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THÈSE DE DOCTORAT
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Contributions and thesis outline

This thesis is divided in 5 main chapters that can be read independently of the
others to some extent. Chapter 1 is an autonomous introductory chapter, whereas
Chapter 2 introduces notations and concepts needed for the understanding of Chap-
ter 3. All experiments are gathered in Chapter 4, which can be read with only a
superficial understanding of the algorithm and the theoretical results. Chapter 5 is a
stand-alone chapter dedicated to the study of the median heuristic.

Chapter 1. In this first chapter, we introduce the change-point problem and kernel
methods, which are the main topics of this manuscript. After a brief historical tour,
we define the notion of consistency, which is our key concern in Chapter 3, and the
kernel trick, which is the building block of kernel change-point detection.

Chapter 2. Next, we describe the kernel change-point detection procedure and
explain the algorithm. We also present the framework under which we conduct our
analysis of kernel change-point detection. Finally, we review some already known
facts about kernel change-point detection.

Chapter 3. In Chapter 3, we state and prove our main results pertaining to kernel
change-point detection. Namely, we show that kernel change-point detection has good
theoretical properties for change-point estimation with independent data, under a
boundedness assumption. We prove this result both for a linear penalty and a penalty
function that originates from model selection. In the asymptotic setting, our result
implies that kernel change-point detection estimates consistently all changes in the
“kernel mean” of the distribution of data, at speed log(𝑛)/𝑛 with respect to the sample
size 𝑛. Since we make no assumptions on the minimal size of the true segments, this
matches minimax lower bounds. The proof is based upon a concentration result
for Hilbert-valued random variables. Under a weaker finite-variance assumption, we
obtain some partial results. We also expose in much detail the different notions of
distance between segmentations, and prove that they all coincide for sufficiently close
segmentations.

This chapter is based upon the article Garreau and Arlot [2016], under submission
to the Electronic Journal of Statistics.

Chapter 4. In this chapter, we first focus on practical issues associated to kernel
change-point detection, namely the choice of the penalty constant when the penalty
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function is linear and the choice of the kernel. We show how the dimension jump
heuristic can be a reasonable choice for the penalty constant in simulations. We
also compute a key quantity depending on the kernel that appears in our theoretical
results, and show how this quantity is linked to the performance of KCP in practice.
Some of the computations that we present are novel, up to the best of our knowledge.
Finally, we demonstrate experimentally the consistency results proved in Chapter 3.

This chapter is based upon Garreau and Arlot [2016] and additional experiments.

Chapter 5. This final chapter is devoted to the median heuristic choice, a popular
tool to set the bandwidth of radial basis function kernels. For large sample size, we
show that the median heuristic behaves approximately as the median of a distribution
that we describe completely in the setting of kernel two-sample test and kernel change-
point detection. More precisely, we show that the median heuristic is asymptotically
normal around this value. We illustrate these findings in a simple setting, where the
underlying distributions are multivariate Gaussian.

This chapter is based upon Garreau [2017].
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Notations

We recall here some notations used throughout the manuscript.

Abbreviations

e.g. . . . . . . . . . . . . . . . . . . . . .
Eq. . . . . . . . . . . . . . . . . . . . . .
et al. . . . . . . . . . . . . . . . . . . . .
etc. . . . . . . . . . . . . . . . . . . . . .
Fig. . . . . . . . . . . . . . . . . . . . . .
i.e. . . . . . . . . . . . . . . . . . . . . . .
i.i.d. . . . . . . . . . . . . . . . . . . . .
KCP . . . . . . . . . . . . . . . . . . . .
MMD. . . . . . . . . . . . . . . . . . .
p. . . . . . . . . . . . . . . . . . . . . . . .
p.s.d. . . . . . . . . . . . . . . . . . . .
Prop. . . . . . . . . . . . . . . . . . . .
resp. . . . . . . . . . . . . . . . . . . . .
RKHS . . . . . . . . . . . . . . . . . .
s.t. . . . . . . . . . . . . . . . . . . . . . .

exempli gratia
Equation
et alii
et cetera
Figure
id est
independent and identically distributed
kernel change-point detection
Maximum mean discrepancy
page
positive semi-definite
Proposition
respectively
reproducing kernel Hilbert space
such that

General mathematical notations

:= . . . . . . . . . . . . . . . . . . . . . .
|·| . . . . . . . . . . . . . . . . . . . . . . .
‖·‖ . . . . . . . . . . . . . . . . . . . . . .
‖·‖ℋ . . . . . . . . . . . . . . . . . . . .
‖·‖F . . . . . . . . . . . . . . . . . . . . .
arg max, arg min . . . . . . . .
C . . . . . . . . . . . . . . . . . . . . . . .
conv . . . . . . . . . . . . . . . . . . . .
diag . . . . . . . . . . . . . . . . . . . .
diam . . . . . . . . . . . . . . . . . . . .
erf . . . . . . . . . . . . . . . . . . . . . .
erfc . . . . . . . . . . . . . . . . . . . . .

define equals
absolute value
norm of a vector
norm of a vector in ℋ
Frobenius norm of a matrix
argument of the maxima (resp. minima)
set of complex numbers
convex hull of a set
diagonal of a matrix
diameter of a set
error function, defined by erf (𝑥) := 2√

𝜋

∫︀ 𝑥

0
e−𝑡2 d 𝑡

complementary error function erfc (𝑥) := 1−erf (𝑥)
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E . . . . . . . . . . . . . . . . . . . . . . .
ℱ . . . . . . . . . . . . . . . . . . . . . . .
ℋ . . . . . . . . . . . . . . . . . . . . . . .
I𝑑 . . . . . . . . . . . . . . . . . . . . . . .
1·∈𝐴 . . . . . . . . . . . . . . . . . . . .
Med . . . . . . . . . . . . . . . . . . . .
med. . . . . . . . . . . . . . . . . . . . .
o (·) ,O (·) . . . . . . . . . . . . . . .
N . . . . . . . . . . . . . . . . . . . . . . .
N⋆ . . . . . . . . . . . . . . . . . . . . . .
P . . . . . . . . . . . . . . . . . . . . . . .
R . . . . . . . . . . . . . . . . . . . . . . .
⟨·, ·⟩ . . . . . . . . . . . . . . . . . . . . .
⟨·, ·⟩ℋ . . . . . . . . . . . . . . . . . . .
Span . . . . . . . . . . . . . . . . . . . .
Tr . . . . . . . . . . . . . . . . . . . . . .
𝑥⊤ . . . . . . . . . . . . . . . . . . . . . .
Var . . . . . . . . . . . . . . . . . . . . .
𝒳 . . . . . . . . . . . . . . . . . . . . . . .

expectation of a random variable
Fourier transform
Hilbert space
identity matrix of size 𝑑× 𝑑
indicator function of the set 𝐴
sample median
theoretical median
Landau notations
non-negative integers
positive integers
probability of an event
set of real numbers
scalar product
scalar product in ℋ
span of a set of vectors
trace of a matrix
transpose of the matrix 𝑥
variance of a random variable
input space

Other notations

𝐴𝜏 . . . . . . . . . . . . . . . . . . . . . .
𝐶 . . . . . . . . . . . . . . . . . . . . . . .
𝐶min, 𝐶max . . . . . . . . . . . . . .
crit . . . . . . . . . . . . . . . . . . . . .
∆,∆ . . . . . . . . . . . . . . . . . . . .
𝐷𝜏 . . . . . . . . . . . . . . . . . . . . . .
𝐷⋆ . . . . . . . . . . . . . . . . . . . . . .̂︀𝐷 . . . . . . . . . . . . . . . . . . . . . . .
d . . . . . . . . . . . . . . . . . . . . . . .
dF . . . . . . . . . . . . . . . . . . . . . .
dH . . . . . . . . . . . . . . . . . . . . . .
d∞, d

(1)
∞ , d(2)

∞ , d(3)
∞ . . . . . . . .̂︀ℛ . . . . . . . . . . . . . . . . . . . . . . .

𝑘 . . . . . . . . . . . . . . . . . . . . . . .
K . . . . . . . . . . . . . . . . . . . . . . .
Λ,Λ . . . . . . . . . . . . . . . . . . . .
𝐿𝜏 . . . . . . . . . . . . . . . . . . . . . .
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linear part in the decomposition of 𝜓𝜏

penalty constant
minimal and maximal theoretical penalty constant
a model selection criterion
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a positive semi-definite kernel
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minimum and maximum segment size
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(positive) bandwidth
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Chapter 1

Introduction

A large part of this manuscript is devoted to questions in regard to kernel change-
point detection, a method introduced by Arlot et al. [2012]. The main idea underlying
this procedure is to adapt a penalized least-squares change-point detection scheme
to data belonging to a general set on which a positive semi-definite kernel is defined.
Concepts from two distinct branches of statistics meet here: change-point detection
and kernel methods. In this introduction, we aim to present both, with the goal of
relating our work to the existing literature. A precise description of kernel change-
point detection is delayed to Chapter 2.

We begin with a description of the change-point problem in Section 1.1, set-
ting some vocabulary extensively used throughout this manuscript. Before giving
an overview of the literature pertaining to change-point detection in Section 1.3, we
expose some real-world situations where this problem naturally arises in Section 1.2.
We then briefly present the powerful machinery of kernel methods in Section 1.4.

1.1 The change-point problem

Change-point detection is a long-standing question in mathematical statistics,
which has attracted a lot of attention since the 30s. Our goal in this section is not
to present the vast literature associated with this problem in an exhaustive fashion,
but rather to present the main ideas that shaped the field, and to relate them to this
thesis.

In the study of time series, it is natural to assume stationarity, that is, time-shift
invariance of the data probability distribution. Indeed, suppose that we are recording
data coming from a natural phenomenon during a time period where there is no trend
or shock in the background, then there is no reason for the distribution parameters to
change. This assumption often fails in practice, where the environment does endure
potentially large changes, and a more reasonable assumption is to consider that the
observed phenomenon is stationary only on smaller time-units — see Fig. 1-1 for a
typical situation. The goal of change-point detection is to recover these segments as
accurately as possible.

If the signal we consider is multi-dimensional, we assume that changes in the
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distribution occur simultaneously in the different dimensions of the signal. It is not
necessary that changes take place in all of them, though it should be clear that the
problem becomes quite challenging if only a few coordinates undergo a change in a
high-dimensional setting. We will not deal with the situation where each dimension is
segmented differently, that is, joint segmentation, and we refer to Picard et al. [2011]
and references therein for an introduction.

Let us specify some vocabulary and concepts that are going to be used throughout
this thesis.

Off-line vs on-line setting. When observations 𝑋1, . . . , 𝑋𝑛 are obtained one at a
time, we say that the setting is on-line, or sequential. The goal is to detect changes
as quickly as possible, while keeping the number of false alarms as low as possible.
We talk about off-line or a posteriori detection of changes when the data is obtained
all at once. In this case there is no need for real-time processing of the data, and one
can take advantage of this additional computation time. Note that on-line procedures
can be applied in the off-line setting, just by running through the data-points as if
they were being observed one by one. Less obvious is the possibility to use an off-line
procedure in the on-line setting, handling batches of newly observed data-points with
the off-line procedure. However, the batches’ size is then a strict lower bound to the
quickest detection time. Let us emphasize that this thesis is essentially concerned with
off-line change-point detection. Nevertheless, we briefly account for the main ideas
and essential results pertaining to on-line change-point detection in Section 1.3.1.

Single vs multiple change-point detection. There is quite a difference between
detecting a single change-point and multiple change-points in the off-line setting. It is
important to understand that the second problem is much harder, since the number
of possible outcomes for the procedure jumps from 𝑛 − 1 to 2𝑛−1 if the number
of change-points is unknown 1, where 𝑛 is the number of observations. This thesis is
mainly concerned with the second problem. Note that methods designed for detecting
multiple change-points can obviously be applied to the detection of a single change-
point. The converse is also possible, even though there is no guarantee it will yield
the desired results. For instance, one can proceed as follows: (i) search the entire
dataset for a change-point, (ii) if a change-point is found, separate the dataset in
two parts (before and after), and (iii) iterate. This generic procedure is called binary
segmentation, see Vostrikova [1981].

Parametric vs non-parametric. It is common to make parametric assumptions,
i.e., to assume that the distribution of the observations belongs to a family of distri-
butions that can be described using a finite number of parameters. Thus the changes
occur in one (or more) of the parameters describing the distribution. These assump-
tions are important both for the design and the analysis of change-point procedures.

1. There are
(︀
𝑛−1
𝑘−1

)︀
ways for a signal of size 𝑛 to be segmented in 𝑘 segments, hence a total of∑︀𝑛−1

𝑘=1

(︀
𝑛−1
𝑘−1

)︀
= 2𝑛−1 possibilities.
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We are more interested in non-parametric settings, where little is known about the
underlying distributions.

In brief, we are interested in the off-line detection of multiple changes in poten-
tially multi-dimensional time-series with simultaneous changes, without parametric
assumptions.
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Figure 1-1 – Here we observe 103 observations of a Gaussian distribution (marked as
black dots) whose mean abruptly changes from 1 to −1 and then to 0.5 at position
500 and 750 (indicated by broken vertical red lines) and whose variance stays constant
(𝜎 = 0.5). The goal of change-point detection is to recover these positions from the
observations. We are here in an off-line setting, with multiple change-points, in a
parametric model.

1.2 Examples
In this section we present some real situations where change-point problems arise.

The historical example for the use of change-point detection comes from process
quality control [Shewhart, 1931], that is, the monitoring of industrial processes which
can be either in control or out of control. The goal is then the quickest detection of
anomalous behaviors, with the least false-alarms (see Basseville and Nikiforov [1993,
Chapter 1]). It is essentially an on-line problematic, that we do not develop here. As
we have seen in Section 1.1, this thesis is focused on the off-line detection of changes,
so we present in more details some examples coming from fields where off-line change-
point detection is relevant.

Array Comparative Genomic Hybridization. During cellular division, the du-
plication of the genome can go astray and a large number of base pairs can be deleted
or copied more than once. This phenomenon is called copy-number variation and
occurs frequently in the life of a cancerous cell. Comparative Genomic Hybridization
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(CGH) allows to estimate the copy-number variations in a particular genome with
respect to normal. More precisely, for each locus of the genome with a precision of
5 to 10Mb, 2 CGH provides an estimate of the ratio between the copy-number of a
test subject DNA and a reference. Note that before the development of CGH in
the early 90s [Kallioniemi et al., 1992], it was extremely costly to obtain this global
information.

For the sake of completeness, let us explain briefly how CGH data is obtained:
the DNA of both samples is first extracted and colored with a fluorescent marker,
generally green for the test sample and red for the reference. Both samples are then
heated, which makes the DNA strands of the chromosomes separate. Next, they
are dropped down on a microchip that contains ordered single DNA strands of the
same genome as the reference. Locally, if there are more copies of the test DNA,
it associates preferentially with the control DNA and green prevails — conversely,
if there are less copies of the test DNA, red prevails. The final data is obtained by
measuring the fluorescence intensities.

Array CGH (aCGH) is a technical refinement of CGH that allows to work at a
much finer scale (5 to 10kb) and is now widely used instead of CGH. As CGH, it
is not exempt from noise, which comes from experimental measurement imprecision
and the log-ratio is generally assumed to be Gaussian. An example of aCGH data is
depicted in Fig. 1-2.
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Figure 1-2 – Logarithm of the copy-number variation as a function of the position
in the genome of cancer cell T47D [data from Snijders et al., 2001]. Positive (resp.
negative) values correspond to genome positions where the copy number is higher
(resp. lower) that normal. As can be seen on this example, the copy-number variation
can be modeled well by a noisy piecewise constant function.

2. A base pair (bp) consists of an 𝐴 − 𝑇 or 𝐺 − 𝐶 pair; it is approximately 340pm long. A
megabase (Mb) denotes 106 base pairs. The size of the Human genome is approximately 3, 000Mb.
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Interestingly, several types of tumors show a consistent pattern of such genetic
aberrations, i.e., large connected portions of the genome are consistently over or
under-replicated — in fact CGH was invented precisely to study the genetic anomalies
of tumor cells. Hence, such patterns can serve as a signature of the tumor, and
identifying precisely the genome segments on which the copy-number is consistently
higher or lower than normal can be used to diagnose cancer [Bejjani and Shaffer,
2006]. When there are multiple tumors, it is also possible to use these signatures
for identifying which tumor is metastasizing [Weiss et al., 2003]. These patterns are
collections of geographic segments of the genome, and both during the identification
and diagnosis stage, we are faced with an off-line multiple change-point detection
problem.

Modeling of financial time series. Proposing relevant models for financial time
series, in particular share prices, is a subject of the utmost importance both in quan-
titative finance and econometrics. For a given stock, portfolio, or stock market index,
investors are primarily concerned with the return, that is, the net gain or loss gener-
ated by an investment strategy.
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Figure 1-3 – Log-returns of the Standard and Poors 500 Price index, closing prices,
from June 1, 1995 to June 1, 2017. The S&P500 is an index reflecting the market
capitalization of the 500 largest listed companies in the USA. As one can see, the 𝑋𝑡s
have a fairly stationary behavior between structural changes that often corresponds
with major financial crises. The most visible in this graph is the 2008 financial crisis.

Let us focus on a specific financial asset, write 𝑠𝑡 the value of this asset at time
𝑡 ∈ Z, and denote by𝑋𝑡 the logarithmic return of this asset, that is, 𝑋𝑡 := log (𝑠𝑡+1/𝑠𝑡)
(see Fig. 1-3 for a plot of log-returns on a real dataset). It is common to assume that𝑋
is a generalized autoregressive model (GARCH). There is tremendous literature on
GARCH processes, we refer to Tsay [2005] for an introduction. It falls out of the
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scope of this thesis to present this topic rigorously. To set ideas straight, let us just
say that 𝑋 can be decomposed as{︃

𝑋𝑡 = 𝜎𝑡𝑍𝑡

𝜎2
𝑡 = 𝛼0 +

∑︀𝑝
𝑖=1 𝛼𝑖𝑋

2
𝑡−𝑖 +

∑︀𝑞
𝑖=1 𝛽𝑖𝜎

2
𝑡−𝑖

(1.1)

where the 𝑍𝑡s are i.i.d. standard Gaussian random variables, 𝑝 and 𝑞 are positive
integers, 𝛼0 > 0, and (𝛼𝑖)1≤𝑖≤𝑝 , (𝛽𝑖)1≤𝑖≤𝑞 ∈ R+.

There is empirical evidence to show that the above model is satisfying for short
periods of time. Furthermore, it is practical to estimate the parameters of model (1.1)
when it is assumed that the observations constitute a stationary sequence of random
variables (see Straumann [2005] for a comprehensive monograph on the estimation
of GARCH models). But for longer time periods, this assumption is not realistic, in
particular due to abrupt changes in the variance process during times of economic
turmoil [Mikosch and Starica, 2004]. A simple way out is to consider that the obser-
vations are only stationary on short periods of time and to update the parameters
estimates on each segment, hence the need for an off-line change-point detection pro-
cedure.

Let us mention that some applications in finance are also focused on the real-
time problem, where the goal is to detect the apparition of structural breaks in “live”
financial time series [Pepelyshev and Polunchenko, 2015].

Video processing. In a movie, a shot is the longest continuous sequence that
originates from a single camera, and shot detection is the problem of detecting the
beginning and ending of each shot. The goal is to produce small homogeneous movie
parts, that can be easily used for indexing or more involved movie processing tasks.

Even though this information is sometimes available as meta-data in recent stan-
dards such as MPEG-7, there is still an ongoing research effort to develop reliable
techniques for shot detection; we refer to Cotsaces et al. [2006] for a review. Once the
movie transformed into a vector-valued time series, shot detection is essentially an
off-line, non-parametric, multiple change-point detection problem. Nevertheless, let
us emphasize two major differences with the setting that we introduced in Section 1.1:
(i) there is no definitive feature extraction procedure for this task, and (ii) not all
changes are abrupt — if a clear transition between shots (a cut) is most frequently
employed, a gradual transition is also a possibility (a dissolve). An example of clear
transitions between shots is pictured in Fig. 1-4.

An additional difficulty is the absence of prior information regarding the number of
change-points. Indeed, if some movies contain hundreds of distinct shots, others have
very few. 3 A relevant task in the latter case is scene detection, that is, segmenting
the video according to the actions taking place. When appropriate features are used,
this is once again an off-line multiple change-point problem [Allen et al., 2016].

In all these previous examples, change-point detection can be performed “by hand.”
We think that automatic change-point detection methods can help the practitioner

3. Victoria (2015), a 2 hours 18 minutes long movie, consists of a single continuous shot.

12



30200 30400 30600 30800 31000

0

0.2

0.4

0.6

0.8

Figure 1-4 – An excerpt of the movie The Big Lebowski. Here we can see 800 frames
— corresponding roughly to 30s — of the movie, and for each frame the corresponding
color histogram (27 colors) in the bottom panel. In this scene, the Dude is talking to
his landlord Marty while drinking a White Russian. The camera alternates between
shots of the Dude on his doorway (upper right panel) and Marty in front of him
(upper left panel). Abrupt changes in the color histogram of the frames match this
alternation.

in many respects, as is the case with most statistical methods:

— to increase the reliability of the data analysis;

— to decrease the risk of unexplainable errors;

— to increase the speed of data processing by several orders of magnitude, allowing
to handle much more data;

— to free some time for other tasks of more interest.

1.3 History

In this section, we present some important algorithms both for on-line and off-line
change-point detection.
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1.3.1 Sequential change-point detection

Historically, change-point problems have come from the sequential point of view.
We present here some of the most important ideas in the on-line setting. This account
is far from exhaustive. First, we omit Bayesian procedures, which are completely out
of the scope of this manuscript. See Fearnhead and Liu [2007] and references therein
for an introduction to this point of view on the on-line change-point problem. Second,
we do not mention sequential testing procedures since we shall encounter them shortly
hereafter in the context of off-line change-point detection. We refer to Basseville and
Nikiforov [1993] for an extensive overview of on-line procedures and Tartakovsky et al.
[2014] regarding sequential testing.

In the following, 𝑋1, . . . , 𝑋𝑛 are sequential observations of a real-valued random
process that undergoes a change in the mean and, for any 𝑖 ∈

{︀
1, . . . , 𝑛

}︀
, we define

𝜇⋆
𝑖 := E [𝑋𝑖] .

Control charts. The most immediate idea for detecting changes in signal is cer-
tainly to set a threshold and to decide that there is a change if a certain statistic
crosses the threshold. How does one choose the threshold value and the statistic?
The first rigorous attempt to answer this question was made by Shewhart [1931].
Suppose for now that the true mean of the observations 𝜇⋆ is known, as well as the
variance 𝜎2. Choose a batch size 𝑁 and set

�̄�(𝐾) =
1

𝑁

𝑁𝐾∑︁
𝑖=𝑁(𝐾−1)+1

𝑋𝑖 .

Then the proposed algorithm is to detect a change as soon as⃒⃒
�̄�(𝐾)− 𝜇⋆

⃒⃒
> 𝜅

𝜎√
𝑁
,

where 𝜅 is a constant. Keep in mind that in the context of quality control in which
control charts were introduced, 𝜇⋆ is a known value prescribed by the industrial
necessities. Moreover, 𝜎2 can be easily estimated if it is unknown, for instance by
setting

̂︀𝜎2 :=
1

𝑚− 1

𝑚∑︁
𝑖=1

(︀
𝑋𝑖 − �̄�

)︀2
,

when there is a strong belief that no change-point occurred in the first 𝑚 observations.
Concentration of measure can help choosing 𝜅 depending on the hypothesis satisfied
by the observations — for instance, a refinement of Chebyshev’s inequality [Meidell,
1918; Camp, 1922] guarantees that, for unimodal distributions, |𝑋𝑖 − 𝜇| > 3𝜎 with
probability smaller than 0.05 hence the 𝜅 = 3 chosen by Shewhart.

While numerous versions of Shewhart’s control chart exist, they all share the same
common idea: as the data is released, compute a statistic on each batch and take
action if it crosses predefined thresholds [Page, 1954; Lai, 1974].
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CUSUM. It was not before the 50s that optimal procedures were developed, after
the seminal work of Wald [1947]. The breakthrough of the CUSUM algorithm [Page,
1954] is to take action not if the statistic crosses a threshold, but if it is far away from
the historic minimum. In fact, this amounts to a control chart comparing against
an adaptive threshold. Let us be more specific: as in the previous paragraph, we
collect samples of size 𝑁 . We then assign a score 𝑌 (𝐾) to the 𝐾-th sample, set
𝑆𝑚 =

∑︀𝑚
𝐾=1 𝑌 (𝐾), and take action if

𝑆𝑚 − min
0≤𝑖<𝑚

𝑆𝑖 ≥ ℎ , (1.2)

where ℎ is a positive constant. Even though it was not explicit in Page [1954] how
to choose the scores 𝑌 (𝐾), it is common to use the log-likelihood ratio. That is, if
we assume that the 𝑋𝑖 are drawn according to a distribution 𝑝𝜃 with 𝜃 ∈ Θ some
parameter, equal to 𝜃0 before the break and 𝜃1 after, we set

𝑌 (𝐾) =
𝑁𝐾∑︁

𝑖=𝑁(𝐾−1)+1

log
𝑝𝜃1(𝑋𝑖)

𝑝𝜃0(𝑋𝑖)
.

Of course, Eq. (1.2) only allows to detect positive changes in the mean of the score. Us-
ing two CUSUM algorithms together, for instance, is a way to fix this problem [Page,
1954]. This line of work was later extended in a series of papers by Shiryaev [1961,
1963, 1965]. We refer to Lorden [1971]; Moustakides [1986] for optimality results
regarding this algorithm.

Filtered derivative. The key idea behind the filtered derivative algorithm [Bas-
seville, 1981] is simple: if there is no noise, then changes in the mean translate into
sharp jumps in the absolute value of the discrete derivatives of the signal. More
precisely, define the moving average

𝑔𝑘 =
𝑁−1∑︁
𝑖=0

𝛾𝑖 log
𝑝𝜃1(𝑋𝑘−𝑖)

𝑝𝜃0(𝑋𝑘−𝑖)
,

where the 𝛾𝑖 are positive weights. Then instead of deciding for a change whenever
𝑔𝑘 ≥ ℎ (a finite moving average control chart), we consider the discrete derivative
∇𝑔𝑘 := 𝑔𝑘 − 𝑔𝑘−1 and consider that there is a change-point if a sufficient number of
discrete derivatives are above a threshold ℎ, i.e.,

𝑁−1∑︁
𝑖=0

1∇𝑔𝑘−𝑖≥ℎ ≥ 𝜂 .

The parameter 𝜂 is typically small, e.g., 𝜂 = 2. Similar ideas are used for edge-
detection algorithm in image processing [Roberts, 1963].

We now turn to one of the main focuses of this manuscript, off-line change-point
detection.
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1.3.2 Off-line change-point detection

Even though on-line change-point methods predate off-line methods by more than
fifteen years, the literature relating to the latter is no less spread-out. As in the on-
line setting, we do not pretend to an exhaustive treatment of the off-line change-point
literature and we refer to Brodsky and Darkhovsky [2013, Chapter 2] for a review of
non-parametric off-line change-point detection methods. Rather, we want to present
with a reasonable amount of detail two principles paramount to most of the off-line
methods.

The first idea is to interpret the change-point detection problem as a statistical
hypothesis test, deciding for a change-point if it is statistically significant. Another
possibility is to cast the change-point problem as an estimation problem, where the
change-points are parameters from the model that we wish to estimate. Among
the estimation methods, we take a special interest in estimates obtained via the
minimization of a least-squares criterion given that our object of interest, kernel
change-point detection, is a natural extension of this line of thought.

Before presenting off-line methods in more detail, let us define a simplified a
posteriori change-point setting. For any integer 𝑛, we call segmentation integers
1 ≤ 𝐷 ≤ 𝑛 and 𝜏0 := 0 < 𝜏1 < · · · < 𝜏𝐷−1 < 𝜏𝐷 = 𝑛. We call segments the
sets {1, . . . , 𝜏1}, {𝜏1 +1, . . . , 𝜏2},. . . ,{𝜏𝐷−1 +1, . . . , 𝑛}. Given observations 𝑋1, . . . , 𝑋𝑛,
there is always a segmentation 𝜏 ⋆ with 𝐷⋆ segments such that the distribution of 𝑋𝑖

is constant on the segments, but distinct for consecutive segments. In particular, the
mean 𝜇⋆

𝑖 = E [𝑋𝑖] is constant on these segments. This model is extended to a more
general setting in Chapter 2. We may also make a parametric assumption on the
observations, that is, assume that the 𝑋𝑖 have a density 𝑓𝜃, with 𝜃 = 𝜃ℓ on segment
ℓ+ 1.

Hypothesis testing

A first idea for detecting a single change-point is to cast this problem as a hy-
pothesis test. More specifically, one can test the null hypothesis

ℒ (𝑋1) = ℒ (𝑋2) = · · · = ℒ (𝑋𝑛) , (𝐻0)

versus the alternative hypotheses

∃𝑡 ∈
{︀

1, . . . , 𝑛− 1
}︀
, ℒ (𝑋1) = · · · = ℒ (𝑋𝑡) ̸= ℒ (𝑋𝑡+1) = · · · = ℒ (𝑋𝑛) . (𝐻alt)

Note that (𝐻alt) is generally decomposed into the union of 𝑛− 1 hypotheses

ℒ (𝑋1) = · · · = ℒ (𝑋𝑡) ̸= ℒ (𝑋𝑡+1) = · · · = ℒ (𝑋𝑛) . (𝐻𝑡)

In this section, we present some statistics for testing (𝐻0) versus (𝐻alt) existing in
the literature, or variations thereof, in particular a one-sided version of (𝐻alt) when
ℒ (𝑋𝑖) boils down to a single real parameter. For an exhaustive account of hypothesis
testing in off-line change-point detection, we refer to Deshayes and Picard [1985] and
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to James et al. [1987] for a comparison of the test powers — which we will not discuss
below.

CUSUM and extensions. Let us restrict ourselves to the parametric framework
defined in Section 1.3.2, that is, ℒ (𝑋𝑖) ∼ 𝑓𝜃 for some 𝜃 ∈ Θ. Keep in mind that 𝜃
can depend on 𝑖 since the 𝑋𝑖s are not identically distributed. Let us start with a very
simple situation where the initial and final parameters are known, say 𝜃0 and 𝜃1. One
of the simplest ideas for testing is then to build a test statistic from the likelihood
function associated with the observations 𝑋1, . . . , 𝑋𝑛. In Page [1957], the first off-
line method that we know of, it is proposed to choose the (𝐻𝑡) that maximizes the
likelihood function of the hypothesis, that is, 𝜏1 is estimated by

̂︀𝜏1 ∈ arg max
1≤𝑡≤𝑛

{︂ 𝑡∑︁
𝑗=1

log 𝑓𝜃0(𝑥𝑗) +
𝑛∑︁

𝑗=𝑡+1

log 𝑓𝜃1(𝑥𝑗)

}︂
.

In the case of a one-sided change in the mean of Gaussian observations with a known
variance 𝜎2, Page [1957] recovers the cumulative sum from the CUSUM algorithm
introduced at the beginning of Section 1.3.2. More precisely, we define

𝑆𝑡 :=
𝑡∑︁

𝑗=1

(𝑋𝑗 − 𝜃0 + 𝛿𝜎) ,

then reject (𝐻0) if 𝑆𝑛 − max𝑡<𝑛 𝑆𝑡 < −ℎ, where ℎ is a positive number, and in this
case choose ̂︀𝜏1 as the first 𝑡 such that 𝑆𝑛−max𝑡<𝑛 𝑆𝑡 ≥ 0. This line of ideas is further
studied in a series of three papers by Hinkley [1969, 1970, 1971], which obtain the
asymptotic distribution of the estimate under Gaussian assumption.

If the initial parameter 𝜃0 is not known — but the variance 𝜎2 is still known —,
Sen and Srivastava [1975a] following Gardner [1969] propose the statistic

𝑈⋆ =
1

𝑛2

𝑛−1∑︁
𝑖=1

(︃
𝑛−1∑︁
𝑗=𝑖

(𝑋𝑗+1 − �̄�)

)︃2

,

and obtain the exact cumulative distribution function of 𝑈⋆, leading to power com-
putations. Sen and Srivastava [1975a] claim that the power obtained is better for the
test built with 𝑈⋆ than for the maximum likelihood statistic test.

This line of work was extended for unknown variance in Sen and Srivastava
[1975b], following Chernoff and Zacks [1964], proposing among others the statistic
𝑃1 = 𝑈/𝑉

1/2
1 , where

𝑈 =
𝑛−1∑︁
𝑖=1

𝑖(𝑋𝑖+1 − �̄�) and 𝑉1 =
1

2(𝑛− 1)

𝑛∑︁
𝑖=1

(𝑋𝑖+1 −𝑋𝑖)
2 .

The limiting distribution is not obtained in closed-form, but simulations suggest that
𝑃1 has superior power.
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Likelihood ratio test. Another possibility as a test statistic is called the likelihood
ratio. The idea is to use as a statistic (the log of) the ratio between the likelihood
under (𝐻alt) and the likelihood under (𝐻0). Suppose that 𝜎2 is known, and set

𝑄𝑘 =
𝑘∑︁

𝑗=1

(︀
𝑋𝑗 − �̄�1:𝑘

)︀2
+

𝑛∑︁
𝑗=𝑘+1

(︀
𝑋𝑗 − �̄�(𝑘+1):𝑛

)︀2
,

where �̄�𝑎:𝑏 denotes the sample mean of the 𝑏 − 𝑎 observations 𝑋𝑎+1, . . . , 𝑋𝑏. Then
the likelihood ratio test statistic for Gaussian observations of unknown mean before
and after the change is given by 𝑄𝑛−𝑄𝑘⋆ ; whenever 𝜎2 is unknown, this test statistic
becomes equivalent to (𝑄𝑛 −𝑄𝑘⋆) /𝑄𝑘⋆ [Hinkley, 1970; Hawkins, 1977]. The null
distribution is given by Worsley [1979] when the variance is unknown, and this statistic
was also adapted by Worsley [1986] in the exponential setting. It was later generalized
in the multi-dimensional setting [Srivastava and Worsley, 1986; Arias-Castro et al.,
2011]. We will encounter 𝑄𝑘 again, or rather a generalization of 𝑄𝑘 to the multiple
change-point setting, later in this section.

Estimation procedures

In this section, we turn to an estimation-formulated version of the change-point
problem. Rather than testing the possibility for each 𝑖 to be a change-point, such
methods aim to propose an estimator ̂︀𝜏𝑛 = ̂︀𝜏𝑛(𝑋1, . . . , 𝑋𝑛) of the true segmentation 𝜏 ⋆.
Assessing the quality of such an estimator is one of the central themes of Chapter 2,
we thus recall some of the theoretical results associated with the methods presented
in this section. Before being able to present these results, we want to be more precise
on the meaning of quality in this context.

A first definition of consistency. As is often the case in statistics, a question
of crucial importance to the practitioner is the adequacy between the estimator ̂︀𝜏𝑛
and 𝜏 ⋆, especially when the sample size 𝑛 grows to infinity. We call consistency the
asymptotic adequacy between ̂︀𝜏𝑛 and 𝜏 ⋆. In general, consistency results take the form

with high probability, d (̂︀𝜏𝑛, 𝜏 ⋆)→ 0 ,

where d (·, ·) is a measure of similarity between segmentations — see Section 3.2.2
for a more involved treatment of this notion. Quite often, it is possible to give a
quantitative version of the previous display, that is,

with high probability, d (̂︀𝜏𝑛, 𝜏 ⋆) ≤ 𝑟𝑛 ,

with 𝑟𝑛 → 0. We call 𝑟𝑛 a rate of convergence. We will talk about almost sure
consistency if, in the above statements, “with high probability” is replaced by “almost
surely”.

In the on-line setting, the meaning of 𝑛 → ∞ is rather obvious: the algorithm
collects more and more data sequentially. However, in the off-line setting, there
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are several ways to grow the sample size to infinity. The simplest asymptotic set-
ting consists in observing for each 𝑛 a sequence 𝑋𝑛,1, . . . , 𝑋𝑛,𝑛 of random variables,
with the distribution of the 𝑋𝑛,𝑖 being constant on the segments {1, . . . , 𝜏 ⋆𝑛,1}, {𝜏 ⋆𝑛,1 +
1, . . . , 𝜏 ⋆𝑛,2},. . . ,{𝜏 ⋆𝑛,𝐷⋆−1+1, . . . , 𝑛}, and the segments depending on 𝑛 in the following
fashion:

∃𝛼1, . . . , 𝛼𝐷⋆−1 ∈ (0, 1), ∀1 ≤ 𝑖 ≤ 𝐷⋆ − 1,
𝜏 ⋆𝑛,𝑖
𝑛
−→
𝑛→∞

𝛼𝑖 . (1.3)

We will often drop the 𝑛 subscripts whenever the dependency in 𝑛 is clear. An
illustration of the asymptotic setting described here is given in Fig. 1-5.

Note that, in the setting (1.3), normalized segment sizes are bounded away from 0.
In this case, it is known that the best possible rate achievable is 1/𝑛 [Korostelev, 1988;
Korostelev and Tsybakov, 2012]. Namely,

sup
1≤𝑖≤𝑛

⃒⃒̂︀𝜏𝑛,𝑖 − 𝜏 ⋆𝑛,𝑖⃒⃒ = OP

(︂
1

𝑛

)︂
.

Whenever this assumption is not satisfied, this rate degrades to log(𝑛)/𝑛 [Brunel,
2014].

0 50

-2

0

2

0 500

-2

0

2

0 5000

-2

0

2

Figure 1-5 – Three samples 𝑋1, . . . , 𝑋𝑛 with several values of 𝑛. The distribution of
the 𝑋𝑖 is Gaussian with mean 1 (resp. −1, 0.5) on the first (resp. second, third)
segment and standard deviation 𝜎 = 0.5. The increasing sample size leads to more
observations on the segments, whose normalized sizes converge to constant numbers.
Left panel : 𝑛 = 50, Middle panel : 𝑛 = 500, Right panel : 𝑛 = 5000.

Maximum likelihood. Suppose that we are in a parametric setting and that we
know the true number of change-points 𝐷⋆. It is then possible to generalize the
approach of Hinkley [1970] and to write down the maximum likelihood estimator
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of 𝜏 ⋆ as

̂︀𝜏 ∈ arg max
1≤𝜏1<···<𝜏𝐷−1<𝑛

𝜃1,...,𝜃𝐷⋆∈Θ

{︂ 𝐷⋆∑︁
ℓ=1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

log 𝑓𝜃ℓ(𝑥𝑖)

}︂
. (1.4)

It is shown to be consistent in probability in He and Severini [2010] under a com-
pactness hypothesis and technical assumptions on the behavior of the log-likelihood
function.

Least-squares. Let us now assume furthermore that the observations are Gaussian
with known variance 𝜎2, that is,

𝑓𝜃(𝑡) =
1

𝜎
√

2𝜋
exp

(︂
−(𝜃 − 𝑡)2

2𝜎2

)︂
,

with 𝜃 ∈ R. Then simple algebra shows that (1.4) becomes

̂︀𝜏(𝐷) ∈ arg min
𝜏 s.t.𝐷𝜏=𝐷

{︂ ̂︀ℛ𝑛(𝜏)

}︂
, (1.5)

with ̂︀ℛ𝑛(𝜏) :=
1

𝑛

𝐷∑︁
ℓ=1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

(︀
𝑋𝑖 − �̄�𝜏ℓ−1:𝜏ℓ

)︀2
.

We call ̂︀ℛ𝑛(𝜏) the sum of squares criterion or least-squares criterion, which is also
an estimate of the variance assuming that the true segmentation is 𝜏 . It is very
convenient to use the least-squares criterion rather than the likelihood function, since
we do not need to know the distribution of the observations.

Fisher [1958] is the first to apply the least-squares criterion for a change-point
problem to the best of our knowledge — note that his approach does not come from
likelihood maximization but rather from variance minimization. Yao and Au [1989]
prove that ̂︀𝜏(𝐷) is consistent in probability in the asymptotic setting (1.3) and under
mild assumptions — namely the continuity of the cumulative distribution function of
the observations and a moment hypothesis. These assumptions are weakened further
in Bai and Perron [1998] and the minimax convergence rate of 1/𝑛 is obtained. The
least-squares estimation procedure (1.5) was also shown to be consistent in the case of
dependent processes (ARMA) with a single change-point in Bai [1994], a work later
extended for weak dependent disturbance processes (mixingales) by Bai and Perron
[1998]. Regarding multiple break-points, Lavielle [1999]; Lavielle and Moulines [2000]
show the consistency of the least-squares estimate when 𝐷⋆ is known for a large class
of dependent processes.

More precisely, define 𝜀𝑖 := 𝑋𝑖 − 𝜇⋆
𝑖 and set 𝑆𝑎:𝑏 :=

∑︀𝑏
𝑖=𝑎 𝜀𝑖, then the main

assumption of Lavielle and Moulines [2000] on the dependency structure of the noise 𝜀
is, for some 𝜑 > 0,

∃𝐶 > 0, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛, E
[︀
𝑆2
𝑖:𝑗

]︀
≤ 𝐶 |𝑗 − 𝑖+ 1|𝜑 . (𝐻(𝜑))
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This assumption is satisfied 𝜑 = 1 for stationary processes such that the autoco-
variance function 𝛾(𝑠) = E [𝜀𝑡+𝑠𝜀𝑡] satisfies

∑︀
𝑠≥0 |𝛾(𝑠)| < ∞, and a variety of linear

processes, e.g., any ARMA process. Assuming (𝐻(𝜑)) with 𝜑 ∈ [1, 2), ̂︀𝜏(𝐷⋆) is con-
sistent with convergence rate 𝑛𝜑−2 [Lavielle and Moulines, 2000].

It is interesting to see that, at first sight, the minimization problem (1.5) seems
rather daunting. Indeed, as we noticed before, the total number of segmentations
with 𝐷 segments is

(︀
𝑛−1
𝐷−1

)︀
— too large a number for optimizing directly. But it turns

out that (1.5) can be solved exactly in O (𝐷𝑛2) thanks to dynamic programming [Bell-
man, 1961]. We will discuss further this algorithmic question in Section 2.4.

Unknown number of change-points. Whenever the number of change-points is
not known, the problem becomes far more compelling. Indeed, minimizing directly
(1.5) without constraints on 𝐷𝜏 systematically outputs the segmentation consisting
of 𝑛 segments of unit size, which is definitely not insightful: the number of segments
has to be chosen in another way. The idea of Yao [1988] is to consider the choice of̂︀𝐷 as a model selection problem and to choose the number of change-points according
to Schwartz criterion [Schwarz, 1978]. More precisely, given a ̂︀𝜏(𝐷) that minimizeŝ︀ℛ𝑛(𝜏) for each 𝐷, Yao [1988] then chooses

̂︀𝐷Yao ∈ arg min
1≤𝐷≤𝐷max

{︂
𝑛

2
log ̂︀ℛ𝑛(̂︀𝜏(𝐷)) +𝐷 log(𝑛)

}︂
,

where 𝐷max is a user-defined upper bound on the number of segments, and set̂︀𝜏Yao := ̂︀𝜏( ̂︀𝐷Yao). For homoscedastic 4 independent Gaussian observations and un-
der Assumption (1.3), Yao [1988] shows that ̂︀𝜏Yao is consistent in probability.

This result was extended for identically distributed error terms 𝜀𝑖 by Yao and Au
[1989], with however a more restrictive condition on the growth of 𝛽𝑛. More precisely,
let us assume, in addition to Assumption (1.3), that (i) the cumulative distribution
function of the 𝜀𝑖 is continuous, (ii) E [𝜀2𝑚𝑖 ] < +∞ with 𝑚 ≥ 3. Let us also define

̂︀𝐷YAu ∈ arg min
1≤𝐷≤𝐷max

{︂
𝑛 log ̂︀ℛ𝑛(̂︀𝜏(𝐷)) +𝐷𝛽𝑛

}︂
, (1.6)

with 𝛽𝑛 satisfying 𝛽𝑛𝑛
−2/𝑚 → ∞ and 𝛽𝑛𝑛

−1 → 0. In particular, 𝛽𝑛 → ∞. Then,̂︀𝜏YAu := ̂︀𝜏( ̂︀𝐷YAu) is consistent in probability. Lee [1995, 1997] uses this estimator for
observations belonging to an independent exponential family, that is, the 𝑋𝑖 ∈ R are
independent and have density with respect to the Lebesgue measure

𝑓𝜃(𝑥) = exp (𝜃𝑥+ 𝜑(𝜃) + 𝑠(𝑥)) .

The consistency is also proven for 𝛽𝑛 & log(𝑛).
Let us mention that it is also possible to minimize the least-squares criterion for

a given number of segments 𝐷, and then to use a testing procedure to decide if more

4. A sequence of random variables is homoscedastic if all the random variables in the sequence
have the same variance. If not, we say that the random variables are heteroscedastic.
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segments ought to be added, rather than using a criterion similar to (1.6) [see, e.g.,
Bai and Perron, 1998].

