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Abstract
Shear responsive friction at solid-liquid interfaces could become an important component in

various technologies such as microfluidics, lubrication and polymer processing. Our model

system is a polymer brush grafted on a solid substrate, subject to shear flow by an entangled

polymer solution. The structure of the brush was probed both experimentally by Rheo -

Neutron Reflectometry, and by computer simulations based on soft blobs. In the simulations

we demonstrate for the first time that it is possible to suppress polymer chain crossings and

observe entanglement dynamics using only the soft blob repulsive potential. To confine the

blobs between two hard plates we introduce a new boundary condition, mirror-and-shift,

which enables a monotonic, rather than oscillatory, density profile climb at the interface. The

simulation techniques are then combined and compared against experimental measurement

of polymer brush thickness as a function of shear rate. A good quantitative agreement is

obtained, concluding that the brush thickness collapses perpendicularly to the applied shear

flow, and is thus a non-linear second order effect. We attribute this effect to the normal stress

difference, commonly occurring in entangled polymer liquids in their shear thinning flow

regime.

Key words: friction, entanglement, polymer brush, interface, computer simulation, rheology,

neutron reflectometry
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Résumé
La friction d’une surface en réaction au cisaillement pourrait devenir un élément important

dans des diverses technologies telles que la microfluidique, la lubrification ou encore la pro-

duction et le traitement des polymères. Notre système modèle est constitué d’une brosse

polymère sous un écoulement d’une solution de polymère enchevêtrée. La structure de la

brosse a été sondée expérimentalement par Rhéo - Réflectométrie Neutronique, ainsi que

par la simulation numérique basée sur des globules très “mous” (blobs en anglais). Dans les

simulations on montre pour la première fois qu’il est bien possible de supprimer le croisement

de chaînes de polymères pour ensuite pouvoir observer la dynamique d’enchevêtrement grâce

uniquement au potentiel répulsif des globules. Pour confiner ces globules entre deux plaques

dures, on propose une nouvelle condition limite, appelée mirror-and-shift, qui produit un

comportement de profil de densité monotone et non oscillatoire à l’interface. Ces innova-

tions de simulation sont ensuite combinées et leur résultat est comparé avec nos mesures

expérimentales de l’épaisseur de la brosse polymère, en fonction de taux de cisaillement.

Un bon accord quantitatif est obtenu, dont la conclusion est que l’épaisseur de la brosse

s’effondre perpendiculairement au cisaillement appliqué, ce qui est un effet non-linéaire de

second ordre. On attribue cet effet à la différence des contraintes normales, qui se produit

communèment dans des liquides de polymères enchevêtrés lorsqu’il sont poussés vers leur

régime de rhéofluidification par un flot suffisant.

Mots clefs : friction, enchevêtrement, brosse polymère, interface, simulation numérique,

rhéologie, réflectométrie neutronique
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Introduction

Entangled polymer solutions show both liquid and solid behaviours [1, 2]. At low frequencies,

the material flows just like a simple Newtonian liquid [3] such as glycerol. At higher frequencies,

it stores the deformation energy and becomes a piece of an elastic rubber [4]. The cross-over

between these two regimes is rather broad [5] and is centered around a characteristic relaxation

time, required for one chain to diffuse a distance equal to its own size [6].

The bigger the molecule, the slower it moves due to overall friction, and moreover it has

to travel further away to cover its own size, leading to (Rouse) relaxation time τR ∝ M 2
w ,

proportional to the square of the molecular weight [7]. However, very long chains become

trapped in their own network and are unable to diffuse in a random direction. Instead, their

motion is restricted to a one dimensional randomly curved tube, created by the topological

constraints of other nearby chains. This entanglement effect slows down the relaxation to

τd ∝ M 3
w (disentanglement). Because of such a steep dependence, it is quite common to

find polymer systems with a relaxation time of up to one second or more [8], while still being

perfectly liquid. This time scale is very relevant for many practical, every day applications

involving polymer flows: lubrication in mammalian joints [9], synthetic fibre production [10],

or even advanced oil recovery from porous shale rock [11]. To understand these and many

other phenomena, we will have to deal with the following conditions: i) polymer liquids under

shear flow, rather than at equilibrium; ii) behaviour at an interface, rather than bulk; and iii)

preferably polymers in solution, rather than polymer melts.

In this thesis, one particular system has been chosen and studied in great depth: entangled

polymer brushes under shear flow of a polymer solution, shown in Fig. 1. A polymer brush

is made by chemically attaching one end of a polymer chain onto a substrate [12]. If the

brush chains are very long, they can interpenetrate with the free chains (Fig. 1a), resulting in

entangled dynamics. A second-order effect, called normal stress difference [13], kicks in under

an applied shear flow (Fig. 1b), and pushes the brush to below its equilibrium height, acting

perpendicular to the shear flow. Such a phenomenon could serve as a basis for the design of

stress-responsive surfaces, enabling the engineering of dynamically controlled friction and

adhesion properties.

The time scale of the phenomenon is governed by the reptation time of the free chains, τd ≈ 1s

for a typical system. The applied shear rate γ̇= d vx /d z is usually quoted in dimensionless

1



Introduction

(a) Static (b) Shear γ̇= d vx /d z

Figure 1 – An entangled polymer brush under shear flow. Yellow shows the grafted brush
chains, dark blue shows the free bulk chains. As the shear rate exceeds Wi & 1, the brush
shrinks and decouples from the bulk chains. Configuration snapshot from a Blob Dynamics
simulation.

Weissenberg number Wi = γ̇τd . The brush collapse is a non-linear phenomenon, meaning

that its effect grows quadratically with the applied shear rate: ∆z ∝−Wi2. Therefore, we have

a rather sharp onset threshold: at small shear rates Wi < 1 the effect is very weak, and at Wi > 1

the brush starts shrinking much more rapidly, hence the term “brush collapse”.

The entangled brush system was investigated experimentally via Neutron Reflectometry [14]

as well as computationally via Blob Dynamics simulations [15]. This powerful combination

is becoming increasingly demanded in the study of complex systems with lots of interacting

parts. An experimental measurement typically provides information only on a few aspects of a

much bigger issue. Computer simulations, on the other hand, can deliver much more data

since all the modeled degrees of freedom are explicitly tracked. However, without backing

from experiment, one cannot be sure if the calculated behaviour is realistic and actually occurs

in nature. Therefore, joint experiment and simulation efforts are particularly welcome and

their combined results are more trustworthy than the sum of each approach taken separately.

In the experiment, both the brush and the free chains in solution have to be chemically very

similar if not identical, since for very large molecular weights, any disparity may cause an

unwanted phase separation [16]. Therefore, the only viable method to clearly distinguish

the brush from the free chains is isotopic labeling of their atomic nuclei, where hydrogen is

replaced with deuterium, thus keeping identical chemistry but introducing a sharp contrast

for neutron radiation [17]. The brush was grafted on a large 7×7×1cm silicon crystal, placed

in contact with the polymer solution, and sheared [18] with a rotating titanium plate. Silicon

is transparent for neutrons, and hence a neutron beam could shine through and reflect off

the brush [19]. The reflection is stronger when the brush-bulk interface is sharper. We could

2



then effectively measure the brush roughness as a function of the applied shear rate, and have

found that indeed the mean brush thickness collapses quadratically: z/z0 ≈ 1−Wi2.

Self-consistent field
theory

Tube 
theory

Slow:
Wi = 0

Wi = 1

Fast:
Wi ≫ 1

Size
Fl
o
w

Bulk = 100 nm Brush = 10 nm Nanotube = 1 nm

Figure 2 – Various computational techniques. The sketch (very roughly) shows the region of
applicability, as a function of the system size and the applied shear rate.

On the theoretical and simulation side, there is a wide variety of approaches that have been

used to study brushes. The more pertinent ones are summarized in Fig. 2. The main theoretical

tool for brushes is the self-consistent field theory (SCFT) [20]. Here it usually takes the form of

a one-dimensional differential equation, whose solution is the brush density profile which

can be related directly to the experimentally measured neutron reflectivity spectrum. SCFT is

rooted in the statistical mechanics and its basic idea is to find the shape of the brush which

minimizes the total energy of the system [21]. However, under an applied shear flow the

brush is far from equilibrium [22] and is constantly exchanging energy between the shearing

apparatus and the heatbath, in which case the core SCFT assumptions are broken and do

not seem to have easy fixes. Particularly problematic is the shear in the non-linear regime

involving entanglement dynamics. Informally, we could say that under shear, the polymer

chains try to be deformed as little as possible from their respective equilibrium shapes [23],

but at present it is not clear how to translate this concept into an equation which could deliver

the requisite monomer density profiles.

As far as entanglement is concerned [24], there is a very successful tube theory [25], which

explains most of the known polymer dynamics, and only starts to break down at very large

3



Introduction

shear rates Wi À 1 which are outside of our scope anyway. The main idea is to solve the

equation of motion for just a single chain, subject to the mean field of topological constraints

created by all the other chains. The mean field forces are then derived from the one chain

dynamics itself, and this is repeated until a self-consistent result is reached. Unfortunately,

the tube theory is strongly limited whenever its mean field assumption is violated, which

happens at interfaces, narrow channels, and inhomogeneities such as brushes. It is not easy

to extend the tube theory to heterogeneous settings, since the equation quickly gets very

cumbersome, thus losing its appeal and compromising its predictive power relative to the

amount of assumptions that must be build in.

We are currently not aware of any theories capable of reasonably calculating the entangled

brush shape under shear. Our main tool is therefore a multi-chain simulation, where we solve

the coupled equations of motion for about 100 interacting chains. The multi-chain model is

representative of a tiny piece of the actual material, and could be mapped to about (50nm)3

in our case. The main advantage of such simulations is that we do not need to make any

high level assumptions about entanglement or other large scale features of the chain motion.

Our main job is only to make sure that the chains are very long, immersed in a randomly

fluctuating thermal bath, and are unable to cross each other. The entanglements and various

non-linear shear effects such as the brush collapse emerge naturally by themselves and do not

require any further models or assumptions.

Multi-chain simulations are considered to be brute force methods and require very efficient

algorithms to produce useful results within an acceptable computational time. Therefore,

many techniques have been developed [26], each pertaining to a specific length scale of

interest. The most famous is the Molecular Dynamics (MD) [27] which runs on the scale

of an atom. As indicated in Fig. 2, this technique is suitable for small molecules, and can

be used under extremely strong shear flows. However, for the purposes of understanding

entanglement, atomic resolution is not required, and therefore coarse-grained techniques are

used much more often. Examples would be the Dissipative Particle Dynamics (DPD) [28] and

its earlier version, the Langevin Dynamics (LD) [29]. These techniques are famously used to

simulate entangled polymer melts, and due to their longer timescale, one can access more

moderate shear rates. However, to simulate entangled polymer solutions, we will have to

use an even coarser scale, called Brownian Dynamics (BD) [30]. The main advantage of this

method is the possibility to reach quite low shear rates, which are directly relevant for our

experimental situation and also many other practical applications.

In Chapter 1 we delve into the details of the BD technique but limit ourselves to only bulk

entangled polymer solutions at equilibrium. The main novelty is that we are able to suppress

chain crossings even at this very coarse scale. We clearly observe the emergence of entangled

dynamics for the first time using only the soft blob repulsion.

Chapter 2 addresses a more technical issue on how to confine coarse, soft particles by a hard,

sharp interface, such as a silicon crystal. This combination is necessary to properly model

4



our experimental system. We have therefore developed a new boundary condition, called

mirror-and-shift. The idea is that the coarse particles confine themselves, creating an almost

homogeneous system, but with walls. Our calculated density profiles at the interface agree

well with experimental facts, which is something that is surprisingly difficult if not impossible

to achieve with other existing confinement methods.

Lastly, in Chapter 3 we combine all our simulation techniques and present a model for an

entangled polymer brush under shear flow. Simulation results are compared with our neutron

reflectometry measurements of real polystyrene brushes, and a good agreement is found

among the two approaches. The conclusion is that an entangled brush height shrinks quadrat-

ically with the applied shear rate, ∆z/z0 ≈−Wi2. The time scale is determined largely by the

dynamics of the free chains in solution, and is not affected by the internal dynamics of the

brush such as arm retraction. The brush returns to equilibrium when the shear is turned off.

The effect can by cycled many times over. The brush collapse is expected to occur whenever

there is a sufficiently deep interpenetration region between the brush and the free chains. The

effect could not be observed for short chains (no entanglement), or very dense brushes (no

interpenetration).

5





1 From soft blobs to entangled poly-
mers

In this Chapter we describe a computer simulation of an entangled, semi-dilute polymer

solution. For now, the discussion will be limited to a bulk system (using periodic boundary

conditions), and at equilibrium. Care has been taken to setup the absolutely simplest possible

model, adequate to describe real experiments at the appropriate scale. Our model barely

requires any assumptions, which enables relatively straightforward extensions into more

complicated settings, including confinement (Chapter 2), and an applied shear flow in contact

with a brush (Chapter 3).

1.1 Basic polymer physics

Figure 1.1 – The starting point: bead-and-spring model of a polymer chain. Our final, upgraded
model is shown later in Table 1.1, third panel.

The most basic mechanical model of a polymer molecule is shown in Fig. 1.1. It is simply balls

connected by springs. We will be primarily concerned with liquid polymers far above their

glass transition temperature, and they can be either molten or dissolved in a good solvent.

The main theme in polymer physics is that the chains try to maximize their entropy at all

times, and hence they are constantly seeking to be as disordered and random as possible.

If we neglect all interactions and just consider N balls located at Rn , connected by springs

of length λ, and immersed in a thermal bath, the chain will fluctuate and explore various

possible shapes, or conformations, but in the long run its radius of gyration will remain fixed

7



Chapter 1. From soft blobs to entangled polymers

to the average of

Rg =
√

〈(Rn −〈Rn〉)2〉 =
√
λ2N

6
, (1.1)

which is precisely the result for a random walk of N steps and step length λ. There are two

random walks involved here: each ball does a random walk of its own, and the conformation

of the chain as a whole also develops the characteristics of a random walk. In a more realistic

description we must take into account that each ball prefers to be surrounded by the solvent

molecules, and stay way from other balls. This can be modeled mathematically by introducing

a repulsive potential between each pair of balls a distance r = Rn −Rn′ apart:

Φ(r) = kB T exp

(
− r2

2λ2

)
(1.2)

where kB T ≈ 25meV is the thermal unit. The precise shape of the potential is not important

when we have very long chains and are only interested in their large scale, or universal, prop-

erties. This interaction is commonly called the excluded volume force, where the “excluded

volume” refers to v ≈λ3 and is literally the volume of the ball. It can be shown [31] that with

this repulsion, the radius of gyration swells to roughly

Rg ≈λN 0.6. (1.3)

However, our main system of interest is when a lot of such chains are packed close together,

Figure 1.2 – Semi-dilute polymer solution in two dimensions. Chain length N = 16.

as illustrated in Fig. 1.2. In this case, the excluded volume interactions are screened and the

radius of gyration once again scales as in Eq. (1.1): Rg ≈ λpN /6 , but the pre-factor may be

slightly different depending on the precise interaction parameters and pressure. The static,

or thermodynamic, or t →∞, properties of polymers (such as the radius of gyration), have

been extensively studied in the past and constitute a mature branch of science. A much more

thorough introduction can be found in standard textbook presentations [32]. We will therefore

8



1.2. Rouse dynamics

now switch to the less explored ground of polymer dynamics which are more difficult to tackle

and where some open questions still remain for us to answer.

1.2 Rouse dynamics

If we turn off the excluded volume interaction, Eq. (1.2), and disregard hydrodynamic effects,

the chains follow very simple equations of motion, first investigated in detail by Rouse [33].

Various dynamical properties of the Rouse model can be obtained analytically and are available

in textbooks [7, 34]. Here we will mention just a few very basic and crude results. We will

focus on the motion of the central n = N /2 monomer, because it is the furthest away from the

chain ends and its motion shows the largest deviation from a simple random walk. The main

quantity of interest is the mean squared displacement:

g1(t ) = 〈(RN /2(t )−RN /2(0))2〉 . (1.4)

At short time scales, the monomer does not realize that it is embedded in a much larger chain,

and therefore its motion follows the random walk statistics:

g1 ≈ Dt , t < τ (1.5)

Here

D = kB T

6πηsλ
(1.6)

is the diffusion coefficient for a particle of size λ inside a solvent of viscosity ηs , as derived

from the fluctuation-dissipation theorem [35], while the equation itself is known by the name

Einstein-Stokes [36]. The smallest relevant time unit is the time it takes the ball to diffuse a

distance equal to its own size:

τ≈ λ2

D
= 6πηsλ

3

kB T
. (1.7)

At very long time scales, the central monomer must diffuse at the same rate as the entire

molecule. It can be found by looking at the center of mass

R0 = R1 +R2 +·· ·+RN

N
(1.8)

If every ball is assumed to be an independent random walker, then their motion is uncorrelated

〈∆Rn∆Rn′〉 = 0 and the mean square displacement of the center will be

〈∆R2
0〉 =

(∆R1 +∆R2 +·· ·+∆RN )2

N 2 ≈ N Dt

N 2 (1.9)

9



Chapter 1. From soft blobs to entangled polymers

and therefore the diffusion is a factor N slower:

g1 ≈ Dt

N
, t À τR (1.10)

The Rouse relaxation time τR is the time it takes the chain to diffuse a distance equal to its

own size:

DτR

N
≈λ2N ⇒ τR ≈ λ2N 2

D
= τN 2 (1.11)

and is therefore proportional to the square of the chain length. One power comes from the

fact that diffusion is slower, and the second power comes because the chain is bigger. At

intermediate time scales, τ < t < τR , the central monomer should slow down to smoothly

bridge the short and long time scales. If we assume a power-law behaviour, g1 = Atα, the

unknowns A and α can be found by joining the two boundaries:

Aτα = Dτ (1.12)

AταR = DτR

N
(1.13)

which can be solved to find α= 0.5 and A = Dτ0.5. The complete Rouse behaviour can be thus

summarised:

g1 =


Dt , t < τ
D
p

tτ , τ< t < τN 2

Dt/N , t > τN 2

(1.14)

The exact analytical solution [34] also confirms the power-law behaviour g1 ∝ t 0.5 at inter-

mediate times. Our computer simulation is based on the Rouse model (random walkers

connected by springs), plus an excluded volume repulsion between all chains. This repulsion,

if suitably modeled, will suppress chain crossings, and that will give rise to entanglement

dynamics, one aspect of which is a striking deviation from Eq. (1.14).

1.3 Entanglement dynamics

Entanglement dynamics [34] can be observed in both polymer melts and semi-dilute poly-

mer solutions. Our simulation data showing the central monomer diffusion is plotted in

Fig. 1.3. The mean squared displacement is normalized by
p

t , which is the Rouse prediction,

Eq. (1.14). Quite clearly, the data deviates strongly from the Rouse model, and the mean

squared displacement grows qualitatively slower than t 0.5, at the intermediate time scale. No

combination of Rouse parameters could ever explain this data, and therefore a new theory

must be introduced.

The earliest and simplest explanation of entangled polymer dynamics has been the tube

10



1.3. Entanglement dynamics
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Figure 1.3 – Internal dynamics of an entangled polymer system. Plotted is the mean squared
displacement of the central monomer, normalized by

p
t , which is the theoretical Rouse

behaviour. Various chain lengths are shown from N = 8 to N = 2048. Data collected from a
Blob Dynamics simulation.

theory. Here one says that the central monomer cannot diffuse in any random direction, but

can only travel along the existing contour of its chain. Such an anisotropic diffusion is called

“reptation”. Any transverse motion would require a large deformation of the whole entangled

network and is statistically unlikely. To quantify the tube idea, we can estimate that the square

of the linear distance traveled by the central monomer during a time t is

L2 ≈ g (Rouse)
1 (t ) ≈ D

p
τt ≈ (∆nλ)2, (1.15)

where ∆n is the number of monomers traversed in time t . Notice that this distance is rolled

up inside a randomly curved tube, and therefore the actual mean squared displacement of the

central monomer is merely

g (reptation)
1 ≈λ2∆n ≈ (

Dλ2pτt
)1/2 ∝ t 1/4 (1.16)

The onset of this power law occurs at the entanglement time τe ≈ τN 2
e when the monomer

starts to realize that it is trapped in a tube. The Ne is called the entanglement length and is the

minimum number of monomers required to see any deviation from the Rouse model, which

in our case is about Ne ≈ 60. The reptation picture is valid up to the Rouse time τR ≈ τN 2,

when the chain fluctuations die out. After that, the chain still remains in its original tube

up to the final disentanglement time τd ≈ τN 3, where the motion is again characterised by

g1 ∝ t 0.5 behaviour, known as the primitive chain diffusion [37, 38]. The main point of the
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Chapter 1. From soft blobs to entangled polymers

simulation is to demonstrate the emergence of g1 ∝ t 0.25 diffusion behaviour at intermediate

times, which is clearly slower than the Rouse model g1 ∝ t 0.5 predicts, and is hence a strong

indicator that our chains are very long and unable to cross each other. Fig. 1.3 demonstrates

how this very specific law emerges dynamically just by increasing the chain length, rather than

being inserted statically through some additional forces.

