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Abstract

Theoretical studies in epidemiology mainly use differential equations, often under unrealistic

assumptions ((e.g. spatially homogeneous populations), to study the development and

spreading of contagious diseases. Such models are not, however, well adapted to understand

epidemiological processes at different scales, nor are they efficient for correctly predicting

epidemics. Yet, such models should be closely related to the social and spatial structure of

populations. In the present thesis, we propose a series of new models in which different

levels of spatiality (e.g. local structure of population, in particular group dynamics, spatial

distribution of individuals in the environment, role of resistant people etc) are taken into

account, to explain and predict how communicable diseases develop and spread at different

scales, even at the scale of large populations. Furthermore, the manner in which our models

are parametrised allow them to be connected together so as to describe the epidemiological

process on a large scale (population of a big town, country etc.) and with accuracy in limited

areas (office buildings, schools) at the same time.

We first succeeded in including the notion of groups in SIR (Susceptible, Infected,

Recovered) differential equation systems by a rewriting of the SIR dynamics in the form

of an enzymatic reaction in which group-complexes of different compositions in S, I and R



x

individuals form and where R people behave as non-competitive inhibitors. Then, global

group dynamics simulated by stochastic algorithms in a homogeneous space, as well as

emerging ones, obtained in multi-agent systems, are coupled to such SIR epidemic models. As

our group-based models provide fine-grain information (i.e. microscopical resolution of time,

space and population) we propose an analysis of criticality of epidemiological processes. We

think that diseases in a given social and spatial environment present characteristic signatures

and that such measurements could allow the identification of the factors that modify their

dynamics.

We aim here to extract the essence of real epidemiological systems by using various

methods based on different computer-oriented approaches. As our models can take into

account individual behaviours and group dynamics, they are able to use big-data information

yielded from smart-phone technologies and social networks. As a long term objective derived

from the present work, one can expect good predictions in the development of epidemics,

as well as tools to reduce epidemics by guiding new environmental architectures and by

changing human health-related behaviours.
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Chapter 1

Introduction

1.1 Epidemiology and historical perspective

Epidemiology is the study of the distribution and determinants of health-related states

or events, and the application of this study to the control of diseases and other health

problems. Various methods can be used to carry out epidemiological investigations, such as

surveillance and descriptive studies, which lead to an understanding of the critical factors.

This corresponds to the current definition given by World Heath Organisation (WHO). By

taking a glance back in time we will see how epidemiology has developed from "early" to

"contemporary" concepts and arrives at this point [80].

1.1.1 Early epidemiology

The history of epidemiology started with Hippocrates (C.470-C.400 BC) who performed

simple medical observations to help explain the spreading of diseases that decimated popu-
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lations. The early epidemiology period lasted until the first third of the nineteenth century,

during which the germ theory of disease (e.g. the first description for typhus and syphilis)

was addressed by Gerolamo Fracastoro (1478-1553), the clinical observation method was

developed by Thomas Sydenham (1624-1689) and the first epidemiological study of a non-

communicable condition (i.e. disease that is not transmitted; including the investigation of a

series of sudden deaths in Rome) was elaborated by Giovanni Maria Lancisi (1654-1720)

[87].

In the beginning of the 18th century, after the probability theory arose, the first changes in

epidemiological studies, appeared. Daniel Bernoulli (1700-1782), Mathematician-Physicist,

was the originator of the first epidemiological model for an infectious disease. He was proba-

bly the first to systematically use differential equations for deducing a number of formulae

[97] (refer to section 2.1.1).

Almost 100 years later, after Bernoulli’s model, epidemiological modelling was further

developed by using mathematical and statistical tools. Sir William Farr (1807-1883) was

one of the first and few who successfully attempted modelling veterinary problems by using

the equation of second and third ratios. His studies consisted of the attempts to predict the

outcome of a rinderpest epidemic in England (1865). The considerable work of John Snow

(1813-1858) [87] in calculating the valid rate of cholera outbreaks1, was one of the first

observational statistics studies in epidemiology.

1Broad Street cholera outbreak in Soho district of London in 1854
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1.1.2 Epidemiology in 20th century

In the early 20th century, several mathematical models were developed, e.g. W. Hamer’s

discrete model to analyse and formulate the measle epidemics (1906) [45], or the ordinary

differential equation (ODE) -based model of Ronald Ross (1857-1932) [87] formulated

to study and control malaria (1911), which was also the first model that determined the

threshold density of man-to-mosquitoes below which malaria would disappear from the

human population [87, 88]. Later, this model was developed by Kermack and McKendrick

(1927), which today is known as the Susceptible-Infective-Recovered (SIR) model (some

SIR-based models are explained in section 2.1.2 ). This model consists of a system of three

coupled nonlinear ordinary differential equations [61]. Historically, the first epidemiological

studies were based on ODE modelling of the variations of continuous amounts of persons

of different health states, usually classified as susceptible people S that can be infected in

the presence of contagious germs, infected people I (which can also be separated into only

infected persons and infectious ones), and potentially recovered people R that are immuned

for a certain time until they loose their immunity and become susceptible once again. Such

challenges include the development of numerical models to understand epidemics from the

smaller to the larger scales.

In general, the twentieth century was a period of a rapid growth for the application of

mathematical and computational tools in the field of epidemiology on public health policies.

We might exclude the period in which science was affected by world wars and even the

several years after the second world war when there was no effective dialog between applied
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epidemiology and mathematical modelling [90]. In the late 1970s and early 1980s, epidemi-

ologists that focused more on developing the field of statistics and dynamic mathematical

models have been reinforced by computer simulation [52].

Since the last decades of 20th century, human life patterns have changed : an increase in

international travels, a restructuration of work and an increase in the urban population to

the detriment of the rural population, changes in economic patterns and in the social norms.

Moreover, the world population has increased exponentially from 2.5 billion in 1945 to

over 7 billion in 2015. All this provides new challenges in the analysis and control of the

spatio-temporal spread of contagious diseases including emerging ones (AIDS, SARS, ebola,

chikungunya, etc.) or re-emerging diseases (resistant tuberculosis, plague, malaria,etc.)

[66, 92].

The rapid growth in mathematical and informatics applications in epidemiology has

led to a new methodological revolution. Newly developed compartmental models (such as

SEIS; SEI; SIRS; SEIRS; SEIR; MSEIR; MSEIRS ...) are used for this purpose and most of

those recently developed have involved aspects such as passive immunity, stages of infection,

gradual loss of vaccine and disease-acquired immunity, vertical transmission, age structure,

social and sexual mixing groups, spatial spread, vaccination, quarantine, etc. [3, 6, 71, 74, 31].

Computer sciences coupled to epidemiological methods should now be well adapted to

simulate epidemics in our strongly industrialised and computerised countries given the access

to more and more important individual data. Such data, from omics – including the exposome
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that informs about the vulnerability of individuals to contagious diseases – to pre-topological

data that inform about the manner people live (or work) and on their preferential contacts

and pathways, are now frequently (if not easily) available since they can be extracted from

The BigData. Such data provides information about people’s life styles, their contacts, their

frequented places and their trips. This information is now easy to access by data-mining

approaches from smartphones, social networks, online newsletters and online consumer

preferences (including travel, food etc.). This can lead to an understanding of individual

behavioural aspects in a given population facing an epidemic process, and should be taken

into account in multi scale numerical models. However, only few recent epidemiological

studies focus on these approaches to bring new alternatives to mathematical based modelling,

health monitoring, control and prevention (see Broniatowski et al [14], Li et al [63]).

We believe "tomorrow’s" challenges will depend on hybrid (models that couple different

modelling formalisms) and multi-scale (models that give access to an understanding of

the process at different scales) models including multi-modal data. This is the purpose of

the present work, which will be described in more detail in the next chapters, as well as

perspectives and future works (section 4.3).
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1.2 Epidemiological models, their restrictions and what we

aim to do

Studying historical perspectives in epidemiology shows different motivations for solving

epidemic problems. Most of them have economic and financial reasons. For example, the

main objective of D. Bernoulli was to calculate the gain in life expectancy at birth if smallpox

were to be eliminated as a cause of death, because at the time annuities were being sold,

his work on the prolongation of life expectancy at any age had immediate financial impact.

Another example is Sir William Farr’s attempt to reduce the economical impacts of rinder-

pest epidemics on human life in England, or William Hamer’s and Ronald Ross’s works in

the prevention of malaria, each of which was somehow initiated by economic motivations

[22, 24, 94].

These examples show how early epidemiology was trying to answer epidemic problems

by providing concrete solutions according to actual human needs in real time. However it is

important to understand that the coarse grain models they used in those centuries were well

adapted to their economical and epidemiological problems. This is not necessarily the case

nowadays. Their contemporary counterparts are more mathematically developed but less

focused on solving explicitly epidemic problematics vis-a-vis individuals’ need. Even the

most advanced current mathematical models are more based on theoretical aspects than on the

aim to provide direct resolutions of epidemics at the individual level. Even at the population

level, they have some important restrictions. For example the deterministic ODE models,
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which assume that a population (host-agent) is spatially uniform and homogeneous (as an

unrealistic assumption), or locally homogeneous and globally heterogeneous in the case of

partial differential equations (PDE), often provide inappropriate results. As an illustration

of this point, when modelling the transmission of malaria, lack of consideration for the

heterogeneity of contact (in human-mosquito populations) leads to an overestimation of the

infection prevalence [68, 90, 52]. The stochastic models derived from their deterministic

formulations of stochastic differential equations (SDE) are more complicated and difficult to

formulate in comparison with differential equation based (deterministic) counterparts (see

Allen [1]).

Generally speaking, the occurrence of disease is a result of interactions between compo-

nents of the agent-host-environment (including the biological characteristics), and the spread

of disease may be influenced by social-cultural and geographical mechanisms. While study-

ing an epidemic process, despite the aforementioned methods (i.e. deterministic, stochastic),

it is important to take into account both the elements that cause the epidemic disease occur-

rence and the mechanisms that influence the spreading of disease.

Therefore, considering all possible interactions and mechanisms makes the epidemio-

logical studies more rigorous, but an epidemic process involving all interfering factors (e.g.

biological, environmental, geographic, demographic and socio-cultural) quickly becomes

complex. Such a system wouldn’t be formulated easily by some differential equations and in

the case that it does, the differential equations will be very difficult or impossible to solve
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explicitly. This appears especially when the complex behaviour is admitted in a system.

Computer simulations are an alternative method for relaxation of the unrealistic assumptions

and also in dealing with rigorous differential equation based models. Through dealing with

such complex systems, the simulation methods based on spatio-temporal stochastic simula-

tion algorithms (SSA) or intrinsic spatio-temporal multi-agent systems (MAS), provide more

information : there are more explicative models in comparison with differential equation

based models. As two explicit examples, one can refer to [21] in which a stochastic discrete-

event simulation was used for modelling the spread of airborne infections (by considering

the mixing patterns of social contact network) or see [74] in which the theoretical results for

an SEIRS deterministic model has been analysed by computer simulation.

These point out the importance of providing new methods that characterise the epidemic

process more conceivably at different levels (individual/population) and also models that

lead to an understanding of the effects of social and local spatial structures on disease spread

dynamics. In light of this, this thesis, regarding to such a challenge, proposes a hybrid

modelling approach implemented in series of numerical models. In this way we are able to

study the effect of socio-environmental factors and spatio-temporal population dynamics,

including their local structure, on the S-I-R (Susceptible, Infected, Recovered) epidemic

process using 3 different simulation models :

• An ODE-based model including the notion of group formation

• A hybrid discrete group based models (using a simulated continuous time SSA and

discrete time SSA) that compute epidemics within groups
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• A MAS-based model describing group formation with discrete time SSA computed

epidemics within groups

One of the interests of this thesis is to study how group-formation as a basic social structure

can affect the epidemic dynamics in the context of communicable disease transmission. The

spatial and population density factors as well as the number of "resistant" individuals (e.g.

vaccinated population as natural barriers against diseases spread) in populations will be

studied using the above models, notably depending on the group structure of populations.

What does "groups" mean in epidemiological context? Before going into more detail

about the definition of a "group" and its meaningful sense in epidemiology, we should de-

scribe what kind of diseases introduce the social groups as an important key to unlock the

propagation path. Some communicable diseases such as hepatitis A, gastrointestinal illnesses,

skin infections, cold and flu, which are caused by germs, can spread easily via hands; directly

(by shaking hands) or indirectly (by objects containing germs), droplets in the air, sharing

clothes and towels or infected foods and water. Considering this fact, in each society there is

always a risk of encountering at least one of the above situations. In our social life we meet

other people, referred to as social groups, such as our family, friends, colleagues or even

strangers in many different conditions and places in which we are potentially at risk. This

means the groups can have a significant role in the spread of communicable diseases.

Group and individual dynamics should be the heart of epidemiological models as they

describe the fundamental social structure of populations in which we aim to study the spread



10 Introduction

of diseases. However, these dynamics are not easy to represent in differential equation based

models (in which it is difficult to implement discrete features such as groups), nor in MAS

models (in which the formation of groups by emerging processes is also hard to obtain). In

the first case this requires the introduction of multi-scale population dynamics. Dynamics of

an epidemic process can vary differently depending on group-size and group-lifetime. For

example, whether a group of 6 people stay together for 30 seconds in an elevator or 10 people

form a group in a big meeting room for 2 hours, affects the epidemic dynamics. In the case

of individuals-based models (which are particularly complicated to control) we can ensure

that the agents behave realistically enough to observe emerging social behaviour (i.e. the

particular group dynamics).

Spatially speaking, the groups form dense space situations (e.g. 10 people in a lift of 4 m2

represent a density of 2.5×106 people per km2; so they can be compared with the population

densities as they are usually considered (e.g. the average density of Paris is between 10,000

to 20,000 people per km2), i.e. considerably lower than the above lift example. The average

distances for sufficient contacts can also vary extremely, for example from a few millimetres

in very intimate relations (e.g sexual contacts) or centimetres (the lift example) to a few

meters (e.g. people with flu can potentially spread the germs to others over a distance of up

to 2 meters). The group concept is truly unclear, for example could we consider the people

in a 30m2 dining room as a group, or two individuals working together in a office of 6m2?

On the other hand, groups can last for short or long times, e.g. from 2 seconds to a few

minutes or several hours. These kind of questions will be tackled in chapter 3 as group-size
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and group-lifetime by studying their probability distributions as well as their impact when

modelling epidemic processes.

Population density matters to epidemic outbreaks. Diseases in dense populated societies

are spreading faster than in populations with low densities. For example, an epidemic of

severe acute respiratory syndrome (SARS) started in Asia on November 2002 and lasted until

July 2003, with a majority of cases in Hong-Kong 2 the 4th populated country in the world,

or the recent ebola outbreaks (West Africa, 2014) occurred more in urban than rural areas,

because of population density. We studied in sections 3.1, 3.2.1 and 3.2.3 how population

density can influence S-I-R epidemic dynamics. The moving rates of individuals and group-

ing tendency as latent variables are also integrated in those modelling methods depending on

related circumstances.

The R (recovered) class, in S-I-R compartmental models, as the "resistant" (immune or

vaccinated) individuals, can also influence epidemic dynamics. The presence of resistant in-

dividuals in a given population leads to a sort of barrier against the spread of disease as fronts

against propagation. The R-individuals, in communicable disease modelling, are usually (e.g.

in classical SIR models) considered as the transition class for I-individuals after recovery or

before the reinfection process (see [43, 44, 96, 105]) or as flow of individuals from S popula-

tion class in the context of vaccination strategies in population (see [51, 82, 81, 95, 113]).

Since the role of R-individuals is summarised as a simple transition class in classical SIR

29.6% fatality rate according to the World Health Organisation (WHO)
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modelling approaches, there is no chance of taking into account the community or herd

immunity feature of "resistant" individuals. They form an indirect protection (a front of R)

for S population class from infectious disease. The herd immunity feature is illustrated in

figure 1.1, in the population with a majority of R-individuals, the chains of infection are

likely to be disrupted, which leads to a stop or slows the spread of disease Merrill [75].

The role of immune individuals in populations seems more important than it is generally

thought and this role is not yet integrated into S-I-R epidemic modelling, particularly for those

whose population is considered homogenous, and so we cannot study the local structure’s

impact on disease spread. The spatial models called correlation (Dietz & Hadeler 1988;

Altmann 1995; Keeling et al. 1999) apply this feature by considering the interactions between

individuals (or sites) as something occurring on a network (i.e. the case of communicable

disease). These interactions can be studied as a contact structure that forms a network of

links (pretopology) between individuals, which provides a more general framework and

neighbourhood structure than those considered in traditional spatial models Keeling [60].

For example, the pairs of type I-R ([IR]) and triple of type S-I-R ([SIR]) represent respectively

a couple of I-R and group of S,I,R-individuals in a given node in the network in which we

can explain absence of I-individuals because of being in a group with R individuals. In this

thesis we go further, and by applying the chemical kinetics theory, we modify the classical

S-I-R model by integrating notions from enzymatic reactions (inhibition and competition).

In this way, in our modified S-I-R model, we are able to take into account the local spatial

structure of the epidemic process, even in homogenous populations, for ODE and SDE-based



1.2 Epidemiological models, their restrictions and what we aim to do 13

models (see in section 2.2.1). It should be noted that modified S-I-R kinetics won’t be applied

in individuals based models (such as stochastic cellular automata (CA) or MAS models).

In the fist case (CA) this is because the notion of a group is intrinsically encoded in the

neighbourhood’s relationships between individuals. In the second case (MAS) this is because

epidemic process within the groups are considered homogeneous.
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Figure 1.1 Herd Immunity : The top box shows an outbreak in a community in which a

few people are infected (shown in red) and the rest are healthy but unimmunised (shown in

blue); the illness spreads freely through the population. The middle box shows a population

where a small number have been immunised (shown in yellow); those not immunised

become infected while those immunised do not. In the bottom box, a large proportion of

the population have been immunised; this prevents the illness from spreading significantly,

including to unimmunised (or susceptible) people. (Source : National Institutes of Health

NIH)



Chapter 2

Models and Computer Simulations in

Epidemiology

This chapter is dedicated to the description of the mathematical models used in epidemiology

and their numerical implementation. The first part (2.1) presents an overview of this, focusing

particularly on SIR compartmental models and the related ODE mathematical models. In the

second part we describe (2.2) our own form of a modified SIR mathematical model. In the

same part, we also explain how we model group dynamics in a population independently

from any epidemiological context. Once expressed, we show in part 2.3 how we implement

numerically (and by using different numerical schemes like cellular automata, multi-agent

systems,etc.) these mathematical models to perform simulations in a computer. Finally, in

part 2.4 we explain precisely how to get the numerous different measurements from our

models, i.e. both measurements related to population dynamics (group sizes, lifetimes,

spatio-temporal distribution of individuals etc.) and indicators of the epidemic dynamics.
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2.1 Background: Classical Modelling in Epidemiology

In this part we describe epidemiology viewed by mathematics and computer sciences. A

brief description of different models as well as some classical compartmental SIR models,

will be presented.

2.1.1 Overview of Epidemiology & Mathematics

Mathematical based models can provide a clear view of a given disease by simplifying the

epidemic process elements (e.g. infected people, transmission, lack of immunity etc.) like

variables, parameters and relevant factors. In literature, one can find a considerable list of

advantages in using mathematical models to improve epidemiological understanding (e.g. see

notably [46]). One can also refer to [3]who provided a brief summary of the mathematical

models’ utility in the study of HIV transmission and the epidemiology of AIDS.

Depending on the nature of variables used, we can consider three global modelling approaches

based on deterministic, statistical and stochastic models.

2.1.1.1 Deterministic models

The deterministic models are the simplest models for studying epidemic dynamics. They are

based on homogenous populations (e.i. they assume there is no difference between individu-

als in the population). Theoretical models in epidemiology consist of ordinary differential

equations (ODE) to study the diseases spreading. The mathematical analysis of these ODE

leads to analytical solutions, evaluation of equilibrium points, determination of stability and
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sensitivity analysis.

Daniel Bernoulli is frequently quoted as originator of the first epidemiological models

for an infectious disease. His work was one of the first epidemiological studies to assess

quantitative conjectures by using such a deterministic model [12, 16, 22, 24] . The main

objective of Bernoulli was to calculate the gain in life expectancy at birth if smallpox were to

be eliminated as a cause of death. His work on the prolongation of life expectancy at any

age had immediate financial impacts because at this time it allowed to evaluate correctly the

annuities (the economic considerations in relation to population dynamics often motivated

the original epidemiological studies).

Bernoulli’s model is one of the first compartmental models (Figure 2.1). The aim of this

model was to describe the conversion of susceptible S people into immune individuals R in

the case of an immunising infection. Susceptible individuals are defined as those who have

not yet been infected, and immune individuals are those who have been immunised for the

rest of their life (or at least for a long time ) after one infection. Notice that Bernoulli didn’t

aim to evaluate the number of infected people I and he only wanted to calculate the number

of people who would be healthy the next year and that would be able to pay annuities. The

death rate (denoted by µ(a)) refers to death due to all causes expect the infection. The force

of infection λ (a) is the rate according to which susceptible individuals S are infected and then

immunised (R). Only a fraction s(a) survives to become immune and the rest c(a) = 1− s(a)

die due to the infection. Let u(a) and w(a) be the probability for newborn individuals to

be alive and susceptible, and the probability to be immune and alive at age a respectively,
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Susceptible (S) Immune (R)✲

❄ ❄

s(a)λ (a)

µ(a)+ [1− s(a)]λ (a) µ(a)

Figure 2.1 Bernoulli’s Compartmental Model : The number of susceptible people either

decreases through infection, by transition to the immune class or by decreasing through

fatality due to the infection (or other diseases); the number of immune people in this class

increases through infection of susceptible individuals who have been immunised or decreases

by fatality.

then the differential equations corresponding to these compartments are described by the

following system, where u(0) = 1 and w(0) = 0 are the initial conditions :































du
da

=−[λ (a)+µ(a)]u

dw
da

= s(a)λ (a)u(a)−µ(a)w

The analytical solutions of the above equations are u(a)= e−[Λ(a)+M(a)] and w(a)= e−M(a)
∫ a

0 [1−

c(τ)]λ (τ)e−Λ(τ)dτ ,where Λ(a) =
∫ a

0 λ (τ)dτ and M(a) =
∫ a

0 µ(τ)dτ . The probability of sur-

viving to age a is defined by l(a) = u(a)+w(a). Then, the survival function in the population

in the absence of smallpox is determined by l0(a) = e−M(a), and the survival function in the

presence of smallpox is l(a) = l0(a)[e
−Λ(a)+

∫ a
0 [1− c(τ)]λ (τ)e−Λ(τ)dτ].

As mentioned before, Bernoulli’s main purpose was to calculate the gain in life expectancy if

smallpox were eliminated as a cause of death, then the life expectancies at birth with and with-
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out smallpox are calculated by integrating the survival curves over all ages. L =
∫ ∞

0 l(a)da

denotes the life expectancy at birth in the presence of smallpox and L0 =
∫ ∞

0 l0(a)da denotes

the life expectancy at the birth in the absence of smallpox (see [22] for more details).

2.1.1.2 Statistical models

In recent decades, the mathematical studies in epidemiology have depended more and more

on the developing field of statistics. Statistical models are data-based models that completely

depend on observed data. However, statistical models, as well as deterministic models, ignore

some information and mechanisms of the system such as the spatial-temporal dynamics of

populations, but they are widely used to estimate threshold R0 (the basic reproduction number)

and to assess the effectiveness of control strategies, see [3, 4, 17, 23, 25, 31, 66, 106, 109].

Since our approach aims to be explicative, it is not concerned by such data-based methods.

2.1.1.3 Stochastic models

Stochastic models compared to deterministic ones assume the stochastic variation of variables

in epidemic systems. As all diseases are subject to stochasticity in terms of a natural chance

of transmission (the probability of transmission is not the same for everyone), then the

stochastic models can be more appropriate (and realistic) for modelling infectious diseases

[57, 92, 103]. This stochastic modelling framework is particularly well adapted for modelling

disease extinctions or the spread of diseases in small communities [18, 78]. The mobility

of the population, populations with different mixing patterns, demographic effects . . . are
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all example of factors that can be considered in stochastic models, e.g. in the modelling of

AIDS and HIV epidemics [93, 106–108].1

2.1.2 Compartmental models in epidemiology

Models called compartmental are formed of two parts: classes and reactions. The population

compartmental classes are the possible (diagnostic) states of the disease (e.g. infected class

I) and reactions specify the proportion of individuals moving from one state to another (e.g.

the proportion γI when I
γI
−→ R). For example a SIRS compartmental model consists of three

different classes: Susceptible(S), Infected (I) and Recovered (R) population, with a transition

between S to I, I to R and then a return from R to S. As shown below in the general transfer

diagram (Figure 2.2 and Figure 2.3), in a classical epidemic SIR model, the labels S,I and R

represent respectively susceptible, infectious and recovered people.

The epidemic models are used to describe the rapid outbreaks that occur in less than one year.