Penalized least-squares criterion

But the scheme that interests us the most is the minimization of the sum of
the least-squares criterion and an additional term that increases with the number
of segments. This term prevents us from choosing 𝜏 with too many segments. On
the other side, if it is chosen too large, we risk selecting a segmentation with too few
segments. More precisely, let us define 𝒯𝑛 as the set of all segmentations of {1, . . . , 𝑛}.
In our setting, we call penalty function any mapping pen : 𝒯𝑛 → R+. If 𝐷𝜏1 ≤ 𝐷𝜏2

implies pen (𝜏 1) ≤ pen (𝜏 2), we will say that the penalty is non-decreasing. We can
now define the penalized least-squares procedure

̂︀𝜏pen ∈ arg min
𝜏∈𝒯𝑛

{︂ ̂︀ℛ𝑛(𝜏) + pen (𝜏)

}︂
. (1.7)

Let us consider a penalty function proportional to the number of segments, that
is,

penℓ (𝜏) :=
𝛽𝑛𝐷𝜏

𝑛
, (1.8)

with 𝛽𝑛 any sequence such that 𝛽𝑛 →∞ and 𝛽𝑛/𝑛→ 0. Then, under (𝐻(𝜑)) for any
𝜑 ∈ [1, 2), the estimator ̂︀𝜏penLM is consistent in probability with rate 1/𝑛 [Lavielle and
Moulines, 2000; Lavielle, 2005]. It is remarkable to notice that the rate of convergence
obtained is also minimax.

A linear penalty is not the only possibility. When the variance of the noise 𝜎2

is known, following ideas coming from model selection, Lebarbier [2002] proposes to
replace the 𝛽𝑛𝐷𝜏 term in (1.8) with

penL (𝜏) :=
𝐷𝜏𝜎

2

𝑛

(︂
𝑐1 log

𝑛

𝐷𝜏

+ 𝑐2

)︂
, (1.9)

where 𝑐1 and 𝑐2 are positive constants. Calibrating these constants is of course a key
question; Lebarbier [2002] argues in favor of setting 𝑐2/𝑐1 = 2.5 and using a slope
heuristic [Baudry et al., 2012] for choosing the constant in front of the penalty shape.
If the variance of the observations is unknown, Lebarbier [2002] also advocates to
replace 𝜎2 by a Hall estimate [Hall et al., 1990]. In the case of heteroscedastic noise,
a very different approach is to use cross-validation instead of penalization [Arlot and
Celisse, 2011].

Using a result from Birgé and Massart [2001], it is proved in Lebarbier [2005]
that the estimator of 𝜇⋆ satisfies an oracle inequality. It is another way to look at
the quality of a change-point method, that is, to look at the quadratic risk between
the estimator of 𝜇⋆ naturally associated with ̂︀𝜏Leb and the true piecewise constant
function 𝜇⋆. Before stating this result more precisely, we introduce some notations.
To each segmentation 𝜏 we associate 𝑋𝜏 , defined as the empirical mean of 𝑋 on each
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segment of 𝜏 . Namely,

∀𝜏ℓ−1 + 1 ≤ 𝑖 ≤ 𝜏ℓ, (𝑋𝜏 )𝑖 :=
1

|𝜏ℓ − 𝜏ℓ−1|

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝑋𝑖 .

Let us also define ̂︀𝜇 = 𝑋̂︀𝜏 and ‖𝑥‖2 = 1
𝑛

∑︀𝑛
𝑖=1 𝑥

2
𝑖 . Then there exists some constants

𝐶(𝑐1, 𝑐2) and 𝐶 ′(𝑐1, 𝑐2) such that

E
[︀
‖𝜇⋆ − ̂︀𝜇‖2]︀ ≤ 𝐶 inf

𝜏∈𝒯𝑛

{︂
‖𝜇⋆ −𝑋𝜏‖2 + pen (𝜏)

}︂
+ 𝐶 ′𝜎

2

𝑛
.

Informally, the previous display means that, in terms of quadratic risk, ̂︀𝜏 is as good
as the best of the 𝜏 up to a log(𝑛) factor. Note that this result does not give any
information about the quality of the segmentation with respect to 𝜏 ⋆.

Minimizing the least-squares criterion with a linear penalty (1.7) can be seen as
the following optimization problem:

Minimize
𝑢∈R𝑛

‖𝑋 − 𝑢‖2 subject to ‖(𝑢𝑖+1 − 𝑢𝑖)1≤𝑖<𝑛‖0 = 𝐷⋆ ,

where ‖𝑥‖0 is the number of non-zero components of 𝑥. Harchaoui and Lévy-Leduc
[2010] propose to relax this ℓ0 constraint into a ℓ1 constraint, that is, to solve

Minimize
𝑢∈R𝑛

‖𝑋 − 𝑢‖2 subject to ‖(𝑢𝑖+1 − 𝑢𝑖)1≤𝑖<𝑛‖1 ≤ 𝐷⋆∆ ,

where ∆ := max
⃒⃒
𝜇⋆
𝑖+1 − 𝜇⋆

𝑖

⃒⃒
and ‖𝑥‖1 :=

∑︀𝑛
𝑖=1 |𝑥𝑖| is the ℓ1 norm. It turns out that

the previous display exactly corresponds to the Least Absolute Shrinkage eStimatOr
(LASSO) in least-squares regression [Tibshirani, 1996]. A major feature of this ap-
proach is to decrease the computational cost from O (𝐷max𝑛

2) to O (𝐷max𝑛 log(𝑛))
— see Section 2.4 for more details on the implementation of penalized least-squares
methods. Still, the estimated segmentation is consistent: for any segmentation 𝜏 , de-
note by Λ𝜏 the normalized size of its smallest segment. Then, assuming sub-Gaussian
noise 5, Λ𝜏⋆ ≥ (log(𝑛))2/𝑛2, and ∆ ≥ (log(𝑛))1/4, Harchaoui and Lévy-Leduc [2010]
prove, in particular, that the change-point locations are consistent conditionally tô︀𝐷 = 𝐷⋆ with high probability. Note that the convergence rate (log(𝑛))2/𝑛 is optimal
up to a logarithmic factor.

This approach has been successfully generalized to the multi-dimensional set-
ting [Bleakley and Vert, 2011]; in this case it can be shown that the problem is
equivalent to the group LASSO [Bakin, 1999; Lin and Zhang, 2006]. Bleakley and
Vert [2011] show that their procedure is consistent in probability for a single change-
point, provided that the noise level is smaller than a threshold depending essentially
on the size and location of the jump.

5. We say that a random variable 𝑆 is sub-Gaussian if there exists 𝐶, 𝑣 > 0 such that P (|𝑆| > 𝑡) ≤
𝐶 e−𝑣𝑡2 . Informally, the tails of the distribution of 𝑆 decay at least as fast as the tails of a Gaussian
random variable.

23



This concludes our introduction to change-point detection. We will complete our
survey of the literature in Section 2.1.

1.4 Kernel methods
We now continue this general introduction with a brief presentation of kernel

methods, the missing brick in the construction of kernel change-point detection —
abbreviated KCP from now on. We do not intend to cover all of this vast topic, and
we refer to Vert et al. [2004] for an introduction and to the monograph of Schölkopf
and Smola [2002] for an extensive overview. In the following short introduction, we
rather focus on essential tools for the understanding of the manuscript.

1.4.1 Positive semi-definite kernels

A fundamental idea when dealing with data is that of similarity measure, that
is, a real-valued function whose values quantify how close two objects are. In most
cases, the data has a 𝑑-dimensional representation and the Euclidean structure of R𝑑

naturally provides a satisfactory notion of similarity between observations inherited
from the scalar product. For instance, the dot product between two data-points 𝐴
and 𝐵 lying in the unit sphere reduces to the cosine of the angle 𝐴𝑂𝐵, a quantity
that is close to 1 if 𝐴 and 𝐵 are in the same neighborhood and smaller otherwise.

Consider data living in a space 𝒳 such that the Euclidean metric does not reflect
the structure of the data or which is not equipped with a scalar product. Can we
replace the inner product by a mapping 𝑘 : 𝒳 × 𝒳 → R such that 𝑘 (·, ·) and ⟨·, ·⟩
benefit from similar properties? Can we define a function 𝑘 : 𝒳 × 𝒳 → R which
would mimic the behavior of a scalar product on 𝒳 if it existed?

When the answer is affirmative, we shall say that 𝑘 is a positive semi-definite
kernel, a notion that dates back to Mercer [1909], building on ideas from Hilbert
[1904]. We now give a precise definition.

Definition 1.1. Consider a non-empty set 𝒳 . Given a function 𝑘 : 𝒳 × 𝒳 → R,
𝑚 ∈ N⋆ and 𝑥1, . . . , 𝑥𝑚 ∈ 𝒳 , then the matrix

K := (𝑘 (𝑥𝑖, 𝑥𝑗))1≤𝑖,𝑗≤𝑚 ∈ R𝑚×𝑚 (1.10)

is called the Gram matrix of 𝑘 with respect to 𝑥1, . . . , 𝑥𝑚. Any function 𝑘 that gives
rise to a positive semi-definite Gram matrix for any 𝑥1, . . . , 𝑥𝑚 ∈ 𝒳 is called a positive
semi-definite kernel. Equivalently, we ask for 𝑘 to be a symmetric function such that,
for any 𝑚 ∈ N⋆, 𝑥1, . . . , 𝑥𝑚 ∈ 𝒳 and 𝜆1, . . . , 𝜆𝑚 ∈ R,

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝜆𝑖𝜆𝑗𝑘 (𝑥𝑖, 𝑥𝑗) ≥ 0 . (1.11)

In what follows, we use this concept extensively, hence we will abbreviate “positive
semi-definite kernel” into “p.s.d. kernel”, and often into “kernel”. Note that it is
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possible to replace “positive semi-definite” by “positive definite” in Definition 1.1 —
or equivalently “non-negative” by “positive” in (1.11) —, we then speak of positive
definite kernel. We will not use this slightly more restrictive notion. Neither are
we concerned with extensions of positive semi-definite kernels, such as kernels with
values in C.

1.4.2 Examples of kernels

Let us give a few examples of kernels together with proofs of their positive semi-
definiteness in the simplest cases.

Linear kernel. For data belonging to 𝒳 = R𝑑, the most basic example is the linear
kernel 𝑘ℓ(𝑥, 𝑦) := ⟨𝑥, 𝑦⟩. See Fig. 1-6 for a plot of 𝑘ℓ(𝑥, 𝑦) when 𝑑 = 1. It is routine
to verify Eq. (1.11) since

𝑚∑︁
𝑖,𝑗=1

𝜆𝑖𝜆𝑗𝑘ℓ(𝑥𝑖, 𝑥𝑗) =

⃦⃦⃦⃦
⃦

𝑚∑︁
𝑖=1

𝜆𝑖𝑥𝑖

⃦⃦⃦⃦
⃦
2

≥ 0 ,

by linearity of the dot product.

Polynomial kernel. A natural extension of the linear kernel is the polynomial
kernel, defined as

𝑘P(𝑥, 𝑦) := (⟨𝑥, 𝑦⟩+ 𝑐)𝛼 ,

for 𝑥, 𝑦 ∈ 𝒳 = R𝑑, 𝑐 ≥ 0 and 𝛼 ∈ N⋆. See Fig. 1-6 for a plot of 𝑘P(𝑥, 𝑦) when 𝑑 = 1.
Let us show that 𝑘P is positive semi-definite when 𝛼 = 2. In this case, according to
the multinomial theorem, 𝑘P(𝑥, 𝑦) can be written

𝑑∑︁
𝑖=1

(︀
𝑥2𝑖
)︀ (︀
𝑦2𝑖
)︀

+
𝑑∑︁

𝑖=2

𝑖−1∑︁
𝑗=1

(︁√
2𝑥𝑖𝑥𝑗

)︁(︁√
2𝑦𝑖𝑦𝑗

)︁
+

𝑑∑︁
𝑖=1

(︁√
2𝑐𝑥𝑖

)︁(︁√
2𝑐𝑦𝑖

)︁
+ 𝑐2 .

Therefore, 𝑘P(𝑥, 𝑦) = ⟨Φ(𝑥),Φ(𝑦)⟩ with Φ(𝑥) defined as(︁
𝑥2𝑛, . . . , 𝑥

2
1,
√

2𝑥𝑛𝑥𝑛−1, . . . ,
√

2𝑥𝑛𝑥1,
√

2𝑥𝑛−1𝑥𝑛−2, . . . ,
√

2𝑐𝑥𝑛 . . . , 𝑐
)︁⊤
∈ R

(𝑛+1)(𝑛+2)
2 .

The proof we used for the linear kernel can then be immediately adapted to the
polynomial kernel. We will see later that such a mapping Φ exists for any kernel 𝑘.
Of course, the reasoning above can be adapted to any 𝛼.

Gaussian kernel. A widely used kernel is the so-called Gaussian kernel, introduced
by Boser et al. [1992]. It is defined by

𝑘G(𝑥, 𝑦) := exp

(︃
−‖𝑥− 𝑦‖2

2𝜈2

)︃
,
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for 𝑥, 𝑦 ∈ 𝒳 = R𝑑 and 𝜈 > 0. See Fig. 1-6 a plot of 𝑘ℓ(𝑥, 𝑦) when 𝑑 = 1 and 𝜈 = 1.0.
Let 𝑍 be a standard Gaussian random variable 𝒩 (0, I𝑑) and 𝜆1, . . . , 𝜆𝑚 ∈ R. Then

𝑚∑︁
𝑖,𝑗=1

𝜆𝑖𝜆𝑗𝑘G(𝑥𝑖, 𝑥𝑗) =
𝑚∑︁

𝑖,𝑗=1

𝜆𝑖𝜆𝑗 E
[︁
ei𝜈

−1(𝑥𝑖−𝑥𝑗)
⊤𝑍
]︁

= E

⎡⎣⃒⃒⃒⃒⃒
𝑚∑︁
𝑖=1

𝜆𝑖 ei𝜈
−1𝑥⊤

𝑖 𝑍

⃒⃒⃒⃒
⃒
2
⎤⎦ ≥ 0 ,

hence 𝑘G is a positive-definite kernel.

Laplace kernel. The Laplace kernel is very similar to the Gaussian kernel, defined
by 𝑘L(𝑥, 𝑦) := exp (−‖𝑥− 𝑦‖ /𝜈), for 𝑥, 𝑦 ∈ 𝒳 and 𝜈 ≥ 0. It is sometimes called the
exponential kernel [Genton, 2001]. Together, they belong to a larger class of kernels
such that 𝑘(𝑥, 𝑦) = 𝜅(𝑥−𝑦) for some function 𝜅. These kernels are called translation-
invariant since they depend only on the difference between the input vectors. They
are considered in more depth in Section 4.3.1, where we give a precise definition and
additional properties. We refer to Berg et al. [1984] for a systematic study of such
kernels. In this example and the previous one, it is clear that 𝑘 (𝑥, 𝑦) is large whenever
𝑥 and 𝑦 are near, since 𝑘 (𝑥, 𝑦) is a decreasing function of ‖𝑥− 𝑦‖. See Fig. 1-6 a plot
of 𝑘L(𝑥, 𝑦) when 𝑑 = 1 and 𝜈 = 1.0.

Graph kernels. Given two finite graphs 𝐺1 = (𝐸1, 𝑉1) and 𝐺2 = (𝐸2, 𝑉2), one
can define the direct product of 𝐺1 and 𝐺2 as the graph 𝐺× = (𝑉×, 𝐸×) that has
vertex set 𝑉1×𝑉2, and edges given by the rule: “(𝑣1, 𝑣′1) is connected to (𝑣2, 𝑣

′
2) if and

only if 𝑣1 is connected to 𝑣2 and 𝑣′1 is connected to 𝑣′2.” Denote by 𝐴× the adjacency
matrix of 𝐺×, and pick a sequence (𝑎𝑝)𝑝≥0 of positive weights. Then the direct product
kernel [Gärtner et al., 2003] is defined as

𝑘×(𝐺1, 𝐺2) :=

|𝑉×|∑︁
𝑖,𝑗=1

(︃
+∞∑︁
𝑝=0

𝑎𝑝𝐴
𝑝
×

)︃
𝑖,𝑗

if the limit exists — see also Vishwanathan et al. [2010]. Note that it is already more
difficult than in the previous examples to see why 𝑘× is a similarity measure on the
set of finite graphs.

1.4.3 The kernel-trick

From Definition 1.1, clearly any scalar product on 𝒳 is a kernel. In this sense,
kernels can be seen as a generalization of scalar product. 6 But in fact this analogy
between kernels and dot products runs deeper, as was hinted in the previous examples.
Let us recall that a Hilbert space is a real or complex inner product space that is also
a complete metric space with respect to the distance induced by the inner product.
The fundamental property of kernels is the following:

6. Let us stress that some key properties of dot products are not satisfied by kernels, in particular
linearity.
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Figure 1-6 – In this figure, we plot the values of 𝑘 (𝑥, 𝑦) for different positive semi-
definite kernels and 𝑥, 𝑦 ∈ R. Upper left: linear kernel; Upper right: polynomial
kernel with 𝛼 = 2 and 𝑐 = 1; Bottom left: Gaussian kernel with 𝜈 = 1.0; Bottom
right: Laplace kernel with 𝜈 = 1.0.
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Theorem 1.1 (Moore—Aronszajn). The mapping 𝑘 is a positive semi-definite kernel
on 𝒳 if, and only if, there exists a Hilbert space ℋ and a mapping Φ : 𝒳 → ℋ such
that

∀𝑥, 𝑦 ∈ 𝒳 , 𝑘(𝑥, 𝑦) = ⟨Φ(𝑥),Φ(𝑦)⟩ℋ . (1.12)

Note that the reverse sense of Theorem 1.1 is clearly true; it follows directly by
setting (1.12) as a definition for 𝑘 and using the properties of the dot product. The
non-trivial part in Theorem 1.1 is the direct implication. It was first obtained by
Mercer [1909] for 𝒳 = [𝑎, 𝑏] ⊂ R and continuous 𝑘, and later proved by Kolmogorov
[1941] for countable 𝒳 . The general result is stated by Aronszajn [1950], which refers
to Aronszajn [1943] and attributes the result to Moore [1916, 1935, 1939]. Moreover
the Hilbert space ℋ is essentially unique.

Before any further comment, let us give a short proof of Theorem 1.1 in the special
case where 𝒳 is a finite set.

Proof. We only prove the direct implication. Let us assume that 𝒳 =
{︀
𝑥1, . . . , 𝑥𝑚

}︀
.

Then any kernel 𝑘 on 𝒳 is entirely defined by the matrix K = (𝑘 (𝑥𝑖, 𝑥𝑗))1≤𝑖,𝑗≤𝑚, which
is positive semi-definite. In particular, it can be diagonalized on an orthonormal basis
of eigenvectors (𝑒1, . . . , 𝑒𝑚) ∈ R𝑚×𝑚, with eigenvalues

0 ≤ 𝜁1 ≤ · · · ≤ 𝜁𝑚 .

Define Φ(𝑥𝑖) :=
(︀√

𝜁1 (𝑒1)𝑖 , . . . ,
√
𝜁𝑚 (𝑒𝑚)𝑖

)︀⊤ ∈ R𝑚. Then, for any 1 ≤ 𝑖, 𝑗 ≤ 𝑚,

⟨Φ(𝑥𝑖),Φ(𝑥𝑗)⟩ =
𝑚∑︁
ℓ=1

𝜁ℓ (𝑒ℓ)𝑖 (𝑒ℓ)𝑗 =

(︃
𝑚∑︁
ℓ=1

𝜁ℓ𝑒ℓ𝑒
⊤
ℓ

)︃
𝑖,𝑗

= 𝑘 (𝑥𝑖, 𝑥𝑗) .

This link between positive definite kernels and Hilbert spaces has a simple, yet
crucial consequence. Often referred to as the kernel-trick, Equation (1.12) allows to
run any algorithm that depends only on the scalar products ⟨Φ(𝑥𝑖),Φ(𝑥𝑗)⟩ℋ without
actually doing any calculations in ℋ, replacing them by evaluations 𝑘 (𝑥𝑖, 𝑥𝑗) of the
kernel map.

This fact was first uncovered by the statistical community in the 60s for specific
kernels, cf. Aizerman et al. [1964] for instance. The full generality of the kernel trick
was made clear in the work of Schölkopf et al. [1997, 1998]. This principle has since
been applied in countless settings, see Schölkopf and Smola [2002] for a full account.
In particular, the possibility to extend classical methods to data living in general sets
such as graphs or texts is a huge benefit from the use of kernels.

We now give an elementary example to illustrate this principle. Fix 𝒳 and 𝑘, and
let ℋ be the associated Hilbert space and Φ the feature map. Take 𝑥, 𝑦 ∈ 𝒳 , and
suppose that we want to compute the distance between Φ(𝑥) and Φ(𝑦) in ℋ. We
write

‖Φ(𝑥)− Φ(𝑦)‖2ℋ = ⟨Φ(𝑥)− Φ(𝑦),Φ(𝑥)− Φ(𝑦)⟩ℋ

28



= ⟨Φ(𝑥),Φ(𝑥)⟩ℋ − 2⟨Φ(𝑥),Φ(𝑦)⟩ℋ + ⟨Φ(𝑦),Φ(𝑦)⟩ℋ
‖Φ(𝑥)− Φ(𝑦)‖2ℋ = 𝑘 (𝑥, 𝑥)− 2𝑘 (𝑥, 𝑦) + 𝑘 (𝑦, 𝑦) ,

thus
d (Φ(𝑥),Φ(𝑦)) =

√︀
𝑘 (𝑥, 𝑥)− 2𝑘 (𝑥, 𝑦) + 𝑘 (𝑦, 𝑦) .

As promised, for points in 𝒳 , pairwise distance computations in ℋ require only the
knowledge of the Gram matrix of 𝑘. We refer to Fig. 1-7 for an illustration.

𝒳

ℋ

∙

∙

∙

∙

𝑥

𝑦

Φ(𝑥)

Φ(𝑦)

‖Φ
(𝑥

)−
Φ

(𝑦
)‖ ℋ

Φ

Figure 1-7 – The points 𝑥 and 𝑦 are mapped from 𝒳 to the Hilbert space ℋ associated
to 𝑘 via the feature map Φ. The distance between Φ(𝑥) and Φ(𝑦) in ℋ can be
computed without explicit computations in ℋ.

A remarkable fact is that the mapping Φ in Theorem 1.1 is explicit. Let us define
a Reproducing Kernel Hilbert Space, latter abbreviated RKHS.

Definition 1.2 (RKHS). Let 𝒳 be a non-empty set and ℋ be a Hilbert space of
functions 7 𝑓 : 𝒳 → R. Then ℋ is called a RKHS if there exists a function 𝑘 :
𝒳 × 𝒳 → R with the following properties:

(i) 𝑘 has the reproducing property

∀𝑓 ∈ ℋ, ∀𝑥 ∈ 𝒳 , ⟨𝑓, 𝑘 (𝑥, ·)⟩ = 𝑓(𝑥) .

In particular, ⟨𝑘 (𝑥, ·) , 𝑘 (𝑦, ·)⟩ = 𝑘 (𝑥, 𝑦).
(ii) ℋ is the completion of Span

{︀
𝑘 (𝑥, ·) | 𝑥 ∈ 𝒳

}︀
.

We then say that 𝑘 is a reproducing kernel. Then the following holds:

Theorem 1.2. A function 𝑘 : 𝒳 × 𝒳 → R is a positive semi-definite kernel if, and
only if, it is a reproducing kernel.

7. That is a Hilbert space whose elements are functions 𝑓 : 𝒳 → R and such that all the evaluation
functionals are continuous.
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In other words, we can write Φ(𝑥) = 𝑘 (𝑥, ·) in Theorem 1.1. We call Φ the feature
map.

This concludes our short introduction to kernel methods. Positive semi-definite
kernels come with other fascinating features, as the representer theorem [Kimeldorf
and Wahba, 1971], a result essentially useful in the resolution of optimization prob-
lems. As we will see in Section 2.4, the optimization problem that we are to solve
does not require using this result, and we chose to exclude the representer theorem
from this introduction.

We now turn to the center of this manuscript, kernel change-point detection.
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Chapter 2

Kernel change-point detection

Abstract

In this chapter we introduce the kernel change-point algorithm proposed by Arlot
et al. [2012], which aims at locating an unknown number of change-points in the dis-
tribution of a sequence of data taking values in an arbitrary set. Before presenting
the practical implementation of the algorithm, we introduce some concepts and nota-
tions related to the RKHS setting, in particular the kernel mean embedding. We then
define the theoretical framework under which our analysis is conducted, and recall
briefly existing results concerning KCP.

2.1 Introduction
In many situations, some properties of a time series change over time, such as

the mean, the variance or higher-order moments. Change-point detection is the long
standing question of finding both the number and the localization of such changes.
This is an important front-end task in many applications. For instance, detecting
changes occurring in comparative genomic hybridization array data (CGH arrays) is
crucial to the early diagnosis of cancer [Lai et al., 2005]. In finance, some intensively
examined time series like the volatility process exhibit local homogeneity and it is use-
ful to be able to segment these time series both for modeling and forecasting [Lavielle
and Teyssiere, 2006; Spokoiny, 2009]. Change-point detection can also be used to
detect changes in the activity of a cell [Ritov et al., 2002], in the structure of random
Markov fields [Liu et al., 2017], or a sequence of images [Kim et al., 2009; Abou-Elailah
et al., 2015]. Generally speaking, it is of interest to the practitioner to segment a time
series in order to calibrate its model on homogeneous sets of data-points.

Addressing the change-point problem in practice requires to face several important
challenges. First, the number of changes can not be assumed to be known in advance
— in particular, it can not be assumed to be equal to 0 or 1 —, hence a practical
change-point procedure must be able to infer the number of changes from the data.
Second, changes do not always occur in the mean or the variance of the data, as
assumed by most change-point procedures. We need to be able to detect changes in
other features of the distribution. Third, parametric assumptions — which are often
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made for building or for analyzing change-point procedures — are often unrealistic, so
that we need a fully non-parametric approach. Fourth, data points in the time series
we want to segment can be high-dimensional and/or structured. If the dimensionality
is larger than the number of observations, a non-asymptotic analysis is mandatory
for theoretical results to be meaningful. When data are structured — for instance,
histograms, graphs or strings —, taking their structure into account seems necessary
for detecting efficiently the change-points.

We focus only on the off-line problem, that is, when all observations are given at
once, as opposed to the situation where data come as a continuous stream. We refer
to Tartakovsky et al. [2014] for an extensive review of sequential methods, which are
adapted to the latter situation. Numerous off-line change-point procedures have been
proposed since the seminal works of Page [1955], Fisher [1958] and Bellman [1961],
which are mostly parametric in essence. We refer to Brodsky and Darkhovsky [2013,
Chapter 2] for a review of non-parametric off-line change-point detection methods.
Among recent works in this direction, we can mention the Wild Binary Segmentation
(WBS, [Fryzlewicz, 2014]) and the non-parametric multiple change-point detection
procedure (NMCD, [Zou et al., 2014]). Some authors also consider the case of high-
dimensional data when only a few coordinates of the mean change at each change-
point [Wang and Samworth, 2016, and references therein], or the problem of detecting
gradual changes [Vogt and Dette, 2015]; we do not address these slightly different
problems.

To the best of our knowledge, no off-line change-point procedure addressed simul-
taneously the four challenges mentioned above, until KCP was proposed by Arlot et al.
[2012]. In short, KCP mixes the penalized least-squares approach to change-point
detection [Comte and Rozenholc, 2004; Lebarbier, 2005] with positive semi-definite
kernels [Aronszajn, 1950]. It is not the only procedure that uses positive semi-definite
kernels to detect changes in a times series. Apart from Harchaoui and Cappé [2007],
who introduced KCP for a fixed number of change-points, and Arlot et al. [2012]
who extended KCP to an unknown number of change-points, we are aware of sev-
eral closely related work. Maximum Mean Discrepancy [MMD, Gretton et al., 2007]
has been used for building two-sample tests; a block average version of the MMD,
named the 𝑀 -statistic, has lead to an on-line change-point detection procedure [Li
et al., 2015]. A kernel-based statistic, named kernel Fisher discriminant ratio, has
been used by Harchaoui et al. [2009] for homogeneity testing and for detecting a sin-
gle change-point. Sharipov et al. [2016] build an analogue of the CUSUM statistic
for Hilbert-valued random variables in order to detect a single change in the mean,
and could be applied in our setting to the images of the observations in the feature
space. Kernel change detection [Desobry et al., 2005] is an on-line procedure that
uses a kernel to build a dissimilarity measure between the near past and future of a
data-point.

We first introduce in Section 2.2 and 2.3 some notations and concepts that are
necessary for the rest of the manuscript. In Section 2.4, we present the computational
aspect of KCP. In brief, the KCP segmentation can be computed efficiently thanks to
a dynamic programming algorithm [Harchaoui and Cappé, 2007; Arlot et al., 2012].
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Section 2.5 is devoted to presenting the hypothesis that will be used in Chapter 3 for
the theoretical study of KCP. Our framework is common to Arlot et al. [2012], that
proved an oracle inequality for KCP. We recall this result in Section 2.6.

2.2 Kernel change-point detection
We first describe the change-point problem with our notations (Section 2.2.1) and

the kernel change-point procedure (Section 2.2.2).

2.2.1 Change-point problem

Set 2 ≤ 𝑛 < +∞ and consider 𝑋1, . . . , 𝑋𝑛 independent 𝒳 -valued random vari-
ables, where 𝒳 is an arbitrary (measurable) space. The goal of change-point detection
is to detect abrupt changes in the distribution of the 𝑋𝑖s. For any 𝐷 ∈

{︀
1, . . . , 𝑛

}︀
and

any integers 0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝐷 = 𝑛, we define the segmentation 𝜏 :=
[︀
𝜏0, . . . , 𝜏𝐷

]︀
of
{︀

1, . . . , 𝑛
}︀

as the collection of segments 𝜆ℓ =
{︀
𝜏ℓ−1 + 1, . . . , 𝜏ℓ

}︀
, ℓ ∈

{︀
1, . . . , 𝐷

}︀
.

We call change-points the right-end of the segments, that is the 𝜏ℓ, ℓ ∈
{︀

1, . . . , 𝐷
}︀
.

Let us denote by 𝒯 𝐷
𝑛 the set of segmentations with 𝐷 segments 1 and 𝒯𝑛 :=

⋃︀𝑛
𝐷=1 𝒯 𝐷

𝑛

the set of all segmentations of
{︀

1, . . . , 𝑛
}︀
. For any 𝜏 ∈ 𝒯𝑛, we write 𝐷𝜏 for the number

of segments of 𝜏 . Fig. 2-1 provides a visual example.

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙𝜏

Figure 2-1 – A typical graphical representation of a segmentation. The black solid
disks stand for the ordered elements of

{︀
1, . . . , 𝑛

}︀
, and the vertical lines denote the

changes. Here, as one can read, 𝑛 = 10, 𝐷𝜏 = 3, 𝜏0 = 0, 𝜏1 = 3, 𝜏2 = 7 and 𝜏3 = 10
— thus 𝜏 = [0, 3, 7, 10].

An important example to have in mind is the following.

Example 2.1 (Asymptotic setting). Let 𝐾 ≥ 1, 0 = 𝑏0 < 𝑏1 < · · · < 𝑏𝐾 < 𝑏𝐾+1 = 1
and 𝑃1, . . . , 𝑃𝐾+1 some probability distributions on 𝒳 be fixed. Then, for any 𝑛 and
𝑖 ∈ {1, . . . , 𝑛}, we set 𝑡𝑖 := 𝑖/𝑛 and the distribution of𝑋𝑖 is 𝑃𝑗(𝑖) where 𝑗(𝑖) is such that
𝑡𝑖 ∈ [𝑏𝑗(𝑖), 𝑏𝑗(𝑖)+1). In other words, we have a fixed segmentation of [0, 1], given by the
𝑏𝑗, a fixed distribution over each segment, given by the 𝑃𝑗, and we observe independent
realizations from the distributions at discrete times 𝑡1, . . . , 𝑡𝑛. The corresponding true
change-points in {0, . . . , 𝑛} are the ⌊𝑛𝑏𝑗⌋, 𝑗 = 1, . . . , 𝐾. For 𝑛 large enough, there are
𝐾 + 1 segments. Fig. 2-2 shows an example. Let us emphasize that in this setting, 𝑛
going to infinity does not mean that new observations are observed over time. Recall
that we consider the change-point problem a posteriori : a larger 𝑛 means that we
have been able to observe the phenomenon of interest with a finer time discretization.
This is similar to the setting presented in Chapter 1. Also note that this asymptotic
setting is restrictive in the sense that segments size asymptotically are of order 𝑛; we

1. In the context of model selection, we can see 𝐷 as the dimension of the model, hence the
notation.

33



do not make this assumption in our analysis, which also covers asymptotic settings
where some segments have a smaller size.

0.0 0.2 0.4 0.6 0.8 1.0−2

−1

0

1

2

3

Figure 2-2 – Illustration of the asymptotic setting (Example 2.1) in the case of
changes in the mean of the 𝑋𝑖. Here, 𝒳 = R, 𝑋𝑖 = 𝑓(𝑡𝑖)+𝜀𝑖 with 𝜀1, . . . , 𝜀𝑛 i.i.d. and
centered, and 𝑓 : [0, 1] → R is a (fixed) piecewise constant function (shown in red).
The goal is to recover the number of abrupt changes of 𝑓 (here, 2) and their locations
(𝑏1 = 0.5 and 𝑏2 = 0.7). Note that other kinds of changes in the distribution of the
𝑋𝑖 can be considered, see Section 4.2.

2.2.2 Kernel change-point procedure

Let 𝑘 : 𝒳×𝒳 → R be a positive semi-definite kernel, that is, a measurable function
such that the matrix (𝑘 (𝑥𝑖, 𝑥𝑗))1≤𝑖,𝑗≤𝑚 is positive semi-definite for any 𝑚 ≥ 1 and
𝑥1, . . . , 𝑥𝑚 ∈ 𝒳 [Schölkopf and Smola, 2002]. Let us recall some classical examples of
positive semi-definite kernels, some of them already encountered in the Introduction:

— the linear kernel : 𝑘ℓ(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩R𝑝 for 𝑥, 𝑦 ∈ 𝒳 = R𝑝.

— the polynomial kernel of order 𝛼 ≥ 1: 𝑘P(𝑥, 𝑦) =
(︀
⟨𝑥, 𝑦⟩R𝑝 + 1)𝛼 for 𝑥, 𝑦 ∈ 𝒳 =

R𝑝.

— the Gaussian kernel with bandwidth 𝜈 > 0: 𝑘G(𝑥, 𝑦) = exp[− |𝑥− 𝑦|2 /(2𝜈2)]
for 𝑥, 𝑦 ∈ 𝒳 = R𝑝.

— the Laplace kernel with bandwidth 𝜈 > 0: 𝑘L(𝑥, 𝑦) = exp[− |𝑥− 𝑦| /(2𝜈)] for
𝑥, 𝑦 ∈ 𝒳 = R𝑝.

— the 𝜒2-kernel: 𝑘𝜒2(𝑥, 𝑦) = exp
(︁
− 1

𝑝𝜈

∑︀𝑝
𝑖=1

(𝑥𝑖−𝑦𝑖)
2

𝑥𝑖+𝑦𝑖

)︁
for 𝑥, 𝑦 ∈ 𝒳 = ∆𝑝 the 𝑝-

dimensional simplex, and the bandwidth 𝜈 is a positive constant.
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As done by Harchaoui and Cappé [2007] and Arlot et al. [2012], for a given seg-
mentation 𝜏 ∈ 𝒯 𝐷

𝑛 , we assess the adequacy of 𝜏 with the kernel least-squares criterion

̂︀ℛ𝑛(𝜏) :=
1

𝑛

𝑛∑︁
𝑖=1

𝑘 (𝑋𝑖, 𝑋𝑖)−
1

𝑛

𝐷∑︁
ℓ=1

⎡⎣ 1

𝜏ℓ − 𝜏ℓ−1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝑘 (𝑋𝑖, 𝑋𝑗)

⎤⎦ . (2.1)

Elementary algebra shows that, when 𝒳 = R𝑝 and 𝑘 = 𝑘ℓ, ̂︀ℛ𝑛 is the usual least-
squares criterion. Indeed, if we denote by ̂︀𝑅𝑛(𝜏) the least-squares criterion in R𝑝 and
set 𝑘 (𝑥, 𝑦) = ⟨𝑥, 𝑦⟩,

𝑛 ̂︀𝑅𝑛(𝜏) =
𝐷∑︁
ℓ=1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

⃦⃦⃦⃦
⃦⃦𝑋𝑖 −

1

𝜏ℓ − 𝜏ℓ−1

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝑋𝑗

⃦⃦⃦⃦
⃦⃦
2

=
𝐷∑︁
ℓ=1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

⎛⎝‖𝑋𝑖‖2 −
2

𝜏ℓ − 𝜏ℓ−1

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

⟨𝑋𝑖, 𝑋𝑗⟩

+
1

(𝜏ℓ − 𝜏ℓ−1)
2

𝜏ℓ∑︁
𝑗,𝑗′=𝜏ℓ−1+1

⟨𝑋𝑗, 𝑋𝑗′⟩

⎞⎠
=

𝑛∑︁
𝑖=1

‖𝑋𝑖‖2 −
𝑑∑︁

ℓ=1

1

𝜏ℓ − 𝜏ℓ−1

𝜏ℓ∑︁
𝑖,𝑗=𝜏ℓ−1+1

⟨𝑋𝑖, 𝑋𝑗⟩

𝑛 ̂︀𝑅𝑛(𝜏) = 𝑛 ̂︀ℛ𝑛(𝜏) .

Minimizing this criterion over the set of all segmentations always outputs the
segmentation with 𝑛 segments reduced to a point, which can be seen as over-fitting.
To counteract this, a classical idea [Lavielle, 2005, for instance] is to minimize a
penalized criterion crit (𝜏) := ̂︀ℛ𝑛(𝜏) + pen (𝜏), where pen : 𝒯𝑛 → R+ is called the
penalty. Formally, the kernel change-point procedure of Arlot et al. [2012] selects the
segmentation

̂︀𝜏 ∈ arg min
𝜏∈𝒯𝑛

{︀
crit (𝜏)

}︀
where crit (𝜏) = ̂︀ℛ𝑛(𝜏) + pen (𝜏) . (2.2)

In this manuscript, we will use two different classes of penalty functions which were
already encountered in Section 1.3.2. Let us recall their definition. The first is a clas-
sical choice in model selection, similar to AIC, BIC and 𝐶𝑝 criteria. It is proportional
to the number of segments and is often called a linear penalty. Namely, we consider

pen (𝜏) = penℓ (𝜏) :=
𝐶𝑀2𝐷𝜏

𝑛
, (2.3)

where 𝐶 is a positive constant and 𝑀 is specified in Assumption 2.1 later on. This
definition coincides with Eq. (1.8) with 𝛽𝑛 = 𝐶𝑀2. Note that, as mentioned in
Chapter 1, different penalty shapes can be considered. For instance, as suggested
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by Lebarbier [2005], it is also possible to use as a penalty shape

pen (𝜏) = penL (𝜏) :=
𝐷𝜏

𝑛

(︂
𝑐1 log

𝑛

𝐷𝜏

+ 𝑐2

)︂
, (2.4)

with 𝑐1 and 𝑐2 positive constants. This definition coincides with Eq. (1.9) up to a
variance term. In a very similar fashion, Arlot et al. [2012] advocates for the use of

pen (𝜏) = penACH(𝜏) :=
1

𝑛

(︂
𝑐1 log

(︂
𝑛− 1

𝐷𝜏 − 1

)︂
+ 𝑐2𝐷𝜏

)︂
.

We will see in Section 2.6 that the oracle inequality obtained in Arlot et al. [2012]
is valid for penℓ when the penalty constant 𝐶 is of order log(𝑛), as well as penL and
penACH.

2.3 The reproducing kernel Hilbert space

Let ℋ be the RKHS associated to 𝑘, together with the canonical feature map
Φ : 𝒳 → ℋ

Φ : 𝒳 → ℋ
𝑥 ↦→ Φ(𝑥) := 𝑘 (·, 𝑥) ,

as exposed in Section 1.4. In this section, we explain how to define a “mean element”
of Φ(𝑋𝑖) belonging to ℋ, and we rewrite the empirical risk.

2.3.1 Kernel mean embedding

Let us write ⟨·, ·⟩ℋ (resp. ‖·‖ℋ) for the inner product (resp. the norm) of ℋ. For
any 𝑖 ∈

{︀
1, . . . , 𝑛

}︀
, define 𝑌𝑖 := Φ(𝑋𝑖) ∈ ℋ. As we have seen, in the case where

𝑘 = 𝑘ℓ, then 𝑌𝑖 = ⟨·, 𝑋𝑖⟩ and the empirical risk ̂︀ℛ𝑛 reduces to the least-squares
criterion ̂︀𝑅𝑛(𝜏) =

1

𝑛

𝐷𝜏∑︁
ℓ=1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

⃦⃦
𝑋𝑖 −𝑋ℓ

⃦⃦2
,

where 𝑋ℓ is the empirical mean of the 𝑋𝑖 over the segment
{︀
𝜏ℓ−1 + 1, . . . , 𝜏ℓ

}︀
. It is

well-known that penalized least-squares procedures detect changes in the mean of the
observations 𝑋𝑖, see Yao [1988]. Hence the kernelized version of this least-squares
procedure, KCP, should detect changes in the “mean” of the 𝑌𝑖 = Φ(𝑋𝑖), which are a
non-linear transformation of the 𝑋𝑖.

More precisely, assume that ℋ is separable. 2 Suppose that

∀𝑖 ∈
{︀

1, . . . , 𝑛
}︀
, E

[︁√︀
𝑘 (𝑋𝑖, 𝑋𝑖)

]︁
< +∞ . (2.5)

2. A topological space is called separable if it contains a countable dense subset.
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Then, for any 𝑖 ∈
{︀

1, . . . , 𝑛
}︀
, we define 𝜇⋆

𝑖 as the Bochner integral of 𝑌𝑖,

𝜇⋆
𝑖 := E [𝑘 (𝑋𝑖, ·)] ∈ ℋ .

We refer to Diestel and Uhl [1977, Chapter 2] and Ledoux and Talagrand [2013] for
the proper definition of the Bochner integral. Let us say that the mean element 𝜇⋆

𝑖

can be seen as an embedding of 𝑃𝑋𝑖
, the distribution of 𝑋𝑖, in ℋ — for this reason,

the mapping 𝑃 ↦→ E𝑋∼𝑃 [𝑘 (𝑋, ·)] is often referred to as the kernel embedding, or
kernel mean embedding. The kernel embedding can be seen as a generalization of the
notion of characteristic function [Muandet et al., 2017].

Note that the condition (2.5) is satisfied in our setting (when either Assumption 2.1
or Assumption 2.2 holds true, see Section 2.5), and ℋ is separable in most standard
cases [Dieuleveut and Bach, 2016]. Hence the mean elements 𝜇⋆

𝑖 will be well-defined in
our setting. The Bochner integral commutes with continuous linear operators, hence
the following property holds, which will be of use:

∀𝑔 ∈ ℋ, ⟨𝜇⋆
𝑖 , 𝑔⟩ℋ = E

[︀
𝑔(𝑋𝑖)

]︀
= E

[︀
⟨𝑌𝑖, 𝑔⟩ℋ

]︀
.

We now define the “true segmentation” 𝜏 ⋆ ∈ 𝒯𝑛 by

𝜇⋆
1 = · · · = 𝜇⋆

𝜏⋆1
, 𝜇⋆

𝜏⋆1+1 = · · · = 𝜇⋆
𝜏⋆2
, · · · 𝜇⋆

𝜏⋆
𝐷⋆−1

+1 = · · · = 𝜇⋆
𝑛

and ∀𝑖 ∈ {1, . . . , 𝐷⋆ − 1}, 𝜇⋆
𝜏⋆𝑖
̸= 𝜇⋆

𝜏⋆𝑖+1

(2.6)

with 1 ≤ 𝜏 ⋆1 < · · · < 𝜏 ⋆𝐷⋆−1 ≤ 𝑛. We call the 𝜏 ⋆𝑖 s the true change-points. It should be
clear that it is always possible to define 𝜏 ⋆, and that the previous display is not an
assumption we make.

A kernel is said to be characteristic if the mapping 𝑃 ↦→ E𝑋∼𝑃 [Φ(𝑋)] is injective,
for 𝑃 belonging to the set of Borel probability measures on 𝒳 [Fukumizu et al., 2004,
2008]. In simpler terms, when 𝑘 is a characteristic kernel, 𝑋𝑖 and 𝑋𝑖+1 have the
same distribution if and only if 𝜇⋆

𝑖 = 𝜇⋆
𝑖+1, and 𝜏 ⋆ indeed corresponds to the set of

changes in the distribution of the 𝑋𝑖. For instance, all integrally 3 positive definite
kernels are characteristic, including the Gaussian kernel, see Sriperumbudur et al.
[2010]. Therefore, in the setting of Example 2.1, for 𝑛 large enough, 𝐷⋆ = 𝐾 + 1 and
𝜏 ⋆ℓ = ⌊𝑛𝑏ℓ⌋ for ℓ = 1, . . . , 𝐾.

