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Introduction 

La Tuberculose (TB) est l’une des maladies les plus anciennes de l’humanité. Des signes de TB 

ont été observés dans des ossements appartenant à des hommes du Néolithique et dans la 

colonne vertébrale de momies égyptiennes, attestant des ravages causés par ce mal dès 5000 

avant JC. Ce n’est qu’en 1882 que Robert Koch identifia Mycobacterium tuberculosis (Mtb) comme 

agent causal de la TB. La mortalité associée à la TB a commencé à diminuer avec l’amélioration 

du niveau de vie (logement, nutrition et revenus) au début du 20ème siècle, bien avant 

l’avènement des antibiotiques antituberculeux. En 1921, avec le développement du premier 

vaccin contre la TB, le BCG, et la découverte d’un certain nombre d’antibiotiques efficaces tels 

que la streptomycine en 1944, l’isoniazide en 1952 et la rifampicine en 1963, l’espoir d’une 

potentielle éradication  de la TB avant la fin du XXème siècle a émergé. Malheureusement, avec 

9,6 millions de nouveaux cas par an et 1,5 millions de décès, représentant la principale cause de 

décès par maladie infectieuse dans le monde devant le VIH en 2014 , il  faut reconnaître que 

l’éradication de la TB est loin d’être atteinte.  

D’importants efforts sont investis dans le développement d’un nouveau vaccin contre la TB. La 

modélisation mathématique prédit qu’un vaccin efficace à 60% résulterait en une baisse de 80% 

de l’incidence de la maladie d’ici 2050. Aujourd’hui, 16 candidats vaccins sont dans diverses 

phases d’essais cliniques avec comme objectif principal soit, de booster la vaccination BCG, soit 

de pouvoir être utilisé de façon autonome chez les individus immunodéprimés pour lesquels une 

vaccination BCG est déconseillée. En outre, certains vaccins ont également pour but de raccourcir 

le traitement et/ou le taux de rechute post-thérapeutique lorsqu’ils sont utilisés comme 

compléments immunothérapeutiques au traitement antibiotique antituberculeux actuel. 

Dans le cadre de cette thèse nous nous intéresserons à l’un de ces vaccins candidats en 

particulier : ID93/GLA-SE. Ce candidat a été développé par l’Infectious Disease Research Institute 

(IDRI, Seattle, WA, USA) et est aujourd’hui en essai clinique de phase IIa dans le but d’évaluer son 

innocuité et son immunogénicité chez des patients adultes atteints de tuberculose pulmonaire  et 

ayant suivi un traitement antibiotique efficace. ID93/GLA-SE est un vaccin sous-unitaire 

associant la protéine ID93, qui résulte de la fusion de quatre protéines de Mtb, avec un agoniste 

du TLR4, le Glucopyranosyl lipide A (GLA) formulé dans une émulsion stable squalène huile dans 

l’eau (SE). 
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L’adjuvant GLA-SE, favorise une réponse CD4 TH1 importante, considérée comme centrale dans la 

protection contre la TB, et la production d’IgG2 par les lymphocytes B contre l’antigène utilisé. 

Cet adjuvant est aujourd’hui évalué dans plusieurs essais cliniques en association avec d’autres 

antigènes qu’ID93, y compris LEISHF3 contre la Leishmaniose, sm14 contre la Schistosomiase, 

P27A contre le Paludisme et les particules pseudo-virales H5 contre le Virus Influenza. 

Néanmoins, les mécanismes d’action de cet adjuvant sont encore peu connus. 

Le principal objectif de cette thèse est de mieux comprendre l’effet adjuvant médié par GLA-SE. 

On sait aujourd’hui que le système immunitaire inné joue un rôle primordial dans le 

déclenchement et l’élaboration de la réponse adaptative aux vaccins. Nous essayons donc de 

caractériser les principaux acteurs (cellules immunitaires, cytokines, facteurs de transcription, 

voies de signalisation …) de la réponse innée à GLA-SE qui coordonnent la réponse adaptative 

subséquente, à savoir la réponse CD4 TH1 et la production d’IgG2c par les lymphocytes B. Trois 

hypothèses de recherche principales sont investiguées :  

1. Des facteurs spécifiques à la réponse TH1, à savoir le facteur de transcription T-bet et la 
cytokine IL-12, sont essentiels à la réponse adaptative à GLA-SE. De plus, les IFN de type I, 
importants dans l’initiation de la réponse à GLA-SE,  sont  également nécessaires pour 
l’induction des réponses TH1. 

2. Les macrophages sous-capsulaires du ganglion lymphatique drainant interagissent 
directement avec GLA-SE et  sont  importants dans la réponse adaptative ultérieure. 

3. La fonction de présentation d’antigène des lymphocytes B a un rôle non redondant dans 
l’initiation de la réponse à GLA-SE.  

Un objectif secondaire est d’établir un modèle murin de rechute de TB après traitement et 

d’évaluer l’utilisation d’ID93/GLA-SE en tant que vaccin immuno-thérapeutique dans ce modèle. 

Nous postulons qu’ID93/GLA-SE réduira le taux de rechute dans un modèle murin de traitement 

antibiotique sous-optimal.  

Les résultats de cette thèse sont discutés dans trois publications, plus une partie complémentaire 

non soumise à publication; tous les quatre sont résumés  ci-dessous : 
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Première publication : L’adjuvant vaccin GLA-SE agoniste du TLR4  requiert des 

mécanismes d’action canoniques et atypiques pour l’induction de la réponse TH1. 

Dubois-Cauwelaert N et al. PLoS One. 2016; 11(1): e0146372.  

Le glucopyranosyl lipide A en émulsion squalène-eau (GLA-SE) est un adjuvant qui favorise une 

réponse immunitaire lymphocytaire CD4 TH1 importante et la production d’IgG2 par les 

lymphocytes B. Cette immunité renforcée est suffisante pour assurer une protection contre de 

nombreuses maladies, y compris la Tuberculose et la Leishmaniose. Néanmoins le mode d’action 

de GLA-SE est encore mal compris. Afin de mieux caractériser l’action de cet adjuvant, il est 

important de comprendre comment les différentes cytokines et facteurs de transcription 

contribuent à l’initiation de la réponse immunitaire. Dans cette étude, nous avons évalué la 

contribution de T-bet, de l'IL-12 et de la signalisation par le récepteur aux  interférons de type I 

(IFNαR1) dans ces réponses en utilisant des souris T-bet-/- et IL12-/- et un anticorps monoclonal 

bloquant anti-IFNαR1.  

Conformément aux résultats de précédentes études sur différents adjuvants, nous avons 

démontré que l’induction par GLA-SE d'une réponse TH1  et la production d’IgG2 est dépendante 

de T-bet, un facteur de transcription clé pour la production d’IFNγ et la différentiation des 

lymphocytes T en TH1. De plus, un déficit en IL-12, une cytokine canonique dans l’induction de la 

réponse TH1 a également inhibé le  développement de lymphocytes CD4 TH1 ; la production 

d’IgG2 n’a en revanche pas été altérée. Finalement, nous démontrons que la réponse immunitaire 

innée vis-à-vis de GLA-SE, y compris la rapide production d’IFNγ par les lymphocytes CD8 

mémoires et les cellules NK et l’expression de CD69 par les cellules des ganglions lymphatiques 

drainants, est conditionnée par les interférons de type I produits rapidement après 

l’immunisation. Ces cytokines contribuent par conséquent également à la réponse adaptative vis-

à-vis de GLA-SE. 

D'après ces résultats, nous proposons un modèle dans lequel GLA-SE induit la production d’IFNα 

à travers l’expression de CD69, pour piéger dans les ganglions lymphatiques les cellules 

nécessaires à la réponse à GLA-SE. La production d’IFNα permettrait aussi la production, , d’IFNγ 

par les lymphocytes CD8 mémoires et les cellules NK pendant la phase innée de la réponse 

immunitaire. En parallèle, GLA induit la production d’IL-12 qui, en synergie avec IFNα, promeut 

l’expression de T-bet et l’engagement des lymphocytes CD4 dans la voie TH1.  
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La compréhension du mécanisme par lequel les adjuvants incitent la réponse immunitaire revêt 

une importance cruciale dans le développement de vaccins. Les résultats obtenus lors de cette 

étude suggèrent que l’induction précoce des cytokines IFN de type I et II pourraient être les 

signatures de la réponse innée optimale à GLA-SE et prédire la réponse TH1 résultante. Des 

investigations supplémentaires seront nécessaires pour déterminer si cette production précoce 

d’IFN de type I peut être utilisée dans une stratégie de sélection dans le développement de 

nouveaux vaccins ou comme signature d’adjuvant dans les essais cliniques chez l’homme. 

 

Seconde publication : L'IL-18 et les macrophages sous-capsulaires du ganglion 

lymphatique sont essentiels pour l’induction des réponses lymphocytes B avec l’adjuvant 

GLA-SE agoniste du TLR4. 

Desbien AL, Dubois Cauwelaert N et al. (Soumise à publication) 

La compréhension des événements cellulaires et moléculaires qui relient les réponses 

immunitaires innées et adaptatives est cruciale dans la conception de nouveaux adjuvants. GLA-

SE augmente les réponses cellulaires et humorales aux antigènes vaccinaux.  L’induction de 

lymphocytes B et la production subséquente d’anticorps sont des facteurs clés dans le 

développement de vaccins efficaces. Dans le contexte actuel de nouvelles pandémies, de 

libération intentionnelle d’agents biologiques dans un but terroriste et de vaccins « à la 

demande » pour les voyageurs, l’initiation d’une réponse humorale rapide avec des approches 

vaccinales pragmatiques est hautement souhaitable. 

Dans cette étude nous démontrons que peu de temps après l'injection, de l'adjuvant GLA-SE, et 

comparativement à l'alum, l’émulsion à base de squalène (SE) sans GLA ou de GLA sans SE, induit 

significativement plus de lymphocytes B spécifiques à l’antigène, des titres d’anticorps 

supérieurs, un plus grand nombre de lymphocytes T CD4 folliculaires (TFH) et une réponse TH1 

plus importante. GLA-SE augmente la différenciation des lymphocytes B spécifiques à l’antigène 

cible en lymphocytes B du centre germinatif, en lymphocytes B précurseurs de lymphocytes 

mémoires et en pré-plasmablastes  qui sécréteront rapidement des anticorps. De plus, nous 

montrons qu’après immunisation, les macrophages médullaires sous-capsulaires CD169+ 

SIGNR1+ sont les premières cellules immunitaires du ganglion lymphatique à capturer GLA-SE et 

sont critiques pour la réponse innée, y compris la production rapide d’IL-18  induite par GLA-SE.  
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La déplétion des macrophages sous-capsulaires (dont les macrophages médullaires font partie) 

ou l’abrogation de la signalisation à travers le récepteur de IL-18, altèrent de façon importante la 

production de lymphocytes B spécifiques à l’antigène et d’anticorps induite par GLA-SE. La 

déplétion des macrophages sous-capsulaires réduit aussi considérablement la réponse TH1 mais 

pas la réponse TFH. Ainsi l’adjuvant GLA-SE agit en interagissant avec des macrophages sous-

capsulaires qui produisent IL-18, permettant alors l’induction de l’expansion et de la 

différentiation des lymphocytes B, de la sécrétion d’anticorps et l’induction d’une réponse TH1. 

Cependant, la réponse TFH semble être, elle, indépendante de l’action des macrophages sous-

capsulaires. 

 

Troisième publication : La présentation d’antigène par les lymphocytes B guide la 

programmation médiée par TLR4 des lymphocytes CD4 mémoires. 

Dubois Cauwelaert N et al. (Soumise à publication) 

Dans cette étude, nous avons cherché à déterminer le rôle potentiel des lymphocytes B, au-delà 

de leur capacité de production d’anticorps, dans la réponse immunitaire vis-à-vis de GLA-SE et 

nous nous sommes particulièrement intéressés à l’induction de la réponse CD4 TH1. Pour cela 

nous avons utilisé des souris déficientes en lymphocytes B (µMT-/-).  

En utilisant l’antigène ID93 en association avec GLA-SE, nous avons montré que la réponse TH1 

mémoire (6 semaines après la dernière immunisation) induite par GLA-SE et mesurée par la 

production de cytokines TH1 par les lymphocytes CD4, est fortement altérée dans les souris µMT-

/-. Cependant, une semaine après immunisation, cette même réponse TH1 semblent peu ou pas 

affectée chez ces mêmes souris. Ce phénomène avait été préalablement observé suite à l’infection 

de souris µMT-/- par le virus de la chorioméningite lymphocytaire (VCML).   

Toutefois, même si les lymphocytes CD4 induits peu de temps après immunisation en absence de 

lymphocytes B semblent, en effet, être fonctionnellement similaires à ceux induits dans des 

souris non-déficientes, en particulier dans leur capacité à produire des cytokines TH1, ils sont 

néanmoins phénotypiquement différents. En effet, les souris µMT-/- sont déficientes dans leur 

capacité à produire des lymphocytes CD4 effecteurs précurseurs de cellules mémoires (CEPM), 

préalablement définis dans d’autres études comme étant soit PD1+/KLRG1-, soit Ly6Clo/T-betlo. 
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Ces résultats démontrent que les lymphocytes B sont nécessaires pour l’initiation d’une réponse 

TH1 qui pourra être maintenue dans le temps.  

Par la suite, en transférant les lymphocytes CD4 générés une semaine après immunisation dans 

les souris µMT-/- dans des souris non-déficientes, nous avons pu démontrer que ces cellules 

perdaient leur fonctionnalité (capacité à produire des cytokines TH1) avec le temps. Ces données 

confirment nos résultats précédents, démontrant que les lymphocytes B sont nécessaires à la 

génération de CD4 CEPM après immunisation. D’autres expériences seront nécessaires pour 

déterminer si les lymphocytes B sont également nécessaires pour le maintien de la réponse TH1. 

Finalement, en transférant aux souris µMT-/-  des lymphocytes B sauvages ou n’exprimant pas le 

CMHII et donc incapables de présenter des antigènes, nous avons montré que cette présentation 

d’antigènes par les lymphocytes B était nécessaire pour leur rôle dans la génération de CD4 

CEPM. Il faut noter que ce point  est encore aujourd’hui fortement débattu dans la littérature.  

En conclusion, ces résultats soulignent l’importance d’un système immunitaire à multiples 

facettes travaillant de concert pour la génération d’une immunité à médiation cellulaire. 

Collectivement, les progrès récents dans la compréhension du rôle des lymphocytes B, dans la 

réponse humorale mais aussi dans la réponse cellulaire, auront un impact important sur le 

développement de vaccins contre plusieurs pathogènes et en particulier ceux nécessitant une 

réponse TH1. De plus, ils pourront bénéficier  aux médecins qui utilisent des thérapies qui 

éliminent les lymphocytes B chez les patients souffrant de troubles liés aux lymphocytes B. 

 

ID93/GLA-SE, un vaccin thérapeutique ?  

Le traitement contre la Tuberculose est long et complexe, la thérapie de première ligne implique 

6 à 9 mois de traitement avec une association d’antibiotiques (isoniazide, rifampicine, 

pyrazinamide et éthambutol). De plus, l’émergence de résistances à ces antibiotiques, 

principalement causée par la difficulté qu’ont les patients à suivre une si longue thérapie, a 

d’autant plus complexifié ce traitement. En effet l'apparition de souches de Mtb résistantes aux 

antibiotiques de première ligne nécessite des traitements de durée plus longue (pouvant aller 

jusqu’à deux ans) avec des associations d’antibiotiques de seconde et troisième lignes. Ainsi le 

non-respect du traitement antibiotique dans son intégralité entraîne l’augmentation du risque 

d’échec du traitement, résultant en une récidive de la maladie. Dans ce contexte, le 
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développement de nouveaux schémas thérapeutiques permettant de réduire la durée du 

traitement antituberculeux (et donc d’améliorer l'observance) et/ou permettant de diminuer le 

risque de rechute après traitement est nécessaire. Il a été démontré qu’ID93/GLA-SE pourrait 

potentiellement être utilisé en association avec le traitement antibiotique classique pour 

améliorer son efficacité et diminuer la durée du traitement. Outre la réduction de la durée du 

traitement, il serait intéressant de déterminer si l’utilisation de ID93/GLA-SE pourrait également 

permettre de diminuer les taux de rechute post-traitement.  

L’une des limites de l’étude de rechute post-traitement dans le modèle murin est la durée de ce 

genre d’expérience qui inclue 3 à 6 mois de thérapie, ce qui est extrêmement coûteux en temps et 

en argent. 

Nous avons donc cherché à utiliser un modèle murin de thérapie et rechute qui soit moins 

complexe. Pour cela nous avons adapté un modèle développé dans un autre laboratoire qui 

nécessite une thérapie beaucoup moins longue. Grâce à ce modèle, nous avons pu démontrer 

qu’ID93/GLA-SE réduisait les taux de rechutes dans trois différentes lignées de souris et 

augmentait le taux de survie des souris SWR, une souche de souris extrêmement susceptible à la 

Tuberculose. Ces résultats montrent la possibilité d’utiliser ID93/GLA-SE en tant que vaccin 

thérapeutique et en association avec le traitement antibiotique actuel pour améliorer son 

efficacité. Une meilleure compréhension des capacités thérapeutiques d’ID93/GLA-SE est 

cruciale puisque ce vaccin fait actuellement l’objet d’un essai clinique de phase IIa ayant pour but 

d’évaluer son innocuité et immunogénicité lorsqu’il est administré aux patients atteint de 

tuberculose pulmonaire, après traitement antibiotique, en vue d’une future phase IIb qui 

permettrait d’évaluer une potentielle amélioration du taux de rechute chez ces patients. 

 

Conclusion 

En conclusion, l‘ensemble de ce travail nous a permis de mieux définir les caractéristiques du 

mécanisme d'action de GLA-SE et d'améliorer la compréhension des différents acteurs et des 

étapes nécessaires à la réponse adaptative induite par GLA-SE. Cependant, des travaux 

complémentaires seront nécessaires pour pleinement comprendre le mécanisme d'action et pour 

caractériser  tous les intervenants de ces interactions complexes induites par l'association de 

GLA, agoniste de TLR4 et de l'émulsion squalène-eau.  
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Tuberculosis (TB) is one of humanity’s oldest diseases. Evidence of TB has been recovered from 

Neolithic man bones and the spine of Egyptian mummies attesting of the devastation caused by 

this disease as early as 5000 BC (1). It was not, although, until 1882 that Robert Koch identified 

Mycobacterium tuberculosis (Mtb) as the causative agent (2). The death toll from TB began to 

decrease as living standards (housing, nutrition, and income) improved early in the 20th century, 

well before the advent of antituberculosis drugs. With the development of BCG, the first vaccines 

against TB, in 1921 and the discovery of a number of efficient antibiotics (1944-1965), the hope 

of TB eradication by the end of the 20th century emerged. Unfortunately with 9.6 million new TB 

cases and 1.5 million TB deaths every year, even surpassing HIV as the leading cause of death by 

infectious disease worldwide in 2014 (3), we must acknowledge that TB eradication is far from 

being reached.  

Major efforts are focused in the development of a new vaccine against TB as mathematical 

modeling of the impact that could have a hypothetical new vaccine against TB with 60% efficacy 

predicts an 80% drop in incidence by 2050 (4). There are 17 vaccine candidates in various 

clinical trial phases for which main objective is to either boost the current BCG vaccine or be used 

as a stand-alone vaccine in immuno-compromised individuals for which BCG immunization is not 

recommended. In addition some vaccines could also be used as immunotherapeutic adjuncts to 

the standard TB antibiotic therapy with the aim of shortening the therapy and/or reduced 

relapse rates after treatment completion.  

One of those vaccines, ID93/GLA-SE, was developed by the Infectious Disease Research Institute 

(IDRI) and is today entering a phase II clinical trial to evaluate its safety and immunogenicity 

when administered to adult pulmonary TB patients, following successful completion of TB 

treatment with confirmed bacteriologic cure, in preparation for a future Phase 2b prevention of 

TB recurrence trial in the same population (5). ID93/GLA-SE is a sub-unit vaccine composed of a 

fusion of four Mtb proteins formulated with GLA-SE a Toll-like receptor 4 (TLR4) agonist 

Glucopyranosyl Lipid A (GLA) in a squalene oil-in-water emulsion (SE) (6, 7). 

GLA-SE, IDRI’s leading candidate adjuvant, promotes strong TH1 CD4 T cells, which is thought to 

be central for protection against TB, and IgG2-skewed B cell responses to protein vaccine 

antigens. Beyond ID93/GLA-SE, GLA-SE can be found in several vaccine candidates today in 

clinical trial against a variety of diseases, including LEISH-F3 GLA-SE against the Leishmania 

parasite (8), sm14/GLA-SE against Shistosomiasis (9),  P27A/GLA-SE against Malaria (10), and 
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H5 virus-like-particle/GLA-SE against Flu (11). Nevertheless still very little is known about this 

adjuvant its mechanism of actions.  

The main objective of this thesis was to broaden the understanding of GLA-SE mediated 

adjuvanticity and characterize the main actors i.e. immune cells, cytokines, transcription factors 

and pathways, of the innate response to GLA-SE that trigger and shape the strong adaptative 

response linked to this adjuvant. Our three main hypotheses for this work were: 

1. Canonical TH1 shaping factors, i.e. the transcription factor T-bet and IL-12, will be 

essential to the adaptive response to GLA-SE. Type I IFN, previously shown to be 

important for the innate response to GLA-SE (12) would be also important for the 

subsequent adaptive response. 

2. Lymph node (LN) sub-capsular macrophages will take-up GLA-SE and be critical for its 

adjuvanticity. 

3. B cells antigen-presenting function will have a non-redundant role in the shaping to the 

TH1 response to GLA-SE.  

An additional work pursued during this thesis was to establish a mouse model of TB relapse and 

evaluate the use of ID93/GLA-SE as immunotherapeutic vaccine to be used in combination with 

chemotherapy. We hypothesize that ID93/GLA-SE would reduce relapse rates in a suboptimal 

drug treatment model. 

The first section of this thesis is a literature review on TB, the search of correlates of protection 

against it and development of candidate vaccines; we will pay particular attention to sub-unit 

vaccines in general and ID93/GLA-SE in particular. In a second section we will present the results 

of the different studies conducted during this thesis. Finally we will do a general discussion of 

that work, outline the various resultant perspectives that are currently being pursued and close 

with a general conclusion on the work that was performed. 
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I. TUBERCULOSIS 

A. HISTORY  

TB has had various names throughout history, “consumption”, “phthisis”, “Pott’s disease” and 

“white plague”; all refer to the same scourge that has been known to mankind since ancient 

times. Bones recovered from different part of the world showed evidence of TB among Neolithic 

men and in the spine of mummies from ancient Egypt. These data indicate that the humans 

suffered from TB as early as 5000 BC (1). 

It reached epidemic proportions in Europe and North America during the 18th and 19th centuries 

earning the appellation of “Captain Among these Men of Death”. The death toll from TB began to 

decrease as living standards (housing, nutrition, and income) improved early in the 20th century, 

well before the advent of antituberculosis drugs.  

Different forms of TB were thought to be different diseases - pulmonary consumption for 

example was used to label pulmonary TB, scrofula was the term used to describe TB of the LNs 

and Lupus vulgaris described TB of the skin. At the beginning of the 19th century Laennec 

advanced the idea of a single cause for the different forms of TB. He did not, however, realize that 

the condition was infectious (13). It was not until 1865 that Villemin convincingly demonstrated 

the infectious nature of TB (2). Later, in 1882, Robert Koch, in his famous presentation “Die 

Aetiologie der Tuberculose”, identified the tubercle bacillus Mycobacterium tuberculosis (Mtb) as 

the causative agent of TB (2).  

B. EPIDEMIOLOGY  

TB is a major global health problem. It even surpassed HIV as the leading cause of death by a 

single infectious agent worldwide in 2014 (3). A third of the world’s population is thought to be 

infected with Mtb and in 2014, there were an estimated 9.6 million new TB cases and 1.5 million 

TB deaths (1.1 million among HIV-negative people and 0.4 million among HIV-positive people 

(3). The number of incident TB cases relative to population size (the incidence rate) varies 

widely among countries. TB is a disease of poverty that is inextricably associated with 

overcrowding and under-nutrition and affects mostly young adult in their most productive years. 

Thus, more than 80% of all TB cases are found in 22 low- and middle-income countries (14). The 

highest prevalence of active TBper capita is found in Africa with over 300 new cases per 100,000 
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population, driven primarily by the devastating effects of the HIV epidemic. The absolute number 

of cases is highest in South-East Asia, with India and China having the greatest burden of disease 

globally (Figure 1) (3). In the United States of America and most Western European countries, 

the majority of cases occur in foreign-born residents and recent immigrants from countries in 

which TB is endemic (15, 16). 

Left untreated, each person with active TB disease will infect on average between 10 and 15 

people every year and this continues the TB transmission. Overall a small proportion (5-15%) of 

the estimated 2- 3 billion people infected with Mtb will develop TB disease during their lifetime. 

However, the probability of developing TB is much higher among HIV infected people. The risk 

for developing TB disease is also higher in persons with diabetes, other chronic  debilitating  

diseases  leading  to  immune-deficiency,  poor  living  conditions or tobacco smokers (14). 