The true entanglement is an emergent phenomenon of many long chains blocking each other’s

transverse motion. To model this mathematically, one must solve a system of non-linearly

coupled, stochastic, differential equations with at least (50 chains) × (200 modes) = 10,000

degrees of freedom, which is the bare minimum required to see a significant and systematically

growing deviation from the unentangled Rouse model. From a mechanical or rheological

points of view, the entanglement transition is even broader and stronger, boosting the viscosity

from η∝ N in the Rouse regime, to over η∝ N 3 in the entangled regime. To fully observe it,

one needs an additional factor of 10 more degrees of freedom, and hence a factor of 103 ×10

longer computing time.

Why do we need such intense computations? Well, one reason is that it takes about Ne ≈
60 random steps of two nearby chains, until they are sufficiently intertwined to form one

entanglement. A random walk mostly just goes back and forth canceling itself, while its mean

squared displacement is only

Re =
√
λ2Ne

6
≈ 3λ, (1.17)

which seems like a reasonable distance for two chains of radius λ to be wound around each

other. The second reason is that reptation is driven by pure entropy, rather than enthalpic

forces, and therefore is vastly different from other large-scale molecular phenomena such as

protein folding, binding, self-assembly, etc. There is no special “entanglement force” and no

“entanglement energy” to speak of. Without any parameters, it is difficult to significantly alter

or speed up the process. All we can do is let the segments fluctuate with their random walk

while repelling each other, and wait patiently for 108 steps to finally see, in a statistical sense,

what fascinating dynamical properties emerge from their very simple rules of interaction.

1.4 Simulation techniques

Historically, entanglement dynamics have been first demonstrated using bead-and-spring

simulations [39], but are also possible with lattice-based models [40], and both are considered

to be valid descriptions of polymer melts. Our main contribution is to also obtain such

entanglement dynamics, but based on a simulation running on soft blobs, more suited for

semi-dilute polymer solutions [41] rather than melts. In this section we briefly review the main

simulation techniques, summarized in Table 1.1. We start from Molecular Dynamics, and end

with Brownian Dynamics which was the starting point for building our own approach.

12



1.4. Simulation techniques

↑↑ Quantum Mechanics, Schrödinger equation ↑↑
Molecular Dynamics

Second order deterministic equation of motion

Particle: atom
Time unit: 10−13 s
Length unit: 0.1 nm

Dissipative Particle Dynamics
Second order stochastic equation of motion

Particle: bead
Time unit: 10−11 s
Length unit: 1 nm

Brownian Dynamics
First order stochastic equation of motion

Particle: blob
Time unit: 10−9 s
Length unit: 10 nm

↓↓ Continuum Mechanics, Navier-Stokes equation ↓↓

Table 1.1 – Main simulation techniques. Image sources: wikipedia.org, Ref. [42], and Ref. [15]

1.4.1 Molecular Dynamics

The earliest and most prolific computer simulation technique in material science is Molecular

Dynamics (MD). In it, every atom is represented as a distinct particle, interacting with its

neighbours via some model potential field such as Lennard-Jones. The model is typically

justified on empirical and experimental grounds, and is often related or even derived from the

underlying quantum mechanical structure of the electron cloud [43].

To discover how a model system behaves, one must solve the set of coupled Newton’s equations

13



Chapter 1. From soft blobs to entangled polymers

of motion, one for each atom, indexed n:

mn
dvn

d t
=

N∑
n′=1

Fnn′(t ) (1.18)

drn

d t
= vn(t ) (1.19)

usually supplemented with an explicit temperature constraint:

N∑
n=1

mnv2
n

2
= 3

2
N kB T (1.20)

The equations are solved using small discrete time steps during which the interatomic force

Fnn′ changes only slightly and can be considered approximately constant. As a simple estimate,

we require the distance traveled per step to be much smaller than the interatomic spacing.

This reasoning leads to the time step

tMD =
(
ρ

kB T

)0.5

λ2.5 = 10−13 s (1.21)

where ρ = 1g/cm3 is the typical fluid density and λ = 1Å is the typical atom size. The MD

technique is widely used to study all kinds of materials at the atomic scale, including the

conformation and ordering of macromolecules. Current computers [44] can typically perform

108 time steps within an acceptable waiting time which is usually a week, but some studies

report counting times of up to one year.

1.4.2 Dissipative Particle Dynamics

There are many situations involving large macromolecules such as proteins and entangled

polymers, which are simply out of each of MD’s time scales. To help tackle some of these

questions, widespread in biological and soft matter systems, various coarse-grained computer

simulations have been developed. The idea is that sometimes we can afford to neglect certain

atomic degrees of freedom. For instance, a polystyrene chain might be modeled as beads

connected by springs, where each bead corresponds to one persistence length equal to a dozen

of styrene monomers and totaling about a hundred of atoms. The lost degrees of freedom

are taken back into account stochastically, by generating a randomly fluctuating force W(t ),

uncorrelated in time or space: 〈W α(t )W β(t ′)〉 = δαβδ(t − t ′). The state of the art equation of

motion is called Dissipative Particle Dynamics (DPD) [45]:

mn
dvn

d t
=

N∑
n′=1

Fnn′(t )−ζω(rnn′) (r̂nn′ ·vnn′) r̂nn′ +
√

2ζkB Tω(rnn′) Wnn′(t ) (1.22)

Notice that a friction term must be included to maintain the temperature stable around a fixed

level. One also has to introduce a friction coefficient ζ= 6πηsλwhich depends on the effective
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1.4. Simulation techniques

medium viscosity ηs ≈ 5×10−4 Pas, in the case of toluene. To ensure the local conservation

of momentum and the validity of Newton’s third law, the random force does not come out of

nowhere, but instead acts pairwise between neighbouring beads via some weight function

ω(r ) = e−r 2/λ2
, although its exact shape is not so important. Earlier studies, called Langevin

Dynamics, did not use the pairwise random force generator, and momentum was indeed

not conserved. More recent studies have shifted to DPD since it has a similar computational

cost, but more accurate physics, especially the hydrodynamical properties. In either of those

techniques, the time step is limited by the time it takes the momentum to decorrelate by a

significant amount:

tDPD =
(
ρ

ηs

)
λ2 = 10−11 s (1.23)
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Figure 1.4 – Overdamped as opposed to ballistic motion. The blob’s momentum relaxes
hundreds of times before the displacement becomes comparable to the blob size itself. The
blue line shows the fine-grain trajectory of the blob center of mass.

1.4.3 Brownian Dynamics

For the most massive macromolecules [46], even the DPD scheme cannot reach sufficiently

long time scales. An example could be a polymer of very high molecular weight Mw =
106 gmol−1 dissolved at a semi-dilute concentration φ = 30%, which means that there is

still considerable chain interpenetration resulting in rich entanglement dynamics on the time

scale of a second or more. In this case, the effective coarse particle is called a blob and it

corresponds to the mesh size of the polymer network, which is the typical distance between

two neighbouring chains. One blob can contain many thousands of atoms, and its effective

potential field is smeared out resembling a Gaussian function, in contrast to the much steeper

Lennard-Jones field used to model an atom in MD. However, to reap the full time-saving bene-

fits, it is not enough to simply use a bigger particle. We must also understand that the blob’s

momentum relaxes hundreds or even thousands of times over, before it moves a distance

equal to its own size, see Fig. 1.4. Therefore, it will be really beneficial to simply renounce
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Chapter 1. From soft blobs to entangled polymers

tracking the momentum altogether, and just be content with knowing the blob positions.

Such an overdamped view is called Brownian Dynamics (BD), and is governed by a first order

stochastic equation of motion:

ζ
drn

d t
=

N∑
n′=1

Fnn′(t )+
√

2ζkB T Wn(t ) (1.24)

This equation runs on a time scale

tBD =
(
ηs

kB T

)
λ3 = 10−9 s (1.25)

or even less, depending on how big are the blobs. Despite its attractive long time scale, the BD

technique has several other issues which have hampered its use in the simulation community.

One of the harshest complaints is that the blobs are too soft and can easily overlap or even

cross each other, which is unphysical and in the case of polymers prevents any entanglement

dynamics from emerging [47].

1.5 The key novelty: suppressing chain crossings using only soft

blobs

For our polymer problem, it can be shown [48] that the correct static properties will be

obtained if the potential field of a blob is chosen to be about

Φ(r) = kB Te−r2/2λ2
(1.26)

that is, one kB T high, and spread out in a smooth shape, resembling a Gaussian. During the

time step tBD, the blobs move by a small fraction of their own size and therefore the scheme is

numerically stable. Meanwhile, the random force also shuffles the blobs around by roughly

the same amount, but the excluded volume force is simply too weak to reliably counteract

this, resulting in occasional blob crossings.

Our solution to this problem is to deliberately limit the time resolution as shown in Fig. 1.5.

Simply put, a secondary, much larger time step is used to generate the requisite random force,

whereas the original tBD step is used to calculate the excluded volume force as usual. This

scheme is still a valid discrete approximation to the original BD equation of motion, with the

understanding that meaningful physical results are only accessible at the resolution of the

largest time step.

The broader consequence is that the blobs can only be thought to exist at large time scales,

exceeding substantially the tBD. Basically, the concept of a blob only makes sense to an

observer who blinks slowly. It is impossible to describe a system with soft blobs whilst also

demanding a high time resolution: one must either renounce prying on the system too

frequently, or suffer from the unphysical blob crossings.
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Figure 1.5 – Various discrete approximations of the continuous Wiener process 〈W (t )W (t ′)〉 =
δ(t − t ′)

Another item that helps to reduce chain crossings is illustrated in Fig. 1.6. The random force

vectors must be drawn from some random distribution. Usually, one employs the Gaussian

distribution, Fig. 1.6a, because it is readily available in most programming environments,

and it feels the “natural” choice, because of the central limit theorem which says that when a

large number of independent random variables is added, the distribution tends to approach

a Gaussian. However, the theoretical Gaussian function has an infinitely long tail, and this

becomes a problem after (100 chains)× (1000 blobs)× (108 steps) = 1013 random vectors have

been drawn. This number, ten trillion random numbers, is routinely reached in our present-

day calculations, but it is actually quite modest and will only grow in the future. Unfortunately,

it becomes a statistical certainty that one of those numbers, the biggest outlier, will have a

value of about

Gaussian : max(random amplitude) ≈
√

2log(number of draws) ≈ 7.7 (1.27)

It gets worse if we perform let’s say 10 independent runs for better statistics, in which case

the maximum outlier is expected at
√

2log
(
1014

) ≈ 8.0, and this estimate grows bigger for

“unlucky” runs. This is bad news, since our claim of suppressing chain crossings is only as

good as its weakest point, which is at that one blob out of 105, during that one step out of

108, when the biggest outlier is generated. The good news is that we are in fact by no means

obliged to use the Gaussian shape. The only requirement is that the distribution is isotropic

(equally likely in every direction), and that the mean square value of the random vector is

fixed, which we have normalized to 2 for our two dimensional example. If these conditions

are met, any reasonable distribution shape will result in the same static properties (radius

of gyration, osmotic pressure, static structure factor, etc.). The dynamics, however, will be

substantially improved if we choose a shape whose maximal outlier has the smallest possible

value, while still maintaining a fixed mean square value for the entire distribution. A good
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Figure 1.6 – The random displacement vectors drawn from several isotropic distributions
of different shapes, but all having the same mean square value. Each panel contains 1000
randomly generated points.

choice would be the uniform distribution (Fig. 1.6b) which has

Uniform : max(random amplitude) = 2 (1.28)

but the best of all is the shell (or ring, in two dimensions) shape:

Shell : max(random amplitude) =p
2 ≈ 1.4 (1.29)

Clearly, the greatest outlier of the shell distribution is some 7.7/1.4 ≈ 5.5 times smaller than

the corresponding outlier of the Gaussian, which translates into a hefty reduction of chain

crossing likelihood.

These and some other useful ideas are described in much greater detail in the appended

article A. There we show how to generalize the BD equation not just for individual blobs, but

for very long polymer chains with the blob potential smeared continuously along the entire

backbone.

A graphics processing unit (GPU) was used to simulate a system of 64 chains, with 1024 degrees

of freedom each. Various dynamical properties were analyzed, which clearly demonstrate

entanglement effects in agreement with earlier theories, experiments, and simulations. The

main novelty is that the entangled system was simulated using soft Gaussian blobs connected

by a linear spring interaction, which is the appropriate model in the semi-dilute state. No

other interactions or constraints were required, which makes our model very well suited for

future studies in more complicated settings, such as heterogeneous systems, confinement,

and non-equilibrium situations.
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1.6. Outlook

1.6 Outlook

We must admit that there remain some unresolved drawbacks of the BD method. The most

worrisome is that without information on particle momentum, it is unclear on how to locally

obey the Newton’s third law. Specifically, if we need to apply a shear flow, it is done by

assuming a velocity profile (Couette) in the entire simulation box, and we look at the resulting

shear stress. However, in a rheological experiment one usually applies a shear stress at the

surface, and the velocity profile develops in the whole bulk as an outcome. Without Newton’s

third law, the momentum does not propagate and we will not be able to reproduce the

exact experimental situation. This deficiency severely limits the possibilities of simulating

interesting and important phenomena such as shear bands, surface slip, or elastic instabilities.

Additional work will be required to somehow make the BD equation obey the Newton’s third

law locally, while keeping the long diffusive time scale, and preferably without too many

assumptions, and without incurring significant computational costs.
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2 Soft blobs confined by hard walls

In the previous Chapter the soft blobs were modeled as a bulk system with periodic boundary

conditions. Now we will take these blobs and confine them between two walls. The confined

setup is crucial for a proper study of interfacial phenomena and therefore it is useful to spend

some effort to develop an appropriate confinement methodology.

2.1 The main innovation: mirror-and-shift boundary condition

The kind of system that interests us is some soft fluid made up of blobs sized λ= 2nm or so, in

contact with a flat surface such as silicon, which has a roughness of 0.2 nm, and therefore is

much sharper than the blobs. Since we wish to run the simulation at the scale of a blob, it will

be impossible to resolve the sharp details of the substrate. The sharpest confinement that one

can hope for could be about the same size as the blob itself.

If we simply model the wall using a repulsive potential of the same range as the blobs, for

instance U (z) ≈ kB Te−z/λ or any other reasonable function, the density profile across the

wall will develop a handful of oscillations of a large amplitude, up to 50% of the bulk level,

and a wavelength corresponding to the size of the blob λ = 2nm. Clearly, this is a strong

contradiction with numerous experiments for a variety of soft systems, characterized with

neutron and x-ray reflectometry for example.

As will be detailed in Chapter 3, the neutron reflectometer FIGARO has accurate resolution in

the range of 0.1-100 nm and could not detect any sign of density oscillations exceeding more

than 1% of the bulk level, especially not on the length scale of a blob λ≈ 2nm. These spurious

density oscillations are in fact commonly reported in almost all other simulations [49], but

not in self-consistent field theory (SCFT) calculations [50], with the exception of some density

functional theory (DFT) studies [51] working on an atomic scale and assuming an extremely

crisp wall and a perfectly spherical shape of the monomers. Our experimental situation, along

with numerous other studies [52], does not meet these assumptions: the SiO2 substrate, no

matter how well polished, has a roughness of at least one oxygen atom, whereas the liquid
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Chapter 2. Soft blobs confined by hard walls

on top is far from just spherical balls, instead being molecules of a complicated shape with

small hydrogens sticking out in many places, which means that the surface roughness is

substantially greater than the smallest feature of the molecule, and therefore any density

oscillations are smeared out of existence. Unfortunately, this assumption cannot be applied

on the coarse scale of the blob, as one would need to assume a surface roughness much greater

than λ, clearly at odds with reality.

Figure 2.1 – A homogeneous liquid confining itself in the x-direction via mirror-and-shift
boundary conditions, while being periodic in the y-direction. The red square marks various
images of the same particle.

Our solution to this problem is presented in a Rapid Communication [53] reproduced in

Appendix B. The main idea is to make the fluid confine itself via our novel mirror-and-shift

boundary conditions, see Fig. 2.1. Although this approach may seem strange, especially from

a chemist point of view, it does produce monotonic and close to maximally sharp density

profiles, in good agreement with experiment at the appropriate length scale. It works really

well for polymers too, even end-tethered polymer brushes. It is also quite straightforward to

impose a shear flow. The computational cost is only marginally higher than a bulk simulation

of the same size. Overall, we found that it is a very well suited method to model soft liquids in

contact with hard walls.

To summarize, the use of mirror-and-shift boundary condition was crucially important to

obtain realistic brush density profiles at an appropriate length scale.
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2.2. Dry brushes

(a) Configuration
(b) Density profile

Figure 2.2 – Brush 1: wet and stretched

2.2 Dry brushes

Before turning on the shear flow in Chapter 3, we will briefly explore the kinds of brushes that

are possible to realistically simulate with our setup. The easiest brushes are the ones which

have sufficiently low density, examples of which are presented in Appendices B and C. In these

cases we can use the exact same interaction parameters (excluded volume and chain stiffness),

on both free and grafted chains, the only difference being that the grafted chains are attached

to their designated grafting point, while the free chains are not attached anywhere, as their

name implies.

The situation becomes more complicated with dense brushes. When the distance between the

grafting points approaches the blob size, one must introduce a second, smaller blob potential

to model the grafted chains [54]. If the blob size is not decreased, the polymer density on the

brush will be considerably greater than the bulk value, which is unphysical. Eventually for a

very high grafting density the simulation becomes numerically unstable as it is impossible

to resolve chains grafted denser than their blob size. One must also keep in mind that the

entire simulation box must run at the smallest scale of its fastest interaction, which would

be the small blobs of the brush. This is not the most efficient arrangement, and eventually if

the brush is very dense while the bulk fluid is quite dilute, one may need to switch to more

complicated heterogeneous multiscale simulation techniques [55].

In the following preliminary calculations we have assumed the grafted chain length fixed at

N = 32 blobs. We have varied the free chain length P and the grafting density

σ= number of grafted chains

box y-length
, (2.1)

as defined for a two-dimensional box. Four different systems were simulated, as specified in
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Chapter 2. Soft blobs confined by hard walls

(a) Configuration

(b) Density profile

Figure 2.3 – Brush 2: border between wet and dry

Table 2.1. The blob size λ was kept constant and we have manually adjusted the brush spring

length b, thereby changing the brush stiffness λ/b, in order to have a constant density of blobs

across the entire simulation volume.

In Fig. 2.2 we show the conformation and monomer density profiles for a prototypical stretched

polymer brush, as presented in most physics studies [56]. The grafting density is increased in

Figs. 2.3 and 2.4, thereby gradually pushing the free chains out of the brush, and hence the

brush becomes more and more “dry”. Finally, in Fig. 2.5 we increase the free chain length,

which renders the brush even drier.

The interesting effect that we have found in this simulation, is that once the brush is sufficiently

dry, it does not interdigitate with the bulk chains, resulting in a depleted layer at the brush-

bulk interface. Since the brush and the free chains belong to the same chemical species, they

should enthalpically adhere to each other. Nevertheless, in the case of very dry brushes, steric

hindrance of entropic origin seems to prevent this adhesion, and may cause what is called an
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2.2. Dry brushes

(a) Configuration

(b) Density profile

Figure 2.4 – Brush 3: dry brush

autophobic dewetting of the liquid layer from the brush. This phenomenon has been reported

experimentally for PDMS brushes [57], and also in other computer simulations [58], as well as

SCFT calculations [59].