For a general kernel, some changes of 𝑃𝑋𝑖
, the distribution of 𝑋𝑖, might not

appear in 𝜏 ⋆. For instance, with the linear kernel, 𝜏 ⋆ only corresponds to changes
of the mean of the 𝑋𝑖. In most cases, a characteristic kernel is known and we can
choose to use KCP with a characteristic kernel; then, as we prove in Chapter 3,
KCP eventually detects any change in the distribution of the observations. But one
can also choose a non-characteristic kernel on purpose, hence focusing only on some
changes in the distribution of the 𝑋𝑖. For instance, the polynomial kernel of order 𝑑
is not characteristic and leads to the detection of changes in the first 𝑑 moments of
the distribution; with the linear kernel, KCP detects changes in the mean of the 𝑋𝑖.

3. A measurable, symmetric and bounded function 𝑘 is said to be integrally positive definite if∫︀∫︀
𝒳 𝑘 (𝑥, 𝑦) d𝜇(𝑥) d𝜇(𝑦) > 0 for any finite signed Borel measure 𝜇 on 𝒳 .

37



From now on, we focus on the problem of detecting the changes of 𝜏 ⋆ only, whether
the kernel is characteristic or not.

2.3.2 Rewriting the empirical risk

It is convenient to see the images of the observations by the feature map as
an element of ℋ𝑛. To this extent, we define 𝑌 := (𝑌1, . . . , 𝑌𝑛), as well as 𝜇⋆ :=
(𝜇⋆

1, . . . , 𝜇
⋆
𝑛) ∈ ℋ𝑛 and 𝜀 := 𝑌 − 𝜇⋆ ∈ ℋ𝑛. We identify the elements of ℋ𝑛 with the

set of applications {1, . . . , 𝑛} → ℋ, naturally embedded with the inner product and
norm 4 given by

∀𝑥, 𝑦 ∈ ℋ𝑛, ⟨𝑥, 𝑦⟩ :=
𝑛∑︁

𝑖=1

⟨𝑥𝑖, 𝑦𝑖⟩ℋ and ‖𝑥‖2 :=
𝑛∑︁

𝑗=1

‖𝑥𝑗‖2ℋ .

We now rewrite the empirical risk as a function of 𝜏 and 𝑌 . For any segmentation 𝜏 ∈
𝒯𝑛, define 𝐹𝜏 the set of applications {1, . . . , 𝑛} → ℋ that are constant over the
segments of 𝜏 . We see 𝐹𝜏 as a subspace of ℋ𝑛 as a vector space. Take 𝑓 ∈ ℋ𝑛, we
define Π𝜏𝑓 the orthogonal projection of 𝑓 onto 𝐹𝜏 with respect to ‖·‖:

Π𝜏𝑓 ∈ arg min
𝑔∈𝐹𝜏

‖𝑓 − 𝑔‖ .

It comes without much surprise that Π𝜏𝑓 can be computed as in the real case and,
in addition, is also equal to the piece-wise constant function whose values are the
empirical mean of 𝑓 on each segment of 𝜏 . Namely, for any 𝑓 ∈ ℋ𝑛 and any ℓ ∈
{1, . . . , 𝐷𝜏},

∀𝑖 ∈ {𝜏ℓ−1 + 1, . . . , 𝜏ℓ}, (Π𝜏𝑓)𝑖 =
1

|𝜏ℓ − 𝜏ℓ−1|

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝑓𝑗 . (2.7)

We give the proof of Eq. (2.7) as found in Arlot et al. [2012], which is another
illustration of the kernel trick.

Proof. Define 𝜆ℓ :=
{︀
𝜏ℓ−1 + 1, 𝜏ℓ

}︀
the ℓ-th segment of 𝜏 . For any 𝑔 ∈ 𝐹𝜏 , denote by

𝑔𝜆ℓ
the value of 𝑔 on 𝜆ℓ and

̃︀𝑔𝜆ℓ
:=

1

𝜏ℓ − 𝜏ℓ−1

∑︁
𝑖∈𝜆ℓ

𝑔𝑖 .

Then we can decompose ‖𝑓 − 𝑔‖ as

‖𝑓 − 𝑔‖2 =
𝐷𝜏∑︁
ℓ=1

∑︁
𝑖∈𝜆ℓ

‖𝑓𝜆ℓ
− ̃︀𝑔𝜆ℓ

‖2ℋ + ‖𝑔𝑖 − ̃︀𝑔𝜆ℓ
‖2ℋ + 2⟨𝑓𝜆ℓ

− ̃︀𝑔𝜆ℓ
, 𝑔𝑖 − ̃︀𝑔𝜆ℓ

⟩ℋ

4. Note that we slightly abuse the notations ‖·‖ and ⟨·, ·⟩, previously defined for elements of R𝑛.
This should create no confusion.
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=
𝐷𝜏∑︁
ℓ=1

(𝜏ℓ − 𝜏ℓ−1) ‖𝑓𝜆ℓ
− ̃︀𝑔𝜆ℓ

‖2ℋ +
𝐷𝜏∑︁
ℓ=1

∑︁
𝑖∈𝜆ℓ

‖𝑔𝑖 − ̃︀𝑔𝜆ℓ
‖2ℋ ,

since
∑︀

𝑖∈𝜆ℓ
(𝑔𝑖 − ̃︀𝑔𝜆ℓ

) = 0. Therefore, ‖𝑓 − 𝑔‖2 is minimal over 𝑓 ∈ 𝐹𝜏 in ̃︀𝑔, and
Eq. (2.7) is proved.

Thanks to Eq. (2.7), we are now able to write the empirical risk as

̂︀ℛ𝑛(𝜏) =
1

𝑛
‖𝑌 − ̂︀𝜇𝜏‖2 =

1

𝑛

𝐷𝜏∑︁
ℓ=1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

‖𝑌𝑖 − (̂︀𝜇𝜏 )𝑖‖
2
ℋ , (2.8)

where ̂︀𝜇𝜏 = Π𝜏𝑌 , following [Harchaoui and Cappé, 2007; Arlot et al., 2012].

2.4 Algorithmic aspects of KCP
In this section we discuss the implementation of the minimization problem (2.2).

As we explained before, one of the consequences of the kernel trick is that the
KCP algorithm needs only the Gram matrix K to run. Hence the first step in KCP is
the computation of K, which typically needs O (𝑛2) computations and O (𝑛2) storage
space. Assuming that we dispose of a function computeKernel which can compute
𝑘 (𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝒳 , the calculation of K is straightforward and is given by Al-
gorithm 2.1. Note that some non-negligible constant factors can be hidden in the
O (·) notation, in particular regarding the computational cost. For instance, consider
𝑘 = 𝑘G the Gaussian kernel. Then each evaluation of 𝑘 (𝑥, 𝑦) requires to compute
‖𝑥− 𝑦‖2, that has a cost proportional to the dimension of the data. Suppose that
𝒳 = R𝑝, then the true computational cost of Algorithm 2.1 is O (𝑝𝑛2).

Algorithm 2.1 Computation of the Gram matrix
procedure ComputeGramMatrix(x)

𝑛← length of 𝑥
K← zeros(𝑛, 𝑛)
for 𝑖 = 1 : 𝑛 do

for 𝑗 = 1 : 𝑛 do
K(𝑖, 𝑗)← computeKernel(𝑥(𝑖), 𝑥(𝑗))

end for
end for
return K

end procedure

KCP without penalty term

We now explain how problem (2.2) can be solved thanks to dynamic program-
ming [Bellman, 1961]. To begin with, we solve (2.2) for a pre-defined number of
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segments 𝐷, without adding a penalty term, as in Harchaoui and Cappé [2007]. For
any 1 ≤ 𝑎 < 𝑏 ≤ 𝑛, we define 𝑐 (𝑎 : 𝑏) the cost of segment

{︀
𝑎+ 1, . . . , 𝑏

}︀
, that is

𝑐 (𝑎 : 𝑏) :=
𝑏∑︁

𝑖=𝑎+1

⃦⃦
𝑌𝑖 −

(︀
𝑌𝑎:𝑏
)︀
𝑖

⃦⃦2
ℋ .

We also define cost (𝐷, 𝑡) the optimal cost of segmenting our signal up to time 𝑡 in 𝐷
segments, i.e.,

cost (𝐷, 𝑡) := inf
𝜏∈𝒯 𝐷

𝑡

{︃
1

𝑛

𝐷∑︁
ℓ=1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

‖𝑌𝑖 − (̂︀𝜇𝜏 )𝑖‖
2
ℋ

}︃
= inf

𝜏∈𝒯 𝐷
𝑡

{︃
1

𝑛

𝐷∑︁
ℓ=1

𝑐 (𝜏ℓ−1 : 𝜏ℓ)

}︃
.

Notice that cost (𝐷,𝑛) = 𝑛 ̂︀ℛ(̂︀𝜏(𝐷)) is the quantity we want to obtain. Now the key
observation is that cost (𝐷, 𝑡) is additive:

cost (𝐷, 𝑡) = inf
𝜏∈𝒯 𝐷

𝑡

{︃
𝐷−1∑︁
ℓ=1

𝑐 (𝜏ℓ−1 : 𝜏ℓ) + 𝑐 (𝜏𝐷−1 : 𝑡)

}︃

= inf
𝑠≤𝑡

{︃
cost (𝐷 − 1, 𝑠) + 𝑐 (𝑠 : 𝑡)

}︃
.

Assuming that we dispose of a matrix S of size 𝑛× 𝑛 that contains 𝑐 (𝑠 : 𝑡) for every
values of 𝑠, 𝑡 with 0 ≤ 𝑠 < 𝑡 ≤ 𝑛, this gives rise to Algorithm 2.2, a dynamic pro-
gramming scheme for computing the optimal cost. Of course, a simple backtracking
procedure allows to recover the corresponding segmentation. The computational cost
of running CostMatrix is

𝐷∑︁
𝑑=2

𝑛∑︁
𝑡=𝑑

(𝑡+ 1) = O
(︀
𝑛2𝐷

)︀
.

As for the memory space, it is dominated by the cost matrix and the index matrix,
of size O (𝑛2𝐷). The BackTracking routine, on the other hand, runs in O (𝐷).

It is important to understand that computing 𝑛2 entries of the matrix S is in fact
a byproduct of the computation of the Gram matrix. Indeed, for any 1 ≤ 𝑠 < 𝑡 ≤ 𝑛,
𝑐 (𝑠 : 𝑡) can be expressed as a function of the cumulative sum of K. More precisely,
we already noticed that

𝑐 (𝑠 : 𝑡) =
𝑡∑︁

𝑖=𝑠+1

𝑘 (𝑋𝑖, 𝑋𝑖)−
1

𝑡− 𝑠
𝑡∑︁

𝑖=𝑠+1

𝑡∑︁
𝑗=𝑠+1

𝑘 (𝑋𝑖, 𝑋𝑗) .
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Algorithm 2.2 KCP dynamic programming step with given segment costs
procedure CostMatrix(S,D)

𝑛← length of 𝑆(:, 1)
𝐶 ← zeros(𝐷,𝑛) ◁ cost matrix
𝐼 ← zeros(𝐷,𝑛) ◁ index matrix
for 𝑡 = 1 : 𝑛 do

𝐶(1, 𝑡)← 𝑆(0, 𝑡)
end for
for 𝑑 = 2 : 𝐷 do

for 𝑡 = 𝑑 : 𝑛 do
[𝐼(𝑑, 𝑡), 𝐶(𝑑, 𝑡)]← min𝑠≤𝑡

{︀
𝐶(𝑑− 1, 𝑠) + 𝑆(𝑠, 𝑡)

}︀
end for

end for
output 𝐼, 𝐶

end procedure
procedure BackTracking(C,I,D)̂︀𝜏 ← zeros(𝐷) ◁ estimated segmentation

𝑝← 𝑛 ◁ current position
for 𝑑 = 1 : 𝐷 do

𝑝← 𝐼(𝐷 − 𝑑+ 1, 𝑝)
end for
return ̂︀𝜏

end procedure
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Define Γ the cumulative sum and 𝑇 the cumulative trace of the matrix K, i.e.,

∀1 ≤ 𝑠 < 𝑡 ≤ 𝑛, Γ𝑠,𝑡 :=
𝑠∑︁

𝑖=1

𝑡∑︁
𝑗=1

𝑘 (𝑋𝑖, 𝑋𝑗) and 𝑇𝑠 :=
𝑠∑︁

𝑖=1

𝑘 (𝑋𝑖, 𝑋𝑖) .

Notice that Γ and 𝑇 can be computed at the same time than K, in O (𝑛2) operations.
Then

𝑐 (𝑠 : 𝑡) = 𝑇𝑡 − 𝑇𝑠 −
1

𝑡− 𝑠 (Γ𝑡,𝑡 − 2Γ𝑠,𝑡 + Γ𝑠,𝑠) .

Since 𝑘 is a symmetric function, Γ is a symmetric matrix, and the previous computa-
tion requires only 5 reads in the matrices Γ and 𝑇 and simple arithmetic operations.
Let us define the following auxiliary procedure.

Algorithm 2.3 Computation of the segment costs
procedure SegmentCosts(x,K)

𝑛← length of 𝑥
Γ← CumSum(K) ◁ cumulative sum of the Gram matrix
𝑇 ← CumSum(diag (K)) ◁ cumulative sum of the trace matrix
𝑆 ← zeros(𝑛, 𝑛)
for 𝑡 = 1 : 𝑛 do

𝑆(0, 𝑡)← 𝑇 (𝑡)− Γ(𝑡, 𝑡)/𝑡
end for
for 𝑡 = 2 : 𝑛 do

for 𝑠 = 1 : 𝑛− 1 do
𝑆(𝑠, 𝑡)← 𝑇 (𝑡)− 𝑇 (𝑠)− 1

𝑡−𝑠
(Γ(𝑡, 𝑡)− 2Γ(𝑠, 𝑡) + Γ(𝑠, 𝑠))

end for
end for
return 𝑆

end procedure

We are now ready to write down the kernel change-point algorithm without
penalty term, Algorithm 2.4.

Algorithm 2.4 KCP algorithm without a penalty term
procedure KCPNoPenalty(x,D)

𝑛← length of 𝑥
K← ComputeGramMatrix(𝑥)
𝑆 ← SegmentCosts(𝑥,K)
[𝐼, 𝐶]← CostMatrix(𝑆,𝐷)̂︀𝜏 ← BackTracking(𝐶, 𝐼,𝐷)
return ̂︀𝜏

end procedure
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Adding the penalty

Let us go back to the original problem (2.2), with a penalty function pen depending
only on the number of segments. We assume that a function ComputePenalty is
provided that takes care of the computation of pen (𝜏) = pen (𝐷𝜏 ). We can decompose
problem (2.2) as follows: First, we compute the optimal least-squares criterion for any
1 ≤ 𝐷 ≤ 𝐷max, that is

∀1 ≤ 𝐷 ≤ 𝐷max, ̂︀𝜏(𝐷) ∈ arg min
𝜏∈𝒯 𝐷

𝑛

‖𝑌 − ̂︀𝜇𝜏‖2 , (2.9)

which is solved with the same scheme used by Algorithm 2.4. Second, we choose

̂︀𝐷 ∈ arg min
1≤𝐷≤𝐷max

{︀⃦⃦
𝑌 − ̂︀𝜇̂︀𝜏(𝐷)

⃦⃦2
+ pen (̂︀𝜏(𝐷))

}︀
, (2.10)

and third we set ̂︀𝜏 = ̂︀𝜏( ̂︀𝐷). From the algorithmic point of view, the cost matrix and
index matrix outputted by the CostMatrix function contain all the relevant informa-
tion to solve (2.9). Hence we just have to add the penalty term to the cost matrix
after it is computed, and then select the number of segments for ̂︀𝜏 by minimizing the
new criteria as in (2.10). This modification of Algorithm 2.4 is called Algorithm 2.5
and has the same computational complexity as Algorithm 2.4 for 𝐷max segments, that
is O (𝐷max𝑛

2).

Algorithm 2.5 KCP algorithm with a penalty term
procedure KCPWithPenalty(x,𝐷max)

𝑛← length of 𝑥
K← ComputeGramMatrix(𝑥)
𝑆 ← SegmentCosts(𝑥,K)
[𝐼, 𝐶]← CostMatrix(𝑆,𝐷max)
for 𝑑 = 1 : 𝐷max do

𝐶(𝑑, 𝑛)← 𝐶(𝑑, 𝑛) + ComputePenalty(𝑑) ◁ modifying the last column of 𝐶
end for
[ ̂︀𝐷,∼]← min𝐶(:, 𝑛)̂︀𝜏 ← BackTracking(𝐶, 𝐼, ̂︀𝐷)
return ̂︀𝜏

end procedure

In definitive, the total computational cost for solving Problem 2.2 is thus

O
(︀
(𝑐𝑘 +𝐷max)𝑛

2
)︀
,

where 𝑐𝑘 is the cost of an evaluation of 𝑘 (𝑥, 𝑦). We want to emphasize that this
is prohibitive for sample size larger than 105. A path worth exploring to reduce
this computational burden is to use a low-rank approximation of the Gram matrix
instead of K as suggested by Celisse et al. [2016]. If we let 𝑟 denote the rank of the
approximation, the complexity of the dynamic programming part of the algorithm
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then drops to O (𝑟2𝐷max). Note that, however, there is no theoretical guarantees for
the approximation of the correct solution obtained with this method to the best of
our knowledge.

2.5 Assumptions

We now precise the framework under which we are going to study the kernel
change-point detection procedure in the next chapter.

A key ingredient of our analysis is the concentration of 𝜀. Intuitively, the perfor-
mance of KCP is better when 𝜀 concentrates strongly around its mean, since without
noise we are just given the task to segment a piecewise-constant signal. It is thus nat-
ural to make assumptions on 𝜀 in order to obtain concentration results. We actually
formulate assumptions on the kernel 𝑘, which translate automatically onto 𝜀.

As in Arlot et al. [2012], the main hypothesis used in our analysis is the following.

Assumption 2.1. A positive constant 𝑀 exists such that

∀𝑖 ∈ {1, . . . , 𝑛}, 𝑘 (𝑋𝑖, 𝑋𝑖) ≤𝑀2 < +∞ a.s.

A simple, yet useful remark is the following: If Assumption 2.1 holds true,

∀𝑖 ∈ {1, . . . , 𝑛}, ‖𝑌𝑖‖ℋ =
√︀
𝑘 (𝑋𝑖, 𝑋𝑖) ≤𝑀 a.s.

and ‖𝜀𝑖‖ℋ ≤ 2𝑀 almost surely. Indeed, for any 𝑖,

E
[︀
‖𝜀𝑖‖2ℋ

]︀
= E [𝑘 (𝑋𝑖, 𝑋𝑖)]− ‖𝜇⋆

𝑖 ‖2ℋ ≥ 0 .

Hence ‖𝜇⋆
𝑖 ‖2ℋ ≤ E [𝑘 (𝑋𝑖, 𝑋𝑖)] ≤𝑀2, and the triangle inequality yields

‖𝜀𝑖‖ℋ ≤ ‖𝑌𝑖‖ℋ + ‖𝜇⋆
𝑖 ‖ℋ ≤ 2𝑀 . (2.11)

This is the reason why we sometimes refer to Assumption 2.1 as a bounded noise
rather than bounded kernel.

Assumption 2.1 is satisfied for a large class of commonly used kernels, such as the
Gaussian, Laplace and 𝜒2 kernels; 𝑀 = 1 in these three examples.

Note that Assumption 2.1 is weaker than assuming 𝑘 to be bounded — that is,
𝑘(𝑥, 𝑥) ≤ 𝑀 for any 𝑥 ∈ 𝒳 , which is equivalent to 𝑘 (𝑥, 𝑥′) ≤ 𝑀 for any 𝑥, 𝑥′ ∈ 𝒳
since 𝑘 is positive semi-definite. For instance, if 𝒳 = R𝑝 and the data 𝑋𝑖 are bounded
almost surely, Assumption 2.1 holds true for the linear kernel and all polynomial
kernels, which are not bounded on R𝑝.

In the setting of Example 2.1, Assumption 2.1 holds true when

∀𝑗 ∈ {1, . . . , 𝐾}, 𝑘 (𝑥, 𝑥) ≤𝑀2 for 𝑃𝑗-a.e. 𝑥 ∈ 𝒳 .

It is sometimes possible to weaken Assumption 2.1 into a finite variance assump-
tion.
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Assumption 2.2. A positive constant 𝑉 < +∞ exists such that

max
1≤𝑖≤𝑛

E
[︀
‖𝜀𝑖‖2ℋ

]︀
≤ 𝑉.

Since 𝑣𝑖 := E
[︀
‖𝜀𝑖‖2ℋ

]︀
= E [𝑘 (𝑋𝑖, 𝑋𝑖)]− ‖𝜇⋆

𝑖 ‖2ℋ, Assumption 2.2 holds true when

∀𝑖 ∈
{︀

1, . . . , 𝑛
}︀
, E [𝑘 (𝑋𝑖, 𝑋𝑖)] ≤ 𝑉 .

As a consequence, Assumption 2.1 implies Assumption 2.2 with 𝑉 = 𝑀2. Note that
Assumption 2.2 is satisfied for the polynomial kernel of order 𝑑 provided that the
observations satisfy a moment assumption, namely

∀𝑖 ∈
{︀

1, . . . , 𝑛
}︀
, E

[︀
‖𝑋𝑖‖2𝑑

]︀
< +∞ .

In the setting of Example 2.1, Assumption 2.2 holds true with

𝑉 = max
1≤ℓ≤𝐾+1

E𝑋∼𝑃ℓ
[𝑘 (𝑋,𝑋)] ,

provided this maximum is finite.

2.6 An oracle inequality for KCP

In this section, we recall briefly the oracle inequality obtained by Arlot et al.
[2012]. This is not exactly a result on change-point estimation, but a guarantee on
estimation of the “mean” of the time series in the RKHS associated with the kernel
chosen.

Let us define the quadratic risk of any 𝜇 ∈ ℋ𝑛 as an estimator of 𝜇⋆ by

ℛ (𝜇) :=
1

𝑛
‖𝜇− 𝜇⋆‖2 =

1

𝑛

𝑛∑︁
𝑖=1

‖𝜇𝑖 − 𝜇⋆
𝑖 ‖2ℋ . (2.12)

Then the following holds.

Theorem 2.1 (Arlot et al. [2012], Theorem 2). Let 𝐶 be a non-negative constant.
Assume that Assumption 2.1 holds true and that pen : 𝒯𝑛 → R is some penalty
function satisfying

∀𝜏 ∈ 𝒯𝑛, pen (𝜏) ≥ 𝐶𝑀2

𝑛

[︂
𝐷𝜏 + log

(︂
𝑛− 1

𝐷𝜏 − 1

)︂]︂
. (2.13)

Then, some numerical constant 𝐿1 > 0 exists such that the following holds: if 𝐶 ≥ 𝐿1,
for every 𝑦 ≥ 0, an event of probability at least 1− e−𝑦 exists on which, for every

̂︀𝜏 ∈ arg min
𝜏∈𝒯𝑛

{︀ ̂︀ℛ𝑛(𝜏) + pen (𝜏)
}︀
,
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we have
ℛ (̂︀𝜇̂︀𝜏 ) ≤ 2 inf

𝜏∈𝒯𝑛

{︀
ℛ (̂︀𝜇𝜏 ) + pen (𝜏)

}︀
+

83𝑦𝑀2

𝑛
. (2.14)

Informally speaking, Eq. (2.14) means that ̂︀𝜇̂︀𝜏 estimates well the mean 𝜇⋆ ∈ ℋ𝑛

of the time series 𝑌1, . . . , 𝑌𝑛. More precisely, Theorem 2.1 states that, with high
probability, the quadratic risk of the least-squares estimator built on ̂︀𝜏 is of the same
order than the quadratic risk of the estimator associated to any segmentation, up to
a penalty term and a remainder term.

Clearly, Theorem 2.1 applies to ̂︀𝜏 given by (2.2) when pen = penACH.
If both 𝑐1, 𝑐2 are greater than 2𝐿1𝑀

2, Theorem 2.1 also applies to ̂︀𝜏 given by (2.2)
when pen = penL. Indeed, for any 𝐷 ∈

{︀
1, . . . , 𝑛

}︀
,(︂

𝑛− 1

𝐷 − 1

)︂
≤
(︂
𝑛

𝐷

)︂
≤
(︁𝑛 e

𝐷

)︁𝐷
,

where the last inequality is standard [see Prop. 2.5 in Massart, 2007, for a stronger
result].

A linear penalty penℓ also satisfies Eq. (2.13). Indeed, from the last display we
deduce that

∀𝑛 ≥ 1, max
1≤𝐷≤𝑛

1

𝐷

(︂
𝑛− 1

𝐷 − 1

)︂
≤ log(𝑛) + 1 .

As a consequence, for 𝐶 ≫ (log(𝑛))−1, penℓ (𝜏) ≥ 𝐶𝑀2

𝑛

(︁
𝐷𝜏 + log

(︀
𝑛−1
𝐷𝜏−1

)︀)︁
and Theo-

rem 2.1 holds for a linear penalty.
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Chapter 3

Consistency of kernel change-point
detection

Abstract

In this chapter, we show that, with high probability, KCP with a linear penalty
function recovers the correct number of change-points, provided that the penalty
constant is well-chosen. In addition, we prove that KCP estimates the change-points
at the optimal rate. As a consequence, when using a characteristic kernel, KCP
detects all kinds of change in the distribution (not only changes in the mean or the
variance), and it is able to do so for complex structured data (not necessarily in R𝑝).
A key point of the proof is a concentration inequality of a quadratic form in a Hilbert
space, a refinement of a result obtained in the first version of Arlot et al. [2012]. We
also show an analogous statement for a different penalty function. Both these results
are proved under a boundedness assumption; we prove slightly weaker results under a
finite variance assumption. We also discuss in detail the various notions of distances
between segmentations, and show that they are all equivalent when one of them is
small enough compared to the size of the smallest segment. This chapter is based
upon the article Garreau and Arlot [2016], under submission to the Electronic Journal
of Statistics.

3.1 Introduction

At this stage, some key theoretical questions remain open: does KCP estimate
correctly the number of change-points and their locations with a large probability?
If yes, can we prove a consistency result similar to those introduced in Section 1.3.2?

This chapter answers these questions, showing that KCP has good theoretical
properties for change-point estimation with independent data, under a boundedness
assumption. (Theorem 3.1, stated for a linear penalty, and Theorem 3.2, for penL).
These results are non-asymptotic, hence meaningful for high-dimensional or complex
data. In the asymptotic setting — with a fixed true segmentation and more and
more data points observed within each segment —, Theorem 3.1 implies that KCP
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estimates consistently all changes in the “kernel mean” of the distribution of data, at
speed log(𝑛)/𝑛 with respect to the sample size 𝑛. Since we make no assumptions on
the minimal size of the true segments, this matches minimax lower bounds [Brunel,
2014]. We also provide a partial result under a weaker finite variance assumption
(Theorem 3.3 in Section 3.2.3) and explain in Section 3.3 how our proofs could be ex-
tended to other settings, including the dependent case. These findings are illustrated
by numerical simulations in Section 4.2.

An important case is when KCP is used with a characteristic kernel [Fukumizu
et al., 2004, 2008], such as the Gaussian or the Laplace kernel. Then, any change
in the distribution of data induces a change in the “kernel mean”. So, Theorem 3.1
implies that KCP then estimates consistently and at the minimax rate all changes in
the distribution of the data, without any parametric assumption and without prior
knowledge about the number of changes.

Our results also are interesting regarding to the theoretical understanding of least-
squares change-point procedures. Indeed, when KCP is used with the linear kernel,
it reduces to previously known penalized least-squares change-point procedures [Yao,
1988; Comte and Rozenholc, 2004; Lebarbier, 2005, for instance]. There are basically
two kinds of results on such procedures in the change-point literature: (i) asymptotic
statements on change-point estimation [Yao, 1988; Yao and Au, 1989; Bai and Perron,
1998; Lavielle and Moulines, 2000] and (ii) non-asymptotic oracle inequalities [Comte
and Rozenholc, 2004; Lebarbier, 2005; Arlot et al., 2012], which are based upon
concentration inequalities and model selection theory [Birgé and Massart, 2001] but
do not directly provide guarantees on the estimated change-point locations. Our
results and their proofs show how to conciliate the two approaches when we are
interested in change-point locations, which is already new for the case of the linear
kernel, and also holds for a general kernel.

Section 3.2 is dedicated to the exposition of these results. They are discussed
in Section 3.3, and the proofs are collected in Section 3.4. Section 3.5 contains the
proofs of technical lemmas needed in Section 3.4.

3.2 Theoretical guarantees for KCP

We state our main results in this section, which is divided as follows. In Sec-
tion 3.2.1, we state Theorem 3.1, which provides simple conditions under which KCP
recovers the correct number of segments and localizes the true change-points with
high probability, under the bounded kernel Assumption 2.1. This is our main result.
Theorem 3.1 concerns KCP with a linear penalty: we state in the same section a
result for a different penalty, Theorem 3.2. Section 3.2.2 contains a review of the
classical losses between segmentations which can be considered in addition to the one
used in Theorem 3.1 and 3.2. Corollary 3.1 formulates a result on ̂︀𝜏 in terms of the
Frobenius loss. Finally, Section 3.2.3 states a partial result on KCP — requiring the
number of change-points 𝐷⋆ to be known — under the weaker Assumption 2.2.
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3.2.1 Consistency under bounded kernel assumption

We first need to define some quantities. The size of the smallest jump of 𝜇⋆ in ℋ
is defined by

∆ := min
𝑖 / 𝜇⋆

𝑖 ̸=𝜇⋆
𝑖+1

⃦⃦
𝜇⋆
𝑖 − 𝜇⋆

𝑖+1

⃦⃦
ℋ . (3.1)

Intuitively, the higher ∆ is, the easier it is to detect the smallest jump with our
procedure. The quantity

⃦⃦
𝜇⋆
𝑖 − 𝜇⋆

𝑖+1

⃦⃦
ℋ coincides with the MMD between the distri-

butions of 𝑋𝑖 and 𝑋𝑖+1. In the scalar setting (with the linear kernel), the ratio ∆/𝜎
(where 𝜎2 is the variance of the noise) is called the signal-to-noise ratio [Basseville
and Nikiforov, 1993] and is often used as a measure of the magnitude of a change in
the signal. In Example 2.1,

∆ = min
1≤𝑗≤𝐾

⃦⃦⃦
𝜇⋆
𝑃𝑗
− 𝜇⋆

𝑃𝑗+1

⃦⃦⃦
ℋ
,

where 𝜇⋆
𝑃𝑗

denotes the (Bochner) expectation of Φ(𝑋) when 𝑋 ∼ 𝑃𝑗.
For any 𝜏 ∈ 𝒯𝑛, we denote the (normalized) sizes of its smallest and of its largest

segment by

Λ𝜏 :=
1

𝑛
min

1≤ℓ≤𝐷𝜏

|𝜏ℓ − 𝜏ℓ−1| and Λ𝜏 :=
1

𝑛
max

1≤ℓ≤𝐷𝜏

|𝜏ℓ − 𝜏ℓ−1| . (3.2)

It should be clear that the smaller Λ𝜏⋆ is, the harder it is to detect the segment that
achieves the minimum in (3.2). For instance, in the particular case of Example 2.1,

Λ𝜏⋆ −−−−→
𝑛→+∞

min
0≤𝑗≤𝐾

|𝑏𝑗+1 − 𝑏𝑗| and Λ𝜏⋆ −−−−→
𝑛→+∞

max
0≤𝑗≤𝐾

|𝑏𝑗+1 − 𝑏𝑗| .

Finally, for any 𝜏 1 and 𝜏 2 ∈ 𝒯𝑛, we define

d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
:= max

1≤𝑖≤𝐷𝜏1−1

{︂
min

1≤𝑗≤𝐷𝜏2−1

⃒⃒
𝜏 1𝑖 − 𝜏 2𝑗

⃒⃒}︂
,

which is a loss function (a measure of dissimilarity) between the segmentations 𝜏 1
and 𝜏 2. Note that d(1)

∞ is not a distance; other possible losses between segmentations
and their relationship with d(1)

∞ are discussed in Section 3.2.2.
We are now able to state our main result.

Theorem 3.1. Suppose that Assumption 2.1 holds true. For any 𝑦 > 0, an event Ω
of probability at least 1− e−𝑦 exists on which the following holds true. For any 𝐶 > 0,
let ̂︀𝜏 be defined by

̂︀𝜏 ∈ arg min
𝜏∈𝒯𝑛

{︀
crit (𝜏)

}︀
where crit (𝜏) = ̂︀ℛ𝑛(𝜏) + pen (𝜏) , (2.2)

with pen = penℓ defined by

penℓ (𝜏) :=
𝐶𝑀2𝐷𝜏

𝑛
. (2.3)
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Set

𝐶min :=
74

3
(𝐷⋆ + 1)(𝑦 + log(𝑛) + 1) and 𝐶max :=

∆2

𝑀2

Λ𝜏⋆

6𝐷⋆
𝑛 .

Then, if
𝐶min < 𝐶 < 𝐶max , (3.3)

on Ω, we have

̂︀𝐷 = 𝐷⋆ and
1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏) ≤ 𝑣1(𝑦) :=

148𝐷⋆𝑀2

∆2 · 𝑦 + log(𝑛) + 1

𝑛
.

We delay the proof of Theorem 3.1 to Section 3.4.4. Some remarks follow.

Theorem 3.1 is a non-asymptotic result: it is valid for any 𝑛 ≥ 1 and there is
nothing hidden in o (1) remainder terms. The latter point is crucial for complex data
— for instance, 𝒳 = R𝑝 with 𝑝 > 𝑛 — since in this case, assuming 𝒳 fixed while
𝑛→ +∞ is not realistic.

Nevertheless, it is useful to write down what Theorem 3.1 becomes in the asymp-
totic setting of Example 2.1. As previously noticed, 𝐷⋆, Λ𝜏⋆ , ∆2 and 𝑀2 then con-
verge to positive constants as 𝑛 → +∞. Therefore, 𝐶min is of order log(𝑛), 𝐶max is
of order 𝑛 and we always have 𝐶min < 𝐶max for 𝑛 large enough. The upper bound
on 𝐶 matches classical asymptotic conditions for variable selection [Shao, 1997]. The
necessity of taking 𝐶 of order at least log(𝑛) is shown by Birgé and Massart [2007] in
a variable selection setting, which includes change-point detection as a particular ex-
ample; Birgé and Massart [2007]; Abramovich et al. [2006] provide several arguments
for the optimality of taking a constant 𝐶 of order log(𝑛). When 𝐶 satisfies Eq. (3.3),
the result of Theorem 3.1 implies that P

(︁ ̂︀𝐷 = 𝐷⋆
)︁
→ 1. For the linear kernel in R𝑑,

this is a well-known result when the distribution of the 𝑋𝑖 changes only through its
mean. The first result dates back to Yao [1988, Section 2] for a Gaussian noise, later
extended by Liu et al. [1997] and Bai and Perron [1998, Section 3.1] under mixingale
hypothesis on the error, and Lavielle and Moulines [2000] under very mild assump-
tions satisfied for a large family of zero-mean processes [for the precise statement of
the hypothesis, see Lavielle and Moulines, 2000, Section 2.1]. Theorem 3.1 also shows
that the normalized estimated change-points of ̂︀𝜏 converge towards the normalized
true change-points at speed at least log(𝑛)/𝑛.

Up to a logarithmic factor, this speed matches the minimax lower bound 𝑛−1 which
has been obtained previously for various change-point procedures [Korostelev, 1988;
Boysen et al., 2009; Korostelev and Tsybakov, 2012, for instance] including least-
squares [Lavielle and Moulines, 2000], assuming that Λ𝜏⋆ ≥ 𝜅 > 0. When 𝐷⋆ ≥ 3 and
the assumption on Λ𝜏⋆ is removed —that is, segments of length much smaller than
𝑛 are allowed, which is compatible with Theorem 3.1 since it is non-asymptotic—,
Brunel [2014, Theorem 6] shows a minimax lower bound of order log(𝑛)/𝑛. Therefore,
in this setting, KCP achieves the minimax rate. We do not know whether KCP
remains minimax optimal (without the log factor) under the assumption Λ𝜏⋆ ≥ 𝜅 > 0.

Note finally that KCP also performs well for finite samples, according to the
simulation experiments of Arlot et al. [2012].
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Theorem 3.1 emphasizes the key role of ∆2/𝑀2, which can be seen as a generaliza-
tion of the signal-to-noise ratio, for the change-point detection performance of KCP.
The larger is this ratio, the easier it is to have Eq. (3.3) satisfied and the smaller is
𝑣1(𝑦). This suggests to choose 𝑘 (theoretically at least) by maximizing ∆2/𝑀2, as we
discuss in Section 3.3, and later in Section 4.3. Note that ∆2/𝑀2 is invariant by a
rescaling of 𝑘, hence the result of Theorem 3.1 is unchanged when 𝑘 is rescaled.

The hypothesis in Eq. (3.3) is actually three-fold. First, we use that 𝐶 > 𝐶min to
get ̂︀𝐷 ≤ 𝐷⋆. We have to assume 𝐶 large enough since a too small penalty leads to
selecting (with KCP or any other penalized least-squares procedure) the segmentation
with 𝑛 segments, that is ̂︀𝐷 = 𝑛. Second, 𝐶 < 𝐶max is used to get ̂︀𝐷 ≥ 𝐷⋆. Such an
assumption is required since taking a penalty function too large in Eq. (2.2) would
result in selecting the segmentation with only one segment, that is, ̂︀𝐷 = 1. Third,
𝐶max has to be greater than 𝐶min for providing a non-empty interval of possible values
for 𝐶. This inequality is also used in the proof of the upper bound on d(1)

∞ (𝜏 ⋆, ̂︀𝜏)

when we already know that ̂︀𝐷 = 𝐷⋆. In Example 2.1, the 𝐶min < 𝐶max hypothesis
translates into Λ𝜏⋆ ≻ log(𝑛)/𝑛. That is, the size of the smallest segment has to be
of order log(𝑛)/𝑛. This is known to be a necessary condition to obtain the minimax
rate in multiple change-point detection [Brunel, 2014, section 2].

Theorem 3.1 helps choosing 𝐶, which is a key parameter of KCP, as in any pe-
nalized model selection procedure. However, in practice, we do not recommend to
directly use (3.3) for choosing 𝐶 for two reasons: 𝐶min, 𝐶max depend on unknown
quantities 𝐷⋆,Λ𝜏⋆ ,∆, and the exact values of the constants in 𝐶min, 𝐶max might be
pessimistic compared to what we can observe from simulation experiments. We rather
suggest to use a data-driven method for choosing 𝐶, see Section 4.1.

Finally, note that if we know 𝐷⋆, we can replace ̂︀𝜏 by

̂︀𝜏(𝐷⋆) ∈ arg min
𝜏∈𝒯 𝐷⋆

𝑛

{︀ ̂︀ℛ𝑛(𝜏)
}︀
.

Then, assuming that Λ𝜏⋆ > 𝑣1(𝑦) — which is weaker than assuming 𝐶min < 𝐶max —,
the proof of Theorem 3.1 shows that, on Ω, we have

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏(𝐷⋆)) ≤ 𝑣1(𝑦) .

We now present an analogue of Theorem 3.1 for another penalty function, penL.

Theorem 3.2. Suppose that Assumption 2.1 holds true. For any 𝑦 > 0, an event
Ω of probability at least 1 − e−𝑦 exists on which the following holds true. For any
𝑐1, 𝑐2 > 0, let ̂︀𝜏 be defined by

̂︀𝜏 ∈ arg min
𝜏∈𝒯𝑛

{︀
crit (𝜏)

}︀
where crit (𝜏) = ̂︀ℛ𝑛(𝜏) + pen (𝜏) , (2.2)
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with pen = penL defined by

penL (𝜏) :=
𝐷𝜏

𝑛

(︂
𝑐1 log

𝑛

𝐷𝜏

+ 𝑐2

)︂
, (2.4)

Define

𝑐1,min :=
74𝑀2

3
(𝐷⋆ + 1) and 𝑐1,max :=

𝑛Λ𝜏⋆∆2

6𝐷⋆ (𝑦 + log(𝑛) + 4)
− 74𝑀2

3
(𝐷⋆ + 2) .

Set
𝑐2 := (𝑦 + 4)𝑐1 +

74𝑀2

3
(𝐷⋆ + 1) (𝑦 + 4) .

Then, if
𝑐1,min < 𝑐1 < 𝑐1,max , (3.4)

on Ω, we have

̂︀𝐷 = 𝐷⋆ and
1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏) ≤ 148𝐷⋆𝑀2

∆2 · 𝑦 + log(𝑛) + 4

𝑛
=: 𝑣′1(𝑦) .

The proof of Theorem 3.2 is postponed to Section 3.4.5.

The remarks made after Theorem 3.1 remain valid up to minor changes. In par-
ticular, the bounds given for the penalty constants in Theorem 3.2 do not depend
on 𝑛 in the same fashion: the minimal theoretical penalty constant 𝑐1,min does not
depend on 𝑛, as well as the associated 𝑐2. This should not come as a surprise, given
that we “incorporated” the log(𝑛) factor into the penalty. In some sense, penL is more
natural in the context of change-point detection, as it captures the complexity of the
model. However, we want to emphasize that calibrating both 𝑐1 and 𝑐2 is not an easy
task (see Lebarbier [2002, Chapter 3] for a detailed discussion of the calibration of 𝑐1
and 𝑐2 in the real case). Since, again, the constants given by Theorem 3.2 may be
very pessimistic, we recommend using penℓ for all practical purposes.

Also note that the hypothesis (3.4) is threefold, as it was the case for Assump-
tion (3.3) in Theorem 3.1. Indeed, for 𝑐1,min < 𝑐1,max to hold, in particular one must
have 𝑐1,min < 𝑐1,max, which translates into

∆2

𝑀2
>

148𝐷⋆ (2𝐷⋆ + 3) (𝑦 + log(𝑛) + 4)

𝑛Λ𝜏⋆
,

after some algebra. Since log(𝑛)/𝑛→ 0, this condition is satisfied for 𝑛 large enough.
Finally, as in Theorem 3.1, we recover a speed of convergence of order log(𝑛)/𝑛,

which matches the minimax rate, since 𝑣′1 is 𝑣1 up to numerical constants.

Notice that all our results are given in terms of d(1)
∞ , which may seem as an arbitrary

choice. We discuss in more depth the notion of distances between segmentations in
the next section.
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3.2.2 Loss functions between segmentations

Theorem 3.1 shows that ̂︀𝜏 is close to 𝜏 ⋆ in terms of d(1)
∞ . Several other loss functions

(measures of dissimilarity) can be defined between segmentations [Hubert and Arabie,
1985]. Our goal in this section is to consider a few of them, which are often used or
natural for the change-point problem, and to study their relationships. The main
result of this section is Lemma 3.1, that states rigorously that all these notions of
distance between segmentations are equal, provided they are close enough.

Let us first consider losses related to the Hausdorff distance. For any 𝜏 1 and 𝜏 2 ∈
𝒯𝑛, we define

d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
:= max

1≤𝑖≤𝐷𝜏1−1

{︂
min

1≤𝑗≤𝐷𝜏2−1

⃒⃒
𝜏 1𝑖 − 𝜏 2𝑗

⃒⃒}︂
d(2)
∞
(︀
𝜏 1, 𝜏 2

)︀
:= max

1≤𝑖≤𝐷𝜏1−1

{︂
min

0≤𝑗≤𝐷𝜏2

⃒⃒
𝜏 1𝑖 − 𝜏 2𝑗

⃒⃒}︂
d
(𝑖)
H (𝜏 1, 𝜏 2) := max

{︀
d(𝑖)
∞ (𝜏 1, 𝜏 2), d(𝑖)

∞ (𝜏 2, 𝜏 1)
}︀

for 𝑖 ∈
{︀

1, 2
}︀
.

The difference between d(1)
∞ (𝜏 1, 𝜏 2) and d(2)

∞ (𝜏 1, 𝜏 2) is that d(2)
∞ takes into account the

length of 𝜏 1’s first and last segments. As to d
(𝑖)
H , it is just a symmetrized version of

d(𝑖)
∞ for 𝑖 = 1, 2. Whenever 𝐷𝜏1 = 𝐷𝜏2 , we define

d(3)
∞
(︀
𝜏 1, 𝜏 2

)︀
:= max

1≤𝑖≤𝐷𝜏1−1

⃒⃒
𝜏 1𝑖 − 𝜏 2𝑖

⃒⃒
.

Note that d(3)
∞ is symmetric thus there is no need to define d

(3)
H . One could also

define d
(1)
H as the Hausdorff distance between the point sets {𝜏 11 , . . . , 𝜏 1𝐷𝜏1−1} and

{𝜏 21 , . . . , 𝜏 2𝐷𝜏2−1} with respect to the distance 𝛿(𝑥, 𝑦) = |𝑥− 𝑦| on R. These definitions
are illustrated by Fig. 3-1.

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙𝜏 1

𝜏 2

d(2)
∞ (𝜏 2, 𝜏 1)

d(1)
∞ (𝜏 1, 𝜏 2)

d(2)
∞ (𝜏 1, 𝜏 2)

Figure 3-1 – Illustration of the definition of d(𝑖)
∞ , with 𝑛 = 19, 𝜏 1 =

[︀
0, 8, 17, 19

]︀
and

𝜏 2 =
[︀
0, 7, 14, 19

]︀
. In this example, 𝐷𝜏1 = 𝐷𝜏2 = 3. We can compute d(1)

∞ (𝜏 1, 𝜏 2) =

d(1)
∞ (𝜏 2, 𝜏 1) = d(2)

∞ (𝜏 2, 𝜏 1) = d(3)
∞ (𝜏 1, 𝜏 2) = 3 and d(2)

∞ (𝜏 1, 𝜏 2) = 2.

