the following; if DM
particles and antiparticles differ (as in the case of Dirac fermions) and are equally populated, κ = 1/2

since only half of the pairs that one can form (the ones made by one particle and one antiparticle) are
suitable for annihilation.
As in previous study, the response of the medium to the energy injection is conveniently parametrized
by a dimensionless efficiency function f(z) [554] such that:

dE

dV dt

∣∣∣∣
dep

(z) = f(z)
dE

dV dt

∣∣∣∣
inj, smooth

(z) . (7.2.3)

Note that in this study, we again make use of the factorization approximation (6.2.7) and compute
the f(z) function following eq. (6.2.8). Several authors have shown that the redshift-dependence of
f(z) is of very little relevance for CMB constraints [244], [259], [270], [333]. This is because the main
impact of smooth DM annihilation on the CMB is to inhibit recombination, enforcing xe to freeze out
near redshift z ∼ 600 at larger values than in standard ΛCDM. Thus, the effects of DM annihilation
is usually parameterized by a single quantity pann defined as:

pann ≡ feff
〈σannv〉
mDM

, where feff ≡ f(z = 600) . (7.2.4)

However, it is important to keep in mind that because they have an influence at low redshift, the influ-
ence of DM halos on the ionization and thermal history of the Universe cannot be captured with only
one model-independent parameter. Furthermore, in order to be able to use the same parametrization,
it is necessary to recompute these f(z) functions in the presence of halo formation, and this will be
the main focus of the next section.

7.2.2 Dark Matter annihilation in halos

The spatial average of the annihilation rate is proportional to the average square dark matter den-
sity. The main impact of structure formation is to increase this average with respect to the smooth
background case, by an amount usually parametrized through a boost factor B(z):

〈ρ2〉(z) = (1 + B(z)) 〈ρ〉2(z). (7.2.5)
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One now has:
dE

dV dt

∣∣∣∣
inj, smooth+halos

= ρ2
cc

2Ω2
DM(1 + z)6 〈σannv〉

mDM
(1 + B(z)) . (7.2.6)

Several ways to compute B(z) have been proposed. We summarize our approach in Appendix D.2.
The two key (unknown) physical quantities are the maximal overall boost factor due to halos and
the epoch for the onset of formation of virialised objects. The simplest choice adopted in our model
was to choose as free parameters the characteristic redshift zh, related to the time of halo formation
(occurring near z = 2zh), and a parameter fh related to the amplitude of the boost factor today (since
B(z = 0) = fh erfc(1/(1 + zh)), see equation (D.2.5)). The range of values explored relies on results
found in the literature, see Appendix D.2 for quantitative details. The evolution of 〈ρ2〉(z) for different
values of these parameters is shown in figure 69.

100 101 102 103

1 +z

101

103

105

107

109

1011

1013

1015

1017

1019

〈 ρ2〉
(z

)

zh =30, fh =108

zh =20, fh =106

zh =20, fh =104

smooth background

Figure 69: DM squared density vs. redshift z for several models of halo evolution.

Some treatments of the effect of DM (including halos) has been presented in the past: for instance,
Giesen et al. [270] performed this calculation on the basis of a simplified formalism developped by
Natarayan [445]–[447], accounting only for energy deposition through the Inverse Compton Scattering
(ICS) effect, and taking as a source for the ICS the energy injection function of the smooth case. Here
however we adopt a treatment based on a more straightforward generalization of the equation (7.2.3)
which is equivalent to the one reported in [410]. We define f(z) as

dE

dV dt

∣∣∣∣
dep, smooth+halos

= f(z)
dE

dV dt

∣∣∣∣
inj, smooth+halos

, (7.2.7)

where now equation (6.2.8) generalizes as

f(z) =

∫
d ln(1 + z′) (1+z′)3

H(z′) (1 + B(z′))
∑

`

∫
T (`)(z′, z, E)E dN

dE

∣∣(`)
injdE

(1+z)3

H(z) (1 + B(z))
∑

`

∫
E dN
dE

∣∣(`)
inj

. (7.2.8)

It is clear that when setting B = 0 one recovers the standard expressions for the smooth contribution.
In app. D.1, to highlight where differences in the result could arise from, we perform an explicit
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comparison of our formalism with the semi-analytical treatment of the energy deposition discussed in
Refs. [96], [189], [270], [447].
In order to assess the impact of the improved calculation of the boost factor and of the new Planck

data, we computed the energy deposition function for two baseline models with annihilation channel
χχ → e+e− and χχ → µ+µ−, as well as for the two masses mDM = 1 GeV and 1 TeV, following the
generalization of the method of [551] described above and making use of the numerical tools provided
by the authors1.
The generalization of the calculation for more DM models would only require to adapt the injected

spectra. Since we aim at being model-independent, we selected (and limit ourselves to) these two final
state examples for two reasons: first, CMB bounds are particularly interesting for them, since light
leptonic final states are the most difficult models to constrain through other methods; second, they
represent two extreme cases for the corresponding values of f(z) (high for e, low for µ), and hence
they are sufficient to bracket typical constraints, if re-expressed in terms of 〈σann〉.
Figure 70 shows our result for the total f(z) for each baseline models, with mDM = 1 GeV or 1

TeV, and with halo parameters [zh = 30,B = 106] or [zh = 20,B = 1012], compared to the functions
computed from annihilation in the smooth background only. Note that at high redshift, when B � 1,
our result is asymptotically equal to that obtained in [551], [554] in the absence of DM halos. Note
also that we only performed the calculation down to redshift z = 10, since Ref. [261] does not provide
transfer functions below this redshift. Physically, with our definition, we do not expect big changes of
the deposition function at low redshift. Hence we assume that f(z) remains constant below z = 10,
as shown in Figure 70. If this assumption turned out to be inaccurate, our final results would not be
much affected, because observable effects at low redshift are given by the product of f(z) by the factor
(1 + B(z)) on which there is a huge uncertainty, and that we treat as a free parameter (see eqs . 7.2.6
and 7.2.7).
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several halo parameters, compared to the case with annihilation in the smooth background only.
Below z = 10, we assume that these functions remain constant.

1 http://nebel.rc.fas.harvard.edu/epsilon/
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7.3 Impact of high redshift sources on the reionization history

There is no compelling reason to invoke an extra ingredient such as DM annihilation to explain the
reionization history of the universe. Actually, our knowledge of pristine star formation and its impact
on the ionization history xe(z) is so rudimentary that currently, we can treat the ionization history
xe(z) caused by star formation almost as a free function, and some room for an exotic source of
reionization is definitely possible. To illustrate this point, in the left panel of Fig. 71 we show two
possible reionization histories of astrophysical origin: the green curve represents the standard step-like
model “put by hand”, while the red curve represents a model inspired by actual astrophysical data
and normalized (via the parameter A∗ ' 3) so that the optical depths for the two models are the
same. As far as cosmological observations are concerned, they are essentially indistinguishable, as we
will stress again in the following. The points report constraints from [238], [422], [528]. In the right
panel of Fig. 71 we report the corresponding gas temperature evolution, compared with the CMB
temperature evolution (purple curve): the blue curve represents the typical approximation in which
this quantity has been evolved in past literature, with only the feedback for the xe evolution accounted
for (no heating source term). The green and red curves represent the evolution of the temperature if
a source term similar to the corresponding one adopted for xe is included (green: “sudden” heating,
put by hand; red: redshift evolution inspired by an actual astrophysical model). The yellow band
represents some indicative constraints from ref. [91]. Our aim here is not to determine a viable heating
history, rather to show the rudimentary status of these treatments (with large uncertainties in the
astrophysical term) and the large room for exotic sources of heating.
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Figure 71: Evolution of xe(z) (left panel) and TM(z) (right panel) in the different approximations described in
the text, for two prescriptions for describing the effect of astrophysical sources.

Despite the somewhat unsatisfactory situation, some consensus has been reached on important
points concerning the reionization history. For instance, in the past the question has been raised if
the totality of the reionization related phenomenology could be accounted for by DM only, but it is
now acknowledged to have a negative answer. Even in Ref. [270], which finds potentially large effects
at high redshift due to DM in halos, an astrophysical contribution is needed to account for the Gunn-
Peterson effect, requiring the presence of a non-negligible neutral hydrogen fraction at redshift z ∼ 6.5.
On the other hand, CMB observations need the Universe to be significantly ionised at higher redshift,
in order to get a correct integrated optical depth to reionization τreio, compatible with measurements
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of the temperature and polarization spectra 2. Although early measurements (notably by WMAP 1
[563]) hinted to the necessity for non-trivial reionisation history (e.g. multiple stellar populations or
exotic DM contribution) because of a tension between these two observables, this is by now mostly
gone: latest Planck data [19] prefer a lower value of τreio and even a single-step reionization ending at
z ∼ 6.5 is marginally compatible with Gunn-Peterson bounds, reducing the tension to a 2-σ effect. In
a single step model, the measurement τreio = 0.079 ± 0.017 (Planck TT,TE,EE+lowP, 95%CL [19])
translates for instance into zreio = 10.0+1.7

−1.5.
However, mixed reionisation scenarios involving a relevant DM role are still of interest: for instance,

one may wonder to what extent CMB upper bounds on τreio may lead to stronger constraints on DM
annihilation than those coming from the smooth background. This was for instance the conclusion
found in Ref. [270]; even in Ref. [447], it was argued that at least light (few GeV’s) thermal relics
may have measurable effects. Articles such as [96], [189], [332], [410] find it to be instead negligible,
for comparable choices of parameters. We want to reconsider this with a state-of-the-art approach,
correcting some errors and going beyond the approximations that we have identified in Refs. [96], [189],
[270], [447] as mentioned in Sec. 7.2.1 and developped at the end of Appendix D.1. We also want to
compute the full CMB power spectrum, while Refs. [96], [189] only estimated τreio. This extra step
may be instructive in establishing to what extent future data may improve over current constraints,
a possibility raised for instance in Ref. [447]. In the following, we fix the key parameter pann close to
the current 95%CL upper bound inferred from Planck TT,TE,EE+lowP data3 [19] with annihilation
in the smooth background only, namely, pann = 2.3 × 10−7m3/s/kg= 4.1 × 10−28cm3/s/[GeV/c2]. If
for this maximal value, we find the role of DM annihilation in halos to be negligible, then it will be a
fortiori true for any viable pann value.
As a first sanity check that DM annihilation cannot have a dominant role in a consistent reionization

history, having fixed pann to its maximum value, we vary the halo formation redshift zF and find the
value of the boost factor B(z = 0) giving a reionization optical depth of τreio ∈ [0.045, 0.0113] (the
95%CL interval inferred from Planck TT,TE,EE+lowP data). Even if the values of the parameters
depends on the DM mass and annihilation channels, we find that reaching the minimal allowed τreio '
0.079 while assuming the maximal pann requires halos to form very early and to be very concentrated,
e.g., [zh = 50, B(z = 0)) = 1011] for a 1000 GeV DM annihilating into muons or [zh = 40, B(z = 0)) =

1010] for a 1 GeV DM annihilating into electrons. Cosmic ray data [12] and N-body simulations [533],
[535] are hardly compatible with B(z = 0) ≥ 108. Hence, reionization from DM annihilation would
require even greater halo formation redshifts than the maximal value we consider: zF ≥ 50. Even if
very little is known about the first halos in the universe from the observational point of view, such
early halo formation times do not appear realistic and are in general not considered in the literature.
We can conclude in agreement with previous studies that for conventional assumptions on annihilating
DM models and on halo formation, DM annihilation cannot play a dominant role in reionizing the
Universe and can at most coexist with stellar reionization.
A posteriori, this justifies our choice to fix the value of pann: If plausible reionization models involving

DM annihilation could produce an exceedingly high τreio, we could use the measurement of the optical
depth by the Planck satellite to derive new upper bounds on this parameter. Since this is not the case,

2 Strictly speaking, the parameter called reionization optical depth by the Planck collaboration is the physical optical
depth to reionization only within some assumptions (see appendix D.3 for details).

3 We checked that the result is exactly the same with the analysis pipeline used in the Planck paper [19], based on camb
[402] and cosmoMC [400], or using the class version used as a baseline in this work (version 2.4.3) [390] and MontePython
[68].



7.3 impact of high redshift sources on the reionization history 235

100 101 102 103 104

z

10-4

10-3

10-2

10-1

100

101

Io
n
iz

a
ti

o
n
 f

ra
ct

io
n
 x

e

χχ→µ+ µ− , mχ =1 GeV

Stars

Standard

Semi-analytical model

DM

None

Halos zh =30, B(z=0) =106

Halos zh =30, B(z=0) =108

Fen et al. 2006

McGreer et al. 2015

Schenker et al. 2014

Fen et al. 2006

McGreer et al. 2015

Schenker et al. 2014

Figure 72: Ionization fraction xe(z) as a function of redshift for several mixed reionization models. Green
lines are benchmark, purely astrophysical reionization scenarios (solid: single step; dot-dashed, phe-
nomenological). The blue and red versions of the corresponding lines show the case where both
smooth DM injection and halo one have been added as well, with growing role of halos, respectively.
We assume pann fixed to its most optimistic value.

and since we have no precise information on star formation, we can always obtain the correct τreio by
assuming the maximal realistic effect from DM annihilation and a complementary effect from stars.
The only hope to obtain new bounds on DM annihilation from CMB observations is to analyse the
full shape of the CMB temperature and polarization spectra: this will be the topic of section 7.4.
It is interesting to explore a bit further mixed reionization scenarios. In Fig. 72, we show in green

the benchmark, purely astrophysical reionization scenarios (solid: single step with zreio = 6.5, as
suggested by the Gunn-Peterson bound; dot-dashed, phenomenological). The blue and red versions
of the corresponding lines show the case where both smooth DM injection and halo one have been
added as well, with growing role of halos, respectively. We have fixed there pann to the maximum value
allowed by Planck [19]. The free parameters are the halo ones, zh and B(0), besides the DM model
(annihilation channel and mass), here fixed to the muon final state and 1 GeV mass.

In Figure 73, we vary these two categories of parameters, and find τreio as a function of them
(in the step-like reionization scenario), together with 68% and 95% confidence limits from Planck
TT,TE,EE+lowP data, and bounds on B(z = 0) inferred from N-body simulations by Ref. [535].
Figure 73 shows that in absence of DM annihilation in halos, there is a marginal (∼ 2σ) tension
between the model without DM annihilation in halos and the Planck bounds on τreio. At the same
time, we can also see that DM annihilations in e+e− and µ+µ− for realistic values of the boost factor
(blue band) do not significantly enhance τreio. The conclusions would be similar for other annihilation
channels (all being bracketed by these two) or masses. Note that in all these models, we decided to
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saturate the CMB bound coming from annihilation in the smooth background. This means that we
fixed the observable quantity pann, but not the fundamental parameter 〈σv〉. This explains why in
Figure 73, the effect seems to be stronger in the muon case than in the electron case; if the cross-
section were fixed, the conclusion would be opposite. In this observable, the result is also independent
of the reionization model adopted, provided that they are responsible for the same optical depth. In
all cases, our main conclusion is that one needs to push the halo contribution to the same unrealistic
values as before to remove the marginal tension between CMB and the Gunn-Peterson bound.

Figure 73: Reionization optical depth τreio in mixed reionization models, for different DM masses, annihilation
channels and halo parameters. pann has been fixed to its most optimistic value and the redshift od
reionization from stars to zstar

reio = 6.5. The red stripe shows the most conservative bound from Planck
on τreio [19] and the blue one the most conservative interval for the values of the halo amplitudes at
z = 0 according to Refs. [533], [535].

In summary, our main conclusion is that considering DM annihilation in halos formation seems
neither to yield better constraints on the DM properties, nor to solve the slight tension between CMB
and Gunn-Peterson data. We thus essentially confirm similar results obtained in the past, see e.g. [410].
Planck data are not changing these conclusions in any significant way. On one hand, this reassures us
about the robustness of the reionization constraints to DM obtained by considering only the smooth
contribution. On the other hand, this suggests that it is very hard to improve over them by including
the relatively low-z contribution from halos. Barring very different particle physics or halo assembly
histories (for some example see e.g. [214]), it appears that the only hope to revisit this conclusion in
the future and to reveal some contribution of DM halos would be to measure xe or TM as a function
of z, especially at high redshift (z ≥ 10), and at the same time, to improve our knowledge (both
theoretically and observationally) on reionisation by the first stars.

7.4 Impact of reionization histories on the CMB spectra

In this section we go one step further in the discussion of CMB sensitivity to different reionization
models, beyond the simple integral constraint on τreio discussed in the previous section. While unneces-
sary to settle the issue of current sensitivity to DM halo signals, this is useful to assess the capabilities
to improve over current constraints with future CMB data.
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A first important point to make is that the CMB spectrum is in principle sensitive to the entire
ionization history xe(z). The main effect of DM annihilation is to delay recombination, to increase
the width of the last scattering surface, and to enhance the number of residual free electrons after
decoupling. A larger ionization fraction xe results in more Thomson scattering of photons along the
line-of-sight. As long as xe remains close to its asymptotic freeze-out value, rescattering impacts CMB
observables at a very small level (although not totally negligible). When stars and/or DM halo forma-
tion start, xe increases with time, and the fraction of rescattered CMB photons becomes significant.
Temperature and polarization anisotropies are damped on sub-Hubble scales, and regenerated on
scales comparable to the Hubble radius.
Typically, for usual models assuming single-step reionization in the range 6 ≤ z ≤ 12, high l’s

probe only the integrated parameter τreio, since the temperature and polarization anisotropy spectra
are mainly suppressed by a factor e−2τreio (this behavior can be spoiled to some extent by a more
complicated reionization history, see appendix D.3 for details). However, small `’s are sensitive to the
full reionization history – especially as far as polarization is concerned. Even in single-step models
with a fixed τreio, the shape of the CMB spectra in the range ` ∼ 20 − 40 keeps an imprint of the
details of the reionization history. In presence of DM annihilation in halos, xe tends to increase slowly
at higher redshift, and a wider multipole range ` ∼ 20− 200 can in principle be impacted.
In Fig. 74 we show the temperature (left) and EE polarization (right) multipole spectra computed

for the two models of astrophysical reionization, with the bottom panels showing the relative difference
between the two models, compared with the cosmic variance (shaded areas). They have been produced
with class version 2.4.3 for a few DM models with fixed θs = 1.04077 × 10−2 and τreio = 0.079, in
agreement with Planck measurement (TT,TE,EE+lowP [19]). The same θs is obtained by adjusting
H0 (with fixed ωb, ωcdm). The fact that the variations shown in these plots are well within the limits

10-11

10-10

10-9

[l
(l

+
1)
/2
π
] 
C
l

CTT
l

Semi-analytical model
Base ΛCDM from Planck 2015

Cosmic Variance

101 102 103

multipole l

0.050

0.025

0.000

0.025

C
l(

S
A

m
od

el
)

C
l(

st
an

d
ar

d
)
−

1 10-16

10-15

10-14

10-13

10-12

10-11 CEE
l

101 102 103

multipole l

0.50

0.25

0.00

0.25

Figure 74: Upper pannels − CTTl , CEEl for the two models of astrophysical reionization. The shaded area
represents cosmic variance. The baseline ΛCDM model is assumed, with τreio = 0.079 and θs =

1.04077×10−2 fixed in agreement with Planck measurement (TT,TE,EE+lowP [19]). Lower pannels
− Relative difference between the two models.

of cosmic variance exemplifies why, despite the fact that a sensitivity to xe(z) is present in principle,
it is considered to be hopeless to infer information on different astrophysical reionization scenarios via
CMB observations, and why to a large extent in this framework it is an excellent approximation to
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assume that CMB is only sensitive to τreio. Nonetheless, note that a greater sensitivity to xe(z) of the
EE polarization with respect to TT spectrum is still manifest.
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Figure 75: As in Fig. 74, but with the DM effects (both smooth and in halos) now added, for a single reference
case of halo boost factor.
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The situation is partially altered if DM annihilation in halos is added. In Fig. 75, we show plots
similar to Fig. 74, with the DM effects (both smooth and in halos) now added; we fix the DM channel
to the muon one, the DM mass to 1 GeV, and pann = 2.3 × 10−7, saturating current bounds. While
in Fig. 75 only a single, realistic value 106 for the boost factor is shown, in Fig. 76, we present the
residuals with respect to the reference ΛCDM models, with growing effect of the halo term (besides the
106 one, also a factor 10 and 100 larger). It is clear that, at least for the phenomenological model for the
astrophysical reionization, potentially detectable effects emerge. Since we fixed θs and τreio, we nearly
eliminated any oscillatory patterns and step-like discrepancy between the set of curves describing the
TT spectrum. This is not entirely true in models with a significant effect of annihilation in halos, for
which a residual step-like effect can be clearly observed in Figure 76. This has to do with the ambiguity
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in defining τreio in presence of partial reionisation at high-redshift, as explained in Appendix D.3. By
just fixing τreio, we do not eliminate completely the dependance of the high-` temperature spectrum
on the reionisation history. Apart from this effect, which could be compensated by a shift in the
reionisation time or in the overall normalisation of the primordial spectrum, changes remain very
modest and limited to small scales (where degeneracies with other parametrical extensions of ΛCDM
are likely present). On the other hand, they can become sizable and characterized by a peculiar pattern
at low-l on the polarization power spectrum, coming from the enhanced rescattering of photons at
intermediate redshifts zreio ≤ z ≤ 600. While for realistic values of the halo parameters and DM mass
it is still likely that this falls within the cosmic variance, it cannot be excluded that more extreme
values of the parameters could be independently ruled out by CMB polarization observables, provided
that forthcoming final release of Planck data manages to keep under control the systematics at low−`.

7.5 Discussion and prospects

The CMB temperature and polarization anisotropy pattern is sensitive to the energy injection by DM
annihilation, essentially only via its constraints on the reionization optical depth τreio (we clarified
in appendix D.3 in which limit this is actually true). In turn, the optical depth τreio probed by the
CMB depends on the reionization history, i.e. the function xe(z), which itself couples to the thermal
history of the gas, controlled by the function TM(z). One major element of novelty of this work has
been to study for the first time the dependence of the cosmological observables xe(z) and TM(z)

from the underlying astrophysical reionization/heating source model, both in presence and absence of
DM sources. We modified the dynamical equations for xe and TM arguing that virtually all previous
treatments have been incomplete and inconsistent in that respect.
We have then revisited the problem of current CMB constraints on dark matter annihilation in halos,

with a state-of-the-art treatment. We have followed the by now standard formalism of Ref. [554] and
made use of the numerical tools provided in [551], to compute precisely how the energy is deposited in
the medium. We have clarified and corrected a few mistakes in previous work and improved over them.
In appendix D.1, we provide a detailed comparison of the many formalisms used in the literature to
study DM annihilation in halos and carefully explain where are the few mistakes or approximations
over which we have improved. Appendix D.2 describes in details the parametric model of DM halo
formation adopted in our calculations, although a generalization to different parameterizations is
straightforward and would not alter our conclusions.
In agreement with most previous literature, we have confirmed that with conventional assumptions

on DM models and halo formation, DM annihilation fails to play a dominant role in reionizing the
universe, and can at most coexist with reionization from stars. Only very unrealistic halos could
give a significant contribution to the reionization optical depth, and even then, such models are
hardly compatible with astrophysical measurements of the ionization fraction at low redshift. No
plausible DM model can produce a too high reionization optical depth, hence CMB measurements
of τreio do not provide additional constraints on the annihilation cross section. At face value, this
means that previous constrains derived assuming DM annihilation in the smooth background only
are robust and independent of uncertainties on structure formation. Note that the recent update of
the tools to compute the energy deposition in the medium provided by [553], following the results
of Ref. [261] would not alter our conclusions: since the account for the new channel of energy loss
through very low energy photons (with energy < 13.6 eV) produced during the development of the
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electromagnetic cascade, such a refinement would only make the impact of dark matter annihilations
in halos even slightly weaker. We have checked this conclusion following the so-called "approximate"
method described in Refs. [261], [553] which consists in withdrawing some power to the transfer
functions of [551], using a specific new table supplied in Ref. [553]. This method is, according to the
authors, as precise as the new transfers functions and is better suited for our treatment.
To assess if these rather pessimistic conclusions are linked to the intrinsic insensitivity of the CMB

to these effects or merely to the current lack of precision, in section 7.4 we have computed the CMB
angular power spectra, and compared the results with or without annihilation in halos. We have
shown that, within standard assumptions for the astrophysical reionization and for plausible halo
models, both the effects on the TT and EE multipole spectra are unobservable, falling below the level
of cosmic variance. One would conclude that fits of CMB spectra in presence of DM annihilation in
halos cannot provide (even in principle) better constraints on DM models. However, we have also
shown that to some extent this conclusion can be altered if a different scenario for the astrophysical
source of reionization is adopted. At present, it cannot be excluded that some extreme but viable DM
halo parameter space might be eventually probed by CMB polarization data, provided errors can be
kept at the level of the cosmic variance. To the best of our knowledge, it is the first time that this
effect is highlighted.
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Figure 77: As in Fig. 72 (see also the right panel in Fig. 71) but for the IGM temperature.

Looking beyond the CMB probe, our results also leave the door open to some encouraging perspec-
tives to further constrain DM annihilation in halos via other obserbables, more directly linked to xe(z)
or TM(z). To illustrate this point, one can look for instance at Fig. 77, where we report the evolution
of TM for several mixed reionization models, analogous to what shown in Fig 72 for the evolution of
xe(z). In particular, green lines are benchmark evolutions for purely astrophysical scenarios (dashed:
single step reionization/reheating; dot-dashed, phenomenological one; solid line: standard case where
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only the feedback from xe(z) is included in the dynamics of TM). The blue and red versions of the
corresponding lines show the case where both smooth DM injection and halo one have been added as
well, with growing role of halos: DM annihilation in halos with zh = 20, B(z = 0) = 106 are reported
in blue, and zh = 30, B(z = 0) = 108 in red, respectively.
The dot-dashed red line shows that already with current rudimentary constraints, if one could

trust the phenomenologically motivated model for the astrophysical heating, extreme halo parameters
could be excluded. At the same time, as shown by the solid green curve, it is immediately obvious
that current treatments of the TM(z) evolution are strongly inadequate, and a significant effort should
be put in achieving a realistic modeling of the sources of heating. The qualitatively most interesting
effect of DM annihilation in halos is the possibility of a sign shift in the difference between Tγ and TM
at much higher redshift than expected for astrophysical models. This could be detectable for instance
with 21cm surveys, since the signal would appear either in absorption or in emission (e.g. [51] and
reference therein). Tomographic surveys of the cosmological 21cm observable, sensitive both to xe(z)
and TM(z), are certainly the most promising avenue to progress in the knowledge of these redshift
epochs. Numerous experiments such as PAPER 64 4, 21CMA 5, MWA 6, LOFAR 7, HERA 8 or SKA 9,
are now (or will be) attempting at measuring the 21 cm signal. Hopefully, it could be possible to see
the impact of halos through such a sign shift at relatively high redshift, when the stars are not yet
“polluting” the signal. If not, a good description of the influence of stars on TM and xe would be of first
importance, as we have illustrated using semi-empirical models taken from [121], [485], [510], [511].
Some authors are also trying to improve on the modelling of these effects using numerical simulation
(such as 21cmFAST [234], [426], [584]). Achieving a sufficiently accurate treatment of the interplay
of stellar and exotic sources is definitely a complicated task and a long term goal, but certainly it
deserves further investigations.

4 http://eor.berkeley.edu
5 http://21cma.bao.ac.cn
6 http://www.mwatelescope.org
7 http://www.lofar.org
8 http://reionization.org
9 http://www.skatelescope.org





Part III

NEUTRINO PROPERTIES FROM CURRENT AND FUTURE
COSMOLOGICAL DATA

As we have seen in sec. 3.2, the existence of three flavors of neutrinos in the Universe is by
now well established thanks to a series of experiments, starting from Reines and Cowan
in the 1950’s. On the theory side, although neutrinos are part of the Standard Model of
particle physics, we know that their description cannot be complete as this model does not
incorporate a satisfactory mechanism for neutrino masses.
On the other hand, CMB anisotropies and structure formation are extremely sensitive
to the gravitational impact of neutrinos, and therefore to mass eigenstates, providing us
with a very powerful probe of the absolute mass scale of neutrinos. However, because they
do not directly probe neutrinos through the weak current, one might wonder whether
cosmological neutrinos behave as we expect from standard model ones.
Because of this peculiarity of cosmological data, we study in chapter 8 the typical signatures
of the fluctuations of free-streaming neutrinos, extending over previous studies to the case
of non-zero masses. We also relax various assumptions, in order to assess whether it is
possible to make robust statements about the detection of the cosmic neutrino background
by CMB experiments.
In chapter 9, we perform a forecast on the potential for neutrino mass detection in future
cosmological surveys. However, in order to exploit the complementarity of the different
redshift probes, a deep understanding of the physical effects driving the impact of massive
neutrinos on CMB and large scale structures is required. We therefore start by carefully
studying the effects on cosmological data of the sum of neutrino masses close to its mini-
mum allowed value, showing that parameter degeneracies can be removed by appropriate
combinations of datasets, leading to robust and model independent constraints. A joint
forecast of the sensitivity of Euclid and DESI surveys together with a CORE-like CMB
experiment (the proposed next generation satellite) leads to a 1σ uncertainty of 14 meV on
the summed neutrino mass, while an independent measurement of the optical depth with
accuracy σ(τreio) = 0.001 (potentially achievable with future 21-cm experiment) would de-
crease the uncertainty down to σ(Mν) = 12 meV. Those chapters are adapted from papers
published in JCAP, namely Refs. [53], [71].





8
ROBUSTNESS OF COSMIC NEUTRINO BACKGROUND DETECTION IN
THE CMB

This chapter is adapted from a publication in JCAP [71].

8.1 Introduction

As discussed in chapter 3, neutrinos are the only dark matter component that has been directly de-
tected. Despite neutrinos not being cold and not being the bulk of the dark matter in the Universe,
they are a particularly interesting component to study. Not only because of the synergy between astro-
physical observations and particle physics experiments, but also because they contribute a significant
fraction of the energy density in the Universe during the radiation dominated stage. The first indirect
confirmation of the existence of a cosmological neutrino background has been obtained by assuming
standard neutrino properties, and adding only one extra parameter to the standard ΛCDM model:
the effective number of neutrino species, Neff , equal to 3.0461 [416] in the standard model. By using
Cosmic Microwave Background (CMB) observations, the WMAP collaboration showed to high statis-
tical significance that Neff > 0 [224], [376], yielding therefore a confirmation, albeit indirect, of the
existence of the cosmic neutrino background. With recent data from Planck, Neff = 0 is disfavoured
at the level of about 10σ [21].
But Neff does not only count the number of neutrino species. Even assuming standard neutrino

physics, departures from Neff could be caused by any ingredient contributing to the expansion rate of
the Universe in the same way as a radiation background. The possibilities for this extra ingredient are
many: extra relativistic particles (either decoupled, self-interacting, or interacting with a dark sector),
a background of gravitational waves, an oscillating scalar field with quartic potential, departures from
Einstein gravity, large extra dimensions or something else. Such a component is usually dubbed “dark
radiation" [e.g., 4], [10], [46], [55], [110], [210], [276], [297], [366], [418], [561], [590]. In principle, we
could even assume that the cosmic neutrino background does not exist, while another dark radiation
component explains the measured value of Neff

2.
It is well known that free streaming particles like decoupled neutrinos leave specific signatures on

the CMB, not only through their contribution to the background evolution, but also because their
density/pressure perturbations, bulk velocity and anisotropic stress are additional sources for the
gravitational potential via the Einstein equations (see for example [84], [316], [392] and references

1 The number of (active) neutrinos species is 3. As the neutrino decoupling epoch was immediately followed by e+e−

annihilation, the value of Neff for 3 neutrino species is slightly larger than 3.
2 This of course would be possible only in very exotic particle physics scenarios, and we shall not enter into details of
such models.
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therein for a detailed discussion). On that basis, several analyses have shown that the CMB can make
a more precise statement on the existence of a cosmic neutrino background in the Universe than by
just measuring Neff > 0 and showing that it is compatible with the standard value. The CMB seems
to prove that the perturbation of neutrinos – or more precisely, the perturbation of free-streaming
particles with the required abundance – are needed to explain the data.
The strategy of several recent works [54], [56], [57], [213], [267] was to introduce3 two phenomeno-

logical parameters, ceff and cvis. The effect of the parameter c2
eff is to generalize the linear relation

between isotropic pressure perturbations and density perturbations, while c2
vis directly modifies the

anisotropic stress equation for neutrinos. These parameters allow to distinguish the perturbations of
relativistic free-streaming species, corresponding to (c2

eff , c
2
vis) = (1/3, 1/3), from those of a perfect

relativistic fluid with (c2
eff , c

2
vis) = (1/3, 0), or a scalar field scaling like radiation with (c2

eff , c
2
vis) =

(1, 0), or a more general case with arbitrary (c2
eff , c

2
vis). Self-interacting neutrinos or other types of dark

radiation candidates might not be exactly equivalent to these models with definite and constant value
of (c2

eff ,c
2
vis) (see for instance [204], [454]), but this parametrisation is considered flexible enough for

providing a good approximation to several alternatives to the standard case of free-streaming particles.
We will come back to the motivations for this parametrisation in section 8.2.

