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Abstract 
Restoring natural speech in paralyzed and aphasic people could be achieved using a brain-computer 

interface controlling a speech synthesizer in real-time. The aim of this thesis was thus to develop three main steps 
toward such proof of concept.  

First, a prerequisite was to develop a speech synthesizer producing intelligible speech in real-time with a 
reasonable number of control parameters. Here we chose to synthesize speech from movements of the speech 
articulators since recent studies suggested that neural activity from the speech motor cortex contains relevant 
information to decode speech, and especially articulatory features of speech. We thus developed a speech 
synthesizer that produced intelligible speech from articulatory data. This was achieved by first recording a large 
dataset of synchronous articulatory and acoustic data in a single speaker. Then, we used machine learning 
techniques, especially deep neural networks, to build a model able to convert articulatory da ta into speech. This 
synthesizer was built to run in real time. Finally, as a first step toward future brain control of this synthesizer, we 
tested that it could be controlled in real-time by several speakers to produce intelligible speech from articulatory 
movements in a closed-loop paradigm. 

Second, we investigated the feasibility of decoding speech and articulatory features from neural activity 
essentially recorded in the speech motor cortex. We built a tool that allowed to localize active cortical speech 
areas online during awake brain surgery at the Grenoble Hospital and tested this system in two patients with brain 
cancer. Results show that the motor cortex exhibits specific activity during speech production in the beta and 
gamma bands, which are also present during speech imagination. The recorded data could be successfully 
analyzed to decode speech intention, voicing activity and the trajectories of the main articulators of the vocal tract 
above chance. 

Finally, we addressed ethical issues that arise with the development and use of brain-computer interfaces. 
We considered three levels of ethical questionings, dealing respectively with the animal, the human being, and the 
human species. 

Résumé 
Restorer la faculté de parler chez des personnes paralysées et aphasiques pourrait être envisagée via 

l’utilisation d’une interface cerveau-machine permettant de contrôler un synthétiseur de parole en temps réel. 
L’objectif de cette thèse était de développer trois aspects nécessaires à la mise au point d’une telle preuve de 
concept.  

Premièrement, un synthétiseur permettant de produire en temps-réel de la parole intelligible et controlé par 
un nombre raisonable de paramètres est nécessaire. Nous avons choisi de synthétiser de la parole à partir des 
mouvements des articulateurs du conduit vocal. En effet, des études récentes ont suggéré que l’activité neuronale 
du cortex moteur de la parole pourrait contenir suffisamment d’information pour décoder la parole, et 
particulièrement ses propriété articulatoire (ex. l’ouverture des lèvres). Nous avons donc développé un 
synthétiseur produisant de la parole intelligible à partir de données articulatoires. Dans un premier temps, nous 
avons enregistré un large corpus de données articulatoire et acoustiques synchrones chez un locuteur. Ensuite, 
nous avons utilisé des techniques d’apprentissage automatique, en particulier des réseaux de neurones profonds, 
pour construire un modèle permettant de convertir des données articulatoires en parole. Ce synthétisuer a été 
construit pour fonctionner en temps réel. Enfin, comme première étape vers un contrôle neuronal de ce 
synthétiseur, nous avons testé qu’il pouvait être contrôlé en temps réel par plusieurs locuteurs, pour produire de 
la parole inetlligible à partir de leurs mouvements articulatoires dans un paradigme de boucle fermée. 

Deuxièmement, nous avons étudié le décodage de la parole et de ses propriétés articulatoires à partir 
d’activités neuronales essentiellement enregistrées dans le cortex moteur de la parole. Nous avons construit un 
outil permettant de localiser les aires corticales actives, en ligne pendant des chirurgies éveillées à l’hôpital de 
Grenoble, et nous avons testé ce système chez deux patients atteints d’un cancer du cerveau. Les résultats ont 
montré que le cortex moteur exhibe une activité spécifique pendant la production de parole dans les bandes beta 
et gamma du signal, y compris lors de l’imagination de la parole. Les données enregistrées ont ensuite pu être 
analysées pour décoder l’intention de parler du sujet (réelle ou imaginée), ainsi que la vibration des cordes 
vocales et les trajectoires des articulateurs principaux du conduit vocal significativement au dessus du niveau de 
la chance. 

Enfin, nous nous sommes intéressés aux questions éthiques qui accompagnent le développement et l’usage 
des interfaces cerveau-machine. Nous avons en particulier considéré trois niveaux de réflexion éthique concernant 
respectivement l’animal, l’humain et l’humanité.
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vSMC  ventral half of the lateral SensoriMotor Cortex 



 
 

Phonetic notation 

All the phonetic transcriptions contained in this thesis manuscript are using the 
International Phonetic Alphabet (IPA) (Kenyon, 1929). 



 

Introduction 

Motivation of research 

“Vous n'imaginez pas la gymnastique effectuée machinalement par votre langue pour 
produire tous les sons du français. Pour l'instant je bute sur le « L », piteux rédacteur en chef 
qui ne sait plus articuler le nom de son propre journal” (“You cannot imagine the gymnastics 
automatically performed by your tongue to produce all the French sounds. For now, I stumble 
on the “L”, pitiful editor who doesn’t know how to articulate the name of his own newspaper.”). 
This is an extract from the book “Le scaphandre et le papillon”, written by Jean-Dominique 
Bauby using only the blink of his left eye (about 200.000 for the whole book), while suffering 
from the locked-in syndrome. 

In France, about 300.000 people suffer from a strong speech disorder or aphasia that can 
often occur after a brain stroke but also in case of severe tetraplegia, locked-in syndrome, 
neurodegenerative diseases such as Amyotrophic Lateral Sclerosis or Parkinson’s disease, 
myopathies, or coma. Some of them are not able to communicate at all while they retain 
cognition and sensation. For these people, speech loss is an additional affliction that worsens 
their condition: it makes the communication with caregivers very difficult, and more generally, 
it can lead to profound social isolation and even depression. Therefore, it is crucial for these 
patients to restore their ability to communicate with the external world. 

Current approaches can provide ways to communicate, mostly through a typing process, 
by analyzing residual eye movements or brain responses to specific stimuli. However, up to 
several minutes are needed to type a full sentence, while it only requires about three seconds 
using natural speech, and not all patients can benefits from these systems. 

Indeed, speech remains our most natural and efficient way of communicating. But as Jean-
Dominique Bauby mentioned, speech is the result of complex muscle movements, controlled 
by our nervous system. Over the past decades, Brain-Computer Interfaces (BCI) approaches 
have been increasingly developed to control the motor movements of effectors (e.g., robotic 
arms or computer screen cursor) with increasing precision, first in animals and more recently 
in humans. These systems first enabled controlling a small number of degrees of freedom 
(DoF), typically 1 or 2, while recent studies have reported that subjects were able to 
simultaneously control up to 10 DoF in complex motor tasks after appropriate training. 
However, there has been so far no demonstration of the feasibility to restore direct speech using 
a BCI approach. 

The overall objective of this thesis was thus to develop a parametric speech synthesizer 
that could be used in a BCI paradigm and to design and run clinical trials in order to collect, 
analyze and decode speech-related brain activity. 

There are several difficulties to overcome in order to reach this goal. First, a speech 
synthesizer suitable for a BCI approach should run in real-time and be robust enough in order 
to compensate for brain activity decoding errors. Secondly, speech relies on a high number of 
DoF for which timing is crucial, which are both challenges for BCIs. Third, many brain areas 
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are involved in speech production, and recording of the full brain activity with enough time and 
space resolution is not feasible yet. Fourth, the access to patients for clinical trials is very 
limited, especially when neural recording requires surgery, which makes it hard to collect large 
data sets. 

With the development of machine learning techniques and data acquisition methods for 
speech-related signals, parametric speech synthesis is now possible using statistical models of 
huge data sets. Moreover, recent works showed that brain-computer interfaces now allow 
control of several DoF, up to around 10, with increasing precision, while using neural activity 
recorded in small brain areas. These advances are first steps toward a brain-computer interface 
for speech rehabilitation. 

 

Organization of the manuscript 

The thesis manuscript is organized as follows. 

 

Part 1 introduces the topics covered by this thesis and their literature, and is divided into 
three chapters: 

 Chapter 1 Introduces brain computer interfaces for communication and the key points 
to consider when developing such brain-computer interface, including the different 
cortical areas involved during speech production, the different neural activity recording 
techniques, as well as the different strategies to decode neural activity.  

 Chapter 2 is focused on existing approaches for parametric speech synthesis, and more 
particularly for articulatory-based parametric speech synthesis. It covers as well 
common ways of acquiring articulatory data.  
 

Part 2 briefly presents the goal of this thesis. 

 

Part 3 describes the articulatory-based speech synthesizer developed during this thesis: 

 Chapter 3 describes two articulatory-acoustic data sets that were used to perform the 
speech synthesis. The first corpus was already existing while the second one was 
specifically recorded from a “reference speaker” for our purpose. Electromagnetic 
articulography (EMA) was used to acquire articulatory data of the speaker 
synchronously with the audio speech signal, which was parametrized using mel-
cepstrum coefficients.  

 Chapter 4 focuses on speech synthesis from articulatory data from a “reference 
speaker” and its evaluation. The mapping from articulatory to acoustic data was 
performed using a Deep Neural Network (DNN) trained on an articulatory-acoustic 
dataset. This approach was then evaluated using both objective and perceptive listening 
tests, and compared to a state-of-the-art approached based on Gaussian Mixture 
Regression (GMR).   
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 Chapter 5 describes the adaptation of the articulatory speech synthesizer of the 
“reference speaker” in order to control it in real-time using the articulatory data from 
new speakers. In a preliminary study, the robustness of the DNN-based articulatory 
speech synthesizer was assessed using artificially degraded articulatory data as input for 
the synthesis, and compared to a state-of-the-art GMM model. The articulatory speech 
synthesizer was adapted to new speakers in order to be controlled in real-time while 
they were silently articulating. 
 

Part 4 describes preliminary results on analyzing and decoding speech-specific neural 
activity: 

 Chapter 6 presents a way to automatically localize speech-specific brain areas during 
awake surgery. Such localization is needed in order to optimize the positioning of micro-
electrode arrays that can only cover a limited surface of the cortex. 

 Chapter 7 presents preliminary results on decoding speech features from neural 
activity. In particular, this chapter is focused on speech intention detection, which 
consists in predicting, from the neural activity, when a patient intends to speak or not, 
as well as on voicing activity detection – predicting if the vocal folds are vibrating or 
not – and the decoding of articulatory trajectories. 
 

Part 5 is an attempt at analyzing the ethical implications of brain-computer interfaces in 
general and their development. 

 

Finally, Part 6 summarizes the contributions of this thesis and discusses suggestions for 
future work. 



 

Part 1: State of the art 

Chapter 1: Brain-computer interfaces for speech 

rehabilitation 

I. Introduction: Brain-computer interfaces for communication 

Different solutions for restoring communication in patients with severe paralysis have been 
developed, most often through a typing process in which letters are selected one by one by 
exploiting residual physiological signals, such as tracking the eyes direction to control a 
computer mouse cursor and detecting eye blinks to allow the user to click on the letter pointed 
by the cursor. However, such solutions are only available for patients with sufficient remaining 
motor control and only allow to control devices with a small number of degrees of freedom. To 
overcome this problem, communication systems controlled directly by brain signals have thus 
started to be developed.  

This concept has been pioneered by Farwell and Donchin who proposed a spelling device 
based on the evoked potential P300 (Farwell and Donchin, 1988), a method that has since been 
used successfully by a patient with amyotrophic lateral sclerosis (ALS) to communicate (Sellers 
et al., 2014). The P300 is an event related potential generally elicited when a low-probability 
expected event occurs during a series of high-probability events and can be recorded using 
electro-encephalography (EEG). It occurs for instance when a subject actively detects a 
different sound among a series of identical sounds. Other EEG-based approaches use steady-
state potentials tuned at different frequencies (Middendorf et al., 2000). When the retina is 
exposed to a visual stimulation at a specific frequency (generally from 3 to 75Hz), the brain 
generates visual evoked potentials at identical frequency called steady state visual potential 
(SSVP). This natural phenomenum can be exploited by displaying on a screen all the letters 
blinking at different frequencies so that when the patient focuses on a specific letter, the 
corresponding SSVP can be detected and the letter identified. These EEG-based approaches 
present the great advantage of being non-invasive. However, they have been limited by a low 
spelling speed of a few characters per minute, although recent improvements suggest that higher 
speed could be achieved (Townsend and Platsko, 2016). Moreover, such tasks are very 
demanding for the subjects that must remain focused and concentrated during the whole typing 
process (Käthner et al., 2014; Baykara et al., 2016), thus limiting the use of the device over 
extensive periods of time. 

On the other hand, BCI systems based on intracortical recording, while having the major 
drawback of being invasive, seem to require less concentration effort from the subject, the 
external device becoming progressively embodied after a period of training (Hochberg et al., 
2006, 2012; Collinger et al., 2013; Wodlinger et al., 2014). Moreover, intracortical recordings 
allow to capture more information and thus lead to a more precise decoding of the user’s 
intention. Combining intracortical recording with self-recalibrating algorithms was recently 
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which are then integrated by the soma. The axon is the main conducting unit of the neuron and 
propagates signals to the other nerve cells.  

 

Fig. 2: Structure of a neuron. A neuron is composed by dendrites, the cell body and an axon that ends by synapses that contact 
other neurons. The transmission of action potentials at the synapses is generally chemical, by releasing neurotransmitters. 
Source: thatsbasicscience.blogspot.fr 

The cellular membrane of neurons is sprinkled with ion pumps and leaky ion channels. 
While the membrane is an insulator and a diffusion barrier to the movements of ions – which 
are electrically charged particles, ion pumps actively push ions across the membrane and 
establish concentration gradients across the membrane. On the other hand, leaky ion channels 
passively allow or prevent specific ions from traveling through the cellular membrane down the 
concentration gradients. The difference in ions concentration gives rise to a difference in 
electric potential between the interior and the exterior of the cell, the transmembrane potential. 
At rest, there are concentration gradients of sodium and potassium ions across the cell 
membrane, with a higher concentration of sodium ions outside the neuron and a higher 
concentration of potassium ions inside the neuron. These gradients are maintained by 
sodium/potassium ion pumps which constantly push potassium in and sodium out the cell. The 
corresponding transmembrane potential is called resting potential. The resting potential is 
generally close to the potassium reversal potential, arround  -70mV, meaning that the intra-
cellular medium is more negatively charged than the extra-cellular medium. 

A neuron typically receives input signals at the dendrites which are then spread through the 
soma. The axon of the other nerve cells contact the dendrites at sites called synapses (Fig. 2). 
The transmission of the neural signal at a synapse is generally chemical, through the release of 
neurotransmitters. In the case of an excitatory signal, these neurotransmitters open ligand-gated 
sodium channels, thus allowing sodium to flow into the cell, which increases the 
transmembrane potential. This flow of sodium ions travels toward the axon hillock, which is 
the part of the cell body that connects to the axon. Chemically generated synaptic currents are 
relatively slow phenomena of about 10 to 100 milliseconds. If the sum of all input currents is 



Chapter 1: Brain-computer interfaces for speech rehabilitation 

 
31 

 

high enough, an action potential (also called spike) is generated at the axon hillock and travels 
down the axon to the other nerve cells. 

An action potential is essentially a short – about 3 milliseconds – auto-regenerating 
reversal of the transmembrane potential that propagates from the soma to the axon end (Fig. 3). 
Specific ion channels, called voltage-gated ion channels, are sensitive to the transmembrane 
potential and only open for a range of potential values. These channels are mostly concentrated 
at the axon hillock and open when the transmembrane potential increases to a certain threshold, 
typically about -55mV. When this threshold is reached, sodium voltage-gated channels open 
quickly, while potassium voltage-gated channels open more slowly, thus firstly giving rise to a 
sodium influx. This further increases the transmembrane potential, causing more channels to 
open. This exploding process goes on until all sodium channels are opened, reversing the 
polarity of the cell membrane, and is called depolarization. As the potential reaches its peak, 
sodium channels close while all potassium channels are opened, causing potassium ions to rush 
out of the cell and the potential to quickly decrease to its original resting value. This phase 
during which the potential decreases is called repolarization. Since potassium channels are also 
slow to close, potassium ions still leave the cells after reaching the resting potential, resulting 
in a negative overshoot before reaching the resting potential again, called hyperpolarization. 
During and shortly after an action potential, the part of the membrane that generated it is very 
difficult to stimulate to fire again. This period is called the refractory period. 

 

Fig. 3: Action potential. Left – An action potential is a short peak signal, that can be described by 4 phases: rest (1), 
depolarisation (2), repolarisation (3) and refractory period until rest (4). Right – The 4 phases of the action potential are 
generated by succesive activations and deactivations of ionic channels (green: Na + /K+  pump, light yellow: voltage-gated Na+  
channel, orange: Voltage-gated K+  channel). Source: www.vce.bioninja.com.au. 

The same mechanism is used to transmit and auto-regenerate the triggered action potentials 
along the axon. During an action potential, the influx of sodium ions at the basis of the axon 
spreads along the axon, which depolarizes the adjacent portion of axon, which in turn generates 
a similar action potential. Since the generation of an action potential induces a refractory period, 
the generated action potential propagates in only one direction. This self-induced process is 
repeated until the action potential reaches the end of the axon, at the synapses. At synapses, the 
arrival of an action potential can trigger the release of neuron transmitters, which will then in 
turn excite or inhibate other neurons, etc. While synaptic currents can be assimilated to dipoles 
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with an electrical amplitude decay inversely proportional to the squared distance to the source, 
action potentials can be assimilated to quadrupoles and thus decay much faster, with an 
amplitude inversely proportional to the square of the squared distance to the source. Thus, 
measuring an individual action potential requires to be relatively close to its source, while 
measuring synaptic currents can be done on a much greater distance. 

All these processes are energy consuming, and active neural cells have a higher demand of 
energy in the form of oxygen or glucose. Thus neural activity consists not only in 
transmembrane ions currents and changes in electric potentials but as well in variations of 
supply in oxygen or glucose. Neural activity can thus be recorded by measuring the latter, i.e. 
the metabolic signals, or by measuring the electric currents and potentials, i.e. the 
electrophysiological signals. 

2. Metabolic signals recording 

Active neurons have a higher demand of energy in the form of oxygen and glucose, which 
results in an increased blood flow in the active brain areas (Logothetis et al., 2001). Thus one 
way of measuring the brain activity is to measure the flow of oxygenated blood that travels 
through the vessels of the brain, or the variations of concentration in oxygen or glucose. Blood 
vessels form a dense network in the brain so that relatively low scale changes in blood flow can 
be measured to reflect the neural activity of a small brain area, thus offering possibilities for 
good spatial resolution. However, this metabolic process is quite slow (about a second) which 
clearly limits the temporal resolution of the methods that exploit this phenomenum. Several 
methods take advantage of changes in blood oxygenation or glucose concentration to measure 
the brain activity: functional magnetic resonance imaging (fMRI), functional near-infrared 
spectroscopy (fNIRS), optical imaging of intrinsic signals (OIIS) and positron emission 
tomography (PET). 

a. Functional magnetic resonance imaging 

fMRI uses a strong magnetic field to detect changes of the magnetic properties associated 
with blood flow. The most commonly used form of fMRI is the blood-oxygen-level dependent 
fMRI (BOLD-fMRI) which detects changes of blood oxygenation. Indeed, when a specific 
region of the cortex increases its activity in response to a task, the extraction of oxygen from 
the local capillaries leads to an initial drop in oxygenated hemoglobin (also called 
oxyhemoglobin), which is then followed – after about a second – by a deliver of a surplus of 
oxygenated hemoglobin that washes away deoxygenated hemoglobin (also called 
deoxyhemoglobin). There is thus a change in the relative levels of oxyhemoglobin and 
deoxyhemoglobin that can be detected given that they have different magnetic susceptibility, 
which allows to quantify the blood oxygenation level (Ogawa et al., 1990). fMRI is non-
invasive and offers a relatively high spatial resolution (about a millimeter). However, the two 
main drawbacks of this technique, in addition to its high cost, are its low temporal resolution 
and the fact that it is not portable. 
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b. Functional near-infrared spectroscopy 

fNIRS also takes advantages of differences between oxygenated and deoxygenated 
hemoglobin by using near-infrared imaging. Indeed, while the skin, tissue and bones have a 
good transparency to near-infrared light – wavelength from 700 to 900 nanometers (Jobsis, 
1977), oxygenated hemoglobin and deoxygenated hemoglobin strongly absorb it, each having 
a specific absorption spectra. By combining near-infrared light at different wavelengths and 
measuring the light attenuation, the relative concentrations of oxyhemoglobin and 
deoxyhemoglobin can be estimated, thus allowing an indirect measure of the brain activity. As 
opposed to fMRI, fNIRS has a lower cost, and is portable even in freely-moving subjects. 
However, it suffers as well from a poor temporal resolution and has a lower signal-to-noise 
ratio and spatial resolution than fMRI (Cui et al., 2011). 

c. Optical imaging of intrinsic signals 

OIIS maps the functional cortical activity by detecting changes in cortical light reflectance 
that are related to changes in neural activity (Grinvald and Bonhoeffer, 1999). Indeed, similarly 
to fNIRS, changes in blood volume and ratio of oxygenated hemoglobin and deoxygenated 
hemoglobin induce changes in the cortical light reflectance. Moreover, the light reflectance is 
also affected by light scattering which is tightly coupled, spatially and temporally, with neural 
activity. Indeed, when optically imaging the living brain, the incident light is scattered to some 
extent as it penetrates and is reflected through the neural tissue. This light scattering increases 
when the neural activity increases, which is thought to result from ion and water movement, 
expansion and contraction of extracellular spaces, capillary expansion or neurotransmitter 
release (Cohen, 1973). These changes can be detected by using a charged-coupled device 
camera that captures images of the exposed cortex both at rest and during activity. Different 
wavelengths are used to measure the different signal components that affect the light 
reflectance, and near-infrared wavelengths are generally used (Zepeda et al., 2004). OIIS offers 
high spatial resolution (about 100 microns), is relatively non-invasive, and can be used 
chronically (several weeks or months) in the same subject. However, its temporal resolution is 
limited by the nature of the metabolical signals being recorded (about half a second). 

d. Positron emission tomography 

As opposed to the other methods, PET requires the injection of chemicals in the 
bloodstream to measure brain activity. The chemicals are radioactive tracers that are 
radioactively labeled so that their radioactive emissions can be measured, and are chosen among 
chemicals involved in the metabolic processes of brain activity, especially glucose, allowing to 
indirectly measure the flow of blood to different parts of the brain. Other PET chemicals have 
also been developped that are ligands for specific types or neuroreceptors, making this 
technique particularly advantageous for studying specific diseases. As fMRI and fNIRS, PET 
is a non-invasive technique and has been already used for in-vivo recordings. Moreover, it 
offers relatively good temporal (about 0.2 seconds) and spatial (about 1mm) resolutions 
(Castermans et al., 2014). However, PET is non-portable and requires the injection of 
radioactive tracers that have a quick decay of radioactivity, limiting its usage to short tasks.   
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several electrodes – i.e. some electrical conductor – that are placed over the regions of interest, 
relatively to some reference potential, using a voltmeter. For this purpose, EEG is one of the 
most widely used methods for measuring the brain electric activity, particularly because it has 
a very low cost, is portable and non-invasive. Indeed, in EEG, relatively large electrodes, 
generally distributed on a helmet, are placed over the scalp, without the need for surgery. 
However, because of the distance between the recording electrodes and the current sources in 
the brain, and because of the differences in conductivity between the brain and the skull, the 
measured signal is generally distorted and attenuated, thus making it difficult to directly relate 
the EEG with the electrical activity of individual neurons. Thus, EEG mostly reflects the 
summation of the synchronous activity of thousands to millions of neurons that have similar 
orientation. The measured signal mostly reflects synaptic currents since EEG electrodes are too 
far from the neurons to measure action potentials that decay much faster with the distance to 
their source. Synaptic currents can be assimilated to dipoles, and are summed when these 
dipoles have similar orientation. The EEG signals is therefore mostly thought to come from the 
activity of pyramidal neurons since these neurons are well-aligned and tend to fire together. 
The spatial resolution of EEG is thus relatively low (about a centimeter) when compared to 
other recording techniques, even if there are EEG arrays offering higher spatial density of 
electrodes (Tucker, 1993). 

b. Magnetoencephalography  

According to the electromagnetic laws, varying electrical currents induce varying magnetic 
fields. Thus, a way to record the brain activity is to record the variations of the magnetic field 
that surrounds the brain using magnetic sensors. This is generally achieved using 
magnetoencephalography (MEG). MEG generally uses magnetometers made of several 
supraconductor loops, called superconducting quantum interference devices or SQUIDs, to 
measure the magnetic field surrounding the subject’s head induced by the neuronal currents 
(Hämäläinen et al., 1993). This non-invasive method has a good temporal resolution (of the 
order of the millisecond) and a good spatial resolution (of the order of several millimeters). One 
main advantage of measuring the magnetic field with regards to EEG is that it does not suffer 
from the distortions mostly caused by the difference of conductivity of the skull. However, 
MEG remains a very costly method – mostly because of the cooling of  the supraconductors – 
and is not portable since it has to be used in a magnetic shielded room, which makes it not 
suitable for BCI applications. Nonetheless, other types of magnetic sensors are being envisioned 
to monitor brain activity, such as optical pumping magnetometers (Lembke et al., 2014), that 
could overcome some of the current MEG issues, especially the need for cooling. 

c. Electrocorticography 

ECoG recordings are becoming more and more widespread to study cortical phenomena in 
clinical conditions (Engel et al., 2005). Neural electrical activity is directly recorded at the 
surface of the cortex using arrays of metallic electrodes – generally made of platinium or 
iridium. Althought this is an invasive method that requires to open the skull, it allows to avoid 
distortion effects mostly caused by the difference of conductivity of the skull. This method 
offers both a good temporal resolution (of the order of milliseconds) and a good spatial 
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resolution (of the order of several millimeters, according to the electrodes size and spacing). 
Tipical ECoG grids contains several dozens of electrodes which allow to cover large cortical 
areas (of the order of 100cm²). ECoG signals can be decomposed into several frequency bands 
of special interest (Buzsáki and Draguhn, 2004) named according to their order of discovery: 
delta (1-4Hz), theta (4-10Hz), alpha (7-12Hz), beta (10-30Hz), gamma (30-80Hz) and high-
gamma (80-200Hz). For instance, fast rythms, such as high-gamma activity, have been shown 
to be linked to cognitive processing and correlated to the firing rate of action potentials of the 
neurons (Ray and Maunsell, 2011). 

d. Micro-electrocorticography 

Some ECoG grids can contain up to several hundreds of electrodes, that are smaller than 
normal ECoG electrodes. Using such grids is generally referred to as micro-
electrocorticography (µECoG) and allows to significantly increase the spatial resolution with 
regards to using normal ECoG grids, reaching the submillimeter scale. This allows to record 
the local field potential (LFP) at the surface of the cortex. The LFP is composed by all potential 
fluctuations in a small volume, and is generally low-pass filtered below 300Hz, and thus does 
not usually contain individual action potentials. Synaptic currents largely contribute to the LFP 
since they are slow events that can easily overlap. 

e. Stereo-electroencephalography 

The LFP can also be recorded by inserting electrodes inside the brain. Stereo-
electroencephalography (SEEG) uses thin wires along which are spaced several macroscopic 
electrodes that are inserted in the brain through small holes pierced in the skull. This 
intracortical method offers a spatial resolution comparable to ECoG (about several millimeters) 
but allows to probe deep regions of the brain (up to several centimeters under the cortical 
surface). SEEG is slightly less invasive than ECoG and reduces risks of infection since it does 
not require to open the skull but instead to pierce a hole at the insertion location. However, 
SEEG up to 20 wires are generally necessary to cover sufficient brain volume since each wire 
has few electrodes (typically about 5), and the exact positioning of each electrode is difficult to 
achieve since the implantation trajectory must avoid blood vessels. 

f. Intracortical micro-electrodes arrays 

Inserting microscopic electrodes – called micro-electrodes – in the brain allows not only to 
record the LFP but individual action potentials as well. These electrodes can be individually 
inserted, sometimes to depth of several millimeters, or organised into small grids – called micro-
electrode arrays (MEAs) –  that penetrate the brain over one or two millimeters in order to reach 
specific neuron layers of the cortex. Using high-density intracortical MEAs allows to record 
the action potentials of the neurons in a small volume (Kipke et al., 2008). This method offers 
both high temporal resolution and high spatial resolution (of the order of 100 micrometers). 
However, MEAs only allow to cover small cortical areas (of the order of 1cm²), which can be 
slightly compensated by simultaneously using several electrode arrays. The high temporal and 
spatial resolutions of this method allow to record individual action potentials, which form varies 
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according to the type of neuron that triggered it, and to the position of the electrodes with 
regards to the cell, and other factors (Gold et al., 2006). This allows to automatically detect and 
classify action potential according to the neuron that triggered it. The high-frequency signal 
containing action potentials from several neurons is generally referred to as multiple-unit 
activity, as opposition to the isolated neuron spikes which are referred to as single-unit activity. 

II. Cortical speech production areas 

With brain-computer interfaces, neural activity is recorded in order to be decoded into 
control parameters for an effector. Recording brain activity that is somewhat correlated to the 
task that the subject wants to perform seems to be the best strategy in order to maximize the 
decoding accuracy and reduce the cognitive load for the user. For a speech BCI, speech-related 
brain activity must thus be recorded and a choice needs to be made on the cortical areas to 
record and decode activity from. 

1. Speech areas 

Speech processing by the human brain involves a wide cortical network, which has been 
modeled by two main information streams linking auditory areas of the superior temporal plane 
to articulatory areas of frontal regions, one ventral and the other dorsal (Hickok and Poeppel, 
2004, 2007). The ventral stream involves regions of the middle and inferior temporal lobe and 
maps speech sounds to meaning, while the dorsal stream runs through the dorsal part of the 
posterior temporal lobe at the temporo-parietal junction and is responsible for the sensori-motor 
integration of speech by mapping speech sounds to articulatory representations (Friederici, 
2011; Hickok et al., 2011). Lesions of ventral stream regions of the temporal lobe result in 
Wernicke aphasia characterized by impairments of speech comprehension, while lesions of 
frontal areas result in Broca aphasia characterized by impairments of speech production. 
Classically, the dorsal stream has been described to be largely left-hemisphere dominant, but 
several studies indicate that many aspects of speech production activate cortical areas of the 
dorsal stream bilaterally (Pulvermüller et al., 2006; Cogan et al., 2014; Geranmayeh et al., 2014; 
Keller and Kell, 2016). Thus, several cortical areas can be considered in order to decode speech 
from neural activity. 

One possibility could be to record neural activity from the auditory areas, which are known 
to encode parts of the spectro-temporal representation of perceived sounds, including speech 
(Engineer et al., 2008; Mesgarani et al., 2008; Steinschneider et al., 2013). Indeed, some works 
suggest that these areas could as well be involved in perceiving inner imagined speech, or covert 
speech (Pei et al., 2011a; Martin et al., 2014). However, these areas are not specific to self-
produced speech, but rather to all the sounds a person is exposed to, including self-produced 
and inner speech, as well as other people’s speech, and non-speech environmental sounds. 
Using brain activity from these areas for a speech BCI could lead to difficulties when decoding 
only self speech intention. For this reason, it seems more relevant to probe neural activity from 
brain areas specifically involved in speech production. 
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2. Speech production 

Speech production can take various forms, and can be mainly divided between overt speech 
and covert speech. While overt speech is when sounds are pronounced out loud using one’s 
vocal apparatus, covert speech is an inner phenomenon, from one’s mind to itself, without any 
production of sound or other exterior phenomena. Covert speech is of particular interest for a 
speech BCI, since a speech BCI is meant to be used by subjects that are not able to produce 
overt speech, such as locked-in patients. Some studies already investigated neural differences 
between overt and covert speech. However, as pointed by (Perrone-Bertolotti et al., 2014), one 
can consider many different types of covert speech – from inner thoughts to voluntary 
imagination of the acoustic of a speech sound – and as many different types of overt and covert 
speech tasks as there are studies – from word repetition to object denomination or text reading, 
making it difficult to compare one study with another. 

a. Overt speech 

The production of overt speech implies movements of the speech articulators (tongue, lips, 
jaw, velum and to a certain extent the lungs and vocal folds involved in phonation). It is thus 
expected that motor areas of the brain are largely activated during overt speech. Activity in the 
left primary motor and premotor cortices during overt speech has been indeed largely reported 
(Kellis et al., 2010; Pei et al., 2011a; Herff et al., 2015; Lotte et al., 2015), and precedes speech 
production by several dozens of milliseconds (Pei et al., 2011b; Herff et al., 2015). In particular, 
speech production is classically associated with a decrease of signal power in the beta frequency 
range and usually an increase in the high gamma frequency range over temporal and motor 
frontal areas (Canolty et al., 2007; Pei et al., 2011b; Toyoda et al., 2014) althought gamma 
attenuation was observed in more anterior frontal speech cortex including Broca area (Lachaux 
et al., 2008; Wu et al., 2011; Toyoda et al., 2014). 

Using µECoG to record local field potentials (LFPs) on the surface of the face motor cortex 
(FMC, Brodmann’s area 4 and 6) and Wernicke’s area – which is considered as an area for 
language comprehension, it has been observed that the FMC was predominantly activated 
during a word repetition task and exhibited frequency features aligned with individual words, 
but that it was less activated during a conversational task, while the opposite was true for 
Wernicke’s area (Kellis et al., 2010). Gamma-band activity from the FMC was further shown 
to be the most informative signal when decoding spoken words (Mugler et al., 2014), which 
confirms the major role of the FMC in overt speech production. 

Moreover, it has been shown that the ventral half of the lateral sensorimotor cortex (vSMC) 
shows significant activity increase during movements of the speech articulators and thus during 
overt speech (Brown et al., 2008, 2009; Grabski et al., 2012; Bouchard et al., 2013). The vSMC 
is composed of the pre- and post-central gyri (Brodmann areas 1, 2, 3, 4 and 6), and the gyral 
area directly ventral to the termination of the central sulcus (Brodmann area 43). The activation 
of the vSMC during speech production has been detailed using µECoG recordings in (Bouchard 
et al., 2013). In this study, a classification-based analysis was conducted and exhibited a 
somatotopic organization of the vSMC by speech articulator (Fig. 5). Four speech articulators 
were considered (lips, jaw, tongue and larynx). Some single electrodes showed a clear tuning 
preference to individual articulators and some single electrodes had functional representation 
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of multiple articulators. Moreover, cortical representations exhibited a hierarchical organization 
according to the articulatory properties of the phonemes. 

 

Fig. 5: Spatial organization of the vSMC during speech production. Left – Location of the ECoG grid electrodes over the 
vSMC. Middle – Functional somatotopic organization of speech-articulator representations in vSMC plotted with regard to 
the anteroposterior (AP) distance from the central sulcus and dorsoventral (DV) distance from the Sylvian fissure. Lips (L, 
red); jaw (J, green); tongue (T, blue); larynx (X, black); mixed (yellow). Right – Hierarchical clustering of the cortical activities 
for consonants (left) and vowels (right), with branches labeled with linguistic categories. (Bouchard et al., 2013). 

It was further shown recently that during speech production, the activity of the speech 
sensorimotor cortex – including the vSMC – is tuned (i.e. it is modulated and specific) to the 
articulatory properties of the produced sounds but not to their acoustic properties (Cheung et 
al., 2016).  

While speech production was originally thought as being predominantly left-lateralized, 
several studies reported bilateral activity (Petersen et al., 1988; Palmer et al., 2001; Cogan et 
al., 2014; Martin et al., 2014). Continuous production of narrative speech was also shown to 
activate frontal motor speech regions as well as comprehension temporal and parietal areas 
bilaterally (Silbert et al., 2014). Intraoperative functional mapping data collected in a high 
number of patients undergoing awake surgery also reported bilateral critical motor and 
premotor regions for overt speech production (Tate et al., 2014). The right hemisphere is also 
clearly activated during synchronized speaking (e.g. singing with a group of people) in several 
regions including the temporal pole, inferior frontal gyrus, and supramarginal gyrus (Jasmin et 
al., 2016).  

When more complex tasks are considered that require additional semantic, lexical, or 
phonological processing, specific activations are observed in the left inferior frontal cortex 
(Petersen et al., 1988, 1989; Price et al., 1994; Sörös et al., 2006; Basho et al., 2007). These 
findings suggest that speech production becomes left lateralized when inner high-level 
processing is required.  

b. Covert speech 

Covert speech brain activity was originally envisioned as overt speech activity without 
motor activity. However, there are physiological evidences of motor activity during covert 
speech: for instance, an increase in the electromyographic (EMG) activity has been reported in 
some of the lips muscles during covert auditory hallucinations in patients with schizophrenia, 
that was not caused by a general increase in muscular tension (Rapin et al., 2013). Another 
study, showed that repetitive transcranial magnetic stimulation (rTMS) of left motor 
hemisphere frontal sites perturbed covert speech, resulting in longer latencies to perform a 
syllable counting task (Aziz-Zadeh et al., 2005).  
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In general, covert speech has been found to activate similar brain areas but with a lesser 
amplitude than overt speech across most ventral and dorsal stream areas (Price et al., 1994; 
Ryding et al., 1996; Palmer et al., 2001; Shuster and Lemieux, 2005). In particular, as for high-
level overt speech production, cortical activity underlying covert speech production is left 
lateralized with strong activation of the left motor, premotor and inferior frontal cortex (Ryding 
et al., 1996; Palmer et al., 2001; Keller and Kell, 2016).  

An fMRI study of overt and covert naming of visually presented letters or animal names 
starting by the presented letter showed that significant activation in Broca’s area (Brodmann’s 
areas 44 and 45) was detected during both overt and covert speech (Huang et al., 2001). This 
suggests that if Broca’s area plays a role in phonological or articulatory coding, this role is not 
particular to overt production, that is, it is not tied specifically to motor output. They however 
showed that the face motor cortex was only activated during overt speech production, which 
seems in contradiction with other studies. 

Indeed, several studies suggested that the primary motor cortex activity contains 
informative content to decode covert speech (Pei et al., 2011a; Martin et al., 2014). In (Martin 
et al., 2014), several subjects had to read a text both overtly and covertly while ECoG grids 
were used to record the corresponding brain activity at multiple sites. A model was then built 
on the overt speech data in order to predict acoustic features from the brain activity, and the 
same model aplied to covert speech data led to results over chance level, suggesting that overt 
and covert speech share a part of their neural substrate. In particular, these results showed that 
there was no significant change of activity over the vSMC between overt and covert speech 
production. In (Pei et al., 2011a), informative areas for decoding covert consonants and vowels 
were distinguished. In this study, results from all the subjects were combined to identify the 
most informative areas for decoding phones. For consonants, the most informative areas were 
located in a temporal region near Wernicke’s area, while the most informative areas for vowels 
were located in the primary motor cortex. This suggests that covert word repetition consists 
both in imagining the perceptual qualities and the processes that simulate the motor actions 
necessary for speech production. 

Overall, these results suggest that the left inferior frontal region encompassing Brodmann 
areas 4, 6, 43, 44 and 45, are relevant candidates from which to probe and decode neural activity 
for the control of a speech BCI. However, these studies also show that there is a large variability 
in the exact localization of the relevant areas, probably due to individual specificities 
(morphology, somatotopy, …) or differences in the task being performed, or event in the 
method used to record the neural activity. Thus, while there are evidences of cortical activation 
in these areas during covert speech, these results also suggest that speech production areas must 
be identified individually, for each subject. 
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III. Speech decoding from neural activity 

The different studies that aimed at decoding speech features from neural activity can be 
mainly divided into two categories: those using a discrete decoding approach, and those using 
a continuous decoding approach. 

1. Discrete decoding 

Discrete decoding approaches aim at classifying the neural activity into several categories, 
generally corresponding to phonetic units such as phones (Brumberg et al., 2011; Pei et al., 
2011a; Tankus et al., 2012; Mugler et al., 2014; Song et al., 2014) or full words (Kellis et al., 
2010). Such information can then be used to synthesize speech, for instance using classical text-
to-speech synthesis. In (Mugler et al., 2014), on average 20% of accuracy was achieved at 
decoding 31 different English phones from ECoG data recorded from 4 subjects overtly reading 
isolated monosyllabic words, with up to 36% of accuracy in one subject, using 6 electrodes 
located over the ventral somatosensory region. In (Pei et al., 2011a) phones were decoded with 
similar accuracy, not only from overt speech but also from covert speech. Indeed, to a lesser 
extent, ECoG data could also be used to predict covertly imagined speech not actually overtly 
pronounced by the subject (Pei et al., 2011a). The prediction of covert speech was in general 
more limited than for overt speech but above chance level, and more reliable for vowels than 
for consonants. Using micro-electrodes in a patient suffering from locked-in syndrom and thus 
who could not produce any overt movement nor speech, 38 different American English phones 
could be decoded with about 20% accuracy (Brumberg et al., 2011). In this study, and as 
opposed to (Pei et al., 2011a), consonants were found to be more reliably decoded than vowels. 
By analyzing the articulatory properties of each classified phone, the authors found out that the 
implant might be located in an area representing lip movements. The positioning of the micro-
electrodes was optimized prior to surgery using fMRI to determine the locations of the brain 
areas active during speech production attempts, which allowed to localize a single area on the 
left precentral gyrus, lying on or near the border between pre-motor and primary motor cortex. 
In (Kellis et al., 2010), about 50% accuracy was achieved at decoding full words among a subset 
of ten different words from neural activity recorded during overt speech using micro-electrodes 
implanted over the face motor cortex. While this is an encouraging result, direct classification 
of full words does not seem adequate for a speech BCI given the large dictionary size needed 
to represent all words and phrases used in conversational speech – generally about 3,000 words. 
On the other hand, phonemes are the smallest units from which speech is built, and additional 
linguistic knowledge can be taken into account to improve the decoding of full sentences, as it 
is classically done in automatic speech recognition. In (Herff et al., 2015), such linguistic 
knowledge was added by limiting the vocabulary to a predefined dictionary, and by using a 
statistical language model that helped predicting a word given the preceding one. While the raw 
phone recognition accuracy ranged from about 10% to 50% according to the subject and session 
for a total of 20 different English phones in an overt reading task, limiting the vocabulary to 10 
words and using a statistical language model computed from the read texts allowed to reach a 
word recognition accuracy of about 75%. 
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2. Continuous decoding 

By contrast with discrete classifiers, continuous decoding approaches do not rely on 
decoding an intermediate discrete representation – such as a phonemes. Instead, they directly 
infer continuous parameters – generally acoustic trajectories – from the neural activity. Such 
acoustic trajectories can then be used by a parametric speech synthesizer to synthesize speech 
(Guenther et al., 2009). While in discrete decoding approaches neural data can typically be 
decoded only after a full speech segment – phone, word or sentence – has been pronounced or 
imagined, continuous approaches rather directly predict speech typically in a frame-by-frame 
fashion. Very few studies considered continuous decoding of produced or intended speech. In 
(Martin et al., 2014) a spectro-temporal representation of sounds (obtained using wavelet 
transform on the audio signal with 32 logarithmically-spaced frequency bins between 180Hz 
and 7kHz)  was directly inferred from ECoG recordings, both during overt and covert speech. 
Although this approach could not produce intelligible speech, the overall time-frequency 
structure of the speech spectrograms could be well estimated. Moreover, most informative 
electrodes for decoding covert speech were mostly located in the vSMC. In (Guenther et al., 
2009), the activity recorded from intracortical electrodes localized in motor part of the vSMC 
was used by a locked-in patient to control in real-time a speech synthesizer in order to produce 
vowels and transitions between them. The electrode recorded action potentials from individual 
neurons, which could be automatically classified according to the emitter cell, in order to 
compute the firing rate of each recorded neuron over time. This firing rate was computed in 
real-time in order to infer the frequencies of the two first formants of the speech signal, which 
are the two first major peaks of the speech spectrum envelope. Although vowels are plainly 
characterized by the position and amplitude of their 4 or 5 formants, using only the position of 
these two first formants is enough to distinguish most of them. 
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IV. Conclusion 

1. Choice of a recording technique to monitor speech brain signals 

In this chapter, we presented different techniques to record neural activity: functional 
magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) , optical 
imaging of intrinsic signals (OIIS), positron emission tomography (PET), 
magnetoencephalography (MEG), electroencephalography (EEG), electrocorticography 
(ECoG), micro-electrocorticography (µECoG), stereo-electroencephalography (SEEG) and 
intracortical micro-electrodes arrays (MEAs). The following table (Table 1) resumes the 
properties of each of these methods: 

Recording 
method 

Neural signal 
type 

Temporal 
Resolution 

Spatial 
Resolution 

Invasiveness Portability 

fMRI Metabolic ~1 s ~1 mm Non-invasive Non-portable 

fNIRS Metabolic ~1 s ~2 cm Non-invasive Portable 

OIIS Metabolic ~0.5 s ~0.1 mm Slightly-Invasive Portable 

PET Metabolic ~0.2 s ~1 mm Non-invasive Non-portable 

MEG Magnetic ~0.05 s ~5 mm Non-invasive Non-portable 

EEG Electrical ~0.001 s ~1 cm Non-invasive Portable 

ECoG Electrical ~0.001 s ~5 mm Invasive Portable 

µECOG Electrical ~0.001 s ~0.5 mm Invasive Portable 

SEEG Electrical ~0.001 s ~5 mm Invasive Portable 

MEAs Electrical ~0.001 s ~0.1 mm Invasive Portable 

Table 1: Comparison of different neural activity recording methods. Colors are indicative and reflect the compliance of the 
method with regard to each criteria for BCI in the context of speech rehabilitation. 

Althought MEG and fMRI have already been considered for decoding neural activity 
(Weiskopf et al., 2004; Mellinger et al., 2007; Formisano et al., 2008; Waldert et al., 2008; Lee 
et al., 2011; Quandt et al., 2012; Choupan et al., 2013) including speech-related activity 
(Formisano et al., 2008; Koskinen et al., 2013; Bonte et al., 2014; Correia et al., 2014, 2015), 
they do not seem suitable for BCI applications. Indeed, they both require expensive equipments, 
do not work in freely moving subject, and are not portable. Moreover, fMRI, as well as PET 
and OIIS, have a poor temporal resolution directly linked to the nature of the metabolic signals 
being recorded.   

While fNIRS is portable and has already been used for decoding speech neural activity and 
BCI applications (Coyle et al., 2007; Sitaram et al., 2007; Herff et al., 2012), it as well suffers 
from a poor temporal resolution of several seconds. However, speech is made of fast events, a 
single phone lasting from about 10 to 100 milliseconds. Thus, fNIRS does not seem suitable 
for a speech BCI in which speech is continuously decoded from the neural activity.  
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Even if EEG has been widely used for decoding brain activity and BCI applications for 
communication purposes (Hinterberger et al., 2003; Deng et al., 2010; Brandmeyer et al., 2013; 
Grau et al., 2014; Yoshimura et al., 2016), it is mostly limited to the classification of the neural 
activity into a few categories, generally 2 or 3. This limitation mostly originates in its poor 
spatial resolution that prevents to track ongoing neural activity with sufficient details to enable, 
for instance, the prediction of continuous intelligible speech from brain signals. While this 
might be sufficient to select a letter on a screen or move a computer mouse cursor, it does not 
seem suitable for a continuous decoding of speech. Moreover, EEG is very prune to motion 
artifacts, especially from head movements, mucle activity and environmental electromagnetic 
noise.  