As far as we know, there has not been any direct experimental proof of the depleted layer

existence. We have made an attempt to detect this layer in our own neutron reflectometry

measurements, using a polystyrene brush immersed in a polystyrene melt. So far the result

has been negative and no depletion could be seen. There could be many reasons for this

outcome: i) brush was too polydisperse, smearing out the depletion, ii) brush was not uniform

enough, also smearing out the depletion, iii) brush not dense enough, iv) high temperature

required to fully melt high Mw polystyrene (we reached 180 ◦C), destroyed the brush in the

presence of oxygen. It may also be possible that the simulations are wrong and that some

ingredient is still missing to correctly describe such a strongly heterogeneous system.
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(a) Configuration

(b) Density profile

Figure 2.5 – Brush 4: very dry brush

Sample 1 2 3 4
State wet dry-wet border dry very dry
Free chain length P 4 4 4 64
Grafting density σ 0.09 0.14 0.2 0.2
Brush stiffness λ/b 0.67 0.6 0.36 0.44

Table 2.1 – Simulation parameters
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3 Polymer brushes under shear flow

The end goal of our study was to understand how does a polymer brush behave under an

applied shear flow. During the preparation of this thesis, an experimental study has been

published [60] investigating a very similar system. There, the authors have applied a shear

flow on a polystyrene brush in contact with a liquid polystyrene melt. The system was then

rapidly quenched below its glass transition temperature, freezing the polymer conformation

in place. The vitrified samples could later be characterized with neutron reflectometry, thus

measuring ex situ the brush shape as a function the applied shear rate. The conclusion was

that the brush shrinks and decouples from the bulk. The present Chapter could be considered

to be a continuation of Ref. [60].
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Figure 3.1 – Brush height under an applied shear flow. Two different grafting densities, Brush-A
and Brush-B, have been measured experimentally, compared against one simulated system,
and fitted with a phenomenological theory prediction.

In our measurements we have used a semi-dilute polymer solution, rather than a melt. A

typical composition is 30% polystyrene in 70% diethyl phthalate (DEP). This allows a liquid

system at room temperature, which could be more easily characterized in situ while shearing,

also using neutron reflectometry. Various brushes of different grafting densities and chain
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Chapter 3. Polymer brushes under shear flow

lengths have been examined, allowing us to draw broader conclusions on the brush behavior.

We have used both experimental and computer simulation techniques, further guided by

some theoretical insight, and the result of our efforts can be summarized in Fig. 3.1. The

main conclusion is that the mean brush height shrinks quadratically with the applied shear

rate, ∆z/z0 ≈ 1−Wi2. This behaviour is quite universal and has been observed using different

brushes with greatly different grafting densities, using both polymer melts (Ref. [60]) and

semi-dilute solutions (our data), in experiments as well as computer simulations. The main

requirement to observe this effect is that the brush and the bulk chains must interpenetrate

deeply enough and thereby be entangled with each other. Our computer simulation was

performed using the combined innovations presented in Chapters 1 and 2. Therefore, in this

final Chapter we will mostly focus on the experimental considerations.

A well controlled shear experiment is feasible up to shear rates of about 1000 s−1, and hence it

is best to have both brush and free chains as high molecular weight as possible to increase their

reptation time and enable coupling with the shear flow. The longest polymer we have tried

was 600 kgmol−1 PS chains of dry thickness 5 nm (limited by the grafting-to technique). Such

low density brushes (mushrooms) should in principle collapse under shear, but unfortunately

they are too dilute to be visible with neutrons and therefore we could not detect any potential

changes in their structure. Due to these practical considerations, the grafting-to brush had to

be limited to about 200 kgmol−1 to have a successful measurement.

On the other hand, the brush density can be dramatically increased using grafting-from

chemistry, and indeed we have tested PS brushes of up to 120 nm dry thickness. Unfortunately,

these were too dense to allow a significant brush-bulk interpenetration and no reflectivity

change could be observed under applied shear flow. Obviously, the brush collapse cannot go

on forever, and will have to saturate once the brush becomes completely dry and all the free

chains are fully expelled. For the very high density brushes, the saturation height is basically

the same as the height at equilibrium, and therefore, they do not show any structural change

upon an applied shear rate. As a result, we had to reduce the grafting density by about one third

of the maximum, also keeping in mind that the grafting-from chemistry limits the molecular

weight up to no more than 100 kgmol−1.

In the next section we briefly review the various chemical techniques for making polymer

brushes, followed by an introduction to neutron reflectometry in Section 3.2. More results and

the full details of the study are presented in Appendix C.

3.1 Polymer brush fabrication

The fabrication of polymer brushes is typically performed by attaching the polymer onto

a surface via the “grafting-to” (our experiment Brush-A), “grafting-from” (our experiment

Brush-B), or “grafting-through” methods [61].

The grafting-to [62] consists of tethering pre-formed polymer chains to a substrate, either
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covalently or non-covalently. The non-covalent attachment can be fairly easily broken and

reformed, and is sometimes called a pseudo-brush. In our experiments we have only used

covalent bonding, which is more permanent and resistant to mechanical stress. It is usually

achieved by terminating the anionic polymerization reaction with a suitably functionalized

end-group or a short block that has a potential to bind to surfaces. A common functional-

ization available commercially is the carboxyl –COOH end group, although the amino –NH3

group can also be found. Typically, the end-functionalized polymer is deposited (e.g. by

spin-coating) on an activated substrate, which in our case is a self-assembled monolayer of

an organosilane molecule, one end of which is immobilized on the silicon block, and the

other end is on the outside waiting to react with the organic polymers. The system is heated

above the polymer glass transition temperature, and allowed to react once in a melt state

under oxygen-free conditions. Another possibility to increase the grafting density is to graft

from a solvent of poor thermodynamic quality (near cloud point), such that the chains are

collapsed, allowing more of them to be crammed on the same surface. The main advantage of

the grafting-to approach is that very high molecular weights can be grafted. The limitation is

that the grafting density is strongly restricted and the resulting brush is usually no more than a

factor ×2 denser than the mushroom regime.

In contrast, the “grafting-from” [63] method is based on growing the polymer chains from

the surface itself by means of a “living”, or controlled, polymerization protocol in which

the initiator (or a chain-transfer agent) is bound to the surface. The grafting density can

be very high, or reduced in a controlled fashion, depending on application requirements.

However, such a protocol requires a special reactor vessel to accommodate a large substrate,

and in this complicated environment the level of chemical purity cannot be guaranteed to

be very high. Therefore, the polymerization reaction tends to terminate sooner, resulting in

smaller molecular weight, and more polydispersity, with respect to a more traditional bulk

polymerization reaction.

The polydispersity issue has been addressed using yet another grafting method, called “grafting-

through” [64]. Here, the monomer is supplied from the back side of the semi-permeable

substrate, therefore reacting more uniformly with all the growing chains. However, this tech-

nique is difficult to implement using our silicon substrates, which are not permeable to any

monomers.

In our experiments, we have successfully observed the brush collapse using samples made by

both grafted-to and grafted-from techniques. The necessary conditions are that the grafted

chains are sufficiently long and not too dense to allow some interpenetration, but not too

dilute either, so they can be seen with neutrons.

3.2 Neutron reflectometry

Neutron Reflectometry (NR) has proven to be indispensable [65], and so far the only method

able to measure the brush structure directly in situ while it is being sheared. The main appeal
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Chapter 3. Polymer brushes under shear flow

for neutrons is that they interact differently with different nuclear isotopes. When a sample is

subject to neutron radiation of wavevector k, its every nucleus will emit secondary radiation

in the form of spherical waves [66]:

ψ(r) = b

r
e i kr , (3.1)

where b is the so-called scattering length, which is a unique number for every isotope, and

depends on the shape of the potential well of the nucleus as felt by the neutron via the strong

nuclear interaction. For some nuclei, most notably hydrogen 1H, the wave is scattered with

a 180° phase shift and therefore the scattering length is negative: bH =−3.74fm. In the case

of deuterium 2H, which is composed of one proton and one neutron, the scattering length is

positive and drastically different: bD = 6.67fm. This lucky discrepancy allows us to label the

free and the grafted chains with different isotopes, and from the neutron point of view, the

system appears much like depicted in Fig. 1, labeled with different “colours”.

Another key advantage of neutrons as a probe is their non-invasive and non-destructive nature.

One can record a neutron reflectometry spectrum from a polymer brush under shear, and rest

assured that the system is almost not perturbed by radiation, unlike for example x-ray probes

which can inflict heavy radiation damage to delicate organic samples such as ours. Also very

important is that many engineering materials such as silicon or aluminium, are transparent

for the neutrons. This enables access to interfaces buried deep within various devices, such as

a shear apparatus.

Most materials such as polymers are a mixture of several nuclear species, not just one. There-

fore, to quantify the scattered intensity of a particular material we shall use the average

scattering length per unit volume, called the scattering length density, or SLD:

SLD = 1

V

J∑
j=1

b j (3.2)

where we add the contribution of every nucleus j inside a volume V . For instance, regular

polystyrene C8H8 has the SLD = 1.4×10−6 /Å2. Deuterated polystyrene C8D8, on the other

hand, has a much greater SLD = 6.4×10−6 /Å2. No such contrast is possible for optical or x-ray

radiation, which are sensitive to the electronic structure instead. The numbers are calculated

using tabulated values of the scattering length b, available from Ref. [67] or other standard

references.

We will now briefly outline the theory of neutron reflectivity. Our discussion closely follows

standard textbook material presented in Ref. [68], Chapter 3, and summarized in Fig. 3.2. In

the reflection geometry, the neutron radiation is described by its wavevector transfer:

Q = |kout −kin| = 2k sinα (3.3)

The phase of the neutron wave propagates slower in a material of a high SLD, with a phase
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3.2. Neutron reflectometry

factor e i nkr , where

n = 1−δ= 1− 2π(SLD)

k2 (3.4)

is the refractive index as perceived by the neutrons. As a consequence, it can be shown that

inside a material m of a given (SLD)m , the wavevector transfer is diminished to

Q2
m =Q2 −16π(SLD)m , (3.5)

with respect to the wavevector transfer Q in vacuum (or air since SLDair ≈ 0). The reflectivity

between two layers m = 1 and m = 2 is the ratio of the outgoing and incoming wave amplitudes

and is given by the Fresnel formula:

rF (Q) = aout

ain
=

(
Q1 −Q2

Q1 +Q2

)
. (3.6)

The above formula is only valid for a perfectly sharp interface, which is rarely justified in real

experiments, and certainly not in ours. Instead, the interface usually has some finite roughness

σ1,2 > 0, and it can be shown [69, 70] that this weakens the reflectivity to approximately

r (Q) = rF (Q)exp

(
−

Q1Q2σ
2
1,2

2

)
. (3.7)

The reflectivity is scanned for different wavevector transfers Q, and as can be seen from

Eq. (3.5), at some very small value Qc =
p

16π(SLD) ≈ 0.01Å−1 for a silicon-air interface, the

values of Qm become imaginary, which leads to the total internal reflection: R(Q <Qc ) ≡ 1.

Here are some other simple approximations valid in restricted Q-ranges (zero roughness is

assumed here):

R(Q) = |r (Q)|2 =


1, Q <Qc

(3−2Q/Qc )2, Q &Qc(
Q2

c

2Q2

)2
, Q ÀQc

(3.8)

The Fresnel formula can only be applied to a single interface, whereas our sample typically has

the following composition: silicon – silicon dioxide – initiator – brush – bulk polymer solution.

To describe the reflectivity from such a multi-layer, we must take into account all the (infinite)

multiple reflections happening internally, as shown in Fig. 3.2. A standard way to do it is the

Parratt’s recursive formula [71] (an alternative and equivalent approach is the Abeles optical

matrix formalism [72]). In our example we have M = 3 layers, plus one fronting (silicon), and

one backing (polymer solution). There are four interfaces in total. The bottom-most interface

has only one reflection,

r̃M ,∞ = rM ,∞ (3.9)
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Chapter 3. Polymer brushes under shear flow

Figure 3.2 – Reproduced from [68] shows reflection and transmission from a slab of infinite (a)
and finite (b) thickness. The finite slab is of thickness ∆ and the total reflectivity is the sum of
the infinite number of reflections, as indicated in the right panel of (b).

which can be calculated almost exactly by Eq. (3.7). Next layer up, the reflectivity is calculated

using Parratt’s formula:

r̃M−1,M = rM−1,M + r̃M ,∞p2
M

1+ rM−1,M r̃M ,∞p2
M

, (3.10)

which takes into account all the infinite reflections shown in Fig. 3.2, panel (b). Here

p2
m = e iQm∆m (3.11)

is the phase shift accumulated by the neutron wave upon traversing a layer of thickness ∆m ,

while the internal wavevector transfers Qm are all calculated from Eq. (3.5), and depend on the

SLD of each layer. Parratt’s Eq. (3.10) is repeated iteratively to calculate r̃M−2,M−1, etc. until we

arrive at the very first interface, r̃0,1 which is silicon-silicon dioxide in our case. The absolute

square of this reflectivity,

R(Q) = |r̃0,1|2 (3.12)

corresponds to the measured intensity of the neutron beam at a given wavevector transfer
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3.2. Neutron reflectometry

Q (see Eq. (3.3)), which in turn is scanned by changing the neutron wavelength λ = 2π/k,

the incidence angle α, or both as is usually done in time-of-flight (TOF) reflectometers like

FIGARO.
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Figure 3.3 – Neutron reflectometry data for an entangled polymer brush under shear flow,
Wi = 2.0

A typical result of our experiments in displayed in Fig. 3.3a. We measure the reflected intensity

of the neutron beam as a function of the wavevector transfer Q, for different shear rates

ranging from static Wi = 0 (red circles) to the non-linear shear thinning regime at Wi = 2.0

(blue squares). If the sample structure is known (the final result shown in Fig. 3.3b), it can be

used to exactly calculate the reflectivity spectrum. Unfortunately, the opposite is not true since

we can only measure the reflected intensity R = |r |2, but not the phase of the neutron wave, and

half of the required information is not available. To describe the sample using the slab model,

we require quite a few parameters: the SLD of each substance (5), plus the thickness of each

layer (3), plus the roughness of each interface (4), therefore 12 numbers in total. The measured

spectrum does not contain enough features to justify all this information, and therefore we

must determine some of the parameters from other complementary measurements, such as

the reflectivity of a dry brush in air, and a fully swollen brush in toluene, not shown here.

Once a plausible SLD profile has been constructed, the remaining details can be obtained

by fitting the NR data. We have used standard Motofit software [73], which is based on

calculations equivalent to those described above in Eq. (3.10). A genetic fitting algorithm is

employed, which starts by first generating a random set of SLD profiles within a specified

parameter range. Each guess is then converted into a corresponding reflectivity curve R(Q),
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Chapter 3. Polymer brushes under shear flow

which is compared against the experimental data points R0(Q) by calculating a fitness score:

χ2 =∑
Q

[logR(Q)− logR0(Q)]2

∆R0(Q)
(3.13)

obtained by summing all the square differences between the predicted and the measured

points, usually using the logarithmic scale in order to weigh the points more equally at both

small and high Q, and also including the experimental error bars ∆R0(Q). Other reasonable

fitness functions with different weighing factors could be used as well, depending on the

nature of the data.

The guess SLD profiles which have the best fitness scores (the smallest χ2 values) are then

combined to create a second generation of profiles, plus some random mutations to avoid

getting stuck in a local minimum and explore the parameter space more thoroughly. This

process is repeated for about 100 generations, and the best fitting result is plotted as a solid

line in Fig. 3.3a, while its corresponding SLD profile is shown in Fig. 3.3b.

If the brush is not too dense, one can assume that the overall polymer concentration is fixed

throughout the brush-bulk interface, and is equal to the concentration of the bulk solution:

φgrafted(z)+φfree(z) =φbulk = 0.3 (3.14)

This assumption can be verified by using a different contrast (e.g. a deutrated brush in a

hydrogenated polymer solution, or various mixtures thereof). The SLD as obtained from the

fit, Fig. 3.3b, is equal to the weighted sum of all species:

SLD(z) = SLDhPSφgrafted +SLDdPSφfree +SLDDEP(1−φbulk) (3.15)

These equations can be rearranged to find the brush density profile φgrafted(z) in terms of the

fitted SLD(z) profile:

φgrafted(z) = (SLD(z)−SLDDEP)− (SLDdPS −SLDDEP)φbulk

SLDhPS −SLDdPS
(3.16)

The roughness between the layers was modelled using a Gaussian function (see Eq. (3.6)),

and therefore the fitted SLD has the shape of the error function erf(z). This is the default

and the simplest function to fit, and it seems to apply fairly well for our system. Other more

complicated shapes have been proposed theoretically [74], but no such comparable theories

are yet available for the entangled brushes under shear flow. Also, the brush-bulk interface

is very rough and many different shapes could possibly fit the NR data, making it difficult to

confirm or dismiss candidate theories. At the current stage of our research, it was sufficient to

describe the brush by its thickness and roughness, using the simplest possible formulas. Our

data strongly suggests that only the brush roughness is changing (decreasing) under shear,

which means that the free chains are expelled, but the overall brush mass stays constant as it

should be, if the sample is not degraded.
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Most of our NR experiments were performed on the FIGARO neutron reflectometer located at

the Institut Laue-Langevin (ILL) in Grenoble, France. It is a time-of-flight instrument with a

broad wavelength band between 2 Å and 30 Å, provided by the cold source (liquid deuterium

at 20 K) of the ILL reactor. A great advantage of this reflectometer is that the sample is fixed on

a horizontal table, while the source and the detector arms rotate around to scan the different

neutron wavevectors Q. The incident beam can be arranged either from top to bottom (for a

dry brush in air), or from bottom to top (for a brush immersed in a liquid), depending on the

needs of the sample. The horizontal geometry is particularly useful for experiments on free

liquid surfaces and is also ideally suited for rheological studies which use a plate-plate or a

plate-cone geometry.

3.3 Outlook

In all the brush systems that we have so far considered, both experimental and simulated, the

brush collapse was occuring at a timescale governed by the reptation time of the free chains in

solution, which in turn is determined by the free chain length P , (and the concentration). We

have not found any dependence of the timescale on the parameters of the brush itself, such

as its grafing density or the grafted chain length N . However, it must also be noted that in all

the cases the free chains were equal or longer than the grafted chains: P & N . The opposite

regime where the grafted chains are much longer, N À P , was out of reach of our experimental

capabilities. So far we do not know what happens in this regime where more than one free

chain penetrates and entangles with every grafted chain. It may be possible that the brush

starts collapsing at a shear rate of Wi ¿ 1, and the threshold should then depend on the brush

parameters, rather than those of the bulk fluid. Such a brush-dominated system has been

theoretically studied a long time ago [75], where the motivation is to dynamically control the

slip length

b = η

k
(3.17)

where η is the bulk fluid viscosity and k is the friction coefficient with the brush-coated surface.

An entangled polymer solution can have a very high viscosity η∝ P 3, and hence a very long

slip length, provided that the friction coefficient k is small. In a brush-dominated regime the

friction k(γ̇) is thought to decrease before the shear thinning starts in the bulk, in which case

one could expect a strong shear-dependent increase of the slip length b.

A brush-dominated entangled system has so far never been characterised experimentally, to

the best of our knowledge. One would need to graft very long chains, let’s say Mw = 106 gmol−1

PS, which is in principle possible with standard grafting-to chemistry. However, when this

brush swells once immersed in a bulk polymer solution, the brush density becomes much too

low to influcence the NR spectrum in a detectable way. To improve the detection limit, one

will need to design an even sharper contrast between the free and the grafted chains, as well

as longer neutron counting times.
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Chapter 3. Polymer brushes under shear flow

In the meanwhile, computer simulations are readily available to investigate the brush-dominated,

entangled regime N À P . This is considerably more time-consuming than the situation that

we have simulated so far: N = P/2. Nevertheless, recent advances and the availability of

affordable GPU computing make it relatively straightforward to tackle this challenge.
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We present a computer simulation of entangled polymer solutions at equilibrium.