In these models the vital dynamics (birth and deaths, represented by the µ parameter) of the

population are generally not taken into account except in endemic models. The horizontal

S I R✲ ✲
horizontal

incidence

transfer

from I

Figure 2.2 A classical epidemic model

incidence is the infection rate of susceptible individuals through their contacts with infectious

individuals [47]. This means that if β denotes the average number of adequate contacts of a

1Some mixed stochastic-statistical models called state space, are as well known as modelling approaches in

epidemiology
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S I R

❄

❄

✲

❄

✲

❄

µN

µS µI µR

horizontal

incidence

transfer

from I

Figure 2.3 A classical endemic model

person per unit time, β I/N is the average number of contacts with infectious individuals per

unit time of one susceptible individual (where N is the total population size). Then (β I/N)S

gives the number of new cases per unit time when the entire population is considered to

be susceptible. This form of the horizontal incidence is called standard incidence. Note

that the notation of β doesn’t always denote the average number of adequate contacts in all

the epidemiological literature. Sometimes β is called the contagion rate and determined

by β=cq/N where q denotes the per interaction probability of infection transmission from

one I person to one S person by their contacts and c is the number of different interactions

per person in the population [106]. Therefore the horizontal incidence might be defined

differently in some references. Transfer from the I compartment and the movement into

the R compartment is governed by the term γI. Supposing that the duration of an infection

is exponentially distributed with the mean waiting time 1/γ (it is also called the average

infectious period), then the rate at which I-individuals recover is γ [69].

Figure 2.4 shows the graphical diagram of a conventional SIRS epidemic model in a pop-

ulation of size N, where β is the transmission parameter and β I/N expresses the average

number of contacts of one susceptible individual in the presence of infectious people in the

population per unit time [47]. The recovery and the loss of immunity rates are defined

respectively by γI and λR.
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S I R✲ ✲ ✲

βSI
N

γI λR

Figure 2.4 Graphical diagram of a SIRS epidemic model

The above SIRS model can be formulated by a set of ordinary differential equations as

follows:

dS

dt
=−β IS/N +λR,

dI

dt
= β IS/N− γI,

dR

dt
= γI−λR (2.1)

The analytical solution of these equations allows the computation of the state vector X(t) =

[S(t), I(t),R(t)] at time t. The change in the number of individuals in a given class is calcu-

lated by its time derivative (e.g. dS/dt is the variation in the number of individuals S at time

t). A negative balance means a loss of S individuals, while a positive balance means adding

new individuals in the S population class. The balance dI/dt is the infection rate because it

represents the number of new infected people suffering from the disease.

The well-known compartmental SIR models (Susceptible-Infective-Recovered) of [61]

is always a source of inspiration in epidemiological studies. From that historical model,

several models have been developed and improved [23, 48, 54, 109, 106, 53]. Recently de-

veloped models are considering different aspects of epidemic processes such as heterogeneity

of the populations, spatial effects, different clinical stages and social and cultural aspects

[74, 104, 71, 3, 31, 6].



2.1 Background: Classical Modelling in Epidemiology 23

The basic reproduction number (R0), the contact number (δ ) and the replacement num-

ber (R) are important thresholds used in the recent epidemiological modelling literature.

Although they are all equal at the beginning of infection spreading, this changes to R0 ≥ δ

≥ R after the infection has invaded a population [47]. The basic reproduction number is

defined as the average number of secondary infections generated by one typical infectious

individual taken in the susceptible population [3]. R0 is often used to determine whether a

disease can invade a population. A R0 less than 1 means that the disease disappears from

the population, when greater than or equal to 1, the disease will spread in the population. In

a classical epidemic model (as shown schematically in Figure 2.2), the basic reproduction

number is the average number of adequate contacts multiplied by the average infectious pe-

riod, then R0= β × d1/γ . The contact number δ is the average number of adequate contacts

of a typical infectious subject during the infection period. As mentioned before, when an

infection starts to spread, this quantity is equal to the basic reproduction number. Note that

after the spreading has started, this equality (R0= δ ) will remain stable for most models and

the replacement number R, which is also called the reproduction number, is defined as the

average number of secondary infections provided by a typical infectious subject during the

infection period.
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2.2 New Mathematical Models: A Modified S-I-R Model

& A Group Dynamics Model

Here is described a part of our work, i.e. the conception of new mathematical models

on which are based our numerical epidemiological models. In particular we modified the

classical SIR epidemic dynamics so as to take correctly into account the influence of immune

subjects R and to introduce the notion of groups. Moreover, we describe a manner of

simulating a population structure, i.e. with a model of group formation and their dynamics.

2.2.1 SIR epidemic models & enzyme kinetics

The classical SIR models can be represented by a simple succession of enzymatic reactions

expressed in the chemical kinetics theory. In this case, the transitions of individuals between

the compartmental classes, are considered as chemical molecular reactions (precisely enzy-

matic reactions). Then the classical SIR models can be represented by a set of unimolecular

(e.g. I −→ R) or bimolecular (e.g. S+ I −→ I + I) reactions that can be expressed by a set of

differential equations which are known as enzymatic systems in the chemical kinetics [2, 77].

Enzymes, by reacting with a substance during a catalytic reaction, provide intermediate

products which are known as enzyme-substance-complexes (refer to theory of S. Arrhenius).

In the SIR epidemic context the substance and enzyme are represented by individuals in the

susceptible S and infected I classes respectively: infected people cause the transition from S

subjects to I subjects; from the other point of view S people suffer from the effect of infection

and behave as passive substrates. However there is a fundamental difference between a SIR
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system and an enzymatic system: while enzymes and substrates are of a different nature, this

is not the case between S, I and R that are all people.

Then, the infection reaction in a SIR model (S + I −→ I + I) is written like its analogue

in an enzymatic systems as follows:































S+ I −→ SI

SI −→ I + I

In our model the intermediate product SI will be called group-complex of individuals S

and I once they have established a contact, i.e. once they are able to react. Infection in

communicable human diseases spreads from place to place by jumping from person to person

as infected people transmit their diseases to healthy people, which usually happens with

close contacts between two people. Possible contacts are shaking hands, kisses, touching the

infected surfaces with germs, mosquito bites, etc. Here individuals S and I are considered

as free individuals before being in contact with each other, and then after being in contact

with a given p1 probability, they become an SI group-complex. At this time the contact is

not sufficient to provoke the transmission of infection. Then another probability term p2 is

defined to determine the likelihood of effective contacts for infection transmission. This can

expressed as :

S+ I
p1−→ SI

p2−→ I + I (2.2)
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The intermediate group-complex terms are not only limited to SI group-complexes but can

also result from the interactions between S, I and R individuals. Therefore other group-

complex products such as SR,RI or even SIR should be considered in SIR kinetic models.

These can affect the epidemic process by giving a real role to R individuals in a population.

When in classical SIR models R individuals are considered just as a passage from the

I compartmental class to the S class, the R-individuals have slightly similar importance to

the S-individuals in providing the intermediate SI group-complex, the difference being the

introduction of an average (time) delay of 1/λ . In our modified SIR model, R-individuals are

now considered as non-competitive inhibitors. Then their role is changed to produce SR, RI

and SIR group-complexes, which means that the production of SI group-complexes decreases

when R inhibitors are present: a lower number of free I individuals in a given population will

be able to make contacts with free S individuals.

Consequently, depending on the importance allowed to R individuals in an epidemic process

(depending on whether one considers a classical SIR model or our modified one), we can

define two different types of SIR kinetic reactions as follows:

2.2.1.1 A modified version of the classical SIR model: SIR kinetics without resistance

(and with Delay)

Here we present how we modified an SIR model by applying the formalism used in enzyme

kinetics.

An SIR model without resistance can be represented by a simple succession of reversible
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or irreversible enzymatic processes in which S individuals are infected by contact with

I-individuals (in the form of bimolecular reactions), and the I individuals are converted into

individuals being temporarily "resistant" or "recovered" R people. Finally, R people may

gradually lose their "immunity" and become susceptible S again. In this model, R individuals

can naturally not be infected, but do not participate in possible interactions with either S, I or

SI group-complexes.

In this context, R individuals do not play the role of "resistants", i.e. inhibitors of the

infection as it will be discussed in section 2.2.1.2. This class consists of isolated individuals

without any possible (bimolecular) reaction with other individuals belonging to S or I class.

Then they cannot play the role of the resistance fronts (barriers) against epidemic spread. This

doesn’t corresponds to real situations in which all types of individuals (S, I or R) in a popula-

tion interact and mix together (indeed, the population mixing patterns, including the speed

of mixing, can have significant impacts on epidemic dynamics see [100] ). Then the pres-

ence of R individuals is strictly limited here to introducing a delay in the transition from I to S.

A fast way to express the SIR epidemic process with delay is as follow:

- Infection dynamics : S+ I
βapp
−−→ I + I

- Recovery dynamics : I
γ
−→ R

- Loss of immunity dynamics: R
λ
−→ S

where βapp = β/[N] is an apparent constant, in a second-order reaction and is expressed
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in km2.individual−1.day−1. This results from an adjustment by the total density [N] =

[S]+ [I]+ [R] (all in individual.km2), with β being a catalytic rate constant in a first-order

reaction (in day−1). Moreover γ and λ are the constant rates of the monomolecular reactions

of recovery and loss of immunity both expressed in km−2.day−1. Then the variations of the

population density (in individual/km2, where A is the surface in km2 of the environment

where the epidemic process develops) in S, I and R can be formulated by a set of ordinary

differential equations as follows:































































d[S]
dt

= −βapp[S][I]+λ [R]×A

d[I]
dt

= βapp[S][I]− γ[I]×A

d[R]
dt

= γ[I]×A−λ [R]×A

It has to be noted that βapp is considered as a constant rate. Here β is modulated by [N]

where [N] = [S]+ [I]+ [R] meaning that here the role of R is the same as the one of S or I, i.e.

R is intended to play a role in the infection process itself. As we will see, in the modified SIR

model with resistance (section 2.2.1.2), the role of R is different; in reality R doesn’t play a

role in the infection process itself. Moreover the rates of the epidemic reactions (infection,

recovery and loss of immunity) differ strongly: in most cases, the infection is largely faster

than the rate of recovery and "infinitely" faster than the loss of immunity. Then one can limit

the epidemic process to the infection process, in which only S and I play a role. Compared

to the turnover of group-complex formation, the rate of infection is "infinitely" lower. As
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mentioned before, β is intended to be modulated by [N], then once considering the last

evoked points, its adjustment depends only on the protagonists that endure the infection, i.e.

meaning [N] = [S] (see Annexe A.3). In section 2.2.1.2 we will see how this can influence

the infection dynamics in an epidemic process, because while a lot of R or I individuals

appear in a population, [N] = [S] becomes small. Then the adjustment of β we make here is

totally different from the case where it is modulated by a value of [N] equal to the total sum

of individuals in each class ([N] = [S]+ [I]+ [R]).

The SIR epidemic process is described under enzyme kinetics dynamics as an SI epidemic

system with a delay (influence of R) as following schematic :

where k1, k−1 are the constant rates and kcat is catalytic rate.

The catalyst role of an enzyme corresponds here to I individuals that cause the S indi-

viduals (seen as substrates) to change their status and become infected. The individuals

in these classes are considered to be free individuals or group-complexes composed of in-

dividuals of the same class. Such individuals have to be in close contact (i.e. like to be

combined in an enzymic reaction) by providing the group-complex. Once these intermediate

group-complexes (here SI) are formed, the infection process may be accomplished. The

group-complex SI is of a different nature compared to simple group-complexes (or free

individuals) S or I. Then only the I individuals present in SI group-complexes count in the

infection process. The formation of SI intermediate complexes is due to reactions associated
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with a second-order rate constant k1 (in km2.individual−1.day−1) and their dissociation into

free S and I results from reactions associated to a first-order constant rate k−1 (in day−1).

The dissociation constant described by K = k−1/k1 (in individual.km2) is a constant rate that

determines the average turnover of formation and dissociation of SI group-complexes. The

catalytic rate kcat (in day−1) drives the reaction to the final reaction product (i.e. occurrence

of a new infection outbreak), i.e. new free I individuals in the population.

Then βapp can be described by a combination of these above constant rates involved in kinetic

dynamics. This leads to the following equation (see appendix A.1 for more details) :

βapp =
k1kcat

k1[N]+ k−1 + kcat
=

k1kcat

k1[S]+ k−1 + kcat
(2.3)

As known in Michaelis-Menten kinetics, the rate of enzymatic reaction, here in an epidemic

context, the infection rate (infection flux) can be derived by :

d[I]

dt
=−

d[SI]

dt
= kcat [IS] =

kcat [I][S]

[S]+ (k−1+kcat)
k1

=
kcat [I][S]

[S]+KM
(2.4)

The Michaelis constant KM (in individual.km2) corresponds to the dissociation constant (of

SI group-complexes) adjusted by the catalytic rate kcat . Its value determines a concentration

threshold (i.e. here S population density) at which the reaction rate is increased to 50%

of Vmax, where Vmax = kcat [I] represents the maximal infection velocity that measures the

number of S individuals that become infected per unit time. Consequently the infection flux

is :

d[I]

dt
=Vmax. f

sat(S,KM) (2.5)



2.2 New Mathematical Models: A Modified S-I-R Model & A Group Dynamics Model 31

where f sat(S,KM) = [S]
[S]+KM

.

The saturation function f sat(S,KM) expresses the fact that occurrence of reactions that

result from SI complexes, cannot be faster than the Vmax when [S] is large enough (i.e. S in

excess: [S]≫ KM) or it will approach to 50% of Vmax when decreasing [S], precisely when

[S] = KM.

As explained before, in this SIR model without resistance, there is no interaction between S

and/or I with R individuals class. The R class seems to be invisible as their "resistant" role is

not integrated in the kinetic-based model. In the epidemic models based on SIR kinetics with

resistance (as we will see in the next section), R individuals are considered to be inhibitors

that prevent, somehow, the infection process. We will see through the simulation results how

the "resistance" factor can affect epidemic dynamics.

2.2.1.2 A modified version of the classical SIR model : SIR kinetics with resistance

By integrating the R individuals as non-competitive inhibitors in a kinetic system, the general

SIR reaction scheme is described as follows :
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Here the R individuals have the same role that non-competitive inhibitors have in en-

zymatic systems. A definition of non-competitive inhibition is given by "ChemWiki" : in

non-competitive inhibition, the inhibitor binds to the enzyme at a location other than the

active site in such a way that the inhibitor and substrate can simultaneously be attached

to the enzyme. The substrate and the inhibitor have no effect on the binding of the other

and can bind and unbind the enzyme in either order. In other words, the inhibitor may

associate individually with the enzyme, the substrate, or the enzyme-substrate-complex. In

the epidemic context, R individuals can be in contact with other S or I individuals and even

with SI group-complexes (e.i. R+ I ⇋ RI , S+R ⇋ SR, SI+R ⇋ SIR and SR+ I ⇋ SIR). In

this SIR kinetic model, among all possible complexes, only the SI might directly result in an

infection transmission. Note that in our model we assume that R is a prefect inhibiter meaning

that there is no possible infection from SIR group-complexes. The other group-complexes

that include R individuals are important because of their role in affecting the formation of SI

group-complexes. In other words SI group-complexes form less frequently.

The processes of formation and conversely dissociation of each group-complex are related

to given association/dissociation constant rates (e.g. S+ I
k1−→ SI or SI

k−1
−−→ S+ I). Since the

nature of individuals (S, I and R) is the same for all individuals (e.g. they are all humans),

i.e. the status S, I or R is unknown, then they can form any group-complex (e.g. presumably

people can not know who is infected or who in not ). Therefore the rate constants are

assumed to be all the same and equal to K = k−1/k1. They represent the average turnover of

association/dissociation of all possible types of group-complexes (see annexe A.2).

It should be noted that the same value of K may be obtained by different values of k1 and
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k−1. For example, the same dissociation constant K might result from both a slow formation

and dissociation of group-complexes (meaning that less groups are formed (k1 is small, e.g.

10 day−1) and last for long time because of a slow reverse dissociation process ( k−1 is

small too e.g. 10 km2.individual−1.day−1), or on the contrary it can result from a case in

which group-complexes are formed quickly (many groups form with a important value of

k1, e.g. 10000 km2.individual−1.day−1, these groups lasting for a very short time, and an

important value of K−1 too, e.g. 10000 day−1). We will see in the section concerning the

group dynamics ( 2.2.2.1) and the models based on group dynamics (sections 3.1, 3.2.1

and 3.2.3) how the dissociation constant K (and its components) can impact the epidemic

dynamics.

By reformulating the enzymatic kinetic equations (see details in appendix A.2) in the context

of epidemic processes including R individuals as inhibitors, we obtain :

βapp =
k1kcat

k1(1+
[R]
3K

)[S]+ (k−1 + kcat)(1+
[R]
K
(1+ 2[S]

3K
))

(2.6)

then the equation 2.4 of the infection flux can be rewritten as follows :

d[I]

dt
=

kcat [I]
(

1+ [R]
3KA

) ×
[S]

[S]+ (k−1+kcat)

k1(1+
[R]
3K )

(1+ [R]
K
(1+ 2[S]

3K
))

(2.7)
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KM (the Michaelis constant rate) and Vmax (the maximal infection velocity) are affected by

the presence of R individuals as inhibitors (resistants) in the SIR kinetic system :

Vmax app =
kcat [I]

(

1+ [R]
3KA

) =
Vmax

(

1+ [R]
3KA

) (2.8)

KM app =

(

k−1 + kcat

k1

)

(

1+ [R]
KA

(

1+ [S]
3KA

+ [S]
3KB

))

(

1+ [R]
3KA

) = KM

(

1+ [R]
KA

(

1+ [S]
3KA

+ [S]
3KB

))

(

1+ [R]
3KA

)

(2.9)

These effects are clearly explicable: the presence of R individuals in a homogeneous space

(there are different effects in a heterogeneous space, see chapter 3) leads to the formation of

group-complexes such as SR, RI and SIR to the detriment of forming the SI group-complexes,

those leading to the infection process. This causes the quick saturation in the formation of SI

group-complexes (the reaction rate reaches 50% of the Vmax) in the presence of R individuals.

In conclusion it is more difficult to provide new infections in the presence of resistances: it is

understandable since one thinks that the infection process results from collisions between

I and S individuals. Due to the presence of R individuals, these collisions are less likely to

happen, therefore the maximal infection velocity (Vmax app) is affected.

2.2.2 Group Dynamics in a Population

There are different manners of defining groups in group theoretical studies. [70] mentioned

some definitions of groups and cited, notably, Forsyth’s definition as the most helpful one:

Hundreds of fish swimming together are called a school. A pack of foraging baboons
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is a troupe. A half dozen crows on a telephone line is a murder. A gam is a group of whales.

But what is a collection of human beings called ? A group is collections of people may seem

unique, but each possesses that one critical element that defines a group: connections linking

the individual members, members are linked together in a web of interpersonal relationships.

Thus, a group is defined as two or more individuals who are connected to one another by

social relationships [Donelson R.Forsyth (2006)].

There are two sets of categories in which to classify groups: groups can be known as

primary groups, like families and friendship circles with intimate interactions, or they can be

categorised as secondary groups that are formally organised (i.e. in a certain context, like

organisations, institutions and companies, cultural events, etc.), their members not necessarily

being in direct contact with each other.

Groups may be classified as planned or emergent groups. Planned groups are specifically

formed for a specific purpose (business meetings, concerts, etc.). Emergent groups appear

relatively spontaneously when people find themselves together in the same place, or when

the same collection of people gradually comes to know each other through conversation and

interactions over a certain period of time (Cartwright and Zander 1968 in [70]). According

to Arrow et Al (2000) (see [70]) emergent groups are circumstantial when unplanned and

often temporary groups develop when external forces bring people together (e.g. people

in the metro or in the bus queue) and called self-organising emergent groups when people

gradually cooperate and engage with the others around some task or interest. The differences

in the definition of group occur because the authors usually have different criteria for group
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existence according to their centre of interest (Benson 2001in [70]).

Despite these classifications, groups are not always categorised as an absolute type. This

means that in different circumstances, group types can switch from one category to another,

and a group might consist in sub-groups or, on the contrary, split into sub-groups, each having

different types. As an example, educational institutions (e.g. high-schools) are classified

as secondary groups that can contain other secondary (and sometimes primary like groups

of friends) sub-groups. A number of students in the school meal queue is a circumstantial

emergent group. Any spontaneous cooperation among groups of students, their families,

teachers or administration employees can be classified as self-organising secondary groups.

In an urban context, in big cities for example, in every office, bar, shop, street corner, different

groups of people are constantly forming and splitting up. They are sometimes ephemeral (e.g.

the time to shake hands with a colleague in the corridor : 2 seconds), sometimes longer (2

hours or a multi-days for a conference). Then to avoid being limited to promiscuity questions

such as where does the group stop?, we should define groups based on their purpose, e.g.

different groups are formed for several reasons: a conference, meeting a friend, a purchase in

a shopping store etc. In their social lives, individuals have different goals and interests to

form different groups with different numbers of people, for example a small group of friends

at a bar or a large number of people in a concert.

Understanding correctly the group phenomenon needs more socio-behavioural studies at

the individual level and more investigation into the factors that play an important role in

social aggregations. However, to model group dynamics we need to simplify these real

examples instead of investing too much in individual behavioural characteristics (somehow
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this is possible in individual-based models) and then to focus more on less realistic but more

controllable simplified models of groups inspired by mathematics and physics.

We propose to limit the description of groups to three characteristics: (i) the frequency

at which groups appear, (ii) their size and (iii) their lifetime. It is reasonable to consider

that group-appearance, group-sizes and group-lifetimes obey the probability laws (see sec-

tions 2.2.2.1 and 2.2.2.3), notably in the case of a sufficiently large population (the question

is how big?).

Another manner of giving a structure to simulated populations is to use pre-topological

data to define how big some groups are and how long they last (e.g. number of student in a

given class during their mathematics lecture) and how they live (which person knows another,

where do people usually spend their time...), or to introduce a new variable that describes

whether a given individual is more likely to form a group with others or not, for example by

considering a grouping tendency (0≤ α < 1) in multi-agent modelling (see sections 2.2.2.2

and 2.2.2.3). We can go further and use participatory simulations in which all or part of the

agents are the avatars played by real humans. In such serious games a player can decide to

form a group with other people.

These assumptions are still debatable, but they allow us to model group dynamics and

study epidemic processes in more realistic conditions. Of course these assumptions are less

implementable in ODE, PDE and homogeneous-space stochastic models than in individual-

based models or group-based models.



38 Models and Computer Simulations in Epidemiology

Group formation is based on each individual’s grouping tendency. It is not necessarily

easy to simulate this when we are not dealing with individual-based numerical models. Then

we must define a group-size distribution. The study of group formation dynamics in animals

shows scaling aspects of group-size distribution (e.g. exponential distribution). For example

the modelling of the herd size of mammalians (e.g. African buffaloes) or the group-size of

tuna fish or sardines shows a truncated power low distribution [15, 79]. According to Okubo

( [15]), the group-sizes are exponentially distributed: Any group-size distribution should

be exponentially decreasing by applying a maximum entropy principle to the distribution

under the constraint of fixed average size, which implicitly includes the strong assumption

that there exists a well-defined mean and therefore overlooks slowly decaying distributions

such as power laws with b≤ 2. It is well known to physicists that such a procedure leads to

exponential (Gibbs-Boltzmann) distributions.

These group-size (connectivity-size) distribution properties have also been found in complex

systems with large connectivity features. In [7], the distribution of local connectivity of

many large random networks shows a power law scaling. In an epidemiological context, [5]

described by stochastic simulations of how scaling laws may arise from the distribution of

various population sizes (the number of sexual partners considered as group-sizes). in [8],

the statistical analysis of realistic social networks based on empirical or semi-empirical data

(for six different populations) shows a best fit of an exponential degree distribution for all

populations among Poisson, pure power law and truncated power law distributions.
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Like social networks in [8], we propose to use an exponential distribution to represent the

group-size variable. In brief, we can identify a group as a collection of individuals who

participate in a particular goal and having different connection degrees during a specific time;

the group lifetime.

The group lifetime is not particularly well developed as an important key element in group

theories, but from the epidemiological point of view, this may play a crucial role. Indeed,

as long as an individual stays in a given group, there is a higher likelihood that they are in

contact with other members and this potentially increases the risk of being infected by an

infectious agent. For example, let’s consider one infected individual (infected by pathogens

like Flu, gastroenteritis, etc.) among a number of employees in a company. These individuals,

during an eight hour work a day, might split off into different sub-groups (e.g. several people

in a meeting room, in a cafeteria or in the same office...) and spend a certain time with each

others, a time related to the context of that group. The individuals who stay a longer time

with the given infected person are more likely to be infected than others who have less direct

contact with this person.

Then a group can last a couple of days, hours or just a few minutes, and even just momen-

tarily(e.g. shaking hands with a colleague: 2 seconds) can be significant in increasing the

probability of being infected by an infectious agent in a given group. In fact, it is more likely

that a group with an important size (e.g. n = 1000 persons such as in a concert) last for an

average of 2 hours while the smaller groups (n < 5) can last just 2 seconds (the most probable

lifetime) as well as more than 4 hours (e.g. a long business meeting, less probable event), or

even a few days (e.g. two people that go camping, an even less probable situation).