SEEG has been successfully used to understand the cortical dynamics underlying speech 
and language perception (Liegeois-Chauvel et al., 1999; Basirat et al., 2008; Sahin et al., 2009; 
Fontolan et al., 2014). In particular it has helped to highlight how brain oscillations encode the 
rhythmic properties of speech, with a strong coupling of the theta rhythm to the tempo of 
syllables occurrence in speech, and associated nested modulation of gamma-band signals 
possibly encoding transient acoustic speech features (Giraud and Poeppel, 2012; Morillon et 
al., 2012). However, the limited spatial coverage of SEEG precludes the access to the detailed 
dynamics of frontal motor speech areas and may limit the possibility to decode with sufficient 
details a continuous speech flow produced either overtly or covertly. 

On the other hand, ECoG has been largely used with success to decode above chance level 
speech intention (Kanas et al., 2014), place and manner of articulation (Lotte et al., 2015), 
phones (Pei et al., 2011a; Mugler et al., 2014; Song et al., 2014), words (Herff et al., 2015) or 
even full sentences (Herff et al., 2015). Similarly, µECoG recordings have been used to decode 
words froms LFPs (Kellis et al., 2010). Micro-electrode recordings have been used to decode 
phones from spiking activity (Brumberg et al., 2011), with accuracy superior or comparable to 
ECoG studies. While ECoG recordings have been more studied than spiking activity for 
decoding speech features, in other BCI fields, such as motor rehabilitation, spiking activity 
generally allows the decoding of more degrees of freedom – with latest studies showing the 
control of devices with up to ten degrees of freedom (Collinger et al., 2013; Wodlinger et al., 
2014) which is about the same as the number of degrees of freedom our vocal apparatus uses 
when producing speech (Beautemps et al., 2001), with relatively good accuracy. Moreover, 
spiking activity recorded from the speech motor cortex was even used to control a speech 
synthesizer in real-time to continuously produce vowels (Guenther et al., 2009). Another study 
showed that some medial-frontal neurons had very specific tuning to individual vowels (Tankus 
et al., 2012). This suggests that high-density recording devices, such as micro-electrode arrays 
(MEAs), are needed in order to capture the fine features of neural activity underlying speech 
production and that higher performance is likely to be expected from denser recordings. 

2. Choice of a brain region 

In this chapter, we also briefly presented the different cortical areas involved during speech, 
and more especially during production of both overt and covert speech. In particular, there are 
several evidences of activation of frontal areas – especially Brodmann areas 4, 6, 43, 44 and 45 
– during speech production, including imagined speech. However, there was a high variability 
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in the identified areas across studies and even across individuals in the same study. This 
suggests that speech production areas must be identified individually, for each subject.  

Moreover, it should be noted that although aphasia caused by strokes very often implies 
the speech motor cortex or other cortical areas necessary for speech production, this is not the 
case for other types of aphasia, such as in locked-in patients or patients with ALS, for whom 
cortical speech activity can be intact or largely conserved and thus exploitable in a BCI 
perspective. 

We previously motivated our choice for using MEAs to record neural activity. However, 
such MEAs are usually small and can only cover a small surface of the brain. On the other hand, 
ECoG grid can cover larger cortical areas. A possible way to take advantage of both approaches 
could be to perform first ECoG recordings in order to individually identify the speech areas, 
then use this information to optimize the positioning of one or several MEAs.  

3. Choice of a decoding and synthesis approach 

In this chapter we presented two main approaches for decoding speech from neural activity: 
discrete and continuous decoding approach. Both approaches showed very promising results. 
While discrete approaches can take advantage of linguistic knowledge to improve decoding 
performance (Herff et al., 2015), this comes at the price of an additional delay between speech 
intention, and actual speech synthesis since recognition of complete speech segments – from 
phones to sentences – is generally required. On the other hand, continuous approaches can 
perform the synthesis on a frame-by-frame basis and provide an almost instantaneous feedback 
to the subject (Guenther et al., 2009). This is a potential asset for continuously predicting speech 
at a natural pace since it has been shown that feedback delays above 50ms generally disturbs 
speech production (Lincoln et al., 2006). Moreover, several BCI studies pointed out the great 
importance of subject’s training in improving their control accuracy (Ganguly and Carmena, 
2009; Wodlinger et al., 2014). It is more likely that a direct feedback would improve training 
with respect to a delayed feedback, since it could allow the subjects to directly compensate 
during an ongoing speech production. 

For these reasons, we made the choice to consider continuous speech decoding in the 
present work. However, the existing studies that continuously decoded speech from neural 
activity generally considered the decoding of acoustic features – such as the speech spectrum 
(Martin et al., 2014) or formant trajectories (Guenther et al., 2009) – while recent work showed 
that the frontal speech motor cortical regions are rather tuned to the articulatory than to the 
acoustic properties of speech (Bouchard et al., 2013; Cheung et al., 2016). While neural data 
could be decoded directly into acoustic parameters, these data support the hypothesis that a 
relevant strategy could be to consider a more “indirect” approach accounting for the articulatory 
activity of the vocal tract under control of the speech sensorimotor cortex to produce sounds. 
In such approach, cortical signals would be decoded into articulatory features to control in real 
time a parametric articulatory-based speech synthesizer having enough degrees of freedom to 
ensure continuous intelligible speech production. Interestingly, these articulatory features are 
generally considered lower dimensional and varying more slowly in time than acoustic features 
(Sondhi and Schroeter, 1987), thus possibly easier to predict from cortical signals. 
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In order to synthesize speech, an articulatory-based speech synthesizer that converts 
articulatory trajectories into an audible speech signal is needed. This topic is covered in the next 
chapter. 
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Different configurations of these articulators lead to the production of different speech 
sounds (Fig. 6), and the phonemes are often categorized by their place of articulation (Kenyon, 
1929). 

2. Speech synthesis 

Making machines that can speak has been a human dream for centuries, and the first 
attempts in order to produce artificial speech were made more than two hundred years ago, in 
1769, when Wolfgang Ritter von Kempelen worked on mechanical models that could produce 
a variety of  speech sounds (Schroeder, 1993). Thus, the first speech synthesis attempts were 
not made using electronics or computer science, but by carving pieces of wood to form 
resonators similar to the human vocal tract, like those made by Christian Kratzenstein in 1779 
(Fig. 7). 

 

Fig. 7: Kratzenstein's resonators shapes and the Voder. Left – each vocal tract shape produces a different vowel when air is 
blown through them (Schroeder, 1993). Right – The Voder is controlled through a keyboard and some wrist controls. 

In the 1930s, the Vocoder was developed in order to encode speech for better transmission 
in telecommunications systems (Dudley, 1939). The Vocoder was an electronic device that 
analyzed the changes of the speech signal spectral characteristics through time by passing it 
through a multiband filter in order to obtain an instantaneous representation of the spectral 
energy content. That way, a complex and fast varying speech waveform could be decomposed 
into values that changed slower over time, thus allowing to save bandwidth for transmission. 
This process could be reversed by filtering a broadband noise signal through filters depending 
on the encoded values. This Vocoder was later integrated to a demonstrator, the Voder, which 
was controlled by an operator using a keyboard (Fig. 7), and could produce some intelligible 
speech and even sing thanks to prosody and pitch control. Nowadays, a tool for processing 
speech signals is named a “vocoder”, which can be used for speech synthesis, or for speech 
manipulation, or for speech encoding, etc. 

The first computer-based speech synthesizers appeared in the 1950s (Schroeder, 1993), and 
have been used extensively since then, mainly for text-to-speech synthesis which converts 
written text into speech signal. The growing power and storage capacities of computers allowed 
for the use of more complex speech synthesis algorithms relying on large speech datasets.  

Modern speech synthesis approaches can be achieved in several ways. One way to classify 
the different types of speech synthesis systems is by the type of their input parameters. We can 
thus distinguish three main categories of speech synthesis: formant synthesis, text-to-speech 
synthesis, and articulatory-based speech synthesis. 
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II. Formant synthesis 

Formant synthesis uses input parameters that directly describe the spectral content of the 
target speech signal. In that case, the formant trajectories are explicitly specified as well as other 
features related to the glottal activity, for instance specifications about the unvoiced or voiced 
speech segments, or the fundamental frequency for voiced sounds. Most of the vocoders that 
are used for speech coding in telecommunication systems have a similar principle, except for 
the parametrization of the spectral content. The synthesis is done by modulating an excitation 
signal that represents the glottal activity through a time-varying filter, in order to obtain a speech 
waveform. That filter represents the transfer function of the vocal tract, the so-called spectral 
envelope. Different techniques can be used to model the spectral envelope, like linear predictive 
coding (Atal, 2006), mel-cepstral analysis (Imai et al., 1983), the “Harmonic+Noise” model 
(Laroche et al., 1993), or the “STRAIGHT” technique (Kawahara, 1997). 

III. Text-to-speech synthesis 

The most known category of speech synthesis systems is text-to-speech synthesis, which 
input is typically a sequence of words. It is generally made of two parts. First, a “natural 
language processing” module converts naturally written text into a sequence of phonetic units, 
like phonemes, along with some additional features describing its linguistic context 
(grammatical function if the unit is a word, or surrounding phonemes in the case of a phoneme, 
etc.) that are needed to determine the target prosody. The second module generates the speech 
waveform using the output from the first module (i.e. the segmentation of the input text into a 
sequence of phonetic units and the linguistic context features). In order to achieve that goal, 
different approaches exist that can be mostly divided into two large categories. First, 
concatenative synthesis (also called unit selection synthesis) consists in concatenating audio 
speech segments (such as diphone, demi-syllable, syllable, triphone or polyphone) selected 
from a large set of pre-recorded sentences. Second, statistical parametric synthesis (also called 
model-based synthesis) does not store any speech sample but stores a model that is used to 
convert input speech parameters – such as a sequence of phones, or some articulatory 
trajectories – into a speech signal, generally represented by parameters like the ones used by a 
vocoder. 

1. Concatenative synthesis 

Concatenative synthesis generally produces the most natural-sounding synthesized speech 
since it uses real speech samples. Main types of concatenative synthesis are diphone synthesis 
and unit selection synthesis. 

Diphone synthesis makes use of a small database that contains one sample of each diphone 
that occurs in a given language, which number can range from several hundred to several 
thousand depending on the language. Prosody is added using signal processing techniques like 
linear predictive coding (Atal, 2006), PSOLA (Charpentier and Stella, 1986) or discrete cosine 
transform (Narasimha and Peterson, 1978). While diphone synthesis has the advantage to rely 
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on a very small database, it suffers from sonic glitches due to the concatenation of speech 
samples, and is rarely used nowadays. 

On the other hand, unit selection synthesis relies on the use of large databases of speech 
samples in which each utterance is segmented into several different phonetic units like phones, 
diphones, syllables, words or sentences, and labeled with other phonetic properties – like pitch 
or duration – or even syntactic and lexical information. The phonetic segmentation can be done 
manually or automatically using forced alignment by automatic speech recognizer (Wagner, 
1981; Brugnara et al., 1993) with further manual corrections. To perform the synthesis, the 
output speech signal is generated by determining the best chain of candidate units from the 
database using an index and search algorithms (Hunt and Black, 1996). When using a very large 
database, unit selection synthesis does not need to apply a lot of signal processing techniques 
which makes it sound very natural. 

2. Statistical parametric synthesis 

In statistical parametric synthesis, the spectral content of the speech signal is parametrized 
using one of the spectral envelop models mentioned before (c.f. “Formant synthesis”), and then 
the time-trajectories of the parameters are modeled for each phonetic class and linguistic 
context, generally using Hidden Markov Models (HMMs) (Tokuda et al., 1998), Deep Neural 
Networks (DNNs) (Ze et al., 2013) or similar models (Black et al., 2007). To perform the 
synthesis, the parameters of the spectral envelope model and the glottal parameters (like the 
fundamental frequency) are inferred and then used by the corresponding vocoder to generate 
the final speech waveform. Recently, artificial neural networks were even used to directly 
predict the speech waveform from text input, without passing by an intermediate representation 
of the spectral envelope (Oord et al., 2016). 

Since this model-based approach does not use any speech sample at runtime, it can provide 
access to a wider obtainable sound-space with lower memory and processing requirements than 
concatenative speech synthesis, once the model is trained. However, a parametric representation 
of the speech signal is needed, and the reconstruction process, based on a vocoder, is often not 
ideal so that the resulting speech signal sounds less natural than when using a samples database. 

IV. Articulatory-based speech synthesis 

Another way to synthesize human speech is to directly simulate the physical principles of 
speech production, which is called “articulatory speech synthesis”. In that case, the input 
parameters are sequences of articulatory features, like the position of the main speech organs 
such as the tongue, the jaw, the lips, the velum or the larynx. Two main approaches have been 
proposed to synthesize speech from articulatory data: physical approaches that try to model the 
geometry of oral cavities and their acoustic properties, and the non-physical approaches that 
exploit large articulatory-acoustic databases and machine learning techniques to model the 
relationship between the articulatory movements and the corresponding speech signals. In both 
cases, a preliminary step consist in acquiring articulatory data, which can be achieved in several 
ways. 
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1. Methods for articulatory data acquisition 

While there is a common agreement that the acoustic speech signal can be fairly recorded 
using a microphone, there is not a unique way to acquire articulatory data, and several methods 
have been proposed over the years in order to measure the vocal tract shape and its movements. 

a. X-ray imaging 

Traditional X-ray imaging can be used to acquire entire head images with good spatial 
(about 1-2 mm) and temporal resolution (about 50 frames/sec). This X-ray cineradiography was 
used for the first time in 1928 in order to study vowels productions (Russell, 1928), and has 
been originally the main source of information for analyzing the movement of the articulators 
during speech production. Since the whole vocal tract is visible, the entire shapes of the 
articulators can be extracted (Fig. 8). 

 

Fig. 8: Vocal tract shape extraction from X-ray cineradiography. The red, yellow and green marks show the manually 
extracted vocal tract shapes. Source: XArticulator software by Yves Laprie (https://members.loria.fr/YLaprie/ACS/index.htm). 

However, identification of vocal tract structures in X-ray images is difficult since different 
head structures are projected on the same sagittal plane. This can be compensated by asking the 
subject to take contrast agents that adheres to the surface of the tongue, the mouth floor and the 
lips, and makes them easier to distinguish. Even so, it is still necessary to manually (Badin et 
al., 1995) or automatically (Thimm and Luettin, 1999; Fontecave Jallon and Berthommier, 
2009; Laprie and Berger, 2015) segment the acquired images in order to extract the shape of 
the vocal tract articulators. Moreover, the exposure radiation time has to be limited for health 
safety reasons, which prevents recording large datasets of articulatory-acoustic data. 

To extend the exposure time, an X-ray microbeam system was developed, which uses a 
narrow beam of X-ray to track the movements of small gold pellets attached to the speaker’s 
articulators (Kiritani, 1986). That way, the exposition to radiation is reduced, which is safer for 
the subject and allows longer experiments, while still covering the whole vocal tract. Despite 
the reduced risk for the subject, this method has been largely replaced by safer methods such 
as magnetic resonance imaging (MRI) or ultrasonography. 
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b. Magnetic Resonance Imaging 

Magnetic resonance imaging can be used to acquire the entire vocal tract shape in three 
dimensions, which allows direct calculation of vocal tract area and volume, and without any 
known dangerous effect for the subject. However, because of the way MRI scanners are 
constructed, the subjects have to be in supine position lying on their back, and articulatory 
movements are affected by the gravitational effects of this position (Stone et al., 2007). 
Moreover, to achieve high resolution (about 1mm) it is necessary for the subject to keep the 
same position for several seconds due to the very slow acquisition speed of MRI, which results 
in hyper-articulation (Engwall, 2003). Real-time MRI is now possible with frame rates as high 
as 500Hz (Uecker et al., 2010). It can even be achieved in three dimensions, but with lower 
spatial resolution (about 3mm) and lower frame rate (about 10 frames/sec) (Zhu et al., 2013). 
As for X-ray imaging, manual or automatic image segmentation is needed in order to obtain the 
shapes of vocal tract articulators. 

 

Fig. 9: vocal tract shape extraction from MRI. Left – image obtained by MRI, and automatically extracted shape (green line 
with white dots). Source: www.cmiss.bioeng.auckland.ac.nz. Right – 3D printed vocal tracts using three dimensional MRI data. 
Source: www.speech.math.aalto.fi 

c. Video recording 

One of the simplest way to acquire articulatory movements is to directly record a video of 
the subject while he is speaking. Thus, video recording of the lips has already been used for 
articulatory speech synthesis, mainly for vowel synthesis (Hasegawa and Ohtani, 1992). 
However, this technique only provide information about the external articulators, mainly the 
lips, which is not enough to discriminate all the phonemes of a language (Fisher, 1968), with 
state-of-the-art approaches generally reaching about 50-70% of word accuracy (Potamianos et 
al., 2003; Wand et al., 2016). That is why it is mostly used in combination with other techniques, 
such as ultrasonography (Hueber et al., 2010b). 

d. Ultrasonography 

Ultrasonography is an imaging technique that uses a high-frequency sound (ultrasound) 
wave, and estimates the delay between ultrasound pulses and their reflection to visualize 
internal body structures like muscles. It can be used through the lingual soft tissues in order to 
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visualize the articulatory movements of the tongue in real-time (Stone et al., 1988),  and can be 
extended to three-dimensional acquisition (Deng et al., 2000; Fenster, 2001) without any known 
dangerous effect for the subject. The images obtained using ultrasonography are of poor quality 
but the surface of the tongue is mostly visible as a bright line on a black background (Fig. 10), 
so that its shape can be extracted manually or using automatic approaches (Fabre et al., 2015). 
As opposed to MRI, ultrasonography does not require the subject to be lying on its back. 
Nonetheless, the lack of visibility of tongue apex, the tongue walls contacts and multiple 
reflections make the automatic image processing difficult. Moreover, this technique only gives 
access to the tongue shape and is thus commonly combined with other modalities, such as video 
recordings, in order to obtain information from other articulators (Hueber et al., 2010b). 

 

Fig. 10: Image of the tongue obtained by ultrasonography. The tongue surface is visible as a white line, but the tongue apex 
remains difficult to localize with precision (Hueber, 2009). 

e. Electromyography 

Electromyography (EMG) is a technique that enables to record the electrical activity 
produced by skeletal muscles using several electrodes (Fig. 11). Many muscles are implied in 
speech production, like the tongue and larynx muscles, and can be simultaneously recorded 
(Baer et al., 1988). EMG does not give direct access to the vocal tract articulators and 
movements, and mapping EMG signals to actual articulators position remains a difficult task: 
EMG signals do not represent the activation of a single muscle but a combination of various 
muscles, and the fibers of the same muscles are not activated at the same time, which make the 
final EMG signal a combination of various muscles and fibers signals (Jorgensen and Dusan, 
2010). However, several studies showed that EMG signals contain enough information to be 
used for automatic speech recognition and direct speech reconstruction (Sugie and Tsunoda, 
1985; Maier-Hein, 2005; Toth et al., 2009; Jorgensen and Dusan, 2010; Wand et al., 2013; Cler 
et al., 2014; Diener et al., 2016). 
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Fig. 11: Articulatory data from EMG. Here, an EMG array was placed to record cheek muscles activation (Wand et al., 2013). 

f. Electropalatography 

Electropalatography (EPG) can be used to monitor contact points between the tongue and 
the hard palate during speech production. This technique uses an artificial palate that is molded 
to fit against a specific speaker’s hard palate, which exposes electrodes (from ten to hundreds) 
facing the tongue surface (Fig. 12). When the tongue contacts an electrode, an electric signal is 
transmitted which provides direct information in real-time on the tongue contact points with the 
palate which are crucial for the production of some consonants (Hardcastle and Roach, 1979). 
The need to mold a specific palate for each subject makes EPG difficult to use in numerous 
experiments – although 3D printing could solve this issue in the future. Also, while EPG 
provides information on contact points between the tongue and the hard palate, it does not 
provide any information on the global tongue shape and other articulators. However, EPG can 
be used in combination with other techniques of articulatory data acquisition, like 
electromagnetic articulography, in order to synthesize speech (Kello and Plaut, 2004). 

 

Fig. 12: Artificial palate for electropalatography. Each metal disk is an electrode that allows to detect contacts of the tongue 
with the palate. Source: www.articulateinstruments.com. 
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g. Electromagnetic articulography 

Electromagnetic articulography (EMA) allows three-dimensional tracking of small sensor 
coils when placed near a magnetic field generator, with high spatial (< 1mm) and temporal (up 
to 400 frames/sec) resolutions. Several sensor coils can be glued on the tongue, the lips, the jaw 
and the soft palate in order to record the movements of the vocal tract articulators while the 
subject is speaking (Fig. 13). In EMA, several induction coils – different than the sensor coils 
– are placed near the head of the subject, and are supplied with current running at different 
frequencies for each coil. Each induction coil thus produces a variable electromagnetic field at 
a specific frequency which induces currents in the sensor coils that oscillate at the same 
frequency, and that is inversely proportional to the cube of the distance between the sensor coil 
and the induction coil.  Thus, the composite induced current in each sensor can be separated out 
to determine the distance from each induction coil. Then, triangulation enables to determine its 
location in space. The EMA data can be retrieved in real-time for further processing, and a 
reference sensor allows to obtain all the coordinates with regards to an invariable reference 
point, even if the subject’s head is moving. 

 

Fig. 13: Electromagnetic articulography. EMA coils are glued to the lips, the jaw, the tongue and the soft palate (Bocquelet 
et al., 2016a).  

However, the EMA system comes with its own practical limitations. First, it is difficult to 
keep the coils fixed during long recording sessions, and the fixation duration depends on each 
subject, essentially because of salivation. Second, it is difficult – to not say impossible – to 
reattach the EMA coils at the exact same positions between two sessions, so that all the data 
has to be collected in a row. Third, some subjects have more sensitive soft palates than others, 
so that it can be impossible to place a coil on it in a comfortable way. Finally, the coils need 
electric wires to transmit data, which have to transit through the lips and might hinders 
articulation. 

Nonetheless, EMA allows direct access to the positions and movements of the articulators 
with high precision and very good time resolution, which makes it a very valuable tool for 
analyzing speech articulatory movements. Because of its low invasiveness, it has very low risks 
for the subject with regards to X-ray imaging. Moreover, not only the position of the sensor 
coils is available, but their orientation as well, which can provide additional information about 
the vocal tract shape. 
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There exists another similar method based on electromagnetics in order to track movements 
of the vocal tract articulators, which is referred to as “permanent-magnetic articulography” or 
“Tongue Drive” (Huo et al., 2008). In this approach, a small cylindrical permanent magnet has 
to be secured on the tongue by implantation, piercing or tissue adhesives, and a pair of  three-
axial linear magneto-inductive sensor modules has to be mounted bilaterally on a headset near 
the subject’s cheeks. This sensor wirelessly transmits the magnetic field information to a 
computer which uses an electromagnetic model in order to predict the magnet position and 
orientation. This system allows real time tracking (about 20 frames/sec) with good spatial 
resolution (about 1mm) (Cheng et al., 2009). Although it has the advantage of being wireless 
with regards to EMA, it is limited to one sensor, which is clearly not enough in order to capture 
the whole vocal tract shape. Extensions with several magnets exist but do not allow to revert 
the recorded electromagnetic signals into the sensors positions (Fagan et al., 2008). 

h. Choice of an articulatory data recording method 

In order to choose which articulatory data acquisition method is more suitable for 
articulatory speech synthesis, it is necessary to analyze the acoustic and articulatory properties 
of natural speech. Phonemes duration in normal speech typically range from about 10ms for 
plosive consonants to more than 100ms for vowels (Kuwabara, 1996; de Marëil et al., 2008; 
Ziolko and Ziolko, 2011). In order to capture all the dynamics of natural speech production it 
is thus necessary to have a recording system with a good temporal resolution, at least superior 
to 100Hz. Moreover, speech production requires precise gestures and a displacement of the 
articulators by a few millimeters can result in producing a totally different sound (Perrier, 2005). 
Therefore, sufficient spatial resolution is needed in order to capture discriminable position of 
the articulators while producing distinct phonemes. Since the tongue, jaw, lips and soft palate 
are all involved differently in speech production, it is necessary to be able to record the whole 
vocal tract shape or information that can represent these articulators shape. Finally, 3D data 
acquisition might be desirable especially for lateral consonants. 

The comparison of the previously mentioned acquisition procedures is summarized in 
Table 2. X-Ray imaging presents risks for the subjects which make it usable only for a short 
period of time; MRI has a moderate spatial resolution but requires manual or semi-automatic 
segmentation of images and the subject has to be in supine position; ultrasonography and EPG 
only give information about the tongue and have to be combined with other methods in order 
to get the full vocal tract shape; video recording only give information about the external 
articulators such as the lips; and EMG does not give direct access to articulators positions or 
shape but only to muscles activations. Thus, and regarding the previous considerations, the 
choice was made to use electromagnetic articulography for acquiring the articulatory data, since 
it provides good spatial and temporal resolution, even if it is a slightly invasive technique 
(gluing of sensors on the speech articulators) and does not allow access to the full vocal tract 
shape but only to the 3D position of several points on the speech articulators. 
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 X-Ray MRI 
Ultra-

sonography 
EPG EMG Video EMA 

Indicative time 
resolution 

30-60 
Hz 

0-200 
Hz 

200 Hz 200 Hz 5-500 Hz 
24-10,000 

Hz 
100-400 

Hz 

Indicative 
spatial 

resolution 
1-2 mm 

1-
3mm 

- 3 mm - 1 mm < 1mm 

3D data No Yes Depends No - No Yes 

Tongue 
imaging 

Profile 
shape 

Full 
shape 

Profile 

shape 

Contact 
points with 

the hard 
palate 

Muscles 
activation 

None 

Several 
points at 

the 
surface 

Lips imaging 
Profile 
shape 

Full 
shape 

None None 
Muscles 

activation 
Front 
view 

Several 
points 

Jaw imaging Yes Yes None None 
Muscles 

activation 
None Yes 

Velum 
imaging 

Yes Yes None None None None Yes 

Risk / 
Invasiveness 

High None Very low Low Very low None Low 

Cost High High Low Low Low Low Low 

Table 2: Comparison of different articulatory data acquisition methods. Completed from (Youssef, 2011). Colors are 
indicative and reflect the compliance of the method with regard to each criteria. 

2. Physical modeling of the vocal tract 

A first approach to synthesize speech from articulatory data is to realistically mimic the 
functioning of our speech organs. Since speech can be seen as the result of the modulation of 
an excitation air wave by variable geometry pipe, acoustic simulation and modeling technique 
could be used to artificially synthesize speech, which first requires to model the geometry of 
the oral cavities and then their acoustic properties. 

a. Modeling the geometry of oral cavities 

The vocal tract is made of several cavities which geometry changes due to the movement 
of articulators. In order to simulate the acoustic properties of the vocal tract and synthesize 
speech, geometric models of the vocal tract controllable by few parameters are needed. The 
vocal tract models can be categorized into two-dimensional (2D) and three-dimensional (3D) 
models on one hand, and into geometrical, statistical, and biomechanical models on the other 
hand. 
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i. 2D and 3D models of oral cavities 

The 2D models define the vocal tract geometry in the midsagittal plane, using the contour 
lines of the articulators (Joseph S. Perkell, 1974; Maeda, 1990; Payan and Perrier, 1997). 
However, such models do not provide any information about the cross-sectional shape of the 
vocal tract which varies greatly along its length. In fact, the shape itself has almost a negligible 
effect on the resonance properties of the vocal tract, the most important being the changes in 
cross-sectional area of the vocal tract along its length. In most cases, this area is estimated by 
making the approximation that it is circular or elliptic (Maeda, 1990). 

The 3D models do not suffer from this approximation since they give access to whole 3D 
geometry of the vocal tract (Engwall, 1999; Dang and Honda, 2004; Birkholz et al., 2006; 
Perrier et al., 2011). Moreover, they can represent configurations that cannot be represented by 
a 2D model, like lateral consonants as /l/, for which the air flows along the sides of the tongue, 
while it is blocked by the tongue in the middle of the mouth. 

ii. Geometrical, statistical and biomechanical models of oral cavities 

Geometric models directly define the vocal tract shape using few geometrical parameters 
that were chosen a priori – for instance the aperture of the mouth or the height of the tongue 
tip, and can be fitted a posteriori to particular data (Engwall, 1999; Birkholz et al., 2006). 

Statistical models use large amount of vocal tracts shapes, generally obtained from MRI 
data, to extract uncorrelated parameters that can represent the geometry of the vocal tract, using 
statistical techniques such as Principal Component Analysis (Maeda, 1990). A statistical model 
is often dedicated to the particular speaker from whom the data is extracted. 

Finally, the biomechanical models aim to simulate the behavior of the vocal tract 
articulators and muscles by using finite elements methods (Dang and Honda, 2004; Perrier et 
al., 2011). Their main purpose is to study the relationship between muscle activation and the 
articulatory movements, and the finite element approach requires a significant computational 
power and has a high number of degrees of freedom (DoF). 

Once the vocal tract geometry is known, numerical simulations of wave propagation 
through the vocal tract shape can be used to generate a speech signal from an articulatory 
configuration. This requires to model the acoustic properties of the oral cavities. 

b. Modeling the acoustic properties of oral cavities 

Different methods have been proposed to model the acoustic properties of the oral cavities 
in order to generate speech from the geometry of the vocal tract.  

Most approaches model the vocal tract as a series of circular sections which area is obtained 
using an appropriate model of the vocal tract geometry (c.f. previous section). In that case, the 
vocal tract is discretized along its length so that its shape can be approximated by concatenating 
circular tubes of the same length.  The nasal cavity is often considered as an on/off air path: if 
the air passes through the nasal cavity, an additional area is added to the section of the vocal 
tract after the nasal branching (Maeda, 1982). An acoustic model is then applied in order to 
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simulate the resonance contributions of all the sections, and the acoustic equations are solved 
either in the frequency-domain, or in the time-domain or using hybrid approaches. 

In the frequency-domain methods, the acoustic transfer function of the modeled vocal tract 
can be obtained using the area function, i.e. the evolution of the vocal tract area along its length 
(Fant, 1975; Rubin and Baer, 1981; Ngoc and Badin, 1994). This calculation is mostly based 
on the Kelly-Lochbaum model (Kelly and Lochbaum, 1962) which models the wave 
propagation and takes into account frequency-independent propagation losses within sections 
and reflections at the section boundaries. The speech signal can then be obtained using the 
source-filter approach: the speech signal spectrum can be expressed as the multiplication of the 
source spectrum by the vocal tract transfer function and other acoustic transfer function, for 
instance to take into account the lip radiation effect. This approach is particularly used for 
stationary sounds, but can be extended to dynamic geometries (Nowakowska et al., 1993). In 
(Hasegawa and Ohtani, 1992), this approach was used to synthesize five Japanese vowels with 
a recognition rate of about 91% from video recordings of the lips: the shape of the lips was 
extracted from the video images and then used to estimate the area function, which was in turn 
used to synthesize speech.   

In the time-domain methods, the output waveform is obtained by directly applying a set of 
equations to an input excitation signal across time (Flanagan et al., 1975; Maeda, 1982). The 
fact that the equations are directly solved in the time domain makes it directly applicable for 
synthesizing speech while changing the vocal tract geometry over time. 

Hybrid methods try to combine advantages of both time-domain and frequency-domain 
methods. For instance, a frequency-domain method can be applied to estimate the vocal tract 
transfer function while the glottal excitation is obtained in the time-domain (Sondhi and 
Schroeter, 1987). 

Most of the previously mentioned acoustic simulations are one-dimensional (1D), 
assuming plane wave propagation only. However, three-dimensional acoustic simulating 
methods can be used in order to obtain more precise characteristics of the vocal tract by taking 
advantage of 3D geometry models (Kagawa et al., 1992; Takemoto et al., 2010; Svec et al., 
2011). Some studies pointed out that 3D simulation methods could exhibit resonance modes 
that are not observable using 1D simulation (Takemoto et al., 2014). Nonetheless, while 1D 
methods can generally be applied in real-time, 3D methods often rely on heavy computation 
such as finite elements approaches, which make them harder to use in real-time applications. 
This is a potential issue for future use in a brain-computer interface for speech rehabilitation. 
Moreover, speech is a very complex phenomenon while physics approaches need to work under 
several assumptions and approximations in order to simplify models. By contrast, machine 
learning-based approaches do not model the physical and acoustic properties of the vocal tract. 

3. Non-physical articulatory-based synthesis 

While physical approaches try to model the biophysics behind the speech production, the 
non-physical approaches usually use supervised machine-learning methods in order to model 
or capture the relationship between articulatory and acoustic observations (so called 
“articulatory-to-acoustic mapping”), by exploiting large databases of synchronously recorded 
articulatory and acoustic data. These approaches can be mainly divided into two categories: 
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those that first use articulatory speech recognition, i.e. that recognize sequences of phonemes 
or words from the articulatory data, which are then used to synthesize speech for instance using 
text-to-speech synthesis methods, and those that “directly” estimate the acoustic trajectories – 
i.e. the time-varying sequences of acoustic parameters – from the articulatory trajectories using 
statistical inference that can then be converted into a speech waveform using the corresponding 
vocoder. 

a. Discrete approaches 

The first type of approaches uses an intermediate representation – such as a sequence of 
phones or words – which is then used to synthesize the final speech signal, for instance using 
text-to-speech synthesis. Such approach was originally performed on electromyography (EMG) 
data from three sensors placed on the speaker’s face, allowing to recognize five isolated 
Japanese vowels with 71% accuracy (Sugie and Tsunoda, 1985). In (Jorgensen et al., 2003), 
EMG from four electrodes over the throat and electropalatography (EPG) data were used to 
classify six isolated words with about 90% accuracy, using different signal representations and 
classification algorithms, such as artificial neural networks (ANNs) or linear classifiers. In 
(Maier-Hein et al., 2005; Jou et al., 2006, 2007; Walliczek et al., 2006), twelve EMG electrodes 
were placed over the face, throat and chin of the speaker to record the muscle activity of the 
lips and tongue muscles in order to decode continuous speech into sequences of phones. The 
use of an intermediate phonetic representation allows to take advantage of linguistic knowledge 
to constrain the recognition to meaningful sequences of phonetic units. For instance, a limited 
vocabulary can be used to force the recognition to a set of predefined words, thus increasing 
the accuracy of the synthesis, or grammar rules can be used to generate only grammatically 
correct sentences, further increasing the accuracy of the system. In this study, the authors 
constrained the vocabulary to a set of 100 words and used a trigram language model, allowing 
to reach a word recognition accuracy of about 70%. More recently permanent-magnetic 
articulography was used to recognize words in a finite vocabulary of 9 words, or phones among 
a limited set of 13 phones (Fagan et al., 2008). Seven permanent magnets were placed on the 
tongue, lips and jaw of a speaker while six magnetic sensors mounted on glasses recorded 
changes in the magnetic field produced by the magnets movements. Words or phones were 
recognized by comparing them with known data, allowing to reach 97% accuracy for words 
and 94% for vowels. However, the size of the vocabulary for words was limited to 9 words 
only, and the phones were isolated, which means that lower accuracy has to be expected in the 
case of full words or sentences. 

b. Continuous approaches 

The second type of approaches generally considers statistical models to perform the 
articulatory-to-acoustic mapping, such as artificial neural networks (ANNs), Gaussian mixture 
models (GMMs) or hidden Markov models (HMMs). The fundamental basis of GMMs and 
ANNs are presented in sections V and VI of this chapter. 

In (Kello and Plaut, 2004), the authors presented a single hidden layer ANN model that 
was trained on the MOCHA database to directly predict the power spectrum of the speech 
signal. The MOCHA database contained a combination of electromagnetic articulography 
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(EMA), electropalatography (EPG) and laryngography (recording of the glottal activity) 
recordings from one British English speaker, for a total of about 460 different sentences. The 
synthesis intelligibility was assessed by listeners and achieved a word recognition rate of about 
60% when tested on data that was not part of the training data used to compute the neural 
network parameters. While being very promising, and considering that there were not isolated 
words but rather words within meaningful sentences, such synthesis could not be considered as 
fully intelligible. In (Denby and Stone, 2004), ANNs were used on tongue contours extracted 
from ultrasonography images to control a GSM (Global System for Mobile communications) 
vocoder. While similarities between original and synthesized sounds could be observed, this 
did not lead to intelligible synthesis. The authors later suggested to combine ultrasonography 
with video recordings of the lips in order to improve the synthesis intelligibility (Denby et al., 
2006). This was done in a thesis work (Hueber, 2009) where the ANN-based mapping is 
compared with a GMM-based mapping. This approach was originally proposed by Toda et al. 
to perform the articulatory-to-acoustic mapping as well as the inverse problem of the acoustic-
to-articulatory mapping using only the EMA and audio part of the MOCHA database (Toda et 
al., 2008). In particular, they proposed a way to take into account the dynamic properties of the 
target signal – here the acoustic trajectories – which they called the “trajectory GMM” (see 
section V). In this method, the determination of a target signal having appropriate static and 
dynamic properties is obtained by explicitly imposing the relationship between static and 
dynamic features. In this study, the intelligibility of the synthesis was not directly assessed 
through a transcription or a recognition task. However, synthesis examples provided with the 
paper showed that intelligible synthesis could be achieved. 

Hidden Markov models (HMMs) have been used to perform the articulatory-to-acoustic 
mapping using articulatory data obtained from ultrasonography and video recording (Hueber et 
al., 2012; Hueber and Bailly, 2016). In these studies, a hidden Markov model was used to infer 
the most probable sequence of phones corresponding to input articulatory data, similarly to the 
first category of approaches. However, here the decoded sequence of phones was then 
combined with the input articulatory data to finally infer acoustic trajectories in order to 
synthesize speech. This allowed to take advantage of linguistic knowledge while still taking 
into account articulatory features when performing the synthesis.   

EMA data and HMMs have been used in several studies for the inverse problem of the 
acoustic-to-articulatory mapping (Hiroya and Honda, 2004; Zen et al., 2011). In (Ling et al., 
2009), articulatory features obtained from EMA data were integrated into a HMM-based text-
to-speech synthesizer to improve or alter speech synthesis. However to our knowledge there 
are no studies considering HMM-based speech synthesis only from EMA data. On the other 
hand, GMMs and ANNs have already shown promising results on synthesizing speech from 
EMA data. Moreover, recent developments in the field of artificial neural networks, particularly 
with the emergence of deep neural network (DNNs), suggested that this approach might be 
improved to reach fully intelligible synthesis. In particular, DNNs were successfully used for 
the inverse problem of the acoustic-to-articulatory mapping, i.e. recovering articulatory 
trajectories from the speech signal (Uria et al., 2011).  

In the present work, we thus chose the trajectory GMM approach as a gold-standard (Toda 
et al., 2008), and we considered DNNs for the articulatory-to-acoustic mapping. Both these 
approaches are presented in details in the following sections. 
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V. GMM-based articulatory-to-acoustic mapping 

A Gaussian Mixture Model (GMM) is a parametric probability density function 
represented as a weighted sum of Gaussian component densities. It is mainly used to estimate 
and model the probability distribution of continuous measurements, such as articulatory or 
acoustic data. 

1. The trajectory GMM 

The trajectory GMM approach was introduced by Toda et al. (Toda et al., 2008) for 
articulatory-to-acoustic mapping. In the training stage, the joint probability density function 
(pdf) of articulatory and acoustic data is modelled by a GMM, which is then used in the mapping 
stage to infer the more probable sequence of acoustic parameters for a given input sequence of 
new articulatory data. 

a. Probability density function 

More formally, if we note x = [x1, …, xt, …, xT] a sequence of T articulatory features 
vectors xt, and y = [y1, …, yt, …, yT] a sequence of T acoustic features vector yt, then in the 
training stage the joint probability density Z of the training articulatory data X and acoustic data 
Y is modelled by a mixture of M Gaussians of parameters � ={ ,… , , � , … , �� , � , … ��} :  

( |�) = ( , |�) =  ∑ ,� , �=  Eq.  1 

With . , �, �  a normal distribution of mean � and covariance matrix �, and  the 
weight associated to the mth mixture component so that ∑ = =  and . 

The mean vector �  and the covariance matrix  �  of the mth component can be written 

as: � = [�� ] Eq.  2 

And  � = [� �� � ] Eq.  3 

Where �  and �  are the mean vectors of the mth mixture component for X and for Y, 
respectively. �  and  �  are the covariance matrix of the mth mixture component for X and 

for Y, respectively, and �  and �  are the cross-covariance matrices of X and Y. These 

parameters are estimated from training data, generally using the expectation-maximization 
(EM) algorithm. 



Chapter 2: Articulatory-based speech synthesis 

 
63 

 

b. Mapping function 

In the mapping stage, for a given input sequence of new articulatory data x = [x1, …, xt, 
…, xT], the conditional probability density function (pdf) of each frame | , �  can be 
directly derived from the previously computed GMM: 

| , � = ∑ m| ,� ∙ | , , �=  Eq.  4 

where m| ,� = � ,� ,�∑ �� ,�� ,����=  Eq.  5 

and | , , � = , , ,  Eq.  6 

with the mean vector ,  and the covariance matrix  of the conditional distribution 

equal to: 

, = � + �� �� − − �  Eq.  7 

and = �� − �� �� − ��  Eq.  8 

This conditional pdf can then be used to infer the best corresponding sequence of acoustic 
features vectors ŷ= [ŷ1, …, ŷt, …, ŷT], given some criterion. 

When using the Minimum Mean-Square Error (MMSE) criterion (Stylianou et al., 1998), 
the sequence ŷ is estimated on a frame-by-frame basis as: 

̂ = [ ̂ | ] = ∑ m| ,�= ∙ ,  Eq.  9 

Hence, the predicted frame t of the sequence ŷ can be directly computed as a linear 
combination of the mean vectors of the conditional pdf mean vectors (Eq.  9), weighted by the 
posterior probabilities that the vector  belongs to each one of the mixture components (Eq.  
5).  

However, (Toda et al., 2008) have shown that this inference using the MMSE criterion is 
not appropriate for multiple distributions since it does not take into account the covariance 
matrices of the conditional probability distributions shown in (Eq.  8), although they might be 
informative. Moreover, since the mapping is done on a frame-by-frame basis, it does not take 
into account the dynamic properties of the acoustic trajectories to be predicted. They thus 
proposed the trajectory GMM approach, using the Maximum Likelihood Estimation (MLE) 
criterion. When using the MLE criterion, the sequence ŷ is estimated by: ̂ =  m��� | , �  Eq.  10 

Note that as opposed to when using the MMSE criterion, there is no closed form solution 
to directly compute ̂ . However, this definition of ̂  now takes into account the covariance 
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matrices of the conditional probability distributions (see Eq.  10 combined with Eq.  4, Eq.  6 
and Eq.  8). 

In order to take into account the dynamic properties of the acoustic parameters Y, (Toda et 
al., 2008) introduce its N derivatives to define a new variable W such that w = [w1,…,wt,…,wT] 
with wt = [yt, Δ(1)yt, Δ(2)yt, …, Δ(n)yt, …, Δ(N)yt] and Δ(n)yt is the nth derivative of yt using finite 
differences. For instance: ∆ = + − −

 Eq.  11 

∆ = + − ∗ + −
 Eq.  12 

This allows to define a matrix A so that W = A.Y. Thus by replacing Y by A.Y in the 
previous equations, one can take into account the dynamic properties of the acoustic parameters 
when inferring the sequence ŷ.  

For the mapping phase (Toda et al., 2008), a conditional pdf | , �  is derived, for 
each frame t, from the joint pdf ,  estimated during training by a GMM, such as: | , ̂ , � = , ̂ �, , ̂ �  Eq.  13 

with { ̂ �, = � ̂ � + � ̂ � � ̂ � − − � ̂ �
̂ � = � ̂ � − � ̂ � � ̂ � − � ̂ �  Eq.  14 

Where ̂ = [ ̂ ,… , ̂ , … , ̂ ] is the suboptimum sequence of mixture components defined 
as ̂ = ��gm��{ | , � } determined in our implementation using the Viterbi algorithm 

(Bishop and Christopher M. B, 2006). Finally, the output trajectories ̂ are estimated using the 
following equation: ̂ = ̂ − − ̂− ̂  Eq.  15 

with ̂ = [ ̂ , … , ̂�] and ̂ − = [ ̂ − , … , ̂�− ]. 
2. Training algorithm for the trajectory GMM 

In practice, during the training phase, the parameters of the GMM are estimated using the 
EM algorithm with the training dataset. The EM algorithm is an iterative method which needs 
an initial vector of parameters to optimize, the final optimization result depending on the quality 
of this first approximation. Here, the initial parameters were computed using the clustering k-
means algorithm on the joint articulatory-acoustic data: this is an iterative and simple algorithm 
to partition data into k clusters in which each observation belongs to the cluster with the nearest 
mean. For a GMM with M Gaussian components, the joint articulatory-acoustic data Z is first 
divided into M clusters. Here we run the k-means algorithm twice and kept the one with the 
minimum summed distance value. Then, the mean �  and covariance matrix �  of the mth 
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matrix of dimension × 9  if the training is performed in batches of 100 samples each. 
In terms of memory use and computation time, this is too demanding. On the other hand, back-
propagation-based algorithms have proven to be efficient and to lead to good solutions. This is 
why we chose here to use the conjugate gradient (CG) algorithm, which uses back-propagation 
to estimate the final parameters of the network. 

Back-propagation is extensively described in the literature (Bishop and Christopher M. B, 
2006). This is an efficient algorithm to compute the gradient of the error function with regards 
to the network parameters, based on the derivate chain rule. A null gradient meaning that we 
are at a local minimum of the error function, this gradient gives local information which can be 
interpreted as the opposite direction (positive or negative) in which we should change each 
network parameter in order to decrease the error of the network – but this does not give any 
information about how much we should go in that direction. The opposite of the gradient is thus 
often called the search direction. The simplest form of optimization based on this gradient is 
the so-called “gradient descent” (GD), which iteratively updates the parameters pi by 
subtracting from them the gradient of the error function E, multiplied by a factor α, the learning 
rate: ��+ = �� − α ∙ ∇� ��  Eq.  17 

One main drawback of this simple approach is that since no information is given about how 
much we should change the parameters, and the learning rate being arbitrarily chosen, we could 
change them too much and move away from the local minimum, which might even lead to a les 
optimal local minimum. Alternatively, we could not change them enough so that the training 
process would be too slow or would be trapped in a local minimum without being able to escape 
from it. To compensate for this, many variations of the gradient descent method have been 
proposed such as adapting the learning rate during the training, starting with a high learning 
rate in order to be able to escape from local minima at the beginning of the training, then 
reducing it at each iteration in order to stay in the found minima, or by adding a momentum 
term which will smooth the changes of direction of the gradient from one iteration to another, 
etc. Most of the time these parameters (learning rate, momentum, etc.) have to be manually set 
by trials and errors. 

An alternative approach to the gradient descent (GD) is the conjugate gradient method 
(CG), which fundamental basis is detailed in (Shewchuk, 1994). For training an ANN, the 
conjugate gradient method works by iteratively computing search directions in conjugation with 
a line search algorithm. The purpose of a line search algorithm is to find the point that minimize 
a function f along a line, i.e. the search space for a solution minimizing f is restricted to a line. 
Since there are different versions of the conjugate gradient, the following briefly explains a 
specific one we implemented for our experiments. 

