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As in manufacture so in science—retooling is an extrava-
gance to be reserved for the occasion that demands it. The
significance of crises is the indication they provide that an
occasion for retooling has arrived.

Thomas Kunh
The Structure of Scientific Revolutions
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1.1 Motivation industrielle : estimation et prédiction de con-
sommation électrique

Pour assurer la sécurité et la stabilité des réseaux électriques, l’électricité injectée dans les
réseaux doit correspondre à la demande à tout moment. C’est la responsabilité des entreprises
d’électricité comme Électricité de France (EDF) de gérer cette équilibre offre-demande. La de-
mande d’électricité dépend essentiellement du portefeuille de clients et des conditions extérieures,
comme par exemple la météorologie, sur lesquelles les entreprises d’énergie ont peu de marge de
manoeuvre. Or, l’électricité est une forme d’énergie qui peut difficilement se stocker. Ainsi les
entreprises d’électricité gèrent l’équilibre offre-demande en ajustant la production d’électricité
et la configuration des réseaux, selon les estimations et prédictions de demande en temps réel.

On peut donc comprendre pourquoi les données de consommation électrique sont importantes
pour une entreprise comme EDF. Pour la planification de production nucléaire et la planification
des réseaux, il est important d’avoir des prévisions de demande de moyen ou long terme (à partir
de 6 mois). Pour la planification des opérations réseaux, il est important d’avoir des prévisions
de moyen ou court terme, par exemple des prévisions horaires ou quotidiennes avec un horizon
entre un jour et quelques mois. Pour profiter de la production décentralisée d’énergie en plein
développement (par exemple photovoltaïque), il est intéressant d’avoir des données ou prévisions
sur une échelle spatiale assez fine.

Outre ces problèmes dans le domaine du management d’énergie, les données de consommation
électrique sont utiles pour beaucoup d’autres applications. Dans le contexte de marché ouvert
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d’électricité, les données de consommation peuvent être utilisées par les opérateurs de réseau
de transport (RTE en France) et de distribution pour mesurer les consommations/productions
des portefeuilles des différents responsables d’équilibre tels les producteurs d’électricité, les gros
consommateurs, les agrégateurs d’effacement ou les traders.

L’électricité est un aspect important des activités socio-économiques. Ainsi les données de
consommation électrique sont une information intéressante en soi. Elles peuvent être mises en
parallèle avec d’autres statistiques publiques sur la société. Si la consommation électrique est
connue à la même échelle spatio-temporelle que d’autres informations socio-démographiques,
croiser ces données peut permettre

• d’une part, aux entreprises d’électricité de fournir un service de manière plus efficace et
stable ;

• d’autre part, aux chercheurs en sciences sociales de révéler comment l’utilisation d’électricité
influence les divers phénomènes sociaux, et vice versa.

Cependant, les données sont très souvent insuffisantes pour produire des estimations et
prévisions à l’échelle spatio-temporelle exigée par les applications mentionnées. Deux sources de
données sont souvent disponibles aux entreprises d’électricité :

• des mesures de capteurs installés sur le réseau ;

• des mesures venant des compteurs de clients.

Les deux sources de données ont des limitations importantes. Les données de capteurs sont
souvent de fréquence temporelle assez haute (pas de temps de 10 ou 15 minutes), mais elles
couvrent un nombre important de clients. En France, le dernier niveau du réseau de distribution
équipé de capteurs de manière systématique est celui des départs Haute Tension A (HTA).
Chaque départ HTA couvre en moyenne 1500 clients. D’autre part, les compteurs clients ne
couvrent en général qu’un seul client. Par contre, la plupart des clients sont pour l’instant
équipés de compteurs traditionnels qu’il faut relever de manière manuelle : un technicien doit
se déplacer physiquement chez le client pour lire l’index sur le compteur. Ainsi, ces index sont
souvent relevés une fois tous les quelques mois. Avec le déploiement de compteurs intelligents
(Linky), les index peuvent être stockés localement toutes les 10 minutes. Néanmoins, à cause des
coûts de transmission et de traitement, ainsi que des considérations de protection de la vie privée,
ils ne seront accessibles aux entreprises d’électricité que sous forme de sommes journalières.

Dans cette thèse, on envisage des méthodes statistiques pour produire des estimations et
prévisions sur une échelle spatio-temporelle assez fine. L’objectif est de développer des méth-
odes qui peuvent utiliser toute information disponible, pour avoir des estimations de qualité
supérieure. À part les deux sources de données de consommation, les méthodes développées ici
utilisent notamment des “informations auxiliaires”, ou side information en anglais, pour enrichir
les estimations. Ces informations auxiliaires peuvent être globales, comme l’autocorrélation tem-
porelle des courbes de consommation. Elles peuvent aussi être locales : des variables exogènes
correspondant à une période et un individu dans le jeu de données, comme la température d’une
période ou l’information socio-démographique d’un client.
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1.2 Formalisation du problème

Dans cette thèse, on s’intéresse à la valeur d’une variable d’intérêt v ∈ R (typiquement la
consommation électrique), pendant n1 périodes consécutives, pour un groupe de n2 individus1.
Pour un individu j, j ∈ {1, 2, ..., n2}, vi,j représente la consommation pendant la période i,
pour i ∈ {1, 2, ..., n1}. On utilise des lettres majuscules en gras pour représenter des matrices et
des lettres minuscules en gras pour représenter des vecteurs. Ainsi, V ∈ Rn1×n2 est la matrice
regroupant la variable d’intérêt, (vi)T est le i-ième ligne de V (la consommation de tous les
individus à la période i), et vj est la j-ième colonne (la consommation de l’individu j à travers
les périodes).

On peut aisément formaliser le problème d’estimation mentionné ci-dessus avec cette représen-
tation matricielle. La matrice représentant la variable d’intérêt est le tableau bleu dans figure 1.1.
Chaque colonne représente un individu et chaque ligne une période. Les deux sources de données
partielles sont des sommes d’entrées de matrice : le rectangle orange représente une agrégation
temporelle, et le rectangle vert représente une agrégation d’individus (spatiale par exemple).

Figure 1.1: Représentation matricielle de la variable d’intérêt. Dans cette thèse, une entrée de la
matrice est souvent la consommation électrique d’un individu (une colonne), durant une période (une
ligne). Les mesures de capteurs sur le réseau sont souvent des agrégations d’individus (somme d’entrées
dans le rectangle vert). Les relevés de compteurs individuels sont souvent des agrégations temporelles
(somme d’entrées dans le rectangle orange).

Les variables exogènes sont représentées par les deux tableaux verts. Leurs lignes et colonnes
sont alignées avec celles du tableau bleu.

Les objectifs d’estimation ont une représentation naturelle dans cette formalisation ma-
tricielle. Dans la plupart du temps, on est intéressé par la valeur de la variable d’intérêt pour
chaque période de chaque utilisateur. Ainsi, il faut estimer toutes les entrées de V. Selon des

1On entend par “un individu”, l’unité basique considérée dans l’application. Ceci peut être une personne
physique, mais aussi un compteur électrique, ou encore un capteur sur un niveau du réseau électrique.
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applications, on peut être intéressé par une agrégation des entrées de V. Par exemple, dans le
problème de changement de support spatial, on est amené à estimer la variable d’intérêt sur une
agrégation spatiale (entre individus) différente de celle des données. On peut aussi s’intéresser
à la valeur maximale de la consommation électrique quotidienne, ce qui correspond à la valeur
maximale de chaque colonne pendant un certain nombre de périodes.

La prévision correspond à estimer une ou plusieurs nouvelles lignes (nouvelles périodes) ou
colonnes (nouvelles individus) de V dans laquelle aucune entrée n’a été couverte par les données.
Quand aucune information à part les mesures de V n’est disponible, il est difficile de produire
des prédictions. On considère deux cas de variables exogènes dans cette thèse :

• information implicite sur V, telle que les colonnes de V ont une structure auto-régressive,
soit entre périodes temporelles, soit entre des individus qui ont une structure de corrélation
spatiale;

• information explicite, comme par exemple la température de chaque période, ou des infor-
mations socio-démographiques sur les individus.

Cette thèse est organisée de la manière suivante : dans le reste de ce chapitre, les trois
approches envisagées dans la thèse seront présentées brièvement. L’approche basée sur la fac-
torisation de matrice, qui est la proposition principale de la thèse, sera introduite de manière
un peu plus détaillée. À part ce chapitre, le reste de cette thèse sera en anglais. Le chapitre 2
reprendra le contenu de ce chapitre et fera une introduction en anglais. Les chapitres 3 et 4
forment la première partie, où l’on considère des données qui sont des agrégations spatiales ou
des agrégations d’individus, et dont le but est l’estimation à des niveaux d’agrégation différentes
de celles des données. Dans la deuxième partie, les chapitres 5-9, on présente l’approche basée
sur la factorisation de matrice nonnégative, qui permet de résoudre le problème de manière plus
systématique. Le lien entre les trois approches est résumé dans le chapitre 8 et les perspectives
sont présentées dans le chapitre 10.

1.3 Solutions classiques et nouvelles

1.3.1 Statistique spatio-temporelle

Quand les positions géographiques des individus sont disponibles, un choix naturel est d’utiliser
des outils de la statistique spatiale. En considérant des valeurs individuelles comme observa-
tions d’un processus aléatoire spatial ou spatio-temporel, cette classe de méthodes fournit des
modèles qui sont adaptés pour des phénomènes assez divers. Dans le chapitre 3, on présentera la
statistique spatiale. En particulier, on discutera du krigeage (kriging en anglais), une méthode
qui permet d’interpoler et d’extrapoler la variable d’intérêt à des positions géographiques nou-
velles. En modélisant la structure de corrélation du processus spatial, cette méthode peut fournir
des estimations optimales. On appliquera cet outil à deux jeux de données, pour examiner sa
capacité à résoudre des problèmes représentés sur la figure 1.1.

1.3.2 Prédiction de consommation électrique multiple

Dans une approche parallèle à celle de la statistique spatiale, on présentera une méthode qui
modélise plutôt la structure de la moyenne de la variable d’intérêt dans le chapitre 4. Cette
approche permet d’estimer la consommation d’électricité des zones cibles, où l’information socio-
démographique est disponible, à partir des zones sources, où la consommation est disponible à
une échelle temporelle petite. Cette méthode utilise le clustering pour relier ces deux types
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de zones. Le transfert des modes de consommation électrique est réalisé par des modèles de
régression utilisant des variables explicatives telles que la température ou le cycle annuel, heb-
domadaire et journalier. Cette méthode est évaluée par sa capacité de prédiction sur deux jeux
de données synthétiques et réelles.

1.3.3 Méthodes basées sur la factorisation de matrice

Comme suggéré par la figure 1.1, l’objet d’intérêt de cette thèse se prête bien à une représen-
tation matricielle. Du chapitre 5 au chapitre 9, on propose une approche générique basée sur
la factorisation de matrice nonnégative [4–6] qui résout le problème d’estimation. Nous allons
présenter les intuitions derrière cette approche et la contribution de cette thèse sur ces méthodes
dans la section suivante.

1.4 Contributions à la factorisation de matrice nonnégative

1.4.1 Introduction à la factorisation de matrice nonnégative

Récemment, la factorisation de matrice nonnégative (nonnegative matrix factorization en anglais,
ou NMF) a connu un succès important dans des domaines très divers, de la segmentation des
images [4] au système de recommandation [7] en passant par le clustering des documents [8] et
la décomposition du son [9].

L’idée principale derrière cette classe de méthodes est la suivante. Étant donné V ∈ Rn1×n2
+ ,

une matrice de grande taille, on peut souvent faire l’hypothèse que son rang k est faible devant
sa dimension. Les colonnes de V sont ainsi à l’intérieur d’un sous-espace de Rn1 , de dimension k,
bien inférieure à n1. Ceci équivaut à dire que V = FrFT

c , avec Fr ∈ Rn1×k
+ ,Fc ∈ Rn2×k

+ . Les
matrices Fr et Fc sont appelés les facteurs.

Le faible rang du problème a une interprétation très intuitive : dans le clustering de docu-
ments, le nombre de thèmes est souvent bien inférieur au nombre de documents et au nombre de
mots dans le dictionnaire ; dans un système de recommandation, il y a peu de clients et marchan-
dises “indépendants” parmi un grand nombre de clients et marchandises. Le choix d’imposer les
contraintes de non-négativité est souvent justifié par les applications aussi : avec des facteurs,
on peut aisément interpréter les documents comme un mélange de thèmes, et une marchandise
comme un mélange de plusieurs types de marchandises.

Une interprétation du même type pour les applications dans le domaine d’électricité nous
semble aussi naturelle, puisqu’on remarque qu’il y a un nombre réduit de manières d’utiliser
l’électricité (appelé les profils), bien qu’il y ait un nombre important de clients. Tous les clients
sont proches d’un mélange de ces profils. Cet aspect est d’ailleurs pris en compte dans des sys-
tèmes actuels de reconstruction de consommation électrique, qui utilisent des profils nationaux
de consommation [10]. Ces profils sont actuellement calibrés par des méthodes statistiques qui
nécessitent des traitements assez longs. Utiliser des méthodes basées sur la factorisation de
matrice nonnégative permettrait de les estimer de manière beaucoup plus automatique, à partir
des données partielles.

Pour obtenir une factorisation, on peut résoudre le problème d’optimisation suivant,

min
Fr∈Rn1×k,Fc∈Rn2×k

`(V,FrFT
c )

s.t. Fr ≥ 0, Fc ≥ 0,

où ` est une fonction de perte qui mesure la différence entre FrFT
c et V, et les inégalités sont
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élément par élément. La fonction ` peut être assez générale, mais on considère principalement
la perte quadratique en norme Frobenius où `(X,Y) = ‖X−Y‖2F =

∑
i,j(xi,j − yi,j)2.

La factorisation de matrice n’est pas un nouveau problème. Dans le cas de l’Analyse en
Composantes Principales (ACP), une factorisation de matrice est aussi calculée dans laquelle un
des facteurs est contraint à être une matrice orthogonale (celui des composantes principales).

Malgré son interprétation très intuitive, la NMF n’est pas facile à résoudre. En fait, dans le
cas général, la NMF est NP-difficile [11].

Une ligne de recherche théorique consiste à étudier si une matrice avec des entrées nonnéga-
tives a une NMF “unique”. Pour toute paire (Fr,Fc), une NMF de V, et pour toute matrice
inversible R ∈ Rk×k, (FrR,Fc(R−1)T ) est encore une factorisation de V (leur produit est égal à
V). Mais cette nouvelle factorisation n’est pas nécessairement nonnégative. Par contre, pour cer-
taines matrices, il est possible que les seules matrices inversibles R telles que (FrR,Fc(R−1)T )
reste une factorisation nonnégative soient des compositions de dilatation et de permutation.
Dans ce cas-là, on dit que la NMF est “unique”. Décider si une matrice a une NMF unique
est aussi un problème difficile. Deux conditions nécessaires et suffisantes de l’unicité ont été
trouvées, mais étant donnée V, il est difficile de décider si elle vérifie ces conditions [5, 12]. Des
conditions suffisantes, plus faciles à vérifier, ont été proposées sur des classes particulières de
NMF [12, 13].

Des algorithmes avec garantie de convergence ont été proposés pour certaines classes de NMF,
en particulier celles qui vérifient les conditions suffisantes d’unicité [14–17]. Ces algorithmes sont
souvent assez spécifiques, et la preuve de convergence utilise des outils complexes. Pourtant, en
pratique, des algorithmes dits de “premier ordre” sont préférés. Ces algorithmes sont souvent
basés sur la descente de gradient ou l’algorithme de descente par bloc. Même s’ils ont peu de
garantie théorique, la simplicité d’implémentation et la performance empirique ont fait qu’ils
sont devenus très populaires [18].

L’idée principale de ces algorithmes de descente est la méthode Gauss-Seidel : soit une
fonction f(x1, ...,xd) à minimiser sur un produit cartésien de convexe X1× ...×Xd. L’algorithme
minimise par rapport à chaque bloc de variables x1, ...,xd de manière itérative. Dans le cas de
NMF, les algorithmes sont caractérisés par les blocs de variables : on peut utiliser des blocs
scalaires et alterner entres les éléments de Fr et Fc, des blocs vectoriels (les colonnes et lignes
de Fr et Fc), ou des blocs matriciels (Fr et Fc).

Grâce aux résultats d’optimisation, les algorithmes du type Gauss-Seidel convergent vers
un point stationnaire sous des conditions faibles. Ainsi la plupart des algorithmes de NMF
convergent vers un point stationnaire.

1.4.2 Appliquer la NMF pour estimer la matrice V (chapitres 5, 6)

La contribution principale de la thèse est l’application de la NMF au problème introduit dans
la section 1.2.

Sous l’hypothèse de faible rang, on peut formaliser le problème d’estimation de la figure 1.1
comme un problème similaire à la NMF. Dans ce problème, la matrice V est à estimer, à partir
de mesures linéaires α :

min
Fr∈Rn1×k,Fc∈Rn2×k,V∈Rn1×n2

‖V− FrFT
c ‖2F

s.t. Fr ≥ 0, Fc ≥ 0, V ≥ 0,
A(V) = α,

(1.1)

où A est un opérateur linéaire sur l’espace des matrices de taille n1 × n2 et α est un vecteur de
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données de dimension N . Les opérateurs linéaires sur Rn1×n2 sont caractérisé par N matrices
de taille n1 × n2, A1, ..., AN , et

αi = Tr(VAT
i ) = 〈V,Ai〉.

Ces matrices A1, ..., AN sont appelés des masques.

Dans le chapitre 6, nous proposons une extension de la NMF pour utiliser les agrégations
temporelles comme données.

Ceci correspond à expliciter (1.1) dans le cadre où les mesures linéaires sont des agrégations
temporelles. Concrètement, ceci veut dire que pour tout 1 ≤ i ≤ N ,

αi = 〈V,Ai〉 =
∑

(t,n)∈Ii

vt,n,

où Ii est l’ensemble des indices des périodes couvertes par la i-ième mesure. Ces contraintes
de somme, et la contrainte de nonnégativité, définissent la région admissible de V, qui est un
simplex.

Dans le chapitre 6, nous proposons un algorithme qui résout (1.1). Pour ce faire, nous
ajoutons, aux algorithmes classiques de NMF, une étape de projection dans ce simplex défini
par des contraintes (Algorithm 1). Cet algorithme combine un algorithme efficace de projection
dans un simplex, et deux algorithmes classiques de NMF [19–21]. C’est un algorithme convergent
vers un point stationnaire comme la plupart d’algorithmes de NMF.

En plus de cet algorithme, nous proposons aussi de prendre en compte deux types d’informations
supplémentaires.

1.4.3 Autocorrélation temporelle des individus (chapitre 6)

Le premier type d’information supplémentaire est l’autocorrélation temporelle des individus. En
pratique, il est connu que les séries temporelles de consommation électrique sont souvent assez
régulières au sens où il existe une certaine dépendance temporelle entre les observations. Nous
prenons en compte cet aspect dans chapitre 6.

La régularité des facteurs a été envisagée dans de nombreuses études de factorisation de
matrice ou de NMF. Souvent, une pénalisation est ajoutée à la fonction objectif pour obtenir
des facteurs plus réguliers et/ou plus sparses [22–26]. Ici, nous avons un objectif différent. Nous
supposons avoir de l’information a priori sur l’autocorrélation temporelle des individus, et es-
sayons d’améliorer la reconstitution grâce à cette information supplémentaire. Cette information
peut venir de sources différentes : elle peut être le résultat des observations historiques (sur des
individus qui ont participé à des études expérimentales, par exemple), ou elle peut être issue de
modélisation.

Nous modifions (1.1) en ajoutant un terme de pénalisation lié aux seuils d’autocorrélation.
Nous montrons qu’ajouter la pénalisation est dans certains cas équivalent à contraindre que
l’autocorrélation de chaque individu soit supérieure à ces seuils (Theorem 1). Nous proposons
un algorithme pour ce problème modifié (Algorithm 2).

1.4.4 Prendre en compte des informations exogènes (chapitre 7)

Le deuxième type d’information supplémentaire que nous proposons de prendre en compte con-
cerne les variables exogènes. Dans ce cadre, comme mentionné dans figure 1.1, des variables
exogènes liées correspondant aux lignes ou colonnes de la matrice V sont disponibles.
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Dans la littérature de la NMF, les variables exogènes sont un sujet qui attire beaucoup
d’attention. Ce principe est applicable aux diverses applications, notamment en système de
recommandation, où la préférence d’un client pour une marchandise dépend naturellement des
attributs du client (âge, sexe, profession, etc.) et de la marchandise (prix, utilité, gamme,
etc.). En ce qui concerne l’application en électricité, ce principe est également pertinent, car la
consommation électrique dépend d’attributs liés à la période (température, nébulosité, heure de
la journée, jour de la semaine), et au client (résidentiel ou industriel, composition du ménage,
type de logement).

Nous résumons l’état de l’art de la littérature sur ce sujet dans la table 7.1, sur la page 85.
Remarquons que pour les applications qu’on envisage, il est intéressant de pouvoir traiter des
mesures linéaires comme observations et des modèles de régression non-paramétriques pour gérer
les variables exogènes. Comme les méthodes existantes ne sont pas assez flexibles sur ces deux
points, nous proposons un cadre général de NMF avec variables exogènes (cf. section 7.1.1).

Connaissant des variables exogènes liées aux colonnes Xc et aux lignes Xr, en plus des
mesures linéaires α, nous proposons de résoudre

min
V,fr∈Fkr ,fc∈Fkc

‖V− (fr(Xr))+(fc(Xc))T+‖2F

s.t. A(V) = α, V ≥ 0,
(1.2)

où (·)+ est la fonction qui remplace toute valeur négative par 0, et Fr et Fc sont des espaces
fonctionnels dans lesquels nous cherchons des fonctions de régression.

En variant l’opérateur de mesure A, l’espace fonctionnel de régression, et les variables ex-
ogènes, cette modélisation peut être adaptée à des problèmes assez divers. En particulier, pour
modéliser les relations non-linéaires entre les variables exogènes et les facteurs, nous utiliserons
des splines de régression et des méthodes à noyaux dans l’application de ce modèle.

Sur l’aspect théorique de ce modèle, nous déduisons une condition suffisante d’unicité de
NMF dans le cadre de NMF avec variables exogènes (Theorem 5). En pratique, garantir que la
NMF est unique permet de mieux interpréter les facteurs obtenus par le modèle.

Algorithme convergent vers un point stationnaire

Nous proposons un algorithme pour résoudre (1.2) (Algorithm 4). Similaire aux algorithmes 1
et 2, dans cet algorithme appelé HALSX (Hierarchical Alternating Least Squares with eXoge-
neous variables), nous ajoutons une étape supplémentaire dans HALS, qui est un algorithme
classique de NMF [27]. Cette étape consiste à estimer des modèles de régression avec comme
variables explicatives les variables exogènes.

Nous démontrons que cet algorithme converge vers un point stationnaire pour une grande
classe de modèles de régression (Theorem 7).

1.4.5 Applications aux jeux de données synthétiques et réelles

Les méthodes proposées sont évaluées sur plusieurs jeux de données synthétiques et réelles.

Les jeux de données synthétiques sont créés pour tester la pertinence des méthodes proposées
dans un environnement contrôlé. Cela consiste à simuler des matrices de rang faible de manière
exacte. Les détails de simulation sont présentés dans les sections 6.3 et 7.4.

Jeux de données de consommation électrique Les jeux de données réelles de consomma-
tion électrique sont les suivants :
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• Consommation électrique française (Données fournies par Enedis) la consommation
journalière des 636 départs HTA (haute tension A) dans la région autour de Lyon. Chaque
individu dans ce jeu de données correspond à la consommation d’un groupe d’environ 1500
clients. Les données brutes sont disponibles au pas de 10 minutes, pendant 3 ans. Pour
les expériences des chapitres 6 et 7, la consommation est agrégée au pas journalier.

• Consommation électrique portugaise (Jeu de données publiques[28]) la consommation
journalière de 370 clients individuels (anonymisés) portugais. Issu d’un jeu de données
publique, la consommation est disponible au pas de 15 minutes pendant 4 ans. Pour les
expériences aux chapitres 6 et 7, la consommation est agrégée au pas journalier.

• Consommation électrique irlandaise (Jeu de données publiques[29, 30]) la consom-
mation journalière de 426 petites et moyennes entreprises (PME) irlandaises. Issu d’une
expérimentation européenne, la consommation est disponible au pas horaire pendant l’an
2010. L’agrégation journalière de ce jeu est utilisée au chapitre 6.

Jeux de données de système de recommandation Pour évaluer la performance de la
méthode sur un opérateur de mesure linéaire autre que l’agrégation temporelle, on utilise aussi
un jeu de données standard en système de recommandation.

• MovieLens C’est un jeu de données publique de scores de films. En tout, 100,000 scores
sont disponibles pour 943 utilisateurs et 1682 films.

Comme schématisé dans la figure 1.1, deux applications sont considérées :

Reconstitution de consommation passée/estimation de score de films (chapitre 6
et 7) Nous mesurons les agrégations temporelles sur un jeu de données de consommation en
tirant au hasard un certain nombre de dates d’observation. Nous utilisons une méthode pour
estimer la matrice de consommation, et mesurons la performance en comparant les estimations
avec la consommation réelle. Pour le jeu de données de score de films, nous tirons au hasard un
sous-ensemble de score comme observations, et complétons la matrice des scores. Ensuite nous
comparons les estimations avec les scores qui n’ont pas été observés.

Prédiction pour les nouveaux clients et/ou les nouvelles périodes (chapitre 7) Nous
cachons toutes les observations sur certains individus et certaines dates (ou certains films dans le
cas de MovieLens), et appliquons la NMF avec variables exogènes sur les observations restantes.
Nous produisons ensuite des prédictions pour les dates et les individus cachés. Nous les com-
parons avec la réalité pour mesurer la performance de la méthode.

1.4.6 Implémentation

Les algorithmes NMF proposés qui ont été développés, sont regroupés dans un package R ap-
pelé meterModels. Pour faciliter les tests, des fonctions d’expérimentation, d’évaluation des
méthodes, ainsi que des méthodes de référence sont aussi incluses dans ce package.

La plupart du package est en R. Certaines fonctions intensives en calcul sont écrites en C++
avec une interface en R, pour accélérer l’exécution des programmes. Quand la bibliothèque est
disponible, le package peut utiliser openMP pour distribuer certaines calculs. Quand le package
est utilisé sur une machine multi-cœurs, l’estimation de plusieurs modèles peut aussi se faire en
parallèle en utilisant le package parallel de R.

9
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Représentation des observations Les mesures d’agrégation temporelle et les mesures linéaires
générales sont gérées par le package. Pour les agrégations temporelles, les observations sont
représentées comme des dates d’observation et des index de compteurs. Pour les mesures linéaires
générales, l’opérateur de mesure est représenté comme une grande matrice sparse, et les obser-
vations sont le produit de l’opérateur et le vecteur des entrées de la matrice.

Méthodes disponibles Les méthodes de NMF avec agrégations temporelles ou mesures
linéaires sont disponibles, ainsi que les variantes proposées par la thèse : la prise-en-compte
de l’autocorrélation et des variables exogènes. Les méthodes proposées ainsi que les méthodes
de référence sont détaillées dans la table 9.1 sur la page 118. L’estimation de modèle se fait
à travers une interface unifiée, où le choix des méthodes se fait par un paramètre. Il est aussi
possible de comparer plusieurs méthodes sur un jeu de données avec des paramètres variables.

1.5 Conclusions et perspectives

Dans cette thèse, nous avons étudié un problème pratique en industrie : la modélisation de la
consommation électrique à partir des données partielles issues de nombreux individus. Nous
avons envisagé ce problème sous différents angles, avec des sources de données agrégées tem-
porellement ou individuellement, avec comme objectif l’estimation de la consommation passée,
et la prévision de la consommation future. Nous avons investigué des solutions dans plusieurs
cadres différents : la statistique spatio-temporelle, le clustering des individus, ainsi que la factori-
sation de matrice nonnégative. Particulièrement pour la NMF, nous avons adapté la méthode
pour la problématique, et proposé des améliorations méthodologiques par rapport à l’état de
l’art. La méthodologie a été évaluée par des expériences nombreuses sur des jeux de données
synthétiques et réelles, et des résultats prometteurs ont été obtenus.

Des perspectives de recherche sont envisagées. Outre les applications directes de la méthodolo-
gie étudiées dans cette thèse, il existe de nombreuses applications industrielles. Nous pouvons
utiliser la NMF pour estimer des statistiques importantes du réseau électrique. Par exemple,
par rapport à la consommation électrique de chaque moment, la consommation maximale in-
stantanée est cruciale pour la maintenance du réseau. Il serait intéressant d’évaluer la méthode
de NMF dans ce contexte, voire même changer la fonction objectif du problème d’optimisation
pour s’adapter à la statistique qui nous intéresse. Dans la thèse, nous avons fait l’hypothèse
que le dispositif d’acquisition des données est fixe. Or, il peut être envisageable de modifier la
manière dont les données sont collectées, et donc de trouver une manière optimale de collecter
les données, sachant que la méthodologie de matrice de rang faible est disponible pour le traite-
ment de ces données. Nous avons étudié des méthodes adaptées séparément pour les agrégations
temporelles et individuelles. Il serait intéressant de voir si combiner les deux types de données
peut encore améliorer la performance de la méthode. Sur l’aspect théorique de la NMF, des
questions importantes restent également ouvertes, comme l’analyse de la convergence globale
des algorithmes de premier ordre pour certaines classes de matrices, et l’approfondissement des
conditions d’unicité de la NMF.
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2.1 Motivation for electricity consumption estimation and pre-
diction

To ensure the safety and stability of electric power systems, the electricity injected into a network
has to be met with the load, namely the consumption. This is called load balancing. Electricity
consumption is determined by the client mix connected to the network and external conditions,
on which utility companies have very little control. As a core characteristic of electricity is
that it can not be stored efficiently, utilities mostly achieve load balancing by adjusting power
generation and operating the electric network according to real-time estimation and predictions
of the load1.

Given these conditions, it is easy to see how electricity consumption data can be useful for
a utility company, such as Electricité de France (EDF). In order to plan power generation and
network development, it is important to have mid-term or long-term consumption prediction,
starting from six-month ahead. To plan network operations, it is useful to have temporally fine-
grained short or mid-term prediction and estimation, for example hourly or daily prediction until
several months ahead. To take fully advantage of the burgeoning decentralized renewable energy
generation in load balancing, it can be interesting to have consumption data and prediction on
a fine spatial grid.

Apart from its value for power planning and network operations, electricity consumption
data can be valuable for other reasons. In the context of open electricity market, regulations
often stipulate that each market participant, i.e. suppliers, utility traders, large consumers, be
responsible for its own load balancing at all time. Any imbalance caused by a participant is
typically billed by transmission system operators (TSO). To calculate the imbalance, TSOs have
to produce an hourly or half-hourly estimation of the consumption of each participant.

Electricity is an important part of socio-economic activities, and thus can be put into con-
nection with many other public datasets concerning the society. Should electricity consumption

1 Historically, this is mostly done by hydroelectric energy storage, namely pumping water into a reservoir in
higher locations during low-demand periods, and using that water to generate electricity during peaks. Nowadays,
battery storage is extensively researched, but remains expensive and experimental for the moment.
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data be available at the same spatio-temporal scale as other socio-demographic information,
utility suppliers can provide energy service more efficiently and stably, and researchers in social
science can shed new lights on various social phenomena by crossing electricity data with data
from other domain.

However, there is rarely enough data to produce estimations and predictions that are spatio-
temporally fine-grained enough for these applications. Two sources of consumption data are
often available to utility companies:

• measures taken by sensors installed on the network;

• measures read on end users’ electric meters.

Both data sources are somewhat limited. Sensor data on the electric network are of sufficiently
high frequency (at an interval of ten or fifteen minutes), but covers a rather big area. In France,
for example, the lowest level in the electric grid in which sensor data is available is at the medium-
voltage (MV) feeder level, where each MV feeder covers approximately 1500 clients. Individual
electric meter, on the other hand, only covers one client. However, traditional meters typically
can only be read manually by a worker who has to physically visit every client. Therefore, such
meter data can only be at an interval of several months. With the development of smart meters,
consumption can be recorded locally up to every minute. Nevertheless, due to transmission and
processing costs and/or privacy issues, utility companies often have limited access to these data,
for example daily aggregates of individual consumption.

In this thesis, we investigate statistical methods to produce estimations and predictions of
spatio-temporally fine-grained electricity consumption. The objective is to use any information
that is available, in order to produce high-quality estimation and prediction. Apart from the
two sources of electricity consumption data considered above, the methods developed in this
thesis use side information to enrich the estimations. Such side information could be global,
such as the autocorrelation of the time series of electricity consumption. Or they could be local:
exogenous variables corresponding to the periods and individuals in the dataset, for example,
the temperature of a given period, or the socio-demographic information, or geographic location
of the clients.

Given the importance of load information for the electric network, a plethora of authors
have studied load modeling and forecasting. Traditionally, spatial load forecasting [31], focused
on forecasting long-term trend in load over spatial regions, and mid-to-short term forecasting
[32], focused on the national level, are two separate domains with differnt methodologies. This
has changed in recent years, since the demands for load forecasting have changed due to the
evolution of the electricity market as well as the availability of large-scale datasets.

On one hand, the spatial scale of short and mid-term load forecasting has drastly decreased
[33–36]. A by-product of this change is that more attention is paid to seeing electric load as
multivariate time series which needs to be processed as a whole. In this area, particular problems
to be addressed are the similarity between load series [1, 35], and the coherent structure between
series from multiple components connected through the network [37].

On the other hand, this change is also accompanied by the development of new forecasting
methods, both from statistics and the machine learning community. As a testimony to this
trend, winners for recent load forecasting competitions often used a variety of differnt methods.
In Global Energy Forecasting Competition 2014 [38], the winner of the load forecasting track
used a quantile regression version of generalized additive model (GAM) to tackle probabilistic
load forecasting [39]. In a 2017 multivariate load forecasting contest organized by Réseau de
Transport d’Electricité, the main TSO in France [40], the winner used an ensemble of Xgboost
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models to achieve an adaptive model with high performance.2

We believe the methods presented in this thesis are a useful complement to these recent devel-
opments, as they allow heterogenous data to be preprocessed, before state-of-art load modeling
methods can be applied.

2.2 Problem formalization

In this thesis, we are interested in the value of a variable v ∈ R (typically electricity con-
sumption), over n1 consecutive periods, for a group of n2 individuals. For an individual j,
with j ∈ {1, 2, ..., n2}, vi,j represents its consumption at period i, with i ∈ {1, 2, ...n1}3. We
will use lower-case boldface letters to denote vectors and upper-case boldface letters to denote
matrices, so that V ∈ Rn1×n2 is the matrix of the variable of interest, and (vi)T is the i-th row
vector of this matrix, representing the i-th period, and vj is the j-th column vector, representing
the j-th individual.

With this notation, we can easily represent both the data and the estimation target of this
thesis. In Figure 2.1, a scheme of the variable of interest (blue table) is given. We can also
represent the two types of data sources previously mentioned: temporally aggregated measure
from a user meter (orange box), and measures taken on from a point on the electricity network,
thus an aggregation of several individuals (green box).

The exogenous variables can be represented by matrices that can be put in parallel to the
variables of interest (green tables in Figure 2.1).

The estimation targets can also be represented in this way. Most of the time, we aim at
estimating the electricity consumption of all individuals for all periods. This is simply every entry
of the matrix V. Depending on the applications, one can also be interested in some aggregations
of the matrix V. These estimation tasks can be achieved by performing the aggregation on the
estimated matrix V. For example, in a change-of-support problem, we would want to estimate
the variable of interest on a spatial aggregation grid, that is different from that of the data. One
can also be interested in the maximal value of electricity consumption throughout a day, which
is the maximum of a number of periods for each user.

As for prediction, it corresponds to estimating the value of the variable for new rows (new
periods) and new columns (new users) of V. When no information other than measures on the
data matrix is available, it can be difficult to produce predictions. In this thesis, prediction is
often achieved by considering

• either implicit information about V, such as the temporal auto-regressive structure of the
rows of V, or the spatial auto-regressive structure of columns of V;

• or exogenous variables per se, such as the temperature, or socio-demographic information
of clients.

This thesis is organized as following: In Chapters 3-4, we present two methods that use indi-
vidually aggregated data to estimate and predict electricity consumption for aggregations that
is different from that of the data. In Chapters 5-9, we present nonnegative matrix factorization,
a class of methods that can solve the task in a more general way. The three approaches are
compared in Chapter 8, and perspectives are discussed in Chapter 10.

2Jérémy Lesuffleur, personnal communication, 2017.
3 We will call a basic unit an “individual”, if it is the smallest unit considered in a given context, whether it

is actually a physical person, a meter, a household or a group of clients.
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Figure 2.1: The matrix representation of the variable of interest. Typically, an entry of the matrix is the
electricity consumption of an individual (a column), during a period (a row). Measures taken by sensors
on the network are often aggregations of individuals (sum of the entries in the green box). Measures read
on user meters are often temporally aggregated (sum of the entries in the orange box).