40 Models and Computer Simulations in Epidemiology

Group dynamics can be affected by other characteristics such as the population density, the

individual movement speeds and the proportion of free individuals (those that don’t belong

to any group) compared to grouped individuals. However, these three group characteristics

(group-appearance frequency, group-size and group-lifetime) as probabilistic variables are

not necessary in the cases where organisational structures and rhythms are pre-defined (like

in high-school classes where a given daily working-hours or formal meeting schedules are

defined in advance). In the following subsections we give details on these topics.

2.2.2.1 Modelling the group-size in homogeneous SSA-based models

Group dynamics presented here are based on a set of assumptions on individual behaviours.

These assumptions are still debatable but they allow us to model group dynamics and study

epidemic processes in more realistic conditions. We will show how the appearance and the

size of groups can be modelled.

In a simulation of group dynamics three characteristics are important: group-appearance

(Bgi
), group-size (Sgi

) and group-lifetime (LTgi
). Group appearance is the time between the

appearance of two successive groups (gi and the previous group gi−1) and is called Bgi
. This

random variable plays an important role in non individual-based models since there is no

emergence in such models like in MAS. As non individual-based models correspond to

event-driven simulation methods (meaning that the simulations have to be determined by a

succession of events, here with groups appearance), we must impose the manner that these

events will occur. We assume here that when one group forms at a certain time, no other

groups can form at the same time, implying that a certain time separates the formation of two
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successive groups. We also assume that groups are not formed by merging with other existing

groups or by adding single individuals (nor can any group be split into new sub-groups). To

obtain the formulation of group formation dynamics we suppose a simplified view of how

populations behave, i.e. we suppose that groups form due to random collisions between

individuals, their movement being based on a simple random walk process with a given speed

like the molecules in a fluid that constantly collide between each other. Of course we are

conscious that such a model is far from reality, since people don’t move randomly.

Group appearance Bgi
and group size Sgi

are intimately related. Indeed, gathering a large

number of people in a given place, takes time. Then this one can expect that the time between

the formation of two groups is long enough when this group size is expected to be large.

Inspired from the concepts of the kinetic theory of gasses, the successive values of Bgi
are

randomly chosen regarding to the following the probability density function:

P(t) =
1

τ̄
e−t/τ̄

where τ̄ is mean free collision time, which is obtained by (a) the free population density

at time t per effective surface F(t)/se f f , where se f f is the effective surface frequented by

individuals normalised by the total area (se f f is proportional (e.g 1%) to the total area); (b)

the effective diameter (the average interaction radius) d, that determines the actual occupied

space by one individual or the average distance between two individuals considered to have

established a contact. Then in the SIR kinetic process, the average distance for an efficient
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contact during the time t, is defined by βapp × t × 1 individual. For example, in a given

communicable disease with βapp = 5.10−5(m2.indiv−1.day−1), if the contact between two

individuals comprises between 10 and 60 minutes, then the effective average distance for

an efficient contact (effective transmission of disease) comprises between 35 cm and 210

cm respectively. This seems acceptable because in a real situation,35 cm might represent

the distance between two people in an elevator or in a concert; a distance of 2.1 m could

represent the standard distance between two individuals at work in an office or at a meeting. τ̄

depends also on (c) the average relative velocity ν̄rel calculated from the speed of individuals

ν̄ (here assumed constant).

τ̄ =
se f f

F(t)×2d× ν̄rel

consequently Sgi
is randomly chosen according to the following density probability function :

P(s) = σ̄e−σ̄s

where σ̄ is calculated by :

σ̄ =
Bgi

2

1

1+(F(t)
N(t))

2

this formulation shows how group size (Sgi
) depends on the value of Bgi

and on the proportion

of free individuals (i.e. the people available to form groups) in the total population (as

expressed by a sigmoid function, here the Hill equation). This equation, a non-linear relation,

clarifies the fact that by reducing the number of free individuals in a given population, the

formation of new groups becomes more difficult. However these empirical formulations are



2.2 New Mathematical Models: A Modified S-I-R Model & A Group Dynamics Model 43

still debatable and need more investigation on this subject, but nevertheless it allows us to

give a structure to a population in a homogenous model. The obtained dynamic behaviour

seems reasonable in comparison to that obtained in multi-agent based systems (see chapter 3).

At the individual level, groups are formed by encounters (unexpected or casual meetings

of some individuals). Then it is important to verify that the density of free individuals and

their speed have the expected impact on the mean time between two encounters and on the

resulting group-sizes. The calculated effects are shown in figure 2.5. We can see notably

(in right image) that when the density is decreasing, the group formation becomes difficult.

Moreover, increasing the average speed shortens the mean free time to meet two individuals

and allows the individuals to meet easily. Even with those who are far, leading potentially to

the formation of big groups.
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Figure 2.5 Impacts of Free-population Density and Movement Speed on Mean-free-

time and Group-size : (left) The average free time between two encounters (here considered

as particles that move randomly) is shown as a function of the average movement speed

of individuals and free-population density. (right) A Monte Carlo simulation (MCS) of

group-formation shows while the density is decreasing, the mean free time between two

individuals encounters becomes long then group-formation is more difficult (lack of free

(sole)-individual). By increasing in ν̄rel , the groups are quickly formed by individuals even

those that are separated by long distances w, which helps to form the big groups.

The impacts of the individual speed on group-sizes are compared (see figure 2.6-left)

when increasing the speeds from 1m/s to 10m/s and up to an unrealistic speed of 103m/s.

The Log-Log plot shows that all possible sizes of groups can be formed when the individuals

have a considerably high speed (m/s). The plot shape seems less linear at lower speed and

the maximum size of groups does not exceed 50 to a few hundred people (speed 1m/s to

10m/s). The group-size distributions (figure 2.6-right) illustrates the difference in behaviour

when taking into account the density of the free individuals in the population as a sigmoid
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function ( 1

1+(
F(t)
N(t)

)2
) or not, when calculating the exponential distribution parameter σ̄ (i.e.

when the density term can be considered negligible
F(t)
N(t) = 0).

Figure 2.6 Group Size Distribution. (Left) Increasing the movement speed to an unrealistic

speed of 1000(m/s) allows us to observe all possible group sizes in a given large population.

At slower speed levels, the log-log plots lose their linearity, however the pattern remains

linear (approximately) for all small groups while the groups are less than 50 individuals.

At lower individual speeds the formation of considerably large groups is less likely than

the small groups, in which case the big groups are considered as the rare events. (Right)

The log-log plot of group size compares two exponential distributions of group-size, one (in

green) when the effect of the free individuals density considered in calculation of parameter

σ̄ and one when it is not considered (in black). As we can see, the occurrence of groups

(including all different sizes) is less frequent when the density term is considered.

Once the group size is determined, its composition is obtained by a multivariate draw

depending on the group size and on the availability of individuals S, I and R in the population

of free individuals (without physical interaction with the others). The multivariate draw is

ensured by using a hypergeometric distributed variable.

In this section we have proposed a procedure to compute the group characteristics. The

group-formation is not the result of individual decisions nor emergence. This will be different



46 Models and Computer Simulations in Epidemiology

in individual-based models (MAS or CA). In the latter one would expect a group formation

by way of emergence, which is not something that is easy to obtain; in particular, in an MAS

with random walking agents it would be difficult to obtain big groups. Moreover, one can

ask the question, what are the boundaries that define groups ? In the next sub-section we will

present a group-based multi-agent system where individuals can meet and form groups, can

merge existing groups, and where the groups life is decided at the group level (and in which

the SIR processes will occur).

2.2.2.2 Modelling the group-size in MAS-based Models

In multi-agent modelling, individuals have their own behaviours; here they simply move

randomly. When individuals are sufficiently close together they can form a group. Here, we

suggest a group formation procedure based on a random probability number (0 ≤ α < 1)

attributed to each agent (individual) that represents its grouping tendency. Let Ai = (xi,yi,αi)

be an agent represented by its own (x,y) spatial coordinates and its grouping tendency.

The variable α , represents how likely an individual is to engage in a group with its own

neighbours. Individuals with the distance of less than m meters from each other are considered

in a neighbourhood. In our simulations we have chosen a neighbourhood of m = 4. Each

individual explores its own neighbourhood and can join an existing group if the group

tendency condition is still met:

di j =
√

(xi− x j)2 +(yi− y j)2 ≤ m
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The individuals are grouped if the average of group tendencies in a given neighbourhood

with n individuals is greater than 50 percent:

∑i αi

n
> 0.5

Figure 2.7 Group Formation of n = 3 Individuals: The mean grouping tendency = 0.56.

The individuals can move, by a given speed (1 m/s), in the simulated area to explore other

individuals in their neighbourhood to form a new group or join to an existent one.

Simulations of structured populations (having a group formation) show that several

groups form (or split out) at each t time (frequently). Group sizes vary from small groups

(e.g. two colleagues at break-time or in a meeting room . . . ) to bigger groups (e.g. a group of

students in a classroom . . . ). Figure 2.8 shows that in a multi-agent simulation, the formation

of small groups is more frequent than for big groups. With these chosen neighbourhood,

move speed and grouping tendency distribution we often observe a maximum size of 15

individuals.
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Figure 2.8 Box Plot of Group-sizes During Simulated 8-hour Work Day: Group-size

varies between 2 to 15 during each one hour simulation time but the average group-size is

approximately n = 3 people. In this model we suppose that the groups are not merged and an

agent’s movement speed is 1(m/s).

In the MAS-based model, group formation (and consequently group-size) is an emerging

characteristic. We expect that the group-size distribution is exponentially decreasing. The

figure 2.9 shows four different exponential distributions that we intended to fit with group-size

data observed in our MAS simulations. One can see that the best fits are obtained for values

of λ between 0.5 and 0.8. We also did Monte Carlo simulations of group size distributions

given an exponential model with a certain λ parameter, and compare them with the emerging

group size distributions obtained in our MAS simulations. Figure 2.10 confirms that the

best fit of the observed MAS simulation data and an exponential model is obtained for a
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parameter λ close to 0.5. This exponential approximation seems more meaningful for small

group sizes than for big groups. In section 2.2.2.1 we expressed the group size distribution

by the probability P(s) = σ̄e−σ̄s. Here the parameter σ̄ would then be equal to about 1/2.

We also expressed this parameter by σ̄ =
Bgi

2
1

1+(
F(t)
N(t)

)2
. If we admit a fraction of F/N = 1

then this would mean that Bgi
would be equal to about 2 seconds. This would correspond

to a coherent average time between the formation of two groups of about 2 s in our MAS

simulations. This is also coherent with the fact that the smaller groups are easier to form in

such a time than big groups.

Figure 2.9 Histogram of Group-size in MAS Model: The exponential distributions (in

red) with the rate parameter λ (0.2,0.5,0.8,1) are traced to compare the best fit for group

formation data. This shows an exponential distribution with λ = 0.5 is almost the best fit.
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Figure 2.10 The Goodness of Fit for MAS Data: The synthetic data from the probability

distribution of a given exponential distribution λ (0.2,0.5,0.8,1) is compared with group-

size distribution in MAS data. The goodness of fit is confirmed if the data from both synthetic

and MAS model are located more and less on the red line (Y = X). Bootstrap technics are

used with B = 1000 replacement number.

2.2.2.3 Group-Lifetime

Group lifetime Lgi
is correlated with the group size, the size being often characteristic of a

context (e.g. a concert, a couple, a meeting at work, a mathematics course class at school

. . . ). Indeed, it is hardly conceivable that a concert consists of several thousand people

lasting on average no more and not much less than 2 hours. However, there are many more

opportunities in which groups of only 2 or 3 people can spend several days together or

even more frequently they can just last for a small time (e.g. occasional meetings between
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colleagues like when they shake hands, which takes only few seconds). In our models (SSA

and MAS-based models) group lifetimes depend on group sizes. We suppose a gamma

distribution with two parameters (shape and rate) for modelling the lifetime variable :

f (l;α,β ) =
β α lα−1e−lβ

Γ(α)

We propose the shape parameter to be α = group-size (Sgi
) × coefficient (A) and the rate

parameter to be β = group-size (Sgi
) × coefficient (B). This means that the probability

density function depends on the size of groups and that we can adjust the mean lifetime by

the coefficients A and B such as:

E(L) =
β

α
=

A

B

This allows us to generate an appropriate distribution as an exponential distribution when

group sizes are less than 20 and a gamma bell curve to a gaussian distribution for larger

group sizes.

Then we modelled group lifetimes (both in SSA or MAS based simulations) by using a ratio

A/B = 120 minutes = 2 hours, i.e. the average expected lifetime of a very large group (see

figure 2.11).
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Figure 2.11 The Gamma Probability Density Function for Different Group-size: When

groups have small sizes (< 5), the distribution of their lifetime is identical to the exponential

distribution (α ≈ 1), this is the same for groups with average size (10− 20 persons) but

by increasing the lifetime variance. When groups reach an important size (> 30), their

distributions look like the bell shaped curves that localise more and less around the mean

lifetime (L), this signifies that groups with an important size (S = 1000) last on average,

approximately 2h (e.g. concerts etc.).

In the MAS model, a participatory procedure is used to compute lifetimes of each group

as a collective decision of all members. In a given group with n members, a particular random

variable τ of the Gamma probability density function is attributed to each agent. These

timing tendencies (τ1,τ2, . . . ,τn) combine with the grouping tendencies (α1,α2, . . . ,αn) of
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the n members of a group to allow us to compute the emerging (a consensus) group lifetime :

L =
∑

n
i=1 αiτi

∑
n
i=1 αi

This means that the agents with strong grouping tendencies will contribute more than the

others to determine the group lifetime. In the real world, we are surrounded by a lot of

constraints, which limits the duration of our activities, and each individual has its own

inclinations and restrictions to be part of a group and spend time with the others. This

weighted mean (emerging lifetime) allows us to compute the lifetime Lgi
of group gi where

all conceivable restrictions are represented behind probabilistic variables (τi,αi). In other

terms, this manner of proceeding is a way to inject social features in the group forming

consensus.

As an example the following group dynamics shown in figure 2.12 and figure 2.13 were

obtained by simulations of a large city by an SSA-Group-based model (675000 people with

a population density of 8700 people per km2). The difference between these two simulations

is the moving rate of the individuals, which is low (0.1 m/s) in figure 2.12 and fast (1 m/s)

in figure 2.13.

In figure 2.12, we can see that after about 1h30, the population reaches a kind of equilibrium

between individuals in groups and free individuals, and that almost 50% of the population

is grouped. We also observe that the majority of groups have a small size and that their

lifetime behaviour as expected. The groups with big sizes have lifetimes of about 2h (as



54 Models and Computer Simulations in Epidemiology

supposed in our lifetime distribution law described before). These results highly depend

on the chosen parameters such as the average movement speed of the individuals (ν̄), for

example in figure 2.13, where individuals move 10 times faster than in the first simulation.

In this case we can observe that the proportion of grouped people in the population becomes

much higher (over 90%). It has to be noted that increasing the movement speed causes

an oscillatory phenomenon in the proportion of grouped-individuals in opposition to non

grouped-individuals.

The simulation of structured populations (presenting a group formation) will allow us to

simulate an epidemiological process in a more realistic way than if we considered a spa-

tially homogeneous population. The infectious events will be simulated within groups by a

stochastic SIR epidemic procedure (explained in part 2.3).
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Figure 2.12 Group Dynamics in a Simulated Big City (Slow Movement Speed): Almost

30000 groups are formed in the simulation of a big city (675000 inhabitants, density 8700

Pop /km2), during approximately 5 hours and 30 minutes (here just 50% of them and just

150 of groups lifetimes are displayed). Individuals move in average 0.1(m/s) and with a an

interaction radius of d = 0.5(m) as the average distance between two individuals for which

they are considered in contact. Most of the observed groups have small sizes but some of

them (rarely) reach considerably large sizes (here the largest group consists of 9120 people).

The lifetime of small groups vary but most of the large group sizes last on average about 120

minutes.
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Figure 2.13 Group Dynamics in a Simulated Big City (Fast Movement Speed): This

simulation is similar to the previous one, but this time the average individual speed is 1(m/s).
We observe that the group-formation rate increases considerably (just 30000 groups are

formed during 3 hours 40 minutes).The proportion of the grouped-population is up to 90%.

This also generates damped oscillations (with a period of 2 hours) which is clearly visible in

the group-formation dynamic and explained by the synchronous formation of groups with

sufficiently important sizes.
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2.3 Computer Implementation of The SIR Models

Numerical simulation is an important part in our epidemiological study. Regardless of the

dynamical models presented above, different numerical approaches were implemented to

simulate epidemic dynamics or either group dynamics e.g. the differential equations of the

epidemic process dynamics were numerically simulated either by means of discretised ODE

or by homogenous stochastic simulations. The simulation, unlike the analytical computations,

are not used to solve the system of equations, but are implemented to calculate the state

changes of a system at any time.

There are several types of simulation algorithms that can be used. They are notably used to

improve the understanding and at least observe the simulated behaviour of complex systems

in different fields of science such as biology, physics and chemistry. For example, biology

simulation approaches can be used to study the dynamics of ecological systems.

One of the simulation methods we will present is based on stochastic updates of the states of

a system. Daniel T. Gillespie (1967) is known to be the first one that developed a stochastic

simulation algorithm (SSA) to describe the dynamics of chemical reactions. Gillespie’s

algorithm uses a stochastic formulation described by a single differential-difference equation

which is called the "master equation". The Gillespie’s algorithm is a discrete and stochastic

computational method that does not try to numerically solve the master equation for a given

system; instead, it is a systematic computer-oriented procedure in which rigorously derived

Monte Carlo techniques are employed to numerically simulate the very Markov process that

the master equation describes analytically. Then the simulation algorithm is fully equiva-
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lent to the master equation, even though the master equation itself is never explicitly used

[42]. Since the stochastic temporal evolution of some molecular dynamics in chemically

reacting systems seems analogous to population dynamics in epidemiological systems, then

Gillespie’s SSA can be used in the same way to generate the temporal evolution of a given

population without having to deal with complicated analytical approaches [99, 50, 83].

Another manner of simulating and understanding a complex epidemic system is to use

individual-based simulation methods. These are bottom-up methods that allow us to model

heterogeneous populations (macroscopic level) in which each individual is represented and

has different motivations and tendencies (microscopic level). Integrating the individuals’

variability in such simulation methods allows the modelling of epidemic systems in which

socio-cultural factors can play an essential role. Such computational modelling varies from

elementary cellular automata (CA) in which only limited interactions (limited neighbourhood

and states) are allowed, to more complex multi-agent systems (MAS) in which all the possible

interactions between different agents can be considered.

There are the several examples of the use of cellular automata based approaches in epidemi-

ology, notably to simulate the spreading of an epidemic [110], or to study the impacts of

population movements and the vaccination on epidemic propagation [102].

Studying an epidemic’s dynamics in a given population by considering spatial characteristics

through individuals characteristics, e.g. their movements, connections and aggregation, is

important. In this context agent-based models are the most powerful to capture the dis-

ease spread patterns. MAS models were increasingly used in epidemiological contexts
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[89, 65, 26, 76, 28].

In the following sections we will present the manner in which we implemented epidemic

kinetics to perform numerical simulations. We will first discuss on the local structure and on

the global spatialisation of populations in which we will perform epidemiological simulations.

We will then describe several algorithms and numerical implementations, commencing with

discretised ODE, then SSA based algorithms and finally individual based ones.

2.3.1 Different Models for Representing Local and Global Spatiality

In this thesis, we distinguish different numerical epidemic models depending on their level

of spatiality. These models are categorised in two different manners, first when the space is

structured (this will be called the global level of spatiality), and second when the population

is structured independently to the manner space is structured itself (this will be called the

local level of spatiality). Figure 2.14 illustrates the different levels of local and global

spatialisation that can be considered and their corresponding numerical models.

Classical ODE models and their implementation are assumed to describe a homogeneous

space (we will call them ODE-H). PDE models based on differential equations are partially

derived in respect to space. Their numerical implementations use discretised environments,

often in the form of spatial grids composed of squared elements (usually called cells), in a

finite difference numerical scheme. This means that PDE-based models are globally spa-

tial compared to ODE-H that are not spatialised globally (nor locally). As we showed in

section 2.2.1.2 where we introduced a modified version of the SIR dynamics that include
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the resistance correctly, a kind of population structure is also introduced in the form of

group-complexes. So, even in the ODE and PDE, a very simple form of local structure can

be taken into account, i.e. by using our modified SIR kinetics.

Contrary to ODE and PDE that use real numbers to represent the quantities (here, S, I, R

are densities expressed in individuals.km−2) the stochastic simulations (SSA) allow us to

compute the variable quantities in the form of single variations of +1 or −1 elements (e.g.

individuals), i.e. by using integer numbers. In consequence, as we will see, it is easier to

introduce a local structure of population is SSA-based models. The model called SSA-H

corresponds to stochastic simulation algorithm-based models in homogeneous space (no

global, nor local structure, except SIR group-complexes). One of its corresponding spatial

versions is the SSA-CA so-called model that is defined as a stochastic simulation in a cellular

automaton system. Another one could be a MAS where individuals would never form macro-

scopic identified entities like groups (a classical MAS system, not presented here). In the

SSA-CA, each cell of the grid may contain 0 (empty cell), or 1 to several individuals (here,

we implemented it in such a way that the states are only 0 or 1 individual). The contacts exist

only in the close neighbourhood (a Moore neighbourhood is chosen, i.e. formed by the 8

adjacent cells) and are re-computed each time, so that one individual (in one grid cell) has no

preferential relationship with the others in his neighbourhood: there is no notion of group

in the SSA-CA numerical model but the observer can identify the emergence of temporary

dense regions of individuals (where a disease can spread more rapidly) even if no rules were

implemented here to force the individuals to move toward dense regions (a basic social model

that could be implemented too). In the SSA-CA, there is no local structure but it is globally
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spatialised.

Further, in increasing the local structure of populations, we developed two hybrid models

of groups (see section 2.2.2) and SIR dynamics called SSA-G and MAS-G. The SSA-G

(SSA-Group-based numerical model) is a globally homogeneous stochastic model having a

group-based structure for its population (a local spatiality): there is no notion of positions of

individuals nor groups, but groups form in which the SIR processes occur. The spatialised

version of this numerical model is the so-called MAS-G. It is a multi-agent system in which

each individual is represented in a spatial environment, move and behave independently to

the others, but where groups form and become functional entities in which SIR processes

occur.

Assuming the relative positions of individuals within groups is important, we could also

imagine extensions to these two hybrid numerical models (SSA-G and MAS-G) in which

a more precise local spatiality is introduced to describe the positions and movements of

individuals within the groups, for example by simulating each group by a cellular automaton

(so we would obtain the two corresponding numerical models SSA-CA-G and MAS-CA-G)

or by another MAS. This could allow us to take into account the special behaviour of groups,

like the group formed by the audience in a movie theatre where everybody is immobile, or,

on the contrary, people at a drinks party that permanently mix together.

In this work, we particularly intensify our efforts on the parametrisation of the models

(see table 2.1) in such a manner that the parameters have sense and the different numerical

models can communicate, i.e. their parameters can be scaled from one model to another.
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Changing notably (by scaling) the values of some parameters (e.g. the individual speeds, or

the observation time) allow us to retrieve a similar behaviour of different models running

at different levels. As an example, in individual-based models like SSA-CA, increasing the

movement speed (or making observations over longer periods, or even simulating larger envi-

ronments) leads us to simulate the same process by stochastic simulations in a homogenous

space (SSA-H) or even with differential equations (ODE-H). When the individuals move

faster, the space becomes homogeneous since everyone can potentially meet everyone (i.e.

the free collision time is reduced). The same situation happens between differential equation

based models in homogeneous space (ODE-H models) and globally spatialised PDE (partial

differential equations) based models by changing the diffusion rate.
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SIR Epidemic Related Parameters

K Dissociation rate constant

(individual.km2)

kcat Catalytic rate applied to IS group-complexes infection

(day−1)

k1 Forward group-complex formation rate constant association

(km2.individual−1.day−1)

k−1 Reverse group-complex formation rate constant dissociation

(day−1)

β First order Infection rate (day−1)

βapp Effective area for sufficient transmissible contacts

(km2.individual−1.day−1)

γ first order recovery rate constant (day−1)

1/γ Mean infectious period (day)

λ First order loss of immunity rate constant (day−1)

1/λ Mean recovery period (day)

Population Related Global Parameters

N Total population size (individual)

[N] Total population density (individual.km−2)

{[S]0, [I]0, [R]0} Density of S, I, R people at the beginning of the simulation.

