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Résumé
L’éco-routage est une méthode de navigation du véhicule qui sélectionne les tra-

jets vers une destination minisant la consommation de carburant, la consommation
d’énergie ou les émissions de polluants. C’est l’une des techniques qui tentent de
réduire les coûts d’exploitation et l’empreinte environnementale du véhicule. Ce
travail passe en revue les méthodes actuelles d’éco-routage et propose une nouvelle
méthode pour pallier leurs insuffisances.

La plupart des méthodes actuelles attribuent à chaque route du réseau routier
un coût constant qui représente la consommation du véhicule ou la quantité de pol-
luants émis. Un algorithme de routage optimal est ensuite utilisé pour trouver le
chemin qui minimise la somme de ces coûts. Différentes extensions sont consid-
érées dans la littérature. L’éco-routage contraint permet d’imposer des limites sur
le temps de trajet, la consommation d’énergie et les émissions de polluants. L’éco-
routage dépendant du temps permet le routage sur un graphique avec des coûts
qui sont fonction du temps. L’éco-routage adaptatif permet de mettre à jour la solu-
tion d’éco-routage au cas où elle deviendrait invalide en raison d’un développement
inattendu sur la route.

Il existe des méthodes d’éco-routage optimales publiées qui résolvent l’éco-rou-
tage dépendant du temps ou l’éco-routage contraint ou l’éco-routage adaptatif. Cha-
cun vient avec des frais généraux de calcul considérablement plus élevés par rapport
à l’éco-routage standard et, à la connaissance de l’auteur, aucune méthode publiée
ne prend en charge la combinaison des trois: éco-routage adaptatif dépendant du
temps contraint.

On soutient dans ce travail que les coûts d’acheminement sont incertains en rai-
son de leur dépendance au trafic immédiat autour du véhicule, du comportement du
conducteur et d’autres perturbations. Il est en outre soutenu que puisque ces coûts
sont incertains, il y a peu d’avantages à utiliser un routage optimal car l’optimalité
de la solution ne tient que tant que les coûts de routage sont corrects. Au lieu de
cela, une méthode d’approximation est proposée dans ce travail. La charge de cal-
cul est plus faible car la solution n’est pas requise pour être optimale. Cela permet
l’éco-routage adaptatif dépendant du temps contraint.

Mots clés: eco-routage, map-matching, systémes de navigation, transport vert
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Abstract
Eco-routing is a vehicle navigation method that selects those paths to a destina-

tion that minimize fuel consumption, energy consumption or pollutant emissions. It
is one of the techniques that attempt to lower vehicle’s operational cost and environ-
mental footprint. This work reviews the current eco-routing methods and proposes
a new method designed to overcome their shortcomings.

Most current methods assign every road in the road network some constant cost
that represents either vehicle’s consumption there or the amount of emitted pollu-
tants. An optimal routing algorithm is then used to find the path that minimizes the
sum of these costs. Various extensions are considered in the literature. Constrained
eco-routing allows imposing limits on travel time, energy consumption, and pollu-
tant emissions. Time-dependent eco-routing allows routing on a graph with costs
that are functions of time. Adaptive eco-routing allows updating the eco-routing so-
lution in case it becomes invalid due to some unexpected development on the road.

There exist published optimal eco-routing methods that solve either the time-
dependent eco-routing, or constrained eco-routing, or adaptive eco-routing. Each
comes with considerably higher computational overhead with respect to the stan-
dard eco-routing and, to author’s best knowledge, no published method supports
the combination of all three: constrained time-dependent adaptive eco-routing.

It is argued in this work that the routing costs are uncertain because of their
dependence on immediate traffic around the vehicle, on driver’s behavior, and other
perturbations. It is further argued that since these costs are uncertain, there is little
benefit in using optimal routing because the optimality of the solution holds only as
long as the routing costs are correct. Instead, an approximation method is proposed
in this work. The computational overhead is lower since the solution is not required
to be optimal. This enables the constrained time-dependent adaptive eco-routing.

Keywords: eco-routing, map-matching, navigation systems, green transportation
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Chapter 1

Résumé substantiel en langue
française

L’éco-routage est une méthode de navigation de véhicule qui choisit les chemins en
minimisant la consommation de carburant, la consommation d’énergie ou l’émission
de polluants pour un voyage vers une destination donnée. Le transport routier a de
nombreux effets négatifs sur l’environnement. Il est le plus grand contributeur au
réchauffement climatique par les émissions de CO2 (Fuglestvedt et al., 2008) et est
responsable de la détérioration de la qualité de l’air dans les zones à réseau routier
dense par les émissions de particules et autres polluants. Par exemple, la matière
particulaire est un polluant dangereux: l’étude de Raaschou-Nielsen et al., 2013 a
révélé que pour chaque augmentation de 10 µg/m3 de particules dans l’air, le taux
de cancer du poumon dans la région a augmenté de 22%. En dehors de cette di-
mension environnementale, il y a aussi un côté économique du problème. Le coût
monétaire associé à la consommation d’énergie (carburant) est considérable. Cela
motive des techniques telles que l’éco-routage visant à réduire les émissions de pol-
luants, ou la consommation d’énergie (carburant), ou les deux.

Les premières études sur le sujet ont confirmé la dépendance des émissions de
polluants et de la consommation d’énergie (carburant) sur le trajet emprunté. Ahn
and Rakha, 2007 ont montré dans une étude de cas que prendre un chemin plus
lent peut économiser du carburant au prix d’un temps de trajet prolongé. Ericsson
et al., 2006 ont montré que les conducteurs ne choisissent pas toujours les chemins
avec la meilleure économie de carburant. Le premier système de navigation d’éco-
routage a été publié par Barth et al., 2007. De nombreuses études de cas et méthodes
d’éco-routage ont été publiées depuis.

Différents auteurs considèrent différentes variantes de l’éco-routage. Comme
indiqué ci-dessus, certains visent à réduire les émissions de polluants tandis que
d’autres visent à réduire la consommation. Dans le premier cas, le terme “éco-
routage” signifie “écologisation” alors que dans le dernier cas, il pourrait être à la
fois “écologique” et “économique” (certains auteurs suggèrent que les émissions de
CO2 sont réduites avec la consommation). Les méthodes de routage sont générale-
ment conçues en fonction d’un type de véhicule spécifique. Certaines sont conçues
pour des véhicules conventionnels avec des moteurs à combustion interne, tandis
que d’autres envisagent des véhicules électriques et hybrides. Les véhicules con-
ventionnels émettent des polluants et consomment du carburant. Les véhicules
électriques consomment de l’énergie plutôt que du carburant et n’émettent aucun
polluant. Les véhicules hybrides ont à la fois un moteur électrique et un moteur à
combustion interne. Il existe une grande variété de topologies, et leur comportement
n’est pas facile à caractériser.

Il existe également des différences dans la façon dont les méthodes d’éco-routage
sont évaluées. Certains auteurs définissent les économies en comparant la quantité
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FIGURE 1.1: Système de navigation de base pour l’éco-routage (ver-
sion française).

d’intérêt (le consommation de carburant, le consommation d’énergie ou les émis-
sions de polluants) aux trajets les plus courts, tandis que d’autres se comparent aux
trajets les plus rapides. Les chemins les plus courts sont ceux qui minimisent la dis-
tance jusqu’à la destination. Les chemins les plus rapides sont ceux qui minimisent
le temps de trajet prévu.

On sait peu sur les avantages que peut offrir l’éco-routage. La performance de
l’éco-routage dépend des propriétés du réseau routier et du véhicule. Les études de
cas publiées sont souvent conçues comme des preuves du concept de l’éco-routage,
et elles se concentrent donc sur des scénarios où l’éco-routage est susceptible d’exce-
ller. Ceci, cependant, ne dit rien sur les économies typiques observées dans l’utilisa-
tion quotidienne. Certaines études de cas et la plupart des publications proposant de
nouvelles méthodes d’éco-routage contiennent néanmoins une évaluation de l’épar-
gne moyenne. Toutefois, le même modèle de consommation ou d’émission de pollu-
ants est souvent utilisé pour identifier les éco-itinéraires et d’estimer les économies
sur elles. Ce type d’évaluation ne peut jamais aboutir à des économies négatives, ce
qui signifie qu’il est incapable de détecter les échecs.

Il existe une technique étroitement liée à l’éco-routage appelée éco-conduite.
Elle essaie d’atteindre les mêmes objectifs que l’éco-routage mais utilise différents
moyens pour le faire. Au lieu de réduire les émissions de polluants ou la consom-
mation par le choix du trajet, l’eco-conduite est prédéterminée et fixée en optimisant
le comportement du conducteur pendant le trajet. Puisque les deux techniques
partagent le même objectif, il devrait être possible de les combiner pour obtenir de
meilleurs résultats. Elles peuvent être utilisées indépendamment, mais il est proba-
ble qu’il existe un certain degré de co-dépendance entre elles.

1.1 Structure du système de navigation éco-routage

La structure de base d’un système de navigation par éco-routage est schématisée à
la Figure 1.1. Il y a quatre éléments principaux: la base de données locale, le bloc
d’estimation des coûts, le bloc de routage et le bloc de “map-matching”. Le bloc
d’interface utilisateur est hors de portée de ce travail et n’est plus discuté ici.

• La base de données locale contient le graphe du réseau routier. C’est un graphe
orienté dont le but est de décrire la connectivité entre différents endroits sur
la carte. Il contient également l’organisation spatiale du réseau routier (formes
de route) et d’autres métadonnées telles que les noms de routes, les longueurs
et les pentes.
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• L’estimateur de coût est utilisé pour attribuer des coûts aux bords du graphe
du réseau routier. La nature de ces coûts dépend de la manière dont le prob-
lème d’éco-routage est posé. Cela peut être la consommation de carburant, la
consommation d’énergie ou les émissions de polluants.

• Le routage trouve le chemin dans le graphe du réseau routier entre l’origine et
la destination données avec la somme la plus basse des coûts sur les bords du
chemin.

• Le map-matching convertit la position référencée par rapport à la Terre en une
position dans un graphe de réseau routier. Le système de positionnement et le
graphe du réseau routier contiennent tous deux des erreurs qui peuvent rendre
la conversion difficile. Il n’y a pas d’approche standard à ce problème.

La structure de la Figure 1.1 est identique au système de navigation le plus
couramment utilisé. La seule différence entre l’éco-routage et le routage à plus
courte distance réside dans la nature des coûts. Dans le routage à plus courte dis-
tance, le coût est simplement une longueur de route. C’est une constante non néga-
tive qui peut être enregistrée dans la base de données. En éco-routage, le coût est
une fonction multivariée.

La plupart des méthodes d’éco-routage publiées utilisent l’algorithme de routage
de Dijkstra (Dijkstra, 1959) ou un algorithme dérivé de celui-ci (tel que l’algorithme
de recherche A*, Hart et al., 1968). Ce sont des algorithmes sophistiqués capables
d’identifier la solution optimale en temps asymptotiquement optimal. Ils supposent
cependant que les coûts sont des scalaires constants non négatifs. Ceci est limitant
pour les applications d’éco-routage. Les quantités représentées par les coûts sont
généralement des variables dépendant du temps qui peuvent être négatives si le coût
représente la consommation d’énergie et que le véhicule considéré peut récupérer
l’énergie de freinage. Le problème des coûts variables est examiné plus en détail
à la Section 2.2. Le problème des coûts négatifs peut être résolu avec l’algorithme
de Bellman-Ford (Bellman, 1958), mais l’effort de calcul sur un grand réseau routier
peut devenir significatif. Une autre option consiste à rendre tous les coûts posi-
tifs sans modifier la structure des chemins minimaux dans le graphe en utilisant
l’algorithme de Johnson (Johnson, 1977).

Notez que le routage naïf est intraitable par calcul pour tous les réseaux routiers,
sauf les plus simples. Une méthode de routage naïf ferait d’abord une liste de tous
les chemins entre l’origine et la destination données, puis rechercherait le chemin
qui minimise la fonction de coût donnée. Le nombre de chemins à considérer n’est
pas fini à moins que seuls les chemins simples soient considérés (chemins sans
boucles). Même alors, le nombre de trajets croît exponentiellement avec le nom-
bre d’intersections dans le réseau routier. C’est pourquoi les algorithmes de routage
tels que l’algorithme de Dijkstra sont importants. Ils sont capables d’identifier la
solution optimale dans un temps polynomial.

De nombreux estimateurs de coûts ont été proposés spécifiquement pour les
applications d’éco-routage. Certains sont basés sur des modèles de régression, et
d’autres sont dérivés de la seconde loi du mouvement de Newton. Le dénomi-
nateur commun entre eux est qu’ils sont macroscopiques. En général, la plupart
des modèles publiés de consommation de carburant, de consommation d’énergie
et d’émission de polluants peuvent être classés comme macroscopiques ou micro-
scopiques. Les modèles microscopiques sont basés sur des équations différentielles.
Les modèles macroscopiques sont basés sur des équations algébriques en forme fer-
mée. Cela nécessite souvent des simplifications grossières, mais le modèle résultant
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est rapide à calculer et nécessite peu d’informations. La raison pour laquelle les esti-
mateurs de coût utilisés dans l’éco-routage sont macroscopiques est que les modèles
microscopiques ont besoin de données de trajet enregistrées (profil de vitesse du
véhicule) afin d’estimer le coût. Ces informations ne sont pas disponible pour la
planification d’un voyage.

Notez que les estimateurs de coût macroscopiques sont connus pour leurs er-
reurs d’estimation. Par exemple, dans l’une des premières études sur l’éco-routage,
Ahn and Rakha, 2008 concluent que les outils d’estimation des émissions macro-
scopiques (par exemple, MOBILE6) peuvent produire des conclusions erronées étant
donné qu’ils ignorent le comportement transitoire des véhicules le long d’une route.
Il est peut-être surprenant alors qu’aucune méthode d’éco-routage citée dans ce tra-
vail n’en tienne compte: les coûts sont toujours supposés exacts, sans erreurs.

Le map-matching a deux applications dans l’éco-routage. Premièrement, il per-
met à l’interface utilisateur de diriger le conducteur vers la destination en identi-
fiant la position actuelle du véhicule sur le réseau routier. Deuxièmement, il 1est
nécessaire lors du traitement des voyages historiquement enregistrés afin de dé-
duire des connaissances sur la consommation du véhicule sur les routes du réseau
routier (c’est quelque chose qui est souvent fait dans la littérature). Au moment de
l’écriture, les systèmes dominants de positionnement des véhicules sont basés sur la
navigation par satellite. Ils identifient la position du véhicule en termes de latitude
et de longitude. Le map-matching est nécessaire pour assigner les trajets enregistrés
aux bonnes routes du réseau routier. Les erreurs du map-matching se propagent
dans le système. Elles peuvent réduire la précision de l’estimateur de coût et faire
en sorte que l’interface utilisateur commence à donner des conseils trompeurs au
conducteur.

1.2 Extensions d’éco-routage

Les trois extensions de l’éco-routage de base discutées dans la littérature sont:

• L’éco-routage contraint permet de fixer des limites sur la consommation de car-
burant, la consommation d’énergie, le temps de trajet et les émissions de pol-
luants. Il a d’abord été considéré dans l’article écrit par Juřík et al., 2014. Les
auteurs proposent un algorithme de routage optimal pour résoudre un prob-
lème d’optimisation sous contrainte avec des coûts additifs. Ce problème est
connu pour être NP-complet, voir Wang and Crowcroft, 1996 pour la preuve.

• L’éco-routage dépendant du temps, est l’éco-routage oú les coûts sont fonctions
du temps et non des constantes. Il a d’abord été envisagé dans Kluge, 2011.
Un tel routage permet de prendre en compte le développement de la situation
de trafic lors du routage. Il est probable, par exemple, qu’il existe différentes
éco-itinéraires. la nuit et l’après-midi car les densités de trafic sont différentes.
Peut-être plus important encore, l’éco-route peut être affectée par des arrêts
sur les routes avec des feux de circulation. L’éco-routage dépendant du temps
peut, en théorie, naviguer le véhicule de telle sorte que les pertes qui en résul-
tent sont minimisées. Il existe deux types d’éco-routage dépendant du temps
reconnus dans la littérature:

– Le routage instantané, qui suppose que les coûts sont des constantes. Ils
sont estimés à l’heure de départ. Ce système d’éco-routage a la même
structure que l’éco-routage indépendant du temps, sauf que l’estimateur
de coût dépend du temps.
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FIGURE 1.2: Système de navigation éco-routage dépendant du temps
(version française).

– Le routage dépendant du temps, prennant en charge le routage avec des coûts
qui sont fonctions du temps. Les coûts sur les routes sont alors spécifiques
à l’heure d’arrivée prévue. Un modèle de temps de trajet dépendant du
temps est nécessaire pour l’estimer. L’algorithme de routage doit pouvoir
prendre en compte la nature variable des coûts.

Le routage dépendant du temps peut rendre le problème d’éco-routage beau-
coup plus difficile à résoudre. La structure de ce système d’éco routing est
représentée schématiquement à la Figure 1.2. Les estimateurs de coût et de
temps de trajet sont nécessairement des modèles dépendant du temps. Le rou-
teur identifie le chemin qui minimise la somme des coûts à une heure de dé-
part donnée, en tenant compte du coût prévu sur ses routes à l’heure d’arrivée
prévue.

• L’éco-routage adaptatif permet de mettre à jour la solution lorsqu’elle devient
invalide. Cela pourrait devenir apparent alors que déjà sur la route que, l’éco-
route identifié n’est plus valable. Il est souhaitable de détecter cette situation
et de mettre à jour la solution d’éco-routage en conséquence. Il a d’abord été
envisagé dans Ahn and Rakha, 2013.

L’éco-routage adaptatif est intéressant en relation avec l’éco-routage dépen-
dant du temps. Si le véhicule n’atteint pas la destination avec la vitesse prévue,
la solution d’éco-routage n’est pas nécessairement valide. Par exemple, si
le véhicule est retardé, la solution d’éco-routage n’est plus nécessairement la
bonne. Cela peut être vérifié en réacheminant la position actuelle du véhicule
vers la destination.

1.3 Les approches suivi dans ce travail

L’objectif de ce travail est de proposer un système de navigation d’éco-routage con-
traint, adaptatif et dépendant du temps. Les contraintes permettraient à l’utilisateur
de maîtriser ses émissions et ses délais de déplacement. Le routage dépendant du
temps permettrait un routage tel que la situation prédite sur les routes au moment
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où le véhicule est projeté pour être pris en compte. L’éco-routage adaptatif perme-
ttrait de modifier le chemin au cas où la solution originale d’éco-routage ne serait
plus valide.