2.3 Classical and novel solutions

2.3.1 Spatio-temporal kriging

When geographic positions of the individuals are available, one natural way to model the data is
to use spatial statistics. By considering the individual values of the dataset as observations of a
spatial or spatio-temporal random process, this class of methods provide a toolbox for modeling
a wide range of social and natural phenomena. In Chapter 3, we will briefly present the basics of
spatial statistics. In particular, we will present kriging, a method to interpolate and extrapolate
the value of variables of interest to new positions. Modeling the correlation structure of the
spatial random process, this method can produce estimations that are optimal in a sense. By
applying kriging to two datasets, we will examine the capacity of this model for solving the
estimation problems of Figure 2.1.

2.3.2 Prediction of multiple electricity consumption series

In an approach parallel to spatial statistics, we will present a method to estimate the mean of
electricity consumption of unobserved zones, in Chapter 4. This generic approach can estimate
electric consumption from source zones, where fine-grained consumption data is available, to
target zones where exogenous socio-demographic information is available. By using additional
socio-demographic variables available both at source and target zones, this method creates a
link between the two by clustering. The electricity consumption is then estimated by regression
models. This method is validated on synthetic and real electricity consumption datasets.

14
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2.3.3 Matrix-factorization based methods

As suggested by Figure 2.1, the object of interest in this thesis can easily be represented in a
matrix form. In Chapters 5 to 9, we propose a general framework based on matrix factorization,
which solves the estimation problem of Figure 2.1.

To do this, we first extend nonnegative matrix factorization (NMF) to the matrix recovery
context where the observations are general linear measurements of the matrix, instead of matrix
entries. In Chapter 5, we describe this extension, and discuss several applications that can be fit
into this framework. In addition, we also discuss the recent literature on the global convergence
of matrix factorization in the nonnegative case.

In Chapters 6 and 7, we propose two ways to include additional information in NMF. In
Chapter 6, we pay especially attention to temporal aggregate data. We propose an efficient
algorithm for this data representation, which is guaranteed to converge to a stationary point.
We also provide another version of this algorithm, which takes into account the autocorrelation
of the consumption of each individual. The utility of these two algorithms are illustrated on
synthetic and real electricity consumption datasets, in comparison to reference methods.

In Chapter 7, we propose an extension that takes into account side information: additional
time and individual-dependent features. By adding a regression layer into the NMF framework,
the algorithm proposed in this chapter can be applied to many application problems. In par-
ticular, it can be used to produce electricity consumption predictions for new individuals, from
only partially observed consumption data. The experimental study on several datasets shows
that this method has very good empirical performance, compared to reference methods.
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In this chapter, we are interested in the following setting: electricity consumption data are
available as individual aggregations, at a fine temporal scale. We want to estimate aggregations
that are different from that of the data. We use tools from spatio-temporal statistics, and formu-
late this problem as a change-of-support problems . That is, we model electricity consumption
as a spatially-indexed random process, and deduce estimations in this framework.

3.1 Introduction to spatial statistics

In spatial statistics, we study the properties of a social or natural phenomenon indexed by its
location. In formal terms, the subject is a possibly multivariate random process {Z(s)} with its
index in a domain of interest D:

{Z(s) : s ∈ D},

where D is often a subset of R2 or R3.

In general, both the position s and the variable of interest Z(s) can be random. Here is of
primary interest the case where the locations are fixed. According to the categorization adopted
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by [41], with a fixed set of positions {s}, the data Z(s) emitted by a stochastic process is called
geostatistical data.

When the value of Z on a partition of the domain D is of interest, the aggregation or average
of Z on small areas is often studied. In this case, the stochastic process is studied on a partition
of D, namely a collection of pairwise disjoint subsets {Di}i=1,2,...,n. This is called areal data
analysis.

In this chapter, a particular class of questions addressed in spatial statistics, change-of-
support problem (COSP), is considered. Areal datasets from different sources are often defined
on overlapping spatial partitions. Therefore, in order to merge these datasets and study the
mutual influence of different phenomena, it is necessary to transfer a dataset from one spatial
support to another.

In this section, the basic assumptions of spatial statistics is presented. This section is brief,
mostly following [41], where a thorough presentation of spatial statistics can be found.

In Section 3.2, methods of univariate COSP are presented. The most important of these
is a method called kriging, derived from the geostatistics literature. A few areal interpolation
methods other than kriging are presented in Section 3.2.3. In Section 3.3 and Section 3.4, these
methods are generalized in the multivariate and spatio-temporal context. Finally, Section 3.5
shows a small empirical study of the methods presented.

3.1.1 Basics in geostatistics

As mentioned above, geostatistics is focused on a random process {Z(s)} indexed by its fixed
location s. The domain of interest D, of permissible values for s, is a subset of Rd (in practice,
d = 2 or 3). A realization of this random process is the observed value of Z, z1, z2, ..., zn, at a
number of locations: s1, s2, ..., sn.

The random process model works well for applications in geology, mining, and environmental
science, where a natural phenomenon, for example the ore reserve or air pollution, is measured
by sensors at several locations, and something is to be said about the whole area.

The random distribution of a stochastic process is defined by a probability measure on the
function space {f : D → R}, which can be very general. We will focus on Gaussian processes,
namely, for any number of positions {s1, ..., sn}, the joint distribution of {Z(s1), ..., Z(sn)} is a
multivariate Gaussian. A Gaussian process is completely characterized by its first two moments:

• a mean function m : D → R, such that m(s) = E(Z(s)),∀s ∈ D,

• and a covariance function C : D×D → R, such that c(s1, s2) = cov(Z(s1), Z(s2)), ∀s1, s2 ∈
D.

Similar to time series analysis, which is a statistical analysis based on a stochastic process
index by an interval of R, reasonable assumptions of stationarity have to be made while analyzing
geostatistical data. Several kinds of stationarity is defined in spatial process.

One useful assumption to consider is second-order stationarity. {Z(s)} is second-order sta-
tionary if

• E(Z(s)) = µ, which is a constant for all s ∈ D;

• there is a covariance function C(·) such that cov(Z(s1), Z(s2)) = C(s1 − s2).

Additionally, if C(s1 − s2) is in fact only a function of ‖s1 − s2‖, then this process is isotropic.
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A less strict assumption is intrinsic stationarity. {Z(s)} is intrinsically stationary if

• E(Z(s)) = µ, which is a constant for all s ∈ D;

• there is a variogram function γ(·) such that Var(Z(s1)− Z(s2)) = 2γ(s1 − s2).

Additionally, if 2γ(s1 − s2) is in fact only a function of ‖s1 − s2‖, then this process is isotropic.

All second-order stationary process is intrinsically stationary because if the process has a
covariance function C(·), then

Var(Z(s1)− Z(s2)) = E[(Z(s1)− Z(s2))2]
= E(Z(s1)2) + E(Z(s2)2)− 2E(Z(s1)Z(s2))
= C(0) + µ2 + C(0) + µ2 − 2(C(s1 − s2) + µ2)
= 2C(0)− 2C(s1 − s2)
≡ 2γ(s1 − s2).

Conversely, not all intrinsically stationary processes are second-order stationary. Consider the
Lévy Brownian motion with d parameters {B(s)}. The variogram is well defined: Var(B(s1)−
B(s2)) = ‖s1 − s2‖. However, cov(B(s1), B(s2)) = ‖s1‖ + ‖s2‖ − ‖s1 − s2‖, which is not
a function of ‖s1 − s2‖ ([41, p. 68]). In univariate kriging, we mostly consider intrinsically
stationary processes, and thus studying variograms and not covariances, while in multivariate
and spatio-temporal context, covariance function is preferred.

3.1.2 Variogram

For a function C or γ defined on D with values in R to be a covariance function or vari-
ogram, it must satisfy that for any n points in D: s1, ..., sn, the variance-covariance matrix
(cov(si, sj))1≤i,j≤n is positive semi-definite. For stationary processes, this is equivalent to con-
ditional negative-definiteness on variograms:

∀a1, ..., an ∈ R not identically zero, such that
n∑
i=1

ai = 0,
n∑
i=1

n∑
j=1

aiajγ(si − sj) ≤ 0.

We should notice that a function that is only semi-definite positive but not definite positive
can still be a valid covariance function for a stationary Gaussian process. This means that,
in general, the variance-covariance matrix (cov(si, sj))1≤i,j≤n for n distinct points s1, ..., sn can
be singular. However, it would be convenient (for kriging, for example) if we could restrict
covariance matrix to be non-degenerate. Fortunately, this is the case for all covariance functions
considered below ([42, p. 64] shows a sufficient condition for this to be satisfied).

Covariance functions or variograms are important in the specification of a spatial model,
because their regularity implies the regularity of the random process (see [43] for more thorough
treatment). For instance, a stochastic process is continuous in mean square at a position s?, if
and only if c(s, s′) is continuous at s = s′ = s?. As a reminder, mean-square continuity means
that E(|Z(sn)− Z(s?)|2)→ 0 for all sequence (sn)n convergent to s?. For a stationary process,
this is equivalent to the covariance function C being continuous at 0.

In a similar fashion, the k-th order partial derivative ∂kZ(s)/∂si1 ...∂sik exists as a mean
square limit, if and only if ∂2kC(s)/∂2si1 ...∂

2sik exists at s = 0.

Several classes of covariance functions are extensively studied and commonly used in the
Gaussian process and spatial statistics literature. When studying an isotropic covariance func-
tion, two parameters are often considered
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• the sill, which is C(0), the value of the covariance function at 0;

• and a scale parameter, sometimes called the range, which is the minimal distance at which
we can consider that the covariance is 0.

For a semivariogram, the sill is the maximal semivariance, and the range is the distance at which
the semivariance stabilizes to the sill.

Below, a number of common isotropic stationary variograms are presented (see, for example,
[44, Chp. 5] for other variograms). Note that all of these variograms are isotropic regardless of
the dimension of the index space, which is not true for general covariance functions.

• Exponential variogram: γ(h) = c(1− exp(−h
a )), where c is the sill, a is a scale parameter,

controlling how quickly γ(h) approaches the sill. The range of exponential variogram is
+∞ in theory. Since its derivative at 0 is not zero, this variogram is appropriate for
processes with high variation at a small scale.

• Gaussian variogram: γ(h) = c(1 − exp(−h2

a2 )), where c and a are the sill and the scale
parameter. The major difference with exponential variogram is that, seen as a function
defined on the real line, Gaussian variogram is infinitely differentiable at 0. Therefore, the
associated process is also infinitely differentiable in mean square.

• Matérn variogram: γ(h) = c(1− 21−2ν

Γ(ν) (
√

2νh
a )νKν(

√
2νh
a )) (see [45] for more detail). Addi-

tionally to the sill and the scale parameter, Matérn class of variograms has a regularity
parameter ν (Γ(·) and Kν(·) are the gamma function and the modified Bessel function of
order ν). An interesting property of Matérn variogram is that the associated process is
k-times mean square differentiable for all k < ν. Therefore, by setting the value of ν, the
regularity of the stochastic process is controlled. Another feature is that when ν = p+ 1

2
where p is an integer, the general formula becomes the product of an exponential function
with a p-order polynomial.

• Nugget effect: γ(h) = b if h 6= 0 and γ(0) = 0. The nugget effect is often added to
other variograms. If it is used alone, the random Gaussian process is a white noise,
with no spatial correlation. The nugget effect is introduced into spatial modeling because
empirically, an estimated variogram rarely has 0 value at h = 0. It is often interpreted as
resulting from a measurement error on the data.

The discussion above established that variogram is a useful tool in geostatistics. However,
in most empirical problems, the variogram is unknown. It has to be estimated from the data,
before being used in an application.

Without imposing a functional form for the covariance, one can begin by estimating an
empirical variogram. The semivariance at different distances is estimated on the data, while the
analytical formula of the variogram is not explicit. In the pioneer work of Matheron [46], the
following estimator is proposed:

2γ̂(h) = 1
|N(h)|

∑
N(h)

(Z(si)− Z(sj))2, N(h) = {(i, j)|si − sj = h}.

For irregularly spaced data, we can either be interested in the scatter-plot of semivariance with
respect to distance, or group pairs of observations into bins of distance.

To conduct a spatial statistics study, the empirical variogram is estimated and visually
examined first. This helps to decide on the family of covariance function, and whether or not to
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adjust the anisotropy. In a second place, a chosen parametric covariance function model fitted
on the data. This establishes an estimation of covariance between all potential points and can
be used later in kriging.

3.2 Kriging in univariate change of support problem

3.2.1 Kriging

An important task in spatial statistics is the prediction of the variable of interest at locations
not present in the data. Under different contexts, the interpolation of spatially-index data is
called kriging, Gaussian process regression, or Wiener–Kolmogorov prediction. This and the
next section present the basic techniques of kriging. More detailed description of these methods
can be found in many reference books or lecture notes ([41], [47]).

As in time series, the kriging predictor falls under the category of best linear unbiased pre-
dictor (BLUP). Namely, it is a weighted average of the data, with expected value equal to that
of the process at this location, of minimal mean squared residuals.

Consider a Gaussian process {Z(s) : s ∈ D}, with mean functionm and stationary covariance
function C. This actually means that the residual component of the process, Z(s)−m(s) ≡ R(s)
is a second-order stationary process of mean 0 and of covariance function C. Suppose that this
process is observed at n different locations {s1, ..., sn}. An unbiased linear predictor Ẑ of Z at
location s has the form:

Ẑ(s)−m(s) =
n∑
i=1

λi(Z(si)−m(si)),

where λi is the weight of the i-th observation. Define the residual of the estimator by R̂(s) ≡
Ẑ(s) −m(s). The weights are then to be determined in order to minimize the quadratic risk,
E[(Ẑ(s)− Z(s))2] = Var(Ẑ(s)− Z(s)) = Var(R̂(s)−R(s)).

The three kriging methods presented in this section differ in their treatment of the mean
function m(·). An empirical comparison of these methods on the log-density of population can
be found in Section 3.5.

Simple kriging The simplest case of kriging is called simple kriging. In this scenario, the
intrinsically stationary process {Z(s) : s ∈ D} considered has a constant known expected value,
m(s) = µ, for all s ∈ D. The quadratic risk can be written as:

Var(R̂(s)−R(s)) = Var(
n∑
i=1

λiR(si)−R(s))

= Var(
n∑
i=1

λiR(si)) + Var(R(s))− 2cov(
n∑
i=1

λiR(si), R(s))

=
n∑
i=1

n∑
j=1

λiλjC(si − sj) + C(0)− 2
n∑
i=1

λiC(si − s).

The minimization of the quadratic risk is an unconstrained quadratic optimization that can
be solved analytically. Note by λ = (λ1, ..., λn)T the column vector of weights, K = (C(si −
sj))1≤i,j≤n the matrix of mutual covariance between locations, and k = (C(s1−s), ..., C(sn−s))T
the column vector of covariance between s and the observations. Because of the positive-definite
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property of C, the matrix K is also positive definite, and therefore invertible. Then it becomes
clear that minimizing the quadratic risk is equivalent to minimizing

λTKλ− 2λTk = (λ−K−1k)TK(λ−K−1k)− kTK−1k.

The optimal weights is therefore λ = K−1k.

It can be noticed that the optimal weights do not depend on the value of observations Z(si),
only the covariances.

In practice, if a large number of observations are available, the inversion of matrix K can
be cumbersome. There might also be numerical problems with covariances calculated on an
estimated variogram. In that case, a form of local kriging can be considered, where only the
closest neighboring observations are used to provide prediction of a given location. The procedure
remains essentially the same.

Ordinary kriging In the ordinary kriging case, the mean function of the Gaussian process,
m(s) is unknown. An additional assumption of constant local mean is added: for all neighboring
locations involved in kriging, the expected value is unknown but constant. Namely, for all
1 ≤ i ≤ n, m(si) = µ = m(s), where µ is an unknown parameter. One way to specify a linear
predictor

Ẑ(s)− µ =
n∑
i=1

λi(Z(si)− µ)

without actually knowing µ is to impose that
∑n
i=1 λi = 1, so that Ẑ(s) =

∑n
i=1 λiZ(si).

In this case, the quadratic risk is minimized under the linear equality constraint 1Tλ = 1.
The minimizer of this problem is the solution of the linear system(

K 1
1T 0

)(
λ
α

)
=
(

k
1

)
,

where α is a Lagrange multiplier to impose the constraint.

Universal kriging Now generalize the model to include a p-dimensional explanatory variable
x(·) available everywhere in D, especially at observation locations and the kriging target. The
mean function has the form

m(s) = x(s)Tβ, ∀s ∈ D,

where in x(·) there is potentially a constant component, and β is an unknown regression coeffi-
cient vector.

Similarly to ordinary kriging, we need to specify

Ẑ(s)− x(s)Tβ =
n∑
i=1

λi(Z(si)− x(si)Tβ),

without knowing β. This is equivalent to specify Ẑ(s) =
∑n
i=1 λiZ(si) under the constraint

x(s) =
n∑
i=1

λix(si) ≡ Xλ,

where X is a p-by-n matrix combining explanatory variable at all observations.
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This constraint leads to a p-dimensional Lagrange multiplier α. The minimizer of quadratic
risk under the constraint is the solution of the linear system(

K XT

X 0

)(
λ
α

)
=
(

k
x(s)

)
.

Variance of kriging predictors Because the processes are specified as Gaussian, the variance
(which is equal to the quadratic risk in the case of unbiased predictor) of a linear interpolation
method can be calculated with ease. In the case of kriging methods presented above, it only
depends on the position of the observations and predictions, and not on the value. This provides
a measure of uncertainty in the predictions obtained by kriging methods.

3.2.2 Block kriging

Kriging methods are the most elementary way to extrapolate observations to unobserved posi-
tions. However, to solve the change of support problem, one often needs to deal with average
value of a process on areal support. To deal with this scenario, block kriging can be used.

Consider n disjoint areas in the domain, B1, ..., B1 ⊂ D. The observations are the average
of the process Z(·) on these are:

Z(Bi) =
∫
s∈Bi

Z(s)ds, ∀1 ≤ i ≤ n.

These integrals are defined with minimal regularity (for example Z(·) being continue on path
and Bi compact. This is the case for all covariance functions considered in this document). The
target of kriging, Z(B), is the average on a new area B.

Because of the linearity of the averaging operation, the calculation in the previous section
applies naturally on the case of block kriging, with minimal assumptions of regularity. Instead
of covariance between points, integrals of the covariance function on areas are now used:

C(Bi, Bj) =
∫
Bi

∫
Bj

C(si − sj)dsidsj .

In universal block kriging (the most general case), the explanatory variables also need to be
integrated. In that case, the optimal linear weights λ are the solution of the linear system(

K XT

X 0

)(
λ
α

)
=
(

k
x(B)

)
,

where the elements of K, X, and k are all integrated.

In order to solve this kriging equation, it is necessary to insure that the block covariance
matrix, K, is invertible. This can be difficult for general covariance models.

In practice, integrals of the covariance function can be approximated numerically by dividing
the areas on a regular grid. To limit the time spent on these integrals, it is often interesting to
use local kriging.

Bayesian estimation and prediction Although the geostatistical methods are presented
here in a frequentist point of view, Bayesian estimation is actually rather prevalent in the
spatial statistics literature. Because of the hierarchical nature of spatial and spatio-temporal
models, Bayesian estimation methods such Markov chain Monte Carlo (MCMC) algorithms are
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very popular in applied studies (see [48], [49] for a detailed description of these methods and
numerous examples). However, such methods can be intricate to implement, and by definition
MCMC is often expensive in computation time. This makes MCMC methods difficult to scale.

3.2.3 Areal interpolation beyond kriging

Areal interpolation Historically, the area-to-area change of support problem is solved by
areal interpolation [50], without explicit generative modeling assumptions. In this procedure,
the interpolation weights are obtained proportionally to the area of the blocks considered.

This line of methods is further extended [51] into areal regression models, where the re-
lationship between a co-variable (known everywhere) and the variable of interest is estimated
in a regression model. This relation is then used to produce estimation of the variable on an
overlapped area. Areal regression models are generalized in a Bayesian context by [52]. For
more historic context in general change of support problems, see [53].

Spatial statistical model on areal data A more model-based approach to solve areal in-
terpolation is by considering the observations as the average value of the variable of interest,
Z(D1), ..., Z(Dn), on a collection of subsets, D1, ..., Dn, of the domain D. ([41, Chap. 6], [54,
Chap. 9], [48, Chap. 4]).

Instead of deriving a block correlation matrix by integrating on an underlying Gaussian
process, as in block kriging, in this approach, the relationship between area is derived directly
from the spatial relationships of the blocks. The blocks are viewed as vertices of a graph, whose
edges can be defined on either contiguity or by setting a distance threshold. The edges can also
be weighted according to relevant criteria of the variable of interest [54].

Once the covariance structure of blocks is specified, the joint distribution of Z(D1), ..., Z(Dn)
can be estimated from the data. Often, the Markov property is assumed for the process, so that
the theory of Markov random field can be used in the model specification and estimation (see
[48] and references within for a more detailed exposition). Moreover, it is often possible to infer
the distribution of the value on a target block, given the estimated model. This provides an
interesting way to solve area-to-area change of support problem, especially when combined with
Monte Carlo simulations ([55, Chap. 7]).

Multi-scale models Additional structure can be added into a spatial model on areal data
to fit multi-scale data. Tree models are particular adapted for integrating data from several
resolutions ([56], [57]). The connection between different grid levels is introduced to link multiple
nested spatial areal models, under the same graphical model representation. Because of the
complexity of the model, this line of research mostly uses Bayesian methods for estimation and
prediction.

3.3 Multivariate kriging

In universal kriging, exogenous variables are used to explain the mean of the interpolated vari-
able. One way to generalize this model is to include the spatial covariance between different
variables. This technique, called cokriging, has a wider range of application as we will see in
this section.
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3.3.1 Cross-covariance

Formally, cokriging studies a Gaussian process {Z(s) : s ∈ D} indexed s in the domain D, and
with values in Rd, where d is the number of variables in question. Similarly as in Section 3.1, we
define a multivariate Gaussian process as second-order stationary if it has constant mean and a
stationary cross-covariance function:

• E(Z(s)) = µ, for all s ∈ D;

• there is a cross-covariance function C(·) such that cov(Z(s1),Z(s2)) = C(s1 − s2), for all
s1, s2 ∈ D.

In this definition µ is a d-dimensional vector, and C(s1 − s2) is a d-by-d matrix. Note that the
covariance function C(·) is not restricted to be symmetric: in general, cov(Zi(s + h), Zj(s)) 6=
cov(Zj(s+ h), Zi(s)), for 1 ≤ i < j ≤ d.

Similar to the univariate case, not all matrix-valued function can be a valid cross-covariance.
The following properties need to be verified:

• the limit of C(h) at h = 0 has to be positive definite;

• cov(Zi(s+ h), Zj(s)) = cov(Zj(s), Zi(s+ h)), in other words C(h) = CT (−h);

• generally, for any n points in D, s1, ..., sn,

∀a1, ...,an ∈ Rd,
n∑
i=1

n∑
j=1

aTi C(si − sj)aj > 0.

Cross-covariance functions are a more complicated object than covariance. In particular, it is
difficult to build matrix-valued functions satisfying the three properties mentioned above. Two
methods are presented below. The rest of approaches are readily available in references (for
example in [49, Chap 9]).

Separable model C(h) = ρ(h)T, where ρ(·) is a univariate correlation function (ρ(0) = 1),
and T is a symmetric positive-definite matrix. This model is easy to understand and to estimate,
but it can be too strong in practice: the cross-covariance is necessarily symmetric, and all
variables have a single spatial-correlation range (that of ρ).

Linear model of coregionalization We make the assumption that Z(s) = Aw(s), with
A a d-by-d full rank matrix, and w(s) a d-dimensional Gaussian process with independent
components and unit variance. The cross-covariance of Z(·) is then

C(h) =
d∑
i=1

ρi(h)AiATi ,

with ρi(·) the correlation functions of wi. The cross-covariance matrix is still symmetric, but
each component in Z(s) has a distinct covariance function.

The estimation of linear coregionalization model can be achieved either by an iterative least
square method (alternatively vary the parameters in individual correlation functions, and in the
matrix A, see [58]), or integrated into a global Bayesian context [59].

In the multivariate case, intrinsically stationary processes are less considered. In fact, the
natural generalization of variogram is the cross-variogram Var(Z(s1) − Z(s2)). This matrix is
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always symmetric whether the cross-covariance is symmetric. In order to have an object that
contains as much information as the cross-covariance, a pseudo cross-variogram is defined as
(Var(Zj(s1)−Zi(s2)))1≤i,j≤d [60]. This quantity arises naturally in the variance of the cokriging
predictor as the variogram in univariate kriging.

3.3.2 Cokriging

Once specification and estimation of cross-covariance is pinpointed, the cokriging equation itself
can be derived in a similar fashion as in universal kriging.

Under constant mean, a linear predictor of one component Z1 of Z at s, with data available
at s1, ..., sn, is of the form

Ẑ1(s)− µ1 =
n∑
i=1

d∑
j=1

λij(Zj(si)− µj).

In order to eliminate the unknown means and guarantee unbiasedness, the linear constraints,

n∑
i=1

λi1 = 1,
n∑
i=1

λij = 0, ∀2 ≤ j ≤ d,

are imposed.

The quadratic risk minimization leads to a similar matrix equation as in ordinary and uni-
versal kriging with bigger matrices. Note by K the nd-by-nd cross-covariance matrix,

K =


K11 K21 · · · Kd1
K12 K22 · · · Kd2
...

... . . . ...
K1d K2d · · · Kdd

 ,

where Kij is a n-by-n cross-covariance matrix between the i-th and j-th component of the
process, on the n positions of the data. The kriging coefficients and covariance between target
position and available positions are stacked into nd-dimensional vectors in a corresponding
fashion, namely,

λ =



λ11
λ21
...
λn1
λ21
...
λnd


, k =



cov(Z1(s), Z1(s1))
cov(Z1(s), Z1(s2))

...
cov(Z1(s), Z1(sn))
cov(Z1(s), Z2(s1))

...
cov(Z1(s), Zd(sn))


.

By defining a d-dimensional Lagrange multiplier α, the kriging equation is(
K Id ⊗ 1

Id ⊗ 1T 0

)(
λ
α

)
=
(

k
e1

)
,

where Id ⊗ 1 is the Kronecker product between the d-by-d identity matrix and a n-dimensional
unit vector, and e1 is the first vector of canonical basis in Rd.
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3.4 Change of support in spatio-temporal model

3.4.1 Spatio-temporal covariance and kriging

As in the spatial case, the key to spatio-temporal kriging is the specification of covariance
function model. [48, Chap 6] is a recent review of methods in this vein. Here we will focus on
the two principal ways to integrate the temporal component into the spatial Gaussian process.

Continuous-time spatio-temporal model Continuously indexed time can be viewed as an
additional dimension in the index of the Gaussian process. For an interval I of R, the spatio-
temporal process is

{Z(s, t) : s ∈ D, t ∈ I}.

A second-order stationary spatio-temporal process has a constant mean, and a stationary co-
variance function C(h, τ) = cov(Z(s, t), Z(s+ h, t+ τ)), for all s ∈ D, t ∈ I.

As in the purely spatial case, the covariance function has to be positive-definite. The most
direct way to achieve this is to treat time as an additional dimension of the index space, and
use one of the spatial covariances mentioned in Section 3.1. The underlying assumption would
be that time is a dilated dimension, which is often not the case.

A separable spatio-temporal covariance is one that verifies C(h, τ) = C1(h)C2(τ). This can
be insufficient. Typically, if we want to obtain the value of the variable of interest at a moment
t at a location s, and if this variable is observed at every other location except s, observations
at other moments can simply be tossed away, since just doing spatial kriging already gives the
optimal estimation. This condition is often too restrictive, for example, to model the propagation
of a wave across the spatial domain.

To generalize a separable spatio-temporal covariance, we can notice that the sum or prod-
uct of valid covariance functions are still valid covariance function ([48, Theorem 6.1]). This
procedure allows us to produce non-separable but fully symmetric covariances easily. These
covariance functions are called product-sum models. They are usually defined as C(h, τ) =
C1(h) + C2(τ) + kC1(h)C2(τ), with a joint parameter k, given spatial covariance C1(h) and
temporal covariance C2(τ).

The most general way to specify spatio-temporal covariances is to start from a positive
spectral measure. As seen in Section 3.1, there is a correspondence between positive-definite
functions and positive measures in the frequency space. Therefore, covariance functions can be
specified as inverse Fourier transform of positive measures. Moreover, [61] showed that for a
function α : (ω, τ) 7→ α(ω, τ) defined on Rd × R, that is positive-definite in τ , the function

C(h, τ) =
∫

ei<h,ω>α(ω, τ)dω, h ∈ Rd, τ ∈ R,

is a positive-definite function in Rd×R. This is an easy way to construct very general covariance
functions.

Fitting spatio-temporal functions to data can be done in a similar way as in cokriging,
although given the complexity of the model, Bayesian methods are preferred in this context.

Discrete-time spatio-temporal model Time can also be seen as discrete. For each position
si in the data, a discrete time series {Zt(si), t = 1, 2, ..., T} is observed. Often, such situation
arises when the data is on a regular temporal rhythm.
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Without assumption on temporal stationarity, the covariance structure can be treated in
the same way as cross-covariance in cokriging. If temporal stationarity is assumed, then lagged
auto-covariance can be estimated on averaging pairs of observations of the same lag.

More sophisticated dynamic models can be considered with an appropriate physical phe-
nomenon, but that would be beyond the scope of the present document (see[Chap 7] [48] and
references there within for details).

Computational issues in spatio-temporal kriging Once the covariance function is esti-
mated and applied on the data, the kriging equations is exactly the same as in cokriging. The
most important issue in this approach is scalability. Indeed, solving for the kriging weights needs
the inversion of the matrix K. In a multivariate dataset, K is of dimension nd-by-nd, whereas
in a spatio-temporal dataset, it is nT -by-nT .

3.5 Application

In order to test the geostatistical methods presented before, two illustrative examples (one purely
spatial kriging, and one of spatio-temporal kriging) are presented next. The kriging methods
used are implemented in the gstat package in R. The research article [62] is a presentation of
this package. [63] is a general presentation of spatial data analysis in R.

3.5.1 Variogram of the density of population in Lyon

In the following, the logarithm of population density (population divided by area) of IRIS in
Lyon is used as an illustrating example (Figure 3.1). An IRIS (Ilots Regroupes pour l’Information
Statistique) is an administration zone division of approximately 2,000 habitants, used by the
French official statistics department (INSEE). The logarithm of population density of an IRIS
is calculated as

log10
Population in the IRIS
Area in the IRIS (km2)

.

The domain of interest is included in an approximately 10km-by-10km square. Eache IRIS is
colored with a color scale that correponds to its population density. As we can see, this data has
some obvious discontinuity on the frontier of the IRISes. In the rest of this section, we suppose
this density is attached to the geometric center of each IRIS, and try to find an estimation for
each point in the area.

Suppose that the model is isotropic (the case of anisotropy is often resolved by applying
a re-scale on some axes). Figures 3.2 and 3.3 shows the boxplots of semivariance of distance
smaller than 5000 meters, grouped in 15 bins, and the empirical variogram, calculated for the
15 bins.

As can be seen in Figures 3.2 and 3.3, an isotropic variogram is often an increasing function
on the positive real line. Actually, γ(·) is a symmetric function with respect to h = 0 defined
on the real line. Therefore, when γ is differentiable at 0, its derivative at 0 has to be 0 too. It
can also be noticed that the semivariance somewhat stabilizes after a period of rapid increase.
This maximal semivariance is the sill in the geostatics literature. The distance h at which
the semivariance stabilizes is the range. On the corresponding covariance function, this is the
minimal distance at which the spatial correlation practically disappears.

Figure 3.4 shows the values of exponential, Gaussian, and a 1.5-order Matérn variogram with
the same range and sill. The graphics are generated by the gstat Package in R [62].

30



3.5. APPLICATION

0km 2.5km 5km

Log−density of population

0

1

2

3

4

Figure 3.1: Log-density of population in Lyon.
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Figure 3.2: Cloud of empirical semivariance log-density of population
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Figure 3.3: Empirical variogram log-density of population
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Figure 3.4: Variogram models included in ‘gstat‘

Table 3.1: Estimated parameters of variogram models

Nugget (b) Sill (c) Scale (a)
Exponential 0.015 4.469 236729.503
Gaussian 0.019 0.075 3238.211
Matern 0.020 0.215 3731.366

Once the geostatistician made a decision on which variogram to use, a fitting method is
used to estimate the parameters in the variogram model. Several methods are studied and
implemented in statistical softwares (for example gstats). These methods are mostly maximum
likelihood methods, based on the Gaussian assumption of the data, or some weighted version
of least square estimation, by minimizing a squared empirical risk. Figure 3.5 shows these
variograms models on the log of population density, estimated by the default fitting method
implemented in gstat (least square weighted by the number of observation points divided by
squares of the distance). The estimated sill, nugget, and scale parameters are reported in Table
3.1.

3.5.2 Kriging of a univariate variable

A 100m-by-100m grid is created on the original spatial domain. Figure 3.6 shows the log-density
of population assigned to the geometric center of each IRIS. The population density of other
squares are estimated by universal kriging described in Section 3.2: the mean of the Gaussian
process is assumed to be constant but unknown.

Figure 3.7 shows the kriging predictions for each little squares on the grid. The three
estimated variograms of Figure 3.5 are used. In comparison, a linear interpolation based on
triangulation of the data points is also shown. Note that in linear interpolation, only points
within the convex hull of the data points are evaluated.

The kriged value surface is smooth for all three variogram models, much smoother than
linear interpolation. Although the exponential covariance is not differentiable at zero (therefore
the kriged value surface is not differentiable either), it is only slightly less smooth than Gaussian
and Matérn covariance models. At points where observations are available, there is sometimes
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Figure 3.5: Fitted variogram models
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Figure 3.6: Grid on the domain of interest. The log-density of population is assigned to the square
containing the geometric center of each IRIS.
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Figure 3.7: Kriging prediction value of log-density of population.
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Figure 3.8: Kriging variance of log-density of population.

a discrepancy even with its nearest neighbors, for example the geometric center of the most
southern IRIS.

Figure 3.8 shows the kriging variance for the grid. The variance is evidently larger at the
edge of the domain of interest: the distance with any observations being larger, little information
is provided for these points.

3.5.3 Block kriging

The data used in this example is area-based. The reported log-density of population is the mean
of the IRIS. Therefore, the point kriging method used in the previous section is a simplification
of the actual data. In this section, block kriging and areal interpolation is compared to the last
previous. The kriging target is the collection of blocks obtained by triangulation of the position
of local substations.

As presented in Section 3.2, the major difference between block kriging and classical point-
to-point kriging, is that the covariance function is evaluated and integrated on the source and/or
target blocks. In gstat package, a numerical approximation is introduced to calculate point-to-
area covariance, by dividing target blocks on a grid. For the moment, block-to-block covariance
is not implemented in the kriging feature of the package.

To be the most accurate, with area-based data, the covariance model should be fitted con-
sidering the empirical covariance as block-based as well. Here the point-based fitted covariance
models are used.

In Figure 3.9, the kriged mean value of target blocks are shown, so are the IRIS frontier (the
source data are assumed to be point-based). Similar to the previous section, areal interpolation
produces a value surface that is much less smooth than the kriged value surface. Exponential
covariance is the least smooth of the three covariance functions, but the difference is rather
small.

In Figure 3.10, the variance of kriged value is shown. Block kriging methods have smaller
variance than point kriging, which is a natural, since it is the block averages that is estimated.

3.5.4 Kriging of spatio-temporal data

In this section, the simulated weekly electricity consumption of MV feeders with local substations
overcrossing IRIS of Lyon for the 2010-2012 period is studied.

The simulations are produced in the following manner. We have the geographical positions of
the low-voltage (LV) distribution transformers connected to the feeders. These transformers are
therefore positioned inside the boundaries of each IRIS. For each transformer, we choose a client
type according to socio-demographic information of the IRIS: the ratio between the number of
apartments and contractual power (CP), and the ratio between the number of warehouses and
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Figure 3.9: Block-kriging value of log-density of population.
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Figure 3.10: Block-kriging variance of log-density of population.

CP. Using these two ratios, the transformer is assigned a client type whose hourly consumption
time series is then simulated with regulated French profiles of typical consumers [64]. We
plug real local temperature and calendar variables for the 2010-2012 period into the profiles
to simulate hourly consumption shape of each LV transformer, and multiply it by the total
contractual power of the transformer. The IRIS aggregation is calculated by summing over
transformers insider its boundary, while the feeder aggregation is obtained by summing over
transformers connected to it. The weekly consumption is obtained by taking the averages over
hourly simulations. This dataset is also used in the next chapter. See Section 4.3.1 for more
details on the simulation process.

The data spans 156 weeks (three years), and 114 MV feeders are included. Figure 3.16 shows
the first four periods of data.