A Area in which the SIR dynamics are computed (km2)

D Diffusion coefficient (km2.s−1)

dt Time step (s)

Group and Individual Related (local) Parameters

v individual speed (m.s−1)

λe Exponential distribution parameter (group size drawings)

αΓ Shape parameter of group lifetime’s Γ distribution

βΓ Rate parameter of group lifetime’s Γ distribution

α Grouping tendency of individuals ∈ [0,1]

Table 2.1 Parameters used in our different numerical simulations
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The globally spatialised models can be used to observe epidemic spreads in more realistic

situations that allow us to take into account the aspects of an epidemic process linked to the

environment’s structure (e.g. social groups spatial structures like classes in schools, offices,

stores . . . ) and heterogeneous aspects relative to individuals (e.g. degrees of vaccination of

individuals vs high-risk individuals, propension of individuals to behave socially and form

groups). In fact, there are many other types of model that can be used in epidemiological

studies to integrate pre-topological information about population structures. One way is to

hybridise different types of models ; this is the long term objective of our work. For example,

one can study a Chickenpox (varicella) epidemic, or viral gastroenteritis infection dynamics,

among Parisian primary students by simulating SIR dynamics in a hybrid model composed of

a MAS-G model driven by a scripted social behaviour obtained from pre-topical information

(who knows who, who eats there, who is in which classroom ...) about the number of primary

schools and students in a given environment (school ...), coupled to an SSA-G numerical

model that would describe the dynamics of the exterior of the simulated environment, and the

exchanges between the interior and the exterior ensuring the development or the confinement

of an epidemic.
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Figure 2.14 Locally or Globally Spatialised Numerical Models in which SIR processes

can be computed.

All the models we used (some are shown in figure 2.14) can incorporate the different

infectious dynamics presented in section 2.2.1 (classical SI, modified SIR without or with

resistance) and implement them by using different simulation algorithms (SSA, finite dif-

ferences ...). Finally, we must admit that we did not examine any real parameter study, the

parameters used being mostly unchanged over all the simulations. A sensitivity analysis is

now to be done in another study.

We will see now how the SIR dynamics were implemented in the different numerical models

presented above.

2.3.2 Modified SIR in ODE (Homogeneous Space) and in PDE (Locally

Homogeneous)

The numerical evolution of of the density vector [X ](t) = {[S](t), [I](t), [R](t)} is calculated in

discrete time according to a given epidemiological reaction scheme described in section 2.2.1
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and in the following system of equations:

d[X ]

dt
=







































d[S]
dt

= λ [R].A− kcat

KM+[S] [I][S]

d[I]
dt

= kcat

KM+[S] [I][S]− γ[I].A

d[R]
dt

= γ[I].A−λ [R].A

The quantities of each population-class ([S],[I],[R]) are densities expressed in people/km2

and [N] = [S] + [I] + [R] is the total population density in an area A. In the cases where

the recovery (resistance) individuals R affect the number of available infected people I, the

evolution of [I](t) can be affected by all the temporary group-complexes SR,SI,RI and SIR ;

then the above modified SIR system is written as follows :

d[X ]

dt
=











































d[S]
dt

= λ [R].A− k1kcat

(k−1+kcat)+(1+
[R]
KA

(1+
[S]

3KA
+

[S]
3KB

))+k1[S](1+
[R]

3KA
)
[I][S]

d[I]
dt

= k1kcat

(k−1+kcat)+(1+
[R]
KA

(1+
[S]

3KA
+

[S]
3KB

))+k1[S](1+
[R]

3KA
)
[I][S]− γ[I].A

d[R]
dt

= γ[I].A−λ [R].A

We follow the Euler method with a Runge Kutta 4 approximation to compute the trajectories

of [S](t), [I](t) and [R](t) in discrete time, with a typical time step of 10 minutes. This

time step allows us to compute long periods (months or years) without a huge number of

iterations, while giving a sufficient level of precision to the simulation, 10 minutes being a

time comparable to the characteristic mean collision time to form groups, a time at which

epidemiological reaction start to take sense.
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In an ODE based system, the population of S, I, and R people is uniformly distributed

in space. There is no notion of distance between the individuals (e.g. the individuals can meet

any other individual with the same probability regardless of whether a given individual is in

the neighbourhood or not). The PDE-based numerical model is similar to the ODE-based

numerical model, the difference coming from the fact that the density vector is a multivariate

function [X ](t,z) = {[S](t,z), [I](t,z), [R](t,z)} and represents the number of susceptible, in-

fected and recovered individuals at time t and location z ∈ R2 (or ∈ R3 if one considers the

individuals move in a 3-dimensional space). If D is the diffusion rate of the individuals (a

value, assumed isotropic, as it can be evaluated from the average moving rate of individuals

supposed isotropic too), the variation of the density vector is described by :

δ

δ t
[X ](t,z) = D

δ 2

δ z2
[X ](t,z)

The simulation area consists a 2-dimensional grid of squared cells in which the population

[X ](t,z) is supposed to be locally homogeneous. Diffusion is computed by using a finite

difference numerical scheme of order 1 (Moore’s neighbourhood).

In this manuscript, we only develop the work done on ODE-based numerical simulations and

not the one based on PDE that give the same results in terms of global kinetics and that do

not increased our knowledge more than other spatialised numerical models did (MAS-G and

SSA-CA notably). In section 3.1, we show the particular influence of the dissociation con-
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stant of group-complexes, of R people, and on the population density on epidemic dynamics

by using an ODE-based numerical model using our modified SIR dynamics with or without

resistance.

2.3.3 The SSA Algorithm - Application to SIR and Group Dynamics

The dynamics of the SIR epidemic process can be described by the exact Gillespie’s simula-

tion algorithm working in continuous time or by its discrete time version (tau-leaping version).

This algorithm is used to simulate the evolution of a given variable state vector X(t), from

its initial values X0 = X(0), by generating random pairs of instants and indices, (τ, j), that

respectively correspond to times τ at which reactive events cause the values of X to change,

and to the number j of the reactions implied. The vector X(t) = (X1(t),X2(t)...XNc
(t)) repre-

sents the state vector, where Xi(t), i = 1 . . .Nc classes, is the ith quantity in the state vector X ,

for example, the number of individuals belonging to the ith class (e.g. X(t) = (S(t), I(t),R(t))

and X1(t) = S(t), ..., in an SIR model) at time t. The number of individuals in each class

varies due to the occurrence of Np available transitions processes (i.e. reactions in a kinetic

systems). A reaction is a process that causes a change in the numbers of individuals in a

given population. Each R j, j = 1 . . .Np reaction process is characterised by its propensity

function a j(t), j = 1 . . .Np that is the average probability of occurrence of a reaction R j in

the next τ time, i.e. in the time interval [t, t + τ].

The state-change vector ν j = [ν1, j,ν2, j, . . . ,νNc, j] gives all the instantaneous changes caused

by the reaction R j over all compartmental classes. The state-change vector νi, j describes
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the change of the ith class of a population by a reaction R j. For example in an SIRS model

(refer to section 2.2.1.1), the propensity function α j(t) j = 1 . . .3 is described respectively

by a1(t) = βapp[S][I], a2(t) = γ[I]×A and a3(t) = λ [R]×A.

According to Gillespie’s algorithm, the probability that the reaction R j occurs exactly at

instant τ is P(τ, j) = P(τ).P( j/τ) where P( j/τ) = P(τ, j)/P(τ) = a j/a0 and a0 = ∑
Np

j=1 a j

then P(τ, j) = a j e−a0τ and P(τ) = ∑
Np

j=1 P(τ, j) = a0 e−a0τ .

In the continuous time version of the algorithm, an update of the state-change vector is

computed at each iteration of the simulation by choosing two uniform random numbers r1

and r2 ∈ [0,1] to generate the couple of variables (τ, j). First the instant of the next reaction

event is determined by:

τ =
1

a0
ln(

1

r1
) (2.10)

Once an event has decided to occur, the jth reaction (R j) is chosen as the "next" reaction in

the infinitesimal time interval,[t, t + τ] as the smallest integer j satisfying the equation below:

j

∑
i=1

ai > r2a0 (2.11)

Once (τ, j) is computed, the population state vector X(t), the current time t of the simulation

(and number of the current iteration), but also the state-change vector ν are updated.[42, 83].

Finally, one can say that the SSA-based model is numerically solving (i.e. generating
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some possible solutions) a stochastic master equation corresponding to a classical model

based on the propensity function (ai where i ∈ [1,Nc]) which is the probability of changing

the state vector due to the occurrence of one of the Np possible reactions (i.e. actions resulting

in transition of individuals from actual states to other states (reaction) or from actual places

to other places (diffusion, moves)):

δ

δ t
P(X , t) =

Np

∑
j=1

a j(x−ν j)P(x−ν j | x0, t0)−a jP(x, t | x0, t0)

Another version of Gillespie’s algorithm is known as the τ-leaping version and works

in discrete time instead of continuous time. In continuous time, only one discrete event

occurs at time t + τ (e.g. a variation of +1 or −1 individual in a population). In spatialised

implementations of Gillespie’s SSA notably, it is useful to run the simulation in discrete time

in such a way, the changes are evaluated at a fixed – small – time step dt. Then, one must

evaluate the number of events that have been produced during this time step dt in a certain

region of space (e.g. a cell in a square grid). For each reaction R j, j ∈ [1, p], one computes

the associated propensity a j. then, the characteristic time at which the reaction j occurs

is τ = 1/a j. The number of reaction events of type R j occurring during dt is obtained by

drawing according to a Poisson law of parameter λ = dt/τ .

Gillespie’s simulation algorithm has already been applied to different epidemiological mod-
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els, such as an SIR model to study the seasonal influenza epidemic [27] or a temporal SEIR

model to evaluate the outbreaks of Ebola Hemorrhagic Fever [73] and a multiple-group

model (SIGR) to study vector-borne diseases such as malaria[50].

In the present work, we used Gillespie’s algorithm in different contexts. The SSA-H numer-

ical model uses the continuous time version of the algorithm to simulate the evolution of

SIR kinetics. In the SSA-G numerical model, its continuous time version is used to simulate

the group dynamics while the discrete time version is used to simulate the modified SIR

kinetics within the groups. In the SMA-G numerical model, the discrete time version is used

to simulate the SIR kinetics within the groups (formed by an emerging process of collision

and merging). Finally, the SSA-CA numerical model also uses a particular implementation

of the discrete time algorithm for the same purpose (SIR kinetics) and the classical discrete

time version to compute the individual moves.

2.3.4 Implementation of SIR Dynamics in SSA-Group Based Models

Our SSA-Group numerical model works either in discrete and continuous time in homoge-

neous space. It has been developed to integrate a group structure to populations in order to

simulate SIR dynamics within. The global population of N individuals is separated into two

distinct sub-populations : the free population of individuals that are not engaged in any group,

and the in-group population that is a heterogeneous collection of Ng different gk groups of

Sgk
(k ∈ [1,Ng]) individuals (grouped individuals). Groups are characterised by two features

: their lifetime and their size, all described by probabilistic laws (see section 2.2.2). It is

reasonably assumed that no event of any type (group formation, group death, SIR event . . . )
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occurs at exactly the same time as another one. Then, it is acceptable to modelise the group

dynamics as a succession of events; by using an SSA in continuous time to describe new

group formation, two groups can never form at exactly the same time, but, depending on the

density of the population of free individuals and on the moving rate of individuals, very short

times can separate these events. Within a group, the space is considered homogeneous and the

discrete time version of Gillespie’s algorithm is applied to compute one of the three possible

reactions of a given SIR model (we used the modified SIR models with or without resistance).

Infection reactions are bimolecular type reactions (S+ I → I + I), so they can only occur

in the context of groups on the contrary to mono-molecular reactions (recovery I → R and

loss of immunity R → S ) that might occur in both the free population or within groups.

Figure 2.15 illustrates how several SIR reactions would take place in a given population.

We also assumed that the formation of groups is independent to the class to which the free

available individuals belong: infected people I have the same probability of being included

in a group as the others (S and R), that’s to say there is no discrimination in our model, nor

effects of retention due to illness (i.e. someone sick stays at home).
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Figure 2.15 SIR infection process in a group-based SSA model. (Left) Vertical dotted

arrows indicate the formation and the dissociation of a group. The groups forms at time τ1

and has the lifetime L1. In this example, this group is composed of 15 susceptible and 3

infected people (and no recovered immune people). The 3 different reactions of a classical

SIR model are represented by 3 different arrows. In a group-based SSA model, groups form

from a collection of independent individuals. In a group, space is considered homogeneous

and Gillespie’s algorithm is applied to compute one of the 3 possible reactions of the SIR

model. Since infection reactions need contacts, they can only occur in the context of groups.

Healing (formation of recovered individuals R form infected subjects) and loss of immunity

(formation of susceptible subjects S from R subjects) processes do not need, however, to

occur in groups; they can occur within groups or in the main population of independent

subjects. (Right) The table shows the respective event lists of both the free population and

the first imaginary group-formation.

The reason for which we chose a continuous time SSA for modelling group kinetics and

a discrete time SSA for the SIR kinetics have to be explained. If we had proceeded like this

(i.e. if we had used a continuous time SSA for both group and SIR kinetics) we would have

encountered (and we effectively did) a serious problem of time paradox that would have

cause bad evaluations of the SIR kinetics.

As discussed before, the time t+τ at which the next reaction will occur is computed by using

a continuous time Gillespie’s algorithm. Once determined, a chosen reaction causes one

change in the population state vector at instant t +τ . However, before that, to choose the next
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reaction to occur, we need to compute the propensity function which depends on the state

vector at time t. This means that all changes in the free and in the in-group population must be

considered. Then in continuous-time evolution, this causes some intractable implementation

issues related to the interactions between events: recovery or loss of immunity events on the

one hand, i.e. mono-molecular reactions that would occur in one part of the population (in

the free population, or on the contrary in the in-group population), and infectious events on

the other hand, i.e. bimolecular reaction that would occur in the other part of the population

(respectively in the in-group population, or on the contrary in the free population). As shown

in figure 2.16, the evaluation of the time of the next reaction, given a certain type of reaction

(mono-molecular or bimolecular) in one part of the population can depend on the time at

which another reaction of the other type (resp. bimolecular or mono-molecular) had occured.

These paradoxical problems in the SSA-G model can easily be solved when the simulation

of SIR dynamics is realised in discrete time.
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Figure 2.16 Problems relating to interactions between bimolecular and monomolecular

reactions-events in the SSA-G model in continuous time (Left) The time of the next

reaction event in a group (here a bimolecular one in D identified by the red arrow) depends

on the composition of the group at time B, i.e. when it is evaluated. However, if some

mono-molecular events (green arrow : I ←− R or R←− S reactions) predicted before in the

population (here in A)occurs (here in C, green points) after the time the event in the group

is evaluated (here, when the group forms) it can change the composition if they effectively

occur in the same group. The event in the group is incorrectly evaluated since it will occur at

a probability and time based on a different composition to the one at time D, i.e. when the

event is effectively produced. (Right) Similarly, if a reaction occurs in a group (in A) after

the time a reaction that belongs to the population is evaluated A and before it occurs D, the

latter will also not be correctly evaluated.

The SSA-G numerical model is implemented as follows (see table 2.2) :

The simulation starts after the initialisation of the state vector at time t0 = 0 with no groups

and a number of N individuals in the free population. The computation starts by generating the

instant at which the first group will be formed (birth-time Bg1
): an exponentially distributed

number, τg1
= τ1, is randomly chosen to determine the moment Bg1

= t0 + τ1 of birth of the

first group in the timeline. Its birth-time Bg1
is registered in the event list of the population.

As mentioned before, during this time [t, t + τgi
] (here, for the first group i = 1), no groups

can form (model assumption). Once the group formed, other information about this given

group, such as group-size Sgi
and group-lifetime Lgi

, are computed. Each instant t (i.e.
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corresponding to both group-birth and group-death events) is registered in a long list of

events. It has to be noted that the event list contains all the group birth and death events and

constitutes consequently the structure of the population over the timeline. Although the SIR

dynamics could be computed afterwards, i.e. after the entire population structure over time is

determined, we chose to compute the SIR dynamics within groups and the free population as

the simulation advances so as to display easily the SIR results (but this is just a pragmatic

consideration).

Let us consider that we are at time t + τgi just after a new group gi has formed. Before

anything else, we compute the time τgi+1 after which the next group gi+1 will form, i.e.

its birth-time is Sgi+1
= t + τgi + τgi+1 . Once the next group birth-time Sgi+1

is known, we

know that no other group can form between t + τgi and t + τgi + τgi+1 . However, possible

existing groups can disintegrate during this time, thus changing the composition of the free

population. Then, we can evaluate the SIR events between t + τgi and the next group-related

event (birth Sgi+1
of the next group or death of another group gk at time t + τgk +Lgk

, Lgk

being its lifetime). Different SIR reactions can occur and their implementation depends on

whether they belong to the free population, i.e. mono-molecular events only, or to the in-

group population, i.e. both mono-molecular and bimolecular events. First, using Gillespie’s

continuous time SSA, we evaluate the list of I ←− R or R←− S mono-molecular reactions that

occur in the free population during the period τFi ∈ [t + τgi , t + τgi + τgi+1 [∩[t + τgi , t +Lgk
[

and we add these events to the event list, each one at its own instant τF,event j ∈ τFi . All

these event are computed and the free population is updated. Then, within the current group

(formed at t + τgi), we can also compute the SIR events that may occur before this group
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disintegrates (dies) at time t + τgi +Lgi
. This is done by using the discrete time version of

the SSA with a time step dt of 2 seconds (NB : we impose a minimal lifetime of 2 seconds to

our groups, considering that there’s no group context for lower lifetime values).

Figure 2.15 shows an example in which a list of 10 events are to occur at instants tF
1 to

tF
1 0. The event #2 is the last event to occur before a group forms at τ1 and the event #3,

corresponds to the formation of this group G1. At time tF
3 = tF

0 + τ1. When this group G1

is formed, its size and lifetime are randomly chosen according to dynamics described in

section 2.2.2, as well as its SIR composition that is computed at time tF
3 by a multivariate

hypergeometric drawing depending on the group size and on the availability of individuals S,

I and R in the population of free individuals at this time.

Once the group is formed and during its lifetime, the list of SIR events (all reactions

including the infection process) are evaluated by an independent simulation procedure

(discrete time SSA). In figure 2.15 the three infectious events (S + I → I + I) and one

recovery event (I → R) respectively occurred at times tG1
1 to tG1

4 . The other transition events

take place in the free population at times tF
4 to tF

7 , before the next group-related event occurs

at time tF
8 . The event at tF

8 corresponds to the moment when group G1 splits out and each

of its S, I and R individuals return back to the free population. The composition of the free

population changes. Then other mono molecular events can be computed at times tF
9 to tF

10

before the composition of the free population changes again (i.e. before any group -related

event occurs). The table below (Table 2.2) describes the implementation of the SSA-G

numerical model for a given population of global size N:
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Step(0) Initialisation

-Set SIR kinetic algorithm parameters

-Set Gillespie algorithm parameters

-Set group dynamic parameters (Exponential and Gamma distributions)

-Set simulation start time t0 = 0, #iteration0 = 0

-Set dt =fixed time interval and tmax the duration of the simulation

-Initialise the free population SIR vector XF
0 = [SF

0 , I
F
0 ,R

F
0 ]

-Initialise the list of in-group population SIR vectors

-Initialise the list of in-group population (Sg,Bg,Lg) parameter vectors

-Initialise an empty event list E

Step(1) Compute the first group formation and SIR kinetics

-Calculate and register Bg1
= t0 + τg1

next group (g1) birth-time ∼ Exp

-Calculate and register Sg1
group size ∼ Exp

-Calculate and register Lg1
group lifetime ∼ Γ

-Register Bg1
and Bg1

+Lg1
in the event list E

-Evaluate the occurrence of a SIR reaction during dt = 2S within group g1

-Update the group g1 SIR state vector

-Increase the in-group time by dt (iteration j)

-If Bg1
+ j×dt < Bg1

+Lg1

⇒ Return to step(1)

2.A - Compute next group formation

-Calculate and register Bgk
= t + τgk

next group (gk) birth-time ∼ Exp

-Calculate and register Sgk
group size ∼ Exp

-Calculate and register Lgk
group lifetime ∼ Γ

-Register Bgk
in the event list E

2.B - Compute free population SIR events

-Compute tF
i the time of next SIR mono-molecular reaction in free population

⇒ Jump to Step(2-C)

-Choose next SIR mono-molecular reaction in free population

-Update the free population state vector

-Return to step(2.B)

2.C - Check group events in E

-If next event in E is the death of group gk−1

⇒ Update the free population SIR vector with SIR from group gk−1

⇒ Return to step(2.B)

2.D - Compute in-group population SIR events

-Evaluate the occurrence of a SIR reaction during dt = 2S within group gk

-Update the group gk SIR state vector

-Increase the in-group time by dt (iteration j)

-If Bgi
+ j×dt < Bgi

+Lgi
go back to step(2.D)

-Go to step(2.A)

Table 2.2 SSA-G numerical model implementation
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2.3.5 Implementation of SIR Dynamics in Stochastic Cellular Automata

(SSA-CA) Based Models

The SSA-CA numerical model corresponds to the implementation of SIR dynamics by

a discrete time stochastic algorithm within a cellular automaton system. The simulation

environment is a grid of square cells containing at the most one individual per cell (otherwise

the cell is empty). The simulated area consists of 1 km2 represented by 100×100 cells of

10m×10m each. This gives a population density of about 10000 inhabitants per km2 (if each

cell contains one individual).

The individuals can move by jumping stochastically from one cell to another. Their aver-

age movement speed is 36m per iteration time dt = 10min = 360s, meaning 0.1m.s−1 ≃

0.4km.h−1. Although this moving rate seems a bit slow compared to usual human walking

speeds(1m.s−1 = 3.6km.h−1), the average movement (walking) speed during a day for an

individual might be between 10−3m.s−1 ≃ 4 10−4km.h−1 and 1m.s−1 ≃ 0.4km.h−1, and

largely slower than 1m.s−1 = 3.6km.h−1. It must be remembered that during a day a given

individual is often immobile (e.g. sitting in front of a computer and working to his Ph.D.

thesis, waiting for the copy machine or the printer, spending time in the lift, having a coffee

with colleagues around a table, ...). Both move and SIR dynamics are computed as discrete

time stochastic dynamics. The time step dt = 10min is chosen to be large enough to observe

some epidemic events and small enough to allow the individuals to move frequently from

one 10×10m2 cell to another.
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The simulation algorithm is divided into two phases, first the displacement of individu-

als and second the computation of the SIR reactions in each cell. Both computations that

change the cell state vector (presence or absence of an individual of nature S, I or R) are

updated in parallel, i.e. two computational grids containing S, I, R or no individual (empty

cell) are used, the one being the active grid during the time dt from which the old states are

taken and used in the computation, the other being a temporary grid in which the new states

(computed from the old ones) are written; and reciprocally at the next time step the two grids

permute).

Both displacements and SIR reactions depend on the neighbourhood of cells. The neighbour-

hood chosen is a Moore’s neighbourhood composed of the 8 adjacent cells. Displacements

depend on whether empty cells are present in the neighbourhood of the considered cells. If

there is at least one empty cell in the neighbourhood of a given cell, then a probabilistic

variable (α1) is evaluated to asses the likelihood of movement to that empty place; in the

case of more than one empty space being available in the neighbourhood, the movement is

more probable and is chosen randomly to one of the empty neighbouring cells. If there is

no empty space around a given cell (i.e. α1 = 0) then a probabilistic variable α2 is drawn

from a joint probability distribution to let two neighbours swap their cells. In practice the

simulation algorithm evaluates in the same time the probability of displacement from one

filled cell to an empty cell (if there is one) and the joint probability of swapping the cell with

another individual in the neighbourhood.

The SIR epidemic events (reactions) are computed according to a particular implemen-

tation of the discrete time SSA (see figure 2.17). Indeed, only one single reaction can
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exist that concerns a given individual in its cell: if an individual is I, the only reaction

it is concerned with is the recovery I → R ; if the individual is R, the only reaction it is

concerned with is the loss of immunity R → S ; then, if the individual is S and if there

are I in its Moore’s neighbourhood, the only reaction it is concerned with is an infection

Scell + Ineighbourhood → Icell + Ineighbourhood . In the last case, if there are NI ≤ 8 infected per-

sons in the neighbourhood, evaluating this bi-molecular reaction is equal to evaluating NI

times a mono-molecular reaction Scell → Icell with a fixed probability.

In consequence, increasing the number of infected neighbours increases the probability

that a given susceptible individual is infected, even if there are also recovered (resistant

R e.g. vaccinated) individuals in the same neighbourhood. Hence the SSA-CA numerical

model does not consider the resistance to have an effect on the SIR kinetics themselves : in

consequence, we use the equations of the modified SIR kinetics without resistance in this

numerical implementation. However resistant individuals play an emergent spatial role by

blocking like rocks in an avalanche the spreading of the disease. When a given susceptible

individual is surrounded by numerous resistant individuals, the probability of being in contact

with an infected individual is considerably reduced. At large scales, percolation effects will

be observed depending on the density of resistants and empty spaces (i.e. the density of

people in the environment).
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Figure 2.17 Stochastic Simulation Algorithm based on Cellular Automaton (SSA-CA

Model). These examples show the behaviour of the cellular automaton system, (here 9

cells).The green, red and blue cells respectively represent individuals (one per cell) in

population class S susceptible, I infected and R recovered respectively; (A) Recovery event:

mono-molecular reaction (no interaction with neighbours), the central cell turns into blue;

(B) Loss of immunity event: mono-molecular reaction (no interaction with neighbours), the

central cell becomes green; (C) Infection event: bi-molecular reaction, interaction occurs

between a susceptible individual in (central cell) and an infected individual (left cell), the

arrow showing the interaction between the two individuals; (D) same type of reaction

(infection event), but involving a more substantial infected neighbourhood. We also see that

in (C), the other individuals (R,S) surrounding the given infected individual can make an

isolated environment to prevent propagation to the rest of the population.