C’est un problème difficile à résoudre de manière optimale. L’éco-routage à con-
trainte optimale est NP-complet. Le routage dépendant du temps optimal recherche
la solution dans un espace beaucoup plus grand par rapport au routage indépendant
du temps en raison des coûts variables dans le temps. D’un autre côté, l’éco-routage
adaptatif nécessite des algorithmes de routage rapides qui peuvent être ré-exécutés
plusieurs fois pendant que le véhicule est en route vers sa destination. Le délai de
recalcul de l’éco-route doit être minime pour minimiser la chance que le véhicule ait
progressé jusqu’à présent sur l’ancien éco-route qu’il n’est plus possible de changer
pour la nouvelle éco-route. Pour résumer la difficulté, il y a un conflit: le routage
contraint et le routage dépendant du temps sont des tâches qui demandent beau-
coup de calculs, tandis que l’éco-routage adaptatif ne fonctionne pas bien avec les
routeurs intensifs en calcul.

Maintenir l’optimalité n’est pas seulement coûteux en termes de calcul, mais
aussi futile. Il est soutenu dans ce travail que l’optimalité de la solution de routage
est conditionnée par l’exactitude des coûts de routage dans le graphe du réseau
routier, ce qui est connu pour être sujet à des erreurs considérables (comme dis-
cuté ci-dessus). Cet argument est étayé par les conclusions de ce travail car toutes
les méthodes d’éco-routage étudiées n’ont pas réussi à économiser de l’énergie, dans
certains cas. C’est quelque chose qui ne pourrait pas arriver avec un éco-routage op-
timal. Par conséquent, ce travail n’étudie pas les algorithmes de routage optimaux
et se concentre plutôt sur la recherche de solutions approximatives. L’abandon de
la condition d’optimalité de routage donne plus de flexibilité dans la conception des
méthodes d’éco-routage. Il n’est plus nécessaire de faire les hypothèses imposées par
des algorithmes de routage tels que l’algorithme de Dijkstra, par exemple. Les coûts
peuvent être de véritables fonctions du temps si c’est ce que requièrent les applica-
tions d’éco-routage. Il s’agit d’identifier les bonnes approximations qui conduisent
à des résultats calculables dans un temps acceptable.

La méthode d’éco-routage proposée repose sur l’hypothèse selon laquelle bien
qu’il y ait de nombreux chemins vers une destination choisie, seule une petite frac-
tion d’entre eux peuvent être des éco-routes. Il privilégie un routage simpliste et
naïf, basé sur une liste de tous les chemins possibles par rapport aux algorithmes de
routage optimaux connus et sophistiqués. Il suit une approche qui ne ressemble à
rien de la littérature publiée. Il est basé sur des idées originales, qui peuvent ou non
s’avérer utiles.

1.4 Sujets de recherche

Il y a trois sujets principaux étudiés dans ce travail:

1. Le modèle de consommation de véhicules pour l’éco-routage. Avoir un bon
modèle d’estimation des coûts est primordial dans l’éco-routage: sa perfor-
mance est conditionnée par les erreurs d’estimation des coûts. Un modèle
d’estimation de consommation standard est adapté pour les applications d’éco-
routage dans le Chapitre 5. Il est soigneusement reformulé sous une forme
fermée et ensuite résolu, sous certaines hypothèses.
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2. L’algorithme de routage. Un routage basé sur une collection présélection-
née d’éco-routes candidates est proposé au Chapitre 6. Les éco-routes candi-
dates sont identifiées hors ligne pour une origine et une destination données,
avant le départ du véhicule. Il permet de présélectionner les chemins suscep-
tibles d’être des éco-routes dans certaines conditions. Il peut y avoir quelques
dizaines ou quelques centaines de milliers de candidats. C’est une quantité
négligeable, dans la plupart des cas, comparée au nombre de tous les chemins
simples entre l’origine et la destination. Cela réduit l’espace de recherche et
permet de prendre en charge l’éco-routage adaptatif et dépendant du temps.

3. L’évaluation fiable des performances de l’éco-routage. Comme indiqué dans
les paragraphes introductifs, on sait peu de choses sur les avantages que l’éco-
routage peut apporter dans un usage quotidien. Ce travail tente de faire un
pas vers la résolution de ce problème. Les performances de l’éco-routage sont
formellement définies au Chapitre 4. Un cadre destiné à évaluer les méthodes
d’éco-routage en termes de performance est présenté au Chapitre 7. Il permet
de comparer plusieurs méthodes publiées avec la méthode proposée dans ce
travail.

1.5 Aperçu de la thèse

Ce chapitre (Chapitre 1) contient un résumé étendu de ce travail en langue française.
Le problème de l’éco-routage est présenté dans le Chapitre 2. Le Chapitre 3 contient
une revue des méthodes d’éco-routage et d’appariement des cartes publiées. Le
Chapitre 4 contient une analyse des méthodes actuelles introduites au Chapitre 3.
Le Chapitre 5 introduit un nouveau modèle de consommation de véhicules et un
modèle de temps de trajet. Le Chapitre 6 propose un nouvel algorithme de routage.
Le Chapitre 7 propose un cadre pour l’évaluation des méthodes d’éco-routage dans
les simulations. Le Chapitre 8 traite des résultats d’identification et de validation des
modèles utilisés dans ce travail. Le Chapitre 9 contient une évaluation des méthodes
d’éco-routage basée sur l’algorithme de routage proposé dans le Chapitre 6 et le
modèle de consommation proposé au Chapitre 5. L’évaluation est faite avec le cadre
proposé au Chapitre 7.

1.6 Chapitre “Problem definition & analysis”

Ce chapitre définit le problème ainsi que la performance de l’éco-routage. Deux
méthodes d’éco-routage publiées avec une méthode idéalisée sont étudiées pour
établir une base de référence à laquelle la méthode de l’éco-routage proposée dans ce
travail sera après comparée. Ensuite, un argument est avancé contre la méthodolo-
gie d’évaluation de l’éco-routage couramment utilisée dans la littérature.

Le problème de l’éco-routage est défini à la Section 4.1. Il prend en charge les con-
traintes et les coûts multiples dépendants du temps. La définition est assez générale
pour s’appliquer à toutes les variantes de l’éco-routage dans la littérature publiée et
permet en outre des variantes qui n’ont pas encore été considérées. Par exemple,
il permet d’imposer des limites sur les émissions de polluants tout en minimisant
la consommation du véhicule ou de ne considérer que les trajets qui ne nécessitent
pas de recharge de la batterie (ou de ravitaillement) avant d’atteindre la destination.
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Le modèle permet également de limiter ou interdire complètement de traverser cer-
taines zones à certains moments. Par exemple, le routage à proximité des écoles au
moment où les enfants sont là peut être interdit pour les véhicules très polluants.

La Section 4.2 traite des modèles de l’éco-routage utilisés dans la littérature pub-
liée et définit formellement ses performances. Il résume la capacité d’une méthode
de celui-ci à réduire les coûts. Les coûts peuvent correspondre à la consommation de
carburant, à la consommation d’énergie ou aux émissions de polluants. Le chemin
de référence est le chemin vers lequel l’éco-route est comparée. Dans ce travail, le
chemin de référence est le chemin le plus court ou le chemin le plus rapide.

La performance de trois méthodes de l’éco-routage (dont deux publiées: Barth
et al., 2007; Juřík et al., 2014) est étudiée à la Section 4.3. C’est une version mise à
jour du travail que nous avons publié pendant la préparation de cette thèse (Kubička
et al., 2016b). Un cadre d’éco-routage présenté au Chapitre 7 est utilisé pour évaluer
la formation de ces méthodes. La performance des deux méthodes publiées était
négatif lors de la comparaison des éco-routes vers les chemins les plus courts. Cela
implique que le routage le plus court est un éco-routeur supérieur aux méthodes de
Barth et al., 2007 et Juřík et al., 2014.

Alors que l’évaluation des méthodes actuelles de l’éco-routage a montré des
économies négatives, il est rare de voir un tel résultat signalé dans la littérature pub-
liée. Un examen attentif des méthodes d’évaluation utilisées dans la littérature a été
effectué à la Section 4.4. Il a révélé que la méthode prédominante n’est pas capable
d’observer des économies négatives par conception. Le problème est que le même
modèle de consommation (ou d’émission de polluants) est utilisé à la fois pour le
routage et l’évaluation. Non seulement que cette évaluation ne peux pas observer
les économies négatifs, mais il est également montré dans le Théorème 1 à être su-
jettes à entraîner des chiffres de performance éco-routage gonflés.

1.7 Chapitre “Energy consumption and travel time model-
ing”

Les modèles de consommation et de temps de trajet sont présentés dans ce chapitre.
Sa portée est limitée à leur dérivation et description. Les modèles sont ensuite iden-
tifiés et validés au Chapitre 8 et utilisés pour l’éco-routage au Chapitre 9.

La formulation standard du modèle de consommation longitudinale est exam-
inée à la Section 5.1. Le modèle est donné dans l’équation (5.7). Il est dérivé de
la deuxième loi du mouvement de Newton, en supposant que le mouvement du
véhicule est limité à une direction. Il estime la puissance instantanée requise par le
groupe motopropulseur et l’intègre pour obtenir la consommation globale d’énergie.
La puissance instantanée est basée, entre autres, sur la vitesse instantanée du véhicu-
le. Par conséquent, le profil de vitesse v(t) doit être fourni au modèle pour estimer
la consommation.

La Section 5.2 introduit une reformulation en forme fermée du modèle longitu-
dinal (5.7). Il est soutenu dans cette section que (5.7) n’est pas bien adapté à l’éco-
routage car il nécessite des informations qui ne sont généralement pas disponibles
lors de la planification du voyage. Cela motive la reformulation en forme fermée du
modèle longitudinal. Il est donné dans l’équation (5.14). Il repose sur la consom-
mation énergétique d’un véhicule idéalisé (énergie sur les roues, Ew), sur l’énergie
restituée au véhicule (énergie de freinage, Eb) et sur l’efficacité globale du groupe
motopropulseur (efficacité globale de traction ηt et efficacité globale de récupération
ηr).
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La solution à l’équation (5.14) pour un véhicule idéalisé est donnée dans la Sec-
tion 5.3. Le véhicule idéal est un véhicule avec un groupe motopropulseur sans perte
(il n’y a pas de pertes dues au chauffage et au frottement, par exemple) et avec une
capacité à récupérer toute l’énergie restituée au véhicule lors du freinage. La con-
sommation d’énergie de ce véhicule est introduite comme énergie sur roues et notée
Ew. La solution est une équation algébrique qui dépend des statistiques de v(t) (ses
trois premiers moments), de la vitesse initiale, de la vitesse finale, de l’altitude ini-
tiale, de l’altitude finale et d’autres paramètres (connus). Les paramètres de vitesse
initiale et finale correspondent à la variation de l’énergie cinétique du véhicule. Les
paramètres d’altitude initial et final tiennent compte de la variation de l’énergie po-
tentielle du véhicule. La force de cette solution est double. Premièrement, il parvient
à réduire la dimensionnalité de l’entrée des séries temporelles de dimension arbi-
traire à un ensemble fermé de paramètres. Deuxièmement, il comble le fossé entre
le modèle classique d’estimation de la consommation (basé sur des profils de vitesse
connus) et les besoins d’un modèle de prédiction (basé sur des informations statis-
tiques).

La limitation de la solution donnée dans la Section 5.3 est qu’elle ne s’applique
qu’au véhicule idéal. Des groupes motopropulseurs plus réalistes sont examinés
dans la Section 5.4. On fait valoir que bien qu’il existe une solution pratique pour
l’énergie sur les roues Ew, trouver une solution similaire pour Eb est difficile. Un
modèle d’efficacité du groupe motopropulseur dont la puissance de sortie est une
fonction affine de sa puissance d’entrée est proposé car il permet une solution à la
consommation d’énergie E qui ne dépend pas de Eb.

Un modèle de temps de trajet dépendant du temps est proposé à la Section 5.5.
C’est un modèle simple conçu pour tirer parti de la connaissance des états de feux de
circulation dans le cadre d’une simulation utilisée (présentée au Chapitre 7). Il a été
incorporé ici parce que de telles informations sont susceptibles d’être disponibles
dans les futures villes intelligentes. Le modèle du temps de trajet est évalué au
Chapitre 8 et utilisé au Chapitre 9 lorsque l’éco-routage dépendant du temps est
étudié.

1.8 Chapitre “Routing”

Ce chapitre concerne un algorithme de routage adapté aux applications d’éco-rou-
tage. Le concept proposé nécessite une étape de prétraitement qui identifie une col-
lection d’éco-routes candidates. Plutôt que de router sur le graphe du réseau routier
comme cela est habituellement le cas, le routage est effectué sur cette collection. La
méthode proposée dans ce chapitre privilégie un routage simpliste par rapport à des
algorithmes de routage optimaux sophistiqués tels que l’algorithme de Dijkstra ou
de Bellman-Ford. La motivation pour cela est que ces algorithmes sont trop restric-
tifs, trop rigides dans leurs hypothèses. Une solution approximative basée sur une
approche naïve du routage est étudiée. Il est basé sur une hypothèse selon laque-
lle bien qu’il y ait habituellement beaucoup de chemins possibles à prendre, il n’y
a qu’un petit sous-ensemble de ceux-ci qui peuvent être des éco-routes dans des
conditions réalistes.

L’algorithme de routage est décrit au Section 6.1. Il prend en entrée une col-
lection d’éco-routes candidates entre la même origine et la même destination re-
groupées dans une structure de données arborescente. Le routage est une recherche
exhaustive du chemin qui minimise une fonction de coût donnée et satisfait toutes
les contraintes. Il n’est généralement pas possible de calculer par ordinateur tous
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les chemins simples entre une origine et une destination données. Par conséquent,
l’arbre ne peut contenir que leur sous-ensemble. Il peut s’agir d’une poignée de
chemins ou de centaines de milliers de chemins, c’est encore une petite quantité par
rapport au nombre de chemins trouvés entre la plupart des origines et des destina-
tions.

Le calcul de l’arbre peut être une opération de calcul intensif. Il peut, cependant,
être préparé une fois et utilisé plus tard plusieurs fois. Le calcul de la solution de
routage est alors relativement facile. Ceci motive un système de routage où le calcul
de l’arbre des chemins est découplé du routage: l’arbre des chemins peut être calculé
à l’avance pour les déplacements répétés, puis envoyé à l’assistant de navigation et
utilisé chaque fois que nécessaire. Deux approches du calcul de l’arbre des chemins
sont étudiées: la recherche exhaustive (Section 6.2), ou la recherche aléatoire (Section
6.3). Les deux génèrent des arborescences de chemin avec un sous-ensemble de
chemins entre l’origine et la destination donnée. La méthode randomisée identifie
directement les éco-routes prospectives, la recherche exhaustive considère tous les
chemins pour lesquels les critères d’élagage n’ont pas réussi à montrer qu’il ne peut
s’agir d’un éco-route.

Notez que l’arbre des chemins peut aussi être construit d’une autre manière.
Ils peuvent être considérés comme des options précalculées que l’algorithme de
routage peut choisir. Une façon possible de construire un tel arbre est de prendre
des éco-routes basées sur divers modèles de consommation d’énergie proposés dans
la littérature. L’algorithme de routage choisit alors l’éco-route qui minimise la con-
sommation compte tenu des conditions actuelles du réseau routier.

1.9 Chapitre “Simulation framework for eco-routing”

L’évaluation d’une méthode de l’éco-routage nécessite des essais de terrain pro-
hibitifs. Ce chapitre propose un cadre de simulation pour les remplacer. Les sim-
ulations ne fournissent pas de preuves tangibles par définition, mais elles sont in-
dicatives et relativement peu coûteuses à réaliser par rapport aux essais réels sur le
terrain. Il a été utilisé pour évaluer la consommation d’énergie en minimisant les
méthodes de l’éco-routage. Les méthodes de réduction des émissions de polluants
peuvent être évaluées de manière analogique, si nécessaire.

La réalisation d’expériences de l’éco-routage simulé nécessite un simulateur de
trafic et un scénario de trafic. Le scénario devrait être vaste, de sorte que les véhicules
soient sujets à des perturbations généralement observées dans le trafic réel comme
l’interaction avec d’autres véhicules, la gestion des différents niveaux de congestion,
l’interaction avec les feux de circulation, les priorités aux intersections, les panneaux
d’arrêt , etc. Le simulateur utilisé est SUMO 0.28.0 (Krajzewicz et al., 2012), le scé-
nario de trafic utilisé est LuST 2.1. (Trafic SUMO au Luxembourg, Codeca et al.,
2015). Ils sont traités dans la Section 7.1. Les deux sont disponibles sous une li-
cence open-source au moment de la rédaction. Le simulateur SUMO simule des
véhicules individuels dans le scénario, mettant à jour leur position et leur vitesse
à des intervalles d’une seconde. Le scénario LuST est basé sur le réseau routier et
les trafics au Luxembourg (ville européenne de taille moyenne). Il simule plus de
200000 véhicules dans un réseau routier qui contient des routes locales, des artères
et une autoroute.

La production des modèles de consommation étudiés est comparée à la con-
sommation d’énergie estimée par deux modèles de consommation de référence. Ils
sont présentés dans la Section 7.2. Deux modèles sont considérés: l’un pour un
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véhicule électrique, l’autre pour un véhicule conventionnel. Le véhicule électrique
est représenté par le FAM F-City, le véhicule conventionnel de Renault Scénic. Les
deux sont des modèles d’estimation de la consommation standard qui intègrent la
puissance instantanée estimée tirée de la source d’énergie du véhicule. Ils utilisent
des cartes numériques d’efficacité du groupe motopropulseur dérivées expérimen-
talement pour estimer la puissance consommée. Les deux modèles ont été dévelop-
pés et validés par un tiers.

Le graphe du réseau routier et les algorithmes de routage ont été implémentés
en interne, ils sont traités dans la Section 7.3. Ces fonctions de bas niveau ont été
implémentées en C. Le reste du système a été implémenté en Python. Le graphe du
réseau routier a été compilé à partir du fichier de définition du réseau routier SUMO
et d’un modèle d’élévation de la zone. Le fichier de définition du réseau routier fait
partie de LuST 2.1; les données d’altitude ont été importées de EU-DEM (EU Digital
Elevation Model).