Figure 1. Global distribution of estimated TB incidence by rate and absolute number, 2014. The size of each 
bubble is proportional to the size of the country’s population. High-burden countries are shown in red. WHO regions: 
African (AFR), Americas (AMR), Eastern Mediterranean (EMR), European (EUR), South-East Asia (SEAR) and  
Western Pacific (WPR). 
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C. Pathogenesis 

TB is transmitted through the air by aerosol.. The most important source of infection is a patient 

with pulmonary TB and who is coughing. Coughing produces tiny infectious droplets nuclei that 

are spread into the air and can remain suspended in it for long periods. The World Health 

Organization (WHO) divides TB infection into primary and post primary infection (17).  

1. PRIMARY INFECTION  

Primary infection occurs in people who have not had any previous exposure to tubercle bacilli. 

Droplets nuclei, which are inhaled into the lungs, are so small that they avoid the defense of the 

bronchi and penetrate into the terminal alveoli of the lungs, where multiplication and infection 

begin. Lymphatics drain the bacilli to the hilar LNs. The immune response develops about 4-6 

weeks after the primary infection. The size of the infecting dose and the strength of the immune 

response determine the outcome. In most cases (90% of non-HIV infected people), the immune 

response stops the multiplication of bacilli but a few latent bacilli may persist. Infected 

individuals will not have any clinical symptoms nor be contagious, even though the bacteria 

persist in latent state in the infected organ (18). A positive tuberculin skin test would be the only 

evidence of latent infection. If the immune response is not strong enough to prevent 

multiplication of bacilli, disease will occur within a few months (17). 

2. POST-PRIMARY TUBERCULOSIS  

Post-primary TB occurs after a latent period of months or years following primary infection. It 

may occur by reactivation where the dormant tubercle bacilli acquired during a primary 

infection starts to multiply generally in response to a trigger such as weakening of the immune 

system by HIV infection or ageing. Post primary TB can also be caused by reinfection with a new 

strain  in a person who already had a latent primary infection (17).  

3. RECURRENT TUBERCULOSIS  

Recurrent TB has been defined as a serial episode of active TB disease occurring after treatment 

success. Recurrent TB can be categorized as relapse of disease from the original infecting strain 

or reinfection with a new strain of Mtb based on genotyping of the isolates (19). Relapse rates 

depend  on  treatment  efficacy,  program  quality,  and  the patients’  compliance  with  therapy. 
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The rate of disease due  to  reinfection,  on  the  other  hand,  will  be  determined  mainly  by  the  

level  of  TB  exposure  and  transmission in the population (20, 21). The technique of restriction 

fragment-length polymorphism analysis now allows us to type Mtb strains and consequently 

distinguish between reinfection and relapse as the cause of recurrence. Using this technique it 

has been shown that in developing countries a high proportion of recurrences are due to 

reinfections which is  consistent with the high incidence of TB in these populations (19, 22, 23). 

Recurrence of TB after treatment is a serious problem. On a patient level, recurrent TB requires 

another round of treatment with a regimen that, in many parts of the world , is more toxic, takes 

longer to complete, and may amplify drug resistance (24). On a public health level it may account 

for 10-30% of all cases within some weaker TB control programs, particularly those that do not 

use at least 6 months of rifampicin (RIF) treatment (20), and contributes to ongoing transmission 

of infections (25). 

D. HOST IMMUNE RESPONSE TO TUBERCULOSIS INFECTION  

1. INNATE RESPONSE 

Mtb is inhaled through carrier droplets and the innate response develops upon encounter of the 

microbe and the alveolar macrophages in the lower airways. The establishment of a successful 

infection depends on this initial encounter; the infection may remain locally limited within the 

engulfing cells of the innate immune system, or will continue to spread, causing the individual to 

become a clinical active TB patient. Mtb is as intracellular bacterium, and although it can infect 

different cells types, alveolar macrophages are its favorite niche. The initial stages of infection are 

characterized by innate immune responses that involve the recruitment of inflammatory cells to 

the lungs (26). The principal effectors of innate immunity are neutrophils, tissue macrophages 

(derived from blood-borne monocytes), and natural killer (NK) cells. Neutrophils are generally 

the first recruited cells to arrive to the infection site and are known to play an important role 

against TB. Rather than direct bacterial killing, they are believed to play a important role in 

facilitating the adaptive immune response through cytokine and chemokines signaling (27).  

Blood monocytes are less abundant than neutrophils in circulating blood, but are a critical part of 

the innate immune response to TB. They are recruited through chemokine signals produced by 

infected alveolar macrophages, and migrate rapidly across the blood vessels to the site of 
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infection. Within the tissue, they differentiate into macrophages with the ability to ingest and kill 

the bacteria. The interaction between macrophages and T cells (and in particular, the activation 

of macrophages by IFN-γ secreted by T cells) is considered central in the elimination of Mtb (28, 

29). Although alveolar macrophages are thought to be an effective barrier to contain pathogens, 

Mtb has evolved various mechanisms to evade the host immune response and survive in these 

cells. Several Mtb survival mechanisms have been described, including: (i) phagosome–lysosome 

fusion inhibition by interfering with lipid-mediated signaling, by producing the host-like 

signaling kinase PknG and by hijacking the calcineurin pathway (reviewed in (30)), (ii) Mtb 

acidification reduction of the Mtb-containing phagosome by selectively excluding the proton-

ATPase from the phagosome (31), and  (iii) protection against nitric oxide through the 

rearrangement of the actin cytoskeleton which might lead to a reduction in the local 

concentration of nitric oxide (32) and through the mycobacterial proteasome machinery which 

provides protection against killing (33).  

NK cells are large granular lymphocytes found in circulating blood; their in vivo role in 

controlling Mtb is not yet well understood. They have been shown to lyse Mtb-infected 

macrophages in vitro and to facilitate an adaptive immune response by producing IFNγ and 
stimulating macrophages to produce inflammatory cytokines (34). 

2. ADAPTIVE RESPONSE 

In most cases innate immunity is not sufficient to control Mtb. As antigen concentration 

increases, the adaptive response is activated and it is generally accepted that the long-term 

outcome of the primary infection is determined by the efficiency of its mobilization. 

The induction of an adaptive response occurs after the dissemination of Mtb to draining LNs. In 

the LNs, presentation of bacterial antigens by dendritic cells (DC) leads to T cells priming. This 

process is quite slow; studies in various animal models suggest that priming of T cells does not 

occur until 12-21 days post-infection (35).  At this time point the infection is already well 

established consequently, the inflammatory site where the acquired response will be has already 

been initiated and modulated by the bacterium. This delay is due to two main components. First, 

the delayed transport of Mtb from the lungs to the LN caused by the retention of Mtb within the 

alveolar macrophages which are not a migratory population. It is not until around 8 days post 

infection that Mtb, that has been replicating within the alveolar macrophages,  will escape and be 
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taken up by phagocytes recruited to the infection site (neutrophils, DCs, inflammatory 

monocytes) (36). Then, even after its transport to the LN Mtb further slows the initiation of the 

adaptive immunity by promoting the induction of regulatory T cells that act to restrict T cell 

effector priming (37). The resulting delay represents a critical bottleneck to Mtb’s control, and 

possibly to its eradication by adaptive immunity (Figure 2) (38, 39). Once primed Ag-specific T 

cells will expand and differentiate from naïve T cells into effector T cells which then migrate to 

the infected lung and, in combination with other leucocytes, stimulate the formation of 

granulomas (40). 

 

Figure 2. Delayed adaptive response to TB. Low-dose aerosol infection, which approximates the natural delivery 
route for induction of TB, results in low numbers of Mtb (red) being deposited in the lower airways and the alveolar 
tissue. Bacteria do not disseminate from the lung until 9 days post infection, when they can be detected in the 
draining lymph nodes. This dissemination coincides with the first activation of naive T cells (purple). Activation of 
naive T cells occurs in the presence of live bacteria, and effector cells develop with expected kinetics. The effector 
cell phenotype will depend on the availability of specific cytokines. These effector cells migrate to the lung in 
response to inflammation and mediate protection by activating infected phagocytes (pale red). The response takes 
18–20 days to reach an effective level and thereby to stop bacterial growth (38).  
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3. THE TUBERCULOUS GRANULOMA  

Granulomas are organized structures that contain macrophages, lymphocytes and fibroblasts. Within the granuloma, macrophages are activated, for example by CD4+ T cells secreted IFNγ, 
which is thought to restrict the dispersal and replication of Mtb (40). The granuloma is the 

hallmark of TB, and functions as a niche in which Mtb can grow and persist and as an 

immunologic microenvironment in which immune cells interact to control and prevent 

dissemination of infection.  

Granulomas are observed in active, latent and recurrent TB, thus its mere formation is 

insufficient for control of infection, and rather the granuloma must be functioning properly. 

Indeed, the granuloma must be carefully balanced in terms of immune responses to provide 

sufficient immune cell activation to inhibit the growth of Mtb, yet modulate the inflammation to 

prevent pathology (40). Many different chemokines are involved in the granuloma formation. 

Some are produced by the epithelial cells of the respiratory tract, and others are produced by the 

immune cells themselves. In particular, the chemokines binding to the CCR2 receptor 

(CCL2/MCP-1, CCL12, and CCL13) are important for the early recruitment of macrophages to 

chronic inflammatory sites to initiate granuloma formation (41). CCL19 and, possibly, CCL21 are involved in the recruitment and priming of IFNγ-producing T cells. CXCL13 is involved in B-cell 

recruitment and the formation of follicular structures (42, 43). Although in the first instance the 

granuloma acts to constrain the infection, some bacilli can actually survive inside these 

structures for a long time in a nonreplicating hypometabolic state, as an adaptation to the 

unfavorable milieu. This altered physiologic state, termed latent TB infection, can endure for the 

lifetime of the infected individual, but for some reasons, which are still unclear, the bacilli will 

reactivate in 10% of the latently infected individuals, escape the granuloma and spread 

throughout the body, thus giving rise to clinical disease, and are finally disseminated throughout 

the environment (43).  

E. TREATMENT AND MULTI-DRUG-RESISTANCE 

Before the advent of chemotherapy, TB was one of the major causes of death in both Western  

and also several non-Western countries (44). Studies from the pre-chemotherapy era found that 
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about 70% of people with sputum smear-positive pulmonary TB died within 10 years, and that 

this figure was 20% among culture-positive but smear-negative cases of pulmonary TB (patients 

with a lower bacterial load) (44).  

Nowadays, standard drug regimen for effective treatment of active TB involves a combination 

therapy with first- and/or second-line drugs for 6-8 months. The requirement for combination 

therapy is a central tenet of TB treatment mainly to avoid the high probability of developing drug 

resistance. Recommended first line anti-TB drugs includes RIF, isoniazid (INH), pyrazinamide 

(PZA) and ethambutol for 2 months followed by RIF plus INH for 4 months. Treatment success 

rates of 85% or more for new cases are regularly reported to WHO by its Member States (3).  

Antibiotic resistance is an increasing problem in TB and the WHO estimates that each year there 

are half a million cases of multi-drug resistant TB (MDR-TB) (2), defined as a strain of Mtb that is 

resistant to at least INH and RIF (the two most powerful anti-TB drugs) (45). Of even greater 

concern are “totally drug-resistant TB” strains, which are resistant to all first- and second-line 

drugs. Treatment for MDR-TB is longer, and requires more expensive and more toxic drugs 

(combinations of second- and third-line antibiotics added to the regimen including capreomycin, 

ethionamide and streptomycin). For most patients with MDR-TB, the current regimens 

recommended by WHO last 20 months, giving the Mtb pathogen time to adapt to the drug 

regimen (46).  The development of new drugs is currently the leading solution to the increasing 

incidence of resistance to the drugs currently employed for TB therapy. Several new drugs are in 

development but it is not clear when they will receive regulatory approval for their use in new 

drug regimens. Moreover, since even drug sensitive TB is treated with combination therapy, it 

seems naïve to assume drug resistant strains will be effectively treated with a single new drug, 

and there is no reason to believe that resistance will not eventually develop to new antibiotics. In 

addition to the need for new antibiotics to treat drug resistant isolates, there is an urgent need 

for treatment regimens which can shorten therapy for Mtb (45). Options for improved treatment 

require new strategies that take advantage of developments in vaccine design and drug delivery 

that have occurred in the last 50 years, including novel combination regimens in which oral or 

inhaled agents can be taken for shorter periods of time. To this end, there are today a small 

number of immunotherapeutic vaccines that are under development for use against Mtb (47). 

 

 



 

 

29 

II. VACCINES AGAINST TUBERCULOSIS 

A. BCG  VACCINE 

The high mortality associated with Mtb infection occurs despite the widespread use of a live, 

attenuated TB vaccine Mycobacterium bovis, bacillus Calmette-Guérin (BCG). BCG is effective at 

preventing disease in newborns and toddlers, but not pulmonary TB in adults (48).  More 

specifically, numerous efficacy trials and epidemiological studies conducted over several decades 

indicate that BCG has 60-80% efficacy against severe form of TB in children, particularly 

meningitis (49, 50), and that its efficacy against pulmonary disease varies geographically (51, 

52). Furthermore, revaccinating with BCG during adolescence in a population vaccinated with 

BCG at birth does not improve protective efficacy as shown in a large, randomized controlled trial 

in Brazil (53). Importantly, when given to people already infected or sensitized to environmental 

mycobacteria BCG has not shown any protection against disease, which could explain the 

geographical efficacy variations (54, 55). Additionally, the live attenuated BCG vaccine is unsafe 

for administration to HIV-positive or other immunocompromised individuals due to the 

possibility of developing regional BCG infection (BCG-itis) or disseminated BCG (BCG-osis) (56-

59). Mathematical modeling of the impact that a hypothetical new vaccine against TB with 60% 

efficacy could have predicts an 80% decrease in incidence by 2050 (4). Thus there is an urgent 

need for a new TB vaccine to either boost immunity primed by BCG or to replace BCG. 

B. CORRELATES OF PROTECTION 

TB vaccine research is confounded by a conundrum: a candidate biomarker for protective 

immunity can only be validated in the clinical trial of an effective vaccine. However, clinical trials 

of an effective vaccine may not be feasible without a validated correlate of protection for the 

selection of the most promising candidates as for determining dose and schedule of vaccination.  

1. THE CENTRAL DOGMA OF PROTECTIVE IMMUNITY 

During the past 40 years a combination of studies have led to the TB central dogma that production of IFNγ by CD4 T cells is the major driver of immunity against TB.  

In 1970 it was found that T cells, and not antibodies, are required for host resistance to TB (60). 

Later, in the 1980’s, CD4+ T cells that produce IFNγ were described as the dominant T cell subset 
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that participates in the immune response to Mtb (61). In 2001, it was shown that mice devoid of 

CD4-mediated immunity (MHCII-/-) or CD4+ depleted were not able to control Mtb infection and 

would subsequently succumb early-on (62). This experiment established a crucial role for CD4+ 

T cells mediated immunity in TB control. Finally, the discovery that HIV infection, which is 

strongly associated with TB, infects and kills CD4+ T cells supported a central role for CD4+ T 

cells in immunity against TB (63).  IFNγ’s, a cytokine involved in the response against viruses and intracellular bacteria, key role in immunity against TB is based on the extreme susceptibility of IFNγ-deficient mice (64). More 

arguments supporting this hypothesis include nontuberculous mycobacterial infection or BCG-osis in partial or complete IFNγ-deficient patients (65, 66) and IFNγ depression in whole-blood 

cultures from advanced TB patients (67). IFNγ activates macrophages to kill intracellular bacteria through antimicrobial effector pathways such as inducible nitric oxide synthase, IFNγ 
inducible GTPases, phagosomal maturation and acidification, autophagy and vitamin D receptor 

signaling (40). Furthermore, in humans suffering from recurrent nontuberculous mycobacterial 

infections, deleterious genetic mutations in the genes encoding IL-12p40 and IL-12R have been 

identified (68-70). IL-12 has a crucial role in the induction of IFNγ production (71), accordingly 

these patients display a reduced capacity to produce IFNγ (72), highlighting the potential central role of IFNγ in TB protection. 
These discoveries helped to define the central dogma of protective immunity against TB, namely, that the production of IFNγ by CD4+ T cells activates macrophages to kill Mtb (Figure 3). Today, detection of IFNγ produced by T cells is still the most widely used for monitoring immune 

response following TB infection (QuantiFERON®-TB test) or vaccination. 
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Figure 3. Protective immunity to TB: the central dogma and a revised view of T cell mediated immunity. A. 
The central dogma of protective immunity to TB is that CD4+ T cells produce IFNγ which synergizes with TNF 
(produced by the T cell or the macrophage), and together these activate macrophage antimicrobial activity capable 
of restricting M. TB growth. Two pathways activated by IFNγ that are capable of killing Mtb are nitric oxide (NO) 
production and phagolysosome fusion, which acidifies the bacterial phagosome. B. “A revised view of protective T 
cell immunity” incorporates additional T cell subsets (CD4+, CD8+, and unconventional T cells – γδ T cells, Mucosal-
Associated Invariant T (MAIT) cells and CD1-restricted T cells), and includes additional mechanisms by which T cells 
mediate killing of Mtb.  

2. MOVING BEYOND THE CENTRAL DOGMA  

Although essential for host resistance to Mtb, IFN-γ responses notoriously do not correlate with 
resistance to TB. More T cells that secrete IFNγ, or greater IFNγ levels, have not been found to 
correlate with protection (73). Further, a study in 2011 found that patients whose T cells produce greater amounts of IFNγ are more likely to progress to active disease than patients with 

weaker responses (74), supporting the idea that IFNγ levels actually correlates better with 
bacterial burden than with disease control (26). Similar conclusions can be taken from vaccination studies. BCG vaccination elicits protective T cells in animals, but IFNγ production by 
these T cells is not predictive of vaccine induced protection (75, 76). Further, one study in South-

African infants vaccinated with BCG found no correlation between the number of BCG-elicited T cells that produce IFNγ and protection against TB (77). Finally some recent studies in murine 

models suggest that even though TH1 CD4 T cells might be essential for protection against TB, this mechanism might be IFNγ-independent (78, 79). It seems likely then that even though IFNγ 
production by CD4+ T cells might be a critical component of immunity against Mtb it may not 
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necessary translate into an immune correlate of protection against TB. There is now a wide 

appreciation for the importance of extending our understanding of anti-TB CD4 T cell effector 

molecules beyond IFN-γ. 
Other immune cells could potentially correlate with protection, such as CD8+ T cells, TH17 T cells, NK cells, γδ T cells and CD4- CD8- T cells (Figure 3 B.) (26, 80). 

a) CD4+ T CELLS POLYFUNCTIONALITY 

In addition to T cells that predominantly produce IFN-γ, recent studies have suggested that 
multifunctional CD4+ or CD8+ T cells that produce multiple cytokines, especially IFN-γ, tumor 
necrosis factor alpha (TNF-α), and interleukin-2 (IL-2), could be important in host resistance. For 

example HIV non progressors expressed a high frequency of such polyfunctional CD4+ T cells 

(81) and similarly Ag-specific polyfunctional CD4+ T cells were found to be protective against 

Leishmania infection (82). Consistent with these results, protection in mice against Mtb infection 

correlates with a high frequency of polyfunctional CD4+ T cells (83). In humans active TB disease 

is associated with TNF producing monofunctional CD4 T cells compared to the polyfunctional T 

cells found in latent Mtb infection (84).  The Modified Vaccinia Ankara (MVA85A), a modified 

vaccinia virus Ankara expressing the major Mtb antigen Ag85A, was the first TB candidate 

vaccine to complete an efficacy trial (after BCG). A higher frequency of polyfunctional CD4+ T 

cells were elicited in BCG vaccinated-MVA85A boosted individuals than that for BCG alone (85). 

However, disappointingly, the results obtained during the phase 2b in infants indicated no 

enhancement in protection, suggesting that Ag85A-specifc polyfunctional CD4+ T cells may play a 

necessary but not sufficient role in protection against TB (86) in that population under the 

conditions evaluated. 

b) CD4+ T CELLS PHENOTYPES 

The discrepancy between the fact that TH1 CD4 T cells are critical in TB immunity, yet higher 

numbers of these cells do not necessary confer protection, could potentially be explained if 

different subsets of TH1 CD4+ T cells differ in their ability to control Mtb. Reiley et al. identified 

two functionally distinct subsets of effector CD4+cells produced during TB infection that could be 

distinguished by their expression of the programmed cell death protein 1 (PD-1) and the co-

inhibitory receptor killer-cell lectin like receptor G1 (KLRG1). PD-1 expressing activated effector 
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cells with a higher proliferative and self-renewing capacity than the KLRG1-expressing cells, but 

a lower capacity of cytokine production, and the capacity of differentiating into KLRG1+ cells. 

KLRG1+ cells are terminally differentiated, proliferate poorly, maintain their KLRG1+ phenotype 

and are short-lived (87). There is growing evidence that PD-1+ CD4+ T cells mediate superior 

protection against TB than terminally differentiated KLRG1+. Indeed, protection against Mtb 

induced by BCG immunization in mice is lost as the infection enters the chronic phase, and this 

waning of immunity is coincident with an increase of KLRG1+ terminally differentiated T cells 

(88). Furthermore, immunizations that confer superior longer lasting immunity preferentially 

expand Mtb-specific CD4+ T cells that are KLRG1-, produce IL-2 and are associated to central 

memory (88, 89). In addition, it was shown that CD4+ T cells must make direct contact with 

infected antigen presenting cells (APC) to induce control of Mtb infection (90). Thus, to be 

protective, Mtb-specific CD4+ T cells need to exit the circulation and enter the lung parenchyma 

where the Mtb infection occurs. Meanwhile, it was shown that, upon infection with Mtb, Mtb-

specific CD4+ T cells residing in the lung vasculature where mainly KLRG1+ PD1- and the ones in 

the infected lung parenchyma where almost exclusively PD1+ KLRG1- (91). Furthermore, 

adoptive transfer of those PD1+ KLRG1- cells conferred greater protection against Mtb challenge 

(91, 92). Thus, CD4 T cells with a more central memory polyfunctional phenotype and ability to 

enter the lung parenchyma might be essential for protection against TB and those functions 

correlates, at least in mice, with a KLRG1- PD1+ phenotype (Figure 4). 
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Figure 4. Properties of protective Mtb-specific CD4+ T cells. Pulmonary Mtb-specific Th1 cells display two major 
phenotypes based on their localization in the lung parenchyma or lung-associated blood vasculature of infected 
mice. CD4+ T cells that can efficiently enter the lung parenchyma (in red) are almost exclusively PD1+ KLRG1-, secrete low amounts of IFNγ and are highly protective against Mtb. CD4+ T cells that reside in the blood vessels (in blue), are terminally differentiated, secrete high amounts of IFNγ and are weakly protective agiants Mtb. 

 

C. THE TUBERCULOSIS VACCINES PIPELINE  

Due to the complex nature of Mtb and resulting pathology within the human host (discussed 

above), multiple vaccine development strategies are being pursued: (i). prevention of infection 

(vaccines that are given prior to exposure in order to prevent initial infection), (ii) prevention of 

disease (vaccines that can be administered after exposure, to infected people that might be 

asymptomatic and at risk of developing disease in the future), (iii) prevention of recurrence 

(vaccines that can be administered after infection and during or after drug treatment, to prevent 

reactivation) (3). Although there is some pessimism about whether a vaccine that averts 

infection can be developed, the general consensus is that a vaccine that prevents progression to 
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active disease could reduce the prevalence of pulmonary TB and ultimately break the cycle of 

transmission. 

Efforts are currently underway to develop vaccines against TB that can boost the current BCG 

vaccine or can be used as a stand-alone prophylactic vaccine in immune-compromised 

individuals where BCG immunization is not recommended. In addition, immunotherapeutic 

vaccine are also being developed for individuals with active TB in conjunction with TB drug 

therapy, with the aim of shortening the duration of the therapy and/or reducing recurrence rates 

after completion of treatment. There are 17 vaccine candidates in various phases of clinical trials, 

including five protein or adjuvant vaccines, four viral-vectored vaccines, three mycobacterial 

whole cell or extract vaccines, one  recombinant live and one attenuated Mtb vaccine ( 

Figure 5) (reviewed in (3) and (93)). The two most advanced candidates are M. vaccae and 

M72/AS01. M. vaccae is a whole heat-killed agent currently licensed by the China Food and Drug 

administration as an immuno-therapeutic agent to help shorten TB treatment for patients with 

drug susceptible TB after it shown improved sputum reconversion and X-ray appearances when 

used in combination with chemotherapy in patients with untreated TB (94). This candidate 

vaccine is currently in Phase III trial to assess its efficacy and safety in preventing TB disease in 

people with latent TB (3). M72/AS01 is a recombinant fusion protein of the Mtb antigens (Ags) 

32A and 39A in combination with the AS01 adjuvant, a liposomal formulation containing the 

monophosphorylated lipid A (MPL) (TLR4 agonist Cf. IV.A.2.b)) and Quillaja saponaria (QS21) a 

purified plant extract. This candidate vaccine was shown to have a clinically acceptable safety 

profile and to be highly immunogenic in Mtb-infected and uninfected adults (95) and is currently 

in a large randomized placebo-controlled Phase 2b trial to assess efficacy of two doses of 

M72/AS01 against pulmonary TB disease (3). 
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Figure 5. 2015 TB vaccine candidates’ pipeline. 