The chains repel each other via a soft Gaussian potential, appropriate for semi-dilute

solutions at the scale of a correlation blob. The key innovation to suppress chain

crossings is to use a pseudo-continuous model of a backbone which effectively leaves

no gaps between consecutive points on the chain, unlike the usual bead-and-spring

model. Our algorithm is sufficiently fast to observe the entangled regime using a

standard desktop computer. The simulated structural and mechanical correlations

are in fair agreement with the expected predictions for a semi-dilute solution of

entangled chains.
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I. INTRODUCTION

Simulation of entangled polymer solutions is a long standing challenge in the field of

macromolecules. While it is possible to simulate polymer melts of sufficiently long chains

where entanglement effects become visible, achieving a comparable result in polymer solu-

tions remains evasive, despite ongoing increase in computer speed and algorithm efficiency.

To start with, entanglement is not an interaction per se that one could insert in the simu-

lation code. Rather, it is an emergent phenomenon due to the uncrossability of very long,

interpenetrating polymer chains. The main challenge from the numerical point of view is to

resolve chain motion with sufficient accuracy for there to be no crossings over a time span

exceeding the one required for a chain to diffuse a distance equal to its own size.

Most of the previous simulation effort on entanglement was geared for polymer melts

rather than their solutions. A popular model by Kremer and Grest1 (KG) designed for melts

is based on hard, impenetrable beads tightly bound by stiff nonlinear springs. The beads

are often modeled by the steep repulsive part of the Lennard-Jones potential, also known

as the Weeks-Chandler-Andersen (WCA) potential, whereas the connectivity is enforced by

finitely extensible nonlinear elastic (FENE) springs. Alternatively, an even better barrier

against crossings is obtained in lattice-based simulations2, with the downside that the chain

conformation is unrealistically limited to only a handful of coordinations which depend on

the arbitrary choice of the lattice (cubic, face-centered cubic, etc.)

(a) Bead-and-spring model:

J = N = 8.

(b) Pseudo-continuous model:

J = 8N = 64.

FIG. 1: Two models of the same molecule with N degrees of freedom but different number

of particles J . Shading denotes the repulsive potential Φ of range λ.
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In a polymer melt the entanglement length is typically within a factor of 10-100 longer

than the natural interatomic distances, which is not very far apart and so the KG method

is an adequate approach to simulate the liquid. However, if we dilute the system by adding

solvent, while at the same time increase molecular weight to maintain a high degree of chain

interpenetration (the semi-dilute regime), the computational time becomes a major issue.

The entanglement length is now much greater than the interatomic scale, and the rate of

chain collision is many orders of magnitude lower than the timescale required to follow the

hardcore WCA+FENE interactions. Often in applications we want to focus on the physics

of entanglement and we are less interested in the small features on the atomic scale. The

main strategy is hence to simulate the polymers at a coarser scale3,4, which basically means

softer beads and looser springs. Alas, this quickly opens up gaps along the backbone (see

Figure 1a), through which the chains can cross each other and the entanglement behavior

is lost.

To mimic the effects of entanglement, several recent studies have introduced temporary

attractive forces, called slip-springs5–8 or slip-links9,10, between nearby beads. As an extreme

example11, one can replace the entire chain by just a single particle at the expense of having

to invent and justify effective entanglement interactions with other such “particles”.

A rival camp of thought introduces additional repulsive forces. One suggestion is to

topologically detect the segments which have crossed during the time step, and then repel

them back using the Twentanglement12 algorithm. On second thought, why bother with

topology at all instead of simply repelling the nearby segments even before they had a

chance to cross, using the so-called segmental repulsive potential (SRP)13–15?

In our recent work16 we briefly mentioned a model which takes the SRP strategy even

further and completely blurs the distinction between “bead” and “segment”. The present

paper explores this idea in much greater detail. The chain in theory is a fully continuous

curve with N degrees of freedom, which is discretized for computational purposes by draw-

ing as many samples J � N as needed such that the distance between consecutive points

|Rj −Rj−1| � λ is much smaller than the range of the excluded volume force, as shown in

Figure 1b. A soft Gaussian potential is perfectly adequate to repel such pseudo-continuous

chains, whereas a linear Hookean spring interaction keeps them connected. The time evo-

lution is described by a stochastic first order equation of motion known as the Brownian

thermostat. The random force is truncated at high frequencies, which reduces its peak
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amplitude, thus making chain crossings even less likely.

One alleged disadvantage is that we end up with a very dense and computationally

demandingN -body (or rather, (J � N)-body) problem. To mitigate this issue, in Section IV

we propose an approximate algorithm which uses two staggered grids and splits the Gaussian

potential into its short- and long-range contributions, each of which is very fast to evaluate.

The code is highly parallel and is straightforward to further accelerate using GPU computing.

To validate our algorithm we have performed a series of computer simulations in the

regime which can be mapped to semi-dilute polymer solutions. The obtained chain tra-

jectories were analyzed to determine various structural and mechanical correlations. In

particular, the self-diffusion coefficient scaled as D ∝ N−2, and the longest relaxation time

scaled as τd ∝ N3 for long N > 256 chains. While our model does not explicitly prevent

chain crossings, it does suppress them sufficiently for the reptation behaviour to emerge,

thus reaching a fair agreement with well-known experimental and theoretical facts.

II. THE CONTINUOUS MODEL

FIG. 2: Typical state of semi-dilute polymer

in two dimensions. The chains have N = 16

degrees of freedom and keep a distance of

about λ from each other.

FIG. 3: C = 16 chains with N = 32 degrees

of freedom in three dimensions. Yellow color

indicates the tension |∂R/∂s|2, see Eq. (1).
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We consider a semi-dilute polymer solution consisting of a number C of chains in a
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volume V , with periodic boundary conditions as shown for clarity in Figure 2 for the two

dimensional case. All subsequent calculations will be carried out in the three dimensional

case, illustrated in Figure 3. Each chain is nominally composed of N monomers, or blobs,

linked by a linear spring interaction of length b. We start with the continuous coil, or

Edwards model17, where the cth chain at time instant t is represented by a continuous path

Rc(t, s) with the monomer label s ∈ (0, 1). The energy of a configuration is

H =
3kBT

2Nb2

C∑

c=1

∫ 1

0

ds

∣∣∣∣
∂Rc

∂s

∣∣∣∣
2

+
N

2

C∑

c=1

C∑

c′=1

∫ 1

0

∫ 1

0

ds ds′Φ[Rc(s)−Rc′(s
′)]. (1)

The first term is the attractive spring interaction of entropic origin,18 while the function Φ

denotes the excluded volume interaction, with v ≈ λ3 being the excluded volume parameter:

Φ(r) = vNkBTδ(r) ≈ NkBT exp

(
− r2

2λ2

)
. (2)

The Dirac delta δ(r) approximation is commonly used in continuum theories, while the Gaus-

sian approximation with its finite range λ ≈ b is more suited for numerical calculations19.

At equilibrium, the model can be most readily identified with a semi-dilute polymer

solution at density ρ and molecular weight Mw. Scaling theory18 predicts the number of

blobs and their size to scale as

N ∝ ρ5/4Mw and λ ∝ ξ ∝ ρ−3/4. (3)

This mapping is valid for semi-dilute solutions ρ∗ � ρ� ρ∗∗, but could also be extended to

melts, provided that the correlation length λ(ρmelt) � b0 is substantially greater than the

size of an atom b0, which may be a reasonable assumption for some chemical species. A blob

particle contains both the polymer and the associated solvent, so we do not add explicit

solvent particles.

Far from equilibrium, such as under a strong shear flow, or just in general whenever the

chains are highly stretched as in a polymer brush, the above mapping breaks down. The

simulation can still be performed, but one will be obliged to use more blobs N > Neq and a

sharper potential λ < λeq until eventually the atomic scale is reached and one may as well

switch back to a Kremer-Grest type of approach.

In a semi-dilute solution the hydrodynamic interactions are screened and are not

important20 for distances beyond ξ ≈ λ, and therefore are not included in the model.
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The chain dynamics can then be described by the stochastic Brownian equation of motion:

ζ
∂Rc(t, s)

∂t
=

(
3kBT

Nb2

)
∂2Rc(t, s)

∂s2
−N∇U(r)r=Rc(t,s) +

√
2kBTζWc(t, s) (4)

where ζ = 6πηsbN is the friction coefficient of the center of mass, Wc(t, s) is the Wiener

process satisfying 〈Wα
c (t, s)Wβ

c′(t
′, s′)〉 = δαβδcc′δ(t− t′) δ(s− s′), and

U(r) =
C∑

c=1

∫ 1

0

dsΦ[r−Rc(s)] (5)

≈
C∑

c=1

J∑

j=1

Φ0(r−Rc,j) (6)

is the total excluded volume field. The natural time unit is the microscopic Rouse time

τ =
6πηsb

3

kBT
, (7)

which is roughly the time it takes one blob to diffuse a distance equal to its own size. In

contrast, the momentum relaxation time

τm =

(
m

6πηsb
≈ ρ0b

2

ηs

)
�
(
τ ≈ ηsb

3

kBT

)
(8)

would be the time during which the thermal velocity 〈v2〉 = 3kBT/(2m) of the coarse particle

λ ≈ b decorrelates significantly from its initial value. The particle mass m is assumed to

contain both the polymer and the surrounding solvent molecules, so the density ρ0 ≈ 1 g/cm3

refers to the overall density of the liquid. The Brownian equation (4) of motion is justified

as long as the above inequality τm � τ holds and we can ignore inertia. In terms of physical

polymer density ρ and using Equation (3), the inequality can be expressed as

ρ� ρ0

(
b0η

2
s

ρ0kBT

)4/3

≈ ρ∗∗ (9)

where b0 ≈ 1 nm is the size of the physical monomer. Highly concentrated ρ & ρ∗∗ solutions

and melts were not considered in the current study, but we can say that in this regime one

must abandon the Brownian equation and use a second order equation of motion, such as the

popular Dissipative Particle Dynamics21 integrator. The pseudo-continuous J � N model

can still be applied similarly as in the present study, since the mechanistic chain model and

the equation of motion employed to propagate that model in time are two separate things.

On passing, we emphasize that the linear spring interaction is appropriate for simulations

of phenomena with a timescale t � τ . As a counterexample, for an extreme shear flow

γ̇ & τ−1 = 106 s−1 one will require more expensive FENE springs.
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III. THE DISCRETE MODEL

In this section we will provide a discrete counterpart to the continuous equation of motion,

Equation (4), and integrate it over a short time step ∆t. The details get a bit technical, but

are worth following since a properly designed discretisation scheme is essential to suppress

chain crossings.

The main idea is to sample the continuous backbone s ∈ (0, 1) using a finite number

j = 1, 2, . . . , J of discrete points as shown in Figure 1. The potential of a fictitious j-

“particle” centered around s0 = (2j − 1)/(2J) is

Φ0(r−Rj) =

∫ s0+1/(2J)

s0−1/(2J)
dsΦ(r−R(s)) ≈

(
N

J

)
kBT exp

(
−(r−Rj)

2

2λ2

)
. (10)

The choice J = N corresponds to the simplest bead-and-spring model, which has gaps

that allow chains to cross their paths. The choice J = 2N is similar to the situation

obtained using SRP, except that in our case the potential on both the “beads” and the

“segments” is exactly the same. In general, we will consider J � N such that the largest

gap max|Rj −Rj−1| � λ is much smaller than λ. There exists a certain threshold, similar

to the Nyquist rate in signal processing, beyond which the discrete model behaves just like

the continuous Edwards chain would. We found that at equilibrium J/N = 4 is sufficient,

whereas more points may be required in situations where the chains are stretched, such as

under shear or in a polymer brush, or for more flexible chains with λ < b.

As is well known, the configuration of any given chain can equivalently be described by a

set of Rouse22 modes an =
∫ 1

0
dsR(s) cos(πns), where n = 0, 1, 2, . . . , (N − 1). In this work

we retain (N − 1) modes +1 center of mass to be consistent with the number of blobs N .

The equation of motion in the Rouse domain becomes

ζ
∂an(t)

∂t
= −

(
3π2n2kBT

Nb2

)
an(t) + F̃n(t) +

√
(1 + δ0n)kBTζ W̃n(t) (11)

where the Wiener process is 〈W̃α
cn(t)W̃β

c′n′(t′)〉 = δαβδcc′δnn′δ(t− t′) and the spectral force

F̃n = −N
∫ 1

0

ds cos(πns)∇U(r)r=R(s) (12)

≈ −
(
N

J

) J∑

j=1

cos

(
π(2j − 1)n

2J

)
∇U(r)r=Rj

(13)

is the discrete cosine transform of the real force. We must now integrate the continuous

Rouse equation (11) over a discrete time interval ∆t. The main limitation on the time step
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is that two blobs repelling at maximum strength should not move further than their own size.

This leads to ∆t . (6πηsb
3)/kBT = τ . However, when we integrate the random force over

the same time step, the mean blob displacement is
√
〈∆R2〉 =

√
6kBT∆t/(6πηsb) =

√
6 b.

This distance is
√

6 ≈ 2.4 times greater than the coarse-grained excluded volume force range

λ = b, and therefore would cause plenty of chain crossings. It is not surprising, since the

concept of a “blob” (see Equation (3)) was originally justified only in the thermodynamic

long time t → ∞ limit, while if observed at short times t ≈ τ there are of course no such

actual blobs. Therefore, to derive any meaningful information from our blob-based model,

we must truncate the sampling rate of the random force. In particular, we propose to update

the random force only once every M � 1 steps, while between the updates the blobs move

ballistically with fixed increments of magnitude

√
〈∆R2〉 =

√
6kBT∆t

(6πηsb)M
(14)

and random direction. In other words, we smooth out the Dirac delta correlation over a

finite time span (M∆t) while keeping the power spectrum at zero frequency unchanged,

so that the long time properties are preserved but the instantaneous value of the force is

smaller by 1/
√
M . Specifically, the mean squared displacement over a long time t� (M∆t)

remains the same as in the continuum theory: 〈∆R2〉 = 6b2t/τ . We have used M = 120,

which gives a random displacement of (
√

6/120 ≈ 0.22)b per step, sufficiently small to be

repelled by the excluded volume force which pushes the two blobs apart by one λ = b during

the same time step ∆t. A larger value of M makes chain crossings less likely (see Figure 11),

at the expense of having to discard more short-time correlation data as unphysical, such as

seen at short time scales in Figure 8b.

The solution to Equation (11) is written as

an(t+ ∆t) =

{
an(t) +

∆t

ζ
F̃n[an(t)] +

√
2kBT∆t

ζM
R̃(3)
n

}/(
1 +

∆t

τn

)
, (15)

where the spring relaxation times are

τn =
1

3π2

(
6πηsb

3

kBT

)(
N

n

)2

, (16)

and the symbol R̃(3)
n stands for an isotropic random vector of mean zero and variance

〈[R̃(3)
n ]2〉 =

3

2
(1 + δ0n). (17)

8



To further minimize the largest possible displacement due to the random force, we use a

uniform spherical distribution. First, generate j = 1, 2, . . . , N vectors R(3)
j of fixed length

√
3 and random orientation. This corresponds to adding the random displacements directly

on the beads shown in Figure 1a. The spectral displacements are then obtained by

R̃(3)
n =

1√
N

N∑

j=1

R(3)
j cos

(
π(2j − 1)n

2N

)
. (18)

One can verify that the variance is indeed

〈[R̃(3)
n ]2〉 =

3

N

N∑

j=1

cos2
(
π(2j − 1)n

2N

)
=

3

2
(1 + δ0n) (19)

as imposed by Equation (17). It must be clear that the random force described above only

makes sense in the limit of many steps t� (M∆t). Our model does not contain any sensible

microscopic information on the scale of a single step t . (M∆t), where it cannot and should

not be mapped to any real system.

IV. COMPUTATION OF THE EXCLUDED VOLUME FORCE

FIG. 4: Interacting particles as seen by two staggered grids. Line color and thickness serve

only as a visual aid.

The most time demanding step of the program is the calculation of the field gradient

F = −∇U(r) at the position of every j-particle. The use of standard domain decompo-

sition techniques23 would require an execution time proportional to the total number of
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particles CJ times the number of neighbors that each particle has, const. × J/N , in total

O(CN(J/N)2), which is a factor (J/N)2 higher than a corresponding bead-and-spring sim-

ulation. Here we propose a mesh-based approximation which only takes O(CN log(CN)) +

O(CJ) computer time and does not suffer a significant slowdown in the important regime

J/N � 1. We will need two rectangular grids, each having a large mesh size ∆x . λ, and

the origin staggered along all axes by half a spacing ∆x/2 with respect to each other, as

shown in Figure 4. The force on every particle F(Rc,j) is evaluated twice, using each of

the two grids, and the average is fed to the equation of motion. We take into account the

“short range” and the “long range” contributions. All particle pairs which share the same

cell, such as the pair A, will interact via a short range routine. The pairs which fall into

separate cells, such as the pair C, will interact via a long range routine. Lastly, borderline

pairs such as B will interact via short range in one of the grids, and via long range in the

other grid.

The first step in the force routine is to bin the coordinate R of each j-particle into its

nearest cell in the central box:



kx

ky

kz


 = ceil

([
R− V 1/3floor

(
R

V 1/3

)]
/∆x

)
(20)

where each 3D-cell index is kα = 1, 2, . . . , K, with K = round
(
V 1/3/∆x

)
the total number

of cells per spatial dimension, and ∆x = V 1/3/K re-adjusted so that K is always an integer.

The short range routine is based on the linearization of the Gaussian force F =

re−r
2/(2λ2) ≈ r valid for r . λ. That way, the force on the particle located at Rp due

to all the other nearby Q particles which are in the same cell, is

Fshort(Rp) =

Q∑

q=1

(Rp −Rq) = QRp −
Q∑

q=1

Rq. (21)

The computational task is to count the total number Q of particles in each cell, and sum all

their coordinates
∑

Rq, followed by the cheap algebra of Equation (21), which costs little

more than the very cheapest step in the code, Equation (20).

The interactions of particles across cell boundaries are taken into account by the long

range routine. It is accurate for separations r & ∆x and is the standard particle-mesh

calculation24 which has been used for soft Gaussian potentials before25,26. Here we recycle
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the particle count Q to reshape it into a three dimensional array ρ(r′) and imagine that the

particles are all located at the center r′ = (kxx̂ + kyŷ + kzẑ) ∆x of their corresponding cell.

The force on every particle in a given cell r is then obtained by the convolution theorem:

Flong(r) = IFFT
{
FFT[ρ(r′)] · FFT

[
r′e−r

′2/(2λ2)
]}

(22)

where (I)FFT is the standard (Inverse) Fast Fourier Transform in three dimensions, which

automatically incorporates the periodic boundary conditions. The total force on each par-

ticle is the sum

Ftotal = 〈Fshort + Flong〉grid , (23)

averaged over the two grids.

The error suffered by this algorithm is eventually smeared over the redundant j-particles

and the final spectral force in Equation (13) is more trustworthy than it may seem judging

from the real space perspective. We also wish to draw attention to the fact that even the

most accurate evaluation of the interparticle force is only exact at one particular instant in

time t, after which it is inevitably subject to the bias of the time integrator, which is usually

o(∆t2) accurate in itself. Consistent with these reasons, we found that the simulation results

were virtually identical for all grid sizes ∆x ≤ λ, so we kept ∆x = λ for maximum speed.

V. SIMULATION ALGORITHM

In this section we consolidate all our ideas into an algorithm which is the basis for the

computer code. The goal is to start with a configuration an(t) as the input and predict a

thermodynamically likely future configuration an(t+ ∆t) as the output.

1. Generate the C × N random vectors Rc,n of unit length
√

3 and random orien-

tation. This step is updated only once every M = 120 iterations.

2. Sample the chain conformation in real space using J points indexed at regular

intervals along the backbone s:

Rj = a0 + 2
N−1∑

n=1

an cos

(
π(2j − 1)n

2J

)
(24)

with j = 1, 2, . . . , J . These locations will be used to compute the excluded volume

interaction between different chains. The complexity of this step is O(J log J) per

chain, if evaluated using an efficient FFT-based code27.

11



3. Evaluate the excluded volume force Fj = −∇U(r)r=Rj
on each j-particle using

the approximate Equation (23). Then, convert it to the Rouse domain F̃n using

Equation (13).