In a first step, the CG algorithm computes the search direction s0, which is the opposite of 
the gradient of the error function E with regards to the parameters p, using the initial value of 
the parameters p0, as in the GD approach: = −∇� �  Eq.  18 
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It then performs a line search along this direction s0 to find the point p1 that minimize the 
error function and update the network parameters, which can be interpreted as finding the best 
learning rate α0 for this iteration when using the GD approach: � = � +  Eq.  19 

In the line search, the two Wolfe’s conditions were used (Wolfe, 1969, 1971). The first one 
stipulates that α0 should give sufficient decrease of the error function, with regards to some 
constant ρ: � � + � � − � ∇� �  Eq.  20 

The second condition stipulates that the choice of α0 should result in a smaller gradient than 
the previous one with regards to some constant ε, in order to guarantee that the algorithm moves 
closer to a local minimum by a non-vanishing amount: |∇� � | |∇� � | Eq.  21 

The line search algorithm uses these two conditions to test if a new point is significantly 
better than the current point. The line search algorithm used here iterates until an acceptable 
point that satisfies both conditions is found, and uses quadratic and cubic polynomial fits in 
order to limit the number of guesses needed (see (Rasmussen, 1996) for more details).  

At the next step, the new search direction s1 is computed using the new gradient values for 
the parameters p1 combined with the previous search direction, multiplied by a factor β1 which 
can be seen as a variable momentum factor in the GD approach: = −∇� � +  Eq.  22 

The factors βi can be computed using different heuristics, which will not be discussed here. 
In the present study, the Polak-Ribière formula (Polak and Ribiere, 1969) was used (Eq.  23). 
This formula results from approximating the error function as being locally quadratic, and is 
recommended among others (Press et al., 1988): 

=  , ∇� �� ∇� �� − ∇� ��−∇� ��− ∇� ��−  Eq.  23 

The line search algorithm is then applied to find the point p2 that minimizes the error 
function along the direction s1. This process is then iteratively repeated, until some convergence 
criterion is reached, or until the error reaches a maximum number of evaluations, in order to 
reduce computation time.  

3. Difficulties when training deep neural networks 

Deep neural networks (DNNs) can be seen as feed-forward neural networks, which have 
at least two hidden layers. They generally need a specific training algorithm due to this deeper 
architecture. DNN training using back-propagation is usually a complex task since large initial 
weights typically lead to poor local minima, while small initial weights lead to small gradients 
making the training infeasible with many hidden layers (Hinton and Salakhutdinov, 2006). This 
issue is generally solved by using a pre-training step, in which a specific algorithm is used to 
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correctly initialize the weights and biases of the network – generally layer by layer – before 
using a classic back-propagation-based method to fine-tune the final network (Bengio et al., 
n.d.; Hinton and Osindero, 2006; Hinton and Salakhutdinov, 2006). 

For predicting continuous variables, as acoustic parameters, the most common pre-training 
approach consists in pre-training a generative model called a Deep Belief Network (DBN) 
which will serve to initialize the neural network to be fine-tuned by back-propagation (Hinton 
and Osindero, 2006; Hinton, 2010a). This method has been proven to be efficient for the inverse 
problem of the acoustic-to-articulatory mapping, i.e. predicting the configuration of the vocal 
tract from an audio signal (Uría, 2011). However, preliminary results showed that using such a 
pre-training method resulted in poor final solution with our training dataset and we thus 
proposed another training approach, which will be presented later in this thesis. 

VII. Conclusion 

In this chapter we briefly introduced speech production and synthesis before focusing on 
articulatory-based speech synthesis and ways of acquiring articulatory data. Our choice for 
articulatory-based speech synthesis was motivated by studies exhibiting a somatotopic 
organization of the speech motor cortex, from which we plan to record neural activity in order 
to decode speech. 

Among all the available methods for recording articulatory data, we made the choice to use 
electromagnetic articulography (EMA) which presents several advantages with respect to other 
methods. In particular, EMA allows to record three-dimensional positions from all the main 
speech articulators – lips, tongue, jaw and soft palate – with high spatial and high temporal 
resolutions, which are required to capture accurate and fast constrictions of the vocal tract. 
Moreover, EMA recordings can be done during a sufficiently long period of time (about one or 
two hours). Even if this time is limited by the fact that glued sensors detach themselves because 
of salivation, it is still long enough to record large articulatory-acoustic datasets as needed for 
machine learning techniques to synthesize speech from articulatory data. 

While physical approaches that model the vocal tract geometry and acoustic properties can 
be used to synthesize speech from articulatory data, the approximations needed to solve the 
mathematical models behind them might limit the sounds they can synthesize. Moreover, once 
trained, a machine learning model is usually very fast to apply for real-time synthesis, which is 
a requirement for a brain-computer interface for speech rehabilitation. We thus made the choice 
to build our articulatory-based speech synthesizer using a machine learning approach. Among 
the different possible approaches, we chose to perform a continuous mapping of the articulatory 
data into acoustic trajectories without passing through an intermediate phonetic representation 
as in articulatory recognition. This choice was motivated by the fact that continuous mapping 
ensure a minimal delay between the articulatory input and the output sounds, as opposed to 
articulatory recognition approaches for which the synthesis cannot occur before a phonetic unit, 
such as a word, is fully recognized.  

In this thesis, we thus chose to perform articulatory-based speech synthesis using a 
machine-learning based approach. In particular, we chose to compare two methods, Gaussian 
mixture models and deep neural networks, which we present in details in part 3.  



 
 

Part 2: Goal of the thesis 

As shown in the previous chapters, to date, there has not yet been any demonstration of an 
open-vocabulary BCI able to reconstruct continuous intelligible speech in real-time (Guenther 
et al., 2009). The goal of this thesis was thus to develop several aspects toward such proof of 
concept, with patients undergoing awake surgery for a tumor removal, that had preserved brain 
areas and were able to speak. In particular, this thesis had three aims: 

1) To develop a speech synthesizer that produces fully intelligible speech from articulatory 
data in real-time, that has few control parameters and that is as robust as possible to 
noisy control parameters. 

2) To investigate the feasibility of decoding speech and articulatory features from neural 
activity essentially recorded in the speech motor cortex. 

3) To consider ethical issues that arise with the development and use of brain-computer 
interfaces. 

The first aim was thus to develop a speech synthesizer that could produce intelligible 
speech from articulatory movements, i.e. that converts movements of the main speech 
articulators, such as the lips or the tongue, into an audible speech signal. The choice of 
synthesizing speech from articulatory movements, rather than another representation – for 
example a phonetic sequence such as in text-to-speech synthesis – was motivated by several 
studies showing that the speech sensorimotor cortex exhibits a topographic organization 
mapping the different articulators involved in speech production (Penfield and Boldrey, 1937; 
Guenther, 2006; Pulvermüller et al., 2006; Grabski et al., 2012; Tate et al., 2014), and 
furthermore motivated by a more recent study showing that during speech production, the 
activity of the speech sensorimotor cortex is tuned to the articulatory properties of the produced 
sounds but not to their acoustic properties (Cheung et al., 2016). While synthesizing speech 
from articulatory data had been already investigated in several studies (Maeda, 1982; Sondhi 
and Schroeter, 1987; Kello and Plaut, 2004; Birkholz et al., 2006; Toda et al., 2008), there was 
no demonstration of intelligible synthesis from EMA data for the French language, and it 
remained unknown whether a given articulatory-based speech synthesizer built from 
articulatory-acoustic data obtained in one particular reference speaker could be controlled in 
real time by any other speaker to produce intelligible speech. Thus, our aim was not only to 
develop a speech synthesizer that could synthesize intelligible speech from articulatory data, 
but also to make this synthesizer run in real time and controlled by other subjects, in different 
experimental conditions, as a first step toward brain control in a BCI paradigm. Part 3 presents 
results for this first aim, with chapter 3 focusing on the acquisition of an articulatory-acoustic 
corpus, chapter 4 focusing on speech synthesis from articulatory data in offline condition, and 
chapter 5 focusing on the control of this synthesizer by different subjects in closed-loop 
conditions. 

The second aim was to investigate the feasibility of decoding speech and articulatory 
features from neural activity. The second part of this thesis was thus dedicated to the 
development of methodological tools – in majority software tools – since brain-computer 
interfaces were a newly developed research axis in the team. In particular, the first step was to 
develop a per-operative method to localize the speech-related brain areas using 
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electrocorticographic (ECoG) recordings. Indeed, it was envisioned to use micro-electrode 
arrays (MEAs) to record neural activity since very promising results in BCI have been achieved 
using MEAs (Collinger et al., 2013; Ifft et al., 2013; Wodlinger et al., 2014). However, such 
MEAs can only cover a minor part of the brain cortex so that their positioning has to be 
optimized in order to record neural activity that is as informative as possible for decoding 
speech and articulatory features. A goal of this thesis was thus to develop a tool to precisely 
localize speech-related brain areas before the implementation of a MEA, directly during the 
surgery. In a second step we performed initial tests to decode neural data recorded from the 
speech-related brain areas to predict articulatory and speech features from neural activity. We 
investigated in particular the case of speech intention detection, i.e. to predict if the patient is 
speaking or intending to speak from the neural activity. While speech BCIs would mostly 
benefit aphasic patients with preserved cortical areas, such as in the locked-in syndrome, these 
developments were made using neural activity recorded from patients undergoing awake 
surgery for a tumor removal that had no speech disorder. These results are presented in Part 4. 
Chapter 6 presents the per-operative localization of speech-related brain areas while chapter 

7 focuses on preliminary decoding of neural activity. 

Finally, my thesis was also an opportunity to conduct ethical reflections on the 
development and use of brain-computer interfaces. These considerations are presented in Part 

5. 



 
 

Part 3: Thesis result 1 – Articulatory-based 
speech synthesis for BCI applications 

As previously motivated in Chapter 1, the goal of this thesis was to set the ground for a 
Brain Computer Interface (BCI) for speech restauration, in which neural activity is recorded 
from the speech motor cortex and decoded in control parameters for an articulatory-based 
synthesizer. This choice was highly motivated by recent studies showing that the speech motor 
cortex activity exhibits features correlated to articulatory features of speech during speech 
production (Bouchard et al., 2013; Cheung et al., 2016). Moreover, while speech synthesis from 
articulatory data can be achieved in several ways and using different types of articulatory data, 
we motivated in Chapter 2 our choice to use a machine learning approach in which a large 
articulatory-acoustic dataset recorded using electromagnetic-articulography (EMA) is used to 
train a statistical model mapping articulatory trajectories into acoustic parameters.  

In Chapter 3, we thus present two articulatory-acoustic datasets that were used to 
synthesize speech from articulatory data. The first one, PB2007, was an existing corpus, while 
the second one, BY2014, was a new corpus, specifically recorded for this study. 

In Chapter 4, we present how this corpus was used to build an articulatory-based speech 
synthesizer which converts articulatory parameters into an audible speech signal. Two 
approaches were compared: a state-of-the-art approached based on Gaussian mixture models, 
and our approach, which used deep neural networks. 

In Chapter 5, we present how the same articulatory-based speech synthesizer can be 
controlled by several subjects in real-time, from articulatory data recorded in silent speech 
condition. Such condition was chosen to be as close as possible to a BCI paradigm for speech 
rehabilitation. 



 

Chapter 3: The PB2007 and BY2014 articulatory-acoustic 

corpora 

I. Introduction 

In order to convert articulatory trajectories into acoustic parameters using machine learning 
techniques, a first step consists in recording a large articulatory-acoustic database, in which 
articulatory data from a speaker is recorded synchronously with the produced audio speech 
signal. The articulatory-acoustic dataset could be chosen as large as possible since it only has 
to be recorded once in a single subject. However, EMA requires the whole dataset to be 
recorded at once since EMA sensors cannot be placed at the exact same positions between two 
different sessions. This limits the recording time to a maximum of about two hours since sensors 
can detach because of salivation, and in order to ensure sufficient comfort of the recorded 
subject. There are few EMA dataset available publicly, notably the MOCHA-TIMIT dataset 
(http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html), containing about 460 sentences 
recorded from 4 different subjects synchronously with EMA data, and the mngu0 dataset 
(http://www.mngu0.org/), consisting of more than 1,300 phonetically diverse utterances 
recorded from a single British English speaker. However, these corpora are generally in 
English, while here we wanted to develop a speech synthesizer for French. Only one French 
corpus was available in our lab, the PB2007 corpus (Ben Youssef et al., 2009). We first used 
this corpus in order to test different strategies to perform synthesis from articulatory data. Then 
we extended that dataset by recording another corpus, the BY2014 corpus. 

In this chapter, we will thus first describe the PB2007 articulatory-acoustic corpus, and 
then the BY2014 corpus. 

II. The PB2007 corpus 

1. Articulatory data acquisition and parametrization for the PB2007 corpus 

The PB2007 was an already existing corpus (Ben Youssef et al., 2009) recorded from a 
native French speaker using the Carstens 2D EMA system (AG200). Six coils were glued on 
the tongue tip, blade, and dorsum, as well as on the upper lip, the lower lip and the jaw (Fig. 
16-A). Extra coils attached to the upper incisors and to the nose served as references to 
compensate for head movements in the midsagittal plane. Articulatory data was low-pass 
filtered at 20 Hz and down-sampled from 200 Hz to 100 Hz. Fig. 16-B shows an example of 
recorded articulatory trajectories projected in the midsagittal plane, with the corresponding 
audio signal. 
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Fig. 16: PB2007 articulatory and acoustic data. A – Positioning of the sensors on the upper lip (1), lower lip (2), tongue tip 
(3), tongue dorsum (4), and tongue back (5). The jaw sensor was glued at the base of the incisive (not visible in this image). B 

– Articulatory signals and corresponding audio signal for the sentence “Annie s’ennuie loin de mes parents” (“Annie gets 
bored away from my parents”). For each sensor, the horizontal caudo-rostral X and below the vertical ventro-dorsal Y 

coordinates projected in the midsagittal plane are plotted. Dashed lines show the phone segmentation obtained by forced-
alignment. C – Acoustic features (20 mel-cepstrum coefficients - MEL) and corresponding segmented audio signal for the 

same sentence as in B. 

2. Acoustic data acquisition and parametrization for the PB2007 corpus 

The acoustic speech signal was recorded at 22,050 Hz synchronously with the articulatory 
data, and down-sampled at 16 kHz.  

Its spectral content was parameterized by 20 complex mel-cepstrum (MEL) coefficients 
computed every 10 ms (hence a 100 Hz sampling matching the articulatory data acquisition 
frequency) from a 25-ms sliding window (Fig. 16-C). The computation of these MEL 
coefficients was done using the Speech Processing ToolKit (SPTK) mcep tools (Tokuda et al., 
2014). These 20 coefficients efficiently represent the spectral envelope of speech and can be 
converted back into audible sounds by building a so-called Mel Log Spectrum Approximation 
(MLSA) filter (Imai, 1983). This approach is based on the source-filter model of speech 
production, which models the speech signal as a convolution of a sound source (e.g., the glottal 
activity) with a linear acoustic filter representing the vocal tract. In the present MLSA model, 
a set of M mel-cepstrum coefficients �  represent the vocal tract filter H(z) for each audio 
signal window, as follows: � = e��∑ � . ̃−= , 

with ̃− = − −�−� − . 

The coefficient α is chosen so that the mel-scale becomes a good approximation of the 
human sensitivity to the loudness of speech (here α = 0.41). The mel-cepstral coefficients �  are approximated using the Newton-Raphson method for numerically solving equations, 
and linearly combined to obtain the MLSA filter coefficients. This filter is then excited with a 
source signal representing the glottal activity (i.e. vibration of the vocal folds) in order to 
reconstruct the corresponding speech. Such excitation signal is generally designed by extracting 
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the pitch from the original audio signal, and then generating white noise for non-voiced 
segments, and a train of pulses for voiced segments, which period matches the pitch.  

3. Content of the PB2007 corpus 

Transcription of the audio signals was first done manually in naturally written text, then 
translated into phone sequences using LLiaPhon phonetizer (Bechet, 2001), and finally 
manually corrected. Phone sequences were then automatically aligned on audio files using a 
forced-alignment procedure, based on a standard speech recognition system. 

The PB2007 database contained about 15 minutes of speech after removing the periods of 
silence. This database was composed of 1108 items, including all isolated vowels, all vowel-
consonant-vowel sequences (VCVs) with identical start and end vowel, many isolated words, 
and some phonetically balanced sentences. This resulted in 5,115 phones in total. The 
distribution of the 34 different phonetic classes used to describe French language in this corpus 
is shown in Fig. 17-A. Phone frequency ranged from 348 occurrences for the phone /a/ to 38 
occurrences for /h/. The distribution of the articulatory data points in the midsagittal plane is 
represented in Fig. 17-B. The jaw was the articulator with the smallest movement amplitude 
(about 10mm), followed by the upper lip (about 15mm), the lower lip (about 20mm), and finally 
the tongue had the highest amplitude of movement (about 30mm for each sensor). 

 

Fig. 17: PB2007 articulatory-acoustic database description. A – Occurrence histogram of all phones of the articulatory-
acoustic database. Each bar shows the number of occurrence of a specific phone in the whole corpus. B – Spatial distribution 
of all articulatory data points of the database (silences excluded) in the midsagittal plane. The positions of the different sensors 
are plotted with different colors. The labeled positions correspond to the mean position for the 7 main French vowels. 
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III. The BY2014 corpus 

In a preliminary step, the PB2007 corpus was first used to build an articulatory-based 
speech synthesizer, which lead to promising results (see “Conclusion on the PB2007 
synthesis”). However, preliminary results suggested that better synthesis accuracy could be 
achieved by recording a larger articulatory-acoustic database including more full sentences 
instead of isolated words, as well as adding at least one sensor on the soft palate in order to 
discriminate nasal and non-nasal phones. The BY2014 corpus was thus recorded for this 
purpose. 

1. Articulatory data acquisition and parametrization for the BY2014 corpus 

The articulatory data was recorded using the electromagnetic articulography (EMA) NDI 
Wave system (NDI, Ontario, Canada), which allows three-dimensional tracking of the position 
of small coils with a precision of less than a millimeter (while the EMA system used for the 
PB2007 corpus only allowed to record 2D positions of the coils in the midsagittal plane). Nine 
such 3D coils were glued on the tongue tip, dorsum, and back, as well as on the upper lip, the 
lower lip, the left and right lip corners, the jaw and the soft palate (Fig. 18-A). This 
configuration was chosen for being similar to the ones used in the main publicly available 
databases, such as MOCHA (http://www.cstr.ed.ac.uk/ research/projects/artic/mocha.html) and 
mngu0 (Richmond et al., n.d.), and in other studies in articulatory-based synthesis (Toda et al., 
2008) or articulatory-to-acoustic inversion (Uria et al., 2011). It is similar to that of the PB2007 
dataset and allows to capture well the movements of the main articulators while avoiding to 
perturb the speaker too much: 3 coils on the tongue give information on back, dorsum and apex 
while 4 coils on lips give information on protrusion and rounding, and we considered that one 
sensor was enough for the jaw since it is a rigid articulator, and one for the soft palate since it 
has mostly one degree of freedom. An additional 6D reference coil (which position and 
orientation can be measured) was used to account for head movements and was glued behind 
the right ear of the subject. To avoid coil detachment due to salivation, two precautions were 
taken to glue the sensors. First, the tongue and soft palate sensors were glued onto small pieces 
of silk in order to increase contact surface, and second, the tongue, soft palate and jaw surfaces 
were carefully dried using cottons soaked with 55% green Chartreuse liquor. The recorded 
sequences of articulatory coordinates were down-sampled from 400 Hz to 100 Hz. Fig. 18-B 
shows an example of recorded articulatory trajectories projected in the midsagittal plane, with 
the corresponding audio signal. The vibration of the vocal folds was as well recorded using an 
electroglottograph (EGG), but this signal was not used in the present study.  
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Fig. 18: BY2014 articulatory and acoustic data. A – Positioning of the sensors on the lip corners (1 & 3), upper lip (2), lower 
lip (4), tongue tip (5), tongue dorsum (6), tongue back (7) and velum (8). The jaw sensor was glued at the base of the incisive 
(not visible in this image). B – Articulatory signals and corresponding audio signal for the sentence “Annie s’ennuie loin de 
mes parents” (“Annie gets bored away from my parents”). For each sensor, the horizontal caudo-rostral X and below the 
vertical ventro-dorsal Y coordinates projected in the midsagittal plane are plotted. Dashed lines show the phone segmentation 
obtained by forced-alignment. C – Acoustic features (25 mel-cepstrum coefficients - MEL) and corresponding segmented audio 
signal for the same sentence as in B. 

2. Acoustic data acquisition and parametrization for the BY2014 corpus 

The acoustic speech signal was recorded at 22,050 Hz synchronously with the articulatory 
data. Its spectral content was parameterized by 25 MEL coefficients computed every 10 ms 
(hence a 100 Hz sampling matching the articulatory data acquisition frequency) from a 23-ms 
(512 samples) sliding window using the SPTK mcep tools (Fig. 18-C). The choice was made 
to increase the number of MEL coefficients with regards to the PB2007 corpus in order to have 
a more precise parametrization of the spectral content which might lead to a better synthesis 
quality. The same reason motivated the choice to keep the original audio sampling rate of 
22,050 Hz instead of decreasing it to 16 kHz. Note that the α coefficient used for the MLSA 
depends on the audio sampling frequency and was thus equal here to 0.455 instead of 0.41. 

3. Content of the BY2014 corpus 

As for the PB2007 corpus, transcription of the audio signals was first done manually in 
naturally written text, then translated into phone sequences using LLiaPhon phonetizer, and 
finally manually corrected ; and phone sequences were then automatically aligned on audio 
files using a forced-alignment procedure, based on a standard speech recognition system. 

The final database contained more than 45 minutes of speech after removing the periods of 
silence, which was about three times longer than the PB2007 corpus. This database was 
composed of 925 items of variable length, including all isolated vowels, all vowel-consonant-
vowel sequences (VCVs) with identical start and end vowel, phonetically balanced sentences, 
and many other sentences extracted from articles of the French newspaper “Le Monde”. This 
resulted in 18,828 phones in total, which was almost four times more than the PB2007 corpus. 
The distribution of the 34 different phonetic classes used to describe French language in this 
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corpus is shown in Fig. 19-A. Phone frequency ranged from 1,420 occurrences for the phone 
/a/ to 27 occurrences for /ɲ/. The distribution of the articulatory data points in the midsagittal 
plane is represented in Fig. 19-B. The velum was the articulator with the smallest movement 
amplitude (less than 10mm), followed by the jaw and the upper lip (about 10mm), the lower lip 
(about 20mm), and finally the tongue had the highest amplitude of movement (about 30mm for 
each sensor). 

 

Fig. 19: BY2014 articulatory-acoustic database description. A – Occurrence histogram of all phones of the articulatory-
acoustic database. Each bar shows the number of occurrence of a specific phone in the whole corpus. B – Spatial distribution 
of all articulatory data points of the database (silences excluded) in the midsagittal plane. The positions of the different sensors 
(except corner lips) are plotted with different colors. The labeled positions correspond to the mean position for the 7 main 
French vowels. 

The whole BY2014 corpus was made publicly available and can be downloaded at 
https://zenodo.org/record/154083 (Bocquelet et al., 2016b).  



 

Chapter 4: Articulatory-based speech synthesis 

I. Introduction 

In the previous chapter we presented two articulatory-acoustic datasets, the PB2007 corpus, 
which was an already existing corpus, and the BY2014 corpus, which was a new corpus that 
we recorded to extend the PB2007 corpus. Such synchronous articulatory-acoustic data can 
then be used to automatically compute (or “train”) mathematical models in order to convert (or 
“map”) new articulatory trajectories into the corresponding acoustic parameters, the so-called 
articulatory-to-acoustic mapping. The types of mathematical models as well as the methods to 
train them are numerous and are part of an entire research field: machine learning. At the 
beginning of this thesis, state-of-the-art methods for articulatory-based speech synthesis (based 
on machine learning) were using Gaussian Mixture Models (GMM), while Deep Neural 
Networks (DNN) were showing many promising results in other fields. This motivated our 
choice to test and compare both approaches. 

In this chapter, we thus describe how articulatory trajectories were mapped to acoustic 
parameters using a Deep Neural Network (DNN), and compare our results with a state-of-the-
art approach based on Gaussian Mixture Models (GMMs).  

II. Articulatory-to-acoustic mapping 

The articulatory-to-acoustic mapping was performed both using GMMs and DNNs. 
Fundamental basis of GMMs and DNNs models and their training are detailed in Chapter 2. 
Here we describe the choices of GMMs and DNNs parameters that we made to perform the 
articulatory-to-acoustic mapping. 

1. GMM-based mapping 

Gaussian Mixture Models (GMMs) have been previously used to predict acoustic 
parameters from EMA data in particular using the trajectory GMM approach proposed by Toda 
et al. that we presented in Chapter 2, which takes into account the data dynamics (Toda et al., 
2008). Here we considered this approach as a gold-standard to which we compared our 
approach using deep neural networks (DNNs). 

a. Choice of GMM hyper-parameters 

One advantage of using the trajectory GMM for regression is that it has very few hyper-
parameters (i.e. parameters that are not learned during the training phase but are chosen a 
priori).  

Number of components. The first parameter is the number M of components in the 
mixture. While different approaches have been proposed to try to automatically estimate the 
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best number of components, such as modification of the EM algorithm (Huang et al., 2013), we 
chose here to train different mixtures with different numbers of components (from 16 to 256) 
in order to observe how this affect the synthesis quality, and observe any overfitting effect 
(when the model has many trained parameters, it overfits the training data, thus not being able 
to correctly predict unknown data). 

Order of the derivatives. In order to take into account the dynamic properties of acoustic 
parameters, the trajectory GMM includes the derivatives of the acoustic features. Thus the order 
of the derivatives is another hyper-parameter. Here we chose to only add the first derivatives to 
the acoustic features vector, as defined in (Eq.  11). Indeed, while this is not reported in the 
present manuscript, preliminary results showed no significant improvement when using higher 
order derivatives, such as the second order derivatives defined in (Eq.  12). 

Training parameters. Finally, additional hyper-parameters are relative to the training 
phase. First, the EM algorithm needs an initial estimation of the searched parameters, that is to 
say an initial estimate of the mean vector and covariance matrix of each Gaussian component. 
For that purpose, we used the k-means algorithm in order to cluster the training data in as many 
groups as desired Gaussian components. The centroid and covariance of each cluster was then 
chosen as a first estimation of each Gaussian component. K-means is an iterative algorithm that 
has its own set of hyper-parameters. Here we used a maximum of 250 iterations, and two 
replicates (the k-means algorithm needs initial centroids for each cluster. In the first replicate, 
they are chosen randomly in the data. Then in the second replicate, the result from the first one 
is used to initialize the centroids). The EM algorithm also provides the possibility to use full or 
diagonal covariance matrices. Here we used diagonal covariance matrices, as suggested by 
(Toda et al., 2008). 

The training of the GMM was done in a 5-fold cross-validation process, so that the original 
data was randomly divided into 5 chunks, 4 of which were used for training, while the remaining 
one was used for testing, which was repeated 5 times in order to test all partitions. 

b. Implementation details of the trajectory GMM 

All the code for trajectory GMM was implemented in MATLAB. The EM algorithm for 
fitting a GMM to data and the original code for the k-means algorithm were from the Statistics 
Toolbox. We used the patch from Da Kuang, which accelerates the computation of k-means 
without changing the final result (http://math.ucla.edu/~dakuang/software/kmeans3.html). 

2. DNN-based mapping 

In chapter 2 we introduced the fundamental basis of deep neural networks (DNNs) as well 
as the conjugate gradient method to fit their parameters. We presented as well the issues that 
arise when training such deep architecture, resulting in a poor gradient propagation. We 
mentioned as well the existence of pre-training methods to avoid this issue, and in particular 
the Deep Belief Network approach, which was used for the inverse acoutic-to-articulatory 
problem of predicting the articulatory configuration from the audio signal (Uria et al., 2011). 
However, preliminary results showed that using such a pre-training method resulted into poor 
final solution with our training dataset and we thus proposed another training approach. 
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a. Proposed approach for training DNNs for regression 

We trained our network using the previously described conjugate gradient algorithm (see 
Chapter 2). However, instead of directly training the whole network – which did not converge 
– we chose to add the different layers successively (Fig. 20). During the first step, the network 
was only composed by the input layer h0, the first hidden layer h1, and the output layer hL+1, 
temporarily connected to the h1 layer (Fig. 20-A). This initial network was randomly initialized 
then fine-tuned using the conjugate gradient algorithm, before deleting the temporary output 
layer (Fig. 20-B). Then the next layer was added so that the new network was now composed 
by the input layer h0, the first two hidden layers h1 and h2, and the output layer hL+1, temporarily 
connected to the h2 layer (Fig. 20-C). The weights from the input layer h0 to the first hidden 
layer h1 were those obtained at the previous step and the other weights were randomly 
initialized. The conjugate gradient algorithm was then applied to this network for fine-tuning, 
before removing the temporary output layer (Fig. 20-D). This process was repeated until all the 
hidden layers were added (Fig. 20-E). While this process is not as computationally efficient as 
doing a pre-training layer-by-layer such as when training a Deep Belief Network, this allowed 
good and fast convergence of the training process. 
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Fig. 20: Proposed approach for training DNNs for regression. A - During the first step, the network was only composed by 
the input layer h0, the first hidden layer h1, and a temporary output layer, connected to the h1 layer. This initial network was 
randomly initialized then fine-tuned using the conjugate gradient algorithm. B – The temporary output layer was then deleted. 
C - The next layer was then added so that the new network was now composed by the input layer h0, the first two hidden layers 
h1 and h2, and a new temporary output layer, connected to the h2 layer. The weights from the input layer h0 to the fist hidden 
layer h1 were those obtained at the previous step and the other weights were randomly initialized. The conjugate gradient 
algorithm was then applied to this network for fine-tuning. D – The temporary output layer was then deleted. E - This process 
was repeated until all the hidden layers were added. 

b. Choice of DNN hyper-parameters 

Network architecture. The whole DNN architecture is defined by a set of hyper-
parameters: the number of layers, the number of units in each layer (which can be different 
from one layer to another one), and the activation functions of each unit (which can also be 
different for each unit, and have its own set of hyper-parameters).  Methods have been proposed 



Chapter 4: Articulatory-based speech synthesis 

 
83 

 

to automatically optimize the number of layers and units, such as starting with an initially big 
networks and dropping units during the training process (Lecun et al., 1990; Zeiler and Fergus, 
2012; Hinton, 2014), or using a constructive approach which successively adds new units or 
layers (Lengellé and Denoeux, 1996). However, as for trajectory GMMs, we chose to train 
several DNNs with different and manually-set architectures in order to observe the impact on 
the synthesis quality, and overfitting effects. Here we chose to only consider a DNN with the 
same number of units in all hidden layers, and all hidden units having the same activation 
function.  

Activation function. Many different activation functions have been proposed in the 
literature, such as the logistic sigmoid function, the hyperbolic function, the step function, the 
rectified linear function, the leaky rectified linear function, etc. In fact, any differentiable 
function could be used. Sigmoid-like function were originally chosen for their step-like shape 
which could be of advantage when discriminating values for a classification problem. In this 
study, two different activation functions for the hidden layer were chosen: the logistic sigmoid 
function (Fig. 21-A), and the rectified linear function (Fig. 21-B). The logistic sigmoid function 
is a widely used activation function, and was thus used on the PB2007 corpus for preliminary 
experiments. However the rectified linear function was suggested by several studies as being 
more efficient in terms of convergence and classification results (Hinton, 2010b), and was thus 
used on the new BY2014 corpus. In practice, preliminary experiments not reported here showed 
indeed a significant improvement on the convergence of the algorithm which needed less 
iterations and had a steeper learning curve, and less computation time per iteration (the rectified 
linear function being a piecewise linear function, while the logistic sigmoid includes an 
exponential term). However, no significant difference was observed in the final error given by 
the objective function (this was as well observed when using the hyperbolic or leaky rectified 
linear functions). In order to shorten training times, the rectified linear function was thus 
preferred to the sigmoid function in future experiments, and thus on the BY2014 corpus. 

 

Fig. 21: Activation functions of the neural network. A – Logistic sigmoid function. B –Rectified linear function. 

Weights initialization. The training of a DNN being an iterative process, additional hyper-
parameters are chosen in order to correctly initialize the weights and biases. This initialization 
step is of importance since a bad initialization can lead to a poor optimization result. As 
suggested in (Glorot and Bengio, 2010), bias were null initialized, and weights wi,j

(l) from layer 
hl-1 to layer hl were randomly initialized from a uniform distribution U which interval depended 
on the activation function σ and the number of units in both layers: 
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~ [−√ − + ,+√ − + ] Eq.  24 

While other different initialization methods have been proposed (Nguyen and Widrow, 
1990; Osowski, 1993; Yam and Chow, 2000), in practice choosing the weights in that way leads 
to good convergence and thus there was no need for further optimization.  

Error criterion. Another hyper-parameter is the choice of the error criterion, i.e. the 
function that measures the difference between the current output of the network, and the target 
output from the training data, which has to be minimized. The most commonly used error 
criterion when predicting continuous values is probably the mean squared error (MSE): 

, ̂ = ∑ − �̂=  Eq.  25 

With  the target output vector and ̂ the current output vector, and n their number of 
features. 

Many other error criterions can be defined, such as using the absolute differences instead 
of the squared ones, etc. In practice, no clear difference was observed in the final synthesis, so 
that the MSE was chosen as the error criterion for all trainings. 

Batch training. Another hyper-parameter is the choice of how will the networks 
parameters be updated. For instance, when using gradient descent, the update could be done on 
a sample-by-sample basis, i.e. the gradient could be computed for one sample to order the 
parameters, then computed on the next sample to update the parameters, etc. Another way could 
be to compute the gradient for all samples, then use the mean of all these gradient as the gradient 
that will be used to update the network parameters. An intermediary and efficient solution is to 
cut the training data into small “batches” (Hinton, 2010a), and update the network parameters 
once for each batch using the mean gradient on this batch, which is the solution we used in this 
work. The data was cut into 100 batches, which consisted of randomly picked samples. When 
the optimization process iterated over all the batches (i.e. did one “epoch”), new batches were 
randomly picked, so that from one epoch to another, the batches were never the same. 

Training parameters. All the remaining hyper-parameters are those of the training 
algorithm used. In our case, we used the Polack-Ribière conjugate gradient method as 
previously described. In practice, the conjugate gradient, when compared with gradient descent, 
showed the advantage that parameters were not highly dependent on the training dataset, but 
rather that we could design a set of parameters that would work in most cases. Here, we limited 
the number of line-searches – i.e. the total number of iterations per update – to 3, and to an 
overall of 20 function evaluations, which means that the conjugate gradient and the line search 
algorithms would stop iterating if the error function was computed more than 20 times, ensuring 
a good compromise between convergence and computation time, and avoiding infinite loops 
because of numerical inaccuracies. For the constants of the Wolfe’s conditions, we chose ρ=0.1 
and ε=0.5. 

The purpose of the other hyper-parameters of the training are to avoid overfitting of the 
neural network. Indeed, a neural network with enough units and layers could learn any arbitrary 
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function of the inputs (Bishop and Christopher M. B, 2006). However, there is a high chance 
that such a network would be quite inefficient at generalizing, i.e. predict the outputs 
corresponding to inputs that were not part of the original training dataset. This issue is called 
overfitting. To avoid overfitting, a widely used approach is called early stopping. In that case, 
the original training data is divided into two set: a training set that will actually be used to 
compute the gradient using back-propagation and update the network parameters, and a 
validation set that will act as new unseen data, which will not be used to update the network 
parameters, but only to compute the error of the network on this set. During the actual learning 
stage of the network parameters, the error should decrease on both the training and the 
validation set. When the network is overfitting, the error still decreases on the training set – 
since this is the purpose of the optimization algorithm, but generally increases or stabilizes on 
the validation set. Early stopping consists in stopping the training of the network if there was 
no improvement on the validation set during several iterations. Here, since the optimization is 
performed in a batch fashion, i.e. the training data is cut into batches, and the optimization is 
performed batch by batch instead of feeding all the training data at a time, the error is not strictly 
decreasing, but slightly jittering. Thus, we chose to stop training if 20 consecutive iterations did 
not show any improvement on the validation set. Note that this batch training also reduces 
overfitting by presenting different data to the network at each optimization step, avoiding to 
minimize the error on a fixed dataset. In practice, 80% of the available data were used for the 
training, 10% were used for validation, and the remaining 10% for testing. This was done using 
a 5-fold cross-validation process, so that the original data was randomly divided into 5 chunks, 
4 of which used for training, the remaining chunk being used for validation and test, which was 
repeated 5 times in order to test all partitions – each time with a new network with identical 
architecture. 

c. Implementation details of the DNNs 

All the artificial neural networks procedures were done using custom-made optimization 
tools written in C++. High care was given in order to optimize computation speed: smart 
memory management was used in order to avoid numerous data transfers between processes, 
intensive multi-threading was implemented to parallelize and accelerate computations, and 
formulas were expressed in matrix form when possible, in order to take advantage of fast matrix 
computation libraries like Eigen (http://eigen.tuxfamily.org). The conjugate gradient code was 
adapted from the Matlab implementation of the DRToolBox (Rasmussen, 1996). The final 
framework is highly flexible so that new types of networks, layers, units, activation functions, 
error criterions, training procedures, etc. can be easily added, and is optimized for real-time 
applications. The whole code was compiled as a C++ library in order to be easily used in other 
projects (see next chapters of this thesis), and we developed a graphical user interface, called 
DeepSoft, in order to easily try different sets of parameters while continuously monitoring the 
training process. 

The DeepSoft software and library first allow to load synchronous input and output data 
(Fig. 22). 
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Fig. 22: DeepSoft – screenshot of the “Dataset” panel. Synchronous input (left) and ouput (right) data can be loaded from 
different file formats. 

These input and output data can then be pre-processed by chaining several processing 
blocs, for instance select features, add temporal context to the data or remove silences (Fig. 23). 
The library can be easily extended to support new types of pre-processing. 

 

Fig. 23: DeepSoft – screenshot of the “Preprocessing” panel. Input (left) and output (right) data can be pre-processed by 
chaining different pre-processing blocs. For instance here, the output is first z-scored (top-right bloc titled “normalize”). 

The resulting dataset can be then partitioned into training, validation and test sets, for 
instance to perform cross-validation (Fig. 24). 
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Fig. 24: DeepSoft – screenshot of the “Learning data” panel. This panel allows to split the data into training, test and 
validation tests, for instance to perform cros-validation. 

The neural network is then designed by stacking different type of layers, for instance linear 
layers than connect two point-wise function layers (Fig. 25). Each layer is fully configurable – 
for instance for choosing the number of units and their activation function, and the library 
allows to easily add new types of layer in order to test different types of neural networks. 

 

Fig. 25: DeepSoft – screenshot of the “Network” panel. The neural network is built by stacking layers. Here you can see that 
a linear layer is stacked over a point-wise function layer consisting of 50 hyperbolic units. 

Once the network architecture is defined, the training panel (Fig. 26) allows to choose 
different training algorithms and their parameters, for instance conjugate gradient, as well as 
regularization methods, such as early-stopping or L2-regularization, and different choices of 
objective functions, for instance the mean-squared error. As for pre-processing and network 
layers, the library was developed so that adding new training algorithms, regularization methods 
or objective function can be easily done. 
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Fig. 26: DeepSoft – screenshot of the “Training” panel. This panel allows to choose and configure the training algorithm, 
including regularization methods and criterion function.  

Once the training parameters are set, the network training can be performed while 
monitoring its progress, principally by monitoring the prediction error on the training and 
validation sets (Fig. 27), and previewing the prediction quality on the test set (Fig. 28). This 
real-time monitoring allows to test various training parameters and network architectures, while 
rapidly eliminating those for which the training is not satisfying, instead of waiting for the 
whole training to finish. 

 

Fig. 27: DeepSoft – screenshot of the “Error” panel. At each epoch, the graph displays the error on the training set (blue 
line) and validation set (red line). 
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Fig. 28: DeepSoft – screenshot of the “Data” panel. This pannel allows to preview the network prediction (red line) compared 
to the ground truth (black line), for each item of the test set (each item is delimited by an alternating white/blue background). 

Once trained, the neural network can be saved, as well as the pre-processing parameters, 
in a flexible and human-readable format that can be loaded and used through the C++ library 
from another software. 

3. Articulatory-to-acoustic mapping and speech synthesis 

GMMs and DNNs were used to build a mapping model allowing to transform articulatory 
data into acoustic data. Once trained, such mapping can be used to infer sequences of acoustic 
features (the MEL coefficients), from new articulatory data (the EMA signals). These estimated 
MEL coefficients define the MLSA filter which is then excited with a source signal representing 
the glottal activity in order to reconstruct the corresponding audio signal (see Chapter 3). Fig. 

29 summarize the synthesis chain when using the DNN-based mapping. 

 

Fig. 29: Synthesis when using a DNN-based mapping. Using a DNN, articulatory features are mapped to acoustic features, 
which are then converted into an audible signal using the MLSA filter and an excitation signal. 

a. Synthesis for the PB2007 corpus 

For the PB2007 corpus, the excitation signal was designed as a white noise, mimicking the 
case of unvoiced sounds, as in whispered speech. Indeed, no information about the glottal 
activity is present in the EMA data, and whispered speech is mostly intelligible: in French, the 
following 6 pairs of phones are mostly discriminated by their voicing feature (the first phone 
of each pair being unvoiced): {/p/, /b/}, {/t/, /d/}, {/k/, /g/}, {/f/, /v/}, {/s/, /z/}, and {/ʃ/, /ʒ/}. 

The sounds for the PB2007 corpus were synthesized both using the GMM- and the DNN- 
based mappings, with variable numbers of mixture components in the case of GMMs, and 
numbers of layers and units in the case of DNNs. Both input (articulatory) and output (acoustic) 
data were z-scored (subtraction of the mean and then division by the standard deviation) before 
being fed to the network, and data frames corresponding to silence periods were removed. To 
take into account the dynamic properties of speech, the GMM mapping used the first derivatives 
of the articulatory data (computed using finite differences with the previous and next frames), 
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while we concatenated each articulatory frame with its 2 preceding frames (30-ms time window 
context) for the DNN mapping. The GMM and DNN thus mapped the articulatory input features 
to 20 output mel-cepstrum coefficients, which were then converted into an audible speech signal 
using the MLSA filter and the excitation signal. Different GMMs and DNNs were tested on the 
PB2007 corpus in order to investigate best strategies for the articulatory-to-acoustic mapping. 

b. Synthesis for the BY2014 corpus 

As for the PB2007 corpus, the EMA did not contain any information on the glottal activity. 
To synthesize speech, we used two different excitation signals. The first excitation signal was 
designed so that all the synthesized sounds were voiced with a constant pitch, as opposed to the 
PB2007 synthesis for which we chose to have all the synthesized sounds unvoiced. That choice 
was made after preliminary experiments in which subjects reported the always-voiced synthesis 
to be more pleasant than the always-unvocied one. We thus designed an artificial template-
based excitation signal using the glottal activity from a single vowel /a/. While such glottal 
activity could be recorded using an electroglottograph as in (Grimaldi and Fivela, 2008), here 
we estimated it using inverse filtering (Markel and Gray, 1976) (using the SPTK mlsadf tool). 
In short, inverse filtering works by extracting the mel coefficients from the original audio, then 
use these coefficient to compute the inverse filter of the MLSA. This inverse filter is then 
applied to the original audio in order to obtain the source excitation signal (Fig. 30). This signal 
was then used as a template to create an excitation signal by simply looping it. It was extracted 
from the isolated steady vowel /a/ in order to ensure an almost constant pitch (i.e. an almost 
period glottal activity) so that it could be looped. 

 

Fig. 30: Inverse glottal filtering. The top-left pannel represents the original audio signal extracted from an occurrence of the 
phone /a/. The bottom-left pannel represents the corresponding signal obtained by inverse filtering. The obtained signal is 
close to a pulse train which period corresponds to the pitch of the original /a/ signal. The left-pannel is a close-up on the first 
samples of the signal obtained by inverse filtering. 

In order to evaluate the intelligibility loss when not using glottal activity estimation 
procedure (here by voicing all sounds), we performed as well the synthesis using another 
excitation signal. First the pitch was extracted from all the original audio signals using the SPTK 
pitch tool. Note that while we could have directly extracted the fundamental frequency from 
the glottal activity recorded through the electroglottograph, we chose here to extract the pitch 
from the audio, which is almost equivalent. That pitch was then used to generate an artificial 
excitation that was a white noise for unvoiced sounds, and a pulse train which period depended 
on the pitch value for voiced sounds, as can be seen in Fig. 31. The amplitude of each pulse is 
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equal to the square root of the pitch period, so that the power of the excitation signal is almost 
constant, in order to avoid that higher pitch sounds have more power.  

 

Fig. 31: Excitation signal generation. First the pitch is extracted from the original audio. This pitch is then used to generate 
an excitation signal which is white noise when the pitch is null (i.e. sounds are unvoiced) and a  pulse train at the pitch period 
otherwise (i.e. sounds are voiced). 

All the sounds for the BY2014 corpus were synthesized using only deep neural networks 
since results on the PB2007 corpus exhibited a superior robustness compared to the trajectory 
GMM approach. Following the results obtained from the PB2007 corpus, the DNN architecture 
was fixed, and had 3 hidden layers of 200 rectified linear units each. Both input (articulatory) 
and output (acoustic) data were z-scored (subtraction of the mean and then division by the 
standard deviation) before being fed to the network, and data frames corresponding to silence 
periods were removed. To take into account the dynamic properties of speech, we concatenated 
each articulatory frame with its 4 preceding frames (50-ms time window context compliant with 
a real-time implementation). The DNN thus mapped the articulatory input features to 25 output 
mel-cepstrum coefficients, which were then converted into an audible speech signal using the 
MLSA filter and the excitation signal. 

III. Artificial degradation of the articulatory data 

The intended application of the articulatory-based speech synthesizer is to build a speech 
BCI, where brain signals control in real-time the synthesizer. In this work, we considered 
speech synthesis from articulatory data since recent studies suggested that the speech motor 
cortex exhibited neural activity correlated to articulatory features during speech production, 
rather than acoustic features (Bouchard et al., 2013; Cheung et al., 2016). Thus, such speech 
synthesizer would be controlled by decoding the neural activity from the speech motor cortex. 
However, decoding of neural data often results in non-perfect signals, reflecting uncontrolled 
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fluctuations of brain activity or decoding and performance fluctuations. Thus, the ideal speech 
synthesizer must be robust to noisy articulatory inputs (Bocquelet et al., 2014). Moreover, the 
number of degrees of freedom (DoFs) that can be controlled by BCI remains limited and of the 
order of ten (Collinger et al., 2013; Ifft et al., 2013; Wodlinger et al., 2014). We thus evaluated, 
using the PB2007 corpus, the extent to which GMMs and DNNs mapping were robust to noise 
added on articulatory data and the minimum number of DoFs that were necessary to achieve 
intelligible speech. Different numbers of DoFs were also tested using the BY2014 corpus. In 
order to assess these properties, the articulatory data was artificialy degraded. 