Les observations historiques sur les routes individuelles sont requises par les
modèles de consommation utilisés dans ce travail. Ils sont généralement utilisés
pour identifier leurs coefficients. Le scénario de trafic contient plus de 200000 véhi-
cules simulés qui constituent son trafic natif. Leurs profils de vitesse sont enregistrés
et traités afin de générer les données nécessaires aux modèles de consommation.
Ceci est discuté dans la Section 7.4.

Les simulations réalistes sont effectuées sur des trajets individuels: un véhicule
sonde est introduit dans la simulation et sa progression est enregistrée jusqu’à ce
qu’elle atteigne la destination. Le processus qui est effectué est décrit dans la Sec-
tion 7.5. Les informations collectées sont utilisées pour calculer la consommation de
référence (avec un modèle de consommation de référence).

1.10 Chapitre “Model identification & validation”

Ce chapitre traite de l’identification et de la validation des modèles de consomma-
tion de base, du modèle de temps de trajet et du modèle de consommation proposé
à la Section 5.4. L’identification revient à l’identification des coefficients des modèles
étudiés. Les données requises pour les identifier proviennent de l’ensemble de don-
nées de trafic natif abordé à la Section 7.4. La validation équivaut à l’estimation de la
précision de prédiction des modèles étudiés. Les mesures de précision et de qualité
d’ajustement utilisées sont RMSE (l’erreur quadratique moyenne), IQR (l’intervalle
interquartile) et r2 (coefficient de détermination). La validation croisée a été réalisée
avec une double validation croisée répétée cinq fois.

Les modèles de base sont présentés, identifiés et validés dans la Section 8.1. Les
modèles de consommation publiés par Barth et al., 2007 et Juřík et al., 2014 sont con-
sidérés comme des références. De plus, un modèle de consommation d’énergie dont
les estimations de consommation sont des valeurs moyennes d’échantillon est con-
sidéré comme un complément aux deux modèles de référence. Il est nommé “MEC”
(Mean Energy Consumption) dans ce travail. Barth et al., 2007 et Juřík et al., 2014 ont
été choisis comme représentants des deux principales approches de modélisation de
la consommation d’énergie utilisées dans la littérature sur l’éco-routage. Barth et al.,
2007 proposent un modèle de consommation basé sur l’analyse de régression et Juřík
et al., 2014 proposent un modèle dérivé du modèle de consommation longitudinale
(introduit au Chapitre 5).

Le modèle de temps de trajet proposé à la Section 5.5 est identifié et évalué à
la Section 8.2. Il y a quatre coefficients dans le modèle de temps de trajet (5.38) à
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TABLE 1.1: Variantes du modèle de consommation (version
française).

T σ2 b v(0) v(T )

modéle 1 X X X X X
modéle 2 ? X X X X
modéle 3 ? ∼ ∼ X X
modéle 4 ? – – – –
modéle 5 ∼ ∼ ∼ ∼ ∼
modéle 6 ∼ – – – –

Clés: Xvaleur correcte, ∼ valeur moyenne,
– zéro, ? prédit avec (5.38)

identifier: µ, ϑ, κG et κS. Les µ et ϑ sont des valeurs réelles, les coefficients κ sont des
entiers positifs. Un ensemble unique de coefficients a été identifié pour chaque arête
du graphe du réseau routier. Les résultats montrent une réduction considérable de
RMSE et d’IQR sur les routes avec des feux de circulation. Le RMSE a été réduit
d’un facteur de 1,68 et l’IQR d’un facteur de 4,34 en moyenne. Les résultats pour les
routes sans feux de circulation montrent que le modèle de temps de trajet proposé
n’offre aucun avantage par rapport au modèle de temps de trajet moyen.

Le modèle de consommation proposé à la Section 5.4 est identifié et évalué à la
Section 8.3. Six variantes ont été étudiées. Ils sont nommés "modèle 1" à "modèle
6". La différence entre eux se trouve dans les variables indépendantes fournies au
modèle de consommation. Le modèle 1 utilise des valeurs observées. Le modèle 2
utilise le temps de trajet prévu (en utilisant le modèle (5.38)) au lieu du temps de
trajet observé. Le modèle 3 utilise le temps de trajet prévu et les valeurs moyennes
à la place des paramètres σ2 et b. Le modèle 4 utilise le temps de trajet prévu tandis
que toutes les autres variables indépendantes sont mises à zéro. Le modèle 5 utilise
des valeurs moyennes à la place de toutes les variables indépendantes. Le modèle
6 utilise le temps de trajet moyen et suppose que toutes les autres variables sont
nulles. Les modèles 1, 2, 3 et 4 dépendent du temps tandis que les modèles 5 et 6
sont indépendants du temps. Les modèles 1 à 3 utilisent des valeurs observées et ne
peuvent donc être utilisés avant l’enregistrement du voyage. Cela les empêche d’être
utilisés dans l’éco-routage. Les modèles 4 à 6 ne reposent pas sur des observations
et peuvent être utilisés dans l’éco-routage. Les six variantes du modèle ont montré
une précision supérieure sur les deux véhicules de référence par rapport à Barth
et al., 2007 et Juřík et al., 2014. Surtout le modèle 6 utilise les mêmes informations
que ces modèles de base et montre une précision considérablement améliorée. La
précision est toutefois inférieure par rapport au modèle de consommation d’énergie
moyenne (MEC) pour la plupart des variations du modèle de consommation. Seuls
les modèles 1, 2 et 3 utilisés sur le véhicule électrique ont montré une performance
supérieure par rapport à MEC. Dans le cas du véhicule conventionnel, la précision
du modèle 1 est comparable à la précision de MEC, les modèles 2 à 6 ont montré des
précisions moins bonnes.

1.11 Chapitre “Simulations and results”

Les résultats d’expériences de l’éco-routage simulées sont présentés dans ce chapitre.
Trois méthodes d’éco-routage sont étudiées, toutes visent à minimiser la consomma-
tion d’énergie des véhicules. Deux variantes du modèle de consommation appelé



1.11. Chapitre “Simulations and results” 13

“modèle 6” et “modèle 4” sont considérées. Le modèle de consommation a été pro-
posé à la Section 5.4, les deux variantes sont présentées dans le Tableau 1.1. Le
modèle 6 est indépendant du temps tandis que le modèle 4 dépend du temps. Au-
cune contrainte n’est imposée sur la solution de l’éco-routage. Les coûts multiples
ne sont pas non plus pris en compte. Bien que la méthode de l’éco-routage proposée
prenne en charge les deux, l’objectif est d’évaluer la performance de l’éco-routage de
manière à ce qu’elle soit comparable aux méthodes de base examinées à la Section
4.3.

L’éco-routage avec le modèle de consommation 6 est étudié dans la Section 9.1.
Il s’agit d’un éco-routage indépendant du temps avec un modèle de consommation
qui utilise les mêmes informations que les modèles de référence de Barth et al., 2007
et Juřík et al., 2014. L’éco-routage avec le modèle 6 est plus performant que Barth
et al., 2007 et Juřík et al., 2014, mais ne réussit pas mieux que le modèle MEC et,
peut-être plus important encore, le routage simple à plus courte distance.

L’algorithme 3 est utilisé pour construire l’arbre des chemins. Son temps de cal-
cul et le nombre de chemins identifiés sont étudiés pour diverses conditions d’arrêt
dans la Section 9.2. La condition d’arrêt considérée dans cette expérience est une
limite du nombre d’itérations de la boucle principale dans l’algorithme 3. Des lim-
ites allant de 100 itérations à 2000 itérations sont considérées. Les temps de calcul
observés étaient inférieurs à neuf secondes dans tous les cas. La médiane du temps
de calcul commence à 0,5 seconde à 100 itérations et passe à 3,8 secondes à 2000
itérations. Le nombre de chemins trouvés augmente à des pas variables en fonc-
tion des positions de l’origine et de la destination. Le pire cas observé contient 1850
chemins après 2000 itérations, ce qui signifie que dans 92,5% des itérations, un nou-
veau chemin a été découvert et ajouté à l’arbre. D’un autre côté, les distributions de
la Figure 9.4 montrent que c’était rare. La médiane se développe à un rythme beau-
coup plus lent avec 50 chemins trouvés après 100 itérations et 300 chemins trouvés
après 2000 itérations. Il est néanmoins soutenu que cela n’implique pas qu’il n’y ait
généralement que quelques éco-routes candidates à considérer pour une paire de
destinations d’origine. La distance parcourue est un facteur de confusion, comme
le montre la Figure 9.6. Il est également soutenu dans cette section qu’un moyen
d’évaluer les éco-routes candidates dans les arbres de chemins est de voir s’ils con-
tiennent les chemins les plus courts. La Figure 9.7 montre la partie des arbres qui
contenait le plus court chemin par rapport au nombre d’itérations. Il montre que
le chemin le plus court a été le premier chemin découvert dans 20% des cas et que
dans près de 40% des cas, le chemin le plus court a été identifié dans les dix pre-
mières itérations. Environ 10% des arborescences de chemin ne contiennent pas le
chemin le plus court, même après 10000 itérations.

La Section 9.3 étudie deux méthodes d’éco-routage avec le modèle de consom-
mation 4. Il s’agit de méthodes d’éco-routage dépendant du temps et basées sur
des arbres de parcours. La première variante ne prend pas en charge le réachem-
inement tandis que la seconde variante le fait. Ces méthodes d’éco-routage ont été
évaluées sur le même ensemble de paires de destinations d’origine que les modèles
de référence et la méthode d’éco-routage basée sur le modèle 6 (Section 9.1) pour
assurer la comparabilité. Les résultats sont résumés dans le Tableau 1.2. En termes
de performances, l’éco-routage dépendant du temps avec le modèle 4 montre une
amélioration par rapport au modèle 6 avec un routage indépendant du temps. De
même, l’éco-routage avec réacheminement activé est meilleur que l’éco-routage avec
réacheminement désactivé. Les performances vont de 23,0% à 32,4% en comparai-
son avec les chemins les plus rapides. Cependant, les chiffres de performance sont
considérablement plus bas lors de la comparaison avec les chemins les plus courts.
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TABLE 1.2: Résultats (version française).

par rapport au route plus rapide plus court
VE† (%) VC‡ (%) VE† (%) VC‡ (%)

P

modéle 6 31.4 21.9 -0.9 -0.9
modéle 4 32.1 23.0 0.3 0.7
modéle 4 adaptatif 32.4 23.5 0.8 1.4
Barth et al., 2007 26.7 20.1 -8.0 -3.2
Juřík et al., 2014 29.7 18.8 -3.5 -4.9
modéle MEC 34.5 24.7 3.6 2.8

P̂

modéle 6 24.7 15.7 4.1 6.4
modéle 4 24.7 18.0 5.5 8.3
modéle 4 adaptatif - - - -
Barth et al., 2007 7.2 7.3 2.0 2.3
Juřík et al., 2014 50.9 53.4 2.2 2.7
modéle MEC 30.3 18.7 4.9 3.9

Probabilité
d’échec

modéle 6 9.6 6.3 8.2 9.0
modéle 4 9.5 10.2 7.7 9.4
modéle 4 adaptatif 7.5 7.3 4.6 5.6
Barth et al., 2007 8.7 8.6 5.2 6.1
Juřík et al., 2014 24.5 30.4 30.0 36.9
modéle MEC 6.4 4.3 7.6 5.9

Eco-route
identique à la
référence

modéle 6 22.8 31.9 29.6 22.5
modéle 4 16.6 16.4 30.8 23.6
modéle 4 adaptatif 14.5 14.5 25.4 19.5
Barth et al., 2007 28.6 29.8 40.6 35.8
Juřík et al., 2014 9.4 8.7 37.6 32.2
modéle MEC 15.5 22.1 25.0 29.8

Économies
moyennes

modéle 6 15.7 ± 0.19 11.7 ± 0.15 -1.5 ± 0.07 -1.2 ± 0.06
modéle 4 16.4 ± 0.19 12.6 ± 0.15 -0.4 ± 0.07 0.2 ± 0.05
modéle 4 adaptatif 16.8 ± 0.19 13.2 ± 0.15 0.1 ± 0.07 0.9 ± 0.05
Barth et al., 2007 13.9 ± 0.18 11.1 ± 0.15 -5.6 ± 0.18 -2.2 ± 0.10
Juřík et al., 2014 13.7 ± 0.21 8.2 ± 0.17 -3.6 ± 0.07 -4.7 ± 0.07
modéle MEC 19.3 ± 0.19 14.6 ± 0.15 2.9 ± 0.06 2.4 ± 0.05

Délai moyen
de trajet

modéle 6 10.9 ± 0.16 8.1 ± 0.14 -5.2 ± 0.11 -7.4 ± 0.10
modéle 4 11.3 ± 0.17 9.9 ± 0.15 -4.9 ± 0.10 -6.0 ± 0.10
modéle 4 adaptatif 9.3 ± 0.16 7.8 ± 0.15 -6.6 ± 0.10 -7.8 ± 0.10
Barth et al., 2007 9.7 ± 0.14 8.9 ± 0.13 -5.9 ± 0.10 -6.4 ± 0.10
Juřík et al., 2014 28.0 ± 0.25 29.4 ± 0.26 8.4 ± 0.16 9.6 ± 0.17
modéle MEC 14.2 ± 0.18 11.4 ± 0.16 -2.5 ± 0.12 -4.9 ± 0.10

†
véhicule électrique
‡

véhicule conventionnel

Dans ce cas, les performances varient entre 0,3% et 1,4%. Le temps de parcours
moyen varie de 7,8% à 11,3% par rapport aux trajets les plus rapides et de -7,8% à
-4,9% par rapport aux trajets les plus courts. Cela suggère que la méthode d’éco-
routage permet de réduire le temps de trajet par rapport aux trajets les plus courts.
La probabilité d’échec est inférieure à 9% dans tous les cas; le réacheminement a
réduit la probabilité d’échec. Les éco-routes étaient identiques aux trajets les plus
rapides dans 14,5% à 30,8% des cas.

Enfin, la Section 9.4 donne un exemple de la manière dont la polyvalence de
la méthode d’éco-routage proposée peut être exploitée pour améliorer les résultats
de manière novatrice. Une méthode d’éco-routage orientée vers des chemins plus
courts est proposée. L’évaluation montre des performances améliorées en ce qui
concerne les chemins les plus courts, les plus rapides et une probabilité réduite de
défaillance.
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1.12 Conclusions

Les conclusions sont résumées en quatre sections: (1) principales conclusions sur
la littérature actuelle; (2) les progrès de la modélisation de la consommation; (3) la
méthode d’éco-routage proposée; et (4) sélection de la méthode de map-matching.
La première section traite de la performance des méthodes actuelles et des limites
d’une méthodologie d’évaluation d’éco-routage couramment utilisée. La deuxième
section traite du modèle de consommation proposé dans ce travail. La troisième
section traite de la méthode d’éco-routage proposée dans ce travail. La quatrième
section fournit un guide de sélection pour les méthodes de map-matching utilisées
dans le contexte des systèmes de navigation éco-routage.

1.12.1 Principales conclusions sur la littérature actuelle

Deux méthodes d’éco-routage publiées dans la littérature ont été étudiées en dé-
tail pour fournir des bases de comparaison avec la méthode proposée. Ils ont été
proposés dans Barth et al., 2007 et Juřík et al., 2014. Ce sont des méthodes de min-
imisation de la consommation d’énergie indépendantes du temps. Les deux utilisent
une approche différente de la modélisation de la consommation d’énergie. Le mod-
èle proposé dans Barth et al., 2007 utilise l’analyse de régression, le modèle proposé
dans Juřík et al., 2014 utilise un modèle de consommation dérivé du modèle de con-
sommation longitudinale microscopique.

Les performances de ces méthodes dépendent de l’environnement dans lequel
elles ont été testées et de l’ensemble des chemins auxquels les éco-routes sont com-
parées. Des économies importantes ont été observées lorsque les éco-routes sont
comparées aux trajets les plus rapides. Les chiffres de performance sont toutefois
beaucoup plus bas lorsque la performance est basée sur une comparaison des éco-
routes vers les chemins les plus courts. Dans ce cas, Barth et al., 2007 et Juřík et
al., 2014 n’ont pas réalisé d’économies. Au lieu de cela, leurs éco-routes offrent
des pertes sur un voyage moyen. Ce résultat implique qu’un routage de chemin
le plus court simple est supérieur aux deux méthodes dans le scénario testé. En
outre, un nombre élevé de cas dans lesquels les méthodes d’éco-routage ont échoué
à économiser à la fois de l’énergie et du temps de déplacement ont été observés. En
particulier, la méthode de Juřík et al., 2014 a échoué dans 24,5% à 36,9% des cas. Il est
difficile d’imaginer que les vrais conducteurs accepteraient un tel taux d’échecs. La
conclusion est qu’il serait peut-être préférable d’utiliser un routage simple du plus
court chemin plutôt que les méthodes évaluées pour l’éco-routage. Ceci motive la
méthode d’éco-routage adaptatif dépendant du temps et contrainte proposée dans
ce travail. Une telle méthode est, en théorie, capable de naviguer dans le véhicule à
travers des séquences de feux verts sur des intersections signalisées, afin d’éviter la
congestion, et de mettre à jour la solution lorsqu’elle devient invalide.

Alors que l’évaluation des méthodes actuelles d’éco-routage a montré des écono-
mies négatives, il est rare de voir un tel résultat signalé dans la littérature publiée. Un
examen attentif des méthodologies d’évaluation utilisées dans la littérature a révélé
que la méthode prédominante n’est pas capable d’observer des économies néga-
tives de par leur conception. Le problème est que le même modèle de consomma-
tion (ou d’émission de polluants) est utilisé à la fois pour le routage et l’évaluation.
Non seulement cette évaluation se traduira nécessairement par des économies non-
négatives, mais il est également démontré dans le Théorème 1 que les résultats de
l’éco-routage sont gonflés. La conclusion est que les performances et les économies
rapportées dans la littérature doivent être considérées avec prudence. Ces résultats
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soulignent la nécessité d’un cadre d’évaluation écologique fiable. Un tel cadre est
présenté dans ce travail.