Interestingly, all these loss functions coincide whenever 𝑛−1 d(1)
∞ (𝜏 1, 𝜏 2) is small

enough. The following lemma makes this claim rigorous.
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Lemma 3.1. We have the following two properties.
(i) For any 𝜏 1, 𝜏 2 ∈ 𝒯𝑛 such that

1

𝑛
d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
<

1

2
min

{︀
Λ𝜏1 ,Λ𝜏2

}︀
,

we have 𝐷𝜏1 = 𝐷𝜏2 and

d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
= d(2)

∞
(︀
𝜏 1, 𝜏 2

)︀
= d(3)

∞
(︀
𝜏 1, 𝜏 2

)︀
= d

(1)
H

(︀
𝜏 1, 𝜏 2

)︀
= d

(2)
H

(︀
𝜏 1, 𝜏 2

)︀
.

(ii) For any 𝜏 1, 𝜏 2 ∈ 𝒯𝑛 such that

𝐷𝜏1 = 𝐷𝜏2 and
1

𝑛
d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
<

Λ𝜏1

2
,

we have
d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
= d(1)

∞
(︀
𝜏 2, 𝜏 1

)︀
= d

(1)
H

(︀
𝜏 1, 𝜏 2

)︀
.

Lemma 3.1 is proved in Section 3.5.1. As a direct application of Lemma 3.1 we
see that the statement of Theorem 3.1 holds true with d(1)

∞ replaced by any of the
loss functions that we defined above, at least for 𝑛 large enough.

Another loss between segmentations is the Frobenius loss [Lajugie et al., 2014],
which is defined as follows. For any 𝜏 1, 𝜏 2 ∈ 𝒯𝑛,

dF

(︀
𝜏 1, 𝜏 2

)︀
:= ‖Π𝜏1 − Π𝜏2‖F ,

where Π𝜏 is the orthogonal projection onto 𝐹𝜏 , as defined in Section 2.3.2, and ‖·‖F
denotes the Frobenius norm of a matrix:

∀𝐴 ∈ R𝑁×𝑀 , ‖𝐴‖2F :=
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝐴2
𝑖𝑗 .

A closed-form formula for dF can be derived from the matrix representation of Π𝜏

that is given by (2.7): for any 𝑖, 𝑗 ∈ {1, . . . , 𝑛},

(Π𝜏 )𝑖,𝑗 =

{︃
1
|𝜆| if 𝑖 and 𝑗 belong to the same segment 𝜆 of 𝜏
0 otherwise.

An interesting feature of the Frobenius loss is that it is smaller than 1 only when
𝜏 1 and 𝜏 2 have the same number of segments, whereas Hausdorff distances can be
small with very different numbers of segments. Indeed, we prove in Section 3.5.2 that

|𝐷𝜏1 −𝐷𝜏2| ≤ dF

(︀
𝜏 1, 𝜏 2

)︀2 ≤ 𝐷𝜏1 +𝐷𝜏2 . (3.5)

The next proposition shows that there is an equivalence (up to constants) between
the Hausdorff and Frobenius losses between segmentations, provided that they are
close enough.
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Proposition 3.1. Suppose that 𝐷𝜏1 = 𝐷𝜏2 and 1
𝑛

d(1)
∞ (𝜏 1, 𝜏 2) < Λ𝜏1/2, then

(︀
dF

(︀
𝜏 1, 𝜏 2

)︀)︀2 ≤ 12𝐷𝜏1

Λ𝜏1
· 1

𝑛
d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
.

If in addition 1
𝑛

d(1)
∞ (𝜏 1, 𝜏 2) < Λ𝜏1/3, then

2

3Λ𝜏1

1

𝑛
d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
≤
(︀
dF

(︀
𝜏 1, 𝜏 2

)︀)︀2
.

Prop. 3.1 was first stated and proved by [Lajugie et al., 2014, Theorem B.2]. We
prove it in Section 3.5.2 for completeness.

As a corollary of Theorem 3.1 and Prop. 3.1, we get the following guarantee on
the Frobenius loss between 𝜏 ⋆ and the segmentation ̂︀𝜏 estimated by KCP.

Corollary 3.1. Under the assumptions of Theorem 3.1, on the event Ω defined by
Theorem 3.1, for any ̂︀𝜏 satisfying (2.2) with pen defined by (2.3), we have:

dF (𝜏 ⋆, ̂︀𝜏) ≤ 43𝐷⋆√︀
Λ𝜏⋆

· 𝑀
∆

√︂
𝑦 + log(𝑛) + 1

𝑛
.

Note that Corollary 3.1 gives a better result (at least for large 𝑛) than the obvious
bound

dF (𝜏 ⋆, ̂︀𝜏) ≤ 𝐷⋆ + ̂︀𝐷 − 2 .

Proof. On the event Ω, we have 1
𝑛

d(1)
∞ (𝜏 ⋆, ̂︀𝜏) < Λ𝜏⋆/(𝐷

⋆ +1) and 𝐷⋆ = ̂︀𝐷. Therefore,
according to Prop. 3.1,

(︀
dF (𝜏 ⋆, ̂︀𝜏)

)︀2 ≤ 12𝐷⋆

Λ𝜏⋆
· 1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏) ≤ 1776 (𝐷⋆)2 (𝑦 + log(𝑛) + 1)

𝑛Λ𝜏⋆
· 𝑀

2

∆2 .

Up to this point, we assessed the quality of the segmentation 𝜏 by considering the
proximity of 𝜏 with 𝜏 ⋆. Another natural idea is to measure the distance between 𝜇⋆

and 𝜇⋆
𝜏 in ℋ𝑛. It is closely related to the oracle inequality proved by Arlot et al.

[2012], which implies an upper bound on ‖𝜇⋆ − ̂︀𝜇̂︀𝜏‖2. We can also observe that there
is a simple relationship between ‖𝜇⋆ − 𝜇⋆

𝜏‖2 and the Frobenius distance between 𝜏
and 𝜏 ⋆. Indeed,

‖𝜇⋆ − 𝜇⋆
𝜏‖2 = ‖(Π𝜏⋆ − Π𝜏 )𝜇⋆‖2 ≤ ‖Π𝜏⋆ − Π𝜏‖22 ‖𝜇⋆‖2 ≤

(︀
dF (𝜏 ⋆, ̂︀𝜏)

)︀2 ‖𝜇⋆‖2 . (3.6)

Eq. (3.17) in the proof of Theorem 3.1 shows that on Ω, under the assumptions of
Theorem 3.1,

‖𝜇⋆ − 𝜇⋆̂︀𝜏‖2 ≤ 74
(︀
𝑦 + log(𝑛) + 1

)︀
𝐷⋆𝑀2

which is slightly better (but similar) to what Corollary 3.1, (3.6) and the bound
‖𝜇⋆‖2 ≤𝑀2𝑛 imply together.
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3.2.3 Extension to the finite variance case

Theorem 3.1 and 3.2 are valid under a boundedness assumption (Assumption 2.1).
What happens under the weaker Assumption 2.2? As a first step, we provide a result
for ̂︀𝜏(𝐷⋆, 𝛿𝑛) ∈ arg min

𝜏∈𝒯 𝐷⋆
𝑛 /Λ𝜏≥𝑛𝛿𝑛

{︀ ̂︀ℛ𝑛(𝜏)
}︀

(3.7)

for some 𝛿𝑛 > 0. In other words, we restrict our search to segmentations 𝜏 of the
correct size — hence 𝐷⋆ must be known a priori — and having no segment with
less than 𝑛𝛿𝑛 observations. We discuss how to relax this restriction right after the
statement of Theorem 3.3. Note that, since we know 𝐷⋆, there is no need for a
penalty function in the new problem given by Eq. (3.7). Also notice that the dynamic
programming algorithm of Harchaoui and Cappé [2007] can be used for computinĝ︀𝜏(𝐷⋆, 𝛿𝑛) efficiently.

Similarly to ∆, we define ∆ := max𝑖

⃦⃦
𝜇⋆
𝑖 − 𝜇⋆

𝑖+1

⃦⃦
ℋ.

Theorem 3.3. Suppose that Assumption 2.2 holds true. For any 𝛿𝑛, 𝑦 > 0, define:

𝑣2(𝑦, 𝛿𝑛) := 24(𝐷⋆)2
∆
√
𝑉

∆2

𝑦√
𝑛

+ 8𝐷⋆ 𝑉

∆2

𝑦2

𝑛𝛿𝑛
.

For any 𝑦 > 0, an event Ω2 exists such that

P (Ω2) ≥ 1− 1

𝑦2

and, on Ω2, we have the following : for any 𝛿𝑛 ∈ (0,Λ𝜏⋆ ] and any ̂︀𝜏(𝐷⋆, 𝛿𝑛) satisfying
Eq. (3.7), if 𝑣2(𝑦, 𝛿𝑛) ≤ Λ𝜏⋆,

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏(𝐷⋆, 𝛿𝑛)) ≤ 𝑣2(𝑦, 𝛿𝑛) . (3.8)

We postpone the proof of Theorem 3.3 to Section 3.4.6. Let us make a few remarks.
As for Theorem 3.1, our result is non-asymptotic. However, it is interesting to

write it down in the setting of Example 2.1. If 𝑛 goes to infinity, then the assumption
Λ𝜏⋆ ≥ 𝛿𝑛 is satisfied whenever 𝛿𝑛 → 0. If we furthermore require that 𝑛𝛿𝑛 →∞, then
Eq. (3.8) implies that

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏(𝐷⋆, 𝛿𝑛))

P−−−−→
𝑛→+∞

0 ,

by taking a well-chosen 𝑦 of order
√
𝑛 +
√
𝑛𝛿𝑛. In the particular case of the linear

kernel, this result is known under various hypothesis [Lavielle and Moulines, 2000,
for instance]; it is new for a general kernel.

More precisely, if we take 𝛿𝑛 = 𝑛−1/2, Theorem 3.3 implies that

1

𝑛
d(1)
∞
(︀
𝜏 ⋆, ̂︀𝜏(𝐷⋆, 𝑛−1/2)

)︀
goes to zero at least as fast as ℓ𝑛/

√
𝑛, where (ℓ𝑛)𝑛≥1 is any sequence tending to
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infinity, for instance ℓ𝑛 = log(𝑛). This speed seems suboptimal compared to previous
results [Lavielle and Moulines, 2000, for instance] — which do not consider the case
of a general kernel —, but we have not been able to prove tight enough deviation
bounds for getting the localization rate log(𝑛)/𝑛 under Assumption 2.2.

How does Theorem 3.3 compares to Theorem 3.1 and 3.2? First, as noticed in
Remark 3.4 in Section 3.4.4, the result of Theorem 3.1 also holds true for ̂︀𝜏(𝐷⋆, 𝛿𝑛)
as long as Λ𝜏⋆ ≥ 𝛿𝑛. Second, 𝑣1(𝑦) is usually smaller than 𝑣2(𝑦, 𝛿𝑛) — its order of
magnitude is smaller when 𝑛→ +∞—, and the lower bound on the probability of Ω
is better than the one for Ω2. There is no surprise here: the stronger Assumption 2.1
helps us proving a stronger result for ̂︀𝜏(𝐷⋆, 𝛿𝑛). Nevertheless, these only are upper
bounds, so we do not know whether the performance of ̂︀𝜏(𝐷⋆, 𝛿𝑛) actually changes
much depending on the noise assumption. For instance, as already noticed, we do
not believe that the localization speed log(𝑛)/𝑛 requires a boundedness assumption;
in particular cases at least, it has been obtained for unbounded data [Lavielle and
Moulines, 2000; Boysen et al., 2009].

The dependency in 𝑘 of the speed of convergence of ̂︀𝜏(𝐷⋆, 𝛿𝑛) is slightly less clear
than in Theorem 3.1. The signal-to-noise ratio appears through ∆2/𝑉 , as expected,
but the size ∆ of the largest true jump also appears in 𝑣2. At the very least, it is
clear that ∆2/𝑉 should not be too small.

As noted by Lavielle and Moulines [2000], it may be possible to get rid of the
minimal segment length 𝛿𝑛, either by imposing stronger conditions on 𝜀 — which are
not met in our setting — or by constraining the values of ̂︀𝜇 to lie in a compact subset
Θ ⊂ ℋ𝐷⋆+1.

3.3 Discussion

Before proving our main results, let us discuss some of their consequences regard-
ing the KCP procedure.

Fully non-parametric consistent change-point detection. We have proved
that for any kernel satisfying some reasonably mild hypotheses, the KCP procedure
outputs a segmentation close by the true segmentation with high probability.

An important particular example is the “asymptotic setting” of Example 2.1, where
we have a fixed true segmentation 𝜏 ⋆ and fixed distributions 𝑃1, . . . , 𝑃𝐾+1 from which
more and more points are sampled. How fast can KCP recover 𝜏 ⋆, without any prior
information on the number of segments 𝐷⋆ or on the distributions 𝑃1, . . . , 𝑃𝐾+1?

Let us take a bounded characteristic kernel — for instance the Gaussian or the
Laplace kernel if 𝒳 = R𝑑 —, so that Assumption 2.1 holds true. Then, Theorem 3.1
shows that KCP detects consistently all changes in the distribution of the 𝑋𝑖, and
localizes them at speed log(𝑛)/𝑛. This speed also depends on the kernel 𝑘 and the
size of the differences between the 𝑃𝑗, through the ratio ∆2/𝑀2. Obtaining such a
fully non-parametric result for multiple change-points with a general set 𝒳 — we only
need to know a bounded characteristic kernel on 𝒳 — has never been obtained before.
To the best of our knowledge, non-parametric consistency results for the detection
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of arbitrary changes in the distribution of the data have only been obtained for real-
valued data [Zou et al., 2014] or for the case of a single change-point [Carlstein, 1988;
Brodsky and Darkhovsky, 2013].

Choice of 𝑘. An important question remains: how to choose the kernel 𝑘? In The-
orem 3.1, 𝑘 only appears through the “signal-to-noise ratio” ∆2/𝑀2, leading to better
theoretical guarantees when this signal-to-noise ratio is larger: a larger value for 𝐶max

and a smaller bound 𝑣1 on d(1)
∞ (𝜏 ⋆, ̂︀𝜏). Therefore, a simple strategy for choosing the

kernel is to pick 𝑘 that maximizes ∆2/𝑀2, at least among a family of kernels, for
instance Gaussian kernels. This first idea requires to know the distributions of the
𝑋𝑖, or at least to have prior information on them. As we have noticed, when the
change-points locations are known, ∆2 corresponds to the minimum of the MMDs
between the distributions of the 𝑋𝑖 over contiguous segments. In this particular set-
ting, it may be feasible to estimate and to maximize ∆2 with respect to the kernel 𝑘,
as done by Gretton et al. [2012b]. This question is addressed in more details in Sec-
tion 4.3.1. An interesting future development would be to build an estimator of ∆2

without knowing the change-point locations and to maximize this estimator with re-
spect to the kernel 𝑘. We refer to Arlot et al. [2012, section 7.2] for a complementary
discussion about the choice of 𝑘 for KCP.

Choice of 𝐶. Another important parameter of the KCP procedure is the constant
𝐶 that appears in the linear penalty function. As mentioned below Theorem 3.1,
our theoretical guarantees provide some guidelines for choosing 𝐶, but these are not
sufficient to choose precisely 𝐶 in practice. We recommend to follow the advice of
[Arlot et al., 2012, section 6.2] on this point, which is to choose 𝐶 from data with the
“dimension jump” heuristic [Baudry et al., 2012]. The exact procedure is explained
in details in Section 4.1.

Modularity of the proofs and possible extensions. Finally, we would like
to emphasize what we believe to be an important contribution of this thesis. The
structure of the proofs of Theorems 3.1 and 3.3 — which follow the same strategy
— is modular, so that one can easily adapt it to different sets of assumptions. This
is also the case for the proof of Theorem 3.2, to some extent: the behavior of the
penalty function near 𝐷⋆ has to be controlled more precisely.

Our proof strategy is not fully new, since it is similar to the one of almost all pre-
vious papers analyzing the consistency of least-squares change-point detection proce-
dures. In particular, we adapted some ideas of the proofs of Lavielle and Moulines
[2000] to the Hilbert space setting. Nevertheless, these papers formulate their main
results in asymptotic terms, which can be seen as a limitation — especially when
𝑛 is small or 𝒳 is of large dimension. Another approach is the one of Lebarbier
[2005]; Comte and Rozenholc [2004]; Arlot et al. [2012] where non-asymptotic oracle
inequalities — using concentration inequalities and following the model selection re-
sults of Birgé and Massart [2001] — are provided as theoretical guarantees on some

58



penalized least-squares change-point procedures. Up to now, these two approaches
seemed difficult to combine. The proofs of Theorems 3.1 and 3.3 show how they can
be reconciled, which allows us to mix their strengths.

Indeed, assumptions on the distributions of the 𝑋𝑖 — Assumptions 2.1 and 2.2
— are only used for proving bounds on two quantities depending on 𝜀 — a linear
term 𝐿𝜏 and a quadratic term 𝑄𝜏 —, uniformly over 𝜏 ∈ 𝒯𝑛. Under Assumption 2.1,
this is done thanks to concentration inequalities (Lemmas 3.9 and 3.8) which have
been proved first by Arlot et al. [2012] in order to get an oracle inequality. Under
Assumption 2.2, this is done by generalizing the method of Lavielle and Moulines
[2000] to Hilbert-space valued data, through two deterministic bounds (Lemmas 3.6
and 3.7) and a deviation inequality for

𝐵𝑛 := max
1≤𝑘≤𝑛

⃦⃦⃦⃦
⃦

𝑘∑︁
𝑗=1

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

(Lemma 3.11). The rest of the proofs does not use any information about the distri-
bution of 𝑋1, . . . , 𝑋𝑛.

As a consequence, if one can generalize these bounds to another setting, a straight-
forward consequence is that a result similar to Theorem 3.1, 3.2, or 3.3 holds true for
the KCP procedure in this new setting. In particular, this could be used for dealing
with the case of dependent data 𝑋1, . . . , 𝑋𝑛. We could also consider an intermediate
assumption between Assumption 2.2 and Assumption 2.1, of the form:

max
1≤𝑖≤𝑛

E
[︀
𝑘(𝑋𝑖, 𝑋𝑖)

𝛼
]︀
≤ 𝐵𝛼 < +∞ ,

for some 𝛼 ∈ (1,+∞).

Without further ado, we now turn to the proofs of Theorems 3.1, 3.2 and 3.3.

3.4 Proofs

Let us start by describing our general strategy for proving Theorems 3.1 and 3.3.
Our goal is to build a large probability event on which any ̂︀𝜏 ∈ arg min𝜏∈𝒯𝑛 crit (𝜏)
belongs to some subset ℰ of 𝒯𝑛. For proving this, we use the key fact that crit (𝜏 ⋆) ≥
crit (̂︀𝜏), together with a lower bound on crit (𝜏) holding simultaneously for all 𝜏 ∈ 𝒯𝑛
— hence for 𝜏 = ̂︀𝜏 .

In order to get such a lower bound on the empirical penalized criterion, we start
by decomposing it in Section 3.4.1 into terms that are simpler to control individ-
ually: two random terms — a linear function of 𝜀 and a quadratic function of 𝜀
—, and two deterministic terms — the approximation error and the penalty. Then,
we control these terms thanks to deterministic bounds (Section 3.4.2) and devia-
tion/concentration inequalities (Section 3.4.3). Finally, we prove Theorem 3.1 in
Section 3.4.4 and Theorem 3.3 in Section 3.4.6.
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The proof of Theorem 3.2 shares the same ideas, but is slightly different due to
the more complicated form of the penalty. It can be found in Section 3.4.5.

3.4.1 Decomposition of the empirical risk

The first step in the proofs of Theorems 3.1, 3.2 and 3.3 is to decompose the
empirical risk (2.8).

Lemma 3.2. Let 𝜏 ∈ 𝒯𝑛 be a segmentation. Define 𝜇⋆
𝜏 = Π𝜏𝜇

⋆. Then we can write

𝑛 ̂︀ℛ𝑛(𝜏) = ‖𝑌 − ̂︀𝜇𝜏‖2 = ‖𝜇⋆ − 𝜇⋆
𝜏‖2 + 2⟨𝜇⋆ − 𝜇⋆

𝜏 , 𝜀⟩ − ‖Π𝜏𝜀‖2 + ‖𝜀‖2 . (3.9)

Proof. First, recall that ̂︀𝜇𝜏 = Π𝜏𝑌 and that 𝑌 = 𝜇⋆ + 𝜀, hence

‖𝑌 − ̂︀𝜇𝜏‖2 = ‖𝑌 − Π𝜏𝑌 ‖2

= ‖𝜇⋆ + 𝜀− Π𝜏 (𝜇⋆ + 𝜀)‖2

= ‖𝜇⋆ − Π𝜏𝜇
⋆‖2 + ‖𝜀− Π𝜏𝜀‖2 + 2⟨𝜇⋆ − Π𝜏𝜇

⋆, 𝜀− Π𝜏𝜀⟩.

Since Π𝜏 is an orthogonal projection,

‖𝑌 − ̂︀𝜇𝜏‖2 = ‖𝜇⋆ − 𝜇⋆
𝜏‖2 + ‖𝜀‖2 − 2⟨𝜀,Π𝜏𝜀⟩+ ‖Π𝜏𝜀‖2 + 2⟨(I−Π𝜏 )𝜇⋆, 𝜀⟩

= ‖𝜇⋆ − 𝜇⋆
𝜏‖2 + ‖𝜀‖2 − ‖Π𝜏𝜀‖2 + 2⟨(I−Π𝜏 )𝜇⋆, 𝜀⟩ .

Since each term of Eq. (3.9) behaves differently and is controlled via different
techniques depending on the result to be proven, we name each of these terms:

𝐿𝜏 := ⟨𝜇⋆ − 𝜇⋆
𝜏 , 𝜀⟩ , 𝑄𝜏 := ‖Π𝜏𝜀‖2 and 𝐴𝜏 := ‖𝜇⋆ − 𝜇⋆

𝜏‖2 . (3.10)

It should be clear that 𝐿 stands for “linear”, 𝑄 stands for “quadratic” and 𝐴 stands
for “approximation error”. We also define

𝜓𝜏 := 2𝐿𝜏 −𝑄𝜏 + 𝐴𝜏 . (3.11)

Therefore a reformulation of Lemma 3.2 is

𝑛 ̂︀ℛ𝑛(𝜏) = 𝜓𝜏 + ‖𝜀‖2 .

Notice that 𝐿𝜏⋆ = 𝐴𝜏⋆ = 0 and 𝑄𝜏⋆ ≥ 0, hence 𝜓𝜏⋆ ≤ 0. Also note that 𝜓, 𝐿 and 𝑄
are random quantities depending on 𝜀.

3.4.2 Deterministic bounds

In this section, we provide some deterministic bounds that are used in the proofs
of Theorems 3.1, 3.2 and 3.3.
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Approximation error 𝐴𝜏

We begin by the following result, which is the reason for the Λ𝜏⋆∆2 term in the
minimal penalty constants in Theorem 3.1 and 3.2.

Lemma 3.3. Let 𝜏 ∈ 𝒯𝑛 be a segmentation such that 𝐷 := 𝐷𝜏 < 𝐷⋆. Then

1

𝑛
𝐴𝜏 =

1

𝑛
‖𝜇⋆ − 𝜇⋆

𝜏‖2 ≥
1

2
Λ𝜏⋆∆2 . (3.12)

The proof of Lemma 3.3 can be found in Section 3.5.3.

Remark 3.1. The inequality in Lemma 3.3 is tight. Indeed, consider the simple case
𝐷𝜏 = 1 and 𝐷⋆ = 2. Assume that 𝑛 = 2𝑚 is an even number, and let 𝜏 ⋆1 = 𝑚. It
follows from definitions (3.1) and (3.2) that, in this case,

∆ = ‖𝜇⋆
1 − 𝜇⋆

𝑛‖ℋ and Λ𝜏⋆ =
1

2
.

According to Eq. (2.7), (𝜇⋆
𝜏 )𝑖 = 1

2
(𝜇⋆

1 + 𝜇⋆
𝑛), which yields

1

𝑛
𝐴𝜏 =

1

4
‖𝜇⋆

1 − 𝜇⋆
𝑛‖2ℋ =

1

2
Λ𝜏⋆∆2 .

Thus, in this particular class of examples, equality holds in (3.12).

We next state an analogous result, valid for any 𝜏 ∈ 𝒯𝑛, which plays a key role in
the proofs of Theorems 3.1, 3.2 and 3.3.

Lemma 3.4. For any 𝜏 ∈ 𝒯𝑛,

1

𝑛
𝐴𝜏 ≥

1

2
min

{︂
Λ𝜏⋆ ,

1

𝑛
d(1)
∞ (𝜏 ⋆, 𝜏)

}︂
∆2 . (3.13)

Lemma 3.4 is proved in Section 3.5.4.

Linear term 𝐿𝜏 and quadratic term 𝑄𝜏

The proof of Theorem 3.3 relies on some deterministic bounds on 𝐿𝜏 and 𝑄𝜏 . We
start with a preliminary lemma.

Lemma 3.5. For any 𝜀1, . . . , 𝜀𝑛 ∈ ℋ,

1

2
max

1≤𝑎<𝑏≤𝑛

⃦⃦⃦⃦
⃦

𝑏∑︁
𝑗=𝑎

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

≤ max
1≤𝑘≤𝑛

⃦⃦⃦⃦
⃦

𝑘∑︁
𝑗=1

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

=: 𝐵𝑛 . (3.14)

Proof. For every 𝑎 < 𝑏, we have:⃦⃦⃦⃦
⃦

𝑏∑︁
𝑗=𝑎

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

=

⃦⃦⃦⃦
⃦

𝑏∑︁
𝑗=1

𝜀𝑗 −
𝑎−1∑︁
𝑗=1

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

≤
⃦⃦⃦⃦
⃦

𝑏∑︁
𝑗=1

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

+

⃦⃦⃦⃦
⃦
𝑎−1∑︁
𝑗=1

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

≤ 2𝐵𝑛 .
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The following result is a deterministic bound on 𝑄𝜏 in terms of 𝐵𝑛.

Lemma 3.6. Let 𝜏 ∈ 𝒯𝑛 be a segmentation. Then

𝑄𝜏 ≤
4𝐷𝜏𝐵

2
𝑛

𝑛Λ𝜏

.

Proof. By Eq. (2.7), for any 𝜏ℓ−1 + 1 ≤ 𝑖 ≤ 𝜏ℓ,

(Π𝜏𝜀)𝑖 =
1

|𝜏ℓ − 𝜏ℓ−1|

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝜀𝑗 .

Since 𝑄𝜏 = ‖Π𝜏𝜀‖2,

𝑄𝜏 =
𝑛∑︁

𝑖=1

‖(Π𝜏𝜀)𝑖‖
2
ℋ

=
𝐷𝜏∑︁
ℓ=1

𝜏ℓ∑︁
𝑖=𝜏ℓ−1+1

⃦⃦⃦⃦
⃦⃦ 1

|𝜏ℓ − 𝜏ℓ−1|

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝜀𝑗

⃦⃦⃦⃦
⃦⃦
2

=
𝐷𝜏∑︁
ℓ=1

1

|𝜏ℓ − 𝜏ℓ−1|

⃦⃦⃦⃦
⃦⃦ 𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝜀𝑗

⃦⃦⃦⃦
⃦⃦
2

ℋ

≤ 𝐷𝜏 max
1≤ℓ≤𝐷𝜏

⎧⎨⎩ 1

|𝜏ℓ − 𝜏ℓ−1|

⃦⃦⃦⃦
⃦⃦ 𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝜀𝑗

⃦⃦⃦⃦
⃦⃦
2

ℋ

⎫⎬⎭
≤ 𝐷𝜏

𝑛Λ𝜏

max
1≤ℓ≤𝐷𝜏

⃦⃦⃦⃦
⃦⃦ 𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝜀𝑗

⃦⃦⃦⃦
⃦⃦
2

ℋ

𝑄𝜏 ≤
4𝐷𝜏

𝑛Λ𝜏

𝐵2
𝑛 ,

where we used Lemma 3.5 for the last inequality.

The following result is a deterministic bound on 𝐿𝜏 .

Lemma 3.7. For any 𝜏 ∈ 𝒯𝑛,

|𝐿𝜏 | ≤ 6𝐷⋆ max {𝐷⋆, 𝐷𝜏}∆𝐵𝑛 .

Lemma 3.7 is proved in Section 3.5.5.
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3.4.3 Concentration

In this subsection, we present concentration results on 𝑄𝜏 , 𝐿𝜏 , and deviation
bounds for 𝐵𝑛 — which will imply deviation bounds on 𝑄𝜏 and 𝐿𝜏 by Lemmas 3.6
and 3.7). For any 𝑗 ∈ {1, . . . , 𝑛}, 𝜏 ∈ 𝒯𝑛 and ℓ ∈ {1, . . . , 𝐷𝜏}, we define

𝑣𝑗 := E
[︀
‖𝜀𝑗‖2ℋ

]︀
𝑣𝜏,ℓ :=

1

𝜏ℓ − 𝜏ℓ−1

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝑣𝑗 and 𝑣𝜏 :=
𝐷∑︁
ℓ=1

𝑣𝜏,ℓ .

Concentration under Assumption 2.1. We present in this section concentration
results that we already identified as essential to the proofs of Theorems 3.1 and 3.2.

The first result that we provide 1 in this section concerns the quadratic term 𝑄𝜏

when Assumption 2.1 is satisfied.

Lemma 3.8. Suppose that Assumption 2.1 holds true. Then for any 𝑥 > 0, with
probability at least 1− e−𝑥,

𝑄𝜏 − 𝑣𝜏 ≤
(︁
𝑥+ 2

√︀
2𝑥𝐷𝜏

)︁ 14𝑀2

3
. (3.15)

We want to emphasize that obtaining concentration results for 𝑄𝜏 = ‖Π𝜏𝜀‖2 is not
an easy task at first sight, since 𝜀𝑗 belongs to ℋ, a potentially infinite-dimensional
space. A way to tackle the challenge of concentrating 𝑄𝜏 is to use concentration
results for 𝑈 -statistics of order 2 with values in a general set [Giné and Nickl, 2015,
Th. 3.4.8], but in this case a term of order 𝑀2𝑥2 would appear in the right-hand side
of Eq. (3.15). Another would be the use of Talagrand’s inequality [Boucheron et al.,
2013, Cor. 12.12], leading to the same deviation term of order 𝑀2𝑥2. But we need a
deviation term of order 𝑀2𝑥 for our proof machinery to operate. We refer to Arlot
et al. [2012, Section 5.4.3] for a detailed discussion of such matters and to Ledoux and
Talagrand [2013] for related questions regarding concentration of random variables
in Banach spaces. Before turning to the proof of Lemma 3.8, we recall Bernstein’s
inequality and Pinelis-Sakhanenko’s inequality, two results that play a crucial role in
this proof.

Bernstein’s inequality is a cornerstone in concentration inequality theory. It pro-
vides sub-exponential concentration bounds for a sum of independent random vari-
ables under an hypothesis on the growth of the moments of this sum. First proved by
Bernstein in the 20s [Bernstein, 1924], it implies as a special cases standard tools in
concentration, e.g., Bennett’s inequality. We give here the version that can be found
in Boucheron et al. [2013], which is a bit more general than the classical form.

Proposition 3.2 (Bernstein’s inequality). Let 𝑍1, . . . , 𝑍𝑚 be independent real-valued

1. Lemma 3.8 is a refinement of a result obtained by Arlot, Celisse and Harchaoui in the first
version of Arlot et al. [2012].
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random variables. Assume that there exist some positive constants 𝑣 and 𝑐 such that

∀𝑞 ≥ 2,
𝑚∑︁
𝑖=1

E [|𝑍𝑖|𝑞] ≤
𝑞!

2
𝑣𝑐𝑞−2 .

Then, for every 𝑥 > 0,

P

(︃
𝑚∑︁
𝑖=1

(𝑍𝑖 − E [𝑍𝑖]) >
√

2𝑣𝑥+ 𝑐𝑥

)︃
≤ e−𝑥 .

Pinelis-Sakhanenko’s inequality [Pinelis and Sakhanenko, 1986, Cor. 1] is close in
spirit to Bernstein’s inequality, with the noteworthy difference that it concerns a sum
of Hilbert-valued random variables.

Proposition 3.3 (Pinelis-Sakhanenko’s inequality). Let 𝑍1, . . . , 𝑍𝑚 be independent
random variables with values in some Hilbert space H. Assume that the 𝑍𝑖 are centered
and that there exists some positive constants 𝑣 and 𝑐 such that

∀𝑞 ≥ 2,
𝑚∑︁
𝑖=1

E
[︀
‖𝑍𝑖‖𝑞H

]︀
≤ 𝑞!

2
𝑣𝑐𝑞−2 .

Then, for every 𝑥 > 0,

P

(︃⃦⃦⃦⃦
⃦

𝑚∑︁
𝑖=1

𝑍𝑖

⃦⃦⃦⃦
⃦
H

> 𝑥

)︃
≤ 2 exp

(︂ −𝑥2
2(𝑐𝑥+ 𝑣)

)︂
.

We are now ready to prove Lemma 3.8.

Proof of Lemma 3.8. Let us define 𝑇𝜆 := 1
|𝜆|

⃦⃦⃦∑︀
𝑗∈𝜆 𝜀𝑗

⃦⃦⃦2
ℋ
. Remark that (𝑇𝜆)𝜆 is

a sequence of independent real-valued random variables. Since 𝑄𝜏 =
∑︀

𝜆∈𝜏 𝑇𝜆, we
can obtain a concentration inequality for 𝑄𝜏 via Bernstein’s inequality as long as 𝑇𝜆
satisfies some moment conditions. We will use the Pinelis-Sakhanenko’s deviation
inequality to prove such bounds.

By the independence property of the 𝜀𝑗s, for any 𝜆 ∈ 𝜏 , we have E [𝑇𝜆] = 𝑣𝜆.
Then, for any 𝑞 ≥ 2,

E [𝑇 𝑞
𝜆 ] =

1

|𝜆|𝑞 E

⎡⎣⃦⃦⃦⃦⃦∑︁
𝑗∈𝜆

𝜀𝑗

⃦⃦⃦⃦
⃦
2𝑞

ℋ

⎤⎦ =
1

|𝜆|𝑞
∫︁ 2|𝜆|𝑀

0

2𝑞𝑥2𝑞−1 P

⎛⎝⃦⃦⃦⃦⃦∑︁
𝑗∈𝜆

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

≥ 𝑥

⎞⎠ d𝑥 ,

because for any 𝑗, ‖𝜀𝑗‖ℋ ≤ 2𝑀 almost surely — cf. Eq. 2.11. The boundedness
of ‖𝜀𝑗‖ℋ also implies that, for any 𝑝 ≥ 2 and 𝜆 ∈ 𝜏 ,

∑︁
𝑗∈𝜆

E
[︀
‖𝜀𝑗‖𝑝ℋ

]︀
≤ (2𝑀)𝑝−2

∑︁
𝑗∈𝜆

𝑣𝑗 ≤
𝑝!

2

(︃∑︁
𝑗∈𝜆

𝑣𝑗

)︃(︂
2𝑀

3

)︂𝑝−2
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≤ 𝑝!

2
× |𝜆|𝑀2 ×

(︂
2𝑀

3

)︂𝑝−2

,

that is, the assumptions of Pinelis-Sakhanenko’s deviation inequality hold true with
𝑐 = 2𝑀/3 and 𝑣 = |𝜆|𝑀2. Therefore, for any 𝑥 ∈ [0, 2 |𝜆|𝑀 ],

P

⎛⎝⃦⃦⃦⃦⃦∑︁
𝑗∈𝜆

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

≥ 𝑥

⎞⎠ ≤ 2 exp

(︃
−𝑥2

2
(︀
|𝜆|𝑀2 + 2𝑀𝑥

3

)︀)︃

≤ 2 exp

(︂ −3𝑥2

14 |𝜆|𝑀2

)︂
.

We now make use of the change of variables 𝑢 =
√︀

3/(7 |𝜆|)𝑥/𝑀 , and write

E [𝑇 𝑞
𝜆 ] ≤ 4𝑞

|𝜆|𝑞
∫︁ 2|𝜆|𝑀

0

𝑥2𝑞−1 exp

(︂ −3𝑥2

14 |𝜆|𝑀2

)︂
d𝑥

≤ 4𝑞

(︂
7𝑀2

3

)︂𝑞 ∫︁ +∞

0

𝑢2𝑞−1 e−𝑢2/2 d𝑢

≤ 2(𝑞!)

(︂
14𝑀2

3

)︂𝑞

,

where we used ∫︁ +∞

0

𝑢2𝑞−1 e−𝑢2/2 d𝑢 = 2𝑞−1(𝑞 − 1)! .

Summing over 𝜆 ∈ 𝜏 , it comes∑︁
𝜆∈𝜏

E [𝑇 𝑞
𝜆 ] ≤ 2(𝑞!)

(︂
14𝑀2

3

)︂𝑞

𝐷𝜏

≤ 𝑞!

2
×𝐷𝜏

(︂
28𝑀2

3

)︂2

×
(︂

14𝑀2

3

)︂𝑞−2

.

Thus the condition of Bernstein’s inequality holds with

𝑣 = 𝐷𝜏

(︂
28𝑀2

3

)︂2

and 𝑐 =
14𝑀2

3
.

Hence with probability at least 1− e−𝑥,

𝑄𝜏 − E [𝑄𝜏 ] ≤
√

2𝑣𝑥+ 𝑐𝑥

=
√︀

2𝐷𝜏𝑥
28𝑀2

3
+

14𝑀2

3
𝑥

=
14𝑀2

3

(︁
2
√︀

2𝐷𝜏𝑥+ 𝑥
)︁
.

The linear term 𝐿𝜏 can be controlled directly via Bernstein’s inequality. This is
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achieved in the next lemma, which is a specialization of Arlot et al. [2012, Prop. 3]
under Assumption 2.1.

Lemma 3.9. Suppose that Assumption 2.1 holds true. Then for any 𝑥 > 0, with
probability at least 1− 2 e−𝑥, for any 𝜃 > 0,

|𝐿𝜏 | ≤ 𝜃𝐴𝜏 +

(︂
4

3
+

1

2𝜃

)︂
𝑀2𝑥 .

Proof. Let us define 𝑆𝜏 := ⟨𝜇⋆ − 𝜇⋆
𝜏 , 𝜀⟩. We note that

𝑆𝜏 =
𝑛∑︁

𝑖=1

𝑍𝑖 with 𝑍𝑖 := ⟨(𝜇⋆ − 𝜇⋆
𝜏 )𝑖 , 𝜀𝑖⟩ℋ .

The 𝑍𝑖s are independent centered real-valued random variables. Let us prove that
they satisfy the hypothesis of Bernstein’s inequality.

Set 𝑖 ∈
{︀

1, . . . , 𝑛
}︀
, the Cauchy-Schwarz inequality yields

|𝑍𝑖| ≤ ‖(𝜇⋆ − 𝜇⋆
𝜏 )𝑖‖ℋ · ‖𝜀𝑖‖ℋ .

We have already proved that ‖𝜀𝑖‖ℋ ≤ 2𝑀 . According to Eq. (2.7),

(𝜇⋆ − 𝜇⋆
𝜏 )𝑖 = 𝜇⋆

𝑖 −
1

𝜏ℓ − 𝜏ℓ−1

𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

𝜇⋆
𝑗

for some 1 ≤ ℓ ≤ 𝐷𝜏 , and thus we can write

‖(𝜇⋆ − 𝜇⋆
𝜏 )𝑖‖ℋ =

1

𝜏ℓ − 𝜏ℓ−1

⃦⃦⃦⃦
⃦⃦ 𝜏ℓ∑︁
𝑗=𝜏ℓ−1+1

(︀
𝜇⋆
𝑖 − 𝜇⋆

𝑗

)︀⃦⃦⃦⃦⃦⃦
ℋ

≤ sup
𝜏ℓ−1<𝑗≤𝜏ℓ

⃦⃦
𝜇⋆
𝑖 − 𝜇⋆

𝑗

⃦⃦
ℋ .

Triangle inequality together with Eq. (2.11) yields ‖(𝜇⋆ − 𝜇⋆
𝜏 )𝑖‖ℋ ≤ 2𝑀 , and we have

proved that |𝑍𝑖| ≤ 4𝑀2.
Furthermore, again due to Cauchy-Schwarz inequality,

E
[︀
|𝑍𝑖|2

]︀
≤ E

[︀
‖(𝜇⋆ − 𝜇⋆

𝜏 )𝑖‖
2
ℋ · ‖𝜀𝑖‖

2
ℋ
]︀
.

Recall that under Assumption 2.1, E
[︀
‖𝜀𝑖‖2ℋ

]︀
≤𝑀2. Thus

𝑛∑︁
𝑖=1

E
[︀
|𝑍𝑖|2

]︀
≤ ‖𝜇⋆ − 𝜇⋆

𝜏‖2 ·max
𝑖

E
[︀
‖𝜀𝑖‖2ℋ

]︀
≤ ‖𝜇⋆ − 𝜇⋆

𝜏‖2 ·𝑀2 .

We now show that the conditions of Bernstein’s inequality are satisfied. Let 𝑞 ≥ 2,
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then
𝑛∑︁

𝑖=1

E [|𝑍𝑖|𝑞] ≤ ‖𝜇⋆ − 𝜇⋆
𝜏‖2𝑀2 ·

(︂
4𝑀2

3

)︂𝑞−2

= ‖𝜇⋆ − 𝜇⋆
𝜏‖2𝑀2 · 3𝑞−2 ·

(︂
4𝑀2

3

)︂𝑞−2

.

Since 3𝑞−2 ≤ 𝑞!/2 for any 𝑞 ≥ 2,

𝑛∑︁
𝑖=1

E [|𝑍𝑖|𝑞] ≤
𝑞!

2
‖𝜇⋆ − 𝜇⋆

𝜏‖2𝑀2

(︂
4𝑀2

3

)︂𝑞−2

,

and the conditions of Bernstein’s inequality are satisfied with 𝑣 = ‖𝜇⋆ − 𝜇⋆
𝜏‖2𝑀2 and

𝑐 = 4𝑀2/3. As a consequence, for any 𝑥 > 0, with probability higher than 1− 2 e−𝑥,⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝑍𝑖

⃒⃒⃒⃒
⃒ ≤

√︁
2 ‖𝜇⋆ − 𝜇⋆

𝜏‖2𝑀2𝑥+
4𝑀2

3
𝑥 .

We conclude the proof by applying the inequality 2𝑎𝑏 ≤ 𝜃𝑎2 + 𝜃−1𝑏2 to 𝑎 =
√
𝐴𝜏 and

𝑏 =
√
2
2
𝑀
√
𝑥.

We merge Lemmas 3.8 and 3.9 for convenience.

Lemma 3.10. Suppose that Assumption 2.1 holds true. Take any 𝜆 > 1 and 𝜏 ∈ 𝒯𝑛 be
a segmentation. Then, there exists an event Ω

(0)
𝜏,𝜆 of probability greater than 1−3 e−𝜆𝐷𝜏

on which:
𝜓𝜏 ≥

1

3
𝐴𝜏 −

74

3
𝜆𝐷𝜏𝑀

2 .

Proof. According to Lemma 3.9 with 𝜃 = 1/3 and 𝑥 = 𝜆𝐷𝜏 , there exists an event Ω
(1)
𝜏,𝜆

on which
|𝐿𝜏 | ≤

1

3
𝐴𝜏 +

17

6
𝜆𝐷𝜏𝑀

2 ,

with P
(︁

Ω
(1)
𝜏,𝜆

)︁
≥ 1− 2 e−𝜆𝐷𝜏 . Lemma 3.8 with 𝑥 = 𝜆𝐷𝜏 gives Ω

(2)
𝜏,𝜆 on which

𝑄𝜏 − 𝑣𝜏 ≤
14

3

(︁
𝜆+ 2

√
2𝜆
)︁
𝐷𝜏𝑀

2 ,

with P
(︁

Ω
(2)
𝜏,𝜆

)︁
≥ 1 − e−𝜆𝐷𝜏 . Then, Ω

(0)
𝜏,𝜆 := Ω

(1)
𝜏,𝜆 ∩ Ω

(2)
𝜏,𝜆 has a probability larger than

1 − 3 e−𝜆𝐷𝜏 by the union bound. Since for any 1 ≤ ℓ ≤ 𝐷𝜏 , 𝑣𝜏,ℓ ≤ 𝑀2, we have
𝑣𝜏 =

∑︀𝐷𝜏

ℓ=1 𝑣𝜏,ℓ ≤ 𝐷𝜏𝑀
2. Hence, by definition (3.11) of 𝜓𝜏 and using that 𝜆 ≥ 1, on

the event Ω
(0)
𝜏,𝜆, we have:

𝜓𝜏 ≥
1

3
𝐴𝜏 −

(︂
31

3
𝜆+

28

3

√
2
√
𝜆+ 1

)︂
𝐷𝜏𝑀

2
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≥ 1

3
𝐴𝜏 − 𝜆

(︂
31

3
+

28

3

√
2 + 1

)︂
𝐷𝜏𝑀

2 .