To understand the temporal profile of the data, the spatial average of the 122 time series
is studied. This mean series has a strong periodic pattern (Figure 3.11a). Given the sample
autocorrelation and partial autocorrelation (Figure 3.12), an AR(9) model with an annual cycle
(Figure 3.11b) is chosen to estimate the spatial averages. A period of 9 weeks is used since it
is large enough to cover seasonal dependency. We can see that the annual cycle explains quite
well the time series of spatial averages.

We first apply purely spatial block kriging to each of the four periods (with the temporal
trend removed), before comparing spatio-temporal kriging to this benchmark. Figure 3.13 shows
the empirical variogram and a fitted order-1.5 Matérn variogram model for each of the four weeks.
The parameters of the fitted variogram model are reported in Table 3.2. It can be observed that
the variograms are different for the four weeks, which suggests a joint spatio-temporal modeling
of such a covariance structure can be difficult.

An empirical spatio-temporal variogram is estimated on the data, minus the fitted time
series model (the leftmost panel in Figures 3.14, 3.15). The semi-variance increases quickly and
plateaus out once the spatial distance exceeds a threshold of less than 1000 meters, suggesting a
rather small spatial covariance. On the contrary, increase temporal lag does not increase much
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Figure 3.11: Spatial average of the weekly consumption and an autoregressive model fitted on it.
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Figure 3.12: Autocorrelation and partial autocorrelation function.

Table 3.2: Estimated parameters of Matern variogram models for the first four weeks of consumption
data

Week Nugget (b) Sill (c) Scale (a)
1 0.244 0.081 633.972
2 0.252 0.143 631.750
3 0.283 0.111 455.967
4 0.258 0.137 440.876
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Figure 3.13: Spatial variograms fitted on the four weeks separately.
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Figure 3.14: A wireframe plot of the empirical and fitted spatio-temporal variogram.

the semi-variance, suggesting high temporal covariance.

Two spatio-temporal variogram models are fitted by fit.StVariogram function in gstat,
one separable model and one sum product model (Table 3.3). Both model constructions are
provided in gstat tool box. The separable model has a joint sill, while the spatial and temporal
components have unit sills (as the sum of nugget effect and a Matérn covariance). The parameter
k in sum-product model is the weight of the product term. In gstat, parameters are optimized
using generic optimization function optim of R. Here the optimization routine is L-BFGS-B, a
quasi-Newton optimization method for box domains.

The fitted variograms can be visually compared in Figure 3.14 and 3.15. It can be noticed
that it is difficult to fit the decrease in semi-variance around 500m, either by separable or sum-
product model. The sum-product model seems more appropriate than the separable model, in
that for large spatial distances, the increase of semi-variance when temporal lag increases is kept
in fitted model.

## min max
## x 402208.4 412869.6
## y 4879405.6 4889993.4

37



CHAPTER 3. SPATIO-TEMPORAL CHANGE OF SUPPORT

distance

ga
m

m
a

0.1

0.2

0.3

1000 2000 3000 4000 5000

separable

1000 2000 3000 4000 5000

productSum

lag0
lag1
lag2
lag3
lag4
lag5
lag6
lag7
lag8
lag9
lag10
lag11
lag12
lag13
lag14
lag15
lag16
lag17
lag18
lag19
lag20
lag21
lag22
lag23
lag24
lag25

Figure 3.15: The empirical and fitted temporal variogram by temporal lag.

Table 3.3: Estimated parameters of spatio-temporal variogram models

Model component Nugget (b) Sill (c) Scale (a)
Separable Space 0.72 0.28 700
Separable Time 0 1 60
Separable Joint sill 0.32
Sum-product Space 0.13 0.04 700
Sum-product Time 0.01 0.06 60
Sum-product Joint k 9.96
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Figure 3.16: Weekly electricity consumption of the MV feeders of the first four weeks.

Table 3.4: Error rates of the kriging estimation compared to the simulation consumption of IRIS (ground
truth)

Separable sumProduct spatialKrige
MAPE 1.614 1.643 1.513
RRMSE 4.479 4.549 4.229
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Figure 3.17: Kriged weekly IRIS electricity consumption of the first four weeks
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Spatio-temporal (point) kriging is applied using the fitted variograms. In Figure 3.17, the
spatio-temporally krigged weekly IRIS electricity consumption is represented. The first and the
third rows of Figure 3.17 are respectively the separable and product-sum model. Because the
kriging computation becomes very expensive for non-separable variograms, only four weeks of
data are used in the product-sum model. The second row shows the purely spatial kriged value
of the same data. In the fourth row, the actual simulated consumption of the IRIS is plotted
(the ground truth).

We observe that compared to the data (Figure 3.16 and the fourth row of Figure 3.17), the
kriging values are much more smooth spatially. The temporal variation between the first week
and next three weeks is also decreased in the kriging results. The separable covariance does the
most spatial and temporal smoothing: the product-sum model seems more smooth spatially on
the third date: there is the least contrast between different dates and areas. The product-sum
model has the least smooth spatial contrast, while purely spatial kriging is somewhere in the
middle.

Error rates of the kriging estimation are shown in Table 3.4. Two error metrics are used here

• the relative root- mean-squared error: RRMSE(x,x∗) = ‖x−x∗‖2
‖2∗‖F ,

• and the mean absolute percentage error: MAPE(x,x∗) = 1
n

∑n
t=1

|xt−x∗t |
x∗t

.

where x∗ is the true vector of dimension n to be estimated, and x is the estimated value.
Indeed, the error rates of the kriging methods are all very high. By examining Figure 3.17, we
realise that the kriging estimations are much too smooth compared to the true value, hence the
high error rates.

In fact, by examining both the data (Figure 3.16) and the instant spatial variogram (Figure
3.13) that the stationary hypothesis, which we adopted from the beginning of this chapter, is not
verified by this dataset. This indicates that although we can obtain an estimation by kriging,
if we only model the variation by the covariance in a stationary process, the quality of the
estimation can not be very convincing.

3.6 Conclusions

Open questions From the above examination of the spatio-temporal statistics methods, it is
seen that:

• An extensive literature in geostatistics and related domain studies the problem of kriging,
and the theoretical foundation of this technique has been greatly enriched in the past 20
years.

• Although there is a developed theory, not all of the methods have been implemented in a
satisfactory way to solve every instance of kriging problems. In particular, block kriging
in a spatio-temporal context, or block-to-block kriging has not really been implemented.
There are two reasons for this lack: the first is the relatively high cost of doing block
kriging, the other is the lack of application of such methods in geostatistics.

• The methods are general quite slow, especially when the models are complex and MCMC
estimation has to be used for estimation.
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Inspirations drawn from the spatial statistics literature for our problem In the rest
of this thesis, the main objective to be achieved is a computationally feasible method for spatio-
temporal interpolation estimating the consumption time series at the IRIS level, from data
collected at another spatial division, probably of a similar level or below. From this preliminary
examination of the literature, spatio-temporal kriging is not well suited for the problem intro-
duced in the introduction, as tempting as this option sounds. Unlike in physical phenomena
studied in geostatistics, electricity consumption is a phenomenon is mainly driven by human ac-
tivities. Thus using appropriate exogenous variables to correctly model the mean function, prob-
ably has more impact to the performance of the methodology, than optimizing over the choice of
spatial covariance structure. Moreover, the computational complexity of spatio-temporal kriging
is generally too high for the applications considered in this thesis. In the previous section, we
were only able to produce spatio-temporal kriging during four periods, whereas in the follow-
ing chapters, experiments are generally conducted for data involving hundreds or thousands of
periods.

However, a number of important lessons are to be kept in mind for the rest of the methods
developed:

• Given an appropriate modeling of the trend, studying the spatio-temporal covariance struc-
ture of the residuals can probably enhance the model, to deliver better performance.

• The exogenous variables used in the trend modeling can be kriged to be estimated at
places different than the data source. This is especially true for weather processes which,
by their nature, has a spatio-temporal covariance structure.

• Even if not applied directly, understanding spatio-temporal kriging techniques is a plus
for fully comprehending spatial data provided by external sources such as Météo France.
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In this chapter, the electricity consumption data is available in the same way as the previous
chapter: individual aggregations different from those that interest us. We’d like to obtain an
estimation of electricity consumption in target zones, not with the auto-regressive structure of
the consumption process, but with additional information of the source and target zones.

4.1 Introduction

Electric consumption at local level - a city, a village or a block - is an important concern for
utilities and grid operators. A grid planner needs load data at a sufficiently small scale to
perform spatial load forecasting to optimize maintenance and investments on the grid. With
increasingly decentralized generation of renewable energy (for instance, wind or solar power),
local consumption is becoming more important for managing the supply-demand balance at the
distribution level. Crossed with telecommunication or other utility data at the same level, local
electricity consumption can help authorities understand local human activities at a fine-grained
temporal level.

In this chapter, we propose a method to estimate past and future electricity consumption
at a small temporal scale for target zones with little or no historical consumption data. Two
cases are of our interest here: 1. for new substations or feeders, historical data is insufficient
for forecasting; 2. for a block or a village, measurements in substations or feeders are not

This chapter is a joint work with Yannig Goude, Georges Hébrail and Nicolas Kong. It is based on the
conference paper [1].
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Figure 4.1: Overlapping of IRIS and area supplied by MV feeders in the 7th municipal district of Lyon.
IRIS are delimited by black borders. Points of different colors represent transformers connected to different
MV feeders - each color corresponds to one MV feeder. In this example, source zones are areas served by
transformers of the same color, and target zones, the IRIS, are the areas delimited by the black lines.

spatially fine-grained enough to supply a direct estimate. To solve these two problems, we
can use consumption data in source zones which are similar to the target zones in terms of
socio-demographics. An illustration of this target/source zone distinction is given in Figure 4.1

Traditionally, spatial load forecasting is focused on the long term, with power system plan-
ning as primary objective [31]. In recent years, thanks to the increasing availability of data,
various methods are proposed to model and to forecast electric load at various temporal and
spatial scales [33]. For aggregated load forecasting from national down to substation level, state-
of-art regression methods achieve satisfactory prediction error, with exogenous variables such as
temperature and calendar variables [32, 65, 66]. However, there is generally a decrease in accu-
racy of these methods when the aggregation level becomes smaller [67, 68], even when historical
data of the target zones are available. Consequently, more complex strategies are proposed to
tackle small-area load forecasting. Reference [34] uses the hierarchy structure in electric grid to
uncover patterns in the distribution network.

We propose to use socio-demographic information to transport consumption data from source
zones to target zones with no or little historical consumption data. The idea is to form clusters
of both source and target zones based on client information or socio-demographical information
from publicly available datasets. We then estimate semi-parametric consumption models for
each cluster, using consumption data only from source zones. These models are then trans-
ported to target zones to estimate consumption for past periods, or to forecast future periods.
Clustering approaches [35, 69–71] are employed on smart meter time series to form consumer
profiles to improve modeling accuracy. Contrary to these methods, we form clusters using socio-
demographics or client information instead of consumption data. This allows us to produce
estimates for target zones without historical data. The number of public datasets has been
exploding for a few years. Many governments now provide detailed demographic, economic, and
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sociological statistics collected at a local scale [72–74]. Our method takes advantage of these
new data to produce new small-area load estimates.

The estimation procedure is explained in Section 4.2. The dataset, the validation procedure,
and an application using real and simulated consumption is presented in Section 4.3.

4.2 Methodology

Our method has two main components: clustering of the geographical zones and consumption
models. In the clustering part, we form clusters of both source and target zones using socio-
demographic and client information. In the consumption model part, for each of the estimated
clusters, we estimate regression models to explain the consumption behavior of the source zones
included in this cluster.

4.2.1 Consumption models

The basic building block of our method is a regression model which explains electricity con-
sumption using temperature and calendar variables. The general model is the following:

E(Yt) = f(Temperaturet) + g(TOYt) + αSRISRt + αXmasIXmast +
9∑

h=1
αhIDayTypet=h. (4.1)

In this regression model, the expected value of electric consumption at time t, E(Yt), is the sum
of several terms:

• f(Temperaturet): a non-linear function of temperature at time t;

• g(TOYt): a non-linear function of time of the year (TOY), which is the proportion of the
year between January 1 and the day in question (0 on January 1st and 1 on December
31st);

• αSRISRt , αXmasIXmast , αhIDayTypet=h: three additional dummy variables for periods with
special electricity rates (SR), periods included in Christmas holidays (Xmas), and a 9-
category day type (seven days of the week, plus two types of public holiday). The boldface
I is a variable that is equal to 1 when the index is true, and 0 otherwise.

To fit the consumption model on data, we need to specify how the non-linear functions
f(Temperaturet) and g(TOYt) are estimated. We consider two specifications:

• Parametric specification:

– f(Temperaturet) = a1h1(Temperaturet) + a2h2(Temperaturet) where h1 and h2 are
two functions of temperature specific to heating and air conditioning, previously
estimated on the French national data [75]. Parameters a1 and a2 are to be estimated.

– g(TOYt) =
∑m=4
m=1(bm cos(2πmTOYt) + cm sin(2πmTOYt)) is the first four terms of

a Fourier series to model the yearly pattern of the consumption. Parameters bm and
cm, for 1 ≤ m ≤ 4, are to be estimated.

• Generalized additive model (GAM, [76]) specification: we estimate f(Temperaturet) and
g(TOYt) as linear combinations of spline functions. We use thin plate regression splines to
estimate f , the temperature function. For g, the time-of-year function, we use cyclic cubic
regression splines, which have identical values for up to the second derivative at both ends
of a year. We estimate the time-of-year functions for weekdays and weekends separately.
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In our tests, hourly consumption data is used. To account for intra-day variations, we model
the 24 hours separately, resulting in 24 consumption models.

Computationally, the parametric specification is fitted using classical least square square
method (function lm in the statistical programming language R). The estimation of a GAM
model is handled in the mgcv package in R [76].

4.2.2 Cluster layer

We use the standard k-means algorithm in data mining to form clusters ([77, Chap 14]) of geo-
graphical zones. Given the fixed number of clusters, and characteristic variables for individuals,
this algorithm alternatively iterate between:

• calculating the centroids of the variables of given clusters;

• placing individuals into clusters with the closest centroid.

Starting from a random partition, k-means results in a partition of the individuals into clusters
of similar characteristics.

We form clusters of geographical zones. Therefore, the “individuals” are geographical zones.
Because source zones and target zones have fundamentally different status in our methodology,
we use a two-step procedure: the k-means algorithm is run on the source zones to form clusters;
the target zones are then distributed into the cluster with the closest centroid. This assures
that in each cluster, there are always some source zones. We consider the following two types
of characteristics to form clusters:

• socio-demographic variables (IRIS): the percentages of population in each age group, the
number of office buildings, shops, and factories in the zone, obtained from public census
data;

• client information (CP): the percentages of residential, business, corporate, or industrial
clients in contractual power (the subscribed maximal power), obtained from grid operators’
knowledge of their clients.

The two groups of variables result in two clustering, called IRIS and CP clustering respectively.

For each cluster, we estimate one common consumption model using data of all included
source zones. This model is then transported to the target zones of the same cluster: we use the
regression model to estimate their load, by plugging in temperature and calendar information
of the periods of interest.

Since consumption models are sensitive to the relative scaling between source zones of one
cluster, the estimation procedure must be fed with normalized load time series. When calendar
information and temperature is plugged into the model for prediction and estimation, the level
of the consumption has to be supplied separately. In the application, we either predict the
level by a linear regression model with CP variables as explanatory variables, or simply use the
observed level of target zones.

4.3 Application on real and synthetic load data

In the application, we consider a region around Lyon in France. The source zones are geograph-
ical zones served by medium-voltage (MV) feeders. Two kinds of target zones are considered:
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Figure 4.2: Electric load of an MV feeder during three years (left) and three weeks (right).

Table 4.1: Rules of association of client type and distribution transformers. The + (or -) sign for either
variable signifies that the value of the variable is larger (or smaller) than the median of all transformers.

Apartments/CP - Apartments/CP +
Warehouses/CP - rural homes apartment block
Warehouses/CP + industrial client professional

MV feeder distribution zones with insufficient historical data and IRIS (Ilots Regroupés pour
l’Information Statistique), an administration zone of approximately 2,000 habitants, used by
the French National Institute of Statistics for releasing official socio-economic data. Note that
feeder distribution zones and IRIS overlap. In this section, we present the datasets, the valida-
tion procedure, and finally the test results of our estimation procedure.

4.3.1 Datasets used

Real electricity consumption We use the hourly consumption during three years (2010-
2012) of 473 MV feeders located in the region of interest. Fig. 4.2 shows an example of the time
series. For confidentiality reasons, the y-axis is hidden in these figures. The hourly average load
of all feeders included is around 1,500 kW over the three years. There is a strong presence of
annual, weekly, and daily cycles on these time series, as we can see in the example.

Simulated electricity consumption To apply our method to IRIS consumption estimation,
we generate consumption simulations for the 1,094 IRIS, and the feeders in the region of interest.
The simulations are produced in the following manner. We have the geographical positions of
the low-voltage (LV) distribution transformers connected to the feeders. These transformers are
therefore positioned inside the boundaries of each IRIS. For each transformer, we choose a client
type according to two ratios: the ratio between the number of apartments and contractual
power (CP), and the ratio between the number of warehouses and CP. Crossing these two
ratios, the transformer is assigned one of the 4 client types (Table 4.1). In addition, we assign
a daily peak/off-peak period pattern randomly to each IRIS, from 4 realistic patterns. For
each transformer, hourly consumption time series is simulated with regulated French profiles
of typical consumers [64]. These profiles are a set of coefficients specifying, for each typical
consumer group, the relative hourly consumption throughout a year, and adjustments linked to
the temperature. We plug real local temperature and calendar variables for the 2010-2012 period
into the profiles to simulate hourly consumption shape of each LV transformer, and multiply
it by the total contractual power of the transformer. The IRIS aggregation is calculated by
summing over transformers insider its boundary, while the feeder aggregation is obtained by
summing over transformers connected to it.
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Socio-demographic characteristics A number of variables are available at IRIS level from
the French census [74] and from the SIRENE registry1. We use the age structure of the popu-
lation and the number of shops, offices, factories, apartments and warehouses in each IRIS. We
distribute the value of each variable for an IRIS in equal parts to the transformers located in it,
and then re-aggregate to MV feeders.

Contractual power We use the contractual power (CP) at each transformer by client class
as a proxy to client information. Four types of clients are considered: residential, small business,
corporate clients supplied on low voltage, and industrial clients on medium voltage. For each
transformer, the sum of CP for each of these four categories is known. The CP at an MV
feeder (or an IRIS) is obtained by aggregating that of connected transformers (or within its
boundaries).

Temperature Hourly historical temperature is obtained from www.climate.gov for weather
stations in the region of interest. Each MV feeder and IRIS is associated to the weather station
closest to its served zone.

4.3.2 Validation procedure

We test the estimation procedure by its prediction performance on target zones. The prediction
is done in a “batch learning” fashion: the models are estimated using the first 30 months of
data at once (training periods) on source zones for each of the clusters. Once the models are
estimated, we produce forecasts for the last 3 months (test periods) on target zones, by using the
temperature and calendar variables corresponding to test periods. For each target zone the mean
absolute percentage error is calculated, according to the definition MAPEj = 1

n

∑n
t=1

|Yj,t−Ŷj,t|
Yj,t

,
where Yj,t is the consumption of Zone j at Period t, and Ŷj,t the prediction of the procedure.
Since the forecasting horizon varies from one hour to three months ahead, the MAPE measures
the average error of prediction of the procedure across forecasting horizons. As a comparison,
we also predict consumption on test periods for the source zones using the same estimated
models. The difference of average MAPE between target and source zones is a measure of the
transportability of the models, hence the performance of the procedure.

4.3.3 Application on real MV feeder consumption

On the real consumption dataset, which consists of 473 feeders, we randomly select 100 feeders
as source zones, and use the rest as target zones. We conduct 5 independent random selections,
and the errors reported are averaged over these 5 runs. On source zones, we run the k-means
algorithm on two sets of variables:

• the age structure and number of offices, shops and factors;

• percentage of contractual power in client types.

This results in two sets of clusters (IRIS clusters and CP clusters). For each cluster, we use the
30 months of source zone consumption data to estimate one consumption model. Predictions
are made for the last three months on source zones and target zones alike.

1SIRENE, Systeme Informatique pour le Repertoire des Entreprises et de leurs Etablissements, the INSEE
database of all companies, public and private organization.
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Figure 4.3: Cluster model: GAM estimation of annual cycle for the consumption at 10 a.m. on week-
days.
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Figure 4.4: Cluster model: GAM estimation of annual cycle for the consumption at 10 a.m. on weekend.

Figs. 4.3 and 4.4 show the GAM estimation of the annual cycle for consumption at 10 a.m.
for each cluster of both sets of clusters, respectively for weekdays and weekends2,3. Whether on
weekdays or weekends, and across the clusters, the annual cycle is that consumption is higher in
winter than in summer, with a large decrease in August due to vacations, and a smaller decrease
in May due to the bank holidays. In both sets of clusters, several clusters have a noticeably
smaller decrease in August (Clusters 3 and 5 in IRIS data clusters, Clusters 1 and 7 in CP
clusters). This is linked to the fact that these clusters are generally located in rural area (i.e.
they have a lower than average percentage of apartments), where less people go on vacations in
summer. These differences in clusters are also visible in functions estimated in the parametric
specification (not shown here).

Fig. 4.5 shows the effect of special rate (SR) days estimated by the GAM specification. The
higher price starts at 6 a.m. on the SR day, and ends at midnight. This is why these effects
start at 6 a.m.. Often clients reduce their consumption during high rate hours and increase
consumption just after midnight, when the rates come back to normal, as can be seen in the
figures. Clusters 1 and 5 in the IRIS clusters and Cluster 1 in CP clusters have much less drastic
SR effect. This shows that the clusters we obtained are able to capture some differences in
electricity consumption of the clients, although no consumption data is used in the clustering
step. The parametric specification has qualitatively similar results.

Prediction error rates for the different model specifications are shown in Table 4.2. In
forecasts with observed levels (first two rows in each half of the table), the difference of error
rate between source and target zones is small. This suggests that the consumption models

2The scales are relative on Figs.4.3 and 4.4, since the estimation is applied to normalized time series.
3Results for other hours are qualitatively similar.
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Figure 4.5: Cluster model: GAM estimation of the SR effect throughout the day.

Table 4.2: Mean prediction error rate on the real dataset.

Specification Model type IRIS
clus-
ters

CP
clus-
ters

Parametric Observed level
(source)

18.62 17.90

Parametric Observed level
(target)

19.13 18.54

Parametric Estimated
level (target)

38.20 37.76

GAM Observed level
(source)

18.90 17.59

GAM Observed level
(target)

19.38 18.28

GAM Estimated
level (target)

38.41 37.53

obtained by the estimation procedure are transportable to target zones. In both cases, the
error rate is less than 20%, comparable to the state of art at similar aggregation level with full
observations [67].

As a reference, a preliminary study is done to evaluate of predictions of individual feeder
GAM models with the similar specification. The error rates Table 4.2 are higher than these
individual models (11.7% for the 473 feeders on average, compared to the around 18% for source
zones). This is not surprising, since the cluster models are much less specialized than individual
feeder models. This decrease in model accuracy is a small price to pay for the increased model
transportability, which enables us to estimate hourly consumption for target zones without using
its historical data.

The CP clustering model has a lower error rate, indicating that direct client information has
greater importance than indirect socio-demographic variables. Parametric models have similar
performances in prediction as GAMs.

We also tried to estimate consumption levels by linear regression using CP variables. The
error rates are in the third row of each half of Table 4.2. These predictions have an average
error rate between 35% and 40%. This is because the estimation of consumption level by CP is
not accurate. If yearly aggregated consumption of target zones is available, this error rate can
be reduced.
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Table 4.3: Mean prediction error rate on simulated consumption.

IRIS clusters CP clusters
MV feeders (source) 13.20 11.22
MV feeders (target) 13.87 11.45

IRIS estimation (target) 16.93 14.09

4.3.4 Application on synthetic consumption of feeders and IRIS

On the synthetic consumption dataset, we keep the same five sets of randomly selected 100
feeders as source zones. As target zones, we use the rest of the feeders, and the 1,094 IRIS.
As in the real consumption application, models are estimated on source zone load of the first
30 months. Predictions are made for the last 3 months on both source and target zones. We
only report the results on GAM specification with observed levels, since the relative difference
is similar to the real consumption case. To produce clusters, we use either the apartment,
warehouse variables used in simulation, or the percentage of CP in client type. The two sets of
clusters are similarly called IRIS clusters and CP clusters.

Prediction error rates are shown in Table 4.3. The difference between source and target zones
of feeder service area is small, as in the real consumption case. This confirms that consumptions
models obtained by the process are indeed transportable to the target zones. The prediction
error is generally lower in this case, as consumption is smoother in simulations than in real
data, and the clusters are more homogeneous. We observe a similar slight decrease in prediction
error when the percentage of CP in client type is used. This is also reassuring, for it suggests a
similarity between real data and simulations.

The third row in Table 4.3 shows the prediction error on IRIS consumption. We observe an
average error rate of 16.93% and 14.09% for IRIS clusters and CP clusters. This is higher, but
of the same order as short-term forecasting at this aggregation level with full data [67]. Such
precision is reasonably good, given that the estimation requires only the average consumption
level for each IRIS. As a benchmark, we also used an interpolation proportional to the population
from the 100 source zones to produce an estimation for aggregated consumption of the IRIS.
This method does very poorly on aggregated IRIS consumption, with 49.57% of mean error.
Our method is thus significantly better than the interpolation approach.

4.4 Conclusion

In this chapter, we propose a method to estimate hourly electricity consumption for target zones
with insufficient or no historical consumption data using measurements from source zones and
public socio-demographic information. The procedure provides state-of-art prediction perfor-
mance on real and simulated datasets for target zones with very little data, and significantly
outperforms the benchmark interpolation method in simulations.
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Part II

Nonnegative matrix factorization
with general linear measurements
and its applications in time series

recovery and prediction
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Chapter
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Introduction to nonnegative
matrix factorization
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5.1 Introduction

As is suggested by Figure 2.1 on page 14, the object of interest in this thesis can easily be
represented in a matrix form. Based on this data representation, we will use nonnegative matrix
factorization (NMF, [5]) methods to tackle the estimation problems introduced in Chapter 2.
Matrix factorization methods leverage the fact that big matrices observed in real datasets are
often of rank much smaller than their dimension, to facilitate the estimation, compression, and
processing of such datasets.

In this chapter, after a short introduction to NMF (Section 5.2.1), we will reformulate the
estimation problems discussed in Chapter 2 in terms of matrix factorization (Section 5.2.2). In
Section 5.3, we will examine some recent progress in the non-convex optimization literature,
particularly, how non-convex problems such as matrix factorization can have global convergence
with an iterative algorithm, and why it is difficult to achieve the same in NMF.

In Chapters 6 and 7, we will study two specific cases of the general model to better adapt
it to our estimation problems. In Chapter 8, we will compare the NMF framework with kriging
and socio-demographic clustering introduced previously in Part I (Chapters 3 and 4). We will
see that these two methods can be reformulated as special cases of the matrix factorization
framework. In Chapter 9, we will review some particularities in the implementation of the
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algorithms developed in this part, and present meterModels, the R package developed in this
thesis.

5.2 Multivariate time series estimation and prediction as non-
negative matrix recovery

5.2.1 Nonnegative matrix factorization

Low-rank approximation and factorization methods have been extensively studied in recent
years. This class of methods uses the low-rank hypothesis: that a matrix V ∈ Rn1×n2 is of rank
k much smaller than its dimensions, with k � n1, n2. This means that V can be rewritten in a
factorized form:

V = FrFT
c , (5.1)

where Fr ∈ Rn1×k and Fc ∈ Rn2×k are called factors. In particular, by doing a singular value
decomposition (SVD) of V, one can easily find such a low-rank factorization.

It is in general interesting to use Fr and Fc instead of V. Since they have lower dimensions,
they can be useful for a wide range of applications such as estimation or compression. Even if
V is not exactly of a small rank k, it can still be interesting to find a rank-k approximation for
it, by minimizing

min
Fr∈Rn1×k,Fc∈Rn2×k

‖V− FrFT
c ‖2F , (5.2)

for example, where for any matrix X, ‖X‖F is its Frobenius norm (Euclidean norm of its entries).
In this case, the minimization problem (5.2) is called low-rank approximation.

In this thesis, we are especially interested in nonnegative matrix factorization, where the
matrix to be factorized and the factors only have nonnegative entries. Note that a matrix
of rank k does not necessarily have a nonnegative matrix factorization with k columns in the
factor matrices. The smallest integer k for which there exist Fr ∈ Rn1×k

+ and Fc ∈ Rn2×k
+ so

that V = FrFT
c is called the nonnegative rank of V. The nonnegative rank is always equal or

larger than the rank.

For a given integer k, the nonnegative factorization/approximation problem then becomes

min
Fr∈Rn1×k,Fc∈Rn2×k

‖V− FrFT
c ‖2F

s.t. Fr ≥ 0, Fc ≥ 0,
(5.3)

where X ≥ 0 for a matrix X is an entry-wise inequality.

Nonnegative matrix factorization is generally more interpretable, when the underlying quan-
tites are indeed nonnegative. In our application case, the entries of the matrix to be recovered
are the quantity of electricity consumption, which is positive. In the convention adopted in this
thesis, the rows are periods, and columns are individuals (Figure 2.1). The factor matrices have
a naturel interpretation in this convention: the left factor Fr has columns which are interpreted
as typical consumption profiles, and the entries of the right factor matrix Fc are weights of the
individuals in each of the profiles (Figure 5.1).
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Figure 5.1: An illustration of nonnegative matrix factorizaiton for a matrix of daily electricity con-
sumption series.

5.2.2 General model definition

To solve the estimation problems considered in Figure 2.1, we are interested in reconstructing a
nonnegative matrix V∗ ∈ Rn1×n2

+ , from N linear measurements,

α = A(V∗) ∈ RN , (5.4)

where A : Rn1×n2 → RN is a linear operator. Formally, A can be represented by A1, ..., AN , N
design matrices of dimension n1 × n2, and each linear measurement can be represented by

αi = Tr(V∗AT
i ) = 〈V∗,Ai〉. (5.5)

The design matrices A1, ..., AN are called masks. The matrices on the right part of Figure
5.2 show a subsection of the masks correponding to the indices on individual electricity meters
shown on the left of Figure 5.2.

We suppose that the matrix of interest, V∗, is of nonnegative rank k: we can find two
nonnegative matrices Fr ∈ Rn1×k

+ and Fc ∈ Rn2×k
+ so that

V∗ = FrFT
c ,

with k � n1, n2. Note that this implies that V∗ is of rank at most k, and therefore is of low
rank.

In the nonnegative matrix recovery problem, we try to recover the true matrix V∗ as well as
the factor matrices Fr and Fc, given A, the measurement operator, and α, the measurements.

To obtain an estimation, we minimize the quadratic error of the matrix factorization. In the
two following chapters, we will propose algorithms for optimization problems of the following
form:

min
Fr∈Rn1×k,Fc∈Rn2×k,V∈Rn1×n2

‖V− FrFT
c ‖2F

s.t. Fr ≥ 0, Fc ≥ 0, V ≥ 0,
A(V) = α.

(5.6)

Note that in this thesis, α, the data used in matrix recovery are generated by a measurement
operator, hence are “coherent”. Since there is actually a ground truth matrix V∗ that verifies
A(V∗) = α, the feasible set is obviously non-empty.
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Figure 5.2: An illustration of masks which correpond to the meter readings on individual meters.

In order to recover a low-rank matrix, the following alternative optimization problem can
also be considered:

min
Fr∈Rn1×k,Fc∈Rn2×k

‖α−A(FrFT
c )‖22

s.t. Fr ≥ 0, Fc ≥ 0.
(5.7)

Instead of minimizing the low-rank approximation error for a matrix that verifies the data
constraint in (5.6), (5.7) minimizes the sampling error of an exactly low-rank matrix. Both
have been studied in the literature. For example, objective functions similar to (5.6) have been
considered in [78], and ones similar to (5.7) in [79]. We will compare the two in Chapter 7 to
argue that (5.6) is a more efficient strategy than (5.7).

5.2.3 Applications of matrix recovery

By specifying different masks, matrix recovery has a number of interesting applications, old and
new.

• Complete observation: N = n1n2,Ai1,i2 = ei1eTi2 , where ei is the i-th canonical vector.
This means every entry of V∗ is observed. Obviously, in this case, there is no need to
estimate V∗. The main reason to do this is for dimension reduction or denoising. With
nonnegative factors, this is used in image segmentation [5], topic extraction [17], and
clustering [80], for example.

• Matrix completion - recommender systems: N < n1n2, the set of design matrix
is a subset of complete observation masks. The objective is then to infer the unobserved
entries. This is the standard task for recommender systems [81], whether with nonnegative
factors or real factors.

• Matrix sensing: the design matrices Ai are i.i.d. (independent and identically dis-
tributed) random variables from a certain random matrix probability distribution. Typi-
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cally, the probability distribution needs to verify certain conditions, so that with a large
probability, A verifies the Restricted Isometry Property [78]. This class of masks are very
well studied theoretically. For a more recent review, see [82]. An application of this class
of masks with nonnegative factors in imaging can be found in [83].

• Rank-one projections: the design matrices are random rank-one matrices, that is Ai =
αiβ

T
i , where αi and βi are respectively random vectors of dimension n1 and n2. The

main advantage to this setting is that much less memory is needed to store the masks,
since we can store αi and βi (dimension-(n1 + n2)) instead of Ai (dimension-(n1 × n2)).
In [84, 85], theoretical properties are proved for the case where αi and βi are vectors with
independent Gaussian entries and/or drawn uniformly from the vectors of the canonical
basis.

• Temporal aggregate measurements: in this case, the matrix is composed of n1 time
series concerning n2 individuals, and each measure is a disjoint temporal aggregate of
the time series of an individual. The design matrices are defined as Ai =

∑t0(i)+h(i)
t=t0(i)+1 eteTsi ,

where si is the individual concerned by the i-th measure, t0(i)+1 the first period covered by
the measure, and h(i) the number of periods covered by the measure. This class of masks
is the main topic of Chapter 6, since it models the meter readings of resident clients with
traditional electricity meters. A similar type of masks has also been studied in network
traffic matrix estimation [79].

5.3 Convergence of nonnegative matrix factorization algorithms

5.3.1 Global convergence of alternating minimization algorithms in non-convex
problems

The general matrix factorization problem (5.2) has a simple form, but finding its solutions
is not simple. Methods based on nuclear norm minimization (by minimizing the trace of V)
for matrix recovery and matrix completion problems often have theoretical guarantees [78, 86].
However, first-order algorithms based on the factorized form (alternating minimization, gradient
descent, etc.) are much more efficient, and more preferred by practitioners, because they work
on a smaller parameter space. This class of methods try to solve a non-convex problem, and
therefore rarely had global convergence guarantees.

It is only recently that theoretical guarantees for general matrix factorization algorithms be-
gan appearing [87–93]. This progress is connected to the literature on global convergence results
for other non-convex problems [16, 94–97]. Motivated by the superior empirical performances,
this trend of analysis shows that although a specific class of problems is not convex, nice qualities
about the landscape can still guarantee the convergence of descent algorithms.

Of particular interest is the reference [90], in which the authors showed that the general
matrix factorization/recovery problem has no spurious local minima. Combined with results
on escaping saddle points, stochastic gradient descent algorithms therefore can converge to the
global optimum. Contrary to a number of previous works, this result does not rely on a particular
initialization of the algorithm.

In general, NMF is an NP-hard problem [11]. Therefore, there cannot be similar results to
the general NMF problem. However, in [91] and [98], guarantees of the NMF have been given
for alternating direction algorithms, for cases where one of the factors is initialized at a point
close to the ground truth.
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In the rest of this section, we will go through the steps by [90] to show why this analysis
cannot be directly applied to NMF.

5.3.2 What would global convergence mean?

In order to simplify the theoretical analysis, we focus temporarily on the factorization case (5.3),
where the data matrix V∗ is completely observed. We note by `(Fr,Fc) = ‖V∗ − Fr(Fc)T ‖2F ,
the loss function of (5.3).

A pair of matrices (F∗r ,F∗c) is called a local minimizer of (5.3), if there exists ε > 0, so
that ∀(Z1,Z2) ∈ Rn1×k

+ × Rn2×k
+ with ‖Z1 − F∗r‖2F + ‖Z2 − F∗c‖2F ≤ ε, we have

‖V∗ − F∗r(F∗c)T ‖2F ≤ ‖V∗ − Z1(Z2)T ‖2F .