Notez que ces résultats ne sont pas généralisables: les deux méthodes sont sus-
ceptibles de montrer des performances positives dans d’autres environnements. Il
est probable que le scénario intra-urbain utilisé soit difficile pour l’éco-routage, car
il offre de nombreux chemins similaires vers la destination avec de nombreuses
sources de perturbation en cours de route.

1.12.2 Les avancées dans la modélisation de la consommation d’énergie

Un nouveau modèle de consommation d’énergie est proposé au Chapitre 5. Il s’agit
d’un modèle macroscopique dérivé du modèle de consommation d’énergie longitu-
dinale standard. Le modèle longitudinal est un modèle microscopique qui nécessite
un profil de vitesse du véhicule enregistré pour estimer la consommation. Il est
soutenu dans ce travail qu’un tel modèle ne convient pas à l’éco-routage parce que
les profils de vitesse ne sont pas disponibles lors de la planification du voyage. Dans
ce travail, le modèle standard est d’abord reformulé sous forme fermée en fonc-
tion de la consommation d’énergie d’un véhicule idéal et de l’énergie restituée au
véhicule lors du freinage. Ensuite, une solution de forme fermée à la consommation
d’énergie du véhicule idéal est dérivée et utilisée pour résoudre la consommation
d’énergie d’un véhicule plus réaliste sous l’hypothèse que la puissance de sortie du
groupe motopropulseur est une fonction affine de sa puissance d’entrée. Le modèle
qui en résulte nécessite cinq paramètres inconnus: la vitesse initiale et la vitesse fi-
nale pour tenir compte de la variation de l’énergie cinétique du véhicule, du temps
de trajet, de la variance du profil de vitesse et du coefficient d’asymétrie du profil de
vitesse.

Six variantes de ce modèle de consommation ont été étudiées. Ils diffèrent par
les cinq paramètres qui lui sont fournis: d’un modèle auquel tous les paramètres
ont été fournis tels qu’ils ont été observés à un modèle où seul le temps moyen de
déplacement a été fourni, et d’autres paramètres ont été mis à zéro. Tel est, précisé-
ment, le modèle 6. Il est directement comparable aux modèles de Barth et al., 2007
et Juřík et al., 2014. Leur seul paramètre est la vitesse moyenne qui est inversement
proportionnelle à la longueur de la route au temps de parcours. Par conséquent, ils
utilisent les mêmes informations que le modèle 6. Malgré cela, le modèle 6 surpasse
largement les deux. Dans le cas du véhicule électrique, le modèle 6 a montré un
RMSE de 28,6 Wh, tandis que Barth et al., 2007 et Juřík et al., 2014 ont montré 60,6
Wh et 47,7 Wh, respectivement. Le modèle (idéaliste) MEC a montré un RMSE de
24,83 Wh. A titre de comparaison, le RMSE du modèle 6, le modèle de Juřík et al.,
2014, et le modèle de Barth et al., 2007 sont respectivement de 115%, 192% et 244%
de la RMSE du modèle MEC. La précision du modèle 6 est beaucoup plus proche
de la précision du modèle MEC que les autres modèles. Contrairement au modèle
MEC, cependant, le modèle 6 peut être utilisé dans la pratique.

Le modèle proposé est intéressant en raison de la façon formelle dont il a été
dérivé du modèle longitudinal. Les méthodes d’éco-routage qui utilisent des mod-
èles de consommation dérivés du modèle longitudinal (comme De Nunzio et al.,
2016; Juřík et al., 2014) supposent que le profil de vitesse du véhicule est une fonc-
tion constante égale à la vitesse moyenne du véhicule. Le modèle présenté ici n’a
pas besoin d’une telle hypothèse drastique. Il est soigneusement développé à partir
du modèle longitudinal. La contribution clé est la solution de forme fermée pour
le véhicule idéal car elle ne repose sur aucune hypothèse. La solution pour des
véhicules plus réalistes est basée sur elle. Ce modèle ouvre une nouvelle direction
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de recherche car il fournit une solution au modèle longitudinal sous forme fermée
sans hypothèses irréalistes comme cela a été fait dans la littérature jusqu’à présent.
Il expose les propriétés des profils de vitesse les plus importants. La seule hypothèse
qu’il fait concerne l’efficacité du groupe motopropulseur. Il est difficile à éviter
en raison d’une efficacité instantanée non linéaire des groupes motopropulseurs
couramment utilisés.

La performance de l’éco-routage indépendant du temps avec le modèle 6 est
néanmoins négative par rapport aux chemins les plus courts. C’est un résultat simi-
laire à ce qui a été observé pour les méthodes par Barth et al., 2007 et Juřík et al., 2014.
Malgré l’amélioration de la précision du modèle 6, il est toujours préférable d’utiliser
le plus court chemin. L’éco-routage avec le modèle MEC est le seul éco-routeur in-
dépendant du temps qui a permis de réaliser des économies sur les chemins les
plus courts dans les expériences menées dans ce travail. Il a également surpassé
l’éco-routage dépendant du temps proposé dans ce travail. Bien que le MEC soit un
modèle théorique, il montre qu’il existe un potentiel d’éco-routage indépendant du
temps. La question qui reste est de savoir à quel point il est réaliste d’exploiter ce
potentiel.

1.12.3 La méthode d’éco-routage proposée

L’éco-routage a été traité dans la littérature principalement comme un problème
de chemin le plus court. Cette approche offre une formulation intuitive de l’éco-
routage, et de plus, des méthodes efficaces pour son calcul sont disponibles (comme
les algorithmes de Dijkstra ou de Bellman-Ford). Leur principale force est qu’ils
sont rapides et optimaux. Cependant, ils sont également limitants. L’éco-routage
contraint, l’éco-routage dépendant du temps ou l’éco-routage adaptatif sont sup-
portés par eux. Des algorithmes sont proposés pour chacun de ces trois types d’éco-
routage, mais à la connaissance de l’auteur, il n’existe pas de méthode d’éco-routage
publiée qui permette la combinaison: éco-routage dépendant du temps et adaptatif.
Ce travail propose et évalue un tel système d’éco-routage.

La méthode proposée dans ce travail privilégie le routage simpliste sur des al-
gorithmes de routage optimisés sophistiqués tels que l’algorithme de Dijkstra ou de
Bellman-Ford. La motivation pour cela est que ces algorithmes sont trop restrictifs,
trop rigides dans leurs hypothèses. On fait valoir ici que l’utilisation d’algorithmes
de routage optimaux donne un petit avantage quand il y a une incertitude impor-
tante dans les coûts associés dans le graphe de routage. Une solution approximative
basée sur une approche naïve du routage est étudiée à la place. Il est basé sur une
hypothèse selon laquelle, bien qu’il y ait habituellement beaucoup de chemins pos-
sibles à prendre pour une destination, il n’y a qu’un petit sous-ensemble de ceux-ci
qui peuvent être des itinéraires écologiques dans certaines conditions réalistes.

La méthode d’éco-routage proposée comprend deux étapes: le prétraitement et
le routage. Le prétraitement équivaut au calcul d’une arborescence de chemin, qui
est une collection d’éco-routes candidates entre une origine et une destination don-
nées. Le routage est ensuite effectué sur les chemins dans l’arborescence du chemin
à un moment ultérieur. Il est irréaliste de calculer un arbre avec tous les chemins
entre une origine et une destination données pour tous les cas sauf les cas triviaux.
Néanmoins, tous les chemins ne peuvent pas être des éco-routes. Deux algorithmes
de calcul d’arborescences ont été proposés: les algorithmes 2 et 3. L’algorithme 2
conduit une recherche exhaustive et élague uniquement les chemins pour lesquels
il peut prouver qu’ils ne peuvent jamais être des éco-routes. L’algorithme 3 con-
duit une recherche aléatoire répétée pour les éco-routes. Le routage est effectué par
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l’algorithme 1. Il prend l’arbre des chemins en entrée et recherche le chemin qui min-
imise la fonction de coût donnée. Cette fonction peut combiner plusieurs coûts tels
que le temps de trajet, la consommation d’énergie, la distance parcourue et les émis-
sions de polluants. Il prend également en charge l’éco-routage entièrement dépen-
dant du temps et les contraintes multiples. L’algorithme de routage est optimal en
ce sens qu’il trouve le chemin qui minimise la fonction de coût donnée sur l’arbre
donné. L’arbre, cependant, contient typiquement seulement un sous-ensemble de
chemins entre l’origine et la destination données. Par conséquent, la solution de
l’éco-routage n’est pas garantie optimale.

L’algorithme 3 a été utilisé pour calculer les arbres de chemins utilisés dans les
expériences présentées car il permet de contrôler facilement la taille de l’arbre et le
temps de calcul. Les temps de calcul de l’arborescence des chemins étaient inférieurs
à 9 secondes dans le pire cas observé avec 2000 itérations de la boucle principale
dans l’algorithme 3. Ces résultats sont acceptables car les temps de calcul de l’arbre
ne sont pas critiques. Le nombre de chemins détectés était généralement faible avec
une médiane de 300 chemins après 2000 itérations. Dans le pire cas observé, il y
avait 1850 chemins découverts après 2000 itérations. Dans 20% des cas observés,
le chemin le plus court, le premier chemin découvert et dans 40% des cas, a été
découvert dans les dix premières itérations. Ceci est révélateur de la qualité des
éco-routes identifiées puisque de nombreux auteurs ont indiqué que les chemins
les plus courts sont des candidats viables pour être des éco-routes. En revanche,
dans 10% des cas, le chemin le plus court n’a pas été découvert même après 10000
itérations. Par conséquent, le calcul de l’arbre des trajets est réalisable par calcul
pour les déplacements intra-urbains similaires à ceux simulés dans le cadre présenté.
La durée de ces voyages est comprise entre 1km et 12km. La question de savoir si
le calcul de l’arbre des trajets est faisable lors de longs trajets reste ouverte. On a
observé que le nombre de sentiers découverts augmente rapidement sur les trajets
de plus de 4 km. D’un autre côté, les résultats n’ont pas montré de réduction des
performances d’éco-routage sur les longs trajets.

Le routage a été effectué avec le modèle de consommation 4 et un modèle de
temps de trajet (5.38) qui prend en compte les informations sur les périodes de feux
de circulation connues. Le modèle 4 est une variante similaire au modèle 6 (dis-
cuté dans la section précédente), sauf que le temps de trajet utilisé est prévu avec le
modèle de temps de trajet au lieu d’utiliser une moyenne simple des temps de trajet
précédemment observés. Le modèle de temps de trajet et le modèle de consomma-
tion dépendent du temps. Puisque l’algorithme 1 est utilisé pour le routage, la méth-
ode d’éco-routage dépend également du temps. Deux variantes ont été étudiées:
avec réacheminement désactivé et activé. Dans le cas où il est activé, la solution
d’éco-routage est adaptative. Le réacheminement est implémenté de sorte que la
solution d’éco-routage soit mise à jour à chaque étape de simulation en utilisant
l’algorithme 1. Elle est toujours exécutée sur un sous-arbre enraciné sur le nœud
qui correspond à la position actuelle du véhicule dans l’arbre. La consommation
d’énergie du véhicule était le seul coût considéré, et le routage n’était pas limité.
Cette configuration a permis une comparaison directe des résultats des méthodes de
base.

Les résultats de la simulation ont montré des performances élevées en com-
parant les éco-routes aux trajets les plus rapides et des performances modérées en
comparant les éco-routes aux trajets les plus courts. La meilleure performance ob-
servée était de 32,4% par rapport aux chemins les plus rapides et de 1,4% par rap-
port aux chemins les plus courts. Les deux ont été observés avec un éco-routage
adaptatif dépendant du temps avec le modèle 4. Le réacheminement a amélioré les
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performances de façon marginale, mais cohérente. Les répartitions des économies
d’énergie révèlent que, pour de nombreux déplacements, la méthode a pu trouver
des chemins offrant des économies par rapport au chemin le plus court, mais elle n’a
pas réussi à le faire dans de nombreux autres cas. Si la méthode d’éco-routage devait
choisir le chemin le plus court dans les cas où elle échouait, alors la performance par
rapport aux chemins les plus courts serait de l’ordre de 2,26% à 2,64%, selon le type
de véhicule. Cela montre qu’il y a un potentiel d’amélioration, bien que limité.

Les résultats montrent que la méthode de l’éco-routage proposée peut concur-
rencer l’éco-routage traditionnel tel quel, mais qu’elle est également plus flexible en
permettant un éco-routage contraint, dépendant du temps et adaptatif. Cela permet
des applications plus riches, telles que l’éco-routage avec contrainte de temps, ou
l’éco-routage qui évite les écoles au moment où les enfants sont là, par exemple. Les
applications qui seraient difficiles à réaliser avec l’approche standard deviennent
possibles avec la méthode proposée. Une méthode d’éco-routage biaisée artificielle-
ment pour préférer des chemins plus courts est un exemple de la polyvalence de la
méthode proposée. La motivation pour cela est basée sur une observation que les
chemins plus courts sont plus susceptibles d’être des éco-routes. Il est montré pour
réduire la probabilité de défaillance et pour améliorer les performances en ce qui
concerne les chemins les plus courts et les plus rapides. Il a réussi à économiser soit
de l’énergie soit du temps de trajet par rapport aux trajets les plus courts dans 98,8%
des trajets étudiés dans le cas du véhicule électrique et dans 97,6% des trajets étudiés
dans le cas du véhicule conventionnel.

Le chemin le plus court s’est avéré être un éco-routeur étonnamment difficile
à surperformer. Cependant, les chemins les plus courts sont lents comparés aux
chemins les plus rapides. La méthode d’éco-routage proposée dans ce travail n’a pas
montré une capacité à surpasser significativement le routeur simple du plus court
chemin en terme d’énergie, mais a montré une capacité à économiser légèrement
plus d’énergie que le routeur le plus court tout en économisant un temps consid-
érable aux chemins les plus courts.

Le système de simulation mis au point pour mener ces expériences est conçu
pour être aussi réaliste que possible. Il utilise un simulateur de trafic microscopique
d’une ville entière et des modèles de consommation microscopiques basés sur des
véhicules réels en tant que références. Cependant, ce sont encore des simulations qui
signifient que les résultats sont indicatifs. La validation finale serait obtenue avec de
nombreux tests sur le terrain, ce qui peut être prohibitif.

1.12.4 Sélection de la méthode de map-matching

Différentes méthodes de map-matching conviennent à différentes applications de
map-matching. Il n’y a pas de méthode universelle qui conviendrait aux besoins de
tous. Les compromis qui doivent être faits lors de la sélection d’une méthode de
map-matching sont discutés dans cette section. L’intérêt dans le contexte de l’éco-
routage est double: pour l’appariement des voyages préenregistrés et pour la navi-
gation. Cette section est un extrait de Kubička et al., 2017.

La correspondance des trajets préenregistrés nécessite une méthode de corre-
spondance de carte hors ligne. Un effort de calcul plus élevé peut être toléré car
les trajectoires sont post-traitées après leur collecte. La méthode la plus avancée
en ce qui concerne la précision d’appariement serait le filtre d’inférence de chemin
(Hunter et al., 2014). Cependant, sa demande de calcul pourrait être trop prohibitive.
La méthode de Newson and Krumm, 2009, offre une bonne précision d’appariement
alors que sa demande de calcul est comparativement faible. Une autre option est la
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méthode géométrique de Wei et al., 2013a, spécialement lorsqu’elle est utilisée con-
jointement avec la méthode rapide d’approximation de distance Fréchet développée
par Driemel et al., 2012. Si un ensemble massif de trajectoires doit être traité et que la
précision d’appariement n’est pas critique, alors la méthode de Marchal et al., 2005
peut être considérée. Si l’application utilise des trajectoires faiblement échantillon-
nées, alors les méthodes de faible taux d’échantillonnage (Lou et al., 2009; Raymond
et al., 2012; Zheng and Quddus, 2011; Chen et al., 2011b) peuvent être intéressantes.
Ces méthodes sont susceptibles d’être dépassées par le filtre d’inférence de chemin,
mais elles sont souvent plus faciles à implémenter.

Les applications de navigation requièrent des méthodes d’appariement de cartes
en ligne à taux d’échantillonnage élevé. L’effort de calcul doit rester faible car le sys-
tème doit répondre en temps réel. Lorsque la surveillance de l’intégrité est néces-
saire, la méthode de Toledo-Moreo et al., 2010 doit être considérée. Cette méthode
a montré une grande précision d’appariement au niveau de la voie tout en assurant
une surveillance continue de l’intégrité de la sortie de correspondance de carte. Les
méthodes basées sur la logique floue, telles que la méthode de Quddus et al., 2006,
auraient une excellente précision d’appariement, mais nécessitent des connaissances
spécialisées pour leur réglage. Les méthodes basées sur une technique d’hypothèses
multiples (Pyo et al., 2001; Kubička et al., 2014) pourraient être en mesure d’offrir un
compromis intéressant entre la demande informatique et la précision d’appariement.
Les méthodes basées sur le modèle de Markov caché et les méthodes géométriques
ne sont pas bien adaptées car elles nécessitent des ressources de calcul considérables.
La technique de la fenêtre glissante peut être utilisée pour remédier à ce problème:
seuls quelques derniers échantillons sont utilisés pour mapper le point de correspon-
dance actuel. Lorsque la demande sur l’effort de calcul n’est pas stricte, la méthode
de Hummel, 2006 devrait également être considérée car elle a des perspectives d’être
robuste contre les erreurs de positionnement.
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Chapter 2

Introduction

Eco-routing is a vehicle navigation method that chooses those paths that minimize
fuel consumption, energy consumption or pollutant emissions for a trip to given des-
tination. Road transportation has numerous adverse effects on the environment. It
is the largest contributor to global warming through emissions of CO2 (Fuglestvedt
et al., 2008) and is responsible for the deterioration of air quality in areas with dense
road networks through emissions of particulate matter and other pollutants. For
example, the particulate matter is a dangerous pollutant: the study by Raaschou-
Nielsen et al., 2013 revealed that for every increase of 10 µg/m3 of particulate matter
in the air the lung cancer rate in the area rose by 22%. Apart of this environmental
dimension, there is also an economical side to the problem. The monetary cost as-
sociated with energy (fuel) consumption is considerable. This motivates techniques
such as eco-routing that aim to lower pollutant emissions, or energy (fuel) consump-
tion, or both.