1. Noisy data 

We tested the robustness of the articulatory-to-acoustic mapping by adding artificial noise 
to the test input articulatory data (no noise was added during the training step). We added white 
noise low-pass filtered below 20 Hz (as were the original EMA data) and re-centered. We tested 
different signal to noise ratio (SNR) values as defined by the ratio of the peak-to-peak amplitude 
of each articulatory signal by the standard deviation of the filtered noise. The noise amplitude 
was adjusted across EMA signals so that all had identical SNR. 

2. Dimensionality reduction 

In practice, accurate real-time BCI control of effectors can only be expected with a few 
degrees of freedom, typically less than 10. Hence, we tested to which extend it is possible to 
reduce the number of articulatory parameters, starting from all the parameters of our EMA 
database (12 for PB2007, 27 for BY2014), while preserving acceptable speech synthesis 
quality. We compared two main dimension reduction methods: the principal component 
analysis (PCA) and deep auto-encoders (DAE). 

For the PB2007 corpus, we tested the performance of DNN- and GMM-based speech 
synthesis with all possible reduced dimensions, from 1 to 12, by feeding the originally trained 
models with reduced-then-recovered articulatory parameters, both using PCA and DAE. 

For the BY2014 corpus, we only assessed the synthesis quality by reducing the articulatory 
parameters from 27, to 14, 10 and 7, using PCA only. While DAE gave very promising results 
the choice for PCA was motivated by its lack of hyper-parameters, as opposed to DAE (which 
are DNNs and thus have similar hyper-parameters). 

Note that in all cases, the dimensionality reduction models were computed on the training 
data only. 

a. Principal Component Analysis 

Principal component analysis (PCA) is a well-known and widely used orthogonal 
transformation to convert a set of observations of possibly correlated variables into a set of 
values of linearly uncorrelated variables called principal components. The principal 
components are sorted by variance, which means that the first component accounts for most of 
the variability in the original data, then the second is chosen so that it accounts for the highest 
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in front of the articulatory-to-acoustic mapping model (GMM or DNN), in order to recover full 
articulatory parameters from the reduced ones (Fig. 33). 

 

Fig. 33: Synthesis when using reducted articulatory data. The decoder part of the deep autoencoder (in blue) is added in front 
of the articulatory speech synthesizer (in orange) in order to recover full articulatory parameters from reduced parameters. 

The DAEs were trained using the dimensionality reduction toolbox for Matlab (Maaten, 
n.d.). After preliminary experiments, the DAEs were chosen to have four hidden layers with all 
50 units, except the middle one used for reduction, which number of units was equal to the 
desired number of reduced parameters. 

IV. Evaluation of the speech synthesis intelligibility 

Automatically evaluating speech synthesis results is not an easy task, so that most of the 
times a subjective evaluation performed by human subjects is needed. However, for fast 
prototyping, such as adjusting the training parameters, the number of mixture components, etc. 
an objective evaluation measure is needed. Indeed, subjective evaluation has two major 
limitations. First, evaluating sounds is a demanding task which tires rapidly the test subjects, so 
that they can only stay focused for about one hour. Second, when evaluating full sentences, 
subjects are biased once they have heard a sentence and will better recognize it if presented 
twice to them, even if the second occurrence is barely intelligible, improving the overall results 
and preventing any comparison. However, subjective evaluation remains the most reliable 
evaluation for speech. We thus used objective evaluation methods for preliminary analysis, 
which were then confirmed using restricted subjective evaluations. 

1. Objective evaluation based on automatic speech recognition 

One widely used measure is the mean mel-cepstral distortion (MCD) which compares two 
synthesized sounds S1 and S2 of identical length (Kubichek, 1993). The MCD measures the 
distance between the two sequences m(1) and m(2) of M mel-cepstrum coefficients, each 
sequence being of length N, respectively extracted from S1 and S2: 

, = . ln ∑√ ∑ , − ,==  Eq.  26 

Note that Eq.  26 can be simplified to the mean root square error (MRSE) when removing 
the constant scaling factors: 
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, = ∑√∑ , − ,==  Eq.  27 

It is important to mention that in the present work we are particularly interested in synthesis 
intelligibility – the ability to synthesize comprehensible speech, rather than in synthesis quality 
– the ability to synthesis pleasant speech similar to natural speech. Of course, quality takes 
some part in intelligibility, but the MCD is in fact more a measure of quality, rather than 
intelligibility: it actually measures how close two sounds are in term of spectral information, 
while in fact two /a/ pronounced by two different persons could have significantly different 
spectral content, and thus a high MCD, while both being equally comprehensible as being an 
/a/. This is why we chose to introduce another automatic evaluation method based on automatic 
speech recognition, which might be better correlated with the human perception of speech 
intelligibility. 

Automatic speech recognition (ASR) is an entire research field and cannot be discussed in 
details in this manuscript since it is not the main focus of the thesis. The measure we will define 
here uses an ASR method to evaluate the phonetic content of a synthesized audio, in order to 
evaluate its intelligibility, and not its quality. 

One method that has proven to be efficient for automatic speech recognition is based on 
Hidden Markov Models (HMMs). HMMs model the statistical relationship between some 
hidden states – phonetic units in the case of ASR – and some observable variables – in the case 
of ASR the speech spectrum (parametrized by mel-cepstrum coefficients). Once properly 
trained, an HMM estimates the most probable sequence of hidden states – the sequence of 
phonetic units – that have generated the given observable variables – the speech spectrum 
represented as a sequence of mel-cepstrum coefficients. 

Here we used an HMM-based phonetic decoder trained on the spectral data of all the 
original database (thus one HMM for PB2007, and one HMM for BY2014) using a standard 
training procedure of context-dependent triphone tied-state HMM (Gales and Young, 2007). 
The recognition accuracy given by this decoder was used as a measurement of the quality of 
the synthetic spectral trajectories at the phonetic level. Such recognition accuracy is computed 
as so: the original sequence of phonemes is known from the training data, and the synthesized 
sequence of phonemes is obtained from the decoder. Since these sequences can be of different 
length (for instance the synthesis could have missed a word), they are first aligned using a 
string-alignment procedure based on dynamic programming (Young et al., 2009): the two 
sequences are aligned by minimizing the operations needed on the first phonemes sequence to 
transform it into the second one (Fig. 34). The possible operations on the phonemes are: none 
(the two phonemes are identical), substitution (replace a phoneme by another one), deletion (the 
phoneme is not present in the other sequence and must thus be deleted) and insertion (a 
phoneme was present in the other sequence but is missing in this one and must thus be inserted). 
Each operation is associated with a cost (usually, 0 for no operation, and 1 for all others), so 
that the algorithm finds the alignment that minimize the total cost of all operations. The 

accuracy is then defined as % = − − −�
, where N is the total number of phones, and 

S, D and I are respectively the number of substitutions, deletions and insertions. 



Chapter 4: Articulatory-based speech synthesis 

 
96 

 

 

Fig. 34: Phoneme sequences alignment. Example of two aligned sequences of phonemes. S denotes a substitution, D a deletion 
and I an insertion. 

The HMMs training and decoding were achieved using the Hidden Markov Model Toolkit 
(HTK, http://htk.eng.cam.ac.uk/). Here, neither dictionary nor language model was used for the 
recognition (as opposed to what is generally done in ASR), so that the HMM could not rely on 
language specific or context dependent information and only evaluated the phonetic content of 
the synthesized sounds. 

This objective evaluation method was only used on the PB2007 corpus, mainly to evaluate 
the effect of hyper-parameters, such as the number of components in the Gaussian mixture, or 
the number of layers and units per layer in the deep neural network, as well as the effects of 
artificially degrading the articulatory data by adding noise to it or reducing its dimensionality. 
It was always applied to the test set (i.e. speech synthesized from articulatory data that were not 
part of the training set), which included various items, ranging from pseudo-words to short 
sentences. 

2. Subjective evaluation using listening tests 

While automatic evaluation gives indications on the synthesis intelligibility, the best way 
to assess it remains to perform perceptive evaluation by human subject. In order to avoid the 
influence of the linguistic context (vocabulary and grammar constraints from the French 
language), the synthesis intelligibility was mostly evaluated on isolated vowels and vowel-
consonant-vowel (VCV) sequences, such as “apa”. 

a. Evaluation on the PB2007 corpus 

For the PB2007 synthesis, 11 subjects participated to an intelligibility test. All participants 
were French native speakers with no hearing impairment. The presented stimuli consisted of 10 
French vowels /a/, /i/, /u/, /o/, /œ/, /e/, /y/, /ã/, /ɛ/̃, /ɔ̃/, and 30 VCV pseudo words made of the 
10 consonants /p/, /t/, /k/, /f/, /s/ /ʃ/, /m/, /n/, /r/, /l/, in /a/, /i/, /u/ contexts (e.g. “oto”). Since the 
synthesis on the PB2007 corpus was done using a white noise excitation, thus resulting in 
whispered speech with all sounds unvoiced, the 6 voiced consonants /b/, /d/, /g/, /v/, /z/, and /ʒ/ 
were excluded (see “Synthesis for the PB2007 corpus”). Participants were seated in quiet 
environment and instructed that they would be listening to isolated vowels or VCV sequences. 
For each utterance, they had to pick the corresponding vowel in the case of an isolated vowel, 
or the middle consonant in the case of a VCV sequence (forced choice paradigm). They were 
told that some of the sounds were noisy and difficult to identify, and thus to not evaluate the 
sound quality but only its intelligibility. Subjects could replay the stimuli as many times as 
necessary. This information was logged and in practice subjets only listened to each sound from 
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one to three times. No performance feedback was provided during the test. The recognition 

accuracy was defined as % =  with R the number of correct answers for the N 

presented sounds of the test. 

The seven following synthesis conditions were evaluated: analysis-synthesis (“anasynth”), 
GMM-based synthesis with noise (SNR = 10.0) and without noise, DNN-based synthesis with 
and without noise (SNR = 10.0), and DNN-based synthesis with and without reduced 
parameters (7 articulatory parameters obtained with a deep auto-encoder). Analysis-synthesis 
was performed by converting the audio signals into mel-cepstrum (MEL) coefficients, which 
were then directly converted back into audio signals using the MLSA filter and a white noise 
excitation. This conversion is not lossless, though it represents what would be the best 
achievable quality for the synthetic speech signal in the present context for the chosen acoustic 
parameterization. 

b. Evaluation on the BY2014 corpus 

For the BY2014 synthesis, 12 subjects participated to an intelligibility test similar to that 
of PB2007 (note that it was a different set of subjects). All participants were French native 
speakers with no hearing impairment. The evaluated stimuli consisted of the 10 vowels /a/, /i/, 
/u/, /o/, /œ/, /e/, /y/, /ã/, /ɛ/̃, and /ɔ̃/, and the 48 VCVs made of /p/, /t/, /k/, /f/, /s/, /ʃ/, /b/, /d/, /g/, 
/v/, /z/, /ʒ/, /m/, /n/, /r/, and /l/, in /a/, /i/ and /u/ contexts (i.e., ‘apa’, ‘iti’, ‘uku’, and so on). 

Each stimulus was synthesized and thus evaluated in 5 different conditions: 4 times using 
a pulse train excitation generated using the pitch extracted from the original audio (see Fig. 31) 
for each different number of reduced articulatory parameters (PCA with 27, 14, 10 and 7 
components), and one time using the artificial template-based excitation signal (corresponding 
to a constantly voiced sound) with all 27 articulatory parameters. In the following, these 5 
conditions are respectively denoted as Pitch_27, Pitch_14, Pitch_10, Pitch_7 and 
FixedPitch_27. This allowed us to evaluate both the influence of the number of articulatory 
parameters on the intelligibility, and the effect of using or not using a realistic glottal activity 
(i.e. not a constant pitch). Indeed, this glottal activity could be obtained by decoding the neural 
activity in future BCI application. An additional evaluation was performed for the two 
conditions Pitch_27 and Pitch_14, which consisted in directly transcribing 30 sentences (see 
Annex 1 for the list of these sentences). For each listener, half of the sentences were randomly 
picked from the first condition and the other half from the other condition, ensuring that each 
listener never evaluated the same sentence twice, and that all sentences were evaluated in both 
conditions. 

The sounds were all normalized using automatic gain control, and played in random order 
for each subject at the same sound level through Beyerdynamic DT-770 Pro 80 Ohms 
headphones, while the listener was seated in a quiet environment. No performance feedback 
was provided during the test. 

For the VCVs and vowels evaluation, participants were instructed to select from a list what 
they thought was the corresponding vowel in the case of an isolated vowel, or the middle 
consonant in the case of a VCV sequence (forced choice paradigm). Graphical user interface 
buttons were randomly shuffled for each subject in order to avoid systematic default choice 
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(e.g., always choosing the left button when unable to identify a sound). The subjects were told 
that some of the sounds were difficult to identify, and thus to choose the closest sound among 

the offered possibilities. The recognition accuracy was defined as % =  with R the 

number of correct answers for the N presented sounds of the test. Since each item had exactly 

the same number of repetitions, the chance level was estimated by ℎ� % = , with C 

the number of different item categories. The chance level was thus 1/10=10% for vowels, and 
1/16≈6% for VCVs. 

For the sentences, the subjects were asked to transcribe directly the sentences they were 

listening to. Results were evaluated using the word accuracy % =  −  −  − �
 (with 

N the total number of words, S the number of word substitutions, D the number of deletions 
and I the number of insertions), which is a commonly used metric in the field of automatic 
speech recognition (see “Objective evaluation based on automatic speech recognition”). 

3. Statistical analysis 

a. Statistical analysis for the PB2007 synthesis 

A 5-fold cross-validation was employed for evaluation of each model, allowing to obtain 
mean and standard deviation (SD) for each evaluation. Since the folds used to train the DNN 
and the GMM were identical, significant differences between results were assessed using the 
non-parametric Quade test with Conover correction (Quade, 1979), using recognition accuracy 
by phone for the objective evaluation (35 scores per condition) and recognition accuracy by 
participants for the subjective evaluation (11 scores per condition). 

b. Statistical analysis for the BY2014 synthesis 

Several listeners had to identify the same synthesized items, resulting in a binary answer 
(wrong or right), for each item and each listener. Statistical analysis of these results was thus 
performed using mixed logistic regression. For the VCVs and vowels, the following model was 
used: Result ~ (Segment +  Condition)² +  (1 |  Listener), where Result is the binary answer 
(equals 0 if the item was wrongly identified, otherwise 1), Segment has two levels 
corresponding to the type of item (vowel or VCV), Condition has five levels corresponding to 
the five different conditions (Pitch_27, Pitch_14, Pitch_10, Pitch_7 and FixedPitch_27), and 
Listener has 12 levels corresponding to each listener that participated in the listening test. 
Multiple comparisons were made using contrasts according to (Hothorn et al., 2008). For the 
sentences, a paired Student test was performed to compare the results. All the tests were made 
using the R software, and packages lme4, multcomp and lsmeans. 
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V. Results 

1. Convergence of the proposed approach for training DNNs for regression 

Preliminary experiments were conducted to test different training methods for deep neural 
networks. We compared the conventional training, which consists of training the whole network 
at once, with our approach, which consists in successively adding layers in a pre-training phase 
before fine-tuning the whole network, as described previously. Fig. 35 shows an example of 
the evolution of the mean-squared error (MSE) on the training set during the training of a DNN 
with five hidden layers of 50 units each, for both approaches. 

 

Fig. 35: Comparison of the conventional neural networks training with our approach. The graph shows the mean-squared 
error on the training set for each epoch, when using the conventional training (red line) and our proposed approach (blue 
line). Vertical dashed blue lines indicate the insertion of a new hidden layer during the pre-training stage. 

In both cases, the initial MSE on the training set were identical (about 1). After 200 epochs, 
using the conventional training resulted in a MSE superior to 0.9, while using our approach 
resulted in a MSE inferior to 0.6. Note that this is not due to a superior number of epoch, since 
the network was trained for 200 epochs using the conventional training, and the same number 
of epochs was used for the proposed approach, including the number of epochs during pre-
training (here 25 epochs were used for each pre-training step). As expected, each insertion of a 
new hidden layer resulted in a reset of the MSE since weights of the new layers were randomly 
initialized, but then the error rapidly decreased, speeding up the training process.  

2. PB2007 corpus 

a. Influence of GMM hyper-parameters 

Objective evaluations were conducted for various numbers of mixture components in the 
GMM, from 16 to 256. As shown on Fig. 36, the recognition accuracy increased as the number 
of components increased, before stabilizing as long as at least 128 components were used. For 
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the following tests, we thus chose a GMM with 128 components, a choice that is consistent 
with previously published results (Toda et al., 2008). This was also motivated by the fact that 
fitting 256 components often led to ill-conditioned covariance matrices. This corresponded to 
an accuracy of 75.68 ± 1.27%. 

 

Fig. 36: Influence of the GMM hyper-parameters. The thin line shows the phone recognition according to the number of 
mixture components in the GMM-based mapping (mean±SD). The thick line represents the recognition accuracy on the 
anasynth audio. 

b. Influence of DNN hyper-parameters 

We also conducted objective evaluations of speech synthesis for various DNN 
architectures, with different numbers of layers (1 to 4) and numbers of units per hidden layer 
(20, 50, or 100) identical across hidden layers. As shown in Fig. 37, adding more units for a 
given layer increased recognition accuracy, while adding more layers first led to an increase 
before a stabilization or small degradation in accuracy. Overall, a good compromise was to use 
a DNN with 3 hidden layers of 100 units each, ensuring an accuracy of 71.13 ± 2.75%. 

 

Fig. 37: Influence of the GMM and DNN hyper-parameters. The dashed line shows the phone recognition according to the 
number of mixture components in the GMM-based mapping (mean±SD). bar plot shows the phone recognition accuracy 
according to the number of layers and the number of units per layer using DNN-based mapping (mean±SD). The thick line 
represents the recognition accuracy on the anasynth audio. 
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Fig. 38 further shows the recognition accuracy by vowel and consonant as given by the 
subjective evaluation for this chosen architecture of 3 hidden layers of 100 units each. 

 

Fig. 38: Recognition accuracy by vowel and consonant for the PB2007 synthesis with a DNN of 3 hidden layers of 100 units 

each. A – Owerall recognition accuracy for vowel and VCVs. The dashed line indicates chance level. B – Recognition accuracy 
by isolated vowel, for the subjective evaluation. The dashed line indicates chance level. Vowels are sorted by number of 
occurences in the training set, from higher to lower. C – Recognition accuracy according to the middle consonants of the VCVs, 
for the subjective evaluation. The dashed line indicates chance level. Consonants are sorted by number of occurences in the 
training set, from higher to lower (for consonant pairs, the sum of occurences of each consonant in the pair was used). 

For vowels, 4 out of 10 vowels had recognition accuracy above 90% (/o/, /u/, /a/ and /y/), 
while the worst recognition accuracy was achieved for the nasal vowels /ã/ (20%) and /ɛ/̃ (70%), 
which was expected since there was no velum information in the EMA data. For the consonants, 
3 out of 10 groups of consonants had recognition accuracy above 90% (/r/, {/ʃ/, /ʒ/} and {/f/, 
/v/}), while the worst results were achieve for the nasal consonant /m/ (58%), and the pairs of 
plosive consonants {/p/, /b/} (65%) and {/t/, /d/} (65%). 

In Fig. 38, vowels and consonants are sorted by number of occurences, from higher to 
lower (the sum of the occurences of each consonant was used for pairs). Note that there is no 
clear correlation with the number of occurrences of each phone in the training corpus, since for 
instance the corpus contained few instances of /f/ and /v/, and a larger number of /t/ and /d/. 

c. Comparison of GMM and DNN 

We then compared GMM-based and DNN-based synthesis using both the objective (HMM 
phonetic decoding) and the subjective (listening) tests. Consistent results were obtained, as 
shown in Fig. 39. In the objective test, GMM recognition accuracy reached 75.68% and the 
DNN, 71.13%. In the subjective test, the GMM recognition accuracy was 66.59% and 69.77% 
for the DNN. Both GMM and DNN recognition accuracies were below the recognition accuracy 
on original audio (P  < 10-4 for the objective evaluation and P  < 0.002/0.01 for the subjective 
one for GMM/DNN), which was 85.77% for the objective evaluation, and 87.95% for the 
subjective one. The GMM performed slightly better than the DNN in the objective evaluation 
(P  < 10-3) while no significant difference was observed between both models in the subjective 
evaluation (P  > 0.3). This might be caused by the fact that HMMs share similar properties with 
GMMs, as previously discussed. 
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Fig. 39: Comparison of GMM and DNN mappings for both objective and subjective evaluations. Each bar corresponds to 
the recognition accuracy (mean±SD). 

d. Speech synthesis from reduced articulatory data 

Then, we evaluated the performance of the speech synthesizer when degrading articulatory 
inputs. We first reduced the dimensionality of the data. Either PCA or DAE were combined 
with the GMM-based and the DNN-based mappings to test successive dimension reduction 
from 12 to 1 articulatory parameter. For less than 9 reduced parameters, the use of DAE led to 
better results, both for the GMM- (P  < 10-4) and the DNN-based mappings (P  = 0.01), while no 
significant difference was observed with 11 and 12 parameters (Fig. 40). Using 7 or more DAE-
reduced parameters allowed obtaining a recognition accuracy of above 60% both for the GMM- 
and the DNN-based mappings, while 9 or more parameters were needed to achieve the same 
accuracy when using PCA. Moreover, no significant difference was observed between GMM- 
and DNN-based mappings for less than 9 reduced parameters obtained by PCA (P  > 0.8), while 
the GMM results were slightly better than the DNN for more than 3 reduced parameters 
obtained by DAE (P  = 0.01). 

 

Fig. 40: Evaluation of the PB2007 synthesis with reduced articulatory data. Phone recognition accuracy (mean±SD) with 
reduced parameters obtained both by principal component analysis (PCA) and deep auto-encoders (DAE), and with both 
GMM- and DNN-based mappings. 

 

e. Speech synthesis from noisy articulatory data 

Both GMM- and DNN-based mappings were then objectively evaluated with noisy input 
data with different SNR (from 2 to 20, Fig. 41). With the GMM-based mapping, a recognition 



Chapter 4: Articulatory-based speech synthesis 

 
103 

 

accuracy above 60% was reached with a SNR of more than 20, while the DNN-based mapping 
obtained more than 60% recognition accuracy with a SNR higher than 10. The DNN-based 
mapping generally obtained better recognition accuracy than the GMM-based mapping (P  < 
10-4).  

 

Fig. 41: Evaluation of the PB2007 synthesis on noisy articulatory data. Phone recognition accuracy (mean±SD) on noisy 
data as a function of the signal to noise ratio (SNR), both for GMM- and DNN-based mappings. 

A subjective test was then conducted for GMM- and DNN-based mapping of noisy EMA 
data (SNR=10, which corresponds to 44.5% and 58.6% of recognition accuracy for the GMM- 
and the DNN-based mapping respectively, in the objective test). This test also included DNN-
based mapping of DAE-reduced data (7 parameters) with and without noise addition (Fig. 42). 
The GMM-based mapping obtained a recognition accuracy of 32.3%, while the DNN-based 
mapping obtained 59.3% with no parameters reduction, and 53.9% when using 7 DAE-reduced 
parameters. Consistently with the objective evaluation, the DNN-based mapping was found to 
perform better than the GMM-based mapping in noisy condition (P<10-4). Moreover, the DNN-
based mapping with reduced and noisy parameters performed better than the GMM-based 
mapping with full and noisy parameters (P  = 0.01). Finally, no significant difference in 
subjective accuracy of the DNN-based mapping with reduced parameters was observed 
between clean and noisy conditions (P  > 0.2). 

 

Fig. 42: Objective and subjective evaluation of the PB2007 synthesis with both noisy and reduced parameters. The bar plot 
shows the recognition accuracy (mean±SD) based on objective and subjective evaluations of GMM- and DNN-based mapping 
on noisy articulatory data (SNR =  10), and on reduced data (DAE with 7 reduced parameters) for the DNN-based mapping. 

f. Conclusion on the PB2007 synthesis 

We compared the perfomance of two articulatory-to-acoustic mapping methods, one using 
the state-of-the-art method which relies on trajectory Gaussian mixture models, and another 
one based on deep neural networks. Both mapping approaches were evaluated on clean and 
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noisy articulatory data, with and without reducing the dimensionality of the input articulatory 
parameters, in order to assess their robustness. The two methods where objectively evaluated 
using a HMM-based speech recognition method, and subjectively evaluated with a listening 
test. Objective and subjective evaluations were consistent and pointed out that the DNN-based 
mapping was reaching a phone recognition accuracy of around 70% which is almost similar to 
the results obtained with the GMM-based mapping. It also showed that DNNs were more robust 
to noise than GMMs. Results on the dimensionality reduction showed that DAEs were more 
appropriate than PCA, both for GMM- and DNN-based mappings. Finally, it is important to 
note that the DNN-based mapping has a very low computational cost once the network has been 
trained, and is thus compatible with real time applications such as BCIs. For these reasons, we 
chose to only use deep neural networks in the following experiments. Moreover, since both 
GMM- and DNN-based mapping showed results still far below the anasynth results, we chose 
to record a new and larger articulatory-acoustic corpus, the BY2014 corpus, in order to improve 
synthesis (in particular for nasals and plosives).  

3. BY2014 corpus 

a. Evaluation results on vowels and VCVs 

Fig. 43 summarizes the result of the subjective listening test. The recognition accuracy was 
better for vowels than for consonants for FixedPitch_27, Pitch_27 and Pitch_7 (P  < 0.01), while 
this difference was only a trend for Pitch_14 (P  = 0.0983) and no difference was found for 
Pitch_10 (P  > 0.99). 

 

Fig. 43: Subjective evaluation of the intelligibility of the BY2014 speech synthesizer. A – Recognition accuracy for vowels 
and consonants for each of the 5 synthesis conditions. The dashed lines show the chance level for vowels (blue) and VCVs 
(orange). B – Word recognition accuracy for the sentences, in both conditions Pitch_27 and Pitch_14. C – Recognition 
accuracy of the VCVs regarding the vocalic context, for the 5 synthesis conditions. The dashed line shows the chance level. 
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For vowels, the recognition accuracy was far above chance (chance level = 10%) for all 
conditions (P  < 0.01, Fig. 43-A) and decreasing when decreasing the number of articulatory 
parameters, ranging from 89% for Pitch_27 to 61% for Pitch_7. Taking Pitch_27 as reference, 
this decrease was not found significant for Pitch_14 (P  = 0.7116), and significant for Pitch_10 
and Pitch_7 (P  < 0.01 in both cases). No statistically significant difference was observed when 
not using the glottal activity versus when using the glottal activity (FixedPitch_27 = 87%, 
Pitch_27 = 89%, P  > 0.99).  

For the consonants, the recognition accuracy was also far above chance (chance level = 
6.25%) for all conditions (P  < 0.01, Fig. 43-A). A decrease in recognition accuracy was also 
observed when decreasing the number of articulatory parameters, ranging from 70% for 
Pitch_27 to 42% for Pitch_7. However, taking Pitch_27 as reference, this decrease was not 
significant for Pitch 14 (P  > 0.99) and Pitch 10 (P  = 0.6328), and only significant for Pitch_7 
(P  < 0.01). A significant difference was observed when not using the glottal activity 
(FixedPitch_27 vs Pitch_27, P  < 0.01). The differences in recognition accuracy for each 
condition were studied regarding the vowel of the VCV (Fig. 43-B) and the consonant (Fig. 43-
C). Overall the intelligibility was higher when the consonant was in /a/ context (/a/ being the 
most represented phone in the corpus, see Fig. 19-A) than when in /i/ and /u/ context (P  < 0.01), 
and no significant difference was observed between /i/ and /u/ contexts (P  > 0.99): for instance, 
for Pitch_27, accuracy decreased from 80% for /a/ context, to 63% and 67% for /i/ and /u/ 
contexts respectively. Regarding consonants (Fig. 43-C), no clear differences were observed 
between the three synthesis Pitch_27, Pitch_14 and Pitch_10 except for /p/, /l/, /d/, /g/ and /ʒ/. 
Clear differences between these three conditions and Pitch_7 were observed for consonants /p/, 
/f/, /b/, /v/, /ʒ/, /m/, /n/, /r/ and /l/. Clear differences were also observed between FixedPitch_27 
and Pitch_27 for the unvoiced consonants /p/, /t/, /k/, /f/, /s/, and /ʃ/. Conversely, no significant 
differences between FixedPitch_27 and Pitch_27 were found for all the voiced consonants, 
which includes all the consonants chosen for the real-time closed loop synthesis that does not 
use the glottal activity (i.e. it is similar to FixedPitch_27). All conditions taken together, best 
results (at least one condition above 90%) were achieved for the fricative consonants /f/, /s/, /ʃ/, 
/z/, and /ʒ/, the nasal consonants /m/ and /n/, and /l/.  Worst results (all conditions below 50%) 
were achieved for the plosive consonants /p/, /t/, /k/, /b/ and /d/. Note that there is no clear 
correlation with the number of occurrences of each phone in the training corpus, since the 
corpus contained few instances of /ʃ/, and a large number of /t/ (Fig. 19-A).  

Analysis of the confusion matrices can enlighten the sources of synthesis errors (Fig. 44). 
Each row i of a confusion matrix M corresponds to the ground truth phone pi, while column j 
corresponds to the phone pj recognized by the listeners, so that a diagonal value Mi,i corresponds 
to the proportion of occurrences of the phone pi that were correctly recognized, and a value Mi,j 
outside the diagonal corresponds to the proportion of occurrences of  pi that were substituted 
by pj. The order of the rows and columns of the confusion matrices were automatically sorted 
in order to emphasize the main confusions by forming high value blocks near the diagonal. 
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Fig. 44: Confusion matrices of the subjective evaluation of the intelligibility of the BY2014 speech synthesizer. Confusion 
matrices for vowels (left) and consonants (right), for each of the three conditions FixedPitch_27, Pitch_27 and Pitch_14. In 
the matrices, rows correspond to ground truth while columns correspond to user answer. The last column indicates the amount 
of errors made on each phone. Cells are colored by their values, while text color is for readability only. 

The confusion matrices of the perceptual listening test for the condition Pitch_27 (Fig. 44, 
middle row) reflect the global good quality of this synthesis (indicated by the fact that they are 
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near-diagonal matrices). For vowels, six out of the ten vowels were always correctly recognized 
(/o/, /u/, /a/, /œ/, /y/ and /e/). Main errors come from confusions between /ɛ/̃ and /a/ (67% of / ɛ ̃
/ were recognized as /a/), and other errors come from confusions between /ɑ̃/ and /a/ (17% of 
/ɑ̃/ were recognized as /a/), and between /ɔ̃/ and /œ/ (17% of /ɔ̃/ were recognized as /œ/. For 
consonants, main confusions came from /b/ being recognized as /v/ (75%), /d/ being recognized 
as /z/ (58%), /p/ being recognized as /f/ (56%) and /d/ being recognized as /z/ (58%). Other 
more minor errors come from /g/ being recognized as /v/ (11%), and /k/ being recognized as /r/ 
(19%) and /t/ (19%).  

By comparing confusion matrices of Pitch_27 with those of FixedPitch_27, we can observe 
that not using the glottal activity resulted in increased confusions mainly for the vowel /ɑ̃/ 
(accuracy going from 83% for Pitch_27 to 58% for FixedPitch_27) while no clear difference 
can be observed for the other vowels. Note that between the two conditions Pitch_27 and 
FixedPitch_27, the articulatory-to-acoustic model remains the same, the only change being the 
excitation signal that is used for the final synthesis with the MLSA filter. Importantly, for the 
consonants, not using the glottal activity resulted in a drastic decrease in the recognition 
accuracy of all the unvoiced consonants /p/, /t/, /k/, /f/, /s/ and /ʃ/, while all the voiced 
consonants remained recognized with similar accuracy. Indeed, /p/ was mainly recognized as 
/v/ (72%), /t/ as /z/ (58%), /f/ as /v/ (64%), /s/ as /z/ (86%), and /ʃ/ as /ʒ/ (86%). Note that /v/ is 
the voiced counterpart of /f/, /z/ of /s/ and /ʒ/ of /ʃ/. Hence, the use of the template-based 
excitation naturally leads to a predictable shift of the unvoiced consonants to their more or less 
corresponding (in terms of place of articulation) voiced counterparts.  

By comparing the confusion matrices of Pitch_27 with those of Pitch_14, we can observe 
that there is no clear pattern of increased confusions. This confirms the results previously 
obtained from Fig. 43, where no significant differences between Pitch_27 and Pitch_14 were 
found for both vowels and consonants. 

b. Evaluation results on full sentences 

The results of the subjective evaluation on sentences are presented in Fig. 45. While the 
recognition accuracy for Pitch_27 and Pitch_14 was below 90% for vowels and below 70% for 
consonants, the word recognition accuracy for the sentences was above 90% for both conditions 
(96% for Pitch_27 and 92% for Pitch_14). The difference in recognition accuracy for Pitch_27 
and for Pitch_14 is statistically significant (P  = 0.015). 

 

Fig. 45: Subjective evaluation of the intelligibility of the BY2014 speech synthesizer on sentences. Word recognition accuracy 
for the sentences, for both conditions Pitch_27 and Pitch_14. 
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c. Conclusion on the BY2014 synthesis 

The analysis of the synthesis results was performed deeper with the BY2014 synthesis than 
with the PB2007 one. Several versions of the synthesizer were built to assess the effect of the 
number of articulatory parameters (27, 14, 10 and 7), and the effect of using or not using glottal 
activity (by comparing synthesis using a constant artificial pitch, and the original pitch). The 
phone recognition accuracy for offline reference synthesis was far above chance level for all 
five tested parameterizations, and fully intelligible speech sentences could be produced (Fig. 

45). Most errors on vowels were made between vowels that had close articulatory positions 
(e.g. /i/ and /e/, see Fig. 19-B). Regarding consonants, most errors were made on the plosive 
consonants, and main confusions were observed within pairs of consonants corresponding to 
relatively similar articulatory movements in terms of place of articulation: for instance, /b/ is a 
labial consonant and /v/ is a labio-dental, and /d/ is a dental or an alveolar and /z/ is an alveolar. 
For /b/-/v/ confusion, this could be explained by a positioning of the EMA coils too far from 
the lip edges, resulting in a tracking of the lips by the EMA system that did not allow to capture 
sharp differences between /b/ and /v/ lip movements. A similar interpretation can be given for 
/d/-/z/ confusions, since in practice the coil had to be attached more than 5 mm back from the 
tongue tip (see Fig. 18-A). Moreover, results showed that the accuracy on the VCVs was 
correlated to the vocalic context, with consonant in /a/ context having a better recognition 
accuracy. This could be explained by the fact that the phone /a/ is more largely present in the 
training corpus than the phones /i/ and /u/ (see Fig. 19-A). However, this is not consistent with 
the fact that some phones that are less represented in the corpus, like /ʃ/, have high recognition 
accuracy, while other phones that are largely represented, like /d/, have low recognition 
accuracy. Another possible explanation is that /a/ is the most opened vowel and thus VCVs in 
/a/ context are performed by movements of higher amplitude, which could be more 
discriminant. By removing the glottal activity information (here by using a constant pitch), we 
found that the recognition accuracy was dramatically decreased for all unvoiced consonants, 
while remaining roughly the same for all voiced consonants and vowels (see Fig. 43 and top 
and middle rows of Fig. 44). The unvoiced consonants were thus confused with their voiced 
counterparts (e.g. /ʃ/ with /ʒ/), or with the voiced counterpart of the consonant they were already 
confused with (for instance, /p/ was originally confused with /s/ in the Pitch_27 condition and 
was then confused with /ʒ/ when using a constant pitch, in the FixedPitch_27 condition).  

Regarding the number of articulatory parameters, the results showed that using 14 
articulatory parameters yields intelligibility scores that were close to the best scores achieved 
with 27 parameters. Interestingly, using 10 parameters did not significantly impact the 
intelligibility of consonants, but started to affect that of vowels, although the accuracy remained 
at the high level of 67%. Decreasing further the number of parameters down to 7, significantly 
impacted the intelligibility of both vowels and consonants. Finally, although the accuracy on 
consonants was inferior to 70% for 27 and 14 articulatory parameters, this was enough to 
produce very intelligible sentences, with word recognition accuracy superior to 90% (see Fig. 

45). This can be explained by the fact that most confusions were made with similar consonants, 
thus ensuring a good intelligibility when constrained with closed vocabulary and syntactic rules. 
Thus, overall, the number of parameters required to achieve a sufficient intelligibility is of the 
order of 10, which is the number of degrees of freedoms that could be controlled successfully 
in recent state of the art BCI experiments (Wodlinger et al., 2014). It should be noted that the 
reduction in the number of parameters was done here in a drastic way either by dropping 
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parameters or by PCA, while more efficient dimensionality reduction techniques could be 
envisioned such as the autoencoders that we previously started to investigate on the PB2007 
corpus. 

VI. Conclusion on the articulatory-based speech synthesis 

In this chapter we presented an approach to synthesize speech from articulatory movements 
using deep neural networks (DNNs), which was compared to a state-of-the-art approach using 
Gaussian mixture models (GMMs).  

First, the synthesis was performed using a previously recorded articulatory-acoustic 
corpus, the PB2007 corpus. This corpus contained synchronous articulatory and acoustic data, 
which allowed to trained GMMs and DNNs in order to capture the relationship between 
articulatory and acoustic features. These models were then used to map new articulatory data 
to acoustic features, which were then converted into audible speech using the MLSA filter. Two 
approaches were used to evaluate the synthesis intelligibility: an objective one, based on 
automatic speech recognition, and a subjective one, through listening tests by human subjects. 
The objective evaluation suggested that the GMM-based synthesis was more intelligible than 
DNN-based synthesis. However, the subjective evaluation showed no significant difference: 
both approaches were able to synthesize the French phones with about 70% average accuracy. 
We then evaluated the synthesis intelligibility when reducing the dimensionality of the 
articulatory parameters. Two dimensionality reductions techniques were used: principal 
component analysis (PCA) and deep auto-encoders (DAE). Results suggested that DAEs were 
more appropriate than PCA, both for GMM- and DNN-based mappings (Fig. 40). However, it 
is important to mention here that DAE have many hyper-parameters (see “Choice of DNN 
hyper-parameters”), while PCA has none. In order to further compare the GMM- and the DNN-
based synthesis, their robustness to noisy articulatory inputs was evaluated. Both objective and 
subjective evaluations showed that the DNN-based mapping is more robust to noisy articulatory 
inputs than the GMM-based mapping (Fig. 41 and Fig. 42).  

For these reasons, DNNs were preferred to GMMs for future experiment, which was as 
well motivated by the fact that DNNs are more compatible with real-time application than the 
trajectory GMM since they require less computational power once trained and work on a frame-
by-frame basis while the GMM-based mapping is working on full sequences of articulatory 
data. In order to further improve the synthesis quality, the choice was made to record a new and 
larger corpus, the BY2014 corpus. 

The new recorded BY2014 corpus was about three times larger than the previous PB2007 
corpus, and included mostly full sentences while the PB2007 focused on isolated words. 
Moreover, the number of EMA sensors used to record the articulatory data was increased. In 
particular, an additional sensor was placed on the soft palate.  As expected, including this sensor 
resulted in a better synthesis accuracy for the nasal phones, in particular for the vowel /ɑ̃/ for 
which recognition accuracy jumped from 20% in the PB2007 synthesis (Fig. 38-A), to 58% in 
the BY2014 synthesis when not using glottal activity information (Fig. 44, first row), and 83% 
when using it (Fig. 44, second row), and for the consonant /m/, which accuracy jumped from 
58% in the PB2007 synthesis (Fig. 38-B), to 81% and 92% in the BY2014 synthesis, when 
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respectively using and not using glottal activity information (Fig. 44, first and second rows). 
Using this additional glottal activity information resulted in the ability to discriminate pairs of 
consonants that mainly differed by their voicing features (such as /s/ and /z/). While the 
evaluation on vowel-consonant-vowel sequences suggested that synthesis must still be 
improved on plosive consonants, the synthesized speech was fully intelligible, as assessed by 
the transcription of synthesized sentences by human subjects (Fig. 45). As for the PB2007 
corpus, dimensionality reduction techniques were applied to the articulatory data in order to 
observe how the synthesis intelligibility degrades when reducing the number of articulatory 
parameters. Results showed that using 14 articulatory parameters yields intelligibility scores 
that are close to the best scores achieved with 27 parameters, and that reducing further to 10 
parameters did not significantly impact the intelligibility of consonants but slightly those of 
vowels. Even better results are to be expected if using deep auto-encoders instead of principal 
component analysis for dimensionality reduction. These results support the fact that synthesis 
of intelligible synthesis can be achieved with about a dozen of articulatory parameters. 



 

Chapter 5: Real-time control of an articulatory-based 

speech synthesizer for silent speech conversion 

I. Introduction 

In the previous chapter we described an articulatory-based speech synthesizer using a deep 
neural network which maps articulatory data to acoustic features which are then converted to 
audible speech. Such synthesizer was built for an articulatory-acoustic data corpus, the BY2014 
corpus, which was recorded from a specific speaker (in the following, the reference speaker). 
We showed that such speech synthesizer was able to produce fully intelligible synthesis from 
about a dozen of articulatory parameters, while being robust to noisy articulatory inputs. 
Moreover, the proposed synthesizer was compatible with real-time applications, such as a brain 
computer interface for speech rehabilitation. 

However, it remains unknown whether a given articulatory-based speech synthesizer built 
from articulatory-acoustic data obtained in one particular reference speaker  can be controlled 
in real time by any other speaker to produce intelligible speech. In this chapter, we thus assess 
how well the proposed synthesis approach can be used to produce intelligible speech when 
controlled by a speaker different than the reference speaker . This question is of particular 
importance in a BCI context in which the synthesizer will be controlled by another speaker, and 
using another modality (i.e. brain signals that will be decoded into articulatory parameters). 
Here we consider a simpler situation in which silent speakers (i.e. speakers that articulate but 
do not produce any sounds) are controlling this synthesizer using only the movement of their 
main speech articulators, in a closed-loop paradigm (Fig. 46). Such a silent speech condition is 
as close as possible to a speech BCI paradigm where the synthetic voice replaces the actual 
subject’s voice. In this paradigm, a new speaker is equipped with EMA sensors, as when 
recording an articulatory-acoustic corpus. Using these EMA sensors, the articulatory 
movements of this subject are recorded while speaking silently, i.e. while articulating without 
actually producing any sound. These articulatory movements are then used to control the 
articulatory-based speech synthesizer presented in the previous chapter in order to produce the 
corresponding speech, which is played back to the silent speaker through earphones. Since the 
articulatory movements of this new speaker are different than those of the reference speaker , a 
calibration is needed in order to perform the articulatory-to-articulatory mapping, i.e. in order 
to convert the articulatory movements of the new speaker into articulatory parameters suitable 
for the synthesizer. 
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Fig. 46: Real-time closed loop paradigm. Articulatory data from a silent speaker are recorded and converted into articulatory 
input parameters for the articulatory-based speech synthesizer. The speaker receives the auditory feedback of the produced 
speech through earphones. 

Several studies have addressed the problem of “silent speech recognition”, i.e. identifying 
a word sequence from a silent articulation, under different modalities including ultrasound 
(Hueber et al., 2009), electromyography (Wand and Schultz, 2011), non-audible murmur 
(Heracleous et al., 2004), or permanent-magnetic articulography (Gilbert et al., 2010). Other 
studies have addressed the problem of “silent speech conversion”, i.e. directly reconstructing a 
synthetic speech signal from silent articulation, without any restriction on the vocabulary, for 
instance with ultrasound (Hueber and Bailly, 2016) or with electromyography (Janke et al., 
2012; Wand et al., 2013). Here we consider silent speech conversion, in which we process in 
real-time an EMA data flow in order to synthesize speech (Bocquelet et al., 2015, 2016a). 

II. Methods 

1. Subjects and experimental design of the real-time closed-loop synthesis 

Four subjects (1 female, 3 males) controlled the synthesizer in real time. The reference 
speaker was one of them (Speaker 1), i.e. he was also used as a test subject, but with data from 
a different session than the reference data session. The whole experimental protocol is 
summarized in Fig. 47.  

 

Fig. 47: Experimental protocol for the real-time closed-loop synthesis. First, sensors are glued on the speaker’s articulators, 
then articulatory data for the calibration is recorded in order to compute the articulatory-to-articulatory mapping, and finally 
the speaker articulates a set of test items during the closed-loop real-time control of the synthesizer. 

First, EMA sensors were glued to the subject main articulator, using the same approach as 
for recording the BY2014 articulatory-acoustic corpus. The articulatory data was recorded 
using the NDI Wave system in similar conditions as for acquiring the reference data (recording 
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at 400Hz and down-sampling to 100Hz), except that only 6 sensors were used to record the 
articulatory movements of the lower and upper lips, the tongue tip, dorsum and back, and the 
jaw. This was due to the fact that the NDI Wave system was limited to 6 sensors when retrieving 
the articulatory data in real-time (while it was possible to use more sensors in offline mode). 
The soft palate sensor was one of the discarded sensor because most subjects (3 out of 4) were 
very uncomfortable with keeping the soft palate sensor for a long duration. While the coils were 
positioned at the same anatomical locations, no particular attention was given to place them at 
very precise locations. 

In a second step, calibration data was recorded in order to compute the so-called 
“articulatory-to-articulatory” mapping model, which allows to map articulatory data from a new 
speaker to the articulatory space of the reference speaker. In order to estimate the articulatory-
to-articulatory mapping, it was necessary to obtain articulatory data from the new speakers in 
synchrony with articulatory data from the reference speaker  when articulating the same sounds. 
The new speakers were thus asked to silently repeat a subset of 50 short sentences (about 4 
words each), extracted from the reference BY2014 corpus, in synchrony with the corresponding 
audio presented through earphones. Each sentence was first displayed on the screen during one 
second, then after a visual countdown, it was played three times at a fixed pace, so that the 
speaker could adapt to the reference speaker rate and way of speaking. Only the last repetition 
was considered in order to obtain the best temporal synchronization. Indeed, preliminary 
experiments (not reported here) showed that synchronization was crucial in order to achieve a 
good articulatory-to-articulatory mapping. Subjects were asked to repeat the sentences silently, 
and not loudly, because of significant differences that exist between silent and vocalized speech 
(Hueber et al., 2010a; Janke et al., 2010), and because subsequent real-time closed-loop control 
of the synthesizer would then be achieved while subjects were silently speaking.  Here we made 
the choice for a supervised calibration approach, i.e. a calibration that needs to record a specific 
corpus of data, but that other approaches could be considered, including unsupervised approach 
which do not need to record additional specific data (Wand and Schultz, 2014). Our choice was 
motivated in order to be as close as possible to BCI calibration methods, which are mostly 
supervised. This explains also why we did not use a more advanced method to align the new 
speaker’s audio on the reference speaker’s audio, such as dynamic time warping, but rather 
asked the new speaker to align his speech production on the reference audio. Indeed, in the case 
of BCI, the patient will not be able to produce speech and thus no audio would be available to 
perform a better alignment. 

In a third step, the calibration data was used to train the articulatory-to-articulatory mapping 
model, after automatically aligning the new articulatory data to the reference data, and 
automatically removing silences since EMA data does not contain any information about 
vocalization but only about the articulatory configuration for the subject. 