4. Integrate the equation of motion using the Backwards Euler formula in Equa-

tion (15) to obtain the new configuration an(t + ∆t) which now includes the random

walk, the excluded volume and the spring forces.

5. Repeat steps 2-4 for M = 120 iterations using the same set of random displacements.

Then, start over from step 1.

6. As a final remark, we note that the random numbers Rc,j do not instantaneously add

up to zero, which leads to an overall diffusion of the entire system. Hence, we manually

reset the system center of mass by translating all the particles

Rc,j(t)→ Rc,j(t)−
1

CJ

C,J∑

c′,j′

Rc′,j′(t) (25)

which guarantees
∑

Rc,j = const. = 0 at all times. This correction is required to

remove the finite-size artifact from the trajectories, as explained in the appendix of

reference1.

Before the start of the simulation, we need to decide on all the input parameters. As an

example, suppose that we want to simulate polystyrene of molecular weight Mw dissolved

in toluene at density ρ∗ � ρ � ρ∗∗. Using the mapping in Equation (3) we convert

this into the number of blobs N and the blob size λ. Depending on the chemical species

and temperature, one then has to choose the stiffness λ/b and the excluded volume v/λ3

parameters. In principle, any (positive) values are possible, but it will be computationally

fastest to reach entanglement dynamics when both of these ratios are set equal to one, which

is what we have done in the present study, and what seems to apply fairly well for a common

system like polystyrene-toluene.

Solvent viscosity, blob hydrodynamic radius ≈ b and temperature all coalesce to define

the time unit τ = 6πηsb
3/(kBT ), but its absolute value is not important from the algorithm

point of view, just like the absolute length λ is not important, only the ratios λ/b and v/λ3.

Next, we need to impose either the pressure or the blob density of our system. According

to the semi-dilute theory, a polymer solution can be viewed as a melt of closely-packed
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correlation blobs, which leads to the simulation box size

V = v̄0λ
3NC, (26)

where v̄0 is the dimensionless volume associated with a single blob. If v̄0 is too small, the

blobs are too crowded and the interblob potential, Equation (2), is unable to prevent chain

crossings. If v̄0 is too big, the entanglement length grows and one needs longer chains to

see the same level of chain interpenetration. We have found that a suitable compromise is

v̄0 = 2(4π/3). In terms of chains per unit volume,

C

V
=

1

v̄0λ3N
∝ ρ

Mw

. (27)

This chain density ensures that the osmotic pressure scales as

Π ≈ kBT

λ3
∝ ρ9/4 (28)

which is the well-known des Cloiseaux law, and in our case it means that the pressure is

the same regardless of chain length N . We have verified numerically that this is true for

sufficiently long N > 32 chains. Alternatively, one could fix the pressure Π and let the box

volume V fluctuate in an isobaric fashion, but we have not tried this.

Finally, there are some technical/discretisation/finite-size settings: the number of chains

C/
√
N � 1, the level of chain continuity J/N � b/λ, and the grid size ∆x/λ� 1. As for

the time step, we must ensure that the excluded volume force does not overshoot its own

range:

∆R =
( v
λ3

)( kBT

6πηsb

)(
∆t

λ

)
� λ (29)

which leads to time step limitation

∆t

τ
�
(
λ

b

)2(
λ3

v

)
. (30)

Lastly, it is crucial that the random displacement be smaller than the repulsive one:

b

√
∆t

Mτ
� ∆R =

( v
λ3

)( kBT

6πηsb

)(
∆t

λ

)
, (31)

which dictates the random force sampling cutoff:

M �
[(

λ3

v

)(
λ

b

)]2
τ

∆t
(32)
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and gives the absolute shortest time scale beyond which the blob model is not applicable:

tallowed � tmin = M∆t = τ

[(
λ3

v

)(
λ

b

)]2
. (33)

In the limits quoted above, our numerical algorithm is expected to approach the exact

analytical solution for the multi-chain problem, Equation (4). Of course, computational

time becomes very long, so initially we simulate the system with a reasonable choice ∆x = λ

and calculate some physical property such as the diffusion coefficient. Then, we repeat the

simulation with ∆x = 0.5λ and obtain an identical result, whereas ∆x = 2λ produces a

significantly different outcome, and so we conclude that ∆x = λ is the upper safety limit.

This test is repeated for all the technical parameters to ensure that the physical results do

not depend on their choice.

The initially chosen configuration an(t = 0) should be close to thermal equilibrium which

is a priori not known. To reach the equilibrium state quickly, we use Ref.28 method where

every simulation is started with only N = 1 blob per chain which is just Gaussian particles in

a box, a model for a solution at density ρ = ρ∗, or the border between dilute and semi-dilute.

After a few dozen iterations, the particles have repelled each other sufficiently and we can

add the second mode N = 2 to replace each ball with a randomly oriented Gaussian rod.

After the rods have settled into their equilibrium distribution, we double the chain length

again to N = 4 and this process continues until the desired N is obtained. The acquisition

phase then starts where we record chain trajectories for analysis of various quantities and

correlations of interest. We must acquire enough time steps to cover the dynamics for a time

frame much longer than the system’s own longest relaxation time.

VI. RESULTS

The purpose of this section is to demonstrate the feasibility and usefulness of our newly

developed simulation method. A reasonably fast implementation was achieved by writing a

custom MATLAB executable subroutine containing CUDA code and running on an Nvidia

Quadro M4000 GPU. The computation time was about 4× 10−7 s per time step, per chain,

per Rouse mode. The source code is available upon request to the corresponding author.

We have simulated C = 64 chains with the number of Rouse modes spanning N =

8, 16, 32, 64, 128, 256, 512, 1024, and 2048, while keeping all other parameters constant.
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The primitive path analysis of an equilibrated static configuration for the N = 1024 chains

was performed using the Z1 code29 available online, which found Z = 17.5 entanglements

per chain. The entanglement length is thus Ne = N/Z = 59, quite consistent with the

departure from Rouse dynamics seen in Figures 5 and 6.

The longest run with N = 2048 modes lasted for about four months and was enough to

reach one relaxation time as can be seen from the emerging plateaus in Figures 8b and 9b.

This computational effort was sufficient to clearly reveal the departure from Rouse dynamics

and into the entangled regime.

A. Mean squared displacement

Perhaps the most famous fact about entangled polymers18 is that their motion is confined

to an imaginary tube, created by the constraints imposed by all other nearby chains. The

strongest topological constraint is felt by the central j = J/2 monomer, whereas the chain

ends j = 1, J are more mobile and show less reptation. It is rather well established that the

mean squared displacement of the central monomer

g1(t) = 〈[RJ/2(t)−RJ/2(0)]2〉 (34)

scales as g1 ∝ t1/4 in the range (τe ≈ τN2
e ) < t < (τR ≈ τN2), which is a signature of

anisotropic diffusion along the randomly curved tube, in the presence of chain countour

length fluctuations. In contrast, unentangled phantom chains would scale as g1 ∝ t1/2

at the slowest, as described by the Rouse model with full details available in a textbook

reference30. Therefore, we plot g1(t)/
√
t in Figure 8a, where the negative slope of t−1/4
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clearly indicates a departure from Rouse dynamics and the onset of reptation. For the

very longest chains N = 2048 we start to see the beginnings of a new dynamical regime

(τR ≈ τN2) < t < (τd ≈ τ(N/Ne)
3), where the contour length fluctuations die out and pure

reptation starts to dominate: g1 ∝ t1/2 once again.

From an experimentalist point of view, it is more common to measure the mean squared

displacement of the center of mass,

g3 = 〈[a0(t)− a0(0)]2〉 , (35)

which can be used to calculate the self-diffusion coefficient

D = lim
t→∞

g3(t)

6t
. (36)

Phantom chains would scale as D1 = kBT/(6πηsbN) which is the result for a group of N

independent random walkers. However, entangled chains are confined to move in a tube of

length L ∝ Nλ, and the time it takes to diffuse this far is τtube ∝ L2/D1 ∝ N3. During this

time the chain center of mass has been displaced a distance of about its own radius of gyration

Rg ∝ N1/2λ, so the actual self-diffusion coefficient is D ∝ R2
g/τtube ∝ kBT/(6πηsb)N

−2.

To emphasize the cross-over from Rouse to entanglement, we plot g3N/6t in Figure 8b. In

the long time t→∞ limit a plateau develops and its value gives the self-diffusion coefficient

DN . On the short-time scale one expects all g3N/6t curves to overlap, but instead we see
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a slight overshoot due to the way that the random force was implemented (Equation (14))

in our equation of motion. Therefore, our data can only be considered valid after at many

M -sized random steps, which is to say t� (M∆t) = 120τ .

To focus on the entanglement behaviour, the result is rescaled to DN2 and plotted in

Figure 5. The shape of D(N) is quite similar to the one measured in experiments31,32 and

other simulations33, and specifically it takes about one decade worth of N to transit from

D = 1/N to D = 1/N2 slope. We have not made a direct comparison to experiment in order

to avoid a bias in the design of our own algorithm. As a side note, we mention that more

elaborate theories34 invoke contour length fluctuation in addition to pure reptation, and

predict D ∝ N−2.4. This law is obeyed fairly well by our last three points 512 < N < 2048.

B. Shear relaxation modulus

For long N & 100 chains the instantaneous shear stress is dominated by the spring force

contribution and is calculated35 by

σαβ = − 1

V

P∑

p=1

Fα
pR

β
p (37)

=
6π2kBT

V Nb2

C∑

c=1

N−1∑

n=1

n2aαc,na
β
c,n. (38)

Various mechanical and rheological properties can be deduced from the knowledge of the

shear stress autocorrelation function, also known as the shear relaxation modulus:

G(t) =
V

10kBT

3∑

α,β=1

〈Pαβ(t)Pαβ(0)〉 , (39)

where Pαβ is the traceless portion of the stress tensor σαβ, defined as

Pαβ = σαβ − 1

3
δαβ

3∑

γ=1

σγγ. (40)

This formula36 utilizes all six stress components for best possible statistics. Further, we reg-

ister the stress of each chain σαβc separately and only include intrachain c = c′ correlations37,

since the interchain contribution 〈σαβc (t)σαβc′ 6=c(0)〉 should in theory average to zero in the

long run, and therefore provides little valuable information, only useless noise.
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The resulting G(t) is plotted in Figure 9a. This can be compared to bead-and-spring

simulations for melts, presented in Ref.38. We can see that the overall number of time

steps, about 108, as well as the range of the G(t) axis, about 104, is similar in both types of

simulations. The main difference is that our chains are based on soft blobs, which ultimately

lead to unrealistic behaviour on short time scales, but the long time scales are reasonable

and can be mapped to semi-dilute solutions described by N ∝ ρ5/4Mw blobs of unlimited

size λ ∝ ρ−3/4. In contrast, the KG model assumes very specific FENE-WCA interactions
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designed to reproduce short-time behavior in melts, which is then a strong limitation from

the polymer solution point of view.

For entangled chains, either molten or semi-dilute, one expects a plateau G0 to emerge

with a value of roughly

G0 = νkBT, (41)

where ν is the number of entanglements per unit volume which in our case can be estimated

as ν = ZC/V = 0.002/b3. Our chains are not sufficiently long yet to see an actual flat

plateau, but judging from the trend in Fig. 9a, in particular the inflection point where

the G(t) slope starts to be flatter than t−0.5, a value between 0.001 and 0.005 seems quite

reasonable.

Further, we can estimate the zero-shear viscosity using the Green-Kubo relationship:

η(t) =
∫ t
0
G(t′) dt′ ≈ ∆t

∑
G(t′), plotted in Figure 9b. The actual viscosity is obtained

in the limit of t → ∞, so in practice we must simulate long enough for the integral to

flatten out, which can then be extrapolated to infinity and its value recorded in Fig. 6.

A simple reptation argument predicts the viscosity η ∝ N3, but most experiments and

detailed theories39 quote the law as η ∝ N3.4. We therefore rescale our data to η/N3 and

find that while our longest chains are clearly not Rouse anymore (η ≈ N3.0), they are

unfortunately not yet long enough to exhibit the experimental law. This is not surprising

and is in fact corroborated by other experiments and single-chain models40 which agree that

the onset of fully entangled dynamics in terms of viscosity occurs at larger N , compared to

the structural correlations such as self-diffusion (see Fig. 5). Other multi-chain bead-and-

spring simulations41 do report slopes exceeding +3, but they are extrapolated from data

under shear flow. With our present model we have not yet performed such non-equilibrium

simulations.

For phantom chains which can cross each other, the shear stress relaxation modulus

should behave according to the Rouse model:

GRouse(t) ∝ 1

N

N∑

n=1

e−3π
2(t/τ)(n/N)2 ≈

∫ N

0

dn

N
e−3π

2(t/τ)(n/N)2 ≈
√
τ

t
. (42)

At large N , a power-law decay emerges: G(t) ∝ t−0.5, valid for timescales 1� 3π2t/τ � N2.

In contrast, the simulated data G(t)
√
t , plotted in Figure 9c, shows that for chains N = 512

and longer, our stress relaxation is clearly slower than t−0.5. This is a further indication that

we are entering the entangled regime.
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C. Radius of gyration

The focus of this paper is on the dynamics of entangled polymers, but for the sake of

completeness we also present one static quantity, namely the radius of gyration:

R2
g =

∫ 1

0

|R(s)− a0|2 ds = 2
∞∑

n=1

|an|2 (43)

≈
(

2
N−1∑

n=1

|an|2
)

+R2
0, (44)

where one may optionally add a constant R0 ≈ λ to compensate for all the higher Rouse

modes which were truncated. We have plotted R2
g/N in Figure 7 to show that for long

chains, the scaling is Rg ∝
√
N , and therefore the excluded volume force is fully screened

and the chains obey ideal random walk statistics.

We also show that the largest radius of gyration is roughly a factor of three smaller than

the size of the box V 1/3, which should be enough to ensure that the chains do not interact

with their own periodic selves.

D. Test for chain crossings

FIG. 10: Topological analysis of two

moving rods detects a crossing in this

particular example
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FIG. 11: Suspected crossing rate of

C = 8 chains and N = 16 modes

So far we have analyzed various physical properties of our simulation and they all indicate

the emergence of reptation dynamics for long chains. This implies that chain crossings are
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unlikely on the scale exceeding the longest relaxation time τd ∝ N3. To further strengthen

the validity of our model, we now also present a direct calculation of chain crossing un-

likelihood.

We shall analyze how the chain arrangement with respect to each other evolves from

one time step to the next, and use a geometrical argument to estimate whether a crossing

may have taken place. Every segment (Rj − Rj+1)(t) = AB sweeps out a surface area,

as it moves to its new position (Rj −Rj+1)(t + ∆t) = CD. This unknown surface can be

approximated by two adjoining triangles ABC and BCD (although a choice ABD→ ACD

is also possible and may produce a different result).

Before we can start the analysis, we need a mathematical criterion to determine if a fixed

rod PQ = (P −Q) intersects a fixed triangle ABC. The rod PQ is defined by the set of

all points

x(t) = P + (Q−P)t, (t > 0) & (t < 1) (45)

(the parameter t is not to be confused with the time variable), while the triangle ABC is

the set of all points

y(u, v) = A + (B−A)u+ (C−A)v,

(u > 0) & (v > 0) & (u+ v) < 1
(46)

To find the intersection x(t) = y(u, v) we must solve the system of three equations

PQt+ BAu+ CAv = PA (47)

and find the three unknowns



t

u

v


 =

1

PQ · (BA×CA)




PA · (BA×CA)

PA · (CA×PQ)

PA · (PQ×BA)


 (48)

Since the triangle is merely an approximation for the true (unknown) surface, we assign an

intersection certainty score

I(1) = f(t)f(u)f(v)f(1− t)f(1− u− v) (49)

where f(x) = (1 + erf(x/σ))/2 is a fuzzy step function with a fuzziness parameter which we

fixed to σ = 0.05, whereas a choice σ → 0 would lead to an unrealistically crisp logic. A
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second test I(2) is performed with the same rod PQ and the second triangle BCD. A score

I = 1 means that the rod clearly intersects the triangle, I = 0 means that the rod is clearly

outside the triangle, while some intermediate value I ≈ 0.5 signals that the intersection is

very close to the edge of the triangle and/or extremity of the rod, and the test result should

be interpreted with caution.

As explained in Ref.42, a fixed rod PQ crosses the path of another moving rod AB as

it travels to CD if and only if one of the triangles ABC or BCD intersects the fixed rod

PQ, and the other triangle does not. If both or neither of the triangles intersect the rod,

the crossing has not taken place. Logically, this is an “exclusive or” operation, which for a

fuzzy input is computed43 as

I = xor
(
I(1), I(2)

)
= I(1) + I(2) − 2I(1)I(2). (50)

Lastly, we take into account that both rods are in fact moving simultaneously. As sug-

gested by Ref.44, four tests must be done: 1) a moving rod AB→ CD intersects a station-

ary rod PQ, 2) a moving rod AB → CD intersects a stationary rod ST, 3) a moving rod

PQ→ ST intersects a stationary rod AB, 4) a moving rod PQ→ ST intersects a station-

ary rod CD. The overall certainty of an intersection having taken place is then calculated

by

I = I1I2Ī3Ī4 + I1Ī2I3Ī4 + Ī1I2Ī3I4 + Ī1Ī2I3I4, (51)

where Ī = not(I) = 1− I is the logical not operator.

Since the topological analysis is time consuming, we have only simulated a small system

with C = 8 chains having N = 16 degrees of freedom, as depicted in Figure 3. It would

be interesting to quantify the amount of chain crossings as a function of chain continuity

parameter J/N , but unfortunately that would be an unfair comparison. The topological

testing outlined above is prone to error near segment termini, and as we increase J/N there

are many more segments describing the same topology, and therefore the test becomes less

valid.

However, we can compare the crossing rate as a function of the random force cutoff

parameter M , plotted in Figure 11. All bond pairs were examined at each of the 105 time

steps, and their crossing certainty score was binned into a histogram. We report the number

of events exceeding the crossing score at levels of 1, 10, and 50%. This number drops

very sharply with M . One may expect a Boltzmann-like exponential decay e−M , but the
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available data suggests that a power M−4 falloff is more appropriate. For larger M it is

not entirely clear whether the few detected crossings are actual topological violations, or

whether they can be attributed to the imperfection of the analysis method itself. We have

visually inspected the configuration using a rotatable 3D plot, and could not confirm the

analytically reported crossings. On the other hand, it is not impossible that some true chain

crossings may have occurred during the 105 steps and went unreported by the topological

analysis.

Either way, if we extrapolate the crossing rate with the help of the dashed line in the plot,

then for a simulation with M = 120 cutoff the crossing rate is 10−9. Scaling up to a bigger

box with C = 64 chains, N = 2048 modes, we arrive at 1 crossing per 108 time steps, per

chain. This very crude estimate shows that some occasional crossings may have occurred,

and their effect would be a small bias showing less entanglement than there should be.

VII. CONCLUSION AND OUTLOOK

In this paper we have explored a pseudo-continuous model of a polymer in semi-dilute

solution, consisting of long repulsive chains whose motion is resolved using large Brownian

time steps. By studying structural and mechanical correlations we have verified that the

chains are indeed entangled and that their dynamical properties agree fairly well with the

expected scaling laws. The model presented in this work is adequate to describe semi-dilute

solutions at long time and distance scales. We have only assumed a linear spring attraction

on the backbone and a soft Gaussian repulsive potential between the chains.

In closing, we emphasize that the goal of our simulation is not to prevent all chain

crossings, but only to reduce their rate sufficiently for entanglement dynamics to emerge.

The merit of a computer simulation is judged by various facets, including most importantly

a realistic description of physics, but also the execution speed, the simplicity of the code, the

number of assumptions and input parameters required, as well as its elegance and beauty.

While no code can be perfect in all of these regards, we have tried to strike a suitable balance

and we hope that our work will find many practical applications. These could include the

study of polymer solutions under shear, in confined geometries, and using different chain

architectures (star, comb, ring, brush), as well as heterogeneous polymer blends.
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Abstract

Particle simulations confined by sharp walls usually develop an oscillatory density profile. For

some applications, most notably soft matter liquids, this behavior is often unrealistic and one

expects a monotonic density climb instead. To reconcile simulations with experiments, we propose

mirror-and-shift boundary conditions where each interface is mapped to a distant part of itself.