Initial studies on the topic confirmed the dependency of pollutant emissions and
energy (fuel) consumption on the taken path. Ahn and Rakha, 2007 shown in a case
study that taking a slower path can save some fuel at the cost of prolonged travel
time. Ericsson et al., 2006 have shown that drivers don’t always choose paths with
best fuel economy. The first eco-routing navigation system was published by Barth
et al., 2007. Numerous case studies and eco-routing methods were published since.

Different authors consider different variants of eco-routing. As was stated above,
some aim to lower pollutant emissions while others aim to lower consumption. In
the former case the term “eco-routing” stands for “ecologic routing” while in the lat-
ter case it might be both “ecologic” and “economic” (some authors imply that CO2

emissions are reduced together with consumption). Eco-routing methods are usu-
ally designed with a specific vehicle type in mind. Some are designed for conven-
tional vehicles with internal combustion and compression-ignition engines, while
other consider electric and hybrid vehicles. Conventional vehicles emit pollutants
and consume fuel. Electric vehicles consume energy instead of fuel and do not emit
any pollutants. Hybrid vehicles have both electric motor and an engine. There is a
wide variety of existing topologies, and their behavior is not easily characterized.

There are also differences in the way eco-routing methods are evaluated. Some
authors define savings by comparing the quantity of interest (fuel consumption, en-
ergy consumption, or pollutant emissions) to shortest paths, while others compare
to fastest paths. The shortest paths are those paths that minimize the distance to
destination. The fastest paths are those paths that minimize expected travel time.

Little is known on what benefits can eco-routing offer. Eco-routing performance
has been shown to depend on the properties of the road network and of the ve-
hicle. The published case studies are often designed as proofs of the eco-routing
concept, and so they concentrate on scenarios where eco-routing is likely to excel.
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This, however, does not say anything about the typical savings attainable in every-
day use. Some case studies and most publications that propose new eco-routing
methods nevertheless contain an evaluation of average savings. However, the same
consumption or pollutant emission model is often used to identify the eco-route and
to estimate the savings on it. This type of evaluation can never result in negative
savings, meaning that it is unable to detect failures.

There is a closely-related technique to eco-routing called eco-driving. It tries to
achieve the same goals as eco-routing but uses different means to do it. Instead
of lowering consumption or pollutant emissions by path choice, eco-driving opti-
mizes driver’s behavior while the path is predetermined and fixed. Since both tech-
niques share the same goal, it should be possible to combine them for better results.
They can be used independently, but it is likely that there exists some degree of co-
dependence between them.

2.1 Structure of the eco-routing navigation system

The basic structure of an eco-routing navigation system is shown diagrammatically
in Figure 2.1. There are four main elements: local database, cost estimation block,
routing block and map-matching block. The user interface block is out of the scope
of this work and is not further discussed here.

• Local database holds the road network graph. It is a directed graph whose
purpose is to describe connectivity between different places in the map. It
also contains spatial organization of the road network (road shapes) and other
metadata such as road names, lengths, and slopes.

• Cost estimator is used to assign costs to edges of the road network graph. The
nature of these costs depends on the way the eco-routing problem is posed. It
can be fuel consumption, energy consumption, or pollutant emissions.

• Routing finds the path in the road network graph between given origin and
destination with the lowest sum of the costs on the edges in the path.

• Map-matching converts Earth-referenced position to a position in a road net-
work graph. Both the positioning system and the road network graph contain
errors that can make the conversion difficult. There is no standard approach to
this problem.

The structure in Figure 2.1 is identical to the commonly used shortest-distance nav-
igation system. The only difference between eco-routing and shortest-distance rout-
ing is in the nature of the costs. In shortest-distance routing, the cost is simply a
road length. This is a nonnegative constant that can be saved in the database. In
eco-routing, the cost is a multivariate function.

Most published eco-routing methods use Dijkstra’s routing algorithm (Dijkstra,
1959) or an algorithm derived from it (such as A* search algorithm; Hart et al.,
1968). These are sophisticated algorithms that can identify the optimal solution in
asymptotically optimal time. They, however, assume that the costs are nonnega-
tive constant scalars. This is limiting for eco-routing applications. The quantities
represented by the costs are usually time-dependent variables that can be negative
if the cost represents energy consumption and the vehicle under consideration can
recuperate braking energy. The problem with variable costs is further discussed in
Section 2.2. The problem with negative costs can be solved with Bellman-Ford al-
gorithm (Bellman, 1958), but the computational effort on a large road network can
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FIGURE 2.1: Basic eco-routing navigation system.

become significant. Another option is to make all costs positive without changing
the structure of the shortest paths in the graph using Johnson’s algorithm (Johnson,
1977).

Note that naive routing is computationally intractable for any but the simplest
road networks. A naive routing method would first make a list all paths between
given origin and destination and then search for the path that minimizes given cost
function. The number of paths that has to be considered is not finite unless only
simple paths are considered (paths without loops). Even then, the number of paths
grows exponentially with the number of intersections in the road network. This is
why routing algorithms such as Dijkstra’s algorithm are important. They are capable
of identifying the optimal solution in a polynomial time.

Numerous cost estimators were proposed specifically for eco-routing applica-
tions. Some are regression models, and others are derived from Newton’s second
law of motion. The common denominator between them is that they are macroscopic.
In general, most published fuel consumption, energy consumption and pollutant
emission models can be classified as either macroscopic or microscopic. Microscopic
models are based on differential equations. Macroscopic models are based on closed-
form algebraic equations. This often requires crude simplifications, but the result-
ing model is fast to compute and requires little information. The reason why the
cost estimators used in eco-routing are macroscopic is that microscopic models need
recorded trip data (vehicle’s speed profile1) in order to estimate the cost. Such infor-
mation is not available at the trip planning stage.

Note that macroscopic cost estimators are known for their estimation errors. For
example, in one of the first studies on eco-routing, Ahn and Rakha, 2008 conclude
that “macroscopic emission estimation tools (e.g., MOBILE6) can produce erroneous
conclusions given that they ignore transient vehicle behavior along a route”. It is
perhaps surprising then that not a single eco-routing method cited in this work takes
that into account: the costs are always assumed to be exact, without errors.

Map-matching has two applications in eco-routing. Firstly, it enables the user
interface to navigate the driver to the destination by identifying current vehicle po-
sition in the road network. Secondly, map-matching is needed when processing
historically recorded trips in order to infer knowledge about the consumption of the
vehicle on the roads in the road network (this is something that is often done in lit-
erature). At the time of writing, the dominant vehicle positioning systems are based
on satellite navigation. They identify vehicle position in terms of latitude and longi-
tude. The map-matching is needed to assign the recorded trips to the right roads in

1The speed profile, denoted v(t), is vehicle speed as a function of time.
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the road network. Matching errors get propagated through the system since map-
matching is a low-level task. They can reduce cost estimator’s accuracy and can
make the user interface to start giving misleading advice to the driver.

2.2 Eco-routing extensions

Three extensions of the basic eco-routing are discussed in the literature.

• Constrained eco-routing allows setting limits on fuel consumption, energy con-
sumption, travel time, and pollutant emissions. It was first considered in Juřík
et al., 2014. The authors propose an optimal routing algorithm to solve a con-
strained optimization problem with additive costs. This problem is known to
be NP-Complete, see Wang and Crowcroft, 1996 for the proof.

• Time-dependent eco-routing is eco-routing with costs that are functions of time
instead of constants. It was first considered in Kluge, 2011. Such routing al-
lows taking into account developing traffic situation when routing. It is likely,
for example, that there are different eco-routes at night and in the afternoon
as the traffic densities are different. Perhaps more importantly, the eco-route
can be affected by stops on the roads with traffic lights. Time-dependent eco-
routing can, in theory, navigate the vehicle such that the losses due to them are
minimized. There are two types of time-dependent eco-routing recognized in
the literature:

– Snapshot routing assumes the costs are constants. They are estimated at
the departure time for every road in the road network. Such eco-routing
system has the same structure as time-independent eco-routing, except
that the cost estimator is time-dependent.

– Time-dependent routing supports routing with costs that are functions of
time. The costs on the roads are then specific to the expected time of
arrival there. Time-dependent travel time model is needed to estimate
it. The routing algorithm needs to be able to consider the time-varying
nature of the costs.

The time-dependent routing can make the eco-routing problem considerably
more difficult to solve. The structure of such eco-routing navigation system is
depicted diagrammatically in Figure 2.2. Both the cost and travel time estima-
tors are necessarily time-dependent models. The router identifies the path that
minimizes the sum of costs at a given departure time, considering predicted
cost on its roads at the predicted time of arrival there.

• Adaptive eco-routing allows updating the eco-routing solution when it becomes
invalid. It might become apparent while already on the way that the identified
eco-route is no longer valid. It is desirable to detect this situation and to update
the eco-routing solution accordingly. It was first considered in Ahn and Rakha,
2013.

Adaptive eco-routing is interesting in connection with time-dependent eco-
routing. If the vehicle does not proceed to destination with the predicted
speed, then the eco-routing solution is not necessarily valid. For example, if
the vehicle gets delayed the eco-routing solution is not necessarily the correct
one anymore. This can be verified by rerouting from vehicle’s current position
to the destination.
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FIGURE 2.2: Time-dependent eco-routing navigation system.

2.3 Approach followed in this work

The goal of this work is to propose constrained time-dependent adaptive eco-routing
navigation system. The constraints would allow the user to gain control over their
emissions and travel time delays. The time-dependent routing would allow routing
such that predicted situation on the roads at the time the vehicle is projected to be
there is taken into account. Adaptive eco-routing would allow changing the path in
case the original eco-routing solution is no longer valid.

It is a difficult problem to solve optimally. Optimal constrained eco-routing is
NP-Complete. Optimal time-dependent routing searches for the solution in much
larger space with respect to time-independent routing because of the time-variable
costs. On the other hand, adaptive eco-routing needs fast routing algorithms that
can be re-run multiple times while the vehicle is on the way to its destination. The
time delay in which the eco-route is recomputed needs to be minimal to minimize
the chance that the vehicle in the mean time progressed so far on the old eco-route
that it is no longer possible to change for the new eco-route. To summarize the
difficulty, there is a conflict: both constrained and time-dependent routing are com-
putationally intensive tasks, while adaptive eco-routing does not work well with
computationally intensive routers.

Sustaining optimality is not only computationally expensive, but also futile. It is
argued in this work that optimality of the routing solution is conditioned on the cor-
rectness of the routing costs in the road network graph, something that is known to
be subject to considerable errors (as discussed above). This argument is supported
by findings in this work as all studied eco-routing methods failed to save energy, in
some instances. This is something that could not happen with optimal eco-routing.
Consequently, this work does not study optimal routing algorithms and concen-
trates instead on finding approximative solutions. Dropping the routing optimality
condition gives more flexibility in designing eco-routing methods. It is not neces-
sary anymore to make the assumptions imposed by sophisticated optimal routing
algorithms such as Dijkstra’s algorithm, for example. The costs can be real functions
of time if that’s what eco-routing applications require. It is a question of identifying
the right approximations that lead to results that are computable in an acceptable
time.

The proposed eco-routing method is based on a hypothesis that while there
might be many paths to a chosen destination, only a small fraction of them can ever
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be eco-routes. It favors simplistic, naive even, routing based on a list of all possible
paths over known and sophisticated optimal routing algorithms. It follows an ap-
proach that does not resemble anything from the published literature. It is based on
original ideas, that may, or may not, prove useful.

2.4 Research topics

There are three main topics studied in this work:

1. Vehicle consumption model for eco-routing. Having a good cost estimation model
is of prime importance in eco-routing: its performance is conditioned on the
cost estimation errors. A standard consumption estimation model is adapted
for eco-routing applications in Chapter 5. It is carefully reformulated in a
closed form and then solved, under some assumptions.

2. Routing algorithm. A routing based on a preselected collection of candidate eco-
routes is proposed in Chapter 6. The candidate eco-routes are identified offline
for a given origin and destination, before vehicle’s departure. It allows to pre-
select those paths that are likely to be eco-routes in some conditions. There
can be few dozen or a few hundred thousand candidates. It is still a negligible
amount, in most cases, compared to the number of all simple paths between
the origin and the destination. This reduces the search space and allows to
support constrained time-dependent adaptive eco-routing.

3. Reliable eco-routing performance evaluation. As was stated in the introductory
paragraphs, little is known on what benefits can eco-routing offer in everyday
use. This work tries to make a step towards resolution of this problem. Eco-
routing performance is formally defined in Chapter 4. A framework designed
to evaluate eco-routing methods in terms of their performance is presented in
Chapter 7. It allows comparing several published methods with the method
proposed in this work.

2.5 Thesis outline

The eco-routing problem is introduced in this chapter. The Chapter 1 contains an
extended summary of this work in the French language. The Chapter 3 contains a re-
view of published eco-routing and map-matching methods. The Chapter 4 contains
an analysis of the current methods that were introduced in Chapter 3. The chap-
ter 5 introduces a novel vehicle consumption model and a travel time model. The
Chapter 6 proposes a novel routing algorithm. The Chapter 7 proposes a framework
for the evaluation of eco-routing methods in simulations. The chapter 8 discusses
identification and validation results of the models used in this work. The Chapter 9
contains an evaluation of eco-routing methods based on the routing algorithm pro-
posed in the Chapter 6 and consumption model proposed in the Chapter 5. The
evaluation is done with the framework proposed in the Chapter 7.
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Chapter 3

The state of the art

Published eco-routing and map-matching methods are reviewed in this chapter. A
selection of eco-routing case studies is discussed in Section 3.1.1 and a selection of
published methods is discussed in 3.1.2. Then, map-matching methods are reviewed
in Section 3.2. Map-matching is an important subproblem in eco-routing. This sub-
ject is not further studied in this thesis. An extensive review of the literature on
map-matching is provided in this chapter instead. It is an adapted extract from Ku-
bička et al., 2017.

3.1 Eco-routing

There are diverse publications on eco-routing. Some authors report results of their
case studies, some authors propose a method and evaluate it in a simulation, and
other authors describe fully mature eco-routing systems deployed in real-life appli-
cations. The publications that propose new methods tend to have a similar structure:
the authors first describe their consumption or pollutant emissions model and then
their routing algorithm. The model is used to assign estimates of consumption or
pollutant emissions to every road in the road network. The assigned values are
then used as routing costs by the routing algorithm: it searches for the path that
minimizes the sum of the costs between given origin and destination. The reviews
below follow a similar structure: first, the aim of the method is introduced, then
the consumption model followed by the routing method, and at the end, results are
discussed (if the method was evaluated).

Different authors evaluate their results in different ways. Many evaluate them in
terms of savings, where the consumption (or pollutant emissions) on the eco-route
is compared to the consumption or pollutant emissions on some reference path. The
most common reference paths are the fastest paths and the shortest paths. The kind
of reference path used in the evaluation by the authors is always indicated in the
reviews below since the two are not comparable.

3.1.1 Case studies

Ahn and Rakha conducted three case studies on eco-routing (Ahn and Rakha, 2007;
Ahn and Rakha, 2008; Ahn and Rakha, 2013). The first one is an experiment de-
signed to “evaluate energy and environmental impacts of driver route choice deci-
sions”. The authors recorded thirty-nine trips on two different paths between the
same origin and destination during a morning commute. Eighteen of them took the
arterial path and twenty-one the highway. These two paths have different speed
limits and different commute patterns. The authors estimate energy consumption,
travel time and HC, CO, NOx, CO2 emissions based on the recorded data. The study
demonstrated that, for the case in hand, the motorists could have saved on average
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17% of travel time on the highway. However, 23% of energy consumption could be
saved on the arterial path. Additionally, 63%, 71%, 45% and 20% of HC, CO, NOx,
CO2 respectively could be also saved on this path. The authors also studied different
energy consumption and pollutant emission models. They compare two microscopic
models (CMEM and VT-Micro) to a macroscopic model (MOBILE6). They conclude
that the macroscopic models are not adequate to quantify the energy and environ-
mental impact of path choice decisions as they fail to capture the impact of transient
changes in vehicle’s speed and acceleration levels. In the follow-up study (Ahn and
Rakha, 2008) the authors extend the previous work with sensitivity analyses to var-
ious traffic assignment scenarios and different vehicle types. The authors conclude
that the commonly used user-equilibrium and system-optimum traffic assignments
do not necessarily minimize vehicle energy consumption or pollutant emissions.
They also conclude that vehicle powertrain characteristics need to be carefully ex-
amined before implementing emission- or energy-optimized traffic assignments. In
the latest study (Ahn and Rakha, 2013) the authors conduct an extensive numeri-
cal experiment with eco-routing in a microscopic simulation of the road network of
Cleveland and Columbus in Ohio, US. The study aims to quantify the impact of an
eco-routing system on the road transportation system. The authors consider var-
ious levels of eco-routing market penetration and study the system-wide savings,
the impact of congestion and the impact of vehicle type. They observed average fuel
savings ranging from 3.3% to 9.3% when compared to the fastest paths, depending
on eco-routing market penetration, road network configuration and vehicle type.
The authors also observed that eco-routing typically reduces the travel distance, but
not necessarily travel time. System-wide benefits of eco-routing increased with in-
creasing eco-routing market penetration. Higher savings in terms of both energy
consumption and pollutant emissions were observed in more congested situations.

Ericsson et al., 2006 published the first case study on eco-routing. The authors
tried to estimate the potential of eco-routing in Lund, Sweden. Their goal was to ex-
plore possible means to lower fuel consumption and CO2 emissions through driver
support tools. They used a collection of 15,437 commutes over the period of three
years to classify the streets in Lund and to build a macroscopic consumption model
based on this classification. Every road in the road network was classified as one of
22 classes according to road type, function, speed limit, signalization, used traffic-
calming measures and observed traffic flows in peak and non-peak hours. Then,
the authors estimated fuel consumption factors and emission factors for each class.
The fuel consumption factor is normalized fuel consumption in liters per 10 km.
The emission factors are in grams per kilometer. The fuel consumption and CO2

emissions were estimated for each road in the road network as its length multiplied
by the fuel consumption factor and emission factors respectively. The consumption
model was used on a subset of 109 commutes longer than 5 minutes to estimate how
many of them could be optimized and what is the expected gain for those that could
be. The authors found that fuel-efficiency could be enhanced for 46% of the trips
and that fuel savings would be 8.2% on average. This corresponds to average 4%
savings overall. The authors have also noticed that the eco-routes were the shortest
paths in 82% of the cases, which agrees with the findings of Ahn and Rakha, 2008.
Note that these results depend on the accuracy of the proposed consumption model,
which was not validated by the authors.