 

III. SUB-UNIT VACCINES  

A. WHY WE NEED ADJUVANTS  

Vaccines made from live-attenuated or inactivated pathogens can elicit robust protective 

immune responses because those vaccines contain naturally occurring adjuvants. Vaccination 

with an antigen alone has advantages in terms of safety and cost-effectiveness, however when 

separated from their microbial constituents many of these vaccines, such as the acellular 

pertussis vaccine, are insufficiently immunogenic on their own. Adjuvants become critical to help 

these proteins become effective vaccines by inducing strong and long lasting immune responses. 

Adjuvants from the Latin word adjuvare, meaning “to help or aid”, were first described by Ramon 

in 1924  as “substances used in combination with a specific antigen that produced a more robust 

immune response than the antigen alone” (96). Most specifically, several important benefits can 

be found in adjuvants such as enhancement of vaccine efficacy in infants, elders and 

immunocompromised people, increase of functional antibody titers, induction of more and long-

lasting responses, induction of robust cell-mediated immunity, broader protection through cross-

reactivity to other strains or pathogens, facilitation of mucosal immunity, overcoming of antigen 
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competition in combination vaccines, reduction of the dose of antigen needed (dose sparing) 

and/or reduction of the number of  vaccines doses needed (97, 98). 

B. PATHOGENS RECOGNITION BY THE HOST  

1. DANGER ASSOCIATED MOLECULAR PATTERNS  

In some circumstances host inflammatory responses can cause host cell death leading to tissue 

injury, and the release of host cellular components to the extracellular environment. These self-

molecules considered as “messengers” for danger or Damage-Associated Molecular Patterns 

(DAMP) shape the immune response. Host lipids, sugars, metabolites (e.g. uric acid or ATP), and 

nucleic acids such as RNA and DNA all contain DAMPs which are recognized when the molecules 

accumulate in non-steady state locations such as cytosolic DNA or extracellular ATP (99). This 

leads to activation of inflammasomes. Inflammasome activation leads to caspase-1 activation, 

which causes the maturation cleavage of pro-IL-1β and pro-IL-18 into their mature forms IL-1β 

and IL-18 which are secreted and shape the innate and adaptive responses to pathogens and 

adjuvants (100, 101).  

2. PATHOGEN-ASSOCIATED MOLECULAR PATTERNS AND TOLL-LIKE RECEPTORS  

Host cells are equipped with numerous types of receptors to discriminate self from non-self 

constituants. Pathogens are first recognized by pattern recognition receptors (PRR) expressed by 

many cell types including professional APCs such as macrophages and DCs, which prime T cell 

responses.  PRR including TLR, RIG-I like receptors, C-type lectin receptors and Nucleotide 

oligomerization domain (NOD)-like receptors recognize a diverse array of pathogen associated 

molecular patterns (PAMP).   

TLR are among the best characterized PRR and were first identified in the early 1980s in 

Drosophila where their function are required for responses to fungal and Gram-positive bacterial 

infection (102). TLRs are the canonical PRR that link innate and adaptive immunity: they sense 

infection though the recognition of PAMPs and induce appropriately tailored innate and adaptive 

immune response (103). A summary of known mammalian TLRs and their ligands is shown in 

Figure 6.  
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Figure 6. MammalianTLRs and their ligands.  

 

Binding and TLR homo- or heterodimerization brings the Toll-Interleukin Receptor domains of 

adjacent TLRs together, providing a conformational change necessary to trigger signaling. 

Binding of additional adaptor proteins, including the myeloid differentiation factor 88 (MyD88) 

the MyD88 adaptor-like protein, the TIR domain-containing adaptor protein inducing interferon-β (TRIF) and the TRIF-related adaptor molecule TRAM, is essential for intracellular cascades 

(104-107) (Figure 7). 
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Figure 7. TLR signaling.  Extracellular TLR homodimers (TLR4 and TLR5) are represented in black; heterodimers 
of TLR2 and TLR1, TLR6 or TLR10 are indicated in black/green. Intracellular homodimers (TLR3, TLR7, TLR8 and 
TLR9) are indicated in gray.  

 

TLRs have been shown to be sufficient to tailor an adaptive immune response characterized by 

TH1 induction, IgG2c production, CD8 T cells induction and protection from reinfection to an 

array of pathogens (Gram-positive and negative bacteria, DNA and RNA viruses, fungi and 

protozoa) (108, 109). Importantly they have also been shown to be critical for the induction of a 

strong adaptive immune response to various immunizations (98, 110). They control this 

responses at multiple levels including: (i) control of antigen uptake by transiently stimulating 

antigen macropinocytosis and coordinating the redeployment of actin to sustained endocytosis 

(111) (ii) control of antigen selection for presentation in DCs as efficiency of antigen presentation 

from phagocyted cargo is dependent on the presence of TLR ligands within the cargo and the 

generation of peptide-MHCII complexes is also controlled by TLRs (112), (iii) control of DC 

migration from the infection site to the draining LN through downregulation of CCR6, an 

inflammatory chemokine receptor, and upregulation of CCR7, a receptor for lymphoid 

chemokines (113, 114), (iv) control of DC maturation characterized by the upregulation of the 

co-stimulatory molecules CD40, CD80 and CD86 and production of the pro-inflammatory 

cytokines Il-12 and TNF (115), (v) direct co-stimulation of T cell subsets to enhance effector 

function such as IL-2 and IFNγ production and T cell proliferation (116), and (vi) control of B 

cells responses to T-dependent and T-independent antigens thought B cell intrinsic TLR signaling 
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that regulates antibody responses (117). Due to their important immunomodulatory capacities 

TLR are prime- candidates for adjuvant development. In reality, most first generation vaccines, 

including those consisting of inactivated or attenuated virus or bacteria contain inherent 

adjuvant activity by possessing molecules that can bind these receptors (Figure 8). The discovery 

of TLRs and their role in modulation of innate and adaptive immunity has led to exploitation of 

their ligands as immune modulators. The addition of TLR agonists is not a new concept, since 

combined vaccine adjuvants have been evaluated since the 1930s, when whole bacterial cells 

were added to water-in-oil emulsions to create Freunds’ complete adjuvant. Today, several well-

defined and characterized TLR agonists are being selectively developed with the primary 

purpose to serve as adjuvant components within vaccines. A summary of those TLR based 

adjuvants and the disease models tested in experimental and clinical trials and human vaccines 

can be found in Toussi and Massari 2014 paper (107). In particular, TLR3, TLR4 and TLR9 

agonists have been shown to improve a number of vaccines, for example against Hepatitis B 

Virus (118, 119), influenza (120-122), malaria (123-126) and Leishmania (8, 127), as well as 

some types of cancer (128-132). 

 

Figure 8. Vaccine developement and implications for TLR-agonist use. 
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C. ADJUVANTS CURRENTLY APPROVED FOR USE IN HUMANS  

Approved adjuvants for use in humans include Alum (aluminium salts), oil-in-water emulsions 

(MF59®, AS03 and AF03), virosomes and AS04 (133).  

Alum is the most widely used adjuvant in human and animal vaccines, it elicits a strong humoral 

immune response that is effective against diphtheria, tetanus and hepatitis B where neutralizing 

antibodies to the target antigen are required for protection (134-136). It is, however, a poor 

inducer of cell-mediated immune response and thus unsuitable for vaccines requiring such 

immune response (137). 

Virosomes are spherical lipid vesicles carrying bound vaccine-target antigen on the surface or 

encapsulated within the lumen (138, 139). Using this technology, the Hepatitis A vaccine is the 

first vaccine to use an adjuvant other than Alum (140). 

Squalene emulsions approved for clinical use, including MF59® and AS03, are liquid droplets 

dispersed throughout an immiscible liquid. The inclusion of emulsions enables antigen dose 

sparing and increase Ag-specific Ab titers. Moreover, the Ab response to these emulsions appears 

to have a more balanced IgG1:IgG2 profile compared to Alum (141). 

AS04 contains monophosphoryl lipid A (MPL) a TLR4 agonist (Cf. IV.A.2.b)) adsorbed on 

aluminum salt. The HPV-16/18-AS04-adjuvanted vaccine was shown to induce significantly 

higher titers of HPV-specific antibodies and neutralizing antibodies than an aluminum-

adjuvanted formulation and was licensed for use after conclusive demonstration of efficacy (142-

144). AS04 is also the adjuvant in the licensed vaccines FENDrixTM against Hepatitis B and it is 

intended to use for active immunization for patients with renal insufficiency which have an 

increased risk of acute hepatitis B infection and progression to chronic hepatitis but tend to 

respond less well to Alum-adjuvanted Heptatis B vaccine than healthy individuals (119, 145). 

D. ADJUVANTS IN TUBERCULOSIS CANDIDATE VACCINES  

Until fairly recently, there were only two adjuvants approved for use in humans and very few 

available for human testing: Alum that was used successfully in vaccines for many decades with 

the key feature being induction of antibodies, and MF59®, a squalene emulsion adjuvant, which 

also mainly induces antibody responses and is in particular a very effective adjuvant in influenza 
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vaccines (146). But these adjuvants did not show any evidence of induction of the cell-mediated 

immunity  which is critical for protection against TB, and indeed preclinical studies showed no 

protective potential of using Alum in TB vaccines (147). Thus, with the first TB fusion proteins 

getting ready for clinical testing just after the millennium, an important task of developing 

suitable adjuvants was undertaken.  

As shown above, there is no strong correlate of protection in immunity against TB. Thus, 

adjuvant research is extremely challenging in that the properties associated with efficacious 

adjuvants is incompletely understood. Today, there are 4 different adjuvants in the TB vaccines 

pipeline ( 

Figure 5); all have shown solid evidence of protection in various preclinical models including 

non-human primates (NHP). AS01 is an adjuvant system containing the immunostimulants MPL 

(TLR4 agonist) and QS21 combined with liposomes (95); IC31 combines the immunostimulatory 

effects of an 11-mer antibacterial peptide and a synthetic oligodeoxynucleotide which is a TLR9 

agonist without containing cytosine phosphate guanine (CpG) motifs (47, 148); CAF01 is a two-

component liposomal adjuvant system composed of a cationic liposome vehicle stabilized with a 

glycolipid immunomodulator  which is a synthetic variant of cord factor located in the 

mycobacterial cell wall (149), finally GLA-SE  is a glucopyranosyl lipid adjuvant-stable squalene-

based oil-in-water emulsion, which acts as a TLR4 agonist.  

IV. ID93/GLA-SE 

A. THE VACCINE 

1. ID93  FUSION PROTEIN  

ID93 was developed following rigorous screening of a large panel of Mtb recombinant proteins 

constituting the most comprehensive analysis to date of human T cell responses to antigens of 

Mtb. From selected genome mining around 100 candidates were selected and expressed as 

recombinant proteins. These proteins were then pre-selected based on their ability to induce 

IFN-γ from the peripheral blood mononuclear cells of healthy human that are purified protein 

derivative positive [PPD(+)] . A subset of 48 proteins was tested further, each individually 

combined with CpG in the Mtb aerosol mouse model, in order to determine whether they could 
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reduce lung bacterial load in infected mice (150). ID93 is a fusion of four Mtb proteins selected 

from this analysis it includes Rv2608, Rv3620, Rv1813 and Rv3619 (Figure 9) (7). Each protein 

is segregated into different Mtb protein categories: Rv2608 falls within the PE and PPE (PE/PPE) 

multigene families of proteins, Rv3619 and Rv3620 are in the ESAT-6 secretion system (EsX) 

family of virulence factors, and Rv1813 is associated with latent growth of Mtb and is expressed 

during hypoxia which might be useful for optimal immunity and concomitant protection during 

the later stages of infection (150). 

 

Figure 9. IDRI's lead TB vaccine antigen-ID93  

a) PE/PPE FAMILY 

PE/PPE gene family, comprising of 176 open reading frames and present exclusively in genus 

Mycobacterium, accounts for approximately 10% of the M. tuberculosis genome. It has attracted a 

lot of interest in the vaccine design world since their discovery more than a decade ago. Indeed, 

these proteins are found to be localized at cell surface and/or secreted and have been reported to 

be antigenic in nature. Moreover several members of the family trigger a range of innate immune 

responses, and many are targets of the adaptive immune system (151). They were shown to be 

differentially expressed in different species of pathogenic mycobacteria suggesting a key role for 

the PE/PPE family in virulence and pathogenesis of Mtb (152). Interestingly, PE/PPE proteins 
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having a largely redundant nature in Mtb, they also induce a strong cross-reactivity with their 

numerous homologs (153). 

b) ESX FAMILY 

The EsX family is composed of small, secreted antigenic proteins that have been demonstrated to 

likely be required for the growth and pathogenicity of Mtb (154). This family is an attractive 

vaccine target since they are potent T cell antigens that encode several immunodominant 

molecules, which are strongly recognized by the immune systems in both animals and humans 

(154-156). Indeed, the most prominent antigens described for induction of cell-mediated 

immunity have been members of the esx family. ESAT-6 and CFP-10 are the most extensively 

investigated (155, 157). 

2. GLA-SE 

a) TLR-4 AND LIPOPOLYSACCHARIDE  

TLR4 can be found on the plasma membrane of various cell types, including neutrophils, 

monocytes, eosinophils, basophils, T cells, B cells, NK-cells, immature DCs, and endothelial cells 

(98). It is an unique receptor among the TLRs as it induces two distinct signaling pathways 

controlled by (i) MyD88/MAL which results in activation of nuclear factor (NF)-kB for induction 

of a number of NF-kB-dependent genes and inflammatory cytokines, and (ii) TRIF/TRAM which 

induces production of type I IFN  (Figure 7) leading to a strong Th1-type cellular and humoral 

immune response (158). Lipopolysaccharide (LPS) from the outer membrane of Gram-negative 

bacteria was the first bacterial product shown to interact with this receptor (159). LPS has a 

hydrophilic polysaccharide component and a hydrophobic lipid A, composed of polyacylated 

diglucosamine lipids. LPS is a potent stimulator of the immune system and it has been shown that 

its administration in animal can protect against challenges with a variety of bacterial, viral and 

parasitic pathogens, however,  an intrinsic toxicity limits its use in human vaccines (107).  

b) MONOPHOSPHORYL LIPID A 

MPL® is a detoxified derivative of LPS, which retains only ~0.1% of the inflammatory toxicity of 

its parent LPS molecule (160). 
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It is also the first TLR agonist ever included in a licensed human vaccine (Fendrix®) (161). It is 

produced from Salmonella minessota LPS by removal of the core carbohydrate group, the 

phosphate from the reducing-end glucosamine, and the acyl chain from the 39-position of the 

disaccharide backbone. In the murine model it was shown to promote TH1 response, characterized by increased IFNγ production and IgG2 isotype switch, in combination with a wide 
variety of Ags such as inactivated rotavirus (162), hepatitis C virus like-particle (163), Leish-111f 

a leishmanial polyprotein (164), ESAT-6 antigen from Mtb (165) and RTS,S malarial antigen 

(166) among others. In human studies, MPL® alone or in combination with other adjuvants was 

shown to be well tolerated and to enhance both humoral and cellular immune responses (167-

171). The M72/AS01 vaccine candidate contains MPL® and QS21 combined with liposomes and 

is currently in Phase IIb trial in Mtb infected individuals to assess whether this vaccine protects 

against TB disease progression (II.C, Figure 5) (172).  As its parent molecule LPS,  MPL signals 

through both MyD88 and TRIF even though the signal  through MyD88 is less efficient than for 

LPS (173). 

c) GLUCOPYRANOSYL LIPID A  

Naturally occurring species of LPS and its derivatives can have a variety of chain’s number an 

attachment sites, and the number of carbon within the chain may also vary. For example, MPL® 

has between four and seven chains depending on the extend of hydrolysis during detoxification 

and those different species can have different relative potency (174, 175). GLA is a pure synthetic 

hexaacylated lipid A derivative which holds the advantages of being a more chemically defined 

molecular adjuvant, in contrast to the heterogeneous mixture of MPL extracted from bacteria (6). 

Several differences exist between synthetic GLA and naturally occurring LPS endotoxins 

including (i) the absence of attached residues on the hydroxyl, (ii) the absence of a second 

phosphate on GLA, and (iii) defined position, number and lengths of chain attachments and 

carbon number (Figure 10) (6). Because GLA lacks one phosphate group, it still remains several 

orders of magnitude less endotoxic than its parent molecule LPS, and is safer to use in humans 

(6). Similarly to MPL, GLA signaled less efficiently than LPS through the MyD88/MAL-dependent 

pathway, but fully retained the ability to signal through TRIF/TRAM (6). 
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Figure 10. GLA structure. 

3. STABLE EMULSION   

Typical oil in water emulsions are composed of oil droplets, commonly squalene, stabilized by 

surfactants in a buffered aqueous phase. The use of stable emulsion as adjuvants has shown 

promising and has good potential to achieve FDA approval. Indeed, MF59® is today a well-

established, safe and potent emulsion-based vaccine adjuvant has been licensed for use in human 

in Europe in the Fluad® influenza vaccine (176). IDRI’s stable emulsion (SE) is similar to MF59®, 

although the squalene dose in SE is 2% (v/v) compared to the 2.3% (v/v) in MF59®. In addition, 

the primary emulsifier in SE is phospholipid, whereas AS03 and MF59® contain non-ionic 

surfactant (177). Interestingly, phospholipids which are naturally found in cells, might be more 

bio-compatible that non-ionic surfactant thus reducing any potential hypersensitivity to the 

components (178). 

B. ID93/GLA-SE  AND TUBERCULOSIS  

ID93/GLA-SE intra-muscular, recently completed phase I trial and it is currently undergoing 

Phase 2 immunogenicity and efficacy testing against recurrence of TB in adults.  

Mice immunized prophylactically or post-infection with the ID93/GLA-SE candidate vaccine 

generate a TH1-biased response with Ag-specific polyfunctional CD4 T cells producing CD154, 
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IFNγ, TNF, GM-CSF, and IL-2, as well as cytolytic CD4 T cells (CTL) and a humoral response 

skewed towards IgG2c class-switching (7, 179, 180). Prophylatic intra-muscular immunization 

with this candidate vaccine had been shown to be protective in mice against challenge with 

aerosolized H37Rv, a multidrug-resistant TN5904 strain of Mtb and HN878, a recent clinical 

isolate of the Beijing lineage (7, 180, 181). Additionally, when ID93/GLA-SE is used as a stand-

alone or as booster to BCG, post-infection survival of guinea-pigs is increased and it is safe and 

immunogenic in NHP (7). Finally, therapeutic vaccination with ID93/GLA-SE has been proven to 

be an effective adjunct to antibiotic therapy in infected SWR mice and NHPs. Indeed it decreased 

bacterial burden, reduced the duration of conventional chemotherapy required for survival, and 

decreased Mtb–induced lung pathology, compared with chemotherapy alone (182).  

It is to noted that, unlike BCG, immunization with ID93/GLA-SE does not cause a reaction  to 

purified protein derivative (PPD) administration (183). Thus, the Tuberculin Skin test, routinely 

used to identify individuals infected with Mtb, particularly in epidemiological studies, won’t be 

compromised upon vaccination with this vaccine. 

Interestingly it was recently shown that Induction of TH1 cells that co-express IFN-γ and TNF is 
not a requirement for ID93/GLA-SE efficacy against Mtb in mice, despite these cytokines being 

essential for control of Mtb in non-vaccinated animals (79). 

C.  WHAT WE KNOW ABOUT GLA-SE  ADJUVANTICITY  

When GLA is formulated in the stable emulsion SE (GLA-SE), its adjuvant activity is greatly 

enhanced compared with that of an aqueous formulation of GLA devoid of a major oil component. 

Indeed, GLA-SE formulation induces more antigen-specific Th1 CD4 cells (184). It is to be noted 

that immunization with ID93 formulated in the adjuvant SE alone elicited a predominant type 2 

response characterized by IL-5 production and substantial IgG1 antibody responses and that 

addition of GLA to the formulation eliminated the IL-5 response (12). Furthermore, when 

formulated with GLA several oil-in-in-water emulsions that are not squalene-based but similar 

average particle size and size polydispersity than SE, did not elicited detectable TH1 responses 

(184). Thus squalene itself seems to contribute to GLA-SE adjuvanticity but exactly how is still 

unknown. 

The innate response to GLA-SE predominantly takes place in the draining LN. Engagement of 

inflammasome has been implicated in GLA-SE’s superior adjuvant activity as the innate response 
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to GLA-SE and the subsequent adaptive immunity were compromised in the absence of caspase-

1/11 or the IL-18 receptor (12). Interestingly, the early response to adjuvant is not dependent on 

NLR Family, Pyrin Domain Containing 3 (NLRP3), which is consistent with MF59® studies (12, 

185). Additionally, IFNγ is a critical mediator of the innate and adaptive responses induced by 
GLA-SE (12, 79). Early IFNγ production is detected in the draining LNs upon injection with GLA-

SE, and the main producer of this early IFNγ had been described to be CD8+ T cells very early on 
(around 4h after immunization) and neutrophils later in the immune response (detected around 18h). Furthermore, early IFNγ production by neutrophils and CD8 memory cells is dependent 

upon IL-18 production and caspase 1/11 activity (12) (Table 1 and Figure 11). 

GLA-SE induces a strong DC recruitment to the draining LN and quickly renders the DCs 

functionally mature or immunogenic in vivo (186, 187). DCs were shown to be required for its full 

adjuvant action since no CD4+ T cell response develops when DCs were depleted in CD11c-DTR 

chimeras (186). Interestingly, unlike CD4+ responses, Ab responses to GLA-SE are not affected by 

DC depletion (186). 

GLA, through recognition by its receptor TLR4, induces activation of both MyD88 and TRIF-

associated pathways. TH1 induction and optimal IgG2c generation by GLA-SE is dependent on 

both MyD88 and TRIF signaling and their collaboration within the same cell (187, 188). These 

signaling pathways are also both required for the induction of IL-IL-12, RANTES and TNF by GLA 

in several different APCs  while IFNβ production is TRIF dependent/MyD88 independent (188). 

The accumulated knowledge about the requirements for a strong immune response to GLA-SE 

and the suggested mechanism of action are summarized in Table 1 and Figure 11 respectively. 
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CATEGORIE COMPONENT 

Innate 
response 
(strong CD69 
induction) 

Strong CD4+ 
TH1 
polyfunctional 
response 

Strong B cells 
IgG2c skewed 
response 

References 

Adjuvant GLA+SE YES YES ? (12, 184) 

Pathway 
components 

Caspase 1/11 YES YES ? (12) 
NLRP3 NO ? ? (12) 
MyD88/TRIF ? YES YES (188) 

Cytokines 
IFNγ YES YES ? (12, 79) 
IL-18 YES YES ? (12) 

Cells DC ? YES NO (186) 

Table 1. Components, cytokines and pathways required for the different elements of the immune response 
to GLA-SE solely based on what has been published about GLA-SE. YES = required, NO = not required, ? = no 
data. 

 

 

Figure 11. Suggested GLA-SE mechanisms of action in the draining LN solely based on what has been 
published about GLA-SE. Top: GLA-SE will activate the Inflammasome in an unknown target cell, leading to caspase 
1 activation and the subsequent cleavage of the pro-IL-18 in its mature form IL-18. IL-18 will be recognized by 
neutrophils and possibly CD8+ T cells which will lead to innate IFNγ secretion by these cells. IFNγ will be recognized 
by its receptor on CD4+ T cells and will help in the establishment of the TH1 response and the subsequent secretion of 
TH1 cytokines (IFNγ, TNF and IL-2) by the activated CD4+ T cells. Bottom: GLA will be recognized by DC through 
TLR4 leading to the engagement of MyD88 and TRIF pathways which will result in IL-12 expression (MyD88 and TRIF dependent) and type I IFN production (IFNα/β) (TRIF dependent). DC, MyD88 and TRIF are all required for TH1 

CD4+ T cells induction but the exact pathway is not defined yet. GLA-SE also induces an IgG2 skewed response which 
is DC independent but MyD88 and TRIF dependent. Little is known about the mechanisms of actions induced by 
GLA-SE that will ultimately result in the observed IgG2 skewed B cell response. 
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SCIENTIFIC OBJECTIVES 

A. GLA-SE  ADJUVANTICITY MECHANISMS OF ACTION 

The primary objective of this thesis was to broaden the knowledge that we have on the 

mechanisms of action of IDRI’s leading adjuvant GLA-SE. Recent insight into the functioning of 

the innate immune system has demonstrated its important role in triggering and shaping the 

adaptive immune response to vaccines (189). Our main focus was then to better understand 

which are the main actors in GLA-SE adjuvanticity i.e. immune cells, cytokines, transcription 

factors and pathways, of the innate response to GLA-SE creating the “immune-competent” 

response in the LN that will eventually trigger and shape the strong adaptive response linked to 

this adjuvant i.e. promotion of a strong CD4 TH1 induction and a very quick augmentation of IgG2 

skewed B cell response and subsequent antibody production. 

Our three main hypotheses for this work were: 

1. Canonical TH1 shaping factors, i.e. the transcription factor T-bet and IL-12, will be 

essential to the adaptive response to GLA-SE. Type I IFN, previously shown to be 

important for the innate response to GLA-SE (12) would be also important for the 

subsequent adaptive response. 

2. Lymph node (LN) sub-capsular macrophages will take-up GLA-SE and be critical for its 

adjuvanticity. 