Previous works found that the allowed window for c2
eff is shrinking close to 1/3, and that the data

starts to be very sensitive also to c2
vis, although this parameter has a smaller effect. For instance, using

Planck 2013 data, ref. [267] obtained (c2
eff , c

2
vis) = (0.304±0.026, 0.60±0.36) at the 95% CL. The next

Planck data release is expected to bring even better sensitivity, thanks to better temperature and new
polarisation data.
However, recent results on (c2

eff , c
2
vis) were derived in the context of the minimal ΛCDM model, with

negligible neutrino masses. The point of the present study is to answer the two important questions:
Are these bounds stable when considering massive neutrinos, instead of the purely massless limit?
And could (c2

eff , c
2
vis) be degenerate with other cosmological parameters, like e.g., Neff , a running of

the primordial spectrum index, or the equation of state of dynamical dark energy? These issues are
important to better assess the meaning of current bounds, and also to prepare the interpretation of
future results. Indeed, if future data bring stronger evidence for standard neutrino perturbations, we
will need to understand whether such conclusions are robust or model-dependent. On the other hand,
if a deviation from the standard behaviour is found in the context of the minimal ΛCDM model, we
will need to know whether extended cosmological models have the potential to reconcile observations
with standard values of (c2

eff , c
2
vis). The rest of this work is organised as follows: In section 8.2 we

present the set of equations describing a massless relativistic component with arbitrary (c2
eff , c

2
vis),

and its generalisation to the case of species becoming non-relativistic at late times. In section 8.3 we
analyse the physical effect of the phenomenological parameters on the observables. In section 8.4 we
describe our methodology and introduce the data sets used. We present our results in section 8.5 and
we discuss and conclude in section 8.6.

8.2 Modelling the properties of the (dark) radiation component

While the parameter Neff affects the expansion rate of the early universe, we want to introduce
some parameters describing the behaviour of perturbations. If we were comparing ordinary neutrinos

3 Indeed we are referring here to the definition of (c2eff , c
2
vis) first introduced by these authors. This parametrisation is

however strongly inspired from earlier works, e.g., [84], [324], [325], [559], [582].
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with a concrete physical model (e.g., neutrinos with a given collision or self-interaction term [59], [594],
oscillating scalar field with quartic potential, etc.), there would be no ambiguity in the set of equations
and parameters to compare with data. We are not in this situation: we want to define some effective
parameters, chosen to provide an exact or approximate description of a wide variety of non-standard
models for the radiation component in the universe. From now on, we follow the notations of Ma &
Bertschinger [412].
The logic followed by previous authors and leading to the definition of (c2

eff , c
2
vis) is to postulate a

linear relation between isotropic pressure perturbations and density perturbations given by a squared
sound speed c2

eff , assumed for simplicity to be independent of time. The approach is then extended to
anisotropic pressure by introducing another constant, the viscosity coefficient c2

vis.
Technically, this amounts in writing the usual continuity and Euler equations, valid for any decou-

pled species, and replacing the pressure perturbation δ̂p by c2
eff δ̂ρ. The hats mean that we are referring

to the pressure and density defined in the frame (or in the gauge) comoving with the fluid we are
studying, i.e., in which the energy flux divergence θ vanishes. From the gauge transformations (2.1.56)
one can show that in an arbitrary gauge, the density perturbations δρ, the pressure perturbation δp
and the energy flux divergence θ are related to the comoving density/pressure perturbations by

δ̂ρ = δρ+ 3
ȧ

a
(1 + wdr)ρ̄

θ

k2
, (8.2.1)

δ̂p = δp+ 3
ȧ

a
(1 + wdr)c

2
aρ̄

θ

k2
, (8.2.2)

where a is the usual scale factor, the dot indicates derivative with respect to conformal time, wdr ≡ p̄/ρ̄
and c2

a ≡ ˙̄p/ ˙̄ρ. The pressure perturbation appears as a source term in the continuity equation and the
Euler equation (see eqs. (2.1.54) and (2.1.58)). If we assume δ̂p = c2

eff δ̂ρ, we should replace δp in these
two places by

δp = c2
eff

(
δρ+ 3

ȧ

a
(1 + wdr)ρ̄

θ

k2

)
− 3

ȧ

a
(1 + wdr)c

2
aρ̄

θ

k2
. (8.2.3)

8.2.1 Massless neutrinos

In the relativistic limit, eq. (8.2.3) becomes

δp

ρ̄
= c2

eff

(
δ + 4

ȧ

a

θ

k2

)
− 4

3

ȧ

a

θ

k2
. (8.2.4)

For decoupled massless neutrinos, the Boltzmann equation can be integrated over momentum, leading
to a Boltzmann hierarchy in which the first two equations are equivalent to the continuity and Euler
equation. Replacing the two occurrences of δp in these equations by the above expression gives:

δ̇ν =
(
1− 3c2

eff

) ȧ
a

(
δν +

4

k2

ȧ

a
θν

)
− 4

3
(θν +Mcontinuity) , (8.2.5)

θ̇ν =
k2

4
(3c2

eff)

(
δν +

4

k2

ȧ

a
θν

)
− ȧ

a
θν − k2σν +MEuler , (8.2.6)

where the subscript ν refers to the neutrino (or dark radiation) component. The above equations are
valid in any gauge provided that the two quantities (Mcontinuity,MEuler) refer to the right combination
of metric perturbations, e.g. (ḣ/2, 0) in the synchronous gauge and (−3φ̇, k2ψ) in the Newtonian gauge
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(see sec. 2.1.1 for the definition of h, φ and ψ). When c2
eff is set to 1/3, the standard equations are

recovered, since for relativistic free-streaming species the sound speed squared is exactly 1/3.
While δp appears as a source term for δ and θ, the anisotropic pressure σ is sourced in the next

equation of the Boltzmann hierarchy by θ + Mshear. Extending the previous logic to the level of
anisotropic pressure can be done by multiplying this source term by (3c2

vis). Then, for c
2
vis = 1/3,

standard equations will be recovered by construction. This prescription leads to:

Ḟν2 = 2σ̇ν = (3c2
vis)

8

15
(θν +Mshear)−

3

5
kFν3 , (8.2.7)

where Fν` are the Legendre multipoles of the momentum integrated neutrino distribution function as
defined in sec. 2.1.2. Mshear is 0 in the Newtonian gauge and given by (ḣ+ 6η̇)/2 in the synchronous
gauge.
The next equations in the hierarchy are left unmodified. A coefficient c2

vis was first introduced by
Hu [324], as an approximate way to close the Boltzmann hierarchy at order l = 2. For that purpose,
the term Fν3 was eliminated from equation (8.2.7). The above parametrisation was introduced later
in ref. [54], keeping that term, in order to recover the standard equations in the limit c2

vis = 1/3. The
limit c2

vis = 0 describes a species with isotropic pressure (like, for instance, a perfect fluid), since in
that limit, σν and all multipoles Fν` with ` ≥ 3 remain zero at all times.

8.2.2 Massive neutrinos

We will now present original results, showing how the previous parametrisation can be extended to the
case of light relics experiencing a non-relativistic transition such as massive neutrinos. In the massive
neutrino case, the Boltzmann equation cannot be integrated over momentum, and one must solve
one hierarchy per momentum bin. We wish to introduce the (c2

eff , c
2
vis) factors in the same way as for

massless neutrinos, assuming for simplicity that they affect each momentum equally. The strategy is
again to identify the source terms corresponding to δ̂p in the continuity/Euler equation and multiply
them by (3c2

eff), and similarly to identify the source term for σ in the quadrupole equation and multiply
it by (3c2

vis).
One can define several statistical momenta of the background phase-space distribution f0(q), in-

cluding the usual background density ρ̄ and pressure p̄, and also a quantity called the pseudo-pressure
in [545]:

p̃ =
4π

3
a−4

∫ ∞

0
dq
q6

ε3
f0(q) , (8.2.8)

where ε is the comoving energy of the particle. Throughout this work, we use the Boltzmann code
CLASS to compute observable spectra. It happens that the pseudo-pressure is always computed by
CLASS, because it enters into the expression of the fluid approximation switched on deep inside the
Hubble radius [396]. Pseudo-pressure is also useful in the present context, since the comoving pressure
perturbation δ̂p of eq. (8.2.2) can also be expressed as

δ̂p = δp+
ȧ

a
(5p̄− p̃) θ

k2
. (8.2.9)
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One can write down the continuity and Euler equation, decomposing each perturbation as an integral
over momentum, involving the Legendre momenta of the perturbed phase-space distribution Ψl(k, τ, q).
Then, like for massless neutrinos, we identify the two terms involving δ̂p and replace them by

δp = c2
eff

(
δρ+ 3

ȧ

a
(ρ̄+ p̄)

θ

k2

)
− ȧ

a
(5p̄− p̃) θ

k2
. (8.2.10)

Finally, assuming that c2
eff is a momentum-independent coefficient4, we can remove the integral over

q and obtain a modified Boltzmann hierarchy for each momentum q:

Ψ̇0 =
ȧ

a

(
1− 3c2

eff

) q2

ε2

[
Ψ0 + 3

ȧ

a

5p− p̃
ρ+ p

ε

kq
Ψ1

]
− qk

ε
Ψ1 +

1

3
Mcontinuity

d ln f0

d ln q
, (8.2.11)

Ψ̇1 = c2
eff

qk

ε

[
Ψ0 + 3

ȧ

a

5p− p̃
ρ+ p

ε

qk
Ψ1

]
− ȧ

a

5p− p̃
ρ+ p

Ψ1 −
2

3

qk

ε
Ψ2 −

ε

3qk
Meuler

d ln f0

d ln q
. (8.2.12)

Finally, in the l = 2 equation, we multiply again the source term of the shear by (3c2
vis) and obtain:

Ψ̇2 =
qk

5ε

(
6c2

visΨ1 − 3Ψ3

)
− 3c2

vis

2

15
Mshear

d ln f0

d ln q
. (8.2.13)

Higher momenta in the Boltzmann hierarchy are left unchanged. Again, when (c2
eff , c

2
vis) = (1/3, 1/3),

we recover exactly standard equations.

8.3 Impact of (c2
eff , c

2
vis) on observables

We implemented the previous equations of motion into CLASS in order to study the impact of (c2
eff , c

2
vis)

on observable quantities. There is no need to modify initial conditions, because on super-Hubble scales
perturbations are insensitive to pressure gradients, and hence to c2

eff . The perturbations also have
negligible anisotropic pressure in the super-Hubble limit, so c2

vis is not playing a role either. Unless
otherwise stated, for all parameters that take fixed values, we adopt the same settings as in the “base
model” of the Planck 2013 parameter work [21].

8.3.1 Effect on neutrino perturbations

In figure 78 we plot the time evolution of the neutrino density perturbations (δν) and the ratio of the
metric fluctuations5 (η ≡ Φ/Ψ) at a fixed scale k = 0.03 Mpc−1. We show the case of (three) massless
neutrinos (top panels) and the case of (three degenerate) massive neutrinos with m = 0.02 eV per
species (middle panels) and 0.1 eV per species (bottom panels). We have chosen five models in these
plots, one reference model in which c2

eff = c2
vis = 1/3, two models in which we set c2

eff to 0.30 and 0.36,
and two models that correspond to c2

vis set to 0.30 and 0.36. Note that on these plots δν is always
negative: this is because we choose a mode normalised arbitrarily to positive curvature perturbation
(i.e., positive gravitational potential) at initial time.

4 We shall discuss this assumption a posteriori in the Conclusions
5 Φ and Ψ are two gauge-independent combinations of scalar metric fluctuations, equivalent to the Bardeen potentials
up to minus signs, and coinciding in the Newtonian gauge with the metric fluctuations φ and ψ such that ds2 =

−(1 + 2ψ)dt2 + a2(1− 2φ)d~x2.
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Figure 78: Neutrino density perturbations as a function of scale factor for a ΛCDM model with massless
neutrinos (top panels), three degenerate neutrinos with mν = 0.02 eV each (middle panels), and
mν = 0.10 eV (bottom panels). All panels show the evolution of the perturbations for a fixed scale
of 0.03 Mpc−1. Solid black lines show a reference model with c2eff = c2vis = 1/3. In the left panels,
solid red lines and dashed red lines correspond to c2eff = 0.36 and 0.30 respectively, whereas in the
right panels solid blue lines and dashed blue lines correspond to c2vis = 0.36 and 0.30 respectively.
For reference, the evolution of the ratios of the gravitational potentials are shown for every case.
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In general, after entering the Hubble radius, the perturbations of a given component grow as a power
law of the scale factor (δ ∝ a1+3w) above the sound-horizon (hereafter SH), and start oscillating with
a decaying amplitude below the SH. The effective SH of a particular species is defined as

seff =

∫
ceffdτ = ceffτ ,

where τ is conformal time, and the last equality holds for constant sound speeds. Therefore, it is clear
that increasing the squared sound speed c2

eff , the time at which perturbations stop growing by entering
the SH decreases. We expect then a bigger amplitude of the density perturbations |δν | for models with
lower values of c2

eff . Inside the SH, fluctuations are damped, with an oscillatory pattern ∼ cos(kceffτ)

depending on the SH and hence on the effective sound speed. But they are not completely erased: they
reach an equilibrium value depending precisely on the pressure to density perturbation ratio. Models
with a smaller c2

eff have less pressure perturbations, and hence keep a higher residual density contrast
|δν | at equilibrium. The decrease of the density contrast observed at late times for massless neutrinos
(upper panels) is due to cosmological constant domination (Λ suppresses density perturbations by
diluting them with the accelerated expansion). Finally, when neutrinos become non-relativistic, their
pressure perturbation becomes negligible and they start to collapse gravitationally. A smaller value
of c2

eff implies that the pressure perturbation becomes negligible a bit earlier, so the density contrast
|δν | grows earlier, and moreover starting from a larger equilibrium value. In summary, a smaller c2

eff

implies a larger density contrast |δν | at all times between the approach of SH crossing and today, and
this is what we observe on the left panels of figure 78.
The viscosity parameter cvis mimics the effect of increasing or decreasing the mean free path of

particles in an imperfect fluid with interactions. The limit cvis = 0 corresponds to a negligible mean
free path, i.e., to the strongly interacting regime where the pressure remains isotropic. A small decrease
of c2

vis below 1/3 implies that it takes more time for neutrinos to transfer power from a monopole and
dipole pattern (i.e., density and velocity perturbations) to a quadrupole pattern (i.e., anisotropic
pressure/stress σν), like in a weakly interacting fluid with less viscosity. Once the quadrupole is
excited, power is transferred to even higher multiples and density fluctuations are damped. Hence the
main effect of cvis is to change slightly the evolution of δν near the SH crossing time, which is precisely
the time at which the anisotropic stress is excited. Models with a smaller c2

vis keep a larger density
contrast for a slightly longer time. Then the density reaches the damped oscillation regime in slightly
longer or shorter time, so the phase of the oscillations is slightly affected by c2

vis.
In the lower part of each plot, we can see that at early times the evolution of the ratio of the two

gravitational potentials Φ and Ψ is weakly model dependent. In particular, by varying the viscosity
parameter, we change the offset between the two metric fluctuations, controlled by the traceless
transverse Einstein equation

k2(Φ−Ψ) = 12πGa2(ρ+ p)σ . (8.3.1)

The total anisotropic stress on the right-hand side receives contribution from photon perturbations
after photon decoupling, and also from neutrino perturbations until their power is transferred to higher
multipoles after SH crossing. In models with a lower c2

vis, the neutrino anisotropic stress grows more
slowly before SH crossing, leading to a reduced difference between the two potentials.
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Figure 79: CMB power spectrum multipoles for the temperature (left column) and E-mode polarisation (right
column) for a ΛCDM model with massless neutrinos (top panels), and three degenerate neutrinos
with mν = 0.10 eV (bottom panels). All models are normalised to a reference model with c2eff =

c2vis = 1/3. Solid red lines and dashed red lines correspond to a c2eff of 0.36 and 0.30 respectively,
whereas solid blue lines and dashed blue lines correspond to a c2vis of 0.36 and 0.30 respectively. Top
and bottom panels are almost identical, showing that the relative effect of (c2eff , c

2
vis) is independent

of neutrino masses.
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8.3.2 CMB temperature and polarisation

In figure 79 we show the CMB power spectra of our four models with non-standard values of c2
eff

and c2
vis, normalised to the reference model with standard neutrino properties. The left column shows

the ratio of the temperature power spectra, whereas the right column shows the ratio of the E-mode
power spectra.
The CMB is sensitive to neutrino perturbations through gravitational interactions [84], [316], [392].

The amplitude of photon oscillations (i.e., acoustic waves) is usually boosted near the time of SH
crossing by the decay of metric fluctuations. In the presence of a smooth free-streaming component
like standard neutrinos, metric fluctuations get extra damping and the boosting is enhanced. After that
time, photon perturbations oscillate with a higher amplitude on sub-SH scales. The enhanced boosting
also implies that the phase of oscillations in the photon-baryon fluid is slightly shifted towards earlier
times in presence of neutrinos. In the observable temperature and polarisation spectra, this induces
a small displacement of CMB peaks towards larger angular scales. This “neutrino drag” effect is very
characteristic of the presence of relativistic particles in the universe before photon decoupling [84].6

In the temperature power spectrum, the most prominent effect of c2
eff and c2

vis is a change in the
amplitude of the spectrum, caused by different amounts of gravitational boosting. A lower c2

eff leads
to more density contrast in the neutrino species, so the metric fluctuations decay more slowly near SH
crossing. The boosting of photon perturbations is reduced and the amplitude of the CMB fluctuations
is lower. The effect of c2

vis is less straightforward, since it impacts the evolution of Ψ and Φ in a
different way around the time of SH crossing for neutrino perturbations, i.e., near the time at which
the neutrino anisotropic stress grows slightly faster / slower, then reaches a maximum and decays. For
a smaller c2

vis, the neutrino anisotropic stress is smaller at the time when the gravitational boosting
of photon fluctuations is relevant, and this results in larger fluctuations. The change of amplitude
observed in figure 79 is qualitatively different in the case of c2

eff and c2
vis, and is also different from

a change in the primordial amplitude As, since it does not affect scales that are above the SH at
decoupling: it reaches a constant amplitude only for multipoles with roughly ` > 300, thus affecting
the first and the second peak of the CMB in different ways and thereby changing the shape of the
spectrum.
Besides the oscillation amplitude, the parameters (c2

eff , c
2
vis) also change the phase of the acoustic

oscillations, as one can see from the oscillatory patterns in figure 79. Indeed we have seen in the previous
section that the oscillation period of δν depends slightly on (c2

eff , c
2
vis). This shift is propagated to the

photon-baryon fluid through the neutrino drag effect. In the polarisation power spectrum we find
effects similar to those present in the temperature power spectrum. However, although the change in
amplitude is similar to the one in the temperature power spectrum, the shift in the position of the
peaks is even more clear, because for polarisation there is no contribution from Doppler effects.This
explains the strong oscillations in the ratios shown in the right column of figure 79.
By comparing the top and bottom panel of figure 79, we see that the relative effect of (c2

eff , c
2
vis)

does not seem to depend on mass, even though the underlying power spectra do depend on mass.
This is not unexpected. When neutrinos have a small mass and become non-relativistic after photon
decoupling, they affect the CMB through small effects: shift in the diameter angular distance, early

6 Instead of probing the existence of the cosmic neutrino background by varying the effective parameters c2eff and c2vis, one
could directly introduce a parametrization of the CMB phase and investigate observational constraints on this phase,
see Ref. [248].
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integrated Sachs-Wolfe effect, and weak lensing. The first effect is totally independent of perturbations,
and hence of (c2

eff , c
2
vis). The second and third effects can in principle be affected by (c2

eff , c
2
vis), but

since this is a modulation of a small effect by another small effect, the impact of the effective speeds
and of neutrino masses are independent of each other to a very good approximation. Hence the effect
of neutrino masses cancels out in the Cl ratios shown in figure 79, at least in the neutrino mass range
explored here.

8.3.3 Matter power spectrum

We complete the previous analysis of the effects on the CMB power spectra of the effective parameters
(c2

eff , c
2
vis) with an analysis of potential signatures on the large scale structure of the universe, focusing

on the shape of the matter power spectrum at redshift z = 0.
In figure 80, as in the previous subsection, we plot the ratios of our four non-standard models with

respect to the reference model with standard neutrinos. On large scales (k ≤ 10−2Mpc−1) the effects of
these non-standard values of c2

eff and c2
vis are below 1%. However, on smaller scales the effects become

more important, especially for c2
eff .

The effect of c2
eff on the matter power spectrum is easy to understand. Once the neutrino or dark

radiation particles are non-relativistic, they fall into the gravitational potential wells of Cold Dark
Matter. The growth rate of δν is larger than the one of δcdm until the neutrino overdensities matches
the CDM overdensities. We have seen in section 3.1. that for a smaller c2

eff , the density contrast |δν |
starts growing a bit earlier and from a slightly larger equilibrium value. Hence, the ratio δν/δCDM at
a given scale and given time is larger for smaller c2

eff .
The growth rate of CDM and baryon fluctuations is slightly reduced when neutrino perturbations

are negligible. With a smaller c2
eff , there is a larger density contrast |δν | in the neutrinos, hence CDM

and baryon collapse at a slightly faster rate and the small-scale matter power spectrum is enhanced.
At scales between 0.01 and 0.2 Mpc−1 increasing (decreasing) any of the two sound speed parameters

cause a decrease (increase) in the power spectrum. This amplitude modulation is still below 1% when
we change c2

vis within the limits explored here, but c2
eff can introduce modulations of up to 5% within

the range 0.30-0.36. Interestingly, at k = 0.2 Mpc−1 the modulation due to c2
vis changes its sign and an

increase in its value produces a decrease of the power spectrum, however the effect remains below 1%
even at k = 1 Mpc−1 for the range considered here. As in the CMB power spectrum, we also detect
no relative effects of the neutrino mass on these ratios. These considerations indicate that the effect
of a modest change in c2

eff is relatively large in the shape of the matter power spectrum: large volume,
forthcoming large-scale structure surveys should have the statistical power to measure sub-percent
effects on these scales. For these reasons, it would be interesting to compare our results with those
of [464], [465], where the authors use Lyman-α forest data to get constraints on massive neutrinos.
Moreover the different behaviour of the two parameters on scales k ≥ 0.1 Mpc−1 means that any
degeneracy between the two parameters can be lifted.
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Figure 80: Matter power spectrum for a ΛCDMmodel with massless neutrinos (left panel) and three degenerate
neutrinos with mν = 0.10 eV each (right panel). All models are normalised to a reference model with
c2eff = c2vis = 1/3. Solid red lines and dashed red lines correspond to c2eff = 0.36 and 0.30 respectively,
whereas solid blue lines and dashed blue lines correspond to c2vis = 0.36 and 0.30 respectively. These
two plots are almost identical, showing that the relative effect of (c2eff , c

2
vis) is independent of neutrino

masses.

8.4 Models and data set

We consider six different models. All models share the six parameters of the flat ΛCDM model, with
the additional c2

vis and c2
eff :

{ωb, ωcdm, h, As, ns, τreio, c
2
vis, c

2
eff}.

We recall that the first six cosmological parameters denote the baryon and cold dark matter physical
densities, the reduced Hubble parameter, the amplitude and tilt of the initial curvature power spectrum
at the pivot scale k∗ = 0.05/Mpc, and the optical depth to reionisation. Those parameters have been
described in sec. 2.2.3.4, while the effective parameters c2

vis and c
2
eff have been described in section 8.2.

8.4.1 Model descriptions

Since this 8-parameter model is our “minimal” model, we refer to it as “M”. We further explore
possible degeneracies between (c2

vis, c
2
eff) and the total neutrino mass Mν ≡

∑
mν and/or the effective

number of relativistic species Neff . These 3 additional models are referred to as M+mν , M+Neff and
M+mν+Neff and have 9, 9 and 10 parameters respectively.
We also check for degeneracies with the dark energy equation of state parameter w (and this model

is referred to as M+w), and the running of the primordial spectrum tilt αs ≡ dns/d log k (model called
M+α).
Unless otherwise stated, when parameters take a fixed value we adopt the same settings as in

the “base model” of the Planck 2013 parameter work [21]. In particular, when the neutrino mass is
not a free parameter, we assume two massless neutrino species, and one species with a small mass
mν = 0.06 eV, motivated by the minimal values in the normal hierarchy scenario. In that case, we
assign the same (c2

vis, c
2
eff) to the massless and massive species. We checked explicitly that the bounds
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on (c2
vis, c

2
eff) obtained in that way are indistinguishable from what we would get by assuming three

massless families. Indeed, a neutrino mass mν = 0.06 eV is too small to change the evolution of
perturbations at CMB times, independently of the value of (c2

vis, c
2
eff). Such a small mass affects the

CMB only through a modification of the angular diameter distance to decoupling. Hence, like in the
standard case with (c2

vis, c
2
eff)=(1/3, 1/3), the only impact of this fixed mass is a small shifting of the

best-fit value of H0 by roughly −0.6 km s−1 Mpc−1 [21].
When the neutrino mass is considered as a free parameter, we consider for simplicity three degenerate

neutrinos with equal mass and (c2
vis, c

2
eff) parameters, and the bounds we report are always on the total

neutrino mass Mν . It is well-known that for a fixed total mass, current observations are not sensitive
to the mass splitting between the three families of active neutrinos.
When Neff is left free, we assume one massive species withmν = 0.06 eV and Nur = Neff−1 massless

species, all with the same (c2
vis, c

2
eff) (here ‘ur’ stands for ultra-relativistic). Finally, when varying Neff

and mν at the same time, we take one massive species with mass mν , and Nur = Neff − 1 massless
ones, all with the same (c2

vis, c
2
eff). Of course, the decision to assign the same (c2

vis, c
2
eff) to all species

in all cases is somewhat arbitrary. For instance, it could be the case that only one species of neutrinos
has significant interactions with a dark sector. This choice is dictated by simplicity. Also, as long as
everything keeps being consistent with standard neutrino perturbations, this choice will probably be
sufficient in order to establish whether more complicated models are worth investigating.

8.4.2 Data sets and parameter extraction

The parameter extraction is done with the public code Monte Python [68], using the Metropolis
Hastings algorithm, and a Cholesky decomposition in order to better handle the large number of
nuisance parameters [399]. We adopt flat priors on all cosmological parameters. We also use importance
sampling for exploring small deviations to the posterior coming from additional datasets. We compare
our six different models to 3 sets of experiments.
The CMB set includes the Planck [482] temperature power spectrum [483], the low-` information

from WMAP polarisation [98], as well as high-` ACT [550] and SPT [504] data [21]. The adopted
Planck likelihood functions are the low-` Commander likelihood and the high-` CAMspec [483]. The
CMB+lensing set contains in addition the Planck lensing reconstruction [484]. The recent expansion
history of the Universe as measured via the Baryon Acoustic Oscillations (BAO) technique is also
considered as an additional data set and we use the determinations of refs. [47], [101], [249], [514].

8.5 Results

ΛCDM+c2
eff+c

2
vis ≡ M: Results for the minimal model ΛCDM+c2

eff+c
2
vis (M) are reported in ta-

bles 6, 7, 8 for the three different datasets, and illustrated by the left panel of figure 82. The standard
values (c2

eff , c
2
vis) are always well within the 95% confidence intervals, so the data gives no indica-

tion of exotic physics in the dark radiation sector. These findings can be seen as further evidence in
favour of the detection of the cosmic neutrino background. Our results in this case reproduce those
of ref. [267] and confirm that current data are sensitive to c2

vis and especially to c2
eff . The effect of the

neutrino anisotropic stress is detected albeit at small statistical significance: c2
vis = 0 is disfavoured

at the 2.5σ level for CMB and CMB +lensing but (slightly) above 3σ when BAO data are included.
For all dataset combinations, we observe (figure 82) a small anti-correlation between the two effective
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parameters. Indeed we have seen in section 3 that they affect the amplitude of CMB oscillations in
different directions. Apart from the overall amplitude, their effects are clearly distinct as shown by
figure 2 which explains the weakness of the correlation.
The bounds on the parameters of the ΛCDM model are significantly broader than in the base

ΛCDM case. In fact, the effect of c2
eff+c

2
vis discussed in section 3 turn out to be degenerate with subtle

combinations of ωb, ωcdm, ns and As (see figure 81). In particular, a high c2
vis requires low ωb, ωcdm, and

high ns and As. Better CMB data could help break these degeneracies, and bring stronger constraints
on (c2

eff , c
2
vis).
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Figure 81: Degeneracies between the parameters (c2vis, c
2
eff) and the parameters ωb, ωcdm, As and ns. A combi-

nation of CMB+lensing data is used for this plot, in which a ΛCDM+c2vis+c
2
eff model is assumed.

Dashed lines correspond to the standard values (c2eff , c
2
vis) = (1/3, 1/3).

This also indicates that the significance of the deviation from a scale invariant power spectrum relies
on assuming standard neutrino properties. If this assumption is relaxed our knowledge of the shape
of the primordial power spectrum is also degraded.
M+mν : The effect of adding mν can be seen in tables 6, 7, and in the right panel of figure 82. There

is no degeneracy between c2
eff+c

2
vis and the neutrino mass. This is an important new result, helping to

establish the robustness of constraints on neutrino/dark radiation perturbations. Adding mν slightly
decreases the mean value for c2

eff and increases the mean value for c2
vis, but not by a statistically

significant amount.
Extended cosmologies: We considered extended cosmologies for the CMB+lensing dataset. Pa-

rameter constraints are reported in table 7. Selected two-dimensional posterior distributions involving
(c2

eff , c
2
vis) and the extra cosmological parameters are shown in figures 83 and 84. The (c2

eff , c
2
vis) con-

straints are robust to the addition of extra cosmological parameters. There is no significant degeneracy
between (c2

eff , c
2
vis and Neff) or w. There is a small anti-correlation between c2

eff and αs which how-
ever does not change the conclusion that c2

eff is compatible with the standard value of 1/3 and αs is
consistent with 0.
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Figure 82: Left. Constraints in the (c2vis, c
2
eff) plane for combination of CMB, CMB+lensing and

CMB+lensing+BAO data, in the ΛCDM+ c2vis + c2eff model. Marginalised posterior distributions
for both parameters are also shown. Right. Constraints on (c2vis, c

2
eff) and the total neutrino mass

Mν for CMB and CMB+lensing datasets in the ΛCDM+c2vis+c
2
eff+mν model. Dashed lines corre-

spond to the standard values (c2eff , c
2
vis) = (1/3, 1/3).
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Figure 83: Left. Two-dimensional posterior distributions for (c2vis, c
2
eff) and Neff for CMB+lensing data set in

the ΛCDM+c2eff+c
2
vis+Neff model, where we considered one massive (mν=0.06 eV) and two massless

neutrinos. Right. Constraints on (c2vis, c
2
eff) and the running spectral index αs for CMB+lensing data

in the ΛCDM+c2eff+c
2
vis+αs model. Dashed lines correspond to the standard values (c2eff , c

2
vis) =

(1/3, 1/3).