Minett et al., 2011 recorded forty trips between the cities Delft and Zoetermeer in
Netherlands on three different paths and evaluated the differences in consumption
and travel times on these paths. The three paths were chosen such that they have
different characteristics: one uses a highway, the other provincial roads, and the last
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one only local roads. The experiment was conducted with three Ford Focus vehi-
cles equipped with GPS loggers. The consumption was estimated using microscopic
VT-CPFEM model (Rakha et al., 2011). On the way from Delft to Zoetermeer, the
authors report 45% average fuel savings observed on local roads when compared to
the highway path. Similar savings were observed on the provincial roads when com-
pared to the highway. In both cases, the fuel savings came at the cost of 25% travel
time increase. Similar results were observed for the way back (from Zoetermeer to
Delft). The authors also propose a method to generate synthetic speed profiles1)
that can be used to estimate consumption with a microscopic consumption model.
The synthetic speed profile is constant on individual roads with smoothed transi-
tions between them. The authors evaluated the accuracy of the fuel consumption on
this speed profile and conclude that it underestimates fuel consumption because it
neglects speed variations.

3.1.2 Methods

Andersen et al., 2013 proposed an eco-routing method that uses an extensive collec-
tion of pre-recorded commutes to compute the average consumption on each road
in the road network. These averages are used as routing costs in place of a con-
sumption model. The routing is done with Dijkstra’s algorithm. Missing data pose
a problem for this method: if there are roads with no pre-recorded commutes, then
the method is unable to devise a cost for them. The authors did not validate their
method, only demonstrated what savings they expect to obtain between some cho-
sen origin and destination. Note that these savings were estimated using the same
consumption model that was used to identify the eco-route.

Barth et al., 2007 proposed an “Environmentally friendly navigation”. It is the
first eco-routing method described in the literature. The authors use CMEM micro-
scopic consumption and pollutant emissions model on a set of pre-recorded com-
mutes to estimate pollutant emissions and fuel consumption on individual roads
in the network. This is used to build a regression model for pollutant emissions
and fuel consumption where average vehicle speed and road grade are explanatory
variables. The road grade parameters are assumed known for every road in the road
network. The average vehicle speed parameter can be based on historical observa-
tions or real-time data. The routing was done with the Dijkstra’s algorithm. The
authors conducted four case studies between the same origin and destination in Los
Angeles, California region. They have chosen two paths on freeways between the
same origin and destination and compared their fuel consumption and CO2, CO,
HC, NOx emissions with the proposed models. Four different situations were stud-
ied: (1) when there is no congestion on both paths, (2) when one path is moderately
congested, while the other one is not, (3) when one path is heavily congested while
the other one is not and (4) when one path is moderately congested while the other
one is heavily congested. The authors show that considerable savings in energy and
emissions can be obtained if the right path is taken in the right situation and con-
clude that congestion can cause the minimal energy path to change.

Boriboonsomsin et al., 2012 (co-authored by Barth) followed on the work by
Barth et al., 2007. Unlike the preceding work, the authors propose a functionally
complete eco-routing navigation system that integrates historical and real-time traf-
fic information to identify the paths that minimize pollutant emissions or fuel con-
sumption. The method uses real-time traffic information from probe vehicles and

1“speed profile“ is a term often used for vehicle speed as a function of time
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local traffic information system. Historical data from traffic simulation models and
travel demand models are used on roads for which real-time data are not avail-
able. The authors reused the methodology for fuel consumption and pollutant emis-
sion modeling proposed by Barth et al., 2007. They compile a database of vehicle,
road and traffic characteristics and use it to estimate fuel consumption and pollu-
tant emissions on pre-recorded commutes with the CMEM model. Then, they use
multivariate nonlinear regression to fit six coefficients β0 . . . β5 in

ln(fk) = β0 + β1v̄ + β2v̄
2 + β3v̄

3 + β4v̄
4 + β5α (3.1)

where fk is the fuel consumption or pollutant emissions in grams per mile on the
road k, v̄ is the average speed, and α is road grade. This enables fuel consump-
tion or pollutant emission estimation on any road based on its length, road grade
and the average speed there. The routing is based on Dijkstra’s algorithm. The fuel
consumption and pollutant emission model was validated in a field test. The au-
thors report estimated versus actual fuel consumption on a chosen path. The results
show fuel consumption estimation accuracy in the range between -12.7% and -25%
depending on used traffic information sources. The authors also evaluate the eco-
routes identified by this system. They simulate a large collection of paths from dif-
ferent origins and destinations to estimate savings of the identified eco-routes when
compared to fastest paths. The results indicate 13% average savings at the cost of
21% average travel time increase. Note that the same fuel consumption model was
used to identify these paths and to estimate the savings.

De Nunzio et al., 2016 proposed an eco-routing method for electric vehicles. The
method uses Bellman-Ford algorithm instead of the Dijkstra’s algorithm for routing.
While Dijkstra’s algorithm is asymptotically faster, it also assumes the routing costs
are nonnegative. This is a problem for electric vehicles since they can recuperate
energy, which can result in negative consumption (meaning negative cost). The au-
thors propose a consumption model derived from the longitudinal model (Guzzella
and Sciarretta, 2005). It assumes the vehicle speed is constant, like many other mod-
els used for eco-routing do, but it also considers the changes in speed between two
roads (or two parts of a road) with different average speeds. The authors base their
consumption model on vehicle equivalent resistance force as formulated by the lon-
gitudinal model (see Equation (5.4) in Section 5.1, where the longitudinal model is
discussed in detail) and replace the instantaneous speed with the average speed v̄k
on a road k

F̄k = cav̄
2
k + cbv̄k + cc +mg sin(α) (3.2)

where ca, cb, cc, m are vehicle-specific constants, g is gravitational acceleration and
α is road grade. The consumption on road k is estimated as

fk =

{
FkDkη

−1
t η−1

b if Fk > 0

FkDkηtηb if Fk 6 0
(3.3)

where Dk is the length of road k and ηt, ηb are transmission and electric drive effi-
ciencies respectively. Note that this is not the exact formulation used by the authors.
The model also limits Fk such that motor torque is kept within given boundaries, see
the original publication for details. When the vehicle passes on a boundary between
two roads (or road segments) with different average speeds the transition is mod-
eled with constant acceleration from original speed to the new speed. The authors
compute the energy associated with the change in speed using the same framework
like the one described above, except that the speed is no longer considered constant.
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The consumption on the road k is a sum of consumption for traveling there and con-
sumption associated with the change of speed from the previous road to the current
one. Another novelty of this method is what authors call “adjoint graph”. The au-
thors conjecture that the usually used model for the road network is a directed graph
where nodes represent intersections and edges represent roads between them. They
propose to use the adjoint graph, where nodes represent roads and edges represent
the connections on intersections. This model allows assigning different costs to the
same road depending on the heading of the vehicle on the downstream intersection.
The authors have evaluated the validity of their consumption model with two field
trials. HERE maps provided the real-time average speed information. In the first
case, the proposed model overestimated actual consumption by 7%, and in the sec-
ond case, it underestimated it by 9%. The eco-routes were evaluated in simulations.
The authors have chosen a thousand origin-destination pairs at random and plotted
the eco-routes, the shortest paths, and the fastest paths. The results show 6% av-
erage savings when compared to the shortest path and 10% average savings when
compared to the fastest path. Note that the same energy consumption model was
used to both identify these paths and to estimate the savings.

Juřík et al., 2014 proposed an eco-routing method for hybrid vehicles with a time-
constraint. The authors view eco-routing as a trade-off between fuel (resp. energy)
consumption and travel time. This is supported by previously published case stud-
ies (such as Ahn and Rakha, 2007) that conclude that eco-routing does not neces-
sarily lower travel time. The authors propose a consumption model derived from
the longitudinal model (Guzzella and Sciarretta, 2005). The model is discussed in
Section 8.1. It is designed for vehicles that can recuperate energy. The recuper-
ation efficiency is considered constant. This can result in negative routing costs.
Since Dijkstra’s algorithm-based routing does not allow this, the authors render the
costs positive by making recuperation efficiency negative when braking. The con-
sumption model also neglects powertrain inefficiency. This is not necessarily a prob-
lem because scaling errors does not affect eco-routing performance: the structure of
shortest paths in a graph will not be altered when all costs are rescaled by the same
positive amount. The authors propose a novel routing algorithm that identifies the
shortest path under constraint. They formulate eco-routing as a multi-constrained
optimization problem and show that it is NP-Complete (the formal proof is given in
Wang and Crowcroft, 1996). Then they give an algorithm not dissimilar to Dijkstra’s
algorithm that solves it. Several search space reduction techniques are used to lower
the computational overhead. They pre-compute lower bounds on travel time from
any node in the road network to the destination. This allows early identification
of paths that can never satisfy the travel time constraint. Another technique is path
dominance testing, which identifies paths that can never be the eco-routing solution.
Both techniques were previously described in Van Mieghem and Kuipers, 2004. The
authors did not validate their method, only shown the estimated savings on a few
examples. Note that the same energy consumption model was used to identify these
eco-routes and to estimate the savings on them.

Kluge et al., 2013 considers time-dependent eco-routing for electric vehicles. The
authors used about one year worth of recorded commutes from a fleet of about 100
taxis in Ingolstadt, Germany. They derive a combined distribution of speed and ac-
celeration for every road in the road network at five-minute intervals through the
day. The used consumption model is described in other works that were not acces-
sible at the time of writing. It reportedly takes vehicle speed, acceleration, and road
grade as inputs and returns an instantaneous power draw from the battery. The au-
thors assign a cost function to every road in the road network that corresponds to
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the integral of the expected power draw. The routing is done with two algorithms:
DOT* and TD-APX. They were both proposed in Kluge, 2011. The DOT* algorithm
is not dissimilar to Dijkstra’s algorithm. It is an extension of previously published
work by Chabini, 1998 and Dean, 1999 with a heuristic search similar to the A* al-
gorithm (also derived from Dijkstra’s algorithm). The TD-APX is an approximative
algorithm that finds a solution whose cost differs from the optimal solution by some
chosen accuracy ε. It provides the first estimates of the solution quickly and then
refines it until sufficient accuracy is achieved. The method was evaluated in five nu-
merical experiments in a road network graph of Ingolstadt, Germany. The first three
experiments were used to evaluate the computation time of the DOT* and TD-APX
algorithms. They consider the time of day with peak traffic. The first experiment is
restricted to fifty random trips in Ingolstadt city center (1 km2 area) in a time frame
between 7:50 a.m. and 8:00 a.m. The second experiment is based on 243 random
trips in the whole road network graph between 7:00 a.m. and 8:00 a.m. The third
experiment is based 121 random trips between 7:00 a.m. and 9:00 a.m. The last two
experiments were designed to evaluate savings of the proposed eco-routing method.
The fourth experiment is based on 300 random trips in the city center (this time au-
thors consider an area of 16 km2 as city center) at different days of week (Tuesdays to
Thursdays and Sundays) and in various times of day (1:00 a.m. to 2:00 a.m. and 7:30
a.m. to 8:30 a.m.). Finally, the fifth experiment has the same setup as the fourth ex-
periment without the limitation to the city center. In the first experiment, the authors
notice that the DOT* algorithm requires too much time to finish its computation for
the method to be suitable for practical applications. The TD-APX algorithm shows
acceptable computation times for various ε. In the second and third experiments,
the authors evaluate the computation time of the TD-APX algorithm for longer time
frames. The longest computation time was 31 seconds, observed in the third exper-
iment for ε = 0 kWh. The fourth and fifth experiments have shown 10-14% savings
on eco-routes when compared to fastest paths, and 13-24% savings when compared
to shortest paths. The savings on eco-routes with respect to fastest paths are com-
parable to results reported by other authors. The savings on eco-routes with respect
to shortest paths does not agree with observations made by other authors. Multiple
other works report that eco-routes tend to minimize trip length as well (Ahn and
Rakha, 2013; Ericsson et al., 2006). Note that the same energy consumption model
was used to identify these eco-routes and to estimate the savings on them.

Nie and Li, 2013 described an eco-routing method that aims to find a path that
minimizes the monetary value of the fuel combined with travel time while meeting
a given CO2 constraint. The authors propose a consumption and pollutant emission
model that depends on vehicle speed (similarly like Barth et al., 2007 and Yao and
Song, 2013), but also consider the cost associated with switching from one road to
another. The speed changes are modeled with a constant acceleration model, like
De Nunzio et al., 2016. The proposed routing model minimizes the monetary value
of the trip (a linear combination of the fuel cost and of the travel time cost) under the
CO2 constraint. The authors do not propose to use any specific routing algorithm.
They define their eco-routing model as an optimization problem instead. They con-
ducted three numerical experiments, which were solved using CPLEX optimization
software. They were designed to show that ignoring travel speed variations and
vehicle type causes CO2 estimation errors.

Yao and Song, 2013 described an eco-routing method conceptually not dissimilar
to the method by Barth et al., 2007. The authors propose a pollutant emission and
consumption model based on vehicle-specific power (VSP; Jimenez-Palacios, 1998).
They consider an empirical formula with fuel consumption and pollutant emission
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factors in grams per kilometer as a function of average speed (hence the similarity
to Barth et al., 2007). The coefficients were obtained using multiple linear regres-
sion. Unique coefficients were identified for all 288 five-minute intervals in 24 hours
from midnight to midnight. The routing was implemented with a time-dependent
variant of the Dijkstra’s algorithm. The authors conducted a proof-of-concept case
study with a field trial between a single origin and destination. They observed 5.3%
fuel savings on a fuel-minimizing eco-route and 5.9% CO2 emission reduction on a
CO2-minimizing eco-route when compared to the fastest path. They also simulated
eco-routing between 200,000 randomly generated origin-destination pairs in Beijing
area. They computed the eco-routes for all and estimated that their method cuts car-
bon dioxide emissions by 4.7% and lower consumption by 4% in heavy traffic when
compared to the fastest paths. Note that the same fuel consumption (resp. pollutant
emission) model was used to identify these paths and to estimate the savings on
them.

3.2 Map-matching

Roughly speaking, map-matching aims to identify vehicle position or path on a map
(Quddus et al., 2007; White et al., 2000; Bernstein and Kornhauser, 1996). Figure 3.1
shows its role in the context of navigation systems and other services. Map-matching
has been under active research since the dawn of the global navigation satellite sys-
tems in 1990’s. A few contributions dating before that (for example by Honey et
al., 1989) exist, but the interest in the context of vehicular navigation appeared after
GPS became widely available. Original interest was in connection with navigation
assistants, but a large area of applications emerged after the mobile internet became
available. One can cite, among others, location-based services, floating car data,
“pay-as-you-go” services, automatic emergency beacons and fleet surveying.

The interest in the context of eco-routing is twofold: for matching pre-recorded
trips and for navigation. In the former case, map-matching is used during prepro-
cessing. Many eco-routing methods require historically recorded trips to identify
their coefficients. Map-matching is used to convert the recorded sequence of posi-
tions in terms of latitude and longitude to a path in the road network graph. As-
signing recorded data to correct roads is important. Assigning the wrong record
to the wrong road would introduce errors in the consumption and pollutant emis-
sion models. In the latter case, map-matching is used during navigation, when the
current position of the vehicle in terms of latitude and longitude is matched to a
position in the road network. Incorrect matching would result in giving incorrect
instructions to the driver.

When the map and the positioning data are sufficiently accurate, the problem is
trivial. Hence, it might seem that map-matching is not a difficult problem. Nowa-
days, we have satellite navigation with sub-meter precision and detailed maps on
scales allowing to distinguish millimeters. However, neither of the preceding is
guaranteed, and errors in both can be intricate. The satellite-based positioning sys-
tems are unreliable, especially in urbanized areas where satellite visibility is limited
and reflected satellite signals are common. This leads to outliers in positioning data
or missing parts of trajectories when the satellite signal is weak. This in itself can
make correct matching difficult in some situations. However, the map can also be
outdated (missing some roads), or the map model itself can introduce ambiguity
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FIGURE 3.1: Map-matching converts raw position to position in the
road network (originally printed in Kubička et al., 2014).

into the matching process. Commonly used maps are directed graphs where inter-
sections are represented by their center points, and roads are represented by polyg-
onal curves. Such a simplistic representation of otherwise complex road network
can make correct matching difficult. Consequently, map-matching is not always
trivial. Over a hundred of different methods have been published in the last two
decades. They are based on various methods and approaches: from simple geom-
etry and topology to advanced concepts that involve fuzzy logic, particle filtering,
belief theory, conditional random fields, Kalman filtering, neural networks, genetic
algorithms, ant colony optimization and others.

By inspecting the results concerning the map-matching problem, it is not imme-
diately clear how the performance should be evaluated. This fact leads to different
evaluation methodologies proposed by different authors. Unfortunately, these are
often not mutually compatible. For example, some authors evaluate map-matching
performance as a ratio of correctly matched positions with respect to the total num-
ber of samples. Other authors consider the degree of overlap between the matched
path and the correct path. There is no common basis between the two methodolo-
gies, and the direct comparison seems not possible. This makes it difficult to argue
on which method is best suited for any given use.

3.2.1 Published map-matching reviews

Quddus et al., 2007 published an overview of map-matching methods in 2007. The
authors classify them as geometric, probabilistic, topological and advanced. More pre-
cisely, geometric methods make use of geometric closeness criteria for matching,
topological methods leverage contiguity of edges in road network graphs and proba-
bilistic methods make use of uncertainties in reported position to approximate error-
bounding regions. Advanced methods are the methods that do not fit this classifi-
cation scheme otherwise. For example, methods based on fuzzy logic or Kalman
filtering. Most of the methods published in the last fifteen years could be viewed as
advanced since recent map-matching algorithms often combine the ideas of geomet-
ric, topological and sometimes probabilistic methods.

The most recent review of map-matching methods was proposed by Hashemi
and Karimi, 2014. The authors focused on map-matching for navigational appli-
cations. They reviewed a selection of publications and categorized them as simple,
weight-based and advanced. The motivation for this categorization and used classifi-
cation criteria is not clearly explained to the reader.

Wei et al., 2013a provide a short review of map-matching methods. The authors
classify them as incremental max-weight, global max-weight and global geometric. This
was adopted by other authors since (e.g., Li et al., 2013b). The max-weight methods
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(A) OpenStreetMap (B) road network G = (V,E).

(C) trajectory s = (s1, . . . , s24). (D) route r = (e1, . . . , e13).