Remark 3.2. It is also possible to obtain an upper bound for 𝜓𝜏 : by Lemma 3.9, for
every 𝜆 ≥ 0, on the event Ω

(2)
𝜏,𝜆 ⊂ Ω

(0)
𝜏,𝜆,

𝜓𝜏 ≤
5

3
𝐴𝜏 +

17

3
𝜆𝐷𝜏𝑀

2 .

However, we do not need this result thereafter.

Concentration under Assumption 2.2. Lemma 3.6 and 3.7 directly translate
upper bounds on 𝐵𝑛 into controls of 𝐿𝜏 and 𝑄𝜏 . Under Assumption 2.2, this is
achieved via the following lemma, a Kolmogorov-like inequality for the noise in the
RKHS. This result is a straightforward generalization of the inequality obtained by
Kolmogorov [1928] into the Hilbert setting. A more precise result (for real random
variables only) can be found in [Hájek and Rényi, 1955], of which we follow the proof.
The scheme of Hájek and Rényi [1955] adapts well in our setting even though we do
not need the full result.

Lemma 3.11. If Assumption 2.2 holds true, then, for any 𝑥 > 0,

P (𝐵𝑛 ≥ 𝑥) ≤ 1

𝑥2

𝑛∑︁
𝑗=1

𝑣𝑗 . (3.16)

We prove Lemma 3.11 in Section 3.5.6.

Remark 3.3. We can reformulate Lemma 3.11 as follows. For any 𝑦 > 0, there
exists an event of probability at least 1 − 𝑦−2 on which 𝐵𝑛 < 𝑦

√︁∑︀𝑛
𝑖=𝑗 𝑣𝑗 ≤ 𝑦

√
𝑛𝑉 .

Equivalently, for any 𝑧 ≥ 0, there exists an event of probability at least 1− e−𝑧 such
that 𝐵𝑛 < e𝑧/2

√︁∑︀𝑛
𝑖=𝑗 𝑣𝑗 ≤ e𝑧/2

√
𝑛𝑉 .

3.4.4 Proof of Theorem 3.1

We follow the strategy described at the beginning of Section 3.4.

Definition of Ω. Let us define Ω :=
⋂︀

𝜏∈𝒯𝑛 Ω
(0)
𝜏,𝜆 with 𝜆 = 𝑦+ log(𝑛) + 1 > 1, where

we recall that Ω
(0)
𝜏,𝜆 is defined in Lemma 3.10. By the union bound, and since the Ω

(0)
𝜏,𝜆

have probability greater than 1− 3 e−𝜆𝐷𝜏 ,

P (Ω) ≥ 1− 3
∑︁
𝜏∈𝒯𝑛

e−𝜆𝐷𝜏 .
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The inequality P (Ω) ≥ 1− e−𝑦 follows since

∑︁
𝜏∈𝒯𝑛

e−𝜆𝐷𝜏 =
𝑛∑︁

𝑑=1

(︂
𝑛− 1

𝑑− 1

)︂
e−𝜆𝑑 = e−𝜆

(︀
1 + e−𝜆

)︀𝑛−1

≤ e−𝜆 exp
(︀
(𝑛− 1) e−𝜆

)︀
=

e−𝑦

𝑛 e
exp

(︂
𝑛− 1

𝑛
e−1−𝑦

)︂
≤ e−𝑦 exp (e−1)

𝑛 e
≤ 0.27 e−𝑦 ,

where the last inequality uses that 𝑛 ≥ 2. From now on, we work exclusively on Ω.

Key argument. We now make the simple (but crucial) observation that crit (𝜏 ⋆) ≥
crit (̂︀𝜏), hence

𝑛 pen (̂︀𝜏) + 𝜓̂︀𝜏 ≤ 𝑛 pen (𝜏 ⋆) + 𝜓𝜏⋆ ≤ 𝑛 pen (𝜏 ⋆) = 𝐶𝐷⋆𝑀2 .

Since we work on Ω, by definition of Ω
(0)
𝜏,𝜆 in Lemma 3.10, for any 𝜏 ∈ 𝒯𝑛, we have:

𝜓𝜏 ≥
1

3
𝐴𝜏 −

74

3
𝜆𝐷𝜏𝑀

2 .

Therefore, we get:

𝐶𝐷⋆𝑀2 ≥ 1

3
𝐴̂︀𝜏 +

(︂
𝐶 − 74

3
𝜆

)︂ ̂︀𝐷𝑀2 . (3.17)

Proof that ̂︀𝐷 ≤ 𝐷⋆. Since 𝐶 > 74𝜆/3 (by the lower bound in assumption (3.3)),
𝑀2 > 0 and 𝐴̂︀𝜏 ≥ 0, Eq. (3.17) implies that

̂︀𝐷 ≤ 𝐶

𝐶 − 74
3
𝜆
𝐷⋆ .

The lower bound in assumption (3.3) ensures that

𝐶

𝐶 − 74
3
𝜆
<
𝐷⋆ + 1

𝐷⋆
,

hence ̂︀𝐷 ≤ 𝐷⋆ on Ω.

Proof that ̂︀𝐷 ≥ 𝐷⋆. Since 𝐶 > 74𝜆/3 (by the lower bound in assumption (3.3)),
Eq. (3.17) implies that 𝐴̂︀𝜏 ≤ 3𝐶𝐷⋆𝑀2. A direct consequence of (3.3) is that 𝐴̂︀𝜏 <
1
2
𝑛Λ𝜏⋆∆2, hence ̂︀𝐷 ≥ 𝐷⋆ by Lemma 3.3.
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Loss between ̂︀𝜏 and 𝜏 ⋆. We have proved that ̂︀𝐷 = 𝐷⋆ on Ω, therefore, Eq. (3.17)
can be rewritten

𝐴̂︀𝜏 ≤ 74𝜆𝐷⋆𝑀2 .

By Lemma 3.4 and the definition of 𝜆, we get

min

{︂
Λ𝜏⋆ ,

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏)

}︂
≤ 148𝐷⋆𝑀2

∆2 · 𝑦 + log(𝑛) + 1

𝑛
= 𝑣1(𝑦) . (3.18)

Remark that Assumption (3.3) implies that

∆2

𝑀2

Λ𝜏⋆

6𝐷⋆
𝑛 >

74

3
(𝐷⋆ + 1)(𝑦 + log(𝑛) + 1)

hence
Λ𝜏⋆ > (𝐷⋆ + 1)

148𝐷⋆𝑀2

∆2 · 𝑦 + log(𝑛) + 1

𝑛
> 𝑣1(𝑦) .

Therefore, Eq. (3.18) can be simplified into

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏) ≤ 𝑣1(𝑦) .

Remark 3.4. The proof of Theorem 3.1 generalizes to ̂︀𝜏 defined by

̂︀𝜏 ∈ arg min
𝜏∈𝒯𝑛 /Λ𝜏≥𝛿𝑛

{︀
crit (𝜏)

}︀
instead of (2.2), for any 𝛿𝑛 ≥ 0 such that Λ𝜏⋆ ≥ 𝛿𝑛. Indeed, this assumption allows
to write crit (𝜏 ⋆) ≥ crit (̂︀𝜏) in the key argument, and the rest of the proof can stay
unchanged (with the same event Ω). More generally, any constraint can be added in
the minimization problem defining ̂︀𝜏 , provided that 𝜏 ⋆ satisfies this constraint.

3.4.5 Proof of Theorem 3.2

The structure of the proof is very similar to the proof of Theorem 3.1, the main
difference being the need for a more precise control of the penalty function near 𝐷⋆.
We refer to Section 3.5.7 for all the technical results required for this control.

Definition of Ω. Set 𝑦 > 0. For any 𝜏 , we set 𝜆𝜏 := 𝑦 + log 𝑛
𝐷𝜏

+ 4 and Ω𝜏,𝜆𝜏 as in
Lemma 3.10. Define Ω :=

⋂︀
𝜏∈𝒯𝑛 Ω𝜏,𝜆𝜏 . By the union bound, and since the Ω𝜏,𝜆𝜏 have

probability greater than 1− 3 e−𝜆𝜏𝐷𝜏 ,

P (Ω) = P

(︃⋂︁
𝜏∈𝒯𝑛

Ω𝜏,𝜆𝜏

)︃
≥ 1− 3

∑︁
𝜏∈𝒯𝑛

e−𝜆𝜏𝐷𝜏 .
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Recall that, for any 1 ≤ 𝑑 ≤ 𝑛,
(︀
𝑛−1
𝑑−1

)︀
≤
(︀
𝑛
𝑑

)︀
≤ (𝑛 e /𝑑)𝑑, hence

∑︁
𝜏∈𝒯𝑛

e−𝜆𝜏𝐷𝜏 =
𝑛∑︁

𝑑=1

(︂
𝑛− 1

𝑑− 1

)︂
e−𝑑(𝑦+log(𝑛/𝑑)+4)

≤
𝑛∑︁

𝑑=1

exp (𝑑+ 𝑑 log(𝑛)− 𝑑 log(𝑑)− 4𝑑− 𝑑𝑦 − 𝑑 log(𝑛) + 𝑑 log(𝑑))

=
𝑛∑︁

𝑑=1

exp (𝑑(−3− 𝑦)) =
𝑛∑︁

𝑑=1

(︂
e−𝑦

e3

)︂𝑑

= e−3−𝑦 ·1− (e−3−𝑦)𝑛

1− e−3−𝑦
≤ e−𝑦 /3.

The last inequality holds because 3 e−3 ≤ 1 and e−3−𝑦 < 1, and we have proved that
P (Ω) ≥ 1− e−𝑦. We now work solely on the event Ω.

Proof that ̂︀𝐷 ≤ 𝐷⋆ on Ω. Let 𝜏 be a segmentation such that 𝐷𝜏 > 𝐷⋆. Let
us show that crit (𝜏) > crit (𝜏 ⋆). In this case, we do not have a better lower bound
than 0 for the approximation error 𝐴𝜏 . We still can use the fact that

𝜓𝜏 ≥
−74

3
𝜆𝜏𝐷𝜏𝑀

2 ,

and we know that 𝜓𝜏⋆ ≤ 0. Thus

𝑛 (crit (𝜏)− crit (𝜏 ⋆)) = 𝜓𝜏 + 𝑛 penL (𝜏)− 𝜓𝜏⋆ − 𝑛 penL (𝜏 ⋆)

≥ −74

3

(︂
𝑦 + log

𝑛

𝐷𝜏

+ 4

)︂
𝐷𝜏𝑀

2 +𝐷𝜏

(︂
𝑐1 log

𝑛

𝐷𝜏

+ 𝑐2

)︂
−𝐷⋆

(︁
𝑐1 log

𝑛

𝐷⋆
+ 𝑐2

)︁
≥ 𝐷𝜏

(︂(︂
𝑐1 −

74

3
𝑀2

)︂
log

𝑛

𝐷𝜏

+

(︂
𝑐2 −

74𝑀2

3
(𝑦 + 4)

)︂)︂
−𝐷⋆

(︁
𝑐1 log

𝑛

𝐷⋆
+ 𝑐2

)︁
.

Let us set 𝑎 :=
(︀
𝑐1 − 74

3
𝑀2
)︀

and 𝑏 := 𝑐2 − 74𝑀2

3
(𝑦 + 4). Given that 𝑐1 > 𝑐1,min

and 𝑐2 = (𝑐1 + 74𝑀2(𝐷⋆ + 1)/3)(𝑦 + 4), we have 𝑎 > 0 and 𝑏 > 0. Moreover,
𝑏−𝑎 = 74𝑀2(𝐷⋆(𝑦+4)+1)/3+ 𝑐1(3+𝑦) is a positive quantity. Therefore, according
to Lemma 3.13 together with 𝐷𝜏 > 𝐷⋆,

𝑛 (crit (𝜏)− crit (𝜏 ⋆)) ≥ (𝐷⋆ + 1)

[︂(︂
𝑐1 − 74

3
𝑀2

)︂
log 𝑛

𝐷⋆+1
+

(︂
𝑐2 − 74𝑀2

3
(𝑦 + 4)

)︂]︂
−𝐷⋆

(︁
𝑐1 log

𝑛

𝐷⋆
+ 𝑐2

)︁
.
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After rewriting the right-hand side of the last display, we obtain

𝑛 (crit (𝜏)− crit (𝜏 ⋆)) ≥ 𝑐1
(︀
log(𝑛) +𝐷⋆ log𝐷⋆ − (𝐷⋆ + 1) log (𝐷⋆ + 1)

)︀
− 74𝑀2

3
(𝐷⋆ + 1) log 𝑛

𝐷⋆+1
+
(︁
𝑐2 − 74𝑀2

3
(𝐷⋆ + 1) (𝑦 + 4)

)︁
.

We now use the relationship between 𝑐2 and 𝑐1, together with Lemma 3.14 applied to
𝑥 = 𝐷⋆ to write

𝑛 (crit (𝜏)− crit (𝜏 ⋆)) ≥ 𝑐1
(︀
2 + 𝑦 + log(𝑛)− log𝐷⋆

)︀
− 74𝑀2

3
(𝐷⋆ + 1) (log(𝑛)− log (𝐷⋆ + 1)) .

This last display is positive if

𝑐1 >
74𝑀2

3
(𝐷⋆ + 1) (log(𝑛)− log (𝐷⋆ + 1))

2 + 𝑦 + log(𝑛)− log (𝐷⋆)
.

This is indeed the case according to Lemma 3.15 applied to 𝑥 = 𝐷⋆ together with
𝑐1 > 𝑐1,min, and we can conclude.

Proof that ̂︀𝐷 ≥ 𝐷⋆ on Ω. Let 𝜏 ∈ 𝒯𝑛 be such that 𝐷𝜏 < 𝐷⋆. We are going to
show that crit (𝜏) > crit (𝜏 ⋆). By construction of Ω, it holds that

𝜓𝜏 ≥
1

3
𝐴𝜏 −

74𝜆𝜏𝐷𝜏

3
𝑀2 .

Because of Lemma 3.3, this leads to

𝜓𝜏 ≥
𝑛Λ𝜏⋆∆2

6
− 74𝜆𝜏𝐷𝜏

3
𝑀2 .

According to Lemma 3.13, and since 𝐷𝜏 < 𝐷⋆,

𝜓𝜏 >
𝑛Λ𝜏⋆∆2

6
− 74𝐷⋆

3

(︁
𝑦 + log

𝑛

𝐷⋆
+ 4
)︁
𝑀2 .

On the other side, 𝜓𝜏⋆ ≤ 0, and

𝑛 penL (𝜏 ⋆)− 𝑛 penL (𝜏) < 𝐷⋆
(︁
𝑐1 log

𝑛

𝐷⋆
+ 𝑐2

)︁
.

Thus

𝑛 (crit (𝜏)− crit (𝜏 ⋆)) = 𝜓𝜏 + 𝑛 penL (𝜏)− 𝜓𝜏⋆ − 𝑛 penL (𝜏 ⋆)

>
𝑛Λ𝜏⋆∆2

6
− 74𝐷⋆

3

(︁
𝑦 + log

𝑛

𝐷⋆
+ 4
)︁
𝑀2

−𝐷⋆
(︁
𝑐1 log

𝑛

𝐷⋆
+ 𝑐2

)︁
.
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Let us use the relationship between 𝑐1 and 𝑐2. The last display is positive if

𝑛Λ𝜏⋆∆2

6𝐷⋆
> 𝑐1 (𝑦 + log(𝑛)− log (𝐷⋆) + 4) +

74

3
𝑀2

(︁
𝑦 + log

𝑛

𝐷⋆
+ 4
)︁

+
74

3
𝑀2 (𝐷⋆ + 1) (𝑦 + 4)

= 𝑐1

(︁
𝑦 + log

𝑛

𝐷⋆
+ 4
)︁

+
74

3
𝑀2

(︁
(𝑦 + 4) (𝐷⋆ + 2) + log

𝑛

𝐷⋆

)︁
,

which is true by Lemma 3.16 applied to 𝑥 = 𝐷⋆ together with the definition of 𝑐1,max.

At this point, we have proved the first part of Theorem 3.2: on the event Ω,̂︀𝐷 = 𝐷⋆. We now address the problem of finding an upper bound for 1
𝑛

d(1)
∞ (𝜏 ⋆, ̂︀𝜏).

Loss between ̂︀𝜏 and 𝜏 ⋆. Since ̂︀𝐷 = 𝐷⋆, we have penL (̂︀𝜏) = penL (𝜏 ⋆). Therefore,
𝜓̂︀𝜏 ≤ 𝜓𝜏⋆ . Since 𝜓𝜏⋆ ≤ 0 and 𝜓̂︀𝜏 ≥ 1

3
𝐴𝜏 − 74

3
𝜆̂︀𝜏 ̂︀𝐷𝑀2, we have

1

3
𝐴̂︀𝜏 ≤ 74

3
𝜆̂︀𝜏 ̂︀𝐷𝑀2 ≤ 74𝐷⋆𝑀2

3
(𝑦 + log(𝑛) + 4) .

By Lemma 3.4,

min

{︂
Λ𝜏⋆ ,

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏)

}︂
≤ 148𝐷⋆𝑀2

∆2 · 𝑦 + log(𝑛) + 4

𝑛
= 𝑣′1(𝑦) . (3.19)

Rewriting 𝑐1,min < 𝑐1,max as a condition on Λ𝜏⋆ , it follows that

Λ𝜏⋆ >
148𝑀2𝐷⋆ (2𝐷⋆ + 3) (𝑦 + log(𝑛) + 4)

𝑛∆2 = 𝑣′1 · (2𝐷⋆ + 3) .

From 𝐷⋆ ≥ 1,we deduce that Λ𝜏⋆ > 𝑣′1. Eq. (3.19) now yields

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏) < 𝑣′1(𝑦) ,

which concludes the proof of Theorem 3.2.

3.4.6 Proof of Theorem 3.3

We follow the strategy described at the beginning of Section 3.4. Throughout the
proof, we write ̂︀𝜏2 as a shortcut for ̂︀𝜏(𝐷⋆, 𝛿𝑛).

Key argument. By definition (3.7) of ̂︀𝜏2 = ̂︀𝜏(𝐷⋆, 𝛿𝑛), since we assume Λ𝜏⋆ ≥ 𝛿𝑛,

̂︀ℛ𝑛(𝜏 ⋆) ≥ ̂︀ℛ𝑛(̂︀𝜏2)
hence

0 ≥ 𝜓𝜏⋆ ≥ 𝜓̂︀𝜏2 = 𝐴̂︀𝜏2 + 2𝐿̂︀𝜏2 −𝑄̂︀𝜏2 .
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By Lemma 3.6, Lemma 3.7 and the facts that 𝐷̂︀𝜏2 = 𝐷⋆ and Λ̂︀𝜏2 ≥ 𝛿𝑛, we get

0 ≥ 𝜓̂︀𝜏2 ≥ 𝐴̂︀𝜏2 − 12 (𝐷⋆)2 ∆𝐵𝑛 −
4𝐷⋆𝐵2

𝑛

𝑛𝛿𝑛
.

Hence, using Lemma 3.4,

min

{︂
Λ𝜏⋆ ,

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏2)}︂ ≤ 24 (𝐷⋆)2 ∆

∆2

𝐵𝑛

𝑛
+

8𝐷⋆

∆2

𝐵2
𝑛

𝑛2𝛿𝑛
. (3.20)

Definition of Ω2. We define

Ω2 := {𝐵𝑛 ≤ 𝑦
√
𝑛𝑉 } .

By Lemma 3.11, under Assumption 2.2, P (Ω2) ≥ 1− 𝑦−2.

Conclusion. By definition of Ω2, Eq. (3.20) implies that on Ω2:

min

{︂
Λ𝜏⋆ ,

1

𝑛
d(1)
∞ (𝜏 ⋆, ̂︀𝜏2)}︂ ≤ 24(𝐷⋆)2

∆
√
𝑉

∆2

𝑦√
𝑛

+ 8𝐷⋆ 𝑉

∆2

𝑦2

𝑛𝛿𝑛
= 𝑣2(𝑦, 𝛿𝑛) .

Since we assume 𝑣2(𝑦, 𝛿𝑛) < Λ𝜏⋆ , the result follows.

3.5 Additional proofs

In this section are collected a large part of the technical details of the proofs that
precede. Some additional notation used solely in this section are introduced below.

We denote by 𝜆⋆1, . . . , 𝜆⋆𝐷⋆ the segments of 𝜏 ⋆, that is,

𝜆⋆𝑖 =
{︀
𝜏 ⋆𝑖−1 + 1, . . . , 𝜏 ⋆𝑖

}︀
.

For any segment 𝜆 of 𝜏 ∈ 𝒯𝑛, we denote by 𝜇⋆
𝜆 the value of 𝜇⋆

𝜏 on 𝜆, which does not
depend on 𝜏 and is given by (2.7):

𝜇⋆
𝜆 =

1

|𝜆|
∑︁
𝑗∈𝜆

𝜇⋆
𝑗 . (3.21)

We will sometimes write
∑︀

𝜆∈𝜏 instead of the more cumbersome
∑︀𝐷𝜏

ℓ=1, when the
dependency in 𝜏· is not apparent in the summation. More generally, we will abuse
the notation 𝜏 to denote the set of segments associated to the segmentation 𝜏 .
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3.5.1 Proof of Lemma 3.1

Proof of (i). We set 𝐷𝑖 := 𝐷𝜏 𝑖 for 𝑖 ∈ {1, 2}. Let us show first that d(2)
∞ (𝜏 1, 𝜏 2) =

d(1)
∞ (𝜏 1, 𝜏 2). Take any 𝑖 ∈

{︀
1, . . . , 𝐷1 − 1

}︀
, by the definition of Λ𝜏1 ,⃒⃒

𝜏 1𝑖 − 𝜏 2𝐷2

⃒⃒
=
⃒⃒
𝜏 1𝑖 − 𝑛

⃒⃒
≥ 𝑛Λ𝜏1 > 𝑛Λ𝜏1/2 ≥ 𝑛min

{︀
Λ𝜏1 ,Λ𝜏2

}︀
/2 ,

which is greater than d(1)
∞ (𝜏 1, 𝜏 2) by assumption. In the same fashion we can prove

that |𝜏 1𝑖 − 𝜏 20 | > d(1)
∞ (𝜏 1, 𝜏 2). Hence, for any 𝑖 ∈ {1, . . . , 𝐷1 − 1},

min
0≤𝑗≤𝐷2

⃒⃒
𝜏 1𝑖 − 𝜏 2𝑗

⃒⃒
= min

1≤𝑗≤𝐷2−1

⃒⃒
𝜏 1𝑖 − 𝜏 2𝑗

⃒⃒
,

which proves that d(2)
∞ (𝜏 1, 𝜏 2) = d(1)

∞ (𝜏 1, 𝜏 2).

Next, we prove that 𝐷1 = 𝐷2 and d(3)
∞ (𝜏 1, 𝜏 2) = d(1)

∞ (𝜏 1, 𝜏 2). Define the mapping
𝜑 :
{︀

1, . . . , 𝐷1 − 1
}︀
→
{︀

1, . . . , 𝐷2 − 1
}︀

such that{︀
𝜑(𝑖)

}︀
= arg min

1≤𝑗≤𝐷2−1

⃒⃒
𝜏 1𝑖 − 𝜏 2𝑗

⃒⃒
for all 𝑖 ∈ {1, . . . , 𝐷1 − 1}. This mapping is well-defined: indeed, suppose that 𝑗, 𝑘 ∈{︀

1, . . . , 𝐷2 − 1
}︀

both realize the minimum for some 𝑖 ∈
{︀

1, . . . , 𝐷1 − 1
}︀
. Since we

assumed 1
𝑛

d(1)
∞ (𝜏 1, 𝜏 2) < min

{︀
Λ𝜏1 ,Λ𝜏2

}︀
/2,⃒⃒

𝜏 1𝑖 − 𝜏 2𝑗
⃒⃒

=
⃒⃒
𝜏 1𝑖 − 𝜏 2𝑘

⃒⃒
≤ d(1)

∞
(︀
𝜏 1, 𝜏 2

)︀
< 𝑛min

{︀
Λ𝜏1 ,Λ𝜏2

}︀
/2.

By the triangle inequality,⃒⃒
𝜏 2𝑗 − 𝜏 2𝑘

⃒⃒
< 𝑛min

{︀
Λ𝜏1 ,Λ𝜏2

}︀
≤ 𝑛Λ𝜏2 ,

hence 𝑗 = 𝑘. Next, we show that 𝜑 is increasing. Take 𝑖, 𝑗 ∈
{︀

1, . . . , 𝐷1 − 1
}︀

such
that 𝑖 < 𝑗. Recall that 𝜏 𝑘· is increasing (𝑘 = 1, 2). Then

𝜏 2𝜑(𝑖) − 𝜏 2𝜑(𝑗) = 𝜏 2𝜑(𝑖) − 𝜏 1𝑖 + 𝜏 1𝑖 − 𝜏 1𝑗 + 𝜏 1𝑗 − 𝜏 2𝜑(𝑗)
= 𝜏 2𝜑(𝑖) − 𝜏 1𝑖 −

⃒⃒
𝜏 1𝑖 − 𝜏 1𝑗

⃒⃒
+ 𝜏 1𝑗 − 𝜏 2𝜑(𝑗)

≤
⃒⃒
𝜏 2𝜑(𝑖) − 𝜏 1𝑖

⃒⃒
−
⃒⃒
𝜏 1𝑖 − 𝜏 1𝑗

⃒⃒
+
⃒⃒
𝜏 1𝑗 − 𝜏 2𝜑(𝑗)

⃒⃒
≤ 2 d(1)

∞
(︀
𝜏 1, 𝜏 2

)︀
−
⃒⃒
𝜏 1𝑖 − 𝜏 1𝑗

⃒⃒
< 𝑛min

{︀
Λ𝜏1 ,Λ𝜏2

}︀
− 𝑛Λ𝜏1 ≤ 0 .

Hence 𝜑(𝑖) < 𝜑(𝑗), so 𝜑 is increasing. As a consequence, 𝜑 is injective and we
get 𝐷1 ≤ 𝐷2. The same argument, exchanging 𝜏 1 and 𝜏 2, shows that 𝐷2 ≤ 𝐷1.
Therefore, 𝐷1 = 𝐷2 and 𝜑 is an increasing permutation of

{︀
1, . . . , 𝐷1 − 1

}︀
, hence it

is the identity. Thus d(3)
∞ (𝜏 1, 𝜏 2) = d(1)

∞ (𝜏 1, 𝜏 2).

Finally, since d(3)
∞ is symmetric, d(𝑖)

∞ (𝜏 1, 𝜏 2) = d
(𝑖)
H (𝜏 1, 𝜏 2) for any 𝑖 ∈

{︀
1, 2, 3

}︀
.
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Proof of (ii). Since 𝐷𝜏1 = 𝐷𝜏2 , we can set 𝐷 = 𝐷𝜏1 = 𝐷𝜏2 . Next, define
𝜑(𝑖) := arg min1≤𝑗≤𝐷−1

⃒⃒
𝜏 1𝑖 − 𝜏 2𝑗

⃒⃒
and 𝐶𝜑(𝑖) := |𝜑(𝑖)| for all 𝑖 ∈ {1, . . . , 𝐷 − 1}.

Clearly, 𝐶𝜑(𝑖) ≥ 1 for any 𝑖. Let us show that we actually have 𝐶𝜑(𝑖) = 1.
Take 𝑖 and 𝑗 distinct elements of

{︀
1, . . . , 𝐷 − 1

}︀
, and suppose that 𝜑(𝑖) ∩ 𝜑(𝑗) is

non-empty. Let 𝑘 be any element of 𝜑(𝑖) ∩ 𝜑(𝑗). By the triangle inequality and the
definition of d(1)

∞ ,

𝑛Λ𝜏1 ≤
⃒⃒
𝜏 1𝑖 − 𝜏 1𝑗

⃒⃒
≤
⃒⃒
𝜏 1𝑖 − 𝜏 2𝑘

⃒⃒
+
⃒⃒
𝜏 2𝑘 − 𝜏 1𝑗

⃒⃒
≤ 2 d(1)

∞
(︀
𝜏 1, 𝜏 2

)︀
< 𝑛Λ𝜏1 .

Hence, the 𝜑(𝑖) are disjoint and we can write
∑︀𝐷−1

𝑖=1 𝐶𝜑(𝑖) = 𝐷 − 1, which clearly
implies that 𝐶𝜑(𝑖) = 1.

From now on, we identify 𝜑(𝑖) with its unique element. Let us show that 𝜑 is
increasing similarly to what we have done for proving (i). Take 𝑖, 𝑗 ∈

{︀
1, . . . , 𝐷− 1

}︀
such that 𝑖 < 𝑗. We showed that

𝜏 2𝜑(𝑖) − 𝜏 2𝜑(𝑗) ≤ 2 d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
−
⃒⃒
𝜏 1𝑖 − 𝜏 1𝑗

⃒⃒
,

thus according to the definition of Λ𝜏1 , and our assumption,

𝜏 2𝜑(𝑖) − 𝜏 2𝜑(𝑗) < 𝑛Λ𝜏1 − 𝑛Λ𝜏1 ≤ 0 .

Hence 𝜑(𝑖) < 𝜑(𝑗): 𝜑 is increasing. As a consequence,

d(1)
∞
(︀
𝜏 1, 𝜏 2

)︀
= d(1)

∞
(︀
𝜏 2, 𝜏 1

)︀
= d

(1)
H

(︀
𝜏 1, 𝜏 2

)︀
.

3.5.2 The Frobenius loss

A formula for d2
F

We start by proving a general formula for dF, which is stated by Lajugie et al.
[2014], we prove it here for completeness:

∀𝜏 1, 𝜏 2 ∈ 𝒯𝑛, dF

(︀
𝜏 1, 𝜏 2

)︀2
= 𝐷𝜏1 +𝐷𝜏2 − 2

𝐷𝜏1∑︁
𝑘=1

𝐷𝜏2∑︁
ℓ=1

|𝜆1𝑘 ∩ 𝜆2ℓ |
2

|𝜆1𝑘| × |𝜆2ℓ |
. (3.22)

Indeed, by definition, we have

dF

(︀
𝜏 1, 𝜏 2

)︀2
= Tr

(︀
(Π𝜏1 − Π𝜏2)

2
)︀

= Tr(Π𝜏1)⏟  ⏞  
=𝐷𝜏1

+ Tr(Π𝜏2)⏟  ⏞  
=𝐷𝜏2

−2 Tr(Π𝜏1Π𝜏2)

and Tr(Π𝜏1Π𝜏2) =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

1𝜆1(𝑖)=𝜆1(𝑗) and 𝜆2(𝑖)=𝜆2(𝑗)

|𝜆1(𝑖)| |𝜆2(𝑖)|
=

𝐷𝜏1∑︁
𝑘=1

𝐷𝜏2∑︁
ℓ=1

|𝜆1𝑘 ∩ 𝜆2ℓ |
2

|𝜆1𝑘| × |𝜆2ℓ |
,

where we denoted by 𝜆𝑘(𝑖) the segment of 𝜏 𝑘 to which 𝑖 ∈ {1, . . . , 𝑛} belongs.
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Proof of Eq. (3.5)

Eq. (3.5) is stated by Lajugie et al. [2014]. The upper bound is a straightforward
consequence of Eq. (3.22). We prove the lower bound here for completeness. We
remark that

𝐷𝜏1∑︁
𝑘=1

𝐷𝜏2∑︁
ℓ=1

|𝜆1𝑘 ∩ 𝜆2ℓ |
2

|𝜆1𝑘| × |𝜆2ℓ |
≤

𝐷𝜏1∑︁
𝑘=1

𝐷𝜏2∑︁
ℓ=1

|𝜆1𝑘 ∩ 𝜆2ℓ |
|𝜆1𝑘|

= 𝐷𝜏1 ,

hence Eq. (3.22) shows that

dF

(︀
𝜏 1, 𝜏 2

)︀2 ≥ 𝐷𝜏2 −𝐷𝜏1 .

The lower bound follows since 𝜏 1 and 𝜏 2 play symmetric roles.

Proof of Prop. 3.1

Throughout the proof, we write 𝐷 = 𝐷𝜏1 = 𝐷𝜏2 , 𝜀 = 𝑛−1 d(1)
∞ (𝜏 1, 𝜏 2) and we

denote by (𝜆1𝑘)1≤𝑘≤𝐷 and (𝜆2𝑘)1≤𝑘≤𝐷 the segments of 𝜏 1 and 𝜏 2, respectively.

Preliminary remark. Since we assume that 𝐷𝜏1 = 𝐷𝜏2 and 1
𝑛

d(1)
∞ (𝜏 1, 𝜏 2) = 𝜀 <

Λ𝜏1/2, point (ii) in Lemma 3.1 shows that d(1)
∞ (𝜏 1, 𝜏 2) = d

(1)
H (𝜏 1, 𝜏 2) = d(3)

∞ (𝜏 1, 𝜏 2).
In other words, for every 𝑘 ∈ {1, . . . , 𝐷 − 1}, we have |𝜏 1𝑘 − 𝜏 2𝑘 | ≤ 𝑛𝜀, and some
𝑘0 ∈ {1, . . . , 𝐷 − 1} exists such that

⃒⃒
𝜏 1𝑘0 − 𝜏 2𝑘0

⃒⃒
= 𝑛𝜀. As a consequence, for every

𝑘 ∈ {1, . . . , 𝐷 − 1},⃒⃒⃒⃒
𝜆1𝑘
⃒⃒
−
⃒⃒
𝜆2𝑘
⃒⃒⃒⃒
≤ 2𝑛𝜀 and

⃒⃒
𝜆1𝑘 ∩ 𝜆2𝑘

⃒⃒
≥
⃒⃒
𝜆1𝑘
⃒⃒
− 2𝑛𝜀 . (3.23)

Upper bound for dF (𝜏 1, 𝜏 2)
2. We focus on the sum appearing in the right-hand

side of Eq. (3.22). Using Eq. (3.23), we get:

𝐷∑︁
𝑘=1

𝐷∑︁
ℓ=1

|𝜆1𝑘 ∩ 𝜆2ℓ |
2

|𝜆1𝑘| × |𝜆2ℓ |
≥

𝐷∑︁
𝑘=1

|𝜆1𝑘 ∩ 𝜆2𝑘|
2

|𝜆1𝑘| × |𝜆2𝑘|

≥
𝐷∑︁

𝑘=1

[︃
(|𝜆1𝑘| − 2𝑛𝜀)

2

|𝜆1𝑘| × (|𝜆1𝑘|+ 2𝑛𝜀)

]︃
=

𝐷∑︁
𝑘=1

(︂
1− 2𝑛𝜀

|𝜆1
𝑘|

)︂2

1 + 2𝑛𝜀

|𝜆1
𝑘|

≥
𝐷∑︁

𝑘=1

(︂
1− 6𝑛𝜀

|𝜆1𝑘|

)︂
≥ 𝐷 − 6𝜀𝐷

Λ𝜏1
,

since for any 𝑥 ≥ 0, (1−𝑥)2

1+𝑥
≥ 1− 3𝑥. The upper bound follows, using Eq. (3.22).

Lower bound for dF (𝜏 1, 𝜏 2)
2. As shown in the preliminary remark, there exists

some 𝑘0 ∈ {1, . . . , 𝐷 − 1} such that
⃒⃒
𝜏 1𝑘0 − 𝜏 2𝑘0

⃒⃒
= 𝑛𝜀. First consider the case where
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𝜏 1𝑘0 < 𝜏 2𝑘0 . Then, by definition of dF and Π𝜏 , we have:

dF

(︀
𝜏 1, 𝜏 2

)︀2
:=

∑︁
1≤𝑖,𝑗≤𝑛

(Π𝜏1 − Π𝜏2)
2
𝑖,𝑗

≥
∑︁

𝑖∈𝜆1
𝑘0+1∩𝜆

2
𝑘0

∑︁
𝑗∈𝜆1

𝑘0+1∩𝜆
2
𝑘0+1

1⃒⃒
𝜆1𝑘0+1

⃒⃒2
+

∑︁
𝑖∈𝜆1

𝑘0+1∩𝜆
2
𝑘0+1

∑︁
𝑗∈𝜆1

𝑘0+1∩𝜆
2
𝑘0

1⃒⃒
𝜆1𝑘0+1

⃒⃒2
=

2
⃒⃒
𝜆1𝑘0+1 ∩ 𝜆2𝑘0

⃒⃒
·
⃒⃒
𝜆1𝑘0+1 ∩ 𝜆2𝑘0+1

⃒⃒⃒⃒
𝜆1𝑘0+1

⃒⃒2 .

Now, remark that
⃒⃒
𝜆1𝑘0+1 ∩ 𝜆2𝑘0

⃒⃒
= 𝑛𝜀, by the preliminary remark and our assumption

𝜏 2𝑘0 > 𝜏 1𝑘0 . Using also Eq. (3.23), we get:

dF

(︀
𝜏 1, 𝜏 2

)︀2 ≥ 2𝑛𝜀
(︀⃒⃒
𝜆1𝑘0+1

⃒⃒
− 2𝑛𝜀

)︀⃒⃒
𝜆1𝑘0+1

⃒⃒2 ≥ 2𝑛𝜀

3Λ𝜏1
,

since
⃒⃒
𝜆1𝑘0+1

⃒⃒
− 2𝑛𝜀 ≥

⃒⃒
𝜆1𝑘0+1

⃒⃒
/3 and

⃒⃒
𝜆1𝑘0+1

⃒⃒
≤ Λ𝜏1 . When 𝜏 1𝑘0 > 𝜏 2𝑘0 , we apply the

same reasoning, restricting the sum over 𝑖, 𝑗 in the definition of dF to 𝑖 ∈ 𝜆1𝑘0 ∩ 𝜆2𝑘0
and 𝑗 ∈ 𝜆1𝑘0 ∩ 𝜆2𝑘0+1 (plus its symmetric). We obtain the same lower bound, which
concludes the proof.

3.5.3 Lower bounds on the approximation error

This section provides the proofs of Lemmas 3.3 and 3.4.

Preliminary lemma

We start with a lemma useful in the two proofs.

Lemma 3.12. If a segment 𝜆 ⊂ {1, . . . , 𝑛} intersects only two segments of 𝜏 ⋆, 𝜆⋆𝑖
and 𝜆⋆𝑖+1, then we have:

∑︁
𝑗∈𝜆

⃦⃦
𝜇⋆
𝑗 − 𝜇⋆

𝜆

⃦⃦2
ℋ =

|𝜆 ∩ 𝜆⋆𝑖 | ·
⃒⃒
𝜆 ∩ 𝜆⋆𝑖+1

⃒⃒
|𝜆 ∩ 𝜆⋆𝑖 |+

⃒⃒
𝜆 ∩ 𝜆⋆𝑖+1

⃒⃒ ⃦⃦⃦𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆⋆
𝑖

⃦⃦⃦2
ℋ

(3.24)

≥
(︃
|𝜆 ∩ 𝜆⋆𝑖 |
|𝜆⋆𝑖 |

∧
⃒⃒
𝜆 ∩ 𝜆⋆𝑖+1

⃒⃒⃒⃒
𝜆⋆𝑖+1

⃒⃒ )︃
· |𝜆

⋆
𝑖 | ·
⃒⃒
𝜆⋆𝑖+1

⃒⃒
|𝜆⋆𝑖 |+

⃒⃒
𝜆⋆𝑖+1

⃒⃒ · ⃦⃦⃦𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆⋆
𝑖

⃦⃦⃦2
ℋ
. (3.25)

Proof. We first prove Eq. (3.24). Since 𝜆 only intersects 𝜆⋆𝑖 and 𝜆⋆𝑖+1, we have:∑︁
𝑗∈𝜆

⃦⃦
𝜇⋆
𝑗 − 𝜇⋆

𝜆

⃦⃦2
ℋ =

∑︁
𝑗∈𝜆∩𝜆⋆

𝑖

⃦⃦
𝜇⋆
𝑗 − 𝜇⋆

𝜆

⃦⃦2
ℋ +

∑︁
𝑗∈𝜆∩𝜆⋆

𝑖+1

⃦⃦
𝜇⋆
𝑗 − 𝜇⋆

𝜆

⃦⃦2
ℋ
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= |𝜆 ∩ 𝜆⋆𝑖 | ·
⃦⃦⃦
𝜇⋆
𝜆⋆
𝑖
− 𝜇⋆

𝜆

⃦⃦⃦2
ℋ

+
⃒⃒
𝜆 ∩ 𝜆⋆𝑖+1

⃒⃒
·
⃦⃦⃦
𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆

⃦⃦⃦2
ℋ
. (3.26)

Since 𝜇⋆
𝜆 is given by Eq. (3.21), we obtain

⃦⃦⃦
𝜇⋆
𝜆⋆
𝑖
− 𝜇⋆

𝜆

⃦⃦⃦2
ℋ

=

⃦⃦⃦⃦
⃦ 1

|𝜆|
∑︁
𝑗∈𝜆

(︁
𝜇⋆
𝜆⋆
𝑖
− 𝜇⋆

𝑗

)︁⃦⃦⃦⃦⃦
2

ℋ

=

⃦⃦⃦⃦
⃦⃦ 1

|𝜆|
∑︁

𝑗∈𝜆∩𝜆⋆
𝑖+1

(︁
𝜇⋆
𝜆⋆
𝑖
− 𝜇⋆

𝜆⋆
𝑖+1

)︁⃦⃦⃦⃦⃦⃦
2

ℋ

=

⃒⃒
𝜆 ∩ 𝜆⋆𝑖+1

⃒⃒2
|𝜆|2

⃦⃦⃦
𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆⋆
𝑖

⃦⃦⃦2
ℋ
.

The same computation on 𝜆 ∩ 𝜆⋆𝑖+1 yields⃦⃦⃦
𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆

⃦⃦⃦2
ℋ

=
|𝜆 ∩ 𝜆⋆𝑖 |2

|𝜆|2
⃦⃦⃦
𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆⋆
𝑖

⃦⃦⃦2
ℋ
.

Therefore, Eq. (3.26) and the fact that |𝜆| = |𝜆 ∩ 𝜆⋆𝑖 |+
⃒⃒
𝜆 ∩ 𝜆⋆𝑖+1

⃒⃒
yield Eq. (3.24).

Now, we remark that for any 𝑎, 𝑏, 𝑐, 𝑑 > 0,

𝑎𝑏𝑐𝑑

𝑎𝑏+ 𝑐𝑑
=

1
𝑎𝑏

max(𝑎,𝑐)
+ 𝑐𝑑

max(𝑎,𝑐)

×min(𝑎, 𝑐)× 𝑏𝑑 ≥ min(𝑎, 𝑐)
𝑏𝑑

𝑏+ 𝑑
.

Taking 𝑎 = |𝜆 ∩ 𝜆⋆𝑖 | / |𝜆⋆𝑖 |, 𝑏 = |𝜆⋆𝑖 |, 𝑐 =
⃒⃒
𝜆 ∩ 𝜆⋆𝑖+1

⃒⃒
/
⃒⃒
𝜆⋆𝑖+1

⃒⃒
and 𝑑 =

⃒⃒
𝜆⋆𝑖+1

⃒⃒
, we get

Eq. (3.25).

Proof of Lemma 3.3

In fact, we prove a slightly stronger statement. We show that, for any 𝑛 ≥ 2, for
any 𝐷⋆ ∈ {2, . . . , 𝑛}, for any 𝐷 ∈ {1, . . . , 𝐷⋆ − 1} and any 𝜏 ∈ 𝒯 𝐷

𝑛 ,

‖𝜇⋆ − 𝜇⋆
𝜏‖2 ≥ min

1≤𝑖≤𝐷⋆−1

{︃
|𝜆⋆𝑖 | ·

⃒⃒
𝜆⋆𝑖+1

⃒⃒
|𝜆⋆𝑖 |+

⃒⃒
𝜆⋆𝑖+1

⃒⃒ · ⃦⃦⃦𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆⋆
𝑖

⃦⃦⃦2
ℋ

}︃
. (3.27)

Then,

‖𝜇⋆ − 𝜇⋆
𝜏‖2 ≥ Γ ·∆2 where Γ =

(︃
𝑛 max

1≤𝑖≤𝐷⋆−1

{︃
1

|𝜆⋆𝑖 |
+

1⃒⃒
𝜆⋆𝑖+1

⃒⃒}︃)︃−1

.

Since we always have

Λ𝜏⋆ ≥ Γ ≥ 1

2
Λ𝜏⋆ ,

Eq. (3.12) follows.

Proof of Eq. (3.27) by induction. We show by strong induction on 𝐷⋆ that, for
any 𝐷⋆ ≥ 2, for any 𝐷 ∈ {1, . . . , 𝐷⋆ − 1}, any 𝑛 ≥ 𝐷⋆ and any 𝜏 ∈ 𝒯 𝐷

𝑛 , Eq. (3.27)
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holds true.
First, if 𝐷⋆ = 2, the result follows by Eq. (3.25) in Lemma 3.12 since we then

have 𝑖 = 1 and
|𝜆 ∩ 𝜆⋆1|
|𝜆⋆1|

=
|𝜆 ∩ 𝜆⋆2|
|𝜆⋆2|

= 1 .