M+Nrel+mν : Finally even in the 10 parameters model where all parameters describing neutrino
and dark radiation properties are left to vary we find no significant degeneracies with the c2

eff , c
2
vis

parameters. The effective number of species is still compatible with the standard value and its error-
bar (±0.34) has not degraded compared to the ΛCDM+Neff case (±0.33) in [21]. The 95% limit on the
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CMB

Parameter ΛCDM+c2
eff+c

2
vis + mν

100 ωb 2.132+0.044
−0.054 2.107+0.046

−0.056

ωcdm 0.1164± 0.0040 0.1166+0.0039
−0.0041

H0 68.0± 1.3 65.0+3.4
−1.8

10+9As 2.37± 0.14 2.40+0.14
−0.13

ns 0.991+0.021
−0.019 0.992+0.022

−0.017

τreio 0.090+0.013
−0.014 0.090+0.013

−0.014

c2
eff 0.307+0.013

−0.014 0.304+0.013
−0.014

c2
vis 0.56+0.15

−0.25 0.61+0.17
−0.24

Mν [eV] – < 0.88

Table 6: Constraints from CMB data on the values of the cosmological parameters for the ΛCDM+c2eff+c
2
vis

and the ΛCDM+c2eff+c
2
vis + mν models. We report the 95% C.L. upper limit for the total neutrino

mass Mν , the mean values and 1σ ranges for all the other parameters.
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Figure 84: Left. Constraints on the interesting parameters for CMB+lensing data in the ΛCDM c2eff+c
2
vis+w

model, where also the dark energy equation of state w is let free to vary. We also include the
contour in H0 due to the strong degeneracy of this parameter with w. Remarkably, a prior on H0

from direct measurements of the Hubble constant would break this degeneracy without changing our
constraints on (c2vis, c

2
eff). Right. Constraints on the interesting parameters for CMB+lensing data

in the ΛCDM+c2eff+c
2
vis+Neff+mν model. We report the constraints on the total neutrino mass Mν

in eV. Dashed lines correspond to the standard values (c2eff , c
2
vis) = (1/3, 1/3).

total neutrino mass is Mν < 1.05 eV, which is only slightly degraded compared with the ΛCDM+mν

case Mν < 0.85 eV.
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CMB + lensing

Parameter ΛCDM+c2
eff+c

2
vis +Neff +mν +w + αs + Neff +mν

100 ωb 2.162+0.047
−0.052 2.174+0.057

−0.055 2.124+0.048
−0.056 2.179+0.052

−0.056 2.180+0.050
−0.056 2.136+0.060

−0.068

ωcdm 0.1163+0.0037
−0.0034 0.1181+0.0054

−0.0051 0.1186+0.0037
−0.0036 0.1164+0.0037

−0.0035 0.1163± 0.0035 0.1184± 0.0055

H0 68.3± 1.1 69.6± 2.9 63.7+4.1
−2.6 85.5+14.0

−4.5 68.3+1.1
−1.2 65.4+4.0

−4.2

10+9As 2.31+0.12
−0.15 2.34+0.12

−0.16 2.36± 0.13 2.27+0.12
−0.15 2.35+0.13

−0.15 2.39± 0.14

ns 0.984+0.021
−0.020 0.991+0.024

−0.025 0.981+0.020
−0.018 0.979+0.022

−0.021 0.980+0.022
−0.019 0.987+0.025

−0.022

τreio 0.090+0.012
−0.014 0.093+0.013

−0.015 0.093+0.013
−0.014 0.088+0.012

−0.014 0.095+0.013
−0.016 0.094+0.013

−0.016

c2
eff 0.314± 0.013 0.314± 0.013 0.309+0.013

−0.014 0.318+0.013
−0.014 0.320+0.014

−0.016 0.312+0.014
−0.013

c2
vis 0.49+0.12

−0.22 0.49+0.11
−0.21 0.51+0.14

−0.19 0.46+0.11
−0.23 0.50+0.13

−0.22 0.56+0.14
−0.24

Neff – 3.22+0.32
−0.37 – – – 3.17+0.34

−0.37

Mν [eV] – – < 1.03 – – < 1.05

w – – – −1.49+0.18
−0.38 – –

αs – – – – −0.010± 0.010 –

Table 7: Constraints from CMB+lensing data on the values of the cosmological parameters for
the ΛCDM+c2eff+c

2
vis, ΛCDM+c2eff+c

2
vis + Neff , ΛCDM+c2eff+c

2
vis + mν , ΛCDM+c2eff+c

2
vis + w,

ΛCDM+c2eff+c
2
vis + αs and ΛCDM+c2eff+c

2
vis+Neff+mν models. We report the 95% C.L. upper limit

for the total neutrino mass Mν , the mean values and 1σ ranges for all the other parameters.

8.6 Conclusions

In this work we have elucidated the physical effects of the c2
eff and c2

vis parameters on the CMB
temperature and polarisation power spectra and the matter power spectrum. We find that the main
signatures in the temperature and polarisation spectra are a shift of acoustic peaks, and a scale-
dependent amplitude modulation for multipoles ` < 300 i.e., including the first peak, whereas the
amplitude change is roughly constant beyond that scale and up to multipole ` = 5000. Interestingly,
an increase in the c2

eff parameter causes an increase in the amplitude, whereas an increase in the c2
vis

parameter causes the opposite effect. A similar amplitude change is found in the polarisation power
spectrum. The matter power spectrum on the other hand, is mainly unaffected by these parameters
at large scales, but it shows some dependence on these parameters at scales below matter-radiation
equality. While c2

vis effects are within 1%, we find that c2
eff can cause changes of several percent already

at k = 0.2 Mpc−1 for the values we have studied. Forthcoming large-scale structure surveys covering
volumes of several Gpc3 have in principle the statistical power to measure sub-percent effects on these
scales. In practice, however, the accurate determination of the shape of the matter power spectrum
and its interpretation in terms of the linear power spectrum on these scales is affected by other
astrophysical processes and it remains to be seen whether a sub-percent accuracy can be achieved
realistically.
We have also investigated the existence of degeneracies between these dark energy perturbation

effective parameters and cosmological parameters, such as the total neutrino massMν , effective number
of relativistic species Neff , equation of state of dark energy w, and running of the spectral index αs.
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CMB + lensing + BAO

Parameter ΛCDM+c2
eff+c

2
vis +mν

100 ωb 2.167+0.048
−0.054 2.145+0.042

−0.058

ωcdm 0.1167+0.0020
−0.0023 0.1150+0.0023

−0.0025

H0 68.25+0.63
−0.65 67.60+0.98

−0.93

10+9As 2.30+0.10
−0.12 2.37± 0.13

ns 0.982+0.017
−0.014 0.992+0.018

−0.014

τreio 0.090± 0.012 0.094+0.013
−0.014

c2
eff 0.314+0.011

−0.013 0.309± 0.013

c2
vis 0.47+0.12

−0.19 0.54+0.17
−0.18

Mν [eV] – < 0.33

Table 8: Constraints from CMB+lensing+BAO data on the values of the cosmological parameters for the
ΛCDM+c2eff+c

2
vis and ΛCDM+c2eff+c

2
vis + mν models. We report the 95% C.L. upper limit for the

total neutrino mass Mν , the mean values and 1σ ranges for all the other parameters.

We note that our constraints on (ωb, ωcdm, As, ns) are significantly broader than in the standard case,
but in this work we concentrate on results for c2

eff and c2
vis and on their degeneracies with extended

cosmology parameters. We find that the c2
eff and c2

vis parameters are anti-correlated, that αs is slightly
anti-correlated with c2

eff , but also that there are no major correlations between (c2
eff , c

2
vis) and Neff ,

and for the first time, we show that there is no significant correlation with the total neutrino mass
Mν either.
One can argue that our choice of constant c2

eff and c2
vis is arbitrary and may not be sufficient to

describe massive neutrinos from low momenta to high momenta. We have to bear in mind that these
are effective parameters: in the absence of any significant deviations from their standard, constant,
values they should be interpreted in the light of a null test hypothesis. We can however go beyond
this interpretation by assuming that c2

eff depends on the momentum q and expand this dependence to
linear order: c2

eff(q) = c2
eff(0) + c2

eff(1) (q − qavg) + . . ., where qavg (' 3.15) is the average momentum for
neutrinos. From this expansion, it follows that being sensitive to c2

eff(1) is equivalent to being sensitive
to some c2

eff for a relativistic momentum bin versus a non-relativistic momentum bin. On the other
hand, a modification of the neutrino mass produces a similar effect, since it regulates the time scale at
which massive neutrinos become non-relativistic. In our analysis we found that, by fixing the values
of (c2

eff , c
2
vis), the dependence on the mass is negligible. This finding indicates therefore that our choice

of constant (c2
eff , c

2
vis) is a good approximation even for a q-dependent c2

eff .
Already with state-of the art CMB data available7 (i.e., Planck 2013 data release and WMAP low

` polarisation data) alone or in combination with other data sets (e.g., BAO), we can conclude that
these parameters are not significantly degenerate with any other, and hence that the detection of the
anisotropies of the cosmic neutrino background is robust. We find no evidence for deviations from
the standard neutrino model, i.e., 3 neutrino families with effective parameters (c2

eff , c
2
vis)=(1/3, 1/3)

when we consider CMB data only (including CMB lensing).

7 This study was completed before the 2015 data release by Planck. In Ref. [19], bounds on (c2vis, c2eff) have now shrunk
down to (0.331±0.037,0.3242 ± 0.0059), and hence corroborate our conclusions.
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However the inclusion of (c2
eff , c

2
vis) parameters degrades the constraints on some of the ΛCDMmodel

parameters, such as the physical matter density and the slope of the primordial power spectrum. In
particular, high values of ns, including a scale invariant power spectrum (ns = 1), become allowed.
This indicates that the significance of the deviation from a scale invariant power spectrum, with
all its consequences for inflationary models, relies on assuming standard neutrino properties. It also
means that future data sets providing independent measurements of these parameters, such as the
matter power spectrum from galaxy surveys or smaller scale CMB polarization, could help to remove
degeneracies and greatly improve the sensitivity to (c2

eff , c
2
vis). This is expected to be the case for

the full Planck data on temperature and polarisation anisotropies. Measurements of the shape of
the matter power spectrum, even on linear scales, should also greatly help to lift the {ns, c2

eff , c
2
vis}

degeneracies.



9
PHYS ICAL EFFECTS OF NEUTRINO MASSES IN FUTURE
COSMOLOGICAL DATA

This chapter is adapted from a publication in JCAP [53].

9.1 Introduction

A wide program of future cosmological experiments is planned or proposed, in order not only to pin
down cosmological parameters, but also to shed light on fundamental physics related to cosmology.
These cosmological experiments include high precision galaxy redshift surveys, such as Euclid, DESI,
WFIRST (see [250] and references therein), high precision cosmic shear surveys, such as Euclid and
LSST, and finally Cosmic Microwave Background experiments aimed at more accurate polarization
measurements, such as CORE [117], [207], [208] and CMB-Stage IV [42], [311].
However, besides experimental sensitivity, parameter constraints are limited by degeneracies: a de-

generacy indicates the ability of one parameter to mimic the effect of another parameter on a particular
observable, making it impossible to disentangle them and to determine the value of each parameter
separately. The key approach to tackle this problem consists in a joint analysis of complementary
probes with different degeneracy directions in parameter space. For that reason, the next step in the
era of precision cosmology will be based on the synergy of high- and low- redshift probes.
One of the parameters that will benefit from such an approach is the neutrino mass sum (here-

after Mν) introduced in section 3.2.1. Indeed the impact of massive neutrinos on cosmological ob-
servables comes from a very special effect: light massive neutrinos behave as radiation before their
non-relativistic transition, while afterwards they gradually become a matter component; therefore
their impact on cosmological probes at different redshifts is closely related to their mass.
The neutrino mass effects have been widely studied in the literature [84], [293], [392], [395] and their

impact on CMB and large scale structures on linear scales is well known. Even on non-linear scale,
the neutrino mass effect is better understood thanks to recent progress in N-body simulations [36],
[105], [124], [125]. However, neutrino cosmology is about to face a revolution for two reasons.
First of all, current upper bounds on the neutrino mass sum are getting closer and closer to the

minimum value allowed by the inverted hierarchy Mν ∼ 0.11 eV [27], [199], [466]. Thus, future experi-
ments will look at ultra-light neutrinos that became non-relativistic in a relatively recent cosmological
epoch. Very small neutrino masses will have a different effect on the cosmological evolution and, thus,
a different impact on cosmological observables. For instance, even if the majority of neutrinos with
mν ≤ 600 meV go non-relativistic after photon decoupling, a small number of them (contributing
to the low momentum tail of the phase space distribution) are already partially non-relativistic at
decoupling. For mν ∼ 300 meV this could still have small effects, but not for mν ∼ 60 meV. Similarly,

263
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neutrinos becoming relativistic soon after photon decoupling can produce a distortion of the CMB
temperature spectrum through the early Integrated Sachs-Wolfe effect, but again this can only be
significant for masses of a few hundreds of meV. Instead, the neutrinos studied in this work could have
individual masses of at most 100 meV.
Secondly, future galaxy surveys will reach a very high sensitivity on very small scales. As for now,

the use of small scale data is limited by the uncertainty on non-linear structure formation, which is
difficult to model, especially in presence of massive neutrinos [58], [142], [150], [225], [254]. A major
theoretical goal in the next few years will be to provide a better understanding of the processes
governing clustering on small scales. Having the non-linear effects under control, we will be able to
exploit small scale data in order to break degeneracies. The neutrino mass effects are already important
on linear scales, but by including smaller and smaller scales one would have a better lever arm and
improve the constraints on Mν .
The aim of this work is to investigate the physical effects induced by massive neutrinos as they will

be unveiled by future cosmological data.
We will pay particular attention to the correlation between Mν and other cosmological parameters,

and show that directions of degeneracy are very sensitive to probes of the cosmic history at different
epochs. For some combinations of CMB and Large Scale Structure data sets, a correlation between
Mν and τreio has already been observed in references [42], [407], but its interpretation is far from
obvious and requires a detailed investigation. This correlation is very important, for the reason that
independent measurements of the optical depth by 21cm surveys will lead to a remarkable improvement
on the sensitivity to the neutrino mass [407]. We will confirm this expectation with a dedicated forecast
showing that even the minimum allowed value of the summed neutrino mass could be detected at the
5σ level in a time scale of about ten years.
The study is organized as follows: In section 9.2, 9.3 and 9.4 we study in detail the effect of a

variation of the summed neutrino mass in CMB, Baryonic Acoustic Oscillation (BAO) and Large
Scale Structure (LSS) observables, respectively. In particular we will carefully describe and explain
the degeneracies with other relevant cosmological parameters. In section 9.5 we will present the results
of our Markov Chain Monte Carlo forecast of the sensitivity of future CMB, BAO, LSS and 21cm
experiments. Finally in section 9.6 we will draw our conclusions.

9.2 Effect of a small neutrino mass on the CMB

9.2.1 General parameter degeneracies for CMB data

In the minimal, flat, 6-parameter ΛCDM model, it is well-known that the CMB temperature and
polarisation unlensed spectra are determined by a number of effects1, which remain identical as long
as one fixes quantities usually depending on distance and density ratios, such as:

• the sound horizon angular scale θs(zdec) = ds(zdec)
dA(zdec) at decoupling,

• the diffusion angular scale θd(zdec) = dd(zdec)
dA(zdec) at decoupling,

• the baryon-to-photon ratio Rdec = 3ρb
4ργ

∣∣∣
dec

at decoupling,

1 For a review of these effects, see e.g. [323], section 5.1 of [392], and [317].
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• the redshift of radiation-to-matter equality zeq = ρ0
m
ρ0
r
− 1,

• the redshift of matter-to-cosmological-constant equality zΛ =
(
ρ0

Λ
ρ0
r

)1/3
− 1.

The CMB spectra also depend on a few extra parameters, like the scalar amplitude and tilt (As, ns)

and the optical depth at reionization τreio. However, bearing in mind that the small-` (large angular)
part of the spectra is loosely constrained due to cosmic variance, the parameters zΛ, As and τreio are
always less constrained by CMB data than (θs, θd, R, zeq, ns), and also than the combination Ase−2τreio

giving the overall spectrum normalisation on small angular scales. The fact that we actually measure
lensed CMB spectra gives extra information on the amplitude and slope of the matter power spectrum
P (k, z) at low redshift: in practice, this increases the sensitivity to the parameters (As, zΛ), which enter
into the normalisation of P (k, z).
Adding neutrino masses to the model leads to several new effects studied extensively in the litera-

ture [315], [317], [392]:

(a) Neutrino masses affects the background expansion history. If we rely on standard assumptions
for the photon and background densities (Tcmb = 2.726 K, Neff = 3.046) and further fix ωb
and ωcdm, the changes in the background evolution caused by neutrino masses are confined to
late times. Then, the values of ds(zdec), dd(zdec), Rdec and zeq are preserved, and the neutrino
masses only impacts the angular diameter distance (and therefore, θs and θd in an equal way)
and zΛ (and hence, the loosely constrained late ISW effect). It is even possible to choose an
appropriate value of the cosmological constant for each set of neutrino masses, in order to keep
a fixed dA(zdec): in that case, the impact of neutrino masses on the background is confined to
variations of zΛ and of the late ISW effect, and cannot be probed accurately due to cosmic
variance, unless external non-CMB datasets come into play.

(b) At the perturbation level, massive neutrinos interact gravitationally with other species and pro-
duce small distortions in the CMB peaks. For individual neutrino masses mν smaller than
∼ 600 meV, the neutrinos become non-relativistic after recombination: in that case the distor-
tions can only be caused by the early ISW effect, and affect the CMB temperature spectrum
in the multipole range 50 < ` < 200 [315], [392], [395]. Note that this neutrino-mass-induced
early ISW effect takes place even if the redshift of equality is kept fixed: it is different from the
redshift-of-equality-induced early ISW effect, which affects the height of the first CMB peak in
the range 100 < ` < 300.

(c) Finally, at the lensing level, massive neutrinos slow down the growth of small-scale structure
(leading to the well-known suppression factor 1− 8ων/ωm in the small-scale matter power spec-
trum at redshift zero) and globally decrease the impact of CMB lensing: the peaks are less
smoothed and the damping tail less suppressed [401].

All these effects have played a role in previous constraints on neutrino masses from CMB data alone,
or combined with other probes. Interestingly, while the sensitivity of CMB instruments increases
with time, different effects come to dominate the neutrino mass constraints: early ISW effects (b)
with WMAP alone [305], lensing effects (c) with Planck alone [19], and background effects (a) when
combining CMB data with direct measurements of H0 [509]. There are now several combinations of
cosmological probes giving a 95%CL upper bound on the summed mass Mν ≡

∑
mν of the order of
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120 meV to 150 meV [27], [199], [272], [466], while neutrino oscillation data enforces Mν ≥ 60 meV
at 95%CL [275]. The remaining conservatively allowed window is so narrow, ∆Mν ∼ 90 meV, that
the impact of a realistic variation of the neutrino masses on the CMB is getting really small. Our
purpose in section 9.2.3 is to study precisely this impact, and to understand the degeneracy between
Mν and other parameters when using future CMB data only, specifically for the very low mass range
60 meV< Mν < 150 meV. This requires some preliminary remarks in section 9.2.2.

9.2.2 CMB data definition

The discussion of degeneracies is meaningless unless we specify which data set, and which experimental
sensitivities, we are referring to. In this work, we take as a typical example of future CMB data a
next-generation CMB satellite similar to the project COrE+, submitted to ESA for the call M4. A
new version of CORE was recently submitted again for the call M5 [207], [208], with a small reduction
of the instrumental performances, mainly in angular resolution. However, COrE+ and CORE-M5
are very similar, and the conclusions of this work would not change significantly by adopting the
CORE-M5 settings.
When displaying binned errors in Cl plots, and when doing MCMC forecasts with mock data and

synthetic likelihoods, we assume that this CORE-like experiment is based on 9 frequency channels
with sensitivity and beam angles given in footnote2. We mimic the effect of sky masking by adopting
a Gaussian likelihood with an overall rescaling by a sky fraction fsky = 0.70.
Our dataset consists primarily of temperature and E-mode polarisation auto-correlation and cross-

correlation spectra CTT` , CEE` , CTE` . To get more information on CMB lensing, one can either analyse
B-mode maps (in absence of significant primordial gravitational waves, the B-mode only comes from
CMB lensing and foregrounds) and add the CBB` spectrum to the list of observables; or perform lensing
extraction with a quadratic or optimal estimator [419], and add the CMB lensing potential spectrum
Cφφ` to the list of observables (equivalently one could use the deflection spectrum Cdd` = `(`+ 1)Cφφ`
). We cannot use both CBB` and Cφφ` in the likelihood: the same information would be counted twice.
Here we choose to use the lensing potential spectrum, which better separates the contribution of
different scales to lensing, that would be mixed in the CBB` spectrum by some integration kernel. To
give an example, we will see in Figure 85 (bottom plots) that the neutrino mass effect on Cφφ` is more
pronounced on small angular scales, while in the lensed CBB` this effect would be nearly independent
of `3.
So the CMB data set that we have in mind consists in measurements for CTT` , CEE` , CTE` , Cφφ` , with

a synthetic Gaussian likelihood similar to that in [477], and a lensing extraction error spectrum Nφφ
`

based on the quadratic estimator method [452] for the EB estimator. In the likelihood, we keep the
lensed CTT` , CEE` , CTE` . Indeed, unlike CBB` , these spectra are only weakly affected by lensing, and
the lensing information redundancy between lensed temperature/polarisation spectra and the Cφφ`
spectrum is small enough for being negligible at the instrumental sensitivity level of a CORE-like
experiment [206].

2 Assumed specifications for a COrE+ - like experiment: frequencies in GHz: [100, 115, 130, 145, 160, 175, 195, 220, 255];
θfwhm in arcmin: [8.4, 7.3, 6.46, 5.79, 5.25, 4.8, 4.31, 3.82, 3.29]; temperature sensitivity in [µK arcmin] : [6.0, 5.0, 4.2,
3.6, 3.8, 3.8, 3.8, 5.8, 8.9]; polarisation sensitivity in [µK arcmin] : [8.5, 7.0, 5.9, 5.0, 5.4, 5.3, 5.3, 8.1, 12.6].

3 However, we will also see that within the range in which error bars are small, the neutrino mass effect on Cφφ` is also
nearly `-independent, so we may expect that trading Cφφ` against CBB` in the likelihood would have a minor impact on
our conclusions.
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9.2.3 Degeneracies between very small Mν’s and other parameters with CMB data only

We will discuss the impact of increasing the neutrino mass, while keeping various parameters or
combination of parameters fixed. We illustrate this discussion with the plots of Figure 85, showing
the spectrum ratio between different models sharing a summed mass Mν = 150 meV and a baseline
model4 with Mν = 60 meV. The plots shows the residuals of the lensed TT (top), lensed EE (middle)
and lensing potential (bottom) power spectrum, as a function of multipoles ` with a linear (left) or
logarithmic (right) scale. The light/pink and darker/green shaded rectangles refer respectively to the
binned noise spectrum of a cosmic-variance-limited or CORE-like experiment, with linear bins of width
∆` = 25. All spectra are computed with the Boltzmann solver class5 [109], [390], [396], version 2.5.0,
with the high precision settings cl_permille.pre.

Our discussion will also be illustrated by the results of Monte Carlo Markov Chains (MCMC)
forecasts for our CORE-like experiment: Figure 86 gives the 2D probability contours for the pairs of
parameters most relevant to our discussion. The MCMC forecasts are done with the MontePython
package6 [68].
The main conclusions can be reached in four steps:

1. We first assume that we increase neutrino masses with respect to the baseline model, while
keeping the parameters {ωb, ωcdm, h, ns, As, τreio} fixed (green solid curve in Figure 85). Given
the discussion in point (a), we expect that this is not a very clever choice, because the angular
diameter distance is not preserved. So if the baseline model is a good fit to the data, the new
model will be discrepant. Indeed, by looking especially at the top left and middle left plots in
Figure 85, we see even-spaced oscillations signaling a change in the angular diameter distance,
and the residuals are far above the instrumental noise.

2. We then perform the same increase in Mν , but now with a fixed angular diameter distance to
recombination, which means that {ωb, ωcdm} are still fixed, but h varies. With class, this is easily
achieved by keeping the input parameter 100θs constant. Since the early cosmology and the sound
horizon at decoupling are fixed, fixing θs means adjusting H0 and the angular diameter distance
for each Mν . Then, the angular diffusion scale θd is also automatically fixed. In Figure 85, this
transformation corresponds to the dashed red residuals. As expected, the previous oscillations
disappear in the residuals. The only visible effects are much smaller oscillations, some tilt at large
` due to a different level of CMB lensing, and a tilt at small ` due to a different late ISW effect.
However, both effects are below cosmic variance. We conclude that, the measurement of the
temperature and E-mode spectra alone does not allow us to distinguish between Mν = 60 meV

4 Our discussion is general and the value of cosmological parameters for the baseline model is unimportant. We choose
Planck-inspired values, {ωb, ωcdm, h, ns, As, τreio,Mν} =

{
0.02214, 0.12070, 0.6663, 0.9624, 2.12× 10−9, 0.0581, 0.06 eV

}
,

giving an angular sound horizon at recombination θs (which defines the angular scale of the CMB acoustic peaks)
roughly equal to 100 θs = 1.04075. In this work, our total neutrino mass Mν is assumed to be shared equally among
the three species, like in the degenerate (DEG) model. This choice is not random: it is motivated by the fact that the
cosmological impact of different mass splittings is negligible, at least as long as one compares some DEG, NH (Normal
Hierarchy) and IH (Inverted Hierarchy) models all sharing the same total mass Mν . This is not necessarily true when
comparing them with a model with “one massive, two massless neutrinos”, which departs by a much larger amount at
the level of the matter power spectrum [392], [395]. Hence, by varying the massMν of the DEG model, we obtain results
which apply at the same time, in very good approximation, to the two realistic cases NH and IH.

5 http://class-code.net
6 http://baudren.github.io/montepython.html
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Figure 85: Relative change in the CMB spectra induced by increasing the summed neutrino mass from Mν =

60 meV to Mν = 150 meV. The plots show the residuals of the lensed TT (top), lensed EE (middle)
and lensing potential (bottom) power spectrum, as a function of multipoles ` with a linear (left) or
logarithmic (right) scale. The light/pink and darker/green shaded rectangles refer, respectively, to
the binned noise spectrum of a cosmic-variance-limited or CORE-like experiment, with linear bins
of width ∆` = 25. The physical baryon density ωb and the scalar spectral index ns are kept fixed.
In the first case (green solid line) the value of the Hubble constant is fixed at the reference value,
while in all the other cases (labeled as fixed θs) h decreases in order to keep θs consistent with
the reference model. Moreover, in the third case (dotted blue line), we tried to compensate for the
changes in the lensing spectrum by increasing As, and in the fourth case (dotted-dashed black) we
aim at the same result by increasing ωcdm.
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and 150 meV, and that in a CMB analysis the parameters (Mν , H0) are inevitably correlated,
as it is well known, and illustrated by the upper left plot in Figure 86.
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Figure 86: 68% and 95% CL posterior probability contour levels for different pairs of parameters, for an
MCMC forecast of the sensitivity of a CORE-like experiment to the parameters of a 7-parameter
model (ΛCDM plus total neutrino massMν). The CMB data is assumed to consist of measurements
of the TT, EE, TE and lensing potential spectra.

We can try to quantify this correlation. A simple numerical exercise shows that in order to keep
the same value of θs while fixing {ωb, ωcdm} and varying Mν , one finds a correlation

∆h ' −0.09

(
∆Mν

1 eV

)
. (9.2.1)

We will come back to this relation later, and show that the correlation angle changes slightly
when other effects are taken into account.

We now look at the bottom plots in Figure 85, showing variations in the lensing potential
spectrum. The dashed red line is consistent with the fact that a higher neutrino mass implies
more suppression in the small-scale matter power spectrum P (k, z), and hence in the large-
` lensing potential spectrum Cφφl . A comparison with the instrumental errors show that this
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effect is potentially relevant: the dashed red residual is outside the 68% error bars in about 30
consecutive bins, leading to a χ2 increase by many units. It is also visible that the neutrino mass
effect would be detectable only in a range given roughly by 50 ≤ ` ≤ 800, in which the effect is
nearly equivalent to a suppression by some `-independent factor (by about 3% in our example).

Hence, we see that a CORE-like CMB experiment could in principle discriminate betweenMν =

60 meV and 150 meV, and that the effect of the neutrino mass with fixed {ωb, ωcdm, θs, ns, As, τreio}
can be simply summarised as an apparent mismatch between the normalisation of the TT,TE,EE
spectra and that of the CMB lensing spectrum. To check whether the distinction can be made in
reality, and not just in principle, we must consider whether the variation of other cosmological
parameters could cancel this effect, and lead to new parameter correlations with Mν .

As explained in references [20], [467], in a pure ΛCDM model with no massive neutrinos, the de-
pendence of the global amplitude of Cφφ` on the cosmological parameters is given approximately
by:

`4Cφφ` ∝ As
(
Ω0.6
m h

)2.5
(` > 200),

and in terms of ωm
`4Cφφ` ∝ Asω3/2

m h−1/2 (` > 200),

plus an additional minor dependence on Ωm. If we include massive neutrinos, the linear growth of
structure becomes scale dependent, thus the exact impact ofMν on C

φφ
` is `-dependent, but only

by a small amount in the range constrained by observations. Anyway, given that the neutrino
mass slows down the growth of cold dark matter perturbations, we can generally assume:

`4Cφφ` ∝ Asω3/2
m h−1/2M−αν , (9.2.2)

with α > 0. This qualitative result shows that in order to compensate an increase of Mν , we
have a priori two possibilities: increasing As, or increasing ωm. We will explore them one after
each other in the next points, and arrive at interesting conclusions.

3. We have the possibility to increase As in order to compensate for the neutrino mass effect in
Cφφ` , while keeping Ase−2τreio fixed, in order to have the same overall normalisation of the large-`
temperature and polarisation spectra. Hence, this transformation implies a higher reionisation
optical depth τreio. We could expect that, this change in the optical depth is unobservable due
to cosmic variance, which would mean that there is a parameter degeneracy at the level of CMB
data, and that the three parameters (Mν , As, τreio) are correlated.

This turns out not to be the case. In our example, the higher neutrino mass shifts the lensing
potential down by 3%. This could be compensated by increasing As by 3% as well, and shifting
τreio by ∆τreio = 1

2 log 1.03 ' 0.015. This is a very big shift compared to the expected sensitivity
of a CORE-like experiment, σ(τreio) ' 0.002. Hence this degeneracy should not be present.

This is illustrated by the third set of curves (dotted blue) in Figure 85. We estimated numerically
the reduction factor for Cφφ400 in the second model (red dashed). We increased As by exactly this
factor, keeping Ase−2τreio fixed. The new model has a much larger reionisation bump in CEE` ,
with a residual largely exceeding the error bars.

The lower left plot in Figure 86 brings the final confirmation that in a global fit of CMB data,
with lensing extraction included, there is no significant correlation between Mν and τreio.
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At this point, we still expect that very small neutrino masses could be accurately measured by
CMB data alone, unless the other way to compensate for the neutrino mass effect in the lensing
potential (by increasing ωm) works better than increasing As, and does lead to some parameter
degeneracy. This is what we will explore in the final step of this discussion.

4. Considering that ωb is accurately determined by the first peak ratios, we can increase ωm =

ωb + ωcdm by enhancing ωcdm only. It is difficult to infer analytically from equation (9.2.2) the
amount by which ωcdm should be enhanced in order to cancel the effect of Mν in the lensing
potential, because during the transformation, we must keep θs fixed; since θs depends on both h
and ωm, the Hubble parameter will also change. In the example displayed in figure 85, we found
numerically the factor by which we should increase ωcdm (with fixed ωb and θs), in order to
nearly cancel the neutrino mass effect in the lensing power spectrum. This leads to the dotted-
dashed black curve. In the lensing potential plots (bottom), the new residual is back inside the
cosmic variance band.

The problem with the previous attempt was that changing τreio had “side effects” (namely, on
the reionisation bump) potentially excluded by the data. Increasing ωcdm also has “side effects”:
it affects the redshift of radiation/matter equality zeq, and hence the amplitude of the first
two peaks (through gravity boost effects and through the early ISW effect); it also affects the
redshift of matter/Λ equality zΛ and the late ISW effect; and finally, it has a small impact on
the angular diameter distance. All these effects can be identified by looking at the details of the
dotted-dashed black residuals in figure 85. The key point is that a tiny enhancement of ωcdm is
enough to compensate for the neutrino mass effect in Cφφ` , in such way that the “side effects” all
remain well below cosmic variance. Hence, we expect a parameter degeneracy between Mν and
ωcdm when using CMB data alone, that will compromise the accuracy with which the neutrino
mass can be pinned down, and lead to a correlation between these parameters. We notice that
this correlation between Mν and ωcdm is completely driven by CMB lensing. Removing lensing
extraction would diminish the correlation factor. The residual correlation would be due to the
lensing of the CTT` spectrum (related to the tiny deviation of the black dot dashed line from the
red dashed line on small scales in the top left panel of figure 85), and it would disappear with
delensing.

This is confirmed by the lower right plot in Figure 86: in a global fit of CMB data, we obtain a
degeneracy direction approximately parametrised by the slope of the dashed curve in that plot,

∆ωcdm = 0.01 ∆Mν ∼ ∆ων . (9.2.3)

Which is exactly the relation we used in figure 85, when transforming to the fourth model
(dotted-dashed black curves).

We can reach the main conclusion of this section: for CMB data alone (including lensing extraction),
there is no significant parameter degeneracy between (Mν , As, τreio), but there is one between Mν

and ωcdm. This is the most pronounced parameter degeneracy involving the neutrino mass when
the cosmological model is parametrised by {ωb, ωcdm, θs, ns, As, τreio}, and the correlation is given
approximately by equation (9.2.3).
If instead the model is parametrised by {ωb, ωcdm, h, ns, As, τreio}, for the obvious reasons discussed

previously, there is an additional clear correlation between Mν and h. We return to the correlation
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factor, that we estimated before to be given by equation (9.2.1). This equation is actually not a very
good fit of the contours in the upper left plot of Figure 86: the dashed line in that plot corresponds to

∆h ' −0.13

(
∆Mν

1 eV

)
. (9.2.4)

The explanation for this mismatch is simple. Equation (9.2.1) assumed fixed θs and ωcdm values. If
instead we try to keep θs fixed while varying ωcdm according to equation (9.2.3), we see increased
correlation between Mν and h, as shown by equation (9.2.4)7.
Hence, with CMB data only, the clearest and most important degeneracies involving the summed

neutrino mass are between Mν and ωcdm (due to lensing) and Mν and h (due to the angular diameter
distance). There are other correlations, but they are much less pronounced. The third one would be
between Mν and ns [268]. This can be understood by looking closely at the dotted-dashed line in
figure 85 (lower right plot). The variation of ωcdm did not only rescale the amplitude of the CMB
lensing potential, it also generated a small positive tilt. The reason is that we have decreased the ratio
ωb/ωcdm, thus changing the shape parameter controlling the effective spectral index of the matter
power spectrum P (k) for k > keq: a smaller baryon amount relative to CDM implies a bluer spectrum.
Hence, the (Mν , ωcdm) degeneracy is more pronounced when it goes together with a tiny decrease of
the tilt ns, by such a small amount that it would not conflict with temperature and polarisation data.
This negative correlation is visible in Figure 86, upper right plot.