Any local minimizer satisfies the Karush–Kuhn–Tucker (KKT) necessary conditions [99].
Noting by ∂Fr`(Fr,Fc) and ∂Fc`(Fr,Fc) the partial derivatives of the loss function, and by
∇2`(Fr,Fc) the second order derivative, the KKT conditions are,

∂Fr`(F∗r ,F∗c) ≥ 0, ∂Fr`(F∗r ,F∗c) ◦ F∗r = 0,
∂Fc`(F∗r ,F∗c) ≥ 0, ∂Fc`(F∗r ,F∗c) ◦ F∗c = 0,

(5.8)

and

〈
(

Z1
Z2

)
,∇2`(F∗r ,F∗c)

(
Z1
Z2

)
〉 ≥ 0, ∀

(
Z1
Z2

)
∈ R(M+N)×K , that satisfies

Z1 ◦ 1Fr=0 = 0,Z2 ◦ 1Fc=0 = 0,
(5.9)

where ◦ denotes the element-wise matrix product, and 1X=0 is a matrix of the same dimension
of X for any matrix X, with an entry 1 where X has an entry 0, and 0 otherwise. This means
we only need to check for second-order increments in directions in which Fr and Fc are not on
the boundary of the first orthant.

If `(F∗r ,F∗c) = 0 is true for all matrix pairs (F∗r ,F∗c) that verify the KKT conditions, then all
local minima of the optimization problem above is a global optimum. If, additionally, the matrix
has a unique NMF up to scaling and permutation, then all local minima of the optimization
program is the NMF of the matrix V∗.

Therefore, what we would like to know is if there are sufficient conditions on V∗ that
an algorithm could check with relative ease, for the KKT conditions to imply zero residual
(`(F∗r ,F∗c) = 0).

5.3.3 Link with general matrix factorization

The question of global optimality of local NMF algorithms arises naturally from the work of [90],
who proved that the general matrix factorization problem (namely minimization of the same loss
function without non-negativity constraint on the factors) has no spurious local minima. Their
work is in a more general context where the data are linear measures of V under a measurement
operator which satisfies a restricted isometry property (RIP).

There are two-ways to view the link between general matrix factorization and NMF:

• NMF is the optimization of the same objective function as general matrix factorization, in
a constrained domain (local minima could therefore exist on the boundary of the feasible
domain of NMF).
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Figure 5.3: Left rank-14 factor estimated by NeNMF
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Figure 5.4: Right rank-14 factor estimated by NeNMF

• The general matrix factorization is only identified up to an invertible k-by-k matrix: for
every global optimum (F∗r ,F∗c), (F∗rR,F∗c(R−1)T ) is also a global optimum. NMF is about
finding out a specific invertible matrix R so that both FrR and Fc(R−1)T are non-negative.
Intuitively, this could be quite difficult, since there is no information on R in the data.

5.3.4 Empirical convergence

Although there is currently no prove of global convergence for local NMF algorithms, empirically
there seems to be global convergence on certain class of NMF problems, especially if the true
factors have many zero entries.

In Tables 5.1 and 5.2, we report the NMF objective function value and the relative error on
the obtained factors Fc and Fr, on matrices with unique NMFs with rank ranging from 4 to 14.
The algorithms used (NeNMF and HALS) are classical NMF algorithms [20, 27].

The original and estimated factors, and the error on each element, are plotted in Figures 5.3,
5.4, 5.5, 5.6. The relative error on factors is of several percentage points, and we can see that
estimated and original matrices are quite close.
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Table 5.1: Relative error (RRMSE) in Frobenius norm of the factors produced by the NeNMF algorithm.

Rank Objective function Error on F_r Error on F_c
4 5e-04 0.0111 0.0145
5 6e-04 0.0304 0.0420
6 6e-04 0.0243 0.0369
7 6e-04 0.0345 0.0406
8 5e-04 0.0215 0.0325
9 5e-04 0.0375 0.0509
10 5e-04 0.0308 0.0410
11 4e-04 0.0316 0.0444
12 4e-04 0.0216 0.0270
13 5e-04 0.0332 0.0508
14 4e-04 0.0487 0.0577
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Figure 5.5: Left rank-14 factor estimated by HALS
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Figure 5.6: Right rank-14 factor estimated by HALS
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Table 5.2: Relative error (RRMSE) in Frobenius norm of the factors produced by the HALS algorithm.

Rank Objective function Error on F_r Error on F_c
4 1e-04 0.0038 0.0045
5 8e-04 0.0245 0.0317
6 8e-04 0.0169 0.0307
7 5e-04 0.0176 0.0235
8 7e-04 0.0231 0.0370
9 7e-04 0.0228 0.0320

10 5e-04 0.0196 0.0265
11 6e-04 0.0197 0.0291
12 6e-04 0.0304 0.0369
13 8e-04 0.0206 0.0295
14 1e-03 0.0350 0.0524

5.3.5 Local optimality conditions

By differentiating the loss function, we obtain that

∂Fr`(Fr,Fc) = (FrFT
c −V∗)Fc,

∂Fc`(Fr,Fc) = (FcFT
r − (V∗)T )Fr.

By differentiating a second time, we obtain that ∀(Z1,Z2) ∈ Rn1×k × Rn2×k,

∇2`(Fr,Fc)
(

Z1
Z2

)
= lim

ε→0

1
ε

(
∂Fr`(Fr + εZ1,Fc + εZ2)− ∂Fr`(Fr,Fc)
∂Fr`(Fr + εZ1,Fc + εZ2)− ∂Fc`(Fr,Fc)

)

=
(

(FrFT
c −V∗)Z2 + (FrZT2 + Z1FT

c )Fc

(FcFT
r − (V∗)T )Z1 + (FcZT1 + Z2FT

r )Fr

)
.

This leads to

〈
(

Z1
Z2

)
,∇2`(Fr,Fc)

(
Z1
Z2

)
〉

=〈Z1, (FrFT
c −V∗)Z2 + (FrZT2 + Z1FT

c )Fc〉+ 〈Z2, (FcFT
r − (V∗)T )Z1 + (FcZT1 + Z2FT

r )Fr〉
=2〈Z1ZT2 , (FrFT

c −V∗)〉+ 〈Z1FT
c + FrZT2 ,FrZT2 + Z1FT

c 〉
=2〈Z1ZT2 , (FrFT

c −V∗)〉+ ‖Z1FT
c + FrZT2 ‖2F .

Therefore, the KKT conditions for the NMF problem are

(FrFT
c −V∗)Fc ≥ 0, Fr ≥ 0, (FrFT

c −V∗)Fc ◦ Fr = 0,
(FcFT

r − (V∗)T )Fr ≥ 0, Fc ≥ 0, (FcFT
r − (V∗)T )Fr ◦ Fc = 0,

2〈Z1ZT2 , (FrFT
c −V∗)〉+ ‖Z1FT

c + FrZT2 ‖2F ≥ 0, ∀
(

Z1
Z2

)
∈ R(n1+n2)×k, that satisfies

Z1 ◦ 1Fr=0 = 0,Z2 ◦ 1Fc=0 = 0.

Define the linear function fFr,Fc : Rn1×k×Rn2×k → Rn1×n2 , where fFr,Fc(Z1,Z2) = Z1FT
c +

FrZT2 . Consider the following linear subspace of Rn1×k × Rn2×k:

e(Fr,Fc) ≡ {(Z1,Z2)|Z1 ◦ 1Fr=0 = 0,Z2 ◦ 1Fc=0 = 0}.
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and the following linear subspace of Rn1×n2 :

E(Fr,Fc) ≡ {Z1FT
c + FrZT2 |(Z1,Z2) ∈ e(Fr,Fc)},

Obviously, fFr,Fc(e(Fr,Fc)) = E(Fr,Fc), and e(Fr,Fc) ⊂ f−1
Fr,Fc(E(Fr,Fc)).

Essentially, if (Z1,Z2) ∈ e(Fr,Fc) that Z1 and Z2 have zero entries, wherever Fr and Fc

have zero entries. In particular, this means

(FrFT
c −V∗)Fc ◦ Z1 = 0, (FcFT

r − (V∗)T )Fr ◦ Z2 = 0.

Note that fFr,Fc is not injective on e(Fr,Fc). Especially, for all 1 ≤ i ≤ k, note by xi
the matrix with the i-th column equal to that of X and 0 everywhere else, then (f c,i,−f r,i) ∈
Ker(fFr,Fc).

5.3.6 Projections

If (Fr,Fc) satisfies the first-order optimality condition, then FrFT
c is the projection of V∗ in

E(Fr,Fc). This is true, because FrFT
c ∈ E(Fr,Fc), and V∗ − FrFT

c ∈ E(Fr,Fc)⊥. Note this
fact by

PE(Fr,Fc)(V
∗) = FrFT

c .

In fact, if (Fr,Fc) satisfies the first-order optimality condition, then FrFT
c is the projection

of V∗ in a even larger set. The following closed convex cone contains E(Fr,Fc):

F (Fr,Fc) ≡ {Z1FT
c + FrZT2 |(Z1,Z2) ∈ Rn1×k × Rn2×k,

〈Z1, (FrFT
c −V∗)Fc〉 ≥ 0, 〈Z2, (FcFT

r − (V∗)T )Fr〉 ≥ 0}.

By definition of F (Fr,Fc), if Z1FT
c + FrZT2 ∈ F (Fr,Fc), then

〈Z1FT
c + FrZT2 ,V∗ − FrFT

c 〉 ≤ 0.

This means that FrFT
c is in the polar cone of F (Fr,Fc) (noted as FrFT

c ∈ F (Fr,Fc)	, [100,
Chap.6]). Together with FrFT

c ∈ F (Fr,Fc), and V∗ − FrFT
c ⊥FrFT

c , this constitutes a charac-
terization of projection of V∗ in F (Fr,Fc). That is

PF (Fr,Fc)(V
∗) = FrFT

c .

Define Π̂(F∗r ,F∗c) = Pe(Fr,Fc)(F
∗
rΠ,F∗cΠ), for any K-by-K permutation matrix Π (Π̂ is the

composition of the permutation with projection onto the support of (Fr,Fc). I will also use
Π̂(F∗r) (and Π̂(F∗c)) to note the projection of F∗r (and F∗c) onto the appropriate support, by an
abuse of notation.

Consider the following subset of Rn1×n2 :

{Z1ZT2 |(Z1,Z2) ∈ e(Fr,Fc)}.

This set contains Π̂(F∗r ,F∗c), but is in general not convex. This makes it difficult to consider the
projection of V∗ in it. On the other hand,

G(Fr,Fc) ≡ conv{Z1ZT2 |(Z1,Z2) ∈ e(Fr,Fc)},
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the convex hull of the previous subset, is a convex cone. In fact

G(Fr,Fc) ⊂ {X ∈ Rn1×n2 |X ◦ (FrFT
c −V∗)FcFT

r (FrFT
c −V∗) = 0}.

Since both (FrFT
c −V∗)Fc and FT

r (FrFT
c −V∗) are nonnegative, the support of the product

is {(i, j)|supp((FrFT
c − V∗)iFc)

⋂
supp((FcFT

r − (V∗)T )jFr) 6= ∅}. Therefore, any element of
G(Fr,Fc) has a support of empty intersection with (FrFT

c −V∗)FcFT
r (FrFT

c −V∗).

We have PG(Fr,Fc)(V
∗)− Π̂(F∗r)Π̂(F∗c)T ≥ 0.

5.3.7 Applying second order condition

Now suppose that (Fr,Fc) is a local minimum, i.e., it verifies both (5.8) and (5.9).

Note that if PG(Fr,Fc)(V
∗) = Π̂(F∗r)Π̂(F∗c)T , then Π̂(F∗r)Π̂(F∗c)T −V∗ = PG(Fr,Fc)⊥(V∗). If

this is the case, we can prove the following inequality, which is similar to the second inequality
in [90, Corollary4.1]:

k∑
j=1
‖(Fr − Π̂(F∗r))ejeTj FT

c + FrejeTj (Fc − Π̂(F∗c))T ‖2F ≥ 2‖FrFT
c − Π̂(F∗r)Π̂(F∗c)T ‖2F . (5.10)

To see why (5.10) is true, consider the second-order condition with Z1 = (Fr− Π̂(F∗r))ej and
Z2 = (Fc − Π̂(F∗c))ej , for 1 ≤ j ≤ k. Therefore,

2〈(Fr − Π̂(F∗r))ejeTj (Fc − Π̂(F∗c))T , (FrFT
c −V∗)〉+

‖(Fr − Π̂(F∗r))ejeTj FT
c + FrejeTj (Fc − Π̂(F∗c))T ‖2F ≥ 0.

We know that

〈(Fr − Π̂(F∗r))ejeTj (Fc − Π̂(F∗c))T ,FrFT
c −V∗〉

=〈FrejeTj Fc + Π̂(F∗r)ejeTj Π̂(F∗c)T ,FrFT
c −V∗〉

=〈Π̂(F∗r)ejeTj Π̂(F∗c)T − FrejeTj Fc,FrFT
c −V∗〉

=〈Π̂(F∗r)ejeTj Π̂(F∗c)T − FrejeTj Fc,FrFT
c − Π̂(F∗r)Π̂(F∗c)T 〉

+ 〈Π̂(F∗r)ejeTj Π̂(F∗c)T − FrejeTj Fc, Π̂(F∗r)Π̂(F∗c)T −V∗〉.

Since Π̂(F∗r)ejeTj Π̂(F∗c)T − FrejeTj FT
c ∈ G(Fr,Fc), the second term is zero.

In this case, we have

K∑
j=1
‖(Fr − Π̂(F∗r))ejeTj FT

c + FrejeTj (Fc − Π̂(F∗c))T ‖2F

−2
K∑
j=1
〈FrejeTj Fc − Π̂(F∗r)ejeTj Π̂(F∗c)T ,FrFT

c − Π̂(F∗r)Π̂(F∗c)T 〉

=
K∑
j=1
‖(Fr − Π̂(F∗r))ejeTj FT

c + FrejeTj (Fc − Π̂(F∗c))T ‖2F − 2‖FrFT
c − Π̂(F∗r)Π̂(F∗c)T ‖2F ≥ 0,

which then leads to (5.10).

For any local minimum, (5.10) bounds the approximation error (right-hand side) by a quan-
tity connected to the error in the factor space (left-hand side), regardless of the permutation of
columns in the factor space.
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In [90], once the similar inequality [90, Corollary4.1] is established, an upper bound is then
proposed for the left-hand side, so as to prove that the global error is actually zero. Therefore
the local minimum is actually a global minimum as well. This is achieved using the properties
of the orthogonal matrix which minimizes the left-hand side. Here instead of considering an
orthogonal matrix, we use a permutation matrix Π, since we are only allowed to consider points
in the nonnegative orthant. It is not clear how we can translate this into the nonnegative case,
since we would need Π̂(F∗r)R to be nonnegative as well, therefore the properties of R would
change.
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6
Nonnegative matrix factoriza-
tion for time series recovery
from a few temporal aggre-
gates
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6.1 Introduction

In this chapter, we propose a new matrix recovery method using nonnegative matrix factorization
(NMF, [4]) where matrix columns represent time series at a fine temporal scale. Moreover, only
temporal aggregates of these time series are observed.

As explained in previous chapters, the motivation comes from the context of electricity
load balancing, where time series represent electric power consumption. To avoid failure in the
electricity network, suppliers are typically required by transmission system operators (TSO) to
supply as much electricity as their consumers consume at every moment. This mechanism is
called balancing. In the context of an open electricity market, all market participants, such
as suppliers, utility traders, and large consumers, have a balance responsibility: any imbalance
caused within the perimeter of a participant is billed by the TSO. To calculate the imbalance
caused by a market participant, one needs an estimation of the consumption and production
within its perimeter at a small temporal scale, for example, half-hourly ([10], [101], [102]).

This chapter is a joint work with Yohann De Castro, Yannig Goude and Georges Hébrail. It is based on the
ICML conference paper [2].
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However, for many customers (for instance residential) within a perimeter, electricity con-
sumption is not recorded at that scale. Although smart meter readings may be recorded locally
up to every minute, utility companies often have very limited access to such data, due to data
transmission and processing costs and/or privacy issues. Following a fixed schedule, cumula-
tive consumption of each meter is recorded by the utility company, for instance every day or
every month. By differentiating consecutive readings, the utility obtains the consumption of
a customer between two reading dates. Currently, TSOs use proportional rules to reconsti-
tute consumption from these measurements, based on national consumption profiles adjusted
by temperature. In this chapter, we develop an NMF-based matrix recovery method providing
a solution to consumption reconstitution from such temporal aggregates.

Recent advances in matrix completion have made it clear that when a large number of
individuals and features are involved, even partial data could be enough to recover much of lost
information, thanks to the low-rank property [86]: although the whole data matrix V∗ ∈ Rn1×n2

is only partially known, if V∗ = FrFT
c , where Fr ∈ Rn1×k,Fc ∈ Rn2×k, with k much smaller

than both n1 and n2, one could recover V∗ entirely under some conditions over the sampling
process.

6.1.1 Temporal aggregated electricity consumption

In this chapter, we address electricity consumption reconstitution as a matrix recovery problem.
Consider the electricity consumption of n2 consumers during n1 periods. Since consumption is
always positive, the n2 time series are organized into a nonnegative matrix V∗ ∈ Rn1×n2

+ . An
entry of this matrix, v∗t,n represents, for example, the electricity consumption of Consumer n for
Period t.

Information about consumption is revealed as meter readings which do not correspond to
matrix entries but to cumulative sums of each column of V∗: at a meter-reading date t, we
observe that Consumer n has consumed

∑t
i=1 v

∗
i,n since the first period. Several readings are

available for each consumer.

An alternative matrix representation could be to define entries directly as the cumulative
consumption since the first period. Again, this matrix has missing values and a matrix comple-
tion algorithm can be applied. However, this cumulative matrix has increasing columns, which
is quite different from matrices considered in the standard matrix completion literature, where
matrix completion error is typically bounded by the largest entry of the matrix.

We represent meter readings as linear measures on the consumption matrix V∗. Temporal
aggregates are derived from meter readings by differentiating consecutive meter readings: we will
consider these temporal aggregates as “observations” in the rest of the chapter. We consider D
scalar observations, represented by a data vector α ≡ A(V∗) ∈ RD+ , where A is a D-dimensional
linear operator. To recover V∗ from α, we look for a low-rank NMF of V∗: FrFT

c ' V∗, where
Fr ∈ Rn1×k

+ ,Fc ∈ Rn2×k
+ . The columns of Fr are k nonnegative factors, which can be interpreted

as typical profiles of the time series, and the columns of Fc as the weights of each individual on
each profile. The problem is formalized as the minimization of a quadratic loss function under
nonnegativity and data constraints, as in (5.6):

min
V, Fr, Fc

`(V,Fr,Fc) = ‖V− FrFT
c ‖2F

s.t. V ≥ 0, Fr ≥ 0, Fc ≥ 0, A(V) = α,
(6.1)

where X ≥ 0 (or x ≥ 0) means that the matrix X (or the vector x) is element-wise nonnegative.
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Note the difference between (6.1) and another potential estimator, as in (5.7),

min
Fr, Fc

ˆ̀(Fr,Fc) = ‖A(FrFT
c )−α‖22

s.t. Fr ≥ 0, Fc ≥ 0,
(6.2)

studied in [79]. If V is a solution to (6.1), it satisfies exactly the measurement constraint, but is
approximately low-rank, while FrFT

c , a solution to (6.2) is exactly of low rank, but only matches
the measurements approximately. Since in our application, the estimated time series matrix is
to be used for billing, the match to metering data is essential. Therefore, we use (6.1) in this
chapter.

6.1.2 Autocorrelation

Electricity consumption time series has the nice property of having high temporal autocorrela-
tion. In order to better recovery consumption from temporal aggregates, we propose to exploit
this information.

We suppose that the temporal autocorrelation of each individual considered in the dataset
is available to us. In practice, this information could be obtained by exploiting historical data
of each client. It is also possible to use the results of some prior modeling, which estimates the
autocorrelation of each class of clients.

We add a penalty term to the base algorithm to take advantage of this information. Effi-
cient computation is then deduce by using recent convex relaxation of quadratically constrained
quadratic programs [103].

6.1.3 Prior works

The measurement operator A considered here is a special instance of the trace regression model
[104] which generalizes the matrix completion setting. In matrix completion, each measurement
is exactly one entry. Various forms of linear measurements other than matrix completion have
been considered for matrix recovery without nonnegativity [78, 85, 105].

The NMF literature is generally focused on full observation [6, 106], or on matrix comple-
tion [107, 108] Random projection measurements are used in an NMF context in [109], where a
maximum likelihood estimator is developed based on a specific generative model in neural imag-
ing. The particular form of measurement operator considered here arises from meter reading,
and can be used in other fields, such as Internet traffic matrix estimation [79]. Because of our
choice of estimator (6.1) over estimator (6.2), we derive a novel algorithm for this measurement
operator, which has a smaller time complexity than previously studied ones (more details in
Section 6.2.1).

The idea of imposing time series structure on matrix factorization is not new. Previous
approaches combining matrix factorization and autoregressive structure are often focused on
obtaining factors that are more smooth and/or sparse, both in NMF [22–24] and without non-
negativity [25, 26]. Our objective is different from these studies: we try to further improve the
matrix recovery by constraining temporal correlation on individual time series (not factors). We
use a recent convex relaxation of quadratically constrained quadratic programs [103] to deduce
a closed-form projection step in this case.

We propose an algorithm to solve (6.1) in Section 6.2.1. To take into account individual
autocorrelation, a second algorithm is proposed in Section 6.2.2. In Section 6.3, both algorithms
are validated on synthetic and real electricity consumption datasets, compared to a linear bench-
mark and a state-of-art matrix completion method.
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6.2 Reconstitution of time series with NMF

6.2.1 Iterative algorithm with simplex projection

We represent temporal aggregation by a linear operator A. For each 1 ≤ d ≤ D, the d-th
measurement on X, A(X)d, is the sum of several consecutive rows on one column of X, that is,

A(X)d =
∑

(t,n)∈Id

xt,n,

where Id = {(t, n)|t0(d) + 1 ≤ t ≤ t0(d) + h(d), n = nd}, is the index set over h(d) consecutive
periods of Consumer nd, starting from Period t0(d) + 1. Each measurement covers a disjoint
index set. All entries of X are not necessarily involved in the measurements.

Note that although we are focused on temporal aggregates in this chapter, when applicable,
the results announced can also be generalized to general linear measurements (see Chapter 7 for
more details).

A block Gauss-Seidel algorithm (Algorithm 1) is used to solve (6.1). We alternate by min-
imizing `(V,Fr,Fc) over Fr,Fc or V, keeping the other two matrices fixed. Methods from
classical NMF problems are used to update Fr and Fc [18]. In the implementation, we use
two variants that seem similarly efficient (more details in Section 6.3): Hierarchical Alternating
Least Squares (HALS, [19]), and a matrix-base NMF solver with Nesterov-type acceleration
(NeNMF, [20]).

When Fr and Fc are fixed, the optimization problem on V is equivalent to D simplex
projection problems, one for each scalar measurement. For 1 ≤ d ≤ D, we have to solve

min
vId

‖vId − (Fr)t0(d)+1≤t≤t0(d)+h(d)(Fc)nd‖
2

s.t. vId ≥ 0, vTId1 = αd,
(6.3)

where (Fr)t0(d)+1≤t≤t0(d)+h(d) is the h(d) rows of Fr which correspond to the periods of the mea-
surement, and (Fc)nd is the nd-th row of Fc stacked as a column vector. The simplex projection
algorithm introduced by [21] solves this subproblem efficiently. Define the operator, PA, as the
orthogonal projection into the simplex A ≡ {X ∈ Rn1×n2

+ |A(X) = α}. The simplex A is the
intersection of the affine subspace {X ∈ Rn1×n2 |A(X) = α} and the first orthant. Projector PA
encodes the measurement data α = A(V∗). In Algorithm 1, we apply PA to a working copy
of V in order to obtain its projection in A.

Contrary to previously studied algorithms [79], by choosing estimator (6.1) over (6.2), the
simplex projection step is separated from the classical NMF update steps in our algorithm.
Instead of multiplying the rank and the complexity introduced by the number of measurements,
we have an algorithm whose complexity is the sum of the two. In cases where the number of
measurements is large, this difference can be crucial 1.

A classical stopping criterion in the NMF literature is based on Karush-Kuhn-Tucker (KKT)
conditions on (6.1) [6, Section 3.1.7]. We calculate

R(Fr)i,j = |(FrFT
c −V)FT

c )i,j |1(Fr)i,j 6=0,

and R(Fc)i,j = |((FcFT
r −VT )FT

r )i,j |1(Fc)i,j 6=0.

The algorithm is stopped if ‖R(Fr)‖2F + ‖R(Fc)‖2F ≤ ε, for a small threshold ε > 0.
1This intuition is confirmed by the comparison of Algorithm 1 and our implementation of the algorithm

proposed in [79].
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Algorithm 1 Block coordinate descent for NMF from temporal aggregates
input PA, 1 ≤ K ≤ min{T,N}
Initialize F0

r ,F0
c ≥ 0,V0 = PA(F0

rF0
c), i = 0

while Stopping criterion is not satisfied do
Fi+1
r = Update(Fi

r,Fi
c,Vi)

Fi+1
c = Update(Fi+1

r ,Fi
c,Vi)

Vi+1 = PA(Fi+1
r Fi+1

c )
i = i+ 1

end while
output Vi ∈ A,Fi

r ∈ Rn1×k
+ ,Fi

c ∈ Rn2×k
+

Convergence to a stationary point has been proved for past NMF solvers with the full ob-
servation or the matrix completion setting [18, 20]. Although the subproblems on Fr and Fc do
not necessarily have unique optimum, the projection of V attains a unique minimizer. By [110,
Proposition 5], all limiting points of Algorithm 1 is a stationary point.

Algorithm 1 can be generalized to other types of measurement operators A, as long as
a projection into the simplex defined by the data constraint A(X) = α and the positivity
constraint can be efficiently computed.

6.2.2 From autocorrelation constraint to penalization

In addition to the measurements in α, we have some prior knowledge on the temporal autocor-
relation of the individuals. To take into account information about autocorrelation, we add a
penalization term to the original matrix recovery problem, replacing (6.1) by:

min
V,Fr,Fc

‖V− FrFT
c ‖2F − λ

N∑
n=1

vTn∆ρnvn

s.t. V ≥ 0, Fr ≥ 0, Fc ≥ 0, A(V) = α,

(6.4)

where λ ≥ 0 is a single fixed penalization parameter, and ∆ρn is a symmetric matrix described
shortly after. In the rest of this section, we first show by Theorem 1, that with an appropriately
chosen value of λ, adding the penalization term vTn∆ρnvn is equivalent to impose that the
temporal autocorrelation of vn to be at least equal to ρn, a prior threshold. Then we modify
Algorithm 1 to solve this penalized problem.

For 1 ≤ n ≤ n2, suppose that the lag-1 autocorrelation of Individual n’s time series is at least
equal to a threshold ρn (e.g. from historical data, excluded from observed temporal aggregates),
that is,

n1−1∑
t=1

vt+1,nvt,n ≥ ρn
n1∑
t=1

v2
t,n. (6.5)

Notice that with the lag matrix,

∆ =



0 1 0 ... 0
0 0 1 ... 0

0 0 0 . . . :

: : . . . . . . 1
0 0 ... 0 0


,
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we have
∑n1−1
t=1 vt+1,nvt,n = vTn∆vn. Define ∆ρ ≡ ∆ + ∆T − 2ρI, for a threshold −1 ≤ ρ ≤ 1.

Inequality (6.5) is then equivalent to

vTn∆ρnvn ≥ 0. (6.6)

Imposing (6.6) would require one to solve, at each iteration, n2 quadratically constrained
quadratic programs (QCQP) of the form:

min
x

||x− x0||2

s.t. xTSx ≥ 0,
(6.7)

where S is a general symmetric matrix, not necessarily semi-definite positive. This means that
the QCQP is in general a non-convex problem. Let δ be the vector of eigenvalues of ∆. By
eigendecomposition, S = UTDU. where the matrix U is orthogonal. The entries of δ are the
diagonal entries of D. The following theorem justifies the choice of penalization term in (6.4),
by showing with an appropriate λ, adding this penalization term is equivalent to imposing the
autocorrelation constraint (6.5).

Theorem 1. Suppose that δ1, the largest eigenvalue of S, is strictly positive. Suppose that z0 ≡
Ux0 has no zero component. Then there exists 0 ≤ λ < 1

δ1
, that verifies

∑n1
t=1 δt

z2
0,t

2(1−λδt)2 = 0,
so that x∗ ≡ (I− λS)−1x0 is an optimal solution of (6.7).

Proof. We follow [103] to obtain a convex relaxation of (6.7).

Define z ≡ Ux, z0 ≡ Ux0, yt ≡ 1
2z

2
t , ∀1 ≤ t ≤ n1. Recall that δ1 > 0, and that

∀t, 1 ≤ t ≤ n1, z0,t 6= 0.

Problem (6.7) is equivalent to the non-convex problem

min
y,z

1Ty− zT0 z

s.t. − δTy ≤ 0, 1
2z

2
t = yt, ∀1 ≤ t ≤ n1.

(6.8)

Now consider its convex relaxation

min
y,z

1Ty− zT0 z

s.t. − δTy ≤ 0, 1
2z

2
t − yt ≤ 0, ∀1 ≤ t ≤ n1.

(6.9)

By [103, Theorem 3], if (z∗,y∗) is an optimal solution of (6.9), and if 1
2(z∗t )2 = y∗t , ∀1 ≤ t ≤ n1,

then (z∗,y∗) is also an optimal solution of (6.8), which makes x∗ = UT z∗ an optimal solution
of (6.7).

We will look for such a solution to (6.9) by examining its first-order conditions of optimality.
Problem (6.9) is convex, and it verifies the Slater condition: ∃(ŷ, ẑ),−δT ŷ < 0, 1

2 ẑ
2
t < ŷt, ∀1 ≤

t ≤ n1. This is true, because δ1 > 0. We could choose an arbitrary value of ŷ1 > 0 and strictly
positive but small values for other components of ŷ so as to have −δT ŷ < 0, and ẑ = 0. Thus,
Problem (6.9) always has an optimal solution, because the objective function is coercive over
the constraint. This shows the existence of (z∗,y∗).

Now we show that 1
2(z∗t )2 = y∗t , ∀1 ≤ t ≤ n1. The KKT conditions of (6.9) are verified by
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(z∗,y∗). In particular, there is some dual variable λ ≥ 0,µ ∈ RT+ that verifies,

1− λδ − µ = 0, (6.10)
−δTy∗ ≤ 0, (6.11)
λδTy∗ = 0, (6.12)

−z0,t + µtz
∗
t = 0, ∀1 ≤ t ≤ n1, (6.13)

1
2(z∗t )2 − y∗t ≤ 0, ∀1 ≤ t ≤ n1, (6.14)

µt(
1
2(z∗t )2 − y∗t ) = 0, ∀1 ≤ t ≤ n1. (6.15)

Since z0,t 6= 0, we have µt 6= 0, z∗t = 1
µt
z0,t,∀1 ≤ t ≤ n1 by (6.13). Therefore, by (6.15),

y∗t = 1
2(z∗t )2,∀1 ≤ t ≤ n1.

By (6.10), the values of µt = 1− λδt can be deduced from that of λ. Since µ > 0, we obtain
that λ < 1

δ1
.

By (6.13), z∗t = z0,t
1−λδt , ∀1 ≤ t ≤ n1. This shows that x∗ = UT z∗ = UT (I − λD)−1z∗0 =

(I− λS)−1x0 is an optimal solution for (6.7).

Theorem 1 shows that with a well chosen λ, the constraint in (6.7) can be replaced by a
penalization.

There are in fact two cases. Either x0 verifies the constraint, in which case λ = 0, and
x∗ = x0 is the solution. Otherwise, λ > 0. We replug the values of

y∗t = 1
2(z∗t )2 =

z2
0,t

2(1− λδt)2

back into (6.12), and obtain that λ verifies

T∑
t=1

δtz
2
0,t

2(1− λδt)2 = 0.

When Fr and Fc are fixed, the subproblem of (6.4) on V can be separated into N constrained
problems of the form,

min
x

‖x− x0‖2 − λxT∆ρnx,

s.t. Anx = cn,
x ≥ 0,

(6.16)

where x0 is the n-th column of FrFT
c , cn is the observations on the n-th column, and An is

a matrix which encodes the measurement operator over that column. The following theorem
shows how to solve this problem.

Theorem 2. Suppose that S is a symmetric matrix with eigenvalues δ, and λ1 > 0. Suppose A ∈
Rm,l a full-rank matrix with m ≤ l, x0 ∈ Rl, c ∈ Rm, λ ≥ 0. Define Q ≡ (I− λS)−1AT (A(I−
λS)−1AT )−1. If λ < 1

δρ,1
, then Qc + (I−QA)(I− λS)−1x0 is a minimizer of

min
x

‖x− x0‖2 − λxTSx,

s.t. Ax = c,
(6.17)
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Proof. Let l be the dimension of c. Define IC as the indicator function for the constraint of
(6.17), that is

IC(x) = 0, if Ax = c,
and IC(x) = +∞, if Ax 6= c.

Problem (6.17) is then equivalent to

min
x
F (x) ≡ 1

2‖x− x0‖2 −
1
2λxTSx + IC(x). (6.18)

The subgradient of (6.18) is ∂F (x) = {x − x0 − λSx −AT ε|ε ∈ Rl}. When λ < 1
δ1
, (6.18) is

convex. Therefore, x∗ is a minimizer if and only if 0 ∈ ∂F (x), and Ax∗ = c. That is, ∃ε ∈ Rl,

(I− λS)x∗ − x0 −AT ε = 0,
Ax∗ = c.

The vector ε thereby verifies A(I− λS)−1(x0 + AT ε) = c.

The l-by-l matrix A(I− λS)−1AT is invertible, because l is smaller than m, and A is of full
rank (because each measurement covers disjoint periods). Therefore,

ε = (A(I− λS)−1AT )−1(c−A(I− λS)−1x0),
x∗ = (I− λS)−1(x0 + AT ε)

= Qc + (I−QA)(I− λS)−1x0.

In our particular problem, the eigenvalues of ∆ρn are

δρn,t = 2 cos( t

n2 + 1π)− 2ρn,

with t taking every value from 1 to n2. This means that for most of the autocorrelation threshold
that we could need to impose (−1 ≤ ρn ≤ 1), ∆ρn has both strictly positive and strictly negative
eigenvalues, allowing the above theorems to apply.

Both I− λ∆ρn and An(I− λ∆ρn)−1AT
n are invertible with λ < δρn,1. The matrix inversion

only needs to be done once for each individual. After computing Qn ≡ (I−λ∆ρn)−1AT
n (An(I−

λ∆ρn)−1AT
n )−1, Qncn and (I − QnAn)(I − λ∆ρn)−1 for each n, we use Algorithm 2 to solve

(6.4).

Choosing λ An optimal value of λ could be calculated. Substituting the values of y∗ in (6.12),
shows that the optimal λ is a root of the polynomial

∑n2
t=1 δρ,t

z2
0,t

2(1−λδρ,t)2 . The root-finding is too
expensive to perform at every iteration. However, the optimal λ verifies

0 < λ <
1
δρ,1

,

where δρ,1 = 2 cos( 1
n2+1π) − 2ρ is the biggest eigenvalue of ∆ρ. This gives us a good enough

idea about how large a λ to use. In the numerical experiments, we chose λ = min(1, 1
2 maxn δρn,1

)
in the penalization when the constraint in (6.7) is active, and λ = 0 (no penalization) when the
constraint is verified by x0.

74



6.3. EXPERIMENTAL RESULTS

Algorithm 2 Block coordinate descent for NMF from temporal aggregates and autocorrelation
penalty
input ρn,An,Qn,Qncn, ∀1 ≤ n ≤ N, and 1 ≤ K ≤ min{T,N}

Initialize F0
r ,F0

c ≥ 0,V0 = PA(F0
rF0

c), i = 0
while Stopping criterion is not satisfied do

Fi+1
r = Update(Fi

r,Fi
c,Vi)

Fi+1
c = Update(Fi+1

r ,Fi
c,Vi)

for all 1 ≤ n ≤ N do
vi+1
n = (Qncn + (I−QnAn)(I− λ∆ρn)−1Fi+1

r hi+1
n )+

end for
i = i+ 1

end while
output Vi ∈ A,Fi

r ∈ Rn1×k
+ ,Fi

c ∈ Rn2×k
+

6.3 Experimental results

6.3.1 Datasets

We use one synthetic dataset and three real-world electricity consumption datasets to evalu-
ate the proposed algorithms. In each dataset, the individual autocorrelation is calculated on
historical data from the corresponding datasets, not used for evaluation.

• Synthetic data: 20 independent Gaussian processes with Matern covariance function
(shifted to be nonnegative) are sampled over 150 periods to form the factor matrix Fr. A
20-by-120 weight matrix Fc is generated by sampling from a standard normal distribution
truncated at 0, independently for each entry. The data matrix is obtained as Fr × Fc

(n1 = 150, n2 = 120). This matrix is exactly of rank 20.

• French electricity consumption (proprietary dataset): daily consumption of 636 medium-
voltage feeders gathering each around 1,500 consumers based near Lyon in France during
2012 (n1 = 365, n2 = 636).