2.3.6 Multi-Agent System Modelling of Group Structure and SIR Dy-

namics (MAS-G)

2.3.6.0.1 Group dynamics in the MAS-G model. We developed our multi-agent sys-

tem in the language NetLogo2. The environment is composed of a two dimensional grid

2a programmable multi-agent modelling environment.
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of 200×200 cells. Each cell of the grid is a square 16(m2) = 16 10−6km2 that contains a

NetLogo agent that may corresponds to a single individual or a collection of individuals

(e.g. a group). The population density of a simulated area containing N = 10000 individual-

agents, is equal to 104/(200×200×16 10−6) = 15625 inhabitants per km2. Each individual

explores (moves randomly at a given fixed speed, chosen equal to 1m.s−1 in this model) the

area in its own neighbourhood and can join an existing group if it is sufficiently close to the

group, or form a new group with other individuals in the same way. In this MAS-G model we

assume that the existing groups can not merge between each others (only single individuals

can join existing groups). Once formed, a group obeys the same law as those described for

the SSA-G model. Details about group dynamics has been discussed in section 2.2.2. Since a

communicable infection occurs during close contacts between individuals who have already

formed a group, in our MAS-G model the effective population density actually depends on

the number of in-group individuals, a group having its own area computed from the single

surfaces occupied by its components (the individuals).

Following is the algorithm we used. First, the algorithm implemented in the MAS-G

numerical model is based on two main classes : individual and group. Each of these classes,

with their member attributes and functions, are described in details in figure 2.18.
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Figure 2.18 Individual and Group classes of MAS-G Model: The algorithm’s variables

include x-coordinate (y-coordinate) of all individuals and groups, the SIRS compartmental

classes, the information about whether individuals are involved in a group (or not), and how

likely they are to engage in a group, the set of individuals that are in group with a given

individual, number of members in each group, the set of group’s members, instants at which

a group-agent appears or disappears in simulation, how long a group lasts during simulation

and the number new entering individuals in I-class at group level.

At a global level, the operational function assign-grouping-tendency attributes a floating

number α ∈ [0,1] to each individual-agent. The function is recalled once each time before

a group forms. Based on the fact that an individual, depending on its interests, might have

a variable tendency to join a group, the computed grouping tendency of a given agent can

vary from one group to another group. At the level of individuals, the assign-status, assigns

individuals to one of the susceptible, infectious or recovered classes of the SIR model. This

function is called once at the initial time and is recalled each time one of the SIR transition

processes occur during the simulation. The move function makes the individuals walk around
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randomly. The direction of movement of an individual is chosen randomly, then the next

location that it will reach along this direction is computed according to its speed as the

distance it will cross from its current location. This function is called only for ungrouped

individuals since we assume that the individuals in a group are less likely to move (v≈ 0).

The grouping function consists in two sub-operations,i.e. the form-a-group and join-a-group

functions. Each individual is potentially willing to form a group or to join an existing one in

its neighbourhood. The neighbourhood includes all individuals whose distances from the

concerned individual is less than or equal to a certain number, the proximity number (in

our simulations, we chose a radius of 4m). This leads to the surface area around individuals

of π.42 ≈ 50m2. Whenever the mean of grouping-tendencies of ungrouped individuals in a

neighbourhood (or of an ungrouped individual with other individuals belonging to an existing

group) is greater than 50%, a group forms (resp. a new member joins the existing group).

Groups are distinct objects that inherit their characteristics from individuals, notably the

group lifetimes that are calculated by compute-LifeTime as combinations of individual

grouping tendencies and times τ drawn from a Gamma distribution as already described,

such as L = ∑
n
i=1 αiτi/∑

n
i=1 αi. Of course, when the lifetime of a group is reached, the group

disassembles and its individuals are released into the environment by the function ungroup.

The fact that groups are now identifiable entities (group-agents) distinguishes group-based

simulations from individual-based simulations: SIR simulations deal now with a lower

number of entities, the group-agents, instead of a greater number of individual-agents.
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Figure 2.19 Multi Agent Simulation in Group-based System This model is an individual-

based system conducted in NetLogo (Java-based) environment. A random probability number,

0 ≤ α < 1, attributed to each agent (individual) as their grouping tendency. Individuals

explore in the area of their own neighbourhood; they can form a group and make decision to

leave a group (when groups split up).

2.3.6.0.2 SIR dynamics in the MAS-G model - dynamics. Since, given the densities

and total number of individuals used here, and given the manner in which a group forms

in this model (random encounters and mergers), it is not very probable that large groups

will form. We mainly observe groups of a size smaller than 10 individuals, in which no

sub-groups (i.e. group-complexes) can form or play a significant role. Then, we assume that

the effect of resistance within the groups have not be taken into account by way of modified

SIR dynamics like in the SSA-G model (in which large groups can form). In consequence, the

compartmental SIR model used here is the classical SIR model with a temporary immunity,

which is appropriate for various communicable diseases viewed at the scale of individuals

(spread from person-to-person) e.g.: viral agents like measles, mumps, influenza, smallpox,
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cholera, typhoid fever and diarrhoea.

The classical SIR model consists of three compartmental categories: susceptible S , infectious

I and recovered or temporal immune classes R. The process is through a directly transmitted

infection (DTI) process, meaning that individuals S might become infected by being in direct

contact with another individual in the I class in such a way S+ I
φ
−→ I + I. The force of

infection (φ ), known also as horizontal incidence [47], is described by the rate of contacts c,

the probability p that a contact is effectively realised with an infectious individual (p≃ I
N

known as the prevalence of infection where I is the number of infected individuals and N is

total number of individuals in the population), and the probability v that a contact between an

I individual and a S individual results in a transmission (φ ∝ c× p× v where v ∝ β and β is

the infection rate) [11]. For the others, I and R, the individuals are respectively transformed

into R (I
γI
−→ R) when their infectious period is finished, and into S (R

λR
−→ S) when they lose

their immunity. The average infectious and recovery periods are determined respectively by

1
γ (where γ is the recovery constant rate) and 1

λ
(where λ is the loss of immunity constant

rate) [47]. The amount of change for state vector X(t) = [S(t), I(t),R(t)] is formulated by

the following system of equations:

dX

dt
=







































dS
dt

= λR−Sφ = λR−Sc I
N

v

dI
dt

= Sc I
N

v− γI

dR
dt

= γI−λR

For a given compartmental model, the characteristic features of a particular DTI disease, such
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as the adequate contact number (e.g. a couple of people for HIV), disease duration, recovery

period, ..., can be translated into model-dependent parameters by changing the values of the

transition rates. For example in the SIR model presented here, transmission, recovery and

loss of immunity rates are represented by a set of parameters, β ,γ and λ respectively. The

recovery and loss of immunity rates shouldn’t be influenced by group features described

above such as group size or lifetime: recovery and loss of immunity transition terms for

each individual depend only on disease features regardless the fact that a given individual

belongs to a group or not. However, the transmission terms depend on the rate of contacts,

which increases directly with the population density (c ∝ D = N
A

where A is the total surface

area occupied by the population) ; it is known as a density-dependent transmission process

[11, 91]. The changes in number of I(t) are formulated by dI
dt
= βS I

A
− γI. At the population

level, the global area A is assumed constant, then β is equal to β ∗ of the mass action transition

equation dI
dt

= β ∗SI− γI [11] and the effect of density can be neglected in such a model

(NB. remember that we can , however, express the importance of density by considering

the effective density in which the individuals live; see appendix B). In density-dependent

transmission, β expressed in area.individuals−1.time−1 (e.g. km2.individuals−1.h−1) is

defined as the effective area over which a S-individual makes effective infectious contacts

per unit time. At the group level, since the group size and its induced occupied surface area

is often reduced, the density has a non-negligible impact on the effective number of contacts

that occur within a group. The individuals in more densely populated groups are more likely

to make more intra-group contacts, increasing the probability of infection. Then, at the

group level, the changes of the state vector for a group Gi is XGi
(t) = (SGi

(t), IGi
(t),RGi

(t))
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is investigated through the following system of differential equations:

dXGi

dt
=







































dSGi

dt
= λRGi

−βSGi

IGi

AGi

dIGi

dt
= βSGi

IGi

AGi

− γIGi

dRGi

dt
= γIGi

−λRGi

where AGi
represents the surface occupied by the group Gi. The changes of the state vector

XG(t) for in-group people observed at the population level is determined by the sum of all

the changes within the groups,
dXG

dt
=

nG

∑
i=1

dXGi

dt
= [

nG

∑
i=1

dSGi

dt
,

nG

∑
i=1

dIGi

dt
,

nG

∑
i=1

dRGi

dt
], where nG is the

number of groups existing at time t in a given population. There are also changes in the

population state vector that occur among the individuals not engaged in any group, isolated

people designated before as the free population. These changes happen when the I or R

individuals are transformed into R and S individuals respectively after a recovery (resp. loss

of immunity) transition process. Then the vector of state changes that concern only the free

population (independent to any group-related process) is formulated by :

dXF

dt
=







































dSF

dt
= λRF

dIF

dt
=−γIF

dRF

dt
= γIF −λRF
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Then the whole change in the population state vector is calculated by summing all changes

from the groups and from the free population :

dX

dt
=

n

∑
i=1

dXGi

dt
+

dXF

dt

2.3.6.0.3 SIR dynamics in the MAS-G model - algorithm. Within a group, a Gille-

spie’s SSA is implemented by the function choose-an-S-I-R-reaction to compute the list

of SIR epidemic events that will occur in the group. The function is recalled each time a

new individual becomes a member of the group and changes its composition, i.e. so the

propensions are updated and the list of SIR events too. The export-SIRSpopulationData,

export-SIRSgroupsData and export-SIRSgroupsData functions are called to record the popu-

lation dynamics, anytime a change occurs in the SIR individual classes of a group.

In populations composed of both groups and individuals (free population), recovery and loss

of immunity transition processes can occur among the free individuals or within groups. In

the last case, these reactions appear in the list of SIR events evoked above. In the first case,

an independent stochastic algorithm is used to compute the transitions from I to R (I −→ R) or

from R to S (R−→ S). These two transition processes correspond to exponentially distributed

waiting times in a given class, e.g. for a transition from I to R, the change γI corresponds to

p(t) = 1/γe−γt distribution, describing the fraction that is still in the infectious class a time t

after having entered into this class [47].

The table 2.3 describes the SSA-based SIR implementation in a given group k.
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Step(0) Initialisation

-Input parameters β , γ, λ

-Input state-change vector ν1 = [−1,1,0], ν2 = [0,−1,1], ν3 = [1,0,−1]

-Input initial sate vector : X0
Gk

= [S0
Gk
, I0

Gk
,R0

Gk
]

-Set t =group start time, # iteration= 0

Step(1) Compute Propensity Function

-Calculate a j(t) = [βSGk

IGk

AGk

,γIGk
,λRGi

] j ∈ [1 : 3]

-Calculate a0 = ∑
3
j=1 a j

Step(2) Generate (τ, j)

-Pick r1,r2 ∈ [0,1]

-Compute τ = 1/a0ln(1/r1)

-Choose the smallest integer j satisfying j = ∑
3
i=1 ai > r2a0

Step(3) Update

-Update the sate vector XGk
−→ XGk

(t)+ν j

-Update time t −→ t + τ

-Go to step(1)

Table 2.3 Gillespie algorithm implementation for a given group k

Following is a schematic diagram that illustrates the simulation path of the grouping and

SIR dynamics in a MAS-G numerical model.
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Figure 2.20 Group-Forming and SIRS-epidemic Simulation Diagram

To study the influence of groups on the epidemic dynamics of a communicable disease,

we also elaborated an MAS numerical model, which was also based on SSA-based SIR

dynamics, but that does not allow group formation. This time, infection reactions are

computed each time I and S individuals are in the same neighbourhood. This allows us to

compare two SIR dynamics, with or without group dynamics. In both cases, populations

(with or without groups) are considered homogeneous, but differently. At the group level,

individuals can be considered as homogeneous populations. The role of groups here is to

provide dense regions composed of numerous individuals, i.e. to increase the probabilities of

infectious contacts.

It is also important to remember that groups form locally from individuals having a certain

moving rate. One can expect that spatial heterogeneities in the SIR distribution can appear

when the moving rate of individuals is sufficiently limited, so that they don’t mix together
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sufficiently. Then the MAS-G model should converge with an SSA-CA numerical model

in which the moving rates are limited. On the contrary, when their rates are important

(e.g. infinite), the dynamics obtained in a MAS-G would not correspond to a simulation

using a homogenous SSA-based numerical model, nor an EDO based one with classical SIR

dynamics, because groups would nevertheless play a role.

2.4 Measurements

2.4.1 Global Measurements

First, in epidemiological studies at the macroscopic level (i.e. at the population level such as

the population of a country, a region or a big city), one can observe the number of changes

in the number of S, I and R individuals. In the context of public health surveillance, these

measures are mainly limited to the estimated number of infected people at the population

level: the number of people infected by a specific disease (e.g. Flu, gastroenteritis ...) are

declared by local monitoring healthcare personals (e.g. generalist doctors, responsible per-

sons in the hospitals or analysis laboratories ...). Then the information is treated by statistical

methods (e.g. interpolation technics to correct missing data) to provide a robust estimation

of this value (number of infected people). However, technically speaking, the estimation

of I individuals or of other global information like epidemic thresholds (e.g. R0) don’t give

access to many types of information, such as the proportion of resistant R and susceptible S

individuals (NB. and of course of the different degrees of immunity and susceptibility against

multiple diseases and the variations) in a given population. Access to this information may
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allow us to extract a real knowledge of an epidemic process at a global scale, especially for

those in which the individuals can be highly immunised naturally or by vaccination.

Monitoring the evolution of the maximum infection speed Vmax, of the Michaelis constant

KM, of the βapp, and of the R0, helps to understand the different effects of R individuals

on the epidemic process since all these variables depend on non-competitive inhibition due

to resistant people R (see section 2.2.1.2). The reproduction number R0, usually thought

constant, is defined as the product of infection rate (which depends on the resistance) and on

the average infection period 1/γ such that R0=βapp[S] × 1/γ . The reproduction number R0

reaches a maximum if βapp is maximum; this happens when the infection starts to develop

and reaches its maximum speed, i.e. when there is no resistance yet (assuming there are

also no vaccinated people). Its maximal level can be compared to R0 that is known as the

basic reproduction number. This value is however not constant and starts to decrease when R

increases. The strength of the variations of R0 is strongly linked to the density of R but also to

the parameters that control group dynamics (e.g. the group association/dissociation constants

k1 and k−1 relative to the catalytic constant kcat , or in other terms to the KM). Figure 3.2

in the next chapter (section 3.1 of chapter 3), a series of SIR kinetic plots obtained by 4

different ODE-based simulations using the modified SIR dynamics, illustrates the impact

of R individuals on these different variables that could be partially measured. The first row

corresponds to a model using modified SIR dynamics without resistance as described in

section 2.2.1.1. The second, third and last rows correspond to simulations using modified

SIR dynamics with resistance (see section 2.2.1.2) in different conditions. These SIR kinetic
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plots show i) the variations of S, I and R individuals, ii) the evolution of βapp and the R0, and

finally iii) the KM and the Vmax as functions of during t = 100 simulated days. The effect of

the conjugated effect of the resistance R and the formation of group-complexes (inhibited

complexes) is very clear (second and third rows) when compared with the kinetics without

resistance (first row) or when group-complexes can’t form easily because of an important

dissociation (last row). The effect is stronger when R are present from the beginning. The

consequences of taking into account the resistance and group dynamics are particularly

obvious when comparing the values of R0 and βapp in their corresponding plots.

2.4.2 Epidemic outbreaks and criticality analysis

The observal of random fluctuations in epidemic outbreaks asks the question of the possible

use, in such epidemiological studies, of concepts from critical systems, notably the self-

organised criticality phenomena and their associated tools. Criticality is a characteristic of

macroscopic systems at thermodynamic equilibrium that, when shifted away from this equi-

librium by regular amounts of energy or matter, relax by abrupt variations of their potential,

i.e. towards their return to the thermodynamic equilibrium. They are composed of numerous

elements in interaction that sometimes behave together (during the relaxation) as a whole and

in this way macroscopic behaviours appear. In many physical systems, the distribution of size

and the occurrence of such variations follow power-laws (exponential). Self-Organised Criti-

cality (SOC), known for a long time by physicists, appears in several natural phenomena like

earthquakes, avalanches, biological extinctions, phenomena with natural fractal structures.

The famous sandpile model introduced by Bak et al. is a simple example which describes
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the criticality mechanism and shows how most of the variabilities we observe all around us

follow the concept of criticality [9, 62]. In living systems (in the large sense), criticality has

been observed in economical studies and also in some social-political mechanisms, e.g. S.

Galam [32, 33] has shown how criticality and related concepts may apply to understand the

dynamics of some social issues in our complex psycho-sociological life. This concept also

captured epidemiologists’ attention because they give a multi-scale view of epidemiological

phenomena that is not allowed in usual mean field approaches [29, 40, 56, 85, 99, 55].

There has been several attempts to interpret the distributions of epidemic sizes and their

durations, and to show how much these phenomena composed of numerous isolated events

(which we will call micro-events) follow power law distributions that are signatures of a

system (in our case a disease and its spreading) at a macroscopic level [86, 58, 59]. The

behaviour of epidemic processes can be studied like catastrophic systems (earthquakes,

avalanches . . . ). For example, according to a study carried out by Rhodes et al.(1997) [85],

the outbreaks of measles epidemics in the Faroe Islands, observed for 100 years, show critical

dynamics as it can be observed in natural phenomena (see Figure 2.21). The probability

distribution of the monthly incidence of a measles virus infection (an epidemic event size s)

in the Faroe Islands obey a sort of scaling distribution; here, a power law. A straight line of

slope −τ +2 (where τ is the scaling exponent) fits this behaviour. As the slope is negative,

the large epidemic events are less likely to occur than the small events and we can estimate
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this probability with the equation below.

p(s)≡ prob(E pidemic.Size≥ s) =
∑

∞

s
′
=s

s
′

∑
∞

s
′
=1

s
′ ∝ s(τ−2)
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Figure 2.21 Critical Dynamics: (a) The monthly measles incidence (epidemic events) in

the Faroe Islands (population ca. 25 000) during a time span of 100 years (b) Epidemic size

probability distribution for the Faroe Island measles data (log-log plot).The best fit line with

a slope−τ +2 estimates τ = 2.265±0.014 (95 % confidence interval) see Rhodes et al. [85]

for more details.

As the models based on homogeneous SSA, MAS or CA (deterministic or stochastic), i.e.

models in which the notion of individual is present, give fine-grain information about the
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number of S, I or R individuals, this allows us to define two types of event associated to each

class of individual, the catastrophe and the rescue events. For example, if we consider the I

individuals, i.e. from the infection point of view, the number of new infected cases during a δ t

period of time before observing any new recovered (rescued) individual among the infected

population is considered to be one rescue event (it is a rescue for infected people since their

number grows) and the number of new recovered R individuals during a continuous δ t
′
period

of time is one catastrophe event (I individuals are lost). On the contrary, if we consider now

the R individuals, i.e. from the recovery point of view, the number of newly recovered cases

during a δ t period of time before observing any new loss of immunity events is considered

to be one rescue event (it is a rescue for recovered people since their number grows) and the

number of new recovered S individuals (loss of immunity) during a continuous δ t
′
period

of time is one catastrophe event (R individuals are lost and transformed into S). This is

the same for S people, the catastrophes of the one, being the rescues of the other. In the

simulations, the periods of time during which there is a continuous variation of new cases

are not necessarily equal, on the contrary, that is only observed when the periods are fixed,

(e.g. during weekly observations. The epidemic duration distribution behaves the same way

to probability distribution of epidemic size: the probability of observing an epidemic event

with a long duration is less than that of events with short durations. This suggests that we

should introduce a measure that could cover both the epidemic size and its duration at the

same time. To do that, we introduce the epidemic charges: infection charge, recovery charge

and health charge. As we will see, both our individual-based and homogeneous SSA-based

models provide fine-grain information (a microscopical resolution of time, space and SIR
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population) and allow us to compute the epidemic charges that could be used to understand

and identify epidemics. This could allow us to extract the essence of real epidemiological

systems and provide a new method to identify a characteristic signature of different types

of epidemic processes and of the factors that affect their dynamics. These signatures are

identified from the probability density distributions of macro-events (temporal contiguous

microscopic events, i.e. catastrophes and rescues). In the simulations, they might depend on

model parameters such as infection or recovery rates, vaccination strategies and spatial or

social-cultural factors. This might be the same for real epidemilogical systems.

2.4.3 Micro and Macro Events – Fine to Coarse-Grain Observations

To clarify the concept of micro and macro events, let us consider an epidemic process in

which there is only one type of infection that is transmitted by an initial infected individual

in a given population. The graph below ( 2.22) illustrates this process. Infectious contacts

occur either directly by infecting agents (in red) or indirectly by healthy agents becoming

infected (in blue). The numbers (labels) associated to the agents indicate the new generation

becoming infected by previously infected individuals during a time interval of d days. The

transmission of an infection to a new person is an epidemic event described at the microscopic

level. However, observing this population as a whole over a given period of time T allows

for an understanding of the process at the macroscopic level : this process that is continuous

and concentrated in time, constitutes an epidemic event viewed at the macroscopic level, i.e.

it’s a macro-event. This kind of interaction between susceptible and infected individuals (by

a communicable infection) happens in all epidemic processes, in whatever manner they are
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observed, whatever models are used. However, depending on the model (e.g. the ODE and

PDE models), or in the manner that the real process is observed (e.g. when observations are

yielded once a week) these events are hidden, since one considers only the population level

as a global macro-event and individual levels are ignored. In meta-population models where

sub-populations (groups) are considered as micro-environments where different macro-event

epidemic processes occur, one can choose to observe the changes at a global scale. However,

they also provide micro-event related information that we think is very useful to fully

understand an epidemic process. For example, a simulation of an SIR model by SSA methods

in homogeneous space results in small stochastic variations of each population class of S, I

and R. Each variation (+1 or −1 individual) constitutes a micro-event. Depending on the

population class these micro-events can be designed specifically as S-, I- or R-micro-events,

and a contiguous series of related micro-events is a S-, I- or R-macro-event respectively. An

example of the variations of infected people obtained by a homogenous space SSA simulation

is given in Figure 2.24 (Top). The epidemic I rescue macro-events are associated with a

contiguous increase in the number of I, while I catastrophic macro-events are associated to a

contiguous decrease in I.
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Figure 2.22 Micro & Macro Events at the Individual Level : Infectious contacts occur

either directly by the infecting agent at departure (in red) or indirectly by healthy agent

becoming infected (blue) in the following steps. The numbers that appear to label agents,

indicate the new generation becoming infected by previously infected individuals during

time interval d. Transmission of an infection to a new person is an epidemic event at micro

level, however observing this population all over a given period of time T (here T = 4d ),

represents an epidemic event at the macro level.

The sum of absolute values of these variations εµt
i
, (i > 0) in each class, during a given

time interval of ∆t months, days, or hours, represent the macro-events that have different

sizes (in total number of individuals) S∆t
M .

S∆t
M = ∑

i

Microi
Events(t ∈ [t0, t0 +∆t)]) = ∑

i

εµt
i

This is the sum of all i-occurred micro-event at instant t during a ∆t interval, t ∈ [t0, t0 +∆)].

The sign of the macro-event indicates a negative or a positive flow toward or from a given

class, i.e. a positive flow of I-micro-events is an infection rescue, while a negative flow of

I-micro-events is an infection catastrophe. Figure 2.23 illustrates the flows associated to

each class (S, I, R) in a SIRS epidemic model during time T .
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Figure 2.23 SIRS Micro & Macro Events: The graphical pattern of flows for each class of

the population (S, I, R) in a SIRS epidemic model during time T . I-micro-event for positive

flows entering the class I are infectious flows and the ones that are leaving as negatives flows

are rescued I-micro-event flows

The global negative flows of each class as well as the positive flows exert a feedforward

effect on an epidemic process. If a given macro-event, occurring during the period T , consists

of a set of recovered-I-micro-events (formation of R from I), more than infected-I-micro-

events (formation of new I), this will lead (in the future) to a reduction of the effective number

of adequate available contacts for the transmission of an infection between susceptible and

infected individual. Consequently it will have an impact on the size of an outbreak during

or after the period T . This is to say that the concepts of rescue and catastrophe events may

be debatable since the macro-events are in fact not independent, for example the healing

process naturally depends on disease recovery rate (that depends itself on heterogeneous

individual immune systems). Figure 2.24 (Top) shows a time series of the number of

infected individuals (I(t)), simulated by a SSA-based model of classical SIR dynamics in

homogeneous space. Each elementary variation of I(t) (+1 or −1 individual) at each instant

represents a micro-event. A set of contiguous micro-events of the same type (increase of I

or on the contrary decrease of I) constitutes a macro-event. They are shown in Figure 2.24

(Bottom) and correspond to the macro-event that occurred between the iterations (time) 0 and

150, i.e. the region in grey in Figure 2.24 (Top). Rescues are shown in red while catastrophes
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are in blue. In this example, there are many important rescues (important formation of new I)

while the catastrophes (recovery events) are less important (few new R form).