9.3 Effect of neutrino mass on the BAO scale

The acoustic oscillations of the baryon-photon fluid that we observe in the CMB power spectrum
produce a characteristic feature in the two point correlation function. In Fourier space the feature
is located at a peculiar scale, the BAO scale, kBAO = 2π/rs(zdrag), where rs(zdrag) is the comoving
sound horizon at baryon drag

rs(zdrag) =

∫ τdrag

0
csdτ =

∫ ∞

zdrag

cs
H(z)

dz.

The observed scale, assuming an isotropic fit of a galaxy sample8, provides the ratio rs(zdrag)/DV (zBAO),
where DV is the volume distance, defined as

DV (z) =
[
z/H(z)(1 + z)2dA(z)2

]1/3
,

and DA = (1 + z)dA(z) is the comoving angular diameter distance. In the ΛCDM model with massive
neutrinos, the ratio rs(zdrag)/DV (zBAO) can only depend on the four parameters {ωb, ωcdm, ων , h}.
More precisely, rs(zdrag) depends on the three parameters {ωb, ωcdm, h

2}, while for redshifts below the
non-relativistic transition, z � znr ∼ 2×103(mν/1 eV), DA(z) depends only on ωtot = ωb +ωcdm +ων
and on h, because it can be approximated as

DA(z) =

∫ z

0

cdz′

H(z′)
' 3000

∫ z

0

dz′√
ωtot(1 + z′)3 + (h2 − ωtot)

Mpc. (9.3.1)

7 Note that we estimated the correlation factor in equation (9.2.3) with one significant digit, and in equation (9.2.4) with
two significant digits: this is consistent with the fact that the correlation is much more clear and pronounced in the
second case (the ratio of the minor over major axis is much smaller).

8 Anisotropic fit allow to disentangle the longitudinal information (i.e. the radial scale Hrs) from the transverse one (i.e.
the tangential scale DA/rs).
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Note that the term inside the square root is a polynomial in z′ in which the constant term is precisely
h2 (so as expected, for small redshifts z � 1, DA(z) depends only on the h parameter, like in a Hubble
diagram).
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Figure 87: Relative error on rs/DV . Gray error bars refer to the current BAO measurements: from left to
right 6dFGRS [101], SDSS MGS [514], LOW-Z, C-MASS [47]. Black error bars mark the expected
sensitivity of the future DESI experiment [42], [250]. Green solid line and red dashed lines are the
same as in figure 85, i.e. higher Mν with fixed h (green solid line) and higher Mν with fixed θs and
varying h (red dashed line). However, here the black dot dashed line is obtained by increasing Mν

and varying h and ωcdm as in equations (9.3.2).

In figure 87 we show the residuals of current and future BAO measurements, taking as a reference
the same model as before with Mν = 60 meV, as well as the relative difference on rs(zdrag)/DV (zBAO)

between several models with a higher mass Mν = 150 meV (already introduced in section 9.2.3)
and the reference model. For future measurement we take the example of DESI, assuming the same
sensitivity as in Refs. [42], [250].
We first vary only Mν with fixed {ωb, ωcdm, h, ns, As, τreio} (green solid line). This means that the

early cosmological evolution is identical, while the matter density is slightly enhanced at late times
(after the neutrino non-relativistic transition), by about one percent. Thus ds(zdec) and rs(zdrag)

are fixed, but dA(zdec), dA(zBAO) and DV (zBAO) are subject to change. We have seen that this
transformation shifted the CMB peaks by a detectable amount. However, the accuracy with which
CORE will measure θs (< 0.01%) is much greater than that with which DESI will measure the BAO
angular scales (∼ 1%). From equation 9.3.1 we can see analytically that the typical variation of DA(z)

between the two models is negligible for z � 1 and of the order of 1
2

∆ων
ωtot
' 0.25% for 1 < z < znr.

This explains why the green curve in figure 87 remains within the BAO error bars.
This preliminary discussion brings us to the key points of this section:

• the BAO data alone can bound the neutrino mass, but not with great accuracy. We showed
previously that increasing Mν with fixed {ωb, ωcdm, h} had no detectable effects, but this was
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because the mass variation was too small. If one keeps increasing ων with the other parameters
fixed, the function inside the square root in equation 9.3.1 keeps increasing for the same value z′,
and DA(z) decreases. To avoid a BAO bound on Mν , one could try to exactly compensate the
variation ∆ων by an opposite variation in either ωb or ωcdm, to keep DA(z) exactly constant. But
in that case, the early cosmological evolution would change (sound speed, redshift of equality,
redshift of baryon drag) and the ratio rs(zdrag)/DV (zBAO) would be shifted anyway. Hence there
is no parameter degeneracy cancelling exactly the effect of Mν in BAO observables, at least in
the ΛCDM+Mν model. This explains why in figures 88 and 89, the contours involving Mν are
closed for DESI data alone, setting an upper bound on the summed mass of a few hundreds of
meV.

• the strong degeneracy between Mν and h observed in the CMB case cannot exist with BAO data.
This denegeracy came from the possibility to keep constant angular scales (θs(zdec), θd(zdec))
by varying h with fixed {ωb, ωcdm}. Indeed, when fitting CMB data with different neutrino
masses, one can keep the same value of dA(zdec) by altering the late time cosmological evolution:
while Mν tends to enhance the density at late times, one can decrease h and the cosmological
constant in order to compensate for this effect. This cannot be done with BAO data, because
they probe dA(z) at several small values of z, comparable to the redshift of the transition zΛ. The
proof is particularly obvious if we look at equation 9.3.1 again. Whatever change in h modifies
the constant term inside the square root, and thus the value of DA(z) for z ≤ 1. Thus the
(Mν , h) degeneracy discussed in the CMB section must be broken by BAO data. We get a first
confirmation of this by looking at the red dashed curve in figure 87, obtained by increasing Mν

with a constant θs(zdec): the new model departs from the other one by a detectable amount, at
least given BAO-DESI errors (especially at z � 1, as expected from this discussion). The second
confirmation comes from the right plot in figure 88, showing very different correlations between
Mν and h for CMB-CORE alone and BAO-DESI alone.

• there exists, however, a correlation between Mν , h and ωcdm with BAO data, but along different
angles than with CMB data. This comes from the possibility to modify parameters in such a
way that both rs(zdrag) and DV (zBAO) get shifted, but almost by the same relative amount. To
compensate for the effect of an increasing ων , one has three parameters to play with: {ωb, ωcdm, h}.
However, ωb is precisely fixed by CMB data alone, and for that reason we keep it to its Planck
best-fit value. We then find that variations of the other two parameters by approximately

∆ωcdm ∼ −0.5∆ων , ∆h ' −0.017

(
∆Mν

1 eV

)
' −1.6 ∆ων (9.3.2)

achieve a nearly constant ratio rs(zdrag)/DV (zBAO) in the redshift range best probed by the
BAO-DESI experiment. As argued before, this ratio is more sensitive to h than ωcdm in that
range, so the correlation between ωcdm and ων is weak, while that between h and ων is strong
(see Figure 88).

The parameter correlations found in eq. (9.3.2) for BAO data are very different from those found in
the previous section for CMB data:

∆ωcdm ∼ ∆ων , ∆h ' −0.13

(
∆Mν

1 eV

)
' −12 ∆ων . (9.3.3)
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The combination of CMB and BAO data can thus break these degeneracies, as it is often the case
when combining high and low redshift probes of the expansion history. The breaking does not arise
from the joint measurement of ωcdm and ων (because BAO data are much less sensitive to ωcdm alone
than CMB data), but from that of h and ων , for which the different directions of degeneracy appear
very clearly on figure 88. Thus, the future BAO-DESI data will contribute to tighter constraints on
Mν .
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Figure 88: Marginalized one- and two- σ contours in the plane (ωcdm,Mν) (left panel) and (H0,Mν) (right
panel), for CMB-CORE or BAO-DESI mock data. The black dashed lines show the directions of
degeneracy given in equations (9.3.3), and the blue ones in equations (9.3.2).
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Figure 89: Marginalized one- and two- σ contours in the plane (θs(zdec),Mν) (left) and
(r(zdrag)/DV (z = 1),Mν) (right), for CMB-CORE or BAO-DESI mock data. In the CORE
contours, samples are coloured according to the value of H0.

Another way to illustrate the degeneracies discussed here is to fit CMB data or BAO data alone
with a ΛCDM+Mν model, and to plot the results in the space of parameters (Mν , θs(zdec)) and
(Mν , rs(zdrag)/DV (zBAO)) for a median redshift zBAO = 1. This is shown in figure 89. When fitting
CMB alone, thanks to the degeneracy of equations (9.3.3), we can increase Mν while keeping dA(zdec)

and θs(zdec) fixed (left plot), but this is at the expense of decreasing the BAO angular scale by more
than allowed by observational errors (right plot). Conversely, when fitting BAO data alone, we can
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play with the degeneracy of equations (9.3.2) to keep the BAO angular scale fixed, but this requires
θs(zdec) to vary. The right plot in figure 89 illustrates, in an alternative way to the right plot of
figure 88, how the combination of the two data sets can improve neutrino mass bounds.
Finally, we expect, as a secondary indirect effect, that the correlation between Mν and (As, τreio)

will be more noticeable in a combined analysis of CMB and BAO than for CMB alone. In section 9.2.3,
we mentioned in points 3 and 4 that the impact of Mν on CMB lensing could be compensated in two
ways: by increasing either (As, τreio) (point 3) or ωcdm (point 4). We explained why the former option
is favoured with CMB data alone. Since we just argued that BAO data can reduce the degeneracy
between neutrino masses and ωcdm, the latter option is more relevant when the data are combined
with each other. Indeed, we will see a small correlation between (Mν , τreio) in the combined results
presented in section 9.5, one that was hardly noticeable with CMB alone. Of course, this degeneracy
is not perfect, and extends only up to the point at which τreio becomes too large to be compatible
with CMB polarisation data.

9.4 Effect of neutrino mass on Large Scale Structure observables

9.4.1 Cosmic shear and galaxy clustering spectrum

The Euclid satellite, whose launch is scheduled for 2020, will provide the most accurate ever galaxy
redshift survey, measuring cosmological observables, such as cosmic shear and galaxy clustering, with
1% accuracy. Euclid data will certainly lead to a major breakthrough in precision cosmology thanks
to very precise low redshift measurement which will break the CMB degeneracies among cosmological
parameters (see references [52], [69], [85], [86], [143], [211], [212], [288], [441]). Here we use the infor-
mation extracted from the cosmic shear power spectrum projected in angular harmonics (2D) and the
galaxy clustering power spectrum (3D). Both observables are related to the non-linear matter power
spectrum depending on wavenumber and redshift, Pm(k, z). In our forecasts, we estimate this quantity
using the halofit algorithm, updated by [577] and also by [105] for the effect of neutrino masses, as
implemented in class v2.5.0.

Cosmic shear. The cosmic shear auto and cross correlation angular power spectrum in the i and j

redshift bins is given in the Limber approximation by:

Cij` = H4
0

∫ ∞

0

dz

H(z)
Wi(z)Wj(z)Pm

(
k =

l

r(z)
, z

)
, (9.4.1)

where the window functions are given by

Wi(z) =
3

2
Ωm(1 + z)

∫ ∞

0
dzs

ni(zs)(r(zs)− r(z))
r(zs)

, (9.4.2)

and the number of galaxies per steradian in the i bin is given by

ni(z) =

∫ zMAX
i

zmin
i

dn/dzP(z, zph)dzph
∫∞

0 dn/dzP(z, zph)dzph

with P(z, zph) being the error function

P(z, zph) =
1√

2πσ2
ph

exp

[
−1

2

(
z − zph

σph

)]
.
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We use the Euclid prescription for the galaxy surface density

dn/dz = z2 exp
[
−(z/z0)1.5

]

with zmean = 1.412z0. Finally we consider a photometric redshift error σph = 0.05(1 + z), sky fraction
fsky = 0.3636, mean internal ellipticity 0.22 and total number of observed galaxies 30 per arcmin2.

Galaxy clustering. For galaxy clustering the observed power spectrum reads:

P (kref , µ, z) =
DA(z)2

refH(z)

DA(z)2H(z)ref
b(z)2

[
1 + β(z, k(kref , µ, z))µ

2
]2 × Pm(k(kref , µ, z))e

−k(kref ,µ,z)
2,z)µ2σ2

r ,

where µ is the cosine of the angle between the line of sight and the wavenumber in the reference
cosmology (ref) kref , k is the wavenumber in the true cosmology and it is defined as a function of kref

k2 =

(
(1− µ2)DA(z)2

ref

DA(z)2
+
µ2H(z)2

H(z)2
ref

)
k2

ref .

The factor
[
DA(z)2

refH(z)
]
/
[
DA(z)2H(z)ref

]
encodes the geometrical distortions related to the Alcock-

Paczynski effect. The bias can be written as b =
√

(1 + z), β encodes the redshift space distortions

β(k, z) =
1

2b(z)

d lnPm(k, z)

d ln a
,

and finally the spectroscopic redshift error is σr = dr(z)/dzσz.
Both the Cij` and the P (k) provide information on a broad range of scales; therefore, given the

same survey sensitivity, they are more efficient than BAO in constraining cosmological parameters;
however, for the very same reason, they are more prone to systematic effects such as residual errors
in the estimate of non-linear corrections, non-linear light-to-mass bias or redshift space distortions
(see e.g. [287], [502]). For that reason, we include in our forecast a theoretical error on the observable
power spectrum, increasing above a given redshift-dependent scale of non-linearity (see [69], or [76]
for a more refined treatment).
The assumed theoretical error amplitude has a direct impact on the galaxy clustering sensitivity to

cosmological parameters. Here we stick to the approach of [69], and we refer to this work for details and
equations. As emphasised in [76], this approach is extremely (and maybe overly) conservative, because
the error is assumed to be uncorrelated between different k-bins. The error grows as a function of the
ratio k/knl(z), where knl(z) is the redshift-dependent scale of non linearity, with a shape and amplitude
inspired from the typical residuals between different N-body codes9. Choosing a value for the error
amplitude parameter ε amounts to estimating the accuracy of grids of N-body simulations and of
models for various non-linear and systematic effects in a few years from now. The baseline choice
in [69] was ε = 0.05. In this work, given the progress in the field observed since 2012, we choose to
reduce it to ε = 0.025, meaning that the uncorrelated theoretical error saturates at the 2.5% level in
the deep non-linear regime. This error is explicitly shown in figure 91 for z = 0.5 and z = 2, and its
impact on the lensing harmonic spectrum appears in figure 90 for the lowest and highest redshift bins
of the Euclid lensing survey. In presence of a theoretical error, the issue of where to cut the integrals
in the galaxy clustering likelihood becomes hardly relevant, provided that the cut-off is chosen in the

9 The error function is explicitly given by α(k, z) ≡ ∆Pm(k,z)
Pm(k,z)

= ln[1+k/knl(z)]
1+ln[1+k/knl(z)]

ε, where knl(z) is identical to the quantity
kσ(z) computed at each redshift by Halofit, and the error amplitude parameter ε is the unique free parameter in this
model. The asymptotic error in the deep non-linear regime is then given by 100ε% .
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region where the theoretical error dominates. In what follows, we will cut the observable P (kref , µ, z)

at kmax = 0.6h/Mpc for all redshifts. For cosmic shear, the inclusion of the theoretical error is also
important, although the observational error bar does not decreases indefinitely with ` due to the finite
angular resolution of the shear maps. In our forecasts, we perform a cut at `max = 2000.

9.4.2 Degeneracies between Mν and other parameters

In figure 90 and 91 we show the relative shift in the shear power spectrum and in the galaxy power
spectrum that is obtained when increasing the summed neutrino mass while keeping various quantities
fixed. We also show for comparison the observational and theoretical errors computed in the same way
as in Ref. [69], using the survey specifications listed above. We will study the impact of increasing
the summed neutrino mass on these observables: (1) when keeping the usual cosmological parameters
fixed, (2) when tuning h at the same time in order to keep the same angular peak scale in the CMB,
and (3) when playing with other parameters in order to minimize the impact of neutrino mass on
LSS observables. The discussion in (2) (respectively, (3)) is relevant for understanding the degeneracy
between Mν and other parameters when fitting CMB+LSS data (respectively, LSS data alone).
As in the previous sections, we will then check our theoretical conclusions through an MCMC

forecast of the sensitivity of future experiments that will measure the spectra discussed above. In
figure 93 we plot the marginalized one- and two- σ contours showing the degeneracies at study:
(ωcdm,Mν) (upper left panel), (H0,Mν) (upper right panel), (ns,Mν) (bottom left panel), (As,Mν)

(bottom right panel). The CORE only contours (in gray) are the same as in figure 88. The Euclid
related contours have been obtained through an MCMC forecast including either galaxy clustering
(in green) or cosmic shear (in red), following the specifications listed in section 9.4.1. Fitting Euclid
mock data alone would return wide contours in parameter space. Given that the two quantities best
measured by CMB experiments are the angular scale of the acoustic horizon and the baryon density,
the question in which we are most interested is: assuming that information on ωb and θs is provided
by a CORE-like CMB experiment, what is the pull on other parameters coming from Euclid alone?
To address this, when fitting Euclid data, we impose two uncorrelated gaussian priors on respectively
ωb and θs, with standard deviations taken from our previous CORE-CMB forecast, while keeping τreio

fixed, since the latter does not affect galaxy clustering and shear observables in any way.

1. Neutrino mass effects with all standard cosmological parameters fixed: the usual neutrino–induced
step–like suppression.

Like in the previous sections, we start by increasing the summed neutrino mass from Mν =

0.06 eV to Mν = 0.15 eV, keeping all the other cosmological parameters {ωb, ωcdm, h, ns, As, }
fixed (green solid line). Note that in most of the literature, the effect of neutrino masses
on the matter power spectrum is discussed precisely in that way. One reason is that fixing
{ωb, ωcdm, ns, As, } amounts in keeping the same “early cosmological evolution” until the time of
the neutrino non-relativistic transition. The choice to fix also h is mainly a matter of simplicity.

As expected, the larger Mν induces a relative suppression of power on small scales compared to
large scales, visible both in the shear and in the galaxy power spectrum. To be precise, in the
redshift range surveyed by Euclid, 0 < z < 2.5, neutrinos with a mass Mν > 0.05 eV are already
well inside the non-relativistic regime, thus, the spectrum is suppressed on scales smaller than the
free-streaming scale k > kfs(z). In the redshift range of interest, 0 < z < 2.5, the free streaming
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Figure 90: Relative error on the galaxy lensing Cll` in the first redshift bin (0 < z < 0.42, left panel) and
in the tenth redshift bin (1.7 < z < 2.5, right panel). Here the redshift range is 0 < z < 2.5 and
is divided in ten equi-populated redshift bins. The light pink rectangles refers to the observational
error. The light green shaded area shows the relative error associated to our model for the theoretical
uncertainty on Pm(k, z). Green solid and red dashed lines are the same as in figure 85, i.e. higher
Mν with fixed h (green solid line) and higher Mν with fixed θs and varying h (red dashed line). The
blue dotted line, besides the higher Mν , implies a smaller value of h (∆h ∼ −3∆ων), an increase of
ns by 0.4% and of As by 2%.
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Figure 91: Relative error on the non linear matter power spectrum Pm(kref , z) perpendicular to the line of
sight (µ = 0) at redshift z = 0.5 (left panel) and z = 2 (right panel). The light pink shaded area
refers to the observational error, including cosmic variance. The light green shaded area shows our
model for the theoretical uncertainty. Here the redshift range is 0.5 < z < 2 and is divided in 16
redshift bins. Green solid and red dashed lines are the same as in figure 85, i.e. higherMν with fixed
h (green solid line) and higher Mν with fixed θs and varying h (red dashed line). The blue dotted
line, besides the higher Mν , implies a smaller value of h (∆h ∼ −4∆ων) and an increase of As by
5%.

wavenumber spans the range [0.0077− 0.0041]hMpc−1 (respectively, [0.0192− 0.0103]hMpc−1)
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for Mν = 0.06 eV (respectively, Mν = 0.15 eV)10. The suppression in power makes both the Cij`
and the P (k) directly sensitive to the neutrino mass sum, while this was not the case for the
purely geometrical information encoded in BAO measurements.

This sensitivity is reinforced by non-linear effects which are well visible on figures 90 and 91. In
the shear spectrum of figure 90, in absence of non-linear corrections, the green curve would be
almost constant for ` > 100. Non-linear gravitational clustering produces a characteristic “spoon
shape” or dip [105]. The minimum of the dip is seen at ` ∼ 40 in the first redshift bin and
` ∼ 1000 in the last one. In figure 91, non-linear effects are responsible for the further decrease
of the green curve for k ≥ 0.1h/Mpc.

2. Neutrino mass effects with h varied to keep the CMB angular scales fixed: why does LSS data
lift the (Mν , h) degeneracy?

The second part of the discussion consists in increasingMν by the same amount, while varying h
like in section 9.2.3, in such way as to keep a constant angular diameter distance to recombination,
constant sound horizon angular scale, and constant damping angular scale (red dashed line). As
we have seen in Section 9.2.3 this procedure leads to the well known (Mν , h) CMB degeneracy.

We showed that this degeneracy is broken by BAO data, because the lower value of h increases
the angular diameter distance at low redshift (see Section 9.3). This conclusion is valid also for
galaxy P (k) and shear Cij` , since the red dashed residuals in figures 90, 91 are well outside the
observational and theoretical error bars. For clarity, we should explain the shape of these red
dashed lines, which is slightly counter-intuitive.

In the case of galaxy clustering, the higher value of Mν and lower value of h lead to an almost
constant suppression of power on every scale, plus some wiggles on small scales (see figure 91).
This may sound surprising since we are used to seeing more suppression on small scales when
increasing the neutrino mass. This is true for fixed h, but here we are decreasing the Hubble
rate at the same time. Since ωm = Ωmh

2 is kept fixed, this means that we are increasing Ωm.
For subtle reasons which can be understood analytically, the large-scale branch of the matter
power spectrum is suppressed by the increase of Ωm

11, while the small-scale branch is suppressed
by massive neutrino free-streaming, coincidentally by roughly the same amount. This explains
the almost constant suppression of power in the galaxy clustering spectrum (red dashed line,
figure 91). The wiggles located around k ∼ 0.1hMpc−1 are related to the shift of the BAO scale
due to the different angular diameter distance at low redshift, as we have explained in section 9.3
(see also reference [494]).

10 The free streaming length depends on the mass of each neutrino rather than on the sum. Here we have assumed three
massive degenerate neutrinos.

11 In order to understand the observed behaviour, we have to elaborate on the matter power spectrum Pm entering
equation 9.4.1. An analytic study of the linear power spectrum expressed in units of (Mpc/h)3 as a function of k in units
of h/Mpc shows that at any given redshift, the large-scale branch (k � keq) depends only on a factor (g(Ωm, z)/Ωm)2

coming from the Poisson equation and from the behaviour of matter perturbations during Λ domination (see e.g. [392],
equation (6.39)). The function g(Ωm, z) ≤ 1 is related to the decrease of matter perturbations during Λ domination.
When increasing Ωm, we decrease this factor (g(Ωm, z)/Ωm)2 and we suppress the large-scale power spectrum, but not
the small-scale one. Indeed, looking again at equation (6.39) in [392], the small-scale branch receives an extra factor k̃4

eq

(i.e. k4
eq with keq in h/Mpc). This new factor is actually proportional to z2

eqΩ2
m (eq. (6.32) in the same reference), and

the latter cancels the former Ω−2
m factor.
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The situation is a bit different for the galaxy lensing spectrum Cij` (red dashed line, figure 90)
which probes metric fluctuations instead of matter fluctuations. As a result12, the large-scale
branch of the Cijl ’s slightly increases when we decrease h and increase Ωm. Instead, the small-
scale branch remains nearly constant due to the antagonist effects of neutrino free-streaming
and of the increase in Ωm, but the neutrino effect wins on non-linear scales. As can be seen on
the right panel of figure 90, for the highest redshift bins, the lensing data is able to discriminate
this effect and to lift the (Mν , h) degeneracy, although with less significance than the galaxy
clustering data.

These conclusions are confirmed by the (Mν , h) joint probability contours presented in the upper
right panel of figure 93, for CORE, Euclid-lensing and Euclid-pk. Indeed, the slope of the (Mν ,
h) degeneracy is different from the one observed in CMB data, and it is mainly driven by the
CMB prior on θs.

3. Degeneracy between Mν and other parameters from Large Scale Structure data alone.

Finally we increase Mν , decrease h by a smaller amount than the one required for fixing θs, and,
at the same time, we vary the primordial power spectrum parameters, the amplitude As and
also the index ns in the case of cosmic shear (blue dotted lines). It is clear from figures 90 and
91 that this procedure can almost cancel the effect induced by a larger Mν both in the shear
Cij` and in the galaxy P (k), leading to a new degeneracy. We shall now explain the reasons for
this degeneracy.

Considering that the primordial power spectrum of scalar perturbations is given by

k3PR(k)

2π2
= As

(
k

k0

)ns−1

, (9.4.3)

the matter power spectrum Pm can be written as

Pm(k, z) ∝ As
(
k

k0

)ns
T (k, z)2 (9.4.4)

where T (k, z) is the time and scale dependent linear transfer function of matter density fluctua-
tions (not separable in the case of massive neutrinos). As we have already explained, neutrinos
induce a relative suppression of power on scales k > kfs; this suppression is encoded in the trans-
fer function T (k, z) of equation 9.4.4. In figure 92 we show how T (k, z) is suppressed by a larger
neutrino mass sum on k > kfs at redshift z = 0 and z = 2. Changing (ns, As) affects only the pri-
mordial power spectrum, while leaving T (k, z) unchanged, therefore, since we keep ωb and ωcdm

fixed, any deviation from the green solid line is due only to the variation of h and Ωm. If, besides
increasing Mν , we decrease h to keep θs fixed (red dashed line), then the suppression of T (k, z)

extends to k < kfs (because of the (g(Ωm, z)/Ωm)2 factor) and the wiggles, due to the shift of the
BAO scale, appear at smaller scales. This graphically explains what we have already discussed
in point 2. Reducing the tweaking on h (blue dotted line) implies less reduction of power on the
large scale branch and a smoothing of the wiggles; anyhow, the massive neutrino suppression of

12 Since the lensing spectrum directly depends on metric fluctuations, it does not share with the matter power spectrum
the factor Ω−2

m coming from the Poisson equation. Indeed, the factor Ω−2
m discussed in the previous footnote is exactly

cancelled by a factor Ω2
m that appears in equation 9.4.1 when replacing the window functions with equation 9.4.2. As a

result, the large-scale branch of the Cijl ’s depend on g(Ωm, z)
2 only, while the small-scale branch is proportional to Ω2

m.



282 physical effects of neutrino masses in future cosmological data

10-2 10-1

k [h/Mpc]

0.05

0.04

0.03

0.02

0.01

0.00

0.01

T
(k
,z

)/
T

re
f (
k
,z

)
−

1

z= 0. 0 fixed h

fixed θs
∆h∼ − 4∆ων

10-2 10-1

k [h/Mpc]

0.05

0.04

0.03

0.02

0.01

0.00

0.01

T
(k
,z

)/
T

re
f (
k
,z

)
−

1

z= 2. 0 fixed h

fixed θs
∆h∼ − 4∆ων

Figure 92: Relative error on the linear transfer function T (k) at redshift z = 0 (left panel) and z = 2 (right
panel). The line color/style - model correspondence is the same as in figure 91.

the transfer function is not fully compensated. However, if we look at equation 9.4.4 it is clear
that a red tilt of the primordial power spectrum, combined with a smaller normalization, can
mimic the same effect of a larger neutrino mass, reducing power on small scales respect to large
scales.

The left and right bottom panels of figure 93 show the degeneracies between Mν and (ns, As).
We can see that the degeneracy between Mν and ns is mildly positive in galaxy lensing, as
expected from the discussion above, while it is negative in CMB, as explained at the end of
section 9.2.3, and mildly negative in galaxy clustering. The reason why this positive (Mν , ns)

correlation emerges with cosmic shear, but not with galaxy correlation data, is related to the
window function. Indeed, since the window function (equation 9.4.2) for each redshift bin is
given by the integral over the line of sight, the Cij` ’s of equation 9.4.1 receive contributions from
a larger range of scales. Therefore, being sensitive to a wider lever arm in k space, cosmic shear
will be particularly sensitive to scale dependent variations of the power spectrum.

Notice that here the tweaking of As is larger than the one we performed at point 3 of section 9.2.3.
Thus, the corresponding ∆τreio ∼ 0.5 ln(1.05) ∼ 0.027 would lead to an enhancement of the
reionization bump even bigger than the one we observed in the blue dotted line of the CEE` plot
(figure 85, second row, right panel). This already shows that the degeneracy discussed here can
be lifted by combining LSS data with CMB data. Nevertheless this discussion was important to
understand the pulls in parameter space appearing when all data sets are combined with each
other.

Figure 93 confirms the points discussed previously, and provides a comprehensive graphical sum-
mary of the complementarity between future CMB and LSS data in the context of neutrino mass
measurement.
First, we see that even when adopting CMB-derived priors on ωb and θs, the LSS data cannot

efficiently constrain the neutrino mass, due to the degeneracy discussed in the previous paragraphs
(point 3), involving mainly (Mν , As, H0), and to a lesser extent, ns. We have seen that this degeneracy
requires a milder correlation between Mν and H0 than the CMB data: ∆h ∼ −3∆ων for LSS alone,
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Figure 93: Marginalized one- and two- σ contours in the plane (ωcdm,Mν) (upper left panel), (H0,Mν) (upper
right panel), (ns,Mν) (bottom left panel), (As,Mν) (bottom right panel). The black dashed lines
show the degeneracies encoded in CMB data, the red and green dashed lines account for some of
the most prominent correlations arising from cosmic shear and galaxy clustering, respectively.

instead of ∆h ∼ −12∆ων for CMB alone. Since in Figure 93 the Euclid mock data was fitted together
with a prior on θs, the final correlation angles represent compromises between these values. The lensing
data also exhibits a negative correlation between Mν and ωcdm.
The CMB and LSS contours of Figure 93 clearly intersect each other for several pairs of parameters:

• The CMB and LSS data prefer different directions of degeneracy in (Mν , H0) space, hence the
combination between them can strongly reduce the uncertainty on both Mν and H0.

• The CMB data lifts the (Mν , As) degeneracy present in the LSS data, for the reason mentioned
above: the shift in As would need to be compensated by a shift in τreio producing a reionisation
bump incompatible with the data. However, in the combined data set, the LSS data would keep
pulling towards more positive correlation between Mν and As.

• the very different correlations in (Mν , ωcdm) space reduces uncertainties on ωcdm, with a side
effect on the CMB side. We have seen that the effect of neutrino masses on the CMB lensing
spectrum can be compensated either by playing with ωcdm, or with (As, τreio). The CMB alone
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would favour the first option. Like BAO data, weak lensing data breaks the (Mν , ωcdm) degen-
eracy and leaves only the second option. This goes in the same direction as the previous point:
pulling towards more positive correlation between Mν and As.

Hence we can already anticipate that the combination of CMB plus LSS data leads to an enhanced
degeneracy between (Mν , As) compared to CMB data alone. As a consequence, in order to maintain
a fixed combination Ase−2τreio , the combined data may generate a significant correlation in (Mν , τreio)
space.
The goal of the next section is to check these partial conclusions with a global fit of all data sets at

the same time.

9.5 Joint analysis results

9.5.1 Combination of CMB, BAO and galaxy shear/correlation data

In this section we will present the results of our Markov Chain Monte Carlo forecast of the combined
sensitivity of future CMB, BAO and LSS experiments to the cosmological parameters described in
Section 9.2, in particular to the neutrino mass sum. As already mentioned in Section 9.2.3, our MCMC
forecast will be performed using the MontePython code13 [68], interfaced with the Boltzmann solver
class14 [109], [390], [396]. We already commented at the end of section 9.4.1 our conservative choices
for the precision parameters: theoretical error parameter ε = 0.025, cut-off at kmax = 0.6h/Mpc for
galaxy correlation, and at `max = 2000 for cosmic shear. Still this choice comes from a subjective
estimate of the accuracy with which non linear corrections and systematic effects will be modelled in
the future, and different assumptions would lead to different parameter sensitivities.

σ(Mν)/[meV] σ(τreio) σ(109As) σ(ns) σ(ωcdm) σ(h)

CORE 42 0.0020 0.0084 0.0018 0.00052 0.0052

CORE+DESI 19 0.0020 0.0080 0.0014 0.00026 0.0022

CORE+DESI+Euclid-lensing 16 0.0020 0.0078 0.0014 0.00023 0.0019

CORE+Euclid (lensing+pk) 14 0.0020 0.0079 0.0015 0.00025 0.0017

CORE+Euclid (lensing+pk)+21cm 12 −− 0.0042 0.0014 0.00021 0.0017

Table 9: Expected 1σ sensitivity of CORE, CORE + DESI, CORE + DESI + Euclid (lensing), CORE +
Euclid (lensing+pk), CORE + Euclid (lensing+pk) + “21cm-motivated τreio prior” to the parameters
{Mν , τreio, 109As, ns, ωcdm, h}. We did not combine DESI and Euclid-pk in order to avoid double
counting the information coming from the wiggly part of the spectrum.