FIGURE 3.2: Example road network, trajectory and map-matched
route (originally printed in Kubička et al., 2017).

search for the route that maximizes some fitness function. The geometric methods
search for a route geometrically similar to given trajectory. The incremental methods
match individual samples while still collecting them. The global methods process
complete trajectory after it was collected.

Quddus et al., 2007 list performance of 10 map-matching methods, Hashemi and
Karimi, 2014 list performance of 19 methods. The performance figures in both re-
views are based on results reported in the reviewed papers, which are not entirely
comparable. Wei et al., 2013b compare 15 methods. The authors reimplemented
them and tested using a unified methodology which assures comparability of the
results.
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3.2.2 Terminology used in this section

Consider a road network graph G = (V,E) such as the one defined in Section 4.1
in context of eco-routing. Let ordered set s = (s1, s2, s3, . . . , sn) be a sequence of
observed states si at discrete time instants i ∈ {1 . . . n}, where si is i-th sample and s
is a trajectory. Some methods return the matched position for each sample. Let such
output be denoted as matching m and defined m = (p1, p2, . . . , pn) where pi = (ai, oi)
is i-th matched position on the road network. The ai is the road on which vehicle
travels and the oi is the distance from the upstream intersection. Other methods do
not match individual samples. Instead, they concentrate on travel route identifica-
tion. Let such output be denoted route r and defined as a sequence of contiguous
edges r = (e1, e2, . . .) in G. Finally, the path inference filter discussed in Section 3.2.7
defines output as a sequence of waypoints interleaved with paths between them. Let
us denote such output as r′ and define it r′ = (p1, r12, p2, r23, . . . , pn) where pi’s are
the matched positions and rij is a sequence of contiguous edges in E between pi and
pj .

For an example of a map, trajectory and route see Figure 3.2. Figure 3.2a shows
OpenStreetMap render of a part of the Manhattan island in the New York, US ( c©
OpenStreetMap contributors). Corresponding road network graph is given in Figure
3.2b. Note the arrows, they indicate traffic direction on one-way streets. Missing ar-
row indicates a two-way street. Example trajectory made of samples (s1, s2, . . . , s24)
is shown in Figure 3.2c. A route matched to this trajectory is shown in Figure 3.2d.
Note that the sample s11 is an outlier: as can be observed in Figure 3.2d the route
passes on Cedar Street rather on Wall Street, even the Wall Street is closer to sam-
ple s11 (compare to OpenStreetMap render in Figure 3.2a). This example is studied
later in the text when effects of such outliers on some map-matching methods are
discussed.

3.2.3 Classification

A classification based on four criteria according to which most published methods
describe themselves is introduced in this section.

• Indoor/outdoor methods - while outdoor map-matching makes use of satellite
navigation (Newson and Krumm, 2009; White et al., 2000; Alt et al., 2003), in-
door map-matching has to use other positioning systems such as inertial navi-
gation, radio beacons, etc. (Xiao et al., 2014).

• Pedestrian/vehicular/multimodal map-matching - pedestrian map-matching (Ren,
2012) is more challenging than the vehicular map-matching as pedestrians can
be both indoors and outside. This is, strictly speaking, possible even with
vehicular map-matching but authors often assume that vehicles are restricted
to outdoor movement. The multimodal map-matching is used in the general
case when the traveler can combine different travel modes (Chen and Bierlaire,
2015).

• Online/offline methods - online map-matching (White et al., 2000; Kubička et al.,
2014) methods output matched positions while still collecting the trajectory.
Some authors use the term “real-time” instead of “online” (Kubička et al., 2014;
Hashemi and Karimi, 2014) to underline the fact that such map-matching re-
turns results immediately with incoming samples. Other authors use the term
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(A) point-to-curve (B) curve-to-curve

FIGURE 3.3: Basic map-matching methods (originally printed in Ku-
bička et al., 2017).

“incremental” (Wei et al., 2013a; Li et al., 2013b). Offline map-matching pro-
cesses whole trajectory after it has been collected. Some authors use the term
“global” instead of “offline” (Wei et al., 2013a; Li et al., 2013b).

• Low/high sampling rate methods - low sampling rate methods are designed for
situations where positioning data are sampled on periods longer than about
thirty seconds. This number is somewhat arbitrary as authors consider various
thresholds. There are methods designed specifically for low-sampling-rate ap-
plications (Lou et al., 2009; Yang et al., 2005; Raymond et al., 2012; Zheng and
Quddus, 2011; Chen et al., 2011b) and also methods that try to be competitive
over the full range of sampling rates (Newson and Krumm, 2009; Hunter et al.,
2014).

The map-matching methods that are used for preprocessing in eco-routing are out-
door, vehicular, offline and high sampling rate methods. The methods that are used
for navigation are the same except online. In Kubička et al., 2017 the former is clas-
sified as tracking application and the latter as navigational application.

3.2.4 Early methods

Early methods are known as point-to-point, point-to-curve, or curve-to-curve. This nam-
ing convention was introduced by Bernstein and Kornhauser in “An Introduction to
Map Matching for Personal Navigation Assistants” in Bernstein and Kornhauser,
1996. The point-to-point matching matches each sample si to the nearest node in
V . The point-to-curve matches si to the nearest point on the nearest road in E. The
curve-to-curve method matches the trajectory s to the most similar route r in the
road network. An example of map-matching with these methods is in Figure 3.3. It
is based on the road network and the trajectory from Figure 3.2. In Figure 3.3a the
point-to-curve method matches trajectory samples (squares) to their respective clos-
est points on the road network (circles). In Figure 3.3b the curve-to-curve method
matches the geometric shape of a candidate path (blue curve) to the geometric shape
of the trajectory (red curve). Historically, the point-to-curve methods lead the devel-
opment of online map-matching while curve-to-curve methods lead the research on
offline methods.
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TABLE 3.1: Baseline matching accuracies

method performance1

point-to-curve 53− 67%
point-to-curve, considers heading 66− 85%
point-to-curve, enforces route contiguity 66− 85%
curve-to-curve 61− 72%

1 extracted from White et al. White et al., 2000

White et al., 2000 experimented with four basic map-matching methods. First
is classical point-to-curve, it ignores past samples and makes no effort to make the
resulting route contiguous. The second method is a modified version of the first one
where vehicle heading is taken into consideration. The third method is based on
the second but additionally considers road network topology. The fourth method is
the curve-to-curve matching. The results are summarized in Table 3.1. It was tested
on four routes; the worst-to-best performance range is reported for each. The per-
centage values represent the correctly matched samples with respect to the number
of samples in the trajectory. The authors found that the enhanced point-to-curve
methods perform better than curve-to-curve matching. They attributed it to high
sensitivity to outliers of the latter.

3.2.5 Geometric methods

Given some trajectory s the geometric methods search for the most resembling route
in the road network using some shape similarity metric δ. Consider R a set with
geometric shapes of all paths in G. Then, geometric methods search for a path in R
that maximizes similarity δ to the trajectory s. Hence, a generic model of geometric
methods reads

r = argmax
x∈R

δ(s, x) (3.4)

A typical application is in offline settings. This makes geometric methods suitable
for mapping and tracking. Online map-matching is possible but computationally
demanding. Sparsely sampled trajectories are challenging for these methods since
they are based on a hypothesis that the trajectory is geometrically similar to the cor-
rect route. The trajectory contains less detail when sampled sparsely. Nevertheless,
there are successful applications of geometric methods on sparse trajectories. This
is achieved by combining purely geometrical approach with heuristics that help to
resolve ambiguities.

Two similarity metrics received attention in the literature: the Hausdorff distance
and the Fréchet distance. Consider two polygonal curves A and B. The one-sided Haus-
dorff distance from curve A to curve B is defined as

δ′H(A,B) = max
a∈A

min
b∈B

d(a, b) (3.5)

where d(a, b) is the distance between a and b. The metric is either the Euclidean dis-
tance or the great-circle distance. The Euclidean distance is suitable on short ranges.
The great-circle distance is used when the curvature of Earth becomes a concern.
The Haversine or Vincenty’s formulæ can be used to compute it.

The Hausdorff distance δH is defined as the maximum of the two one-sided
Hausdorff distances:

δH = max(δ′H(A,B), δ′H(B,A)) (3.6)
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(A) correct route (B) incorrect route

FIGURE 3.4: An example of sensitivity to outliers with Fréchet dis-
tance based geometric map-matching: both routes have the same
Fréchet distance δmin to the trajectory (originally printed in Kubička

et al., 2017).

Its computation on polygonal curves is straightforward from the definition inO(nm)
time, with n being the number of samples in the trajectory and m the number of
nodes in the route. The asymptotic run time O((n+m) log(n+m)) can be achieved
if Voronoi diagrams are used to answer the nearest neighbor queries faster (Alt and
Guibas, 1999).

The Hausdorff distance ignores the course of the two curves. Consider two mu-
tually overlapping curves in a reversed order (i.e. for curve A = (a1, a2, . . . an) the
B = (an, an−1, . . . , a1)). The Hausdorff distance between them is zero by definition.
Consequently, a map-matching method that uses the Hausdorff distance cannot dis-
tinguish between two routes that go on the same roads in the opposite direction. In
general, any two curves that occupy the same area can have small Hausdorff dis-
tance even if the two shapes are wildly different. See Figure 3.5 for one such exam-
ple. This is why the Hausdorff distance is seldom used in geometric map-matching.

The Fréchet distance is more common. It was introduced in Maurice Fréchet’s
thesis “Sur quelques points du calcul fonctionnel” (Fréchet, 1906). The definition
reads

δF (f, g) = inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))) (3.7)

where f , g are parametrizations of the two curves (f, g : [0, 1] → R2) and α, β are
continuous, monotone, increasing reparametrizations (α, β : [0, 1] → [0, 1]). The
reparametrization functions are introduced to enforce continuous and monotoni-
cally increasing parameters for f and g. Famous illustration goes as follows: sup-
pose a man is walking his dog, both the man and the dog walk along their own
trajectory. The maximum length of the leash is then equal to the Fréchet distance
between trajectory curves of the man and his dog.

Map-matching methods based on both Hausdorff and Fréchet distances are sen-
sitive to outliers. This is due to the maximization operator in definitions (3.6), (3.7).
See Figure 3.4 for an example. The Figure 3.4a shows the trajectory and correctly
matched route. Figure 3.4b shows incorrectly matched route. Both routes have the
same Fréchet distance δmin to the trajectory due to an outlier in another part of the
trajectory (the sample s11; see Figure 3.2c). Since both these routes have minimal
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FIGURE 3.5: Two curves and their Hausdorff distance. The δH indi-
cates the Hausdorff distance in scale (adaptation of example given by

Alt and Godau, 1995, originally printed in Kubička et al., 2017).

Fréchet distance to the trajectory the map-matching algorithm is by definition (3.4)
indifferent between them. As can be seen in Figure 3.4b this can produce obviously
wrong matching.

In order to compute the Fréchet distance one has to identify the reparametriza-
tion functions α, β such that the maximum distance between the two curves f , g is
minimized. This has proven difficult, no algorithm for continuous curves has been
found (Alt and Guibas, 1999). Alt and Godau, 1995 discovered an algorithm to com-
pute the Fréchet distance between two polygonal curves. It runs inO(nm log2(nm)),
where n and m are cardinalities of the two polygonal curves.

Cao and Wolfson, 2005 used the Hausdorff distance for “nonmaterialized trajec-
tory representation”. The authors formulate map-matching as a spatial mismatch
correction problem and assume that the vehicle is always on the road to solve it.
Their algorithm adjusts the trajectory to the road network such that the Hausdorff
distance between the route and the trajectory is minimized. The strength of their
contribution is that their solution is exact with respect to their problem formula-
tion, however, practical application is likely to be limited due to properties of the
Hausdorff distance discussed above. The asymptotic complexity of the algorithm is
O(n|E|2), where E is the set of edges in the road network graph G.

Alt et al., 2003 published the first map-matching method based on the Fréchet
distance. The authors first solve a decision problem whether δF (f, g) 6 ε, for some
ε > 0 and then use the solution to find minimal ε. The method is optimal in the
sense that it finds a route whose Fréchet distance to the trajectory is minimal. Nev-
ertheless, if there are outliers in the trajectory, then there can be multiple routes with
minimal Fréchet distance as discussed above. The computational demand on rea-
sonably sized maps is high since the algorithm runs in O(n|E| log(n|E|) log(|E|))
time.

Brakatsoulas et al., 2005 followed on the work of Alt et al. and introduced a
weak Fréchet distance in attempt to deal with the high computational demand of the
original. The weak Fréchet distance2 is a relaxed version of the Fréchet distance that
does not impose the non-decreasing property on reparametrizations α(·) and β(·). It
is asymptotically faster (runs in O(n|E| log(n|E|)) time) and, according to authors,
produces results same as (3.7), most of the time. This, however, is not guaranteed.
It is possible to find two curves whose weak Fréchet distance is different from the
Fréchet distance.

Another proposition to solve the map-matching problem using the weak Fréchet
distance is by Wenk et al., 2006. Their Adaptive Clipping algorithm speeds up the
weak Fréchet distance computation. The asymptotic run time is slightly worse than
the run time of the method proposed by Brakatsoulas et al., 2005. The authors report
that average run time is reduced significantly.

2In some sources referred to as nonmonotonic Fréchet distance.
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Further speed up of the Fréchet distance computation was reported by Chen
et al., 2011a (co-authored by Driemel and Wenk). The authors extend the results
of Driemel et al., 2012 for Fréchet distance approximation in near linear time. The
authors report speed up with respect to Alt et al., 2003 on the order of 103, in some
cases.

Wei et al., 2013a revisited the problem with the sensitivity to outliers. The au-
thors first find all routes with minimal Fréchet distance to the trajectory. If there is a
unique solution, then it is returned as a correct match. A fitness function is used to
find the most likely match if there are multiple solutions. Its performance depends
on the choice of the fitness function. It is often based on empirical formulas that
can be biased to work in the environment they were identified in. Still, this is a so-
phisticated approach with outlook to perform well in terms of accuracy and speed
if used in conjunction with near linear time approximation of the Fréchet distance
(proposed by Driemel et al., 2012 and adapted for map-matching by Chen et al.,
2011a, see above).

In summary, Alt et al., 2003 pioneered the geometric map-matching with their
method to compute the Fréchet distance. The authors Brakatsoulas et al., 2005, Wenk
et al., 2006 and Chen et al., 2011a contributed to significant advances in lowering the
computational requirements of the Fréchet distance based map-matching. However,
sensitivity to outliers, which is the main drawback of this technique, remained un-
resolved. Wei et al., 2013a introduced a combined approach that uses a heuristic
fitness function to solve this issue.

3.2.6 Multiple hypothesis technique based methods

The Multiple hypothesis technique (MHT) was originally developed for object track-
ing. A number of its variations were used in the context of map-matching as well.
Multiple hypothesis methods make use of road network topology to infer where the
vehicle might have gone from its prior positions. This has a number of advantages:
it enforces route contiguity and it allows recursive solution to the map-matching
problem. However, the set of hypotheses can grow exponentially in worst case.

As the name suggests, these methods maintain a set of hypotheses. The term hy-
pothesis is used as a synonym to any candidate route under consideration. A set
of seed hypotheses is generated from the first sample, usually with point-to-curve
method. Then as further samples arrive the method updates its set of hypotheses
and estimates the likelihood of each being the correct route. The updating process
consists of hypothesis branching and hypothesis pruning. Hypothesis is branched when
the vehicle arrives at an intersection: the original (parent) hypothesis is replaced
with new (child) hypotheses. Each child is a clone of the parent extended into one of
the directions the vehicle can take on the intersection. This guarantees that there will
always be a hypothesis spanning the whole trajectory. Hypothesis pruning is used
to remove outdated hypotheses. Three pruning criteria are currently used by au-
thors: (1) limit the maximum number of hypotheses; (2) threshold likelihood scores;
(3) keep only those hypotheses that lead close to latest position.

The multiple hypothesis paradigm is recursive: partial results can be obtained
before the trajectory is fully processed. Each sample can be processed in time that
scales linearly with the number of hypotheses, while the number of hypotheses is
usually kept low due to hypothesis pruning. These properties make it particularly
suitable for online map-matching and navigational applications. Another advantage
is that basic failure detection is implicit: if there are no hypotheses then a failure must
have occurred.
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Pyo et al., 2001 designed a method for robust online map-matching. The authors
derive the probability of each hypothesis using the Bayes rule, asserting all hypothe-
ses to be true and then computing probability of the assertion being correct for each.
The pruning is done by thresholding the probabilities: the hypothesis gets pruned
if it gets below some predefined threshold. The authors also threshold the proba-
bilities to decide whether the hypothesis is tentative or confirmed. This serves as
simple integrity monitoring. Finally, authors always add an “off road” hypothesis
between the candidates to account for the case when the road is missing in the map.
The method was validated in a field test. The authors used GPS augmented with
deduced reckoning based on a gyroscope and odometer. The method have failed
to decide on correct matching in 4-12% cases depending on the context, but no mis-
matchings were observed. It also failed to identify off road condition 17% of time,
but it never matched the trajectory to incorrect road.

Marchal et al., 2005 developed a simple and fast Multiple hypothesis technique
based method for offline map-matching. The authors use simple scoring based on
the distance between individual samples and their matched counterparts on the hy-
pothesized routes. The hypotheses are branched when the vehicle gets to the second
half of current road. The list of candidate hypotheses is trimmed to N most likely
hypotheses, where the N is chosen experimentally. The hypothesis with the highest
score is returned as the matched route. The method was validated in a field test. The
authors report that 3.3% of the samples were matched to roads more distant than
accuracy of the road network while computation time was 103 times faster than
sampling period of the GPS receivers. This method shows that interesting results
can be obtained fast and with relatively little effort. Schuessler and Axhausen, 2009
followed on work of Marchal et al. They observed that the original does not per-
form well when there are two parallel roads close to each other. They adapted the
scoring function such that differences between the vehicle speed and the speed limit
are punished with lower scores in response to that. They report that this helps to
discern position of the vehicle if the speed limits are different on two parallel roads.