Finally, this calibration model was then applied in real time to incoming articulatory 
trajectories of each silent speaker to produce continuous input to the speech synthesizer, in this 
case the BY2014 speech synthesizer. Since the subjects were in a silent speech condition and 
thus no glottal activity was available, we chose to perform the synthesis using the fixed-pitch 
template-based excitation, and in order to reduce the number of control parameters, we chose 
the synthesis model based on 14 articulatory parameters which showed that it was able to 
produce fully intelligible speech (see “Conclusion” in the previous chapter). During this real-
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time control of the synthesizer, the subjects were asked to pronounce a set of test items in order 
to assess the synthesis intelligibility. 

2. Articulatory-to-articulatory mapping 

As built, the synthesizer could only be used on the reference data  and could not be directly 
controlled by another speaker or even by the same speaker in a different session. Indeed, from 
one session to another, sensors might not be placed at the exact same positions with the exact 
same orientation, or the number of sensors could change, or the speaker could be a new subject 
with a different vocal tract geometry and different ways of articulating the same sounds. In 
order to take into account the differences between the reference speaker  and a new speaker, it 
was necessary to calibrate a mapping from the articulatory space of each new speaker (or the 
same reference speaker in a new session) to the articulatory space of the reference speaker, that 
is, an articulatory-to-articulatory mapping (Fig. 48, left blue part).  

 

Fig. 48: Processing chain for real-time closed-loop articulatory synthesis. The articulatory-to-articulatory (left part) and 
articulatory-to-acoustic mappings (right part) are cascaded. Items that depend on the reference speaker are in orange, while 
those that depend on the new speaker are in blue. The articulatory features of the new speaker are linearly mapped to 
articulatory features of the reference speaker, which are then mapped to acoustic features using a DNN, which in turn are 
eventually converted into an audible signal using the MLSA filter and the template-based excitation signal. 

For each silent speaker, the articulatory-to-articulatory mapping was performed using a 
linear model mapping the articulatory data of the speaker to those of the reference speaker. The 
choice for a linear model was motivated by preliminary experiments – not reported here – that 
showed no advantage of using more complex models such as artificial neural networks, 
probably because of the limited amount of calibration data. Note the velum trajectory taken as 
input to the synthesizer was predicted from tongue, lips and jaw trajectories as no sensor was 
placed on the soft palate for the four subjects. 

In order to counterbalance speaker and system latencies, a global delay between new and 
reference articulatory data was estimated for each speaker by trying different delays. A different 
linear model between the new speaker’s articulatory data and the reference data was computed 
for each candidate delay. Each linear model was then applied to the new speaker’s articulatory 
data, and the mean-squared error (MSE) between predicted and actual reference articulatory 
data was computed. The delay which led to the smallest MSE was considered to be due to 
system latency and was corrected before the training of the final model by simply shifting and 
cutting the original data. Frames corresponding to silence periods were then discarded using 
the aligned transcription from the BY2014 corpus. 

Out of the 50 calibration sentences, 40 were used for the training of the articulatory-to-
articulatory mapping while the remaining 10 sentences were kept for evaluation (randomly 
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chosen, but identical across all speakers). By contrast with the articulatory-to-acoustic mapping, 
the articulatory-to-articulatory mapping was done frame-by-frame, i.e. without concatenating 
any past frame. 

3. Implementation details 

As shown in Fig. 48-B, the real-time control of the articulatory-based speech synthesizer 
was achieved by cascading the linear model used for articulatory-to-articulatory mapping and 
the DNN used for articulatory-to-acoustic mapping. Here we used the DNN trained on the 
BY2014 corpus, with 3 hidden layers of 200 units each, which maps 14 articulatory parameters 
to 25 mel coefficients. The input articulatory data capture and processing (especially the re-
referencing with regards to the reference sensor), the linear and DNN mappings and the MLSA 
filter were all implemented within the Max/MSP environment (Cycling’74, Walnut CA, USA, 
https://cycling74.com/products/max/) dedicated to real-time audio processing. The integration 
of the DNN and linear mappings was done through the dedicated C++ library that we 
developped (see previous chapter). 

Special attention was given to audio settings in order to minimize the audio chain latency 
and obtain a delay inferior to 30ms. This way, the silent speaker could rely on the synthetic 
speech as an auditory feedback and exploit it to regulate his own production. According to the 
literature on delayed auditory feedback (Lincoln et al., 2006), the latency should be no greater 
than about 50 ms. A larger latency might generate a conflict between kinesthesic and auditory 
feedbacks.  

Since the subjects were in silent speech condition, and thus no glottal activity was present, 
we used the template-based excitation signal for the MLSA filter.  

4. Closed-loop experimental paradigm 

During this closed-loop situation, each speaker was asked to silently articulate a set of test 
items while given the synthesized auditory feedback. This auditory feedback was recorded for 
further intelligibility evaluation. Subjects were allowed to adapt to the closed-loop situation for 
at least 20 minutes. During this closed-loop situation, each speaker was silently articulating and 
given the synthesized auditory feedback through amagnetic Nicolet TIP-300 insert earphones 
(Nicolet Biomedical, Madison, USA) ensuring no interference with the magnetic field of the 
NDI Wave system. Then, they were asked to pronounce a set of test items, which were not part 
of the datasets used to train the articulatory-to-acoustic and the articulatory-to-articulatory 
mappings. 

The test set consisted of the 7 isolated vowels /a/, /e/, /i/, /o/, /u/, /œ/, and /y/, and 21 vowel-
consonant-vowel (VCV) pseudo-words made by the 7 consonants /b/, /d/, /g/, /l/, /v/, /z/ and /ʒ/, 
in /a/, /i/ and /u/ context (e.g., ‘aba’ or ‘ili’). We chose not to include nasal vowels (e.g., /ɑ̃/, 
which corresponds to a nasalized /a/) since no sensor was placed on the soft palate. Likewise, 
we did not include nasal consonants (e.g., /m/ or /n/) and most unvoiced consonants (e.g., /p/ 
which roughly corresponds to an unvoiced /b/). Each item of the test set was repeated three 
times in a row. The whole set of items was repeated three times by each speaker, each repetition 
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being separated by about 10 minutes of free control of the synthesizer. Each isolated vowel or 
VCV was thus repeated 9 times by each subjects. 

5. Evaluation of the synthesis quality 

The quality of the synthesized sounds was assessed in two ways. We first carried out a 
qualitative evaluation, in which the acoustic signals were compared with the original signals 
processed through analysis-synthesis and with the offline synthesis using the reference data  
(referred here as the “Reference offline synthesis”). Analysis-synthesis was performed by 
converting the audio signals into mel-cepstrum (MEL) coefficients, which were then directly 
converted back into audio signals using the MLSA filter and template-based excitation. Such 
signal is referred here to as the “anasynth signal”. This conversion is not lossless, though it 
represents what would be the best achievable quality for the synthetic speech signal in the 
present context.  

Then we carried out a quantitative evaluation of our system through an intelligibility test, 
similarly to the way the reference offline synthesis was evaluated (see “Subjective evaluation 
using listening tests” in previous chapter). Twelve subjects participated to this test. All 
participants were French native speakers with no hearing impairment. Each listener evaluated 
3 repetitions (randomly picked for each listener) of each of the 28 test items for each of the 4 
new speakers. Remind that for the real-time closed-loop synthesis, the stimuli were generated 
using only the fixed-pitch template-based excitation. In total, each listener had thus to identify 
336 sounds (7 vowels + 21 VCVs, three times for each of the 4 speakers). The sounds were all 
normalized using automatic gain control, and played in random order at the same sound level 
through Beyerdynamic DT-770 Pro 80 Ohms headphones, while the listener was seated in a 
quiet environment. No performance feedback was provided during the test. Participants were 
instructed to select from a list what they thought was the corresponding vowel in the case of an 
isolated vowel, or the middle consonant in the case of a VCV sequence. Graphical user interface 
buttons were randomly shuffled for each subject in order to avoid systematic default choice 
(e.g., always choosing the left button when unable to identify a sound). The subjects were told 
that some of the sounds were difficult to identify, and thus to choose the closest sound among 

the offered possibilities. The recognition accuracy was defined as % = with R the 

number of correct answers for the N presented sounds of the test. Thus, the chance level was 
1/7 ≈ 14% both for vowels and VCVs. 

6. Statistical analysis 

a. Analysis of the articulatory-to-articulatory mapping 

For the articulatory-to-articulatory mapping, mean distance between predicted articulatory 
trajectories and reference articulatory trajectories was computed for each item of the test corpus 
and each speaker. A two-factor ANOVA with repeated measures was performed using the 
following model: Distance ~ Sensor*RefSpeaker +  Error( Item / (Sensor*RefSpeaker) ), where 
Distance is the mean distance between predicted and reference trajectories, RefSpeaker  has two 
levels indicating if it was the reference speaker  (Speaker 1) or another speaker (Speaker 2, 3 or 
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4), Item corresponds to the identifier of the tested item, and Sensor has 7 levels corresponding 
to the different EMA sensor positions to be predicted (upper lip, lower lip, jaw, tongue tip, 
tongue dorsum, tongue back and velum). Multiple comparisons were made using contrasts 
according to (Hothorn et al., 2008). All the tests were made using the R software, and packages 
lme4, and multcomp. 

b. Analysis of the real-time closed-loop synthesis 

As for offline reference synthesis (see “Statistical analysis” in previous chapter), the 
statistical analysis of the real-time closed-loop synthesis results was performed using mixed 
logistic regression. The following model was used: Result ~ (Segment +  RefSpeaker) ^ 2 +  (1 |  
Listener), where Result is the binary answer (equals 0 if the item was wrongly identified, 
otherwise 1), Segment has two levels corresponding to the type of item (vowel or VCV), 
RefSpeaker has two levels indicating if it was the reference speaker  (Speaker 1) or another 
speaker (Speaker 2, 3 or 4), and Listener has 12 levels corresponding to each listener that 
participated in the listening test. Multiple comparisons were made using contrasts according to 
(Hothorn et al., 2008). All the tests were made using the R software, and packages lme4, 
multcomp and lsmeans. 

III. Results 

1. Accuracy of the articulatory-to-articulatory mapping 

Fig. 49-A shows an example of articulatory data recorded from a new speaker (from 
Speaker 2), with the corresponding reference audio signal that the speaker was presented and 
asked to silently repeat synchronously (in this example, the sentence was “Deux jolis boubous”, 
meaning “two nice booboos”, which was not part of the training set). Fig. 49-B shows the 
transformation of these signals after their articulatory-to-articulatory mapping onto the 
reference speaker’s articulatory space. One can clearly see that articulatory movements of the 
new speaker were originally quite different than those of the reference speaker; and that they 
became similar once the articulatory-to-articulatory mapping was performed. 
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Fig. 49: Articulatory-to-articulatory mapping. A – Articulatory data recorded from a new speaker (Speaker 2) and 
corresponding reference audio signal for the sentence “Deux jolis boubous” (“Two nice booboos”). For each sensor, the X 
(rostro-caudal), Y (ventro-dorsal) and Z (left-right) coordinates are plotted. Dashed lines show the phonetic segmentation of 
the reference audio, which the new speaker was ask to silently repeat in synchrony. B – Reference articulatory data (dashed 
line), and articulatory data of Speaker 2 after articulatory-to-articulatory linear mapping (predicted, plain line) for the same 
sentence as in A. Note that X, Y, Z data were mapped onto X, Y positions on the midsagittal plane. C – Mean Euclidean distance 
between reference and predicted sensor position in the reference midsagittal plane for each speaker and each sensor, averaged 
over the duration of all speech sounds of the calibration corpus. Error bars show the standard deviations, and “All” refer to 
mean distance error when pooling all the sensors together. 

We further quantified the quality of the articulatory-to-articulatory mapping. Since 
articulatory data consists of geometrical coordinates, the mean Euclidean distance between 
predicted and true positions could be estimated for each sensor and for each speaker (Fig. 49-
C). The average error across all sensors and speakers was 2.5 mm ± 1.5 mm. Errors were 
significantly higher for tongue sensors than for non-tongue sensors (P  < 0.005 for 22 out of 24 
pairwise comparisons corrected for multiple comparisons – see “Analysis of the articulatory-
to-articulatory mapping”), and lower for the velum sensor than for the non-velum sensors (P  < 
0.001 for 10 out of 12 pairwise comparisons corrected for multiple comparisons – see “Analysis 
of the articulatory-to-articulatory mapping”). This is consistent with the fact that the tongue and 
velum are the articulators for which movement amplitudes were the highest and lowest, 
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respectively (see Fig. 19-B). Mean distances for the reference speaker (Speaker 1) were 
systematically lower than for other speakers for all sensors except the velum. These differences 
were statistically significant for the tongue tip (P  = 0.00229) and the tongue dorsum (P  = 
0.03051). 

2. Intelligibility of the real-time closed-loop synthesis 

During real-time control, the speakers were asked to reproduce a specific set of test sounds. 
The remaining time of the experiment was kept for other tasks, including spontaneous 
conversations. Fig. 50 shows examples of spectrograms of vowels and VCVs obtained during 
a session of real-time control (Speaker 2, first occurrence of each sound), compared with the 
corresponding spectrograms of anasynth and reference offline synthesis sounds. In general, we 
found that the spectrograms for the three conditions presented very similar characteristics, 
although some differences did exist in their fine structure, especially for consonants. For 
instance, the real-time examples of the plosive consonants /b/, /d/ and /g/ showed more energy 
smearing from vocalic to consonant segments as compared to the anasynth and offline 
synthesized versions. Also, the real-time example of /ʒ/ had characteristics closer to the 
anasynth version of /l/ than to the anasynth version of /ʒ/ (Fig. 50-B). 

 

Fig. 50: Real-time closed loop synthesis examples. Examples of audio spectrograms for anasynth, reference offline synthesis 
and real-time closed-loop (Speaker 2), for the vowels /a/, /e/, /i/, /o/, /u/, /œ/ and /y/ (A), and for the consonants /b/, /d/, /g/, /l/, 
/v/, /z/ and /ʒ/ in /a/ context (B). The thick black line under the spectrograms corresponds to 100 ms. 

The test sounds produced in the closed-loop experiment were recorded and then their 
intelligibility was evaluated in the same way as for the offline synthesis intelligibility 
evaluation, i.e. a subjective intelligibility test performed by 12 listeners. Fig. 51 summarizes 
the results of this listening test. The speech sounds produced by all 4 speakers obtained high 
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vowel accuracy (93% for Speaker 1, 76% for Speaker 2, 85% for Speaker 3, and 88% for 
Speaker 4, leading to a mean accuracy score of 86%), and reasonable consonant accuracy (52% 
for Speaker 1, 49% for Speaker 2, 48% for Speaker 3, and 48% for Speaker 4, leading to a mean 
accuracy score of 49%). These scores were far above chance level (chance = 14%, P  < 0.001) 
for both vowels and consonants. For all speakers, the 48-52% VCVs accuracy obtained during 
real-time control is to be compared to the 61% score obtained for the same VCVs in the offline 
reference synthesis. The difference is statistically significant (P  = 0.020 for reference speaker 
and P  < 0.001 for other speakers, compare Fig. 51-A and Fig. 43-A) but the decrease is quite 
limited when considering that the speaker is no longer the reference speaker  and that the 
synthesis is performed in an online closed-loop condition. The same observation applies to the 
vowel identification results: the 76-93% vowel accuracy for the closed-loop online synthesis is 
also found significantly lower than the 99% accuracy score obtained for the same vowels in the 
offline synthesis (P  < 0.001 for reference and other speakers), but the decrease is relatively 
limited. The recognition accuracy for vowels was significantly higher for the reference speaker  
(P  = 0.002) but no significant difference between the reference speaker  and the other speakers 
was found for the VCVs (P  = 0.262), even if the reference speaker obtained the highest average 
accuracy value for VCVs.  

Regarding the vocalic context (Fig. 51-B), VCVs in /a/ context had better recognition 
accuracy than those in /i/ (P  < 0.001) and /u/ (P < 0.001) contexts for all subjects, which is 
consistent with results from the offline reference synthesis (Fig. 43-B). VCVs in /u/ context 
were found to have a better recognition accuracy than those in /i/ context (P  = 0.009). Regarding 
the VCVs (Fig. 51-C), the recognition accuracy varied largely across consonants, ranging from 
an average of 21% for /b/ to 85% for /ʒ/. It was generally lower for the plosive consonants /b/, 
/d/ and /g/, which is consistent with results from the offline reference synthesis, while the 
accuracy on the remaining consonants was different for each subject. For instance, Subjects 1, 
2 and 3 had good accuracy on /v/ while Subject 4 had a much lower accuracy. Similar result 
can be observed for /z/ and /ʒ/ for different subjects. 

 

Fig. 51: Results of the subjective listening test for real-time articulatory synthesis. A – Recognition accuracy for vowels and 
consonants, for each subject. The grey dashed line shows the chance level, while the blue and orange dashed lines show the 
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corresponding recognition accuracy for the offline articulatory synthesis, for vowels and consonants respectively (on the same 
subsets of phones). B – Recognition accuracy for the VCVs regarding the vowel context, for each subject. C – Recognition 
accuracy for the VCVs, by consonant and for each subject. D – Confusion matrices for vowels (left) and consonants from VCVs 
in /a/ context (right). Rows correspond to ground truth while columns correspond to user answer. The last column indicates 
the amount of errors made on each phone. Cells are colored by their values, while text color is for readability only. 

Confusion matrices for both vowels and consonants are shown in Fig. 51-D. These 
confusion matrices present features that are similar to the confusion matrices obtained for 
offline articulatory synthesis (Fig. 44), and summarize the results quality. All vowels show a 
recognition accuracy above 80%, and the highest accuracy was obtained for /y/, with 90%. The 
majority of the confusions are between /e/ and /i/ (17% of /e/ were recognized as /i/, and 16% 
of /i/ as /e/). Secondary confusions are between /o/ and /u/ (11% of /u/ were recognized as /o/, 
and 8% of /o/ as /u/), between /y/ and /œ/ (10% of /y/ were recognized as /œ/), and between /a/ 
and /œ/ (9% of /a/ were recognized as /œ/). The confusion matrix for consonant roughly 
corresponds to the confusion matrix obtained for offline articulatory synthesis, with emphasized 
confusions. Thus, the main confusions occurred again for plosive consonants /b/ (57% of /b/ 
were recognized as /v/) and /d/ (54% of /d/ were recognized as /z/), while quite few errors were 
made on /ʒ/ (85% of accuracy). Some errors were also made on /g/ but with less systematic 
confusion (26% with /v/, 13% with /ʒ/, and 10% with /z/). However, new confusions appeared 
that explain the significant drop in consonants accuracy with respect to offline articulatory 
synthesis: between /ʒ/ and /l/ (10% of /ʒ/ were recognized as /l/), and between /z/ and /l/ (19% 
of /z/ were recognized as /l/). 

As previously mentionned, subjects had several minutes of free control of the synthesizer 
between two consecutive repetitions of the test items. This was purposely chosen in order to 
observe if subjects could fastly learn and improve their control of the speech synthesizer. Fig. 

52 shows the evolution of the recognition accuracy before and after training, i.e. from the first 
repetition of the test items to the last one (approximately separated by 20 minutes). 

 

Fig. 52: Evaluation of the real-time closed-loop synthesis before and after subjects training. A – Recognition accuracy for 
vowels, before and after a short training time, for each subject. B – Recognition accuracy for VCVs, before and after a short 
training time, for each subject. 

Interestingly, there was no clear effect of training time: while Subject2 reported to improve 
during training, which was confirmed by the data both on vowels and VCVs, no clear 
improvement could be observed on the results from other subjects. For instance, the recognition 
accuracy slightly increased for vowels after training, but slightly decreased for VCVs, while 
the opposite can be observed for Subject 4.  
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3. Spontaneous conversations 

During the free control of the speech synthesizer, episodes of spontaneous conversations 
between the subject and the experimenter could be achieved, in particular with Subject 1 (which 
is the reference speaker), and Subject 2. Note that the experimenter could not see the subjects, 
which were in a separate room, but could only ear the synthesized feedback through 
headphones. However, the experimenter was familiar with the synthesis and thus better at 
discriminating the synthesized sounds than a naïve subject. Spontaneous conversations ranged 
from simple “yes” / “no” answers, to complete sentences such as “I am gonna be a father”. 
Some of these sentences were manually transcribed during the experiment and are reported in 
Annex 2. However, they were not recorded during the experiment so that they were not 
evaluated and are thus only provided for illustratory purpose. Future experiments should 
include full sentences in the test items in order to properly evaluate the synthesis intelligibility 
on sentences during the real-time control.  

IV. Conclusion on the real-time control of the articulatory-based 

speech synthesizer 

In this chapter we showed that the articulatory-based speech synthesizer presented in the 
previous chapter could be controlled in real-time closed-loop situation by several speakers using 
motion capture data (electromagnetic articulography) as input parameters. Experiments 
included the same reference speaker in a different session, as well as other speakers. All 
speakers were silently articulating and were given the synthesized acoustic feedback through 
headphones. A calibration method was used to take into account articulatory differences across 
speakers (and across sessions for the reference speaker), such as sensor positioning and ways 
of articulating the different sounds. Subjective listening tests were conducted to assess the 
synthesis intelligibility during real-time closed-loop control by new speakers.  

The phone recognition accuracy was far above chance level, both for vowels and 
consonants (Fig. 51). Interestingly, this good intelligibility was obtained despite significant 
trajectory errors made on input control parameters obtained by the articulatory-to-articulatory 
mapping (about 2.5 mm on average, see Fig. 49-B). This confirms the previous results 
indicating that DNN-based articulatory synthesis is robust to fluctuations of the input 
parameters (see previous chapter). As expected, the closed-loop synthesis intelligibility was 
lower than for the reference offline synthesis. However, it was relatively limited. Confusions 
were similarly distributed in both cases, indicating that using the synthesizer in a closed-loop 
paradigm mainly emphasized the already existing confusions. The fact that most errors were 
consistent between offline and closed-loop synthesis suggests that real-time closed-loop 
articulatory synthesis could still benefit from improving the articulatory-to-acoustic mapping. 
This could be achieved by efficiently detecting specific constrictions from the articulatory data 
in order to improve the synthesis of plosive consonants, which are the major source of errors. 
The presence of additional minor confusions suggests that other aspects might also be 
improved, such as the articulatory-to-articulatory mapping with a better calibration approach. 
Indeed, to remain in a situation as close as possible to future BCI paradigms with aphasic 
participants, the articulatory-to-articulatory calibration step was performed under a silent 
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speech condition. This was also consistent with the fact that the closed-loop condition was also 
performed in a silent speech condition so that the speaker received only the synthesized 
feedback, not superimposed on its own produced speech. Thus the articulatory-to-articulatory 
mapping converted articulatory trajectories recorded under a silent speech condition (for each 
speaker) into articulatory trajectories recorded under overt speech condition (of the reference 
speaker). Previous studies have shown that articulatory movements differ between silent and 
overt speech, and especially that silent speakers tend to hypo-articulate (Hueber et al., 2010a; 
Janke et al., 2010). Such phenomenon may thus leads to smaller discrimination of articulatory 
trajectories during silent speech. 

Improving the articulatory-to-articulatory and the articulatory-to-acoustic mappings might 
however not be the sole possibility to improve the intelligibility of closed-loop speech synthesis. 
Indeed, while results from the evaluation of the articulatory-to-articulatory mapping showed 
that for most sensors the mean prediction error was lower for Speaker 1 (the reference speaker), 
the results obtained during the real-time experiment showed that other speakers could achieve 
a control of the articulatory synthesizer similar to Speaker 1, in particular for consonants (see 
Fig. 51-A). For example, episodes of spontaneous conversation could be achieved not only with 
Speaker 1 but also with Speaker 2 (see “Spontaneous conversations”). This suggests that other 
factors come into play for the control of the synthesizer. One possibility is that subjects may 
adapt differently to the articulatory-to-articulatory mapping errors and find behavioral 
strategies to compensate for these errors. Here, each subject had about 20 minutes of free 
closed-loop control of the synthesizer between the two productions of test items, but we could 
not see any significant improvement over this short period of time (see “Intelligibility of the 
real-time closed-loop synthesis”). Finding behavioral strategies might thus need a more 
significant amount of training time.  

Altogether, these results show that an intelligible articulatory-based speech synthesizer can 
be controlled in real-time by different speakers to produce not only vowels, but also intelligible 
consonants and some sentences. This synthesizer built from a reference speaker data in an overt 
speech condition could be controlled to produce free speech in real time in a silent speech 
condition by other speakers with a different vocal tract anatomy and a different articulatory 
strategy using a simple linear calibration stage. Note that while this is not the topic of this 
manuscript, this result is of particular interest for the emerging research field on “silent speech 
interfaces”, which are lightweight devices able to capture silent articulation using non-invasive 
sensors and convert it into audible speech (Denby et al., 2010; Wand et al., 2013; Cler et al., 
2014; Hueber and Bailly, 2016). Indeed, although the presented EMA-based interface is not 
strictly a silent-speech interface, the present results indicate that it is possible to synthesize 
intelligible speech in real time from articulatory data acquired in silent speech condition. 
Further studies could extend these results using less invasive techniques to obtain articulatory 
signals, such as EMG (Wand et al., 2013; Cler et al., 2014) and/or ultrasound signals (Hueber 
and Bailly, 2016). 



 

Discussion on the articulatory-based speech synthesis for 

BCI applications 

In Chapter 3, we first presented a new articulatory-acoustic dataset, the BY2014 corpus, 
recorded from a single French male subject using electromagnetography (EMA). While some 
EMA datasets were already pubicly available in other languages, such as the MOCHA dataset 
in english, the BY2014 is the first French EMA dataset pubicly available.  

We then showed in Chapter 4 that this dataset could be used to create an articulatory-
based speech synthesizer, using deep neural networks, that could produce fully intelligible 
speech. Indeed, while the best synthesis got about 70% accuracy on vowels and consonants, the 
word recognition accuracy on full sentences was still above 90%. This is a well-known 
phenomenon in the automatic speech recognition field where recognition models generally have 
a non-perfect recognition of individual phones, but exploit a priori information, such as a 
limited vocabulary or a defined language, to improve the recognition accuracy at word and 
sentence level. Similar approach could be envisioned to enhance the synthesis intelligibility by 
exploiting such a priori information. This could be done by combining the advantage of deep 
neural networks for regression of continuous variables, with the advantages of hidden markov 
models for modeling sequences of discretes states, such as phones, words or semantic units. 
Moreover, results showed that information about the glottal activity is crucial in order to 
discriminate pairs of consonants that mainly differ by their voicing feature. Indeed, removing 
the glottal activity information – in our case the pitch – resulted in a drastic decrease of 
recognition accuracy for the six unvoiced consonants, becoming close to null. In a BCI 
paradigm, we could envision to use the brain activity to predict the pitch, or at least predict if 
sounds are voiced or unvoiced in a binary fashion, which should be enough to discriminate 
unvoiced consonants from their voiced counterparts. Several studies reported laryngeal specific 
activity in the speech motor cortex (Brown et al., 2008; Grabski et al., 2012; Bouchard et al., 
2013), and one BCI study suggested that the voicing feature could be decoded from brain 
activity (Lotte et al., 2015). However, predicting the voicing from the brain activity remains 
challenging considering that phones have short duration, of about 10 to 100ms, so that the 
prediction of the voicing feature has to be as fast and precise, probably needing a time resolution 
below 10ms. We as well showed that this synthesizer was robust to noisy articulatory inputs, 
and could rely on few articulatory parameters to produce speech, which are both potential assets 
for BCI that is known to produce unperfect control parameters, with a limited number of degrees 
of freedom. In particular, results showed that reducing articulatory parameters from 27 to 10 
parameters did not significantly impact the intelligibility of consonant, but rather that of vowels. 
This result is quite unexpected given that consonants consist in more complex articulatory 
movements, for which timing is crucial, while vowels consist more of static articulatory 
positions. This should be further investigated in future studies. A possible solution would be to 
relate the reduced articulatory components with the original articulatory features in order to 
identify articulators that were mainly preserved or discarded. 

Finally, we showed in Chapter 5 that this synthesizer that was build from a specific 
subject, could be controlled in real-time, in a closed-loop paradigm, by several subject, different 
than the original subject on which it was built. This further confirmed the results from Chapter 

4, showing that the proposed DNN-based synthesis was robust to noisy articulatory inputs. 
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Indeed, real-time closed-loop control was possible while predicted articulatory control 
parameters had non-negligible errors of about several millimeters. Nonetheless, the real-time 
closed-loop synthesis quality was below that of the offline synthesis and on a limited set of 
phones, even after a training period of about half an hour. Such a short training time might not 
be sufficient for the subjects to find behavioral strategies in order to improve the synthesis 
quality, and several days might be needed to observe such improvement. Further studying the 
possibilities of improvement through training would be particularly interesting for BCI 
applications, for which it has been shown that consequent training time – about several days or 
weeks – is crucial in order to achieve accurate control by BCI. This would require to find a way 
to record stable EMA signals between sessions, since the EMA sensors can only be kept for 
about an hour or two. Unsupervised calibration methods, such as the one used in (Wand and 
Schultz, 2011) in the case of electromyographic recordings, could be considered to avoid this 
difficulty. In the case of a BCI, this would require to record stable neural signals over several 
days or weeks, which remains a challenging tasks when recording individual neurons. Finally, 
it is worth mentioning that all subjects had to control the same articulatory-based speech 
synthesizer, which was built from a single subject, with his own specific articulatory 
configuration.  

Altogether, these results are a first step toward future speech BCI applications. Here we 
indeed showed that closed-loop speech synthesis was possible by subjects that had different 
speech production constrains (e.g., different anatomy of the vocal tract, articulatory 
idiosyncrasy) than those of the reference speaker from whom the speech synthesizer was built. 
This means that differences in anatomical constrains could be compensated by the articulatory-
to-articulatory mapping. In the context of a speech BCI paradigm, a similar situation will be 
encountered, where the synthesizer will be built from a subject different from the BCI 
participants. In this case, the question will be whether differences in neuronal constrains 
between individuals can also be compensated by a proper neural signal decoding strategy. This 
is particularly true when recording from a small cortical area in which the neural activity is 
better correlated to some speech articulators than others. Micro-electrodes arrays that are used 
for recording individual neurons typically cover about 10mm² of the cortical surface, while the 
speech motor cortext area is about several cm². Thus, the positioning of the recording electrode 
array must be optimized in order to capture informative speech-related brain activity. Different 
positioning of the electrodes array could result in decoding some articulatory trajectories better 
than others. Here, the DNN-based mapping approach was robust to trajectory errors of several 
millimeters that were present in the input signals of the synthesizer resulting from imperfections 
in the articulatory-to-articulatory mapping. This is encouraging given that decoding neural 
signal into control parameters of the synthesizer will also be imperfect, and suggests that an 
articulatory-based speech synthesizer such as the one developed here is a good candidate for 
being used in a speech BCI paradigm. In this manuscript, we made the choice to envision 
articulatory parameters as an intermediate representation for decoding speech from neural 
activity recorded from the speech motor cortex. This hypothesis has to be tested in BCI 
experiment and compared to a direct decoding of cortical activity into acoustic speech 
parameters (Herff et al., n.d.). Preliminary experiments toward this goal are presented in the 
next part of this thesis. 



 
 

Part 4: Thesis result 2 – Toward a BCI for 
speech rehabilitation 

As previously mentioned, the goal of this thesis was to set the ground for a Brain Computer 
Interface (BCI) for speech restauration, in which neural activity is recorded from the speech 
motor cortex and decoded in control parameters for an articulatory-based synthesizer. In the 
previous part of this thesis, we thus presented an articulatory-based speech synthesizer which 
can be used to synthesize speech from articulatory data. Such articulatory data could be 
obtained by decoding the neural activity of a patient intending to speak. However, to date, there 
has not yet been any demonstration of an open-vocabulary BCI able to reconstruct continuous 
intelligible speech in real-time. One goal of this thesis was thus to make a first step toward such 
a speech BCI by investigating the decoding of speech and articulatory features from neural data 
and by developing methodological tools toward this goal. In particular, a method for localizing 
speech-related brain areas directly during surgery was needed in order to optimize the 
positioning of micro-electrode arrays (MEAs) that can only cover a limited surface of the brain. 

In Chapter 6, we thus present a method to automatically map speech-related brain areas 
during awake brain surgery, in real-time. This method first automatically detects speech and 
extracts neural features which are then used to assess significant changes in the neural activity 
between silence and speech states. 

In Chapter 7, we present preliminary results on speech intention detection, i.e. on decoding 
when a patient is speaking or intend to speak, on voicing activity detection, i.e. on decoding 
when the vocal folds are vibrating, and on decoding articulatory trajectories from neural data. 
To achieve this, we used data from two patients undergoing awake surgery for a tumor removal.  



 

Chapter 6: Per-operative mapping of speech-related brain 

activity 

I. Introduction 

In the previous chapters, we presented an articulatory-based synthesizer which can be 
controlled in real-time by different speakers in order to produce intelligible speech. Such 
synthesizer could be used to synthesize speech using articulatory trajectories decoded from the 
neural activity of a subject’s speech motor cortex.  

During my thesis, we worked with Prof. Stephan Chabardès, who is a neurosurgeon at the 
university hospital (CHU) of Grenoble. This allowed us to record neural activity from patients 
undergoing awake brain surgery for a tumor resection (Fig. 53). Indeed, one treatment for brain 
tumors consists in removing the tumor areas and cells while preserving the sensory-motor 
functions of the patient. Localization of the functional areas to be preserved, such as the speech 
areas, is thus critical. It is often done by using neuroimaging techniques (e.g. fMRI), prior to 
surgery, but with limited spatial resolution. In some cases however, it is performed during the 
surgery by applying electrical stimulations at different locations on the cortex, while the patient 
is awake and self-reporting (Duffau et al., 2008, 2014). However, electrical stimulation gives 
only an indirect assessment of the functional areas, with uncontrolled spatial resolution, and 
may trigger epileptic seizures that are extremely problematic for open-brain surgery. Thus, 
another solution could be to perform the functional mapping of the cortical areas using 
electrophysiological recordings (Duffau et al., 2003; Boussen et al., 2016). In (Boussen et al., 
2016), ECoG recordings were used to compare the spectral content of tumoural and healthy 
areas. Results showed that differences in the spectral content could allow tumor recognition 
directly during awake surgery. However, such approach does not give any information on the 
functional areas to be preserved.  

 

Fig. 53: Awake brain surgery at the hospital of Grenoble. Left – View of the operative room. Right – Connecting the 256 
electrodes grid to the Blackrock system. 

Moreover, the localization of speech-related brain areas during surgery could be of 
particular use to precisely position micro-electrode arrays (MEAs) that can only cover a limited 
cortical surface. Because each individual is different, and so is the fine organization of the brain, 
the best location for a MEA cannot be known in advance and has to be optimized for each 
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subject. While fMRI is a non-invasive technique that can provide some information on the 
candidate locations, its spatial resolution (typically, several millimeters) is rather limited 
compared to the size of an MEA. Thus, the mapping of speech-related brain areas could help 
finding the best positioning for an MEA in order to record speech related activity.  

Here, we thus recorded neural activity using ECoG grids during awake surgeries in two 
patients for which the tumor was located next to the speech motor cortex. We also developed 
an approach to map speech-related brain activity, directly during awake brain surgery, and on 
the neurosurgeon’s view of the operative field. Such mapping could allow to identify speech-
related brain areas that should be preserved during the resection. This was also a good 
opportunity to record neural data during speech production in order to investigate the decoding 
of speech from neural data (see Chapter 7). 

II. Methods 

1. Subjects and experimental design 

During my thesis, we worked with Prof. Stephan Chabardès, who is a neurosurgeon at the 
university hospital (CHU) of Grenoble. This allowed us to record neural activity from patients 
undergoing awake brain surgery for a tumor resection. Indeed, one treatment for brain tumors 
consists in removing the tumor areas and cells while preserving the sensory-motor functions of 
the patient. Localization of the functional areas to be preserved, such as the speech areas, is thus 
critical. It is often done by using neuroimaging techniques (e.g. fMRI), prior to surgery, but 
with limited spatial resolution. In some cases however, it is performed during the surgery by 
applying electrical stimulations at different locations on the cortex, while the patient is awake 
and self-reporting. However, electrical stimulation gives only an indirect assessment of the 
functional areas, with uncontrolled spatial resolution, and may trigger epileptic seizures that are 
extremely problematic for open-brain surgery. Thus, another solution could be to perform the 
functional mapping of the cortical areas using electrophysiological recordings. In that context, 
we were able to record neural activity using ECoG grid during awake surgeries in two patients 
for which the tumor was located next to the speech motor cortex. 

a. First patient 

The first patient (denoted P1 in the following) was a French male with no speech disorder, 
whose tumor was located in the upper part of the precentral gyrus. During the surgery, an ECoG 
grid (DIXI medical company, 10m spacing and 5mm diameter) was placed over the inferior 
prefrontal gyrus and its opercular part to record the neural activity of the patient while speaking 
overtly and covertly (Fig. 54-A). For this first surgery – and for regulatory reasons – we had to 
use the recording system in place at the hospital: the ISIS IOM system by InoMed 
(http://www.en.inomed.com), which could only record activity from 4 electrodes of the ECoG 
grid, as shown on Fig. 54-B. A microphone was fixed near the patient to record his voice during 
the whole experiment. Since the InoMed system cannot record any other external signal than 
the brain signals, we used a CED Micro1041 data acquisition unit (http://ced.co.uk) to record 
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the audio signal as well as a trigger signal used for synchronization purpose. This trigger signal 
was also sent to the InoMed system in order to trigger short recordings of the neural data 
generally used for evoked potentials recordings. The times of each trigger in the neural data 
could be recovered by comparing each of these small recording with the whole neural signal. 
This trick was used to synchronize the neural data recorded by the InoMed system, and the 
audio signal recorded by the CED Micro1041. The neural data was recorded at 2kHz while the 
audio signal was recorded at 50kHz. 

 

Fig. 54: Positionning of the ECoG grid for the first patient. A – picture of the ECoG grid taken during the surgery. Only the 
electrodes which number is in blue (14 to 17) were recorded. B – localization of the 4 recorded electrodes on a reconstruction 
of the brain geometry from IRM data using the FreeSurfer software (freesurfer.net). The electrodes were localized by pointing 
them with the navigation tool of the surgery room. The numbers of each electrode are those of the electrodes in B.  

The patient was first asked to overtly pronounce (i.e. saying out loud) isolated vowels or 
vowel-consonant-vowel sequences (VCVs). More precisely, he had to pronounce the 10 vowels 
/a/, /i/, /u/, /o/, /œ/, /e/, /y/, /ã/, /ɛ/̃, and /ɔ̃/, and the 30 VCVs made of /b/, /d/, /g/, /v/, /z/, /ʒ/, /m/, 
/n/, /r/, and /l/, in /a/, /i/ and /u/ contexts (i.e., ‘aba’, ‘idi’, ‘umu’, and so on). The patient was 
asked to repeat three times in a row each item after hearing the corresponding audio extracted 
from the PB2007 dataset, played through speakers that were placed in front of him. On average, 
each item was pronounced 6 times by the patient. Because of the noisy hospital environment, 
and the overall tiredness of the patient, somes items were mistaken with others, thus resulting 
in more or less repetitions per item.  

The patient was then asked to covertly pronounce (i.e. to imagine pronouncing without 
actually moving or producing any sound) the 3 vowels /a/, /i/ and /u/, as well as the 9 VCVs 
made of /b/, /d/ and /g/ in /a/, /i/ and /u/ vocalic contexts. The audio of each item – from the 
PB2007 dataset - was first played to the patient three times at a fixed pace, after what he had to 
continue to imagine repeating them three times while keeping the same pace. Playing each item 
three times ensured that the patient could catch and keep the same pace, which was crucial to 
estimate when he was atually covertly speaking. That procedure was repeated twice, so that 
theoretically the patient imagined each item 6 times in total. 

The whole experimental protocol, including the setting up of the reording system, had to 
fit in a 30 minutes time window during the surgery in order to not prolongate too much the 
surgery. For this first patient, the localization of the speech-related brain areas was performed 
after the experiment. This was done using our custom made software, called NeuroPXI (Bonnet 
et al., 2012), which can replay a previously recorded file in order to simulate a real-time 
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experiment (Fig. 55). During this thesis, I had the chance to supervise an intern, Eloi Navarro, 
who implemented this specific functionality in the NeuroPXI software. 

 

Fig. 55: The NeuroPXI software. This software allows to stream the recorded neural data in real-time, as well as to replay 
previously recorded files. Some channels were excluded from the analysis because of their noise level (e.g. second channel 
from the bottom). 

b. Second patient 

The second patient (denoted P2 in the following) was a French male with no speech 
disorder, whose tumor was located in the left central sulcus, between the motor and sensory 
cortices (see Fig. 56-A). During the experiment, a custom made 256 electrodes ECoG grid 
(PMT corporation company, 3mm vertical and 3.5mm horizontal spacings, 1mm diameter) was 
placed over the exposed area (Fig. 56-B), covering some parts of the speech motor and sensory 
cortices (Fig. 56-A). The neural activity was recorded at 10 kHz using two synchronized 128-
channel Blackrock Microsystems recording units (http://blackrockmicro.com/). A directionnal 
microphone was placed in front of the patient, and speech was recorded at 10 kHz using an 
external analog input, thus ensuring perfect synchronization with the neural signal. Using a 
directionnal microphone allowed to have a good quality recording of the patient voice, while 
removing most of the environmental noise, surgery rooms being particularly noisy. The data 
was recorded using our NeuroPXI software which was extended in order to support recordings 
from the Blackrock system. 
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Fig. 56: Positionning of the ECoG grid for the second patient. A – Approximate localization of the 256 recorded electrodes 
on a reconstruction of the brain geometry from IRM data using the FreeSurfer software (freesurfer.net). The electrodes were 
localized by pointing some of them with the navigation tool of the surgery room, and then interpolating the coordinates for the 
other electrodes. The numbers of the electrodes at the extremities of the grid are the same as in B. B – Picture of the ECoG 
grid taken during the surgery. 

The patient was first asked to perform continous movement of each of the main speech 
articulators: switching from a kiss to an exagerated smile with the lips; moving the jaw up and 
down by opening and closing the mouth widely; moving the tongue back and forth; changing 
the larynx activity by alternating the sound /s/ with its voiced counterpart /z/; and moving the 
velum by alternating the sound /o/ with its nasal counterpart /ɔ̃/. 

The patient was then asked to pronounce 3 times each of the 10 French vowels /a/, /i/, /u/, 
/o/, /œ/, /e/, /y/, /ã/, /ɛ/̃, and /ɔ̃/, and then to read out loud a list of short sentences (about 4-5 
words each, extracted from the BY2014 corpus), at the pace he felt more comfortable with. 
Each sentence was displayed at the center of a tablet screen, and one experimenter was in charge 
of passing to the next sentence once the patient was done pronouncing the currently displayed 
sentence. In total, the patient pronounced about two hundred sentences. 

The whole experimental protocol, including connecting the electrodes and setting up the 
recording system, had to last about 60 minutes during the surgery in order not to prolongate too 
much the surgery. For this second patient, and for both tasks, the neural data was processed 
online in order to display the speech-related brain activity directly on a picture of the operative 
field taken before placing the ECoG grid, in real-time. This required to automatically detect 
speech instants using the microphone input, then to combine this information with features 
extracted from the neural signal in order to identify how these features differed between speech 
and silent periods, and finally to map the significant speech-related brain activity on a picture 
of the brain using registration techniques. Each of these processing parts are described in the 
following. 

2. Automatic speech detection 

In order to localize speech-related brain areas, one must first be able to identify which 
segments of data correspond to speech, and which correspond to silence. This can be achieved 
by automatically analyzing the audio signal coming from the microphone placed next to the 
patient. In the present work, the good quality of the recorded audio signals allowed us to use a 
simple threshold approach (Fig. 57). 
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During speech, the audio signal energy is generally higher. Thus, the algorithm we used 
ensured that audio samples which absolute value was above a fixed threshold were labeled as 
speech samples and samples below the threshold as silence samples (Fig. 57-B). However, 
speech is time-varying signal, so that during speech, the audio signal absolute value will go 
several times above and below the threshold (Fig. 57-B, inset). To account for that, all samples 
in-between two speech samples were as well considered as speech if the two speech samples 
were close enough, i.e. if they were separated by less than some time period, called the 
inactivation period (Fig. 57-C). Choosing this inactivation period long enough (here, 300ms) 
allowed as well to consider short pauses within sentences or sounds with low energy (e.g. /s/) 
as speech segments Fig. 57-D). Moreover, in order to reject short environmental noises, such 
as the beeps emitted by the equipments of the surgery room, all speech segments that were 
shorter than a fixed duration (here, 500ms) were considered as non-speech segments, i.e. as 
silence. 
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Fig. 57: Automatic online speech detection. A – Raw audio signal recorded by a microphone placed next to the patient. B – 
Samples which absolute value is above threshold are labeled as speech (red), and samples below threshold are labeled as 
silence (black). The speech signal is a time-varying signal, thus many speech samples are not detected (inset). C – Using an 
inactivation period allows to include fast oscillation in the speech signal. However, short pauses and phones with low energy 
remain undetected (arrows). D – Using a larger inactivation period allows to include short pauses and low-energy phones that 
are in-between high-energy phones. However, low-energy phones remain undetected at the beginning of the speech signal 
(black arrow). 

The parameters of the automatic speech detection were optimized prior to the beginning of 
the experiment by asking the subject to speak while adjusting the dection parameters. Once 
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speech and non-speech segments were discriminated, speech-related brain activity could be 
detected by analyzing differences in the neural signal between these segments. 

3. Extraction of speech-related brain activity 

One common way to extract information from ECoG neural signals is to decompose it into 
frequency components and compute its power at each frequency – i.e. its spectrum – or band of 
frequencies, at different time instants. Several ECoG studies have shown that cortical 
oscillations are relevant correlates of speech processing (Leuthardt et al., 2011; Pei et al., 2011a; 
Pasley et al., 2012; Bouchard et al., 2013; Pasley and Knight, 2013; Martin et al., 2014; Mugler 
et al., 2014). In particular, speech production is classically associated with a decrease of signal 
power in the beta frequency range (10-30Hz) and usually an increase in the high-gamma 
frequency range (70-200Hz) over temporal and frontal areas (Canolty et al., 2007; Pei et al., 
2011b; Toyoda et al., 2014) while gamma attenuation was observed in more anterior frontal 
speech cortex including Broca’s area (Lachaux et al., 2008; Wu et al., 2011; Toyoda et al., 
2014). These oscillatory features can thus be used to map functional cortical speech areas during 
resection surgeries (Kamada et al., 2014; Tamura et al., 2016). Speech-related brain areas were 
thus identified by quantifying differences in spectral power between speech and silence 
segments. 

For each recorded electrode of the ECoG grid, the short term Fourier transform (STFT) of 
the neural signal was computed in real-time in order to obtain the instantaneous power for each 
frequency. The STFT was performed using a 512 samples (i.e. 256ms at 2kHz) window for 
patient P1, and 2048 samples (i.e. 205ms at 10kHz) for P2, with 75% of overlap between 
consecutives windows, and after windowing the data using a Hamming function. 