Figure 2.24 Stochastic SIR model: micro and macro events. (Top) Time series of infected

people I in a homogeneous SSA simulation show unit variations (+1 or −1 infected subject)

that we call micro-events (Bottom) Contiguous variations of the same sign form macro-events.

Catastrophes (negative macro variations) and rescues (positive ones) correspond to the region

filled in grey on the time series. In this simulation N = 10000, Iint = 1, Rint = 0.

The distribution of event sizes Sd
M, in terms of numbers of individuals, can be studied

as for critical phenomena (discussed in 2.4.2) then for observed micro-events with size sM

(sM =+1 or sM =−1 when computed by the exact SSA) during an epidemic process :

p(sM)≡ prob(SM ≥ sM) ∝ c× s−α
M
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where α is the scaling parameter (exponent parameter) and c is a normalisation constant.

Here, the idea is not to estimate this exponent α so as to fit the power law distribution

with a straight regression line. We are more interested by the notion of criticality as it has

been studied in natural phenomena to measure the size and intensity of a given catastrophic

event. For an example in seismic catastrophic events, the frequency, intensity (size), type and

distribution of earthquakes during a given period of time and in a given area, are referred

to as seismicity. As shown in [9] an earthquake is considered to be a self-organised critical

phenomenon. The earthquakes of large magnitude have a lower likelihood of occuring than

imperceptible seismic tremors, which can occur almost continuously during a given time.

In terms of liberated energy, a sum of numerous small tremors can be similar to a big one

(but the amount and the time-density of this liberated energy determines the effect of the

earthquake). When not liberated as a sum of small tremors, energy accumulates and this

may lead to big catastrophic earthquakes when a critical threshold is reached. This kind of

phenomenon can be seen in an epidemiological context. Usually, the number of secondary

new infected people in a given population are used to measure the importance of an epidemic

(e.g. R0). The importance of an epidemic process is an issue that should be clarified.

Is an epidemic important when the infection germs (e.g. virus, bacteria,. . . ) are dan-

gerous for their host (diseases such as Hepatitis, HIV, ebola), or when a disease spreads

very fast in a given population (like ebola, influenza)? The notion of danger includes a

psychological aspect : no one in Europe wants to be infected by HIV, although no one dies

from HIV in Europe nowadays. An epidemic can also be declared important in relation to



106 Models and Computer Simulations in Epidemiology

its size (number of new infected in a given population during a given time period). The

economic impact caused by an epidemic can also be considered to be essential to considering

an epidemic process as important. In 2013, a lack of personal hygiene cost French companies

a staggering 14.5 billion euros. This was 13.7 billion euros and 12.6 billion euros in UK

and Germany respectively 3. Epidemic of common cold, skin infections, food poisoning,

respiratory diseases, gastro-enteritis and urinary tract infections are diseases that can easily

spread because of lack of hygiene. A minimum of hygiene could, however, eliminate many

viruses, bacteria and other germs. The same could be said about emerging vectors such as

Aedes aegypti mosquitoes that vehiculate the arboviruses that causes Chikungunya or Zika

diseases: reducing their habitat (i.e. water ponds, reserve of water in flower display cases ...)

helps to control their impact.

The importance of an epidemic outbreak can also be seen at different microscopic to macro-

scopic levels. The notion of epidemic importance will therefore depend on the level at

which epidemic outbreaks are observed. The importance of an epidemic at the microscopic

level consists of both economic and health impacts on individuals or on small groups of

individuals (in the above example, the lack of hygiene has a cost of about 900 euros per

worker per year for the companies). The fees caused by a disease are also energy and time

wasting, with various consequences on individuals, families, companies and governments.

As an example, the importance of a gastroenteritis epidemic can vary from the individual

level (. . . family level, small company level, . . . , city level) to national population level.

3Reference: Centre for Economics and Business Research



2.4 Measurements 107

During such an epidemic, only a few cases are reported: there are about 100 to 300 infected

cases I per 100000 inhabitants, i.e. 6000 to 20000 infected cases and a respective density of

0.0094 I/km2 to 0.031 I/km2 in a country (France in this example) of 66 million inhabitants

of about 640000km2 and of average density 103 inhabitants/km2). However, the densities of

infected cases are in fact largely greater when viewed locally in the places where the disease

spreads.

Therefore it seems necessary to understand the impact of an epidemic process at each differ-

ent level (at all the levels at the same time).

A macro-event can consist of a set of numerous micro-events during a very short period

of time or, on the contrary, in very rare micro-events during a very long period of time

(i.e. in this case, for a macro-event to exist, no micro-events of different natures may occur,

e.g. if the micro-events correspond to infections, the recovery rate must be very low). The

first case (an intense and short macro-event) corresponds to a virulent contagious germ (e.g.

ebola, influenza), while the second is not virulent but persistent in the infected organisms

(e.g. HIV, EBV). In the first case the macro-event is short : it spreads rapidly but might

be easily stopped. This might be contrary in the second case. Considering together the

event sizes and their durations in a combined descriptor allows a more precise description

of the nature of an infection and its importance. In this way, one can use a quantity that

indicates the importance of an epidemic event and that combines the information of how big

an event is and how long this event lasts. Hence, in the long term (coarse grain observation)

this quantity, in the two cases evoked before (intense and short epidemic events vs long



108 Models and Computer Simulations in Epidemiology

non-virulent epidemic periods), might be the same. This quantity is analogous to the total

liberated energy in the case of earthquakes: a part of the earth’s crust deforms either by a

long-term series of small events (weak energy) or by a unique big and short earthquake; the

energy implied in the deformation is the same at the end and in any case the crust has changed.

Two macro-events might have the same degree of importance. As a quantity that mea-

sures both the information on the number of micro-events of the same nature and on the

duration of the associate macro-event, we propose to define epidemic charges as the integra-

tion of series of micro-events over time. In an SIR model, three epidemic charges can be

defined : the infection charge CI , the healthcare charge CR, and the reserve charge CS. All

are normalised by the environment surface s in which epidemic processes are observed. They

are defined as follows :

The infection charge gives a measure of the importance of a disease, in terms of spreading

(related to virulence) and of duration of the associated epidemics.

CI = 1/s

∫ t+d

t
I(τ)dτ

By extension, the healthcare charge gives a measure of the manner a system (a population)

resists the infection, including the formation of recovered people R by natural immunity or

by vaccination.

CR = 1/s

∫ t+d

t
R(τ)dτ
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Finally, the reserve charge measures the – increasing – reservoir of susceptible people

available for new epidemics. This could include the formation of susceptible people S by

loss of immunity, but also due to birth or to non-immune cured people.

CS = 1/s

∫ t+d

t
S(τ)dτ

These charges cannot be measured or understood in the context mean-field ODE/PDE models

whereas they are naturally obtained in SSA-based and MAS-based models that consider the

individual levels. On the other hand, these charges are based on both incoming (positive)

and outgoing (negative) flows in each compartmental class, meaning that obtaining the same

measurements in real systems, we need microscopic information that is not easily accessible.

As an example, when measuring the infection charge, to determine the catastrophe events we

need to know the exact instants at which the infected individuals become cured (remembering

that a sequential occurrence of micro-events of a same nature corresponds to a macro-event

called "rescue" or "catastrophe" depending on its sign and in regard to a particular class S, I

or R) otherwise we are not able to define the duration of a given macro-event. This also gives

rise to the problem of the filiation of micro-events (that concern individuals) to particular

macro-events, notably when the spatiality is considered. In fact, when a disease spreads from

one individual to another, it is extremely difficult to track exactly the disease incubation,

infection or recovery period of each individual, or to know the exact trajectory of the disease



110 Models and Computer Simulations in Epidemiology

from person to person. Moreover, even if it was known, it would be difficult to attribute

boundaries to such macro-events apart from by using spatial and temporal thresholds that

limit the events in space and time. Although measuring charges is difficult, such a challenge

is the possibility of using newly developed technological devices like smart-phones, smart-

watches . . . .

Criticality analysis brings attention to the manner in which an epidemic event can be seen

at different levels, from microscopic (i.e. at a fine-grain scale: individuals or small groups

level (see figure ( 2.22 )), to macroscopic (i.e. at the population scale). The potential of this

approach points out the importance of studying epidemiological models in different ways

such as natural critical phenomena (avalanches, earthquakes, species extinctions dots). This

notably provides fine-grain information such as a microscopical resolution of time, space

and population, that could constitute additional and probably more useful information than

the synthetic thresholds, which are conventionally used in epidemiology. Application of

these charges is still a theoretical concept, however we show how charges are obtained in our

simulations (Section 2.4.4) and how this concept could be used to control epidemics.
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Figure 2.25 Micro & Macro Events at Population Level : Schematic diagram of an epi-

demic process in micro-event level: N is population size, n is number of groups formed during

d, group-size at instant t is assigned by si(t) where i ∈ [2,N], di indicates a group-lifetime.

2.4.4 Infection Charge as Signatures of Diseases

As explained in the previous chapter 2.4.3, the epidemic charges derived from micro and

macro events can not be calculated by ODE or PDE-based simulation approaches: since

fine-grain information is not available, it is not possible to measure epidemic events and

consequently epidemic charges. Stochastic simulation based and multi-agent (including

cellular automata) based simulations can somehow provide information on the distribution

of these charges. The shape of epidemic charge curves might be a source of information

in epidemiological studies. Their shape might indeed be affected by infection/recovery

parameters, by the spatial characteristics of the environment, or even by the group-formation

dynamics. One could expect to find characteristic sets of curves associated to certain dis-

eases in certain environmental and social contexts, in such a way these distributions could

correspond to signatures of diseases in their ”natural“ environment. The spreading of disease
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is not the same in every environment, e.g. due to a different development of mosquitoes,

chikungunya spreads differently in Europe and in the Caribbean ; the same could be said

about the spreading of other diseases like HIV or Ebola over the different continents due to

different environments and social contexts.

Such signatures would be helpful to identify which factor plays an important role in a

given epidemic process and at which scale: some factors could play a role in small groups

(and the associated limited epidemic charges) but not in important groups, producing charge

curves far from being power laws. In our models, we can show the difference of epidemic

charge distributions (here infection and healthcare charges) obtained from an SSA-based

simulation and a Group MAS-based simulation of a classical SIR model using the same

kinetic parameters. The normalised probability distribution of infection charge (catastrophe)

and healthcare charge (rescues) shown in figure 2.26, points out the effect of taking into

account the notion of groups (that locally increases the density of individuals and favours

eventual infection processes) and the spatiality (that keeps away individuals in such a way

that some interaction may never occur). This information is interesting to know how to

reduce big epidemic events while managing the occurrence of small events, for example

to stop big outbreaks by finding target sub-populations to apply prevention strategies. An

explicit example is to control a common cold (caused by viruses like influenza, parainfluenza

and rhinovirus): among the employees of a company, one could target sub-populations

of employees that have children (a new study reveals that people living with children are

infected with viruses up to 45 weeks per year, and this varies depending on the number of
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children in the family [19]), and then by applying specific prevention strategies on these

subsets, one could expect to control important outbreaks. The economic impact of epidemic

outbreaks on public health at different levels (individual, family, societies, national and even

international level) justifies the importance of managing the epidemics at the microscopic

level to control them at the macroscopic level.

Figure 2.26 Probability Distribution of Infection Charge (in log-log plot) : SIRS epidemic

process with parameters β = 0.1 γ = 0.01 and λ = 0.1 is simulated by SSA-based model

in homogenous population (Left) and MAS-based with group structured population (Right).

The characteristic shape of each cure might be considered as a signature for this SIRS

epidemic process which depends on population structure.





Chapter 3

Results of our Epidemiological

Simulations

3.1 SIR Epidemic process in ODE-based Model: Continu-

ous models

3.1.1 Modified SIR dynamics without resistance

In some epidemiological models (including ODE-based), the individuals in a given population

(human, animal or even vegetal) can be considered homogenous (identical) or they can even

be considered as being homogeneously distributed in their environment (space). In reality,

the population density is very heterogeneous. A given environment might consist of areas

with different population density, some of them empty of individuals or, on the contrary, very

highly populated. Individuals in extremely dense populations have a higher likelihood of
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being in contact with infection agents, but this definitely depends on population structures.

In this case, population density is not the only factor that can have an extreme impact on

epidemic dynamics.

Here we show how population structures (the way individuals can be in contact with each

other) can affect an epidemic process. For this reason, we use the kinetic SIR epidemic

process (refer to section 2.2.1) in an ODE-based numerical model to study whether only

changing the population densities affects the epidemic dynamics or whether any changes in

population structures lead to more important impacts. In our modified SIR ODE-based model

without resistance the only group-complexes that are allowed to form are SI ones. Their

formation, a limited structuration of the population, is controlled by the dissociation constant,

K. Changing the value of K (i.e. through k1 and k−1) causes a change in the quantity of

SI group-complexes1 (associations of S and I-individuals) in the global population. As an

example, when K is decreasing, more SI groups might be formed and consequently many

infectious events will occur. Here in the modified SIR kinetic equations, the dissociation

constant K = k−1/k1 has a more active role than the population density in epidemic dynamics.

Both the balance and the individual role of k−1 and k1 are important: an important value of

k1 means that lot of group-complexes form, but it can be counterbalanced by an even value

of k−1, which means that group-complexes disassemble quickly, thus giving a turn-over

quantified by K. When the value of K is high (when k−1 is important and k1 low), the effect of

the population density is important. On the contrary, when K is low (when SI form and/or are

1Reminder: Group notion in ODE-based model is not the same as in SSA or MAS-based model. Here we

don’t intend to study the same group dynamics, including group sizes and lifetimes, that can be seen in the

MAS model. Here, the concept of a group is limited to kinetic complexes that appear as temporary chemical

species and that provide connections between I,S and eventually R individuals.
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stable), the role of the density is not really important. Indeed, this constant rate K affects the

number of SI group-complexes that form, groups in which the infection transitions might be

observed. This means that when there is a higher tendency to provide SI-groups (low values

of K), the population becomes a group-structured population and epidemic reactions happen

regardless of the population density (see figure 3.1). On the contrary, when the population

does not tend to a group-structured population (when K is important), good conditions for

epidemic transmission can also be obtained by an increase of the density.
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Figure 3.1 Dissociation constant & Population Density Impacts on SIR Epidemic Dy-

namics : These four simulations based on ODE illustrate the SIR epidemic model without

resistance. The initial population in each class are: Sint = 99,000(indiv.), Iint = 1000(indiv.),

Rint = 0(indiv) and kinetics parameters are kcat = 1.2 day−1, γ = 0.08 day−1, λ = 0.004

day−1. These parameters might define a communicable disease such as measles. The two

plots on the left side of the figures (top and bottom) correspond to populations with a density

of 10,000 Pop. per km2, 10 times more than the population density corresponding to plots

on the right block (1000 Pop. per km2). The dissociation constant in two plots on the top is

high (K=5,000indiv.km−2 with k1 = 5 km2.indiv−1.day−1 and k−1=25,000 day−1). These

are not suitable conditions to form SI-groups. Then the infectious peak is reached very late

when the density is low (top right) compared to when the density is high (top left). With

a lower (10 times) dissociation constant (K=500indiv.km−2 with k1=5 km2.indiv−1.day−1

and k−1=25000 day−1) as in the two plots on the bottom, the conditions are suitable for

SI-groups formation. Then we can see (from left to right plot) that changing the population

density has no impact on epidemic dynamics. Here, the structuration of the population

(group-complexes) rules.

Therefore, the population density does not affect the epidemic dynamics when SI group-

complexes are more likely to be formed. Otherwise, the model behaves as in SIR classical

models in which the population is considered homogenous.
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3.1.2 Modified SIR dynamics with resistance

This behaviour would be different if R individuals would play their role of resistants in the

population. The inhibiting effect of the resistance appears by means of the formation of

other group-complexes such as SR and IR or even SIR (wherein no infection transition can

occur). We show here that the presence of resistant individuals has an inhibitory effect on

newly infected individual dynamics. This is due to a disequilibrium in the formation of

group-complexes in favour of SR, IR and SIR group-complexes in which the infection is not

possible, instead of SI group-complexes. Due to a non-competitive inhibition, a pumping

effect from free individuals to SR, IR and SIR group-complexes produces a lack of free I or S

individuals in the population, thus preventing the formation of SI groups and the subsequent

interaction between these two sub-populations. In an epidemiological context, SR, IR and

SIR group-complexes are inactive groups (non-infectious). These can be considered as

temporary quarantine environments that isolate I and R individuals from direct interactions.

The dissociation constant K is the parameter that controls the non-competitive inhibition

process as well as the formation of SI group-complexes involved in the infection transmission.

In fact, K is not related to the epidemiological process but its role is limited to control the

formation of group-complexes, whatever they are. It should be noted that K could be

distinguished respectively as KA and KB, which correspond to the respective dissociation

constants of SR group-complexes on the one hand, and the three other group-complexes IR,

IS and SIR on the other hand (see Appendix A.2). A high dissociation constant K leads to a

situation that is not suitable for forming any SI complex, which does not facilitate the disease

spread nor the formation of SR, IR and SIR group-complexes. Then, in such conditions of
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high dissociation, because very few group-complexes form, the resistant individuals have a

very limited impact on epidemic dynamics and the modified SIR ODE-based model behaves

as seen in the bottom-right plot of figure 3.1 (modified SIR ODE-model without resistance

under weak population density), i.e. as for a classical SI model. On the contrary, with lower

values of K, as well SI as other group-complexes IR, SR and SIR can form in the same

time depending on the respective amounts of free S, I and R people. As the number of R

individuals increases in a population, more inactive group-complexes SR, IR and SIR form

in such a way that the conditions become less favourable to form SI group-complexes (more

likely for infection transition) thus inhibiting the infection process. This confirms the role

of prevention strategies (e.g. vaccination campaigns, prevention at TV, etc.) to inhibit the

disease propagation.

Monitoring the evolution of maximum apparent speed (VMAX , the maximum rate in enzymatic

reactions), the Michaelis constant (KM) and the R0, helps to understand the effects of R

individuals in a population as inhibitors. The reproduction number, R0 is defined as the

product of infection constant (of first order) and mean infection period such that R0=βapp[S]

× 1/γ . The R0 reaches a maximum when βapp is maximal and this happens when an infection

is starting to spread. This value is not constant and, at its maximal level, it can be compared

to the R0 that is known as the basic reproduction number (as measured in classical SI models).

Figure 3.2 illustrates the impact of R individuals and its dependance on the structuration of

populations. The plot of SIR kinetics in the first row (Figure 3.2 A) corresponds to a modified

SIR model without resistance. The plots in the second, third and last rows (Figure 3.2 B,

C, D) show kinetics of modified SIR models with resistance. These SIR kinetic plots (first
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column) are accompanied by the evolution of βapp, R0 (in the second column), and KM and

VMAX (in the third column) during a time of t = 100 simulated days.
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Figure 3.2 Effects of R-individuals on SIR Epidemic Dynamics. The first simulation (A)

uses a modified SIR model without resistance, while the three other simulations (in B, C,

D) are based on a modified SIR epidemic model with resistance, i.e. by considering R

individuals as inhibitors in a noncompetitive inhibition process. The initial population in

each class are: Sint = 675,000 individuals, Iint = 675 individuals, Rint = 0 individuals in

the simulations A,B,D, but Rinit=6750 individuals (10 times more) in the simulation shown

in C. The population density is assumed constant in all simulations and is equal to 8,700

individuals per km2. The common kinetics constants are: kcat = 1.2 day−1, γ = 0.08 day−1,

λ = 0.004 day−1. The third first simulations (A,B and C) use low dissociation constants

(K=250indiv.km−2 with k1=5 km2.indiv−1.day−1 and k−1=1,250 day−1), on the contrary to

the last simulation (D) in which the dissociation constant is 10 times higher than in the other

simulations (K=2,500indiv.km−2 with k1=5 km2.indiv−1.day−1 and k−1=12,500 day−1).
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The three simulations (A, B, C) with a low value of K (K=250indiv.km−2 with k1=5

km2.indiv−1.day−1 and k−1=1,250 day−1) are favourable to the formation of group-complexes:

with a density of N = 10000 indiv.km−2 the effective association would be of N× k1 =

50000day−1 (50000 events of group-complex formation per day) while there would be only

1250 day−1 dissociations of group-complexes, giving a ratio of N×k1/k−1 = 50000/1250 =

40 times more associations than dissociations. On the contrary, the last simulation (D) is

less favourable to the formation of group-complexes compared to the other simulations :

dissociations is 10 times higher, giving a very small advantage to associations compared to

dissociations (4 times only) for the same population density.

The effect of R-individuals is very clear when comparing the SIR kinetics curves in A

(modified SIR model without resistance) and B (modified SIR model with resistance). The

consequences are particularly obvious by comparing the values of R0 and βapp in their corre-

sponding plots. These effects are even more obvious when comparing conditions in which

there is few resistance at the beginning (Rinit=1% of the population) and other in which many

resistants are already present (Rinit=10% of the population) (comparison of simulations B

and C). One can see that resistance have an effect on both the maximum number of infected

people (about 6000 I.km−2 in B but only about 2000 I.km−2 in C) and at the time at which

this maximum is reached (the maximum of infection ; about 10 day in B compared to about

40 day in C). This is expected since, due to the non-competitive inhibition, R individuals

play a role on both the KM and the VMAX of the infection process.

Finally, one can compare to conditions in which the formation of group-complexes is very

limited due to a strong dissociation constant K=2,500indiv.km−2, i.e. conditions in which
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encounters between S and I individuals become rare (simulation D). This time, the SIR

kinetics obtained are very simular to those obtained in the absence of resistance (simulation

A) ; even the R0 and the VMAX can be compared, but one can nevertheless observe strong

differences in the behaviour of βapp and KM. These parameters are indeed no more negligible

when the density of R becomes very important, i.e. after the infection peek. This produces a

long term effect : infection is inhibited and the S reservoir can fill agai ; it is not possible

in simulation A where the resistance is absent: the remaining S individuals are constantly

consumed by remaining I individuals.

The dissociation constant K = k1/k−1 is explained by different combinations of k1 (as-

sociation) and k−1 (dissociation) constants. Then, high values of k1 and k−1 explain the

formation of many group-complexes (i.e. thus increasing the infection probability) that live

only during short periods of time since they also dissociate very fast. When both these

constants are low, some groups (many inactive complexes among them) are formed for

long periods of time (low dissociation rate). As seen in figure 3.1 showing the impact of

population densities, the effect of the resistant population on epidemic dynamics are also

derived from the role of the K constant; the average turnover of formation/dissociation of

group-complexes. One can observe the same effects in SSA-G, SSA-CA and Group-MAS

based models (next section), by changing the simulation parameters such as the individual’s

speeds or the global population densities, i.e. those that influence the individual-based group

formation dynamics.

However, the results obtained here show that even by using an ODE-based model with our
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modified SIR kinetics, that is to say a type of model that mostly concerns the population

level (they are not about individual interactions), one can study the effects of factors that

occur at an individual level, and their consequences at the population level. The formation

(or dissociation) of group-complexes in a given population doesn’t allow us to study the

epidemic process in heterogeneous structured population (e.g. epidemics within groups of

individuals). However, in such a model, information at the individual and at population level

remain connected. For example, adjusting the value of K affects the structure of individuals’

contacts as surely adjusting the individuals’ moving rates and social tendencies would do.

The constant K may be written as an expression depending on invidual parameters like

speeds and social tendencies. Finally, one can say that inactive group-complexes represent

the average proportions of immune-groups in a population, i.e. groups in which infection

processes are very rare. This is useful for understanding by way of such models the influence

of vaccination campaigns (more IR, SR or SIR complexes in populations can be considered

as a consequence of vaccination campaigns).

3.2 SIR Epidemic process in SSA & MAS-based Models-

Discrete models

Here, we study the epidemic dynamics in structured populations (e.g. populations having

groups of heterogeneous sizes, composition and lifetimes, populations in which individuals

have social behaviours, preferential places and habits, etc.), by models based on stochastic

simulation algorithms (SSA) or multi agent simulation (MAS), particularly with 3 models
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: a stochastic simulation model in homogenous space but with a group structure (SSA-G),

an individual-based stochastic spatial model using a cellular automaton (SSA-CA), and a

multi-agent system having a group structure (MAS-G), all presented in Chapter 2.

3.2.1 SSA-G Model

It is reasonable to assume that dense populations or groups of individuals are more likely to

give rise to faster disease outbreaks. On the contrary, in the populations or groups in which

individuals are far away from each others or where they have less chances of being in contact

with each-other, the SIR dynamics will behave differently: infection events should be more

rare. This assumption can be admitted according to the manner that diseases propagate during

catastrophic epidemics in the real world. Figure 3.3 shows how a decrease of the global popu-

lation density can affect the infectious process. These three simulations are realised with the

SSA-G model where group-formation is controlled (as seen in section 2.2.2.1) by individual

speed ν̄ and average interaction radius d but also by the available free population and its

effective density, a value that depends on the effective surface in which the population live.