The main result is that the particle density increases almost monotonically from zero to bulk, over

a short distance of about one particle diameter. The method is applied to simulate a polymer

brush in explicit solvent, grafted on a flat silicon substrate. The simulated density profile agrees

favorably with neutron reflectometry measurements and self-consistent field theory results.
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INTRODUCTION

Liquids at interfaces are ubiquitous: functionalized surfaces, lipid membranes, microphase

separation, pores and cavities, microfluidic devices, and just about any other place where

a liquid comes into contact with a solid, a gas, or another incompatible liquid. The fluid

properties close to the wall are often markedly different from the bulk and it is interesting

to study them using computer simulations. In particle-based models one must usually apply

some confinement force at the interface and in doing so break the homogeneity of space. This

invariably results in an oscillatory density profile with large deviations from the bulk level.

For some systems, such as hard liquids at very crisp walls, the oscillations are realistic and

match experimental data[1, 2]. In other situations, most notably coarse-grained softer fluids,

the experimental density profile is usually flat[3], and so the simulated oscillations should

be seen as an unwanted computational artifact. In this letter we show how to suppress such

modeling bias and provide a better agreement between experiment and simulation. The

main idea is to avoid border discontinuities altogether by mapping each interface back onto

a distant part of itself, via mirror-and-shift boundary conditions.

MODEL SYSTEM

Our prototype system will be a liquid soft matter sample made up of large molecules with

a characteristic size in the range of λ ∈ (1; 100) nanometers. This length scale describes the

dominant features for colloids, dendrimers, polymers, surfactants, etc. The liquid is placed

on a flat surface, such as a silicon wafer, with roughness σ ∈ (0.1; 1) nm� λ, much smaller

than the size of the soft particles. In this scenario the chemical details of the interface are

not important and cannot possibly be resolved by the coarse calculations. Therefore, the

example is equally applicable to liquid/air, liquid/solid, or liquid/liquid interfaces.

A number N of particles is closely packed in a box of volume

V = L3 =
4π

3
Nλ3, (1)

and in the case of polymers this corresponds to the cross-over density between dilute and

semi-dilute: ρ = ρ∗. It is clear from experiment[4] that the particle concentration increases

monotonically from zero outside the box, to N/V inside the box, and in a simulation we
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FIG. 1. Density of soft repulsive particles, closely packed between two walls is shown by the

thin blue line. The oscillations can be suppressed by using mirror-and-shift boundary conditions,

without compromising the sharpness of the interface, as shown by the thick red line. The dashed

line shows the confinement potential U(x) and the dotted line shows the particle shape Φ(r), on

an arbitrary y-scale.

should ideally be able to resolve the climb within one particle diameter 2λ, as shown with

the thick red line in Figure 1.

Surprisingly, it is quite difficult to achieve this behavior with a particle-based model, and

most attempts will lead to an oscillatory density profile shown with a thin blue curve in

Figure 1. As a concrete example, let the particles repel each other by a Gaussian potential

Φ(r) = ε exp

(
− r2

2λ2

)
, (2)

where ε� kBT is the repulsive strength chosen so that the particles cannot cross each other.

The most common way to model a confining surface is to impose an external field U(x). It

will not be possible to resolve small surface features σ using particles of large size λ, and so

the sharpest confinement could have its roughness equal to the particle size, |∂U/∂x| ≈ U/λ,

which leads to

U(x) = u
(
e−x/λ + e−(L−x)/λ

)
(3)

with the confinement strength parameter u adjusted so that the density in the middle of the

box equals N/V , to fulfill Equation (1). The resulting density profile is oscillating as shown

with the thin blue curve in Figure 1. Similar oscillations occur with various other shapes of
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the confinement U(x) and the excluded volume force Φ(r). The oscillations do not decrease

in larger N →∞ systems. They also persist for more complex fluids containing rods, chains,

or polydisperse mixtures of various shapes. In general, the density oscillations are always

present on the scale of the smallest particle size λ, provided that the surface roughness is

on the same scale or smaller: σ . λ.

FIG. 2. Density profile dependence on surface roughness

The most obvious way to avoid the oscillations is to assume a large surface roughness

σ & 6λ, as demonstrated in Figure 2. Unfortunately, this assumption is not valid in many

important applications, most notably soft matter at flat walls: λ� σ. This issue has been

recognized in the literature before and several studies have reported alternative methods

of confinement. The main idea[5–7] was to invert the density oscillations by applying a

counter-oscillating confinement force. While such an approach does deliver a flat density

profile, there remain several shortcomings: the confinement force has to extend many λ’s

deep into the bulk of the box, and the detailed shape of the force must be recalculated for

every different fluid chemistry.

In this work we explore a new strategy aimed to alleviate these problems. Our main con-

tribution is to notice that an exact counter-oscillating confinement force is already available

to us, without requiring any further models or calculations. We simply map each interface

back onto itself by a mirror transformation as shown in Figure 3. It is also crucial to shift

the mirror images along the walls to avoid the particles interacting with themselves, as this

would create unnatural correlations which behave differently from the bulk. This mapping
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FIG. 3. Mirror-and-shift boundary condition

equalizes most of the osmotic pressure across the boundary, and the only force left to drive

the particles out of the box is just random diffusion. Fortunately, the energy of a random

walk is only one thermal unit kBT � ε, which is small and can be repelled back to the main

box by the same external field U(x) from Eq. (3), but with a weak amplitude u ≈ 1 kBT . The

system perceives this repulsion as a small perturbation to an otherwise perfectly balanced

system, and as a result, the density oscillations are almost entirely suppressed, whereas the

width of the boundary remains just a few λ’s which is about as sharp as one can hope for.

METHOD

To dig straight to the root of the problem, we propose a very simple model of a fluid

confined between two walls. We will work in two dimensions and so the box width is set to

L =
√

4πλ2N . The position of each particle Rn evolves according to the Brownian equation

of motion

ζ
∂Rn

∂t
=
√

2ζkBT Wn(t)− Fn (4)

where 〈Wα
n(t)Wβ

m(t′)〉 = δαβδnmδ(t− t′) is the Wiener process and

Fn = −∇
(
U(r) +

N∑

m=1

Φ(r−Rm)

)∣∣∣
r=Rn

(5)

is the confinement plus the interparticle forces. Care has been taken to resolve the equation

of motion very accurately to ensure that the oscillations at the wall are an actual property

of the model and not some discretisation error. Integration over a short time ∆t using the
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mid-point rule gives

R(i)
n (t+ ∆t) = Rn(t) +Rn

√
2kBT∆t

ζ
+

∆t

ζ

(
Fn(t) + F(i)

n (t+ ∆t)

2

)
. (6)

The random vector Rn has a fixed radius of
√

2 and a random orientation θ ∈ (0; 2π). Since

the force at the end of the time step Fn(t+∆t) is not known, we initially guess F(1)
n (t+∆t) =

Fn(t), and then evaluate all the forces again using the R(1)
n configuration to obtain a better

guess F(2)
n (t+ ∆t). This process is repeated until the residual max|R(i)

n −R(i-1)
n | < 0.01λ is

only a tiny fraction of the particle size. The dimensionless time step λ2∆t/ζ ≈ 1/ε is chosen

so that the above convergence criterion is met in i ≈ 3 iterations on average.

The first run was simulated on a system with N = 100 particles, ε = 100kBT interparticle

barrier and u = 6.5kBT confinement strength. Periodic boundary condition was applied on

the y-axis:

ynm → ynm − L round (ynm/L) , (7)

and no such condition on the confined x-axis. The resulting long-time average density profile

is shown with a blue oscillating line in Figure 1.

In the second run we have simulated the same system but included additional interparticle

pairs. For every particle Rm we construct its mirror-and-shifted counterparts on the left

and right sides of the box:

R(L)
m =


 −xm
ym + L/2


 and R(R)

m =


 2L− xm
ym + L/2


 (8)

and then every original particle Rn feels three sets of interactions: R
(L,0,R)
nm = Rn−R

(L,0,R)
m .

The usual periodic boundary condition on the y-axis is afterward applied to all the pairs,

using Eq. (7). In short, every particle Rn interacts with all the other particles Rm as well

as their both mirror-shifted images as defined above. Of course, in practice only sufficiently

nearby pairs Rnm . 6λ have to be considered, and our number of such pairs is exactly the

same as in a standard bulk simulation with periodic boundary conditions. Therefore, the

computational cost is similar to the bulk case[8] of a comparable size.

An external field from Equation (3) is still required to confine random diffusion, but now

a much weaker barrier u = 1 kBT was sufficient to keep the density in the center of the box

at the nominal level N/V as designated by Eq. (1). The density profile thus obtained is
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shown by the thick red line in Figure 1. Admittedly, there still remains a slight, about 1%

high, overshoot after the boundary, but it is a considerable reduction from 50% overshoot

which is obtained without the use of mirrors.

APPLICATION: POLYMER BRUSH

FIG. 4. Polymer brush in a good solvent. The main box is the black region r ∈ (0; 35.4)2. Grafting

points are shown by hollow squares.

To demonstrate the usefulness of our new method, we present one real-world application

whose simulation necessitates confinement. We will study a polymer brush grafted on a flat

silicon wafer and immersed in a good solvent, as shown in Figure 4. It is essentially the

same simulation as in the previous section, with the solvent molecules now coarse-grained

into blobs of size λ, and N = 16 of the blobs are connected into a chain by linear springs of

length b = λ. We have added C = 2 of such chains on the x = 0 interface, corresponding to

a grafting density σ = 2Cλ/L = 0.11. The chains are overlapping and are in the stretched

brush regime.[9]

To suppress the likelihood of the chains crossing each other, the polymer is described by
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a continuous curve with N degrees of freedom:

R(s) = a0 + 2
N−1∑

n=1

an cos(πsn), s ∈ (0; 1) (9)

which is sampled at discrete points j = 1, 2, . . . , J ≥ N ,

Rj = a0 + 2
N−1∑

n=1

an cos

[
π

(
2j − 1

2J

)
n

]
, (10)

and we have used J = 3N+1 = 49, but the precise choice is not important as long as J � N .

The motion of every j-particle follows the same Equation (4) as the solvent particles, with a

few minor alterations. First, the intermolecular potential stemming from a j = (Js0 + 1/2)

particle is

Φj(r−Rj) =

∫ s0+1/(2J)

s0−1/(2J)

dsNΦ(r−R(s)) (11)

≈
(
N

J

)
Φ(r−Rj) (12)

reduced by N/J . The friction coefficient is also decreased: ζj = (N/J)ζ, but so is the

coupling to the potential field: Fj = −(N/J)∇(U +
∑

Φ). A linear spring force

Fspring =

(
3kBT

Nb2

)
∂2R

∂s2
(13)

is included by first going to the Rouse representation

an =

∫ 1

0

dsR(s) cos(πsn) (14)

≈ 1

J

J∑

j=1

Rj cos

[
π

(
2j − 1

2J

)
n

]
, (15)

and then applying the Backwards Euler scheme:

an →
an

1 + 3π2
(
kBT∆t
ζb2

) (
n
N

)2
. (16)

At this point, the configuration in real space Rj is recovered by Eq. (10), and the next

iteration can begin.

The chains are uniformly grafted at x = 0 plane, where “uniformly” means at equidistant

points, plus a random number of variance λ in all directions. The grafting model should at

the very least: 1) keep the interface as homogeneous as possible, to avoid density oscillations,
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and 2) ensure that the solvent particles do not sneak in between the grafted chain and the

wall. One way to satisfy these requirements is to anchor the central point s0 = 1/2→ j0 =

(J + 1)/2 to its designated grafting location using a soft attractive potential

Ugraft(r) = −kBT cosh(r/λ). (17)

Next, the first half of the chain s < 1/2 is assigned to the main box, and feels the wall

U(x) from Eq. (3), just like all the solvent particles. The second half of the chain s > 1/2

is assigned to the mirror box where it feels the reflected wall U(−x). A snapshot of the

resulting conformation is plotted in Figure 4, showing that each chain plays a tug of war

between the main box and its shifted mirror, contributing two bristles of length N/2 to the

brush.
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FIG. 5. Brush density profile. Solid lines result from mirror-and-shift walls, whereas dashed

oscillating lines originate from external confinement alone.

The density profile of the brush and the solvent is shown in Figure 5. Notice that the

polymer is slightly denser than the chemically identical solvent, which is to be expected

because of the spring attraction. Our result is quite similar to the self-consistent field the-

ory calculations[10] as well as experimental data of PDMS[11] and polystyrene[12] brushes

swollen in toluene and measured using neutron reflectometry. Most importantly, the exper-

iments decidedly exclude density oscillations of 50% which would be present in a simulation

without mirror walls (dashed lines), and as seen in other simulation studies[13].
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CONCLUSION

In general, particles under confinement will develop density oscillations if the surface

roughness σ is not substantially greater than the smallest particle size λ. This has been a

common problem for coarse-grained simulations where the confining surface can be atomi-

cally crisp, while the liquid “particles” are large clusters of many atoms, grouped together for

computational convenience. In most experiments the density profile is monotonic, whereas

the majority of simulations report an oscillating density.

In this study we have succeeded to suppress the oscillations considerably by mirroring the

interface back onto a distant part of itself, so that the system self-equilibrates and remains

quasi-homogeneous at the boundary. The only imperfection is that we must still add a weak

external confinement to counteract thermal diffusion, but this is a small perturbation and

the remaining density oscillations are tiny.

The mirror-and-shift boundary conditions do not require any input parameters and are

scale-independent. Therefore, they could in principle be applied to any other situation, as

a replacement of the usual periodic boundary conditions. One could also use the method to

just alter the topological connectivity of the simulation box, without adding the confining

field.

ACKNOWLEDGMENTS

The author thanks Jean-Louis Barrat and Philipp Gutfreund for critical comments during

the preparation of this manuscript.

∗ korolkovas@ill.fr

[1] L. Cheng, P. Fenter, K. Nagy, M. Schlegel, and N. Sturchio, Physical Review Letters 87,

156103 (2001).

[2] H. Mo, G. Evmenenko, and P. Dutta, Chemical physics letters 415, 106 (2005).

[3] M. Maccarini, Biointerphases 2, MR1 (2007).

[4] R. K. Thomas and J. Penfold, Current Opinion in Colloid & Interface Science 1, 23 (1996).

[5] I. V. Pivkin and G. E. Karniadakis, Physical review letters 96, 206001 (2006).

10



[6] E. Kotsalis, J. H. Walther, and P. Koumoutsakos, Physical Review E 76, 016709 (2007).

[7] K. Issa and P. Poesio, Physical Review E 89, 043307 (2014).

[8] S. Plimpton, Journal of computational physics 117, 1 (1995).

[9] P. de Gennes, Macromolecules 13, 1069 (1980).

[10] E. Zhulina, O. Borisov, and L. Brombacher, Macromolecules 24, 4679 (1991).

[11] C. Marzolin, P. Auroy, M. Deruelle, J. Folkers, L. Léger, and A. Menelle, Macromolecules
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Abstract

Shear responsive surfaces offer potential advances in a number of applications. Sur-

face functionalisation using polymer brushes is one route to such properties, particularly

in the case of entangled polymers. We report on neutron reflectometry measurements

of polymer brushes in entangled polymer solutions performed under controlled shear,

as well as coarse-grained computer simulations corresponding to these interfaces. Here

we show a reversible and reproducible collapse of the brushes, increasing with the shear

rate. Using two brushes of greatly different chain lengths and grafting densities, we

demonstrate that the dynamics responsible for the structural change of the brush are

governed by the free chains in solution rather than the brush itself, within the range of

parameters examined. The phenomenon of the brush collapse could find applications

in the tailoring of nanosensors, and as a way to dynamically control surface friction and

adhesion.

Introduction

A polymer brush is a unique type of surface functionalisation, consisting of long polymer

chains densely tethered by one end to a surface.1,2 The conformation of a solvated polymer

brush is markedly different to that of chains in bulk polymer solution as the brush must

stretch away from the surface to minimize contact with the densely grafted neighbouring

chains. Polymer brushes have broad interest across a variety of sectors since tuning interfacial

properties (e.g. chemical composition, molecular weight, grafting density) can yield surface

coatings with a high degree of control and in some cases completely new functionality.

One of the most common uses for brushes is to inhibit protein adsorption and prevent sur-

face fouling.3,4 Various other applications are also under investigation5 ranging from bioactive

interfaces,6 to brush-mediated lubrication,7,8 to soil release in textiles,9 and even semicon-

ductor manufacturing.10,11 Another emerging application is the use of polymer brushes as

nanosensors reacting to various stimuli including pressure,12 light,13 temperature,14 and
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pH,15 among others. Remarkably, the sensitivity of these nanoscale sensors can be finely

tuned by the amount of the brush swelling,16 which in turn depends on the nature of the

solvent, but can also be affected by other factors such as shear stress as will be shown in this

article.

flow 
profile

45 °C
Si substrate

Qz
Peltier elem

ent

gravity

normal force
incident beam

reflected beam

shear

cone
solution

brush

Figure 1: Experimental setup and simulated polymer conformation. The experiments are
conducted with the silicon-polymer interface horizontally oriented. The wavevector transfer
Qz is perpendicular to the interface. The temperature of the silicon substrate is controlled by
a Peltier element from the bottom side. Shear is applied by the rheometer via a titanium cone
or plate. The lower right panel shows a conformation snapshot plotted from the simulation
data. The interpenetration of the polymer brush (yellow) and free chains (blue) is clearly
visible. With applied shear (upper right panel) the free chains are pulled out of the brush,
the mean thickness of the brush decreases and the interface becomes sharper. The density
profiles along the z-direction are compared to the neutron reflectometry data.

The static properties of polymer brushes are well understood thanks to extensive theo-

retical,17 computer simulation,18,19 and experimental20–23 studies. The knowledge of brush
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dynamics, however, is still incomplete, even though it is crucial for the design of the aforemen-

tioned sensors. To help fill this demand, our study will focus on the response of brushes to an

applied shear stress while swollen and deeply interpenetrated with a bulk polymer solution,

illustrated in Fig 1. Aside from use in sensors, surfaces decorated with brushes may also play

a key role to control adhesion,24,25 lubrication,26 friction,27,28 and in microfluidic devices29

and confined channels.30 In our experimental conditions, the chains are strongly entangled

reaching a relaxation time on the order of τd = 1 s, which has immediate practical impor-

tance since it can dynamically interact with the flows encountered in the aforementioned

real world applications, which commonly have similar time scales. However, the brush-bulk

interface remains very challenging to investigate either theoretically31 or experimentally, due

to its complex, heterogeneous, strongly interacting, non-equilibrium, and confined nature.

We have therefore taken a two pronged approach and used a recently developed computer

simulation technique32 as well as state-of-the-art experimental rheology - neutron reflectome-

try (rheo-NR)33 capabilities. This combination enables greater insight into what is occurring

at the interface compared to the two approaches taken separately.

Simulation of polymer brushes under shear34,35 is a vibrant field: brushes in good sol-

vent,36,37 two opposing polyzwitterionic brushes,38 brushes in contact with short melt chains,39

and stiff brushes related to biological membranes,40 just to name a few recent publications.

However, most of the simulations (molecular dynamics, dissipative particle dynamics, and

various kinds of Monte Carlo) are based on λ ≈ 1 nm size beads running at time steps of

about τm = 10−12 s, required to follow the thermal fluctuations of the bead momentum.

Current computers can typically perform 108 time steps within a reasonable execution time;

insufficient to bridge the gap to our experimental goal of τd = 1 s.

The next level of coarse-graining is the Brownian dynamics where we abandon the bead

momentum altogether and only track their positions, which take about τ = 10−9 s to relax

after diffusing a distance greater than their own size. This technique has already been used

to predict a brush collapse under shear.41 However, the reported collapse occurred at a shear
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rate approaching γ̇ ≈ 1/τ ≈ 109 s−1 and was due to the finite extensibility of the polymer

backbone. Such extreme shear rates are more akin to an explosion than a well controlled

shear experiment and this mode of brush collapse is not related to the entanglement dynamics

at γ̇ ≈ 1/τd ≈ 1 s−1 relevant to realistic flow conditions measured in our study.