3. B cells antigen-presenting (APC) function will have a non-redundant role in the shaping to 

the TH1 response to GLA-SE.  

In the first study we used T-bet-/- and IL-12-/- mice and a blocking IFNαR1 monoclonal antibody 
to characterize the requirement of the transcription factor T-bet and the cytokines IL-12 and 

type I IFN for the adaptive response to GLA-SE. The requirement of type I IFN signaling for the 

initiation of the response was also evaluated. 

In the second study we used GLA-SE labelled with the lipophilic tracer DiD (1,1'-dioctadecyl-

3,3,3',3'- tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) to characterize the 

main immune cells interacting with GLA-SE in the LN very early after immunization. 

Subsequently, those cells were depleted and their requirement for the subsequent innate and 
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adaptive responses investigated. The requirement of the IL-18 cytokine was also investigated 

using IL-18R-/- mice. 

In the third study we focused in the function of B cells in the induction of TH1 response and more 

specifically in the induction of a long lasting TH1 response. Using B-cell depleted mice and B and T 

cell transfers the role of antigen presentation by B cells in the generation of memory precursor 

TH1 effector cells was elucidated. 

B. ID93/GLA-SE  AS AN IMMUNOTHERAPEUTIC VACCINE 

A secondary objective of this thesis was to investigate the possibility of using ID93/GLA-SE as 

adjunct therapy to existing antibiotic treatments to reduce relapse rates after chemotherapy 

treatment. We hypothesize that ID93/GLA-SE would reduce relapse rates in a suboptimal drug 

treatment model A mouse model of relapse using a sub-optimal, short duration antibiotic 

treatment was defined and the capacities of ID93/GLA-SE post-exposure to better the post-

chemotherapy outcome was assessed in three different mouse strains.  

 

In this second section we will present the different studies, main obtained results and the 

resulting scientific papers. Those results will be discussed and the different perspective outlined 

in the third and final section of this manuscript. 
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ARTICLE 1:  THE TLR4 AGONIST VACCINE ADJUVANT,  GLA-SE,  REQUIRES 

CANONICAL AND ATYPICAL MECHANISMS OF ACTION FOR TH1 INDUCTION  

Natasha Dubois Cauwelaert, Anthony L. Desbien, Thomas E. Hudson, Samuel O. Pine, Steven G. 

Reed, Rhea N. Coler, and Mark T. Orr 

PLoS One. 2016; 11(1): e0146372.  

PRESENTATION  

In order to better define the role of different cytokines and transcription factors in initiating the 

immune response to GLA-SE from the naive polyclonal repertoire we evaluated the requirement 

of the transcription factor T-bet and the inflammatory cytokines IL-12 and type I IFN for GLA-SE 

adjuvanticity. 

In a first section, T-bet deficient and IL-12 deficient mice were used to determine T-bet and IL-12 

roles in TH1 CD4 induction and antibodies production. 

In the second section the kinetics of the IFNα cytokine production in the draining LN after GLA-

SE immunization was assessed. Then, a blockade monoclonal antibody against the type I IFN receptor IFNαR1 was used to determine the requirement of type I IFN signaling in the induction 

of the innate response to GLA-SE including CD69  and innate IFNγ production in the LN and the 

subsequent adaptive response.  

PRINCIPAL RESULTS  

The main obtained results were: 

 GLA-SE induced CD4 T cells TH1 responses and IgG2c skewing were completely dependent 

upon T-bet expression. 

 IL-12 was required for GLA-SE induced TH1 responses but IgG2c skewing was IL-12 

independent. 

 IFNα is secreted in the LN early on after GLA-SE immunization. 

 The innate response to GLA-SE imunization including, early innate IFNγ production by 
CD8+ and NK cells and CD69 induction in the LN, is dependent on type I IFN receptor I (IFNαR1) signaling. 
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 IFNαR1 signaling partly inhibits IL-12 production in the LN 

 IFNαR1 signaling is required for the strong TH1 response to GLA-SE 
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Abstract

The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant formulated in a stable emul-

sion (GLA-SE) promotes strong TH1 and balanced IgG1/IgG2 responses to protein vaccine

antigens. This enhanced immunity is sufficient to provide protection against many diseases

including tuberculosis and leishmaniasis. To better characterize the adjuvant action it is

important to understand how the different cytokines and transcription factors contribute to

the initiation of immunity. In the present study using T-bet-/- and IL-12-/- mice and a blocking

anti-IFNαR1 monoclonal antibody, we define mechanisms of adjuvant activity of GLA-SE.

In accordance with previous studies of TLR4 agonist based adjuvants, we found that TH1

induction via GLA-SE was completely dependent upon T-bet, a key transcription factor for

IFNγ production and TH1 differentiation. Consistent with this, deficiency of IL-12, a cytokine

canonical to TH1 induction, ablated TH1 induction via GLA-SE. Finally we demonstrate that

the innate immune response to GLA-SE, including rapid IFNγ production by memory CD8+

T cells and NK cells, was contingent on type I interferon, a cytokine group whose associa-

tion with TH1 induction is contextual, and that they contributed to the adjuvant activity of

GLA-SE.

Introduction

Subunit vaccines, in combination with adjuvants to enhance the immune response to the target

antigens, represent a significant advance in the development of better defined, easier to pro-

duce and safer vaccines. Importantly an optimal adjuvant should induce a targeted innate

response to tailor the desired adaptive response needed for vaccine efficacy. To that end we

have developed a number of Toll-like receptor (TLR) agonists containing adjuvants that pro-

mote TH1 T cell responses to vaccine antigens. The most notable of these is the GLA-SE adju-

vant which contains a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant (GLA),

formulated in a stable nano-emulsion of squalene oil-in-water (SE) [1, 2]. GLA-SE drives
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strong TH1 responses to a variety of antigens that are protective against intracellular infections

[2–7]. In combination with the tuberculosis vaccine fusion protein antigen ID93, GLA-SE

induces a poly-functional TH1 response characterized by CD4 T cells producing CD154, IFNγ,

TNF, GM-CSF, and IL-2, as well as a humoral response skewed towards IgG2c class-switching

[8–10]. In order to better understand the mechanism of action of adjuvants it is important to

define the role of different cytokines and transcription factors in initiating the immune

response from the naive polyclonal repertoire.

The differentiation of CD4 T cells into TH1 effectors is orchestrated by the transcription fac-

tor T-bet [11]. This differentiation occurs in two steps: first, during the initial polarization

phase, simultaneous signaling via the T cell antigen receptor TCR and the IFNγ receptor of the

naïve T cell results in T-bet expression which enables IL-12 receptor expression, and subse-

quently a second wave of T-bet expression is induced by IL-12 signaling in the absence of TCR

stimulation [12–15]. T-bet induction and IL-12 production are therefore likely necessary for

the potent TH1 response induction to vaccination with GLA-SE.

Type I interferons (IFNα and IFNβ) induce an antiviral state in most nucleated cells, pro-

viding protection against infection [16, 17]. Furthermore, type I IFN can shape the adaptive

responses to infection (reviewed in [18]). These cytokines signal via the heterodimeric

IFNαR1/2 receptor and act on both antigen presenting cells (APC) and lymphocytes to

enhance maturation, proliferation and survival to a variety of stimuli [19]. In the present study,

using T-bet-/- and IL-12-/- mice and IFNαR1 antibody blockade we demonstrate that T-bet

induction, IL-12 production and IFNαR1 signaling are necessary for the adjuvant activity of

GLA-SE and that IFNαR1 signaling is also crucial for the early innate response initiation to

this adjuvant.

Results

GLA-SE adjuvant activity is dependent on T-bet expression and IL-12
production

GLA-SE, a synthetic TLR4 agonist formulated in a stable nano-emulsion of squalene oil

induces a strong TH1 response to vaccines antigens that otherwise elicit minimal cellular

immune responses with a TH2 bias [1, 9, 10, 20]. IL-12 is important for TH1 induction with

LPS, another TLR4 agonist, and monophosphorylated lipid a (MPLA), a detoxified derivative

of LPS [21, 22]. Mouse and human dendritic cells stimulated with GLA produce IL-12 in a

MyD88 and TRIF dependent manner [2, 9]. To determine whether IL-12 production and/or T-

bet expression are important for GLA-SE driven antibody and CD4 T cell responses, we immu-

nized wild type (B6) or IL-12 or T-bet deficient mice with GLA-SE and the recombinant anti-

gen ID93. Both T-bet and IL-12 were essential for TH1 induction as indicated by CD4+ T cells

production of CD154, IFN-γ, or TNF upon stimulation with ID93 (Fig 1A). Following immu-

nization with ID93+GLA-SE induction of a strong IgG2c skewed response to ID93 was

completely dependent on T-bet expression, but, surprisingly, not on IL-12 (Fig 1B). These data

suggest discordance between an IL-12 dependent induction of IFNγ- producing CD4 T cells

and an IL-12 independent class-switching to IgG2c, with T-bet being essential for both.

GLA-SE induces IFNα in vivo

GLA induces transcription of type I IFN by human dendritic cells in vitro. In vivo induction of

CD69 on T cells by GLA-SE is partially dependent on cell-intrinsic expression of type I IFN

receptor [2, 23]. Type I IFN are TRIF-dependent cytokines produced by TLR4 stimulation

with GLA or similar agonists [2, 24, 25]. MyD88 and TRIF are both necessary for GLA-SE

Mechanisms of TH1 Induction by GLA-SE

PLOSONE | DOI:10.1371/journal.pone.0146372 January 5, 2016 2 / 14

57



adjuvant activity [9]; suggesting a role for type I IFN in the TH1 differentiation induction by

GLA-SE. To determine whether GLA-SE induced type I IFN in vivo, we measured IFNα levels

in the draining lymph node (LN) and sera shortly after immunization with GLA-SE. IFNα lev-

els in the draining LN peaked between 6 and 24 hours and returned to almost undetectable lev-

els at 48 hours (Fig 2). No IFNα was detected in the serum indicating that the response was

highly localized to draining LNs (Fig 2).

Type I IFN receptor signaling is critical during the innate response to
GLA-SE

Type I IFN drive expression of the cell surface activation marker CD69 which in turn facilitates

trapping of naïve lymphocytes in the draining LN with antigen-loaded APCs [26]. Immuniza-

tion with GLA-SE induces CD69 on lymphocytes, independent of antigen-specificity and this

induction is partially dependent on cell intrinsic expression of type I IFN receptor as well as

Fig 1. ID93+GLA-SE TH1 response is dependent on T-bet and IL-12 whereas antibody production is
only dependent on T-bet. B6, IL12-/- and T-bet-/- mice were immunized with ID93+GLA-SE. (A)One week
after boost, splenocytes were isolated and stimulated with ID93. CD4 T cells were analyzed for the
production of CD154, IFN-γ, and TNF. (B) Sera were collected three weeks after the first immunization and
serially diluted to assess levels of anti-ID93 IgG1, IgG2c and IgG Total. Data are shown as mean ± SEM of
N = 4–5 animal/group and are from one experiment representative of two experiments performed. Statistics
by two-way ANOVA with Dunnett’s correction for multiple comparison test within IgG and cytokine groups
versus B6; *p�0.05.

doi:10.1371/journal.pone.0146372.g001

Mechanisms of TH1 Induction by GLA-SE
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innate phase production of IFNγ. Similar to our previous findings [23] immunization with

GLA-SE drove a transient expression of CD69 on the total lymphocyte population in the drain-

ing LN, which was dependent on type I IFN signaling (Fig 3A). GLA-SE immunization also

produced a strong burst of IFNγ in the draining LN 6hr after immunization which returned to

baseline by 24 hours (Fig 3B). This was also dependent on type I IFN as blocking the IFNαR1

ablated most of the IFNγ production (Fig 3B).

The occupancy of IFN-γ receptor, and therefore the amount of IFNγ present on the surface

of cells, can be determined by staining with the empty-IFNγ receptor-specific antibody clone

GR-20 [14]. Correlating with our IFNγ production results, 12hrs after immunization the

empty-IFNγ receptor staining on lymphocytes from draining LNs was substantially reduced in

mice treated with GLA-SE compared with contralateral LNs. IFNαR1 blockade preserved

empty-IFNγ receptor staining confirming that the early IFNγ burst depends on IFNαR1 signal-

ing (Fig 3C). This early burst of IFNγ at 6 hr was produced by both memory CD8 T cells and

NK cells (Fig 3D and 3E). This is likely driven by IL-18 expression which is induced by

GLA-SE and necessary for the adjuvanticity of GLA-SE [23]. IFNγ production by both cell

types was strongly reduced in mice that were previously treated with anti-IFNαR1 (Fig 3D and

3E). These results indicate that type I IFN, in sequential manner, was necessary for the early

innate production of IFNγ by CD8+ T cells and NK cells in response to GLA-SE.

Concurrent with the early IFNγ production there is an increase in IL-12 production in the

draining LN following GLA-SE immunization as early as 6 hours post immunization which is

sustained for at least 2 days and is critical for the adjuvant activity of GLA-SE (Figs 1 and 3F).

Surprisingly IFNαR1 blockade augmented the levels of IL-12 in the draining LN despite IFNγ

levels being lower in the treated animals at the same time-points (Fig 3F). These results suggest

that type I IFN production inhibits early IL-12 production, which is supported by prior reports

[27–30]. Overall the innate activity of GLA-SE is strongly dependent on type I IFN which is

necessary for lymphocyte activation, controls IL-12p40 production and promotes early IFNγ

production, a feature associated with T-bet expression in T cells, and subsequently TH1 induc-

tion [31].

Fig 2. IFNα is produced early after GLA-SE immunization. B6mice were immunized with saline or ID93
+GLA-SE. Sera and draining inguinal LNs were collected0, 6, 24, or 48 hours later and analyzed for IFNα
protein expression by ELISA. Data are shown as mean ± SEM and are the combined results of two
independent experiments with similar results with 3 or 4 mice/group. Statistics by unpaired t test; *p�0.05
compared to Saline group.

doi:10.1371/journal.pone.0146372.g002

Mechanisms of TH1 Induction by GLA-SE
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Fig 3. IFNαR1 signaling is essential for lymphocyte activation and IFNγ production upon immunization with ID93+GLA-SE. B6 mice were treated
with IFNαR1 antibody or its isotype and immunized with ID93+GLA-SE. Innate responses were assessed in the ipsilateral draining LN or in the contralateral
LN by flow cytometry on LN cells or ELISA on LN supernatant The results are shown for the ipsilateral LN when not stated otherwise. (A) MFI and

Mechanisms of TH1 Induction by GLA-SE
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GLA-SE TH1 induction and TH2 counter-regulation is partially dependent
on type I IFN production

To further investigate the role of type I IFN in the adaptive response elicited by immunization

with GLA-SE and ID93, we blocked IFNαR1 and examined the cellular and humoral responses

one week after immunization. IFNαR1 blockade reduced the frequency of antigen-specific

CD4 T cells as measured by CD154 expression upon stimulation (Fig 4A). Further, TH1

responses were reduced and TH2 responses enhanced, as measured by antigen induced produc-

tion of IFNγ, TNF and IL-5 (Fig 4A). In parallel, samples were stained for ID93-specific CD4 T

cells via peptide-MCHII tetramer (Tet) staining. Consistent with CD154 expression upon stim-

ulation there was a significant reduction in the frequency of Tet+ CD4 T cells from the

IFNαR1 blockade group (Fig 4B). Congruent with the reduction in IFNγ observed after antigen

stimulation, the remaining Tet+ T cells from the IFNαR1 blockade group had lower levels of

T-bet staining (Fig 4C). The reduction in TH1 skewing correlated with modestly decreased iso-

type switching to IgG2c in ID93-specific antibody titers (Fig 4D). Taken together these results

suggest that GLA-SE induced type I IFN promote TH1 responses by enhancing CD69 expres-

sion and increasing innate IFNγ production.

Discussion

GLA-SE is a clinical stage vaccine adjuvant that robustly augments TH1 immunity yet its mode

of action is still incompletely understood. In this study we assessed the contribution of T-bet,

IL-12 and IFNαR1 signaling to the adjuvant activity of GLA-SE. We show that T-bet is

required for IgG2c isotype skewing as well as TH1 induction by GLA-SE. Thereupon we sought

to investigate the role of the pro-inflammatory cytokine IL-12 and, surprisingly, found that

IgG2c class-switching was not impaired even though production of IFN-γ secreting CD4 TH1

cells was ablated. Finally, our results suggest that type I IFN, which are induced early after

immunization with GLA-SE, are necessary for an optimal innate response including rapid lym-

phocyte activation and IFNγ expression by NK cells and memory CD8 T cells and, conse-

quently, the induction of TH1 immunity.

IL-12 is a key factor that drives TH1 responses and IFNγ production [23, 32–35]. However,

the relevance of IL-12 in vivo depends on the nature of the infection or immunization. In IL-

12-deficient mice, TH1-type responses were generated upon immunization with inactivated

MHV, demonstrating the existence of an IL-12 independent TH1 induction that has been since

then described in several models of viral infection and immunization [36–41]. Conversely, IL-

12 has been shown to be important for TH1 induction by the TLR4 agonists LPS and MPL,

although antibody production was not evaluated in those papers [21, 22]. Using IL-12-/- and T-

bet-/- mice, we demonstrated that IL-12 is needed for the CD4 TH1 induction by GLA-SE but

not for IgG2c skewing, whereas T-bet is necessary for both. Since B-cell intrinsic T-bet has

been shown to mediate early IgG2c production [42] further experiments will be needed to

determine if T-bet expression upon ID93-GLA-SE vaccination is required in the CD4 T cells to

promote IgG2c skewing. Furthermore we have previously shown that MyD88 and TRIF are

both necessary for GLA-SE TH1 skewing capacity as well as IL-12 production by BMDC, DC

and macrophages [9]. This suggests that IL-12 production might be a necessary point of inter-

section for the previously demonstrated MyD88- and TRIF-dependent induction of TH1

representative histograms of CD69 staining (B) IFNγ production assessed by ELISA, (C) IFNγR occupancy as indicated by decreased MFI of IFNγR staining
with the monoclonal antibody GR-20 at 12 hrs after immunization. (D) IFNγ staining on CD8+ T cells. (E) IFNγ staining on NK cells. (F) IL-12 production
assessed by ELISA. Data are shown as mean ± SEM of N = 4 animal/group and are from one experiment. Statistics by one-way ANOVA, *p�0.05 compare
to anti-IFNαR1 treated animals, #p�0.05 compare to all the other groups.

doi:10.1371/journal.pone.0146372.g003
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responses by ID93+GLA-SE immunization. Moreover IL-18 has been shown to synergize with

IL-12 to induce IFNγ in T cells [34, 35]. IL-18 is produced very early upon immunization with

GLA-SE and IL-18R-/- mice have a reduced antigen-specific TH1 response [23]. We hypothe-

size that this IL-18/IL-12 synergy is required for GLA-SE-induced TH1 responses.

Type I IFN links the innate and adaptive immune responses. They cause APC maturation in

vitro while inhibiting secretion of TH2 cytokines leading to IFNγ producing T cells [43–45].

Type I IFN inhibit the death of CD4 activated T cells and their key role in priming adaptive T

cells has been demonstrated in a wide variety of immunization schemes [46, 47]. Recombinant

type I IFN given in vivo has direct adjuvant activity, enhancing both antibody and T cell

responses [48, 49]. TLR agonist and non-TLR agonist require type I IFN activity to exert their

adjuvant activities [18, 48, 50]. In some cases this may be due to IFNαR signaling altering the

Fig 4. IFNαR1 signaling contributes to TH1 skewing. B6mice were treated with IFNαR1 antibody or its isotype and immunized with ID93+GLA-SE and
responses were analyzed one week after prime. (A) ID93 stimulated splenocytes were analyzed for the production of CD154, IFNγ, TNF and IL-5 by CD4 T
cells. (B) One week after prime CD4 T cells were isolated and stained with an I-Ab tetramer presenting the dominant epitope for Rv3619 and analyzed for T-
bet induction. (C) Sera were collected one week after prime and serially diluted to assess levels of anti-ID93 IgG1 and IgG2c. Data are shown as
mean ± SEM of N = 5 animal/group and are from one experiment representative of two experiments performed except for IL-5 and T-bet levels measurement
which were only done once. Statistics by simple or multiple t test corrected for multiple comparisons using the Holm-Sidak method between IgG or cytokine
groups; *p�0.05

doi:10.1371/journal.pone.0146372.g004
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expression of some TLRs [43]. Furthermore Longhi et al observed an IL-12 independent

impairment of TH1 responses to poly (I:C) when blocking IFNαR1 and in IFNαR-/- mice [39].

Thus it has been hypothesized that robust type I IFN induction may be necessary for effective

adjuvant activity [51]. However other adjuvants including MF59 and Pam3CSK (TLR2) do not

elicit type I IFN and do not require IFNαR signaling to enhance antibody responses [50].

Our results show that that type I IFN is critical for the adjuvanticity of GLA-SE. Type I IFN

was required for maximal response to this adjuvant illustrated by defects in early innate

responses as indicated by reduced CD69 expression and defects in innate IFNγ production by

CD8+ T cells and NK cells. CD69 expression inhibits lymphocytes egress from the LN which is

a mechanism to retain useful clonal specificities in the activated LN [26, 52]. Early IFNγ pro-

duced by innate cells upon immunization with GLA-SE and other adjuvants is critical for CD4

T cells TH1 polarization in the LN [13, 15, 23]. IFNαR1 blockade caused multiple defects in

TH1 adaptive responses including: (1) reduction in the frequency of antigen-specific cells deter-

mined by CD154 production or tetramer staining, (2) reduction in TH1 skewing measured by

IFNγ or TNF production and lower amounts of the TH1 controlling transcription factor Tbet

in the remaining tetramer positive cells, and (3) enhanced frequencies of CD4 T cells that pro-

duced IL-5, a hallmark of TH2 differentiation.

In some settings type I IFN is necessary for IL-12 production by murine and human den-

dritic cells [53, 54] but they also have been shown to decrease IL-12 production in other studies

[27–30]. IFNαR1 blockade increases IL-12 production early after immunization with GLA-SE

but diminished IFNγ production at the same time indicating a complex regulation of IFNγ

upon vaccination. We hypothesize that type I IFN driven IFNγ is necessary to increase expres-

sion of the IL-12R on CD4 T cells, thus making them responsive to IL-12. Alternatively pro-

duction of the IL-12p35 subunit to form active IL-12p70 may be dependent on IFNαR1

signaling. In addition to their role in stimulating APCs to enhance CD4 responses, type I IFN

can also have a direct effect on T cells. CD8 T cells require direct type I IFN signals for their

expansion in response to some infections [55]. Likewise direct type I IFN action on CD4 T cells

is important for clonal expansion in vivo following LCMV, but inhibitory during Listeria infec-

tion [56] showing that the priming milieu determines the extent to which CD4 T cells are

dependent on direct signal mediated by type I IFN. Conversely CD4 T cell responses are depen-

dent on type I IFN in a cell extrinsic manner in response to polyIC:CD40 vaccination [57].

Interestingly deletion of IFNαR2 on T cells significantly diminished CD69 expression induced

by GLA-SE at 18h after immunization suggesting a dependence on T cell intrinsic expression

of the type I IFN receptor for GLA-SE innate response induction [23]. Based on our results we

suggest a model where GLA-SE induces IFNα to trap cells in the LN by CD69 expression and

to augment the early innate IFNγ production by CD8+ T cells and NK cells. In parallel

GLA-SE induces production of IL-12 in vivo which synergizes with IFNα effects to promote T-

bet expression and TH1 commitment. Understanding the mechanism by which adjuvants

engage the immune responses is critically important for development of vaccines. Our results

suggest that early type I and II IFNs are signatures of the optimal innate response to the

GLA-SE adjuvant, predicting subsequent TH1 responses. Further research is warranted to

determine if this early type I IFN induction can be used as an early gating strategy in develop-

ing new adjuvants or as a signature of adjuvanticity in human clinical trials.

Materials and Methods

Ethics statement

The study was conducted under protocols approved by the Infectious Disease Research Insti-

tute Institutional Animal Care and Use Committee.
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Animals

6–8 week old female C57BL/6 (B6), IL-12-/- and T-bet-/- mice were purchased from Jackson

Lab and maintained in Specific Pathogen Free conditions. All animal study protocols were

approved by the IDRI Institutional Animal Care and Use Committee (IACUC) and were per-

formed according to IACUC regulations and guidelines.

Immunizations and IFNαR1 blockade

Mice were immunized with 0.5 μg of ID93 recombinant protein [8] formulated in 5 μg of GLA

(Avanti Polar Lipids) in IDRI’s stable emulsion (SE) [2] by intramuscular injection. For

IFNαR1 blockade, 1 mg of anti-IFNαR1 antibody (BioXCell, clone MAR1-5A3) or its IgG1 iso-

type control (BioXCell, clone MOPC-21) in PBS were injected i.p. 6h prior to immunization

and on day 3 after immunization.

IFNα ELISA

At indicated times following immunization peripheral blood and inguinal LNs were collected

and LNs were homogenized in 500μL PBS. Total production of IFNα was assessed using the

Mouse IFNα ELISA kits (R&D Systems) according to the manufacturer’s instructions. Concen-

trations below the limit of detection were reported as 0.