The graphic shows three different epidemic dynamics in the same environment depending

on various levels of population density (from more populated to less densely population).

The density is adjusted by the effective surface proportion parameter: given a global average

surface in which the population of 682425 individuals (including 675000 S, 675 I and 6750 R

at the beginning of the simulations) live, we define a proportion of this surface, the effective

surface that the population effectively occupies. In these three simulations, the proportion

corresponds to 0.1%, 1% and 10% of the global surface. The first plots (Figure 3.3 Left)
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correspond to a very dense population: about 680000 people in 0.1% of a global surface of

68km2 (density of 10000indiv.km−2), as to say an effective density of about 106indiv.km−2 !

In such a dense environment, many groups form and favours the propagation of the disease.

In the two other simulations, the situation is completely different. When the effective surface

is multiplied by 10 (1% of the global surface), the average number of groups that form

is reduced by a factor of 10 (Figure 3.3 Middle). In these conditions, the infection does

not develop; it is quite stable (maintained stable over a day). Finally, the conditions of

the last simulation (effective surface: 10% of the global surface) do not allow to maintain

the infection (Figure 3.3 Right). The environment is too much diluted and the infection

epidemics are almost stopped by the presence of an increasing number of resistant individuals.

We clearly show here the importance of having a group structure in the population and

on the importance of spatial parameters, notably the effective surface. Other parameters

play a similar role like the individuals’ speeds and the interaction radius attributed to each

individual.
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Figure 3.3 Population Density & Stochastic Simulation Algorithm of Group-based

Model (SSA-G) These three simulations use a SSA-G model to simulate modified SIR

Kinetics with resistance at the scale of big population (e.g. big cities). The initial popu-

lation in each class and common parameters are: Sinit = 675,000 individuals), Iinit = 675

individuals, Rinit = 6750 individuals, kcat = 1.2 day−1, γ = 0.08 day−1, λ = 0.004 day−1.

These parameters might correspond to the dynamic behaviour of diseases like measles. The

dissociation constants used are low (K=150indiv.km−2 with k1=5 km2.indiv−1.day−1 and

k−1=750 day−1), which favours the formation of SI, SR, IR and SIR group-complexes in the

population. The mean individual speed is ν̄ = 0.1 m.s−1 and the average interaction radius

d = 0.5 m. In the simulations, from the left to the right, the effective surface proportion

varies: (Left) 0.1% of the global surface, (Middle) 1% and (Right) 10%.

(Left) In the left plot SIR dynamic corresponds to those that would occur in a dense popu-

lation wherein many groups form (almost 40% of total population). A very fast infection

process is observed (more than 60 new I-individuals in almost 13 hours). (Middle) In the

second simulation, the population is less dense than in the previous one. Obviously less

groups form (only 2% of the total population). The number of I-individuals is quite stable,

maintained at a value close to the initial value for a duration of about 24 hours. (Right)

The situation of the 3rd simulation becomes more extreme. Very few groups form, which

disfavours the encounters between S and I individuals. moreover, the infection epidemic is

expected to vanish as it is progressively stopped by an increasing number of R-individuals in

the population.



3.2 SIR Epidemic process in SSA & MAS-based Models-Discrete models 129

3.2.2 SSA-CA Model

The individual’s move speed can influence the way people of different – epidemiological –

nature are mixed within groups. This affects the role of R-individuals. Assuming that there

are some parts of the environment where sub-population are organised in a way there is

always less R than other people (R people staying in a limited part of the environment), then

when an epidemic starts in that population, these parts of the environment might be subject to

many catastrophic and important macro-events and few rescue events. This would lead to a

strong increase of disease outbreaks in those parts since the importance of R sub-populations

would be negligible. This is particularly pronounced when there is no mixing of individuals

(no moves) between two such regions (one without resistance and the other saturated by

resistant people), producing epidemic outbreaks that are more severe in the area without

resistant individuals than within the parts with more resistant individuals. This is the case

at the scale of big environments (regions and countries) where immune people are well

represented in some places (villages) but not in the surrounding places; in this case, the

epidemic spreads around without encountering any resistance. At a smaller scale, when

people are surrounded by resistant individuals, the disease can not spread easily and often

fails to spread.This is the case when a significant part of the population is vaccinated. All

of this addresses average situations, viewed at large scales (big populations) and over long

periods, but since epidemics are the expression of a sum of many micro-events, one must

consider the importance of resistance at the level of few individuals during short periods.

Vaccinated individuals might indeed be considered as local obstacles to prevent the local

propagation within limited areas. This depends on a ratio between the mixing rate (individual



130 Results of our Epidemiological Simulations

speeds) and the infection rate, that is to say between a kind of diffusion (at least a transport

of matter: the individuals) and a reaction. When the ratio is in favour to the diffusion, the

reaction becomes homogeneous over space and in the case of epidemics, this favours the

infection. When the diffusion is limited (limited moves), the reaction occurs in very small

areas (heterogeneities in space) and the disease does not spread easily. In real life, there are

many situations in which people mix very fast (market, school playgrounds, etc.), or on the

contrary when they don’t mix (school classes, cinemas, queues in an administration or at the

supermarket, etc.).

In the case where the mixing of sub-populations is very fast then I individuals have the

same chance as R individuals of meeting S individuals. We evoked a well known examples

(markets, etc.), but there are some facilitators that change the rules of people mixing in our

societies. An example for this can be the effects of new technologies like the Internet (social

networks where people can fix a date) as facilitators to meet people. For sexual experiences

this can increase the number of sexual partners in a population and consequently lead to an

epidemic of sexually transmitted diseases (STD). In this case, some ’hookup applications’2,

i.e. geolocated social applications on smartphones (like the well known Tinder or Grindr

apps) play a considerable role in the rise of STD in the population. A New York University

study in 2013 ([20]) shows an increase of 16% of HIV cases in the USA (across 33 states)

between 1999 and 2008 that were caused by dates organised through Craigslist3. Another

example comes from the Rhode Island Department of Health in the US, that showed that

between 2013 and 2014, the cases of syphilis grew by 79%, HIV infections were up 33%

2Mobile phone applications used to meet people for casual dates
3Classified advertisements website
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and gonorrhea cases increased by 30%, partly due to such applications. STD cases in young

adult populations are growing at a faster rate than the rest of the population, particularly

because of the increasing use of "hookup apps".

The effect of resistance can be clearly explained by stochastic cellular automata simu-

lations. In the SSA-CA model, the propagation of the disease is due to direct contacts in the

close neighbourhood, from individuals to their nearest neighbours, and the SIR dynamics

obtained show a stochastic behaviour. When the population is important (10000 individuals

in a 100×100 cells of 100 m2), the stochastic fluctuations are averaged and we obtain curves

similar to those obtained by deterministic continuous ODE simulations. Figure 3.4 illustrates

the negative effect of a high move speed that mixes individuals. The simulation shows that

when individuals move quickly (0.1 m.s−1), the infection peak reached early (at the 3.75th

day), the proportion of infected individuals is about 33% of the population. When individuals

move slowly (0.0001 m.s−1), the infection peak is reached later (at the 6.25th day) and the

proportion of infected individual is lower (only 22% of the population).

In this figure, the nature of the individuals is distinguished by different colours in the environ-

ment (S in green, I in red, R in blue). When the individuals move quickly, the environment

is permanently mixed at a large scale and appears homogeneous (Figure 3.4 Top Left). On

the contrary, one can observe large areas where only one type of individual, mainly S and

R, dominate the others, the environment appears heterogeneous (Figure 3.4 Bottom Left).

One can also observe that I individuals are mainly located at the boundaries between S and R

regions.
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Figure 3.4 Impact of resistance and moving rates on SIR Dynamics: These two simula-

tions use a stochastic model of modified SIR kinetics implemented in a cellular automaton

with common parameters βapp = 0.03 indivi−1.day−1, γ = 0.08 day−1 and λ = 0.004 day−1.

The population consists of 10,000 individuals (or 10,000 cells) and the environment covers

an area of 1 km2 (100 × 100 cells of 10×10 m). On the left is shown the simulation environ-

ments in which the individuals are identified by colours : green for S, red for I and blue for

R. On the middle are shown the oscillatory SIR dynamics as a function of time, and on the

right SIR dynamics are displayed in a state diagram that shows the beginning of the spiral of

damped oscillations. The move speeds of individuals are different in the two simulations :

(Top) 0.1 m.s−1 ) vs. (Bottom) 0.0001 m.s−1. In the first case with a lower move speed, the

epidemic infected curve peak is reached after only 90 hours (3.75 days) on the contrary to

the second case that occurs after 150 hours (6.25 day).

In fact, these are infectious propagation fronts. These fronts of I between S and R regions

are clearly visible in figure 3.5 that shows SIR kinetic dynamics in a simulation environment

map during 12 days (4 days between each picture). Fronts of individuals form due to a lateral

inhibition phenomenon, a king of scorched earth policy: a small core of I individuals first
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forms (first map of figure 3.5), the injections spread by increasing laterally (radially) the

number of I individuals and by consuming S individuals. The front of I advances but as

the simulation advances, I individuals may be converted (stochastically) in their turn into

new R individuals. The more I individuals in a region, the more R individuals will form.

Since the disease can not be transmitted to R individuals, the only way it can spread is

toward regions densely populated in S individuals, causing the front to advance. New cores

of R individuals form in place of I dense regions. Then, the process regenerates S dense

regions since R individuals may become susceptible another time (loss of immunity). At

large scales, this produces waves of I individuals, as observed in many excitable media like

the Belousov-Zhabotinski reaction [41].

Figure 3.5 SIR Kinetics Propagation Fronts : The environment maps shown here are a

snapshot of a SIR kinetic dynamics with the same parameters as those given in previous

simulation except for βapp = 0.2 indivi−1.day−1. Increasing the infection rate allow us to

highlight the formation and propagation of infection fronts (from left to right in above images).

This simulation illustrates the propagation fronts of I-individuals and how R-individuals play

the inhibitor role to prevent disease spread.

3.2.3 MAS-G Models

The population density can be considered at two different levels: global and local. As shown

in previous models based on ODEs, the population density at the global level corresponds
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to the number of total individuals in a given population, per unit area. As shown by those

models, density at the global level can influence the epidemic process and group-formation

dynamics at the same time. However, how about the densities at group levels and their impact

on the epidemic process?

In a structured population (e.g. a population with a group structure), the density at each level

can separately affect the epidemic dynamics. In this case it is necessary to study coupled

group formation and epidemic processes by models in which group dynamics are based on

"intelligent individual interactions" and on ”social aspects". This is to say that all interactions

between individuals that produce groups of a certain size, lifetime and effective surface,

depend on each individual decision. Multi-agent systems are the most adapted and more reli-

able than other modelling approaches to study the epidemic dynamics in a given population

at the microscopic scale. As described in Chapter 2, a multi-agent and group-based model

(MAS-G) is used to study group formation impacts on SIR epidemic dynamics. We compare

here the simulation results obtained by such an MAS-G model with another MAS model in

which there is no group formation.

In this MAS-G model, as mentioned before (see section 2.2.2), we attribute a random

probability number, 0≤ α < 1, to each agent (individual) to represent their own grouping

tendencies. This causes individuals to decide to form their own group or to join existing

groups or not. Therefore there is no external control on the manner groups form (i.e. on the

quantity group size). Group lifetime is computed by a concerted procedure in which all the

group’s members participate and that is based also on a probabilistic distribution (refer to

section 2.2.2.3).
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The simulation environment consists of a grid of about 200× 200 cells, each cell being

a square of 4× 4 m. A number N = 104 agents (individuals) simulated in such an area

represents a population density of 15,625 inhabitants per kilometre squared, a value between

the average densities of Grenoble with 8,837 indiv.km−2 and Paris with 21,498 indiv.km−2.

The time step of simulations is 3 seconds (similar to the shorter group lifetimes) and we

simulate about 10 to 20 days. NetLogo is a very flexible programming environment, well

adapted to such MAS, but it is not well optimised for large scale simulations, so our runs

used weeks to months of real time for a few tens of days of simulated time.

Once the simulation starts, groups form and a SIR epidemic process based on Tau-leaping

SSA (discrete time version of Gillespie’s algorithm) is applied at both levels, population and

groups. Then the actual population density depends on the number of individuals already in

a group per square unit of a given area (m2). The density-dependent transmission algorithm

is not affected by the number of solitary individuals that have not participated in group

formation. The fact that an individual is present in a given area without any contact with the

rest of the individuals can’t cause any infection transmission and such an individual can only

be considered as a quarantined individual.

The total number of groups that form, during the 432000 steps of simulation time (15

days), is equal to about 90000. In a characteristic simulation, we obtained 92737 groups

including 82519 small groups (n ≤ 5), 10136 middle sized groups and 82 larger groups

(n > 10). As expected, but to be confirmed, our algorithm works well, producing size dis-

tributions in accordance with the global probabilistic law used in the SSA-G model: group
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sizes are exponentially distributed. Since all groups are not supposed to have at least one I

or R individuals among their members, they can’t be considered as active groups in which

the epidemic process algorithm provides at least one of the possible reactions (infection,

immunisation, loss of immunity). An example of simulation (after 15 days) with 1990

groups (1238 small, 743 middle size and 9 bigger groups) is plotted in figure 3.6. Population

densities (grouped individual density) are displayed for each 80×80 m blocks (dotted area)

in grayscale that represent areas from the less populated (white) to very densely populated

ones (black). This illustrates how groups are heterogeneously distributed in space.



3.2 SIR Epidemic process in SSA & MAS-based Models-Discrete models 137

Figure 3.6 Group Formation & Population Density in the MAS-G Model: Density is

calculated as the number of total grouped individuals (active and inactive groups) per square

meter in each area block (dotted area) of 80×80 m. The number of active groups is 1990

(including 1238 small, 743 middle size and 9 bigger groups) after 432000 simulation steps

(15 days of simulated time). They are plotted on the density map.

In figure 3.7, the active groups are plotted in the same way but, this time, the map shows

the number of infection outbreaks per block. The intensity of infection outbreaks is displayed
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by a white, then yellow to red palette to represent the different levels from no-infection to

high infection.

Figure 3.7 The Group Formation & Number of Outbreaks in MAS-G Model: Outbreaks

are the total number of infected individuals per square meter for each area block (dotted area)

of 80×80 m, at the end of the simulation. Only the active groups are plotted in figure 3.6
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When comparing the distribution of infection outbreaks in figure 3.7 with the densities

in figure 3.6, confirms that a dynamic behaviour similar to that of the SSA-AC model is

obtained: the blocks with a high grouped population density but few active groups also

have few infected areas since infections occurrences are limited to active groups. Inversely,

the areas containing higher numbers of active groups are more likely to have considerable

epidemic outbreaks. The prevalence of the SIR epidemic outbreaks corresponds to the spatial

location of groups.

The question raised here is : what would change if a given population was considered

without any group structures ? or said differently, Would the SIR epidemic dynamics be

remarkably different?. To test this, we used the same SIR epidemic model with the same

parameters (β = 0.003 km2.indiv−1.day−1, γ = 0.08 day−1 and λ = 0.04 day−1) on the sim-

ulated population without forming groups. Interactions between agents were only temporary

(1 simulation step) and limited to the close neighbourhood surrounding the agents (within

the interaction radius). The results of these two simulations are shown in figure 3.8.
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Figure 3.8 SIR Epidemic model with & without Groups Formation: Two different SIR

dynamics are obtained by simulating them in a population with group formation and in

another population without any group formation. The simulated population density, in both

cases, is 15,625 inhabitants per square kilometre. The common SIR model parameters are

β = 0.003 km2.indiv−1.day−1, γ = 0.08 day−1 and λ = 0.04 day−1. Both SIR dynamics are

shown at the population level. When group formation is allowed (Top), the SIR process shows

very slow dynamics, notably due to the very small proportion of active groups (in which there

are infected individuals). On the contrary, when group formation is not allowed (Bottom)

the infection peak is reached after only 2 days, due to a faster mixing of individuals, in all

likelihood ; free agents move indeed permanently and mix fastly compared to individuals

belonging to groups. This however illustrates the strong effect of the presence of a group

structure or not.

The MAS-G model also provides fine-grain information in the form of a microscopical

resolution of time, space and a description of populations at the level of groups and single

individuals. The possibility to observe epidemic events at both macroscopic (population) and

microscopic (individual) levels gives access to information that is important to understand
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epidemic dynamics. An example of such information is the incidence at the group level.

Incidence is defined as the probability to develop a particular disease during a given period

of time (# of new cases during [t1, t2] / population at risk during [t1, t2]). Incidences in

populations with or without groups are shown in figure 3.9. This shows again the impact of

groups on the SIR dynamics. The incidence at the population level (with no group formation)

is – almost – always higher than at group level during all the 20 simulated days and this is

more remarkable during the first four days. With the parameters used here, the infection does

not develop in our group-based MAS simulation, but different parameters could be used that

would produce results similar to those obtained in SSA-G simulations.

Figure 3.9 Daily Incidences at Group & Population Levels: The number of daily new

cases are compared for two simulations, with (and without) group formation in red (in pink

respectively).

Comparing the results of daily incidence between these two simulations confirms the

importance of considering the notion of groups in the population. The study of an epidemic
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process at the population level (without group formation) might cause an over-estimation

of epidemic intensity. Groups play an important role in disease’s spread in two ways: first,

at the microscopic level within groups (e.g. the spread of a flu epidemic in a family of 5

member is not the same as in a company that consists of 10 to 30 employees); second, at

the macroscopic level, diseases diffuse from groups to the global population, transforming

micro-events (within groups) into big, catastrophic macro-events, when many groups are

present in a population.

Data obtained from MAS-G -based simulations could also be analysed at other levels,

notably at the individual level by tracking, individual after individual, the paths that the

disease follows. One could provide a connection network map to understand who infects who

or even investigate who is more susceptible to the infection, particularly to know whether they

are individuals with high group tendencies or those who stay for a long time in a group. Here,

we aimed to show the important role of group-structured populations in epidemiological

studies but further developments are needed to study the evoked epidemic pathways, or even

to inject more realistic social behaviours to our agents (like ”intelligent" bots in video games).

These sorts of analyses could be done in the context of participatory simulations (serious

games) in which part or all the individuals are played by real humans.



Chapter 4

Discussion and Perspective

4.1 General discussion

By using different mathematical models (modified SIR dynamics with or without resis-

tance) and different numerical implementations (ODE, homogeneous SSA, group-based SSA,

group-based MAS), we improved the role of R individuals, that are as important as the I

individuals, to produce and understand an epidemic process. Resistant individuals do not only

introduce delays in the SIR dynamics; their presence, as obstacles inserted within groups with

other types of individuals (S and I), strongly influences the SIR dynamics. In communicable

diseases the infection process (spreading) depends on the "pool of S individuals" susceptible

to be in contact with I individuals. When more S individuals are present and close to I

individuals, the latter are more likely to meet S people during their infectious period. Then,

R individuals influence the infection process in two different ways: first, they introduce a

latency (see [111]) by forming a pool of immune people delaying the reconstitution of the
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S reservoir; second, they dilute the population and block a disease’s spreading at the same

time. This last point is not taken into account in SIR dynamics computed by ODE or PDE.

As we introduced this notion of group-complexes in SIR kinetic models, it has allowed us

to study how the R individuals can play an inhibitory role against the spread of disease. In

this way, we integrated local spatial structures in homogenous populations, whose dynamics

are simulated by deterministic ODE or by the corresponding stochastic simulation algorithms.

We introduced social and local spatial structures, like groups, in SSA-G and MAS-G numeri-

cal models, but also in ODE simulations with modified SIR kinetics that include the notion

of group-complexes, and in SSA-CA in which the effect of local grouping and resistance

are intrinsic to the implementation (local neighbourhood on a grid). Although these imple-

mentations are very different, the dynamics obtained for a given epidemic process look very

similar, as shown in figure 4.1 below. However, the understanding of an epidemic process,

from local and individual events to global observations, depends on the simulation scale, and

on the related observation scale, that give access to the different mechanisms involved at

different levels (e.g. individual, groups or population, but also relational networks).
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Figure 4.1 The same epidemic seen by three different models : In all these simulations,

the parameters are the same as those in figure 3.3 given for a population of 10,000 inhabitants

with a density of 8700 km−2). The results obtained by a stochastic simulation with group-

formation (SSA-G: Top Left), a stochastic cellular automaton (SSA-CA: Top Right), and a

multi-agent based simulation with group-formation (at two different observation scales: 15

days and 2 days) (MAS-G: Bottom), show very similar behaviours. However, they do not

provide the same amount of information.

We also showed that the local structure in space and the composition of a group of

individuals influence the infection dynamics due to individual and local parameters that

can be taken into account in all our models, like individuals’ speeds or local population
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density (related to the effective surface). For example, simulating an epidemic by using a

MAS-G models depends on which context the population dynamics are considered: low

density (people in the street), more densely populated (colleagues in an office or a couple

of friends in a cafeteria), or extremely densely populated (a crowd in a concert in which

any movement is not easy, or several people in a lift). Then to take correctly into account

the different characteristics of epidemics, to simulate all such situations at the same time,

different appropriate models working at different levels (and having different observation

scales) must be used. For this reason, we propose the use of hybrid models as appropriate

combinations of different modelling methods. We showed that the different models presented

in this thesis can use the same sets of parameters and that in these conditions, they can show

the same behaviours. In this way, our models can be connected together to simulate different

regions of space, or different moments (e.g. nights vs days), with more or less precision. For

example, one could simulate the evolution of a disease (e.g. gastroenteritis) in France by a

PDE using our modified SIR dynamics on a square grid, to simulate the same dynamics by a

SSA-G within a small part of this grid corresponding to Grenoble city (e.g. which could be

equivalent to only one cell of the PDE grid) so as to increase the precision of SIR dynamics

in an area surrounding the region of interest, and finally, to simulate within this city another

very limited region, the region of interest, e.g. the TIMC-IMAG laboratory, by a MAS-G

numerical model.

Of course, we can not expect to "save the world" by such "toy models" as is often suggested

by mathematicians looking for research funds. We did not investigate on whether our models

are better adapted to explain an infection process or another, or to use more population classes
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than the S, I and R ones (e.g. like children, pregnant women, healthy carriers, etc.), or even

to take into account geographic and architectural features like reliefs, transports, city and

building structures, or finally to include realistic individual behaviours (social interactions,

moves, rhythms, etc.). However, we think that our models constitute a good basis to develop

prevention tools and that they could be used in public health policies in the way they could

guide (i) the structuration in time and space of the populations and their environments in

order to reduce the epidemiological risks, (ii) the promotion of health behavioural patterns

and (iii) to improve attitudes towards hygiene.

In an attempt to provide models with more realistic aspects, we also suggest applying

complementary approaches like participatory simulations, the use of smart devices, social

networks and the big-data, to enrich our hybrid models with features that are not easy to

simulate.

4.2 Complementary Approaches

Epidemiological studies based on modelling should benefit from all existing and new tools

or technologies to improve health care and social knowledge at both individual and public

levels. Complementary methods can enrich epidemiological models to understand and

simulate the complex behaviour of epidemic processes strongly linked to socio-cultural

factors. Participatory simulation approaches, knowledge on the structure of and data from
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social networks and big-data may help to put together information that seemed inaccessible

until recently. This collection of information may lead to more reliable models.

4.2.1 Participatory Simulations and video games

According to Vygostsky and related theoreticians, knowledge is social, constructed from

cooperative efforts to learn, understand, and solve problems. The behavioural learning

theory perspective focuses on the impact of group reinforcement and rewards on learning.

Epidemiological modelling relies on methods to learn and understand the propagation process

of diseases. They are expected to be used to prevent and even stop the epidemic outbreaks

by promoting prevention strategies. However when we deal with socio-cultural impacts on

epidemic dynamics, individual behaviour has a significant role. This role can be taken into

account and understood by using multi-agent systems in which individuals’ decisions are

made by probabilistic based procedures or even in a more effective way, by using cooperative

methods in simulations. One can effectively use participatory simulations (serious games) to

model an epidemic process by considering in the same simulation the behaviours (interactions,

moves, etc.) driven by real human agents, and others obtained by simulation procedures.

Participatory simulations are then new tools to bridge between – human – behavioural

sciences and computer simulations.

Another manner to include better social behaviours is to study how players behave in massive

multiplayer online role playing games (MMORPG) like Second Life, Blizzard’s World of

Warcraft, etc., in which socially evolved structures developed. Particular simulations are a

simplified version of MMORPG.
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4.2.2 Smart Device Applications, Social Network and Big-Data

Nowadays, smart devices (e.g. tablets, smartphones, smartwatches) are changing human

life styles. Smartphones are the most common devices that are used by more than 2.23

billion people worldwide, estimated as 96.8% of the population while 47.2% of these also

use mobile internet 1 in 2015. These statistics allow us to get a glimpse of how smartphones

could play an important role in modelling, collecting and analysing health data: they allow

geolocation, one can know a part of the spatio-temporal interaction network of an individual,

but they also bring different aspects of individual healthcare domains, notably via health and

fitness tracking software.