Using the output from the automatic speech detection, the STFT was then averaged over 
time to estimate, for each electrode , the mean power of the neural signal for the frequency  
during silence � , and the one during speech � � ℎ  along with their respective 

standard deviations �  and � � ℎ . Here, we assumed that the power  of the 

neural signal of each electrode  and frequency  had a Gaussian distribution during speech and 
silence:  ~ � , �  Eq.  28 

� ℎ  ~ � � ℎ , � � ℎ  Eq.  29 

Under this assumption, significant changes in the neural activity power between speech 
and silence could be identified using a two-tailed Welch’s t-test, for each electrode  and 
frequency . The Welch’s t-test is then performed by first computing the statistics  and 
the number of degrees of freedom : 

= � � ℎ − �√� � ℎ� ℎ + �  
Eq.  30 
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= 
⌊  
   
  � � ℎ� ℎ + �� � ℎ� ℎ� ℎ + + � + ⌋  

   
  −  Eq.  31 

Where � ℎ and  are the number of averaged STFT used to obtain the estimate 

mean and standard deviation for speech and silence, respectively. The P-value  for this 
electrode  and frequency  can then be computed using: = ∗ ̃ �   Eq.  32 

Where ̃  is the cumulative distribution function of the complement of the Student 
distribution with  degrees of freedom. Since this P-value is computed for each electrode and 
frequency, the Bonferroni correction for comparison was applied so that  is significant 
only if < ̃, with ̃ the Bonferroni corrected risk factor (Bonferroni, 1936) given by: ̃ = �∗   Eq.  33 

With  the original risk factor,  the number of electrodes and  the number of 
frequencies. In the following,  was chosen equal to 0.05, and the corrected risk factor was then 
computed for each patient according to the number of electrodes and frequencies considered. 

These significant changes in neural activity could then be quantified by computing , 
which will be called the speech-silence-ratio in the following, as well as the z-score :  

= � � ℎ� −  Eq.  34 

= � � ℎ − ��  Eq.  35 

That way we obtained, for each electrode  and each frequency  a speech-silence-ratio 
which represented the degree of difference in the neural activity during speech as compared to 
silence for this specific frequency. A positive speech-silence-ratio represented an increase in 
activity during speech while a negative value represented a suppression of the activity during 
speech. 

Finally, frequencies of interest could be identified by computing , the number of 
electrodes that had significant difference of activity between the speech and silence conditions, 
given a risk factor : = ∑ =  with = { ,  < ̃, ℎ  Eq.  36 

Frequencies with the highest  values corresponded to frequencies at which many 
electrodes exhibited speech-specific activity. The visualization of speech activity was done by 
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directly mapping the speech-silence-ratio at the electrode positions, for each frequency of 
interest, when it was significant.  

4. Mapping of speech-related brain activity 

When using an electrode grid, the neural activity, and all derived features such as the 
speech-score presented in the previous part, are sampled only at discrete spatial positions 
corresponding to the recording sites. Therefore, in order to visualize the brain activity over the 
whole covered area, an interpolation method is required to extend the available data to all the 
positions between electrodes. Here we used thin plate splines – or surface splines – interpolation 
(Perrin et al., 1987), which was previously used in another neural activity mapping software 
developped by our team: the NeuroMap software (Abdoun et al., 2011), which is publicly 
available (https://sites.google.com/site/neuromapsoftware/).  

Compared to conventional interpolation methods, such as bilinear or bicubic interpolation, 
thin plate spline interpolation has several advantages: (1) it allows the estimation of activity 
with local extrema not necessarily at recording sites unlike bilinear interpolation, (2) it does not 
require equally spaced spatial sampling and can be thus used for any disposition of electrodes, 
(3) it can be computed efficiently and (4) it provides an analytical expression of the interpolant, 
which is differentiable. 

If we consider  recording electrodes, and note ,  the coordinates of the electrode  
and  the measured value at this electrode, then its interpolated value  at the coordinates ,  using a mth order surface spline is given by: 

, = ∑ − , − + ∑∑ −=
−
==  Eq.  37 

Where  is the function defined by: , = + − log +  Eq.  38 

The  coefficients  and the 
+

 coefficients  can be obtained through the 

resolution of a system of linear equation. By noting = ≤ ≤ , = ≤ ≤  and =( , , , … , − , − ) , the coefficients of  and  can be obtained by solving the 

following system of linear equations: [ � ] [ ] = [ ] Eq.  39 

Where � = ( ) ℎ = − , −  Eq.  40 

= [ − −⋱ − − ] Eq.  41 
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And which can be rewritten as =  with = [� ], = [ ] and = [ ]. A 

numerical approximate solution ̃ of this system is: ̃ = +  Eq.  42 

Where + is the Moore-Penrose pseudo-inverse of , which can be obtained using the 
singular value decomposition of : = ⟹ + = ̃+  Eq.  43 

With = ≤ ≤  a diagonal matrix containing the singular values of  from the highest 

to the lowest, so that ̃+ = ̃+ ≤ ≤  with: 

̃+ = { ,  ,  >  Eq.  44 

In most cases,  is chosen equal to the number of non-zero values of . However, a smaller 
value of  can be considered when  is ill-conditioned in order to obtain a regularized solution 
(Uutela et al., 1999). 

The matrices  and  can then be obtained using the following: 

[ ] = + [ ] Eq.  45 

Thus, if the source positions of the interpolant do not change – which was the case here 
since they are electrodes coordinates – the matrix + only needs to be computed once even if 
the measured values change. In a similar manner, if the interpolated positions do not change – 
which was the case here since they are all the pixel positions in between electrodes – the 
interpolated values can be efficiently obtained by pre-computing and storing all the  function 
values at the interpolation points ,  as well as the −  terms in the analytical expression 
of the interpolant. To further reduce the computational complexity of this method, the area 
covered by the ECoG grid was subdivided into a dense NxM point grid. Values where 
interpolated using thin plate spline interpolation at each point of this grid, and points in-between 
where then further interpolated using bilinear interpolation. Indeed, a computer screen has about 
two million visible pixels. When displaying the interpolated map full-screen, it would require 
to compute about the same amount of interpolated values, which would not be efficient. Using 
a subdisivion grid resulted in computing less interpolated values while keeping a good spatial 
resolution. For instance, for a typical 10cm x 10cm ECoG grid, using a 100x100 subdivision 
grid would result in computing only 10,000 interpolated values while keeping a spatial 
resolution of 1mm with spline interpolation. 

Using such interpolation technique allowed to map the speech-silence-ratio over the whole 
brain surface covered by the ECoG grid, in real-time. The P-values given by the Welch’s t-test 
were as well interpolated in order to prevent unsignificant differences to be displayed. In order 
to clearly identify which brain areas exhibited speech-specific activity, localization of the 
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electrode positions on anatomical pictures was needed, and was done on a picture of the brain 
directly taken during the surgery. 

5. Coregistration of the electrodes on the operative field 

Mapping the neural activity directly on the surgeon’s view of the operative field is of 
particular interest in order to identify precisely the best location for a micro-electrode array to 
record speech-related activity, and is also useful to inform the surgeon of which areas are to be 
preserved during the resection. If we considered mapping the neural activity on the brain 
volume reconstructed from the MRI data, navigation tools from the surgery room could have 
been used to directly obtain the coordinates of each electrode in the MRI data by pointing them 
with the surgery navigation device. Indeed, during the surgery the patient was fixed in a 
stereotaxic frame which allowed to know the localization of the patient within the MRI space. 
However, we considered directly mapping the neural activity on the surgeon’s view – here on 
a picture of the exposed brain taken during the surgery – so that this information was not 
available and another approach was needed.  

We used a similar techniques to that of the approach implemented in the NeuroMap 
software (https://sites.google.com/site/neuromapsoftware/). Two pictures of the exposed brain 
were taken during the surgery: one before placing the ECoG grid, so that the full anatomy was 
visible, and one after placing the ECoG grid, so that the electrodes were visible but masking 
relevant anatomical parts. In a first step, the electrodes were localized on the second picture in 
which electrodes were visible. In a second step, correspondence points between the two pictures 
– with and without electrodes – were identified so that the electrode positions on the first picture 
could be inferred from their known positions in the second picture (Fig. 58). 

 

Fig. 58: Coregistration of the electrodes on the anatomy. A - During the surgery a picture of the exposed brain with the ECoG 
grid is taken. B -  Some electrodes are localized on the picture by the user (blue circles), which allow to infer the position of 
all the other electrodes (green circles). C - Before placing the ECoG grid on the brain, a picture of the exposed brain without 
the grid was taken. D - Pairs of corresponding points between both pictures are identified by the user (green crosses, 
corresponding points are labeled by an identical number), which allows to infer the position of the electrodes on the a natomy 
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(white circles on the right image) using their positions on the picture with the ECoG grid visible (white circles on left picture). 
E - The quality of the coregitration can be evaluated by superimposing the picture without the ECoG grid with a deformed 
version of the picture with the ECoG grid using the same thin plate spline interpolation that inferred the electrodes positions. 
Here we see that it allows to recover the anatomy below the ECoG grid and that there is no significant mismatch (otherwise 
we would observe some vessel or other anatomical features twice, resulting in a blurry image). 

For the first step, this method takes advantage of knowing in advance the geometry of the 
ECoG grid. Indeed, ECoG grids were designed long before the surgery, to that the position of 
each electrode in the grid space was known. The user started by identifying the positions of  
electrodes, by simply pointing them in the picture with the ECoG grid visible (Fig. 58-A), 
allowing to obtain each of their pixel coordinates � , ��� . Using the known geometry 

of the ECoG grid, the algorithm then used the grid coordinates , ��  to extrapolate the 

pixel coordinates ��� , ���  of all the  electrodes of the grid  using a second 

order thin plate spline interpolation, as previously defined: 

��� =∑ �� − �� , �� − �� +∑∑ ��− ��===  Eq.  46 

��� =∑ − �� , �� − �� +∑∑ ��− ��===  Eq.  47 

= [ �
�� � ] and = [ �

�� � ] Eq.  48 

Note that in that case, the linear system has to be solved twice, for  then for , in 

order to obtain the matrices , , , and . However, the singular decomposition 

of the matrix  could be done once, as well as the computation of the  coefficients and 

��− ��  terms, which saved computational power. 

Thus, the precision of the electrode localization on the picture increases with the number 
of electrodes identified by the user. In practice, it was often sufficient to identify about ten 
electrodes (blue dots in Fig. 58-B), which saved a lot of experimental time, especially when the 
ECoG grid contained more than two hundred electrodes. Thus, at the end of this step, the 
position of all electrodes in the pictures with the ECoG grid visible were known (Fig. 58-B). 

In the second step, these positions were used to infer the positions of the electrodes in the 
picture without the ECoG grid (Fig. 58-C). This required to coregister both pictures. Indeed, 
the pictures could have been taken using a different angle and camera setting. If we note 

��� , ���  the pixel coordinates of the ith electrodes in the picture with the ECoG grid 

visible, then the aim of the coregistration algorithm was to provide ��� , ��� , the pixel 

coordinates of the ith electrode in the picture without the ECoG grid, for each of the  
electrodes of the grid. This was achieved by first identifying  anatomical landmarks in both 

pictures { ̂ ��� , ̂ ��� ; ̂ ��� , ̂ ��� }, for instance the crossing of some blood vessels that 

were visible in both pictures, which were then used to obtain the coordinates of all the electrodes 
using thin plate spline interpolation similarly to the previous step (Fig. 58-D): 
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��� =∑ ( ��� − ̂ , ��� − ̂ ) +∑∑ ��� − ��===  Eq.  49 

��� =∑ ( ��� − ̂ , ��� − ̂ ) +∑∑ ��� − ���===  Eq.  50 

= [ ̂ ���̂ ���
] and = [ ̂ ���̂ ���

] Eq.  51 

Thus, the more landmarks were identified, the more precise was the coregistration. In 
practice, a dozen of pairs was often enough to obtain a good registration of the pictures. 
Deforming the first picture in order for it to match the second one could allow to use the 
electrodes pixel coordinates in the second picture as coordinates in the first one. Here however, 
we chose to infer the electrode positions in the first picture from their positions in the second 
one so that the anatomical picture was not distorted, which could have made the localization 
more difficult or less accurate. However, we still used such image deformation in order to 
superimpose both pictures to qualitatively evaluate the quality of the coregistration while 
adding pairs of corresponding points (Fig. 58-E). 

Using this coregistration approach thus allowed to identify the positions of the ECoG grid 
electrodes on the anatomy of the brain using a picture directly taken during the surgery, as well 
as on rendered images of the brain volume obtained from MRI prior to surgery. These positions 
could then be used to directly map the speech-silence-ratio on the surgical view in real-time, 
allowing to identify candidate areas to place a micro-electrode array for recording speech-
specific brain activity. 

6. Coregistration of the electrodes on the reconstructed cortical surface 

In order to localize the electrode locations relatively to the different brain regions, we also 
estimated their positions on the reconstructed cortical surface of each subject. Each patient 
underwent magnetic-resonance imaging (MRI) prior to surgery in order to precisely localize 
the tumor to be removed. We used this MRI to reconstruct a 3D mesh of the cortical surface 
(Fig. 54-B and Fig. 56-A) using the FreeSurfer software (freesurfer.net). 

During the surgery, the neurosurgeon pointed three anatomical landmarks using the 
neuronavigation system of the surgery room (Fig. 59, top row). Unfortunately, the 
neuronavigation software only displayed the MRI slices corresponding to the pointed location, 
and not its actual coordinates in the MRI spaces. In order to find these coordinates, we thus 
captured the displayed MRI slices (Fig. 59, middle row) that were later identified by exploring 
the full MRI data. This was performed using the 3DSlicer software (slicer.org) and allowed to 
obtain the coordinates ; ;  of each pointed location   in the MRI space 
(Fig. 59, bottom row).  
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Fig. 59: Localization of anatomical landmarks in the MRI data. Top row – The three different anatomical landmarks pointed 
by the neurosurgeon. Middle row – The captured view of the neuronavigation system in the horizontal plane. The green cross 
indicates the localization of the pointed landmark. Bottom row – Corresponding location (red cross) manually identified using 
the 3DSlicer software. 

The anatomical landmarks were as well identified in the picture of the operative field 
without the electrodes visible (Fig. 58-C). We then transformed the position of each anatomical 
landmark  in the picture to coordinates ,  in the coordinate space of the electrode grid 
(for instance, the coordinates (0;0) correspond to the electrode in the first row and first column, 
while the coordinates (1;1) correspond to the electrode in the second row and second column). 
This was achieved by using the thin-plate splines interpolation computed for the coregistration 
of the electrodes on the operative field (see previous section). By assuming that all electrodes 
are contained in the same 3D plane (i.e. by neglectin the curvature of the electrode grid), we 
thus obtain a direct linear relationship between the coordinates ; ;  in the MRI space and 
the coordinates ;  in the grid space: 

{ , = + ∗ + ∗, = + ∗ + ∗, = + ∗ + ∗  Eq.  52 

Where , , , , , , ,  and  were constants to be determined. Using the 
known coordinates of the three pointed locations, we obtained three systems of linear equations: 



Chapter 6: Per-operative mapping of speech-related brain activity 

 
142 

 

{ / / , = / / + ∗ / / + ∗ / // / , = / / + ∗ / / + ∗ / // / , = / / + ∗ / / + ∗ / /  Eq.  53 

where R/A/S was used to denote either the R, A or S coordinates. Assuming that the pointed 
location are not colinear, which was explicitly asked to the neurosurgeon, these three linear 
equation systems could be solved using the Cramer’s rule (Cramer, 1750): 

/ / = �et [
/ / ,/ / ,/ / , ]�et  

Eq.  54 

/ / = �et [ / / ,/ / ,/ / , ]�et  

Eq.  55 

/ / = �et [ / / ,/ / ,/ / , ]�et  

Eq.  56 

with = [ ] Eq.  57 

The positions of all the electrodes of the grid on the reconstructed cortical surface could 
thus be estimated by using their coordinates in the grid space (Fig. 54-B and Fig. 56-A). 

7. Implementation details 

All the algorithms used to analyze and map the neural activity in real-time were developped 
in C++. Great care was given to optimization and parallelization of all computationally 
expensive algorithms. Indeed, in a typical experimental setting, we could expect to have about 
250 neural channels recording at about 10Khz, which represents about 100Mbits of incoming 
data per second that has to be analyzed in real-time using computationally expensive technique 
such as the STFT. The STFT transform of the neural data was computed using the FFTSS 
library (Nukada, 2006) and parallelized using the OpenMP library (http://openmp.org) to take 
advantage of all the processor cores of the computer the software was running on. The choice 
for the FFTSS library was motivated by preliminary comparisons with other available libraries, 
which showed that it was particularly efficient. This work was performed by Philemon Roussel, 
an intern that I supervised during my thesis. We used the linear algebra Lapack++ 
(http://lapackpp.sourceforge.net/) library to compute the thin plate spline interpolation, and the 
Boost library (http://www.boost.org/) to compute the Student’s distribution. 

In order to avoid numerical instability and limit the accumulation of rounding errors, the 
iterative formula of the mean � and standard deviation � was used to compute mean and 
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standard deviation spectrums of the neural signal , using an intermediate variable  (Chan et 
al., 1983): � =   � = =   Eq.  58 

� + = � + + − �+  Eq.  59 

{ 
 + = + + − �+ − � +� + = +  Eq.  60 

III. Results 

1. ClientMap: a neural activity mapping software dedicated to speech 

The previously explained algorithms were all implemented in a dedicated software, called 
ClientMap. This software receives in real-time the neural activity and other signals – here the 
patient audio signal – that is streamed by our recording software NeuroPXI, and then performs 
the mapping of the speech-related activity, from the automatic speech detection to the final 
display of the activity.  

Preliminary experiments demonstrated that thanks to the various optimization methods we 
used, we were able to analyze in real-time neural activity recorded from 256 electrodes at 
10kHz, with STFT windows up to 4096 samples and 90% overlap, on an Intel Xeon ES5-2640 
processor, which was necessary to perform the per-operative mapping in real-time.  

The final software was organized into various pannels for configurating the analysis and 
visualizing its results either on pictures of the operative field or of the reconstructed cortical 
surface (Fig. 60). 
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Fig. 60: Overview of the ClientMap software. A – Parameters panel. B – Spectrum panel. C – Score panel. D – Features 
panel. E – Electrodes panel. F – Maps panel. G – Raw data panel. 

a. Parameters panel 

The parameters panel is itself made of several sections (Fig. 61): (i) Global settings, (ii) 
Speech detection, (iii) FFT and (iv) Map.  

 

Fig. 61: Parameters panel of the ClientMap software. This panel contains several sections: Global settings, Speech detection, 
FFT and Map. 

Global settings section. This section allows the experimentator to specify where to store 
data. Indeed, since the analysis is performed in real-time, results are changing over time. The 
software thus allows to save the current analysis state (parameters, maps, speech-silence-ratio, 
etc.) at any moment during the experiment. 

Speech detection section. This section is used to specify the speech detection parameters 
(audio channel, threshold, inactivation period, etc.) and to enable or disable the automatic 
speech detection. 
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FFT section. This section is used to set the parameters of the short-time Fourier transform: 
window size, windowing function, overlaping between consecutive windows, etc. It allows as 
well to enable/disable the STFT computation and to reset the averaged spectrums. Indeed, if an 
artefact occurs during the analysis, for instance during a speech segment, it could invalidate the 
current analysis so that it must be resetted. While this was not done in the present work, 
automatic artefact rejection could be considered in future works to avoid the need for resetting 
the analysis. 

Map section. This section allows to adjust the display settings for the maps (composition 
mode, opacity, gradient, display of the electrode positions, etc.). It allows as well to setup the 
coregistration of the electrodes on the anatomy. 

b. Spectrum panel 

The spectrum panel displays, for each recorded channel, the averaged signal sepctrum 
during silence and during speech, along with their respective standard deviation (Fig. 62). 
While this panel is not directly used to visualize the speech-related neural activity, it can be 
used for instance to quantify the electromagnetic interferences coming from the environment, 
essentially from power lines at 50Hz and its harmonics. 

 

Fig. 62: Spectrum panel of the ClientMap software. This panel displays, for each electrode, the averaged spectrum of the 
neural activity during silence (blue curve) and speech (red curve) along with their standard deviation (semi-transparent blue 
and red curves). 

c. Score panel 

The score panel displays, for each recorded channel, the speech-silence-ratio at each 
frequency. Moreover, it also indicates when this ratio is significant by coloring the background 
of the displayed curved so that the user can quickly identify frequencies of interest for a specific 
channel (Fig. 63). 

 

Fig. 63: Score panel of the ClientMap software. This panel displays, for each recorded channel, the speech-silence-ratio at 
each frequency (green curves). It as well indicates when this ratio is significant (green areas in the background of each curve). 
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d. Features panel 

The features panel (Fig. 64) displays, for each frequency, the number of electrodes that 
exhibit significant speech-related activity. This information is useful to quickly identify 
frequency bands in which most electrodes exhibit significant speech-related activity. In this 
panel, the user can as well specify the risk factor  used for the statistical analysis in order to 
only map significant neural activity changes. 

 

Fig. 64: Features panel of the ClientMap software. This panel displays, for each frequency, the number of electrodes that 
exhibit significant speech-related activity (blue curve). It is as well used to specify the uncorrected risk factor for the statistical 
analysis. 

e. Electrode panel 

The electrode panel allows to visualize the electrode grid geometry and channel identifiers, 
as well as to include or exclude any channel from the analysis. This is for instance used to 
exclude saturated or artefacted channels, and to exclude all other external channels that do not 
contain neural activity, for instance the patient audio channel (Fig. 65). The grid geometry is 
sent to the ClientMap software by the NeuroPXI software when starting the streaming of the 
data. 

 

Fig. 65: Electrodes panel of the ClientMap software. This panel allows to visualize the electrodes (circles) grid geometry and 
channel identifiers (names in the circles), as well as to include (green circles) or exclude (red circles) any channel from the 
analysis. 

f. Maps panel 

The maps panel displays the speech-related brain activity at different frequencies (Fig. 66). 
Several maps can be added to visualize the activity for different frequencies at the same times. 
The maps are updated in real-time and are linked to the other displays so that the user can easily 
choose a frequency of interest for each map. Only significant values – according to the specified 
risk factor – are displayed. 
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Fig. 66: Maps panel of the ClientMap software. This panel displays the speech-related brain activity at different frequencies 
(specified on top of each map). The color scale of all the maps can be adjusted using a dedicated interaction element (on the 
right). 

g. Raw data panel 

The raw data panel allows to visualize the incoming flow of data that is streamed from the 
NeuroPXI software (Fig. 67). This is useful for instance to detect saturated or artefacted 
channels and remove them from the analysis. On the patient audio channel, it as well displays 
which segments were automatically labeled as speech, in order to monitor the good 
functionning of the automatic speech detection. 

 

Fig. 67: Raw data panel of the ClientMap software. This panel allows to visualize the incoming flow of data (blue curves), as 
well as the audio channel segments that were automatically labeled as speech (red background). 

2. Mapping of speech-related brain activity 

a. First patient 

i. Overt speech 

The first patient had 4 recorded electrodes placed over the inferior prefrontal gyrus and its 
opercular part. For this patient the neural signal analysis was performed offline while simulating 
real-time condition by playing back the recorded data. Fig. 68 shows an example of recorded 
neural signal. 
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Fig. 68: Example of recorded neural signal for the first patient. There is a high noise level, especially due to environmental 
electromagnetic interferences at 50Hz (bottom row). 

The analysis of the  value (i.e. the number of electrodes exhibiting significant speech-
related activity, see “Extraction of speech-related brain activity” in the Methods) allowed to 
identify two principal frequency bands for which there was a power difference between speech 
and silence conditions for a significant amount of electrodes, corresponding to the beta band 
(from about 10Hz to 30Hz) and the low gamma band (from about 60Hz to 90Hz) (Fig. 69).   

 

Fig. 69: Number of electrodes exhibiting significant speech-related activity for patient P1. For each electrode and frequency, 
significant change in activity between speech and silence was assessed using a Welch’s t-test with Bonferroni risk correction. 
The curve shows, for each frequency (here from 0 to 90Hz), the number of electrodes which P-value was inferior to the 
corrected risk factor (see “Extraction of speech-related brain activity” in the Methods). The arrow shows a peak due to 
environmental electromagnetic noise (50Hz artefact). 

Mapping the neural activity at these frequencies confirmed this result: a beta 
desynchronization was observed on two electrodes over the opercular part of the inferior 
prefrontal gyrus during speech production (Fig. 70-Left), as well as a significant increase of 
gamma activity in one of these two electrodes (Fig. 70-Right). 

 

Fig. 70: Mapping of the speech-related activity for patient P1. Left – Beta desynchronization (here mapped at 16Hz) in the 
inferior precentral sulcus and anterior subcentral sulcus during speech production (blue area). Note that the red areas are not 
relevant here since they are the results of an extrapolation outside fo the electrodes grid. Right - Increase of gamma activity 
(here mapped at 76Hz) in the inferior precentral sulcus and anterior subcentral sulcus (red area). 
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This result could be quickly observed after the first pronounced items and was maintained 
until the end of the experiment. The time-frequency representation of the neural signal for the 
particular that exhibited an increase in the gamma band (Fig. 70) was also averaged across all 
trials (Fig. 71). 

 

Fig. 71: Average time-frequency representation of the neural data during overt speech. Top – Sample sound recorded by a 
microphone placed next to the awake patient. Bottom – Time-frequency representation of the ECoG signal showing clear beta 
desynchronization (blue, white arrow) and gamma-band responses to the cue and for each pronounced sound (red, black 
arrows). ECoG data was recorded at 2 kHz and the time-frequency representation was computed using short-time Fourier 
transform using a Hamming function on 512 samples sliding windows with 95% overlap. The time-frequency representation 
was then normalized by the 1-sec pre-stimulus period and averaged over 83 trials aligned on the beginning of the cue signal.
  

The time-frequency representation of the neural signal exhibits a clear desynchronization 
in the beta band (10-30Hz) that starts at the beginning of the cue sound, is sustained during the 
whole speech production, and is followed by a rebound at the end of the task (Fig. 71, white 
arrow). An increase of power was also observed in the low and high gamma bands (60-130Hz) 
during the cue sound, and also during each pronounced occurrence (Fig. 71, black arrows). As 
opposed to the desynchronization in the beta-band, the gamma-band increase seems to not be 
sustained between each speech production. 

ii. Covert speech 

The first patient also produced covert speech during the experiment. He was first asked to 
listen to the same speech item played three times at a fixed pace and then to continue to imagine 
repeating it at the same pace. The end of each imagination period was notified by the patient 
who pronounced the word “ok” aloud. We thus also averaged the time-frequency representation 
of the neural signal from the previously identified speech-specific electrode occurences (Fig. 

72). 
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Fig. 72: Average time-frequency representation of the neural data during covert speech. The modulation of beta (white 
arrow) and high-gamma band activity (black arrows) over the speech motor cortex during speech listening is prolonged during 
the period the subject is asked to imagine repeating what he has heard. Top – Sound recorded by the microphone positioned 
next to the awake patient. Bottom – Time-frequency representation of the ECoG signal averaged over 24 trials on the same 
electrode and using the same methods as in Fig. 71. The vertical pink line shows the mean position of the end of the imagination 
period as notified by the patient by saying "ok" aloud. 

Only 24 items were averaged for the covert speech representation, while 84 items were 
used for overt speech. However, similarities between overt and covert speech could still be 
observed. As for overt speech, there is a clear beta desynchronization (10-30Hz) during the 
listening of the speech items that is sustained during the speech imagination period (Fig. 72, 
white arrow), and is also followed by a rebound (Fig. 72, increase after the vertical pink line). 
There is also an increase in the low and high gamma bands (60-130Hz) during the listening 
period that seemed to be prolonged during speech imagination (Fig. 72, black arrows). 

b. Second patient 

The second patient had 256 recorded electrodes, mostly placed over its tumor, which was 
located in the left central silcus, with some electrodes covering surrounding areas, notably on 
the lower part of the motor and sensory cortices (Fig. 56-A). However, technical difficulties 
(principally due to the rigidity of the grid because of the high number of electrodes)  drastically 
reduced the number of electrodes that were correctly recorded: 125 electrodes out of 256 had 
to be removed fom the analysis, either because they were saturated or because there was no 
signal at all, which resulted in having almost no electrodes over the sensory motor cortex. In 
total, about 15 minutes of continuous neural and audio data were considered for an offline 
analysis after artefact removal. 

Among the correctly recorded electrodes, most were directly located over the tumor and 
did not show any speech-specific neural activity, as could be expected. Similarly to patient P1, 
the analysis of the  value (i.e. the number of electrodes exhibiting significant speech-related 
activity, see “Extraction of speech-related brain activity” in the Methods) allowed to identify 
two principal frequency bands for which there was a power difference between speech and 
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silence conditions for a significant amount of electrodes, corresponding to the beta band (from 
about 10Hz to 30Hz) and the low gamma band (from about 60Hz to 90Hz) (Fig. 73).  

 

Fig. 73: Number of electrodes exhibiting significant speech-related activity for patient P2. For each electrode and frequency, 
significant change in activity between speech and silence was assessed using a Welch’s t-test with Bonferroni risk correction. 
The curve shows, for each frequency (here from 0 to 100Hz), the number of electrodes which P-value was inferior to the 
corrected risk factor (see “Extraction of speech-related brain activity” in the Methods). 

This was confirmed by mapping the neural activity at different frequencies. In particular, 
the mapping showed that there was a large beta desynchronization in the inferior precentral 
gyrus (Brodmann area 4) and anterior subcentral gyrus (Brodmann area 43) during speech 
production (Fig. 74-A), as well as a smaller but overlapping increase of gamma activity in the 
same area (Fig. 74-B). Note how both these activities seem to expand to more frontal parts of 
the brain that could not be covered by the ECoG grid in this experiment. 

 

Fig. 74: Mapping of the speech-related activity for patient P2. Left – Beta desynchronization (here mapped at 20Hz) in the 
inferior precentral sulcus and anterior subcentral sulcus during speech production (blue area). Right - Increase of gamma 
activity (here mapped at 70Hz) in the inferior precentral sulcus and anterior subcentral sulcus (red area). 

As for P1, these results could be observed after a few pronounced items and were stable all 
along the whole experiment. 

IV. Conclusion 

In this chapter, we first presented a method to localize and visualize speech-related brain 
activity in real-time, during awake brain surgery. This method was then implemented in a 
dedicated software, called ClientMap. This software was tested on two subjects undergoing 
brain surgery for a tumor removal in order to localize and visualize speech-related brain areas, 
especially in the motor cortex. 

Results were consistent for both patients, and showed that a beta desynchronisation as well 
as an overlapping increase in gamma activity occur over the speech motor cortex during speech 
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production with respect to rest activity. More precisely, the beta desynchronization was 
observed on two electrodes located over the opercular part of the inferior prefrontal gyrus and 
the gamma activity on one of these two electrodes for the first patient (Fig. 70 and Fig. 71). For 
the second patient, the beta desynchronization was observed in the inferior precentral gyrus and 
anterior subcentral gyrus and the increased gamma activity, while less spread out, in the same 
area (Fig. 74). Interestingly, this similar activity between both patients could be observed 
despite crucial differences in the two experimental protocols. Indeed, the first patient was asked 
to produce only isolated vowels or vowel-consonant-vowel sequences, while the second patient 
produced full speech sentences in a continuous paradigm. Moreover, the speech items were 
orally presented to the first patients at a predefined pace through speakers, while they were 
visually presented on a screen for the second patient, that could read them at the pace he desired. 
This suggests that different speech production tasks still elicit similar neural activity in the 
speech motor cortex. This should however be confirmed by future experiments. In particular, 
analysis of the neural activity could be done at the phone level. Using automatic speech 
recognition methods, it could be possible to directly segment the incoming speech signal into 
phones or places of articulation. This could be used to more precisely map the speech neural 
activity for specific speech sounds or specific speech articulators. 

Moreover, neural activity similar to that of overt speech was observed during covert 
speech. Indeed, for the first patient, a beta desynchronization was also observed at the same 
location as during overt speech and was sustained during the whole imagination period, as well 
as a slight increase in the low and high-gamma bands (Fig. 72). This suggests that overt and 
covert speech at least share a partially common neural representation in the speech motor 
cortex. Future experiments should also confirm this hypothesis by using denser recordings. 
Indeed, the relatively large size and the limited number of the electrodes used in the first patient 
did not allow to precisely identify the similarities between overt and covert speech neural 
activities, in particular for the low and high gamma bands. 

However, the mapping approach we proposed here can be taken further in future works by 
improving several points. First, the automatic detection of speech has to be improved to avoid 
undetecting low energy sounds at the beginning or end of a speech utterance. This can be done 
in many ways, such by using a voice-activity detector based on the statistical modelling of 
silence versus speech content, for instance using hidden markov models (HMMs) or Gaussian 
mixture models (GMMs). Secondly, the mapping workflow might be improved by automatizing 
or semi-automizing the coregistration of the electrodes on the anatomy. While the approach we 
propose here is rather fast since it only requires the localization of a dozen electrodes and 
anatomical landmarks, the experimental time available during awake surgeries is very limited 
(about 30 minutes), and could greatly benefit from automatizing this process. The localization 
of the electrodes on the picture with the ECoG grid visible could be semi-automatically 
achieved by letting the user identify three non-colinear electrodes on the pictures, which would 
then be used to statistically model the electrode pixel distribution to detect all the other 
electrodes, and then combined with the known geometry of the ECoG grid to assign to each 
electrode its correct identifier – for instance its channel number. Pairs of correspondence points 
between the image with and without the grid visible could be as well automatically identified. 
Algorithms from the computer vision field could be used to identify pairs of matching points, 
for instance using scale- and rotation-invariant features such as SURF (Bay et al., 2006) or SIFT 
(Lowe, 1999) features, and mathematical camera models taking into account lens effect and 
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perspective projection could be used to improve the quality of the matches. Such methods were 
not developped during this thesis but should be considered in the future. Additionally, the 
localization of the electrodes on the reconstructed brain surface might also be improved. In 
particular, we did not take into account the curvature of the electrode grid and considered that 
all the electrodes were contained in the same 3d plane. Future work could take into account the 
reconstructed cortical surface geometry in order to better estimate the locations of the electrodes 
by constraining them to be on the surface of the brain. 

Altogether, these results support the fact that ECoG can be used during brain surgery to 
precisely localize and map speech-related brain areas directly on the exposed cortex. For both 
patients, speech-related neural activity could be mapped within the first minutes of the 
experiment and was stable during the whole experiment. Such mapping could thus be used to 
identify functional areas that should be preserved directly during the surgery and prior to the 
resection. Moreover, this mapping can also help identify best candidate areas for the positioning 
of micro-electrode arrays for speech decoding. 



 

Chapter 7: Speech decoding from neural activity 

I. Introduction 

Neural activity from the speech-related brain areas can be used to decode speech in order 
to restore communication in aphasic patients, such as locked-in patients. Most studies aiming 
at restoring speech from neural activity considered the decoding of acoustic features (Guenther 
et al., 2009; Martin et al., 2014) or phonetic units (Kellis et al., 2010; Brumberg et al., 2011; 
Pei et al., 2011a; Tankus et al., 2012; Mugler et al., 2014; Herff et al., 2015), while few studies 
considered articulatory features (Pasley and Knight, 2013; Lotte et al., 2015).  

Therefore, one goal of my thesis was to start investigating how articulatory trajectories 
could be decoded from neural activity. In this chapter, we thus considered the decoding of 
electromagnetic articulography (EMA) data, as presented in Chapter 3, from neural activity 
recorded in the speech motor cortex (see Chapter 6). While EMA data provides enough 
information to synthesize intelligible speech (see Chapter 4 and 5), it does not provide any 
information about speech intention, i.e. EMA data alone cannot be used to decide when to 
synthesize or not synthesize speech according to the patient intent. In this chapter we thus as 
well considered speech intention detection from neural data, i.e. the prediction of the intention 
or not to speak from neural data. Moreover, the addition of voicing information can help 
improve the synthesis intelligibility, especially for consonants (see Chapter 4). Thus, we as 
well considered the prediction of a binary voicing activity, i.e. predicting if the larynx is 
vibrating to produce voiced speech (such as vowels), or on the contrary if it produces unvoiced 
speech (such as the consonant /s/).  

The results reported in this chapter are preliminary and still under development. 

II. Methods 

1. Decoding of speech intention 

As a first step toward speech decoding, we considered the decoding of speech and non-
speech states, i.e. predicting from the neural activity alone whether the patient is producing or 
intent to produce speech or not. Speech intention detection has been previously investigated 
with success (Kanas et al., 2014), but only using data recorded during overt speech, which is 
why it was referred to as voice activity detection in these studies. Since we consider here all 
kinds of speech production (overt, silent and covert), we prefer the term speech intention 
detection. This kind of “brain switch” would be particularly usefull in a future BCI for speech 
rehabilitation in order to detect whether the patient intends to speak or not.  
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a. Subjects and experimental design 

Subjects and experimental design are identical to Chapter 6. Please note that only the first 
patient performed covert speech. For both patients, speech and non-speech segments were 
manually labeled. 

b. Features extraction 

i. First patient 

For the first patient, only the data from one electrode that was shown to be speech-specific 
was kept (Fig. 75, see also Chapter 6).  

 

Fig. 75: Electrodes showing speech-specific activity used for the decoding for the first patient. Only the electrodes that 
exhibited speech-specific activity were considered for the decoding. One electrode localized next to the speech motor cortex 
was selected (in green). 

The neural data was first segmented into speech and non-speech segments. Non-speech 
segments were randomly chosen to obtain the same number of speech and non-speech frames. 
The neural data was then continuously segmented into 128ms windows (256 samples at 2kHz) 
shifted by 10ms (i.e. sampled at 100Hz). Each signal window was then windowed by a 
Hamming window and processed using short-term Fourier analysis (STFT) to extract the signal 
power in frequency bins of approximately 2Hz (513 bins in total). The data during rest periods 
(1 second period before each stimuli) was used to normalize with a z-score the signal power in 
each frequency bin. Only the normalized power for frequencies in the beta and gamma bands 
was kept (from 10Hz to 90Hz). At the end of this step, the neural signal was thus represented 
by 41 different features, sampled at 100Hz. 

The same process was applied both to the overt and to the covert data. 

ii. Second patient 

For the second patient, electrodes were first re-referenced to a common average (i.e. for 
each sample and channel, substracing the mean of all the valid channels) to remove slow 
variations and common artefacts, such as power-line interferences, saturated electrodes were 
excluded. Then, electrodes which neural activity was speech-related were localized (see 
Chapter 6, Fig. 74), and only electrodes with significant speech-specific activity (with a 
Bonferroni corrected p-value inferior to 0.05) were kept. This allowed to reduce the subset of 
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electrodes used for the decoding to a total of 20 channels localized over the speech motor cortex 
(Fig. 76, see also Chapter 6).  

 

Fig. 76: Electrodes showing speech-specific activity used for the decoding for the second patient. Only the electrodes that 
exhibited speech-specific activity were considered for the decoding. Twenty electrodes localized over  the speech motor cortex 
were selected (green dots). Some electrodes in this area were excluded because of their high noise level. 

The neural data was then continuously segmented into 205ms windows (2048 samples at 
10kHz) shifted by 10ms (i.e. sampled at 100Hz). Each signal window was then windowed by a 
Hamming window and processed using short-term Fourier analysis (STFT) to extract the signal 
power in frequency bins of approximately 5Hz (1024 bins between 0Hz and 5kHz). The data 
during rest periods was used to z-score the signal power in each frequency bin. Then, the mean 
power over 10Hz-wide frequency bands from beta to gamma activity was computed (10-20Hz, 
20-30Hz, 60-70Hz, 70-80Hz and 80-90Hz), resulting in 5 features per electrode every 10ms. 

The slow potential of each electrode was then added to this set of features by band-pass 
filtering the raw signal between 0.5 and 5Hz (Kornhuber and Deecke, 2016). At the end of this 
step, the neural signal was thus represented by 120 different features (20 electrodes and 6 
features per electrode), sampled at 100Hz. 

c. Classification method 

The classification of speech and non-speech segments was performed using support vector 
machines (SVM) with the radial basis function as kernel function (Chang et al., 2010). 
Originally, SVM is a supervised machine learning method that can be used to perform binary – 
i.e. in two classes – linear classification. SVM works by considering each data point as a point 
in a N-dimensional space, and by finding the hyperplane that best separates labeled data points 
from a training set (i.e. the class they belong to is known). Such hyperplane is chosen so that it 
lies withing the larger gap that separates both classes, i.e. so that each class points are on the 
opposite side of the plane than the other class points, and that the distance between the plane 
and the closest point of each class – called the margin – is the greatest. This separation boundary 
allow to classify new data points according to their relative position to the hyperplane. Choosing 
a plane with a high margin allows to reduce chances of misclassification (i.e. of attributing the 
wrong label to a new data point).  

However, real-life problems are generally non-linear, i.e. two classes can generally not be 
separated by an hyperplane. Non-linear SVM can be performed by applying a function � to the 
input data that transforms the input features space into a higher dimensionality space in which 
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the classes could be more easily separated using linear SVM. However, mapping data to very-
high dimensionality spaces can be memory and computationally expensive. The “kernel trick” 
allows to avoid this explicit mapping by relying on the fact that only the pairwise dot-product � ∙ �  of the data points  and  mapped to the high dimensionality space is needed. 
Indeed, some functions k – called kernels – allow to implicitly compute the cross-product � ∙�  in the original space so that: , = � ∙ �  Eq.  61 

Here we used the commonly used radial basis function (RBF) as kernel function k: , = e�� − ‖ − ‖�  with � >  Eq.  62 

The value of the  parameter was chosen by testing different values (from 0.1 to 1000) and 
keeping the value that gave best results. We used the Matlab SVM implementation from the 
LibSVM library (https://www.csie.ntu.edu.tw/~cjlin/libsvm). 

For the first patient, the decoding model that was only trained on the overt speech data was 
also applied to the covert speech data without any further modification, in order to assess if it 
could also predict speech intention. 

d. Evaluation of the speech state decoding 

The decoding was performed in a 5-fold cross-validation process, so that the original data 
was randomly divided into 5 chunks, 4 of which were used for training, while the remaining 
one was used for testing, which was repeated 5 times in order to test all partitions. The chance 
level was estimated by shuffling the data labels prior to training and test, which was repeated 
20 times for each fold, and thus 100 times for each value of the  parameter. 

The decoding quality was assessed by computing the numbers of true positive TP  (the 
number of speech frames correctly decoded as speech), true negative TN (the number of silence 
frames correctly decoded as silence), false positive FP  (the number of silence frames decoded 
as speech) and false negative FN (the number of speech frames decoded as silence). This 
allowed to compute three different measures of the decoding quality: the sensitivity, the 
specificity and the accuracy: = +  Eq.  63 

= +  Eq.  64 

= ++ + +  Eq.  65 

The accuracy reflects the global performance of the decoding, while the sensitivity reflects 
the correct detection of speech segments, and the specificity that of the silence segments. A 
value of 1 for each of these measures would correspond to a perfect decoding, while lower 
values denote errors in the decoding. 
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2. Decoding of the voicing activity 

A second step was to decode the voicing activity into a binary state: voiced or unvoiced 
sounds. Additionally, decoding the voicing activity could help improve synthesis intelligibility 
(see Chapter 4).  

a. Subjects, experimental design and features extraction 

For the voicing activity decoding, only the second patient’s data was considered.  

First, the pitch was extracted from the original patient’s audio using SPTK (see Chapter 

4). The pitch is a time-varying value describing the voicing property of speech. A null pitch 
represents unvoiced periods, while a non-null pitch represents the period of the excitation signal 
produced when the larynx is vibrating. Here we considered a simpler binary feature, by 
grouping pitch values into two class: null values were grouped in the unvoiced class, and non-
null values in the voiced class. 

The neural data was processed identically as for the decoding of speech and non-speech 
states, at the exception that only speech segments were considered. Moreover, to take into 
account the dynamic properties of speech, we concatenated each neural data frame with its 9 
preceding frames (100-ms time window context). Finally, voiced and unvoiced segments were 
randomly chosen to ensure an equal number of voiced and unvoiced frames.  

b. Classification method and results evaluation 

The decoding of the voicing was performed and evaluated using identical methods as for 
decoding of speech and non-speech states: the classification was done using SVM with a radial 
basis kernel function of different  values, and the classification quality was assessed by 
measuring the accuracy, specificity and sensitivity. 

3. Decoding of articulatory features 

A third step was to test the extent to which all articulatory trajectories could be decoded 
from ECoG data. Indeed, once speech intention is detected, neural activity could be decoded 
into articulatory parameters that control an articulatory-based speech synthesizer to produce 
speech, such as the one developped in Part 3. 

a. Subjects and experimental design 

For the decoding of articulatory features, only the second patient’s data was considered. 
Indeed, the number of recorded electrodes in the first patient that exhibited speech-specific 
neural activity – two electrodes – was too limited to expect decoding articulatory movements 
from neural data. 
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b. Neural features pre-selection and extraction 

The neural data was first pre-processed as for the decoding of speech and non-speech states, 
and was thus represented by 120 different features, sampled at 100Hz. 

Some components of brain activity precede the execution of a motor task by several 
hundreds of milliseconds (Kornhuber and Deecke, 2016). We thus considered different delays 
in the neural data by temporally shifting the data with 9 different equally spaced delays from 
200 milliseconds before to 200 milliseconds after the original data time (-200ms, -150ms, -
100ms, -50ms, 0ms, +50ms, +100ms, +150ms and +200ms). Moreover, in order to take into 
account the dynamics of neural activity, we concatenate each neural data frame with the N 
previous ones. Six different values of the context size N were tested: 0, 1, 2, 4, 8 and 16. 

However, such high number of features can generally lead to overfitting issues1, especially 
when the available data is limited. Thus, we investigated how dimensionality reduction could 
help improve the decoding accuracy by using principal component analysis (PCA), with 
varying number of components: 5, 10, 15, 20, 25, 30, 40, 50, 75 and 100 ; and without PCA. 

Thus in total 594 different parametrizations (9 delays, 6 context sizes and 11 PCA 
configurations) were tested for the neural data. The silences were excluded so that only the 
speech data was considered for the decoding. 

c. Estimation of articulatory features 

While video recordings and ultrasonography could be used together to record articulatory 
data simultaneously with brain activity (Bouchard et al., 2016), here no articulatory data was 
recorded during the experiment. However, the patient pronounced sentences that were present 
in our BY2014 articulatory-acoustic corpus  (see Chapter 3). Therefore, for these particular 
sentences, the articulatory inputs from the speech synthesizer were known (i.e. the articulatory 
trajectories recorded from the reference (BY2014) speaker, used to build the articulatory-based 
synthesizer).  

However, since the sentences were only visually presented to the patient, important 
differences in manner of articulation might occur between the patient and the reference audio 
thus preventing a good alignment of the neural activity with the corresponding articulatory 
movements. To compensate for this, dynamic time warping (DTW) was used to automatically 
align the reference audio on the patient audio, as shown on Fig. 77 (Sakoe and Chiba, 1978). 
DTW works by applying a non-uniform time warping to the signal to be aligned in order to 
obtain the minimum distance between the warped signal and a reference signal. Here we used 
the mel-cepstral distortion (see “Evaluation of the speech synthesis intelligibility” in Chapter 

4) as the local distance. 

                                                 
1 Note that this is generally not an issue when performing classification with SVMs and was thus not critical 

for the decoding of speech and non-speech state, as well as the decoding of the voicing activity. However the 
decoding model used here for the prediction of articulatory trajectories could be subject to overfitting issues. 
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Fig. 77: Alignment of the reference audio from the BY2014 corpus on the patient’s audio. Top row – the patient audio 
recorded during surgery. Middle row – The corresponding reference audio from the BY2014 corpus. Bottom row – the 
reference audio (red) is aligned on the patient’s audio (black) after applying DTW. 