Suppose now that the result is proved for all 𝐷⋆ ∈ {2, . . . , 𝑝} and consider a
change-point problem (𝜏 ⋆, 𝜇⋆) with 𝐷⋆ = 𝐷⋆ = 𝑝 + 1 and 𝑛 ≥ 𝑝 + 1. Let 𝐷 < 𝑝 + 1
and some segmentation 𝜏 ∈ 𝒯 𝐷

𝑛 be fixed. Then one of these two scenarios occurs: (i)
there exists 𝜆⋆𝑖 with 2 ≤ 𝑖 ≤ 𝐷⋆ − 1 that does not contain any change-point of 𝜏 , or
(ii) 𝜆⋆2,...,𝜆⋆𝐷⋆−1 all contain a change-point of 𝜏 .

Case (i). Suppose that there exists an inner segment 𝜆⋆𝑖 of 𝜏 ⋆, 2 ≤ 𝑖 ≤ 𝐷⋆ − 1,
that does not contain any change-point of 𝜏 (see Fig. 3-2). Therefore, there exists
𝑘 ∈ {1, . . . , 𝐷} such that 𝜆⋆𝑖 $ 𝜆𝑘. By definition, there are 𝑖− 1 change-points of 𝜏 ⋆
to the left of 𝜆⋆𝑖 and 𝑘 − 1 change-points of 𝜏 to the left of 𝜆⋆𝑖 . Suppose that 𝑘 < 𝑖.
We define 𝜏 ∘ as the segmentation obtained by adding 𝜏 ⋆𝑖 to 𝜏 (see Fig. 3-2). Then
‖𝜇⋆ − 𝜇⋆

𝜏‖2 ≥ ‖𝜇⋆ − 𝜇⋆
𝜏∘‖2 because 𝜏 ∘ is finer than 𝜏 . Reducing 𝜏 ∘ to a segmentatioñ︀𝜏 ∘ of {1, 2, . . . , 𝜏 ⋆𝑖 } in 𝑘 segments and 𝜏 ⋆ to a segmentation ̃︀𝜏 ⋆ of {1, 2, . . . , 𝜏 ⋆𝑖 } in 𝑖

segments and defining ̃︀𝜇⋆ = (𝜇⋆
1, . . . , 𝜇

⋆
𝜏⋆𝑖

) ∈ ℋ𝑖, we get back to a situation covered by
the induction since 𝑖 ≤ 𝐷⋆ − 1 and 𝑘 < 𝑖. So,

‖̃︀𝜇⋆ − ̃︀𝜇⋆̃︀𝜏∘‖2 ≥ inf
1≤𝑗≤𝑖−1

{︃ ⃒⃒
𝜆⋆𝑗
⃒⃒
·
⃒⃒
𝜆⋆𝑗+1

⃒⃒⃒⃒
𝜆⋆𝑗
⃒⃒

+
⃒⃒
𝜆⋆𝑗+1

⃒⃒ · ⃦⃦⃦̃︀𝜇⋆
𝜆⋆
𝑗+1
− ̃︀𝜇⋆

𝜆⋆
𝑗

⃦⃦⃦2
ℋ

}︃

≥ inf
1≤𝑗≤𝐷⋆−1

{︃ ⃒⃒
𝜆⋆𝑗
⃒⃒
·
⃒⃒
𝜆⋆𝑗+1

⃒⃒⃒⃒
𝜆⋆𝑗
⃒⃒

+
⃒⃒
𝜆⋆𝑗+1

⃒⃒ · ⃦⃦⃦𝜇⋆
𝜆⋆
𝑗+1
− 𝜇⋆

𝜆⋆
𝑗

⃦⃦⃦2
ℋ

}︃

and we get the result since ‖𝜇⋆ − 𝜇⋆
𝜏∘‖2 ≥ ‖̃︀𝜇⋆ − ̃︀𝜇⋆̃︀𝜏∘‖2. A symmetric reasoning can

be applied if 𝑘 ≥ 𝑖, considering change-points to the right of 𝜆⋆𝑖 and using that
𝐷 − 𝑘 + 1 < 𝐷⋆ − 𝑖+ 1 since 𝐷 < 𝐷⋆.

𝜆⋆𝑖
𝜆𝑘

̃︀𝜏 ⋆
𝜏 ⋆

𝜏

𝜏 ∘̃︀𝜏 ∘
· · ·
· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

· · ·

Figure 3-2 – Proof of Lemma 3.3, Case (i): 𝜆⋆𝑖 is a segment of 𝜏 ⋆ that is included in a
segment of 𝜏 . The segmentation 𝜏 ∘ is obtained by joining 𝜏 ⋆𝑖 to the segmentation 𝜏 .

Case (ii). Suppose that each inner segment of 𝜏 ⋆ contains a change-point of 𝜏 .
Since there are 𝐷⋆ − 2 inner segments of 𝜏 ⋆ and 𝐷 − 1 ≤ 𝐷⋆ − 2 change-points of 𝜏 ,
there is at most (hence exactly) one change-point of 𝜏 in each inner segment of 𝜏 ⋆.
Then 𝐷 = 𝐷⋆ − 1 and we are in the situation depicted in Fig. 3-3.
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𝜏 ⋆

𝜏
· · ·

· · ·
𝜆⋆1 𝜆⋆2 𝜆⋆𝐷 𝜆⋆𝐷+1

𝜆1 𝜆2 𝜆𝐷

𝛼2 |𝜆⋆2| (1− 𝛼2) |𝜆⋆2| 𝛼𝐷 |𝜆⋆𝐷| (1− 𝛼𝐷) |𝜆⋆𝐷|

Figure 3-3 – Proof of Lemma 3.3, Case (ii): 𝐷 = 𝐷⋆ − 1 and each inner segment
of 𝜏 ⋆ contains exactly one change-point of 𝜏 .

We can use Eq. (3.25) in Lemma 3.12 to lower bound the contribution of each
𝜆 ∈ 𝜏 to ‖𝜇⋆ − 𝜇⋆

𝜏‖2. For 2 ≤ 𝑖 ≤ 𝐷 = 𝐷⋆ − 1, define 𝛼𝑖 := |𝜆⋆𝑖 ∩ 𝜆𝑖−1| / |𝜆⋆𝑖 |. Then,
we have

‖𝜇⋆ − 𝜇⋆
𝜏‖2 ≥ (1 ∧ 𝛼2)

|𝜆⋆1| · |𝜆⋆2|
|𝜆⋆1|+ |𝜆⋆2|

·
⃦⃦⃦
𝜇⋆
𝜆⋆
2
− 𝜇⋆

𝜆⋆
1

⃦⃦⃦2
ℋ

+
𝐷−1∑︁
𝑗=2

(︃[︀
(1− 𝛼𝑗) ∧ 𝛼𝑗+1

]︀
·
⃒⃒
𝜆⋆𝑗
⃒⃒
·
⃒⃒
𝜆⋆𝑗+1

⃒⃒⃒⃒
𝜆⋆𝑗
⃒⃒

+
⃒⃒
𝜆⋆𝑗+1

⃒⃒ · ⃦⃦⃦𝜇⋆
𝜆⋆
𝑗+1
− 𝜇⋆

𝜆⋆
𝑗

⃦⃦⃦2
ℋ

)︃

+
[︀
(1− 𝛼𝐷) ∧ 1

]︀ |𝜆⋆𝐷| · ⃒⃒𝜆⋆𝐷+1

⃒⃒
|𝜆⋆𝐷|+

⃒⃒
𝜆⋆𝐷+1

⃒⃒ · ⃦⃦⃦𝜇⋆
𝜆⋆
𝐷+1
− 𝜇⋆

𝜆⋆
𝐷

⃦⃦⃦2
ℋ

≥ [1 ∧ 𝛼2 +(1− 𝛼2) ∧ 𝛼3 + · · ·+ (1− 𝛼𝐷−1) ∧ 𝛼𝐷 + (1− 𝛼𝐷) ∧ 1]

× inf
1≤𝑗≤𝐷⋆−1

{︃ ⃒⃒
𝜆⋆𝑗
⃒⃒
·
⃒⃒
𝜆⋆𝑗+1

⃒⃒⃒⃒
𝜆⋆𝑗
⃒⃒

+
⃒⃒
𝜆⋆𝑗+1

⃒⃒ · ⃦⃦⃦𝜇⋆
𝜆⋆
𝑗+1
− 𝜇⋆

𝜆⋆
𝑗

⃦⃦⃦2
ℋ

}︃
.

Since 𝛼𝑖 ≥ 0 for any 2 ≤ 𝑖 ≤ 𝐷⋆ − 1, it is straightforward to show that

𝛼2 + (1− 𝛼2) ∧ 𝛼3 + · · ·+ (1− 𝛼𝐷) ≥ 1 ,

which concludes the proof.

3.5.4 Proof of Lemma 3.4

Let us define 𝛿 := min
{︀
𝑛Λ𝜏⋆ , d

(1)
∞ (𝜏 ⋆, 𝜏)

}︀
. If 𝛿 = 0, then Eq. (3.13) holds true.

We assume from now on that 𝛿 > 0.
Because 𝑛Λ𝜏⋆ ≥ 𝛿, for any 1 ≤ 𝑖 ≤ 𝐷⋆ − 1, we can write

⃒⃒
𝜏 ⋆𝑖+1 − 𝜏 ⋆𝑖

⃒⃒
≥ 𝛿. On the

other hand, because d(1)
∞ (𝜏 ⋆, 𝜏) ≥ 𝛿, there exists 𝑖 ∈ {1, . . . , 𝐷⋆ − 1} such that, for

any 𝑗 ∈ {1, . . . , 𝐷 − 1}, |𝜏 ⋆𝑖 − 𝜏𝑗| ≥ 𝛿. Since 𝛿 ≤ 𝑛Λ𝜏⋆ , this also holds true for 𝑗 = 0
and 𝑗 = 𝐷. Let us define, as illustrated by Fig. 3-4,

𝜆∘ :=
{︀
𝜏 ⋆𝑖 − 𝛿 + 1, . . . , 𝜏 ⋆𝑖 , 𝜏

⋆
𝑖 + 1, . . . , 𝜏 ⋆𝑖 + 𝛿

}︀
.
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∙ × ∙ ×
∙ ∙ ∙ ∙ ∙ × ∙ ∙ × ∙𝜏 ⋆

𝜏

𝜆∘

𝜏 ⋆𝑖 𝜏 ⋆𝑖+1

Figure 3-4 – Construction of 𝜆∘ in the proof of Lemma 3.4. In this case, 𝛿 = 2 since
Λ𝜏⋆ = 2/10 (the rightmost segment of 𝜏 ⋆ is of size 2) and d(1)

∞ (𝜏 ⋆, 𝜏) = 3 (achieved
in 𝜏 ⋆𝑖 ).

Since 𝜆∘ is included in a segment of 𝜏 ,

‖𝜇⋆ − 𝜇⋆
𝜏‖2 ≥

∑︁
𝑗∈𝜆∘

⃦⃦
𝜇⋆
𝑗 − (𝜇⋆

𝜏 )𝑗
⃦⃦2
ℋ ≥

∑︁
𝑗∈𝜆∘

⃦⃦
𝜇⋆
𝑗 − 𝜇⋆

𝜆∘

⃦⃦2
ℋ .

Because of the hypothesis we made, 𝜆∘ only intersects 𝜆⋆𝑖 and 𝜆⋆𝑖+1 among the segments
of 𝜏 ⋆, so Eq. (3.24) in Lemma 3.12 shows that

∑︁
𝑗∈𝜆∘

⃦⃦
𝜇⋆
𝑗 − 𝜇⋆

𝜆∘

⃦⃦2
ℋ =

|𝜆∘ ∩ 𝜆⋆𝑖 | ·
⃒⃒
𝜆∘ ∩ 𝜆⋆𝑖+1

⃒⃒
|𝜆∘ ∩ 𝜆⋆𝑖 |+

⃒⃒
𝜆∘ ∩ 𝜆⋆𝑖+1

⃒⃒ ⃦⃦⃦𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆⋆
𝑖

⃦⃦⃦2
ℋ

=
𝛿

2

⃦⃦⃦
𝜇⋆
𝜆⋆
𝑖+1
− 𝜇⋆

𝜆⋆
𝑖

⃦⃦⃦2
ℋ
≥ 𝛿

2
∆2 ,

hence the result.

3.5.5 Proof of Lemma 3.7

In this proof, since 𝜏 is fixed, we denote by 𝜆1, . . . , 𝜆𝐷 the segments of 𝜏 , that is,
𝜆𝑖 =

{︀
𝜏𝑖−1 + 1, . . . , 𝜏𝑖

}︀
.

First, notice that

𝐿𝜏 = ⟨𝜇⋆ − 𝜇⋆
𝜏 , 𝜀⟩ =

𝐷⋆∑︁
𝑖=1

⟨𝜇⋆
𝜆⋆
𝑖
,
∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗⟩ℋ −
𝐷𝜏∑︁
𝑖=1

⟨𝜇⋆
𝜆𝑖
,
∑︁
𝑗∈𝜆𝑖

𝜀𝑗⟩ℋ . (3.28)

Now, if𝐷𝜏 < 𝐷⋆ we arbitrarily define 𝜆𝐷𝜏+1 = · · · = 𝜆𝐷⋆ = ∅, so that
∑︀

𝑗∈𝜆𝑖
𝜀𝑗 = 0 for

every 𝑖 ∈ {𝐷𝜏 + 1, . . . , 𝐷⋆}. Similarly, if 𝐷⋆ < 𝐷𝜏 , we define 𝜆⋆𝐷⋆+1 = · · · = 𝜆𝐷𝜏 = ∅.
We also define 𝜇⋆

∅ = 𝜇⋆
𝑛 by convention. Then, defining 𝐷+ := max

{︀
𝐷⋆, 𝐷𝜏

}︀
, we can

rewrite Eq. (3.28) as follows:

𝐿𝜏 =
𝐷+∑︁
𝑖=1

⟨𝜇⋆
𝜆⋆
𝑖
,
∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗⟩ℋ −
𝐷+∑︁
𝑖=1

⟨𝜇⋆
𝜆𝑖
,
∑︁
𝑗∈𝜆𝑖

𝜀𝑗⟩ℋ

=
𝐷+∑︁
𝑖=1

⟨𝜇⋆
𝜆⋆
𝑖
− 𝜇⋆

𝜆𝑖
,
∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗⟩ℋ +
𝐷+∑︁
𝑖=1

⟨𝜇⋆
𝜆𝑖
,
∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗 −
∑︁
𝑗∈𝜆𝑖

𝜀𝑗⟩ℋ
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=
𝐷+∑︁
𝑖=1

⟨𝜇⋆
𝜆⋆
𝑖
− 𝜇⋆

𝜆𝑖
,
∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗⟩ℋ +
𝐷+∑︁
𝑖=1

⟨𝜇⋆
𝜆𝑖
− 𝜇⋆

𝑛,
∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗 −
∑︁
𝑗∈𝜆𝑖

𝜀𝑗⟩ℋ ,

since
𝐷+∑︁
𝑖=1

(︁∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗 −
∑︁
𝑗∈𝜆𝑖

𝜀𝑗

)︁
= 0 .

Then, by the triangle inequality and Cauchy-Schwarz inequality,

|𝐿𝜏 | ≤
𝐷+∑︁
𝑖=1

⃦⃦⃦
𝜇⋆
𝜆⋆
𝑖
− 𝜇⋆

𝜆𝑖

⃦⃦⃦
ℋ

⃦⃦⃦⃦
⃦⃦∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗

⃦⃦⃦⃦
⃦⃦
ℋ

+
𝐷+∑︁
𝑖=1

⃦⃦
𝜇⋆
𝜆𝑖
− 𝜇⋆

𝑛

⃦⃦
ℋ

⃦⃦⃦⃦
⃦⃦∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗 −
∑︁
𝑗∈𝜆𝑖

𝜀𝑗

⃦⃦⃦⃦
⃦⃦
ℋ

≤ diam conv
{︀
𝜇⋆
𝑗 / 𝑗 ∈

{︀
1, . . . , 𝑛

}︀}︀
×

⎡⎣𝐷+∑︁
𝑖=1

⃦⃦⃦⃦
⃦⃦∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗

⃦⃦⃦⃦
⃦⃦
ℋ

+
𝐷+∑︁
𝑖=1

⎛⎝⃦⃦⃦⃦⃦⃦∑︁
𝑗∈𝜆⋆

𝑖

𝜀𝑗

⃦⃦⃦⃦
⃦⃦
ℋ

+

⃦⃦⃦⃦
⃦∑︁
𝑗∈𝜆𝑖

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

⎞⎠⎤⎦
≤ 3𝐷+ diam conv

{︀
𝜇⋆
𝑗 / 𝑗 ∈

{︀
1, . . . , 𝑛

}︀}︀
× sup

1≤𝑎<𝑏≤𝑛

⃦⃦⃦⃦
⃦

𝑏∑︁
𝑗=𝑎

𝜀𝑗

⃦⃦⃦⃦
⃦
ℋ

where we used that 𝜇⋆
𝜆 ∈ conv

{︀
𝜇⋆
𝑗 / 𝑗 ∈

{︀
1, . . . , 𝑛

}︀}︀
for any segment 𝜆. Since the

diameter of the convex hull of a finite set of points is equal to the diameter of the set,
we have

diam conv
{︀
𝜇⋆
𝑗 / 𝑗 ∈

{︀
1, . . . , 𝑛

}︀}︀
= diam

{︀
𝜇⋆
𝑗 / 𝑗 ∈

{︀
1, . . . , 𝑛

}︀}︀
≤ (𝐷⋆ − 1)∆ < 𝐷⋆∆ .

Using also Lemma 3.5, we get the result.

3.5.6 Proof of Lemma 3.11

Let us put 𝜁 := ‖𝜀1 + · · ·+ 𝜀𝑛‖2ℋ. Since for any 𝑗 ̸= 𝑘, E [⟨𝜀𝑗, 𝜀𝑘⟩ℋ] = 0 (see
Remark 3.5), by definition of 𝑣𝑗,

E [𝜁] = E
[︀
‖𝜀1 + · · ·+ 𝜀𝑛‖2ℋ

]︀
=

𝑛∑︁
𝑗=1

𝑣𝑗 .

We recognize the right-hand side of (3.16) up to 1/𝑥2. For any 𝑟 > 1, let us denote
by 𝐴𝑟 the event

∀1 ≤ 𝑠 < 𝑟, ‖𝜀1 + · · ·+ 𝜀𝑠‖ℋ < 𝑥 and ‖𝜀1 + · · ·+ 𝜀𝑟‖ℋ ≥ 𝑥 ,
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and by 𝐴1 the event ‖𝜀1‖ℋ ≥ 𝑥. These events are disjoints, thus we can write

P
(︂

max
1≤𝑘≤𝑛

‖𝜀1 + · · ·+ 𝜀𝑘‖ℋ ≥ 𝑥

)︂
= P

(︃
𝑛⋃︁

𝑟=1

𝐴𝑟

)︃
=

𝑛∑︁
𝑟=1

P (𝐴𝑟) . (3.29)

The law of total expectation and the positiveness of 𝜁 yield

E [𝜁] ≥
𝑛∑︁

𝑟=1

E
[︀
𝜁
⃒⃒
𝐴𝑟

]︀
P (𝐴𝑟) .

Finally, let ℓ ≤ 𝑟 < 𝑘 be integers. Since 𝜀ℓ is independent from 𝜀𝑘 conditionally
to 𝜎(𝜀1, . . . , 𝜀𝑟), 𝜀ℓ is independent from 𝜀𝑘 conditionally to 𝐴𝑟. Furthermore, 𝜀𝑘 is
independent from 𝐴𝑟 and

E
[︀
⟨𝜀𝑘, 𝜀ℓ⟩ℋ

⃒⃒
𝐴𝑟

]︀
= ⟨E [𝜀𝑘] ,E

[︀
𝜀ℓ
⃒⃒
𝐴𝑟

]︀
⟩ℋ = 0 .

Because of this relation and the positivity of the (real) conditional expectation, for
any integers 𝑟 ≤ 𝑘 ≤ 𝑗,

E
[︀
𝜁
⃒⃒
𝐴𝑟

]︀
= E

[︀
‖𝜀1 + · · ·+ 𝜀𝑛‖2ℋ

⃒⃒
𝐴𝑟

]︀
≥ E

[︀
‖𝜀1 + · · ·+ 𝜀𝑟‖2ℋ

⃒⃒
𝐴𝑟

]︀
≥ 𝑥2 .

Therefore, E
[︀
𝜁
⃒⃒
𝐴𝑟

]︀
≥ 𝑥2, which gives E [𝜁] ≥ 𝑥2

∑︀
P (𝐴𝑟). This concludes the proof,

thanks to Eq. (3.29).

Remark 3.5. The independence between 𝜀𝑗 and 𝜀𝑘 for 𝑗 ̸= 𝑘 yields E [⟨𝜀𝑗, 𝜀𝑘⟩ℋ] =
0. Indeed, we dispose of a conditional expectation on ℋ [Diestel and Uhl, 1977,
chapter 5], which satisfies the same properties than the conditional expectation with
real random variables. Hence we can write

E [⟨𝜀𝑗, 𝜀𝑘⟩ℋ] = E
[︀
E
[︀
⟨𝜀𝑗, 𝜀𝑘⟩ℋ

⃒⃒
𝜀𝑘
]︀]︀

= E
[︀
⟨E
[︀
𝜀𝑗
⃒⃒
𝜀𝑘
]︀
, 𝜀𝑘⟩ℋ

]︀
= E [⟨E [𝜀𝑗] , 𝜀𝑘⟩ℋ] = 0.

Note that the 𝜀𝑗s expectation vanishes by hypothesis.

3.5.7 Technical lemmas for the proof of Theorem 3.2

In this we state and prove technical results used in the proof of Theorem 3.2 in
Section 3.4.5.

Our first assert that the penalty shape penL is increasing under some assumption
on the penalty coefficients.

Lemma 3.13. Take 𝑛 ∈ N⋆. Then, for any 𝑎, 𝑏 > 0 such that 𝑎 < 𝑏, the mapping

𝑓𝑎,𝑏 : 𝑥 ↦→ 𝑥
(︁
𝑎 log

𝑛

𝑥
+ 𝑏
)︁

takes positive values and is increasing on [1, 𝑛].
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Proof. Write 𝑓 ′
𝑎,𝑏(𝑥) = 𝑎 (log(𝑛)− log(𝑥)) + 𝑏− 𝑎 > 0.

The second result of this section is a simple inequality used in the proof of Theo-
rem 3.2.

Lemma 3.14. For any 𝑥 ≥ 1,

𝑥 log(𝑥)− (𝑥+ 1) log(𝑥+ 1) ≥ − log(𝑥)− 2 .

Proof. Let 𝑥 ≥ 1. Since log (1 + 1/𝑥) ≤ 1/𝑥, we have

(𝑥+ 1) log(𝑥+ 1)− 𝑥 log(𝑥) ≤ log(𝑥) + 1 + 1/𝑥 ,

and we can conclude.

The next result collects some computations that intervene at the end of the proof
of Theorem 3.2.

Lemma 3.15. For any 1 ≤ 𝑥 ≤ 𝑛 and 𝑦 > 0, it holds that

74𝑀2

3
(𝑥+ 1) (log(𝑛)− log (𝑥+ 1))

2 + 𝑦 + log(𝑛)− log(𝑥)
≤ 74𝑀2

3
(𝑥+ 1) .

Proof. We write

74𝑀2

3
(𝑥+ 1) (log(𝑛)− log (𝑥+ 1))

2 + 𝑦 + log(𝑛)− log(𝑥)
≤

74𝑀2

3
(𝑥+ 1) (log(𝑛)− log(𝑥))

2 + 𝑦 + log(𝑛)− log(𝑥)
.

Since log(𝑛)− log(𝑥) ≥ 0 and 𝑦 > 0, we have

log(𝑛)− log(𝑥)

2 + 𝑦 + log(𝑛)− log(𝑥)
≤ 1 ,

and we can conclude.

The following result is a computation regarding 𝑐1,max.

Lemma 3.16. Under the Assumptions of Theorem 3.2,

𝑛Λ𝜏⋆∆2

6𝐷⋆
> 𝑐1

(︁
𝑦 + log

𝑛

𝐷⋆
+ 4
)︁

+
74

3
𝑀2

(︁
(𝑦 + 4) (𝐷⋆ + 2) + log

𝑛

𝐷⋆

)︁
.

Proof. We assumed that

𝑐1 <
𝑛Λ𝜏⋆∆2

6𝐷⋆(𝑦 + log(𝑛) + 4)
− 74𝑀2

3
(𝐷⋆ + 2) .

Simple algebra yields

𝑛Λ𝜏⋆∆2

6𝐷⋆
>

(︂
𝑐1 +

74𝑀2

3
(𝐷⋆ + 2)

)︂
(𝑦 + log(𝑛) + 4) ,
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and since 𝐷⋆ + 2 > 0,

𝑛Λ𝜏⋆∆2

6𝐷⋆
> 𝑐1(𝑦 + log(𝑛) + 4) +

74𝑀2

3

(︀
(𝑦 + 4) (𝐷⋆ + 2) + log(𝑛)

)︀
.

We can conclude since 𝑥 ↦→ log(𝑥) is increasing and 𝑐1 > 0.
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Chapter 4

Experimental results

Abstract

In this chapter, we show how the dimension jump heuristic can be a reasonable
choice for the linear penalty in simulations. We also provide empirical evidence sup-
porting the claims of Chapter 3. Finally, we demonstrate how to compute the key
quantity ∆ that appears in our theoretical results, for translation-invariant kernels.
Thanks to these computations, some of them novel, we are able to study precisely
the link between the maximal penalty constant and ∆. We show that, as suggested
by Theorem 3.1, it is proportional to ∆2 all other things being equal. This chapter
is partly based upon Garreau and Arlot [2016].

Whereas Chapter 3 was dedicated to theoretical results regarding KCP, we turn to
more practical issues in this chapter. The pertinence of the dimension jump heuristic
for KCP is studied in Section 4.1. Section 4.2 is devoted to the demonstration of
the consistency of KCP on synthetic data. Finally, in Section 4.3.1, we focus on
translation-invariant kernels and study the connection between the maximal penalty
constant and ∆2.

4.1 Choice of the penalty constant

From now on, we focus exclusively on KCP with a penalty proportional to the
number of segments, that is

pen (𝜏) = penℓ (𝜏) =
𝐶𝐷𝜏

𝑛
for some 𝐶 > 0 ,

as defined in Eq. (2.3). A key practical question is the following: how do we choose
a penalty constant 𝐶 such that KCP recovers the correct number of change-points?

Let us denote by ̂︀𝜏(𝐶) the segmentation estimated by KCP for a penalty constant
𝐶, and ̂︀𝐷(𝐶) the number of segments of ̂︀𝜏(𝐶). We put 𝑐min = 𝑐min(𝑋1, . . . , 𝑋𝑛) and
𝑐max = 𝑐max(𝑋1, . . . , 𝑋𝑛) such that ̂︀𝐷(𝑐) = 𝐷⋆ for any 𝑐 ∈ [𝑐min, 𝑐max], a potentially
empty interval. We call 𝑐min (resp. 𝑐max) the minimal (resp. maximal) penalty
constant. Assuming that [𝑐min, 𝑐max] is non-empty, we can reformulate the previous
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question as: is it possible to choose 𝑐 ∈ [𝑐min, 𝑐max] in a data-driven way?
Theorem 3.1 provides theoretical bounds for 𝑐min and 𝑐max. Namely, with high

probability,

𝑐min ≤ 𝐶min ≈ 𝐷⋆ log(𝑛) and 𝑐max ≥ 𝐶max ≈
∆2

𝑀2

Λ𝜏⋆

𝐷⋆
𝑛 , (4.1)

However, as discussed in Section 3.2.1 after Theorem 3.1, 𝐶min and 𝐶max are not
of much use in practice for choosing an adequate penalty constant 𝑐. Indeed, they
both depend on the unknown quantities 𝐷⋆, Λ𝜏⋆ and ∆. Furthermore, the numerical
constants are such that 𝐶min > 𝐶max more often than not for small values of 𝑛.

In Section 4.1.1, we present the dimension jump heuristic, an empirical method
that aims at choosing 𝑐 ∈ [𝑐min, 𝑐max], giving a partial answer to our opening question.
We demonstrate its pertinence on synthetic data. In Section 4.1.3, we show that 𝑐min

and 𝑐max have the same dependency on 𝑛 than their theoretical counterparts 𝐶min

and 𝐶max.

4.1.1 The dimension jump heuristic

A well-understood phenomenon in penalized model selection is the existence of a
minimal penalty, that is a penalty function penmin such that if pen = 𝛼 penmin with
𝛼 < 1 then the dimension of the estimated model tends to be close to the dimension
of the largest models. This question has been first addressed by Birgé and Massart
[2001, 2007] in the fixed-design Gaussian regression framework. In particular, it is
shown that the optimal penalty is twice the minimal penalty, which gives rise to the
following heuristic: (i) identify the minimal penalty penmin, (ii) choose as a penalty
function pen = 2 penmin [Birgé and Massart, 2007, Section 4].

Then the dimension jump heuristic for choosing 𝐶 from the data is (i) compute
𝑐min such that ̂︀𝐷(𝑐min) is very large for 𝑐 < 𝑐min and reasonable for 𝑐 > 𝑐min, (ii) definê︀𝜏 := ̂︀𝜏 (2𝑐min).

Given the data of ̂︀𝐷(𝑐) as a function of 𝑐, it is usually not too hard to identify
𝑐min, that is when there is a clear jump in the values taken by ̂︀𝐷(𝑐). In this situation,
it is customary to define

𝑐min ∈ arg max
𝑐>0

{︂ ̂︀𝐷(𝑐−)− ̂︀𝐷(𝑐+)

}︂
, (4.2)

that is the penalty constant achieving the maximal dimension jump. In case of
equality, we take the largest constant, in order to select preferentially segmentations
with fewer segments. Let us emphasize that a clear jump is not always present. In
this case, one can for instance restrict

{︀
𝑐 > 0

}︀
in Eq. (4.2) to

{︀
𝑐 > 0 | ̂︀𝐷(𝑐) ≤ 𝐷max

}︀
,

where 𝐷max is a user-defined constant. We provide examples of both situations in
Fig. 4-1.

Fortunately, when running the KCP algorithm, it is not necessary to computê︀𝐷(𝑐) for every value of 𝑐 > 0 in order to find (4.2). The idea is to build recursively
a sequence of critical constants 𝑐𝑖 together with a sequence 𝐷𝑖 for 𝑖 ≥ 0, such that
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Figure 4-1 – Two plots of the estimated dimension as a function of the penalty con-
stant 𝑐. In both experiments, we considered 𝑛 = 50 data-points with a single jump in
the mean of size 10, with unit variance Gaussian noise. Left panel : Gaussian kernel
with bandwidth 𝜈 = 0.01. Right panel : Gaussian kernel with bandwidth 𝜈 = 0.1.
The black dotted line denotes the maximal jump, located at 𝑐 = 0.93 in the left panel
(resp. 𝑐 = 0.72 in the right panel); the red dashed line marks the penalty chosen
by the dimension jump heuristic. We recover the true dimension 𝐷⋆ = 2 in the left
panel, but not in the right panel, where ̂︀𝐷 = 4.

̂︀𝐷(𝑐) = 𝐷𝑖 for any 𝑐 ∈ [𝑐𝑖, 𝑐𝑖+1]. The first terms of these sequences are 𝑐0 = 0 and
𝐷0 = 𝑛, since ̂︀𝐷(0) = 𝑛. Let 𝑖 ≥ 1, and suppose that we successfully computed
𝑐𝑖−1 and 𝐷𝑖−1. At the end of the dynamic programming step, we obtained a vector
𝑅 ∈ R𝑛 such that the 𝐷-th component of 𝑅 is ̂︀𝜏(𝐷); it is the last column of the cost
matrix C in the KCP algorithm, c.f. Section 2.4. Then, since 𝑅(·) is non-increasing
and pen is increasing as a function of 𝐷𝜏 , for any 𝑖 ≥ 1, 𝑐𝑖 is such that

𝑅
(︀
𝐷𝑖
)︀

+
𝑐𝐷𝑖

𝑛
= 𝑅

(︀
𝐷𝑖−1

)︀
+
𝑐𝐷𝑖−1

𝑛
.

Algorithm 4.1 takes 𝑅 as an argument and output sequences 𝑐𝑖 and 𝐷𝑖. It can be
seen as a simplified 1 version of Algorithm 3.2 in Arlot [2007] in the case of a linear
penalty.

The overall complexity of Algorithm 4.1 is O (𝑛2) in the worst case, but usually
a lot less steps are needed. Note also that it is possible to replace 𝑛 by 𝐷max in
Algorithm 4.1, which decreases the complexity as well.

4.1.2 Empirical performance of the dimension jump heuristic

We now present some empirical results on synthetic data, suggesting that the
dimension jump heuristic is generally a reasonable choice of penalty constant for the
linear penalty. In all the tables, 𝑥(𝜎) denotes a result 𝑥 with standard deviation 𝜎

1. Indeed, this procedure can be implemented for any non-decreasing penalty.
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Algorithm 4.1 Computation of the critical constants
procedure ComputeJumps(R)

𝑛← length of 𝑅
𝐷0 ← 𝑛
𝑐0 ← 0
for 𝑖 = 1 : 𝑛 do

if 𝐷𝑖−1 = 1 then
𝑐𝑖 ← +∞
𝐷𝑖 ← 0
break

else
[𝑐𝑖, 𝐷𝑖]← min

{︂
𝑅(𝐷)−𝑅(𝐷𝑖−1)

(𝐷𝑖−1 −𝐷) /𝑛
s.t. 𝐷 < 𝐷𝑖−1

}︂
end if

end for
return 𝑐,𝐷

end procedure

on the experiments repetitions, 𝑥⋆ stands for a performance strictly better than 0.01,
and x indicates the best performance on the line.

In the following experiments, we test KCP against a variety of generated data.
These data are piecewise-constant in R, with standard independent Gaussian noise.
The number of jumps is fixed, say 𝐷. The jump locations are then chosen so that the
segment sizes follow a multinomial distribution 2with parameter (100; 1/𝐷, . . . , 1/𝐷).
Finally, the jump sizes are chosen uniformly at random in a pre-specified range.
Experiments are repeated 102 times, and the randomness comes from the segments
sizes, the breakpoints locations and the noise; standard deviation is computed over
these repetitions.

We choose to focus on translation-invariant kernels, namely the Gaussian kernel
𝑘G in Tables 4.1, 4.3, and 4.4, and the Laplace kernel 𝑘L in Table 4.2. Keeping in
mind the quadratic complexity of KCP, experiments over more than 103 data-points
are quite expensive thus we limit ourself to 𝑛 ≃ 102. We choose to present results
only for 𝑛 = 200, as we obtained similar results for values of 𝑛 in the same range.
The maximum authorized number of segments is set to 𝐷max = 20, which is much
larger than the true number of segments in the simulations.

In our results, we choose to use d
(2)
H , whereas our theoretical results are all stated

with d(1)
∞ — see Chapter 3. This should not confuse the reader, recall that for segmen-

tations that are close enough, these functions coincide, as we proved in Lemma 3.1.
Note that d

(2)
H is upper bounded by 0.5, and takes special values in the limit cases. For

instance, if 𝜏0 is the 𝑛-segments segmentation, then d
(2)
H (𝜏, 𝜏0) =

⌊︀
Λ𝜏/2

⌋︀
. Conversely,

if 𝜏 0 is the one-segment segmentation, d
(2)
H (𝜏, 𝜏0) = 1/2.

2. Let there be 𝑘 distinct outcomes with probability 𝑝𝑖. Then, if 𝑁𝑖 indicates the number of
times outcome number 𝑖 is observed over the 𝑛 trials, we say that the vector (𝑁1, . . . , 𝑁𝑘) follows a
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Table 4.1 – Performances of KCP with Gaussian kernel on synthetic data with a
single jump of size 𝛿 ∈ [1, 10], measured by d

(2)
H . The “DJH” column corresponds to a

penalty constant chosen with the dimension jump heuristic.

𝜈\𝑐 1.0 5.0 10 50 DJH
0.05 0.24 (0.02) 0.46 (0.07) 0.47 (0.02) 0.47 (0.02) 0.02 (0.08)
0.1 0.24 (0.02) 0.04 (0.13) 0.47 (0.02) 0.47 (0.02) 0.01⋆ (0.07)
0.5 0.24 (0.02) 0.01⋆ (0.01) 0.02 (0.09) 0.47 (0.02) 0.03 (0.06)
1.0 0.23 (0.03) 0.01⋆ (0.01) 0.01⋆ (0.01) 0.14 (0.22) 0.05 (0.08)

Table 4.2 – Performances of KCP with Laplace kernel on synthetic data with a single
jump of size 𝛿 ∈ [1, 10], measured by d

(2)
H . The “DJH” column corresponds to a penalty

constant chosen with the dimension jump heuristic.

𝜈\𝑐 1.0 5.0 10 50 DJH
0.05 0.24 (0.02) 0.08 (0.17) 0.47 (0.02) 0.47 (0.02) 0.01 (0.05)
0.1 0.24 (0.02) 0.02 (0.09) 0.12 (0.21) 0.47 (0.02) 0.01 (0.01)
0.5 0.24 (0.03) 0.01⋆ (0.01) 0.01 (0.08) 0.47 (0.02) 0.04 (0.08)
1.0 0.14 (0.09) 0.01⋆ (0.01) 0.02 (0.08) 0.17 (0.23) 0.03 (0.06)
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Table 4.3 – Performances of KCP with Gaussian kernel on synthetic data with 5
jumps of sizes in the range [1, 10], measured by d

(2)
H . The “DJH” column corresponds

to a penalty constant chosen with the dimension jump heuristic.

𝜈\𝑐 1.0 5.0 10 50 DJH
0.5 0.09 (0.01) 0.04 (0.07) 0.22 (0.09) 0.48 (0.02) 0.02 (0.03)
1.0 0.08 (0.02) 0.02 (0.05) 0.08 (0.08) 0.47 (0.02) 0.02 (0.03)
5.0 0.03 (0.06) 0.13 (0.09) 0.19 (0.08) 0.42 (0.10) 0.03 (0.03)
10 0.09 (0.09) 0.23 (0.10) 0.30 (0.11) 0.45 (0.08) 0.03 (0.03)

We can see in the results reported in Table 4.1 and 4.2 that the dimension
jump heuristic provides a reasonable way to tune the penalty constant in the set-
ting described at the beginning of this section. Indeed, the dimension jump heuristic
generally manages to find a trade-off between (i) too small 𝑐, that yields an over-
segmentation which translates into performances close to E

⌊︀
Λ𝜏

⌋︀
≃ 0.25, and (ii) too

large 𝑐, that yields an under-segmentation which translates into performances close to
0.5 in Table 4.1 and 4.2. Even though the dimension jump heuristic does not always
finds a penalty constant in the correct region, we want to point out that the results
obtained are nevertheless far better than those observed for ad hoc penalty constants
chosen too small or too large.

We report in Table 4.3 further results that confirms the good behavior of the
dimension jump heuristic in the same setting, this time for multiple change-points.
We do not report results for the Laplace kernel, that are similar.

Finally, we also present some results for a change in the variance of a Gaussian
sequence of observations. We consider as before 𝑛 = 200 data-points, with a single
random break-point drawn uniformly (though the minimal segment size is fixed to 5).
The standard deviation of the observations before the change-point is set to 1.0, and
5.0 after, while the mean stays at zero. This data generation procedure is repeated
100 times for each choice of 𝐶 and 𝜈. The results of this experiment are reported in
Table 4.4. As before, we observe that the dimension jump heuristic provides a reliable
choice for 𝐶, if not the best. We do not report results for the Laplace kernel, which
are similar.

Note that the sampling of the change-point locations is slightly different from
before. It is more probable to observe short segments with uniform sampling rather
than binomial sampling — a multinomial with parameters (𝑛; 1/2, 1/2) is a binomial
with parameters (𝑛, 1/2) —, hence it is a slightly more difficult problem.

multinomial distribution with parameters (𝑛; 𝑝1, . . . , 𝑝𝑘).
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Table 4.4 – Performances of KCP with Gaussian kernel on synthetic data with a single
jump in the variance, measured by d

(2)
H . The “DJH” column corresponds to a penalty

constant chosen with the dimension jump heuristic.

𝜈\𝑐 1.0 5.0 10 50 DJH
0.5 0.36 (0.07) 0.22 (0.14) 0.22 (0.14) 0.22 (0.14) 0.15 (0.13)
1.0 0.35 (0.08) 0.24 (0.15) 0.24 (0.15) 0.24 (0.15) 0.06 (0.07)
5.0 0.35 (0.08) 0.01 (0.03) 0.16 (0.14) 0.24 (0.14) 0.03 (0.07)
10 0.34 (0.09) 0.01 (0.02) 0.03 (0.05) 0.24 (0.15) 0.03 (0.06)

4.1.3 Minimal and maximal penalty constant

In this section, we show how a modification of Algorithm 4.1 can give the values
of 𝑐min and 𝑐max, when they exist, and we compare these values to the theoretical
bounds 𝐶min and 𝐶max.

Computing 𝑐min and 𝑐max. Suppose that we have access to the true dimension 𝐷⋆.
Since Algorithm 4.1 provides all the critical constants, it is a straightforward modifica-
tion to recover those corresponding to 𝐷⋆ when they exist. We call Algorithm 4.2 this
modification. It outputs 𝑐min and 𝑐max such that ̂︀𝐷(𝑐) = 𝐷⋆ for any 𝑐 ∈ [𝑐min, 𝑐max].
As a convention, if there is no penalty constant 𝑐 such that ̂︀𝐷(𝑐) = 𝐷⋆, the algorithm
outputs the null value for both 𝑐min and 𝑐𝑚𝑎𝑥. The computational complexity of this
procedure is at most O (𝐷⋆).

Experimental results. We present in Fig. 4-2 the results of the following exper-
iment: for each 𝑛 ranging from 5 to 300, we generate a piecewise-constant function
with 5 segments of equal length and values on each segment alternating between 0
and 5. We then add noise sampled from a standard Gaussian distribution, and find
𝑐min and 𝑐max according to Algorithm 4.2 for Gaussian kernel KCP (𝜈 = 1.0). The
preceding process is repeated 100 time for each value of 𝑛.

In the present setting, 𝐷⋆, ∆, 𝑀 and Λ𝜏⋆ are fixed. Therefore, Theorem 3.1 states
that, with high probability, 𝐶min is proportional to log(𝑛) and 𝐶max is proportional
to 𝑛. We observe that the empirical evidence suggests that the dependency on 𝑛 of 𝑐min

and 𝑐max is the same than the dependency on 𝑛 of 𝐶min and 𝐶max: 𝑐min ∝ log(𝑛) and
𝑐max ∝ 𝑛.

In the next section, we vary 𝑛 as well in our experiments, but we interest ourselves
in d(2)

∞ (̂︀𝜏𝑛, 𝜏 ⋆).
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Algorithm 4.2 Min / Max penalty constant
procedure MinMaxPencsts(R,𝐷⋆)

𝑛← length of 𝑅
𝐷0 ← 𝑛
𝑐0 ← 0
for 𝑖 = 1 : 𝑛 do

if 𝐷𝑖−1 ≥ 𝐷⋆ then
break

else
[𝑐𝑖, 𝐷𝑖]← min

{︂
𝑅(𝐷)−𝑅(𝐷𝑖−1)

(𝐷𝑖−1 −𝐷) /𝑛
s.t. 𝐷 < 𝐷𝑖−1

}︂
end if

end for
𝑖0 ← inf

𝑖≥0

{︀
𝐷𝑖 = 𝐷⋆

}︀
if 𝑖0 > 0 then

return [𝑐min, 𝑐max] = [𝑐𝑖0 , 𝑐𝑖0+1]
else

return [𝑐min, 𝑐max] = [0, 0]
end if

end procedure

4.2 Consistency
A consequence of our main result, Theorem 3.1, is that for a bounded kernel, the

KCP is consistent in the asymptotic setting presented in Example 2.1. In this section,
we illustrate this by a simulation study.

Detecting changes in the mean with the Gaussian kernel. Let us consider the
archetype change-point detection problem —finding changes in the mean of a sequence
of independent random variables— and show how these changes are localized more
precisely when more data are available.

We define three functions 𝜇𝑚 : [0, 1] → R, 1 ≤ 𝑚 ≤ 3, previously used by
Arlot and Celisse [2011], which cover a variety of situations (see Fig. 4-3). For each
𝑚 ∈ {1, 2, 3} and several values of 𝑛 between 102 and 103, we repeat 103 times the
following:

— Sample 𝑛 independent Gaussian random variables 𝑔𝑖 ∼ 𝒩 (0, 1);
— Set 𝑋𝑖 = 𝜇𝑚(𝑖/𝑛) + 𝑔𝑖 —Fig. 4-3 shows one sample for each 𝑚 ∈ {1, 2, 3};
— Perform KCP with Gaussian kernel and linear penalty on 𝑋1, . . . , 𝑋𝑛; the

penalty constant is chosen as indicated in Section 3.3, the bandwidth is set
to 0.1, and the maximum number of change-points is set to 30;

— Compute dH
(2)(𝜏 ⋆, ̂︀𝜏𝑛).