Figure 4.2 FluPhone Project. In this smartphone app, individuals can declare their state of

health by selecting predefined pictograms showing different states of health (headache, cold,

cough, etc.). The app yields this data while geolocating the individual. Data recorded from

many users allows the tracking of diseases and constructs infection maps.

1International Telecommunication Union Statistics
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As an example (see figure 4.7), in an epidemiological research project (FluPhone Project

of the Cambridge university), mobile phones were used to understand behavioural responses

to Flu outbreaks (also refer to Peruani & Tabourier, Plos One 2011). Volunteers were asked

to download a dedicated application on their smartphone (Fluphone). The application anony-

mously recorded the encounters between people and also gave the users the possibility to

declare their state of health through a system of pictograms (showing a healthy person,

headache, abdominal pain, etc). Then, diseases could be tracked and infection maps un-

derstood. Such information could be at least compared with the results of models, but also

potentially used as predefined behavioural patterns in epidemics models.

There are also other examples based on smartphone applications for mapping and tracking

disease’s spread and outbreaks. The use of social networks in virtual environments is in-

creasing, particularly among the younger generation. Social networks, such as Facebook, are

becoming valuable source of information about users’ social behaviours.

Figure 4.3 Social Network Data Source: Browser Media, Socialnomics,MacWorld

The study of social network connections and all other related information obtained in

The Bigdata, can lead to an understanding of the individual behavioural aspects in a given
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population facing an epidemic outbreak. Such data provides information about people’s

lifestyles, their contacts, their frequented places and their trips. This information is now

fairly easy to access by data-mining approaches from mobile smartphones, social networks,

online newsletters, online consumer preferences (including that about travel, food, shops,etc.).

Such data can be used to develop pre-topological maps (maps of consumers, workers,etc.).

They provide a set of information about groups structures, relationship patterns, connections,

interdependency, etc.. Such information might be used as complementary informative

indicators to detect early stage disease outbreaks in real time and by actual geographical

positions. For example, starting with information collected from Facebook data (see figure 4.4

below), one can obtain information about different groups of friends, their connections and

where they live. This can go further with more detail to analyse the social network’s statuses

that are mentioned by users about specific subjects (e.g. common cold, influenza) as was

done in [14] with Twitter accounts. The personal information published voluntarily by users

on the internet could be viewed as a useful source of information to the benefit of public

health systems. For example, in Facebook, the most popular users (with more followers)

could be vectors to promote prevention strategies such as vaccination campaigns.
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Figure 4.4 FaceBook Data: The author’s Facebook data is analysed to detect different groups

of friends, their connections and the current geographical positions (i.e., all the places they

visit). This information is declared on Facebook by personal users. On this graphic, three

locations are specified as Iran, France and the United State of America, separated by doted

lines. Different groups of friends (9 groups) are detected (e.g. group #5 is known as a group

of Brazilian friends who live in France). Each user is displayed by a single dot whose size

depends on the number of the user’s friends on Facebook. Connections between friends

(users) are shown by arc lines.

Moreover, there already exists specific health applications for smartphones to follow

disease outbreak. They are based on the collecting of health-related information from media

sources on the internet (e.g. Twitter accounts, newsletters or publicly available sources by

national and international public health organisations 2).

2Outbreaks Near Me: a mobile application from the HealthMap website founded by a team of researchers,

epidemiologists and software developers at Boston Children’s Hospital
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In fact only having access to this level of details can not lead to a perfect disease spread

monitoring system, but a combination of this complementary information with numerical

simulations may produce more accurate hybrid epidemiological models. Future work should

be based on these kinds of hybrid data-driven and predictive numerical models.

4.3 Possible Future Works

Monitoring the health dynamic of a given population is an essential way to identify the

occurrence of epidemic events at an early stage and to control the spread of disease. The

mathematical models used in epidemiology are not the same as their analogues in meteorol-

ogy, whose analytical results are used frequently at the individual level by everyone as well

as at the population level by national or international organisations. Although meteorological

and epidemiological fields are two different worlds, they aim to study the dynamic behaviour

of a dynamical process (the weather or an epidemic) in real time and in exact geographical

locations. The weather forecasting models, beside their mathematical nature, are based

on observations that come from different numerous information sources such as weather

satellites, radiosondes, etc. These complementary observations help to enrich numerical pre-

dictive results and make the meteorological models the most accurate human-made models.

In epidemiological studies, since we don’t have much complementary information at the

individual level on related factors in disease spread such as sociocultural patterns, individual

connection networks and etc., and since human (animal) behaviours are very complex com-
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pared to atmospheric flows, one can not practically predict the chances of an individual (or a

sub-population) being infected in a given population by a given communicable disease.

At the individual level, in order to predict the significant risks and estimate the proba-

bilities of being infected in real time in actual locations, one can not limit the modelling to

models at the population level (e.g. ODE and even PDE, and their corresponding homoge-

neous SSA-based models). Therefore, we propose epidemiological modelling approaches

that are compatible with the individual level and that can also respond to other constraints

existing at the population level. This might be possible by using multi-modal data approaches

that consist of bottom-up data processing from the individual level to populations and the

reciprocal (top-down).

An epidemiological hybrid model might consider a combination of different systems that

collect information at individual, groups and population levels. The information at each level

is used to improve the modelling methods at the other levels. For example, data collected

from personal mobile data can be used, such as pre-topological information about spatial lo-
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cations of individuals, their replacement positions and their connection networks to introduce

spatiotemporal structures into models at the population level.

Figure 4.5 Multi-Modal Data Approaches

Analysing the information about epidemic outbreaks from several sources (based on

different epidemic models and data-collecting systems) leads to an enrichment in public

health surveillance at different levels. It is important then to provide models that can furnish

measurements of epidemic processes from the microscopic (individual) level to the macro-

scopic (population) level. Models offer an anonymous data bank of outbreak tracks and

records from single individuals to groups of people in a population, a way to determine who

is infected by whom, when and where, as it’s possible in spatial multi-agent based models

(e.g. MAS-G) or spatial or structured stochastic based numerical models (e.g. SSA-CA and

SSA-G).

It is time now for epidemiological models to serve as tools for providing fine-grain health

awareness (at both microscopic and macroscopic levels) to inform and predict the potential

epidemic risks in real-time and in actual positions. Models should be tools that help public
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health policies to be accompanied by ongoing epidemic control strategies. This would be

possible by means of hybrid models enriched by multidimensional information from an

individual to groups of people or the global population. Such hybrid models could be used

according two main axes: first to organise human environments (and rhythms) in order

to reduce the economic impact of epidemic diseases, and second to personalise disease

monitoring in health-care systems.

• Hybrid Models to Organise Human Environment

By considering a hybrid models, one can assess how a human environment arrangement

can affect an epidemic process. Very simply speaking, there are three different human

environments: living, working and learning environments. The dynamics of an epidemic

would behave differently in each of those environments: for example, the dynamics of

gastroenteritis in an elementary school is not the same as in a high school, notably because

children are asked to clean their hands frequently at the elementary school. Then we must

use the disease surveillance systems depending on different contexts.

Hybrid models proposed here, include different modelling approaches that are adapted to

different contexts (e.g. educational institutions such as schools, administrations, universities)

at different levels, for example a sophisticated multi-agent models (MAS-G) to model

working or learning environments with accuracy by considering pre-topological information

sources like agents’ characteristics (e.g. working hours, meeting durations, lunch break,

etc.) and a cellular automaton based modelling (SSA-AC) for dense environments in which

individual’s movements are reduced (e.g. the population of a crowded metro, school canteens,
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etc.), or on the contrary by using more global modelling methods (like the SSA-G numerical

model) to model large populations. These models can be developed by using complementary

information (e.g., achieved by big-data).

We propose here to use such hybrid models to simulate the impacts on epidemic dynamics

caused by architectural adjustments in human environments, like the arrangement of offices,

corridors or toilets, the number of washbasins, etc.. They can also be used to assess the

impact of the health awareness campaigns for epidemic prevention like for the models used

in socio-political studies to understand the social impacts on political opinions, see [34–39].

These models can be considered as advice tools for institutions (e.g., schools, administrations,

universities), public organisations or private companies to propose useful changes in human

rhythms (including behavioural patterns) and human environments in order to reduce the

impact of epidemic outbreaks. For example, to reorganise school or work environments with

new sanitary and hygiene arrangements or to assess the prevention strategies to a specific

targeted population for improving hygiene practices or changing hygiene behaviour. The

figure below illustrates how such different models can be combined to model different

contexts.
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Figure 4.6 Hybrid Models to Organise the Human Environment

• Personal Disease Surveillance Assistant

The second potential application of our models is to elaborate a personalised disease surveil-

lance that provides a new health-care surveillance method, meaning disease surveillance by

everyone.

Figure 4.7 Disease Surveillance System
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As mentioned before about the importance of epidemiological modelling approaches

at different levels, we also believe that disease surveillance systems (figure 4.7) must be

considered at different levels, especially at the individual level, notably as an improvement

in individual responsibility in population health. It has to be noted that the idea here is not

to predict the occurrence of an epidemic disease for a specific individual, but to bring all

information related to a given individual, such as the record of recent and actual locations,

claimed health status, social networks status and information,etc., to personalise surveillance

in health-care systems. This could lead to a win-win public healthcare system as everyone

could benefit from its advantages. Of course, this raises the question about private data and

ethics.

At the population level, as said before, one could provide more accurate epidemic models to

study the population health dynamic (for governmental purposes, e.g. to target populations

concerned by new vaccination policies), at a smaller scale (enterprises or educational institu-

tions levels), one could reduce (optimise) the costs or lack of individual productivity due to a

communicable disease at work (office) on in a learning environments (school). Moreover, at

the individual level, each person could be aware of the local possible epidemic outbreaks

in specific (personalised) geographic locations in real time, of the potential risks to that

anyone is exposed. By receiving preventative and health awareness alerts, such a health

surveillance systems would become more personalised and specific. Future work implying

strongly modern social science studies have now to be coupled to epidemiology to combine

these two fields efficiently. During this Ph.D. thesis, we contributed by preparing the ground
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Figure 4.8 Personal Diseases Surveillance Assistant Applications such as Virtual Companion

for coupling epidemiological and population dynamics, but a strong effort with many others

has to follow so as to obtain the efficient tools we described above.
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Appendix A

SI and SIR Dynamics

The population density of free individuals S, I and R (those who are not in contact with the

others, i.e. that do not belong to any group-complex), are expressed by [S] f = [S(t)] f ree,

[I] f = [I(t)] f ree and [R] f = [R(t)] f ree respectively.

We denote also [S] = [S]tot , [I] = [I]tot and [R] = [R]tot the total quantities of S, I or R

individuals, i.e. including free individuals and individuals in groups (in SR, SI, RI or SIR

group-complexes). These densities [S], [I] and [R] are those that are measurable in the

simulations, while the different group-complexes cannot be measured.
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A.1 Modified SI kinetics without resistance (and with la-

tency)

The equations of the reaction mechanism of the SI system are the following:

S+ I
k1
−⇀↽−
k−1

SI
kcat−⇀ I+ I

as we can see in the equation, R doesn’t appear. Then the measurable infection flux can be

derived by :

d[I]

dt
=−

d[SI]

dt
= kcat [IS]

Eq. A.1.1

Assuming the amount of [S] is large enough for any time t at which one can measure this

quantity, one can formalise one of the following enzyme kinetic hypotheses: the quasi-

equilibrium approximation of Henri-Michaelis-Menten or the quasi-steady state approach

of Briggs-Haldane. In both cases, they specify that the formation of SI group-complexes is

perfectly compensated by their disappearing due to pure dissociation (quasi-equilibrium) or

by dissociation coupled to catalysis (steady state). Then one can formulate this assumption

that
d[SI]

dt
= 0 as follows:

d[SI]
dt

= 0 ⇔ k1[I] f [S] f = (k−1 + kcat)[SI] in the case of stationary equilibrium

and

d[SI]
dt

= 0 ⇔ k1[I] f [S] f = k−1[SI] in the case of quasi-equilibrium where kcat ≪ k−1.
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The effect of considering one of these above hypotheses as well as the approximation

for which [S] f = [S]tot = [S] ∀t, are discussed in the appendix A.3. Anyhow, in all the cases

we will focus on the steady state that allows us to study the case in which the SI catalyst is

comparable to its dissociation, so with following equation :

k1[I] f [S]tot = (k−1 + kcat)[SI]

Eq. A.1.2

Then we can formulate the mass conservation equations. In the enzymatic case this is quite

simple: [S]tot , the total amount of substrate S over time, consists of [S] f (free substrate),

[ES] (the substrate linked to the enzyme E), and [P] f the product P that is the transformed

substrate. In the epidemiological case, I species (individuals) are the same nature as S and

R species (also individuals): they design persons (or more generally, living species). This

means that the mass conservation of S includes the other classes I and R and vice versa : one

must conserve the amount of individuals. This causes a significant problem for describing the

kinetics equations in an epidemiological context. In the appendix A.3, we explain how to deal

with this problem by taking into account the relativity of the rates of infection, immunisation

and loss of immunity. Then for the modified SI kinetics system (without resistance) the mass

conservation equations are:

[S]tot = [S] f +[SI]
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[I]tot = [I] f +[SI]

Injecting [I] f = [I]tot− [SI] in [SI] = [I] f [S]tot/KM (Eq. A.1.2) leads to :

[SI] =
[I]tot [S]tot− [SI][S]tot

KM
=

[I]tot [S]tot

KM +[S]tot

then
d[SI]

dt
=− kcat [S]tot [I]tot

KM+[S]tot
=− kcat [S][I]

KM+[S] .

so
d[I]
dt

= βapp[S][I] with βapp =
kcat

KM+[S] .

A.2 modified SIR kinetics with resistance

By integrating the R individuals as non-competitive inhibitors in a kinetic system, the general

SIR reaction scheme is described as follows :

NB. We distinguish here (compared to the SIR reaction scheme described in sec-

tion 2.2.1.2) two dissociation constants for the formation of group-complexes SI, RI and

SIR (dissociation constant KB) on the one hand, and for the formation of group-complexes

SR (dissociation constant KA) on the other hand, to maintain the possibility of expressing

the fact that the formation of group-complexes including infected individuals may be less
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important than the formation of group-complexes that do not contain I individuals (i.e. the

group-complexes SR). Then KA ≤ KB.

The Mass conservation equations are :

[S]tot = [S] f +[SI]+ [SR]+ [SIR]

[I]tot = [I] f +[SI]+ [RI]+ [SIR]

Eq. A.2.2

Several group-complexes can form. Then by writing the dissociation equilibra for bimolecu-

lar associations having two S, I or R components, we have :

S+ I
k1
−⇀↽−
k−1

SI ⇔ S+ I −⇀↽−
KA

SI ⇔ [SI] =
[S] f [I] f

KA

⇔ KA =
[S] f [I] f

[SI]

S+R
k
′
1−⇀↽−

k
′
−1

SR ⇔ S+R −⇀↽−
KB

SR ⇔ [SR] =
[S] f [R] f

KB
⇔ KB =

[S] f [R] f

[SR]

R+ I
k1
−⇀↽−
k−1

RI ⇔ R+ I −⇀↽−
KA

RI ⇔ [RI] =
[R] f [I] f

KA

⇔ KA =
[R] f [I] f

[RI]

so KA =
[S] f [I] f

[SI] =
[R] f [I] f

[RI] and KB =
[S] f [R] f

[SR] with KA ≤ KB.

Similarly, for bimolecular associations with three S, I and R components, we have:

SI+R −⇀↽−
KA

SIR ⇔ [SIR] =
[SI][R] f

KA

⇔ KA =
[SI][R] f

[SIR]

SR+ I −⇀↽−
KA

SIR ⇔ [SIR] =
[SR][I] f

KA

⇔ KA =
[SR][I] f

[SIR]
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[I]tot = [I] f +[SI]+ [RI]+ [SIR]

RI+S −⇀↽−
KA

SIR ⇔ [SIR] =
[RI][S] f

KA

⇔ KA =
[RI][S] f

[SIR]

so [SIR] = 1
3KA

(

[SI][R] f +[SR][I] f +[RI][S] f

)

Dissociation equilibria are now injected in the equation A.2.2 :

[I]tot = [I] f +[SI]+
[R] f [I] f

KA

+
1

3KA

(

[SI][R] f +[RI][S] f +[SR][I] f

)

[I]tot = [I] f +[SI]+
[R] f [I] f

KA

+
1

3KA

(

[SI][R] f +
[R] f [I] f

KA

[S] f +
[S] f [R] f

KB
[I] f

)

[I]tot = [I] f +[SI]

(

1+
[R] f

3KA

)

+
[R] f [I] f

KA

(

1+
[S] f

3KA

+
[S] f

3KB

)

[I]tot = [I] f

(

1+
[R] f

KA

(

1+
[S] f

3KA

+
[S] f

3KB

))

+[SI]

(

1+
[R] f

3KA

)

then:

[I] f =
[I]tot− [SI]

(

1+
[R] f

3KA

)

1+
[R] f

KA

(

1+
[S] f

3KA
+

[S] f

3KB

)

Eq. A.2.3

As seen in Appendix A.1, the equation A.2.3 is used in the stationary equilibrium (equation

A.1.2):

[IS] =
[I] f [S]tot

KM
=

[I]tot [S]tot− [SI][S]tot

(

1+
[R] f

3KA

)

KM

(

1+
[R] f

KA

(

1+
[S] f

3KA
+

[S] f

3KB

))
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[IS]



1+
[S]tot

(

1+
[R] f

3KA

)

KM

(

1+
[R] f

KA

(

1+
[S] f

3KA
+

[S] f

3KB

))



=
[I]tot [S]tot

KM

(

1+
[R] f

KA

(

1+
[S] f

3KA
+

[S] f

3KB

))

then we have :

[IS] =
[I]tot [S]tot

KM

(

1+
[R] f

KA

(

1+
[S] f

3KA
+

[S] f

3KB

))

+[S]tot

(

1+
[R] f

3KA

)

and

d[I]

dt
=

kcat [I]tot [S]tot

KM

(

1+
[R] f

KA

(

1+
[S] f

3KA
+

[S] f

3KB

))

+[S]tot

(

1+
[R] f

3KA

)

and as we can reasonably assume that [S] f = [S]tot = [S] ∀t, [I] f = [I]tot = [I] ∀t and

[R] f = [R]tot = [R] ∀t, we have :

d[I]

dt
=

kcat [I][S]

KM

(

1+ [R]
KA

(

1+ [S]
3KA

+ [S]
3KB

))

+[S]
(

1+ [R]
3KA

)

This gives the following apparent constant rate:

βapp =
k1kcat

(k−1 + kcat)
(

1+ [R]
KA

(

1+ [S]
3KA

+ [S]
3KB

))

+ k1[S]
(

1+ [R]
3KA

)

It also has to be noted that :

d[I]

dt
=

kcat [I]
(

1+ [R]
3KA

) ×
[S]

KM
(

1+
[R]

3KA

)

(

1+ [R]
KA

(

1+ [S]
3KA

+ [S]
3KB

))

+[S]
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Then both the maximal infection rate Vmax app and the Michaelis constant KM app are affected

by the presence of R individuals in a population.

Vmax app =
kcat [I]

(

1+ [R]
3KA

) =
Vmax

(

1+ [R]
3KA

)

KM app =

(

k−1 + kcat

k1

)

(

1+ [R]
KA

(

1+ [S]
3KA

+ [S]
3KB

))

(

1+ [R]
3KA

) = KM

(

1+ [R]
KA

(

1+ [S]
3KA

+ [S]
3KB

))

(

1+ [R]
3KA

)

A.3 About Mass Conservation Equations of [S(t)]tot

Unlike an enzyme E in the equations from enzymology, which is completely different from its

substrate S, we have to consider that the nature of I (infected) individuals is not fundamentally

different from those of S (susceptible) or R (resistant) individuals. In enzymology, the

conservation of the total amount of substrate includes free substrate S, the substrate combined

to the enzyme ES and the product P. Then, in the epidemiological context, one should

formulate the total mass conservation of species S, I or R as follows :

[S]tot = [R]tot = [I]tot = [S] f +[I] f +[R] f +[SR]+ [SI]+ [RI]+ [SIR] = [N]tot

which is obviously not applicable.

Let us see how one could provide a reasonable approximation of the amount [S]tot . The
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solution is related to relativity between the different reaction rates.

In this simplified conservation equation, the term R is the most problematic. First, the

dynamics of formation of R individuals is much slower than the formation of new infected

individuals in a population. In our simulations (see 3) the immunisation reaction is 5 to 50

times slower than the infection (e.g., for a density of 5000 inhabitants per km2, the apparent

infection constant is βapp = 4.10−4km2.indiv−1.day−1 and the immunisation constant rate

γ = 0.08day−1, then the ratio of infection and immunisation is equal to 25). In this context,

the resistance process is slow and it can potentially be neglected (R can be neglected in the

conservation equation, at least in early stages of the infection). The second and probably

the more important point is that R individuals are not involved in the infection process itself

since they act as non-competitive inhibitors (in enzymology, this means that the inhibitor

does not bind the same site as the ligand to the enzyme). Then it is reasonable to exclude

them, as free individuals, from the conservation equation of S and I, those that are reactive

species.

Regarding the presence of group-complexes SI, RS, RI and SIR in the conservation equation,

the problem is easy to solve: the dissociation constants KA and KB are quite large, denoting

a large turn-over of groups, which means that if many groups of individuals form, many

groups split out at the same time, and this causes most individuals to be considered as free

individuals. Then the number of group complexes SI, SR, IR or SIR is largely negligible

compared to the number of free S or I individuals.

Finally, based on the same principle, while the dissociation constants are large and by as-

suming that the number of formed groups is very important (k1 large), this means that the
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first order equilibrium constant k−1 is also very large, much larger than the catalytic constant

kcat , i.e. the group-complex dynamics are largely faster than the infection dynamics. In our

simulations (with reasonably realistic parameters), we have k−1/kcat ≃ 100 to 1000. Thus,

the occurrence of new infected individuals I is very slow compared to the quasi-equilibrium

S+ I ⇋ SI, which strongly leads individuals to remain ain the free S and I population. Then,

if the number of I individuals is quite low at the beginning, it is reasonable to affirm that

[S]tot ≃ [S] f .

It has to be added that in actual observed epidemic processes, the number of infected cases is

effectively around 100−500 persons per 100000 in the population (e.g. during the occur-

rence of major outbreaks of viral gastroenteritis during the week 50 in December 2014 in

France, the observed maximum number of infected people was 300 per 100000 persons).

Therefore the number of I is in practice very small and negligible compared to the number of

S individuals, and then it does not counts in the conservation equation.



Appendix B

Effective Surface

What is the actual area in which individuals move and have interactions with others? The

answer is not simple, but the effective surface should probably be a very small percentage of

the actual surface. It might be comprised between 0.1% and 1% of the surface (according to

an empirical estimation made in the laboratory and from maps of Grenoble).

This surface depends firstly on how crowded the occupied places are (see Figure B.1): desks,

chairs, plants, heaters, baskets, fridges,... but also walls, doors. All these objects take up a

large surface, and the individuals’ movements are limited by the available space to move.

Usually, one walks in a room or a hall at least at 20 to 30 cm from the objects and the walls.

For example, our desk is about 12\m2 in surface, but we two are occupying an effective

surface of about only 2\m2.
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Figure B.1 The plan and a picture of an open space in a building illustrates how space is

already took up by objects, and how individuals can only move in the free zone. Here, only

the grey area can be effectively used by individuals. In practice, their movement is more

limited due to the additional presence of various objects.

Above all, outdoor spaces consist of some areas (the middle of a road or spaces where

cars are parked) that we rarely expect to see individuals: it is generally preferred to walk

along the sides of a parked car and walk on the sidewalks. No walks or presence are expected

(in general) in the green spaces of cities or in the middle of rivers. Therefore, all these

limitations for occupying the spaces around us reduce the effective surface (Figure B.2)

and this consequently increases the effective overall population density. For example, for

a population density of 8.7\103 inhabitants per km2 for Grenoble city and its suburbs, we

can probably say that an effective density (modified in accordance wit the available space

to occupy) can be comprised between 8.7\105 and 8.7 106 inhabitants per km2. By doing a

quick calculation we find an adjusted density of 1.4 106 to 5.7 106 hab.km−2 in a classic lift

which can hold up to 8 people and have a surface of 1.4x1.0m2.
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Figure B.2 Where are the people? We distinguish between the area that can be occupied by

individuals as effective surface to meet and interact with others (in the context of disease

transmission) and the areas that are not suitable are not more frequented for this aim. For

example the real surface of Grenoble consists of space took up by the river that pass through

the city (the Isère river), two graveyards, the mountains (here, the Mount Jala), parks, large

boulevards ... ; this excludes a lot of space from the effective surface !

Then it is important to take into account the effective surface to calculate the adjusted

population density in a given population. The adjusted density by effective surface as a more

realistic value that may play a very important role in the control of epidemics. Density is

a crucial factor in the spread of many communicable diseases, then reorganising the space

and facilitating the movement of people should play an important role in the control and

prevention of diseases.