Quality of the DTW was manually assessed by comparing the patient audio with the aligned 
reference audio, and all misaligned sentences were excluded, resulting in a total of 118 
sentences left for the decoding. 

The time-warping estimated using DTW was then applied to the reference articulatory data 
in order to align it on the neural signal. This allowed to obtain, for each sentence pronounced 
by the patient, an estimation of the corresponding articulatory data. 

d. Neural-to-articulatory mapping 

For this preliminary study, linear models were used to estimate the articulatory trajectories 
from the neural data. While more complex models could be used, such as GMMs or DNNs, this 
choice was motivated in order to limit overfiting effects due to the small size of the dataset (100 
sentences) and the high features dimensionality of the inputs (up to several thousands features). 

Thus, mapping the neural activity X to articulatory trajectories Y consisted in finding the 
matrix A solving the equation: = ̃.  with ̃ = [ ] Eq.  66 

If ̃ is inversible, the solution is given by: = ̃− .  Eq.  67 

However, ̃ is not inversible in most cases so that A is chosen by trying to minimize: ‖ − ̃. ‖ Eq.  68 

Which is an overdetermined least squares problem having more than a unique solution. 
Here we estimated A using the Moore-Penrose pseudo-inverse pinv: 
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= �� � ̃ .  Eq.  69 

e. Evaluation of the decoding 

For each set of parameters (number of PCA components, delay and context size), the 
mapping was performed in a 5-fold cross-validation process, so that the original data was 
randomly divided into 5 chunks, 4 of which were used for training, while the remaining one 
was used for testing, which was repeated 5 times in order to test all partitions. 

Estimation of the chance levels was done by randomly shuffling the training data before 
estimating the linear model, then testing the model on the test data, randomly shuffled as well. 
This process was repeated 10 times for each cross-validation fold, and thus 50 times for each 
set of parameters (among the 594 different ones). 

The decoding accuracy was then assessed by measuring the mean correlation between the 
predicted trajectories and the target trajectories. 

4. Decoding of acoustic features 

In order to better assess the hypothesis that decoding articulatory trajectories might be more 
revelant than decoding acoustic parameters when recording neural activity from the speech 
motor cortex, we also directly decoded acoustic parameters from the neural data. 

a. Neural-to-acoustic mapping 

The same procedure than for articulatory trajectories was applied, at the exception that the 
predicted signals were the mel-cepstrum coefficients directly extracted from the patient’s audio 
signal (using SPTK) instead of the estimated articulatory trajectories. In order to be consistent 
with the BY2014 articulatory-acoustic corpus, the patient audio was resampled at 22kHz, and 
25 mel coefficients were extracted and sampled at 100Hz (see Chapter 3). 

As for the decoding of articulatory features, silences were removed so that only speech 
segments were considered for the decoding. 

b. Comparison with the neural-to-articulatory mapping 

Signals of different nature – such as the predicted articulatory and acoustic features – 
cannot be directly compared. Thus, the articulatory features predicted using the neural-to-
articulatory mapping were mapped to acoustic features using the articulatory-to-acoustic 
mapping of the articulatory-based synthesis (see Chapter 4). This allowed to obtain a similar 
acoustic representation for the neural-to-articulatory and the neural-to-acoustic mappings 
allowing further comparison. 

However, in the case of the neural-to-acoustic mappings, the acoustic features represent 
the audio signal of the patient, while in the case of the articulatory-to-acoustic mapping, the 
acoustic features represent the audio signal of the BY2014 subject. Thus, we used the time-
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warping of the DTW alignments (see “Estimation of articulatory features”) to align as well the 
BY2014 acoustic features on the neural data. The acoustic features predicted using the neural-
to-articulatory cascaded with the articulatory-to-acoustic mappings (called “neural-to-
articulatory-to-acoustic mapping” in the following) were therefore compared with these 
BY2014 acoustic features considered as the ground truth, while the acoustic features predicted 
using the neural-to-acoustic mapping were compared to the patient’s acoustic features. 

Since many different representations of the neural data were used (by varying the delay, 
context size and number of principal components), this comparison was performed by only 
considering the representation that led to the best decoding, i.e. the delay, context size and 
principal components for the neural-to-articulatory mapping was chosen as the combination 
that led to the highest correlation for each one of the 14 articulatory trajectories, while for the 
neural-to-acoustic mapping it was the combination that led to the highest correlation for each 
one of the 25 acoustic features. 
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III. Results 

1. Decoding of speech intention 

As a first step toward a speech BCI, we considered the decoding of speech and non-speech 
states for both patients. 

a. First patient 

The first patient produced both overt and covert speech, and the decoding model was only 
built from the overt speech data. 

i. Decoding overt speech intervals 

Results of the decoding of speech and non-speech states for the first patient during overt 
speech are summarized in Fig. 78. Speech intention was decoded using the 41 neural features 
extracted from only one speech-specific electrode. 

 

Fig. 78: Decoding of speech and non-speech states for the first patient. The decoding quality was assessed by computing the 
mean accuracy (blue), the mean sensitivity (red) and the mean specificity (green) over the five cross-validation folds, for 
different values of the  parameter of the RBF kernel function. Vertical bars indicate the standard deviation, and dashed lines 
correspond to chance level. 

Average chance levels were 48% for accuracy, 45% for sensitivity and 51% for specificity. 
Decoding accuracy, sensitivity and specificity are above chance levels for  values above 1. 
Best accuracy is achieved for  = 20 with a value of 79±3%. For this accuracy, sensitivity is 
equal to 88±6% and specificity to 71±5%. 
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ii. Decoding covert speech intervals 

The decoding model that was trained on the overt speech data of the first patient was then 
applied to the covert speech data without further modification. Fig. 79 shows an example of 
continuous prediction of the speech intention along with the ground truth, as reported by the 
patient. 

 

Fig. 79: Speech intention (covert speech) prediction. The patient was first listening to each item presented three times at a 
fixed pace (pink areas). He was then asked to imagine to repeat them at the same pace (green areas). The end of the imagination 
period was notified by the patient by pronouncing “OK” out loud (red areas). The decoding model trained on overt speech 
was then applied to this covert speech data without any further modification. The blue areas shows the speech intention 
predicted by this model. 

The decoding model that was only trained on overt speech data was still able to predict 
speech intention during covert speech periods (see overlapping blue and green areas in Fig. 79), 
with an accuracy of 78% (i.e. 78% of the covert speech periods were actually detected as speech 
intention). As expected, it also predicted speech intention during actual overt speech (see 
overlapping blue and red areas in Fig. 79). Interestingly, listening periods were also decoded 
as speech intention in 89% of the listening periods (see overlapping blue and pink areas in Fig. 

79). In between trials, the model predicted no speech intention (see the gap between each red 
area and the next pink area in Fig. 79), with an accuracy of 84%. 

b. Second patient 

The second patient only produced overt speech. Results of the decoding of speech and non-
speech states from the second patient’s data are summarized in Fig. 80. Speech intention was 
decoded using the 120 neural features extracted from 20 speech-specific electrodes (this task 
being simpler than the decoding of full articulatory trajectories, we did not consider all the 
different parametrizations of the neural data). There was no delay, nor context added to the 
neural data, as opposed to when decoding articulatory trajectories. 
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Fig. 80: Decoding of speech and non-speech states for the second patient. The decoding quality was assessed by computing 
the mean accuracy (blue), the mean sensitivity (red) and the mean specificity (green) over the five cross-validation folds, for 
different values of the σ parameter of the RBF kernel function. Vertical bars indicate the standard deviation, and dashed lines 
correspond to chance level. 

Average chance levels were 50% for accuracy, 53% for sensitivity and 47% for specificity. 
Decoding accuracy, sensitivity and specificity were above chance levels for  values above 5. 
Best accuracy is achieved for  = 20 with a value of 93.0±0.2%. For this accuracy, sensitivity 
is equal to 94.8±0.4% and specificity to 91.1±0.2%. 

2. Decoding of the voicing activity 

In a second step we considered the decoding of the voicing activity (binary feature for 
voiced and unvoiced sounds), using the neural data from the second patient. Fig. 81 summarizes 
the results of the speech intention decoding. 
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Fig. 81: Decoding of voicing activity. The decoding quality was assessed by computing the mean accuracy (blue), the mean 
sensitivity (red) and the mean specificity (green) over the five cross-validation folds, for different values of the σ parameter of 
the RBF kernel function. Vertical bars indicate the standard deviation, and dashed lines correspond to chance level. 

Average chance levels were 50% for accuracy, 54% for sensitivity and 46% for specificity. 
Decoding accuracy, sensitivity and specificity were above chance levels for  values between 
5 and 200. Best accuracy was achieved for  = 20 with a value of 74±2%. For this accuracy, 
sensitivity is equal to 71±10% and specificity to 78±7%. 

3. Decoding of articulatory features 

In a third step we aimed at decoding articulatory trajectories (14 EMA positions) from the 
neural data of the second patient. The decoding accuracy was assessed by computing the 
correlation between the predicted and the ground truth articulatory trajectories.  

Fig. 82 shows the best correlation for each articulatory feature obtained by spanning all the 
possible combinations of the neural features parameters (delay, context size and number of PCA 
components), compared to the best chance level. Thus, the optimal combination was different 
for each articulatory trajectory. 
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Fig. 82: Best decoding correlation for each articulatory feature. Each bar indicates the best correlation between predicted 
and reference articulatory features obtained from the neural-to-articulatory mapping (blue) along with the corresponding best 
chance level (red). Vertical bars indicate the standard deviations. 

Decoding performances were systematically above chance level except for the vertical 
position of the back of the tongue. In particular, significant above-chance decoding could be 
observed for the vertical position of the jaw (0.39 versus 0.10), the vertical position of the 
tongue tip (0.33 vs. 0.08), the horizontal position of the back of the tongue (0.26 vs. 0.09) and 
the horizontal position of the velum (0.23 vs. 0.09). 

Fig. 83 shows the optimal delay, context size and number of PCA components for each 
articulatory feature (i.e. the parameters that led to the best decoding). 
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Fig. 83: Optimal delay, context size  and number of PCA components for the decoding of each articulatory feature. Top row 
– Each bar indicates the optimal delay between the neural and the articulatory features (a negative delay meaning that the 
neural data occurred before the actual speech). Middle row – Each bar indicates the optimal context size for decoding each 
articulatory feature. Bottom row – Each bar indicates the optimal delay number of PCA components for decoding each 
articulatory feature. All rows – the bar plot at the right shows the distribution of the parameters values. 

The optimal delay varied for each articulatory features but was globally close to 0 for 
articulatory features decoded above chance level (Jaw Y, Tongue Tip Y, Tongue Back X and 
Velum X). A similar behaviour could be observed for the optimal context size, which were 
systematically 16 for more than half the articulatory features including all above-chance 
features; and similarly the optimal number of PCA components was equal to 40 for all above-
chance articulatory features. 

Observing the evolution of the decoding accuracy with regards to each parameter (delay, 
context and number of PCA components) could help identify their individual impact on the 
decoding quality. Fig. 84 shows the correlation for the different delays between the neural data 
and the articulatory features (a negative delay meaning that the neural data occured before the 
actual speech). Fig. 85 shows the correlation for the different context sizes (i.e. the number of 
consecutive neural data frames used). Finally, Fig. 86 shows the correlation for different 
number of PCA components kept. In all cases, the displayed correlation was the best cross-
validated mean correlation obtained. For instance, the evolution of the correlation with respect 
to the delay was computed for each delay by keeping the number of PCA components and the 
context size that led to the best cross-validated mean correlation. 
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Fig. 84: Decoding accuracy for each articulatory parameter with respect to the delay between neural and articulatory data. 
Each plot shows the mean correlation between the predicted and ground truth values (blue line), as well as chance level (red 
line), for each articulator and each delay. The delays are in data frames (1 frame =  10ms). A negative delay means that the 
neural data was considered before the actual speech. Vertical bars correspond to standard deviations. 
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Fig. 85: Decoding accuracy for each articulatory parameter with respect to the context size. Each plot shows the mean 
correlation between the predicted and ground truth values (blue line), as well as chance level (red line), for each articulator 
and each context size. The context sizes are in data frames (1 frame =  10ms). Vertical bars correspond to standard deviations. 
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Fig. 86: Decoding accuracy for each articulatory parameter with respect to the number of PCA components. Each plot 
shows the mean correlation between the predicted and ground truth values (blue line), as well as chance level (red line), for  
each articulator and each PCA components number. A number of 0 corresponds to not using PCA. Vertical bars correspond 
to standard deviations. 

Overall, mean predicted articulatory features were above chance level. The delay between 
the neural and the articulatory features clearly had an impact on several articulators, especially 
for the vertical position of the jaw, tongue tip and lower lip, as well as the horizontal position 
of the tongue back, with best correlation achieved when there was no delay (Fig. 84). Increasing 
the context size generally resulted in a slight increase of the decoding accuracy (Fig. 85). Such 
direct relationship between the number of PCA components and the decoding quality was not 
observed. However, using PCA globally lead to best correlation than when not using PCA (here 
indicted by a null number of components), and the optimal number of principal components 
was generally between 20 and 50 (Fig. 86).  

4. Decoding of acoustic features 

In order to evaluate the benefits of using articulatory trajectories as an intermediate 
representation when decoding speech from neural activity recorded in the motor cortex, we also 
performed the decoding of acoustic features (25 mel coefficients) for the same patient by using 
the original audio recorded during the experiment. The decoding accuracy was assessed by 
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computing the the correlation between the predicted and the ground truth acoustic trajectories 
25 mel coefficients). 

Fig. 87 shows the best correlation for each acoustic feature obtained by spanning all the 
possible combinations of the neural features parameters (delay, context size and number of PCA 
components), compared to the best chance level. Thus, the optimal decoded was different for 
each mel coefficient. 

 

Fig. 87: Best decoding correlation for each acoustic feature. Each bar indicates the best correlation between predicted and 
reference mel coefficients obtained from the neural-to-articulatory mapping (blue) along with the corresponding best chance 
level (red). Vertical bars indicate the standard deviations. 

Results were systematically above chance level and significant above-chance decoding can 
be observed for the first (0.19 versus 0.07), second (0.26 vs. 0.07), fifth (0.24 vs. 0.07) and 
seventh (0.18 vs. 0.07) MEL coefficients. 

Fig. 88 shows the optimal delay, context size and number of PCA components for each 
acoustic feature (i.e. the parameters that led to the best decoding). 
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Fig. 88: Optimal delay, context size  and number of PCA components for the decoding of each acoustic feature. Top row – 
Each bar indicates the optimal delay between the neural and the acoustic features (a negative delay meaning that the neural 
data occurred before the actual speech). Middle row – Each bar indicates the optimal context size for decoding each acoustic 
feature. Bottom row – Each bar indicates the optimal delay number of PCA components for decoding each acoustic feature. 
All rows – the bar plot at the right shows the distribution of the parameters values. 

As for articulatory features, the optimal delay varied but was globally close to 0 for 
articulatory features decoded above chance level (first, second, fifth and seventh MEL 
coefficients). Most optimal context sizes were above 8 frames (i.e. more than 80ms of neural 
data). No consistent behaviour could be observed for the optimal number of PCA components, 
which varied from 0 (no PCA) to 100.  

The evolution of the decoding accuracy with regards to each parameter (delay, context and 
number of PCA components) was then observed to try to identify their individual impact on the 
decoding quality. Fig. 89 shows the correlation for the different delays between the neural data 
and the acoustic features (a negative delay meaning that the neural data occured before the 
actual speech). Fig. 90 shows the correlation for the different context sizes (i.e. the number of 
consecutive neural data frames used). Finally, Fig. 91 shows the correlation for different 
number of PCA components kept. In all cases, the displayed correlation was the best cross-
validated mean correlation obtained. For instance, the evolution of the correlation with respect 
to the delay was computed for each delay by keeping the number of PCA components and the 
context size that led to the best cross-validated mean correlation. 
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Fig. 89: Decoding accuracy for each acoustic parameter with respect to the delay between neural and acoustic data. Each 
plot shows the mean correlation between the predicted and ground truth values (blue line), as well as chance level (red line), 
for each mel coefficient and each delay. The delays are in data frames (1 frame =  10ms). A negative delay means that the 
neural data was considered before the actual speech. Vertical bars correspond to standard deviations. 
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Fig. 90: Decoding accuracy for each acoustic parameter with respect to the context size. Each plot shows the mean 
correlation between the predicted and ground truth values (blue line), as well as chance level (red line), for each mel coefficient 
and each context size. The context sizes are in data frames (1 frame =  10ms). Vertical bars correspond to standard deviations. 
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Fig. 91: Decoding accuracy for each acoustic parameter with respect to the number of PCA components. Each plot shows 
the mean correlation between the predicted and ground truth values (blue line), as well as chance level (red line), for each mel 
coefficient and each PCA components number. A number of 0 corresponds to not using PCA. Vertical bars correspond to 
standard deviations. 

Overall, mean predicted acoustic features were systematically above chance level. The 
delay between the neural and the acoustic features principally impacted the second and fifth 
mel coefficients, with best decoding achieved when there was no delay (Fig. 89). Increasing 
the context size generally resulted in a slight increase of the decoding accuracy, especially for 
the first MEL coefficient, for which the decoding correlation continuously increased from 0.12 
without context to 0.19 with an 8-frames context (Fig. 90). Such direct relationship between 
the number of PCA components and the decoding quality was not observed (Fig. 91). 

5. Comparison of the neural-to-articulatory and neural-to-acoustic 

mappings 

In order to compare the neural-to-articulatory and the neural-to-acoustic decoding, the 
predicted articulatory features were mapped to acoustic features using the articulatory-to-
acoustic mapping of the articulatory-based synthesis (see Methods). The acoustic features 
obtained through the neural-to-articulatory decoding were compared to the aligned reference 
BY2014 acoustic features, while the acoustic features obtained from the neural-to-acoustic 
decoding were compared to the reference patient’s acoustic features. Fig. 92 shows an example 
of predicted and reference patient’s acoustic features (bottom row), as well as the corresponding 
predicted and reference BY2014 acoustic features (top row), for the second mel coefficient 
(which is the best decoded acoustic feature). 
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Fig. 92: Example of predicted and reference acoustic features. Top row – BY2014 acoustic features (black) and the predicted 
acoustic features using the neural-to-articulatory and the articulatory-to-acoustic mappings (red). Bottom row – Reference 
patient’s acoustic features (black) and the predicted acoustic features using the neural-to-acoustic mapping (blue). 

In this example, the reconstruction of the second mel coefficient through the neural-to-
articulatory decoding was qualitatively better than when using the neural-to-acoustic decoding. 
We further quantified this systematically. To compare both mapping approaches, the correlation 
between the predicted and appropriate reference acoustic features for each mapping was 
computed (Fig. 93). For this comparison, the delay, context size and number of PCA 
components were fixed to those that led to the best decoding (see Methods and previous 
sections). For the neural-to-articulatory mapping, this resulted in having a negative delay of 5 
frames (i.e. taking neural activity 50ms in the past), a context size of 16 frames (i.e. considering 
160ms continuous data chunks) and 40 PCA components. For the neural-to-acoustic mapping, 
there was no delay, a context size of 16 frames as well (i.e. considering 160ms data chunks in 
the past), and 50 PCA components. 

 

Fig. 93: Comparison of the neural-to-acoustic and neural-to-articulatory mapping. Each bar shows the correlation between 
predicted and reference mel coefficients fot the neural-to-acoustic (blue) and neural-to-articulatory (red) mappings. 

For 17 out the 25 MEL coefficients, the neural-to-articulatory mapping resulted in a higher 
correlation with the reference acoustic features than for the neural-to-acoustic mapping. In both 
cases, the decoding accuracy was not high enough to synthesize intelligible speech. 
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IV. Conclusion on the speech decoding from neural activity 

In this chapter we presented three different decoding steps required to build a BCI for 
speech rehabilitation based on articulatory data.  

First, we considered speech intention detection, i.e. the prediction of the intention of 
speaking from neural data. The decoding was performed using support vector machines (SVM) 
on neural data recorded during brain surgery in two patients. For both patient, the decoding 
accuracy of speech segments during actual speech production (overt speech) was far above 
chance level (50%) with 79% accuracy for the first patient (Fig. 78), and 93% accuracy for the 
second one (Fig. 80). The higher accuracy for the second patient might essentially come from 
the fact that more and smaller electrodes were used than for the first patient, resulting in more 
electrodes with speech-specific neural activity (20 electrodes for the second patient versus 1 for 
the first one). This suggests that the decoding accuracy could still increase by having more 
electrodes covering the speech areas. This was consistent with results observed in most BCI 
studies, showing that the decoding accuracy generally increases when increasing the number of 
electrodes (Carmena et al., 2003; Pasley et al., 2012). Then, we also considered speech intention 
detection for imagined speech (covert speech). Only the first patient had data recorded during 
covert speech. For this patient, we used the SVM previously trained on the overt speech data to 
decode covert speech segments. Results showed that speech intention during covert speech 
could also be predicted with an accuracy of 78% (Fig. 79). This accuracy is very similar to that 
of decoding overt speech (79%). Moreover, speech intention was also predicted during listening 
periods (89%), which is not due to a poor specificity of the decoding model since it was able to 
correctly predict rest period with an accuracy of 84%. This could explain the limited accuracy 
of the speech intention decoding during overt speech. Indeed, listening periods in the overt 
speech data were labeled as non-speech states but could have been decoded as speech intention, 
resulting in a drop of accuracy. Moreover, these results suggest that the neural activities during 
speech production, speech imagination and speech listening share at least a partially common 
representation in the speech motor cortex. This is consistent with the mapping of speech-related 
activity that exhibited common features between overt and covert speech (see Chapter 6). 
These three different tasks could eventually be distinguished by using denser recordings, as it 
was the case for the second patient. 

In a second step, we considered voicing activity decoding, i.e. predicting if the vocal folds 
are vibrating or not during speech. Only the data from the second patient, and during speech 
segments, was considered. Results showed that the voicing activity could be decoded with an 
accuracy of 74%, which is above chance level (Fig. 81). However, the decoding accuracy 
remains relatively low compared to the speech intention detection (93%). This might be caused 
by the fact that electrodes did not cover enough the speech motor cortex, and could thus not 
capture enough information to decode the voicing activity with higher accuracy. Future studies 
should consider a better coverage of the speech motor cortex. 

Finally, we considered the decoding of articulatory trajectories from the neural data of the 
second patient. The decoding of the articulatory trajectories was achieved using linear models, 
since the number of samples was too limited to benefit from more advanced techniques. Results 
showed that several articulatory features could be decoded above chance level, in particular the 
vertical position of the jaw (correlation of 0.39), the vertical position of the tongue tip (0.33), 
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the horizontal position of the back of the tongue (0.26) and the horizontal position of the velum 
(Fig. 82). Several parameterization of the neural data were tested, by varying the delay between 
the neural and articulatory data, the duration of each neural data frame, and the number of 
dimensions of the neural data. Results were variable among the different articulatory features 
but suggested that best accuracy could be achieved without any delay between the neural and 
articulatory data (Fig. 84). This is consistent with the results obtained from the functional 
mapping of speech-related brain activity that exhibited an increase in low and high-gamma 
bands during and not before the production of speech (see Chapter 6). Best decoding accuracy 
was also reached when considering neural data chunks of at least 100ms, and results suggest 
that increasing the context size even more could results in improving the decoding accuracy 
(Fig. 85). Future works should thus consider longer chunks of neural data for the decoding of 
articulatory trajectories. Moreover, results showed that reducing the dimensionality of the 
neural feature space could improve the decoding accuracy (Fig. 86). While the decoding 
accuracy remained too limited to generate intelligible speech, it showed that the speech motor 
cortex encodes at least a part of the articulatory properties of speech during speech production, 
which is consistent with other studies (Bouchard et al., 2013; Cheung et al., 2016). 

To test the hypothesis that decoding articulatory trajectories as input to an articulatory-
based speech synthesizer could be more efficient that directly predicting acoustic parameters to 
synthesize speech, we as well considered the decoding of acoustic features from neural activity. 
The decoding of acoustic trajectories was performed in the same way as for articulatory 
trajectories, except that MEL coefficients were used instead of EMA data. Results showed that 
several MEL coefficients could be decoded above chance level, in particular the first 
(correlation of 0.19), second (0.26), fifth (0.24) and seventh (0.18) coefficients (Fig. 87). As 
for the decoding of articulatory trajectories, results suggested that best accuracy could be 
achieved without any delay between the neural and acoustic data (Fig. 84),when considering 
neural data chunks of at least 100ms (Fig. 85), and when using dimensionality reduction 
techniques (Fig. 86).  This suggests that the speech motor cortex could encode at least a part of 
the acoustic properties of speech during speech production. However, it is known that acoustic 
and articulatory parameters are correlated (Bouchard et al., 2016), so that further analysis 
should be performed to determine whether the speech motor cortex encode for articulatory 
trajectories,  acoustic features, both or another representation.  

To investigate this aspect, the decoded acoustic features were compared depending on 
whether they were decoded directly from neural data or from articulatory trajectories estimated 
from neural data. Results showed that most of the acoustic features were best decoded when 
passing by the intermediate articulatory representation (Fig. 93). This is particularly interesting 
given that the articulatory trajectories by a model trained from articulatory data of another 
subject (from the BY2014 dataset), aligned using the recorded patient’s audio. Indeed, the audio 
of the BY2014 dataset was aligned on the patient’s audio using dynamic time warping, which 
resulted in a good but not perfect alignment, and this time warping was then applied to 
articulatory trajectories from the BY2014 dataset that were not recorded from the patient 
himself. This could have resulted in a mismatch between the patient’s neural activity and the 
target articulatory trajectories used to train the decoding model. However, these preliminary 
results must be confirmed by future studies. 

Altogether, these results are first steps toward a BCI for speech restoration using 
articulatory data as an intermediate representation of speech. However, further experiments are 
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needed to confirm these preliminary results. In particular, future works should focus on the 
decoding of covert speech from the speech motor cortex. 



 

Part 5: Thesis result 3 – Ethical aspects 

During my thesis, we had the chance to work with Nicolas Aumonier on some ethical 
aspects of brain-computer interfaces. While ethics were not part of this thesis subject, I 
personally think that any researcher should consider ethical aspects of his work. In this part, I 
will briefly present some of the major ethical issues that arise when developping brain-computer 
interfaces (BCIs) in general, and not specifically for speech BCIs. This reflexion led us to the 
writing of a book chapter (Bocquelet et al., 2016c), which I will try to resume in the following.  

The global purpose of brain-computer interfaces (BCIs) is to interface our central nervous 
system (CNS) with external devices in order to restore lost functions following a disease or an 
accident. Since the CNS is generally considered as the most intimate seat of thought, 
consciousness and personality, several ethical issues arise. Who can benefit from these 
technologies and for what purpose? Where should be the border between rehabilitation and 
enhancement? How to manage the hope aroused in patients participating to clinical 
developments? In the long term, can we identify safety, security and legal issues raised by the 
usages of BCIs? More fundamentally, could BCIs modify the identity of a person? Could they 
lead to a redefinition of humanity? 

While most of these questions will remain unanswered at the end to this chapter, the 
objective here is to raise them and to bear them in mind while conducting research. 
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I. Introduction 

BCIs are an emerging technology that aims to establish a direct communication between 
the brain and a computer or a machine in order to directly control effectors, objects or software 
from thoughts. These approaches thus offer a new interaction mode between living individuals 
and machines, which contrast with those commonly used today such as touch or vocal modes. 

With neuroprosthetics, the objective of BCIs is to interface the CNS with arrays of 
electrodes or sensors allowing recording of neuronal activity and/or delivering controlled 
electrical stimulations to trigger activities to recover of a function. Some of these system can 
be non-invasived – for instance electroencephalography, magnetoencephalography or even 
functional magnetic resonance imaging – and other are invasive and require the electrodes in 
the CNS. 

These technologies are developed for multiple purposes: clinical applications that propose 
therapeutic routes in the case of sensory or motor disabilities or neurodegenerative diseases 
such as in (Benabid et al., 1991; Margalit et al., 2002; Hochberg et al., 2006; Guenther et al., 
2009), fundamental research employing these technologies as a means to explore in a novel 
manner the functioning of the CNS (Fetz, 1969, 2007; Carmena et al., 2003; Jackson et al., 
2006; Lachaux et al., 2007; Moritz et al., 2008; Ganguly and Carmena, 2009; Engelhard et al., 
2013; Mercier-ganady et al., 2014), and all other application such as military applications 
(Tennison and Moreno, 2012) or consumer application such as entertainment (Congedo et al., 
2011; Bonnet et al., 2013). 

It seems now quite likely that, within several years, these technologies will have more and 
more applications, that they will become available on the market and thus impact our society. 
Although the consequences of these technologies on our society remain difficult to predict, 
several questions can be formulated on the ethical, legal, political, economic, philosophical, 
moral and religious levels. Several ethical argumentation methods are available and a large 
number of authors compete against each others. Nowadays, whereas in applied ethics the 
discussion may focus on what is good or not, in moral philosophy these rather focus on the 
arguments that make it possible to justify an ethical choice than on this choice itself (Canto-
Sperber and Ogien, 2004). 

An agent may indeed want to justify its action by referring to the good, the duty or the 
usefulness. Aristotle bounded the good to happiness so that an agent have good chances to be 
happy if his actions are directed toward the good, which is supposed to exist objectively 
(Aristote, n.d.). However, if the good is not considered as objective, and so happiness, it might 
be necessary to rely on a more impartial judge that we can call duty (Kant, 1785). Good will 
then be the will that acts under the influence of no particular interest, but by pure duty, which 
everyone perceives identically through their inner consciousness. However, if such objective 
duty makes it difficult to find a concrete direction, then we might want to turn toward what 
experienced people deem most useful, to what we like most and affects us the least (Mill, 1863). 
In that case, the agent will seek to maximize for usefulness for the ethical agents and to 
minimize everything that may cause uselessness or pain. He will thus aim to minimize a 
risk/benefits ratio. The considered ethical agents can be himself, or those that surround him 
(family, friends, etc.), all human beings, all sentients beings (human beings and animals), all 
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living beings, all ecosystems or our whole planet. For BCIs, it is possible to consider three 
subjects of ethical questionings, dealing respectively with the animal, human being, and human 
species. We will try to address at these three levels the various families of BCI technologies: 
rehabilitation and care solutions for disabled patients, advancement of fundamental research in 
the understanding of brain mechanisms and the development of new markets including 
consumer products based on more or less invasive BCIs. 

II. The animal 

As BCIs typically require preclinical animal experimentations, research on animals are for 
many researchers the occasion for a real ethical questioning. 

1. The fight against pain, suffering and anxiety in animals 

The European legislation considers as a value for all European Union (EU) member 
countries to minimize as much as possible animal pain, suffering and anxiety. In nowadays 
state-of-the-art laboratories animal facility officials and researchers experimenting with animals 
put extreme care on the welfare of animals, in a striking ressemblance with the respect shown 
toward a patient or a human subject: all practical actions on animals are traced, the operating 
rooms for animals are very similar to an operating room for human beings, and all trials on 
animals must be submitted to an ethics committee of animal experimentation through 
application files sometimes thicker than that of applications submitted to committee for the 
protection of people, which oversees any experimentation on human beings in France. This 
parallelism is in line with the idea that humans and animals are all beings capable of feeling 
suffering, which should be minimized as much as possible, as stated in the new directive of the 
European Commission2.  

2. Animals are not things 

Since the suffering of animals has been taken into consideration at the same level as that 
of human beings, the difference between the human being and the animal has no longer the 
evidence that it had formerly. Thus, the researcher prepares himself everyday a little more in 
order to be able to justify, to himself, to the public, and to eventual militants of the animal cause, 
more or less violent, that it is not possible to expect care or knowledge – knowledge to care, or 
knowledge to understand – without carrying out trials on animals.  

Nevertheless, this does not prevent that a few borderline cases be distinguished. For 
example, cockroaches have been recently used as a simple game in which they are controlled 
to move in any direction using a wireless device that is directly connected to their antennae3. In 

                                                 
2 Directive 2010/63 of the European Commission enjoins all member countries to restrain the most possible 

pain, suffering and anguish in animals upon which scientific experiments are carried out, recommendation 
translated in France by the decree No. 2013-118 of February 1, 2013 relatively to the protection of animals used 
for scientific purposes, amending the rural code. 

3 Backyard Brains: The RoboRoach. 
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this case, human domination is exercised for the simple leisure industry which, in an ethically 
questionable manner, transforms animals into toys. What usefulness then justifies this 
application of BCIs? Is the usefulness relying on economic and commercial factors relevant in 
this case? What limits should be enforced to these approaches that nowadays concern 
cockroaches or rats (Talwar et al., 2002), but that nothing prevents thinking that they may one 
day concern human beings? Since many evidences point out that animals are intelligent and 
sentient beings (Bekoff, 2000; Paul et al., 2005; Reznikova, 2007), which was recently officially 
recognized in France4, they should not feel pain or suffering or anxiety when manipulated, and 
their condition must be respected. 

III. The human being 

Just like animals, human beings are directly concerned by BCIs, which can have a major 
impact on their well-being. Numerous ethical questionings emerge when considering the use of 
BCIs, be they invasive or not, and this is particularly so because their applications are still at 
the research stage, still immature. These questionings concern in the first place patients who 
agree to participate to BCI research protocols. 

1. Addressing the aroused hope 

Indeed, BCI studies often suggest real prospects for improvement among heavily 
handicapped patients, for whom there is no other alternative at the moment. This sole word of 
improvement may give rise to many expectancies, some of them being totally unrealistic to 
immediately benefit the patient, but rather future patients. Thus, a wide gap may exist between 
the expectation of the patients and what can be offered to them in return of being included in a 
study designed to test a paradigm, a material, a hypothesis, not aiming at improving the status 
of a real person (Lidz et al., n.d.; Clausen, 2009). For health professionals, the challenge posed 
by this gap consists of knowing how to address the hope risen by these new technologies among 
“expecting” patients, that is in individuals whose state is so serious that they have reached the 
point to expect everything from medicine, the progress of which is now considered so important 
that patients tend to put on practitioners the hopes that they once placed in natural or in God’s 
healing: Today doctors are supposed to know, they are supposed to have the power to give 
patients their health back. Addressing this hope becomes even more significant when the 
effectiveness of non-invasive BCI systems remains limited, and that a choice has to be made to 
resort or not to a surgery for testing a more invasive system. Although the present results 
obtained with invasive interfaces offer extremely promising perspectives with a growing 
number of degrees of freedom that can be controlled simultaneously (Hochberg et al., 2012; Ifft 
et al., 2013; Wodlinger et al., 2014), they nevertheless still remain modest (Dietrich et al., 2010) 
and great importance is still given to more conventional techniques for the compensation of 
handicaps using interfaces based on residual movements (Pino et al., 2003; Brunner et al., 2010; 
Treder and Blankertz, 2010; Takahashi et al., 2011). However, these approaches are themselves 

                                                 
4 The French National Assembly has recognized on October 30, 2014, that animals were “sentient living 

beings”, alining thus the civil code with the penal code and the rural code; the amendment was rejected by the 
Senate on January 22, 2015, and then confirmed by the National Assembly on January 28, 2015. 
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limited, and the hypothesis currently favored through the development of new generations of 
BCI systems is that direct interfacing of the SNC in the long run should offer better 
rehabilitation prospects. 

2. Risk/benefits ratio 

Any BCI application must be conducted in accordance with the principles of the patients’ 
autonomy, of their informed consent, as well as the practitioners’ commitment about the 
beneficence of their acts, sworn during the oath to respect the code of medical ethics5,6. In the 
case of invasive BCIs, for which it is necessary to proceed with a surgical implantation of 
electrodes in the brain, the primary concern is to not harm or at least to minimize the risks with 
regards to the benefits. This risk-benefit approach is now adopted by ethics committees 
assessing the relevance of the protocols under consideration and assumes that it is possible to 
weight on a scale the various expected benefits, as well as the different damages, 
inconveniences or possible risks. Thus, the principle of the risk/benefit ratio consists in adding 
terms so radically heterogeneous between themselves as are pleasures and pains, converted to 
positive or negative units in order to anticipate the result of an action. While it appears as 
intuitively true, we should not forget that this is only an approximation. For invasive BCIs, 
although if opening a skull is a well-controlled surgical procedure, it still comprises significant 
risks (de Gray and Matta, 2010; Legnani et al., 2013; Kourbeti et al., 2015) and thus cannot be 
intuitively justified unless there is a real prospect for improvement of the patient’s condition, 
which could not be achieved by other means.  

3. Informed consent and patient’s involvement 

It may be then tempting for the investigator of a clinical trial to limit descriptions by fear 
that no patient will agree to participate in a research protocol, which would have the 
consequence of slowing it down. Allowing patients to imagine that a purely cognitive trial 
would be beneficial to them and eventually therapeutic would therefore constitute a form of 
deceit, whatever the intention, maximizing the omnipotence of the one who knows but says 
nothing. It thus seems unethical to let patients fantasize about more promises than those the trial 
can deliver. The truth of the relationship between physicians and their patients comes at this 
price. Misleading someone is generally not ethical.  

This trustful relationship is even more important that, in the case of invasive interfaces 
where patients are implanted for an indefinite period. Indeed, unlike short protocols in which 
patients are only involved transitorily, patients that are chronically implanted in the long term 
such as in (Hochberg et al., 2012) become become a major active participant of the research 
protocol, whose involvement – and often that of his family – is central to its success. As a result, 
patients become real contributors to the study, especially when they will not benefit directly 
from a BCI system that remains at a research and development stage. 

                                                 
5 In France: Article R4127-109 of the public health code. 
6 Directive 2001/20/EC of the European Parliament and of the council of April 4, 2001. 
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4. Accessibility of BCIs 

This issue is also linked to the problem of the financial cost of the commercial solutions 
for rehabilitation. In order to be available for people with disabilities whose financial resources 
are often limited because of a larger precarity7 and a smaller salary on average8, these 
technologies require a low-cost production on the long term. Especially for BCIs, for which 
some current prototypes are reaching very high costs, this implies that the research being 
undertaken should include the financial constraint allowing them to become accessible to the 
greatest number of people for whom they have been originally developed. 

5. Modulating the brain activity with BCIs: what consequences? 

Several studies suggest that the usage of a BCI system could lead to a modification of the 
neural substrate of the areas involved in the practiced tasks (Carmena et al., 2003; Ganguly and 
Carmena, 2009). Some studies on neurofeedback allow a subject to see in real time his brain 
activity – as in (Lachaux et al., 2007) –which is envisioned for teaching patients how to control 
their brain activity in order to correct their metanl, social or emotional behavior in a similar way 
to repeated physiotherapy sessions that allow correcting a motor behavior (Mercier-ganady et 
al., 2014). Beyond the clinical applications, such neurofeedback is envisioned for other 
purposes, such as improving performance. For instances, monitoring or strenghtening of 
vigilance has already been envisioned (Blankertz et al., 2010), as well as increasing the 
concentration on repetitive tasks such as for the security control of luggage in aiports (Müller 
et al., 2008). Depending on the objective sought-after, the ethical question of the usefulness of 
these practices, whose impact may concern people themselves or a third-party beneficiary, can 
then be raised (Vlek et al., 2012). In any case, it seems important that the subject remain free to 
choose whether to participate or not in these learning protocols. 

6. Reliability and safety of BCIs 

Given the quick advances in BCI technologies, one can assume that in a relatively near 
future, they will be parts of the daily lives of patients outside a protective clinical environment. 
User patients who want to be autonomous in their daily life, will thus need a BCI system both 
safe and reliable. 

The system must be safe so as not to be disturbed accidentally or maliciously by the 
external environment. In addition, BCI systems transmit neural signals reflecting the thoughts 
and intents of action of their users, who may not wish to see these intimate and personal data 
being accessed by strangers. Thus, BCI systems ought to be protected, and this all the more that 
they will increasingly rely on wireless technologies (Guenther et al., 2009; Borton et al., 2013), 
where data can be more easily intercepted. In the event that this security problematics need to 
be seriously addressed, it is however not specific to BCIs only. Numerous objects increasingly 
more “intelligent” integrating embedded electronics and control software already occupy a 

                                                 
7 2011 data from French Ministry of Employment.  
8 Report n°45 of the agefiph in december 2013. 



Part 5: Thesis result 3 – Ethical aspects 

 
187 

 

large part of our daily life including in a clinical context (for examples pacemakers or insulin 
pumps). 

The system must also be reliable in order not to hurt its end-user or those that surround him 
or her, or even damage its environment. Indeed, neural signals may often be subject to 
fluctuations, which must be taken into account so as not to produce dangerous commands. This 
requires robust algorithms constraining the operation of the effector within predetermined 
limits, and thus limiting the actions that users can produce. 

7. Responsibility when using BCIs 

This issue is related to that of the responsibility that is involved when using a BCI system: 
Who should be held responsible for an accident caused by means of a BCI system? The user, 
the designer, or the distributor? This issue already gives rise to discussions that are all the more 
important that the spectrum of possible applications of the BCI is wide. There are uncertainties 
notably at multiple levels: The machine can incorrectly record or wrongly interpret the brain 
activity of the subject, but the brain activity of the subject can also be unconscious and not 
volitional. Subjects may also not fully control how their brain activity is interpreted and 
transformed into action (as a result of the algorithms being employed), which does not make 
them totally responsible for the actions that they would perform by using a BCI system. Thus 
the usual principle of analysis of the causal chain that consists of identifying whether the error 
comes from the user or from the machine seems actually harder to apply in the case of BCIs. 
Some authors consider that there is a responsibility gap where it is not possible to determine 
who is responsible (Lucivero and Tamburrini, 2008), while in opposition other authors point 
out that already existing laws and modes of reflection could be applied to the case of BCIs 
(Clausen, 2009; Haselager et al., 2009). Some authors porpose to implement certain rules before 
putting BCIs on the market, such as the obligation to measure and to assess the reliability of 
BCIs (Grübler, 2011). In all cases, the legal system should anticipate the emergence of BCIs in 
our daily lives so as to adapt itself accordingly. 

IV. The human species 

Brain-computer interfaces, whose main objective is the rehabilitation of functions in people 
suffering from severe disabilities, such as simply walking or talking again, remain largely 
uncommon nowadays. On the other hand, other types of interfaces between man and the 
machine multiply at high speed in our everyday environment: Touchscreens, speech or gesture 
recognition, facial recognition, augmented reality, etc. These non-invasive interfaces have been 
quickly democratized and integrated by society to the extent that they transform our daily life. 
Although the scientific limitations of BCI applications are still huge it is estimated that their 
first applications could appear on the market within a few decades (Blankertz et al., 2010; 
Nijboer et al., 2013). In this context, can we expect in a foreseeable future a strong influence of 
BCIs on the functioning of societies, or even on humanity itself? 
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1. BCIs as future means of enhancement? 

Human beings have always sought to explore all the possibilities that were offered to them 
to increase their capabilities, for example by creating machines extending their abilities 
(moving quickly, flying, seeing at a distance, etc.), or by resorting to treatments extending their 
life. The boundary between therapy and enhancement is becoming increasingly blurred. In a 
world where the cult of performance is ever present, the choice of enhancement is attractive. In 
the pharmaceutical field for example, although the majority of drugs aim to heal, some 
substances are being used for the purpose of improving performance, such as physical 
performance, cognitive performance, sexual performance, etc. Surgery once reserved for the 
medical field is now used for aesthetics. The ever finer knowledge of neurobiological 
mechanisms also paves the way for the pharmacological improvement of performances (Farah, 
2002). Other technologies are also used for enhancement: Some prostheses become today so 
efficient that they could allow people using them not only to circumvent their disabilities, but 
also to surpass and to reach physical performances enhanced and superior to the “norm” 
(Camporesi, 2008). 

Because BCIs are still far from reproducing the natural performance of the human body, 
they have therefore not yet reached a stage allowing a person to be enhanced. However, some 
works suggest that this is potentially possible. For instance, a recent study shows how sensitivity 
to infrared light can be brought to rats through an implanted neuroprosthesis (Thomson et al., 
2013), and other studies in humans suggest that BCI approaches can be used to improve certain 
cognitive performance such as attention (Gomez-Pilar et al., 2014) or short-term memorization 
(Burke et al., 2014).  

If we consider for a moment the hypothesis that these technologies could indeed provide 
significant  improvement of our faculties, this could impact the military field, where soldiers 
would improve their efficiency during their missions, but also all individuals eager to surpass 
themselves in their both private and professional lives. Even if this desire for enhancement for 
different purposes is not new, the potential of new technologies makes it possible to envisage a 
rupture of the level of enhancement that is offered. So far this level was maintained within the 
limitations of the body. The hybridization of the body with machines opens avenues toward a 
scaling of enhancement possibilities, which could result in a rethinking of the definition of the 
human. 

2. The risk of transhumanism? 

Such prospects feed the hopes of some of the transhumanist movements, which take the 
idea of human enhancement by technologies to the extreme, by advocating the fusion of man 
and machine to overcome not only disabilities, pain and diseases, but also any physical 
limitation of the body, such as aging and death, all being fatalities perceived as unnecessary 
and unwanted (Goffi, 2015). According to these movements, humans could find an extension 
of the human condition by merging with advanced technologies and thus controlling their own 
evolution toward a new augmented transhuman species. These perspectives are based on the 
fact that progress seems to follow an exponential development that could reach a critical point 
that some transhumanist theorists call “singularity” (Benderson, 2010). This progress, for some 
transhumanists, could now reach the “total prosthesis”, enabling the instantaneous and 
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comprehensive understanding of human intentions by the machine, the establishment of 
transparent communication between two individuals communicating brain to brain without 
symbolic mediation, or even the complete transfer of the human spirit onto a machine (Lebedev 
et al., 2011; Neerdael, 2015). Although these perspectives sound very futuristic, they are 
however the focus of serious reflections and are largely financed.  

The question may arise of whether these futuristic assumptions are not specifically intended 
to attract capital investors, themselves encouraged by the expectations of the general public 
(Neerdael, 2015).  

3. Freedom and BCI 

If the human species develops new technologies, it is to exploit and take advantage of them 
for its well-being. If the singularity principle proves to be true, mankind may become prisoner 
of the technologies that it will have developed for itself. Are we not already dependent on a 
large number of them, such as the means of communication by which we expect the other to be 
reactive without delay and at any time? 

BCIs therefore require to consider the issue of freedom. Due to their functioning, these 
approaches consist of the real-time decoding of some of our intentions. While early works 
focused on motor intentions within a rehabilitation framework, the same methods are now 
striving, even if the goal is still far from being fully achieved, to decrypt more intimate 
information, such as perceived speech (Mesgarani et al., 2008), stored memories (Rissman et 
al., 2010) or even dreams (Horikawa et al., 2013). Despite these advances being significant and 
beneficial because they allow to better understand the functioning of our CNS, they provide the 
opportunity to explore specific information that people used to be free to keep for themselves. 
Will developed systems still be able to stop operating as soon as the user wants so? What usage, 
good or bad, will be made of the data collected about the user? The prospect that BCI 
technologies can easily be transposed beyond the field of research for social, economic (Ulman 
et al., 2015), political, military or even legal purposes (Wolpe et al., 2005), gives rise to the 
major ethical issue of their impact on the freedom of the individual or more generally of the 
human species. As suggested by Tennison et al. (Tennison and Moreno, 2012), if an 
enhancement technology may, for example, benefit to an employer, which could be, for 
example, a company looking for employees more focused on their work or an army aspiring for 
more effective soldiers (Kotchetkov et al., 2010), what freedom will then be left to an employee 
– faced with an employer or with the competition of those who have made the choice for 
enhancement – to comply to it or not? Subsequently, when a technology will have spread more 
widely to become a standard in everyday life, what freedom will an individual have, and more 
largely humans in general, to avoid it? 
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V. Conclusion 

We are nowadays facing two major assumptions: either we consider the human being as 
existing within the limitations of a body, or we think the human being as a dynamics of 
undefined progress. In the first case, technological innovations must biologically comply with 
the limits of the human body, while in the second case, the body is only a support for technical 
innovations. These two assumptions allow distinguishing between the technological 
innovations that strive to serve more the purposes of the body from those that serve more the 
purposes of the will. However, the constraints that apply to technological innovations are not 
the same if these innovations aim at serving a body rather than a will. Serving a body requires 
respecting its functioning, its normativity, its limitations. Serving a will does not seem bound 
by the same constraints, the same limitations and the same internal normativity.  