Our experiments are done using polystyrene (PS) in a good solvent at φ = 30 % fraction

by weight. To describe this liquid, the appropriate coarse particle is called a blob42 and its

size corresponds to the typical distance between neighbouring polymer chains: λ = aφ−3/4,

where a ≈ 7Å is the size of one styrene monomer. The blob repulsion is best quantified by

an effective Gaussian potential which results in the correct static structure.43 Dynamically,

however, this blob potential was considered too weak and too soft to prevent chain crossings44

and therefore unable to produce any entanglements. A recent study,32 however, has proposed

to smear out the Gaussian potential in both time and space, thus suppressing chain crossings

while retaining the long Brownian time step τ adequate to describe our experiments.

Neutron Reflectometry (NR) is a powerful experimental tool for the structural and dy-

namical investigation of polymer brushes, thanks to the possibility of isotopic replacement to

enhance the contrast between the grafted and the bulk polymers, as well as its atomic resolu-

tion and non-invasive nature. A unique advantage of NR is that most engineering materials

like aluminium or silicon are transparent for the neutrons which permits direct measure-

ment of the brush-bulk interface through the silicon substrate.33 Structural investigations

of brushes under shear load have been performed by NR measurements on PS brushes in

solvents,45,46 but found no measurable effect. Next, we look at two studies which examined

a PS brush in contact with a PS melt. The first one was measured in situ while shearing.47

No reproducible result could be obtained and it was explained by metastable states of the

brush. However, very high torques were applied in that study and the brushes were not

characterised after the shear experiments. It has been shown by NR that PS brushes can be

destroyed by high torque shear48 and such a scenario is likely in the aforementioned exper-

iment. The second study also sheared PS brushes in a PS melt,49 which were then rapidly
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quenched below their glass transition temperature and measured ex situ with NR, reporting

a reproducible retraction of the brush. In our present study we have used NR for an in situ

characterisation of the behaviour of PS brushes under shear by an entangled PS solution in

diethyl phthalate (DEP, a good solvent of very low volatility). The use of solution rather

than melt is more relevant to biological processes as well as microfluidic applications.

Here we show both experimentally and computationally that the entangled polymer brush

thickness decreases with shear. More precisely, we observe a shrinking of brushes proportional

to the square of the applied shear rate. This non-linear effect is attributed to the normal

stress difference, which is an excess pressure buildup perpendicular to the applied shear flow,

and is well-known to occur in bulk entangled polymer fluids, where it leads to the so-called

Weissenberg effect.50 The time scale of the brush collapse is determined by the reptation

time of the free chains in solution, rather than the internal dynamics of the brush. The

brush thickness returns to equilibrium upon cessation of shear, and the effect can by cycled

many times over. The experimental and simulation findings are in good agreement and are

further corroborated by a simple phenomenological theory.

Experimental

Materials

N,N,N’,N”,N”-Pentamethyldiethylenetriamine (PMDETA, 99 %), styrene (99 %), diethoxy(3-

glycidyloxypropyl)methysilane (99 %), dichloromethane (99 %) and diethyl phthalate (DEP)

(99 %) were purchased from Sigma-Aldrich (Czech Republic). Deuterated polystyrene (dPS),

Mw = 627 kg mol−1, Mw/Mn = 1.09, correspopnding to P = Mw/112.2 g mol−1 = 5570, was

purchased from Polymer Source, Canada. Monocrystalline silicon blocks of size 7×7×1 cm,

orientation (1, 0, 0), were purchased from CrysTec, Germany. Styrene was distilled over

CaH2 under reduced pressure and stored under Ar.

[11-(2-Bromo-2-methyl)propionyloxy]undecyltrichlorosilane was synthesized according to a
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previously published protocol.51

Preparation of Brush-long-sparse: “grafting-to” approach

The amino end-functionalized PS was synthesized in-house to a molecular weight of Mn =

218 kg/mol (N = Mn/104.15 g mol−1 = 2093) and a polydispersity of 1.23. Then it was

grafted onto a self-assembled monolayer (SAM) of diethoxy(3-glycidyloxypropyl)methysilane)

deposited on a single crystal silicon block. Details about the sample preparation can be found

in Ref.52 The thickness of the SAMs was determined by ellipsometry and found to be 1.0 nm

for both brushes corresponding to fully stretched and upright standing chains in accord with

previous samples.52 The silicon oxide thickness was determined by NR as described in the

SI.

Preparation of Brush-short-dense: “grafting-from” approach

PS brushes were grafted from an initiator-coated substrate by surface-initiated atom transfer

radical polymerization (ATRP) employing a literature procedure,53 modified to achieve a

lower grafting density and high thickness. Firstly, a self-assembled monolayer of ATRP

initiator was immobilized on the surface. The substrate (silicon slab) was rinsed with toluene,

acetone, ethanol, and deionized water, blown dry with nitrogen, and activated in a UV/O3

cleaner for 20 min. Without delay, the sample was placed in a custom-made reactor vessel,

which was then sealed, evacuated, and refilled with Ar. A 1 µg mL−1 solution of (11-(2-

bromo-2-methyl)propionyloxy)undecyltrichlorosilane in anhydrous toluene was added until

the sample was fully immersed. The immobilization of the initiator was allowed to proceed

for 3 h at room temperature and the sample was subsequently removed from the reactor,

rinsed copiously with toluene, acetone, ethanol, and deionized water, and dried by blowing

with nitrogen.

To achieve a lowered grafting density, a fraction of the surface-grafted ATRP initiator

groups were deactivated by nucleophilic substitution with NaN3. The sample was placed in
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a custom-made reactor, which was then sealed, evacuated, and refilled with Ar, and placed

in a thermostatic bath at 60 ◦C for 1 h to reach thermal equilibrium. A solution of NaN3

(3.4 mg mL−1) in anhydrous N,N -dimethylformamide (DMF), previously heated to 60 ◦C,

was added to completely cover the sample and the reaction was allowed to proceed at 60 ◦C

for 8 h. Subsequently, the reaction was stopped by replacing the solution in the reactor with

pure DMF. The sample was removed from the reactor, rinsed copiously with DMF, ethanol,

and deionized water, and dried by carefully blowing with nitrogen.

For the surface-initiated ATRP, styrene (40 mL, 349 mmol), anhydrous toluene (20 mL),

and PMDETA (760 µL, 3.64 mmol) were degassed in Schlenk flask via three freeze-pump-

thaw cycles. The solution was transferred under Ar to another Schlenk flask containing

CuBr (496 mg, 3.46 mmol) and CuBr2 (40 mg, 0.179 mmol), which had been previously de-

oxygenated by three vacuum/Ar-backfilling cycles. The flask containing the polymeriza-

tion solution was placed in thermostatic bath at 90 ◦C and stirred vigorously for 1 h. The

initiator-functionalized substrate was placed vertically in a custom-made reactor, which was

subsequently closed, deoxygenated by three cycles of vacuum/Ar-backfilling, and placed in a

thermostatic oil bath at 90 ◦C to allow the temperature to equilibrate. The polymerization

solution was transferred under Ar to the reactor containing the substrate and the reaction

was allowed to proceed at 90 ◦C for 22 h. The reaction was stopped by opening the reactor

and adding toluene and the substrate was rinsed copiously with toluene, acetone, ethanol,

and deionized water and dried by blowing with nitrogen. The dry thickness of the layers was

measured by spectroscopic ellipsometry and NR.

Rheology

Deuterated polystyrene (dPS, 0.3 g) was mixed at 30 % weight fraction with diethyl phthalate

(DEP, 0.7 g, a good solvent of low volatility), in a round bottom flask. It was topped with

an abundant amount (50 mL) of dichloromethane (also a good solvent, but high volatility),

and stirred for several hours to fully dissolve the dPS. The dichloromethane was then slowly
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removed in a rotary evaporator under reduced pressure, which ensured that no gas bubbles

were left trapped in the resulting viscous liquid.

A teflon spatula was used to transfer the dPS-DEP solution onto the brush-coated silicon

crystal. The liquid was then contained in an Anton-Paar MCR 501 rheometer in cone-plate

or plate-plate geometry (1◦ cone angle, 50 mm diameter for cone or plate) to allow in situ

rheology as explained in Ref.33 The rotating cone or plate on top was made of titanium and

its surface was sand-blasted to reduce surface slip at the moving interface. The temperature

on the stationary brush-coated side was kept constant at 45 ◦C throughout the experiment.

Neutron experiment details

Neutron reflectometry was carried out on FIGARO at the Institut Laue-Langevin, Grenoble,

France.54 The measurements were performed in time-of-flight mode using a wavelength band

from 2.2 - 21 Å and a wavelength resolution of 7 %. Two reflection angles (0.62◦ and 2.72◦)

were used to cover the full Q-range by rotating the incident beam and the detector around

the sample keeping the rheometer horizontal at all times. The relative angular divergence

was set to ∆θ/θ = 1.5 % for both reflection angles. The acquisition time was 1 - 5 min for the

first reflection angle and 25 min for the second angle and all measurements under shear were

reproduced and cycled several times to exclude any transient phenomena. The footprint

of the neutron beam (39×35 mm2) was centered to the cone/plate, hence the scattering

momentum transfer is parallel to the shear gradient. The rheo-NR setup with the neutrons

entering through the side of the stationary silicon substrate (see Fig. 1) is explained in more

detail in Ref.33

Simulation method

Each chain is described by a continuous path R(s) where s ∈ (0, 1) is the monomer label.

The chains have N degrees of freedom and repel one another via a Gaussian potential
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Φ(r) = kBTe
−r2/(2λ2), while the backbone stays connected via a harmonic spring interaction

of the same strength kBT and the same length λ. The continuous backbone s is sampled by

a number of J = 4N discrete points:

Rj = a0 + 2
N−1∑

n=1

an cos

(
π(2j − 1)n

2J

)
(1)

which ensures that neighbouring points |Rj−Rj+1| � λ are closer together than the potential

range of the blob λ, and hence there are effectively no gaps through which the chains could

cross. The propagation in time is carried out in terms of N Rouse modes:

an(t+ ∆t) = an(t) + (Fspring + Fexvol)∆t+ λ
√

6∆t/(τM)Rn, (2)

where standard formulas are used to evaluate the spring and the excluded volume forces.

The Brownian time unit can be estimated by the Einstein-Stokes formula:

τ =
6πηsλ

3

kBT
≈ 10−9 s, (3)

where ηs = 1.7× 10−2 Pa s is the viscosity of DEP.

The important novelty in this simulation is that its time resolution is deliberately trun-

cated by updating the random vector Rn only at intervals of M = 120 steps instead of

every single M = 1 step. This ensures that the random force strength is much weaker than

the excluded volume one (by a factor of
√
M ), thereby suppressing any chances of chain

crossings and giving rise to entanglement dynamics.

Here we note that the maximum applicable shear rate is also limited to about γ̇(Mτ)� 1,

and the fastest one we have used was Wi = γ̇τd = 50. This leaves us with a safety margin of

1/(Mγ̇τ) = 17, so we do not expect too many chain crossings. Either way, this shear rate is

already an order of magnitude faster than the experimental one, leaving us plenty of room

for comparison with the experimental data.
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In the simulation we did not reconstruct a one-to-one correspondence with either of the

experimental brushes. Instead, the simulated brush density was deliberately chosen to be

smaller than the experimental one, because of two reasons. First, the experimental samples,

especially the Brush-short-dense, are mostly composed of the “dry” interior region, which

would consume a lot of computing time to simulate, without resulting in any interesting

effects under shear. Second, a dry and strongly stretched brush cannot be described using

the same blob potential as the bulk chains. Instead, smaller blobs must be used55 to ensure

incompressibility which requires the total polymer density to be constant across the whole

box (see Fig. 4a). Also, the brush blob size would have to shrink further as the brush

collapses under shear. This introduces another complication into an already difficult system,

whereas we prefer to present the absolutely simplest possible model.

Confinement

To confine the system between two walls, we have used the recently developed mirror-and-

shift boundary conditions.56 Briefly, the entire system is mirrored around the z = 0 plane

and shifted by half the box length along the other two dimensions. The original system

together with its mirror-shifted image is then periodically replicated in all three directions

as usual, and all particles interact with their neighbours in the standard way. In other words,

every particle interacts with every other particle, as well as its mirror-and-shifted images.

At this point we have a perfectly homogeneous system, and the only force driving the

particles across the boundaries is the thermal noise of strength 1/
√
M � 1. To block this

and create the actual walls, a soft repulsive potential

U(z) = 0.05kBTe
−z/(2λ) (4)

is applied on both sides. The range corresponds to the diameter of one blob, while the

amplitude is adjusted so that the particle density in the middle of the box is equal to one.
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The resulting confinement force is comparatively weak, and therefore is perceived as a small

perturbation to an otherwise homogeneous system. The coveted result is that the particle

density (Fig. 4a) goes monotonically from zero outside the box, to one inside the box, without

any overshoot or density oscillations. The wall roughness barely exceeds one blob diameter,

and is about as sharp as possible. The monotonic density climb is in agreement with all of our

NR measurements which strongly rule out the possibility of pronounced density oscillations

near the surface.

Grafting and shear

To create a brush, we first generate the locations of the grafting points. For simplicity, they

are arranged on a square lattice on the z = 0 plane, plus one random number of variance λ

in all directions to make it more realistic. To “graft” a chain, we simply add an attractive

potential between the grafting point and the central j = J/2 monomer:

Ugraft(r) = kBT cosh(r/λ) (5)

Half of the grafted chain j > J/2 is assigned to the main box and feels the same confinement

potential, Eq. (4), as all the free chains. The other half j < J/2 is assigned to the mirrored

box, and feels the mirrored confinement U(−z). This “grafting” technique is further explained

in Ref.56 In essence, at our coarse scale it is rather important to attach the central monomer

and thread the chain halfway through the wall, instead of the more obvious attachment of

a chain end, since this would leave a gap between the confining wall and the grafting point,

and then the free chains would have a chance to unphysically cross through that gap.

In terms of traditional end-grafted chains, our bristles have an effective length N =

256/2 = 128 and there are B = 2 × 8 = 16 of them. The chain length ratio was kept to

P/N = 2 for simplicity, and is similar to the Brush-long-sparse experimental situation where

the ratio is about 3. The grafting density was 0.006 bristles per λ2 = (aφ−3/4)2. This is
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about 16 times sparser than the experimental Brush-long-sparse system, but it was chosen

on purpose to leave more empty space in which the brush could collapse under a broad range

of shear rates, and therefore explore a wider range of conditions than possible experimentally.

The shear flow is generated by adding a Couette velocity profile:

vshear = γ̇|z|x̂ (6)

The profile is mirrored across the z = 0 plane, so that the j < J/2 particles of the grafted

chains also feel the shear flow in the correct direction. No slippage or shear-bands were

assumed and could not easily occur in our simulation, due to the phenomenologically imposed

shear flow profile. A more realistic model could better assume a constant shear stress and

let the velocity profile develop instead, but we have not attempted such a simulation.

Results

Our main experimental result is shown in Fig. 2. The applied shear rate γ̇ is given in

dimensionless Weissenberg number

Wi = γ̇τd (7)

normalized to the longest relaxation time τd of the bulk liquid which was measured by

oscillatory rheology (see Supplementary Fig. 7). The rheo-NR experiment was performed

with two brushes prepared by different chemical methods which gave large differences in

grafting density and molecular weight, summarized in Table 1: “grafting-to” produced a

long, sparsely grafted brush (Brush-long-sparse, or Brush-LS) while “grafting-from” gave a

shorter, denser brush (Brush-short-dense, or Brush-SD). The polymer solution was the same

in both cases, φ = 30 % dPS in 70 % DEP. The NR spectrum is displayed in panels a) and

b), showing an increase of 50 % in the reflected intensity between the static and the sheared

brush. It is a strong and direct indication that the brush-bulk interface becomes sharper
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Figure 2: Experimentally determined brush structure. Panels a) and b) show NR data
(points) and the fits (solid lines) for the two brushes in solution of 30% dPS and 70 % DEP.
Panels c) and d) show the corresponding fitted brush density profiles (thick lines), as well as
additional fits of NR measurements in air (fully collapsed), and in deuterated toluene (fully
stretched). The profiles in air and d-toluene emphasize the differences between the static
structure of the two brushes, whereas the relative effect of shear is about the same for both
samples.

14



upon shearing. The shear was cycled on and off multiple times to demonstrate that the effect

is reversible and reproducible (see Supplementary Fig. 4).

To quantify the effect more precisely, we have fitted the data [solid lines in panels a) and

b)] and revealed the actual brush structure in panels c) and d) respectively. The model used

for the fit was verified to be consistent with information obtained by further complimentary

measurements, namely the NR spectrum of the brush in air (dry, fully collapsed brush),

as well as in a good solvent (maximally swollen brush) which in our case was deuterated

toluene. These spectra and details about fitting are available in the SI.

The main difference between the two brushes is their grafting density σ, defined as the

number B of chains per substrate area A, normalized by the monomer size of an effective

value a = 7Å as given in Ref.:57

σ =
Ba2

A
. (8)

Experimentally this is obtained by measuring the dry brush thickness in air

Hair = aσN, (9)

where N is the number of monomers per grafted chain. In the case of the “grafting-from”

brush, we do not know N and σ separately. Therefore, the brush is further characterized

by immersing it in a good solvent (deuterated toluene at 20 ◦C), so the brush swells to a

height58

Hgood solvent = aNP−1/3σ1/3, (10)

where P = 1 is the length of the free chains, in this case just a single solvent molecule. The

dimensionless surface coverage can then be estimated by

σ =

(
Hair

Hgood solvent

)3/2

, (11)

comparing the dry brush thickness in air versus the thickness in a good solvent. The estimate
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of σ from Eq. (11) is valid for the brushes presented here, however, it should be noted that

the theoretical scaling law 3/2 may not be exactly obeyed in general, especially for very low

density brushes (mushrooms), or very short chains.

Table 1: Summary of experimental NR results.

Brush-LS Brush-SD
Chain length N 2093 808
Grafting density σ 0.016 0.16
H = Mean thickness (slab model), Å
In air 89 333
In d-toluene 1400 1167
In 30% dPS, 70% DEP 278 958
h = Brush-bulk roughness (Gaussian), Å
Wi = 0.0 (static) 105 194
Wi = 0.5 – 191
Wi = 1.0 96 –
Wi = 2.0 88 157

The summary of the brush properties determined by NR is listed in Table 1. There is a

factor of σSD/σLS = 10 difference between the grafting densities of the two brushes, as well

as a factor of NSD/NLS = 0.4 difference in chain length. One can better appreciate these

numbers by comparing how far the Brush-LS swells in toluene (a good solvent), with respect

to a more modest relative swelling of the Brush-SD, as shown in Figs. 2c and 2d. When

immersed in a 30 % homopolymer solution, as opposed to a pure solvent, the excluded volume

repulsion between the bristles is partially screened and the brush shrinks considerably, but

is still much more swollen than the brush in air. In solution, the density profiles show two

regions: 1) an interior region close to the wall where the free chains are almost completely

expelled, and 2) an overlap region further out where the grafted and free chains overlap and

interpenetrate.

Despite the fact that the two brushes are different, the relative effect of shear on both

seems to be similar, and is restricted to the overlap region. In the case of Brush-SD, its wide

interior region is not affected by shear at all. Therefore, to quantify the relative change in

brush structure under shear, we propose to focus on where the effect occurs and use only the
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mean thickness of the overlap region, which for simplicity we describe by a triangular shape

ρ(z) = φ
(

1− z

h

)
, 0 < z < h (12)

and therefore its mean thickness

〈z〉 =

∫
zρ dz∫
ρ dz

= h/3, (13)

is simply proportional to the brush-bulk roughness h, and does not involve the full brush

thickness H. The relative change in the overlap thickness

〈z(Wi)〉
〈z(0)〉 ≡

h(Wi)
h(0)

(14)

as a function of the applied shear is plotted in Fig. 3. Clearly, in these reduced units both

brushes seem to follow a universal behaviour, within the accessible parameter range.

To better understand the brush collapse, a series of computer simulations were per-

formed using a previously reported algorithm for entangled polymer solutions in bulk,32
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here extended for confined brush-bulk systems under shear flow. We have chosen one set

of reasonable parameters resembling the “grafting-to”, or Brush-LS sample, and have only

varied the applied shear rate. In total, we have used C = 64 free chains of length P = 256

in contact with a brush containing B = 16 grafted chains of length N = 128. An entangle-

ment length of Ne = 59 was reported in the original study,32 obtained using primitive path

analysis,59 leading to Z = P/Ne = 4.3 entanglements per chain in the bulk. The box volume

is set fixed to

V = 2

(
4π

3

)
λ3(CP +BN) (15)

and its aspect ratio is adjusted so that the grafted chains stay far away from the opposite side

of the box. To visualise the system, a smaller version was also simulated and the resulting

polymer conformations were plotted in 3D, shown as insets in Fig. 1.