• Portuguese electricity consumption [28] daily consumption of 370 Portuguese clients
during 2014 (n1 = 365, n2 = 370).

• Electricity consumption of small Irish companies [29, 30] daily consumption of 426
small Irish companies during 200 days in 2010 (n2 = 200, n2 = 426).

6.3.2 Evaluation procedure

For each individual in a dataset, we generate observations by selecting a number of observation
periods. The temporal aggregates are the sum of the time series between two consecutive
observation periods. The observation periods are chosen in two possible ways: periodically (at
regular intervals with the first observation period sampled at random), or uniformly at random.
The regular intervals for periodic observations are p ∈ {2, 3, 5, 7, 10, 15, 30}. This is motivated
by the real application where meter readings are recorded regularly. With random observations,
we use sampling rates that are equivalent to the regular intervals. That is, the number of
observations D verifies D

n1n2
= 1

p ∈ {0.5, 0.33, 0.2, 0.14, 0.1, 0.07, 0.03}.

We apply the following methods to recover the data matrix from each set of sampled obser-
vations:
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• interpolation Temporal aggregates are distributed equally over the covered periods.

• softImpute As an alternative method, we apply a state-of-art matrix completion algorithm
to complete the cumulative matrix. The observed entries are the cumulative values of the
column from the first period to the observation dates. We use a nuclear-norm minimization
algorithm, implemented in the R package, softImpute [111], to complete the cumulative
consumption matrix, before differentiating each column to the obtain recovered matrix.
To choose the thresholding parameter, we use the warm start procedure documented in
softImpute.

• HALS, and NeNMF These are the proposed matrix recovery algorithms using two classical
Fr and Fc update implementations: HALS, and NeNMF. When autocorrelation penalization
is used, we choose λ = min(1, 1

2 maxn δρn,1
), as explained in the previous section. The rank

used in proposed algorithms is chosen by a 5-fold cross validation procedure: we split
the observations randomly into 5 folds, and apply the algorithm to 4 of the 5 folds with
ranks 2 ≤ k ≤ 30. We then calculate the `2-distance between the temporal aggregates
on the recovered matrix with the 1-fold holdout. Repeating this procedure onto the 5
folds separately, we choose the rank which minimizes the average `2-distance, to perform
the algorithm on all observations. The cross validation procedure is carried out on the
unpenalized version of the algorithms, and used both in the validation of unpenalized and
penalized algorithms.

With each recovered matrix V obtained in an algorithm run, we compute the relative root-
mean-squared error (RRMSE):

RRMSE(V,V∗) = ‖V−V∗‖F
‖V∗‖F

.

Each experiment (dataset, sampling scheme, sampling rate, recovery method, unpenalized or
penalized) is run three times to calculate the average RRMSE. Qualitatively similar results have
been obtained using other error metrics.

6.3.3 Results

In Figure 6.1, one example of each data is shown. In the experiment depicted by the examples,
20% random observations are sampled. That is, observations dates are chosen uniformly at
random, with one temporal aggregate every five days in average. In each dataset, the ground
truth is drawn in black. The unpenalized NeNMF recovered the times series in green. We can see
that generally trends are well estimated. However, unpenalized recovery produces an estimation
which is more wiggly than the ground truth. With the autocorrelation-penalized version of
NeNMF (orange lines), this aspect is improved.

The average RRMSE of experiments is reported in Figure 6.2. The figure is zoomed to show
the RRMSE of the proposed algorithms. Much higher error rates for reference methods are
sometimes not shown.

On sample sets with random observation periods (lower panel), proposed methods (HALS
and NeNMF, blue and purple lines), whether unpenalized (solid lines) or penalized (dashed lines),
out-performs the interpolation benchmark (red solid lines) by large in all datasets. This is
especially the case when the sampling rate is small, i.e. when the task is more difficult. On the
Irish dataset (lower panel, furthest to the right), penalized HALS and NeNMF (dashed blue and
purple lines) are an improvement to unpenalized HALS and NeNMF when the sampling rate is low.

With periodic observations (upper panel), the RRMSE is higher for every method. Pro-
posed unpenalized methods, HALS and NeNMF (blue and purple solid lines) are equivalent to
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Figure 6.1: Recovery examples from each of the four datasets. The data matrix is sampled with the
scheme random, with 20% sampling rate in this experiment. The black line is the ground truth. The green
line the recovery made by unpenalized NeNMF. The red line is the recovery made by penalized NeNMF.

interpolation benchmark (red solid lines) for synthetic data, but sometimes worse for real
datasets. Real electricity consumption has significant weekly periodicity, which is poorly cap-
tured by observations at similar periods. However, this shortcoming of the unpenalized method
is more than compensated for by the penalization (dashed blue and purple lines).

We notice that penalized HALS and NeNMF consistently outperform interpolation with both
observation schemes. This makes penalized methods particularly useful for the application of
electricity consumption reconstitution, where it may be costly to install a random observation
scheme, or to change the current periodic observation scheme to a random one.

It is also interesting to note that the rank chosen by the cross validation procedure is higher
in higher sampling rate scenarios (Figure 6.3). This shows that the cross validation procedure
is able to relax the rank constraint when more information is available in the data.

The traditional matrix completion method seems to fail in this application: softImpute
(green solid lines) only has comparable results to interpolation or proposed methods in two of
the four datasets, with 50% sampling rate in the random sampling scheme, which is the easiest
case. In most cases, softImpute has an RRMSE much larger than 100%, and thus is not shown
in the graphic. This indicates that the cumulative matrix considered in this application does
not verify assumptions which guarantee matrix completion success.
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Figure 6.2: Mean RRMSE of the recovered matrices over three separate runs over the four datasets.
On the samples with random observation periods, proposed methods (HALS and NeNMF, blue and purple
lines, both penalized and unpenalized) out-performs the interpolation benchmark (solid red line). On
the samples with regular observation periods, unpenalized HALS and NeNMF (solid blue and purple lines)
are similar to the interpolation benchmark, whiled penalized HALS and NeNMF (dashed blue and purple
lines) are an important improvement. The softImpute method (solid green line) only has comparable
performance in two of the datasets, in the easiest task (50% sampling rate at random periods). In most
cases, RRMSE of softImpute is larger than 100%.

6.4 Perspectives

Motivated by a new industrial application, we extended NMF to use temporal aggregates as input
data, by adding a projection step into NMF algorithms. With appropriate projection algorithms,
this approach could be further generalized to other types of data, such as disaggregating spatially
aggregated data, or general linear measures. When such information is available, we introduce a
penalization on individual autocorrelation, which improves the recovery performance of the base
algorithm. This component can be generalized to larger lags (with a matrix ∆ with 1’s further
off the diagonal), or multiple lags (by adding several lag matrices together). It is also possible to
generalize this approach to other types of expert knowledge, such as exogenous variables, which
is discussed in the next chapter.
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Figure 6.3: The rank chosen by the cross validation procedure generally increases with the sampling
rate, for the four datasets. This shows that the procedure is able to relax the rank constraint when more
information is available in the data.
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7.1 Introduction

In recent years, a large number of methods have been developed to improve matrix completion
methods using side information [112–114]. By including features linked to the row and/or
columns of a matrix, these methods have a better performance at estimating the missing entries.

This chapter is a joint work with Yohann De Castro, Yannig Goude, Georges Hébrail and Jean-Marc Azaïs.
It is based on the submitted article [3].



CHAPTER 7. TIME SERIES RECOVERY AND PREDICTION USING NMF WITH SIDE
INFORMATION

In this chapter, we generalize this idea to nonnegative matrix factorization. Although more
difficult to identify, NMF often has a better empirical performance, and provides factors that
are more interpretable in an appropriate context. We propose an NMF method that takes into
account side information. Given some observations of a matrix, this method jointly estimates
the nonnegative factors of the matrix, and regression models of these factors on the side infor-
mation. This allows us to improve the matrix recovery performance of NMF. Moreover, using
the regression models, we can predict the value of interest for new rows and columns that are
previously unseen. We develop this method in the general matrix recovery context, where linear
measurements are observed instead of matrix entries.

This choice is again motivated by applications in electricity consumption. We are interested
in estimating and predicting the electricity load from temporal aggregates. In the context of load
balancing in the power market, electric transmission system operators (TSO) of the electricity
network are typically legally bound to estimate the electricity consumption and production at
a small temporal scale (half-hourly or hourly), for market participants within their perimeter,
i.e. utility providers, traders, large consumers, groups of consumers, etc. [2]. Most traditional
electricity meters do not provide information at such a fine temporal scale. Although smart
meters can record consumption locally every minute, the usage of such data can be extremely
constrained for TSOs, because of the high cost of data transmission and processing and/or
privacy issues. Nowadays, TSOs often use regulator-approved proportional consumption profiles
to estimate market participants’ load. In Chapter 6, we proposed to solve the estimation problem
by NMF using temporal aggregate data.

Using the method developed in this chapter, we put in parallel temporal aggregate data
with features that are known to have a correlation with electricity consumption, such as the
temperature, the day of the week, or the type of client. This not only improves the performance
of load estimation, but also allows us to predict future load for users in the dataset, and estimate
and predict the consumption of new users previously unseen. In electrical power networks, load
prediction for new periods is useful for balancing offer-demand on the network, and prediction
for new individuals is useful for network planning. Moreover, by examining the relationship
between external features, the factors produced by NMF can be much more interpretable.

In the rest of this section, we introduce the general framework of this method, and the related
literature. In Section 7.2, we deduce a sufficient condition on the side information for the NMF
to be unique. In Section 7.3, we present HALSX, an algorithm which solves the NMF with side
information problem, that we prove to converge to stationary points. In Section 6.3, we present
experimental results, applying HALSX on simulated and real datasets, both for the electricity
consumption application, and for a standard task in collaborative filtering.

7.1.1 General model definition

In this chapter, we use general linear measurements. We do not restrict us to temporally
aggregated observations.

As mentioned in Chapter 5, we are interested in reconstructing a nonnegative matrix V∗ ∈
Rn1×n2

+ , from N linear measurements,

α = A(V∗) ∈ RN , (7.1)

where A : Rn1×n2 → RN is a linear operator. Formally, A can be represented by A1, ..., AN , N
design matrices of dimension n1 × n2, and each linear measurement can be represented by

αi = Tr(V∗AT
i ) = 〈V∗,Ai〉. (7.2)

The design matrices A1, ..., AN are called masks.
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Moreover, we suppose that the matrix of interest, V∗, stems from a generative low-rank
nonnegative model, in the following sense:

1. The matrix V∗ is of nonnegative rank k, with k � n1, n2. This means, k is the smallest
number so that we can find two nonnegative matrices Fr ∈ Rn1×k

+ and Fc ∈ Rn2×k
+

satisfying

V∗ = FrFT
c .

Note that this implies that V∗ is of rank at most k, and therefore is of low rank.

2. There are d1 row features Xr ∈ Rn1×d1 and d2 column features Xc ∈ Rn2×d2 connected to
each row and column of V∗. We note by xir the i-th row of Xr, and by xic the i-th row
of Xc. There are two link functions fr : Rd1 → Rk and fc : Rd2 → Rk, so that

Fr = (fr(Xr))+,

Fc = (fc(Xc))+,

where fr(Xr) ∈ Rn1×k is the matrix obtained by stacking row vectors fr(xir), for 1 ≤ i ≤ n1
(idem for fc(Xc) ∈ Rn2×k), and (·)+ is the ramp function which corresponds to thresholding
operation at 0 for any matrix or vector.

In this general setting, the features Xr and Xc, the measurement operator A, and the
measurements α are observed. The objective is to estimate the true matrix V∗ as well as the
factor matrices Fr and Fc, by estimating the link functions fr and fc.

To obtain a solution to this matrix recovery problem, we minimize the quadratic error of the
matrix factorization. In Section 7.3, we will propose an algorithm for the following optimization
problem:

min
V,fr∈Fkr ,fc∈Fkc

‖V− (fr(Xr))+(fc(Xc))T+‖2F

s.t. A(V) = b, V ≥ 0,
(7.3)

where Fr ⊆ (R)Rd1 and Fc ⊆ (R)Rd2 are some functional spaces in which the row and column
link functions are to be searched.

By specializing Xr, Xc, and A, or restricting the search space of fr and fc, this general
model includes a number of interesting applications, old and new.

The masks A1, ..., AN

As mentioned in Chapter 5, varying the masks allows us to consider various applications in the
matrix recovery context.

• Complete observation: N = n1n2,Ai1,i2 = ei1eTi2 , where ei is the i-th canonical vector.
This means every entry of V∗ is observed.

• Matrix completion: the set of masks is a subset of complete observation masks, withN <
n1n2 .

• Matrix sensing: the design matrices Ai are random matrices, sampled from a certain
probability distribution. Typically, the probability distribution needs to verify certain
conditions, so that with a large probability, A verifies the Restricted Isometry Property
[78].
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• Rank-one projections [84, 85]: the design matrices are random rank-one matrices, that
is Ai = αiβ

T
i , where αi and βi are respectively random vectors of dimension n1 and n2.

The main advantage to this setting is that much less memory is needed to store the masks,
since we can store the vectors αi and βi (dimension-(n1 + n2)) instead of Ai (dimension-
(n1 × n2)). In [84, 85], theoretical properties are proved for the case where αi and βi are
vectors with independent Gaussian entries and/or drawn uniformly from the vectors of the
canonical basis.

• Temporal aggregate measurements: in this case, the matrix is composed of n1 time
series concerning n2 individuals, and each measure is a temporal aggregate of the time
series of an individual. The design matrices are defined as Ai =

∑t0(i)+h(i)
t=t0(i)+1 eteTsi , where si

is the individual concerned by the i-th measure, t0(i) + 1 the first period covered by the
measure, and h(i) the number of periods covered by the measure.

The features Xr and Xc

• Individual features: Xr = In1 ,Xc = In2 . Basically, no side information is available.
The row individuals and column individuals are each different.

• General numeric features: Xr ∈ Rn1×d1 and Xc ∈ Rn2×d2 . This includes all numeric
features.

• Features generated from a kernel: certain information about the row and column
individuals may not be in the form of a numeric vector. For example, if the row individuals
are vertices of a graph, their connection to each other is interesting information for the
problem, but it is difficult to encode as real vectors. In this case, features can be generated
through a transformation, or by defining a kernel function.

The link functions fr and fc

• Linear: Fr = fr(Xr) = XrBr, and Fc = fc(Xc) = XcBc. In this case, we need to
estimate Br and Bc to fit the model. With identity matrices as row and column features,
this case is reduced to the traditional matrix factorization model with

Fr = Br, Fc = Bc, V∗ = FrFT
c = BrBT

c .

When the features are generated from a kernel function, even a linear link function permits
non-linear relationship between the features and the factor matrices.

• General regression models: when the relationship between the features and the variable
of interest is not linear, any off-the-shelf regression methods can be plugged in to search
for a non-linear link function.

The choice of the optimization problem (7.3)

Notice that with individual row and column features, linear link functions and complete obser-
vations, (7.3) becomes

min
Fr,Fc

‖V− (Fr)+(Fc)T+‖2F . (7.4)

This is equivalent to the classical NMF problem,

min
Fr,Fc

‖V− Fr(Fc)T ‖2F

s.t. Fr ≥ 0, Fc ≥ 0,
(7.5)
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in the sense that for any solution (Er,Ec) to (7.4), ((Er)+, (Ec)+) is a solution to (7.5).

A more immediate generalization of (7.5) to include exogenous variables would be in the
form

min
V,fr∈Fkr ,fc∈Fkc

‖V− fr(Xr)(fc(Xc))T ‖2F

s.t. A(V) = b, V ≥ 0,
fr(Xr) ≥ 0, fc(Xc) ≥ 0.

(7.6)

Solving (7.6) would involve identifying the subset of Fr and Fc that only produce nonnegative
value on the row and column features, which could be difficult.

Table 7.1: Classification of matrix factorization with side information by the mask, the link function,
and the features included as side information, with some problems previously addressed in the literature.

Link function Linear Other regression
methods

Features Identity General numeric
features

Kernel features General numeric
features

M
as
k

Identity Matrix factor-
ization

Reduced-
regression
rank [115–117]

Multiple kernel
learning [118]

Nonparametric
RRR [119]

Matrix completion Matrix comple-
tion [86]

IMC[112, 120–
122]

GRMF [113,
114, 123]

Rank-one projections [84, 85]

Temporal aggregates [2]

General masks Matrix recovery
[78, 105]

By using (7.3), we actually shifted the search space Fr and Fc to (Fr)+ and (Fc)+ which
consists of composing all functions of Fr and Fc with the ramp function (thresholding at 0). In
a word, (7.3) is equivalent to

min
V,fr∈(Fr)k+,fc∈(Fc)k+

‖V− fr(Xr)(fc(Xc))T ‖2F

s.t. A(V) = b, V ≥ 0.
(7.7)

Problem (7.7) also helps us to reason on the identifiability of (7.3). In a sense, (7.3) is not
well-identified: two distinct elements in F kc ×F kr have the same evaluation value of the objective
function, if they only differ on their negative parts. In fact, this does not affect the interpretation
of the model, because these distinct elements correspond to the same element in (Fr)k+× (Fc)k+.
Since we are only going to use the positive parts of the function both in recovery and prediction,
this becomes a parameterization choice which has no consequence on the applications.

As a comparison, we also propose an algorithm for the following optimization problem in
Section 7.3:

min
fr∈Fkr ,fc∈Fkc

‖b−A((fr(Xr))+(fc(Xc))T+)‖22, (7.8)

which corresponds to 5.7 mentioned in Chapter 5. Instead of minimizing the low-rank approx-
imation error for a matrix that matches the data as a linear matrix equation in (7.3), (7.8)
minimizes the sampling error of an exactly low-rank matrix. Both have been studied in the
literature. For example, objective functions similar to (7.3) have been considered in [78], and
ones similar to (7.8) in [79]. We will see in both Sections 7.3 and 7.4 that (7.3) has a better
performance than (7.8).
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7.1.2 Prior works

Table 7.1 shows a taxonomy of matrix factorization models with side information, by the mask,
the link function and the features used as side information.

There is an abundant literature that studies the general matrix factorization problem under
various measurement operators, when no additional information is provided (see [78, 85, 86,
104] for various masks considered, and [90] for a recent global convergence result with RIP
measurements). The NMF with general linear measurements is studied in various applications [2,
79, 83].

On the other hand, with complete observations, the multiple regression problem taking
into account the low-rank structure of the (multi-dimensional) variable of interest is known as
reduced-rank regression. This approach was first developed very early (see [115] for a review).
Recent developments on rank selection [116], adaptive estimation procedures [124], using non-
parametric link function [119], often draw the parallel between reduced-rank regression and the
matrix completion problem. However, measurement operators other than complete observations
or matrix completion are rarely considered in this community.

Building on theoretical boundaries on matrix completion, the authors of [112, 121, 122]
showed that by providing side information (the matrix X), the number of measurements needed
for exact matrix completion can be reduced. Moreover, the number of measurements neces-
sary for successful matrix completion can be quantified by measuring the quality of the side
information [122].

Collaborative filtering with side information has received much attention from practitioners
and academic researchers alike, for its huge impact in e-commerce and web applications [112–
114, 120–122]. One of the first methods for including side information in collaborative filtering
systems (matrix completion masks) was proposed by [123]. The authors generalized collaborative
filtering into a operator estimation problem. This method allows more general feature spaces
than a numerical matrix, by applying a kernel function to side information. [114] proposed
choosing the kernel function based on the goal of the application. [118] applied the kernel-
based collaborative filtering framework to electricity price forecasting. Their kernel choice is
determined by multi-kernel learning methods.

To the best of our knowledge, matrix factorization (nonnegative or not) with side information,
from general linear measurements has rarely been considered, nor is general non-linear functions
other than with features obtained from kernels. This chapter aims at proposing a general
approach which fills this gap.

7.2 Identifiability of nonnegative matrix factorization with side
information

Matrix factorization is not a well-identified problem: for one pair of factors (Fr,Fc), with V∗ =
FrFT

c , any invertible matrix R produces another pair of factors, since (FrR)(Fc(R−1)T )T is
also equal to V∗. In order to address this identifiability problem, one has to introduce extra
constraints on the factors.

When the nonnegativity constraint is imposed on Fr and Fc, however, it has been shown
that sometimes the only invertible matrices that verify FrR ≥ 0 and R−1Fc ≥ 0 are the
composition of a permutation matrix and a diagonal matrix with strictly positive diagonal
elements. A nonnegative matrix factorization is said to be “identified” if the factors are unique
up to permutation and scaling. The identifiability conditions for NMF are a hard problem,
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because it turns out that NMF identifiability is equivalent to conditions that are computationally
difficult to check. In this section, we review some known necessary and sufficient conditions for
NMF identifiability in the literature, and develop a sufficient condition for NMF identifiability
in the context of linear numerical features.

The reason for studying identifaibility of NMF with side information is two-fold. First of all,
it is possible that using side information could restrict the solution space of the NMF problem,
and makes the factorization problem more identifiable. Secondly, if we wish to find interpretation
of the factors obtained in NMF, it is desirable if the factors are “unique”.

In order to simplify our theoretical analysis, we focus on the complete observation case in
this section (every entry in V∗ is observed). Without loss of generality, we derive the sufficient
condition for row features. That is, we will derive conditions on V∗ ∈ Rn1×n2

+ and Xr ∈ Rn1×d1 ,
so that the nonnegative matrix factorization V∗ = XrBrFT

c , with XrBr ≥ 0,Fc ≥ 0, is unique.
A generalization to column features can be easily obtained. In this section, we assume that in
addition to be of nonnegative rank k, matrix V∗ is also exactly of rank k.

7.2.1 Identifiability of NMF

The authors of [5] and [12] proposed two necessary and sufficient conditions for the factorization
to be unique. Both conditions use the following geometric interpretation of NMF introduced by
[5].

Since V∗ = FrFT
c , the columns of V∗ are conical combinations of the columns in Fr. For-

mally, cone(Fr), the conical hull of the columns of Fr, is a polyhedral cone contained in the
first orthant of Rn1 . As V∗ is of rank k, the rank of Fr is also k. This implies that the ex-
treme rays (also called generators) of cone(Fr) are exactly the columns of Fr, which are linearly
independent. cone(Fr) is therefore

• a simplicial cone of k generators,

• contained in Rn1
+ ,

• containing all columns of V∗.

Inversely, if we take any cone F ⊆ Rn1 verifying these three conditions, and define a matrix F
whose columns are the k generators of F , there will be a nonnegative matrix G, so that V∗ =
FG. The uniqueness of NMF is therefore equivalent to the uniqueness of simplicial cones of k
generators contained in the first orthant of Rn1 and containing all columns V∗.

In [12], an equivalent geometric interpretation in Rk is given in the following theorem:

Theorem 3. [12] A k-dimensional NMF V∗ = FrFc of a rank-k nonnegative matrix V∗ is
unique if and only if the nonnegative orthant Rk+ is the only simplicial cone A with k extreme
rays satisfying

cone(FT
r ) ⊆ A ⊆ cone(F?

c).

Despite the apparent simplicity of the theorem, the necessary and sufficient conditions are
very difficult to check. Based on the theorem above, several sufficient conditions have been
proposed. The most widely used condition is called the separability condition. Before introduc-
ing this condition (in its least restrictive version presented by [12]), we need the following two
definitions.
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Definition 1 (Separability). Suppose m ≤ n. A nonnegative matrix M ∈ Rm×n+ is said to be
separable if there is a m-by-m permutation matrix Π which verifies

M = Π
(

Dn

M0

)
,

where Dn is a n-by-n diagonal matrix with only strictly positive coefficients on the diagonal and
zeros everywhere else, and the (m− n)-by-n matrix M0 is a collection of the other m− n rows
of M.

Definition 2 (Strongly Boundary Closeness). A nonnegative matrix M ∈ Rm×n+ is said to be
strongly boundary close if the following conditions are satisfied.

1. M is boundary close: for all i, j ∈ {1, ..., n}, i 6= j, there is a row m in M which
satisfies mi = 0,mj > 0;

2. There is a permutation of {1, ..., n} such that for all i ∈ {1, ..., n − 1}, there are n − i
rows m1, ...,mn−i in M which satisfy

(a) mj
i = 0,

∑n
s=i+1m

j
i > 0 for all j ∈ {1, ..., n− i};

(b) the square matrix (mj
s)1≤j≤n−i,i+1≤s≤n is of full rank (n− i).

Strongly boundary closeness demands, modulo a permutation in {1, ..., n}, that for each 1 ≤
i ≤ n− 1, there are n− i rows m1, ...,mn−i of M that have the following form, m1

:
mn−i


T

=


: . . . :
0 · · · 0

m1
i+1 · · · mn−i

i+1

: . . . :
m1
n · · · mn−i

n


(i− 1) first rows
i-th row is all zero (n− i)× (n− i) full rank matrix

(7.9)

These row vectors, m1, ...,mn−i, all have 0 on the i-th element, and its lower square matrix of is
of full rank. There are therefore enough linearly independent points on each n− 1-dimensional
facet Rn+, which shows that cone(MT ) is somewhat maximal in Rn+.

The following was proved in [12]:

Theorem 4. [12] If Fr is strongly boundary close, then the only simplicial cone with k generators
in Rk+ containing cone(FT

r ) is Rk+. Moreover, if Fc is separable, then V∗ = FrFT
c is the unique

NMF of V∗ up to permutation and scaling.

7.2.2 Identifiability with side information

The NMF with linear row features, V∗ = XrBrFT
c , is said to be unique, if for all matrix

pairs (B̃r, F̃c) ∈ Rd1×k × Rn2×k that verifies

XrB̃r ≥ 0, F̃c ≥ 0, V∗ = XrB̃rF̃c,

we have B̃ = Br, F̃c = Fc up to permutation of columns and scaling.
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For a given full-rank matrix X ∈ Rn1×d1 , consider the following two sets of matrices:

E = {M ∈ Rn1×k
+ |The columns of M are

strongly boundary close};
F (X) = {M ∈ Rn1×k

+ |rank(M) = k, span(M) ∈ span(X)}.

Theorem 5. If E
⋂
F (Xr) 6= ∅, and Br ∈ (XT

r Xr)−1XT
r (E

⋂
F (Xr)), and Fc is separable,

then the factorization V∗ = XrBrFT
c is unique.

Proof. Notice that for Br ∈ (XT
r Xr)−1XT

r (E
⋂
F (Xr)), the nonnegative matrix XrBr is strongly

boundary close. The factorization (XrBr,Fc) is therefore unique. The model identifiability
follows immediately, since Xr is of full rank.

Example of Xr that verifies E
⋂
F (Xr) 6= ∅

For this theorem to have practical consequences, one needs to find appropriate row features so
that E

⋂
F (Xr) 6= ∅.

Here we provide a family of matrices Xr so that E
⋂
F (Xr) 6= ∅.

With a fixed k ≥ 2, suppose that Xr has k(k − 1)/2 columns, and at least k(k − 1)/2 rows,
with the first k(k − 1)/2 + 1 rows defined as the following:

• the first row and column have 0 on the first entry and positive entries elsewhere;

• for 2 ≤ i ≤ k, Xr has strictly positive entries on the first ((i− 1)(i− 2)/2 + 1) columns,
from Row (i− 1)(i− 2)/2 + 3 to Row (i− 1)(i− 2)/2 + 1 + i, and zero entries everywhere
else. These (k − 1) rows are linearly independent.

Then we have E
⋂
F (Xr) 6= ∅, because the following k(k − 1)/2-by-k matrix Br is in this

set:

• for 1 ≤ i ≤ k, B∗K has i consecutive strictly positive entries on the i-th column, between
Row i(i− 1)/2 + 1 and Row i(i− 1)/2 + i.

The following matrices instantiate the case of k = 4:

Br =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1


,

Xr =



0 5 14 7 9 15 13
10 0 0 0 0 0 0
4 5 0 0 0 0 0
12 4 0 0 0 0 0
10 7 10 7 0 0 0
13 10 12 9 0 0 0
12 10 16 8 0 0 0
: : : : : : :


,Fr =



0 5 21 37
10 0 0 0
4 5 0 0
12 4 0 0
10 7 17 0
13 10 21 0
12 10 24 0
: : : :


.
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If E
⋂
F (X) 6= ∅, for any invertible matrix R ∈ RK×K , E

⋂
F (XR) 6= ∅.

As a conclusion to this section, we notice that since the sufficient condition proposed by
Theorem 5 is based on a known uniqueness condition of classical NMF, this does not make the
problem more identifiable. Rather, we derived a sufficient condition on the feature matrix and
the coefficient matrix (Xr and Br) for the NMF with side information to be unique. This is a
generalization of identifiability analysis of NMF to the case with side information.

7.3 HALSX algorithm

In this section, we propose HALSX, or Hierarchical Alternating Least Squares with eXogeneous
variables, a general algorithm to estimate the nonnegative matrix factorization problem with
side information, from linear measurement, by solving (7.3). It is an extension to a popular
NMF algorithm: Hierarchical Alternating Least Squares (HALS) (see [18, 19]).

Before discussing HALSX, we will first present a result on the local convergence of Gauss-
Seidel algorithms. This result guarantees that any legitimate limiting points generated by
HALSX are stationary points of (7.3).

While presenting specific methods to estimate link functions, we will only discuss row fea-
tures, as a generalization to column features is immediate.

7.3.1 Relaxation of convexity assumption for the convergence of Gauss-Seidel
algorithm

To show that all legitimate limiting points of HALSX are stationary points, we first extend a
classical result concerning block nonlinear Gauss-Seidel algorithm [110, Proposition 4].

Consider the minimization problem,

min g(x)
s.t. x ∈ X = X1 ×X2 × ...×Xm ⊆ Rn,

(7.10)

where g is a continuously differentiable real-valued function, and the feasible set X is the Carte-
sian product of closed, nonempty and convex subsets Xi ⊂ Rni , for 1 ≤ i ≤ m, with

∑
i ni = n.

Suppose that the global minimum is reached at a point in X. The m-block Gauss-Seidel algo-
rithm is defined as Algorithm 3.

Algorithm 3 Gauss-Seidel algorithm
Initialize x0 ∈ X, t = 0
while Stopping criterion is not satisfied do
for i = 1, 2, ...,m do

Calculate xt+1
i = arg minyi∈Xi g(xt+1

1 , ..., yi, ..., x
t
m)

end for
Set xt+1 = (xt+1

1 , ..., xt+1
m )

t = t+ 1
end while

Define formally the notion of component-wise quasi-convexity.

Definition 3. Let i ∈ {1, 2, ...,m}. The function g is quasi-convex with respect to the i-th
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component on X if for every x ∈ X and yi ∈ Xi, we have

g(x1, x2, ...txi + (1− t)yi, ..., xm)
≤max{g(x), g(x1, x2, ..., yi, ...xm)}

for all t ∈ [0, 1]. g is said to be strictly quasi-convex with respect to the i-th component, if with
the additional assumption that yi 6= xi, we have

g(x1, x2, ...txi + (1− t)yi, ..., xm)
<max{g(x), g(x1, x2, ..., yi, ...xm)}

for all t ∈]0, 1[.

It has been shown that if g is strictly quasi-convex with respect to the first m − 2 blocks
of components on X, then a limiting point produced by a Gauss-Seidel algorithm is a critical
point [110].

This result is not directly applicable for the HALS algorithm. Typically, if f c,i, the i − th
column of Fc, is identically zero, the loss function is completely flat respect to f c,i, the i-th
column of Fr. Therefore the loss function is not strictly quasi-convex. In order to avoid this
scenario, [18] suggests thresholding at a small positive number ε instead of at 0, when updating
each column of the factor matrices.

In fact the convexity assumption of [110] can be slightly relaxed to directly apply to HALS,
as demonstrated by the following proposition.

Theorem 6. Suppose that the function g is quasi-convex with respect to xi on X, for i =
1, ...,m − 2. Suppose that some limit points x̄ of the sequence {xt}(t∈N) verify that g is strictly
quasi-convex with respect to xi on the product set {x̄1} × {x̄2} × ... × Xi×, ... × {x̄m}, for i =
1, ...,m− 2. Then every such limiting point is a critical point of Problem (3).

Compared to the result of [110], this shows that the strict convexity with respect to one
block does not have to hold universally for feasible regions of other blocks. It only needs to hold
at the limiting point.

This theorem can be established following the proof of Proposition 5 of [110], using the
following lemma.

Lemma 1. Suppose that the function g is quasi-convex with respect to xi on X, for some i ∈
{1, ...,m}. Suppose that some limit points ȳ of {yt} verify that g is strictly quasi-convex with
respect to xi on {ȳ1} × {ȳ2} × ...×Xi×, ...× {ȳm}. Let {vt} be a sequence of vectors defined as
follows:

vtj =
{
ytj if j 6= i,

arg minzi∈Xi g(yt1, ..., zi, ..., ytm) if j = i.

Then, if limt→+∞ g(yt)−g(vt) = 0, we have limt→+∞ ||vti−yti || = 0. That is limt→+∞ ||vt−yt|| =
0.

Proof. (The proof of the lemma is based on [125].)

Suppose on the contrary that ||vti − yti || does not converge to 0. Define τk = ||vti − yti ||.
Restricting to a subsequence, we can obtain that τk ≥ τ0 > 0. Define st = vt−yt

τk
. Notice

that {st} is of unit norm, and vt = yt+τks
t. Since {st} is on the unit sphere, it has a converging

subsequence. By restricting to a subsequence again, we could suppose that {st} converges to s̄.
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For all ε ∈ [0, 1], we have 0 ≤ ετ0 ≤ τk, which implies yt+ετ0s
t ∈ X is on the segment [yt, vt].

This segment has strictly positive dimension in the subspace corresponding to Xi.

By the definition of {vt}, g(vt) ≤ g(yt1, ..., zi, ..., ytm), for all t, and for all zi ∈ Xi. In
particular,

g(vt) ≤ g(yt + ετ0s
t).

By quasi-convexity of g on X,

g(yt + ετ0s
t) ≤ max{g(yt), g(vt)} = g(yt).

Taking the limit when t converges to +∞ on both equalities, we obtain

g(ȳ) = lim
t→+∞

g(vt) ≤ lim
t→+∞

g(yt + ετ0s
t)

=g(ȳ + ετ0s̄) ≤ lim
t→+∞

g(yt) = g(ȳ).

In other words, g(ȳ + ετ0s̄) = g(ȳ), ∀ε ∈ [0, 1], which contradicts the strict quasi-convexity of g
on {ȳ1} × {ȳ2} × ...×Xi×, ...× {ȳm}.

7.3.2 HALSX algorithm

To solve (7.3), we propose HALSX (Algorithm 4). When complete observations are available,
the feature matrices are identity matrices, and when only linear functions are allowed as link
functions, Algorithm 4 is equivalent to HALS [19].

From Theorem 6, one deduces that every full-rank limiting point produced by the popular
HALS algorithm is a critical point.

In this algorithm, at each elementary update step, we first look for a link function which
minimizes the quadratic error, without concerning ourselves with its nonnegativity. The obtained
evaluation of the minimizer function is then thresholded at 0 to update the factors.

To obtain that the limiting points of HALSX are stationary points, we need to ensure that
for some functional spaces Fr and Fc, such an update solves a corresponding subproblem of
(7.3). To do this, we will use the following proposition:

Proposition 1. Suppose that R ∈ Rn1×n2, f c ∈ Rn2
+ are not identically equal to zero, and

g : Rd → Rn1, with d ≥ n1, is a convex differentiable function. Suppose

θ∗ ∈ arg min
θ∈Rd

‖R − g(θ)(f c)T ‖2F .

If ∇gθ∗, the Jacobian matrix of g at θ∗, is of rank n1, then θ∗ is also a solution to

min
θ∈Rd

‖R − (g(θ))+(f c)T ‖2F . (7.11)

Proof. Take R ∈ Rn1×n2 , f c ∈ Rn2
+ not identically equal to zero. We will note by L the loss

function, so that L(f) = ‖R − (f)+(f c)T ‖2F for all f ∈ Rn1 . The function L is convex.

Problem (7.11), which can be rewritten as

min
θ∈Rd

L(g(θ)),
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Algorithm 4 Hierarchical Alternating Least Squares with eXogeneous variables for NMF
(HALSX)
Require: Measurement operator A, measurements b, features Xr and Xc, functional spaces Fr
and Fc in which to search the link functions, and 1 ≤ k ≤ min{n1, n2}.
Initialize F0

r ,F0
c ≥ 0, t = 0

while Stopping criterion is not satisfied do
Vt = arg minV|A(V)=b,V≥0 ‖V− Ft

r(Ft
c)T ‖2F

Rt = Vt − Ft
r(Ft

c)T
for i = 1, 2, ..., k do

Rt
i = Rt + f tr,i(f tc,i)T

Calculate f t+1
r,i = arg minf∈Fr ‖Rt

i − f(Xr)(f tc,i)T ‖2F
f t+1
r,i = max(0, f t+1

r,i (Xr))
Rt = Rt

i − f t+1
r,i (f tc,i)T

end for
for i = 1, 2, ..., k do

Rt
i = Rt + f t+1

r,i (f tc,i)T

Calculate f t+1
c,i = arg minf∈Fc ‖Rt

i − f t+1
r,i f(Xc)T ‖2F

f t+1
c,i = max(0, f t+1

c,i (Xc))
Rt = Rt

i − f t+1
r,i (f t+1

c,i )T
end for
t = t+ 1

end while
output Vt = arg minV|A(V)=b,V≥0 ‖V− Ft

r(Ft
c)T ‖2F ,

Ft
r ∈ Rn1×k

+ , f tr,1, ..., f
t
r,k ∈ Fr,

Ft
c ∈ Rn2×k

+ , f tc,1, ..., f
t
c,k ∈ Fc.
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is also convex. The subgradient of the composition function L ◦ g at θ ∈ Rd is simply obtained
by multiplying ∇gθ, the Jacobian matrix of g at θ, to each element of ∂Lg(θ), or ∂Lg(θ) ≡
∇gθ∂Lg(θ) = {∇gθy|y ∈ ∂Lg(θ)}. Therefore ∀θ ∈ Rd, θ is a minimizer of (7.11), if and only
if 0 ∈ ∇gθ∂Lg(θ).