The goal of the ethical reflection presented here was not to tell which of these two 
assumptions is either true or false, but rather to try to accompany the current research in order 
to ask the important questions that could help enlighten minds. The issue of the welfare of the 
human species cannot oppose, in a probably too simplistic manner, bioconservatives and 
bioprogressists. The call for an international reflection group dedicated to these issues will 
certainly produce, as is the case for 60 years of global bioethics, some recommendations that 
will become laws governing these new technologies and their applications, but will not 
unfortunately always prevent that capital investors will sometimes go toward the best 
opportunities. Therefore, all the key players of these new technologies, including researchers, 
investors, vendors, and distributors, should probably prepare themselves to carefully examine 
the arising pro and contra arguments, without being able to rely on some allegedly higher ethical 
authority, since none of such is better than the one that their own conscience represents. 



 
 

Part 6: Conclusions and Perspectives 

In this thesis we considered speech restoration using a brain-computer interface (BCI). 
Indeed, brain-computer interfaces have shown promising results for restoring motor capabilities 
in paralysed patients. Similarly, they could be used to help aphasic patients suffering from 
severe paralysis to communicate, by allowing them to control a speech synthesizer from their 
brain activity. The goal of this thesis was thus to develop several aspects as proof of concept of 
this hypothesis. In this work we thus envisioned a speech BCI in which neural activity recorded 
in the speech motor cortex would be decoded into an intermediate articulatory representation 
of speech. This articulatory representation consisting in movements of the main articulators of 
the vocal tract could then be converted to speech using an articulatory-based speech synthesizer. 

Main contributions and results 

Toward this goal, we first built an articulatory-based speech synthesizer capable of 
synthesizing intelligible speech with few control parameters, then we investigate the cortical 
activity underlying speech production and the decoding of this activity into speech. 

This was achieved by first recording a large dataset of synchronous acoustic and 
articulatory data. This corpus was recorded using electromagnetic articulography (EMA) in a 
French male speaker. EMA allowed to capture the trajectories of small sensors glued on the 
lips, jaw, tongue and soft palate of the speaker, with a spatial resolution inferior to the millimeter 
and a high temporal resolution. The final corpus consisted of more than 1,100 items, including 
all isolated vowels, vowel-consonant-vowel sequences and mostly full sentences, from short 
phonetically balanced sentences to long sentences extracted from newspapers. The articulatory 
trajectories were projected in the midsagittal plane of the speaker, resulting in a total of 14 time-
varying articulatory features. The audio signals were also phonetically labeled at the phone 
level using a semi-automatic procedure. The whole dataset was publicly released during this 
thesis to facilitate the access to articulatory data to other research teams. 

This articulatory-acoustic dataset was then used along with machine learning techniques to 
build  a mapping that could convert articulatory trajectories into acoustic features, the so-called 
“articulatory-to-acoustic mapping”. The acoustic features were obtained by computing mel-
coefficients from the raw audio signal. In this thesis we chose to perform the articulatory-to-
acoustic mapping using deep neural networks (DNNs). The training of DNNs caused several 
issues generally leading to poor solutions. Thus, we proposed a simple training method that 
proved to be efficient for the particular case of articulatory-to-acoustic mapping. In that 
approach, the training of the DNN was performed by successively adding layers to the network 
until its final configuration. This DNN training method, along with various other training 
methods and data pre-processing algorithms, was implemented in a custom software that has 
been used in various parts of this thesis work as well as in other projects. Once trained, the 
DNN could predict mel-coefficients from unpreviously seen articulatory data. These mel-
coefficients could then be converted to speech using the MLSA filter. Results showed that 
intelligible speech could be synthesized with a word accuracy superior to 95%, and that the use 
of glottal activity could help to better discriminate consonants. Moreover, the synthesizer could 
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run fully in real-time, thus allowing its usage in applications such as a BCI for speech 
restoration. 

We also compared our DNN-based mapping to a state-of-the-art approach using gaussian 
mixture regression. In particular, we evaluated how the number of input parameters and their 
noise level impacted the synthesis. Indeed, BCIs can typically decode about ten degrees of 
freedom with relatively good accuracy. A speech synthesizer controlled by BCI should thus 
have few parameters and be robust to fluctuations of these parameters. This was simulated by 
performing dimensionality reduction on the input articulatory data and by adding artificial noise 
to these inputs. Results showed that the DNN-based mapping was more robust to noisy inputs 
than the GMM-based mapping. Moreover, the results also showed that intelligible speech could 
still be achieved with about ten articulatory parameters. 

This synthesizer was then controlled in real-time from the articulatory movements of 
several subjects, in a closed-loop paradigm. Indeed, it remained unknown whether a given 
articulatory-based speech synthesizer built from articulatory-acoustic data obtained in one 
particular reference speaker could be controlled in real time by any other speaker to produce 
intelligible speech. We thus had the EMA data of several speakers recorded in real-time in order 
to control the articulatory-based synthesizer, while they were given the synthesis feedback 
through earphones. We proposed a simple calibration method allowing to compensate for the 
differences between the reference speakers and the new speakers. This method consisted in 
synchronously articulating a small set of short sentences extracted from the original 
articulatory-acoustic dataset. Thus, the reference articulatory movements for these particular 
sentences were known, which allowed to compute a linear mapping between the new speakers’ 
articulatory space and the reference speaker’s articulatory space, the so called “articulatory-to-
articulatory mapping”. The results showed that the speech synthesizer could be controlled in 
real-time by the different speakers to produce not only vowels, but also intelligible consonants 
and some sentences. This result was achieved despite the fact that the articulatory-to-
articulatory mapping was erroneous, further confirming the robustness of the proposed 
synthesis method. The overall intelligibility of the synthesis was however limited when 
compared to the offline condition, especially because of a poor synthesis of plosive consonants. 

We then considered the mapping of speech-related brain areas in patients undergoing 
awake brain surgery at the university hospital of Grenoble. Indeed, one treatment for brain 
tumors consists in removing the tumor areas and cells while preserving the sensory-motor 
functions of the patient. Mapping the functional areas of speech during surgery could help 
identify the areas to be preserved. Moreover, the localization of speech-related brain areas can 
help optimize the positioning of micro-electrode arrays used in a BCI for speech rehabilitation. 
This was as well a good opportunity to record neural data during speech production and 
imagination. We thus developed an approach to map speech-related brain activity, directly 
during awake brain surgery, and on the neurosurgeon’s view of the operative field. First, 
automatic speech detection was performed using the signal from a microphone placed next to 
the patient in order to identify speech production data segments. This allowed to compute the 
mean spectral power for both speech production and rest periods using short-time Fourier 
transform. Speech-related brain areas were then identified by quantifying differences in spectral 
power between speech and silence segments, the so called speech-silence-ratio. Statistical tests 
were used to assess the significance of these differences in order to only map the relevant 
changes in neural activity. The speech-silence-ratio was then mapped directly on a picture of 



 

 
193 

 

the neurosurgeon’s view of the operative field using spline interpolation. This first required to 
coregister the electrodes on the anatomy. This was achieved by first identifying some of the 
electrodes on a picture of the operative field with the electrodes visible. The positions of the 
other electrodes were then approximated using spline interpolation. Then, anatomical 
landmarks were identified and the picture with and the picture without the electrodes visible, 
allowing to transpose the electrodes positions to the picture where they were not visible. We 
could thus map speech-related brain activity on a picture of the operative field in which the 
electrodes were not present. We also proposed a simple method to estimate the locations of the 
electrodes on a reconstructred cortical surface from MRI data. All these methods were 
implemented into a software, called ClientMap, with the help of two interns that I supervised. 
This software was then tested in two patients undergoing awake brain surgery for a tumor 
removal, which tumor was located next to the speech motor cortex. The developped software 
was fully functional and allowed to map the speech-related brain activities of the patients. 
Results were consistent between both patients and exhibited a beta desynchronization as well 
as an increase in low and high gamma bands in the speech motor cortex during speech 
production. This was also observed during imagination of speech and also during listening 
periods. 

We then started to investigate how speech could be decoded from neural activity. In a first 
step, we considered the decoding of speech intention, i.e. predicting if the patient produces or 
intent to produce speech. Results showed that speech intention could be predicted with accuracy 
up to 94%. Moreover, a model only trained on overt speech data was also able to predict covert 
(imagined) speech periods with an accuracy of 78%. This suggests that overt and covert speech 
at least share a partially common neural representation in the speech motor cortex. In a second 
step we addressed the decoding of voicing activity, i.e. predicting if the vocal folds are vibrating 
or not during speech production. Results were still above chance level but lower than when 
decoding speech intention (about 75% accuracy). In a third step, we aimed at decoding 
articulatory trajectories from the neural data. Here the articulatory trajectories consisted of 14 
time-varying coordinates obtained from electromagnetic articulography. Since the articulatory 
trajectories of the patient were not recorded during surgery, we proposed an approach to 
estimate them. This approach relied on the fact that the patient produced sentences for which 
articulatory trajectories and the audio of another subject were previously recorded and known. 
We used dynamic time warping to align the audio of this subject with the patient’s audio. The 
resulting time-warping was then applied to the known articulatory trajectories in order to align 
them with the neural data of the patient. Results showed that several articulatory trajectories 
could be decoded above chance level, in particular the vertical position of the jaw, the vertical 
position of the tongue tip, the horizontal position of the back of the tongue and the horizontal 
position of the velum. Moreover, the results were best when no delay between the neural and 
the articulatory data was added, and when considering at least 100ms chunks of neural data. 
Reducing the dimensionality of the neural feature space also helped improve the decoding 
accuracy. These decoded articulatory trajectories were then converted to acoustic features using 
the articulatory-based speech synthesis. However, the decoding accuracy remained too limited 
to generate intelligible speech. To test the hypothesis that decoding articulatory trajectories as 
input to an articulatory-based speech synthesizer could be more efficient that directly predicting 
acoustic parameters to synthesize speech, we as well considered the decoding of acoustic 
features from neural activity. Results showed that several acoustic features could be decoded 
above chance level, in particular the first, second, fifth and seventh mel coefficients. As for the 
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decoding of articulatory trajectories, results suggested that best accuracy could be achieved 
without any delay between the neural and acoustic data, when considering neural data chunks 
of at least 100ms, and when using dimensionality reduction techniques. We then compared the 
acoustic features depending on whether they were decoded directly from neural data or from 
articulatory trajectories estimated from neural data. Results showed that most of the acoustic 
features were best decoded when passing by the intermediate articulatory representation, which 
supports our main hypothesis. 

Finally, we addressed several ethical issues arising with the usage and development of 
brain-computer interfaces (BCIs). We considered three levels of ethical questionings, dealing 
respectively with the animal, the human being, and the human species. For the animal, we 
addressed the common issue of pain and suffering when performing animal experiments, but 
also that of the control of animals by BCIs. For the human being, we discussed the involvement 
of the patients in clinical research along with the hopes that it can arouse. We also addressed 
the case of the future users of BCIs, and several aspects regarding their access to these 
technologies, their reliability and safety, but also the impacts of their usage on the user himself 
and its surrounding environment. Finally, in a perspective of generalized use of BCIs, we 
discussed the impact it could have on the human species, especially for non-clinical usages of 
BCIs. The goal of this reflection was not to provide answers but rather to raise ethical questions 
to bear in mind while conducting research on BCIs. 

Perspectives 

This thesis work presents several main steps toward a brain-computer interface for speech 
rehabilitation using articulatory data: the development of an articulatory-based speech 
synthesizer, the identification of the speech-related cortical areas and the decoding or 
articulatory trajectories from neural data. However, the proposed approaches here should be 
improved in several aspects. 

First, the offline articulatory-based speech synthesis might be improved in several ways. 
Indeed, while intelligible speech could be synthesized with an open-vocabulary word accuracy 
above 90%, the synthesis accuracy on consonants was only about 70%. In particular, plosive 
consonants had the lowest recognition accuracy, and future works should essentially focus on 
improving their synthesis quality. This could be achieved by efficiently detecting specific 
constrictions from the articulatory data, which would then serve as additional inputs to the 
synthesizer. The overall synthesis intelligibility could also be improved by using a priori 
knowledge, such as a dictionary of all the words of the target language, combined with 
grammatical rules or word sequences probabilities. Such a priori knowledge could improve the 
synthesis by constraining it to a specific language or limited vocabulary. This could be done for 
instance by combining the advantage of deep neural networks for regression of continuous 
variables, with the advantages of hidden markov models for modeling sequences of discretes 
states, such as phones, words or semantic units. 

Similar conclusions also emerged from the results of the real-time control of this 
synthesizer from articulatory movements of new subjects. Indeed, most synthesis errors were 
similar to that of the offline synthesis, indicating that using the synthesizer in a closed-loop 
paradigm mainly emphasized the already existing confusions. However, the presence of 
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additional minor confusions suggests that other aspects might also be improved, such as the 
calibration approach proposed to compensate for the articulatory differences between subjects. 
Subjects may also adapt differently to the articulatory-to-articulatory mapping errors and find 
behavioral strategies to compensate for these errors. Here, the different subjects had about half 
an hour training time to improve their control of the synthesizer but with no significant results. 
One subject however reported self-improvement. Thus, future studies should further explore 
the possibilities of improvement through longer training periods. This would require to find a 
way to record stable EMA signals between sessions, for instance using unsupervised calibration 
methods. 

In this thesis, we also presented a method to localize and visualize speech-related brain 
activity in real-time, during awake brain surgery. While being efficient, this method could be 
improved in several points. In particular, the automatic speech detection could be improved 
using statistical models of speech and silence audio signals. The mapping workflow might also 
be improved by automatizing or semi-automizing the coregistration of the electrodes on the 
anatomy and the reconstructed cortical surface. This could be achieved by using computer 
vision techniques and by taking into account the geometry of the cortical surface when 
localizing the electrodes. Moreover, results from the mapping of speech-related brain activity 
suggested that there is at least a partially common neural representation of overt speech, covert 
speech and speech listening in the speech motor cortex. Future experiments should confirm this 
hypothesis, in particular by studying covert speech with denser recordings. Further experiments 
should also consider a finer mapping of speech-related activity, for instance at the phone level 
or according to the place of articulation. This could be achieved by performing automatic 
speech recognition to directly segment speech and map the neural activity for each type of 
speech unit.  

Finally, we presented three different decoding steps required to build a BCI for speech 
rehabilitation based on articulatory data: detecting speech intention, decoding voicing activity, 
and decoding articulatory trajectories. While overt and covert speech intentions were correctly 
detected, results showed that listening periods were also detected as speech intention. Here, this 
was observed in one patient that only had four relatively-large electrodes recording the neural 
activity. Thus, future work should further study this aspect and in particular investigate the 
differences and similarities of the neural activity in the speech motor cortex during speech 
production and speech listening. Decoding the voicing activity could also be performed with 
above chance level. However, the decoding accuracy remained limited as compared to that of 
the speech intention detection. This might be due to the limited number of electrodes actually 
covering the speech motor cortex, and should be further investigated in future experiments. 
Future work should also consider the decoding of the voicing activity during covert speech, 
since it was only performed for overt speech in this work. Finally, we showed that some 
articulatory trajectories ad acoustic features could be decoded above chance level. However, 
this did not result in intelligible speech synthesis. While these results are encouraging, future 
work should focus on improving the decoding accuracy. This could be achieved by recording 
larger datasets in order to use more advanced machine learning techniques, and by using denser 
recordings at the cellular level, for instance micro-electrode arrays. Moreover, we compared 
the indirect decoding of speech using articulatory trajectories to a direct decoding of acoustic 
features from neural data recorded in the speech motor cortex. The results suggested that best 
decoding accuracy was achieved using an intermediate articulatory representation of speech, 
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which supports our main hypothesis. However, this was only achieved in one patient, and the 
decoding accuracy remained limited. This result must thus be confirmed by future experiments. 
If this hypothesis is proven right, the three different decoding stages presented in this work 
could be combined in a BCI for speech rehabilitation, as schematized in Fig. 94. 

 

Fig. 94: Conceptual view of articulatory-based speech synthesis from neural data. First, the neural activity is used to detect 
speech intention in order to enable or disable the speech synthesis (pink path). If speech intention is detected, voicing activity 
is decoded from the neural data to generate an appropriate excitation signa l for voiced and unvoiced sounds (purple path). 
This neural activity is then decoded into articulatory trajectories which are then converted to mel coefficients using the 
articulatory-based speech synthesizer (blue path). Finally, the MLSA filter combine the mel coefficients and the excitation 
signal to synthesize speech (orange path).  

 



 
 

Annexes 

Annex 1: List of sentences for the evaluation of the reference offline 

synthesis 

Francfort a reculé de un virgule quarante et un pourcent. 

Au moins une sévère leçon. 

Les préparatifs vont bon train. 

Comme un regain en somme. 

Allègre portrait d'un tueur psychopathe. 

Les prix flambent dans l'hôtellerie. 

Vous êtes un homme d'appareil. 

Les travaux des bûcherons. 

Le reste sera européen. 

Le trafic d'être humain augmente. 

Leur avenir semble aussi incertain. 

Encore moins à son affiche. 

Tel est le message implicite. 

Et la clôt fort dignement. 

Un homme toujours de dos. 

Elle se trompe de débat. 

Il y en a un. 

Avec grandeur et densité. 

Voilà où nous en sommes. 

Elle en épaissit les outrances. 

Les besoins y sont énormes. 

Le quinze de France. 

Ne pas rater le coach. 

Le dollar chute, l'euro s'envole. 

J'en suis totalement incapable. 

Les autres réorganisations devraient suivre. 

Les gammes familiales s'étoffent. 

L'œuf du serpent aurait éclos. 
Jugement le dix-neuf janvier. 

Il lui faudra huit ans. 
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Annex 2: List of sentences from the spontaneous conversation during the 

real-time control of the synthesizer 

Subject Original sentence pronounced by the subject 

Subject 1 Voilà j’ai fini, qu’en penses-tu de cette période ? 

Subject 1 Bienvenue à Gipsa-lab et à Clinatec. 

Subject 1 J’ai l’impression que ça marche mieux. 

Subject 1 Je vais commencer l’entrainement numéro deux. 

Subject 1 C’est vraiment beaucoup mieux que la dernière fois. 

Subject 1 Fin du troisième entrainement. 

Subject 1 J’aime bien le chocolat. 

Subject 1 BrainSpeak est un joli projet. 

Subject 1 La chartreuse est un alcool fabriqué en Isère. 

Subject 1 Bravo, super, c’est vraiment génial. 

Subject 1 J’ai l’impression que je ne progresse plus. 

Subject 1 Je fais des phrases maintenant. 

Subject 1 Quel est ton plat préferré ? 

Subject 1 As-tu été au cinéma ce weekend ? 

Subject 1 Aimes-tu les cuisses de grenouilles ? 

Subject 1 Oui c’est bien cela. 

Subject 2 Je vais être papa, je suis très content, c’est une bonne occasion de vous l’annoncer. 

Subject 2 J’ai un champignon sur mon ongle droit. 

Subject 2 J’espère qu’on va écrire un super papier avec cette manip qui déchire. 

Subject 2 Ceci est une interface de communication en parole silencieuse. 
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Résumé en français 

I. Introduction 

En France, environ 300 000 personnes souffrent d’un trouble important de la parole ou 
d’une aphasie souvent due à un accident cardio-vasculaire, mais aussi à certaines paralysies 
sévères, au syndrome d’enfermement, à des maladies neurodégénératives comme la sclérose 
latérale amyotrophique ou la maladie de Parkinson, à des myopathies ou encore à un coma. 
Certains patients sont dans l’impossibilité totale de communiquer alors que leurs capacités 
cognitives et sensorielles sont préservées. Pour ces personnes, la perte de la parole est une 
affliction supplémentaire qui empire leur condition : elle rend la communication avec le 
personnel soignant difficile, et peut entrainer l’isolement social ou la dépression. Par 
conséquent, il est crucial pour ces patients de récupérer leur capacité à communiquer avec le 
monde extérieur. 

Certaines approches actuelles peuvent fournir un moyen de communiquer, principalement 
via des dispositifs de saisie lettre par lettre qui exploitent des mouvements résiduels des yeux, 
ou les réponses cérébrales à certains stimuli spécifiques. Cependant, plusieurs minutes sont 
requises pour taper une phrase complète, alors que seulement quelques secondes sont 
nécessaires en utilisant la parole naturelle ; et tous les patients ne peuvent bénéficier de ce type 
de système. 

La parole reste en effet notre moyen de communication le plus naturel et efficace. Mais 
elle est aussi le résultat de mouvements musculaires complexes, contrôlés par notre système 
nerveux. Au cours des dernières décennies, des approches utilisant des interfaces cerveau-
machine (BCI, pour « Brain-computer interface ») ont successivement été développées afin de 
contrôler le mouvement d’effecteurs (par exemple un bras robotisé ou une souris d’ordinateur), 
avec une précision grandissante, d’abord chez l’animal et plus récemment chez l’Homme. Ces 
systèmes ont tout d’abord permis le contrôle d’effecteurs avec peu de degrés de liberté, 
typiquement 1 ou 2, mais les études les plus récentes ont montré que des sujets pouvaient 
contrôler simultanément jusqu’à dix degrés de liberté après un entrainement approprié, afin 
d’achever des taches motrices complexes. Jusqu’à ce jour il n’y a toutefois pas encore eu de 
démonstration quant à la faisabilité de restaurer la parole naturelle via une approche BCI. 

L’objectif général de cette thèse était donc de franchir les premières étapes vers une telle 
preuve de concept. En particulier, son but principal était de développer un synthétiseur de parole 
paramétrique pouvant être utilisé dans un paradigme BCI (Partie 3 de cette thèse), et de mettre 
en place des essais cliniques afin de collecter, analyser et décoder l’activité neuronale de la 
parole (Partie 4). 
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II. Résumé de l’état de l’art 

1. Interfaces cerveau-machine pour la restauration de la parole 

Plusieurs approches ont été proposées pour restaurer la communication chez les patients 
atteints de paralysies sévères, généralement via un processus de saisie lettre par lettre qui 
exploite des signaux physiologiques résiduels, par exemple en suivant la direction du regard 
pour contrôler la position d’un curseur sur un écran d’ordinateur, et en détectant les clignement 
d’œil pour actionner un clic. Ces solutions ne sont en revanches disponibles que pour les 
patients gardant un contrôle moteur suffisant, et permettent de ne contrôler que des effecteurs 
avec peu de degrés de liberté. Pour surmonter ces difficultés, des systèmes de communication 
directement contrôlés par les signaux neuronaux ont été proposés. 

De tels systèmes exploitent le potentiel évoqué P300 enregistré par électro-
encéphalographie (EEG). Le P300 est une réponse neuronale qui apparait généralement 
lorsqu’un évènement peu probable mais attendu survient pendant une série d’évènement très 
probables, par exemple lorsqu’un sujet détecte activement un son différent parmi une suite de 
sons identiques. De manière similaire, lorsque la rétine est exposée à une stimulation visuelle 
périodique, le cerveau génère un potentiel visuel évoqué oscillant à la même fréquence, aussi 
appelé potentiel « steady-state ». Lorsqu’un sujet porte successivement son attention sur les 
lettres de l’alphabet clignotant à des fréquences différentes sur un écran, ce potentiel peut être 
utilisé pour repérer chaque lettre et épeler ainsi une phrase complète. Ce type de méthode est 
cependant limité par une faible vitesse d’épellation de quelques caractères par minutes. De plus, 
ce type de tâche est particulièrement exhaustif pour le patient qui doit rester concentré pendant 
tout le processus d’épellation de la phrase, limitant ainsi son usage sur de longues périodes.  

D’un autre côté, les systèmes BCIs basés sur des enregistrements intra-corticaux, bien 
qu’ayant l’inconvénient majeur d’être invasifs, semble requérir un effort de concentration 
moindre de la part du sujet, pour qui l’usage du système devient peu à peu naturel. Les 
enregistrements corticaux permettent par ailleurs de capturer plus d’information et conduisent 
donc à un meilleur décodage des intentions de leur utilisateur, ce qui conduit à une vitesse 
d’épellation bien supérieur, d’environ 20 à 30 caractères par minute, et pendant des durées plus 
longues. 

En revanche, ce type de système exploite en général l’activité neuronale venant des aires 
corticales motrices de la main ou du bras et forment donc une manière indirecte de 
communiquer en exploitant des aires qui ne relèvent pas de la parole. En vue de décoder de la 
parole complète à partir de l’activité neuronale, il semble plus efficace d’enregistrer l’activité 
neuronale dans les zones corticales spécifiques à la production de la parole. 

a. Les aires corticales de la production de la parole 

Les aires corticales de la production de la parole, y compris de la parole imaginée, ont été 
largement étudiées en utilisant différentes techniques d’imagerie, allant de l’imagerie par 
résonance magnétique fonctionnelle (IRMf) à l’utilisation de microélectrodes intra-corticales. 
Dans l’ensemble, les résultats de ces différentes études suggèrent que la région gauche 
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inférieure frontale englobant les aires de Brodmann 4, 6, 43, 44 et 45 sont des candidats 
pertinents pour l’enregistrement et le décodage d’activité neuronale dans le but de contrôler un 
synthétiseur de parole. Cependant, ces études ont également montré qu’il existe une forte 
variabilité dans la localisation exacte de ces zones, probablement dues aux spécificités 
individuelles de chaque sujet, mais aussi aux différents types de tâches effectuées (parole libre, 
répétition d’un mot, imagination d’une voyelle, etc.) et aux méthodes utilisées pour 
l’enregistrement de l’activité neuronale. Par conséquent, bien qu’il y ait des preuves 
d’activation corticale dans ces aires durant la production de parole orale ou imaginée, ces 
résultats suggèrent également que ces zones spécifiques devraient être identifiées 
individuellement. 

b.  Décodage de la parole à partir de l’activité neuronale 

Plusieurs études ont visé à décoder la parole ou ses caractéristiques à partir de l’activité 
neuronale. Ces approches de décodage peuvent être divisées en deux grandes catégories : les 
approches « discrètes », et les approches « continues ». Les approches discrètes visent à 
classifier l’activité neuronale en plusieurs catégories, généralement correspondant à des unités 
phonétiques comme des phones ou des mots ; alors que les approches continues ne se basent 
pas sur le décodage d’une représentation intermédiaire discrète mais prédisent plutôt des 
paramètres continus, comme les trajectoires acoustiques. 

Les méthodes discrètes passant par une représentation intermédiaire phonétique, elles ont 
le principal avantage de pouvoir intégrer des connaissances linguistiques (par exemple un 
dictionnaire de mots prédéfinis ou des règles de grammaire) permettant d’améliorer fortement 
le décodage. En revanche, ces méthodes induisent généralement un délai additionnel entre 
l’intention de parole du patient et la synthèse effective de la parole prédite. Il est connu qu’un 
délai trop important (supérieur à 50ms) entre l’intention et le retour auditif perturbe 
généralement la production de la parole. D’un autre côté, les approches continues permettent 
une synthèse directe et sans délai, offrant donc un retour presque immédiat au sujet. Par ailleurs, 
plusieurs études sur les BCIs ont montré l’importance de l’entrainement du sujet pour améliorer 
la précision de son contrôle du système. Un retour immédiat semble plus propice à la réussite 
d’un tel entrainement. Pour ces raisons, nous avons choisi dans cette thèse de considérer un 
décodage continu de l’activité neuronale en parole. 

De plus, alors que les études existantes ont principalement considéré le décodage de 
caractéristiques acoustiques de la parole, plusieurs études récentes ont montré que l’activité des 
aires frontales du cortex moteur de la parole reflétait plutôt ses propriétés articulatoires (par 
exemple l’ouverture des lèvres, l’avancement de la langue, etc.). Alors que l’activité neuronale 
pourrait être directement décodée en paramètres acoustiques, ces études soutiennent 
l’hypothèse qu’une stratégie pertinente pourrait être de considérer une approche plus 
« indirecte » dans laquelle les signaux corticaux sont décodés en caractéristiques articulatoires 
servant à contrôler un synthétiseur de parole articulatoire. 

Dans cette thèse, nous avons considéré cette hypothèse. Afin de pouvoir synthétiser de la 
parole, l’un des prérequis est d’avoir à disposition un synthétiseur de parole qui convertit des 
trajectoires articulatoires (i.e. les mouvements des principaux articulateurs du conduit vocal) en 
un signal audible de parole. 
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Ces choix sont motivés plus en détail dans le Chapitre 1 de cette thèse. 

2. Synthèse de parole à partir de données articulatoires 

La production de la parole peut être assimilée à la manière dont sont jouées les notes d’un 
instrument à vent. Le système respiratoire joue le rôle de la soufflerie en expulsant de l’air à 
travers la trachée. Le larynx, traversé par les cordes vocales, joue le rôle de l’appareil vibratoire 
en modulant périodiquement ce flux d’air pendant la production de sons voisés. Enfin, le 
conduit vocal joue le rôle de résonateur et transforme le flux d’air modulé en parole en modulant 
sa géométrie à l’aide d’organes mobiles, les articulateurs. 

Il existe donc un lien direct entre la géométrie du conduit vocal et la parole produite. Il est 
donc possible de synthétiser de la parole à partir de trajectoires articulatoires, i.e. à partir des 
mouvements des articulateurs du conduit vocal. Dans ce domaine, deux types d’approches 
existent : les méthodes dites « physiques » qui visent à mimer de façon réaliste les propriétés 
acoustiques et géométriques du conduit vocal, via des simulations physiques de propagation 
d’onde, et les méthodes dites « statistiques » qui exploitent de larges bases de données 
articulatoires et acoustiques afin de modéliser la relation qui lie l’acoustique à l’articulatoire 
d’un point de vue probabiliste, sans chercher à en expliquer les mécanismes physiques. Dans 
cette thèse nous avons choisi de considérer une approche statistique (voir Chapitre 2 pour plus 
de détails). 

Tout comme pour le décodage de l’activité neuronale, les approches statistiques de 
synthèse de parole à partir de données articulatoires peuvent elles-mêmes être divisées en deux 
grandes catégories : les approches « discrètes », qui passent par une représentation 
intermédiaire phonétique, et les approches « continues », qui estiment directement l’acoustique 
à partir de l’articulatoire, sans passer par une représentation phonétique. Pour des raisons 
similaires à celles évoquées pour le décodage de la parole à partir de l’activité neuronale, nous 
avons choisi ici de considérer une approche continue de synthèse, approche qui avait par ailleurs 
déjà montré des résultats prometteurs. 

Comme mentionné précédemment, les approches de synthèses statistiques exploitent de 
larges corpus de données acoustiques et articulatoires. Alors que l’acoustique est exclusivement 
enregistrée à l’aide de microphones, plusieurs méthodes différentes existent pour l’acquisition 
de données articulatoires : imagerie au rayon X, imagerie par résonance magnétique, imagerie 
à ultrasons, etc. Parmi l’ensemble de ces techniques, nous avons fait le choix d’utiliser l’électro-
magnéto articulographie, qui permet d’enregistrer la position 3D de capteurs collés sur les 
principaux articulateurs avec une forte précision spatiale (inférieure au millimètre) et 
temporelle (de l’ordre de 400Hz), tout en étant peu risquée pour le patient (contrairement à 
l’utilisation de rayons X par exemple). 

Ces considérations sont détaillées dans le Chapitre 2 de cette thèse. 
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III. Synthèse de parole à partir de données articulatoires 

1. Enregistrement d’un corpus articulatoire-acoustique 

Les approches statistiques de synthèse de parole à partir de données articulatoires reposent 
sur l’utilisation de larges corpus contenant des données articulatoires et acoustiques synchrones. 
Bien qu’un tel corpus fût déjà existant, des résultats préliminaires ont suggéré que 
l’enregistrement d’un nouveau corpus plus complet pourrait fortement améliorer la qualité 
finale de la synthèse. 

Une première étape de cette thèse a donc consisté à enregistrer un tel corpus, en utilisant la 
méthode de l’électro-magnéto articulographie (EMA) : de petites bobines sont collées sur les 
différents articulateurs du conduit vocal et placées dans un champ électromagnétique variable. 
En mesurant le courant induit dans les bobines, il est possible d’estimer leur position dans 
l’espace avec une grande précision spatiale et temporelle. 

Le corpus articulato-acoustique final, appelé « BY2014 », a été enregistré chez un sujet 
masculin français. Une bobine a été placée sur chaque lèvre (supérieure et inférieure), une sur 
chaque commissure des lèvres (gauche et droite), trois sur la langue (avant, milieu, arrière), une 
sur la mâchoire, et une sur le palais mou. Une bobine supplémentaire, dont non seulement la 
position mais aussi l’orientation ont été enregistrées, a été utilisée afin de compenser les 
éventuels mouvements de tête du sujet. Le signal audio a lui été enregistré à l’aide d’un 
microphone, puis a été paramétré par 25 coefficients acoustiques, appelés coefficients mel-
cepstraux. Cette paramétrisation permet d’obtenir une représentation du signal audio plus 
adaptée aux méthodes d’apprentissage automatique, et qui peut être facilement retransformée 
en un signal audible. 

Au total, 925 segments de parole différents ont été enregistrés, incluant toutes les voyelles 
isolées, toutes les séquences voyelle-consone-voyelle démarrant et finissant par la même 
voyelle, ainsi que des phrases allant de phrases courtes (typiquement 4-5 mots) à de longues 
phrases issues de journaux d’actualité (typiquement 10-20 mots), ce qui représente environ 45 
minutes de paroles une fois les périodes de silence retirées. Cette base de données a par ailleurs 
été diffusée publiquement. 

Plus de détail sur le corpus et son enregistrement sont indiqués dans le Chapitre 3 de cette 
thèse. 

2. Synthèse de parole à partir de données articulatoires 

Le corpus articulo-acoustique précédemment décrit a ensuite été utilisé pour calculer 
automatiquement (ou « entrainer ») un modèle mathématique permettant de transformer de 
nouvelles trajectoires articulatoires en paramètres acoustiques. Deux types de modèles 
mathématiques ont été comparés : les modèles de mixtures de gaussiennes (GMM pour 
« Gaussian Mixture Model »), et les réseaux de neurones profonds (DNN pour « Deep Neural 
Network »). Ici, les GMMs ont permis de modéliser la distribution de probabilité jointe des 
données acoustiques et articulatoires, puis cette distribution a été utilisée pour inférer les 
paramètres acoustiques correspondant à de nouvelles données articulatoires qui n’avaient pas 
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été précédemment observées. De façon similaire, les DNNs ont été entrainés afin d’estimer une 
fonction mathématique complexe permettant de passer des données articulatoires aux données 
acoustiques. Plus de détails sur les fondements théoriques de ces deux méthodes sont fournies 
à la fin du Chapitre 2 de cette thèse, et une méthode spécifique à l’entrainement des DNNs a 
été proposée dans le Chapitre 4. 

Comme nous l’avons précédemment motivé dans le Chapitre 1 de cette thèse, un 
synthétiseur de parole conçu pour être utilisé par une interface cerveau-machine doit être 
contrôlable par aussi peu de paramètres que possible, et être relativement robuste aux 
fluctuations de ces paramètres. Afin d’évaluer ceci, les données articulatoires ont été 
artificiellement dégradées, en leur ajoutant du bruit et/ou en réduisant le nombre de paramètres 
articulatoires via différentes techniques de réduction de dimensionnalité. 

La parole synthétisée a ensuite été évaluée de manière objective, en utilisant un système de 
reconnaissance automatique de la parole, et de manière subjective, en demandant à des sujets 
d’identifier les sons synthétisés. Les résultats ont tout d’abord montré que de la parole 
intelligible pouvait être synthétisée, en temps réel, avec un taux de reconnaissance sur les mots 
supérieur à 90% en utilisant 14 paramètres articulatoires. Ce nombre de paramètres a par 
ailleurs pu être réduit, tout en conservant une bonne intelligibilité avec environ 10 paramètres. 
Enfin, les résultats ont également suggéré que l’approche utilisant les DNNs serait plus robuste 
aux fluctuations des paramètres articulatoires que celle utilisant des GMMs.  

Ces résultats sont détaillés dans le Chapitre 4 de cette thèse. 

3. Contrôle temps-réel du synthétiseur à partir de parole silencieuse 

Bien que le synthétiseur de parole décrit dans la section précédente a pu produire de la 
parole intelligible, celui-ci a été conçu à partir et testé sur des données d’un locuteur unique, 
enregistrées au cours d’une unique session. Dans un second temps, nous avons donc cherché à 
savoir si un tel synthétiseur pouvait être contrôlé en temps-réel par un locuteur différent, ou par 
le même locuteur mais au cours d’une session différente. En effet, d’une session à l’autre, les 
capteurs EMA peuvent ne pas être placés exactement à la même position et avec la même 
orientation, ou encore le nombre de capteurs peut varier, ou le locuteur peut être un nouveau 
sujet avec une géométrie du conduit vocal différente et une manière différente d’articuler les 
sons. Un calibrage est donc nécessaire afin de compenser ces différences et de transformer 
l’espace articulatoire d’un nouveau locuteur en celui du locuteur de référence à partir duquel a 
été construit le synthétiseur. 

Dans un premier temps, 50 phrases courtes issues du corpus articulo-acoustique de 
référence ont été présentées aux nouveaux locuteurs, trois fois de suite et à un rythme prédéfini. 
Chaque locuteur (4 au total) devait alors articuler de façon synchrone ces phrases, sans les 
prononcer à voix haute, alors que leurs trajectoires articulatoires étaient enregistrées par électro-
magnéto articulographie. Ceci a permis d’obtenir pour ces 50 phrases les mouvements 
articulatoires des nouveaux sujets, synchronisés avec ceux du locuteur de référence. Un modèle 
linéaire a ensuite été entrainé sur ces données afin de transformer l’espace articulatoire des 
nouveaux locuteurs en celui du locuteur de référence. 
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Dans un second temps, ce modèle linéaire a été cascadé avec le synthétiseur de parole afin 
de permettre au sujet de contrôler, en temps réel, le synthétiseur à partir de parole silencieuse 
(i.e. en articulant mais sans prononcer à haute voix) alors qu’il recevait le retour de la synthèse 
via des écouteurs. Pendant cette période, chaque sujet devait articuler un ensemble prédéfini de 
voyelles et séquences voyelle-consone-voyelle. Ces éléments ont ensuite été évalués lors d’un 
test perceptif. 

Les résultats ont montré que les nouveaux locuteurs pouvaient contrôler, en temps-réel, le 
synthétiseur, mais avec une intelligibilité moindre qu’en utilisant les données de référence. Par 
ailleurs, des épisodes de conversation spontanée ont pu avoir lieu pour deux des quatre sujets.  

Ces résultats sont détaillés dans le Chapitre 5 de cette thèse. 

IV. Vers une interface cerveau-machine pour la restauration de 

la parole 

1. Cartographie peropératoire des aires corticales de la parole 

Au cours de ma thèse, nous avons collaboré avec le professeur Stéphan Chabardès, 
neurochirurgien au centre hospitalier universitaire de Grenoble. Ceci nous a permis de recueillir 
de l’activité neuronale chez des patients subissant une chirurgie éveillée pour le retrait d’une 
tumeur cérébrale. En effet, un des traitements en cas de tumeur cérébrale consiste à retirer les 
zones cancérigènes tout en préservant les fonctions sensori-motrices du patient. La localisation 
des aires fonctionnelles à préserver, comme celles de la parole, est donc cruciale. Cela peut se 
faire par exemple par imagerie par résonance magnétique fonctionnelle avant la chirurgie, mais 
avec une résolution spatiale limitée ; ou alors via des stimulations électriques délivrées à 
différentes positions du cortex pendant la chirurgie alors que le patient est éveillé et fournit un 
retour de sensations au chirurgien. Cependant, cette dernière méthode est indirecte, et la 
délivrance de stimulations électriques peut déclencher des crises d’épilepsie. Une autre solution 
pourrait être d’effectuer une cartographie fonctionnelle des aires corticales via des 
enregistrements électrophysiologiques effectués par des électrodes placées en surface du cortex. 

Au cours de cette thèse, nous avons donc enregistré l’activité cérébrale de deux patients 
pour lesquels la tumeur était située proche du cortex moteur de la parole. Les enregistrements 
ont été effectués par électro-corticographie pendant que les patient parlaient à voix haute ou 
imaginaient parler, via une matrice d’électrodes placées en surface du cortex. Nous avons 
également développé une approche permettant de cartographier l’activité cérébrale spécifique 
à la parole, directement pendant la chirurgie éveillée, sur le champ opératoire du chirurgien. 
Cette cartographie pourrait être utilisée pour identifier les aires de la parole afin de les préserver 
pendant la résection de la tumeur. C’était également une bonne opportunité d’enregistrer des 
données neuronales pendant la production de la parole, afin d’étudier le décodage de la parole 
à partir de données neuronales. 

Afin d’effectuer la cartographie de l’activité neuronale spécifique à la parole, un 
microphone était placé devant chaque patient. Les périodes de paroles et celles de silence ont 
été automatiquement détectées par une méthode simple fonctionnant en temps réel (voir 
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Chapitre 5 pour plus de détails). En parallèle, les signaux neuronaux ont été analysés afin d’en 
extraire des caractéristiques pertinentes. Pour cela, la représentation temps-fréquence de chaque 
signal a été calculée, et des tests statistiques ont permis d’automatiquement extraire, pour 
chaque électrode, les fréquences du signal présentant une différence significative entre les 
instants de parole et ceux de silence. Ces différences ont pu ensuite être visualisées sur des 
cartes d’activité alignées sur des photographies du champ opératoire du neurochirurgien, via 
des méthodes d’alignement et d’interpolation semi-automatiques. 

Les résultats ont montré qu’une désynchronisation béta (diminution de l’activité neuronale 
pour les fréquences du signal entre 10 et 30 Hz) se produisait dans le cortex moteur pendant la 
production de parole, mais également pendant l’imagination de parole. Cette désynchronisation 
béta était également accompagnée d’une augmentation d’activité dans le gamma et haut-gamme 
(fréquences supérieures à 70Hz), également dans le cortex moteur, aussi bien pour la parole 
orale qu’imaginée. Ceci suggère que la parole orale et la parole imaginée partagent, au moins 
partiellement, une représentation neuronale commune dans le cortex moteur. 

Ces résultats sont détaillés dans le Chapitre 6 de cette thèse. 

2. Décodage de la parole à partir de l’activité corticale 

Dans un second temps, nous avons étudié le décodage de la parole à partir de l’activité 
neuronale des deux patients précédents. En particulier, nous avons considéré trois étapes clés 
du décodage de la parole : le décodage de l’intention de parler (volonté ou non de parler), le 
décodage du voisement (vibration ou non des cordes vocales pendant la parole) et le décodage 
des paramètres articulatoires ou acoustiques de la parole. 

Ce décodage a été effectué en ne conservant, pour chaque patient, que les signaux 
provenant des électrodes situées sur des aires spécifiques à la parole obtenues par la 
cartographie précédente. Le décodage de l’intention de parler et du voisement ont été effectués 
à l’aide de machines à vecteurs de support (SVM pour « Support Vector Machine »), une 
technique d’apprentissage supervisé permettant d’effectuer de la classification de données. Le 
décodage des paramètres articulatoires a été effectué via des modèles linéaires, et comparé au 
décodage de paramètres acoustiques afin de tester l’hypothèse initiale de cette thèse. 

Les résultats ont montré que l’intention de parler pouvait être décodée très largement au-
dessus du niveau de la chance pour la parole orale, avec un taux de classification supérieur à 
90% pour le second patient. L’intention de parler a également pu être décodée au-dessus de la 
chance pour le cas de la parole imaginée dans le cas du premier patient (le second patient 
n’ayant pas produit de parole imaginée). Le voisement lors de la production de parole a lui aussi 
pu être décodé au-dessus de la chance, mais dans une moindre mesure (de l’ordre de 75%). 
Enfin, les paramètres articulatoires et acoustiques ont eux aussi pu être décodés au-dessus de la 
chance, mais dans une moindre mesure, sans pouvoir produire de parole intelligible. Les 
résultats préliminaires ont par ailleurs montré un meilleur décodage des paramètres 
articulatoires comparé à celui des paramètres acoustiques, ce qui soutient l’hypothèse initiale 
de cette thèse. Ces résultats doivent cependant être confirmés par de futures expériences. 

L’ensemble de ces résultats est décrit plus en détails dans le Chapitre 7 de cette thèse. 
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V. Questions éthiques relatives aux interfaces cerveau-machine 

Enfin, tout au long de cette thèse, nous nous sommes intéressés aux implications éthiques 
du développement des interfaces cerveau-machine. Cette réflexion a été conduite sur trois 
niveaux, concernant respectivement l’animal, l’Homme et l’humanité. 

En particulier, nous nous sommes intéressés à la souffrance animale, à la gestion de l’espoir 
suscité chez les patients participant aux essais cliniques, à leur consentement éclairé et à la 
balance bénéfices/risques de ces essais. Mais également aux futurs cas d’usages des BCIs et 
leurs implications en terme de sûreté ou responsabilité pénale, et dans une perspective plus 
futuriste, aux potentielles conséquences d’une adoption globale des interfaces cerveau-machine 
et leurs implications quant à la définition de ce qu’est l’humain. 

Ces réflexions sont rapportées dans le Chapitre 8 de cette thèse. 

VI. Conclusion 

L’objectif de cette thèse était d’apporter de premières preuves de concept en vue du 
développement d’une interface cerveau-machine pour la restauration de la parole. En 
particulier, nous avons mis au point un système permettant de synthétiser de la parole 
intelligible à partir de trajectoires articulatoires, i.e. à partir de mouvements des articulateurs du 
conduit vocal comme la langue ou le palais mou. Ce synthétiseur a ensuite pu être contrôlé, en 
temps réel, par différents locuteur en condition de parole silencieuse, c’est-à-dire en articulant 
mais sans prononcer. Dans un second temps, nous avons développé une approche permettant 
de localiser et cartographier les aires corticales de la parole, pendant des chirurgies éveillées du 
cerveau, et directement sur le champ opératoire du neurochirurgien. Enfin, les signaux corticaux 
provenant des aires identifiées par cartographie ont pu être utilisés pour décoder, au-dessus du 
niveau de la chance, l’intention de parler du patient, aussi bien en parole orale qu’imaginée, 
mais aussi l’était de vibration des cordes vocales et, de manière moindre, les trajectoires 
articulatoires ou acoustiques de la parole. 

Ces développements constituent un premier pas vers une interface cerveau-machine pour 
la restauration de la parole, et des travaux futurs devront confirmer ces résultats. 