In the first four lines of table 9 we report the expected sensitivity of CORE, CORE+DESI, CORE+DESI+Euclid-
lensing and CORE+Euclid (lensing+pk)15 toMν and other cosmological parameters playing a crucial
role in our analysis of parameter degeneracies: τreio, 109As, ns, ωcdm and h (the last independent
parameter, ωb, is always very well constrained by CMB data alone). In figure 94 we plot the one
dimensional posteriors and the one- and two-σ marginalized contours for the same parameters.

13 http://baudren.github.io/montepython.html
14 http://class-code.net
15 Contrarily to an earlier version of this work, to avoid any possible “double counting” of the BAO information, we will

not combine DESI and Euclid-pk data.



9.5 joint analysis results 285

0.052 0.056 0.060 0.064
τreio

0.1200

0.1208

0.1216

0.1224

ω
cd

m

64.8

65.6

66.4

67.2

H
0
[k

m
/s
/M

p
c]

2.100

2.115

2.130

2.145

10
9
A
s

0.9575

0.9600

0.9625

0.9650

0.9675

n
s

0.04 0.08 0.12 0.16 0.20

Mν [eV]

0.052

0.056

0.060

0.064

τ r
ei

o

0.1200 0.1208 0.1216 0.1224
ωcdm

64.8 65.6 66.4 67.2

H0 [km/s/Mpc]
2.100 2.115 2.130 2.145

109As
0.95750.96000.96250.96500.9675

ns

CORE

CORE+DESI

CORE+Euclid

CORE+Euclid+21cm

Figure 94: Marginalized one− or two−σ contours and one dimensional posteriors in the
(Mν , ωcdm, H0, As, ns, τreio) parameter space, showing the expected sensitivity of various fu-
ture experiments: CORE only (gray contours), CORE+DESI (blue contours), CORE+Euclid (red
contours) and CORE+Euclid+21cm (green contours). The last independent parameter, ωb, is
always very well constrained by CMB data alone.

First of all we notice that the projected 1σ errors in table 9 and 1D distributions in figure 94
reflect the theoretical points we have discussed in the previous sections: both DESI and Euclid greatly
improve the sensitivity toMν , ωcdm and h. The uncertainty onMν tightens by more than a factor two
for CORE+DESI and a factor three for CORE+Euclid, compare to the CORE only sensitivity. The
error on H0 shrinks by a factor larger than two for CORE+DESI and a factor three for CORE+Euclid.
However once more we want to stress that in the case of DESI the improved sensitivity arises from
reducing the degeneracy between H0 and Mν , while in the case of Euclid the longer lever arm of the
shear data is specifically sensitive to the suppression of power at small scales induced by Mν .



286 physical effects of neutrino masses in future cosmological data

The first column of figure 94 shows all the degeneracies with respect to Mν . Let us describe the
evolution of those correlations with the addition of the different datasets:

1. CORE data only. When only CMB data are considered, correlations follow the directions ex-
pected from our extensive discussion of section 9.2.3. Let us just note that contrarily to ΛCDM
runs without neutrino mass as a free parameter, the mild correlation between As and ns is nega-
tive, which is a result of the mild negative (resp. positive) correlation between Mν and ns (resp.
As).

2. Adding DESI data. In general, the size of the 2D-distributions shrink by a factor ∼2. The
extended regions defining the positive correlations between (Mν , As) and (Mν , τreio) become
steeper, since it is not possible anymore to play with H0 or ωcdm to compensate the effect of
the summed neutrino mass on the CMB lensing spectrum. Indeed, as described in section 9.3,
moving along this degeneracy direction would lead to very different BAO angular scales. Thus,
the effect of the summed neutrino mass on CMB lensing is rather compensated by playing with
parameters to which BAO data are insensitive16, namely As and τreio.

3. Adding Euclid (lensing + P (k)) data. Most of the discussion on the inclusion of DESI data still
applies here, since Euclid data contains information on the BAO scale at different redshift. How-
ever the matter / shear power spectra contain extra information on cosmological perturbations,
and lift or reinforce some parameter degeneracies, consistently with our previous discussion in
section 4.2, point 3. The (Mν , H0) degeneracies are considerably reduced because the LSS data
would prefer a different correlation angle between these two parameters. As expected, the Eu-
clid data considerably tightens the positive correlation between Mν and As, and as a side effect
the combined data leads to a clear positive correlation between Mν and τreio. The degeneracy
between Mν and ωcdm is lifted by the weak lensing data. All these degeneracy reductions lead
to an overall shrinking of all contours involving Mν , H0 and ωcdm by a factor of order 3 between
CMB and CMB+LSS data. The neutrino mass value is accurately determined independently
of the value of ns, and the mild correlation between Mν and ns in CMB data disappears with
additional LSS data.

Compared to figure 94, table 9 presents the results of one more MCMC run featuring CORE, DESI
and Euclid weak lensing, but not the Euclid galaxy clustering information. The comparison of these
results with those for CORE and Euclid weak lensing+galaxy clustering show the importance of ge-
ometrical information (BAO angular scales) versus shape information (full matter power spectrum),
although both runs do contain some shape information coming from the weak lensing data. We clearly
see that adding more shape information on the matter power spectrum benefits only to the determina-
tion of Mν and H0, and actually by a modest amount (10 to 15% per cent). At face value, this means
that even if the analysis of future galaxy clustering data was plagued by unexpected systematics (be-
sides the level that we conservatively took into account with our theoretical error bar), the prospects
to accurately determine the summed neutrino mass with future surveys would not collapse.
In order to further improve the measurement of the neutrino mass with cosmological data, one

should try to add independent constraints on the parameters that remain most strongly correlated

16 As side remarks, note that such compensation cannot be done by playing with ns: as a consequence, both the (Mν , ns)
degeneracy and the (As, ns) degeneracy are lifted when BAO data are added; finally, because of the different neutrino
mass compensation driven by the inclusion of BAO data, the correlations of ωcdm and H0 with respect to As, ns, τreio

are lifted, as well.
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withMν in the CMB+LSS contours: these areH0, As and τreio. The role of a very precise determination
of H0, free of astrophysical systematics, for the measurement of the neutrino mass, has already been
stressed e.g. in [434]. It was also previously noticed in Ref. [407] that 21cm surveys could improve the
determination of the optical depth to reionization, and thus of the summed neutrino mass. Having
understood the physical explanation for the (Mν , τreio) degeneracy, we wish to further investigate this
possibility, while keeping our conservative assumption on the matter power spectrum theoretical error.

9.5.2 Adding 21cm surveys

In the near future, many experimental efforts will be devoted to measuring precisely the epoch of
recombination (EoR), mostly through the 21 cm line created by the hyperfine transition of the Hy-
drogen atom17, including the value of τreio. In general, details of the EoR are strongly connected to
fundamental questions in cosmology and astrophysics. They could shed light on many properties of
the first galaxies and quasars, measure the time at which they form, explain how the formation of
very metal-poor stars proceeded, and reveal whether the first galaxies were indeed the only re-ionizing
source.
However, these experiments can also have great implications for neutrino physics in cosmology.

Indeed, the independent measurement of the epoch of reionization by 21cm surveys may break the
degeneracy between As and τreio [407], [586] which appears in combined analyses of future CMB+LSS
data.
To assess the impact of 21cm surveys on σ(Mν), we performed a final MCMC run combining

CORE+Euclid mock data with a gaussian prior on the value of τreio. In agreement with forecasts on
the sensitivity of HERA or SKA, we fixed the prior variance to σ(τreio) = 0.001 [407], [525]. Note
that by doing so, we are being conservative, since 21cm surveys will not only measure the evolution of
the mean free electron fraction xe(z) (and thus the optical depth τreio), but also the power spectrum
of the 21cm signal at different redshifts, P21cm(k, z), related to variations along the line of sight of
the free electron fraction xe(n̂, z) [423]. We are therefore using the minimal amount of information
that one can extract from these experiments, and one could go beyond following e.g. the procedure of
Refs. [407], [458], [459], [586].
The results of our MCMC forecast are summarized by the last line of table 9, and the green contours

in figure 94.
The main impact of the τreio−prior is to reduce the possibility of varying of As, necessary to adjust

the CMB parameter As exp(−2τreio), by almost a factor two. Since Mν was correlated directly with
As and indirectly with τreio, the sensitivity to the summed neutrino mass also improves thanks to
21cm data, going from σ(Mν) = 14 meV for CORE+Euclid to 12 meV. As a side effect, the positive
correlation between Mν and ωcdm and the negative correlation between Mν and h get steeper.
Thus, even if nature has chosen the summed neutrino mass to be close to the lower limit of the

normal hierarchy, Mν = 60 meV, we expect that the joint analysis of CORE + Euclid + 21cm data
will detect it at more than 5 σ.

17 e.g. PAPER 64: http://eor.berkeley.edu, 21CMA: http://21cma.bao.ac.cn, MWA: http://www.mwatelescope.org, LO-
FAR: http://www.lofar.org, HERA: http://reionization.org or SKA: http://www.skatelescope.org.

http://eor.berkeley.edu
http://21cma.bao.ac.cn
http://www.mwatelescope.org
http://www.lofar.org
http://reionization.org
http://www.skatelescope.org.
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9.6 Conclusions

The foundations of a new era in precision cosmology are based on two cornerstones: the high sensitivity
of future CMB and galaxy survey experiments, and a deep understanding of the physics governing the
processes of recombination and structure formation. The extreme accuracy of future data will offer
the opportunity to constrain particle physics with cosmology, exceeding in many cases the precision of
laboratory experiments. However, in order to exploit the new data, cosmologists will need a sufficiently
accurate theoretical model taking into account the underlying physics.
Neutrinos provide an excellent example of how the sensitivity of future cosmological surveys may

lead to such an important result as the summed neutrino mass detection, even when uncertainties on
the details of the cosmological model are marginalised over.
In this work we have provided a careful discussion of the physical effects induced by massive neu-

trinos and their impact on cosmological observables, as they will appear in the data analysis of the
next generation of cosmological experiments. We have shown how the unique nature of light neutrinos,
being relativistic until very late times and behaving as a matter component after the non relativistic
transition, makes it possible to identify different signatures at different epochs of the cosmic history.
Therefore the correlation between the summed neutrino mass and the other cosmological parameters
changes, depending on the redshift range probed by the various data sets.
Our results on the sensitivity of future CMB-CORE and BAO-DESI experiments to the summed

neutrino mass are consistent with the literature (see Refs. [42], [407]). Moreover, the results of our
forecasts including a Euclid-like survey prove the importance of cosmic shear and galaxy clustering
as complementary probes. We pointed out that the results of our Euclid cosmic shear + galaxy
correlation forecasts depend very much on the choice of the theoretical error introduced to account
for the systematics coming from the deep non-linear regime. Nevertheless, they are again compatible
with previously published results. For instance, Ref. [288] found σ(Mν) = 11 meV for Planck + Euclid
cosmic shear / galaxy correlation, but with a different treatment of the uncertainty on non linear
corrections. Ref. [68] found a larger error, close to 20 meV, but for Planck + Euclid cosmic shear or
Planck + Euclid galaxy correlation, not trying to combine the two LSS probes together and without
CORE data. Ref. [407] found σ(Mν) = 12 meV for Planck + CMB-Stage-IV + BAO-DESI + 21cm-
HERA, identical to our estimate for CORE + Euclid + 21cm-τreio-prior.
Anyhow, the main goal of this study was not to present a new set of forecasts, but to discuss

the details of physical effects and parameter degeneracies involving neutrino masses. In particular,
we clarified the reason for which an unexpected degeneracy between the neutrino mass sum and the
optical depth at reionization will appear in the analysis of future high precision galaxy surveys, as
already pointed out e.g. in [42], [407]. We showed that this degeneracy is not present in a CMB-only
analysis, because the neutrino mass effects on CMB lensing can be compensated by playing with h
and ωcdm in a better way than by adjusting (As, τreio). However, the former degeneracy is alleviated
once BAO and LSS low redshift measurements are taken into account. Moreover, we demonstrated
that the LSS data introduce a strong correlation between Mν and As, which finally leads to a clear
(Mν , τreio) degeneracy in the combined CMB+LSS analysis.

These conclusions clarify why further independent measurements of the optical depth will be bene-
ficial for the neutrino mass determination, as previously noticed by the authors of [407]. For instance,
the results from the HERA or SKA 21cm surveys will provide an independent constraint on τreio, thus
breaking this degeneracy. Our results indicate that this could reduce the error on Mν with respect to
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the CMB+LSS case, leading to a robust detection of the summed neutrino mass at more than 5 σ for
CORE+Euclid+HERA or SKA. In principle, it would be possible to do even better if H0 could be
measured in an independent and robust way with an error below σ(H0) ∼ 0.17km/s/Mpc.
In conclusion, the remarkable complementarity of future different cosmological data will lead to

extremely accurate constraints on the neutrino mass sum and, possibly, on other neutrino properties,
answering some of the still open questions of modern physics.





GENERAL CONCLUS IONS

This work aimed at a better characterization of dark matter and neutrino properties in cosmology,
by looking for their peculiar electromagnetic and gravitational signatures. Special attention has been
given to CMB anisotropies, which are known to hold a wealth of information on many aspects of
physics, from General Relativity to the Standard Model of Particle Physics. We emphasized the syn-
ergy of CMB anisotropies with spectral distortions of the CMB energy distribution and BBN, much
more sensitive to e.m. processes happening before decoupling.
We started by a thorough review in chapters 1 to 3 of the standard tools needed to compute those
observables. We derived in chapter 4 the strongest constraints to date on a decaying massive relics
from the pure gravitational effects of the decay, extending the phenomenology to multicomponent
models with very high decay rate. The most important point is that those constraints basically always
apply, independently of the particle physics model. Remarkably, despite their generality, we showed
how they bring significant elements for discussion to currently hot topics in cosmology, such as models
for discrepancies between local and cosmological determinations of the Hubble expansion rate, H0, or
models where primordial black holes contribute to a sizable fraction of the DM.
In chapter 5 we reviewed the computation of standard BBN constraints on e.m. energy injection and
showed how a loophole to the standard theory of e.m. cascade allowed us to: i) improve the bounds
by up to one order of magnitude in the [MeV-GeV] mass range; ii) reopen the window to a purely e.m.
solution to the cosmological Lithium problem, with an explicit toy model proof given with a ∼ 4 MeV
sterile neutrino decay.
Chapter 6 focused on CMB anisotropy constraints on e.m. decaying particles, illustrating the funda-
mental complementarity of CMB spectral distortions and BBN studies, while future 21cm surveys
could gain at least one order of magnitude more sensitivity on some models. We applied our bounds
explicitly to both low and high masses Primordial Black Holes, as well as sterile neutrinos, deriving
the strongest cosmological bounds to date on these models. We then studied in chapter 7 the impact
of annihilating relics, with a special attention on annihilations in halos and its interplay with stars in
reionizing our Universe. Our major finding is that, barring unrealistic halo models, DM halo formation
do not enhance the annihilation rate sufficiently to make DM contribute in a significant way to the
Universe reionization. However, measurements of the IGM temperature and 21 cm signal could be
significantly affected, but this deserves further investigation and more data.
The last part of this work was devoted to the cosmological determination of neutrino properties with
current and future data. Using peculiar clustering properties of neutrinos, we started by assessing in
chapter 8 that it is possible to make a robust statement about the detection of the cosmic neutrino
background by CMB experiments. We then carefully studied the effects on cosmological data of a
summed neutrino mass close to its minimum, showing that parameter degeneracies can be removed by
appropriate combinations of datasets. A joint forecast of the sensitivity of Euclid and DESI surveys
together with a CORE-like CMB experiment and a prior on the optical depth based on future 21 cm
experiment, leads to a 1σ uncertainty σ(Mν) = 12 meV. This would allow for the first 5σ cosmological
detection of neutrino masses.
Cosmology, since the birth of General Relativity, has been the realm of many theoretical and experi-
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mental successes. However, as it is often the case in physics, with those successes came deep mysteries.
Obviously, here we have not reached any final word on the longstanding dark matter and neutrino
mass puzzles, but contributed to answer a number of questions. Many current experimental efforts
are devoted to improve LSS surveys, with the Euclid and LSST experiments, and our understanding
of the cosmic reionization and cosmic dawn era with 21 cm experiments. Those observables can have
great implications for the models investigated in this work, and therefore represent one of the main
research direction deserving further exploration. We also hope that this work contributes in showing
the great potential of further CMB studies, for which several ground based and space experiments have
been recently proposed and/or accepted. Both anisotropies and the spectral shape of the CMB still
hold a wealth of information that should be fully exploited. Finally, in the era of gravitational wave
astronomy, let us mention the possibility of linking source of gravitational waves to DM candidates,
such as in the PBH scenarios. For sure, the synergy of e.m. probes with purely gravitational ones has
not exhausted its potential.
More generally, this work illustrates the great potential of cosmological observables, a message of hope
especially in the light of null results in searches for new physics at accelerators. We are confident that a
multifaceted and multimessenger approach, combining information from many experiments, will shed
light on some of the remaining mysteries of our Universe.
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APPENDIX TO CHAPTER 1

A.1 Basics of the Boltzmann equation in an expanding Universe

We wish to describe the evolution of the distribution under the influence of the Universe expansion and
potential interactions creating and destructing particles. This is encoded inside a Boltzmann equation,
which has the schematic form

df

dt
= C[f ] . (A.1.1)

The RHS is called the collision operator and contains all possible interactions terms, it can be pretty
complicated. In the absence of collisions, one gets the Liouville equation df/dt = 0, meaning that the
number of particles in a given element of the phase space does not change with time, even if the phase
space elements are moving in time in a complicated way due to nontrivial metric. For a given species
i, the distribution fi is a function of energy (or modulus) and time only, and the total derivative can
be expanded as

df

dt
=
∂f

∂t
+
∂f

∂E

dE

dt
. (A.1.2)

We know that E ∝ a−1, which immediately yields dE/dt = −aHE and thus

df

dt
=
∂f

∂t
− aHE ∂f

∂E
. (A.1.3)

Integrating over momentum and assuming first no collision terms, from eq. (1.3.12) we get

dni
dt
− 3Hni = 0⇔ 1

a3

d(a3ni)

dt
= 0 . (A.1.4)

This simply encodes the evolution of the number density with the Universe expansion. We however need
to take into account particle creation and destruction processes. Considering only 2-body interactions
between species i, j and k, l of the type

i+ j ↔ k + l ,

we can write
dni
dt

= −3
ȧ

a
ni − c(ij → kl) + c(kl→ ij). (A.1.5)

The c-terms quantify the number of reactions per unit volume and time, the sign - (+) attest that the
process destroy (create) particles. Those terms can be computed according to :

c(ij → kl) =

∫
d̃pifi

∫
˜dpjfj

∫
˜dpk

∫
d̃pl(2π)4δ3(pi + pj − pk − pl)δ(Ei + Ej − Ek − El)

×|Mij→kl|2(1± fk)(1± fl) , (A.1.6)

295



296 appendix to chapter 1

where d̃p = d3~p
(2π)32E

is the Lorentz invariant phase-space element . The (1± f) terms encode the Pauli
principle for fermions, with a minus sign (i.e. that if f = 1 the cross-section is zero) and stimulated
emission for bosons with a plus sign. The δ functions ensure energy-momentum conservation while
the matrix elements |M |2 are obtained from Feynman diagrams and the computation of scattering
processes.
This expression is highly symmetric. Inverting ij and kl while using the CPT theorem:

|Mij→kl|2 = |Mkl→ij |2,

we find that at equilibrium (i.e. when the expansion rate is much smaller than the reaction rates), a
stationary solution (dn/dt = 0) can be obtained if distributions verify

fkfl(1∓ fi)(1∓ fj) = fifj(1∓ fk)(1∓ fl),

which is only possible if

fi
1∓ fi

= exp[(Ep − µi)/T ] with µi + µj = µk + µl.

By inverting this equation, we find the well-known result that at equilibrium particles follow Fermi-
Dirac or Bose-Einstein distribution (1.3.9).

It is possible to introduce the cross-section σij→kl for the process ij → kl

c(ij → kl) =

∫
d̃pifi

∫
˜dpjfjσij→klvij , (A.1.7)

where vij is the relative velocity between the species i and j. We can rewrite the reaction rates per
unit volume as

c(ij → kl) =

∫
d̃pifi

∫
˜dpjfj ×

∫
d̃pifi

∫
˜dpjfjσij→klvij∫

d̃pifi
∫

˜dpjfj

=

∫
d̃pifi

∫
˜dpjfj〈σij→klvij〉

= ninj〈σij→klvij〉 . (A.1.8)

Given that, at thermal equilibrium, the collision term has to vanish, the “detailed balance principle”
ensures the equality between reaction rates

neq
i n

eq
j 〈σij→klvij〉eq = neq

k n
eq
l 〈σkl→ijvkl〉eq . (A.1.9)

We approximate the velocity averaged cross-section by their value at equilibrium,

〈σij→klvij〉 ∼ 〈σij→klvij〉eq ≡ 〈σv〉 ,

thus we can rewrite
dni
dt

= −3
ȧ

a
ni +

[(
ninj
nknl

)eq

nknl − ninj
]
〈σv〉 , (A.1.10)

where the subscript “eq” means that each number density is evaluated at equilibrium. This form of
the Boltzmann equation will be the starting point of our discussion in sec. 1.3 and we will extend it
to incorporate perturbations to the metric and the exact form of the Thomson scattering in chapter
2.
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B.1 Technical details regarding the perturbed Einstein equations

B.1.1 Proofs of the general gauge transformation

In sec. 2.1.1 we gave the relations encoding how metric transforms when performing a gauge transfor-
mation, define as

Xµ → X̃µ ≡ Xµ + ξµ(τ, ~x), where ξ0 ≡ T, ξi ≡ Si = ∂iS + Ŝi . (B.1.1)

We now will compute explicitelty the transformation.
Using the invariance of ds2 under a coordinate transformation, we can write :

ds2 = gµν(X)dXµdXν = g̃αβ(X̃)dX̃αdX̃β . (B.1.2)

Using dXα =
(
∂X̃α

∂Xµ

)
dXµ one gets

gµν(X) =
∂X̃α

∂Xµ

∂X̃β

∂Xν
g̃αβ(X̃) . (B.1.3)

For this calculation, it is necessary to remember that, since we deal with small perturbations, we can
restrict ourself to zeroth and first order terms.
The (00) component is therefore

g00(X) =
∂X̃α

∂τ

∂X̃β

∂τ
g̃αβ(X̃) , (B.1.4)

which has for only non-negligible terms α = β = 0, thus yielding

g00(X) =

(
∂τ̃

∂τ

)2

g̃00(X̃) . (B.1.5)

Using the coordinate transforms B.1.1 gives τ̃ = τ + T ⇒ ∂τ̃
∂τ = 1 + T ′ and therefore

a2(τ)(1 + 2φ) = (1 + T ′)2a2(τ + T )(1 + 2φ̃)

= (1 + 2T ′ + · · · )(a(τ) + a′T + · · · )2(1 + 2φ̃)

= (a2(τ) + 2a(τ)2T ′ + 2a(τ)a′T + · · · )(1 + 2φ̃)

= a2(τ)(1 + 2HT + 2T ′ + 2φ̃︸ ︷︷ ︸
2φ

+ · · · ) , (B.1.6)
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where H ≡ a′/a is the Hubble parameter in conformal time. This immediately implies

φ→ φ̃ = φ− T ′ −HT . (B.1.7)

The (0i) component yields

g0i(X) =
∂X̃α

∂τ

∂X̃β

∂Xi
g̃αβ(X̃)

=
∂X̃0

∂τ

[
∂X̃β

∂Xi
g̃0β(X̃)

]
+
∂X̃j

∂τ

[
∂X̃β

∂Xi
g̃jβ(X̃)

]

=
{

1 + T ′
}[∂X̃0

∂Xi
g̃00(X̃) +

∂X̃k

∂Xi
g̃0k(X̃)

]
+ S′j

[
∂X̃0

∂Xi
g̃j0(X̃) +

∂X̃k

∂Xi
g̃jk(X̃)

]

=
{

1 + T ′
}[
∂iTa

2(τ + T )
{

1 + 2φ̃
}

+
{
δik + ∂iS

k
}{
− a2(τ + T )B̃k

}]

+S′j
[
∂iT
{
− a2(τ + T )B̃j

}
+
{
δik + ∂iS

k
}{
− a2(τ + T )

(
δjk + H̃jk

)}]

1storder⇒ −a2(τ)Bi = a2(τ)

[
∂iT − B̃i − S′i

]
, (B.1.8)

which means that Bi transforms as

Bi → B̃i = Bi + ∂iT − S′i . (B.1.9)

Finally the (ij) component leads to

gij(X) =
∂X̃α

∂Xi

∂X̃β

∂Xj
g̃αβ(X̃)

=
∂X̃0

∂Xi

[
∂X̃β

∂Xj
g̃0β(X̃)

]
+
∂X̃k

∂Xi

[
∂X̃β

∂Xj
g̃kβ(X̃)

]

= ∂iT

[
∂X̃0

∂Xj
g̃00(X̃) +

∂X̃k

∂Xj
g̃0k(X̃)

]

+
{
δik + ∂iS

k
}[∂X̃0

∂Xj
g̃k0(X̃) +

∂X̃`

∂Xj
g̃kl(X̃)

]

= ∂iT

[
∂jTa

2(τ + T )
{

1 + 2φ̃
}

+
{
δjk + ∂jS

k
}{
− a2(τ + T )B̃k

}]

+
{
δik + ∂iS

k
}[
∂jT

{
− a2(τ + T )B̃k

}
+
{
δjl + ∂jS

`
}

×
{
− a2(τ + T )

(
δkl + H̃kl

)}]
(B.1.10)

1storder⇒ −a2(τ)(δij +Hij) = −a2(τ)

[
δij
{

1 + 2HT
}

+ ∂iSj + ∂jSi + H̃ij

]
, (B.1.11)

which finally means that Hij transforms as

Hij → H̃ij = Hij − 2HT −
{
∂iSj + ∂jSi

}
. (B.1.12)
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B.1.2 Technical details related to the perturbation of the stress-energy tensor

B.1.2.1 Scalar degrees of freedom in Tµν

We derive here the expression of the relevant scalar degrees of freedom in Tµν .
Using the notation ρ = ρ̄ + δρ, P = P̄ + δP , Uµ = Ūµ + δUµ and introducing the anisotropic stress
tensor Πµ

ν , we have already written the perturbed part of the stress-energy tensor at first order as

δTµν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )(δUµŪν + ŪµδUν)− δPδµν −Πµ
ν . (B.1.13)

Without loss of generality, the spatial part of the anisotropic stress tensor is taken to be traceless
H i

i = 0, as it can be absorped in a redefinition of the isotropic pressure P . Furthemore, Πµ
ν is chosen

to be orthogonal to Uµ, i.e UµΠµν = 0 and Π0
0 = Π0

i = 0.
We now introduced small velocities δU i = vi/a, considered as first order perturbations and use
gµνδU

µδUν = ḡµνŪ
µŪν = 1 to obtain at linear order :

1 = gµνδU
µδUν = {gµν + δgµν

}{
Ūµ + δUµ

}{
Ūν + δUν

}

1st order⇒ δgµνŪ
µŪν + 2ŪµδU

µ = 0 . (B.1.14)

We already have the (i) components of δUµ, we only need its (0) one. Using the definition of Ūµ in
conformal time Ūµ = a−1δ0

µ, implying that only the (00) term of previous equations is non-zero and
δg00 = 2a2φ, we have :

δgµνŪ
µŪν + 2ŪµδU

µ = 0

⇔ δg00Ū
0Ū0 + 2Ū0δU

0 = 0

⇔ 2a2φa−2 + 2a−1δU0 = 0

⇔ δU0 = −φa−1 . (B.1.15)

So in conformal time we have, δUµ = a−1
[
1− φ, vi

]
.

Using Uµ = gµνU
ν , we obtain

U0 = g00U
0 +

O(2)︷ ︸︸ ︷
g0iU

i = a2(1 + 2φ)a−1(1− φ) = a(1 + φ) , (B.1.16)

Ui = gi0U
i + gijU

j = −a2Bia
−1 − a2(δij +Hij)a

−1vj = −a(Bi + vi) , (B.1.17)

i.e. Uµ = a
[
1 + φ,−(vi +Bi)

]
.

At the end of the day, the tensor δTµν is given by

δT 0
0 = (δρ+ δP )Ū0Ū0 + (ρ̄+ P̄ )(δU0Ū0 + Ū0δU0)− δP

= (δρ+ δP ) + (ρ̄+ P̄ )(−φa−1a+ a−1aφ)− δP
= δρ , (B.1.18)

δT i0 = (δρ+ δP )Ū iŪ0 + (ρ̄+ P̄ )(δU iŪ0 + Ū iδU0)

= (ρ̄+ P̄ )(a−1via)

= (ρ̄+ P̄ )vi , (B.1.19)
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δT 0
j = (δρ+ δP )Ū0Ūj + (ρ̄+ P̄ )(δU0Ūj + Ū0δUj)

=
{
ρ̄+ P̄

}{
a−1(−a)(vj +Bj)

}

= −(ρ̄+ P̄ )(vj +Bj) , (B.1.20)

δT ij = (δρ+ δP )Ū iŪj + (ρ̄+ P̄ )(δU iŪj + Ū iδUj)− δPδij −Πi
j

= −δPδij −Πi
j . (B.1.21)

We have already mentioned that only the longitudinal part of vi will be involved in the scalar sector,
which we usually write : v‖i = ∂iυ. It is traditional to introduce as scalar degrees of freedom the
divergence θ:

θ ≡ ∂ivi = ∇2υ , (B.1.22)

where the last equality holds since the orthogonal part is, by definition, divergenceless.
In the same way, instead of introducing a potential through the longitudinal part of Πi

j as Π
i‖
j =

(∂i∂j − 1
3∇2δij)σ̃, it is common to define the scalar degrees of freedom σ (called shear or anisotropic

stress) by

(ρ̄+ P̄ )∇2σ = −(∂i∂j −
1

3
∇2δij)Π

i
j = −∂i∂jΠi

j . (B.1.23)

So, together with δ ≡ δρ/ρ̄, the scalar degrees of freedom of the stress-energy tensor are

T 0
0 = ρ̄(1 + δ) ,

∂iT
i
0 = (ρ̄+ P̄ )θ ,

T ii = −3(P̄ + δP ) ,

(∂i∂j −
1

3
∇2δij)T

i
j = (ρ̄+ P̄ )∇2σ .

(B.1.24a)

(B.1.24b)

(B.1.24c)

(B.1.24d)

B.1.2.2 Gauge transformations and Gauge invariant variables

We now need to now how to perform gauge transformation on the stress-energy tensor. As before,
performing the transformation of eq. (B.1.2) leads for the stress-energy tensor to (this is common to
any rank-2 tensor transforming under the Lorentz group)

Tµν(X) =
∂Xµ

∂X̃α

∂X̃β

∂Xν
T̃αβ(X̃) . (B.1.25)

We only need to evaluate this for every components to find the transformation laws. Recalling that
τ̃ ≡ τ + T and X̃i ≡ Xi + Si, the (00) component is

T 0
0(X) =

∂τ

∂X̃α

∂X̃β

∂τ
T̃αβ(X̃)

=
∂τ

∂τ̃

[
∂τ̃

∂τ
T̃ 0

0(X̃) +
∂X̃j

∂τ
T̃ 0
j(X̃)

]
+

∂τ

∂X̃i

[
∂τ̃

∂τ
T̃ i0(X̃) +

∂X̃j

∂τ
T̃ ij(X̃)

]

=
{

1− T ′
}[{

1 + T ′
}{
ρ̄(X̃)

(
1 + δ̃

)}
+ S′j

{
ρ̄(X̃) + P̄

}{
ṽj + B̃j

}]

−S′
[{

1 + T ′
}{
ρ̄(X̃) + P̄

}
ṽi + S′j

{
−
(
δP̃ δij + Π̃i

j

)}]
. (B.1.26)
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The only first order term is the first term inside the big brackets. It yields

T 0
0(X) =

{
1− T ′

}{
1 + T ′

}{
ρ̄(X̃)

(
1 + δ̃

)}

=
{
ρ̄(X) +

∂ρ̄

∂Xµ
(X̃µ −Xµ)

}{
1 + δ̃

}

⇒ ρ̄(1 + δ) = ρ̄(1 + δ̃) + ρ̄′T , (B.1.27)

where the last lines holds since ρ̄ is uniform. Hence, we have

δ → δ̃ = δ − ρ̄′

ρ̄
T. (B.1.28)

In a very similar vein one can show

δP → δP̃ = δP − T P̄ ′ , (B.1.29)

qi → q̃i = qi +
(
ρ̄+ P̄

)
S′i

⇔ θ → θ̃ = θ + ∂iS′i

⇔ υ → υ̃ = υ + S′ , (B.1.30a)

Πij → Πij . (B.1.31)

We have introduced the comoving-gauge density perturbation ∆ defined as

∆ ≡ δ +
ρ̄′

ρ̄
(υ + ζ) . (B.1.32)

We prove here that it is indeed gauge invariant. If we compute ∆̃

∆̃ = δ̃ +
ρ̄(X̃)′

ρ̄(X̃)
(υ̃ + ζ̃)

= δ − ρ̄′

ρ̄
T +

(ρ̄(X) + ρ̄′T )′

(ρ̄(X) + ρ̄′T )

(
v + S′ + ζ + T − S′

)

= δ − ρ̄′

ρ̄
T +

(ρ̄(X) + ρ̄′T )′

ρ̄(X)

{
1− ρ̄′

ρ̄
T

}(
v + ζ + T

)

1storder
= δ − ρ̄′

ρ̄
T +

ρ̄′

ρ̄

(
v + ζ + T

)

= ∆ . (B.1.33)

which shows that ∆ is gauge invariant.