Since

θ∗ ∈ arg min
θ∈Rd

‖R − g(θ)(f c)T ‖2F ,

is a minimizer of a smooth convex problem,

∂

∂θ
‖R − g(θ)(f c)T ‖2F (θ∗) = ∇gθ∗(R − g(θ∗)(f c)T )f c = 0.

This means (R − g(θ∗)(f c)T )f c = 0, because ∇gθ∗ is of full rank. Consequently

g(θ∗) = 1
‖f c‖22

Rf c.

It has been shown in NMF literature (for example [18, Theorem 2]) that,

(g(θ∗))+ = arg min
f∈Rn1

+

‖R − f(f c)T ‖2F .

This is equivalent to

g(θ∗) ∈ arg min
f∈Rn1

L(f),

or

0 ∈ ∂Lg(θ∗).

We therefore conclude with 0 ∈ ∇gθ∗∂Lg(θ∗).

In many regression methods, even when a non-linear transformation is applied to the data,
the regression function is linear in its parameters. A non-exhaustive list of methods include
linear regression (g(θ) = Xrθ), spline regression (g(θ) = φ(Xr)θ), or support vector regression
(SVR) (g(θ) = K(Xr,Xr)θ). In this case, g has a constant Jacobian matrix. In the case of linear
and spline regression, the Jacobian matrix is of rank n1 if there are no less features than examples.
For SVR, this is true for any positive definite kernels. This allows us to apply the previous
lemma to each column update step of Algorithm 4. By calculating f t+1

r,i = arg minf∈Fr ‖Rt −
f(Xr)(f tc,i)T ‖2F at Step t for Column i in Fr, we actually have

f t+1
r,i = arg min

f∈Fr
‖Rt − (f(Xr))+(f tc,i)T ‖2F .

This shows that at each iteration, we solve the subproblems of (7.3).

In these cases, by rewriting the functional space Fr and Fc in a parametric form, the search
space is actually Rr1 and Rr2 , for some r1 and r2.

Theorem 7. If n1 ≤ r1, n2 ≤ r2, every full-rank factorization produced by HALSX (Algorithm
4) is a critical point of Problem (7.3).

Remark 1. In order to obtain a similar result for Problem (7.6), one would need to ensure the
obtained functions have non-negative values on the features. This could be done by alternating
projection.
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7.3.3 Designs and HALSX

At each iteration of Algorithm 4, we need to project the working matrix Ft
r(Ft

c)T into the convex
polytope defined by the measurements and nonnegativity:

Vt = arg min
V|A(V)=b,V≥0

‖V− Ft
r(Ft

c)T ‖2F . (7.12)

In general, the polytope projection can be obtained by alternating projection. Namely, we
can alternate between:

• V = V +A†(b−A(V));

• vi,j = max(0, vi,j),

where A† is the right pseudo-inverse of A, viewed as an N -by-n1n2 matrix.

For some measurement operators, there are efficient ways to solve (7.12).

• Matrix completion mask:

vi,j =
{

αl, if ∃1 ≤ l ≤ N,Al = eieTj ;
max(0, vi,j), if not.

• Temporal aggregate mask: simplex projection (see [2] for details).

7.3.4 Linear HALSX

In this section, we consider HALSX with numeric row features and linear row link functions.
That is, given Xr and α = A(V∗), we need to solve

min
V∈Rn1×n2 ,Br∈Rd1×k,Fc∈Rn2×k

‖V− (XrBr)+(Fc)T+‖2F

s.t. A(V) = b, V ≥ 0,
(7.13)

Following Algorithm 4, we need to update the columns of Br at each iteration. At the t-th
step, for 1 ≤ i ≤ k, we solve the subproblem

arg min
br,i
‖Rt

i −Xrbr,i(f tc,i)T ‖2F ,

where Rt
i = Vt −

∑k
j=1,j 6=i Xrbr,lfTc,l. This minimization problem has a closed-form solution:

bt+1
r,i = 1

‖f tc,i‖22
(XT

r Xr)−1XT
r Rt

if tc,i.

In order to accelerate the numerical algorithm, a QR decomposition of Xr = QR is done
before the iterations, where Q is an orthogonal matrix, and R is a square upper triangular
matrix. When Xr is of full rank, XT

r Xr is invertible. We compute one time (XT
r Xr)−1Xr =

R−1QT before the iterations, and use the result at each iteration.
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Stopping criterion

As in classical NMF algorithms, we will use the Karush–Kuhn–Tucker conditions (KKT) to
provide a stopping criterion. The KKT conditions of (7.13) are,

V ≥ 0, V− (XrBr)+(Fc)T+ ≥ 0, A(V) = b,
V− (XrBr)+(Fc)T+ ◦V = 0,
∇Fc‖V− (XrBr)+(Fc)T+‖2F 3 0,
∇Br‖V− (XrBr)+(Fc)T+‖2F 3 0,

where A ◦ B is the entry-wise product (Hadamard product) for A,B of the same dimension,
and ∇xf(x0) is the subgradient of the function f at point x0, with respect to the variable x.
Note that V ≥ 0 and A(V) = b are always satisfied at the end of an iteration.

As (XrBr)T+(V − (XrBr)+(Fc)T+) ◦ 1(Fc)>0 and XT
r ((V − (XrBr)+(Fc)T+) ◦ 1XrBr>0) are

respectively in the subgradient with respect to Fc and Br, we will stop the algorithm when the
norm of following vector

[vect((V− (XrBr)+(Fc)T+)−)T ,
vect(V− (XrBr)+(Fc)T+ ◦V)T ,
vect((XrBr)T+(V− (XrBr)+(Fc)T+) ◦ 1(Fc)>0)T ,
vect(XT

r ((V− (XrBr)+(Fc)T+) ◦ 1XrBr>0))T ],

is smaller than ε times its initial value, with a small ε. For the algorithms presented in the next
sections, this stopping criterion is generalized quite easily.

7.3.5 HALSX with smoothing splines

The computation considered above can estimate an NMF with linear features fairly efficiently.
However, in real applications, linear link functions are too restrictive. In the following, we will
estimate non-linear link functions that are Generalized Additive Models (GAM, [126]).

A Generalized Additive Model is a generalization to Generalized Linear Model (GLM) which
includes additive non-linear components. Consider n observations xi, yi, for 1 ≤ i ≤ n, where
xi is the vector of features, and yi is an observation of a random variable Yi. Suppose that
Yi = µi + εi, where εi are independent identically distributed zero-mean Gaussian variables, and
µi = E(Yi) has the following relationship to the features:

g(µi) = xTi θ + h1(xi,1) + h2(xi,2) + h3(xi,3, xi,4) + ...

where θ is the vector of parametric model components, g is a known, monotonic, twice-differentiable
function, h1, h2, h3, ..., are the non-linear functions to be estimated.

We note by X the matrix grouping the features of all observations. We use penalized re-
gression spline to fit the GAMs. For j = 1, 2, 3, ..., define a spline basis aj = (aj1, a

j
2, ...) in

which hj , the j-th component of the GAM, is to be estimated. Practically, we search for hj is
the L-dimensional vector space

H(aj , Lj) = {
Lj∑
l=1

βjl a
j
l |β

j = (βj1, ...β
j
Lj

) ∈ RLj}.
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Noting by Xj = {ajl (xi)}i,l the design matrix, for hj =
∑Lj
l=1 β

j
l a
j
l ∈ H(aj , Lj), an element of

the functional space, we have

hj(X) = Xjβj .

The whole model of g, can then be represented linearly:

g(µ) = Xθ + (X1,X2, ...)

β
1

β2

:


= Xθ +

∑
j

Xjβj .

The dimension of H(aj , Lj), Lj , controls the smoothness of the functions to be estimated.
As little information is available on the degree of smoothness of the functions, we use a rather
large Lj , and add a penalty on the wiggliness,

∫
(h′′j )2dx, as in [126]. The least squares estimator

of this model is therefore

arg min
θ,β1,β2,...

‖g(µ)−Xθ −
∑
j

Xjβj‖2 +
∑
j

λj(βj)TSjβj ,

where λj is the penalization parameter of the j-th non-linear component, and Sj is a posi-
tive definite matrix depending on X and aj . The penalization parameter, λj , is chosen by a
generalized cross validation criterion.

HALSX-GAM

At each iteration of the algorithm, for i = 1, ..., k, we re-estimate the link function fr,i of the i-th
column of Fr as a GAM.

The subproblem for i is the following

arg min
θ,β1,β2,...

‖Rt
i − (Xrθ +

∑
j=1

Xjβj)(f tc,i)T ‖2F+

∑
j

λj(βj)TSjβj .
(7.14)

With fixed penalization parameters λ1, λ2, ..., the optimization above can be solved by
θ
β1

β2

:


t+1

= 1
‖f tc,i‖2

×


XT
r Xr XT

r X1 XT
r X2 · · ·

(X1)TXr (X1)TX1 + λ1

‖f tc,i‖2 Sj (X1)TX2 · · ·

: : . . . · · ·


−1

×


XT
r

(X1)T
(X2)T

:

Rt
if tc,i.

In practice, we use the GAM estimation routines implemented in the R package mgcv [126]
to choose the penalization parameter and estimate the model at the same time.
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7.3.6 HALSX with other regression models

We can replicate the strategy above to work with other regression models. As mentioned before,
the convergence to critical point is guaranteed, as long as the regression model estimation can
be re-parameterized to verify the conditions of Proposition 1. Using this strategy, many off-the-
shelf algorithms for regression model training can be plugged in. In the experiments described
in the next section, we use the predictive model API provided in the R package caret [127].

Meta-parameters in regression models

As in HALSX-GAM, we build the estimation of meta-parameters using cross validation as a
part of the link function estimation step, can treat them indifferently as regular parameters.

7.3.7 An HALS-like algorithm for (7.8)

Before detailing Algorithm 5 which aims to solve (7.8), we will first develop the elemental
HALS iteration in the context of (7.8) where no supplemental information is supplied for the
factorization model, namely Xr = In1 ,Xc = In2 . Indeed, when updating one column of Fr, the
sub-problem becomes: how to solve arg minf ‖b−A(f(f c)T )‖22?

We will use the fact that for all M ∈ Rn1×n2 ,

A(M) = (〈Ai,M〉)1≤i≤N ,

and for all b ∈ RN , A∗, the transpose of A is defined by

A∗(b) =
N∑
i=1

biAi.

Since
∂

∂f ‖b−A(f(f c)T )‖22 = A∗[A(f(f c)T )− b]f c,

the first order optimality condition ∂
∂f ‖b−A(f(f c)T )‖220 is therefore equivalent to

A∗[A(f(f c)T )]f c = A∗[b]f c.

The left-hand side of the equation can be written as

A∗[A(f(f c)T )]f c = (
N∑
i=1
〈Ai, f(f c)T )〉Ai)f c

=
N∑
i=1

Tr(f(Aif c)T )(Aif c)

=
N∑
i=1

(Aif c)Tr((Aif c)T f)

=
N∑
i=1

(Aif c)(Aif c)T f ,

which leads to the following symmetric n1-by-n1 system on f :

(
N∑
i=1

(Aif c)(Aif c)T )f =
N∑
i=1

biAif c,
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or

f = (
N∑
i=1

(Aif c)(Aif c)T )−1
N∑
i=1

biAif c

This computation generalizes to linear exogenous variables, with the optimality condition:

β = (
N∑
i=1

(XAif c)(XAif c)T )−1
N∑
i=1

biAif c.

When the matrices to be inversed in these equations are not invertible, we will use the
generalized inverse instead.

Using these elementary steps, we propose Algorithm 5 to solve Problem (7.8). Compared to
Algorithm 4, Algorithm 5

• has one less block (the slack variable V is not present);

• checks the deviation with data more frequently;

• each subproblem is more costly because of the presence of A in the subproblem. As we
will see in the detailed development of the computation, when N , the sample size (the
dimension of image of A) is large, each update involves rather costly computations.

Algorithm 5 Hierarchical Alternating Least Squares with eXogeneous variables for NMF
(HALSX2)
Require: Measurement operator A, measurements b, rank 1 ≤ k ≤ min{n1, n2}, features Xr

and Xc, functional spaces Fr and Fc in which to search the link functions.
Initialize F0

r ,F0
c ≥ 0, t = 0

while Stopping criterion is not satisfied do
Rt = b−A(Ft

r(Ft
c)T )

for i = 1, 2, ..., k do
Rt = Rt +A(f tr,i(f tc,i)T )
f t+1
r,i = arg minf∈Fr ‖Rt −A(f(Xr)(f tc,i)T )‖22

f t+1
r,i = max(0, f t+1

r,i (Xr))
Rt = Rt −A(f t+1

r,i (f tc,i)T )
end for
for i = 1, 2, ..., k do

Rt = Rt +A(f t+1
r,i (f tc,i)T )

f t+1
c,i = arg minf∈Fc ‖Rt −A(f t+1

r,i f(Xc)T )‖22
f t+1
c,i = max(0, f t+1

c,i (Xc))
Rt = Rt −A(f t+1

r,i (f t+1
c,i )T )

end for
t = t+ 1

end while
output Ft

r ∈ Rn1×k
+ , f tr,1, ..., f

t
r,k ∈ Fr,

Ft
c ∈ Rn2×k

+ , f tc,1, ..., f
t
c,k ∈ Fc.
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Complexity

At each sub-iteration Algorithm 5, we need to calculate N n1-by-n1 or n2-by-n2 matrices
((Aif c)(Aif c)T ), then inverse the sum of the these N matrices. While the computation of
the sum is map-reducible, on a single-threaded machine, this can be computationally expensive
when N is large. Each iteration of Algorithm 5 has a multiplicative complexity of O(kN(n2

1 +
n2

2)), while each iteration of Algorithm 4 has a complexity of O(k(n2
1+n2

2)+Nn1n2) with general
linear measurement operator. This difference in complexity can be very important when N or k
is large.

7.4 Experiments

7.4.1 Datasets

We use one synthetic dataset and three real datasets to evaluate the proposed methods.

• Synthetic data: a rank-20 150-by-180 nonnegative matrix simulated following the gener-
ative model (Section 7.1.1), with Xr ∈ R150×3 and Xc ∈ R180×4 matrices with independent
Gaussian entries, fr : R3 → R20 (fc : R4 → R20) is a function formed with a dimension-33
(44 for fc) spline basis with random weights, truncated at 0 (T = 150, N = 180). The
simulated features matrices are used as side information.

• French electricity consumption (proprietary dataset): daily consumption of 473 medium-
voltage feeders gathering each around 1,500 consumers based near Lyon in France from
2010 to 2012. The first two years are used as training data (T = 1096, N = 473). The daily
temperature of a weather station in this area, calendar variables such as weekday/weekend,
position of the year, bank holidays, and percentage of four types of clients (residential,
professional, industrial, high-voltage clients) are used as side information (similar as in
Chapter 4).

• Portuguese electricity consumption [28] daily consumption of 370 Portuguese clients
from 2010 to 2014 (T = 1461, N = 369). The daily temperature in Portugal and calendar
variables are used as side information.

• MovieLens 100k [128] an anonymized public dataset with 100,000 movie scores for 1682
movies from 943 users (T = 943, N = 1682). This is a standard public dataset for matrix
completion. Note that the data matrix is not complete. Error rates are calculated on the
vector of available scores. The genres of the movies, and gender, age and profession of the
users are used as side information.

The subsets of the two real-world electricity consumption datasets are also used in Chapter 6.

7.4.2 Validation procedure

Several methods that can be used in time series recovery and prediction are compared to the
HALSX algorithm proposed in this chapter.

Among these methods, the following methods (introduced in Chapter 6) are used to compare
the matrix recovery/completion performance.

• empty_model For temporal aggregates only: to recover the target matrix, temporal
aggregates are distributed equally over the covered periods.
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• HALS, NeNMF, softImpute Matrix recovery/completion methods without side infor-
mation. See the experiments of the previous chapter for more details.

The following methods use side information, and can be used for time series prediction of
new columns and/or rows from incomplete data:

• individual_gam Estimating separate GAMs on each column or row, on the matrix ob-
tained from empty_model or on the whole data matrix when it is available.

• factor_gam Estimating GAMs on the factors obtained by HALS or NeNMF.

• rrr [129] Applying reduced-rank regression on the matrix obtained from empty_model
or on the whole data matrix when it is available.

• grmf [113] A matrix completion algorithm using graph-based side information to enhance
collaborative filtering performance.

• trmf [26] A matrix completion algorithm tailored to time series, by adding three pe-
nalization terms to the matrix factorization quadratic error. When only temporal ag-
gregate measurements are available, we apply this method on the matrix obtained from
empty_model.

• HALSX_model Algorithm 4.

For all matrix factorization methods (HALS, NeNMF, rrr, factor_gam, grmf, trmf, HALSX_model),
we use the method with several ranks, then choose the best rank (k ∈ {2, 3, ..., 20} for synthetic
and Portuguese data, k ∈ {2, 3, ..., 10} for French and MovieLens data). For trmf, we do a grid
search on the three penalization parameters, and choose the best combination.

As explained in the previous section, a regression method needs to be specified in order to
use HALSX_model. This regression method specifies the fonctional spaces Fr and Fc in which
the link functions are to be looked for. In our experiments, we use four different regression
methods with HALSX: linear model, GAM, support vector regression with linear kernel, and
Gaussian process regression with radial basis kernel (lm, gam, svmLinear, gaussprRadial).
We use the implementation of lm in standard R, and svmLinear and gaussprRadial of the
R package kernlab[130], through the caret API. As of gam, we use the mgcv implementation
directly.

For each data matrix, we apply a linear measurement operator on an upper-left submatrix
to obtain the measures (of dimension 100-by-130 for synthetic data, 730-by-270 for French data,
731-by-369 for Portuguese data, and 666-by-1189 for MovieLens data). A random shuffle be-
tween columns is done before dividing the matrix into submatrices. As in Chapter 6, on time
series datasets (the first three), both periodic and random temporal aggregates are generated
as observations. On the MovieLens dataset, observations are random entries, as in matrix com-
pletion. Using the measurements of the upper-left submatrix, we use each method to estimate
a matrix factorization model, with or without side information.

We then report the matrix recovery error on this sampled submatrix for all methods, and the
prediction errors on the rest of the data matrix for the methods can produce predictions for new
columns and/or rows. We distinguish row prediction error, column prediction error, and row-
column prediction error, as the error calculated on the lower-left, upper-right and lower-right
submatrix (see Figure 7.1).

We report the relative root-mean-squared error as error metric for time series datasets:

• for electricity datasets, RRMSE(V,V∗) = ‖V−V∗‖F
‖V∗‖F ,
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Figure 7.1: Dividing the data matrix into four submatrices: one for generating observations to estimate
the model, the other three for prediction.

• for MovieLens, we calculate the l2-norm version on the vector of all available movie scores.

In preliminary tests, other error metrics were also evaluated, and were not qualitatively different
from the chosen metric.

7.4.3 Execution time and precision between HALS and HALS2

To show-case the computational complexity difference discussed in Section 7.3.7, we run HALS
(Algorithm 4) and HALS2 (Algorithm 5) on random temporal aggregate masks, with no side
information. In HALS, we treated observations as general linear measurements, without using
the efficient simplex projection specific to temporal aggregate masks discussed in Chapter 6.
The per iteration execution time is shown in Figure 7.2. The difference in complexity discussed
in Section 7.3.7 is fairly clear here. In HALS2, the execution time per iteration increases both
with the rank and the number of samples in data, at least for sampling rate from 14.3% on. For
low sampling rates, HALS2 often diverges, where as HALS is always stable.

As discussed in Section 7.3.7, although the execution time per iteration is greater, HALS2
could be more efficient if it does much less iterations than HALS. In Figure 7.3, we can see that
this is not the case: for problems with high sampling rates, HALS2 indeed does less iterations
to converge. However, the total execution time is still larger than HALS. For lower sampling
rates, HALS2 has troubles converging, and only stops when the maximal execution time allowed
(300 seconds) is reached. This is also confirmed in Figure 7.4, where HALS2 has much worse
recovery error than HALS.

Given these results, we will only use the HALSX (Algorithm 4), the version of HALS with
side information, in the following tests.

7.4.4 Performance on temporal aggregate measurements

On the synthetic and the two real electricity consumption datasets, we use Algorithm 4 to
perform matrix recovery and prediction on temporal aggregate measurements. Every method

102



7.4. EXPERIMENTS

5.0% 10.0% 14.3% 20.0% 33.3% 50.0%

portuguese
r20

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

0

10

20

30

40

0

10

20

30

40

rank

E
xe

cu
tio

n 
tim

e 
by

 it
er

at
io

n

algorithm

HALS

HALS2

Figure 7.2: Execution time per iteration of Algorithm 4 and Algorithm 5 without exogenous variables
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Figure 7.3: Total execution time of Algorithm 4 and Algorithm 5 without exogenous variables
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Figure 7.4: Reconstitution precision of Algorithm 4 and Algorithm 5 without exogenous variables

except for grmf is used in this setting.

We use two types of temporal aggregate measurements: periodic and random. In periodic
measurements, each scalar measure covers a fixed number of periods of one individual. In random
measurements, the number of periods covered by a measure is random (see Chapter 6 for more
details). In electricity consumption data, periodic measurements are closer to the actual meter
reading schedules of utility companies, while matrix recovery with random measurements is an
easier problem. For both sampling types, we sample 10%, 20%, ..., 50% of the data to show-case
the matrix recovery performance of the proposed method.

For the synthetic data, we use the true row and column features used to produce the simula-
tions. For the French electricity data, the row features are variables known to have an influence
on electricity consumption: the temperature, the day type (weekday, weekend, or holiday), the
position of the year. The column features are the percentage of residential, professional, or
industrial usages in the group of users for each column. For the Portuguese electricity data, as
no individual features are available, we only use the same row features as for the French dataset
(temperature, day type, position of the year).

Figure 7.5 shows the matrix recovery error. For most of the scenarios, HALSX_models (red
lines with symbols) are comparable or better than the other methods without side information.
The only case where an HALSX_model is a little worse is when compared with HALS and
NeNMF (two NMF methods) in synthetic data with random measurements, which is the least
close to the real application. As is seen in Chapter 6, the softImpute [111] method is not
well adapted to temporal aggregate measurements, and has much higher error (higher than the
maximal value in these graphics. When comparing the four regression methods used in HALSX,
we see that GAM and Gaussian process regression (gam and gaussprRadial) are the best
for synthetic data, linear model (lm) is the best for Portuguese data, and Gaussian process
regression (gaussprRadial) is the best for French data.

Figures 7.6, 7.7, and 7.8 show the prediction error on the three datasets. We can see that
trmf [26] and rrr [129] are not well adapted to temporal aggregate measurements. When
they are applicable (trmf is only applicable to row prediction, rrr only applicable to row or
column predictions, not RC predictions), they have much worse performance than the other
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Figure 7.5: Recovery performance on synthetic and real electricity data

methods, except in Synthetic data with complete observations. In most cases, HALSX_models
are comparable to or better than factor_gam and individual_gam, which shows that using
side information while estimating the factorization model produces factors more adapted for
prediction. When comparing the regression methods used with HALSX_models in prediction,
gam is consistently the best for synthetic and Portuguese data, gaussprRadial best for the
French dataset.

It is interesting to note that the performance HALSX_models is the least sensitive to sam-
pling rates: it is mostly constant from 30% of data. This shows that using side information is
supplementary to observing more data.

7.4.5 Performance on matrix completion mask

On the MovieLens dataset, we use Algorithm 4 to perform matrix recovery and prediction with
uniformly sampled matrix entries. The sampling rates are {10%, 20%, 30%, 40%, 50%, 90%}.

As is the case for time series datasets, we use samples from the upper-left submatrix to
estimate the model, evaluate matrix recovery on that submatrix, and evaluate row and/or column
prediction errors. Every method except for trmf is used in this setting. As side information, we
use the gender, the age, and the occupation of the users and the genre (a dimension-19 binary
variable) of the movies.

For grmf, we produce a graph where each individual is connected to its ten nearest neighbors
with euclidean distance with the features, as suggested in the reference [113]. As the parameters
estimated in grmf is per user/movie, it can not be used to predict new individuals, even though
it uses side information.

Figure 7.9 shows the recovery error on MovieLens data. We can see that in the low sam-
pling rate case (10%), HALSX_model with lm and gam works the best. In higher sampling
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Figure 7.6: Prediction performance on synthetic data
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Figure 7.7: Prediction performance on real French electricity data
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Figure 7.8: Prediction performance on real Portuguese electricity data

rate cases, the NMF methods without side information (HALS and NeNMF) work the best,
with HALSX_model with lm, gam or svmLinear are second to best. HALSX_model with
gaussprRadial does not work very in this case, as is the case with the other comparison meth-
ods (grmf, softImpute and empty_model)

Figure 7.10 shows the prediction error on MovieLens data for new users and/or new movies.
The order of the variants of the HALSX_models is conserved: gam and lm are the best,
svmLinear is not very good for 10%, but better with higher sampling rates, and gaussprRadial
does not work well in this problem. Otherwise, the factor_gam method is slightly better for
column predictions (new movies) in higher sampling rate cases, but worse in other cases. Both
individual_gam and rrr are much worse than the proposed methods.

7.5 Conclusion

Motivated by electricity consumption estimation, we proposed a general approach for including
side information on the columns and row in nonnegative matrix factorization methods, with
general linear measurements. Based on a generative model, the framework we propose generalizes
many prior works in multivariate regression and matrix factorization.

In order to explore the identifiability of the model, we established a sufficient condition on
the features for the factorization to be unique. We deduced HALSX, a general algorithm to
estimate the generative model, and showed that the algorithm converges to a critical point in
rather mild conditions.

The proposed algorithm is tested on synthetic and real datasets, both in electricity consump-
tion and recommendation systems. In various sampling scenarios, HALSX produced better or
equivalent performance both in matrix recovery and in prediction, compared to a number of
reference methods.
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Figure 7.9: Matrix completion performance on MovieLens 100K data
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Figure 7.10: Matrix completion performance for new rows and new columns on MovieLens 100K data
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At this point of the thesis, we have seen both several methods that are derived from different
contexts: spatial statistics (Chapter 3), socio-demographic clustering (Chapter 4), and NMF
(Chapters 5, 6, 7). In this chapter, we discuss the link between the main proposition of this
thesis, using nonnegative matrix factorization to recover and predict partially observed time
series, with the two state-of-art methods investigated in Chapters 3 and 4.

In 8.1, we apply the proposed general matrix factorization framework to spatial and spatio-
temporal kriging problems. In Section 8.2, we argue that the method proposed in Chapter 4
can be seen as a special case of matrix factorization with exogenous variables.

8.1 Kriging and matrix factorization

Consider the following matrix factorization model:

min
V,fr∈Fkr ,fc∈Fkc

‖V− fr(Xr)fc(Xc))T ‖2F ,

s.t. A(V) = α.
(8.1)

As in Chapter 7, V is a n1-by-n2 matrix, Fr ⊆ (R)Rd1 and Fc ⊆ (R)Rd2 are the functional spaces
in which we try to find the link functions, Xr and Xc are known row and column features, A
a linear measurement operator, and α is the measurements that we obtained by applying A on
the ground truth V∗. For the moment, we do not constrain the factors to be nonnegative.

In particular, we will consider the column features Xc to be spatial coordinates of the column
individuals, and the row features Xr to be temporal coordinates (timestamps).

8.1.1 Kriging as matrix factorization with a feature map

The link between Gaussian process regression and kernel regression has been extensively stud-
ied (see [44, Chap. 2]). In this section, we first examine a toy model, to see that univariate
kriging is a special case of (8.1).



CHAPTER 8. COMPARING MATRIX FACTORIZATION WITH TRADITIONAL METHODS

Consider the simple case where n1 = 1, and the measurements are simply the observations
at the first n2 − 1 locations. Since the matrix to be estimated is of dimension 1-by-n2, the rank
k can only be 1. We set the column factor fc(Xc) to be 1, since it is just a real number. We are
then in the exact same setting as univariate kriging considered in Chapter 3. That is, knowing
the value of V∗ at locations xc,1,xc,2, ...,xc,n2−1: v∗1, v∗2..., v∗n2−1, we’d like to estimate the its
value at position xc,n2 : v∗n2 .

In simple kriging, the idea is to suppose that the underlying Gaussian process is second-order
stationary. By minimizing the quadratic risk, we obtain that the optimal prediction is

vn2 = (C(xc,1 − xc,n2), ..., C(xc,n2−1 − xc,n2))(C(xc,i − xc,j)1≤i,j≤n2−1)−1(v∗1, v∗2..., v∗n2−1)T ,

where C is the covariance function of the Gaussian process.

Another way to view the kriging result is the following: we transform the spatial coordinates
with a feature map φ, so that

φ(x) = (C(xc,1 − x), C(xc,2 − x), ..., C(xc,n2−1 − x))T ,

and we restrict the link function fc to be a linear function of the transformed features. This
way, the matrix factorization problem (8.1) becomes

min
w∈Rn2−1,V∈R1×n2

‖V− (φ(Xc)w)T ‖2F ,

s.t. v1 = v∗1, ..., vn2−1 = v∗n2−1.

We can easily obtain that the optimal value of w is (C(xc,i−xc,j)1≤i,j≤n2−1)−1(v∗1, v∗2..., v∗n2−1)T .
This yields exactly the same optimal prediction value for vn2 .

8.1.2 Matrix factorization and sum-product covariance functions

Here we try to recover a matrix V∗ with more than one row and column: both n1 and n2 are
potentially larger than 2. The covariance structure of spatio-temporal processes is an object
that is more complex, as discussed in Chapter 3. A spatio-temporal covariance function C can
be evaluated on any spatio-temporal increment (s, τ). Typically, we would evaluate C on (s, τ)
where s is the (element-wise) difference between two rows in Xc, and τ the difference between
two rows in Xr. We start by drawing the analogy between a separable spatio-temporal process
with a rank-1 matrix factorization model. We use the subscript index r and c to designate
temporal and spatial components, as rows correspond to periods and columns correspond to
spatially located individuals in our notation.

A separable spatio-temporal covariance function is one that verifies C(s, τ) = Cr(τ)Cc(s).
One spatio-temporal process that verifies such a covariance function is the product of a spatial
Gaussian process Zc and a temporal Gaussian process Zs. In this case, it is clear that the
matrix that we wish to recover, V∗, has a rank-1 factorization f rfTc , where f r and f r are simply
the observations of the temporal and spatial processes at the periods and the locations in the
dataset. Obviously, a rank-1 matrix has proportional rows and columns. Therefore, if one single
row and one column are entirely observed, the matrix completion or kriging problem becomes
trivial in this case.

As mentioned in Chapter 3, a way to obtain slightly more general covariance structure is
to use sum-product covariance. Here, consider a sum-product covariance with k independent
separable components:

C(s, τ) =
k∑
i=1

Cir(τ)Cic(s).
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In a similar fashion as in the univariate case, we use the spatial and temporal covariance
functions to create feature maps φir and φic, where

φic(xc) = (Cc(xc,1 − xc), Cc(xc,2 − xc), ..., Cc(xc,n2 − xc))T ,

for all spatial coordinates xc, and

φir(xr) = (Cr(xr,1 − xr), Cr(xr,2 − xr), ..., Cr(xr,n1 − xr))T ,

for all temporal coordinates xr. This leads to the following matrix factorization problem:

min
Wr∈Rn1×k,Wc∈Rn2×k,V∈Rn1×n2

‖V−
k∑
i=1

φir(Xr)wi
r(φic(Xc)wi

c)T ‖2F ,

s.t. A(V) = α.

In practice, the idea would be not to specify the feature maps (hence the covariance compo-
nents) by hand, but let Algorithm 4 find appropriate ones. This can be done by specifying for
example a class of kernel functions, and let the regression procedure find the window sizes by
cross validation for each rank.

8.2 Matrix factorization and socio-demographic clustering

In Chapter 4, we proposed a hybrid method which has two components:

• a clustering component, which groups individuals into clusters, based on socio-demographic
characteristics;

• a regression component, which proposes an estimation of the electricity consumption of
all individuals of a cluster, with temporal covariates such as the temperature, the hour of
the day, and the time of year.

These two components can easily be transformed into the nonnegative matrix factorization
framework V∗ = fr(Xr)fc(Xc), where

• Xr is the temporal covariates, fr is the regression models of consumption, in the same way
as in Chapter 7;

• Xc is the socio-demographic characteristics, and fc is the classifier: that is, for an individual
with socio-demographic features xc, fc(xc) = ei if this individual is in the i-th cluster,
where ei is the i-th canonical vector in Rk. In the framework of Algorithm 4, this can be
achieved by estimating fc as a multinomial logistic regression.

The method proposed in Chapter 4 is thus a special case of Algorithm 4, where we only do
one iteration.

8.3 Matrix factorization as feature generation

It is interesting to note that the analogy between matrix factorization and some of the more
recent feature generation methods in machine learning, in particular in the neural network
literature.

111



CHAPTER 8. COMPARING MATRIX FACTORIZATION WITH TRADITIONAL METHODS

Matrix factorization is an extremely simple neural network: a depth-two auto-encoder with
linear activation. One of the reasons why people are interested in convergence results of matrix
factorization is because these analyses can shed light on the theoretical understanding of deeper
neural networks [90].

Recent trends in machine learning showed that automatic feature generation methods, such
as word2vec in natural language processing (which is also a depth-two neural network) and
variational auto-encoders in image processing, can have very good empirical performance in
applications. Similarly, in this chapter, we saw that the two more hand-tuned methods proposed
in Chapters 3 and 4 can actually be written as special cases of the general approach proposed
in Chapter 7.
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During the thesis, an R package called meterModels has been developped to implement
the algorithms proposed in the previous two chapters. In this chapter, we describe the main
functionalities of meterModels. When it is necessary, we will also provide some simple code to
illustrate how to use the package.

The meterModels package includes several matrix factorization algorithms, as well as many
helper functions to perform experiments comparing different methods. Most of the package
is written in R. Heavy computations are translated in C++ to increase the performance of the
package, through the RCpp API. When available, openMP can be used to perform distributed
computation in model estimation. On a multi-core machine, parallel estimation of multiple
models can be used through the parallel package in R.

On a single machine, the package can be used on matrices with several hundred columns
and 100,000 rows in less than ten minutes.

9.1 Data representation

Most matrix factorization software known to us can only deal with observations in the form of
matrix entries, thus only adapted to matrix completion. Given the applications considered in
this thesis, we developed meterModels to handle more general measurements. To achieve this,
meterModels provides several data representation formats, for temporal aggregate data (Section
6) and general linear measurements. We describe these formats in this section.

This chapter is based on the vignette of meterModels.
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9.1.1 incremental_data: A fully-observed data matrix

As indicated by the name, the object class incremental_data is particularly motivated by elec-
tricity metering. Basically, incremental_data is a full data matrix (in the field incremental_data$data),
with a string in incremental_data$data_id as the name of the dataset, and optionally ex-
ogenous variables provided through incremental_data$exo_variable.