Every simulated degree of freedom corresponds to one “blob”, which can be mapped to

the experimental system using a scaling law42

Nblobs = φ5/4Nmonomers. (16)

The above equation is a theoretical prediction for an ideal semi-dilute solution, up to a nu-

merical prefactor of order one. It may require a correction if the solution is too concentrated

φ→ 1, which is likely for our experiment. In any case, we have made no attempt to establish

an absolute one-to-one correspondence between simulation and experiment, and will content

ourselves by comparing only the relative change of the brush structure as a function of the

dimensionless Weissenberg number, as shown in Fig. 3.

One advantage of simulation is that we can explore a much wider range of shear rates than

possible experimentally. A shortcoming is that the computation time grows very rapidly t ∝

Z4.5 (or t ∝ Z3.5 +overhead for parallel implementations) with the number of entanglements

Z, and systems bigger than Z > 10 are not very practical. Keeping these considerations

in mind, we simulate a lower grafting density, σSim = 0.006 bristles per λ2, in comparison
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Figure 4: Simulated brush structure under shear flow

to σLS = 0.016 per a2 =
(
λφ3/4

)2 for the experimental Brush-LS system. The simulated

brush is thus fully overlapping with the bulk and we do not waste precious computer time

to simulate any interior region which is not crucial for the brush collapse to occur. A broad

range of shear rates could then be easily examined, ranging from Wi = 0.2 to Wi = 50.

The resulting density profiles are shown in Fig. 4a, where the blob density is normalized to

the number of blobs in the box, Eq. (15). Each blob contains a φ percentage of polymer

and (1− φ) percentage of solvent as mapped out by Eq. (16). The simulated density profile

can be compared with the experimental one in Fig. 2c. Even though there is a roughly

φ−3/2σLS/σSim = 16-fold difference in the grafting density and about φ5/4NLS/NSim = 3.6

times difference in the chain length, the overall shape of the brush density profile and its

change upon shear seem to be qualitatively similar.

For a more quantitative comparison, we have used the definition in Eq. (13) to calculate

the mean thickness of the simulated brush, and plotted the value normalized to equilibrium

in Fig. 3. When compared in terms of reduced units, there emerges a single unified trendline

between the simulation and the two experiments, suggesting a common mechanism for shear-
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induced brush collapse in conditions where the bulk solute is entangled with the brush.

Currently, we are not aware of any theoretical description which could calculate the observed

brush density profiles (experimental Figs. 2c, 2d and simulation Fig. 4a). A scaling law

analysis has earlier been reported60 which roughly quantifies the brush deformation along

the shear flow, but it was only intended for short, unentangled chains in which case there is

no normal stress difference and hence no change in brush thickness.

Here we continue in the same scaling law spirit and propose a phenomenological explana-

tion of our entangled brush system. At equilibrium, each bristle has a density profile ρ(x, z)

around its grafting point. For simplicity we will restrict ourselves to two dimensions with

the z-direction perpendicular to the interface and the flow direction x. Our data indicates

(Fig. 2d) that the interior region of the brush (if present) is not affected by shear flow and

therefore we will only focus on the overlap region, where the effect takes place. Its center of

mass at zero shear is located at

〈x〉0 =

∫
xρ dx dz∫
ρ dx dz

= 0 (17a)

〈z〉0 =

∫
zρ dx dz∫
ρ dx dz

≈ h (17b)

where h denotes the overlap region thickness. Under a steady shear flow, the center of mass

moves to some different location 〈x, z〉. If the shear rate is very small, one can assume

phenomenologically that the displacement along the flow 〈x〉 is linearly proportional to the

shear rate (see Supplementary Fig. 9) and to the overlap thickness:

〈x〉 = (γ̇τd) 〈z〉 , (18)

where τd is the brush-bulk relaxation time, presumably governed by reptation: τd ≈ τ(P/Ne)
3 ≈

105τ , for the simulated case. The energy penalty of the deformed brush can be estimated by

E/kBT = 〈x− x0〉2 + 〈z − z0〉2 = (γ̇τd 〈z〉)2 + 〈z − z0〉2 . (19)
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A non-linear fluid such as ours exhibits normal stress differences and hence has a mechanism

to couple the stress along various axes. The brush will therefore seek an energy minimum

which can be found by solving dE/d 〈z〉 = 0, resulting in

〈x〉 =

(
γ̇τd

1 + (γ̇τd)2

)
〈z〉0 (20a)

〈z〉 =
〈z〉0

1 + (γ̇τd)2
(20b)

This reasoning shows that the overall chain deformation will be smallest if the overlap

thickness 〈z〉 shrinks below its equilibrium value, thereby avoiding some of the friction from

the free chains flowing by. Of course, the brush cannot shrink to zero height, and will have

to saturate to no thinner than its dry state. The simplest modification could be

〈z〉
〈z〉0

=
1− α

1 + (βγ̇τd)2
+ α (21)

with fitting parameters α = 0.68 and β = 0.57, used to fit the trend in Fig. 3.

Another great advantage of simulations is that we gain access to practically any quantity

or correlation of interest, including for instance the brush center of mass displacement along

the flow, 〈x〉, which is unavailable experimentally. We have plotted the simulated height

〈z〉 as a function of 〈x〉 for various shear rates in Fig. 4b. In this plot both axes refer to

distances, and therefore we could additionally superimpose the ellipses of inertia showing the

radius of gyration of the grafted chains around their respective center of mass (more details

can be found in the SI). The ellipses show that not only is the brush displaced, but it is also

deformed by the shear flow, stretching in the x-direction, shrinking in the z-direction (and to

a lesser extent also shrinking in the y-direction, see SI), and developing an anisotropic tilt,

which signals the presence of shear stress.61 Another possible extension to Eq. (20b) could

be a Gaussian shape:
〈z〉
λ

= 4.3 exp

[
−
( 〈x〉

22.4λ

)2
]

+ 4.0 (22)
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which was used to fit the simulation data in Fig. 4b. This function also shrinks quadratically

at small shear rates, 〈∆z〉 ∝ − 〈x〉2, and saturates to 〈z〉 → const. at very large shear

rates, but without a proper theory both Eqs. (21) or (22) are just guesses. Actually, the

simple theoretical Eq. (20a) predicts that the 〈x〉-displacement will reach a maximum at

γ̇τd = 1, and then slowly retract to zero. The simulation data in Fig. (4b) clearly rules out

this possibility, instead showing that the 〈x〉-displacement always grows monotonically and

eventually saturates to some fixed value.

Discussion

At short time scales the brush behaves like a liquid, while at very long time scales like

an elastic solid. The grafted chains of length N relax primarily by the arm retraction

mechanism62 τa = O(N3eN/Ne). This characteristic time may be further slowed 52 to τa =

O(P 3N2eN/Ne) during interdigitation with an entangled bulk polymer of length P . These

very slow brush-brush relaxation processes do not couple easily to a transverse shear flow:

the bristles are immobilised and cannot flow past each other. An applied shear flow only

tilts the entire brush structure including its internal topological arrangements, but does not

interfere with the inner brush-brush dynamics. The truly interesting coupling is between the

brush and the bulk chains. These flow past each other and therefore the brush-bulk overlap

region should show similar behaviours to those of the pure bulk fluid, including shear thinning

and normal stress differences, expected to occur at a time scale τd = O(P 3) dictated by the

reptation of the free chains, which should overwhelm the slower arm retraction of the brush.

The structural change observed by NR occurs almost instantly upon switching on the

shear for both Brush-LS and Brush-SD, suggesting that the brush-bulk dynamics are gov-

erned by a relaxation process faster than the NR time resolution (about 1 min), and therefore

consistent with reptation dynamics τd ≈ 1 s. Overall, the brush-bulk relaxation is too fast to

measure with our current setup, and the upper limit is about one minute. More information
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on the kinetics of the brush may be obtained in the future, using an oscillatory shear flow

combined with stroboscopic NR.63 If arm retraction of the brush was to play a role, the

relaxation time should be exponentially eN/Ne longer, and very much different for the two

brushes: τLS/τSD = (NLS/NSD)3e(NLS−NSD)/Ne ≈ 100. In our experiment we could not detect

any difference in the dynamics of the two brushes, and therefore conclude that the effect of

coupling to shear flow is governed by the free chain reptation, not by the brush itself. This

conclusion is corroborated by the fact that the relative brush collapse of both experimental

systems and the simulation fall onto a master curve (see Fig. 3) in spite of the different

grafting densities and chain lengths of the three systems.

We emphasize that the universality of the brush collapse refers only to the brush-bulk

overlap region, and does not take into account the interior brush region, which was shown

here (Fig. 2d) not to couple to the transverse shear flow, at least for the experimentally

accessible shear rates. In fact, for very dense brushes the overlap region becomes too narrow

to entangle with the bulk chains, in which case we could not observe any NR signal change

upon shear (data not shown). We can say that the saturation parameter in Eq. (21) becomes

α = 1, meaning that for these very dense brushes the overlap region is already fully collapsed

even at shear rate γ̇ = 0.

One important parameter range that we have not explored is when the grafted chains

are much longer than the free chains N � P , and the grafting density is sufficiently low so

that more than one free chain can entangle with every grafted chain. In such a scenario the

concentration of the brush is too faint to be detected by NR, at least with our present setup.

Regardless of neutrons, it may happen for this system that the brush starts collapsing at

Wi � 1, much sooner than the shear-thinning can erode the viscosity of the bulk liquid.

If this is the case, then it may be possible64 that the liquid loses grip with the surface and

displays a large shear-dependent surface slip. In all the cases that we studied, N . P , brush

collapse happens at the same time as the shear-thinning in the bulk, which prevents a large

slip from occurring. So far it has not been possible to characterize an appropriate N � P
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system, and the surface slip question remains open.

In summary, we have used a combination of in situ rheo-neutron reflectometry, coarse

grained computer simulations and phenomenological theory to show that it is possible to

engineer polymer brushes responding to shear stimuli exerted by an entangled polymer solu-

tion. At the same time we provide strong evidence that the time scale of this shear response

is governed by the solution dynamics, which sets a clear limit on the tailoring of the shear-

response of polymer brushes.

Data availability

Neutron reflectometry data is available at doi.ill.fr/10.5291/ILL-DATA.9-11-1683,
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Physical characterisation of the brushes
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Supplementary Figure 1: Neutron reflectivity in air

The physical characterisation of a brush starts with a NR measurement in air shown in

Supplementary Fig. 1. The dry brush thickness Hdry can be determined by the distance

1



between consecutive fringes ∆Q:

Hdry =
2π

∆Q
(S.1)

A more precise result, listed in Table 1, was obtained by fitting the entire spectrum using

standard Motofit software, which also takes into account the native silicon dioxide layer,

18Å and 24Å thick, respectively.

After all the shear experiments, the brushes were thoroughly rinsed with toluene to

remove any ungrafted chains. The dry air measurement was repeated again and revealed

that the samples have lost 12 % and 34 % of their original thickness, respectively. We

presume that the brushes were gradually degraded by the strong shear stress. To simplify

the remaining analysis, we will use the average thickness of before and after measurements,

and assume it constant throughout the experiment.

In the dry state, the brush is fully collapsed and its height is calculated by

Hair = aσN (S.2)

where N ∝Mw is the number of monomers, σ is the dimensionless grafting density, and a is

the size of the monomer. In the case of the “grafting-from” brush, we do not know N and σ

separately. Therefore, the brush is further characterized by immersing it in a good solvent

(deuterated toluene at 20 ◦C), so the brush swells to a height

Hgood solvent = aNP−1/3σ1/3, (S.3)

where P = 1 is the length of the free chains, in this case just a single solvent molecule. The

dimensionless surface coverage can then be estimated by

σ =

(
Hair

Hgood solvent

)3/2

. (S.4)

The corresponding NR result is shown in Supplementary Fig. 2. To fit the data, we have
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deuterated toluene
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Supplementary Figure 3: Brush-long-sparse
in solution of 10 % hPS + 20 % dPS +
70 % DEP

assumed that the total mass of the brush is conserved, and therefore the brush height is

constrained to be

Hgood solvent = Hair/φg, (S.5)

where 0 < φg < φ is the concentration of the grafted chains, obtained from the fitted neutron

scattering length density (SLD) of the brush layer:

SLD[hPS-dTOL]︸ ︷︷ ︸
from fit

= SLD[hPS]︸ ︷︷ ︸
1.41

φg + SLD[dTOL]︸ ︷︷ ︸
5.74

(1− φg) (S.6)

In the case of the Brush-short-dense we had to include an insoluble 13Å thick layer with

SLD = 1.41× 10−6 Å−2 at the base of the brush. It is attributed to the bulky ATRP initiator

molecule which has a similar SLD to the h-polystyrene, but does not swell in toluene. This

thickness is subtracted from the apparent dry brush thickness in air, Eq. (S.1), where the

two species are almost indistinguishable for neutrons.

Using Eqs. (S.2), (S.3), and the known chain length NLS = 2093 of the Brush-long-sparse,

3



we can estimate the unknown Brush-short-dense length:

NSD = NLS

(
HSD

HLS

)3/2

wet

(
HLS

HSD

)1/2

dry
= 808. (S.7)

In the following stage, we remove the toluene by blow drying, and load the dPS-DEP

solution of density φ = 0.3. The repulsion between the bristles is now mostly screened by

the bulk P = 5570 chains and the brush density profile should shrink to more of a Gaussian

with height

HGauss = aN1/2. (S.8)

The data in Figures 2a and 2b is fitted by constraining the brush density not to exceed the

bulk level of φ = 0.3, and maintaining the conservation of mass within reasonable bounds of

10 %. Here we should mention that while the brush density profile changes under shear, the

overall polymer concentration cannot be affected much. The relative polymer density change

∆φ/φ can be estimated by comparing the pressure on the cone (normal force measured at

no more than F = 5 N, spread out over a disc of radius r = 2.5 cm, see also Supplementary

Fig. 8), against the osmotic pressure Π of the polymer solution:

∆φ

φ
≈ ∆Π

Π
≈ Fλ3

πr2kBT
≈ 0.001, (S.9)

where we have estimated the blob size at λ ≈ a/φ3/4 ≈ 7Å. Thus we can see that the

shear-induced concentration change is minuscule and can be disregarded.

The NR fits are considerably improved if we allow for a slightly depleted (φd ≈ 0.24)

thin layer at the base of the brush. This assumption is verified by measuring the brush

in a different contrast, consisting of 10 % hPS and 20 % dPS solution in DEP, shown in

Supplementary Fig. 3 for the Brush-long-sparse. The fit was produced assuming the same

brush structure, but different SLD weights. The only small discrepancy was that in the

second contrast, the thin depletion layer had a smaller density of φg = 0.18. The final brush

4



height reported in Table 1 is just the sum of the depleted and the main brush layers.

It is apparent that the simple Eq. (S.8) is not obeyed by our samples: (HSD/HLS = 3.4) 6=

(
√
NSD/NLS = 0.6). Therefore, the brushes cannot be considered Gaussian, especially the

denser Brush-short-dense. In the case of polymer melt, one could interpolate Eqs. (S.2),

(S.3) and (S.8) with this function:

H = aN1/2

(
1 +

N1/2σ1/3

P 1/3

(
1 + σ2/3P 1/3

))
(S.10)

= aN1/2

(
1 +

(
N

P

)1/2 (
Pσ2

)1/6 (
1 +

(
Pσ2

)1/3)
)

(S.11)

In a semi-dilute solution of density (φ∗ ≈ 0.03) < (φ = 0.3) < (φ∗∗ ≈ 0.5), the above

equation can be extended by a mapping from the blob theory: N → φ5/4N , P → φ5/4P ,

a→ λ = aφ−3/4 and σ → (λ/a)2σ = φ−3/2σ. The brush height in the general case can then

be interpolated as

H = a

(
N

φ1/4

)1/2
(

1 + α

(
N

P

)1/2

β

(
Pσ2

φ7/4

)1/6
(

1 + β2

(
Pσ2

φ7/4

)1/3
))

. (S.12)

The above equation is fitted using our six height measurements, to obtain the three fitting

parameters: a = 1.19Å, α = 1.95, and β = 0.94. The locations of the various brush

states are indicated in the phase diagram, Supplementary Fig. (5). It turns out that the

Brush-short-dense in 30 % dPS solution is best described as dry, meaning that the free dPS

chains are largely expelled from the brush. The Brush-long-sparse is quite close to the triple

cross-over between dry, Gaussian and stretched, but leans more to the dry side.
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Confirmation of Chemical Structure of PS Brushes via

FTIR spectroscopy

The chemical structure of the “grafted-from” PS Brush-short-dense was confirmed via Fourier-

transform infrared spectroscopy in attenuated total reflectance mode (ATR-FTIR) employing

a Nexus 870 spectrometer (Nicolet, Czech Republic) equipped with a VariGATR ATR ac-

cessory (Harrick Scientific Products, USA). Measurements were performed using 256 scans

at 4 cm−1 on a sample prepared in parallel with the sample for neutron reflectometry. The

spectrum obtained is shown in Supplementary Fig. 6, displaying features characteristic for

PS. The CH2 stretching modes of the polymer backbone are observed at 2924 cm−1 (sym-

metric) and 2850 cm−1 (asymmetric) while the band at 1452 cm−1 arises mostly from the

CH2 bending mode. A series of 5 weak bands between 1945 and 1672 cm−1 are the result of

combination vibrations of the aromatic ring and the bands appearing at 1602 and 1492 cm−1

arise from in-plane ring vibrations. The strong bands at 702 and 760 cm−1 correspond to

out-of-plane ring deformations.
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Rheological characterisation

The viscoelastic properties of the bulk dPS solution were characterised by measuring the

storage G′(ω) and loss G′′(ω) moduli against the angular frequency ω of the applied shear

rate, shown in Supplementary Fig. 7. The curves are typical for a viscoelastic fluid, and

their cross-over at frequency ω∗ = 10 s−1 determines the longest relaxation time of the bulk

polymer, in this case τd = 1/ω∗ = 0.1 s. The shear stress as well as the normal stress

measured during the NR data acquisition is also shown in Supplementary Fig. 8. It is clear

that that after Wi & 1 we enter into a non-Newtonian shear-thinning regime. The outwards

normal stress on the cone also starts rapidly increasing at this point. These rheological

observations coincide closely with the onset of the brush collapse as measured by NR.
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Simulated brush structural analysis

The density profiles in Fig. 4a are histograms obtained by counting the number of particles

in small bins and averaging over about 10τd time steps. Further information on the brush

structure is obtained by calculating the average position of the center of mass for the average

bristle, with respect to its grafting point. The mean position is shown by black points in

Fig. 4b. We have also calculated the components of the inertia tensor:

Rαβ = 〈(R−R0)α(R−R0)β〉 , (S.13)

8



where R0 is the instantaneous position of the center of mass, and the average is taken over

all the j-particles. At equilibrium, the sum of diagonals Rxx + Ryy + Rzz = R2
g is known as

the radius of gyration. Under shear, there will also be a non-zero off-diagonal component

Rxz and the inertia tensor can be described as an ellipse. To quantify its shape, we must

solve the diagonalization problem:

(Rxx − A) cosα +Rxz sinα = 0 (S.14)

Rxz cosα + (Rzz − A) sinα = 0 (S.15)

The solution is the tilt angle:

tan 2α =
2Rxz

Rxx −Rzz

(S.16)

and the principal axes of inertia:

R1,2 =
1

2

[
(Rxx +Rzz)±

√
(Rxx −Rzz)2 + 4R2

xz

]
(S.17)

The resulting ellipse is drawn around the position of the brush center in Fig. 4b. The ellipse

dimensions are scaled to the values on the x-axis, which has a ratio of 10:1 with respect to

the y-axis. The shear rate in Weissenberg number is denoted by the color inside each ellipse

and also the number next to it. The full dataset is further shown in Supplementary Fig. 9

in a plain format.
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