B.1.3 Relating both sides of Einstein equation

In this section, we explicitely relate metric perturbations to matter ones by means of the Einstein
equation (1.1.2). To do so, one needs to perturb the Christoffels Γµαβ , the Ricci tensor Rµν and Ricci
scalar R. The Christoffel tensor is symmetric in its two lower indices, as well as the Ricci tensor, so
we don’t need to compute all combinaisons. We will do this calculation at first order, in the newtonian
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gauge restricted to scalar modes, and then form the Bardeen variables to be able to change gauge
easily. In this gauge, the metric is given by eq. (2.1.14).
The Christoffels symbols are :

Γ0
00 =

1

2
g00g00,0

= H+ φ′ (B.1.34)

Γ0
0i =

1

2
g00g00,i

= ∂iφ (B.1.35)

Γi00 = −1

2
gijg00,j

= −1

2
a−2δij

(
1 + 2ψ

)[
− 2a2∂jφ

]
(B.1.36)

= ∂iφ (B.1.37)

Γ0
ij = −1

2
g00gij,0

=
1

2
a−2δij

(
1− 2φ

)[
2a′aδij(1− 2ψ) + a2δij(−2ψ′)

]

= Hδij −
[
ψ′ + 2H(φ+ ψ)

]
δij (B.1.38)

Γij0 =
1

2
gikgkj,0

=
1

2
a−2δik[1 + 2ψ][2a′aδkj(1− 2ψ)− 2aδkjψ

′]

= δij [H− ψ′] (B.1.39)

Γijk =
1

2
gil
[
glj,k + glk,j − gjk,l

]

= −a
−2

2
(1 + 2ψ)δil

[
2∂kψa

2δlj + 2∂jψa
2δlk − 2∂lψa

2δjk
]

= −
[
δij∂kψ + δik∂jψ − δjk∂iψ

]
. (B.1.40)

Now, we can compute the Ricci tensor as it is given by eq. (1.1.4), keeping again only zeroth and first
order term

R00 = Γα00,α − Γα0α,0 + ΓαβαΓβ00 − Γαβ0Γβ0α

= (H+ φ′)′ + ∂i∂
iφ− (H+ φ′)′ − 3(H− ψ′)′

+(H+ φ′)2 + ∂iφ∂
iφ+ 3(H− ψ′)(H+ φ′)− (2∂jψ)∂jφ

−(H+ φ′)2 − ∂iφ∂iφ− ∂iφ∂iφ− 3(H− ψ′)2

⇒ R00 = −3H′ + ∂i∂
iφ+ 3H(φ′ + ψ′) + 3ψ′′ (B.1.41)

R0i = Γα0i,α − Γα0α,i + ΓαβαΓβ0i − Γαβ0Γβiα

= ∂iφ
′ + ∂i(H− ψ′)− ∂i(H+ φ′)− 3∂i(H− ψ′)

+(H+ φ′)∂iφ+ ∂iφ(H− ψ′) + 3(H− ψ′)∂iφ− (2∂iψ)(H− ψ′)
−(H+ φ′)∂iφ− ∂iφ(H− ψ′)− ∂iφ

{
H− ψ′ − 2H(φ+ ψ)

}

+δjk(H− ψ′)
[
δki ∂jψ + δkj ∂iψ − δij∂kψ

]

= 2∂iψ
′ + 5H∂iφ− 2∂iψ

′ − 3H∂iφ+ 2H∂iψ
⇒ R0i = 2∂iψ

′ + 2H∂iφ (B.1.42)
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Rij = Γαij,α − Γαiα,j + ΓαβαΓβij − ΓαβiΓ
β
jα

= δij
[
H−

{
ψ′ + 2H

(
φ+ ψ

)}]′ −
[
2∂i∂jψ − δij∂k∂kψ

]
− ∂i∂jφ+ 3∂i∂jψ

+
(
H+ φ′

)
δij
[
H−

{
ψ′ + 2H

(
φ+ ψ

)}]
+ 3
(
H− ψ′

)
δij
[
H−

{
ψ′ + 2H

(
φ+ ψ

)}]

−
[
∂iφ∂jψ + ∂iφ∂jψ − δij∂kφ∂kψ

]
− ∂jφ∂iφ− 2δij

[
H−

{
ψ′ + 2H

(
φ+ ψ

)}](
H− ψ′

)

= δij [H′ − ψ′′ − 2H′(φ+ ψ)− 2H(φ′ + ψ′) + ∂k∂
kψ] + ∂i∂j(ψ − φ)

+δij [4H2 − 7Hψ′ +Hφ′ − 8H2(φ+ ψ)]

+δij [∂k∂
kψ − 2H2 + 4Hψ′ + 4H2(φ+ ψ)]

⇒ Rij = ∂i∂j(ψ − φ)

+δij
[
H′ − ψ′′ − 2H′(φ+ ψ)−Hφ′ − 5Hψ′ + 2H2 + ∂k∂

kψ − 2(H′ + 2H2)(φ+ ψ)
]
.

(B.1.43)

From this lengthy computation, it is straightforward to compute the Ricci scalar

R = g00R00 + 2

0︷ ︸︸ ︷
g0iR0i +gijRij (B.1.44)

= a−2(1− 2φ)R00 − a−2(1 + 2ψ)δijRij
= a−2(1− 2φ)

[
− 3H′ + ∂i∂

iφ+ 3H(φ′ + ψ′) + 3ψ′′
]

−3a−2(1 + 2ψ)
[
H′ − ψ′′ − 2H′(φ+ ψ)−Hφ′ − 5Hψ′ + 2H2

+∂k∂
kψ − 2(H′ + 2H2)(φ+ ψ)

]
− a−2(1 + 2ψ)∂i∂

i(ψ − φ)

1storder⇒ R = a−2
[
− 6(H′ +H2) + 2∂i∂

iφ− 4∂i∂
iψ + 12(H′ +H2)φ+ 6ψ′′ + 6H(φ′ + 3ψ′)

]
.

We can now compute the Einstein tensor. It is

G00 = R00 −
1

2
g00R

= −(H+ φ′)2 − ∂iφ∂iφ− ∂iφ∂iφ− 3(H− ψ′)2

= −3H′ + ∂i∂
iφ+ 3H(φ′ + ψ′) + 3ψ′′

−1

2
(1 + 2φ)

[
− 6(H′ +H2) + 2∂i∂

iφ− 4∂i∂
iψ + 12(H′ +H2)φ+ 6ψ′′ + 6H(φ′ + 3ψ′)

]

⇒ G00 = 3H2 + 2∂i∂
iψ − 6Hψ′ . (B.1.45)

G0i = R0i −

0︷ ︸︸ ︷
1

2
g00R = 2∂iψ

′ + 2H∂iφ (B.1.46)

Gij = Rij −
1

2
gijR

= ∂i∂j(ψ − φ)

+δij
[
H′ − ψ′′ − 2H′(φ+ ψ)−Hφ′ − 5Hψ′ + 2H2 + ∂k∂

kψ − 2(H′ + 2H2)(φ+ ψ)
]

+
1

2
(1− 2ψ)δij

[
− 6(H′ +H2) + 2∂i∂

iφ− 4∂i∂
iψ + 12(H′ +H2)φ+ 6ψ′′ + 6H(φ′ + 3ψ′)

]

⇒ Gij = −(2H′ +H2)δij +
[
∂i∂

i(φ− ψ) + 2ψ′′ + 2(2H′ +H2)(ψ + φ) + 2Hφ′ + 4Hψ′
]
δij

+∂i∂j(ψ − φ) . (B.1.47)

The final part is to use Einstein equation (1.1.2) to relate metric and matter perturbations. The scalar
degrees of freedom are contained in φ and ψ on the metric side, δ, δP , θ (or υ), and σ on the matter-
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side - The einstein equation will provide us 4 relations. The other relations will be fixed by equation
of state relating P and ρ or σ and θ. We first consider the (00) component

G00 = 8πGT00

= 8πGg0µT
µ
0

= 8πG(g00T
0
0 + g0iT

i
0)

⇔ 3H2 + 2∂i∂
iψ − 6Hψ′ = 8πGa2(1 + 2φ)ρ̄(1 + δ) . (B.1.48)

Splitting between zeroth and first orders, we have

3H2 = 8πGa2ρ̄ at zeroth order , (B.1.49)

2∂i∂
iψ − 6Hψ′ = 8πGa2ρ̄(δ + 2φ) at first order . (B.1.50)

Inserting the zeroth order equation into the first one, dividing by two and going to Fourier space yields

k2ψ + 3H(Hφ+ ψ′) = −4πGa2ρ̄δ . (B.1.51)

We can move to the (0i) component

G0i = 8πGT0i

= 8πG(g00T
0
i + g0jT

j
i)

⇔ 2∂iψ
′ + 2H∂iφ = −8πGa2qi . (B.1.52)

Using again the notation qi = (ρ̄+ P̄ )∂iυ, we can integrate eq. (B.1.52) assuming that perturbations
decay at infinity (or go into Fourier space and simplify by k) to obtain

ψ′ +Hφ = −4πGa2(ρ̄+ P̄ )υ , (B.1.53)

or as a function of θ = −k2υ

− k2(ψ′ +Hφ) = 4πGa2(ρ̄+ P̄ )θ . (B.1.54)

Before evaluating other component, we can insert eq. (B.1.53) in eq. (B.1.51) to obtain the "Poisson
equation" for ψ in Fourier space

k2ψ = −4πGa2
[
ρ̄δ − 3H(ρ̄+ P̄ )υ

]
. (B.1.55)

The terms inside the brackets correspond, in the newtonian gauge, to the gauge-invariant variable ∆

of eq. (B.1.32) ! We still need two equations for closing the system. The next one is usually obtained
from the (ij) term, given by eq. (B.1.47). In this coefficient, a bunch of term is proportional to δij that
contribute to the trace of Gij . To avoid dealing with them, we consider the longitudinal, traceless part
of Gij , that can be extracted by means of the projection operator in Fourier space (kikj − (1/3)k2δij).
It basically kills all terms proportional to δij , leaving only

(kikj − (1/3)k2δij)Gij = (kikj − (1/3)k2δij)[kikj(ψ − φ)] =
2k4

3
(ψ − φ) . (B.1.56)

Contracting also the matter side with this operator yields

(kikj − (1/3)k2δij)Tij = (kikj − (1/3)k2δij)Πij
eq. (B.1.23)

= −(ρ̄+ P̄ )k2σ . (B.1.57)
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Equating both sides leads to
k2(φ− ψ) = 12πGa2(ρ̄+ P̄ )σ . (B.1.58)

Finally, we still need to evaluate the trace part of Gij :

Gii = giµGµi (B.1.59)

= gikGki

= −a−2(1 + 2ψ)δik
[
− (2H′ +H2)δki +

[
∂i∂

i(φ− ψ) + 2ψ′′ + 2(2H′ +H2)(ψ + φ)

+2Hφ′ + 4Hψ′
]
δki + ∂k∂i(ψ − φ)

]

= −3a−2(1 + 2ψ)
[
− (2H′ +H2) + 2ψ′′ + 2(2H′ +H2)(ψ + φ) + 2Hφ′ + 4Hψ′

]

−a−2(1 + 2ψ)2∂i∂
i(φ− ψ)

= −3a−2
[
− (2H′ +H2) + 2ψ′′ + 2(2H′ +H2)φ+ 2Hφ′ + 4Hψ′

]
− a−22∂i∂

i(φ− ψ) .

On the other side, we have T ii = −3(P̄ +δP ). At zeroth order, we find the second Friedmann equation

2H′ +H2 = −8πGa2P̄ , (B.1.60)

and at first order

ψ′′ + (2H′ +H2)φ+Hφ′ + 2Hψ′ + 1

3
∂i∂

i(φ− ψ) = 4πGa2δP . (B.1.61)

B.1.4 Continuity and Euler equation at first order

Instead of relating metric and tensor perturbations through Einstein equations, it might be useful to
make use of the stress-energy conservation implied by Bianchi identies

Tµν;µ = Tµν,µ + ΓµαµT
α
ν − ΓανµT

µ
α = 0 . (B.1.62)

This, together with the equations we have derived, will form a redundant set of equations. However,
depending on the problem at hand, one formulation might be more useful than another. Indeed, we
will use these equations when dealing with the decaying DM.
We start by considering the ν = 0 component

Tµ0;µ = T 0
0,0 + T i0,i +

(
Γ0

00 + Γii0
)
T 0

0 + ΓµiµT
i
0︸ ︷︷ ︸

O(2)

−Γ0
00T

0
0 − Γ0

i0T
i
0︸ ︷︷ ︸

O(2)

−Γi00T
0
i︸ ︷︷ ︸

O(2)

−Γij0T
j
i

= ∂0

(
ρ̄(1 + δ)

)
+ (P̄ + ρ̄)θ + (H+ φ′ + 3H− 3ψ′)ρ̄(1 + δ)

−(H+ φ′)ρ̄(1 + δ)− (H− ψ′)δij [−(P̄ + δP )δji]

= ρ̄′(1 + δ) + ρ̄δ′ + (P̄ + ρ̄)θ + 3Hρ̄(1 + δ)− 3ρ̄ψ′ + 3H(P̄ + δP )− 3P̄ψ′

!
= 0 . (B.1.63)

If we introduce the equation of state P̄ = ωρ̄, we have P̄ + δP = ωρ̄ + δP
δρ ρ̄δ and we can write the

standard continuity equation

ρ̄′ = −3H(ρ̄+ P̄ )

⇔ ρ̄′

ρ̄
= −3H(1 + ω) . (B.1.64)
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At first order, we have

δ′ = −δ
(
ρ̄′

ρ̄
+ 3H

)
+

1

ρ̄
(3ψ′ − θ)(P̄ + ρ̄)− 3H(δ +

δP

ρ̄
) . (B.1.65)

and finally using eq. (B.1.64), ω, and δ = δρ/ρ̄ we find

δ′ = 3Hδ
(
ω − δP

δρ

)
+ (3ψ′ − θ)(1 + ω) . (B.1.66)

It describes the evolution of the density perturbation. The first term on the rhs is the dilution due to
the background expansion, the θ term accounts for the local fluid flow due to peculiar velocity, and the
ψ′ term is a purely relativistic effect corresponding to the density changed caused by perturbations to
the local expansion rate (defined as (1− ψ)a in newtonian gauge).
Next, we turn to the ν = i component

Tµi;µ = T 0
i,0 + T ji,j +

(
Γ0

00 + Γii0
)
T 0
i +
(
Γ0
j0 + Γkjk

)
T ji − Γ0

0iT
0
0 − Γ0

jiT
j
0 − Γj0iT

0
j − ΓjkiT

k
j

= −∂0

(
(ρ̄+ P̄ )vi

)
+ ∂j

[
− (P̄ + δP )δji −Πi

j

]
− 4H(ρ̄+ P̄ )vi − (∂jφ− 3∂jψ)P̄ δji − ∂iφρ̄

−Hδji(ρ̄+ P̄ )vj +Hδji(ρ̄+ P̄ )vj + (−
[
δjk∂iψ + δji ∂kψ − δki∂jψ

]
)P̄ δkj

= −(ρ̄′ + P̄ ′)vi − (ρ̄+ P̄ )v′i − ∂iδP − ∂jΠi
j − 4H(ρ̄+ P̄ )vi − (∂iφ− 3∂iψ)P̄ − ∂iφρ̄− 3∂iψP̄

= −(ρ̄′ + P̄ ′)vi − (ρ̄+ P̄ )v′i − ∂iδP − ∂jΠi
j − 4H(ρ̄+ P̄ )vi − ∂iφ(ρ̄+ P̄ )

!
= 0 (B.1.67)

We can now use eq. (B.1.64) and divide by (ρ̄+ P̄ )

v′i +

(
P̄ ′

ρ̄+ P̄
+H

)
vi = − ∂iδP

ρ̄+ P̄
− ∂iφ−

∂jΠ
i
j

ρ̄+ P̄
(B.1.68)

We would like now to express this relation as a function of ω, θ and σ defined by eq. (B.1.23). We
need to compute P̄ ′:

P̄ ′ = (ωρ̄)′

= ω′ρ̄+ ωρ̄′

= ρ̄
[
ω′ − 3ωH(1 + ω)

]
. (B.1.69)

Taking the divergence of eq. (B.1.68) and going to Fourier space leads to

θ′ +

(
ω′ − 3ωH(1 + ω)

1 + ω
+H

)
θ =

k2

1 + ω

δP

δρ
δ + k2φ− k2σ . (B.1.70)

Reordering the terms yields the euler equation in the common variables

θ′ = (3ω − 1)Hθ −
(

ω′

1 + ω

)
θ +

k2

1 + ω

δP

δρ
δ + k2φ− k2σ . (B.1.71)

All these relations can be rewritten in other gauges by means of the gauge invariant variables Φ, Ψ,
δgi, θgi, δP gi through the relations

Ψ = φ+H(ζ − µ′) + (ζ − µ′)′ Φ = −ψ −H(ζ − µ′) +
1

3
∇2

δgi = δ − ρ̄′

ρ̄
(µ̇− ζ) θgi = θ +∇2(µ̇− ζ) δP gi = δP − P̄ ′(µ̇− ζ) .

(B.1.72a)

(B.1.72b)
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Recalling that the metric in the synchronous gauge has the form

ds2 = a2(τ)
{
dτ2 − (δij +Hij)dx

idxj
}

with Hij = k̂ik̂jh+ (k̂ik̂j −
1

3
δij)6η , (B.1.73)

we have for the particular example of switching between newtonian and synchronous gauge gives, in
Fourier space,

φ = H (6η + h)′

2k2
+

(6η + h)′′

2k2

ψ = η −H (6η + h)′

2k2

δ(new) = δ(syn) +
ρ̄′

ρ̄

6η′ + h′

2k2

θ(new) = θ(syn) +
1

2
(6η′ + h′)

δP (new) = δP (syn) + P̄ ′
6η′ + h′

2k2
.

(B.1.74a)

(B.1.74b)

(B.1.74c)

(B.1.74d)

(B.1.74e)

This enables us to obtain Einstein equations as well as Euler and continuity equations in the syn-
chronous gauge:

k2η − 1

2
Hh′ = −4πGa2ρ̄δ (00)

−k2η′ = 4πGa2(ρ̄+ P̄ )θ (0i)

−1

2
h′′ −Hh′ + k2η = 12πGa2δP (ii)

1

2
(6η′′ + h′′) +H(6η′ + h′)− k2η = 12πGa2(ρ̄+ P̄ )σ (ij)

(B.1.75a)

(B.1.75b)

(B.1.75c)

(B.1.75d)

I will prove the most complicated one, the (ii) term, to show the spirit of the calculation. The lfs
gives

ψ′′ + (2H′ +H2)φ+Hφ′ + 2Hψ′ − 1

3
k2(φ− ψ) = η′′ + 2H′

{
H
(
6η + h

)

2k2

′

+

(
6η + h

)

2k2

′′}

−
{
H′′
(
6η + h

)

2k2

′

+ 2H′
(
6η + h

)

2k2

′′

+H
(
6η + h

)

2k2

′′′}

+ H2

{
H
(
6η + h

)

2k2

′

+

(
6η + h

)

2k2

′′}

+ H2

(
6η + h

)

2k2

′′

+HH′
(
6η + h

)

2k2

′

+H
(
6η + h

)

2k2

′′′

+ 2Hη′ − 2HH′
(
6η + h

)

2k2
− 2H2

(
6η + h

)

2k2

′′

− 1

3
k2

{
2H
(
6η + h

)

2k2

′

+

(
6η + h

)

2k2

′′

− η
}

(B.1.76)

A lot of terms cancel out, after equating to the rhs of (ii) leaving only,

−H′′
(
6η + h

)

2k2

′

+HH′
(
6η + h

)

2k2

′

+H3

(
6η + h

)

2k2

′

− Hh
′

3
+
k2η

3
− h′′

6
= 4πGa2

{
δP + P̄ ′

(
6η + h

)

2k2

′}
.

(B.1.77)
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We now need to use some tricks

H′′ =
{
− 4π

3
Ga2

(
ρ̄+ 3P̄ )

}′

= −4π

3
Ga2

{
2aH(ρ̄+ 3P̄ ) + (ρ̄′ + 3P̄ ′)

}

= −4π

3
Ga2

{
− 2Hρ̄+ 3P̄ ′

}
−4π

3
Ga2H(ρ̄+ 3P̄ )

︸ ︷︷ ︸
HH′

= −4π

3
Ga2

{
− 2Hρ̄+ 3P̄ ′

}
+HH′ (B.1.78)

H3 = H×H2 = H
{

8πGa2

3
ρ̄

}
. (B.1.79)

We end up with
[

4π

3
Ga2

{
− 2Hρ̄+ 3P̄ ′

}
−HH′

](
6η + h

)

2k2

′

+HH′
(
6η + h

)

2k2

′

+H
{

8πGa2

3
ρ̄

}(
6η + h

)

2k2

′

−Hh
′

3
+
k2η

3
− h′′

6
= 4πGa2

{
δP + P̄ ′

(
6η + h

)

2k2

′}
(B.1.80)

which gives the final result

− 1

2
h′′ −Hh′ + k2η = 12πGa2δP (B.1.81)

B.2 Technical details in the derivation of the perturbed Boltzmann equation

B.2.1 The collisionless Boltzmann equation at first-order

B.2.1.1 General equation in the Newtonian gauge

We wish in this section to prove the derivation of the colisionless Boltzmann equation B.2.15. The
derivation is made in the Newtonian gauge in cosmic time (no more a2 term in g00 and τ → t). The
starting point is to use some constraints to reduce the 8-dimension of f(xµ, Pµ). As already mention-
nend, imposing the mass-shell conditions P 2 = gµνP

µP ν = m2, where Pµ is define in eq. (1.1.16),
allows to express one of the 4-momentum component as a function of the others. This condition yields

P 2 = (1 + 2φ)(P 0)2 − p2 = m2 with − p2 = gijP
iP j , (B.2.1)

which immediately gives

P 0 = ±
√
p2 +m2

(1 + 2φ)
= ±E(1− φ) , (B.2.2)

where we will consider positive energy. We can also express P i as a function of pi = pni, where we
have introduced the magnitude p and the direction ni. P i is proportional to ni, we can introduce a
proportionality constant C such that P i ≡ Cni and we can determine it since

−p2 = gijP
iP j = gijn

injC2 = −a2(1− 2ψ)C2 . (B.2.3)

So we have
C =

p(1 + ψ)

a
. (B.2.4)
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We then start by expanding the Liouville operator in term of the energy E

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂E

dE

dt
+
∂f

∂ni
dni

dt
. (B.2.5)

The zero-order distribution is either a Fermi-Dirac or a Bose-Einstein distribution (1.3.9), which
does not depend on the direction ni, ∂f/∂ni is therefore a first order term. But so is the term which
multiplies it dni/dt since particles moves in straight lines in the absence of potentials. Hence, the last
term vanishes at first order.
In general relativity Pµ = mdxµ/dλ. Therefore,

dxi

dt
=
dxi

dλ

dλ

dt
=
P i

P 0
=
pni

Ea
(1 + ψ + φ) . (B.2.6)

Since f does not depend on the position at zero-order, ∂f/∂xi is a first order term and we can neglect
the potentials when multiplying it to dxi/dt. Finally, we need the geodesic equation to compute dE/dt.
It is given by

dPµ

dλ
+ ΓµαβP

αP β = 0 , (B.2.7)

and the time component yields

dP 0

dλ
+ Γ0

αβP
αP β = 0

⇔ dP 0

dt

{
dt

dλ
= P 0

}
= −Γ0

αβP
αP β

⇔ d

dt
[E(1− φ)] = −Γ0

αβ

PαP β

E
(1 + φ)

⇔ dE

dt
(1− φ) = E

dφ

dt
− Γ0

αβ

PαP β

E
(1 + φ) . (B.2.8)

We now can evaluate Γ0
αβ

PαPβ

E , it is

Γ0
αβ

PαP β

E
=

g0ν

2

[
2gνα,β − gαβ,ν

]
PαP β

E

=

(
1− 2φ

2

)[
2g0α,β − gαβ,0

]
PαP β

E
. (B.2.9)

The first term inside the brackets gives

2g0α,β
PαP β

E
= 2

[
g00,β

P 0P β

E
+

0︷ ︸︸ ︷
g0i,β

P iP β

E

]

= 4

[
∂φ

∂t
E +

∂φ

∂xi
pni

a

]
, (B.2.10)

and the second term

−gαβ,0
PαP β

E
= −

[
g00,0

P 0P 0

E
+ gij,0

P iP j

E

]

= −2
∂φ

∂t
E + a2

[
− 2

∂ψ

∂t
+ 2H(1− 2ψ)

]
δij
P iP j

E
, (B.2.11)
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we can use δijP iP j = P jP j = p2(1 + 2ψ)/a2 to obtain

−gαβ,0
PαP β

E
= −2

∂φ

∂t
E + a2

[
− 2

∂ψ

∂t
+ 2H(1− 2ψ)

]
p2(1 + 2ψ)

Ea2

= −2
∂φ

∂t
E − 2

[
∂ψ

∂t
−H

]
p2

E
. (B.2.12)

Collecting all terms we have

Γ0
αβ

PαP β

E
=

(
1− 2φ

2

){
4

[
∂φ

∂t
E +

∂φ

∂xi
pni

Ea

]
− 2

∂φ

∂t
E − 2

[
∂ψ

∂t
−H

]
p2

E

}

= (1− 2φ)

{
∂φ

∂t
E + 2

∂φ

∂xi
pni

a
−
[
∂ψ

∂t
−H

]
p2

E

}

=
∂φ

∂t
E + 2

∂φ

∂xi
pni

a
−
[
∂ψ

∂t
−H(1− 2φ)

]
p2

E
, (B.2.13)

and multiplying eq. (B.2.8) by (1 + φ) yields

dE

dt
= E

dφ

dt
− Γ0

αβ

PαP β

E
(1 + 2φ)

= E

{
∂φ

∂t
+
∂φ

∂xi
dxi

dt︸ ︷︷ ︸
∂φ

∂xi
pni

Ea

}
−
{
∂φ

∂t
E + 2

∂φ

∂xi
ni

Ea
−
[
∂ψ

∂t
−H(1− 2φ)

]
p2

E

}
(1 + 2φ)

= − ∂φ
∂xi

pni

a
+

[
∂ψ

∂t
−H

]
p2

E
. (B.2.14)

We can now express the total time derivative of f

df

dt
=
∂f

∂t
+
∂f

∂xi
p

E

ni

a
− ∂f

∂E

[
∂φ

∂xi
pni

a
+

[
H − ∂ψ

∂t

]
p2

E

]

!
= 0 collisionless

(B.2.15a)

(B.2.15b)

B.2.1.2 The case of collisionless relativistic-massless species

We derive here the Boltzmann hierarchy for colisionless relativistic-massless species. Photons and
massless neutrinos for instance enter this category. We start by expanding the photon distribution f
about its zero-order value

f(~x, p, ~n, t) =

[
exp

{
p

T (t)[1 + Θ(~x, ~n, t)]

}
− 1

]−1

. (B.2.16)

The zero-order temperature T is a function of time only and neither of location nor of p and ~n.
Θ ≡ δT/T is a inhomogeneous and anistropic perturbation to the distribution function. We make the
only assumption that it doesn’t depend on the magnitude p of the momentum, which follows from the
fact that the magnitude of the photon momentum is virtually unchanged during a Compton scatter.
Expanding at first order we have

f ' f (0) +
∂f (0)

∂T
× {δT = TΘ}

= f (0) − p∂f
(0)

∂p
Θ . (B.2.17)
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The last lines holds since for this function the derivative with respect to T yields

∂

∂T
f (0) =

∂

∂T

[
exp

{
p

T (t)

}
− 1

]−1

=

{
−
[

exp

{
p

T (t)

}
− 1

]−2}{
− p

T 2

}{
exp

[
p

T (t)

]}

⇒ T
∂

∂T
f (0) =

[
exp

{
p

T (t)

}
− 1

]−2 p

T
exp

[
p

T (t)

]
. (B.2.18)

and taking the derivative with respect to p

∂

∂p
f (0) =

∂

∂p

[
exp

{
p

T (t)

}
− 1

]−1

=

{
−
[

exp

{
p

T (t)

}
− 1

]−2}{ 1

T

}{
exp

[
p

T (t)

]}

⇒ −p ∂
∂p
f (0) =

[
exp

{
p

T (t)

}
− 1

]−2 p

T
exp

[
p

T (t)

]
= T

∂

∂T
f (0) . (B.2.19)

Equation (B.2.15) simplifies in the massless case. Indeed, we can set E =
√
p2 +m2 = p and replace

the derivative with respect to E to a derivative with respect to p. It becomes

df

dt
=
∂f

∂t
+
∂f

∂xi
ni

a
− p∂f

∂p

[
∂φ

∂xi
ni

a
− ∂ψ

∂t
+H

]
. (B.2.20)

We can plug eq. (B.2.17) into the previous one and split between zero and first order. The zero-order
equation is then

df

dt

∣∣∣∣
zero−order

=
∂f (0)

∂t
−Hp∂f

(0)

∂p

!
= 0 . (B.2.21)

The zero-order equation is always zero, since collisions will introduce terms proportional to Θ and
other perturbatively small quantities. Furthermore, the zero-order distribution function is defines by
the requirement that the collision term vanishes, which means that the rate of a reaction and its
inverse-reaction are equal at equilibrium. We can manipulate a bit previous equations to get the
famous result

∂f (0)

∂t
−Hp∂f

(0)

∂p
= 0

⇔
[
− ∂f (0)

∂T

dT

dt

]
−Hp∂f

(0)

∂p
= 0

⇔
[
− p

T

∂f (0)

∂p

dT

dt

]
−Hp∂f

(0)

∂p
= 0

⇔
[
− dT/dt

T
− da/dt

a

]
p
∂f (0)

∂p
= 0

⇔ dT

T
= −da

a

⇔ T ∝ 1

a
. (B.2.22)
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What we want is the first-order equation. It is

df

dt

∣∣∣∣
first−order

= −p ∂
∂t

[
∂f (0)

∂p
Θ

]
− p ∂Θ

∂xi
∂f (0)

∂p

ni

a
+HpΘ

∂

∂p

[
p
∂f (0)

∂p

]

−p∂f
(0)

∂p

[
∂φ

∂xi
ni

a
− ∂ψ

∂t

]
. (B.2.23)

We can manipulate previous equations, for instance the first term is

−p ∂
∂t

[
∂f (0)

∂p
Θ

]
= −p∂f

(0)

∂p

∂Θ

∂t
− pΘ

{
∂2f (0)

∂t∂p
=
∂2f (0)

∂T∂p

dT

dt

}

= −p∂f
(0)

∂p

∂Θ

∂t
+ pΘ

dT/dt

T

∂

∂p

[
∂f (0)

∂p

]
. (B.2.24)

Using now the zero-order result
dT/dt

T
= −da/dt

a
= −H . (B.2.25)

we plug this in eq. (B.2.23) to get the result

df

dt

∣∣∣∣
first−order

= −p∂f
(0)

∂p

[
∂Θ

∂t
+
∂φ

∂xi
ni

a
− ∂ψ

∂t
+
∂Θ

∂xi
ni

a

]
, (B.2.26)

and assuming collisionless species

∂Θ

∂t
+
∂φ

∂xi
ni

a
− ∂ψ

∂t
+
∂Θ

∂xi
ni

a
= 0 . (B.2.27)

Using the definition of the stress-energy tensor (1.1.18) and that in the newtonian gauge (−det[gαβ]−1/2)

= a−3(1 − φ + 3ψ) and d3P = a3(1 − 3ψ)p2dpdΩ, we can relate the distribution to the degrees of
freedom we have defined previously :

T 0
0 = ρ̄(1 + δ) = gs

∫
p2dpdΩ

(2π)3
p

[
f (0) − p∂f

(0)

∂p
Θ

]
, (B.2.28)

∂iT 0
i = −(ρ̄+ P̄ )θ = ∂i

{
− gs

∫
p2dpdΩ

(2π)3
pni

[
f (0) − p∂f

(0)

∂p
Θ

]}
, (B.2.29)

T ii = −3(P̄ + δP ) = −gs
∫
p2dpdΩ

(2π)3
p

[
f (0) − p∂f

(0)

∂p
Θ

]
, (B.2.30)

(∂i∂j −
1

3
∇2δij)T

i
j = (ρ̄+ P̄ )∇2σ = (∂i∂j −

1

3
∇2δij)

{
− gs

∫
p2dpdΩ

(2π)3
p2ninj

[
f (0) − p∂f

(0)

∂p
Θ

]}
.