Antibody responses

Mouse sera were prepared by collection of retro-orbital blood into microtainer serum collec-

tion tubes (VWR International, West Chester, PA), followed by centrifugation at 10,000 rpm

for 5 minutes. Each serum sample was then analyzed by antibody capture ELISA. Briefly,

ELISA plates (Nunc, Rochester, NY) were coated with 2 μg/ml recombinant antigen ID93 in

0.1 M bicarbonate buffer and blocked with 1% BSA-PBS. Then, in consecutive order and fol-

lowing washes in PBS/Tween20, serially diluted serum samples, anti-mouse IgG1 or IgG2c-

HRP (all Southern Biotech, Birmingham, AL) and ABTS-H2O2 (Kirkegaard and Perry Labora-

tories, Gaithersburg, MD) were added to the plates. Plates were analyzed at 405nm (ELX808,

Bio-Tek Instruments Inc, Winooski, VT).

Splenocytes recalls and intracellular cytokine staining

Splenocytes were isolated from three to five animals per treatment regimen. Red blood cells were

lysed using Red Blood Cell Lysis Buffer (eBioscience) and resuspended in RPMI 1640, 10% FBS.

Total viable cells were enumerated using ViaCount assay with a PCA system (Guava Technolo-

gies), plated at 2x106 cells/well in 96-well plates and stimulated for 2 hours with media or ID93

(10 μg/mL) at 37°C. GolgiPlug (BD Biosciences) was added and the cells were incubated for an

additional 8 hours at 37°C. Cells were washed and surface stained with fluorochrome labeled

antibodies to CD4 (clone GK1.5) and CD8 (clone 53–6. 7) (BioLegend and eBioscience) in the

presence of 20% normal mouse serum for 20 minutes at 4°C. Cells were washed and permeabi-

lized with Cytofix/Cytoperm (BD Biosciences) for 20 minutes at room temperature. Cells were

washed twice with Perm/Wash (BD Biosciences) and stained intracellularly with fluorochrome

labeled antibodies to CD154 (clone MR1) IFN-γ (clone XMG-1.2), TNF (MP6-XT22) and IL-5

(TRFK5) (BioLegend and eBioscience) for 20 minutes at room temperature. Cells were washed

and resuspended in PBS. Up to 106 events were collected on a four laser LSRFortessa flow cytom-

eter (BD Biosciences). Cells were gated as singlets> lymphocytes> CD4+ CD8->cytokine posi-

tive. ID93-specific response frequencies were determined by subtracting the frequency of

response positives of unstimulated cells from ID93 stimulated cells in matched samples.
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For T-bet staining, CD4 T cells were stained with an I-Ab tetramer presenting the dominant

epitope for Rv3619 [20] in the presence of 20% normal mouse serum for 1h at 37°C. APC

labeled tetramers were provided by the NIH Tetramer Core Facility. Cells were washed and

surface stained with antibodies to CD4 (clone GK1.5), CD8 (clone 53–6.7), CD19 (clone 1D3),

Ly6G (clone 1A8), Ter119 (clone TER-119), F4/80 (clone BM8), CD11b (clone M1/70) and

CD11c (clone N418) (Lin) (BioLegend and eBioscience). Cells were washed and permeabilized

with Cytofix/Cytoperm (BD Biosciences) for 20 minutes at room temperature. Cells were

washed twice with Perm/Wash (BD Biosciences) and stained intracellularly with fluorochrome

labeled antibodies to T-bet (clone 4b10) overnight at 4°C. Cells were washed and resuspended

in PBS. Up to 107 events were collected on a four laser LSRFortessa flow cytometer (BD Biosci-

ences). Cells were gated as singlets> lymphocytes> CD4+ Lin->Tetramer+. Data were ana-

lyzed with FlowJo v9.8.

LN cell staining and cytokine detection

Inguinal LN were collected in PBS 0.5%BSA with protease inhibitors and 10μg/mL BrefeldinA

on ice and mechanically homogenized in PBS. Cells were surface stained with the labeled anti-

bodies to IFNγR (clone GR20), CD69 (clone H1.2F3), CD8 (clone 53–6.7), CD90.2 (clone

30-H12) and NK1.1 (clone PK136) (BioLegend and eBioscience) in the presence of 20% nor-

mal mouse serum for 20 minutes at 4°C. Cells were washed twice with Perm/Wash (BD Biosci-

ences) and stained intracellularly with fluorochrome labeled antibodies to IFNγ (clone

XMG1.2) overnight at 4°C. Cells were washed twice with Perm/Wash (BD Biosciences) washed

and resuspended in PBS. Up to 106 events were collected on a four laser LSRFortessa flow

cytometer (BD Biosciences). Lymphocytes were gated as singlets> lymphocytes (based on SSC

x FSC) and CD69 and IFNγRMFI were assessed. CD8+ T cells were gated as

singlets> lymphocytes> CD90.2+ CD8+ and NK cells were gated as singlets> lymphocytes

CD8- NK1.1+. Data was analyzed with FlowJo v9.8.

Statistical methods and figures

Statistical analyses and figures were performed using Prism software (GraphPad Software, Inc.,

La Jolla, CA). T-test were used when comparing one group against another and one-way or

two ways ANOVA analyses were used when more than two groups were compared over. Non-

normal data sets were log-transformed prior to analysis. Statistical significance was considered

when the p-values were<0.05 and noted � or # when the group was statistically different to all

the other groups.
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ARTICLE 2:  IL-18 AND SUBCAPSULAR LYMPH NODE MACROPHAGES ARE ESSENTIAL 

FOR ENHANCED B  CELL RESPONSES WITH THE TLR4 AGONIST ADJUVANT GLA-SE 

Anthony L. Desbien, Natasha Dubois Cauwelaert,  Steven J. Reed, Hilton R. Bailor, Hong Liang, 

Darrick Carter, Malcolm S. Duthie, Christopher B. Fox, Steven G. Reed, Mark T. Orr.  

(Submitted)  

PRESENTATION  

In this second study the main objective was to define the primary cells interacting with GLA-SE 

early after immunization and characterize the requirements of those cells in the innate and 

adaptive response to this adjuvant. 

A DiD-labelled GLA-SE was used to track the adjuvant in the LN 15 mins after immunization and 

microscopic and flow cytometry analysis revealed that the LN subcapsular macrophages were 

the primary immune cell population uptaking GLA-SE early after immunization. Clodronate 

loaded liposomes were then used to deplete subcapsular macrophages (SCMφ) from the draining 

LN. Using this technique, the requirement of those cells for the induction of the innate response 

to GLA-SE including inflammatory cytokines and chemokines’ induction and CD69 upregulation 

in the LN was assessed. Further we used clodronate treated mice to assess the role of the 

subcapsular macrophages in the induction of an adaptive response to GLA-SE namely B cells, 

antibodies and TH1 responses promotion. Finally, using IL-18R-/- mice we define the requirement 

of the IL-18 inflammatory cytokine to the adaptive response induced by GLA-SE. 

PRINCIPAL RESULTS  

The main obtained results were: 

 CD169+ SIGNR1+ subcapsullar medullary macrophages are the primary cells that are 

associated with GLA-SE very early after immunization (15mins). 

 SCMф are critical to early GLA-SE capture and subsequent distribution in the draining LN.  

 SCMф are essential for the innate response to GLA-SE immunization, including production of early IFNγ, IL-18 and a number of chemoattractants and CD69 induction in the LN. 

 SCMф are required for GLA-SE induced CD4 TH1 responses and B cell responses. 

 IL-18 also contributes to GLA-SE induced CD4 TH1 responses and B cell responses. 
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Abstract 

Designing modern vaccine adjuvants depends on understanding the cellular and 

molecular events that connect innate and adaptive immune responses.  The synthetic TLR4 

agonist GLA formulated in a stable emulsion (GLA-SE) augments both cellular and humoral 

immune responses to vaccine antigens. Early after injection, GLA-SE induces substantially more 

antigen-specific B cells, higher serum antibody titers and greater numbers of T follicular helper 

(TFH) and TH1 cells than alum, the squalene-in-water emulsion (SE) alone, or GLA without SE. 

GLA-SE augments antigen-specific B cell differentiation into germinal center and memory 

precursor B cells as well as pre-plasmablasts that rapidly secrete antibodies. CD169+ SIGNR1+ 

subcapsular medullary macrophages are the primary cells to take up GLA-SE after immunization 

and are critical for the innate immune responses, including rapid IL-18 production, induced by 

GLA-SE.  Depletion of subcapsular macrophages (SCMф) or abrogation of IL-18 signaling 

dramatically impairs the antigen-specific B cell and antibody responses augmented by GLA-SE.  Depletion of SCMф also drastically reduces the TH1 but not TFH response.  Thus the GLA-SE 

adjuvant operates through interaction with IL-18-producing SCMф for the rapid induction of B 
cell expansion and differentiation, antibody secretion and TH1 responses, whereas augmentation 

of TFH numbers by GLA-SE is independent of SCMф. 
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Introduction 

Augmentation of antigen-specific B cell responses and subsequent antibody production is 

central to the development of effective vaccines.  In settings such as the emergence of new 

pandemics, intentional release of bioterror agents, and on-demand traveler’s vaccines, the rapid 

initiation of humoral immunity with practical vaccine approaches is highly desirable. The last 

decade has seen the licensure of several vaccine adjuvants that augment humoral immunity, 

including the squalene oil-in-water adjuvants, MF59 and AS03 and the TLR4 agonist-containing 

adjuvants AS01 and AS04.  The study of B cell responses following immunization with clinically 

relevant adjuvants has been primarily limited to serum antibody analyses and the identification 

of antibody secreting cells. Compared to the wealth of information regarding T cell and antibody 

responses to  vaccine adjuvants, much less is known regarding the early events following 

immunization that induce antigen-specific B cell and TFH responses and the mechanisms by 

which these adjuvants determine the course of these humoral responses.  

The initial wave of secreted IgM and class-switched antibodies is produced by CD138+ 

pre-plasmablasts residing in extra-follicular spaces.  Concurrently, CD95+ GL7+ germinal center B 

cells differentiate within follicles, resulting in affinity-matured antibodies, memory cells and 

long-lived plasmablasts. Memory B cells expressing IgM and CD38 are generated early in the 

response - independently of germinal centers - and are distinguished from the bulk population of 

naïve B cells by their antigen specificity (1). The production of a B cell response is coordinated by 

multiple innate and adaptive responses. The earliest encounter of foreign material in the 

draining lymph node (LN) can occur within minutes via cell-free transport from the infection or 

injection site to the draining LNs (2). This material is captured by CD169+ subcapsular 

macrophages (SCMф) that reside in lymph node sinusoidal spaces, allowing delivery of material 
to B cell follicles (3).  Subsequent T-dependent B cell differentiation is regulated by multiple 

subsets of CD4 T helper cells. PD1+ CXCR5+ T follicular helper cells (TFH) expressing the 

transcription factor Bcl-6 and localized within B cell follicle are particularly important for 

germinal center responses and the generation of long-lived memory responses (4). TFH cells, or 

perhaps their progenitors, have also been shown to be necessary for extra-follicular responses 

(5).  

The TLR4 agonist glucopyranosyl lipid adjuvant (GLA) is an effective vaccine adjuvant 

when formulated in a squalene oil-in-water emulsion. It generates a robust TH1 response and 
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augmented antibody production skewed towards IgG2 class-switching against numerous 

infectious disease- and cancer-associated antigens (6). The adjuvant activity of GLA is critically 

dependent on its formulation. When GLA is formulated as a squalene oil-in-water emulsion 

(referred to as GLA-SE) compared to aqueous formulations of GLA, unique innate and adaptive 

features emerge.  (7–9). We have previously demonstrated that the TH1 potentiating activity of 

GLA-SE is mediated in part by MyD88 and TRIF signaling, inflammatory caspases and IL-18 as 

well as by type I and II  interferons, IL-12, and the transcription  factor  T-bet (8, 10, 11).  In the 

present paper we evaluate the cellular and molecular events necessary for augmentation of B 

cell- antibody and TFH responses by the GLA-SE adjuvant. 

Results 

GLA-SE induces rapid B cell responses 

To better understand the B cells responses induced by GLA-SE, we analyzed antigen-specific B 

cells via immunization with phycoerythrin (PE) either alone or adjuvanted with GLA-SE or its 

constituent components, SE or GLA, a strategy previously described to identify antigen-specific B 

cells by flow cytometry (12, 13). We also included alum as a well-established adjuvant with 

which to benchmark the adjuvanticity of GLA-SE.  Seven days after immunization with PE alone, 

very few antigen-specific B cells were detected in the draining LN (Figure 1A) or spleens (data 

not shown) (See Supplemental Figure 1 for PE-specific B cell gating strategy). These rare PE+ B 

cells elicited by immunization with unadjuvanted antigen were predominately IgD+, CD38+, IgM+ 

putative memory B cells (Figure 1B).   Adjuvanting PE with alum, GLA or SE elicited a minor but 

not statistically significant increase in PE+ B cells with an increase in the proportion of CD95+, 

GL7+, IgD- germinal center B cells (Figure 1A and B). In contrast GLA and SE synergized to elicit 

significantly more PE-specific B cells (Figure 1A). In addition to inducing germinal center and 

putative memory B cells, GLA-SE uniquely produced isotype switched pre-plasma blasts (B220lo, 

CD138+, IgD-, IgM-) which are an early source for circulating antibody (Figure 1B). Accordingly 

PE-specific serum antibody titers were dramatically increased with GLA-SE compared to the 

other immunizations including alum (Figure 1A).  Furthermore, compared to alum, GLA or SE, 

GLA-SE uniquely augmented the frequency of antigen-specific B cells expressing intracellular 

IgG2c and the IgG2c serum antibody titers (Figure 1C). Of note, at this time point (seven days 

after immunization) few PE+ B cells were detected in spleens of immunized animals regardless of 
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the adjuvant used, suggesting that the site of early-antibody production was predominately the 

LN (data not shown).   

Given the importance of TFH cells to humoral immunity (4) we also enumerated TFH cells based on 

surface expression of CXCR5 and PD1 and expression of the transcription factor Bcl-6 

(Supplemental Figure 2).   GLA-SE induced significantly more TFH cells in the draining LNs when 

compared to the antigen alone or adjuvanted with alum, GLA, or SE (Figure 1D). Taken together, 

these results suggest that the rapid and dramatic expansion of early B cell responses, especially 

pre-plasmablasts, antibody production and TFH cells is unique to the combination GLA-SE 

adjuvant formulation.  
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Figure 1.  Rapid B cell responses elicited by different formulations of the TLR4 adjuvant 
GLA 
B cell responses in the injection site draining inguinal and axillary LN of mice immunized with 
the indicated adjuvant and PE were analyzed 7 days after immunization. (A) Antigen specific B 
cells were enumerated by PE staining and cell populations were determined by cell surface 
marker staining. Total numbers of PE staining B cells in draining LNs were determined (bars). 
Overlaid are the total Ig (H+L) serum antibody endpoint titers (circles). (B) FACS plots of GLA-SE 
induced PE+ B cells are shown. Subsets of B cells were identified by surface marker expression as 
CD38+ IgM+ memory B cells (IgM), IgD- CD95+ GL7+ germinal center cells (GC), CD138+ B220lo 
CD38- IgM- IgD- pre-plasmablasts (CD138 iso switch), or uncategorized.  The stacked histograms 
represent the draining LN PE-specific B cell composition for each immunization.  (C) 
Representative FACS plot for the identification of PE+ IgG2c B cells in draining LNs are shown.  
Frequency of IgG2c+ PE-specific B cells (bars) are overlaid with serum IgG2c endpoint titers 
(circles). (D) The numbers of TFH cells per LN were determined. Bars and circles are drawn to the 
mean values + s.e.m p values were determined by one-way ANOVA/Dunnett’s test #p < 0.001 
compared with all other groups, *p<0.05 compared to saline. Data are representative of two 
independent experiments with three or four animals per group. 

Subcapsular Mф are essential for GLA-SE uptake  

To better understand how GLA-SE augments rapid B cell responses we identified the cells 

interacting with GLA-SE by labeling the adjuvant with the lipophilic fluorescent dye DiD. 15 mins 

after injection, GLA-SE co-localized with the CD169+ SIGNR1+ medullary macrophage population 

(14) (Figures 2A and C and Supplemental Figures 3 and 4).  This is consistent with microscopic 

analysis of DiD-labeled MF59 (15). Other populations including monocytes (CD11b+ Ly6C+) also 

took up the adjuvant, but in lesser numbers and with less intense DiD signal intensity (Figures 2C 

and D and Supplemental Figure 4). Of note, DiDdim B cells were the most abundant DiD+ 

population by absolute numbers, although these cells represented only a small fraction of the 

total LN B cell population (~3%) (Figure 2D).  

To determine the significance of GLA-SE capture by SCMф including the medullary and 

sinusoidal macrophage subsets we depleted these cells by injection of clodronate-loaded 

liposomes (CLL) and waited for 6 days to allow the re-population of resident phagocytes 

(monocytes,  DCs and neutrophils) but not the SCMф (3) as confirmed by analysis of the cellular 

content of the lymph nodes of CLL-treated animals (Data not shown).  SCMф depletion 

dramatically impacted GLA-SE uptake by lymph-node cells with less than 0.2% of the LN cells 

being DiD+ 15 mins post-injection compared to an average of 1.5% in the mock-treated mice 

(Figure 2B). Surprisingly, adjuvant uptake was abrogated in cell populations that were not 

depleted by CLL treatment including monocytes, macrophages, DCs and T and B cells (Figures 
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2D). These results indicate that SCMф, and most probably the medullary macrophages, are 

critical to early GLA-SE capture and subsequent distribution in the LN. 

 

Figure 2: GLA-SE-DiD cellular uptake after SCMф depletion 
Mice were treated with clodronate-loaded liposomes (CLL) or mock treated with saline six days 
prior to injection with DiD-labelled GLA-SE or saline. Draining inguinal LN were harvested 15 
minutes after immunization. (A) Immunofluorescence microscopic images of representative LN 
sections were taken before and after staining with CD169 and SIGNR1 to assess GLA-SE 
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distribution. (B) FACS analysis of total DiD staining cells per LN were determined.  (C) A 
representative histogram of DiD-GLA-SE staining per cellular population in a mock treated DiD-
GLA-SE immunized mouse is shown and DiD-GLA-SE geometric means for each cellular 
population were plotted. (D) The number of DiD+ cells per population and the percentage of 
DID+ cells within each population was determined for mock and CLL treated groups. p values 
were determined by Student t test  ***p<0.005.    Bars are drawn to the mean + s.e.m.. Data are 
representative of two independent experiments with four or five animals per group.  

SCMф are critical for the innate response to GLA-SE 

Immunization with GLA-SE initiates a complex innate immune response including 

production of IFN-γ which is essential for the adjuvanticity of GLA-SE (8) and a number of 

chemoattractants including RANTES, MIP1α and β, Eotaxin, and CXCL10 (Figure 3A).  Depletion of medullary SCMф by CLL treatment severely compromised the innate response to GLA-SE 

(Figure 3A). CD69 expression increases upon GLA-SE immunization in a type I and II IFN-

dependent manner and is thus a sensitive readout for the response to GLA-SE (8, 11). Treatment 

with CLL resulted in a substantial decrease in the induction of CD69 on total lymphocytes 18h 

after injection with GLA-SE (Figure 3B). The decrease in these early immune responses to GLA-SE after SCMф depletion indicated that these cells were critical for the innate immune response to 
GLA-SE. 
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Figure 3 Innate responses to GLA-SE after SCMф depletion 

Mice were treated with clodronate-loaded liposomes (CLL) or saline (mock) 6 days prior to 
injection with GLA-SE or saline and draining LNs were harvested either 4h or 18h after 
immunization. (A) The concentration of cytokines and chemokines 4h after injection are plotted. 
(B) A representative histogram of CD69 staining on total lymphocytes 18h after injection is 
shown and the percentage of CD69+ lymphocytes is plotted. Bars are drawn to the mean + s.e.m.. 
p values were determined by one-way ANOVA/Dunnett’s test  *** p<0.001, **p<0.01, *p<0.05. 
Data are representative of two independent experiments with three animals per group. 
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SCMф are necessary for B cell and TH1 but not TFH induction by GLA-SE To assess the contribution of the SCMф to the adjuvanticity of GLA-SE, we examined the 

adaptive immune response to PE+GLA-SE immunization in CLL-treated mice. Seven days after 

immunization, the number of PE-specific B cells were severely diminished by CLL treatment 

(Figure 4A). PE-specific Ig (H+L) and IgG2c serum titers were reduced as well (Figure 4B). This demonstrated that SCMф play a central role in the B cell expansion and the antibody responses 

elicited by immunization with GLA-SE.  Surprisingly, we observed no difference in the total 

numbers of TFH cells in the draining LNs between mock treated and the CLL-treated mice in 

response to PE+GLA-SE immunization (Figure 4C).   

To determine whether antigen-specific TFH numbers are specifically impacted by CLL 

depletion we immunized mock or CLL-treated mice with the recombinant TB antigen ID87 which 

contains the Ag85B P25 epitope (16) and analyzed peptide-MHCII (pMHCII) tetramer staining 

(Supplemental Figure 6).   The number of antigen specific TFH cells 

(pMHCII+,CD44+,CXCR5+,PD1+,Bcl-6+) was virtually unaffected by CLL treatment. In contrast, 

significantly fewer TH1 cells (pMHCII+,CD44+,CXCR5-,PD1-,Tbet+) were present in LNs from CLL 

treated mice compared to mock treated mice (Figure 5). These data suggest that antigen-specific 

TH1 cell numbers, not TFH cell numbers, may be important for the early B cell response in GLA-SE 

immunized animals. 
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Figure 4. B cell and TFH induction via GLA-SE after SCMф depletion 
Mice were treated with clodronate-loaded liposomes (CLL) or saline (mock) 6 days prior to 
immunization with PE+GLA-SE and responses were analyzed 7 days after immunization. (A)  
Shown are the number of PE+ B cells in draining inguinal lymph nodes, (B) Shown are the total Ig 
(H+L) and IgG2c endpoint titers. (C) The total numbers of TFH cells (CD4+, CD44+, CXCR5+, PD1+, 
Bcl-6+) in draining LNs were enumerated. Bars are drawn to the mean + s.e.m..  p values were 
determined by one-way ANOVA/Dunnett’s test ** p<0.01, * p<0.05. Data are representative of 
two independent experiments with five animals per group. 

 

 

Figure 5. TFH and TH1 dependency upon SCMф  
Peptide-MHCII tetramer staining was used to identify T cell subsets in the context of CLL 
treatment. Mice were treated with clodronate-loaded liposomes (CLL) or saline (mock) 6 days 
prior to immunization with GLA-SE and the recombinant protein ID87 and responses were 
analyzed 7 days after immunization. (A) FACS plots of T-bet and Bcl-6 staining of CD4+pMHCII+ 
cells from draining lymph nodes. (B) The total numbers of TFH (pMHCII+,CD4+,CD44+,CXCR5+, 
PD1+, Bcl-6+) and TH1 (pMHCII+,CD4+,CD44+,CXCR5-, PD1-, Tbet+) per LN were enumerated. Bars 
are drawn to the mean + s.e.m.. p values were determined by one-way ANOVA/Dunnett’s test ** 
p<0.01. Data are representative of two independent experiments with three or four animals per 
group. 
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IL-18R1 contributes to the induction of early B cell responses elicited by GLA-SE 

TH1 induction with GLA-SE is dependent on the caspase-1 mediated inflammasome and 

rapid IL-18 production which is essential for IFNγ production by memory CD8 T cells and 

neutrophils upon GLA-SE immunization (8). SCMф are an important source of IL-18 in draining 

lymph nodes (17).  Thus, we hypothesized that SCMф played a role in the innate and adaptive 
responses elicited by immunization with GLA-SE in part by producing IL-18.  CLL depletion prior 

to GLA-SE immunization significantly diminished the amount of secreted IL-18 in the draining LN one hour after immunization indicating that the SCMф are the main source of early IL-18 after 

immunization with GLA-SE (Figure 6A). To determine whether IL-18 was important for the 

induction of antigen-specific B cells and antibody production in response to GLA-SE, we 

compared responses to PE+GLA-SE immunization in wildtype or IL18R1 deficient (IL-18R1-/-) 

mice.  Total Ig (H+L) and IgG2c PE-specific serum titers were diminished in IL-18R1-/- mice 

(Figure 6B). Concordantly, significantly fewer PE-specific B cells were present in the immunized 

IL-18R1-/- mice (Figure 6C).  IgG2c+ class-switching was also impaired in IL-18R1-/- mice (Figure 

6D). . These data indicate that, similar to CLL depletion of SCMφ, ablation of IL-18 signaling 

impaired the humoral responses elicited by immunization with GLA-SE.  Of note CLL-depletion 

had a more dramatic impact on adaptive immune responses than IL-18R1 deficiency indicating 

CLL-dependent cells also control adjuvant driven responses in an IL-18R1-independent manner.   
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 Figure 6. IL-18 is important for GLA-SE augmentation of B cell responses  
Mice were treated with clodronate-loaded liposomes (CLL) or saline (mock) prior to 
immunization. (A) Mice were immunized with GLA-SE and IL-18 production in the draining 
lymph node was assessed 1h post-injection.   (B-D) WT or IL18R-/- mice were immunized with 
PE+/-GLA-SE and responses were analyzed 7 days after immunization. (B) Total Ig (H+L) and 
IgG2c PE reactive endpoint titers. (C) FACS plots of PE+ staining are shown and the total numbers 
of PE-specific B cells in the draining LNs are plotted. (D) FACS plots of IgG2c and IgD staining of 
PE+ B cells are shown and frequencies of IgG2c+ PE+ B cells are plotted. Bars are drawn to the 
mean + s.e.m..  p values were determined by one-way ANOVA/Dunnett’s test **** p<0.0001, *** 
p<0.001, **p<0.01, *p<0.05. Data are representative of two independent experiments with four 
or five animals per group. 
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Discussion 

  Rapid antibody production after immunization could mean the difference between 

protection and infection against a new strain of disease such as a pandemic avian influenza virus 

or biological weapons. As evident in the data presented here, different adjuvants can alter the 

kinetics and quality of the humoral immune response. Few studies have examined changes in 

antigen-specific B cell populations elicited by adjuvants, particularly those destined for clinical 

use. Of note, antigen-staining was recently used to identify germinal center B-cell responses 

during a prime-boost regimen with the emulsion adjuvant MF59 (18).  Overall, those results 

were consistent with our studies of the similar adjuvant SE. Alum, GLA alone or SE alone only 

weakly elicited early B cell responses - primarily GC and memory B cells - whereas the 

combination GLA-SE drove a rapid and robust B cell and antibody response that also included 

pre-plasmablasts important early antibody secretion. We previously found that a rapid humoral 

response induced with GLA-SE correlated with early onset protection against the highly 

pathogenic avian influenza virus H5N1 as early as 4-6 days after immunization, underlining the 

importance that such an adjuvant could have in a rapidly emerging epidemic  (19). 