The results are collected in Fig. 4-4, where each graph corresponds to a regression
function 𝜇𝑚. We represent in logarithmic scale the mean distance between the true
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Figure 4-2 – Minimum and maximum penalty constants leading to exact recovery
of the true dimension as a function of the sample size. The solid lines inside the
shaded areas are the empirical mean over 100 repetitions of the experiments; the
error bars correspond to the standard deviation. Null values were removed (3.5% of
the experiments).
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Figure 4-3 – In thick red lines, the three piecewise constant functions used in the
simulations of Section 4.2. In lighter blue, a noisy version of these functions. Both
𝜇1 and 𝜇2 have 5 segments; 𝜇3 has 10 jumps.

segmentation and the estimated segmentation for each value of 𝑛. The error bars
are ±̂︀𝜎/√𝑁 , where ̂︀𝜎 is the empirical standard deviation over 𝑁 = 103 repetitions.
We want to emphasize that, though these experiments illustrate our main result
Theorem 3.1, they are carried out in a slightly different setting since the penalty
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constant 𝐶 is not chosen according to (3.3), but using the dimension jump heuristic
as explained in Section 4.1.
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Figure 4-4 – Convergence of 1
𝑛

d
(2)
H (𝜏 ⋆, ̂︀𝜏𝑛) towards 0 when the number of data points 𝑛

is increasing. A linear regression between log(𝑛) and 1
𝑛

d
(2)
H (𝜏 ⋆, ̂︀𝜏𝑛) for 𝑛 ≥ 300 yields

slope estimates −0.97, −1.04 and −1.00, respectively.

The three segmentation problems considered here are quite different in nature,
but all lead to a linear convergence rate (slopes close to −1 on the graphs of Fig. 4-4)
with different constants (different values for the intercept on the graphs of Fig. 4-4).
Recall that Theorem 3.1 combined with Lemma 3.1 states that, with high probability,

1

𝑛
d
(2)
H (𝜏 ⋆, ̂︀𝜏𝑛) . ̃︀𝑣1 =

𝐷⋆𝑀2

∆2 · log(𝑛)

𝑛
.

Hence, whenever 𝐷⋆, ∆ and 𝑀 are fixed, 1
𝑛

d
(2)
H (𝜏 ⋆, ̂︀𝜏𝑛) converges to 0 at rate at least

log(𝑛)/𝑛 when the number of data points increases. In our experimental setting,
these quantities are fixed, and the observed convergence rate matches our theoretical
upper bound. The performance of KCP still depends on the regression function 𝜇𝑚

experimentally, by a constant multiplicative factor, like the theoretical bound ̃︀𝑣1.
We want to emphasize that other choices of 𝜈 can lead to another ordering of the

speeds of convergence observed in Fig. 4-4. To put it plainly, for another bandwidth,
e.g., 𝜈 = 1.0, 1

𝑛
d(1)
∞ (̂︀𝜏𝑛, 𝜏 ⋆) can converge more quickly to zero for 𝜇3 than for 𝜇1.

Detecting changes in the number of modes. Let us now consider observations
𝑋1, . . . , 𝑋𝑛 ∈ R whose distribution vary only through the number of modes. Can we
accurately detect such changes with the KCP procedure? The data are generated
according to the following process for several 𝑛:

— Set 𝜏 ⋆1 = ⌊𝑛/3⌋ and 𝜏 ⋆2 = ⌊2𝑛/3⌋;
— Draw𝑋1, . . . , 𝑋𝜏⋆1

, 𝑋𝜏⋆2+1, . . . , 𝑋𝑛 according to a standard Gaussian distribution,
and 𝑋𝜏⋆1+1, . . . , 𝑋𝜏⋆2

according to a (1/2, 1/2)-mixture of Gaussian distributions
𝒩 (𝛿, 1− 𝛿2) and 𝒩 (−𝛿, 1− 𝛿2), with 𝛿 = 0.999; the 𝑋𝑖 are independent.
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We test KCP with various kernels assuming that the number of change-points (𝐷⋆ =
3) is known; this simplification avoids possible artifacts linked to the choice of the
penalty constant. Results are shown on Fig. 4-5. The 𝑋𝑖 all have zero mean and unit
variance, hence a classical penalized least-squares procedure —KCP with the linear
kernel— is expected to detect poorly the changes in the distribution of the 𝑋𝑖, as
confirmed by Fig. 4-5 (for instance, according to the right panel, it is not consistent).
On the contrary, a Gaussian kernel with well-chosen bandwidth yields much better
performance according to the middle and right panels of Fig. 4-5 (with a rate of order
1/𝑛).
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Figure 4-5 – Left: One sample𝑋1, . . . , 𝑋𝑛 for 𝑛 = 103. Middle: Performance of KCP
with various kernels (𝑛 = 200). Methods 1 to 8: Gaussian kernel with bandwidth set
via the median heuristic (method 1), or fixed equal to 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1
(methods 2, . . . , 9, respectively). Method 9: linear kernel. Right: Estimated values
of 𝑛−1 d

(2)
H (𝜏 ⋆, ̂︀𝜏𝑛) vs. 𝑛 in log scale, for KCP with a Gaussian kernel with bandwidth

0.01 (blue solid line; estimated slope −1.05) and with the linear kernel (red dashed
line; estimated slope 0.16).

4.3 Translation-invariant kernels

Experiments for finite sample size in Arlot et al. [2012, Section 6] demonstrate
how KCP can detect changes in the distribution of the data, even though the mean
and variance are fixed. In this section, on the contrary, we focus on simple examples
where the mean or variance of a sequence of Gaussian random variables vary, and we
bring out the role of the kernel in KCP’s ability to accurately detect changes.

Recall that Theorem 3.1 suggests that ∆2 is a quantity of interest regarding the
performances of KCP. In particular, Theorem 3.1 states that, with high probability,

𝑐max ≥ 𝐶max ≈
∆2

𝑀2
,

up to factors depending on 𝜏 ⋆, 𝜇⋆ and 𝑛. We restrict our study to translation-invariant
kernels, since it is possible to compute ∆2 in closed form for some kernels belonging
to this class when the noise is Gaussian. In this setting, we show that 𝑐max ∝ ∆2/𝑀2

holds experimentally.
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We first introduce translation-invariant kernels in Section 4.3.1, and show how
to compute ∆2 in this setting. In Section 4.3.2, we go through the details of theses
computations when 𝑘 = 𝑘G and 𝑘 = 𝑘L, with Gaussian observations. Finally, we use
the results of these calculations in Section 4.3.3, where we demonstrate experimentally
that 𝑐max ∝ ∆2/𝑀2.

4.3.1 Introduction

We begin with a definition.

Definition 4.1. A translation-invariant kernel 𝑘 : R𝑑×R𝑑 → R is a positive definite
kernel such that there exists a function 𝜅 : R𝑑 → R that satisfies

𝑘 (𝑥, 𝑦) = 𝜅(𝑥− 𝑦) .

In other words, 𝑘 (𝑥, 𝑦) only depends on the difference between the vectors 𝑥
and 𝑦. It is an attractive property, for instance when one wishes to detect changes in
the mean of a signal: a priori, detecting a change between 0 and 5 is as important as
detecting a change between 5 and 10.

If furthermore the function 𝜅 is continuous, then 𝜅 is called a positive-definite
function [Berg et al., 1984]. We assume that 𝑘 denotes a translation-invariant kernel
such that 𝑀 = 1 from now on. For instance, the Gaussian kernel and the Laplace
kernel are both translation-invariant.

Bochner [1932, 1933] showed there is a deep correspondence between positive semi-
definite functions and nonnegative measures on R. More precisely, let us define the
Fourier transform of any integrable function 𝑓 as ℱ 𝑓(𝜔) :=

∫︀
e−i𝑥𝜔 𝑓(𝑥) d𝑥. Then

Theorem 4.1 (Bochner). A continuous function 𝜅 : R𝑑 → C is positive semi-definite
if, and only if, it is the Fourier transform of a finite nonnegative Borel measure 𝜈 on
R𝑑, that is

∀𝑥 ∈ R𝑑, 𝜅(𝑥) = ℱ 𝜈(𝑥) =

∫︁
e−i𝑥⊤𝜔 d 𝜈(𝜔) .

It is possible to be more precise than Theorem 4.1 if we assume that 𝜅 is real-
valued and integrable. More precisely, we have the following description of the RKHS
associated to 𝑘.

Theorem 4.2 (Wendland [2005], Theorem 10.12). Let 𝑘 be a translation-invariant
kernel such that 𝜅 is integrable on R𝑑 as well as its Fourier transform ℱ 𝜅. The subset
ℋ of 𝐿2

(︀
R𝑑
)︀

that consists of integrable and continuous functions 𝑓 such that

‖𝑓‖2ℋ :=
1

(2𝜋)𝑑

∫︁ |ℱ 𝑓(𝜔)|2
ℱ 𝜅(𝜔)

d𝜔 < +∞ , (4.3)

endowed with the inner product

⟨𝑓, 𝑔⟩ℋ :=
1

(2𝜋)𝑑

∫︁ ℱ 𝑓(𝜔)ℱ 𝑔(𝜔)

ℱ 𝜅(𝜔)
d𝜔 ,
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is the RKHS associated to 𝑘.

Note that both the Gaussian kernel and the Laplace kernel satisfy the assumptions
of Theorem 4.2.

We now explain how Theorem 4.2 allows to compute ∆2 in certain cases. Let us
restrict our study to real observations with changes in the mean and centered i.i.d.
noise with a density on R, that is

Assumption 4.1. There exist real numbers 𝐿1, . . . , 𝐿𝑛 and i.i.d. centered real ran-
dom variables 𝛽𝑖 with densities 𝜌𝑖 such that

∀𝑖 ∈
{︀

1, . . . , 𝑛
}︀
, 𝑋𝑖 = 𝐿𝑖 + 𝛽𝑖 .

This setting corresponds to the experiments of Section 4.1 and 4.2. Recall that
∆2 = min𝜇⋆

𝑖 ̸=𝜇⋆
𝑖+1

⃦⃦
𝜇⋆
𝑖+1 − 𝜇⋆

𝑖

⃦⃦
ℋ, thus we have to compute

⃦⃦
𝜇⋆
𝑖+1 − 𝜇⋆

𝑖

⃦⃦
ℋ for every 𝑖

such that 𝜇⋆
𝑖 ̸= 𝜇⋆

𝑖+1. It is the content of the next proposition, which is equivalent to
Lemma 13 in Sriperumbudur et al. [2008].

Proposition 4.1. Assume that 𝑘 is a translation-invariant kernel such that 𝜅 and
ℱ 𝜅 are integrable. Suppose that Assumption 4.1 holds true. Let 𝑖, 𝑗 be distinct
elements of

{︀
1, . . . , 𝑛

}︀
. Then

‖𝜇⋆
𝑖 − 𝜇⋆

𝑗‖2ℋ =
1

2𝜋

∫︁
| e−i𝐿𝑖𝜔 ℱ 𝜌𝑖(𝜔)− e−i𝐿𝑗𝜔 ℱ 𝜌𝑗(𝜔)|2ℱ 𝜅(𝜔) d𝜔 .

Proof. Recall that the mean elements 𝜇⋆
𝑖 satisfy

∀𝑔 ∈ ℋ, ⟨𝜇⋆
𝑗 , 𝑔⟩ℋ = E [𝑔(𝑋𝑗)] = E [⟨𝑌𝑗, 𝑔⟩ℋ] .

Let 𝑦 be a real number. Take 𝑔 = 𝑘 (·, 𝑦) in the previous display, we obtain

𝜇⋆
𝑖 (𝑦) = E [𝑘 (𝑋𝑖, 𝑦)] =

∫︁
𝜅(𝐿𝑖 + 𝑥− 𝑦)𝜌𝑖(𝑥) d𝑥 .

Since 𝜅 is symmetric,

𝜇⋆
𝑖 (𝑦) =

∫︁
𝜅(𝑦 − 𝐿𝑖 − 𝑥)𝜌𝑖(𝑥) d𝑥 = ((𝜅 ⋆ 𝜌𝑖) ∘ 𝜏𝐿𝑖

) (𝑦) ,

where ⋆ denotes the convolution operation and for any 𝑎 ∈ R, 𝜏𝑎 : 𝑥 ↦→ 𝑥 − 𝑎.
Elementary properties of the Fourier transform yields

ℱ 𝜇⋆
𝑖 (𝜔) = e−i𝐿𝑖𝜔 ℱ 𝜅(𝜔) · ℱ 𝜌𝑖(𝜔) .

We conclude the proof by a straightforward application of Theorem 4.2.

4.3.2 Computations

We now give a few concrete examples of ∆2 computations under a Gaussian noise
hypothesis. In the following, we give results for a single change-point, with the
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convention that 𝐿1 and 𝜌1 are the mean and distribution before the jump, whereas
𝐿2 and 𝜌2 denote the mean and distribution after the jump. Note that stating these
results can be straightforwardly adapted to an arbitrary number of change-points.

We first consider the Gaussian kernel, with a change in the mean.

Proposition 4.2 (Gaussian kernel, change in the mean). Set 𝑘 = 𝑘G. Suppose that
Assumption 4.1 holds true with 𝐿2 − 𝐿1 = 𝛿 and 𝛽1, 𝛽2 ∼ 𝒩 (0, 𝜎2), where 𝜎 is a
positive number. Then

∆2 =
2𝜈√

𝜈2 + 2𝜎2

(︂
1− exp

(︂ −𝛿2
2 (𝜈2 + 2𝜎2)

)︂)︂
.

Proof. The Gaussian kernel with bandwidth 𝜈 > 0 is a translation-invariant kernel
with

𝜅(𝑧) = exp

(︂−𝑧2
2𝜈2

)︂
and ℱ 𝜅(𝜔) = 𝜈

√
2𝜋 exp

(︂−𝜔2𝜈2

2

)︂
.

Moreover, ℱ 𝛽1(𝜔) = ℱ 𝛽2(𝜔) = exp (−𝜎2𝜔2/2). Prop. 4.1 then yields

∆2 =
4𝜈√
2𝜋

∫︁
sin2 𝛿𝜔

2
exp

(︂
−
(︂
𝜎2 +

𝜈2

2

)︂
𝜔2

)︂
d𝜔 ,

and a computation concludes the proof.

It is possible to prove an analogous result for a change in the variance.

Proposition 4.3 (Gaussian kernel, change in the variance). Set 𝑘 = 𝑘G. Suppose
that Assumption 4.1 holds true with 𝐿1 = 𝐿2, 𝛽1 ∼ 𝒩 (0, 𝜎2

1), and 𝛽2 ∼ 𝒩 (0, 𝜎2
2),

where 𝜎1 and 𝜎2 are positive numbers. Then

∆2 = 𝜈

(︃
1√︀

2𝜎2
1 + 𝜈2

+
1√︀

2𝜎2
2 + 𝜈2

− 2√︀
𝜎2
1 + 𝜎2

2 + 𝜈2

)︃
.

Proof. As in the proof of Prop. 4.2, ℱ 𝜅(𝜔) = 𝜈
√

2𝜋 exp (−𝜔2𝜈2/2), and ℱ 𝛽𝑖(𝜔) =
exp (−𝜎2

𝑖 𝜔
2/2) for 𝑖 ∈

{︀
1, 2
}︀
. Prop. 4.1 yields

∆2 =
𝜈√
2𝜋

∫︁ (︂
e−

𝜎2
1𝜔

2

2 − e−
𝜎2
1𝜔

2

2

)︂2

e
−𝜔2𝜈2

2 d𝜔 ,

and a computation concludes the proof.

We now turn to the Laplace kernel. A technical lemma is needed.

Lemma 4.1. Let 𝑎, 𝑏 and 𝜆 be positive numbers. Define

𝑓(𝜆) :=

∫︁
e−𝑎𝜔2

cos(𝜆𝜔)

1 + 𝑏𝜔2
d𝜔 .
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Then

𝑓(𝜆) =
𝜋 e𝑎/𝑏

2
√
𝑏

[︂
e𝜆/

√
𝑏

(︂
1− erf

(︂
𝜆

2
√
𝑎

+

√︂
𝑎

𝑏

)︂)︂
+ e−𝜆/

√
𝑏

(︂
1 + erf

(︂
𝜆

2
√
𝑎
−
√︂
𝑎

𝑏

)︂)︂]︂
.

In particular, ∫︁
e−𝑎𝜔2

1 + 𝑏𝜔2
d𝜔 =

𝜋√
𝑏

e
𝑎
𝑏 erfc

(︂√︂
𝑎

𝑏

)︂
.

The proof of Lemma 4.1 is postponed to the end of this section. We are now able
to prove analogous statements to Prop. 4.2 and 4.3.

Proposition 4.4 (Laplace kernel, change in the mean). Set 𝑘 = 𝑘L. Suppose that
Assumption 4.1 holds true with 𝐿2 − 𝐿1 = 𝛿, and 𝛽1, 𝛽2 ∼ 𝒩 (0, 𝜎2), where 𝜎 is a
positive number. Then

∆2 = e
𝜎2

4𝜈2
(︀
2 erfc

(︀
𝜎
2𝜈

)︀
− e𝛿/2𝜈 erfc

(︀
𝛿
2𝜎

+ 𝜎
2𝜈

)︀
− e−𝛿/2𝜈

(︀
1 + erf

(︀
𝛿
2𝜎
− 𝜎

2𝜈

)︀)︀)︀
.

Proof. The Laplace kernel with bandwidth 𝜈 > 0 is a translation-invariant kernel
with

𝜅(𝑧) = exp

(︂− |𝑧|
2𝜈

)︂
and ℱ 𝜅(𝜔) =

4𝜈

1 + 4𝜈2𝜔2
.

Moreover, ℱ 𝛽1(𝜔) = ℱ 𝛽2(𝜔) = exp (−𝜎2𝜔2/2). Prop. 4.1 then yields

∆2 =
4𝜈

𝜋

∫︁
(1− cos(𝛿𝜔))

1 + 4𝜈2𝜔2
e−𝜎2𝜔2

d𝜔 ,

and we conclude the proof with Lemma 4.1.

Proposition 4.5 (Laplace kernel, change in the variance). Set 𝑘 = 𝑘L. Suppose that
Assumption 4.1 holds true with 𝐿1 = 𝐿2, 𝛽1 ∼ 𝒩 (0, 𝜎2

1), and 𝛽2 ∼ 𝒩 (0, 𝜎2
2), where

𝜎1 and 𝜎2 are positive numbers. Then

∆2 = e
𝜎2
1

4𝜈2 erf (𝜈)

(︃
1√︀

2𝜎2
1 + 𝜈2

+
1√︀

2𝜎2
2 + 𝜈2

− 2√︀
𝜎2
1 + 𝜎2

2 + 𝜈2

)︃
𝑐
𝜎1
2𝜈

+ e
𝜎2
2

4𝜈2 erfc
(︁𝜎2

2𝜈

)︁
− 2 e

𝜎2
1+𝜎2

2
8𝜈2 erfc

(︃√︂
𝜎2
1 + 𝜎2

2

8𝜈2

)︃
. (4.4)

Proof. As in the proof of Prop. 4.4, ℱ 𝜅(𝜔) = 𝜈
√

2𝜋 exp (−𝜔2𝜈2/2), and ℱ 𝛽𝑖(𝜔) =
exp (−𝜎2

𝑖 𝜔
2/2) for 𝑖 ∈

{︀
1, 2
}︀
. Prop. 4.1 yields

∆2 =
2𝜈

𝜋

∫︁
e−𝜎2

1𝜔
2

+ e−𝜎2
2𝜔

2 −2 e−
𝜎2
1+𝜎2

2
2

𝜔2

1 + 4𝜈2𝜔2
d𝜔 ,

we can conclude with Lemma 4.1.
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Remark 4.1. We have noted before that, in the single change-point setting, ∆ coin-
cides with the MMD. As such, computations similar to Prop. 4.2, 4.3, 4.4 and 4.5
exist in the kernel two-sample test literature. In particular, Prop. 4.2 is consequence
of Prop. 1 in Reddi et al. [2015], and the content of Prop. 4.3 appears in the proof of
Prop. 3 in Reddi et al. [2015]. Prop. 4.4 and 4.5, however, are new up to the best of
our knowledge.

Proof of Lemma 4.1. We note that 𝑓 is well defined and twice differentiable. It
is clear that

𝑓 ′′(𝜆) = −
∫︁
𝜔2 e−𝑎𝜔2

cos(𝜆𝜔)

1 + 𝑏𝜔2
d𝜔 ,

hence 𝑓 satisfies a second order linear differential equation, namely

𝑓 ′′(𝜆)− 1

𝑏
𝑓(𝜆) =

−1

𝑏

√︂
𝜋

𝑎
e−𝜆2/(4𝑎) .

The solutions of this equation can be found with the variation of constants method,
and we have, for 𝑐1 and 𝑐2 unknown constants,

𝑓(𝜆) =𝑐1 e−𝜆/
√
𝑏 +𝑐2 e𝜆/

√
𝑏

− 𝜋 e𝑎/𝑏

2
√
𝑏

[︂
e𝜆/

√
𝑏 erf

(︂
𝜆

2
√
𝑎

+

√︂
𝑎

𝑏

)︂
− e−𝜆/

√
𝑏 erf

(︂
𝜆

2
√
𝑎
−
√︂
𝑎

𝑏

)︂]︂
. (4.5)

Since

𝑓(0) =
𝜋 e𝑎/𝑏√

𝑏

(︂
1− erf

(︂√︂
𝑎

𝑏

)︂)︂
,

we get 𝑐1 + 𝑐2 = 𝜋 e𝑎/𝑏 /
√
𝑏. On the other side, we know that 𝑓 is bounded for 𝜆→∞

thus 𝑐2 = 𝜋 e𝑎/𝑏 /(2
√
𝑏), hence 𝑐1 = 𝑐2 = 𝜋 e𝑎/𝑏 /(2

√
𝑏), and we conclude the proof.

4.3.3 Empirical study

Let us use the theoretical results of Section 4.3.2 to study the connection between
𝑐max and ∆2.

The sample size is set to 𝑛 = 200. We consider two regression functions:

— 𝜇1 such that for any 𝑖 ∈
{︀

1, . . . , 𝑛/2
}︀
, 𝜇1(𝑖) = 0.0 and for any 𝑖 ∈

{︀
𝑛/2 +

1, . . . , 𝑛
}︀
, 𝜇1(𝑖) = 5.0;

— 𝜇2 constant equal to zero.

We generate samples 𝑋1 by adding i.i.d. standard Gaussian noise to 𝜇1, and 𝑋2 by
adding standard Gaussian noise for 𝑖 ∈

{︀
1, . . . , 𝑛/2

}︀
and 𝒩 (0, 52) for 𝑖 ∈

{︀
𝑛/2 +

1, . . . , 𝑛
}︀
. In a nutshell, 𝑋1 and 𝑋2 are semi-deterministic versions of the signals we

used so far in this chapter — there is still randomness in the noise. For 100 values
of 𝜈 in [0, 20], we generate 100 samples of 𝑋1 and 𝑋2. For each sample, we compute
𝑐max via algorithm 4.2, for 𝑋1 using both the Gaussian and the Laplace kernel, for
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𝑋2 using only the Laplace kernel. We also compute ∆2(𝜈) thanks to Prop. 4.2, 4.3
and 4.4. The results are reported in Fig. 4-6.

Again, the bound given in Theorem 3.1 is accurate, and ∆2 and 𝑐max are linearly
correlated — all 𝑅2 coefficients we obtained for a linear regression of 𝑐max versus ∆2

are > 0.999. We find this result remarkable for two reasons.
— First, it shows that the analysis conducted in Chapter 3 brings out a relevant

quantity, ∆2. Note however that we got rid of the influence of the segment
sizes in the present experiments. We think that the true quantity of interest
is a trade-off between size of the jump in the RKHS and size of the segments
adjacent to the jump. We refer to Eq. (3.27), the point in our analysis where
we begin working with de-correlated jump size and segment size.

— Second, this link between 𝑐max and ∆ gives us a route to choosing the kernel for
KCP. By taking a kernel that maximizes ∆, we have a shot at maximizing 𝑐max.
Of course ∆ depends on unknown quantities — for instance, the size of the
jump that we are trying to detect —, but it is conceivable to find an estimator
of ∆ which could act as a proxy for this goal.

Finally, note that we also report in Fig. 4-6 the bandwidth proposed by the me-
dian heuristic. This simple heuristic consist to pick 2𝜈2 = Med

{︀
|𝑋𝑖 −𝑋𝑗|2

}︀
for the

Gaussian kernel, where Med is the sample median. As we can see, it is generally
close to the global maximum of ∆2, and we recommend the use of this heuristic for
choosing the bandwidth of the Gaussian and Laplace kernels.

We study the median heuristic in more depth in the next chapter.
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Figure 4-6 – In this figure, we plot 𝑛 · ∆2/𝑀2 (in black) and 𝑐max (in blue) as a
function of 𝜈 in different scenarios. The error bars for 𝑐max come from 100 repetitions
of the experiment, the vertical red line is the average median heuristic bandwidth
(standard deviation was very small and is not represented). Upper left: Gaussian
kernel, change in the mean; Upper right: Gaussian kernel, change in the variance;
Bottom left: Laplace kernel, change in the mean; Bottom right: Laplace kernel,
change in the variance.
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Chapter 5

The median heuristic

Abstract

The median heuristic is a popular tool to set the bandwidth of radial basis function
kernels. While its empirical performances make it a safe choice under most circum-
stances, there is little theoretical understanding of why this is the case. For a large
sample size, we show in this chapter that the median heuristic behaves approximately
as the median of a distribution that we describe completely in the setting of kernel
two-sample test and kernel change-point detection. More precisely, we show that the
median heuristic is asymptotically normal around this value. We illustrate these find-
ings when the underlying distributions are multivariate Gaussian distributions. This
chapter is based upon the preprint Garreau [2017].

5.1 Introduction

Kernel methods form an important class of algorithms in machine learning and
statistics. They make use of rich feature spaces that depend only on the kernel chosen
by the user. Given a positive semi-definite kernel 𝑘 and observations 𝑥1, . . . , 𝑥𝑛,
the first step of most kernel-based method is to compute the Gram matrix K =
(𝑘 (𝑥𝑖, 𝑥𝑗))1≤𝑖,𝑗≤𝑛. Thanks to the celebrated kernel trick , all ensuing computations
need only the knowledge of K.

We are especially interested in data lying in a metric space (𝒳 , d). When this
is the case, commonly used kernels are radial basis function kernels. They can be
written

𝑘 (𝑥, 𝑦) = 𝑓(d (𝑥, 𝑦) /𝜈) , (5.1)

where 𝑓 : R+ → R+ and 𝜈 is a positive parameter called the bandwidth. In many
applications, the space 𝒳 is R𝑑 and the distance d is derived from the Euclidean norm
‖𝑥‖ =

√︀∑︀
𝑖 𝑥

2
𝑖 , that is, d (𝑥, 𝑦) = ‖𝑥− 𝑦‖.

Among this class of kernel are found numerous kernels often used in practice.
For instance, 𝑓(𝑥) = exp (−𝑥2) corresponds to the Gaussian kernel [Aizerman et al.,
1964], arguably the most popular positive definite kernel used in applications (see,
for instance, Vert et al. [2004]). The function 𝑓(𝑥) = exp (−𝑥) yields the exponential
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kernel – also called Laplace or Laplacian kernel–, whereas more exotic 𝑓 give rise to
less common kernels such as the rational quadratic kernel, the wave kernel or the
Matérn kernel [see Genton, 2001, and references therein].

It is well-known that the performances of kernel methods depend highly on the
kernel choice, see for instance Sriperumbudur et al. [2009]. However, the calibration
of the bandwidth 𝜈 is perhaps even more important as the choice of 𝑓 [Schölkopf and
Smola, 2002, Sec. 4.4.5].

Since the Gram matrix depends only on the ‖𝑥𝑖 − 𝑥𝑗‖ /𝜈 in this case, it is com-
mon sense to pick 𝜈 of the same order than the family of all pairwise distances
(‖𝑥𝑖 − 𝑥𝑗‖)1≤𝑖,𝑗≤𝑛. As an example, suppose that we settled for the Gaussian ker-
nel 𝑘G. Then when 𝜈 → 0, the Gram matrix K is the identity matrix, and when
𝜈 → ∞, the components of K are constant equal to 1. All relevant information
about the data is lost in both these extreme cases. This is a general phenomenon,
even though the values taken by K in the degenerate cases depend on the function 𝑓 .
Hence a reasonable middle-ground for choosing 𝜈 is to pick a value “in the middle
range” of the (‖𝑥𝑖 − 𝑥𝑗‖)1≤𝑖,𝑗≤𝑛, that is, an empirical quantile, which is often set to
be the median. This strategy is called the median heuristic.

As noted in Flaxman et al. [2016], the origin of the median heuristic is quite
unclear and does not appear in the monograph of Schölkopf and Smola [2002], while
it has become the main reference for this heuristic. The earliest appearance of the
median heuristic that we know of is in Sriperumbudur et al. [2009, Sec. 5]. Let us also
mention Gretton et al. [2012a], which refers to Takeuchi et al. [2006] and Schölkopf
et al. [1997] for similar heuristics.

Nevertheless, the median heuristic is extensively used in practice. In a supervised
learning setting, e.g., kernel SVM [Boser et al., 1992] or kernel ridge regression [Hoerl
and Kennard, 1970], one can always resort to a grid-search for the choice of 𝜈. The
performance of each prescribed value for 𝜈 is then evaluated by cross-validation.
But whenever cross-validation is too expensive, the median heuristic can provide a
good alternative. It is for instance the default bandwidth choice in the kernel SVM
implementation of the 𝑅 language kernlab package [Karatzoglou et al., 2004].

In the context of hypothesis testing, a possibility is to try and find the band-
width that maximizes the test power. This is for instance what is done in [Gretton
et al., 2012a; Jitkrittum et al., 2016; Sutherland et al., 2017]. However, it can be
challenging to compute the test power, and further to maximize it with respect to
the bandwidth. In the unsupervised setting, the choice of the kernel and more specif-
ically the choice of the bandwidth 𝜈 has no definitive answer. Hence heuristics as
the median heuristic are among the first choice that comes to mind when one has to
choose a bandwidth, and numerous authors report using the median heuristic in their
experiments [Sriperumbudur et al., 2009; Arlot et al., 2012; Reddi et al., 2015; Zhang
et al., 2017; Jitkrittum et al., 2016; Muandet et al., 2016; Sutherland et al., 2017].
Note that it is also possible to use other rule-of-thumbs, coming for instance from
kernel density estimation where the problem of the bandwidth choice is also of the
utmost importance – see, e.g., Harchaoui and Cappé [2007] in the context of kernel
change-point detection.
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5.1.1 Related work

Despite its popularity, there is very little theoretical understanding of the median
heuristic. To the best of our knowledge, the only work in this direction is contained
in Reddi et al. [2015]. They observe that the median of all the pairwise distances has
to be close to the mean pairwise distance E ‖𝑋𝑖 −𝑋𝑗‖, the computation of which is
then used to obtain the asymptotic of the median heuristic when the dimension of
the data goes to infinity. This argument can be made rigorous by observing that,
given a random variable 𝑋 with a second order moment, the following inequality
holds [Mallows, 1991]:

|E𝑋 −med(𝑋)| ≤
√︀

Var (𝑋) .

Hence the observation of Reddi et al. [2015] is correct, up to a variance term. We will
see in Section 5.4 that our results make this insight more precise.

5.1.2 Outline

Our goal in this chapter is to obtain a precise understanding of the median heuris-
tic for a large sample size in the setting of kernel two-sample test and off-line kernel
change-point detection. Our setting is made explicit in Section 5.2, and we show in
the same section how it is relevant for these applications. In Section 5.3, we claim
our main result: the median heuristic is asymptotically normal when the number of
observations goes to ∞. In particular, the median heuristic converges towards the
theoretical median of a target distribution that we describe completely. This result is
obtained thanks to an auxiliary proposition that we think has an interest of its own,
namely a central limit theorem for a certain class of 𝑈 -statistics that we state and
prove in the same section. We demonstrate with numerical experiments the validity
of our claims.

5.2 Setting

Given any random variable 𝑍, the notation 𝑍 ′ will stand for an independent
copy of 𝑍. Unless specified in subscript, the expected value is taken with respect
to all the random variables that appear in the expression. For instance, E [ℎ(𝑋, 𝑌 )]
means E𝑋,𝑌 [ℎ(𝑋, 𝑌 )]. We also denote by 𝐿2(𝑃 ) the space of real functions such that
E [𝑓(𝑋)2] < +∞ where 𝑋 ∼ 𝑃 .

In the following, we suppose that we are given a triangular array of independent
R𝑑-valued random variables. Namely, for each 𝑛, we suppose that the observations
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are drawn from line 𝑛 of the following scheme:

𝑋1,1

𝑋2,1 𝑋2,2

... . . .
𝑋𝑛,1 · · · · · · 𝑋𝑛,𝑛

... . . .

Let 𝑋 (resp. 𝑌 ) be a R𝑑-valued random variable following the law 𝑃 (resp. 𝑄). Our
main hypothesis on the distribution of the 𝑋𝑛,𝑖 is the following:

Assumption 5.1. There exists 𝛼 ∈ (0, 1) such that 𝑋𝑛,𝑖 ∼ 𝑃 for any 𝑖 ≤ 𝛼𝑛 and
𝑋𝑛,𝑖 ∼ 𝑄 otherwise.

We will assume from now on that 𝛼𝑛 is an integer. Everything that follows can be
readily adapted by replacing 𝛼𝑛 with ⌊𝛼𝑛⌋ when it is needed. Assumption 5.1 means
that our observations are split in two segments, {1, . . . , 𝛼𝑛} and {𝛼𝑛+ 1, . . . , 𝑛}. On
the left segment, they follow 𝑃 and on the right segment they follow 𝑄, as illustrated
below:

𝑋𝑛,1𝑋𝑛,2 · · ·𝑋𝑛,𝛼𝑛⏟  ⏞  
∼𝑃

⃒⃒⃒
𝑋𝑛,𝛼𝑛+1 · · ·𝑋𝑛,𝑛⏟  ⏞  

∼𝑄

5.2.1 Connection with kernel two-sample test

Let us briefly recall the modus operandi of kernel two-sample test. Suppose that,
for a given 𝑛, we sample observations 𝑥1, . . . , 𝑥𝑀 of 𝑋 and observations 𝑦1, . . . , 𝑦𝑁
of 𝑌 . The goal of two-sample test is to decide whether 𝑃 = 𝑄 or 𝑃 ̸= 𝑄 given these
observations. Gretton et al. [2007] have proposed a kernel method for two-sample
testing, that relies on the mean embeddings of 𝑃 and 𝑄 inside the reproducing kernel
Hilbert space ℋ associated with 𝑘. Let us call 𝜇𝑃 and 𝜇𝑄 these embeddings, then
a good measure of proximity between the distributions 𝑃 and 𝑄 is the so called
maximum mean discrepancy (MMD), that can be written ‖𝜇𝑃 − 𝜇𝑄‖ℋ. It is also
possible to write the (squared) MMD as

MMD2(𝑝, 𝑞) = E [𝑘 (𝑥, 𝑥′)]− 2E [𝑘 (𝑥, 𝑦)] + E [𝑘 (𝑦, 𝑦′)] .

It is proven in Gretton et al. [2012a] that an unbiased estimate of this quantity is

M̂MD
2
(𝑃,𝑄) =

1

𝑀(𝑀 − 1)

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗 ̸=𝑖

𝑘 (𝑥𝑖, 𝑥𝑗)

+
1

𝑁(𝑁 − 1)

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗 ̸=𝑖

𝑘 (𝑦𝑖, 𝑦𝑗)−
2

𝑀𝑁

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑘 (𝑥𝑖, 𝑦𝑗) .
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The setting that we described in Section 5.2 corresponds to the kernel two-sample
test setting when we take 𝑀 = 𝛼𝑛, 𝑁 = (1 − 𝛼)𝑛 and the 𝑥𝑖 are realizations of the
𝑋𝑛,𝑖. Letting 𝑛 grow to infinity will correspond to let both 𝑀 and 𝑁 grow to infinity
with the ratio 𝑀/𝑁 constant equal to 𝛼/(1− 𝛼).

5.2.2 Connection with kernel change-point detection

We restrict here to the case when there is a single change-point, thus both the
approaches of Harchaoui and Cappé [2007] and Arlot et al. [2012] coincide and may be
summarized as follow: suppose that we are given observations 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳 drawn
from 𝑋1, . . . , 𝑋𝑛 such that 𝑃𝑋· is a step function. That is, there exists an unknown
change-point 1 ≤ 𝜏1 ≤ 𝑛 such that the 𝑋𝑖 share a common distribution for 1 ≤ 𝑖 ≤ 𝜏1,
say 𝑃 , and another for 𝜏1 < 𝑖 ≤ 𝑛, say 𝑄 ̸= 𝑃 . The kernel change-point detection
procedures then consider the minimization of the kernel least-squares criterion

Minimize
1≤𝜏1≤𝑛

{︃
1

𝑛

𝑛∑︁
𝑖=1

𝑘 (𝑥𝑖, 𝑥𝑖)−
1

𝑛

[︃
1

𝜏1

𝜏1∑︁
𝑖,𝑗=1

𝑘 (𝑥𝑖, 𝑥𝑗) +
1

𝑛− 𝜏1

𝑛∑︁
𝑖,𝑗=𝜏1+1

𝑘 (𝑥𝑖, 𝑥𝑗)

]︃}︃

to estimate 𝜏1. This corresponds to our setting when we let the 𝑥𝑖 be realizations of
𝑋𝑛,𝑖 for any 1 ≤ 𝑖 ≤ 𝑛 and set 𝜏1 = 𝛼𝑛.
Remark 5.1. Our setting can be easily adapted to multiple change-points, that is,
when there are more than one change-point. Indeed, set 𝐷 the –possibly unknown–
number of segments, and 𝛼1, . . . , 𝛼𝐷 positive numbers such that

∑︀
ℓ 𝛼ℓ = 1 the lengths

of the segments. In addition, set 𝛼0 = 𝛼𝐷+1 = 0 and let 𝑋𝑛,𝑖 follow the distribution
𝑃ℓ if 𝛼0 + · · · + 𝛼ℓ−1𝑛 < 𝑖 ≤ 𝛼0 + · · · + 𝛼ℓ𝑛. Then the single change-point case
corresponds to 𝐷 = 2 and 𝛼1 = 𝛼. Note that this is the asymptotic interpretation of
off-line change-point detection presented in Chapter 1: taking 𝑛 → ∞ corresponds
to letting the number of observations on each segments grow to infinity while the
unknown change-points remains constant.

5.2.3 The median heuristic

Suppose that we use a kernel that has the form (5.1) for a fixed 𝑓 . Both for kernel
two-sample test and kernel change-point detection, the choice of the kernel thus boils
down to the choice of the bandwidth 𝜈. The power of the kernel two-sample test
procedure that we recalled in Sec. 5.2.1 is known to have maximum power when the
kernel maximizes the MMD divided by its standard deviation [Gretton et al., 2012b].
This is approximately true for the quadratic MMD as well [Sutherland et al., 2017].
A similar situation occurs in the kernel change-point setting of Sec. 5.2.2: as we have
seen in Section 4.3.1, ∆2 is a key quantity in kernel change-point detection. Thus it
would be very interesting to know whether the median heuristic picks a bandwidth
that achieves these goals.

We first define

𝐻𝑛 = Med
{︀
‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}︀
, (5.2)
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Figure 5-1 – Histogram of the ‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2 for Gaussian distributions in dimension
𝑑 = 100. Namely, 𝑋 ∼ 𝒩 (0, I𝑑), 𝑌 ∼ 𝒩 (10𝑑1, I𝑑), 𝛼 = .25 and 𝑛 = 400. We
repeated the experiment 103 times, counting each time how many observations were
into the bins, error bars are standard deviations over these repetitions; the vertical
black line is the average sample median.

where Med is the empirical median. That is (i) order the ‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2 in increasing
order, (ii) output the central element if 𝑛(𝑛− 1)/2 is odd (𝑛 ≡ 2, 3 mod 4) and the
mean of the two most central elements if 𝑛(𝑛 − 1)/2 is even (𝑛 ≡ 0 or 1 mod 4).
We call median heuristic the choice 𝜈 =

√
𝐻𝑛. Note that some authors choose 𝜈 =√︀

𝐻𝑛/2.
In order to investigate the asymptotic properties of 𝐻𝑛, rather than using (5.2),

we are going to define 𝐻𝑛 via the empirical cumulative distribution function of the
‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2. Namely, for any 𝑡 ∈ R, we let

̂︀𝐹𝑛(𝑡) =
2

𝑛(𝑛− 1)

∑︁
1≤𝑖<𝑗≤𝑛

1‖𝑋𝑛,𝑖−𝑋𝑛,𝑗‖2≤𝑡 (5.3)

For any 𝑝 ∈ (0, 1), we define the generalized inverse of ̂︀𝐹𝑛 by

̂︀𝐹−1
𝑛 (𝑝) = inf

{︀
𝑡 ∈ R | ̂︀𝐹 (𝑡) ≥ 𝑝

}︀
.

We choose to define 𝐻𝑛 as

𝐻𝑛 = ̂︀𝐹−1
𝑛

(︂
1

2

)︂
. (5.4)

Notice that definitions (5.2) and (5.4) differ whenever 𝑛 ≡ 0 or 1 (mod 4).

Remark 5.2. It is tempting to define other empirical quantiles as ̂︀𝐹−1
𝑛 (𝑝) for 𝑝 ∈ (0, 1),

and indeed such quantiles are used in practice, often for 𝑝 = 0.1 and 𝑝 = 0.9. Though
we are mainly concerned with 𝐻𝑛, we will see that our main result still holds for
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arbitrary 𝑝.

5.3 Main results

5.3.1 The empirical distribution function

Under Assumption 5.1, there are three possibilities for an element of the family

𝑇𝑛 =
{︀
‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}︀
.

Namely

1. 𝑖 ≤ 𝛼𝑛 and 𝑗 ≤ 𝛼𝑛: Then ‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2 has the distribution of ‖𝑋 −𝑋 ′‖2,
which we call 𝑇𝑋𝑋 ;

2. 𝑖 > 𝛼𝑛 and 𝑗 > 𝛼𝑛: Then ‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2 has the distribution of ‖𝑌 − 𝑌 ′‖2,
which we call 𝑇𝑌 𝑌 ;

3. 𝑖 ≤ 𝛼𝑛 and 𝑗 > 𝛼𝑛: Then ‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2 has the distribution of ‖𝑋 − 𝑌 ‖2,
which we call 𝑇𝑋𝑌 ;

There are 𝛼𝑛(𝛼𝑛− 1)/2 occurrences of case (i). Suppose that we make 𝑛→∞, then
case (i) occurs with proportion 𝛼2. Similarly, case (ii) occurs with proportion (1−𝛼)2

and case (iii) with proportion 2𝛼(1− 𝛼).
Define a mixture distribution 𝑇 ∼ 𝑇𝑋𝑋 , 𝑇 ∼ 𝑇𝑌 𝑌 and 𝑇 ∼ 𝑇𝑋𝑌 with weights 𝛼2,

(1−𝛼)2 and 2𝛼(1−𝛼) respectively. Thereafter, we will call 𝑇 the target distribution
and denote by 𝐹 its cumulative distribution function. The non-rigorous reasoning
above suggests that when 𝑛 → ∞, 𝑇𝑛 behaves like a 𝑛-sample of the target distri-
bution 𝑇 . Indeed, a specialization of a result stated in the next paragraph shows
that

∀𝑡 ∈ R, ̂︀𝐹𝑛(𝑡)
P−→ 𝐹 (𝑡) . (5.5)

Fig. 5-1 illustrates this phenomenon. For large 𝑛, if we plot the histogram of the
‖𝑋𝑛,𝑖 −𝑋𝑛,𝑗‖2 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, then the “two bumps” behavior depicted in Fig. 5-1
is typical. The left mode of the empirical distribution corresponds to 𝑇𝑋𝑋 and 𝑇𝑌 𝑌 ,
close to zero by definition, whereas the right mode corresponds to 𝑇𝑋𝑌 that can be
arbitrarily far from 0. Eq. (5.5) is already a step in the comprehension of the median
heuristic, since we are now able to think about 𝐻𝑛 “approximately” as the theoretical
median of the target distribution 𝑇 .

It turns out that (5.5) is a trivial consequence of a much stronger statement.
Indeed, ̂︀𝐹𝑛(𝑡) can be seen as a sum of three dependent 𝑈 -statistic with kernel ℎ(𝑥, 𝑦) =
1‖𝑥−𝑦‖2≤𝑡, and the following result shows that it follows a central limit theorem.
We refer to classical textbooks [Lee, 1990; Korolyuk and Borovskich, 2013] for an
introduction to the theory of 𝑈 -statistics.

Proposition 5.1 (CLT for non-identically distributed triangular array 𝑈 -statistic).
Consider ℎ : R×R→ R such that ℎ ∈ 𝐿2(𝑃 )∩𝐿2(𝑄)×𝐿2(𝑃 )∩𝐿2(𝑄), and suppose
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that the 𝑋𝑛,𝑖 satisfy Assumption 5.1. Define

𝑈𝑛 =
2

𝑛(𝑛− 1)

∑︁
1≤𝑖<𝑗≤𝑛

ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) ,

and set

𝜃 = 𝛼2 E [ℎ(𝑋,𝑋 ′)] + 2𝛼(1− 𝛼)E [ℎ(𝑋, 𝑌 )] + (1− 𝛼)2 E [ℎ(𝑌, 𝑌 ′)] .