# create a rank-2 nonnegative 10-by-15 matrix as example
m = 10
n = 15
r = 2
example_matrix = matrix(rexp(m * r), ncol = r) %*%

matrix(rexp(n * r), ncol = n)

# create an incremental_data object
incre_d = incremental_data(x = example_matrix, data_id = "exponential")

9.1.2 index_data: Temporal aggregates

index_data is to be used to provide temporal aggregate data to a model estimation algorithm.
The class index_data is thus named because a meter reading is sometimes called an “index”.
To create an object of class index_data, there are two ways:

• We can provide an incremental_data object, and an object of the class sampling_scheme
to tell the program how to sample the data matrix. For example, in the following code,
we initiated a sampling scheme, sampling_incre_d_at which randomly takes 50% of the
temporal aggregates:

seed = 42

# we will sample incre_d with a random sampling_scheme
# with a 50% sampling rate and a fixed seed
sample_incre_d_at = sampling_scheme(

sampling_rate = 0.5, type = "random", seed = seed)

# create an index_data object
index_d = index_data(x = sample_incre_d_at, incremental_data = incre_d)
lapply(index_d,head)

## $sample_data
## [1] 21.409480 33.740012 5.029540 2.955382 7.894554 9.510452
##
## $sample_index
## [1] 151 154 47 135 104 84
##
## $data_id
## [1] "exponential"
##
## $dim_data
## [1] 10 15
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• Or we can provide the dimension of the matrix to be estimated, the values of read-
ings, and the position of the readings in the aggregated version of the corresponding
incremental_data object. In the following code, we create the same sample as above,
using directly the samples in index_d.

index_d2 = index_data(x = index_d$sample_index,
sample_data = index_d$sample_data,
m = index_d$dim_data[1],
n = index_d$dim_data[2],
data_id = index_d$data_id)

lapply(index_d2,head)

## $sample_data
## [1] 21.409480 33.740012 5.029540 2.955382 7.894554 9.510452
##
## $sample_index
## [1] 151 154 47 135 104 84
##
## $data_id
## [1] "exponential"
##
## $dim_data
## [1] 10 15

The created index_data object has four fields:

• data_id for the ID of the data as in incremental_data,
• dim_data for the dimension of the underlying data matrix,
• and sample_index and sample_data that indicate the index of the measurements and the

readings in the cumulative matrix, obtained by calculating the cumulative sums of each
column of the incremental_data matrix.

This is the primary data format used in Chapter 6. When this data format is used, most of
the new algorithms in meterModels fully take advantage of it to estimate models efficiently.

9.1.3 linear_measurement_data: General linear measurements

A more general data format, linear_measurement_data, is available, for cases where the ob-
servations are linear measurements, but not necessarily temporal aggregates. The masks are
provided through a sparseMatrix object (from a widely used R package called Matrix). To cre-
ate a linear_measurement_data object, we provide the sparse matrix which tells the program
how to measure the data, and an incremental_data object which is the matrix to measure.

# A measurement matrix that samples the first five entries of a matrix.
matrix_A = measurement_matrix(

"matrix",
matrix_A = Matrix::sparseMatrix(i = 1:5, j = 1:5, dims = c(5, m*n)))

lin_m_d = linear_measurement_data(
x = matrix_A,
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data = incre_d)

print(cbind(incre_d$data[1:5], lin_m_d$sample_data))

## 5 x 2 Matrix of class "dgeMatrix"
## [,1] [,2]
## [1,] 1.8598281 1.8598281
## [2,] 4.8175843 4.8175843
## [3,] 1.4425791 1.4425791
## [4,] 0.2237663 0.2237663
## [5,] 3.1358933 3.1358933

9.1.4 exp_data

exp_data is a class to be used when running many algorithm runs, in an experiment (see below).
It is created from an object of the class incremental_data, with some additional information
as to which part of the data matrix to be used as training data and test data.

For example, the following code wraps incre_d into an object on which we will estimate
models using the whole matrix as train data (the parameters m_train and n_train control this
behavior).

# define the experiment data
exp_d = exp_data(x = incre_d, m_train = m, n_train = n)

9.2 matrix_model: Estimate a single model

meterModels has a number of matrix factorization algorithms included. Here we will use one of
the proposed algorithms, NeNMF, which is an extension of [20].

To estimate a model, call the function matrix_model with the data object and the name of
the algorithm, and a fixed rank. To see the estimated matrix, use predict on the estimated
model.

nenmf_model = matrix_model(algorithm = "NeNMF", data = index_d, r = 2)
nenmf_pred = predict(nenmf_model, completion = TRUE)

We can plot the original and estimated model to see how well the matrix is recovered. In
Figure 9.1, we can see that most of the original matrix is well estimated. There is some problem
on the first column, probably due to the fact that only two temporal aggregates are observed
on this column.

plot_matrices(list(
original = example_matrix,
nenmf_pred = nenmf_pred))

We can also call matrix_model with incremental_data objects, so that only to factorize
the matrix. In this case, the estimated matrix is exactly the same as the original (Figure 9.2).
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Figure 9.1: The original matrix and the matrix estimated by NeNMF using 50% random temporal aggre-
gates.
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Figure 9.2: The original matrix and the matrix estimated by NeNMF using full data.

nenmf_model_full_data = matrix_model(algorithm = "NeNMF", data = incre_d, r = 2)
nenmf_factor_full_data = predict(nenmf_model_full_data, completion = FALSE)

plot_matrices(list(
original = example_matrix,
nenmf_pred_full_data = nenmf_factor_full_data))

In order to estimate an NMF with exogenous variables as side information (see Chapter
7), we use HALS_model as algorithm, and provide a formula_params object to specify which
regression models to estimate:

regression_model_full_data = matrix_model(
algorithm = "HALS_model", data = incre_d, r = 2,
exo_variable = list(X = data.frame(variable = rnorm(dim(incre_d)[1]))),
formula = list(X = formula_params(

"s(variable)", # this is the right part of the formula
HALS_model_params = list(reg_method = "gam"))))
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CHAPTER 9. IMPLEMENTATION OF NONNEGATIVE MATRIX FACTORIZATION ALGORITHMS

Table 9.1: Included algorithms in meterModels

Algorithm Type
HALS Proposed method
NeNMF Proposed method
HALSX1 Proposed method
HALS_model Proposed method
softImpute Reference method
HALSX2 Reference method
factor_gam Reference method
grmf Reference method
trmf Reference method
individual_gam Reference method
reduced_rank_regression Reference method
empty_model Reference method

Table 9.1 lists the algorithms included in meterModels. Among the reference methods,
softImpute, grmf, trmf, and reduced_rank_regression are included by directly using the
open-source programs of the respective authors. The other reference methods are in fact de-
veloped by us, although they are not the main propositions of this thesis. All of the proposed
methods can be used jointly with the autocorrelation constraint, described in Chapter 6, even
the ones proposed in Chapter 7.

9.3 Model evaluation

To evaluate obtained matrix factorization model, we can calculate the relative difference in a
matrix norm (for example Frobenius norm), by using relative_diff_norm.

relative_diff_norm(matrix1 = incre_d$data, matrix2 = nenmf_pred, type = "F")

## [1] 0.258141

By using evaluate_matrix_model, we can evaluate the model using several metrics. The
last two fields in the returned list below, regression and prediction, are reserved for regression
models (Chapter 7), hence are NA here.

evaluate_matrix_model(nenmf_model, incre_d)

## $completion
## Frob ND NRMSE RMSE MAPE
## 0.25814097 0.07393886 0.39200128 0.77130529 0.04642855
##
## $factorization
## Frob ND NRMSE RMSE MAPE
## 0.25814137 0.07410952 0.39200188 0.77130647 0.04655324
##
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9.4. RUN AN EXPERIMENT TO ESTIMATE SEVERAL MODELS SIMULTANEOUSLY

## $regression
## Frob ND NRMSE RMSE MAPE
## NA NA NA NA NA
##
## $prediction
## Frob ND NRMSE RMSE MAPE
## NA NA NA NA NA

We can also check that the recovered matrix has almost the same measurements on the mask,
by using evaluate_on_mask.

evaluate_on_mask(increData = incre_d$data, increEst = nenmf_pred,
known = index_d$sample_index)

## [1] 3.230599e-17

9.4 Run an experiment to estimate several models simultane-
ously

Many parameters are available for training a matrix_model. Therefore, we often need to try
a number of combinations of the parameters, to find the best one. This is why we have the
function experiment. To use experiment, we need to first define an exp_data object, and an
experiment specification object (exp_spec).

# define the experiment specs
simple_spec = exp_spec(

# try several ranks
r = 2:5,
# use NeNMF, HALS, and empty_model for constant interpolation
algorithm = c("NeNMF", "HALS", "empty_model"),
# save the models in a temporary directory
save_model = "./exp_temp/",
# use 3 parallel processes
parallel_opts = list(mc.cores = 3),
# we will only do nonnegative matrix factorization
general_factorization = FALSE)

The estimated models are saved on disk at the path provided through save_model parameter
in simple_spec. Here we are using 3 cores to run model training in parallel (parallel_ops).
We are only going to do nonnegative matrix factorization (general_factorization = FALSE).

We launch the experiment by calling experiment, with the experimental data, the sampling
scheme, and the experimentation specification.

# then we are good to go
simple_exp = experiment(exp_data = exp_d,

sampling_scheme = sample_incre_d_at,
exp_spec = simple_spec)
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Table 9.2: Part of the evaluation table generated by experiment.

r algorithm completion.Frob factorization.Frob time_spent
2 NeNMF 0.2499 0.2499 0.6408
3 NeNMF 0.3899 0.3899 0.8724
4 NeNMF 0.4723 0.4723 0.5726
5 NeNMF 0.5118 0.5118 0.5602
2 HALS 0.1961 0.1961 0.6340
3 HALS 0.3137 0.3137 0.8288
4 HALS 0.4015 0.4015 0.4019
5 HALS 0.4470 0.4470 0.3711

NA empty_model 0.6415 NA 0.0089
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Figure 9.3: Comparison of the models estimated by calling experiment

The experiment function returns a table with the evaluation metrics of the estimated models
(Table 9.2). It looks like the HALS algorithm with rank fixed at 2 obtains the best model (smallest
completion error). This is not surprising, since the data is a simulated matrix exactly of rank 2.

Using Table 9.2, we can generate plots similar to those reported in the last two chapters
(Figure 9.3).

9.5 Distributed computation in model estimation

The NMF algorithms introduced in this thesis are intrinsically iterative1. Given the format of the
observations (either temporal aggregates or general linear measurements), distributed stochastic
gradient descent algorithms proposed in matrix completion and recommendation systems are
not easily adaptable to the problem [131–134].

The parallel solution that we finally developped is based on the CCD++ algorithm [135]. The
CCD++ algorithm is mostly a parallel HALS, which is discussed in previous chapters. When
updating the columns of Fr and Fc, this algorithm updates the coefficients in these columns
in parallel. In order to combine this algorithm with the simplex projection and autocorrelation
penalization discussed in Chapter 6, this algorithm was re-implemented in Rcpp. Using openMP,
both the update of factors and the projection into the simplex satisfying the linear measurement

1The distributed computation in model estimation is implemented by Gustavo Castro during his internship at
EDF Lab Paris-Saclay.
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9.5. DISTRIBUTED COMPUTATION IN MODEL ESTIMATION

constraint are distributed through the multiple cores.

In meterModels, this parallelization can be used agnostically (not available with regres-
sion models). To choose to use this functionality, the user can use the opts parameter in
matrix_model.
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Chapter

10
Perspectives

In this thesis, we studied methods to model multivariate electricity consumption time series
from partial data. We considered the problem from several aspects, with either temporally
aggregated or individually aggregated data, either to estimate past consumption or to predict
future consumption. We studied solutions from three contexts: spatio-temporal statistics, clus-
tering of individuals using socio-demographic information, and NMF-based methods. In NMF,
we extended the literature to have solutions that are adapted to our problem, and proposed
improvements to better achieve the estimation goals. Particularly, we proposed to take into ac-
count additional information such as temporal autocorrelation and exogenous variables in NMF,
and deduced algorithms to solve these extended models. The proposed methods were tested on
synthetic and real datasets, and showed promising results.

Perspective applications in electricity

In this thesis, empirical studies were carried out to evaluate the estimation and prediction per-
formance of the matrix factorization methods. In these empirical studies, the methods are
evaluated by examining the distance between the prediction or recovery results with the orig-
inal data, under certain metrics, typically the Frobenius norm. It will be interesting to carry
out studies that are more directly connected to application cases in electricity generation and
consumption. That is, there can be statistics that are more important for the electric network,
and thus it will be more insightful to examine the methods using metrics that are directly linked
to these important statistics.

For example, one potential application is to use the matrix factorization method to estimate
the daily peak in power in local transformers from residential smart meter data. The setting
is the following: smart meters can provide daily electricity consumptions to the distribution
system operator (DSO) with individual offsets. The DSO can then run the algorithms proposed
in this thesis to estimate the individual electricity consumption at a much finer scale (10-minute
interval for example). By aggregating the estimated fine-scale consumption time series at each
transformer, the DSO has an estimation to the moment of the daily peak and the level of the
peak. Preliminary studies showed this approach to be promising. Perspectives in this application
include fine tuning the evaluation metrics so as to reflect the real concern of the DSO. Moreover,
to better adapt the methods of this thesis to this application, it can be interesting to change
the objective function in the optimization problem to directly estimate the peak.

Methodological perspectives

Estimation with both spatial and temporal aggregates The empirical studies in this
thesis used either spatial (in Chapters 3 and 4) or temporal aggregates (in Chapters 6 and 7).

However, the algorithm proposed in Chapter 7 can in fact use general linear measurements.
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It would then be interesting to combine both partial observations together in one empirical study
to evaluate the potential gain. In terms of electricity applications, we can potentially improve the
individual consumption estimation, by using not only temporal aggregates but also temporally
fine-scaled measures on the network, such as measured from the distribution network.

Given that the spatially and temporally aggregated data come from different sources, these
two parts of data might be incoherent. It would be important to relax the linear equality
constraint to deal with this situation.

Usage of social network data It is also possible to generalize the approach to social network
data. The socio-demographic information for individuals considered in this thesis is in the form
of individual features, such as client type, age, and occupation. It can be interesting to use
a form of social networks, which encode the links between individuals. Social networks are
important in recommendation systems, as people who are connected over a social network tend
to have similar tastes. In electricity consumption, a similar mechanism might take place.

Correlation between the data and the measurement operator In most matrix sensing
studies, it is supposed that the measurement operator is independent of the matrix. In matrix
completion, the standard setting is that the observation pattern is uniformly random over all
matrix entries. When the matrix to be completed is also considered to be a realization of a
random distribution, it is often supposed to be independent from the observation.

However, this hypothesis is rarely verified. In a recommendation application, for example
the MovieLens100k application considered in Chapter 7, it is often the case that users would
give ratings to a number of correlated items. Moreover, users tend to try items on which they
have an prior positive opinion. Therefore, the observation pattern should be correlated with
the matrix to be completed. In the electricity consumption estimation problem, the correlation
could be of following forms:

• Temporally aggregated data: particularly with periodic observations, if the observation
period is a multiple of one of the intrinsic periods of the data, there might be interference.
Variations of a frequency similar to that of the observations can be masked. Empirically,
we observed in Chapter 6 that periodic observations have lower accuracy. This result could
stem from the correlation between the observation patterns and the data.

• Spatially aggregated data: correlated individuals can be clustered spatially. If the obser-
vations are spatially aggregated consumption over similar individuals, and the estimation
does not take this correlation into account, the total variance can be overestimated by the
model.

Deep learning with partial data In the end of Chapter 8, we discussed briefly that nonneg-
ative matrix factorization is a very shallow neural network with ReLU activation function. This
fact thus raises the question whether the methods developed in this thesis can be generalized to
more complex neural network architectures, or inversely, if deep learning can be modified to use
partial data such as those considered in this thesis. There has been some interest in using deep
learning jointly with compressive sensing techniques in the image processing community recently
[136–138]. One important challenge in generalizing from matrix sensing using deep learning lies
in finding a good representation for the observations which is compatible to the neural network
architecture and computation methods.
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Theoretical perspectives

We have proposed algorithms that are convergent to stationary points. As mentioned in Chap-
ter 5, new results are emerging in global optimum guarantees for non-convex problems. In
general, NMF is an NP-hard problem, and therefore, there can not be general guarantees. Re-
cent results have shown that alternating direction algorithms can have global guarantees when
one of the factors is initialized close to the ground truth [91, 98]. It would be interesting to
see if for special classes of matrices, similar guarantees could be obtained without initialization
conditions.
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Appendix

A
Reference manual of package
‘meterModels’

Type Package

Title Do nonnegative matrix factorization on meter data

Version 0.4.2

Date 2017-05-26

Description Nonnegative matrix factorization on meter data

License All rights reserved (EDF Lab).

LazyData true

VignetteBuilder knitr

RoxygenNote 6.0.1.9000

Suggests testthat,
R39Toolbox,
ggplot2,
dplyr,
knitr,
rmarkdown,
cowplot,
rARPACK,
recosystem,
softImpute,
caret,
gbm,
kernlab,
rrr,
RcppOctave,
mgcv,
KANN

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp,
reshape2,
Matrix,
MASS,
data.table(>= 1.10.4-3)

Depends parallel



aggregateData

R topics documented:

aggregate_max Calculate the maximum at a certain time aggregation level and in-
dividual aggregation level

Description

Calculate the maximum at a certain time aggregation level and individual aggregation level

Usage

aggregate_max(data_matrix, aggregate_vector = 1:nrow(data_matrix), timestep)

aggregate_which.max(data_matrix, aggregate_vector = 1:nrow(data_matrix),
timestep)

Arguments

data_matrix the matrix data on which to do the computation
aggregate_vector

an integer vector of same length as nrow(data_matrix). Specifies the group
in which each column is to be aggregated.

timestep an integer. If timestep = n, then n values in data_matrix is to be aggregated
to one single value. For example, if data_matrix has hourly data on each
row, and timestep == 24, the function calculates daily maximum for each
aggregate group.

Functions

• aggregate_which.max: the same thing but with which.max

aggregateData Aggregate data to desired time scale

Description

Aggregate data to the desired time scale, using selected function

Usage

aggregateData(originalData, timestep, fun, ...)
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as.sparseMatrix

Arguments

originalData the original data to be aggregated

timestep an integer. If timestep = n, then n values in originalData is to be aggre-
gated to one single value.

fun the function to be used to aggregate. For example, for averages, mean can
be used.

... additional parameters for fun

Value

the temporally aggregated data for one matrix

as.sparseMatrix Cast an object into a sparse matrix of the Matrix package

Description

Currently, as.sparseMatrix.index_data is implemented. The function casts an object into
a sparse matrix which contains the cumulative sums. For an index_data object, it returns
a matrix of dimension c((x$dim_data)[1]+1, (x$dim_data)[2]), which only has values
at places where indexes are observed.

Usage

as.sparseMatrix(x, ...)

## S3 method for class 'index_data'
as.sparseMatrix(x, ...)

Arguments

x an index_data object.

... not used.
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boundary_close_exogeneous_variables

boundary_close_exogeneous_variables
Sample a non-negative separable matrix.

Description

Functions to simulate factor matrices verifying uniqueness constraints of NMF.

Usage

boundary_close_exogeneous_variables(M, K)

separable_matrix(M, K, sparsity = 0)

boundary_close_matrix(M, K, sparsity = 0)

Arguments

M, K the dimension of the matrix to simulate.
sparsity the parameter that regulates the sparsity of the matrix. If sparsity > 0,

sparsity fraction of coefficients in the non-separable/non-boundary close
rows are set to 0.

Details

boundary_close_exogeneous_variables creates an exogeneous variable matrix for creating
a boundary close matrix.
separable_matrix simulates a separable matrix.
boundary_close_matrix samples a matrix with boundary close columns.

Value

a M-by-K matrix separable.

References

For more details on the definition of these matrices, see:

• Laurberg, Hans, Mads Grasboll Christensen, Mark D. Plumbley, Lars Kai Hansen,
and Soren Holdt Jensen. Theorems on Positive Data: On the Uniqueness of NMF.
Computational Intelligence and Neuroscience 2008. doi:10.1155/2008/764206.

• Mei, Jiali, Yohann De Castro, Yannig Goude, Georges Hebrail, and Jean-Marc Azais.
Nonnegative Matrix Factorization with Side Information for Time Series Recovery and
Prediction. Submitted, 2017.
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calculate_linkage

calculate_linkage Calculates the linkage vector used to
increment_SPaggregate_evaluate.

Description

Calculates the linkage vector used to increment_SPaggregate_evaluate.

Usage

calculate_linkage(entity_names, mode, sep = "_")

Arguments

entity_names the entity names to be split.

mode either 1 or 2. If mode = 1, the entity names are split at sep. If mode = 2,
the first five characters are used as aggregation entities.

sep the separator character in entity_names.

Details

The entity names are supposed to be

• either in the form "xxxSyyy" where "xxx" the higher level entity name, "S" is a sepa-
rator character (parameter sep) and "yyy" is the lower level entity name.

• or in the form "xxxxxyyy" where the first five characters are the higher level entity
name.

Value

an integer vector of the same length as entity_names specifying how to aggregate the
entities.

This can be used either in aggregated evaluation functions such as increment_SPaggregate_evaluate
or as an intrinsic property of a dataset so defined while creating an incremental_data ob-
ject.

135



create_formula_string

compare_two_matrix Calculate the deviation between the data matrix and the estimation
matrix

Description

Calculate the deviation between the data matrix and the estimation matrix

Usage

compare_two_matrix(data, est, metrics)

implemented_matrix_comparison_metrics()

Arguments

data, est The two matrices to be compared
metrics A character vector specifying the metrics to be used. Should be a subset of

implemented_matrix_comparison_metrics.

Value

A named vector of the distance/deviation between the two matrices.

Examples

compare_two_matrix(example_matrix, jitter(example_matrix),
implemented_matrix_comparison_metrics())

create_formula_string
Create character formula from a vector of variable names

Description

This function creates a string which can be later transformed to the right part of an R
formula. It is primarily used to create formula_params objects to be used in regression_models.

Usage

create_formula_string(var_names, type = "gam", k = 15, numeric)
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empty_formula

Arguments

var_names The vector of variables names to be put in the formula

type Either "gam" for smooths or anything else for a lm kind of formula.

k The dimension of the spline basis when using "gam".

numeric A vector of the same length as var_names specifying if the variables are
numeric. If not supplied, all variables are supposed to be numeric. If this
is not the case, then there will be problems with smooth terms in estimation.

See Also

formula_params and regresion_model

Examples

create_formula_string(LETTERS[1:5])
create_formula_string(LETTERS[1:5], numeric = c(FALSE, FALSE, TRUE, TRUE, TRUE))
create_formula_string(LETTERS[1:5], type = "lm")

empty_formula Create an empty formula to be used as a placeholder

Description

This object is to be used when no regression componnent is to be estimated. It is basically
an empty formula_params.

Usage

empty_formula()

is.empty_formula(x)

Value

a formula_params object that is also an empty_formula object.
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empty_model

empty_model A naive matrix recovery model

Description

Basically, this is the most naive matrix recovery model, without the low rank hypothesis.

Usage

empty_model(x, rho = NULL, lambda = 0, ...)

is.empty_model(x)

Arguments

x an object of the class index_data, incremental_data, or linear_measurement_data.
rho either NULL or a vector of length n. When it is provided, it is the vector of

temporal autocorrelation threshold to be imposed on each of the columns.
lambda either a number which is 0 or positive, or "optimal". This is the penaliza-

tion parameter to be used to impose autocorrelation constraint.
... additional parameters to pass on to the estimation routine.

Details

When the data are temporal aggregates (index_data), constant interpolation is returned.
If rho and lambda is provided, the projection of 0 matrix with autocorrelation penalization
is returned.
When the data are general linear measurements, the orthogonal projection of 0 matrix into
the linear subspace of matrices satisfying the data constraints is returned. For example, for
matrix completion, this is equivalent to replacing every missing value with 0.

Value

an empty_model which is a matrix_model with minimal fields.

Examples

model = empty_model(x = example_index_data)
model$M
model = empty_model(x = example_linear_measurement_data)
model$M

pred_empty_model = predict(model, completion = TRUE)

# empty_model cannot predict with completion=FALSE, since it's not
# a factorization_model
is.null(predict(model, completion = FALSE))
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evaluate_matrix_model

evaluate_matrix_model
Evaluate a matrix_model

Description

Given matrix_model, this function calculates a number of performance metrics on the pre-
cision of matrix recovery and prediction.

Usage

evaluate_matrix_model(model, incre_data, aggreg = FALSE,
prediction_type = implemented_prediction_types(),
metrics = implemented_matrix_comparison_metrics(), newdata = NULL)

Arguments

model a matrix_model object
incre_data the incremental_data object on which the to evaluate the performance of

the model.
aggreg should the data be aggregated to be evaluated?
prediction_type

Which predict methods to use in the evaluation? This character vector
should be a subset of implemented_prediction_types().

metrics Which metrics to use in the evaluation? This character vector should be a
subset of implemented_matrix_comparison_metrics().

newdata When evaluating a regression_model, provide new data through this vari-
able to test the prediction of the regression_model. As in predict.regression_model,
if supplied, this should be a named list with fields X and/or Y.

Value

a named list. Each element of the list is a named vector of the evaluation metrics for one
of the prediction_type.

See Also

implemented_prediction_types and implemented_matrix_comparison_metrics for de-
tails of the different types of evaluation value possible.

Examples

fac_mod = factorization_model(example_index_data, r = 2, algorithm = "HALS")
# For a factorization_model, regression and prediction errors are NA
evaluate_matrix_model(fac_mod, example_incremental_data)
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example_matrix

reg_mod = regression_model(x = example_index_data,
exo_variable = example_exogenous_variables,
formula = example_formula,
r = 2,
algorithm = "HALS_model")

# For a regression_model, is no newdata is supplied,
# the prediction error is calculated on original data, hence equal to
# regression error.
evaluate_matrix_model(reg_mod, example_incremental_data)

evaluate_matrix_model(reg_mod, example_incremental_data,
newdata = example_exogenous_variables)

example_matrix Example data structures

Description

Example data structures

Usage

example_matrix

example_sampling_scheme

example_index_data

example_incremental_data

example_linear_measurement_data

example_exogenous_variables

example_formula

example_exp_data

Format

An object of class matrix with 13 rows and 11 columns.
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exp_data

exp_data Create a set of data to be used in an experiment

Description

The object of the class exp_data is to be used in experiments with many parameters. There-
fore, specific information concerning the data is to be passed through this function.

Usage

exp_data(x, m_rho, m_train, m_test, n_train, n_test, formula)

is.exp_data(x)

## S3 method for class 'incremental_data'
exp_data(x, m_rho = 0, m_train, m_test, n_train,

n_test, formula = NULL)

## S3 method for class 'linear_measurement_data'
exp_data(x, m_rho = 0, m_train, m_test,

n_train, n_test, formula = NULL)

Arguments

x the data object to be wrapped into an exp_data. Either of class incremental_data
or linear_measurement_data.

m_rho parameter to specify which parts of the data to be used as "historical data".
The rows 1:m_rho for calculating temporal autocorrelation and excluded for
other use (model training and testing).

m_train, m_test, n_train, n_test
The rows 1:m_train + m_rho of the data is to be used as training data.
The rows 1:m_test + m_rho+m_train is to be used as test data (when
regression models are estimated). The same for n_train and n_test for
the columns.

formula a list of formula and additional parameters to pass on to specify regression
models. Several pairs of formulae can be specified simultaneously and will re-
sult in separate model estimations by experiment. Each element of formula
is of the format list(X = formula_params(""), Y = formula_params("")).
The fields X and Y are for row and column features respectively.

Value

an exp_data object.
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exp_spec

See Also

formula_params for specification of the regression formulae, experiment for using an exp_data
in action.

Examples

# create exp_data with incremental_data
example_exp_data = exp_data(example_incremental_data, m_rho = 0,

m_train = 2, n_train = 2,
formula = example_formula)

# create exp_data with linear_measurement_data
example_exp_data = exp_data(example_linear_measurement_data, m_rho = 0,

m_train = 2, n_train = 2,
formula = example_formula)

exp_spec Create an object specifying parameters of an experiment

Description

Create an object specifying parameters of an experiment

Usage

exp_spec(r, algorithm = implemented_algorithms("all"), random_start = 3,
lambda = c(0, 1, "optimal"), general_factorization = c(TRUE, FALSE),
parallel_opts = list(mc.cores = 1, mc.preschedule = FALSE), opts = list(),
save_model = file.path(getwd(), "exp_tmp"), eval_only = FALSE)

is.exp_spec(x)

Arguments

r, algorithm, lambda, general_factorization
The same parameters as in factorization_model, except they can be vec-
tors so that a combination of all parameters are tested.

random_start an integer to specify the number of random runs to turn for each experiment
spec. When using parallel to parallelize, these random runs with one single
experiment spec will be run on the same core.

parallel_opts
a list to specify how to parallelize the experiments. It has two fields.
mc.cores: the number of cores to use and mc.preschedule should the
parallelization be prescheduled. See parallel::mclapply for more details.

opts a named list to set the parameters for the estimation algorithm with the
following fields:
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experiment

• tol: tolerance for deciding whether to stop.
• maxit: the maximal number of iterations.
• minit: the minimal number of iterations.
• verbose: whether to provide more reporting in the computation or not.
• fixed_X, fixed_Y: whether X or Y should be fixed in the iterations.
• maxtime: maximal computing time allocated in seconds.
• ITER_MAX, ITER_MIN: the maximal and minimal number of iterations

for NeNMF.
• X0,Y0: initial values for X, Y
• FuninR: If FuninR = "R" use the R version of subroutines. If FuninR = "cpp"

use the C++ version. Default is "cpp".
• ccdppitmax,ccdppthreads,ccdpplambda: the maximal number of it-

erations, the number of threads, and the penalization parameter for
CCDPP algorithm.

save_model a character string specifying where to save the estimated models.
eval_only Should we estimate (potentially) new models or only evaluate old models

saved in save_model.

Value

An object of class exp_spec which wraps the provided parameters AND an exp_grid in
which each row is a model to be estimated. Incompatible parameter combinations are
removed by an internal function simplify_exp_grid.

See Also

experiment to run experiments.

Examples

ex_sp = exp_spec(r = 2:10)

experiment The main experiment function

Description

This function is the main function to use to run a series of experiments.

Usage

experiment(exp_data, sampling_scheme, exp_spec, verbose = TRUE)

evaluate_past_experiement(exp_data, sampling_scheme, exp_spec,
verbose = FALSE)
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factorization_model

Arguments

exp_data An exp_data object.
sampling_scheme

A sampling_scheme object.

exp_spec An exp_spec object.

verbose Whether messages reporting the start and the end of each model estimation
should be printed in stdout.

Value

In a typical experiment run, this function saves all estimated models and the model estima-
tion result tables on the disk.

It also returns a data.frame of standard model evaluation metrics. Apart from information
on the models that are estimated, the output table contains outputs of the internal function
evaluate_output_list applied on the train data, the column test data, the row test data,
and the column-row test data. The latter three are present whenever they are applicable:
with m_test, n_test strictly larger than 0, in presence of exogenous variables, and with
algorithms which estimate regression_models.

See Also

evaluate_output_list to know more about the output evaluation metrics.

Examples

ex_sp = exp_spec(r = 2:3, algorithm = c("NeNMF", "HALS", "HALS_model"),
lambda = 0,
random_start = 2, general_factorization = FALSE)

## Not run:
example_exp = experiment(example_exp_data, example_sampling_scheme, ex_sp)
example_exp = find_optimal_rank(example_exp)

## End(Not run)

factorization_model
Fit a factorization model

Description

Fit a factorization model with index data or incremental data

144



factorization_model

Usage

factorization_model(x, r, algorithm = implemented_algorithms("factorization"),
opts = list(), rho = NULL, lambda = 0, ground_truth = NULL,
NNDSVD = FALSE, save_iterations = FALSE, general_factorization = FALSE,
...)

is.factorization_model(x)

## S3 method for class 'index_data'
factorization_model(x, r,

algorithm = implemented_algorithms("factorization"), opts = list(),
rho = NULL, lambda = 0, ground_truth = NULL, NNDSVD = FALSE,
save_iterations = FALSE, general_factorization = FALSE, ...)

## S3 method for class 'incremental_data'
factorization_model(x, r,

algorithm = implemented_algorithms("factorization"), opts = list(),
rho = NULL, lambda = 0, ground_truth = NULL, NNDSVD = FALSE,
save_iterations = FALSE, general_factorization = FALSE, ...)

## S3 method for class 'linear_measurement_data'
factorization_model(x, r,

algorithm = implemented_algorithms("linear_measurement_data"),
opts = list(), rho = NULL, lambda = 0, ground_truth = NULL,
NNDSVD = FALSE, save_iterations = FALSE, general_factorization = FALSE,
formula = NULL, ...)

## S3 method for class 'factorization_model'
dim(x)

Arguments

x an object of the class index_data, incremental_data, or linear_measurement_data.
r integer. the target rank of the matrix.
algorithm a character string with the name of the algorithm to be used. See implemented_algorithms

for the complete list.
opts a named list to set the parameters for the estimation algorithm with the

following fields:
• tol: tolerance for deciding whether to stop.
• maxit: the maximal number of iterations.
• minit: the minimal number of iterations.
• verbose: whether to provide more reporting in the computation or not.
• fixed_X, fixed_Y: whether X or Y should be fixed in the iterations.
• maxtime: maximal computing time allocated in seconds.
• ITER_MAX, ITER_MIN: the maximal and minimal number of iterations

for NeNMF.
• X0,Y0: initial values for X, Y
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• FuninR: If FuninR = "R" use the R version of subroutines. If FuninR = "cpp"
use the C++ version. Default is "cpp".

• ccdppitmax,ccdppthreads,ccdpplambda: the maximal number of it-
erations, the number of threads, and the penalization parameter for
CCDPP algorithm.

rho either NULL or a vector of length n. When it is provided, it is the vector of
temporal autocorrelation threshold to be imposed on each of the columns.

lambda either a number which is 0 or positive, or "optimal". This is the penaliza-
tion parameter to be used to impose autocorrelation constraint.

ground_truth the ground truth matrix of incremental data.
NNDSVD a logical to specify whether use SVD to initialize.
save_iterations

whether to save the factorizations during iterations.
general_factorization

If TRUE does a general factorization without nonnegativity. If FALSE, which
is the default value, does an NMF. IF is the string "random", randomly
allow half of the iterations to explore negative values.

... additional parameters to pass on to the estimation routine.
formula A list of two fields named X and Y. Both are to be objects of the class

formula_params.

Value

a factorization_model object. It has all fields of matrix_model, and also the following
additional ones:

• X,Y: the two factors.
• hist_obj, hist_prjg, hist_error, hist_time: reporting values throughout the iter-

ations.
• iter: number of iterations used.
• niter: number of inner iterations using NeNMF algorithm.
• convergence: whether the algorithm arrived at convergence or the maximal number

of iterations is attained.
• X_iterations, Y_iterations: the factors throughout the iterations. They are NULL if

save_iterations = FALSE.
• other fields which are only applicable to regression_models.

Examples

fac_mod = factorization_model(example_index_data, r = 2, algorithm = "HALS")

# predict with completion = TRUE or FALSE
predict(fac_mod, completion = TRUE)
predict(fac_mod, completion = FALSE)

# plot the model
plot(fac_mod)
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find_optimal_rank Post-processing of experiment outputs

Description

These functions help post process experiment outputs.

Usage

find_optimal_rank(output_table)

duplicate_complete_sampling_results(output_table)

transform_formula_to_factors(output_table)

Arguments

output_table an output_table returned by experiement, or obtained by merging several
these outputs.

Details

find_optimal_rank finds the optimal rank for each combination of all other experiment
parameters.

duplicate_complete_sampling_results duplicates the rows which are estimated using
complete matrix observations in the table returned by experiment and changes the sampling_type
value to "periodic" and "random". This is to help us plot error rates depending on the
sampling rate.

transform_formula_to_factors Transform formulas in the output table into factors so
that it would be easy to produce graphics.

Value

a post-processed output table.

See Also

experiment for examples.
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finds_permutation Evaluate a list of matrix_models

Description

Internal functions used in experiment to report estimated model performance.

Usage

finds_permutation(correlation_matrix)

compare_nmf_factors(X, X_prime,
metrics = implemented_matrix_comparison_metrics()[1])

compare_two_outputs(output1, output2, known = NULL, perm = FALSE,
matrix_A = NULL)

how_many_stationary_points(in_between, rank)

evaluate_output_list(these_models, increData, aggreg, verbose = FALSE,
prediction_type = implemented_prediction_types(),
metrics = implemented_matrix_comparison_metrics(), newdata = NULL)

Arguments

correlation_matrix
the correlation matrix between two factors matrices of the same size used
to find the permutation of factors which minimizes their distance.

X the first factor matrix.
X_prime the second factor matrix.
metrics Which metrics to use in the evaluation? This character vector should be a

subset of implemented_matrix_comparison_metrics().
output1, output2

the two outputs to compare
known extra set of observation index, if we want to evaluate the two on mask with

a different one than that included in output1.
perm whether to output the found permutation or not.
in_between the pairwise distance between the models.
rank the rank of the models
these_models the list of models.
increData the incremental_data against with to evaluate model predictions.
aggreg whether to calculate on an aggregation scale.
verbose wheter to print the results.
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prediction_type
Which predict methods to use in the evaluation? This character vector
should be a subset of implemented_prediction_types().

newdata When evaluating a regression_model, provide new data through this vari-
able to test the prediction of the regression_model. As in predict.regression_model,
if supplied, this should be a named list with fields X and/or Y.

Details

For a list of model estimated with the same parameters, evaluate_output_list from differ-
ent random initializations, this function outputs the average performance metrics for matrix
recovery and prediction. evaluation_matrix_model uses this function to actually calculate
the error rates.
When evaluating on train data, evaluate_output_list also calculates several metrics which
evaluates the distance between the models estimated from different random initialization.
This is done by calling compare_two_outputs and how_many_stationary_points, which
compare both the matrix recovery and the factors, and estimate the number of distinct
stationary points in the list. Even more internally, they call finds_permutation and
compare_nmf_factors to permute the factors and actually compare them.

generate_exo_mat Generate some random features

Description

This is mostly used in development and for creating simulations.