After injection, GLA-SE was predominantly associated with the SIGNR1+ medullary subset 

of SCMф and this correlated with the ability to induce strong B-cell responses. Strikingly, when 

the SCMф population was disrupted by CLL injection, the number of B cells that were associated 

with labelled GLA-SE fell by nearly ten-fold. Consistent with this result, it has been previously 

demonstrated that subcapsular sinusoidal macrophages facilitate transport of virus particles to B 

cell follicles (3). Presumably this process facilitates the induction of germinal center responses as 

the disruption of sinusoidal macrophage lattice architecture inhibits the induction of germinal 

center responses (20). GLA-SE also uniquely induced pre-plasmablasts which have been shown 

to localize to medullary regions of the lymph node (21).  This result suggested that initial priming 

could occur at sites distal to the medullary sinus, but it is conceivable that medullary 

macrophages may promote the activation of B cells and their differentiation into pre-

plasmablasts in situ. Furthermore, antibody responses in transiently DC-depleted mice (CD11c-

DTR) were mostly unaffected, suggesting that DC are not required for B cells priming (22). Based 

on this results we suggest that SCMф, and not DC, might be critical for B cell priming upon GLA-

SE immunization.  
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SCMφ were also important for the production of IL-18 upon immunization.  We previously 

demonstrated that IL-18 production mediated by caspase 1 activation was important for the 

production of IFN-γ by memory CD8 T cells and neutrophils (8). This pathway in turn was 

important for the generation of antigen-specific CD4 T cells with GLA-SE.  This IL-18 axis was 

also at least partially responsible for the SCMφ-dependent expansion of antigen-specific B cells.  

It remains to be determined whether IL-18 is acting directly on B cells to drive their expansion, 

through the IFNγ pathway, or via a distinct pathway. 

Substantial evidence has accumulated describing the relationship between TFH cells and 

the induction of B cell responses (4). Importantly, TFH and GC B cell numbers correlate during the 

induction of an immune response by vaccination (23). In agreement with these observations, 

GLA-SE drives an expansion of antigen-specific TFH cells concordant with the increase in antigen-

specific B cells and this is superior in magnitude to the other adjuvants tested.  However, the 

contribution of antigen-specific TFH cells to B cell expansion and early antibody titers during 

immunization with GLA-SE is unclear. Surprisingly antigen-specific TFH cells were unaffected by SCMф depletion, whereas B cell and TH1 responses were dramatically impaired. Canonically TH1 

cells are associated with CD8 T cell responses, not B cell responses, although TH1 cells can 

facilitate B cell priming in some circumstances (24). This underlines the current models 

suggesting that separate subsets of antigen presenting cells mediate the induction of TH1 cells and 

TFH cells (25, 26). In support of this we have recently shown that T-bet deficient mice which have 

no TH1 responses to GLA-SE, do not induce an IgG2c skewed response further supporting a role 

for TH1 cells in B cell responses (11). Although this does not demonstrate that TFH cells are 

irrelevant to the early B cell response, it does indicate that TFH cells are insufficient to support all 

B cell responses.   

The unique adjuvant properties of GLA-SE, relative to GLA and SE alone, are likely due 

both to its biophysical characteristics, as well as known and unknown molecular signaling 

capacities.  For example, the innate response to GLA-SE depends not only upon MyD88 and TRIF, 

which are critical components of TLR4 signaling, but also upon the inflammasome (8, 10), which 

is only engaged by TLR4 agonists upon cytoplasmic recognition (27, 28). On their own, squalene 

oil-in-water emulsions such as MF59 or SE promote humoral immunity via activation of 

canonical and non-canonical inflammasome pathways (29–32). Inflammasome activation could 

be due to direct recognition of the squalene via distinct, but unknown, receptors. Additionally, 
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the nanoparticle nature of GLA-SE may result in more efficient delivery to the lymph node. 

Nevertheless the particulate nature cannot fully explain the enhancement mediate by GLA-SE as 

other oil-in-water/TLR4 agonist compositions, with similar biophysical properties, do 

recapitulate the adjuvanticity of GLA-SE (9, 33).  Defining the key pathways that determine the 

activity of clinical stage adjuvants including GLA-SE, MF59, and the AS01-04 series is crucial to 

rational development of next generation vaccine adjuvants tailored to elicit specific immune 

responses.  

In summary, when formulated as a squalene oil-in-water emulsion (GLA-SE) the TLR4 

agonist GLA induces rapid B cell expansion and differentiation, augmented antibody production 

and TFH expansion. These responses were superior in magnitude to the widely used adjuvant 

alum, as well as GLA in an aqueous base or the oil-in-water emulsion alone adjuvant. SCMф and 
IL-18 production were central to successful immunization with GLA-SE as the innate immune 

response, B cell expansion and TH1 induction were impaired upon SCMф depletion or abrogation 
of IL-18R signaling. Conversely, TFH induction after GLA-SE immunization was not affected in the absence of SCMф. Thus, GLA-SE may be ideally suited for use in vaccines that require a rapid-

onset response with a single immunization.   

 

Materials and methods 

Animals and immunizations 

Female C57BL/6 mice and IL-18R1 -/- mice aged 6-10 weeks were purchased from The Jackson 

Laboratory. All animal experiments and protocols used in this study were approved by IDRI’s 

IACUC. For the adaptive response assessments mice were immunized subcutaneously via foot 

pad or base of tail injection with 1.25 or 5 µg of GLA respectively in combination with 1 µg of R-

phycoerythrin (Prozyme,Hayward, CA) or 1 µg of the M. tuberculosis antigen ID87 (16). Squalene 

oil formulations were emulsified with egg phosphatidylcholine or synthetic dimyristoyl 

phosphatidylcholine as described (34) and used after dilution in saline for injection to 2% oil. For 

the innate response assessment mice were immunized via intramuscular in the quadriceps 

injection with 5µg of DiD-labelled GLA-SE. To label GLA-SE, DiD Oil; DilC18(5) (Molecular 

Probes) was solubilized in DMSO at 25 mg/mL. DiD was added to GLA-SE at 25 µg/mL, mix well 
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and incubate at room temperature for 10 minutes. Excess DiD was removed using a PD-10 

desalting column (GE).  

SCMф depletion  

Mice were treated with 30 µL of clodronate-loaded liposomes (5mg/mL clodronate disodium 

salt) (Encapsula Nano Sciences, Brentwood, TN) via intradermal hock injection 6 days prior to 

subsequent immunizations. Mice were immunized six days later via footpad, hock or 

intramuscular injection in the quadriceps.  

Serum endpoint titer determination 

Serum endpoint titer ELISA’s were performed on Corning high bind 384 well plates. Plates were 

coated overnight at 4 degrees with 1µgµ/mL PE. Detection antibodies were Ig (H+L) HRP and 

IgG2c HRP (Southern Biotech). Endpoints were set as the minimum dilution at which values were ≤ the mean + 3 s.d. of naïve controls.  
Flow cytometry  

Samples were prepared by Fc receptor blocking (clone2.4G2). B cells were stained in 1% FBS, 

2mM EDTA in PBS with the following: CD95 (clone JO2), CD138 (clone 16A8), B220 (clone RA3-

6B2) or CD19 (clone 1D3), IgM (clone IL/41), IgD (clone 1126C.2A), CD38 (clone 90), lineage 

cocktail: Ly6G (clone 1A8), CD11b (clone M1/70), CD11c (clone N418), F4/80 (clone BM8), 

Ter119 (clone TER119), CD90.2 (clone OX-7).  Cells were fixed and permeabilized with Fix/Perm 

buffer (BD Biosciences) and stained for intracellular IgG2 (clone 5.7).  PE-specific B cells were 

identified using 1 µg/ml PE for surface staining, and 0.1-0.3 µg/ml PE for intracellular staining.  

For peptide-MHCII tetramer staining, the Ag85B p25 tetramer (NIH Tetramer Core Facility) was 

incubated in a 100 µL with a maximum of 4 × 106 cells at 37° C for 1.5 hours at 13 µg/ml with 

anti-CD16/32 antibody.  Cells were washed and stained for CD4 (clone RM4-5), CD44 (clone 

IM7), PD-1 (clone 29F1A12), CD95, CXCR5 (clone SPRCL5) and lineage cocktail: CD8a (clone 53-

6.7), CD11b, CD11c, Ly6G, Ter-119, F4/80, CD19 at room temperature for 30 minutes. Cells were 

then fixed and permeabilized as above and stained for Bcl6 (clone BCL-DWN) and Tbet (clone 

4B10) overnight at 4°C.  
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Identification of DiD+ cells was performed by surface staining draining lymph node cells by 

blocking CD16/32 and staining for CD11b, CD90.2 (clone 53-2.1), CD19 (clone 6D5), SIGNR1 

(clone eBio22D1), Ly6C (clone HK1.4), CD169 (clone 3D6.112), Ly6G, and CD11c. 

Quantitation of cells was carried out by applying the frequencies of cell populations to cells 

counts obtained with a GUAVA EasyCyteHT (Millipore, Billerica, MA). Data were collected on 

LSRII or Fortessa flow cytometers (BD). Data were analyzed using FlowJo (Tree Star Inc., 

Ashland, OR), Pestle and SPICE (NIAID, NIH (BCBB)) (35). Statistical analysis was performed 

using Prism software (GraphPad Software, Inc., La Jolla, CA). 

Immunofluorescence microscopy 

LNs were collected and embedded in OCT Compound (Tissue-Tek). Cryostat sections (6 um 

thick) were mounted on Poly-lysine microscope slides (Thermo Scientific). Brightfield and DiD 

images of cryostat sections were acquired using Nikon Eclipse Ti-5 before acetone fixation. 

Sections were subsequently dried and fixed in cold acetone for 5 min at -20° C, blocked with 3% 

BSA in PBS  blocking buffer at room temperature for 30 min, and incubated with anti-CD169 

(ThermoScientific) and SIGNR1 (eBioSciences) antibodies diluted in the blocking buffer for 1 

hour. Primary antibodies were detected with Goat-anti-Rat-AF488 (against CD169, BioLegend) 

and Goat-Anti-Hamster IgG-568 (against SIGNR1, Abcam). Images were acquired with the Nikon 

Eclipse Ti-5 microscope, using 4× objective lens and NIS-Elements D3.2 Software and processed 

with Fiji software.  

Cytokine and chemokine protein levels quantitation 

The concentration of cytokines and chemokines were measured using a microbead-based ELISA 

system (ProcartaPlex Mouse, Affymetrix eBioscience), according to the manufacturer’s 

directions. 
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Supplemental Figures 

 

Supplemental Figure 1. PE+ B cell gating strategy 
Representative FACS plots of the gating strategy used to determine the numbers of antigen 
specific B cells in Figure 1. B cells were gated as B220 or CD19+ and FITC lineage cocktail- (Ly6G, 
CD11b, CD11c, F4/80, Ter119, Thy1.2)- B220+. 
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Supplemental Figure 2. T-FH CD4 T cells gating strategy and induction with GLA-SE. 
Parallel samples from Figure 1 were used. (A) Representative FACS plots of the TFH gating 
strategy. TFH cells were gated as CD4+, CD44+,CD11a+,CXCR5+,PD1+. The Bcl-6 staining of such 
cells was compared to naïve CD4+ T cells (CD11a-,CD44-). (B) TFH cells in draining LN one week 
after immunization with PE and saline or PE+GLA-SE. 
  



 

 

95 

 

Supplemental Figure 3. Gating strategy for the identification of LN subcapsular sinus 
macrophages and medullary sinus macrophages.  
Representative FACS plots of the gating strategy used to identify the subcapsular sinus macrophages and medullary sinus macrophages. SCMф were gated as SSC x FSC lymphocytes 
>  not CD19+ or CD90.2+ >  CD11b+CD169+. Sinusoidal SCMф are SIGNR1- and medullary SCMф 
are SIGNR1+. 
Shown are also representatives FACS plot of SIGNR1 staining in total cells (SIGNR1+ gating 
control) and CD11b x CD169 staining in CLL treated mice (CD11b+ CD169+ gating control). 
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Supplemental Figure 4. Gating strategy for the identification of DiD+ LN cells. 
Representative FACS plots of the gating strategy used to identify the main DiD+ cell populations. 
DiD+ cells were gated by comparing with a contralateral LN population.  The different DID+ cell 
populations were gated as follows:  

- Medullary SCMф: SSC x FSC lymphocytes > DiD+> not CD19+ CD90.2+ > CD11b+CD169+> 
SIGNR1+. 

- Sinusoidal SCMф: SSC x FSC lymphocytes > DiD+> not CD19+ CD90.2+> CD11b+CD169+> 
SIGNR1-. 

- B cells: SSC x FSC lymphocytes > DiD+> not CD19+ CD90.2+ > not CD11b+CD169+> CD19+ 
CD90.2-. 

- T cells: SSC x FSC lymphocytes > DiD+> not CD19+ CD90.2+ > not CD11b+CD169+> 
CD90.2+ CD19-. 

- Neutrophils: SSC x FSC lymphocytes > DiD+> not CD19+ CD90.2+ > not CD11b+CD169+> 
CD90.2- CD19-> CD11b+ Ly6G+. 

- Monocytes: SSC x FSC lymphocytes > DiD+> not CD19+ CD90.2+ > not CD11b+CD169+> 
CD90.2- CD19-> not CD11b+ Ly6G+> CD11b+ Ly6C+. 

- Macrophages: SSC x FSC lymphocytes > DiD+> not CD19+ CD90.2+ > not CD11b+CD169+> 
CD90.2- CD19-> not CD11b+ Ly6G+> not CD11b+ Ly6C+> CD11b+ CD11c+. 
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- DC: SSC x FSC lymphocytes > DiD+> not CD19+ T cell+ > not CD11b+CD169+> CD90.2- 
CD19-> not CD11b+ Ly6G+> not CD11b+ Ly6C+> CD11b- CD11c+. 

 

Supplemental Figure 5. Identification of TFH and TH1 cells via transcription factor 
and peptide-MHCII tetramer staining.  
(A) Representative FACs plots used to determine numbers antigen specific TFH (CD4+, 
pMCHII+,CXCR5+,PD1,Bcl-6+) and TH1 TFH (CD4+, pMCHII+,CXCR5-,PD1-,T-bet+) CD4 T cells 
in Figure 6. (B) Overlays of T-bet and Bcl-6 staining of naïve, TFH and TH1 CD4 T cell 
populations described in (A). 
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ARTICLE 3:  ANTIGEN PRESENTATION BY B  CELLS GUIDES TLR-4  MEDIATED 

PROGRAMMING OF MEMORY CD4 T  CELL RESPONSES 

Natasha Dubois Cauwelaert*, Susan L. Baldwin*, Mark T. Orr, Anthony L. Desbien, Emily Gage, 

Kimberly A. Hofmeyer, Rhea N. Coler.  

(Submitted)  

PRESENTATION  

The main objective of this study was to assess the role of B cells in the induction of TH1 responses 

by the adjuvant GLA-SE.  

We used the B cell deficient mice µMT-/- to characterize early and memory CD4 TH1 responses to 

GLA-SE in the absence of B cells. Early TH1 response in Wild Type (WT) and µMT-/- was further 

characterized using the Memory Precursor Effector Cells markers T-bet/Ly6C and PD1/KLRG1. 

In order to assess the survival capacities of the antigen specific CD4 T cells generated in B-cell 

deficient mice we harvested CD4 T cells generated early on after ID93/GLA-SE immunization 

either in WT or µMT-/- mice and analyzed their fate when transferred in B-cell sufficient mice. 

Finally we used B cell transfers from WT or MHCII-/- mice into µMT-/- mice to assess the 

capacity of those B cells to rescue the phenotype observed in µMT-/- and define the requirement 

of B cells and their antigen presentation capacities in the generation of CD4 Memory Precursor 

Effector Cells T cells. 

PRINCIPAL RESULTS  

The main obtained results were: 

 Early TH1 responses to GLA-SE (one week after immunization) are only modestly affected 

in the absence of B cells. 

 CD4 Memory Precursor Effector Cells (MPEC) induction is impaired in the absence of B 

cells  

 Memory CD4 TH1 response to GLA-SE is severely impaired in the absence of B cells 

 CD4 TH1 T cells generated in the absence of B cells lose their TH1 cytokine production and 

proliferative capacities over time even when transferred into B-cell sufficient mice. 
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 CD4 MPEC impairment is partially restored in B-cell deficient mice if WT, but not MHCII-/, 

B cells are transferred before immunization with GLA-SE. 
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ABSTRACT 

The contribution of B cells to immunity against many infectious diseases is unquestionably 

important and well characterized. Here we sought to determine the role of B cells in the 

induction of T helper 1 (TH1) CD4+ T cells upon vaccination with a TB antigen combined with a 

TLR4 agonist. We used B cell deficient mice (µMT-/-), tetramer-positive CD4+ T cells, markers of 

memory ‘precursor’ effector cells (MPEC), and T cell adoptive transfers and demonstrated that 

the early antigen-specific cytokine-producing TH1 responses are unaffected in the absence of B 

cells, however MPEC induction is strongly impaired resulting in a deficiency of the memory TH1 

response in µMT-/- mice. We further show that antigen-presentation by B cells was necessary for 

their role in MPEC generation using B cell adoptive transfers from wildtype or MHC class II 

knock-out mice into µMT-/- mice. Our study challenges the view that B cell deficiency exclusively 

alters the TH1 response at memory time-points. Collectively, our results and other recent studies 

provide new insights on the multifaceted roles of B cells which will have a high impact on vaccine 

development against several pathogens including those requiring TH1 cell-mediated immunity. 
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INTRODUCTION 

Since the primary objective and hallmark of vaccine design is to generate memory immune 

responses, a better understanding of the machinery that results in a robust memory response is 

crucial. Several sequential processes are required for the development of antigen-specific central 

memory T cell (Tcm) production upon protein-antigen immunization. Primary responses depend 

on additional components in the vaccine formulation, usually in the form of adjuvants. Adjuvants 

containing Toll like receptor (TLR) agonists, such as the clinically tested synthetic TLR-4 agonist 

Glucopyranosyl Lipid Adjuvant (GLA), help promote and influence the fate of a desirable T 

response through enhanced antigen presentation on dendritic cells (DCs), DC maturation, and 

production of innate cytokines (1). Secondary responses require expansion and subsequent 

contraction of T cells, leaving behind a small percentage of memory T cells that retain 

proliferative capabilities and are available for future encounters with the specific pathogen. Short 

lived effector T cells are instead terminally differentiated but provide effector helper functions 

such as cytokine production or cytotoxic functions that contribute to enhanced magnitude and 

quality of immunity against subsequent infection (for a review see (2)). It is thought that the 

long-term fate of antigen experienced T cells can be predicted based on expression of different 

surface markers and transcription factors. Using expression of two inhibitory surface molecules 

Woodland and colleagues proposed that memory precursor effector cell (MPEC) could be 

distinguished as being PD-1+ and KLRG1- (3). Later, Kaech and colleagues showed that MPEC 

expressed lower levels of the TH1 committing transcription factor T-bet and the surface marker 

Ly6C and persist to transition into memory T cells (4). MPEC cells display enhanced survival 

during the contraction phase and elicit greater proliferative responses to secondary infection. 

Despite the importance of CD4 memory establishment for long-term immunity against 

pathogens, little is known of the factors influencing the survival of effector T cells and their 

transition to memory CD4 T cells. Of particular interest is the role of B cells in maintaining long-

term T cell memory. The mouse model has provided insight into how B cells affect T cell 

responses. Diminished T cell memory responses and/or protective immunity generated to 

several intracellular pathogens including lymphocytic choriomeningitis virus (LCMV) (5, 6), 

Listeria monocytogenes (7), Francisella tularensis (8), and Mycobacterium tuberculosis (9) have 

been shown in animals with B cell deficits. Furthermore B cells were shown to be essential for T 
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cell immunity against tumors, where enhanced B16 melanoma growth was observed following 

anti-CD20 Mab mediated B cell depletion(10).  

There are many ways B cells could influence antigen-specific T cell generation and subsequent 

generation of T cell memory. First, B cells effectively present antigen to T cells through MHC class 

II (MHC-II) molecules and drive antigen-specific proliferation (11, 12). Second, B cells produce 

antibodies that bind antigen and enable the formation of complexes that follicular dendritic cells 

engulf and use for antigen presentation to circulating T cells, and could additionally be involved 

in the maintenance of memory T cells (13). Lastly, cytokine production by B cells and cellular 

localization are also important factors for shaping CD4 T cell responses (14-16). B cell toll like 

receptor (TLR) activation and cytokine production leading to T helper cell differentiation and 

function, including TH2 (17) and TH1 (18) polarization have also been reported. All of these B cell 

functions underlie the importance of these cells in protection against a large number of 

pathogens. 

In this study, the mechanistic contribution of B cells to MPEC induction following vaccination was 

examined.  We used the ID93/GLA-SE clinical Phase tuberculosis vaccine, which drives a strong 

TH1 response, in addition to a vaccine-specific MHC-II tetramer bound to a dominant epitope of 

Rv3619 (one of the component antigen of the ID93 polyprotein fusion) to follow specific memory 

T cell responses.  In addition to the use of µMT-/- B cell deficient mice, adoptive transfer studies 

were done with MHC-II knockout mice to determine the role that antigen presentation by B cells 

play in vaccine-derived T cell immunity.  
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RESULTS 

Memory TH1 responses are severely impaired in B-cell deficient mice. 

GLA-SE, a TLR4 agonist formulated in a stable nano-emulsion of squalene oil, induces a strong T 

helper 1 (TH1) response in mice when formulated with the clinically tested tuberculosis (TB) 

vaccine polyprotein fusion antigen designated as ID93 (1, 19-21). Since diminished T cell 

memory responses have been shown with B cell deficits in several models of infection (5-9) we 

asked whether B cells were necessary for the induction of TH1 responses to this vaccine. Wild 

type (wt) and µMT-/- mice were immunized three times at three-week intervals with ID93/GLA-

SE. Six weeks after the last immunization, TH1 responses in the spleen and draining lymph node 

(dLN) were significantly reduced in µMT-/- compared to wt mice as indicated by CD4 T cells up-

regulation of CD154 and production of the TH1 cytokines IFN-γ, TNF and IL-2 upon stimulation 

with ID93 (Fig. 1a). The induction of poly-functional antigen-specific TH1 CD4 T cells, expressing IFNγ, TNF and IL-2, was also severely impaired in the µMT-/- mice (Fig. 1b). 
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Figure 1. Memory TH1 responses are significantly reduced in μMT-/-mice. We immunized 
wt and μMT-/- mice with ID93/GLA-SE three times, at 3-week intervals, for the analysis of ID93-
specific immune responses. We assessed ID93-specific recall immune responses following ID93 
stimulation of splenocytes (a) or dLN cells (b) with 10 μg ml−1 ID93 6 weeks after the final 
immunization. Graphs show mean values ± SEM for each group. The p values were determined by 
two-way ANOVA with Bonferroni correction for multiple comparisons (*p<0.05, **p<0.01, 
***p<0.005, ****p<0.001,). Data are representative of three independent experiments with three 
mice per group. 

 

B cells are necessary for CD4 MPEC induction. 

To further define the role of B cells in CD4 TH1 response generation we sought to investigate 

whether early TH1 responses after the first immunization with ID93/GLA-SE were also impaired. 

Wt and µMT-/- mice were immunized with ID93/GLA-SE and TH1 responses were assessed one 

week later. At this time-point TH1 responses were only modestly affected by B-cell deficiency 

with no discernable difference in poly-functionality (Fig. 2a,b). In the spleen, TH1 responses were 
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consistently lower in the µMT mice but this response, setting aside CD154 expression, was rarely 

significant (Fig. 2a,b). TH1 responses in the dLN were comparable in the two strains (Fig. 2a,b).  