(B.2.31)

To go further, it is common to reduce the number of variables by integrating out the p−dependance
in the distribution and to expand the angular dependance of the perturbations in a series of Legendre
polynomials P`(µ), with µ ≡ ~k ·~n/‖~k‖:

Θ(~k, µ, t) =
∑

`

(−i)`(2`+ 1)Θ`(t,~k)P`(µ) , (B.2.32)

Θ`(t,~k) =
1

(−i)`
∫ 1

−1

dµ

2
Θ(~k, µ, t)P`(µ) . (B.2.33)
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The Legendre Polynomial P`(µ) is an `th-order polynomial of µ. For −1 ≤ µ ≤ 1, P` has ` zeroes
in this interval. Some interesting values are

P0(µ) = 1 ; P1(µ) = µ ; P2(µ) =
3µ2 − 1

2
. (B.2.34)

It is an even function of µ for ` even, and an odd function for ` odd. They are orthogonal so that
∫ 1

−1
dµP`(µ)P ′`(µ) = δll′

2

2`+ 1
. (B.2.35)

They verify the recurrence relation

(`+ 1)P`+1(µ) = (2`+ 1)µP`(µ)− `P`−1(µ) . (B.2.36)

From this formalism, the perturbations can now be described either by Θ(~k, µ, t) or a whole hierarchy
of moments Θ`(~k, t). We can use these definitions to integrate equations (B.2.28-B.2.31) and relate
our scalar degrees of freedom to the first moments of Θ. For instance

T 0
0 = gs

∫
p2dpdΩ

(2π)3
p

[
f (0) − p∂f

(0)

∂p
Θ

]

= ρs − gs
∫
p4dpdΩ

(2π)3

∂f (0)

∂p
Θ . (B.2.37)

Here we have used eq. (1.3.13) and if we integrate by part
∫
p4dpdΩ

(2π)3

∂f (0)

∂p
= −

∫
dpdΩ

(2π)3
f (0)

{
∂p4

∂p
= 4p3

}
+

∫
dp

∂

∂p

(
p4f (0)

)

︸ ︷︷ ︸
0

= −4

∫
p2dpdΩ

(2π)3
pf (0) . (B.2.38)

Since f (0) does not depend on the direction, we can integrate it separately using eq. (B.2.32) if we
develop dΩ = dµdϕ. It yields

∫
dΩΘ = 2

∫ 2π

0
dϕ

∫ 1

−1

dµ

2
Θ = 4πΘ0 . (B.2.39)

We plug those two results back to get

T 0
0 = ρs + 4× gs

∫
4πp2dpdΩ

(2π)3
pf (0) ×Θ0

= ρs(1 + 4Θ0) . (B.2.40)

Identifying with the lhs of eq. (B.2.28) gives

δ = 4Θ0 . (B.2.41)
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This factors of 4 was predictible since ρ ∝ T 4 ⇒ δρ/ρ = 4δT/T . We can play the same game with
other variables. Equation (B.2.29) gives in Fourier space

ikiT 0
i = −igs

∫
p2dpdΩ

(2π)3
p(ki ·ni = kµ)

[
f (0) − p∂f

(0)

∂p
Θ

]

= −ikgs
∫
p2dpdµdϕ

(2π)3
pµ

[
f (0) − p∂f

(0)

∂p
Θ

]

= −ikgs
{∫

µdµdϕ

︸ ︷︷ ︸
0

∫
p2dp

(2π)3
pf (0) −

∫
µdµdϕΘ

︸ ︷︷ ︸
−i4πΘ1

∫
p2dp

(2π)3
p2∂f

(0)

∂p︸ ︷︷ ︸
−ρs/(gsπ)

}

= −4kΘ1ρs . (B.2.42)

For relativistic species, P̄ = 1/3ρ̄. We therefore have by identification with the lhs of eq. (B.2.29)

θ = 3kΘ1 . (B.2.43)

Finally, the last equation (B.2.31) will relate σ to another moment of Θ. Again in Fourier space, we
have

−(kikj −
1

3
k2δij)T

i
j = gs

∫
p2dpdΩ

(2π)3
p2(kikj −

1

3
k2δij)n

inj

[
f (0) − p∂f

(0)

∂p
Θ

]
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∫
p2dpdΩ

(2π)3
p2(k2µ2 − 1

3
k2)

[
f (0) − p∂f

(0)

∂p
Θ

]

= k2gs

[{∫
µ2dµdϕ =

4π

3

}∫
p4dp

(2π)3
f (0) − 4π

3

∫
p4dp

(2π)3
f (0)

]

︸ ︷︷ ︸
0

−k2gs

∫
p4dpdΩ

(2π)3
(µ2 − 1

3
)

︸ ︷︷ ︸
2
3
P2(µ)

[
p
∂f (0)

∂p
Θ

]

= −k2 2

3
gs

∫
dΩP2(µ)Θ

︸ ︷︷ ︸
−4πΘ−2

∫
p4dpdΩ

(2π)3

∂f (0)

∂p︸ ︷︷ ︸
−ρs/(gsπ)

= −k2 8

3
ρsΘ2 . (B.2.44)

Again we identify this with the lhs of eq. (B.2.31) to obtain

σ = 2Θ2 . (B.2.45)

We are now ready to reexpress the Boltzmann equation as an infinite hierarchy of coupled equations
for the multipole moments of Θ. We insert eq. (B.2.32) in eq. (B.2.27). It yields in Fourier space

Θ̇ +
ikµ

a
φ− ψ̇ +

ikµ

a
Θ =

∑

`

(−i)`(2`+ 1)Θ̇`(t,~k)P`(µ)− ikµ

a
φ+ ψ̇

+
ikµ

a

∑

`′

(−i)`(2`′ + 1)Θ`′(t,~k)P`′(µ) . (B.2.46)
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We now integrate over
∫
dµP`′′(µ) to picks out every moments separately using the orthonormality of

P ′`s (B.2.35)

∑

`

(−i)`(2`+ 1)Θ̇`(t,~k)

∫
dµP`(µ)P`” +

ik

a
φ
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−
∫
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ik

a

∑

`′

(−i)`′(2`′ + 1)Θ`′(t,~k)

∫
dµ µP`′(µ)︸ ︷︷ ︸

eq. (B.2.36)

P`′′(µ)
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2

2`+ 1
+

2ik
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2`′ + 1
δ(`′+1)`′′

2

2`′ + 3
+

`′

2`′ + 1
δ(`′−1)`′′

2

2`′ − 1

}

= 2(−i)`Θ̇`δll′′ +
2ik
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φδ1`′′ − 2ψ̇δ0`′′ +

ik

a

∑

`′

(−i)`′Θ`′(t,~k)

{
δ(`′+1)`′′

2(`′ + 1)

2`′ + 3
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!
= 0 . (B.2.47)

For instance `” = 0 imposes ` = 0 and `” = 1 and therefore

2Θ̇0 − 2ψ̇ + 2
ik

a
(−i)Θ1 = 0 . (B.2.48)

More generally, splitting between `′′ = 0, `” = 1 and `” ≥ 2 gives the following hierarchy of moments
of Θ

Θ̇0 = −kΘ1 + ψ̇

Θ̇1 =
k

3a

[
Θ0 − 2Θ2 + φ

]

Θ̇` =
k

(2`+ 1)a

[
`Θ`−1 − (`+ 1)Θ`+1

]
,

(B.2.49a)

(B.2.49b)

(B.2.49c)

which we can immediately relate to the Einstein equations using the relations we found just before.
The equations now in conformal time dt = adτ read

δ′ = −4

3
θ + 4ψ′

θ′ = k2

[
δ

4
− σ + φ

]

Θ′` =
k

(2`+ 1)

[
`Θ`−1 − (`+ 1)Θ`+1

]
.

(B.2.50a)

(B.2.50b)

(B.2.50c)

It is straight forward to transform to the synchronous gauge thanks to eqs. 2.1.56, which gives

δ′ = −4

3
θ − 2

3
h′

θ′ = k2

[
δ

4
− σ

]

2σ′ =
8

15
θ − 3

5
kΘ3 +

4

15
h′ +

8

5
η′

Θ′` =
k

(2`+ 1)

[
`Θ`−1 − (`+ 1)Θ`+1

]
` ≥ 3 .

(B.2.51a)

(B.2.51b)

(B.2.51c)

(B.2.51d)
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B.2.2 The Thomson scattering term

In this section, we wish to derive the Thomson scattering collision term to add in the Boltzmann
equation for photons. In general, the collision term for a photon with momentum ~p can be written as
[217]

C[f(~p)] =
1

p

∫
d3q

(2π)3Ee(q)

d3q′

(2π)3Ee(q′)

d3p′

(2π)3Eγ(p′)
|M|2(2π)4

× δ3[~p+ ~q − ~p′ − ~q′]δ[Eγ(p) + Ee(q)− Eγ(p′)− Ee(q′)]
× {fe(~q′fγ(~p′)− fe(~q)fγ(~p)} (B.2.52)

where the delta functions enfore energy momentum conservation and we neglect the effect of stimulated
emission and Pauli blocking, valid at first order. Thomson scattering is nothing but the low-energy
limit of a Compton event, i.e. Eγ(p) � me and Ee(q) = me + q2/(2me) with q � me. Furthermore,
there’s little momentum transfer in the scattering i.e. p′ ' p and q′ ' q, hence Thomson scattering
mostly change photon direction. The first step is to “kill” one integral over momentum thanks to the
delta function. Typically, one can integrate trivially over q′ to get

C[f(~p)] =
π

4m2
ep

∫
d3q

(2π)3

d3p′

(2π)3p′
|M|2δ[Eγ(p) + Ee(q)− Eγ(p′)− Ee(~q′ = ~q + ~p− ~p′)]

× ×{fe(~q′ = ~q + ~p− ~p′)fγ(~p′)− fe(~q)fγ(~p)} . (B.2.53)

To perform the next integral we need to consider the kinematic. The condition that little energy is
transfered to the outgoing electron translates as

Ee(q)− Ee(~q + ~p− ~p′) =
q2

2me
− q2 + 2(~p′ − ~p)~q + (p′ − p)2

2me
,

' (~p′ − ~p) · ~q
me

(B.2.54)

where the last hypothesis holds since ~p′ − ~p ' 0. Note also that, although Ee > Eγ , the differences
Ee(q)−E(q′)� Eγ(p)−Eγ(p′) as Ee(q)−E(q′) gets an extra 1/me suppression. This allows to write
the δ function as an expansion

δ[Eγ(p)− Eγ(p′) + Ee(q)− Ee(q′)] = δ[Eγ(p)− Eγ(p′)]

+ (Ee(q
′)− Ee(q))

∂δ(Eγ(p)− Eγ(p′) + Ee(q)− Ee(q′))
∂Eγ(p)

∣∣∣∣
Ee(q)=Ee(q′)

= δ[p− p′]− (~p′ − ~p) · ~q
me

∂δ(p′ − p)
∂p

= δ[p− p′] +
(~p′ − ~p) · ~q

me

∂δ(p− p′)
∂p′

. (B.2.55)

and finally, using that fe(~q+ ~p− ~p′) ' fe(~q), we can integrate over q which gives a factor ne and ne~vb
for the q/me. We can thus reexpress the collision term as

C[f(~p)] =
πne

4m2
ep

∫
d3p′

(2π)3p′
|M|2

{
δ[p− p′] + (~p′ − ~p) ·~vb

∂δ(p− p′)
∂p′

}{
f(~p′)− f(~p)

}
. (B.2.56)
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To perform the final integral, we need to express the matrix element of the Thomson scattering event
[347]

|M|2 = 6πσTm
2
e(1 + cos2[p̂ · p̂′]) . (B.2.57)

In reality the matrix element has a polarization dependance which is neglected because we focus
on temperature anisotropies here. We now expand the photon distribution around the equilibrium
distribution using eq. (B.2.17) to explicit make our variable Θ appear.

C[f(~p)] =
3π2ne

2p
σT

∫
d3p′

(2π)3p′

{
δ[p− p′] + (~p′ − ~p) ·~vb

∂δ[p− p′]
∂p′
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×
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f (0)(~p′)− f (0)(~p)− p′∂f

(0)

∂p′
Θ(p̂′) + p

∂f (0)

∂p
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3ne

16πp
σT

∫
dp′p′
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dΩ′
[
δ(p− p′)

{
− p′∂f

(0)

∂p′
Θ(p̂′) + p

∂f (0)

∂p
Θ(p̂)

}

+ (~p− ~p′) ·~vb
∂δ(p− p′)

∂p′
(
f (0)(~p′)− f (0)(~p)

)]{
1 + cos2[p̂ · p̂′]

}
. (B.2.58)

The last line is obtained by i) integrating the zero-order distribution over p′, the delta functions ensures
that it vanishes; ii) keeping only first order term. To integrate over dΩ′ we first remark that

cos2(p̂ · p̂′) + 1 =
2P2(cos(p̂ · p̂′)) + 4

3
=

8π

15

m=+`∑

m=−`
Y2m(p̂)Y ∗lm(p̂′) +

4

3
(B.2.59)

In practice however, the azimuthal integration of all Y2m will yield 0, except for m = 0 when it is
integrated over ΘT (p̂′). Indeed, using the definition of the multipole of ΘT eq. (B.2.32) and the fact
that Y20 = −

√
5P2/

√
4π, the integral over ΘT will give

∫
dΩ′ΘT (p̂′)

[
10P2(µ)P2(p̂′ · k̂)

15
+

1

3

]
= −8π

3
P2(µ)ΘT2 +

4π

3
ΘT0 (B.2.60)

Collecting all non-zero terms, we are simply left with

C[f(~p)] =
neσT
p

∫
dp′p′

{
δ(p− p′)

[
− p′∂f

(0)

∂p′

(
ΘT0 −

P2(µ)ΘT2

2

)
+ p

∂f (0)

∂p
Θ(p̂)

]

+ ~p ·~vb
∂δ(p− p′)

∂p′
(
f (0)(~p′)− f (0)(~p)

)}
(B.2.61)

and we can perform the integral over momentum trivially for the first line, by part for the second to
get the final result

C[f(~p)] = −p′∂f
(0)

∂p
neσT

[
ΘT0 −

1

2
P2(µ)ΘT2 −ΘT (p̂) + p̂ ·~vb

]
(B.2.62)

This treatment does not yield the part coming from the polarization because we started from decoupled
equation for ΘT and ΘP . In general however, one would need to treat the vector ~T = (ΘT ,ΘP ) (here
assuming already vanishing U and V for Thomson scattering) and to generalize the Liouville and
Collision operator to this vector. The full expression is given in Ref. [328] (eqs. (21) and (22) therein)
while the detailed computation can be found in Ref. [378]. In the usual case of vanishing U term, it
simplifies to our eq. (2.1.99) [353], [604].
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B.3 Basics of Bayesian statistics and parameter extraction

In this appendix, we explain the standard tools used to compare theoretical observables with actual
data, in order to extract information on the cosmological parameters. In the ΛCDM model, these
parameters encode information on the initial condition (As, ns), the energy content of the universe
(ωm, ωb,ΩΛ) and the late universe expansion and star formation (H0, τreio). Our strategy in Cosmology
is essentially to “shoot in the dark”, i.e. to start from random values of these parameters and through
subsequent iterations, try to find their most likely ones, while taking into account instrumental noise
or foreground contamination. We work in the widely used Bayesian framework, which allows to deal
with these issues, and that we will now introduce briefly following Refs. [67], [226], [312].

B.3.1 Fundamental definition and Bayes theorem

All our knowledges today in Bayesian analysis is call the data, D. One can describe the data D with a
given model or context I, that contains a certain number N of parameters grouped in a vector θ ∈ RN .
The Bayesian framework allows to answer two fundamental questions: i) is the model I better than
another one; ii) in this model, what are the best values and the credible intervals for the parameters.
However, there are big caveats associated to this framework. First, it will only allow to perform model
comparaison, not to get the absolute “true” model. Furthermore, within a model, it does not provide
an absolute credible interval for the parameter. It might be that in another model, degeneracies appear
enlarging its credible value. Therefore, all credible intervals are model dependant. Parameters within
a models are often extended to include nuisance parameters, which parametrize our ignorance of some
phenomenon a priori not-related to the physics we want to learn about. It can be for instance the
amplitude of a foreground or some experimental noise.
The rules of prability calculus applies to our case so that

• The probability “pr” of a given vector parameters θ must be positive-definite, i.e. pr(θ) ≡
pr(θ|I) ≥ 0.

• The integral over the whole volume must be normalized to 1,
∫
pr(θ)dθ = 1. The integral runs

over the prior volume, which can be restricted for some parameters to ranges smaller than the
whole real axis.

• The probability must satisfy the product rule, i.e. pr(φ, θ) = pr(φ|θ)pr(θ), where the joint
probability of having φ and θ is nothing but the probability of having φ given that we have
already θ, times the probability of having θ.

We can now come to the famous Bayes theorem applied to Cosmology. Given a context I1, it will
relate our known input (the model and the data) to a desired unknown output (the credible intervals
of the parameters and the relative merit of the model). It states

pr(θ)pr(D|θ) = pr(θ,D) = pr(D)pr(θ|D) . (B.3.1)

. Let us describe what it means with more standard notation:

1 Although we do not make it explicitely appear, all probabilities are in fact of the type pr(X) = pr(X|I).
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• The Prior π = pr(θ) is a probability assigned to the parameters a priori within a model, given the
knowledges on preceeding experimental data or some theoretical preference. It has an important
impact on the output credible intervals. Often, it is chosen to be flat, i.e. that no particular
region in the prior volume is highlighted, in order for the results to reflect the data.

• The Likelihood L = pr(D|θ) is the probability of measuring the data D given a set of parameters
θ, within a model. To get this information requires calibration of the instrument, such that for
a given ouput, it corresponds to a reliable input (up to the precision of the machine). Then, we
can play the converse game and ask, given an input θ, what is the probability to observe D. The
goal will be to maximize this function to determine the best parameters.

• The Bayesian Evidence E = pr(D) gives a number describing how likely it is that our context I
produce the data D. By taking ratio of this quantity computed for two models, one can compare
the odds of those models and decide whether one is favored by the data. However, we emphasize
again that it does not tell whether the given model I is the “true” model.

• Finally the Posterior P(θ) = pr(θ|D) represents our infered distribution of probability for the
parameters (or credible intervals) within a model. It is also a probability so it sums to 1.

We can express the two output terms as a function of the input

E =

∫
L(θ)π(θ)dθ , (B.3.2)

P(θ) =
L(θ)π(θ)

E . (B.3.3)

It brings two remarks: i) The evidence E is a N -dimensional integral of a potentially complicated
functions of the parameters. It can thus be very tough to compute and the most commonly used
algorithm for parameter extraction (the Metropolis-Hasting) does not gives this information. ii) The
evidence enters in the posterior distribution as a normalization constant. Someone interested in credible
intervals and not in model comparaison, as we are, can therefore safely ignore it.
Finally, we can define 1D and 2D marginalised distributions as

P(θ1, θ2|D) =

∫
P (θ|D)

∏

i 6=1,2

dθi . (B.3.4)

B.3.2 Parameter extraction and the Fisher matrix

Comparing a model to observations is usually done in two steps. One first select a given set of
parameters θ (including nuisance parameters) and compute the relevant observables with a Boltzmann
code (e.g. CMB TT, TE, EE and matter power spectrum). Then, one compares the output of the
code with the data using the likelihood, and aim at maximizing the likelihood in order to get an
estimate of the “true” parameters and their associated errors. The most common likelihood functions
is the so-called Gaussian likelihood. For N Gaussian random variables di with errors σi and correlation
function Cij , it is given by

L({di, σi}) =
1√

detC(2π)N
exp

(
−
diC

−1
ij dj

2

)
(B.3.5)
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The best fitting model with parameters θ̄ corresponds to the maximum of the likelihood function

dL(θ)

dθ

∣∣∣∣
θ=θ̄

= 0 . (B.3.6)

We are also interested in the credible intervals associated to the parameters, which can be obtained
via the approximate derivative of d lnL/dθi to first order

∂ lnL
∂θi

(θ̄) ' ∂ lnL
∂θi

(θ) + (θ̄j − θj)
∂2 lnL
∂θi∂θj

(θ) (B.3.7)

The Fisher matrix or curvature matrix is defined as the expectation value

Fij ≡
〈
∂2 lnL
∂θi∂θj

〉
, (B.3.8)

and one can show (e.g. ref [226])

Fij =
1

2
Tr
(
C−1(∂jC)C−1(∂iC)

)
. (B.3.9)

Assuming that the posterior distributions of the parameters are Gaussian, then this matrix encodes
the covariance of the parameters and the marginalized error of θi is given by

√
F−1
ii .

For more involved distributions, however, this simple estimate would not work as it relies on the
hypothesis of gaussian posteriors. The simplest strategy to get the posterior distribution and its
maximum would then be to span an equally spaced grid in parameter space. However, if the parameter
space is too large, this becomes very soon way too time consuming. However, if an experiment is precise
enough, most of the parameters space is irrelevant and more clever methods are available.
One needs to go to Monte Carlo methods, which we used in this work.

B.3.3 Monte Carlo Markov Chains

The idea is that instead of deciding on an a priori exploration of the parameter space, we explore it
randomly starting from some initial position. One possibility is to make use of aMarkov Chain: starting
from a given position with known likelihood, one proposed a new point and computes the associated
likelihood. It it then decided with a given algorithm, whether the point should be accepted or not
independantly of previous points in the chain. A good proposal algorithm does not accept point only
when the likelihood is higher, otherwise it would quickly converge to the maximum of likelihood and
stay there. To explore the parameter space, the algorithm should accept point with smaller likelihood
at smaller rate, so that it traces the underlying distribution. The most commonly used algorithm is
the so-called Metropolis-Hastings (MH) algorithm.

B.3.3.1 The Metropolis-Hastings algorithm

It is described by the following list of steps for the n-th iteration:

1. Propose a random point in the parameter space around the last point in some chain drawn from
a “proposal density” Q(θn, θn−1) .
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2. Compute the likelihood at this point n, L(n), and the ratio

r =
L(n)Q(θn, θn−1)

L(n− 1)Q(θn−1, θn)
(B.3.10)

3. If r ≥ 1, we accept the point as a next member of our chain .

4. Otherwise, we accept the point with probability r or simply increment the “weight” of the n− 1

with probability 1− r.

Often, the proposal density is chosen to be Gaussian centered around the current point such that it
does not enter the ratio r. It is only necessary to propose the new point. The covariance matrix of the
parameters can be used in the Gaussian proposal in order to improve the proposal. However, when
one starts a chain the covariance matrix is not always known. Several ways are possible: i) one can
start by “guessing” simple errors without correlations; ii) One can estimate the correlation matrix with
the Fischer formalism; iii) One can start from the covariance matrix of a former run if the covariance
matrix of the new run is believed to be close to it. In this work, it is often the third strategy that has
been used.
The beginning of the MH algorithm is associated with a burn in until the “hill” of the likelihood is
found, it is therefere necessary to remove the first n points (where n can be choosen arbitrarily by
looking at the chains, often a few hundred is used). Several improvements are possible to decrease
runtime, which are adopted in this work

• One can start an ensemble of N chains from different initial positions and analyze the chains
together. This allows a faster sampling of the likelihood.

• While running, one can update the covariance matrix to improve the proposal distribution and
increase acceptance rate. It is however necessary to throw away points that are not drawn from
the same proposal density. Therefore the covariance matrix shouldn’t be updated after some
time, in order to gather enough points within a chain.

• Nuisance parameters does not require to re-run the full Boltzmann code. We therefore can
decompose the covariance matrix into fast and slow parameters using the so-called Cholesky
decomposition which allows to decorrelate fast/slow parameters. Then one can simply compute
the part of likelihood related to these parameters, leaving the cosmological part unchanged.
Usually, it is efficient to perform “oversampling” of the fast parameter with respect to the slow
ones. This method has been introduced in the context of Cosmology in Ref. [403].

The MH can however show limitations, especially for multimodal posterior distributions. The algorithm
is not well suited to go far away from a local maximum, and it can lead to difficulties if several local
maxima are present in a distribution. Furthermore, with this algorithm, one samples the likelihood
and not the prior, therefore it is not possible to get an estimate of the bayesian evidence from a MH.
In the case this is needed, one needs to go for Nested Sampling algorithm such as MultiNest [241] or
PolyChord [290]. We won’t develop them here as it was never needed to use it.
In this work, we make use of the MontePython code [68] which incorporates both MH and MultiNest
algorithms.
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B.3.3.2 Convergence diagnostics

In order to determine the convergence of chains, several diagnostics are possible. First of all, one can
look by eye, whether the chains looks “nice”, i.e. whether they do not show too many holes or awkward
shapes which would indicate that a longer sampling is needed. One can cut a chain in sub-chains
and compare them to each others, to check the stationarity and assess whether a favorite region has
indeed been found. However, the most used criterion is the so-called Gelman and Rubin diagnostic
[265], based on the comparaison of the variances within each chain and the variance between chains.
Large deviation between these two variances indicates nonconvergence. In practice, one calculates first
the mean x̄i and the variance σi from each chains, as well as the total mean from all chains x̄. Then,
one can calculate the variance of the chain means σ(x̄i)

2 =
∑

i(x̄
2
i − x̄2)/(n− 1) and the mean of the

chain variances σ̄i =
∑

i σi/(n− 1). The ratio R ≡ σ(x̄i)/σ̄i should be very close to 1 if the chains are
converged. Usually, one uses the criterion R− 1 < 0.1 as a threshold for good convergence. The issue
with this criterion is that a lower number of chains tend to give a lower value of R, and therefore it
should also be used with caution.
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APPENDIX TO CHAPTER 4

C.1 Decay terms in the Boltzmann equation

In this study, we consider a decaying cold dark matter (dcdm) and its daugther dark radiation (dr).
Both have no interactions with other species in the Universe, hence we only need to add a decay term
to the Boltzmann equations of the cold dark matter and relativistic massless particles to get our full
system of equations. In the synchronous gauge comoving with the dcdm, and only in this gauge, it is
possible to cast the decay term in a very useful form (in conformal time)

D ≡ aΓfdcdm , (C.1.1)

where the Γ term contains all information about the matrix element and the phase space of both
parent and daugther particles. From now on, we will work in this gauge, and we therefore need to
recompute the general equation (B.2.15), adding this new term on the rhs with either a minus sign
when considering the DM or a plus sign when considering its daugther particle. We will change here
notation, so that we stick with [70], [412].
Our synchronous gauge will now be defined as

ds2 = a2(τ)

{
− dτ2 + (δij +Hij)dx

idxj
}
, (C.1.2)

and our newtonian one by

ds2 = a2(τ)

{
− (1 + 2ψ)dτ2 + (1− 2φ)dxidxj

}
. (C.1.3)

Be careful, the gauge transformation will be the same but with renamed potentials φ ↔ ψ. In this
gauge, the 4-momentum Pµ can be related to the proper momentum pi and energy E using the
relations

P 2 = gµνP
µP ν = −m2 , p2 = gijP

iP j , (C.1.4)

which differed for a sign with our new notations. It is also standard to introduced the comoving
momentum qi = api and comoving energy ε = aE ⇒ ε2 = q2 + am2.
Thus, we have

−a2(τ)(P 0)2 + p2 = −m2

⇒ P 0 =
E

a
=

ε

a2
, (C.1.5)
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and if we again set P i ≡ Cni we find

p2 = a2(δij +Hij)C
2

⇒ C =
p

a
(δij −

1

2
Hij)

⇒ P i =
pj

a
(δij −

1

2
Hij) , with pi = pni . (C.1.6)

Let’s now go back to the full boltzmann equation, with decay term, written in terms of conformal
time and momentum

df

dτ
=
∂f

∂τ
+
∂f

∂xi
dxi

dτ
+
∂f

∂q

dq

dτ
+
∂f

∂ni
dni

dt
= ±D . (C.1.7)

Just as we already did, we can rewrite this equation more explicitely. Again, the fourth term is second
order, therefore will be neglected. The second term can be recast since

dxi

dτ
=

dxi

dλ

dλ

dτ
=
P i

P 0
=
qj

ε
(δij −

1

2
Hij) . (C.1.8)

Then, using the geodesic equation like before, we can reexpress the dq/dτ term

P 0dP
0

dτ
= −Γ0

αβP
αP β . (C.1.9)

We need the perturbed Christoffels in synchronous gauge. It is easy to compute following the devel-
opment we made to derive eq. (B.1.34). The three Christoffels we need are

Γ0
00 =

1

2
g00g00,0 = H , (C.1.10)

Γ0
i0 =

1

2
g00g00,i = 0 , (C.1.11)

Γ0
ij = −1

2
g00gij,0

=
1

2
a−2

[
2a2H(δij +Hij) + a2H ′ij

]

=
1

2
H ′ij +H(δij +Hij) . (C.1.12)

Now we can compute dP 0/dτ since

a4
(
P 0
)2

= q2 + a2m2

⇒ 4a3da
(
P 0
)2

+ 2a4P 0dP 0 = 2qdq + (2ada)m2

⇒ P 0dP
0

dτ
= − 2

a4
Hq2 − 2

a2
m2H+

q

a4

dq

dτ
+
m2

a2
H

= − 2

a4
Hq2 − m2

a2
H+

q

a4

dq

dτ
, (C.1.13)

and the rhs of eq. (C.1.9) is

−Γ0
αβP

αP β = −Γ0
00

(
P 0
)2 − Γ0

ijP
iP j

= −H
a4

[
q2 +m2a2

]
−
[1
2
H ′ij +H(δij +Hij)

] 1

a4

[
δik −

1

2
Hik

]
qk
[
δjl −

1

2
Hjl

]
ql

= −H
a4

[
q2 +m2a2

]
− 1

2a4
H ′ijq

iqj − H
a4
q2

= −2
H
a4
q2 − H

a4
m2a2 − 1

2a4
H ′ijq

iqj . (C.1.14)
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Equating both sides leaves the result

− 2

a4
Hq2 − m2

a2
H+

q

a4

dq

dτ
= −2

H
a4
q2 − H

a4
m2a2 − 1

2a4
H ′ijq

iqj

⇒ q

a4

dq

dτ
= − 1

2a4
H ′ijq

iqj

⇒ dq

dτ
= −1

2
H ′ijqn

inj . (C.1.15)

We can slightly rewrite this relation in fourier space since Hij = k̂ik̂jh + (k̂ik̂j − 1
3δij)6η. Hence we

have
dq

dτ
= −1

2

[
k̂ik̂jh+ (k̂ik̂j −

1

3
δij)6η

]′
qninj

= qη′ − 1

2
q
(
h′ + 6η′

)(
k̂ ·n

)2
. (C.1.16)

Therefore, the Boltzmann equation for decaying particle and its radiation in this gauge, at first order,
takes the form

∂f

∂τ
+
∂f

∂xi
qi

ε
+
∂f

∂q

[
qη′ − 1

2
q
(
h′ + 6η′

)(
k̂ ·n

)2
]

= ±D . (C.1.17)

We can also express it in term of the proper momentum pi and energy E to make the cosmic expansion
term appear,

dq

dτ
=

d

dτ
[ap] = aHp+ a

dp

dτ
. (C.1.18)

Hence we get
∂f

∂τ
+
∂f

∂xi
pi

E
+ p

∂f

∂p

[
η′ − 1

2

(
h′ + 6η′

)(
k̂ ·n

)2 −H
]

= ±D . (C.1.19)

C.1.1 Boltzmann equation for the decaying Dark Matter

Starting with the decaying CDM, we have

∂fdcdm
∂τ

+
∂fdcdm
∂xi

pi

E
+ p

∂fdcdm
∂p

[
η′ − 1

2

(
h′ + 6η′

)(
k̂ ·n

)2 −H
]

= −D . (C.1.20)

We now integrate over
∫
d3pE/(2π)3 and use the definition of ρ (1.3.13), as well as the one for vi

ρ ≡
∫

d3p

(2π)3
Ef , (C.1.21)

vi ≡ 1

ρ

∫
d3p

(2π)3
fpi . (C.1.22)

Furthermore, we introduce here also the notation k̂ ·n ≡ µ. It gives
∫

d3p

(2π)3
E
∂fdcdm
∂τ

+

∫
d3p

(2π)3

∂fdcdm
∂xi

pi +

∫
d3p

(2π)3
Ep

∂fdcdm
∂p

[
η′ − 1

2

(
h′ + 6η′

)
µ2 −H

]

= −aΓ

∫
d3p

(2π)3
Efdcdm . (C.1.23)
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Here we can use the trick µ2 = (2P2(µ)+1)/3, and furthermore we know that the integral over dΩP2(µ)

will pick out the second moment of the distribution, which is negligible for the dcdm. Integrating the
third term by part gives

∫
d3p

2π3
Ep

∂f

∂p
=

∫
d3p

(2π)3
f

[
p2

E
+ E

]
=

3(ρdcdm + Pdcdm)

gs
. (C.1.24)

Therefore, setting Pdcdm = 0 we get

ρ′dcdm +
∂(ρdcdmv

i
dcdm)

∂xi
+

1

2
h′ρdcdm + 3Hρdcdm = −aΓρdcdm . (C.1.25)

We introduce the usual notation ρdcdm = ρ̄dcdm[1 + δdcdm] and set in our gauge vidcdm = 0 and
θdcdm = ∂iv

i
dcdm = 0. We collect all zero-order term to get the modified background equation for the

mass density ρ̄dcdm in conformal time

ρ̄′dcdm = −3Hρdcdm − aΓρ̄dcdm . (C.1.26)

If we now turn to the first-order terms and divide by ρ̄dcdm we get

δ′dcdm = −h
′

2
. (C.1.27)

We now take the first moment of the distribution
∫

d3p

(2π)3
pj
∂fdcdm
∂τ

+

∫
d3p

(2π)3

∂fdcdm
∂xi

p2ninj

︸ ︷︷ ︸
O(2)

−
∫

d3p

(2π)3

∂fdcdm
∂p

p2nj
[
η′ − 1

2

(
h′ + 6η′

)
µ2 −H

]

= −aΓ

∫
d3p

(2π)3
pjfdcdm .