Then √
𝑛(𝑈𝑛 − 𝜃) ℒ−→ 𝒩

(︀
0, 𝜎2

)︀
, (5.6)

where 𝜎 = 𝜎(ℎ, 𝑃,𝑄) is defined in Eq. (5.9).

We make the following remarks.
Central limit theorems for 𝑈 -statistics are known since the fundamental article

of Hoeffding [1948]. Prop. 5.1 is in the line of such results. An asymptotic normality
result also exists in the non-identically distributed case, see Hoeffding [1948, Th.
8.1]. However, this result was not applicable in our triangular array setting. The
material in Jammalamadaka and Janson [1986] covers the case of a triangular array
scheme, but does not cover the non-identically distributed setting. Results regarding
two-sample 𝑈 -statistics are closest in spirit but not directly applicable, see van der
Vaart [1998, Sec. 12.2] for an introduction and Dehling and Fried [2012] for recent
developments. With our notations, the two-sample statistic is written

1

𝛼𝑛(1− 𝛼)𝑛

𝛼𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝛼𝑛+1

ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) .

The sole difference is the absence of “intra-segment” interactions: the previous display
does not contain terms in ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) with 𝑖 and 𝑗 in the same segment. It is the
appearance of these terms in our case which complicates the analysis.

Finally, suppose that ℎ is degenerate, that is, Eℎ(𝑋, 𝑦) = Eℎ(𝑥, 𝑌 ) = 0. Then
the variance term in Eq. (5.6) is zero, and Prop. 5.1 remains true in the following
sense:

√
𝑛(𝑈𝑛− 𝜃) converges towards the constant 0, which is a degenerate Gaussian

distribution 𝒩 (0, 0). In this case, we believe that the convergence will be faster, but
not toward a Gaussian distribution, c.f. Lee [1990, Section 3.2.2] for results in this
direction.

Remark 5.3. It is possible to prove a version of Prop. 5.1 for the multiple change-
point setting introduced in Rem. 5.1. The proof follows the lines of Sec. 5.3.2, with
an additional technical difficulty due to the numerous inter-segment interactions – we
only deal with one in the present work.

5.3.2 Proof of Prop. 5.1

The idea of the proof is the following: (i) split 𝑈𝑛 in three terms depending on
the relative position of the indices; (ii) write down the Hoeffding decomposition of
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each of these terms; (iii) show that the remainders are negligible, and (iv) conclude
thanks to the central limit theorem for triangular arrays.

We begin by decomposing 𝑈𝑛. To this extent, define

𝐴𝑛 =

(︂
𝛼𝑛

2

)︂−1 ∑︁
1≤𝑖<𝑗≤𝛼𝑛

ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) ,

𝐵𝑛 =

(︂
(1− 𝛼)𝑛

2

)︂−1 ∑︁
𝛼𝑛<𝑖<𝑗≤𝑛

ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) ,

and
𝐶𝑛 =

1

𝛼𝑛(1− 𝛼)𝑛

∑︁
1≤𝑖≤𝛼𝑛
𝛼𝑛<𝑗≤𝑛

ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) .

Note that in 𝐶𝑛 there are no terms ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) with 1 ≤ 𝑗 ≤ 𝛼𝑛 and 𝛼𝑛 < 𝑖 ≤ 𝑛,
since the sum in 𝑈𝑛 is prescribed to 𝑖 < 𝑗. Simple algebra shows that

𝑈𝑛 = 𝛼2𝐴𝑛 + (1− 𝛼)2𝐵𝑛 + 2𝛼(1− 𝛼)𝐶𝑛 (5.7)

− 𝛼(1− 𝛼)

𝑛− 1
𝐴𝑛 −

𝛼(1− 𝛼)

𝑛− 1
𝐵𝑛 −

2𝛼(1− 𝛼)

𝑛− 1
𝐶𝑛 .

According to Lemma 5.1 – see Section 5.6–, the variance of 𝐴𝑛, 𝐵𝑛 and 𝐶𝑛 is O (1/𝑛).
Hence the second line of Eq. (5.7) converges in probability to 0 with speed at least

√
𝑛.

Therefore we can focus on the first line of (5.7).

The next step is to obtain the 𝐻-decomposition [Lee, 1990, Sec. 1.6] of 𝐴𝑛 and 𝐵𝑛.
Let us detail this process for 𝐴𝑛. We set 𝜃𝐴 = E [ℎ(𝑋,𝑋 ′)], ℎ𝐴(𝑥) = E [ℎ(𝑥,𝑋 ′)]− 𝜃𝐴
and 𝑔𝐴(𝑥, 𝑦) = ℎ(𝑥, 𝑦)− ℎ𝐴(𝑥)− ℎ𝐴(𝑦)− 𝜃𝐴. Then it is possible to write [Lee, 1990,
Th. 1]

𝐴𝑛 = 𝜃𝐴 + 𝐿𝐴 +𝑅𝐴 ,

where
𝐿𝐴 =

2

𝛼𝑛

∑︁
1≤𝑖≤𝛼𝑛

ℎ𝐴(𝑋𝑛,𝑖) ,

and

𝑅𝐴 =

(︂
𝛼𝑛

2

)︂−1 ∑︁
1≤𝑖<𝑗≤𝛼𝑛

𝑔𝐴(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) .

A totally analogous statement holds for 𝐵𝑛. We decompose 𝐶𝑛 in the same fashion,
the only difference is the appearance of a second term in the linear part. Namely,
set 𝜃𝐶 = E [ℎ(𝑋, 𝑌 )], ℎ𝐶,1(𝑥) = E [ℎ(𝑥, 𝑌 )], ℎ𝐶,2(𝑦) = E [ℎ(𝑋, 𝑦)] and 𝑔𝐶(𝑥, 𝑦) =
ℎ(𝑥, 𝑦)− ℎ𝐶,1(𝑥)− ℎ𝐶,2(𝑦)− 𝜃𝐶 . Then 𝐶𝑛 = 𝜃𝐶 + 𝐿𝐶 +𝑅𝐶 , with

𝐿𝐶 =
1

𝛼𝑛

𝛼𝑛∑︁
𝑖=1

ℎ𝐶,1(𝑋𝑛,𝑖) +
1

(1− 𝛼)𝑛

𝑛∑︁
𝑖=𝛼𝑛+1

ℎ𝐶,2(𝑋𝑛,𝑖) ,
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and
𝑅𝐶 =

1

𝛼𝑛(1− 𝛼)𝑛

∑︁
1≤𝑖≤𝛼𝑛
𝛼𝑛<𝑗≤𝑛

𝑔𝐶(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) .

Note that 𝜃 = 𝛼2𝜃𝐴+(1−𝛼)2𝜃𝐵 +2𝛼(1−𝛼)𝜃𝐶 . According to Lemma 5.2, the variance
of 𝑅𝐴, 𝑅𝐵 and 𝑅𝐶 is of order 𝑛−2, thus

√
𝑛(𝑈𝑛 − 𝜃) =

√
𝑛
[︀
𝛼2𝐿𝐴 + (1− 𝛼)2𝐿𝐵 + 2𝛼(1− 𝛼)𝐿𝐶

]︀
+ 𝑟𝑛 , (5.8)

with 𝑟𝑛
P−→ 0.

We now regroup the terms in (5.8) that belong to the same segment. For any
1 ≤ 𝑖 ≤ 𝛼𝑛, define

𝑍
(1)
𝑛,𝑖 = 𝛼ℎ𝐴(𝑋𝑛,𝑖) + (1− 𝛼)ℎ𝐶,1(𝑋𝑛,𝑖) .

Since ℎ ∈ 𝐿2(𝑃 ) ∩ 𝐿2(𝑄)× 𝐿2(𝑃 ) ∩ 𝐿2(𝑄) and the 𝑍(1)
𝑛,𝑖 are identically distributed,

Var
(︁
𝑍

(1)
𝑛,𝑖

)︁
= Var (𝛼ℎ𝐴(𝑋) + (1− 𝛼)ℎ𝐶,1(𝑋))

is finite and does not depend on 𝑖. Let us put 𝜎2
1 := Var

(︁
𝑍

(1)
𝑛,𝑖

)︁
. The Lindeberg

condition is satisfied, hence we can apply the central limit theorem for triangular
arrays of independent random variables Billingsley [2012, Th. 27.2]. Thus

1√
𝛼𝑛

𝛼𝑛∑︁
𝑖=1

𝑍
(1)
𝑛,𝑖

ℒ−→ 𝒩
(︀
0, 𝜎2

1

)︀
.

In a similar fashion, set 𝑍(2)
𝑛,𝑖 := 𝛼ℎ𝐶,2(𝑋𝑛,𝑖) + (1− 𝛼)ℎ𝐵(𝑋𝑛,𝑖) and 𝜎2

2 := Var
(︁
𝑍

(2)
𝑛,𝑖

)︁
.

Then
1√︀

(1− 𝛼)𝑛

𝑛∑︁
𝑖=𝛼𝑛+1

𝑍
(2)
𝑛,𝑖

ℒ−→ 𝒩
(︀
0, 𝜎2

2

)︀
.

The two previous sums are independent, thus by Lévy’s theorem

√
𝑛
[︀
𝛼2𝐿𝐴 + (1− 𝛼)2𝐿𝐵 + 2𝛼(1− 𝛼)𝐿𝐶

]︀ ℒ−→ 𝒩
(︀
0, 𝜎2

)︀
,

with
𝜎2 = 𝜎2

1 + 𝜎2
2 . (5.9)

Since the remainder term converges in probability to 0, we can conclude via Slutsky’s
Lemma.

5.3.3 Asymptotic normality of 𝐻𝑛

We now turn to the statement of our main result. In the previous section, we
only obtained the convergence of the empirical distribution function. It is well-known
that such a result implies the convergence of the empirical quantiles towards the
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theoretical quantiles of the target distribution if the convergence of the empirical
distribution function is “strong enough” [van der Vaart, 1998, Chapter 21]. More
precisely, if this convergence is uniform or follows a CLT – as in our case.

Proposition 5.2 (Asymptotic normality of 𝐻𝑛). Suppose that Assumption 5.1 holds,
and define 𝑇 as in Sec. 5.3.1. Define 𝑚 = med(𝑇 ) the theoretical median of the target
distribution. Suppose that 𝐹 has a non-zero derivative at 𝑚, and define 𝜎 = 𝜎(ℓ, 𝑃,𝑄)
as in Prop. 5.1, where

ℓ(𝑥, 𝑦) = 1‖𝑥−𝑦‖2≤𝑚 .

Then
√
𝑛(𝐻𝑛 −𝑚)

ℒ−→ 𝒩
(︂

0,
𝜎2

𝐹 ′(𝑚)2

)︂
. (5.10)

We illustrate Prop. 5.2 in Fig. 5-2. Before we turn to the proof of Prop. 5.2, we
make a few remarks.

Note that we made very few assumptions on the distribution of the 𝑋𝑛,𝑖s, hence
Prop. 5.2 can be applied in a wide range of situations. Of course, when met with
an experimental problem, one does not know 𝑃 and 𝑄. Nevertheless, Prop. 5.2
suggests that 𝐻𝑛 is concentrated around some deterministic value depending on the
data at hand for large 𝑛. If more information is available regarding 𝑃 and 𝑄, we
will demonstrate in the next section that it is possible to transfer this information to
med(𝑇 ), hence to 𝐻𝑛.

Once again, this result should not come as a shock to the knowledgeable reader
since empirical 𝑈 -quantiles are known to satisfy asymptotic normality since Serfling
[1980] in the i.i.d. case. Though a lot of work has been done to relax the inde-
pendence assumption, to the best of our knowledge there is no result regarding the
non-identically distributed case. In the two-sample setting, some results exist, both in
the independent case [Lehmann, 1951] and with some dependence structure [Dehling
and Fried, 2012]. However, as noted before, in our setting it is necessary to consider
the intra-segment interactions.

Note that, as it can be seen for instance in Fig. 5-1, observations lying between
max(E𝑇𝑋𝑋 ,E𝑇𝑌 𝑌 ) and E𝑇𝑋𝑌 are quite scarce. Therefore, it is possible for 𝐹 ′(𝑚)
to be small, leading to a large variance term in (5.10). Note that 𝐹 ′(𝑚) ̸= 0 does not
hold for arbitrary continuous distributions.

5.3.4 Proof of Prop. 5.2

Set 𝑡 ∈ R. The general idea of the proof is to rewrite statements about the
event

{︀√
𝑛 (𝐻𝑛 −𝑚) ≤ 𝑡

}︀
as statements about a sum of 𝑈 -statistics. We will then

control these 𝑈 -statistics with Prop. 5.1 for conveniently chosen ℎ, and conclude
with Slutsky’s Lemma. Throughout this proof, we only suppose that 𝑝 ∈ (0, 1) to
emphasize that Prop. 5.2 can be extended to any quantile, not only the median.

We use the property of the generalized inverse to obtain

{︀√
𝑛 (𝐻𝑛 −𝑚) ≤ 𝑡

}︀
=

{︂
𝑝 ≤ ̂︀𝐹𝑛

(︂
𝑚+

𝑡√
𝑛

)︂}︂
,
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Figure 5-2 – Empirical distribution of𝐻400 for different distributions 𝑃 and 𝑄 over 103

repetitions. Upper left: 𝑃 ∼ 𝒩 (0, 1) and 𝑄 ∼ 𝒩 (10, 1); Upper right: 𝑃 ∼ 𝒩 (0, I100)
and 𝑄 ∼ 𝒩 (101100, I100); Bottom left: 𝑃 ∼ Γ(2, 2) and 𝑄 ∼ ℰ(1); Bottom right: both
𝑃 and 𝑄 are Gaussian mixtures 𝒩 (0, 1) and 𝒩 (5, 1) with equal weight. The results
of Kolmogorov-Smirnov tests were non-significant, indicating that 𝐻400 is normally
distributed in each case.
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and rewrite this event as{︂√
𝑛

(︂̂︀𝐹𝑛

(︂
𝑚+

𝑡√
𝑛

)︂
− 𝐹

(︂
𝑚+

𝑡√
𝑛

)︂)︂
≥ √𝑛

(︂
𝑝− 𝐹

(︂
𝑚+

𝑡√
𝑛

)︂)︂}︂
. (5.11)

Since 𝐹 is differentiable in𝑚, the right-hand side of (5.11) converges towards−𝑡𝐹 ′(𝑚)
by Taylor expansion. From Prop. 5.1, it is also true that

√
𝑛
(︁ ̂︀𝐹𝑛(𝑚)− 𝐹 (𝑚)

)︁
ℒ−→ 𝒩

(︀
0, 𝜎2

)︀
.

Therefore, if we manage to prove that

√
𝑛

[︂(︂ ̂︀𝐹𝑛

(︂
𝑚+

𝑡√
𝑛

)︂
− ̂︀𝐹𝑛(𝑚)

)︂
−
(︂
𝐹

(︂
𝑚+

𝑡√
𝑛

)︂
− 𝐹 (𝑚)

)︂]︂
P−→ 0 , (5.12)

Eq. (5.10) will follow by Slutsky’s Lemma.

Define ℎ(𝑥, 𝑦) = 1𝑚<‖𝑥−𝑦‖2≤𝑚+ 𝑡√
𝑛
. Then, with the notations used in the proof of

Prop. 5.1, Eq. (5.12) reads √
𝑛(𝑈𝑛 − 𝜃) P−→ 0 .

We dispose of the remainder terms as in the proof of Prop. 5.1, thus we are left to
show that

√
𝑛
[︀
𝛼2(𝐴𝑛 − 𝜃𝐴) + (1− 𝛼)2(𝐵𝑛 − 𝜃𝐵) + 2𝛼(1− 𝛼)(𝐶𝑛 − 𝜃𝐶)

]︀ P−→ 0 . (5.13)

Let us focus on the first term of the previous display, which can be written

𝛼2
√
𝑛 (𝐴𝑛 − 𝜃𝐴) = 𝛼2

√
𝑛 (𝐿𝐴 +𝑅𝐴) .

Once again, we use Lemma 5.2 to get rid of 𝑅𝐴. The linear term is slightly more
tedious to analyze. Recall that E [ℎ𝐴(𝑋)] = 0. Thanks to Jensen’s inequality,

Var (ℎ𝐴(𝑋)) = E𝑋

[︂(︂
E𝑋′

[︁
1𝑚<‖𝑋−𝑋′‖2≤𝑚+ 𝑡√

𝑛

]︁2)︂]︂
≤ P

(︂
𝑚 < ‖𝑋 −𝑋 ′‖2 ≤ 𝑚+

𝑡√
𝑛

)︂
.

We recognize

𝐹

(︂
𝑚+

𝑡√
𝑛

)︂
− 𝐹 (𝑚) ,

which goes to 0 when 𝑛 → ∞, since we assumed 𝐹 to have a derivative in 𝑚.
Furthermore, by independence of the 𝑋𝑛,𝑖,

Var
(︀√

𝑛𝐿𝐴

)︀
= 4 Var (ℎ𝐴(𝑋)) −→

𝑛→∞
0 .

A similar reasoning applies to the other terms in Eq. (5.13), and the proof is concluded.
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Figure 5-3 – A plot of 𝐻𝑛(𝑑) for 𝑋 ∼ 𝒩 (0, I𝑑) and 𝑌 ∼ 𝒩 (10𝑑1, I𝑑) for 𝑛 ∈
{50, 100, 200}. For each 𝑑, we repeated the experiment 102 times. The shaded area is
within standard deviation from these experiments. We plot in red the approximation
given by Eq. (5.14).

5.4 An example

In this section, we investigate the consequences of Prop. 5.2 when 𝑃 and 𝑄 are
known to be multivariate Gaussian distributions.

Before, let us recall that a sum of 𝑑 independent squared standard Gaussian ran-
dom variables is said to follow the chi-squared distribution with 𝑑 degrees of freedom,
denoted by 𝜒2

𝑑. We also define the non-central chi-squared central distribution with
the law of

∑︀𝑑
𝑖=1𝒩 (𝜇𝑖, 1)2 , with non-centrality parameter 𝜆 =

∑︀𝑑
𝑖=1 𝜇

2
𝑖 .

Now suppose that 𝑋 ∼ 𝒩 (0, I𝑑) and 𝑌 ∼ 𝒩 (𝜇, I𝑑) with 𝜇 ∈ R𝑑. This is the situ-
ation depicted in Fig. 5-1. We choose to tackle the unit variance case for convenience,
as everything that follows can be adapted for a covariance matrix Σ = 𝛾 I𝑑. With the
notations introduced in Section 5.3, a quick computation shows that⎧⎪⎨⎪⎩

𝑇𝑋𝑋 = 2𝜒2
𝑑,

𝑇𝑋𝑌 = 2𝜒2
𝑑(𝜆), with 𝜆 = 1

2
‖𝜇‖2 ,

𝑇𝑌 𝑌 = 2𝜒2
𝑑.

According to Prop. 5.2, 𝐻𝑛 is close to 𝑚 = med(𝑇 ) for large 𝑛. Can we hope for some
insights on the value of 𝑚? The following proposition shows that it is possible in the
high-dimensional regime.

Proposition 5.3. Let 𝑇 be as before. Take 𝛼 ∈ (0, 1/2). Suppose that ‖𝜇‖2 = O (𝑑)
when 𝑑 goes to infinity. Define

𝜅𝛼 = 2
√

2Φ−1

(︂
1

2 (𝛼2 + (1− 𝛼)2)

)︂
> 0 ,

where Φ is the repartition function of the standard Gaussian random variable. Then

𝑚 = 2𝑑+ 𝜅𝛼
√
𝑑+ o

(︁√
𝑑
)︁
, (5.14)
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when 𝑑→ +∞.

The accuracy of Eq. (5.14) is illustrated in Fig. 5-3. We observe that, even though
Prop. 5.3 is an asymptotic statement, it is valid with good accuracy for small values
of 𝑑. Furthermore, we see the variance (represented by the shaded area) thinning
when the number of data-points increases, as predicted by Prop. 5.2.

We make a few comments.
At first sight, it appears that 𝑚 behaves as if only 𝑇𝑋𝑋 and 𝑇𝑌 𝑌 contribute, in

the sense that Eq. (5.14) does not depend on 𝜇. There is a simple explanation to this
observation. Indeed, a careful inspection of Fig. 5-1 shows that the left part of the
histogram, corresponding to the contribution of 𝑇𝑋𝑋 and 𝑇𝑌 𝑌 , is much larger than
the right part, corresponding to 𝑇𝑋𝑌 . It holds since, for any 𝛼 ∈ (0, 1),

𝛼2 + (1− 𝛼)2 ≥ 2𝛼(1− 𝛼) .

Thus if E [𝑇𝑋𝑋 ] and E [𝑇𝑌 𝑌 ] are both small with respect to E [𝑇𝑋𝑌 ], this is a gen-
eral phenomenon and 𝐻𝑛 will be close to max (E [𝑇𝑋𝑋 ] ,E [𝑇𝑌 𝑌 ]). Hence the me-
dian heuristic will select a bandwidth according to the maximum variance, since
E [𝑇𝑋𝑋 ] = 2 Var (𝑋) and E [𝑇𝑌 𝑌 ] = 2 Var (𝑌 ). As noted in Gretton et al. [2012b,
Sec. 5], if the variance of 𝑋 and 𝑌 is much higher than the scale of the changes one
aims to detect, the median heuristic will thus fail completely to select an appropriate
bandwidth.

In this special case, we recover the setting of Reddi et al. [2015, Sec. 4.1 (A)]
as in Sec. 5.1.1, with the exception that ‖𝜇‖2 = O (𝑑). Following the reasoning in
Sec. 5.1.1, we would write

E𝑇 = 2𝑑+ 2𝛼(1− 𝛼) ‖𝜇‖2 ,

which is no longer dominated by the first term as 𝑑 increases. Yet, according to
Prop. 5.3, 𝐻𝑛 ∼ 2𝑑. We have thus obtained a rigorous and more precise result,
though we acknowledge that the order of magnitude of 𝐻𝑛 stays the same, that is,
𝐻𝑛 = O (𝑑).

5.4.1 Proof of Prop. 5.3

We are going to show that

P (𝑇 ≤ 𝑚) −−−−→
𝑑→∞

1

2
,

and our claim will follow.
We first note that P (𝑇 ≤ 𝑚) can be decomposed as(︀

𝛼2 + (1− 𝛼)2
)︀
P
(︀
2𝜒2

𝑑 ≤ 𝑚
)︀

+ 2𝛼(1− 𝛼)P
(︀
2𝜒2

𝑑(𝜆) ≤ 𝑚
)︀
. (5.15)

Let us show that, with the prescribed choice of 𝜅𝛼, the left-hand side of Eq. (5.15)
converges to 1/2 and (5.11) converges to 0.
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First note that, by the definition of 𝑚,

P
(︀
2𝜒2

𝑑 ≤ 𝑚
)︀

= P
(︁
𝜒2
𝑑 ≤ 𝑑+

𝜅𝛼
2

√
𝑑
)︁

= P
(︂
𝜒2
𝑑 − 𝑑√

2𝑑
≤ 𝜅𝛼

2
√

2

)︂
.

A direct application of Lemma 5.3 (see Section 5.6) yields,

P
(︂
𝜒2
𝑑 − 𝑑√

2𝑑
≤ 𝜅𝛼

2
√

2

)︂
→ Φ

(︂
𝜅𝛼

2
√

2

)︂
,

which is exactly 1/(2(𝛼2 + (1− 𝛼)2)) according to the definition of 𝜅𝛼.
Now we turn to Eq. (5.11). By the same manipulations, we obtain

P
(︀
2𝜒2

𝑑(𝜆) ≤ 𝑚
)︀

= P

(︃
𝜒2
𝑑(𝜆)− (𝑑+ 𝜆)√︀

2(𝑑+ 𝜆)
≤

𝜅𝛼

2

√
𝑑− 𝜆√︀

2(𝑑+ 2𝜆)

)︃
.

Since 𝜆 = O (𝑑), clearly
𝜅𝛼

2

√
𝑑− 𝜆√︀

2(𝑑+ 2𝜆)
→ −∞ .

According to Lemma 5.3,

𝜒2
𝑑(𝜆)− (𝑑+ 𝜆)√︀

2(𝑑+ 𝜆)

ℒ−→ 𝒩 (0, 1) ,

and we can conclude.

Remark 5.4. It is also possible to prove a version of Prop. 5.3 for an arbitrary number
of segments. With the notations of Remark 5.1, suppose that 𝜇𝑝 is the average on
segment 𝑝. Assume ‖𝜇𝑝 − 𝜇𝑞‖ = 𝜆𝑝,𝑞𝑑 and order the 𝜆𝑝,𝑞 in increasing order, and set
𝑎0 =

∑︀
𝑝 𝛼

2
𝑝 and 𝑎𝑖 = 2𝛼𝑝𝑖𝛼𝑞𝑖 . The median will then be close to 𝜆𝑝𝑖⋆ ,𝑞𝑖⋆𝑑, where 𝑖⋆ is

such that 𝑎0 + · · ·+ 𝑎𝑖⋆ > 1/2.

5.5 Conclusion and future directions

In this chapter, we partly explained the behavior of the median heuristic for a
large sample size. We believe that it opens the door to more rigorous statements
regarding the optimality of bandwidth choice in kernel two-sample test and kernel
change-point detection, at least for some specific distributions.

As a future direction for research, we believe that it would be interesting to obtain
a non-asymptotic version of Prop. 5.2. Indeed, as it is often the case in kernel methods,
both kernel two-sample test and kernel change-point detection run in quadratic time
– even though linear time approximations are available. Hence these methods, and
consequently the median heuristic, are frequently used with a sample size that does
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not exceed a few hundreds.
We would also like to improve the results given in Prop. 5.3. Namely, a version

of Prop. 5.3 with non-identity covariance matrices for 𝑃 and 𝑄 seems out of reach at
the moment. Indeed, obtaining asymptotic behavior for 𝑇𝑋𝑋 , 𝑇𝑌 𝑌 and 𝑇𝑋𝑌 is much
harder. Extending Prop. 5.3 to the case where 𝑃 and 𝑄 are mixtures of Gaussian
distributions with non-identity covariance matrices could yield some precious insights
on situations where the median heuristic is known to fail empirically [Gretton et al.,
2012b, Fig. 1].

5.6 Additional proofs

In this section, we state and prove the technical results that are needed in the
proofs of this chapter. Recall that we denote by |𝐴| the cardinality of any finite
set 𝐴.

Lemma 5.1. Let 𝐴𝑛, 𝐵𝑛 and 𝐶𝑛 be defined as in the proof of Prop. 5.1. Then
Var (𝐴𝑛), Var (𝐵𝑛) and Var (𝐶𝑛) are O (𝑛−1).

The proof is standard in 𝑈 -statistics [Lee, 1990].

Proof. We set 𝑚 = 𝛼𝑛 in this proof. Recall that

𝐴𝑛 =

(︂
𝑚

2

)︂−1 ∑︁
1≤𝑖<𝑗≤𝑚

ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗) ,

Define ℎ𝑖,𝑗 = ℎ(𝑋𝑛,𝑖, 𝑋𝑛,𝑗), thus Eℎ𝑖,𝑗 = 𝜃𝐴 and E𝐴𝑛 = 𝜃𝐴. Let us turn to the
computation of E [𝐴2

𝑛], that is,

E
[︀
𝐴2

𝑛

]︀
=

(︂
𝑚

2

)︂−2∑︁
𝑎<𝑏

∑︁
𝑐<𝑑

E [ℎ𝑎,𝑏ℎ𝑐,𝑑] ,

where 𝑎, 𝑏, 𝑐 and 𝑑 range from 1 to 𝑚. There are three separate cases in the sum that
we detail below.

— The indices 𝑎, 𝑏, 𝑐 and 𝑑 are all distincts. There are
(︀
𝑚
4

)︀(︀
4
2

)︀
= 𝑚4

4
+ O (𝑚3) ways

to choose such indices, that is,
(︀
𝑚
4

)︀
ways to choose the location of the 4 indices

among the 𝑚 possible locations, then
(︀
4
2

)︀
choices for, say, 𝑎 < 𝑏, and only one

possibility left for 𝑐 < 𝑑.

— One of the indices is common, that is, |{𝑎, 𝑏} ∩ {𝑐, 𝑑}| = 1. There are 6
(︀
𝑚
3

)︀
=

O (𝑚3) ways to do so.

— Both indices are equal, that is, 𝑎 = 𝑐 and 𝑏 = 𝑑. There are
(︀
𝑚
2

)︀
= O (𝑚2) ways

to do so.
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Note that when 𝑎, 𝑏, 𝑐 and 𝑑 are all distinct, E [ℎ𝑎,𝑏ℎ𝑐,𝑑] = E [ℎ𝑎,𝑏]E [ℎ𝑐,𝑑] by indepen-
dence of the 𝑋𝑛,𝑖s. Thus

E
[︀
𝐴2

𝑛

]︀
=

(︂
𝑚

2

)︂−2∑︁
𝑎<𝑏
𝑐<𝑑
̸=

E [ℎ𝑎,𝑏]E [ℎ𝑐,𝑑] + O
(︀
𝑚−1

)︀
,

where the summation is on distinct indices. On the other hand,

E [𝐴𝑛]2 =

(︂
𝑚

2

)︂−2∑︁
𝑎<𝑏
𝑐<𝑑

Eℎ𝑎,𝑏 Eℎ𝑐,𝑑 .

By the same combinatorial argument, the terms corresponding to intersecting sets of
indices are at most O (𝑛3) and we have

E [𝐴𝑛]2 =

(︂
𝑚

2

)︂−2∑︁
𝑎<𝑏
𝑐<𝑑
̸=

Eℎ𝑎,𝑏 Eℎ𝑐,𝑑 + O
(︀
𝑚−1

)︀
.

Since 𝑚 = 𝛼𝑛, O (𝑚−1) = O (𝑛−1) and we can conclude for 𝐴𝑛:

Var (𝐴𝑛) = E
[︀
𝐴2

𝑛

]︀
− E [𝐴𝑛]2 = O

(︀
𝑛−1
)︀
.

The same proof transfers readily for 𝐵𝑛 and 𝐶𝑛.

Lemma 5.2. Let 𝑅𝐴, 𝑅𝐵 and 𝑅𝐶 be as in the proof of Prop. 5.2. Then Var (𝑅𝐴),
Var (𝑅𝐵) and Var (𝑅𝐶) are of order O (𝑛−2).

Proof. Recall that

𝑅𝐴 =

(︂
𝑚

2

)︂−1 ∑︁
1≤𝑖<𝑗≤𝑚

𝑔𝑖,𝑗 ,

with 𝑔𝑖,𝑗 = 𝑔𝐴(𝑋𝑛,𝑖, 𝑋𝑛,𝑗). By definition of 𝑔𝐴, it holds that E 𝑔𝑖,𝑗 = 0 for any 𝑖 ̸= 𝑗,
thus E𝑅𝐴 = 0. Hence to control the variance of 𝑅𝐴, we just need to compute E [𝑅2

𝐴].
As in the proof of Lemma 5.1, we have

E
[︀
𝑅2

𝐴

]︀
=

(︂
𝑚

2

)︂−2∑︁
𝑎<𝑏

∑︁
𝑐<𝑑

E [𝑔𝑎,𝑏𝑔𝑐,𝑑] .

Note that E [𝑔𝑎,𝑏𝑔𝑐,𝑑] = 0 whenever 𝑎, 𝑏, 𝑐 and 𝑑 are all distinct. But a straightforward
computation also shows that E [𝑔𝑎,𝑏𝑔𝑎,𝑐] = 0 for any distinct 𝑎, 𝑏, 𝑐. Thus the previous
display reduces to

E
[︀
𝑅2

𝐴

]︀
=

(︂
𝑚

2

)︂−2∑︁
𝑎<𝑏
𝑐<𝑑
⋆

E [𝑔𝑎,𝑏𝑔𝑐,𝑑] ,
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where ⋆ denotes that we sum on indices such that |{𝑎, 𝑏} ∩ {𝑐, 𝑑}| ≥ 2. As we have
seen in the proof of Lemma 5.1, there are only O (𝑚2) such possibilities, and we can
conclude.

Our last result is a central limit theorem for a non-central chi-squared distributed
random variable.

Lemma 5.3. Let 𝑌 be a 𝜒2
𝑑(𝜆) distributed random variable, with 𝜆 > 0 possibly

depending on 𝑑. Then 𝑌 satisfies a central limit theorem, namely

𝑌 − (𝑑+ 𝜆)√︀
2(𝑑+ 2𝜆)

ℒ−→ 𝒩 (0, 1) .

Proof. The characteristic function of 𝑌 is

𝑡 ↦→ 𝜙𝑌 (𝑡) =
exp

(︀
i𝜆𝑡
1−2𝑡

)︀
(1− 2i𝑡)𝑑/2

.

Define 𝑆𝑑 := (𝑌 − (𝑑 + 𝜆))/
√︀

2(𝑑+ 𝜆). We show that 𝜙𝑆𝑑
(𝑡) → exp (−𝑡2/2), and

conclude with Lévy’s continuity’s theorem.

E

[︃
exp

(︃
i𝑡
𝑌 − (𝑑+ 𝜆)√︀

2(𝑑+ 2𝜆)

)︃]︃
= E

[︃
exp

(︃
i

𝑡√︀
2(𝑑+ 2𝜆)

)︃]︃
exp

(︃
−i𝑡(𝑑+ 𝜆)√︀

2(𝑑+ 2𝜆)

)︃

= exp

⎛⎝ i𝜆 𝑡√
2(𝑑+2𝜆)

1− 2i𝑡√
2(𝑑+2𝜆)

⎞⎠ · exp

(︃
−i𝑡(𝑑+ 𝜆)√︀

2(𝑑+ 2𝜆)

)︃

·
(︃

1− 2i
𝑡√︀

2(𝑑+ 2𝜆)

)︃−𝑑/2

= exp

⎛⎝ i𝜆𝑡√︀
2(𝑑+ 2𝜆)

· 1

1− 2i𝑡√
2(𝑑+2𝜆)

− i𝑡(𝑑+ 𝜆)√︀
2(𝑑+ 2𝜆)

−𝑑
2

log

(︃
1− 2i

𝑡√︀
2(𝑑+ 2𝜆)

)︃)︃

= exp

(︃
i𝜆𝑡√︀

2(𝑑+ 2𝜆)

(︃
1 +

2i𝑡√︀
2(𝑑+ 2𝜆)

)︃
− i𝑡(𝑑+ 𝜆)√︀

2(𝑑+ 2𝜆)

+
𝑑

�2

�2i𝑡√︀
2(𝑑+ 2𝜆)

+
𝑑

�2

1

�2

−�4𝑡2

2(𝑑+ 2𝜆)
+ o

(︀
𝑡2
)︀)︃

= exp

(︃
��

���
��i𝜆𝑡√︀

2(𝑑+ 2𝜆)
− �2𝜆𝑡2

�2(𝑑+ 2𝜆)
−

�
����

��i𝑡𝜆√︀
2(𝑑+ 2𝜆)

− 𝑑𝑡2

2(𝑑+ 2𝜆)
+ o

(︀
𝑡2
)︀)︂
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= exp
(︀
−𝑡2 + o

(︀
𝑡2
)︀)︀
.
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Chapter 6

Conclusion and future work

6.1 Summary of the thesis

In this thesis, we mostly focused on a method for detecting abrupt changes in
a sequence of independent observations belonging to an arbitrary set 𝒳 on which a
positive semi-definite kernel 𝑘 is defined. That method, kernel change-point detection,
is a kernelized version of a penalized least-squares procedure.

Our main contribution is to show that, for any kernel satisfying some reasonably
mild hypotheses, the KCP procedure outputs a segmentation close to the true segmen-
tation with high probability. This result is obtained under a bounded assumption on
the kernel, in Theorem 3.1 for a linear penalty, and Theorem 3.2 for another penalty
function, coming from model selection.

The proofs rely on a concentration result for bounded random variables in Hilbert
spaces, and we prove a less powerful result under relaxed hypotheses — a finite
variance assumption — in Theorem 3.3.

Up to now, it seemed difficult to combine the “change-point estimation / asymp-
totic” with the “model selection / non-asymptotic” point of view. The proofs of
Theorems 3.1 and 3.3 show how they can be reconciled. Moreover, the structure
of these proofs is modular, so that one can easily adapt them to different sets of
assumptions.

In the asymptotic setting, we show that we recover the minimax rate log(𝑛)/𝑛 for
the change-point locations without additional hypothesis on the segment sizes. We
provide empirical evidence supporting these claims.

Another contribution of this thesis is the detailed presentation of the different
notions of distances between segmentations. Additionally, we prove a result showing
these different notions coincide for sufficiently close segmentations.

From a practical point of view, a contribution of this thesis is to demonstrate how
the so-called dimension jump heuristic can be a reasonable choice of penalty constant
when using kernel change-point detection with a linear penalty.

We also show how a key quantity depending on the kernel that appears in our
theoretical results, ∆, influences the performance of KCP in the case of a single
change-point. When the kernel is translation-invariant and parametric assumptions
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are made, it is possible to compute ∆ in closed-form. Thanks to these computations,
some of them novel, we are able to study precisely the link between the maximal
penalty constant and ∆. We show that, as suggested by Theorem 3.1, our theoretical
upper bound on the penalty constant is proportional to ∆2 all other things being
equal.

Our last main contribution is a study of the median heuristic, a popular tool to
set the bandwidth of radial basis function kernels. For a large sample size, we show
that the median heuristic behaves approximately as the median of a distribution that
we describe completely in the setting of kernel two-sample test and kernel change-
point detection. More precisely, we show that the median heuristic is asymptotically
normal around this value.

6.2 Perspectives
A number of questions remain unanswered at the end of this manuscript.

— In our theoretical study, we essentially provide an upper bound for 𝐶max, that
is, 𝐶max . ∆2 with high probability, up to constants that do not depend on the
kernel. We believe that a lower bound exists. Proving this lower bound would
achieve two goals. First, it would explain our empirical findings, and second, it
would provide an important argument in favor of keeping up the study of ∆ as
a criterion for kernel choice.

— In all our main results, we impose that ̂︀𝐷 = 𝐷⋆. This may be a little too
demanding, and as such it translates into very tight bounds on the possible
constants for the penalty functions. Maybe it would be preferable not to work
on an event such that ̂︀𝐷 = 𝐷⋆, but rather such that

⃒⃒⃒ ̂︀𝐷 −𝐷⋆
⃒⃒⃒
≤ 𝜂, with 𝜂 a

threshold. As another technical improvement, we believe that it is possible to
take advantage of the structure of our proofs to account for dependency between
observations — a very natural hypothesis when dealing with time series. The
only missing piece is a concentration inequality for dependent Hilbert-valued
random variables.

— In the main concentration result used in our proofs, the deviations are of order
𝑀2, which yields the ∆2/𝑀2 term that intervenes in both the expression of 𝐶max

and the speed of convergence. We believe that this result is not optimal. In the
real case, for instance, we know for a fact that 𝑀2 can be replaced by a variance
term. To prove a concentration result where the kernel bound is replaced by a
variance term would provide a much more general version of Theorem 3.1. In
particular, this new version would hold in the archetypal change-point problem
— linear kernel, change in the mean of Gaussian observations —, which is not
covered by the present result.

— The penalty function penL showed its superiority for detecting the changes in
R [Lebarbier, 2005] and is a natural choice of penalty function for KCP as well.
So far, we have not managed to calibrate properly the constants of penL. In
particular, in the real case, both these constants are of order 𝜎2 — the variance
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of the data — for which we have no natural substitute in the kernel setting. Is
it possible to provide a method for the calibration of the constants in penL in
the setting of KCP?

— The link uncovered between ∆2 and the maximal penalty constant suggests
a simple method of kernel choice for KCP: maximizing ∆2 with respect to
the kernel. Unfortunately, even in the simplest case, ∆2 depends on unknown
quantities, in particular the size of the jump we are trying to detect. Is it
possible to estimate ∆2 accurately, and thus to build a data-driven method for
choosing the kernel for KCP?

— The results we obtained regarding the asymptotic behavior of the median heuris-
tic are more precise than what was already known. It would be interesting to
use this new insight in simple situations. For instance, suppose that we want to
detect a single change in the mean of Gaussian observations. In this situation,
is the median heuristic close to the global maximum of ∆2?

— Finally, we think that the KCP algorithm can be applied successfully to real
data in cases where 𝑑-dimensional features are not easily accessible but a positive
semi-definite kernel is available. An example of such a situation is the study of
granular material, for instance cereal grains in a silo. It is possible to summarize
such an environment to the weighted graph of forces between particles, and even
further to the persistence diagram associated to this graph — see Oudot [2015]
for an introduction to persistence. The time-evolution of the granular material
is then described by a sequence of such diagrams. The study of abrupt changes
in the distribution of the forces between particles, as for instance in Gutiérrez
et al. [2015], needs a change-point detection method for persistence diagrams.
They are complicated objects, but positive semi-definite kernels do exist on the
space of persistence diagrams [Kusano et al., 2016].
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Résumé
Dans cette thèse, nous nous intéressons à une méthode
de détection des ruptures dans une suite d’observations
appartenant à un ensemble muni d’un noyau semi-défini
positif. Cette procédure est une version « à noyaux »
d’une méthode des moindres carrés pénalisés.

Notre principale contribution est de montrer que, pour
tout noyau satisfaisant des hypothèses raisonnables,
cette méthode fournit une segmentation proche de la vé-
ritable segmentation avec grande probabilité. Ce résultat
est obtenu pour un noyau borné et une pénalité linéaire,
ainsi qu’une autre pénalité venant de la sélection de mo-
dèles. Les preuves reposent sur un résultat de concen-
tration pour des variables aléatoires bornées à valeurs
dans un espace de Hilbert, et nous obtenons une ver-
sion moins précise de ce résultat lorsque l’on suppose
seulement que la variance des observations est finie.
Dans un cadre asymptotique, nous retrouvons les taux
minimax usuels en détection de ruptures lorsqu’aucune
hypothèse n’est faite sur la taille des segments. Ces ré-
sultats théoriques sont confirmés par des simulations.
Nous étudions également de manière détaillée les liens
entre différentes notions de distances entre segmenta-
tions. En particulier, nous prouvons que toutes ces no-
tions coïncident pour des segmentations suffisamment
proches.

D’un point de vue pratique, nous montrons que l’heuris-
tique du « saut de dimension » pour choisir la constante
de pénalisation est un choix raisonnable lorsque celle-ci
est linéaire.
Nous montrons également qu’une quantité clé dépen-
dant du noyau et qui apparaît dans nos résultats théo-
riques influe sur les performances de cette méthode pour
la détection d’une unique rupture. Dans un cadre pa-
ramétrique, et lorsque le noyau utilisé est invariant par
translation, il est possible de calculer cette quantité expli-
citement. Grâce à ces calculs, nouveaux pour plusieurs
d’entre eux, nous sommes capable d’étudier précisé-
ment le comportement de la constante de pénalité maxi-
male.

Pour finir, nous traitons de l’heuristique de lamédiane, un
moyen courant de choisir la largeur de bande des noyaux
à base de fonctions radiales. Dans un cadre asympto-
tique, nous montrons que l’heuristique de la médiane se
comporte à la limite comme la médiane d’une distribution
que nous décrivons complètement dans le cadre du test
à deux échantillons à noyaux et de la détection de rup-
tures. Plus précisément, nousmontrons que l’heuristique
de la médiane est approximativement normale centrée
en cette valeur.

Mots Clés
Détection de ruptures, méthodes à noyaux, moindres
carrés pénalisés, heuristique de la médiane.

Abstract
In this thesis, we focus on a method for detecting abrupt
changes in a sequence of independent observations be-
longing to an arbitrary set on which a positive semi-
definite kernel is defined. That method, kernel change-
point detection, is a kernelized version of a penalized
least-squares procedure.

Our main contribution is to show that, for any kernel satis-
fying some reasonably mild hypotheses, this procedure
outputs a segmentation close to the true segmentation
with high probability. This result is obtained under a
bounded assumption on the kernel for a linear penalty
and for another penalty function, coming from model se-
lection.
The proofs rely on a concentration result for bounded
random variables in Hilbert spaces and we prove a less
powerful result under relaxed hypotheses — a finite vari-
ance assumption.
In the asymptotic setting, we show that we recover the
minimax rate for the change-point locations without ad-
ditional hypothesis on the segment sizes. We provide
empirical evidence supporting these claims.
Another contribution of this thesis is the detailed pre-
sentation of the different notions of distances between
segmentations. Additionally, we prove a result showing
these different notions coincide for sufficiently close seg-
mentations.

From a practical point of view, we demonstrate how the
so-called dimension jump heuristic can be a reasonable
choice of penalty constant when using kernel change-
point detection with a linear penalty.
We also show how a key quantity depending on the ker-
nel that appears in our theoretical results influences the
performance of kernel change-point detection in the case
of a single change-point. When the kernel is translation-
invariant and parametric assumptions aremade, it is pos-
sible to compute this quantity in closed-form. Thanks to
these computations, some of them novel, we are able to
study precisely the behavior of the maximal penalty con-
stant.

Finally, we study the median heuristic, a popular tool to
set the bandwidth of radial basis function kernels. For
a large sample size, we show that it behaves approxi-
mately as the median of a distribution that we describe
completely in the setting of kernel two-sample test and
kernel change-point detection. More precisely, we show
that the median heuristic is asymptotically normal around
this value.

Keywords
Change-point detection, kernel methods, penalized
least-squares, median heuristic.