 

Figure 2. B cell deficiency does not alter the priming of TH1 responses.  We immunized wt 
and μMT-/- mice once with ID93/GLA-SE for the analysis of ID93-specific immune responses. We 
assessed ID93-specific recall immune responses following ID93 stimulation of splenocytes (a) or 
dLN cells (b) with 10 μg ml−1 ID93 1 week after prime. Graphs show mean values ± SEM for each 
group. p values were determined by two-way ANOVA with Bonferroni correction for multiple 
comparisons (*p<0.05). Data are representative of four independent experiments with five mice 
per group. 

 

To further characterize the antigen-specific CD4 T cell response to ID93/GLA-SE in B cell 

deficient mice, we stained the CD4 T cells generated by immunization with a MHC class II 

tetramer bound to the dominant epitope from Rv3619, one of the component proteins of ID93 

(22). The frequency of tetramer positive CD4 T cells was similar in the dLN in both the wt and 

µMT-/- mouse strains and, surprisingly, elevated in the µMT-/- spleen (Fig. 3a). Marshall and 

others (3, 4) have reported a division within the primary CD4 TH1 effector pool similar to the one 
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observed in CD8+ T cells with a population of Memory Precursor Effector Cells (MPEC) that 

survive contraction and differentiation into competent memory T cells. The MPEC markers PD-1+ 

and KLRG1- or Ly6CLo and T-betlo were used to evaluate the formation of these particular 

memory subsets within the tetramer+ CD4 T cells (Fig. 3b,c). B cell deficient µMT-/- mice had 

significantly lower frequencies of MPEC by these two memory T cell markers in both LN and 

spleens; the PD-1+ KLRG1- compartment being the most affected (Fig. 3b compared to Fig. 3c). 

These results show an impairment of CD4 MPEC induction in ID93/GLA-SE immunized mice in 

the absence of B cells. 

 

Figure 3. CD4 memory precursor effector T cell (MPEC) induction by ID93/GLA-SE is 
impaired in μMT-/- mice. We immunized wt and μMT-/- mice once with ID93/GLA-SE for the 
analysis of ID93-specific immune responses. Peptide-MHCII tetramer staining was used to 
identify different ID93-specific T cell subsets. Representative flow cytometry plots and graphs 
are shown for the percentage of CD4 T cells that bind the tetramer (a), the percentage of 
tetramer-binding CD4 T cells that are PD1+/KLRG1- (b) and the percentage of tetramer-binding 
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CD4 T cells that are T-betLo/Ly6CLo (c). Graphs show mean values ± SEM for each group. The p 
values were determined by unpaired t-test within each organ (*p<0.05, **p<0.01, ****p<0.001). 
Data are representative of five independent experiments with 3-5 mice per group. 

B cells are necessary for memory CD4 T cell programming. 

Next we wanted to further characterize the phenotype of the TH1 T cells that are induced in the 

absence of B cells by distinguishing between the role of B cells in the induction and maintenance 

of antigen-specific MPEC. To determine this, we investigated the survival and 

stimulation/expansion of TH1 CD4 T cells generated in µMT-/- mice following a boost, in B cell-

competent wt mice. We immunized wt (CD90.2), µMT-/- (CD90.2) and wt CD90.1 mice with 

ID93/GLA-SE and isolated their CD4 T cells one week later. CD45.1 received either a mix of wt 

CD90.2 and wt CD90.1 cells (as a control) or a mix of µMT-/- (CD90.2) and wt CD90.1 cells (Fig. 

4a).  

To analyze the survival capacities of the generated CD4 T cells we compared  the ratio of 

CD90.2/CD45.2 tetramer+ or TH1 cytokine-producing CD4 T cells 2 weeks after transfer (output) 

for to the ratio in the donors cells (input) (Fig. 4b). No significant difference was found in the 

percentage recovery of CD90.2tetramer+ CD4 T cells from µMT-/- compared to wt mice (Fig. 4b, 

left graph). Surprisingly, even though total number of tetramer+ CD4 T cells is unaffected the 

ratios of TH1 cytokines producing cells are disparate.  2 weeks after transfer into wt mice a 

consistent reduction of approximately 30% in the recovered percentage of CD90.2 TH1 cytokine-

producing CD4 T from µMT-/- mice was observed (Fig. 4b, right graph).  

We then compared the ratios found in mice one week after ID93/GLA-SE recipient immunization 

(output) (at week 2 after transfers) to the ratio in the donor cells (input) to assess the memory T 

cell boosting capacities (Fig. 4c). Again, no significant difference was found in the percentage 

recovery of CD90.2 tetramer+ CD4 T cells from µMT-/- compared to wt mice (Fig. 4c, left graph). 

Further, the reduction observed in the recovery percentage of CD90.2 TH1 cytokines producing 

cells from µMT-/- mice at the survival time-point was maintained, but not further diminished 

(Fig. 4c compared to Fig. 4b, left graphs).   

These results suggest that when TH1 CD4 T cells are generated in B cell deficient mice they will 

lose their TH1 response and proliferative capacities over time even when transferred in B-cell 

sufficient mice. 
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Figure 4. CD4 TH1 T cells produced in μMT-/-mice are impaired in their survival. We 
isolated CD4 T cells from spleens and dLN of either wt (CD90.2) mice, μMT-/-(CD90.2) or CD90.1 
mice. We performed adoptive transfer into CD45.1 naïve mice using either a mix of wt (CD90.2) 
and CD90.1 CD4 T cells (control group in black) or a mix of μMT-/-(CD90.2) and CD90.1 CD4 T 
cells (in red) for the analysis of ID93-specific immune responses. We assessed ID93-specific 
immune responses by recall of splenocytes with ID93. (A) Schematic representation of the 
experimental design. (b-c) Percentage recovery of tetramer+ or responding CD90.2 cells (see 
Material and Methods for calculation (b) two weeks after transfer or (c) one week after boost. 
Graphs show mean values ± SEM for each group. The p values were determined by two-way 
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ANOVA with Bonferroni correction for multiple comparisons (*p<0.05, *****p<0.0005). Data 
represents 9-10 mice pooled from two independent experiments with 4-5 mice per experiment. 

 

MPEC impairment can be partially restored by B cell transfer and is MHC-II dependent.                                      

Even though the capacity of B cells to present antigens to the CD4 T cells is well established and a 

long-held view, their contribution to T cell priming and maintenance in vivo is still debated (11, 

18, 23-27). We sought to investigate whether their APC function is implicated in this process. To 

test this, we transferred B cells from wt or MHC-II-/- mice into µMT-/- mice and compared the 

MPEC generation in the dLN, where the MPEC deficiency phenotype observed was strongest. 

Three days after adoptive transfer, mice were immunized with ID93/GLA-SE and the responses 

in the dLN assessed 1 week later to determine ID93-specific immune responses. As shown above, 

there was no significant difference in the frequency of tetramer+ CD4 T cells (Fig. 5a) and the 

PD1+ KLRG1- was strongly reduced in µMT-/- compared to wt (Fig. 5b). This impairment was 

partially reversed when wt B cells but not MHC-II-/- B cells were transferred to µMT-/- mice (Fig. 

5b). A similar tendency was observed for the Ly6CLo T-betLo subpopulation (Fig. 5c) pointing to a 

role of B cells as APC for the induction of MPEC by ID93/GLA-SE immunization.  
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Figure 5. CD4 memory precursor effector T cell (MPEC) impairment is partially restored in 
μMT-/-mice with wt B cell transfer but not with MHCII-/- B cells. We adoptively transferred 
B cells from wt or MHCII-/- mice into μMT-/-mice . Three days later, we immunized wt, μMT-/- 
or μMT-/- adoptively transferred mice once with ID93/GLA-SE for the analysis of ID93-specific 
immune responses. Peptide-MHCII tetramer staining was used to identify different ID93-specific 
T cell subsets. Representative flow cytometry plots and graphs are shown for the percentage of 
CD4 T cells that bind the tetramer (a), the percentage of tetramer-binding CD4 T cells that are 
PD1+/KLRG1- (b) and the percentage of tetramer-binding CD4 T cells that are T-betLo/Ly6CLo (c). 
Graphs show mean values ± SEM for each group. The p values were determined by one-way 
ANOVA with Bonferroni correction for multiple comparisons (#p<0.005 compared to all other 
groups). Data are representative of two independent experiments with five mice per group. 
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DISCUSSION 

B cell-T cell cross talk is important for generation of effector adaptive immunity in several 

systems including in infectious disease settings and in cancer models. Indeed impairment of 

memory T cell responses to infectious diseases has been observed in the absence of B cells (µMT-

/- mice) (5-9). 

Therapeutic use of  B cell-depleting monoclonal antibodies in patients diagnosed with B cell 

lymphomas (28) or autoimmune disorders (29-32) has brought new evidence of B cell 

involvement in affecting the T cell compartment. For instance, these therapies are well tolerated 

and adverse problems are relatively rare, but there have been reports of recurrent infections that 

depend on cellular immunity in these patients (33-37). Furthermore, B cell depleting monoclonal 

antibody therapies also ameliorate the disease course in patients with CD4+ T cell-mediated 

autoimmunity (38, 39) .  

Consistent with these previous findings in mice and humans, we show that MPEC CD4 T cell 

generation upon immunization with a clinical TB vaccine is impaired in B cell deficient mice and 

results in a dramatically diminished memory T cell recall response. 

Our results suggest that while vaccine-specific memory TH1 responses are affected by the lack of 

B cells, they are not defective at earlier time points. At 1 week after immunization functional TH1 

responses are mostly unaffected. This phenomenon following acute LCMV infection in mice has 

been observed and similarly, deficiency was shown only in the memory T cell population and not 

in the primary response (5).  Interestingly, even though these early (1 week after prime) antigen-

specific cells seem functionally similar in their capacity to produce TH1 cytokines when 

generated in either wt or B cell deficient mice, they are phenotypically different. B-cell deficient 

mice fail to generate MPEC defined as either PD1+ KLRG1- or T-betlo Ly6CLoas characterized by 

others (3, 4). These data demonstrate that B cells might be needed for priming a robust long-

lasting TH1 response characterized by the generation of antigen-specific MPEC.  

To further explore whether there was an impairment in the survival of TH1 memory T cells in 

µMT-/- mice, we performed a mixed-cell adoptive transfer experiment using wt CD90.1 T cells 

combined with either wt CD90.2 or µMT-/- CD90.2 T cells, where the survival of CD4 T cells 

derived from either B cell deficient or wt ID93/GLA-SE immunized mice could be followed 

relative to the internal CD90.1 T cell control.  We also examined whether transferred cells could 
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be boosted with a subsequent immunization. While we observed a significant reduction in the 

percentage of responding TH1 CD4 T cells from B cell deficient donors, there was no significant 

further reduction in the percentage of cells when those surviving cells were boosted at week 3, 

suggesting that the main impairment in of TH1 cells generated in B cell deficient mice is their 

survival, and that this deficiency is not rescued by the presence of B cells after the priming event. 

When looking strictly at tetramer numbers there was no apparent difference in wt and B cell 

deficient mice, similar to that observed in prior studies (5). This suggests that the responding TH1 

CD4 T cells generated in µMT-/- mice might be impaired rather than dying at the time point 

observed in this study (3 weeks after immunization). These data confirm our results above 

showing that the MPEC generation is impaired in B cell deficient mice and thus, B cells are 

required upon priming. Further experiments will be needed to investigate whether B cells are 

also required for TH1 CD4+ T cells maintenance. 

To investigate antigen-specific CD4 T cells further, the MHC-II tetramer-positive T cells that 

recognize an epitope of the ID93/GLA-SE vaccine were used to determine whether CD4 MPEC 

could be restored following transfer of wt B cells into µMT-/- recipient mice. We show that 

MPECs are partially restored as determined by T-betloLy6Clo or PD1+ KLRG1- stained cells 

(memory phenotype). B cell transfers do not restore B cell numbers to similar levels observed in 

wt mice, which could explain why only a partial restoration of the phenotype was observed. 

Interestingly, MHC-II -/- B cells from wt mice were not capable of restoring the memory 

phenotype, suggesting that antigen presentation by B cells is required for MPEC generation. The 

requirement for antigen presentation by B cells is strongly debated (11, 18, 23-27). Gray et al 

showed that antigen presentation by B cells is not necessary for inducing primary T cell 

responses to Salmonella enterica infection and instead is needed later (7-14 days) for effector T 

cell response sustenance (18), which disagrees with the results presented here where B cells are 

required earlier. In their study, however, survival of the T cells generated at day 7 in mixed bone 

marrow chimeras, in which B cells could not present antigen via MHC-II, was not tested. As 

shown in our study those TH1 T cells might have normal cytokine producing capacities at that 

time point, but may already be poised to become impaired later on.  In additional studies this 

function was shown to be needed much earlier (at days 3-4) upon immunization with a model 

vaccination regimen (11). One caveat of this study is that they used a TCR transgenic model in 

which the frequency of naïve antigen-specific T cells is artificially increased; they hypothesized 

that the APC capacity of DCs might be insufficient in this model. Another hypothesis which is in 
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agreement with the results presented here is that the antigen presenting capacity of B cells may 

be needed upon immunization, where APC activation is less robust than that observed following 

infection.  

One caveat of our studies is that they were performed in µMT-/- mice which have altered splenic 

architecture and which could potentially influence our results (40, 41). However, the B cell 

deficient phenotype was partially restored when wt and not MHC-II-/- B cells were transferred in 

the µMT-/- mice 3 days prior to immunization suggesting that the CD4 MPEC generation 

impairment observed in the µMT-/- mice is due to a lack of antigen presentation by B cells rather 

than a defect in the splenic architecture of those mice. Taken together these data show that B cell 

antigen presentation is necessary, from the earliest stages of the response, to drive T cells down 

the memory pathway in the context of vaccination. Previous studies, done with another model 

antigen, have shown that dendritic cells and their antigen presenting capacity are essential for 

the generation of a T cell response influenced by GLA-SE (42). Consequently both DC and B cells 

MHC-II presentation are necessary for the generation of a robust long-lasting TH1 responses to 

GLA-SE. Further studies would be necessary to determine why the antigen presentation by DC 

and B cells is not redundant in this system and particularly what kind of extra and essential 

antigen presentation capacity is brought about by B cells. 

The data presented show that there is failure to develop a strong TH1 memory response in the 

absence of B cells or their antigen-presenting capacity. These results highlight the importance of 

a multi-faceted immune system working in concert for cell-mediated immunity against a number 

of important pathogens. Collectively, our studies and recent advances in understanding the role B 

cells play in both humoral and cellular immunity will have a high impact on vaccine development 

against several pathogens especially those requiring TH1 cell-dependent immune responses, and 

will be useful to clinicians that utilize B cell depleting monoclonal antibody therapy in patients 

with B cell disorders. 

 

MATERIALS AND METHODS 

Animals and immunizations 

Female wt C57BL/6 mice, µMT-/- (B cell deficient), CD45.1+, CD90.1+, and MHC-II-/- mice, 6-10 

weeks of age, were purchased from The Jackson Laboratory. All strains were on the C57BL/6 
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background. Mice were immunized by i.m. injection with either saline or ID93 (a recombinant 

fusion protein comprised of Rv3619, Rv1813, Rv3620, and Rv2608) formulated with the 

adjuvant GLA-SE to provide a final vaccine dose of 0.5μg ID93 and 5μg GLA-SE (21). All animals 

were housed in the IDRI animal care facility (Seattle, WA) under specific pathogen-free 

conditions. All animal experiments and protocols used in this study were approved by IDRI's 

Animal Care and Use Committee (ACUC). 

 

Spleen and LN processing 

Single-cell suspensions of splenocytes or draining LN (dLN) cells were obtained by dissociating 

the whole organ through a 100-μm nylon cell strainer (BD Falcon). Red blood cells from the 
spleens were lysed with Red Blood Cell Lysis Buffer (eBioscience) and resuspended in RPMI 

1640/10%FBS with pen/strep and glutamine (cRPMI) for further analysis. 

 

Intracellular Cytokine Staining and tetramer staining 

Processed splenocytes or dLN (inguinal) cells were stimulated for 2 hours with either ID93 (10 

µg/ml) in cRPMI, or cRPMI alone. Stimulated cells were then treated with BrefeldinA (Golgi Plug, 

BD Biosciences) and incubated for 8 hours at 37oC, then transferred to 4oC. Cells were surface 

stained with fluorochrome labeled antibodies to CD4 (clone GK1.5), CD8 (clone 53-6. 7), CD90.1 

(clone OX-7), CD90.2 (clone 53-2.1), CD45.1(clone A20) and CD45.2 (clone 104) in the presence 

of 20% normal mouse serum for 20 min at 4°C. Cells were washed and permeabilized with 

Cytofix/Cytoperm (BD Biosciences) for 20 min at room temperature. Cells were washed twice 

with Perm/Wash (BD Biosciences) and stained intracellularly with fluorochrome labeled 

antibodies to IFN-γ (clone XMG-1.2), IL-2 (JES6-5H4), TNF (MP6-XT22) and CD154 (clone MR1) 

for one hour at 4oC. Cells were washed and resuspended in PBS+1% BSA. Up to 107 events were 

collected on a four laser LSR Fortessa flow cytometer (BD Biosciences). Data were analyzed with 

FlowJo. Cells were gated as singlets > lymphocytes > CD4+ CD8 − > cytokine positive; except for 

the T cell survival analysis where cells were gated as singlets > lymphocytes > CD4+ CD8- CD45.1- 

CD45.2+ > cytokine positive or tetramer+ > CD90.2+. ID93-specific response frequencies were 

determined by subtracting the frequency of unstimulated cells with positive responses from 

ID93-stimulated cells in matched samples. 



 

 

116 

Percentage recovery of CD90.2 cells for each category was calculated as follow: �number of CD90.2+ number of total CD45+� �output�number of CD90.2+ number of total CD45+� �input ∗ 100. Alternatively CD4 cells were positively selected 

with the mouse CD4 (L3T4) microbeads from Miltenyi Biotec and stained, in the presence of 20% 

normal mouse sera, for 1h at 37°C with an I-Ab tetramer presenting the dominant epitope of 

Rv3619 (VIYEQANAHGQ), one of the components of ID93 (22). APC-labeled tetramers were 

provided by the National Institutes of Health Tetramer Core Facility. Cells were washed and 

stained for surface CD4 (clone RM4-5), CD8 (clone 53-6. 7), Ly6G (clone 1A8), CD11b (clone 

M1/70), CD19 (clone 1D3), CD11c (clone N418), F4/80 (clone BM8), ter119 (clone TER-119), 

CD44 (clone IM7), Ly6C (clone HK1.4), PD-1 (clone 29F.1A12) and KLRG1 (clone 2F1). Cells were 

washed and permeabilized with Cytofix/Cytoperm (BD Biosciences) for 20 min at room 

temperature. Cells were washed twice with Perm/Wash (BD Biosciences) and stained 

intracellularly with fluorochrome labeled antibodies to T-bet (clone 4B100) overnight at 4oC. 

Cells were washed and resuspended in PBS+1% BSA. Up to 107 events were collected on a four 

laser LSR Fortessa flow cytometer (BD Biosciences). Data were analyzed with FlowJo.  Cells were 

gated as singlets > lymphocytes > CD4+ Dump- (Ly6G, CD11b, CD19, CD11c, CD8, F4/80, ter119) > 

tetramer+ > PD1+ KLRG1- or T-betLo Ly6CLo. 

 

B and T cell adoptive transfers 

For the B cell adoptive transfer experiments, spleens and LNs (inguinal, popliteal, iliac, axillar 

and brachial) from 5 naïve donor mice per strain (wt or MHCII-/-) were harvested and processed 

as described above. Cells were pooled for each strain and B cells were isolated by positive 

selection with the mouse Pan B Cell Isolation Kit II (Miltenyi Biotec) according to the 

manufacturer’s instructions. Approximately 2.5x107 B cells/mouse in 300µl of PBS were 

transferred into naïve recipient µMT-/- mice by i.v. injection. 

For the CD4 T cell adoptive transfer experiments, 5 wt (CD90.2), 5 µMT-/- (CD90.2) and 10 

CD90.1 mice were immunized with ID93/GLA-SE. One week later their spleens and dLN 

(inguinal, popliteal, iliac and axillar) were harvested and processed as described above. Total 

cells from the 5 wt (CD90.2) and 5 CD90.1 constituting the first combined donor population 

(control) and 5 µMT-/- (CD90.2) and 5 CD90.1 mice constituting the second combined donor 

population (experimental) were pooled and CD4 T cells were isolated with the mouse CD4 T Cell 
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Isolation Kit (Miltenyi Biotec) according to the manufacturer’s instructions. Approximately 

3.5x107 CD4 T cells/mouse in 300µl of PBS were transferred into naïve CD45.1 recipient mice by 

i.v. injection (see Fig. 5a for a schematic representation of the experimental design). 

 

Statistical Analysis 

Statistical analysis was determined by one-way or two-way ANOVA with Bonferroni correction 

for multiple comparisons, or by student’s t-tests as indicated for each experiment. Graphs and 

statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, San Diego, CA). 

p<0.05 was considered statistically significant. 
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ID93/GLA-SE  AS AN IMMUNOTHERAPEUTIC VACCINE 

A. INTRODUCTION  

TB (Tuberculosis) treatment is complex and lengthy; the first line therapy involves 6-9 months of 

combination drug treatment consisting of isoniazid (INH) rifampicin (RIF), pyrazinamide (PZA) 

and ethambutol (EMB) (190). Treatment for drug-resistant TB (DR-TB) requires even more 

prolonged (up to 2 years) combinations of second and third line antibiotics added to the regimen, 

including capreomycin, ethionamide and streptomycin1. The development of new drugs is 

currently the leading solution to the increasing incidence of resistance to the drugs currently 

employed for TB therapy. Several new drugs are in development but it is not clear when they will 

receive regulatory approval for use in humans. The current (minimal) six-month therapy leads to 

many problems, among which is the high proportion of patients failing to adhere to the TB 

treatment. As a result of this non-compliance (non-adherence) of patients, especially in TB- HIV 

co-infected patients there is an increased risk of therapy failure, resulting in relapse of infection 

and/or development of resistance(191, 192). Thus, in addition to the need for new antibiotics to 

treat drug resistant isolates, there is an urgent need for treatment regimens which can shorten 

therapy for Mycobacterium tuberculosis (Mtb) (193). Development of a novel co-treatment 

approach using classical chemotherapy and a therapeutic vaccine product that addresses 

alternatives to TB therapy would be a major breakthrough. We would like to develop a novel 

combination immuno-chemotherapeutic product that addresses alternative strategies to shorten 

TB therapy and/or reduce relapse rates.  

Currently only a handful of therapeutic vaccines are in the TB development pipeline. The most 

advanced is an inactivated whole-cell M. vaccae based vaccine. This vaccine was tested for in 

human clinical trial in post-exposure settings with encouraging results. When one dose of 

inactivated M. vaccae was administered in combination with antibiotic treatment, significant 

clinical improvements i.e. early sputum culture conversion and greater radiographic 

improvement were seen in patients in a clinical trial conducted in Uganda (194). Another trial 

with three doses of M. vaccae also showed clinical improvements, i.e. improved weigh gains and 

better clearance of cavities and opacities in chest radiograph, in chemotherapy treated patients 

(195). This progress however meant that treatment with chemotherapy is still crucial.  
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IDRI has demonstrated proof of concept that the addition of a vaccination program with 

ID93/GLA-SE to antibiotic treatment delivers a more effective cure, reducing mortality and 

relapse rates in a mouse model of TB (182). This was done in a mouse model of fatal TB: the SWR 

mice. When given either in conjunction with or after drug therapy (INH+RIF), ID93/GLA-SE 

resulted in a remarkable improvement in survival and a significant reduction in lung bacillary 

loads. Importantly the survival was increased even when given with a shorter drug treatment, i.e. 

60 days of drug treatment in combination with ID93/GLA-SE enhanced survival compared to 90 

days of chemotherapy alone (182). This is promising since it suggests that therapeutic 

vaccination might be useful in the treatment of drug-sensitive TB to reduce chemotherapy 

duration and thus might improve compliance.  

Besides therapy shortening, preventing inadequately treated individuals from progressing to 

active disease could also make a major impact on TB control by not only preventing disease in 

the infected individual but also future transmission from that individual.  

The most widely used model of reactivation of latent TB or relapse is the Cornell model 

developed by McCune et al. in the 1950s (196, 197). In this model, mice receive a chemotherapy 

treatment until no bacteria can be cultured from any organ. After treatment cessation however, 

mice can potentially relapse spontaneously and following immunosuppression. Bacteria from the 

lungs and spleens can be cultured again. This model has been used for evaluating new vaccines 

and drug candidates for sterilizing activity in vivo (198, 199). Nevertheless this model has his 

limitations, drug treatments last from 3 to 6 months making the model extremely time 

consuming and laborious and the relapse of infection after treatment is totally unpredictable. 

Thus a large number of animals are required to gain sufficient statistical power. 

In this study, to test whether ID93/GLA-SE can be used as a therapeutic vaccine to reduce relapse 

rates after drug treatment completion, we sought to use a mouse model that would significantly 

decrease the length of the treatments, show less variability and immediate relapse of infection.  