Usage

generate_exo_mat(m, d, k = 3)

Arguments

m number of rows in the exogenous variable table.
d number of variables in the exogenous variable table.
k dimension of the spline basis to be used to generate the features.

Value

A named list with

• exo_matrix: the variables
• features: the transformed variables
• formula_alone: the formula used to transform variables
• formula_caret: formula_alone without the splines
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get_data_test Subsample or aggregate the data matrix to desired frequency and
dimension

Description

This function subsamples or aggregates a data matrix whose columns are time series to
a desired frequency. It can also calculates the cumulative sums of the columns and/or
normalizes the columns to have mean 1.

Usage

get_data_test(data_matrix, base_freq = 1, row_number = NULL,
normalize = TRUE, cumul = TRUE, fun = mean)

Arguments

data_matrix a numeric matrix.
base_freq the frequency desired.
row_number the intended row_number.
normalize whether the data is to be normalized
cumul whether the cumulative index is to be returned
fun the aggregation function to be used. Default is mean.

Details

NAs are removed in calculating the aggregation values.

Value

a matrix of dimension row_number-by-ncol(data_matrix).

Examples

## Not run:
m = 10000
n = 10000
r = 2
example_matrix = matrix(rexp(m * r), ncol = r) %*%

matrix(rexp(n * r), ncol = n)

system.time(get_data_test(example_matrix, 100))
system.time(aggregateData(example_matrix, 100, mean))

## End(Not run)
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get_formula_param Retrieves parameters from a formula_params

Description

Retrieves parameters from a formula_params

Usage

get_formula_param(x, what)

Arguments

x the formula_params from which to get parameters.
what the name of the parameters to be retrieved.

Value

a vector of parameters which match what. NULL is returned if nothing is found.

implemented_algorithms
The implemented algorithms

Description

Lists the algorithms using keywords.

Usage

implemented_algorithms(...)

Details

As parameters, provide a subset of comma-separated character strings of the following key-
words:

• "octave": imported methods from octave ("grmf" and "trmf")
• "factorization": matrix factorization methods without regression
• "autocorrelation": algorithms that can be used jointly with autocorrelation.
• "regression": regression-enhenced algorithms
• "benchmark": benchmarks
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• "partial_data": algorithms that can be used with partial data.
• "completion": algorithms that can be used to do matrix completion.
• "factorized": all matrix factorization algorithms, including regression-enhenced ones.
• "linear_measurement_data": algorithms that can be used with objects of the class

linear_measurement_data.
• "index_data": algorithms that can be used with objects of the class index_data.
• "proposed": algorithms proposed by the thesis.
• "reference": everything except "proposed"
• "all": everything.

When multiple parameters are put in, the intersection of the sets are returned. Default is
"all".

Examples

implemented_algorithms()
implemented_algorithms("reference","factorized")

implemented_prediction_types
The prediction types

Description

The prediction types

Usage

implemented_prediction_types()

Details

For object of class matrix_model, whenever applicable, the four implemented types are

• "factorization": object$X %*% object$Y.
• "completion": object$X %*% object$Y projected into the subspace satisfying the

data constraint.
• "regression": predict(object$models$X) %*% predict(object$models$Y).
• "factorization": same as "regression", but with new data.

Examples

implemented_prediction_types()

152



implemented_sampling_type

implemented_sampling_type
The implemented sampling types

Description

Lists the implemented sampling types for each type of data

Usage

implemented_sampling_type(type = "index_data")

Arguments

type either "index_data" or "linear_measurement_data".

Value

a vector of the sampling types.

Examples

implemented_sampling_type("index_data")

increment_evaluate Evaluates a matrix estimation against the data matrix.

Description

Evaluates a matrix estimation against the data matrix.

Usage

increment_evaluate(increData, increEst, period = 1, lissage = NULL,
cumData = NULL, cumEst = NULL,
metrics = implemented_matrix_comparison_metrics())

increment_SPaggregate_evaluate(linkage_vector, increData, increEst,
period = 1, lissage = NULL, cumData = NULL, cumEst = NULL,
metrics = implemented_matrix_comparison_metrics())

evaluate_on_mask(increEst, cumData = NULL, increData = NULL, obs = NULL,
known, matrix_A = NULL)
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Arguments

increData, obs
either the incremental data matrix increData or the observations on the
data matrix obs. One of cumData, increData, and obs has to be supplied
for evaluate_on_mask.

period interger. he aggregation scale.

lissage a number between 0 and 1. The smoothing parameter.
cumData, increData

the matrix of cumulative or incremental data. One of these must be supplied.
If both supplied, will use increData.

cumEst, increEst
the matrix of cumulative or incremental estimation. One of these must be
supplied. If both supplied, will use increEst.

metrics a character vector specifying the comparison metrics to be calculated.
linkage_vector

integer vector specifying how to aggregate columns of estimation and data
matrix.

known the index of the observations on the matrix. Used in evaluate_on_mask.

cumEst the matrix of cumulative estimated consumption

incremental_data Put the data matrix in form

Description

Put the data matrix in form

Usage

incremental_data(x, exo_variable = NULL, aggreg = NULL, data_id)

## S3 method for class 'incremental_data'
dim(x)

Arguments

x the numeraic data matrix.

exo_variable exogeneous variables associated with the data matrix. Supposed to be a
named list with (optional) fields X and Y.

aggreg a numeric vector specifying how to aggregate the data matrix. Must be of
length ncol{x}. This is optional.
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Examples

incre_data_without_exo_variable = incremental_data(
x = example_matrix,
data_id = "exponential")

incre_data_with_exo_variable = incremental_data(
x = example_matrix,
data_id = "exponential",
exo_variable = example_exogenous_variables)

ind2sub Translate between indexes and subscripts

Description

Translate between indexes and subscripts

Usage

ind2sub(m, ind)

sub2ind(m, r, c)

Arguments

m integer. The number of rows in the matrix
ind vector of integers. The indexes to be translated.
r, c the integer vectors of row and column subscripts.

Details

An index is a single-integer representation of position of an entry in a matrix (example:
M[index]).

A subscript is a pair-of-integer representation (example: M[i,j] where (i,j) is the sub-
script).

ind2sub translates indexes to subscripts.

sub2ind translates subscripts to indexes.

Examples

subs = ind2sub(10, 1:20)
inds = sub2ind(10, subs[,1], subs[,2])
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index_data Create an object of index data

Description

Create an object of index data, either with incremental data and a sampling scheme, or
directly with index data.

Usage

index_data(x, ...)

is.index_data(x)

## S3 method for class 'index_data'
dim(x)

## S3 method for class 'sampling_scheme'
index_data(x, incremental_data, ...)

## S3 method for class 'numeric'
index_data(x, sample_data, m, n, data_id, ...)

Arguments

x either a sampling_scheme object or a numeric vector of the index of the
sampled data. If x is a sampling_scheme, the matrix to be sampled should
be supplied by incremental_data. If x is a numeric vector, sampled_data
should be supplied.

incremental_data
an objecto of the incremental_data class to be sampled.

sample_data the observations of indexes (cumulative values). When supplied, should
match the numeric vector x.

m, n the dimension of the incremental data matrix to be estimated. In other
words, they are the dimensions of diff(index_data), not of the sampled
accumulated index matrix.

data_id the ID of the data.

Value

an object of index_data class.

Examples

m = 5
n = 3
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r = 2
example_matrix = matrix(rexp(m * r), ncol = r) %*%

matrix(rexp(n * r), ncol = n)
# create an incremental_data object
incre_d = incremental_data(x = example_matrix, data_id = "exponential")

seed = 42
# we will sample incre_d with a random sampling_scheme
# with a 50% sampling rate and a fixed seed
sample_incre_d_at = sampling_scheme(

sampling_rate = 0.5, type = "random", seed = seed)

# create an index_data object
index_d = index_data(x = sample_incre_d_at, incremental_data = incre_d)
lapply(index_d,head)
index_d2 = index_data(x = index_d$sample_index,

sample_data = index_d$sample_data,
m = index_d$dim_data[1],
n = index_d$dim_data[2],
data_id = index_d$data_id)

index_data_to_matrix_measurement
Convert index_data to a measurement matrix and the observations

Description

Convert index_data to a measurement matrix and the observations

Usage

index_data_to_matrix_measurement(measurements_index_data)

sparse_matrix_to_matrix_measurement(sparse_matrix)

Arguments

measurements_index_data
an index_data object.

sparse_matrix
a sparse matrix where the zero entries are unobserved.

Value

a list with two fields:

• matrix_A: a sparse matrix representing the measurement operator
• measurements: a vector of length dim{matrix_A}[1].
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Examples

measurements_m = index_data_to_matrix_measurement(example_index_data)

is.incremental_data
Reports whether x is an incremental_data object

Description

Reports whether x is an incremental_data object

Usage

is.incremental_data(x)

Arguments

x An object to test

linear_measurement_data
Create a data object with general linear measurements

Description

Create a data object with general linear measurements

Usage

linear_measurement_data(x, ...)

## S3 method for class 'numeric'
linear_measurement_data(x, matrix_A, dim_data,

exo_variable = NULL, data_id)

## S3 method for class 'sampling_scheme'
linear_measurement_data(x, data,

exo_variable = NULL, ...)

## S3 method for class 'measurement_matrix'
linear_measurement_data(x, data, ...)

## S3 method for class 'sparseMatrix'
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linear_measurement_data(x, exo_variable = NULL,
data_id = "")

is.linear_measurement_data(x)

## S3 method for class 'linear_measurement_data'
dim(x)

Arguments

x a numeric vector, a sampling_scheme, a measurement_matrix, or a Matrix::sparseMatrix.
matrix_A the measurement matrix used to generate the measures. Should be an object

of class Matrix::sparseMatrix of dimension length(x)-by-prod(dim_data).
dim_data a length-2 vector with the dimension of the measured matrix
exo_variable optional exogenous variables.
data_id the ID of the dataset.
data either an incremental_data or a linear_measurement_data object. The

data is to be sampled with x.

Details

• If x is a numeric vector, matrix_A and dim_data should be supplied.
• If x is a sampling_scheme, data should be supplied, and it shoud be either incremental_data

or linear_measurement_data.
• If x is a measurement_matrix, data should be of the class incremental_data.
• If x is a Matrix::sparseMatrix, it is supposed that it is a matrix with missing entries.

The linear measurement operator is one which samples all observed entries in x. More
specifically, x should not be a Matrix::nsparseMatrix (a binary pattern matrix), but
one which actually contains the value of the observations. Otherwise there will be a
warning.

Value

a linear_measurement_data object which includes the following fields:

• sample_data: the observations in the form of a numeric vector.
• measurement_matrix: a measurement_matrix of dimension length(sample_data)-

by-prod(dim_data)
• dim_data: the dimension of the matrix to be estimated.
• exo_variable: the exogenous variables. Named list with fields called X and Y. Should

verify nrow(exo_variable$X) == dim_data[1] and nrow(exo_variable$Y) == dim_data[2].
• data_id: a character string. The name of the dataset.

See Also

measurement_matrix
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Examples

m = 5
n = 3
r = 2
example_matrix = matrix(rexp(m * r), ncol = r) %*%

matrix(rexp(n * r), ncol = n)
# create an incremental_data object
incre_d = incremental_data(x = example_matrix, data_id = "exponential")

# A measurement matrix that samples the first five entries of a matrix.
matrix_A = measurement_matrix(

"matrix",
matrix_A = Matrix::sparseMatrix(i = 1:5, j = 1:5, dims = c(5, m*n)))

lin_m_d = linear_measurement_data(
x = matrix_A,
data = incre_d)

## examples of linear_measurement_data.sparseMatrix
completion_data = Matrix::sparseMatrix(i = 1,j = 1, x = 0, dims=c(5,5))
linear_measurement_data = linear_measurement_data(x = completion_data)
## Not run:
completion_data = Matrix::sparseMatrix(i = 1,j = 1, dims=c(5,5))
# this generates a warning because we are not supposed to provide a
# sparse "pattern" matrix to linear_measurement_data.sparseMatrix
linear_measurement_data = linear_measurement_data(x = completion_data)

## End(Not run)

lissageV Exponential smoothing

Description

Standard exponential smoothing of a numeric vector.

Usage

lissageV(vect, theta)

Arguments

vect the numeric vector to smooth.
theta the smoothing parameter. Should be between 0 and 1.

Value

A numeric vector of the same length as vect.
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References

the package R39Toolbox developped by R39.

Examples

lissageV(1:10, 0.1)

match_aggregate_max
Evaluation functions concerning aggregated (daily) peaks

Description

These functions compare the periodic peaks (for example daily or hourly or weekly) of the
individual aggregated ground truth with that of an estimation. This is to evalute if the NMF
algorithms can be applied to estimate periodic peaks from temporally aggregated individual
data.

Usage

match_aggregate_max(matrix1, matrix2, timestep, aggregate_vector)

diff_puissance_moment_pmax(matrix1, matrix2, timestep, aggregate_vector)

diff_aggregate_max(matrix1, matrix2, timestep, aggregate_vector)

diff_aggregate_max_positive(matrix1, matrix2, timestep, aggregate_vector)

diff_aggregate_max_negative(matrix1, matrix2, timestep, aggregate_vector)

Arguments

matrix1, matrix2
The ground truth and the estimation.

timestep The temporal aggregation step at which to calculate the peaks. If the each
row of matrix1 and matrix2 are half hourly datat, and we are interested
in daily peaks, timestep should be 48.

aggregate_vector
The aggregation vector to aggregate individuals.

Details

match_aggregate_max calculate the percentage of peak moments that are correctly esti-
mated.
diff_puissance_moment_pmax calculates the average deviation between the estimation and
ground truth at the peak moments ( both estimated and real).
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diff_aggregate_max calculates the average deviation between the estimaed peaks and the
real peaks.
diff_aggregate_max_positive calculates the average positive deviation between the esti-
maed peaks and the real peaks.
diff_aggregate_max_negative calculates the average negative deviation between the esti-
maed peaks and the real peaks.

Value

a single value representing an evaluation metric.

matrix_model General matrix model

Description

Create a general matrxi model. An object of matrix_model class has a predict method.
There are two types of matrix models, factorization_model and regression_model. The
difference between them is that predict.regression_model allows new data. This is where
the dispatching between factorization and regression models happens based on the data and
the algorithm.

Usage

matrix_model(algorithm = implemented_algorithms(), data, ...)

is.matrix_model(x)

Arguments

algorithm the algorithm used to create the model.
data an object of class incremental_data, index_data or linear_measurement_data.
... other parameters to be passed on to factorization_model or regression_model.

Value

an object of class matrix_model which has at least the following fields:

• M: the recovered matrix.
• algorithm: the algorithm.
• obs: a named list of the observations provided for model estimation.
• args_list: a named list of the other arguments.

If algorithm is not compatible with the data and other parameters that are provided, this
function will return an empty_model, which is a naive model.
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See Also

regression_model, factorization_model, empty_model.

Examples

model0 = matrix_model(data = example_index_data, algorithm = "empty_model")
model1 = matrix_model(data = example_index_data, r = 2, algorithm = "NeNMF")

predict(model0, completion = TRUE)
predict(model0, completion = FALSE)

measurement_matrix Create a measurement_matrix to represent the measurement oper-
ator

Description

Create a measurement_matrix to represent the measurement operator

Usage

measurement_matrix(type, ...)

Arguments

type a character string specifying the type of representation used in the other
parameters.

pattern_mat, matrix_A, list_mat, list_subs, list_ind, vec_ind
parameters to be used to pass one representation of the measurement oper-
ator. See Details for more explanation.

Details

The parameter type can be of the following values:

• "completion" a binary matrix of the same dimension as the matrices to be measured.
The "pattern" matrix should be supplied under the parameter name pattern_mat.

• "matrix" a matrix which is the measurement operator in the matrix form. The pa-
rameter matrix_A should be supplied. It should be a sparseMatrix (class from the
Matrix package).

• "list_mat" a list of matrices, each of the same dimension as the matrices to be mea-
sured. Each matrix is a "mask". The parameter list_mat should be supplied.

• "list_sub", "list_ind", "vec_ind". All three are used for completion data. "list_ind"
is a list of length of nrow of the matrix to be measured, in which each element is a vector
of the row indexes of the observations. "list_sub" is a list of vectors of the "sub" (row
column pair) of the observations (the parameter name is list_subs). "vec_ind" is a
vector of the indexes (by seeing the matrix as a very long vector) of the observations.
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meterModels meterModels

Description

meterModels

NMF_increment NMF on increment data

Description

Algortihm for the incremental NMF problem. Different algorithms are called depending on
the algorithm argument. Supposed to be internal.

Usage

NMF_increment(data, known = NULL, m, n, r, matrix_A = NULL,
algorithm = implemented_algorithms("completion"), opts = list(),
rho = NULL, lambda = 0, ground_truth = NULL, NNDSVD = FALSE,
save_iterations = FALSE, general_factorization = FALSE,
exo_variable = list(X = NULL, Y = NULL), formula = list(X =
empty_formula(), Y = empty_formula()), ...)

Arguments

data a numeric vector with the observed values (cumulative data).
known an integer vector witht the index of the observed values. Has to be the same

length as data.
m, n the dimension of the matrix to be estimated.
r integer. the target rank of the matrix.
matrix_A a sparse matrix of dimension length(data)-by-m * n. Used when estimating

models with general linear measurements. Either known or matrix_A has to
be supplied.

algorithm a character string with the name of the algorithm to be used. See implemented_algorithms
for the complete list.

opts a named list to set the parameters for the estimation algorithm with the
following fields:

• tol: tolerance for deciding whether to stop.
• maxit: the maximal number of iterations.
• minit: the minimal number of iterations.
• verbose: whether to provide more reporting in the computation or not.
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• fixed_X, fixed_Y: whether X or Y should be fixed in the iterations.
• maxtime: maximal computing time allocated in seconds.
• ITER_MAX, ITER_MIN: the maximal and minimal number of iterations

for NeNMF.
• X0,Y0: initial values for X, Y
• FuninR: If FuninR = "R" use the R version of subroutines. If FuninR = "cpp"

use the C++ version. Default is "cpp".
• ccdppitmax,ccdppthreads,ccdpplambda: the maximal number of it-

erations, the number of threads, and the penalization parameter for
CCDPP algorithm.

rho either NULL or a vector of length n. When it is provided, it is the vector of
temporal autocorrelation threshold to be imposed on each of the columns.

lambda either a number which is 0 or positive, or "optimal". This is the penaliza-
tion parameter to be used to impose autocorrelation constraint.

ground_truth the ground truth matrix of incremental data.
NNDSVD a logical to specify whether use SVD to initialize.
save_iterations

whether to save the factorizations during iterations.
general_factorization

If TRUE does a general factorization without nonnegativity. If FALSE, which
is the default value, does an NMF. IF is the string "random", randomly
allow half of the iterations to explore negative values.

exo_variable A list of two fields named X and Y. Both are to be data.frames, of m or n
rows, corresponding to the row individuals or the column individuals of the
matrix to be recovered.

formula A list of two fields named X and Y. Both are to be objects of the class
formula_params.

... additional parameters to be passed to mgcv::gam for initializing the models
when using HALS_models and gam.

normalize_factors Normalize the factors in a factorization_model

Description

This function rescales output$X to have columns which have averages of one. output$Y is
modified accordingly to keep the model equivalent.

Usage

normalize_factors(output)

Arguments

output a factorization_model
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Value

A factorization_model with normalized factors.

periodic_sampling Helper functions to subsample the matrices

Description

These functions are returned wrapped inside sampling_schemes.

Usage

periodic_sampling(m, n, sr, seed = NULL)

random_sampling(m, n, sr, seed = NULL)

evolution_sampling(m, n, sr, seed = NULL)

block_sampling(m, n, sr, seed = NULL)

Arguments

m, n integers. The number of rows and columns in the matrix.
sr the sampling rate (0.2 for sampling 20% of data). For every sampling type

except evolution_sampling, this should be a single number between 0
and 1. For evoluation_sampling, this should be a pair of sampling rates.
sr[1] is the (periodic) sampling rate applied on regular users. sr[2] is the
percentage of regular users. The rest of the users are observed completely
(supposed to be users with Linky meters).

seed the seed for sampling the phase.

Details

periodic_sampling proposes sampling entries which are at regular intervals (with random
offset for each column).
random_sampling proposes sampling entries which are chosen uniformly at random amongst
all entries in the matrix.
evolution_sampling proposes sampling entries at regular intervals for a part of the users,
and complete observations for the rest of the users.
block_sampling supposes that a block of data is missing, and returns the entries that are
not missing.

Value

The sampled (observed) entries’ indexes. For mat, a matrix of dimension m-by-n, call
mat[xxxxx_sampling(m, n, sr)] to retrieve the observed entries.
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plot.factorization_model
Plot a factorization_model

Description

Plots the factors and the weights of a factorization_model, using plot_factors and
plot_weights.

Usage

plot.factorization_model(x, ...)

Arguments

x an object of class factorization_model, aka, has the fields X and Y.
... parameters passed to plot_factors and plot_weights.

See Also

See factorization_model for examples. See plot_factors and plot_weights for addi-
tional parameters.

plot.regression_model
Plot a regression_model

Description

This function plots the regression models (the models between factors and exogenous vari-
ables).

Usage

plot.regression_model(x)

Arguments

x an object of class regression_model. x$algorithm should be either "HALSX1"
or "factor_gam".

See Also

See regression_model for examples.
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plot_a_matrix Plot a matrix

Description

Plot a matrix using geom_tile in ggplot2 package.

Usage

plot_a_matrix(M)

plot_matrices(list_matrices)

Arguments

M a numeric matrix.
list_matrices

a (potentially named) list of matrices.

Examples

plot_a_matrix(example_matrix)
plot_matrices(list(example_matrix,

cbind(jitter(example_matrix), example_matrix)))

plot_factors Plot factors

Description

Plot factors obtained in a factorization model. This function takes a numeric matrix
and plot each column as a curve. Underlying this function is the idea that factors that are
obtained are time series.

Usage

plot_factors(W, start = NULL, interval = NULL, ...)

Arguments

W a numeric matrix (factors obtained in NMF typically).
start, interval

options to put time x-axis values for factors. start is a POSIXct. interval
is a difftime.
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See Also

plot_weights

Examples

plot_factors(example_matrix)

# We can also specify the periods covered by the factors
plot_factors(example_matrix, start = as.POSIXct(Sys.Date()),

interval = as.difftime(1, units = "days"))

plot_weights Plot weights

Description

Plot a numeric matrix by interpreting each column as weights of factors for one individual.
Each column of H is renormalized to sum 1.

Usage

plot_weights(H, order_by_factor = 1, ...)

Arguments

H a numeric matrix (weights obtained in NMF).
order_by_factor

The factor by which to order the individuals. For the graphic to be more
informative, we reorder the individuals according to one of the factors.

See Also

plot_factors

Examples

plot_weights(example_matrix)
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predict.matrix_model
Predict method for matrix_models

Description

Predict method for matrix_models

Usage

predict.matrix_model(object, newdata = NULL, completion = NULL, ...)

predict.factorization_model(object, completion, ...)

predict.regression_model(object, newdata = NULL, len = NULL, ...)

predict.empty_model(object, completion, ...)

Arguments

object the matrix_model to use in prediction.
newdata When object is a regression_model, provide new values for the exoge-

neous variables for prediction in the form of list(X = newdataX, Y = newdataY)
where newdataX and newdataY are data.frames corresponding to new rows
and columns.

completion a logical value. Should the returned prediction of a factorization_model
be projected into the subspace imposed by the data?

... in predict.matrix_model used to pass additional arguments to predict.regression_model.
In the other two methods, it is unused.

len used if object$algorithm == "trmf". Since trmf algorithm does not use
newdata, we have to tell it how many periods to predict.

Details

When not specified explicitly, predict treats a regression_model that is also a factoriza-
tion_model as a regression_model.

Value

If newdata is supplied and object is a regression_model with appropriate $algorithm,
a matrix of dimension nrow(newdata$X)-by-nrow(newdata$Y). If only one of the newdata
data.frames is provided, the missing dimension is replaced by that of the data used to
estimate object.
If no newdata is supplied, the matrix recovery result is returned, either projected or not,
depending on the value of completion.
If the parameters are not compatible, NULL is returned.
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See Also

For examples, see matrix_model, regression_model, factorization_model, and empty_model.

print.formula_params
Create a formula_params object which controls what regres-
sion_model to use

Description

This function creates a formula_params object. See below for details.

Usage

## S3 method for class 'formula_params'
print(x, ...)

formula_params(formula_alone, HALS_model_params = list(),
HALSX1_params = list(), trmf_params = list())

is.formula_params(x)

## S3 method for class 'formula_params'
as.character(x)

Arguments

formula_alone
a string that looks like the right-hand side of a typical R formula

HALS_model_params
A named list of parameters for the "HALS_model" algorithm. Should include

• reg_model: a character string specifying which regression method to
use. Supported values are "gam" or regression methods supported by
caret. If is "gam", the mgcv package will be used. If is anything else,
the caret package will be used for estimation of the regression models.

• Other parameters are passed in the estimation iterations to either mgcv::gam
or caret::train.

HALSX1_params
A named list of parameters for the "HALSX1" algorithm. Can use this to
pass on a parameter called sp to specify penalization parameter in spline
regression.

trmf_params A named list of parameters for the "trmf" algorithm. The parameters are
optional:

• lag_idx: The number of periods considered in the autoregressive mod-
els of the factors.

• maxit: The maximal number of iterations.
• lambdas: A vector of three numbers: penalization parameters on X, Y

and M (the matrix to be recovered).
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Details

A formula_params object has a formula_alone which is a string that looks like the right-
hand side of a typical R formula. Other fields are used to store algorithm-specific parame-
ters, so HALS_model_params is for the "HALS_model" algorithm etc..

Value

a formula_params object. Basically a wrapper of the parameters.

References

https://topepo.github.io/caret/available-models.html for the list of available regression meth-
ods in caret.

Examples

formula_params(create_formula_string(colnames(
example_exogenous_variables$X), type = "gam"),
HALS_model_params = list(reg_method = "gam"))

formula_params(create_formula_string(colnames(
example_exogenous_variables$X), type = "lm"),
HALS_model_params = list(reg_method = "xgbTree",

# All tuning parameters to pass to
# caret is to be supplied here
subsample = 0.4))

regression_model Fit a regression model

Description

Fit a regression model with index data or incremental data, with exogeneous variables

Usage

regression_model(x, exo_variable, formula, r = NULL,
algorithm = implemented_algorithms("regression"), opts = list(),
rho = NULL, lambda = 0, ground_truth = NULL, NNDSVD = FALSE,
save_iterations = FALSE, general_factorization = FALSE, ...)

is.regression_model(x)

## S3 method for class 'index_data'
regression_model(x, exo_variable, formula, r = NULL,

algorithm = implemented_algorithms("regression", "partial_data"),
opts = list(), rho = NULL, lambda = 0, ground_truth = NULL,
NNDSVD = FALSE, save_iterations = FALSE, general_factorization = FALSE,
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...)

## S3 method for class 'linear_measurement_data'
regression_model(x, exo_variable, formula,

r = NULL, algorithm = implemented_algorithms("regression",
"linear_measurement_data"), opts = list(), rho = NULL, lambda = 0,
ground_truth = NULL, NNDSVD = FALSE, save_iterations = FALSE,
general_factorization = FALSE, ...)

## S3 method for class 'factorization_model'
regression_model(x, exo_variable, formula, ...)

## S3 method for class 'incremental_data'
regression_model(x, exo_variable = NULL, formula,

r = NULL, algorithm = implemented_algorithms("regression"),
opts = list(), rho = NULL, lambda = 0, ground_truth = NULL,
NNDSVD = FALSE, save_iterations = FALSE, general_factorization = FALSE,
...)

Arguments

x an object of class index_data, incremental_data, linear_measurement_data,
or factorization_model.

exo_variable A list of two fields named X and Y. Both are to be data.frames, of m or n
rows, corresponding to the row individuals or the column individuals of the
matrix to be recovered.

formula A list of two fields named X and Y. Both are to be objects of the class
formula_params.

r integer. the target rank of the matrix.
algorithm a character string with the name of the algorithm to be used. See implemented_algorithms

for the complete list.
opts a named list to set the parameters for the estimation algorithm with the

following fields:
• tol: tolerance for deciding whether to stop.
• maxit: the maximal number of iterations.
• minit: the minimal number of iterations.
• verbose: whether to provide more reporting in the computation or not.
• fixed_X, fixed_Y: whether X or Y should be fixed in the iterations.
• maxtime: maximal computing time allocated in seconds.
• ITER_MAX, ITER_MIN: the maximal and minimal number of iterations

for NeNMF.
• X0,Y0: initial values for X, Y
• FuninR: If FuninR = "R" use the R version of subroutines. If FuninR = "cpp"

use the C++ version. Default is "cpp".
• ccdppitmax,ccdppthreads,ccdpplambda: the maximal number of it-

erations, the number of threads, and the penalization parameter for
CCDPP algorithm.
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rho either NULL or a vector of length n. When it is provided, it is the vector of
temporal autocorrelation threshold to be imposed on each of the columns.

lambda either a number which is 0 or positive, or "optimal". This is the penaliza-
tion parameter to be used to impose autocorrelation constraint.

ground_truth the ground truth matrix of incremental data.
NNDSVD a logical to specify whether use SVD to initialize.
save_iterations

whether to save the factorizations during iterations.
general_factorization

If TRUE does a general factorization without nonnegativity. If FALSE, which
is the default value, does an NMF. IF is the string "random", randomly
allow half of the iterations to explore negative values.

... additional parameters to passe on to NMF_increment.

Value

A regression_model object. Always has a field called models which consequently can be
used in prediction. When the object returned is also a matrix_model or a factorization_model,
corresponding fields are included.

See Also

formula_params to see details on how to provide parameters for the regression algorithms.

Examples

reg_mod = regression_model(x = example_index_data,
exo_variable = example_exogenous_variables,
formula = example_formula,
r = 2,
algorithm = "HALS_model")

# When not specified explicitly,
# predict treats a regression_model that is also a factorization_model as
# a regression_model.
# Predict a regression_model without newdata to see the prediction
# values of the regression models.
predict(reg_mod)

# Call predict.factorization_model explicitly on regression_model to see
# prediction by the factorization_model
predict.factorization_model(reg_mod, completion = TRUE)
predict.factorization_model(reg_mod, completion = FALSE)

# Predict using newdata
predict(reg_mod, newdata = list(X = example_exogenous_variables$X[1:2,]))
predict(reg_mod, newdata = list(Y = example_exogenous_variables$Y[1,,drop=FALSE]))
predict(reg_mod, newdata = list(X = example_exogenous_variables$X[1:2,],

Y = example_exogenous_variables$Y[1,,drop=FALSE]))

# When not specified explicitly, it is the regression_model part that is
# plotted.
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plot(reg_mod)
# We can force it to plot factorization_model.
plot.factorization_model(reg_mod)

relative_diff_norm Relative difference in norm between two matrices

Description

Relative difference in norm between two matrices

Usage

relative_diff_norm(matrix1, matrix2, type = "F")

normalized_deviation(matrix1, matrix2)

normalized_RMSE(matrix1, matrix2)

RMSE(matrix1, matrix2)

MAPE(matrix1, matrix2)

Arguments

matrix1, matrix2 the two matrices to compare.
type currently unused. For future development can be used to inplement other

metrix than Frobenius norm.

sampling_scheme A wrapper class for the sampling schemes

Description

Specify a sampling scheme with its type and parameters

Usage

sampling_scheme(sampling_rate, type = c("periodic", "random", "evolution",
"block", "completion", "all"), seed = NULL)

is.sampling_scheme(object)
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Arguments

sampling_rate
a number strictly between 0 and 1, or a numeric vector. If type == "evolution",
it is two numbers between 0 and 1. If type == "all", this is ignored.

type a character string specifying the sampling type. See implemented_sampling_type
for more details.

seed the seed used in random number generation.

Value

an object of class sampling_scheme. Apart from the information passed on from the pa-
rameters, this object has a $sampling_fun field which contains a function that we can then
use to sample data. See xxx_sampling for more details about these functions.

Examples

ss = sampling_scheme(0.2, "periodic")
ss$sampling_fun(m = 10, n = 20)

set_missing_parameters_to_default
Internal function to set missing estimation options to default values

Description

Internal function to set missing estimation options to default values

Usage

set_missing_parameters_to_default(opts, algorithm)

Arguments

opts a named list to set the parameters for the estimation algorithm with the
following fields:

• tol: tolerance for deciding whether to stop.
• maxit: the maximal number of iterations.
• minit: the minimal number of iterations.
• verbose: whether to provide more reporting in the computation or not.
• fixed_X, fixed_Y: whether X or Y should be fixed in the iterations.
• maxtime: maximal computing time allocated in seconds.
• ITER_MAX, ITER_MIN: the maximal and minimal number of iterations

for NeNMF.
• X0,Y0: initial values for X, Y
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• FuninR: If FuninR = "R" use the R version of subroutines. If FuninR = "cpp"
use the C++ version. Default is "cpp".

• ccdppitmax,ccdppthreads,ccdpplambda: the maximal number of it-
erations, the number of threads, and the penalization parameter for
CCDPP algorithm.
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Reconstitution et prédiction de séries temporelles avec la factorisation de matrice 
nonnégative augmentée de régression appliquée à la consommation électrique 

Mots clés Analyse spatiale, Séries chronologiques, Consommation électrique, Séparation de sources, 

Factorisation de matrice nonnégative 

Résumé Nous sommes intéressés par la 

reconstitution et la prédiction des séries temporelles 

multi-variées à partir des données partiellement 

observées et/ou agrégées. La motivation du 

problème vient des applications dans la gestion du 

réseau électrique.  

Nous envisageons des outils capables de résoudre le 

problème d'estimation de plusieurs domaines. Après 

investiguer le krigeage, qui est une méthode de la 
littérature de la statistique spatio-temporelle, et une 

méthode hybride basée sur le clustering des 

individus, nous proposons un cadre général de 

reconstitution et de prédiction basé sur la 

factorisation de matrice nonnégative. Ce cadre 

prend en compte de manière intrinsèque la 

corrélation entre les séries temporelles pour réduire 

drastiquement la dimension de l'espace de 

paramètres. Une fois que le problématique est 

formalisé dans ce cadre, nous proposons deux 

extensions par rapport à l'approche standard. 

La première extension prend en compte 

l'autocorrélation temporelle des individus. Cette 

information supplémentaire permet d'améliorer la 

précision de la reconstitution. La deuxième extension 

ajoute une composante de régression dans la 

factorisation de matrice nonnégative. Celle-ci nous 

permet d'utiliser dans l'estimation du modèle des 

variables exogènes liées avec la consommation 
électrique, ainsi de produire des facteurs plus 

interprétables, et aussi améliorer la reconstitution. De 

plus, cette méthode nous donne la possibilité d'utiliser 

la factorisation de matrice nonnégative pour produire 

des prédictions.  

Sur le côté théorique, nous nous intéressons à 

l'identifiabilité du modèle, ainsi qu'à la propriété de la 

convergence des algorithmes que nous proposons. La 

performance des méthodes proposées en 

reconstitution et en prédiction est testée sur plusieurs 

jeux de données de consommation électrique à 

niveaux d'agrégation différents. 

 

Time series recovery and prediction with regression-enhanced nonnegative 
matrix factorization applied to electricity consumption 

Keywords Spatial analysis, Time series, Electricity consumption, Source separation, Nonnegative matrix 

factorization 

Abstract We are interested in the recovery and 

prediction of multiple time series from partially 

observed and/or aggregate data. Motivated by 

applications in electricity network management, we 

investigate tools from multiple fields that are able to 

deal with such data issues. 

After examining kriging from spatio-temporal 

statistics and a hybrid method based on the 

clustering of individuals, we propose a general 

framework based on nonnegative matrix 

factorization. This framework takes advantage of 

the intrinsic correlation between the multivariate 

time series to greatly reduce the dimension of the 

parameter space. Once the estimation problem is 

formalized in the nonnegative matrix factorization 

framework, two extensions are proposed to improve 

the standard approach. 

The first extension takes into account the individual 

temporal autocorrelation of each of the time series. 

This increases the precision of the time series 

recovery. The second extension adds a regression 

layer into nonnegative matrix factorization. This 

allows exogenous variables that are known to be 

linked with electricity consumption to be used in 
estimation, hence makes the factors obtained by the 

method to be more interpretable, and also increases 

the recovery precision. Moreover, this method makes 

the method applicable to prediction.  

We produce a theoretical analysis on the framework 

which concerns the identifiability of the model and 

the convergence of the algorithms that are proposed. 

The performance of proposed methods to recover and 

forecast time series is tested on several multivariate 

electricity consumption datasets at different 

aggregation level. 
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