(C.1.28)

We can integrate by parts the fourth term, which makes the velocity appears, and hence at first order
we can neglect all products with metric perturbations, leaving only

∂(ρdcdmv
j
dcdm)

∂t
+ 4Hρdcdmvjdcdm = −aΓ(ρdcdmv

j
dcdm). (C.1.29)

It has no zero-order parts, since the velocity is a first order quantity. We take the divergence to get

(ρ̄dcdmθdcdm)′ + 4Hρ̄dcdmθdcdm = −aΓρ̄dcdmθdcdm

⇔ (−3Hρdcdm − aΓρ̄dcdm)θ − θ′ρ̄dcdm + 4Hρ̄dcdm = −aΓρ̄dcdmθdcdm

⇔ θ′dcdm = −Hθdcdm !
= 0 . (C.1.30)

We now want to rewrite this two equations in the newtonian gauge. Indeed, This will allow us to
cross-check that our derivation was right since the physical result shouldn’t depend on the gauge. We
use eq. (2.1.56) and introduce the parameter α ≡ (h′ + 6η′)/2k2.
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It yields

δ
(s)
dcdm = −h

′

2
= δ

(n)′

dcdm + (3H′ + aHΓ)α+ (3H+ aΓ)α′

= δ
(n)′

dcdm + 3Hα′ + aHΓα+ 3Hα′ + aΓα′

= δ
(n)′

dcdm + 3Hα′ + aHΓα+ 3H
{−ψ′
H − H

′

H α+
η′

H

}
+ aΓ

{
φ−Hα

}

= δ
(n)′

dcdm + aΓφ− 3ψ′ + 3η′

⇔ k2α = θ
(s)
dcdm︸ ︷︷ ︸

0

−θ(n)
dcdm = δ

(n)′

dcdm + aΓφ− 3ψ′

⇔ δ
(n)′

dcdm = −aΓφ+ 3ψ − θ(n)
dcdm . (C.1.31)

θ
(s)′

dcdm = −Hθ(s)
dcdm = θ

(n)′

dcdm − k2α′

⇔ −H
{
θ

(n)
dcdm − k2α

}
= θ

(n)′

dcdm − k2α′

⇔ θ
(n)′

dcdm = −Hθ(n)
dcdm +Hk2α+ k2α′

⇔ θ
(n)′

dcdm = −Hθ(n)
dcdm + k2φ . (C.1.32)

From then, it is useful to introduce new sources variables that allow to write these equations in both
gauges as

δ′dcdm = −θdcdm −mcont − aΓmψ

θ′dcdm = −Hθdcdm + k2mψ ,

(C.1.33a)

(C.1.33b)

where mcont and mψ are given by

Synchronous Newtonian

mcont h′/2 −3φ′

mψ 0 ψ

Table 10: Continuity and euler type of metric source terms for scalar perturbations in synchronous and New-
tonian gauge.

C.1.2 Boltzmann hierarchy for the daugther dark radiation

From now on, to study perturbations of the dr and the dcdm, we used our formal definition for the
perturbed phase-space distribution :

fdr(~x, p, ~n, τ) = f
(0)
dr (p, τ)(1 + Ψdr(~x, p, ~n, τ)) ,

fdcdm(~x, p, ~n, τ) = f
(0)
dcdm(p, τ)(1 + Ψdcdm(~x, p, ~n, τ)) . (C.1.34)

Then, we take the linearized Boltzmann equation in synchronous gauge and add the decay term
(C.1.1) with now a plus sign on the rhs

∂fdr
∂τ

+
∂fdr
∂xi

pi

E
+ p

∂fdr
∂p

[
η′ − 1

2

(
h′ + 6η′

)(
k̂ ·n

)2 −H
]

= +D (C.1.35)
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We can plug eq. (C.1.34) inside the previous one and follow the same step as for the dcdm, but
with the equation of state P̄dr = ρ̄dr/3, to get the zero-order background density evolution

ρ̄′dr + 4Hρ̄dr = aΓρ̄dcdm . (C.1.36)

Having obtained the background equation, we switch our variables p→ q and E → ε to avoid dealing
with extra H terms (which hence also disappear in previous equation),

∂fdr
∂τ

+
∂fdr
∂xi

qi

ε
+ q

∂fdr
∂q

[
η′ − 1

2

(
h′ + 6η′

)(
k̂ ·n

)2
]

= +D , (C.1.37)

and introduced a similar notation as before to describe the perturbation of the integrated phase-space
distribution

Fdr ≡
∫
dqq3f

(0)
dr Ψdr∫

dqq3f
(0)
dr

rdr ≡
∑

`

(−i)`(2`+ 1)Fdr,`(t,~k)P`(µ) , (C.1.38)

with rdr defined as

rdr ≡
ρ̄dra

4

ρcr,0
, (C.1.39)

where the critical energy density today, ρcr,0 has been introduced to make rdr dimensionless. The
introduction of this factor will help us to cancel the time-dependence of Fdr due to the background
distribution function f0

dr in the denominator of eq. (C.1.38). If follows that

r′dr =
1

ρcr,0
[ρ̄′dra

4 + 4a4Hρ̄dr] =
Γρ̄dcdma

5

ρcr,0
= aΓ

ρ̄dcdm
ρ̄dr

rdr . (C.1.40)

From this, we want to establish the Boltzmann hierarchy as in the collisionless case. We now consider
the first-order part of eq. (C.1.37)

∂(f (0)Ψdr)

∂τ
+
∂(f (0)Ψdr)

∂xi
qi

ε
+ q

∂f
(0)
dr

∂q

[
η′ − 1

2

(
h′ + 6η′

)
µ2

]
= aΓf

(0)
dcdmΨdcdm . (C.1.41)

We then move to Fourier space, integrate over q2dqErdr (with E = q for the dr but not for the dcdm)
and divide by

∫
dqq3f

(0)
dr ≡ ρ̄dr. One has to be careful about the chain rules when taking the derivative

of Fdr with respect to times. It is

∂

∂τ
Fdr =

∂

∂τ

∫
dqq3f

(0)
dr Ψdr∫

dqq3f
(0)
dr

rdr +

∫
dqq3f

(0)
dr Ψdr∫

dqq3f
(0)
dr

r′dr

= rdr

∫
dqq3 ∂

∂τ (f
(0)
dr Ψdr)∫

dqq3f
(0)
dr

+ Fdr

[
−

∂
∂τ

∫
dqq3f

(0)
dr∫

dqq3f
(0)
dr

+ aΓ
ρ̄dcdm
ρ̄dr

]

︸ ︷︷ ︸
0

= rdr

∫
dqq3 ∂

∂τ (f
(0)
dr Ψdr)∫

dqq3f
(0)
dr

, (C.1.42)

whereas the integration (by parts) and division for the last term on the lhs simply yields a factor of
−4. Hence we get

∂

∂τ
Fdr + ikµFdr + rdr

[
2

3
h′ +

4

3
(h′ + 6η′)P2(µ)

]
= r′drδdcdm , (C.1.43)
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where we have used ∫
q2dqE(f

(0)
dcdmΨdcdm) = δdcdmρ̄dcdm . (C.1.44)

Then, we plug in it the Legendre multipoles expansion as it is defined in eq. (C.1.38) and we
integrate over dµPm(µ) to picks out every moments separately

∑

`

(−i)`(2`+ 1)F ′dr,`(t,
~k)

∫
dµPm(µ)P`(µ) + ik

∑

`′

(−i)`′(2`′ + 1)Fdr,`′(t,~k)

∫
dµµPm(µ)P`′(µ)

+rdr

[
2

3
h′
∫
dµPm(µ) +

4

3
(h′ + 6η′)

∫
dµPm(µ)P2(µ)

]
= r′drδdcdm

∫
dµPm(µ)

⇔ (−i)`(2`+ 1)F ′dr,`(t,
~k)δlm

2

2`+ 1
+ ik(−i)`′Fdr,`′

[
(`′ + 1)δ(`′+1)m

2

2(`′ + 1) + 1
+ `′δ(`′−1)m

2

2(`′ − 1) + 1

]

+rdr

[
2

3
h′δ0m +

4

3
(h+ 6η′)δ2m

2

5

]
= r′drδdcdmδ0m . (C.1.45)

Splitting between m = 0, 1, 2 and m > 2 leads to the following hierarchy in synchronous gauge

F ′dr,0 = −kFdr,1 −
2

3
rdrh

′ + r′drδdcdm

F ′dr,1 =
k

3
Fdr,0 −

2k

3
Fdr,2

F ′dr,2 =
2k

5
Fdr,1 −

3k

5
Fdr,3 +

8

15
rdr

(h′ + 6η′)

2

F ′dr,` =
k

2`+ 1

(
lFdr,`−1 − (`+ 1)Fdr,`+1

)
` > 2.

(C.1.46a)

(C.1.46b)

(C.1.46c)

(C.1.46d)

We now again want to rewrite this set of equations in the newtonian gauge for a cross-check. First of
all, all Fdr,` are gauge-invariant for ` > 1. To know how the other multipole moments transform, we
can use their relations to the standard variables δ and θ, as well as the gauge-invariant variable σ for
consistency. Indeed, we have shown in section 2.1.2 all relations of interest up to the factor rdr that
we now need to add. They are

Fdr,0 = rdrδ , Fdr,1 =
4rdr
3k

θ , Fdr,2 = 2σ . (C.1.47)

Eq. (2.1.56) then immediately gives the way in which these moments change under a transformation
from the synchronous to newtonian gauge

F
(s)
dr,0 = F

(n)
dr,0 − rdr

ρ̄′dr
ρ̄dr

α , F
(s)
dr,1 = F

(n)
dr,1 −

4rdrk

3
α , (C.1.48)

where we have again introduced the parameter α = (h′ + 6η′)/2k2.
We recall that the metric potentials transform under our new notation as

ψ = H (6η + h)′

2k2
+

(6η + h)′′

2k2
, φ = η −H (6η + h)′

2k2
. (C.1.49)

These are the same transformation as before but with the potential name exchanged to stick with
more standard notation.
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Let start with the ` = 0 multipole moment. In this case, we need to compute F (s)′

dr,0 and hence (ρ̄′dr/ρ̄dr)
′.

It is given by (
ρ̄′dr
ρ̄dr

)′
=
ρ̄′′dr
ρ̄dr
−
(
ρ̄′dr
ρ̄dr

)2

, (C.1.50)

with

ρ̄′′dr = (−4Hρ̄dr + aΓρ̄dcdm)′

= −4H′ρ̄dr − 4H[−4Hρ̄dr + aΓρ̄dcdm] + aHΓρ̄dcdm + aΓ[−3Hρ̄dcdm − aΓρ̄dcdm]

= −4H′ρ̄dr + 16H2ρ̄dr − 6HaΓρ̄dcdm − (aΓ)2ρ̄dcdm

⇒ ρ̄′′dr
ρ̄dr

= −4H′ + 16H2 − 6Hr
′
dr

rdr
− aΓ

r′dr
rdr

, (C.1.51)

and
(
ρ̄′dr
ρ̄dr

)2

=

(
− 4H+

r′dr
rdr

)2

= 16H2 +

(
r′dr
rdr

)2

− 8Hr
′
dr

rdr
. (C.1.52)

Collecting terms yields
(
ρ̄′dr
ρ̄dr

)′
= −4H′ + 2Hr

′
dr

rdr
− aΓ

r′dr
rdr
−
(
r′dr
rdr

)2

. (C.1.53)

We can now develop the gauge transformation of the ` = 0 equation

F
(n)′

dr,0 − r′dr
ρ̄′dr
ρ̄dr

α− rdr
(
ρ̄′dr
ρ̄dr

)′
α− rdr

ρ̄′dr
ρ̄dr

α′ = −k
[
F

(n)
dr,1 −

4rdrk

3
α

]
− 2rdr

3
h′ + r′dr

[
δ

(n)
dcdm −

ρ̄′dcdm
ρ̄dcdm

α

]

⇔ F
(n)′

dr,0 − r′dr
[
− 4H+

r′dr
rdr

]
α− rdr

[
− 4H′ + 2Hr

′
dr

rdr
− aΓ

r′dr
rdr
−
(
r′dr
rdr

)2]
α− rdr

[
− 4H+

r′dr
rdr

]
α′

= −kF (n)
dr,1 + k2 4rdrk

3
α− 2rdr

3
h′

︸ ︷︷ ︸
4rdrη′=4rdr[φ′+H′α+Hα′]

+r′dr

[
δ

(n)
dcdm − (−3H− aΓ)α

]

⇔ F
(n)′

dr,0 + 2Hr′drα+ 4H′rdrα+ 4Hrdrα′ − r′drα′ − aΓr′drα

= −kF (n)
dr,1 + 4rdrφ

′ + 4H′rdrα+ 4Hrdrα′ + r′drδ
(n)
dcdm + 3Hr′drα+ aΓr′drα

⇔ F
(n)′

dr,0 = −kF (n)
dr,1 − 4rdrφ

′ + r′dr

[
δ

(n)
dcdm−Hα+ α′︸ ︷︷ ︸

ψ

]

⇔ F
(n)′

dr,0 = −kF (n)
dr,1 − 4rdrφ

′ + r′dr

[
δ

(n)
dcdm + ψ

]
, (C.1.54)

whereas the ` = 1 equation yields

F
(n)′

dr,1 − 4r′drk

3
α− 4rdrk

3
α′ =

k

3

[
F

(n)
dr,0 − rdr

ρ̄′dr
ρ̄dr

α

]
− 2k

3
F

(n)
dr,2

⇔ F
(n)′

dr,1 =
k

3
F

(n)
dr,0 +

4k

3

[
r′drα+ rdrα

′
]
− 2k

3
F

(n)
dr,2 −

krdr
3

[
− 4H+

r′dr
rdr

]
α

⇔ F
(n)′

dr,1 =
k

3
F

(n)
dr,0 −

2k

3
F

(n)
dr,2 +

4krdr
3

[
ψ −Hα

]
− 4krdr

3
Hα− kr′drα

⇔ F
(n)′

dr,1 =
k

3
F

(n)
dr,0 −

2k

3
F

(n)
dr,2 +

4krdr
3

ψ +
r′dr
k
θ

(n)
dcdm , (C.1.55)
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where we have used in the last line the fact that k2α = θ
(n)
dcdm − {θ

(s)
dcdm = 0} = θ

(n)
dcdm.

Finally, the ` = 2 equation gives

F
(n)
dr,2 =

2k

5

[
F

(n)
dr,1 −

4rdrk

3
α

]
− 3k

5
F

(n)
dr,3 +

8rdrk
2

15
α

=
2k

5
F

(n)
dr,1 −

3k

5
F

(n)
dr,3 . (C.1.56)

Like for the dcdm, it is common to introduce the sources variables mcont and mψ, already defined in
table 10, and mshear, defined in table 11.

Synchronous Newtonian

mshear (h′ + 6η′)/2 0

Table 11: Shear type of metric source terms for scalar perturbations in synchronous and Newtonian gauge.

The final set of equations for the dr written in both gauges reads

F ′dr,0 = −kFdr,1 −
4

3
rdrmcont + r′dr(δdcdm + mψ)

F ′dr,1 =
k

3
Fdr,0 −

2k

3
Fdr,2 +

4k

3
rdrmψ +

r′dr
k
θdcdm

F ′dr,2 =
2k

5
Fdr,1 −

3k

5
Fdr,3 +

8

15
rdrmshear

F ′dr,` =
k

2`+ 1

(
lFdr,`−1 − (`+ 1)Fdr,`+1

)
` > 2.

(C.1.57a)

(C.1.57b)

(C.1.57c)

(C.1.57d)

This set of equations needs to be truncated at some maximum multipole order `max. To do so, we will
use the improved truncation scheme from [412]. It is based on the solution of these equations when
there is no cosmic shear, i.e. ∂τ (φ+ψ) = 0. In this case, the time dependence of the analytical solution
of the Boltzmann hierarchy is given by a bessel function j`(kτ) for all `’s (only two being non-zero).
From this, we assume that the solution still approximately holds even if the condition ∂τ (φ+ ψ) = 0

is not fulfilled anymore and make use of the recurrence relation for spherical Bessel functions to get

F(`max+1) '
(2`max + 1)

kτ
F`max − F(`max−1) . (C.1.58)

C.2 Modifiying the stress-energy tensor conservation

Instead of using the Bolzmann equation, it is possible to use their integrated form through the stress-
energy tensor conservation to derive equations of motion for δ and θ, not for the others moments of
the distribution though. We can write the continuity and Euler equation in form

Tµ0
dcdm;µ = −C , Tµ0

dr;µ = C , (C.2.1)

∂iT
µi
dcdm;µ = −D , ∂iT

µi
dr;µ = D . (C.2.2)
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By identification with the term in the last section, we know that the C and D terms (careful here D
is different than the one we expressed above), take a trivial form in the synchronous gauge comoving
with the decaying species

C(s) = aΓρ̄dcdm(1 + δdcdm) , D(s) = 0 . (C.2.3)

It is in this gauge, and only in this gauge, that C and D take so simple forms. It is then trivial to
generalize the result at first-order for non-decaying, non-interacting species, as it is given by eq. (2.1.58).
Indeed, the continuity and euler equations for the dcdm don’t change at all, whereas the ones for the
daugther radiation only have one further term. We had made the derivation in the newtonian gauge.
All we would have to do is to start from eq. (B.1.63), proceed again by a gauge transformation to go in
the synchronous gauge, and add C(s) on the rhs. For radiation, we recall ω = δP/δρ = 1/3. Splitting
it between zero and first order, we find

ρ̄′dr = −4H+ aΓρ̄dcdm zero− order (C.2.4)

δ′dr =
2

3
h′ − 4

3
θ + aΓ

ρ̄dcdm
ρ̄dr

(δdcdm − δdr) first− order (C.2.5)

The euler equations are very simple to obtain in this gauge, since D(s) = 0. Furthermore, we have
chosen to set

θ′dcdm = −Hθdcdm = 0 , (C.2.6)

with our choice of gauge. We only need to slightly modify the equation for the θdr. The only difference
from the standard derivation appears when computing P̄ ′ as given by eq. (B.1.69). One here needs to
add a term aΓρ̄dcdm as it is indicated by eq. (C.2.4). Setting again ω = δP/δρ = 1/3 and ω′ = 0 yields

θ′dr = −k
2

4
δdr − k2σ − aΓ

ρ̄dcdm
ρ̄dr

. (C.2.7)

We cannot recover the full hierarchy, since Tµν make use only of the integrated distribution, but still
this is enough for the dcdm, and constitutes a cross-check for the dr.
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D.1 Comparison of the energy deposition treatments

We wish here to compare our formalism to the analytical treatment used by some authors to implement
the energy deposition from DM annihilations. Instead of parametrizing the energy deposition history
through the f(z) functions, the authors of [96], [189], [270], [447] have used a more explicit method,
which has however some caveats. Following notations of [189], equivalent to other articles, one can
write after a few manipulations the energy deposition as:

dE

dV dt

∣∣∣∣
dep

(z) = (D.1.1)

∫ ∞

z

dz′

(1 + z′)H(z′)

(1 + z)3

(1 + z′)3

nA(z)〈σannv〉
2m2

DM
ρ2(z′)

∫ mDM

0
dEγEγ

dNγ

dE′γ
(E′γ)e−κ(z′,z;E′γ)σ(Eγ)

where σ(E′γ) is obtained by summing σγA→e−A+, σγe−→γe− and σγA→e±A (the index A refers to H
and He atoms), nA(z) scales as (1 + z)3, dNγ

dE′γ
(E′γ) is the spectrum of photons produced by the DM

annihilations (both prompt and from inverse Compton scattering), E′γ is the energy at the time of
injection and Eγ is the energy at the time of deposition, and κ(z′, z;E′γ) plays the role of an absorption
coefficient defined as:

κ(z, z′, Eγ) '
∫ z

z′
dz′′

dt

dz′′
nA(z′′)σ(E′′γ ) . (D.1.2)

Three comments can be made about this formula.

• First of all, a mistake is made in eq. (4) of Ref. [447] (the equivalent of our eq. (D.1.1)) and that
mistake propagated to Ref. [270]. Indeed, in eq. (4) of Ref. [447], the last integral is performed
over E′γ (the energy at the time of injection) instead of Eγ (the energy at the time of deposition).
Since the two are related by E′γ = Eγ(1 + z′)/(1 + z), the final result differs by a factor (1 +

z)2/(1 + z′)2 in the last integral over dz′. This can be seen explicitely in eq. (4.21) of Ref. [270],
where the exponent1 6 should in fact be 8.

• Secondly, in order to perform the integral analytically, Refs. [270], [447] assume that it is possible
to consider that all interactions between injected photons and matter are due to Compton scat-
tering in the Thomson limit. This approximation works well enough for the smooth background,
that is not sensitive too much to the full deposition history, but it is inaccurate compared to the
approach of Slatyer et al. [554] in the context of annihilation in halos.

1 Ref. [39] argue that this exponent should in fact be 7. This comes from a possible mistake in Refs. [96], [189], [270],
[447] which considered that the photon energy density per energy interval d2Nγ

dV dEγ
∝ a−3 instead of a−2.
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• To further compare the approach of Refs. [96], [189], [270], [447] with that of Ref. [554], it is
possible to manipulate eq. (D.1.1) in such way to absorb all the energy and redshift dependance.
Then, the equivalent of the energy deposition function f(z) appears, defined as:

dE

dV dt

∣∣∣∣
dep

(z) = f̃(z)ρ2(z)
〈σannv〉
mDM

, (D.1.3)

where

f̃(z) =

∫ ∞

z

dz′(1 + z)5

H(z′)(1 + z′)6

nA(z)ρ2(z′)

2mDMρ2(z)

∫ mDM

0
dE′γE

′
γ

dNγ

dE′γ
(E′γ)e−κ(z′,z;E′γ)σ(Eγ) . (D.1.4)

Even if this formalism goes one step beyond the “on-the-spot” approximation thanks to the
integral over z′, the complexity of the cascade evolution is not taken into account. The two ap-
proaches do not give significantly different results when considering only the smooth background,
since the CMB experiments are not sensitive to the shape of f(z) at low z, but using eq. (D.1.4)
can lead to wrong results when halos are turned on.

D.2 The boost function B(z)

Generally, it is possible to re-write the energy deposition rate in halos by introducing an enhanced
dark matter density ρ2(z) = (1 + B(z))ρ̄2(z). One now has:

dE

dV dt

∣∣∣∣
inj, halos

= ρ2
cc

2Ω2
DM(1 + z)6 〈σannv〉

mDM
(1 + B(z)) (D.2.1)

To compute this "boost" of the density, several ways have been introduced. In the so-called "Halo
model" (HM) framework, it is assumed that all the mass in the Universe is contained in virialized
objects (the halos), fully characterized by their mass. The key ingredients are the spatial distribution
of matter inside a halo (usually called the density profile) and the number of halos per unit mass
(namely, the mass function, that can evolve with the redshift). This allows one to express the boost
B(z) as :

B(z) =
1

ρ2
cΩDM

(1 + z)3

∫ ∞

Mmin

dM
dn

dM
(z)

(∫ r200

0
dr4πr2ρ2

h(r)

)
(D.2.2)

where Mmin is the minimal mass of DM halos and r200 the radius of a sphere enclosing a mean density
equal to 200 times the background density (some authors prefer to use the virial radius rv, but they are
strictly equivalent). The last integral is usually recast in terms of the concentration function F (ch),
which depends on the concentration parameter ch ≡ r200/rs with rs the scale radius of the given
profile: ∫ r200

0
dr4πr2ρ2

h(r) =
Mρ̄(zF )

3

(
ΩDM

ΩM

)2

F (ch) (D.2.3)

where zF is the redshift of halo formation (not yet well known) and ρ̄(zF ) = 200ρcΩM(1 + zF )3 the
average matter density within a sphere of radius r200.
One now needs to relate the concentration function to the halo profile, and several types of profile have
been proposed in the litterature. We presented the most commonly used one in section 3.3.1: those are
the Navarro-Frenk-White (NFW) profile [448], Einasto profile [282], [449] and isothermal-like Burkert
profile [135], the former two showing a more peaked distribution than the latter. The last key quantity
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– the mass function – which in this framework also encodes how the density evolves with the redshift,
can be calculated analytically in the Press-Schechter formalism [497], leading to :

dn

dM
=
ρcΩM

M

d lnσ−1

dM
f(σ) (D.2.4)

where the variance of the density field σ and the differential mass function f(σ) have been introduced.
We shall not develop further the HM and the Press-Schechter formalism and refer to [270] for more
details. Following their development, one can show that, in the frame of the HM with the Press-
Schechter prescription for the mass function, the boost from halos is given by:

B(z) =
fh

(1 + z)3
erfc
(

1 + z

1 + zh

)
(D.2.5)

where fh = 200
3 (1 + zF )3F (ch) and zh is the characteristic redshift at which halos start to contribute

(we typically have zF ' 2zh). It could be possible to use more advanced prescription for the halo mass
function, such as the Sheth-Tormen formula [542] or the one from Tinker et al. [579], but this would not
lead to major differences for the problem we are dealing with. Indeed, as it appears in this framework,
the mass function mainly dictates the evolution of the distribution with z and is only known for very
small redshifts compared to the range we want to span. The error function is merely a prescription
inspired by a simple model to describe the transition from a smooth distribution of matter to structures
of virialized objects, whose normalization at low redshift is encoded in the function fh. To learn how
structure formation precisely happens, especially at high z, is one ingredient that would allow one to
improve over the present study. Here, we will limit ourselves to vary zh in the interval [20,30] to ease the
comparison with existing literature. Concerning the additional parameter fh, we deduce a reasonable
range for it from the range of B(z = 0) computed in [533], [535]. In those references, an alternative
method is used to compute the boost factor, by direct integration of the power-spectrum down to very
small scales (where a cutoff is induced by WIMP dark matter free-streaming or kinetic decoupling)
calibrated directly on simulations. The large uncertainties in dealing with the power-spectrum in the
deeply non-linear range explain the broad interval B(z = 0) ∈ [104, 108] inferred for typical WIMP
candidates, although more recent simulations tend to narrow it down to [5× 104, 106].

D.3 Discussion on τreio as it is measured by Planck

The Planck collaboration explains in sec 3.4 of Ref. [19] how they proceed to obtain a measurement
of the optical depth to reionization τreio. Let us recall briefly how this is done, and why this might
be problematic when one modifies the reionization history in a non-trivial way and wants to compare
the new τreio to the Planck results.
In general, the optical depth at redhift z is defined as

τ(z) ≡
∫ z

0
nH(z)xe(z)σT

dt

dz′
dz′ . (D.3.1)

Planck obtains an estimate of the reionization optical depth by: (i) assuming single-step reioniza-
tion where xe(z) is described by a postulated function centered on an adjustable redshift zreio; (ii)
computing the corresponding CMB temperature and polarization power spectra using the Bolztmann
codes CAMB [402] (or CLASS [109], [390] for cross-checks); (iii) comparing these spectra with those
extracted from observed maps. The fit directly gives some bounds on the reionization redshift zreio.
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At the same time, for each model, the codes also compute the integrated parameter τ camb
reio ≡ τ(zc),

where the cut-off redshift zc takes an arbitrary default value zc = 40 in both CAMB and CLASS, and
reports bounds on this τ camb

reio . Actually, since there is a one-to-one correspondance between τ camb
reio and

zreio (valid for the postulated category of reionization models), the Bayesian parameter extraction can
even be done with a flat prior on τ camb

reio rather than zreio.
In such models, reionization affects:

• the low-` part of the polarization spectra, creating the so-called reionization bump,

• the high-` part of the temperature and polarization spectra, which are step-like suppressed, with
a suppression factor saturating above ` ∼ 70 at a value very close to e−2τcamb

reio .

The first impact is very challenging to detect because of the smallness of the signal, which requires a
very good control of instrumental systematics and polarized foreground emissions. Even if theoretically,
the signature of reionization on the CMB polarization spectra is very clear, the actual measurement
of the E-mode low-` spectrum still has quite large uncertainties, and that of the B-mode spectrum is
not sensitive enough to probe any reionization bump. Hence, current sensitivity to reionization comes
mainly from the second of the two effects. The data probe mainly the integrated parameter τ camb

reio ,
and the bounds reported on this parameter are often thought to be model-indepent (i.e., valid for any
reionization history).
However, some of the above statements are only true for models such that the ionization fraction

xe(z) only starts raising at low redshift. For more complicated models like those involving DM an-
nihilation, the fact that there is a step-like suppression of the C`’s, and that the suppression factor
asymptotes to e−2τcamb

reio , are not necessarily accurate. For instance, Figure 95 shows that in presence
of DM annihilation in halos, the reionization effect is not exactly step-like. It has superimposed oscil-
lations, and the suppression factor drifts significantly between ` ∼ 100 and ` ∼ 2500.
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Figure 95: Left pannel - Comparison of the CMB temperature power spectrum for several mixed star-DM reion-
ization models, with zreio = 6.5 and a DM particle of 1 GeV annihilating into electrons, normalized
to the CMB power spectrum in a universe without reionization. Right pannel - The corresponding
ionization histories.

This can easily be understood using the line-of-sight integral formalism [534] introduced in sec. 2.2.3.2,
which shows that the Sachs-Wolfe and Dopper terms in the CMB transfer functions are given by an
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integral over time of a product of cosmological perturbations, Bessel functions, and finally the visi-
bility function g ≡ τ ′e−τ (as well as its time derivative in the Doppler term). The visibility function
g(z) gives the probability of last scattering, and is normalised to one by construction:

∫
g(z) dz = 1.

In absence of reionization, g(z) has a single peak at recombination, and it could be approximated by
zero for z � zdec without changing the result (physically, this means that all observed photons last
scattered near z = zdec). With conventional single-step reionization model (black line in fig. (96)), a
second peak centered near z = zreio is visible. For high `’s, the integral over time still only picks up
contributions near z = zdec. However, the normalization of g(z) implies that the amplitude of the
recombination peak in g(z) is reduced by exactly e−τ(z), where z can be choosen anywhere in the
range zreio � z � zdec (e.g. z = 40, as taken by default in CAMB and CLASS). Hence the high-`
temperature and polarization power spectra are supressed by exactly e−2τcamb

reio .
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Figure 96: Visibility function for the reionization history from fig. 95, compared to the visibility function in
the absence of reionization.

This conclusion is almost unspoiled by the introduction of DM annihilation in the smooth back-
ground, or for relatively small halo contribution (blue and green curves in fig. (96)). However, the
non-standard shape of g in the case where reionization in DM halos is very strong and starts early
(cyan and red curves in fig. (96)) produces non-trivial effects, because the line-of-sight integral starts
to pick up sizeable contributions coming from the second reionization bump. Physically, this comes
from extra small-scale anisotropies generated by CMB photons re-scattering at medium redshift, for
instance between z ∼ 40 and z ∼ 100.
Since Planck measures the optical depth mainly through its suppression effects on the C`’s at high

`, it is possible to say that what Planck really measures is an effective parameter

τeff ≡ −
1

2
log(CTT` /CTT, no reio

` ) , (D.3.2)

where ` is some effective multipole value in the region where the data has maximum sensitivity, and we
are assuming that most of the sensitivity comes from temperature. For usual single-step reionization
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models, τeff coincides both with τ camb
reio , computed up to zc = 40, and with a more sensible and robust

definition that one could give of the reionization optical depth, where the integral would run up to
the redshift at which the ionization fraction is minimal:

τmin
reio ≡ τ(z∗) , x′e(z∗) = 0 . (D.3.3)

For models with a raise in xe(z) at high redshift, it is obvious that τeff and τ camb
reio can be very different,

because integrating up to zc = 40 is not sufficient. We also checked this numerically and found a
significant mismatch. A more interesting question is whether τeff and τmin

reio are close to each other. In
other words, can we still say that the total effect on the CMB spectra at high ` is related to the optical
depth computed up to the very beginning of reionization? We tested this Ansatz explicitly, and found
that the difference between these two quantities is small, being of the order of 10% in the worst cases,
i.e., still within the error bars of Planck. In summary:

• for usual single-step reionization:

τ camb
reio = τeff = τmin

reio .

• in more general cases with an early enhancement of the ionization fraction:

τ camb
reio 6= τeff ' τmin

reio .

Therefore, as a first approximation, it is safe to define everywhere in our analysis τreio as τmin
reio , and

to compare it with the value of τreio reported by Planck. This conclusion legitimates the analysis
performed in section 7.3. For even better accuracy, the next step would be to perform a full parameter
extraction in which exact power spectra are fitted to the data, and to derive new bounds on τreio valid
in all cases, but this is not necessary for reaching the main conclusions of this work.
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