B. MATERIAL AND METHODS  

Mice 

Female, 4-6 weeks old, C57BL/6, CB6F1 and SWR mice were purchased from Jackson Laboratory. 

All mice were maintained in the animal facility of the Infectious Disease Research Institute (IDRI) 
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in BL3 containment and were treated in accordance with the guidelines of the Animal Care and 

Use Committee. 

Treatment 

Mice were aerogenically infected with a low dose (50–100 bacteria) aerosol (LDA) of Mtb H37Rv 

(ATCC #27294) using a GlasCol aerosol generator. After 4 weeks of infection a subset of mice 

were started on a drug regimen of INH (250mg/L of drinking water), RIF (100mg/L of drinking 

water) with or without PZA (150mg/L of drinking water) administered for eight weeks total. 

Female mice are estimated to drink between 0.15 and 0.37mL/g (200).  Assuming a mean intake 

of 0.26mL/g per day animals would receive approximately 65mg/kg of INH, 26mg/kg of RIF and 

39mg/kg of PZA. A subset of groups were immunized with GLA-SE alone or ID93/GLA-SE which 

were produced as previously reported (7, 201). Mice were immunized 3 times 3 weeks apart, 

starting 2 or 4 weeks after antibiotic treatment start. ID93 was used at 0.5µg/dose and GLA-SE at 

5µg GLA-2% oil/dose. 

Bacterial burdens 

Lungs and spleens from the infected mice were harvested at the defined time-points and 

homogenized in 0.1% PBS–Tween 80.  5-fold serial dilutions for lungs and 8-fold serial dilutions 

for spleens were plated on7H10 agar plates (Molecular Toxicology) for bacterial growth. 

Bacterial colonies were counted after incubation at 37°C for 14-21 days. 

Statistical analysis 

Bacterial burdens were normalized by log10 transformation. Prism 5 (GraphPad Software) was 

used to determine statistically significance. Differences in bacterial burdens were assessed using 

one-way analysis of variance when more than two groups were used and the Student T-test for 

experiments with only two groups. Log Rank test was used to evaluate statistical difference 

between survival curves. P<0.05 was considered significant. 
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C. RESULTS  

Addition of ID93/GLA-SE reduces relapse in a C57BL/6 model of disrupted chemotherapy 

treatment 

A ‘short duration” chemotherapy entails the use of a stronger chemotherapy regimen than the 

one used in the Cornell model. We used a modified version of the method used by Buccheri et al. 

(202). In this model, 2 weeks after i.n. infection, 250mg of INH and 100mg of RIF per liter of 

drinking water are given for a period of 4 weeks. According to the authors, this regimen almost 

completely abrogates recovery from viable Mtb from the lungs and spleens of treated mice and   

is followed by a rapid spontaneous “relapse” (regrowth) of Mtb within the 2-4 weeks following 

the treatment arrest (202). The modifications made to this experiment include (i) an infection 

using the well-defined low dose aerosol infection model which is thought to more closely 

recapitulate the human infectious inoculum (203) and (ii) chemotherapy treatment starting 4 

weeks after infection when the bacillary load in the lungs is stabilized (data not shown). After 4 

weeks of chemotherapy (week 8) the CFU counts in the lung and spleens were still very high. 

Mice were put in a second round of 4 weeks chemotherapy from week 10 to week 14 to achieve 

CFU numbers more similar to the one observed in Buccheri et al. publication (around 2logs) 

(202) (Figure 1A). Mice were immunized 3 times 3 weeks apart starting on week 8 (end of first 

round of chemotherapy) with either GLA-SE (adjuvant alone) or ID93/GLA-SE (Figure 1A). After 

two rounds of chemotherapy (week 14), CFU counts in treated mice were reduced 4 logs in the 

lungs and spleens (figure 1B and C). A pronounced spontaneous relapse was observed 4 weeks 

after chemotherapy arrest (week 18). Neither GLA-SE nor ID93/GLA-SE had a significant effect in 

viable counts when given in mice not receiving drug treatment. When mice received 

chemotherapy treatment and immunized with ID93/GLA-SE the mean CFU in the lungs and 

spleens were significantly reduced at both “relapse” time points, 4 and 10 weeks after 

chemotherapy arrest (figure 1B and C). 

 

 

 

 



 

 

127 

 

  

 

Figure 1. Colony-forming unit counts of C57BL/6 mice treated with mock or antibiotics 
and/or with GLA-SE or ID93/GLA-SE.  
C57BL/6 mice were infected with LDA Mtb (day 0). 4 weeks later mice were mock or RIF+INH 
treated for 4 weeks (weeks 4-8), rested for 2 weeks and then treated again for 4 weeks (weeks 
10-14). A subset of mock and antibiotic treated mice were also immunized 3x3 weeks apart with 
either GLA-SE or ID93/GLA-SE starting at week 8. (A) Scheme of Immunotherapy experiment. 
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Numbers of viable bacteria in the lung (B) or spleen (C) of animals were determined at the CFU 
time-points indicated in (A).  Mean + s.e.m. values are shown. p values were determined by one-
way ANOVA/Dunnett’s test *p<0.01. 5 animals per group. 
 

 

Addition of ID93/GLA-SE reduces relapse rates and increase survival in a suboptimal 

chemotherapy model  

Further, we sought to confirm the above results and analyze whether the shown beneficial 

adjunct effect of ID93/GLA-SE had also a beneficial effect on survival rates. The chemotherapy 

treatment used was as above 250mg of INH and 100mg of RIF per liter of drinking water but 

supplemented with PZA (150mg/L) to more closely mimic standard human chemotherapy 

treatment and was given for 8 weeks uninterrupted (Figure 2 A). 3 immunizations 3 weeks apart 

were administrated starting at week 6 so the end of chemotherapy coincides with the last 

immunization. Two mouse strains were used. CB6F1 mice are the offspring of a cross between 

BALB/CJ females and C57BL/6J males. This strain was chosen since BALB/c mice are the 

preferred strain for evaluation of Mtb drugs, whereas C57BL/6 mice are the preferred strain for 

most vaccination studies.  The second mice strain used are SWR, unlike C57BL/6 and BALB/c 

mice, which exhibit stabilized pulmonary bacterial growth and survive for more than one year 

(204-208), SWR/J mice exhibit extreme Mtb susceptibility with progressive bacterial growth 

resulting in fatal disease, thus making them a good post-exposure model to rapidly evaluate 

immunotherapeutic regimens (206). Relapse rates were evaluated in CB6F1 and SWR and 

survival rates were determined in SWR. As observed above no difference was observed in the 

CFU counts during the chemotherapy treatment between INH/RIF/PZA with or without 

ID93/GLA-SE. ID93/GLA-SE significantly reduce the mean CFU in the lungs and spleens at the 

“relapse” time point 4 weeks after chemotherapy arrest in both strains and at 10 weeks after 

chemotherapy arrest in SWR mice (Figure 2 B and C). SWR mice survival (median survival = 36.9 

weeks) was concordant with the observed CFU reduction with mice treated with chemotherapy 

in combination with ID93/GLA-SE surviving close to 2 months more than chemotherapy only 

treated mice (median survival = 29.4 weeks) (Figure 2D). 
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Figure 2. Colony-forming unit counts and survival in two mouse strains treated with 
antibiotics in combination with ID93/GLA-SE. 
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CB6F1 or SWR mice were infected with LDA Mtb (day 0). 4 weeks later mice were RIF+INH+PZA 
treated for 8 weeks (weeks 4-12). A subset of mice was also immunized 3x3 weeks apart with 
either GLA-SE or ID93/GLA-SE starting at week 6. (A) Scheme of Immunotherapy experiment. 
Number of viable bacteria in the lung and spleen of CB6F1 (B) or SWR (C) were determined at 
the CFU time-points indicated in (A).  (D) Protection was assessed by monitoring animal death. 
Mean + s.e.m. values are shown. p values were determined by one-way ANOVA/Dunnett’s test for 
CFU counts and Log Rank Test for survival *p<0.01. 5-7 animals per group for CFU and 10 
animals per group for survival. 
 

D. DISCUSSION AND CONCLUSION  

Mice therapeutic models are difficult to develop due to the number of variables that need to be 

determines i.e. antibiotic concentrations, chemotherapy length, timing, number and distance 

between immunizations, etc. that are today far less established that the mouse prophylactic 

model to test vaccine candidates. Another big challenge is that, even with a “short duration 

chemotherapy treatment”, the length of these studies makes them extremely expensive and time-

consuming.  

To mimic non –compliant regimen in humans two different chemotherapy regimen were used in 

this study: RIF+INH for 8 weeks with 2 weeks rest in the middle or RIF+INH+PZA for 8 weeks. 

Neither of those regimens achieved complete bacterial clearance in the lungs. 

No differences were observed during the course of chemotherapy when ID93/GLA-SE was used 

in combination with chemotherapy, this is not surprising since the chemotherapy regimen used 

is very strong to achieve a quick CFU reduction in lungs and spleens of mice, this “strong 

chemotherapy regimen” was expected to hide any benefice of adding a therapeutic vaccine while 

the treatment was ongoing (202).  The endpoint expected was a reduction in “relapse CFUs” 

when the mice were taken out of the chemotherapy regimen. This latter was achieve in all 3 

strains of mice (C57BL/6, CB6F1 and SWR) when the chemotherapy was combined with 

ID93/GLA-SE immunizations.  

GLA-SE alone had no effect on the relapse CFUs, showing that the generation of an immune 

response against ID93 was required and that the reduction observed in ID93/GLA-SE immunized 

mice was not due to an overall enhancement of inflammation that could have been triggered by 

GLA-SE independently of ID93. 
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Furthermore no effect of GLA-SE or ID93/GLA-SE was observed in the bacterial burdens when 

they were given in non-chemotherapy treated mice after infection, this was to be expected since 

at the time-point of immunization (8 weeks after infection) Mtb infection is already established 

and there is a strong immune response against TB generated by infection. 

Unfortunately the CFU and survival results showed than in the chosen regimens ID93/GLA-SE is 

delaying relapse rather than preventing it. Why the elicited protection by ID93/GLA-SE is fading 

over time remains to be elicited. One hypothesis is that with the chemotherapy regimen used the 

ongoing infection was still too high titer and established, between 3 and 4 logs in the lungs, for 

the candidate therapeutic vaccine to be able to control it durably. In the future it would be 

interesting to test ID93/GLA-SE in combination with a longer or stronger chemotherapy regimen 

that reduces the bacillary load further but without achieving complete clearance to still allow a 

quick relapse after chemotherapy arrest. It has to be noted that in this model while having the 

advantage of a shorter treatment time, the rapid re-growth of Mtb might be due to different 

mechanisms that those involved in the long duration models of relapse. 

Nevertheless this study shows that ID93/GLA-SE elicits some protection against Mtb when used 

as therapeutic vaccine in combination with a standard chemotherapy regimen and is a good 

proof of concept of the possibility of using ID93/GLA-SE in combination with antibiotics as a 

therapeutic vaccine against TB which would limit further usage of chemical drugs and thus 

minimize their toxicity and cost.  

Further analysis will be needed to understand what component(s) of the response to ID93/GLA-

SE administered post-therapeutically are protective and improve the infection outcome and 

whether the vaccine affects different Mtb reservoirs than those targeted by the drugs (e.g. latent 

bacteria). Better understanding of ID93/GLA-SE therapeutic capacities is crucial since this 

vaccine is currently undergoing a Phase 2a clinical trial to evaluate its safety and immunogenicity 

when administered to adult pulmonary TB patients, following successful completion of TB 

treatment with confirmed bacteriologic cure, in preparation for a future Phase 2b prevention of 

TB recurrence trial in the same population (5). 
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A. GLA-SE  ADJUVANTICITY MECHANISMS OF ACTION 

The development of the appropriate type of immune response is essential for successful 

immunization. IDRI’s leading candidate adjuvant GLA-SE promotes strong TH1 CD4 T cells and 

IgG2-skewed B cell responses to protein vaccine antigens. On one side augmentation of antigen-

specific B cell responses and subsequent antibody production has been central to the 

development of effective vaccines against a variety of pathogens.  One of the main characteristic 

of B cell response to GLA-SE is that it is induced very quickly after immunization correlates with 

an early onset protection (209). In settings such as the emergence of new pandemics, intentional 

release of bioterror agents, and on-demand traveler’s vaccines, the rapid initiation of humoral 

immunity with practical vaccine approaches is highly desirable. On the other side robust cell-

mediated immunity, which is associated with a Th1 type immune response, is thought to be 

required for the control of intracellular pathogens, including TB, viruses and cancer (60, 210-

212).  

Recent insights into the functioning of the innate immune system have demonstrated its crucial 

role in the development of an effective antigen-specific immune response and thus its key role in 

vaccines adjuvanticity (189). 

A better understanding of GLA-SE mechanism of action is crucial for the rational development of 

next generation vaccine adjuvants tailored to elicit specific immune responses but knowledge on 

GLA-SE mechanisms of action is still scarce (Section I IV.C). One of the main objectives of this 

thesis was to broaden that knowledge with a specific focus on determining which are the main 

actors in the innate immune initiation and subsequent adaptive response. For this purpose we 

divided our work in three main studies aiming to first elucidate the role of the pro-inflammatory 

cytokines IL-12, type I IFN and IL18, the transcription factor T-bet, then the LN SCMφ and the IL-

18 cytokine and finally B cells in the response to GLA-SE. 

The newly acquired knowledge brought by the work undertaken during this thesis is 

summarized in Table 2 and Figure 12. 
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CATEGORIE COMPONENT 

Innate 
response 
(strong CD69 
induction) 

Strong CD4+ 
TH1 
polyfunctional 
response 

Strong B cells 
IgG2c skewed 
response 

References 

Adjuvant GLA+SE YES YES YES (12, 184) Article 
2 

Pathway 
components 

Caspase 1/11 YES YES ? (12) 
NLRP3 NO ? ? (12) 
MyD88/TRIF ? YES YES (188) 

Cytokines 

IFNγ YES YES ? (12, 79) 
IL-18 YES YES YES (12) Article 2 
IL-12 ? YES NO Article 1 
type I IFN YES YES NO Article 1 

Transcription 
Factor T-bet ? YES YES Article 1 

Cells 

DC ? YES NO (186) 

SCMφ YES YES YES  Article 2 

B cells ? YES (memory) YES  Article 3 

Table 2. Updated components, cytokines, transcription factors and pathways required for the different 
elements of the immune response to GLA-SE based on the results obtained during this thesis. YES = required, 
NO = not required, ? = no data, white and italic font = updated knowledge. 
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Figure 12. Updated representation of the suggested GLA-SE mechanisms of action in the draining LN based 
on the results obtained during this thesis. GLA-SE will be quickly recognized by the sub-capsular macrophage (SCMφ) cell population in the draining LN. This will induce the Inflammasome leading to caspase 1 activation and 
the subsequent cleavage of the pro-IL-18 in its mature form IL-18. GLA will be recognized by DC through TLR4 
leading to the engagement of MyD88 and TRIF pathways which will result in IL-12 expression (MyD88 and TRIF dependent) and type I IFN production (IFNα/β) (TRIF dependent). Type I IFN will partially inhibit IL-12 production 
establishing a regulation loop. IL-18 and type I IFN will be recognized by NK and CD8+ T cells and neutrophils which will lead to innate IFNγ secretion by these cells. IFNγ will be recognized by its receptor on CD4+ T cells and will help 
in the establishment of the TH1 response and the subsequent secretion of TH1 cytokines (IFNγ, TNF and IL-12) by the activated CD4+ T cells. Another crucial role of the SCMφ is the association of the antigen (Ag) on its surface that will 
be presented to naïve B cells step crucial for the IgG2 skewed strong B cell proliferation and subsequent antibody 
production. B cells also play an important role as antigen-presenting cells to CD4 T cells leading to induction of TH1 
Memory Precursor Effector CD4 Cells but the main APC for CD4 cells are the DCs. IL-12 production and T-bet 
induction are crucial for the TH1 induction. 

The work conducted during this thesis has helped us in the elucidation of GLA-SE mechanism of 

action but there still are a lot of unknowns and questions to answer stemming from this work, 

many of which are being studied in ongoing and future experiments. 

We demonstrated that IL-12 is needed for the CD4 TH1 induction by GLA-SE but not for IgG2c 

skewing, whereas T-bet is necessary for both. Since B-cell intrinsic T-bet has been shown to 

mediate early IgG2c production (213) further experiments will be needed to determine if CD4 T 

cell intrinsic T-bet expression upon ID93-GLA-SE vaccination is required to promote IgG2c 

skewing. 
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We have shown that IL-12 and IL-18 are required for the induction of TH1 responses and IL-18 

was shown to be also required for the early innate IFNγ production by neutrophils and memory 
CD8 cells (12). Moreover IL-18 has been shown to synergize with IL-12 to induce IFNγ 
production in T cells and NK cells (214). Further studies are ongoing to determine if IL-12 is also required for the induction of the innate IFNγ production by innate immune cells observed upon 
immunization with GLA-SE. 

The clodronate depletion helped us define the SCMφ population as a central player in GLA-SE 

adjuvanticity particularly in the induction of the innate response and subsequent quick and 

strong B cell response. This population was important for the production of IL-18 upon 

immunization and IL-18 was shown to be partially responsible for the SCMφ-dependent 

expansion of antigen-specific B cells but it remains to be determined whether IL-18 is acting 

directly on B cells to drive their expansion, through the IFNγ pathway, or via a distinct pathway. 

Either way, IL-18 production is most likely not the only role of SCMφ in B cell induction since the 

depletion of this population had much profound effects than the one observed in IL-18R-/- mice. 

The SCMφ population is composed of the sinusoidal SCMφ and the medullary SCMφ, our 

hypothesis is that the specific population that is crucial for the rapid induction of the innate 

response is the medullary macrophages since we have shown that they are the main immune cell 

population interacting with GLA-SE early after immunization. The main known difference 

between sinusoidal and medullary macrophages is that the latter express SIGNR1 and the former 

don’t, it would be important to know if SIGNR1’s had any role in GLA-SE recognition or 

adjuvanticity. Studies are ongoing to determine SIGNR1 role in GLA-SE adjuvanticity. 

Furthermore SIGNR1 is a transmembrane C-type lectin that regulates the immunoglobulin-

independent classical complement fixation pathway by interacting with C1q (215). Early results 

using cobra venom factor, which has been described to induce complement depletion, showed 

that complement might be implicated in the response to GLA-SE (data not shown).  If further 

studies confirm those results it would be interesting to define if medullary SCMφ and the 

complement pathway roles in the induction of the innate response to GLA-SE are linked. 

Alternatively SIGNR1 could be implicated in the presentation of the unprocessed antigen to B 

cells since a crucial role for SCMφ in the presentation of antigen to follicular B cells has been 

recently established (216). 
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We also showed that B cells and most likely their antigen presentation capacities are required 

upon priming for CD4 MPEC generation and eventually the establishment of a long lasting CD4 

memory response to GLA-SE, supplementary experiments will be needed to investigate how 

exactly B cells program MPEC generation and whether B cells are also needed at latter time 

points for CD4 memory maintenance following GLA-SE immunization.  

Beyond the different factors studied during this thesis and discussed above, a wide variety of 

cytokines, pathways and innate immune activators still remain to be studied in the context of 

GLA-SE immunization, including extracellular ATP release which has been shown to be important 

for MF59 adjuvanticity (217), IL-6 and IL-1β roles and others which are currently undergoing 

further investigation. 

Understanding the mechanisms of action of this adjuvant and others provides crucial information 

on how innate immunity influences the development of adaptive immunity, help in rational 

design of the next generation of vaccines against a variety of diseases, and can inform on 

adjuvant safety and thus help inform the potential licensing for human use. 

B. ID93/GLA-SE  AS AN IMMUNOTHERAPEUTIC VACCINE 

The development of new drugs is currently the leading solution to the increasing incidence of 

resistance to the drugs currently employed for TB therapy. Although new, faster-acting drugs are 

in development, history predicts that their very usage may lead to selection of resistant Mtb 

strains. Development of a novel co-treatment approach using classical chemotherapy and a post-

exposure vaccine product, for which resistance developing is far more unlikely, that addresses 

alternatives to TB therapy would be a major breakthrough. Many beneficial effects can be 

expected to result from an efficient therapeutic vaccine including (i) reduction of treatment 

length and then an improvement in compliance, (ii) prevention of drug-resistant TB 

development, (iii) reduction of relapse/reactivation caused by insufficient drug efficacy or poor 

compliance.  

The capacity of ID93/GLA-SE to shorten chemotherapy treatment length was previously 

demonstrated in the SWR mouse model (182) and the work performed during this thesis has 

shown proof of concept that ID93/GLA-SE can also better the outcome of a sub-optimal antibiotic 

treatment, but much work still remains to be done. 
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It will be important to understand the arms of the response to ID93/GLA-SE that play a role in 

the enhancement of protection against TB in the therapeutic vaccine setting.   

It would also be extremely interesting to test ID93/GLA-SE capacities to reduce the development 

of drug-resistant Mtb when given in combination with a standard drug therapy. The hypothesis 

behind these studies is that the effect of adding a therapeutic vaccine to an antibiotic regimen 

will not only reduce treatment times, but will be bactericidal and prevent post-treatment disease 

recurrence and thus drug-resistant development. Additionally, because therapeutic vaccines 

target a different set of pathogen modalities, it should be effective against both drug-sensitive 

and drug-resistant Mtb thus permitting both the simplification and shortening of treatment 

duration. 
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In conclusion, the research that is the foundation of this thesis has helped us to better define the 

different characteristics of GLA-SE mechanism of action and to broaden our knowledge and 

current understanding of the different steps and actors required for the broad adaptive response 

induced by GLA-SE (Figure 13) (218) (unpublished data). Nevertheless much work remains to be 

done to fully understand those mechanisms and being able to draw a complete figure highly 

complex response orchestrated by the combination of the TLR4 agonist GLA and the squalene oil-

in water-emulsion SE. 

 

Figure 13. Broadening the knowledge on the mechanism of action associated with GLA-SE. 
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Titre : Caractérisation de la réponse immune induite par un adjuvant comprenant un agoniste au 
TLR4 dans des modèles murins  

Mots clés : adjuvant, réponse innée, réponse adaptative, TLR4, tuberculose, immuno-thérapie 

Résumé : En 2014 la Tuberculose (TB) à 
dépassé le VIH comme la principale cause de 
décès par maladie infectieuse dans le monde 
soulignant le besoin urgent de développer un 
vaccin plus efficace contre cette maladie. Le 
candidat vaccin contre la TB, ID93/GLA-SE, 
dévéloppé à l’Infectious Disease Research 
Institute (IDRI), est aujourd’hui en essai 
clinique de phase IIa et a montré des résultats 
pré-cliniques et cliniques promettants. Dans un 
modèle murin de TB, ce vaccin induit une forte 
réponse TH1, considérée comme centrale dans 
la protection contre la TB, et la production 
d’IgG2 par les lymphocytes B. Néanmoins, les 
mécanismes d’action de GLA-SE sont encore peu 
connus. 

L’objectif principal de cette thèse est donc 
d’élucider les mécanismes clés qui relient les 
réponses innées et adaptatives induites par cet 
adjuvant dans le modèle murin. Un objectif 
secondaire est d’établir un modèle murin de 
rechute de TB après traitement et d’évaluer 
l’utilisation d’ID93/GLA-SE en tant que vaccin 
immuno-thérapeutique et sa capacité à réduire 
les taux de rechute dans ce modèle. L‘ensemble 
de ce travail nous a permis de mieux 
comprendre les mécanismes impliqués dans la 
réponse immunitaire adaptative induite par 
GLA- SE et de montrer la capacité de ID93/GLA- 
SE a être utilisé comme un vaccin thérapeutique 
contre la tuberculose dans le but de réduire les 
taux de rechute post-thérapeutique. 

 

 

 

Title : Characterization of the immune response to a TLR4-based adjuvant in murine models  

Key words : adjuvant, innate response, adaptive response, TLR4, tuberculosis, immunotherapy 

Summary : In 2014 tuberculosis (TB) 
surpassed HIV as the leading cause of death by 
an infectious disease worldwide emphasizing 
the urgent need to develop a more effective 
vaccine against this airborne disease.  The 
Infectious Disease Research Institute (IDRI) TB 
candidate vaccine ID93/GLA-SE is currently 
undergoing a Phase IIa clinical trial and has 
shown promising preclinical and clinical 
results. In murine models of TB this vaccine 
drives a strong CD4 TH1 response, which is 
thought to be important for protection against 
TB, and an IgG2c skewed B cell response. 
However, little is known about the cellular and 
molecular events that drive GLA-SE 
adjuvanticity. 

To that end, the main objective of this thesis 
was to elucidate the key mechanisms that 
connect innate and adaptive immune responses 
elicited by this adjuvant in the murine model. A 
secondary objective was to evaluate the 
possibility of using ID93/GLA-SE as adjunct 
therapy to existing antibiotic treatments to 
reduce relapse rates after TB treatment.  
Collectively the results obtained during this 
research project and thesis broaden our 
knowledge and our current understanding of 
the mechanisms involved in the adaptive 
immune response induced by GLA-SE and show 
the capacity of ID93/GLA-SE to be used as a 
therapeutic vaccine against TB to reduce post-
therapeutic relapse rates. 

 

 