Kubička et al., 2014 developed a method for online map-matching using Multiple
hypothesis technique. The authors use gating technique for branching and pruning.
The gate is defined as a spherical area around the latest reported position with ra-
dius larger than maximum positioning error. Hypotheses are branched whenever
an intersection is found within the gate and pruned whenever hypothesis drops out
from the gate. This guarantees that correct hypothesis will not get pruned. The
authors compare the travel distance reported by the positioning system with the
distance traveled along the hypothesized routes. The difference is considered in the
scoring function together with average positioning error between the trajectory and
the route. The method was validated in two short campaigns in rural and urban
environments. The authors did not observe any error on rural roads. In urban areas
they observed 0.5% samples temporarily mismatched on intersections.

3.2.7 HMM and CRF based methods

The map-matching based on Hidden Markov models received considerable atten-
tion in connection with tracking applications. The first method that uses it is by
Hummel, 2006. Over ten other methods were proposed since, many are well cited.
Majority of them is designed for offline map-matching. Online map-matching is pos-
sible, however the matching is usually limited to last few samples to reduce compu-
tational effort. This is known as the sliding window technique (Goh et al., 2012).
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(A) a road network (edges e1, e2, e3 are bidirectional)

(B) corresponding Markov model structure

FIGURE 3.6: Markov model structure according to Hummel, 2006 and
Pink and Hummel, 2008 (originally printed in Kubička et al., 2017).

To shortly review the classic theory, a Markov chain is a stochastic model of a
system that can randomly change state such that probability of the next state de-
pends only on the current state. The set of states is finite. It is often visualized
with a graph where nodes represent states and edges represent transitions between
them. Each state defines transition probability distribution over the set of states. It
describes the probability of transition from the current state to any other state. Hid-
den Markov model is a generalized Markov chain where current state is not directly
observable. The relation between observations and internal states is described using
emission probability distribution p(l|x). It is a conditional distribution that observa-
tion x was made due to the system being in state l. In the context of map-matching
the x is observed position while the l is the road on which the vehicle might have
been when the measurement took place. See Rabiner, 1989 for more information on
Hidden Markov models.

Most methods model emission probabilities with a model that considers only
the distance between the trajectory and the road. Positioning errors are assumed to
follow isoradial Gaussian distribution. Probability p(x|l) (not to be confused with
p(l|x)) of observing some position x given that the vehicle is on road l is

p(x|l) ≈ 1

σ
√

2π
e
−d2
2σ2 (3.8)

where d is minimum distance between observation x and any position on the road l.
The emission probability p(l|x) can be computed using Bayes rule. It simplifies to

p(l|x) =
p(x|l)p(l)

nl∑
k=1

p(x|k)p(k)

(3.9)

where nl is the number of roads in the road network and p(l) is the prior probability
of being on the road l (prior distribution). Most methods don’t have any upfront



44 Chapter 3. The state of the art

preference about the road on which the vehicle might be. If that is the case, then the
prior distribution is uniform over the set of candidate roads, i.e. p(l) = nl

−1.
With the Hidden Markov model set up, it can be used to perform inference on it.

The goal is to recover the most likely sequence of states (that is, the route r), given a
sequence of observations (that is, the trajectory s). The standard method to compute
it is with the Viterbi algorithm (Viterbi, 1967). Its asymptotic run time is O(nm2),
where n is the number of observations (trajectory samples) and m is the number
of states (roads). All map-matching methods discussed below have their run time
asymptotically dominated by the run time of the Viterbi algorithm.

Hummel, 2006 developed Bayesian classifier to match a single trajectory sample
and used the Hidden Markov model to identify the route with it. The method was
designed for online applications. Author identifies most likely road on which the
vehicle travels using a search for road that minimizes Mahalanobis distance δM

δM =

(
d

σd

)2

+

(
δφ

σφ

)2

(3.10)

where d and δφ are positioning and heading errors between the sample and the
road. Parameters σd and σφ are standard deviations in position and heading re-
spectively. The Hidden Markov model structure follows the structure of the road
network: Markov states represent roads and transitions represent the turns the ve-
hicle can take on an intersection. Transition probabilities are distributed uniformly
between the turns the vehicle can make on intersections. See Figure 3.6 for compar-
ison between the road network graph and corresponding Hidden Markov model.
Note the self-transitions on each state, it allows the vehicle to stay on the same road
for a time. The dependence on vehicle heading makes this method robust, but it can
have the opposite effect in some situations:

• Uncertainty in heading can be significant when moving slowly.

• The heading errors can be artificially high (up to 45 degrees) when performing
a sharp turn on an intersection.

The method was validated with field test in urban environment. Duration of the test
was roughly four hours. The trajectories were collected using a low cost GPS receiver
at 1 Hz sampling rate in Karlsruhe, Germany. All trajectories were matched correctly,
although authors report that 0.4% of samples were temporarily mismatched. These
errors occurred in short duration until belief in correct route built up sufficiently.
They can be considered as mismatches in online map-matching, but they bear no
consequence in offline map-matching.

Pink and Hummel, 2008 extended results by Hummel, 2006. The authors intro-
duced a number of innovations with respect to the original method. They prepro-
cessed the trajectory using a Kalman filter in order to suppress outliers. Another
innovation was in road network modeling: authors used cubic spline interpolation
to generate continuous curved path. It models the shapes conventional vehicles nor-
mally follow. This was motivated by the problems with the sensitivity to heading
of (3.10). This method is designed to be robust against positioning errors, however,
authors do not consider trajectories with missing samples due to lacking satellite
signal. This makes it suitable to mapping applications as its positioning systems are
usually designed to provide position fixes without interruption.

Krumm et al., 2007 developed offline map-matching method that constrains the
solution to those routes whose expected travel time is congruent with observed
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(A) situation

(B) corresponding Hidden Markov model

FIGURE 3.7: Hidden Markov model according to Krumm et al., 2007
and Newson and Krumm, 2009. An example. (originally printed in

Kubička et al., 2017).

travel time. The authors used a novel structure of the Hidden Markov model to
achieve this. Instead of recycling road network topology as Hummel did, Krumm
et al. builds his Markov model from trajectory data. See Figure 3.7 for an example.
A set of states that represents possible positions of the vehicle is created for each
sample. Let us denote this set Pi for sample si and let us denote j-th matching in Pi
as pij . The authors allow only transitions from positions in the set Pi to the set Pi+1.
The transition probability from some pij ∈ Pi to p(i+1)k ∈ Pi+1 is estimated accord-
ing to the agreement between observed and expected travel times. The observed
travel time is the time difference between the two samples. The expected travel time
is estimated using the average speed along the roads on the shortest path between
the two candidate positions pij and p(i+1)k. Emission distributions are based on the
model (3.9). The authors have shown on numerous examples that their method is
able to deal with difficult matching scenarios but did not quantify its performance.

Newson and Krumm, 2009 argued that estimated travel time might be affected
by immediate traffic on the road. They addressed this issue and extended the method
of Krumm et al., 2007. They changed the way transition probabilities are modeled:
instead of working with travel times authors make use of distances. They com-
pare the great-circle distance between two consecutive samples with the distance
along the road network. The routes with minimal difference between the two are
preferred. Another novelty introduced by the authors is preprocessing. They down-
sample the trajectory such that samples within two standard deviations from the last
accepted sample are ignored. Median absolute deviation (Hampel, 1974) is used to
estimate the standard deviation. It is a robust measure of variability in univariate
dataset defined as

MAD = medi |Xi −medj(Xj)| (3.11)

where X is the dataset whose variability is to be estimated. It has to be scaled in
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order to obtain consistent estimator of standard deviation. This depends on dis-
tribution type. The authors assumed the positioning error follows the Gaussian
distribution for which σ ≈ 1.4826MAD. They tested the method on 80-kilometer
trajectory collected in Seattle, US. The performance was evaluated in novel way by
comparing total length of the roads that were matched incorrectly to length of those
matched correctly. The error is computed as

e =
d+ + d−

d0
(3.12)

where d0 is the length of correctly matched roads, d+ the length of mismatched roads
that were added to the route and the d− length of mismatched roads that were miss-
ing in the route. The authors report no errors on sampling periods shorter than 30
seconds. Wei et al., 2013b tested this method independently and observed 98.5%
matching accuracy on one-second sampling period and 95% matching accuracy on
a 60-second sampling period.

Hunter et al., 2014 developed a “Path inference filter”. The authors show that
map-matching based on Hidden Markov models is subject to selection bias and pro-
pose the Path inference filter as the solution. It is based on Conditional random
fields, a generalization of Hidden Markov models. The authors build directed graph
with similar structure as the model used by Krumm et al. (Figure 3.7b). A set Pi of
candidate positions on the road network is created for each sample si in the tra-
jectory. Each candidate position pij ∈ Pi has assigned a score that represents the
likelihood that vehicle was in position pij when si was observed. The probabilistic
model (3.9) is used for this. The authors create edge for each path the vehicle can
take between each pair pij and p(i+1)k in Pi × Pi+1. Each such path has assigned
score according to a driver model that represents the likelihood that vehicle took this
path. The number of paths for each pair in Pi × Pi+1 is upper bounded by speed
limits on the roads in question. The authors list all complete paths in this graph
(candidate routes from origin to destination) and define potential of each as a prod-
uct of the scores of the candidate positions and of the candidate routes between
them. The potential function becomes probability mass function when normalized
to one. With normalized potentials authors use the Viterbi algorithm to identify the
most probable route. The Path inference filter was primarily developed for track-
ing applications. The authors report that it stays competitive over the full range of
sampling rates. Testing has shown ability to match all routes correctly on trajecto-
ries with high sampling rates and 75% of the trajectories with two minute sampling
period. This method is computationally demanding in both memory and time.

3.2.8 Map-matching integrity

Correct map-matching is not always possible when there is serious incongruence be-
tween the trajectory and the road network or when the situation is ambiguous. The
reliability of map-matching in such situations is questionable. Hence, some map-
matching methods perform integrity monitoring to report on the reliability of its out-
put. This is often critical, especially in applications related to safety and electronic
fee collection. The term integrity monitoring was imported from aerial navigation
where integrity monitoring is used to verify reliability of satellite navigation based
position fixes. Integrity monitoring in context of map-matching can be formulated
independent of the matching method. It takes the trajectory, the road network and
sometimes the map-matching output as input and provide integrity indicators that
indicate how reliable the map-matching output is.
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Integrity monitoring performance is typically evaluated with overall correct de-
tection rate derived from counts of missed detections and false alarms. The results
are sensitive to selected alarm levels against which the integrity indicators are com-
pared. The sensitivity of the monitoring system is determined with them. They
should be set experimentally such that both missed detections and false alarm oc-
curences are kept at minimum. There is a trade-off: too many false alarms are due to
high sensitivity while too many missed detections are due to low sensitivity. Note
that in the context of map-matching there can always be unobservable missed detec-
tions since both positioning and road network errors are not bounded. Seemingly
congruent scenarios where trajectory is aligned with the wrong roads can theoreti-
cally be observed. It implies that there can never be any kind of guarantee that the
matching is correct.

First mention of map-matching integrity was in Quddus’s thesis (Quddus, 2006)
and in publications published during its preparation. Author proposed a method
that uses uncertainty in position, distance error and heading error to produce heuris-
tic integrity indicator based on Fuzzy inference system. Author validated his in-
tegrity monitoring with three map-matching methods and reports correct detection
rate of at least 91%, missed detection rate below 8.5% and false alarm rate below
10.1%.

Velaga, 2010 developed integrity method based on the work by Quddus. Author
uses two Fuzzy inference systems: one is used when RAIM (receiver autonomous
integrity monitoring) labels positioning fix reliable and other when not. Reported
missed detection and false alarm rates are both below 1%. This gives overall correct
detection rate over 98%.

Li et al., 2013a (co-authored by Quddus) proposed a tightly-coupled integrity
monitoring for map-matching. The authors review drawbacks of classical RAIM
when used in the context of map-matching and then propose an integrated naviga-
tion system with adapted RAIM functionality that is better suited for this task. The
navigation system integrates information from GNSS, gyroscope and digital eleva-
tion model. The integration is achieved using extended Kalman filter. Uncertainty
in measurements and related filter residuals are then used in the adapted RAIM to
compute the horizontal protection level (HPL). The authors tested their solution in
urban and suburban field trials. They report both false and missed detection rate
less than 0.1% with 99.83% overall correct detection rate. These are excellent results,
however, specialized navigation system with a gyroscope and GNSS receiver that is
able to report raw pseudorange measurements is required.

Jabbour et al., 2008 proposed a multiple hypothesis technique based method and
presented a simple integrity method with it. The authors use two integrity indica-
tors: (1) the number of effective hypotheses,Neff, and (2) the “normalized innovation
squared”, NIS. The Neff is the number of hypotheses with high likelihood of being
correct and the NIS is similar to Mahalanobis distance between the trajectory sample
and its matching in position and heading. The authors conducted a field trial with a
navigation system based on GPS, odometer and fiber-optic gyroscope. Overall cor-
rect detection rate over 88.8% was reported. An adaptation of this integrity method
was later used by Bonnifait et al., 2009.

Toledo-Moreo et al., 2010 proposed lane-level map-matching method with in-
tegrity monitoring. This solution uses an integrated navigation system based on
GNSS, odometry and gyroscope. The lane-level matching is enabled via novel road
network model named eMap (enhanced map). The eMap models lane shapes as a
clothoids (also known as Euler Spirals). Since clothoids are used in highway en-
gineering authors argue that similar mathematical structures can be expected to
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emerge in sampled trajectories. The map-matching algorithm is based on a Particle
filter. Two integrity indicators are used: (1) lane occupancy probability (µLO) and
(2) lane position protection level (LPPL). The µLO is a sum of normalized particle
weights that occupy the matched lane and LPPL is positioning protection level anal-
ogous to horizontal protection level (HPL) used in the classical RAIM. The authors
tested their method in three short field trials. Reported overall correct detection rate
ranged from 98.7% to 99.2%. The missed detection rate was in range from 0% to
1.2%. The false alarm rate ranged from 0.7% to 1.7%.
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Chapter 4

Problem definition & analysis

This chapter defines the general eco-routing problem and the eco-routing perfor-
mance. It is then used to measure the performance of three eco-routing methods,
two of which were proposed in the literature. This establishes a baseline for the eco-
routing method proposed in later chapters. The observed performance figures are,
in some cases, negative which implies that some of the tested eco-routing methods
do not save energy. It is rare to see such a result reported in the literature. This
motivated a closer look at the used evaluation methodologies, which revealed that
the prevalent method is not capable of observing negative savings by design. The
problem is that the same consumption (or pollutant emission) model is used for both
routing and evaluation. Not only that such evaluation will necessarily result in non-
negative savings, but it is also shown to be prone to result in inflated eco-routing
performance figures.

The used definition of eco-routing is general enough to apply to all eco-routing
methods reviewed in Section 3.1. It supports time-dependent eco-routing as well
as constrained eco-routing. The cited works don’t formally define eco-routing per-
formance; authors typically report average observed savings instead. The definition
used in this work allows comparison between multiple methods. It makes the ability
of eco-routing to save costs measurable.

The study of the baseline methods is an updated version of Kubička et al., 2016b.
The publication is based on an older version of the traffic scenario where the simu-
lations were conducted.

4.1 Problem definition

Consider a road network graph G = (V,E), where nodes n ∈ V represent roads and
edges e ∈ E represent connections between them. The Figure 4.1 illustrates this. It
shows the relation between a road network (Figure 4.1a) and the corresponding road
network graph G (Figure 4.1b). The nodes are shown as circles, the edges as arrows.
There are fifteen nodes n1 to n15 representing the roads in the road network. The
edges (arrows) spanning from nodes indicate to which nodes (roads) can the vehicle
turn to at the downstream intersection.

Let each edge e = (n1, n2) ∈ V × V have assigned a column vector ce(t) ∈ Rk
with routing costs. Consider a path p = (e1, e2, . . .) in G. Let the cost of this path
be denoted F (p, t) for departure at the time t and defined as the sum of costs on
individual edges along p.

F (p, t) =
∑
e∈p

ce(t+ λe) (4.1)

where λe is the travel time from the origin to the edge e. Let also D(p) be the length
of the path p and T (p, t) the travel time on a path p when departed at some time t.
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FIGURE 4.1: The relationship between the road network and the road
network graph.

Let le be the length of road e and τe(t) the travel time on e if arrived there at time t,
then

D(p) =
∑
e∈p

le (4.2)

T (p, t) =
∑
e∈p

τe(t+ λe) (4.3)

Note that T (p, t) could also be defined directly with λe. The used formulation has
the advantage of highlighting the similarity between (4.3) and (4.1).

Let P be a set of all simple1 paths in G. Let a column vector w ∈ Rk be weights
of individual costs and let C ∈ Rk be constraints on F (p, t). Let o ∈ E be the origin
edge and d ∈ E the destination edge. Then, the eco-route pe = (e1, . . . , en) of length

1Simple path is a path without cycles: its edges are distinct
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n is defined as the solution to the optimization problem

pe(o, d, t) = argmin
p∈P

wTF (p, t)

s.t. e1 = o
en = d
C − F (p, t) > 0

(4.4)

This model is general enough to cover most, if not all, eco-routing applications.
The classical minimum distance and minimum time routing are its special cases. Its
distinctive feature is that it is fully time-dependent: the costs are allowed to change
in time. It also allows combining multiple costs according to a given linear weighting
scheme, provided that the costs satisfy the additivity criterion imposed by (4.1). The
consumption, pollutant emissions, travel time, travel distance, and possibly other
costs can be minimized simultaneously. For example, it can be used to penalize
paths with excessive pollutant emissions or prolonged travel times. The constraints
can be used to impose limits on any of the costs. Some existing applications con-
sider consumption minimization with a constraint on maximum travel time (like
Juřík et al., 2014), but other applications are possible. For example, one can limit
pollutant emissions or consider only paths that do not require battery recharging
(respectively refueling) before reaching the destination. The model also allows to
limit or completely disallow passing through certain areas at certain times. For ex-
ample, one can disallow routing around schools in the time when the children are
there.

4.2 Eco-routing problem as modeled in literature

Most eco-routing methods discussed in Chapter 3 are similar: they consider only a
single cost to minimize, do not impose any constraints and assume that the cost is
time independent. Let us consider a reduced version of the optimization problem
(4.4) that reflects this. Let the eco-route pe be defined as the solution to the following
variant of the problem (4.4)

pe(o, d) = argmin
p∈P

F (p)

s.t. e1 = o
en = d

(4.5)

where the path cost F is a scalar (since there is only one cost to minimize) and with-
out the dependency on the time of departure. This model is optimal under the as-
sumption that the costs ce are known exactly and constant over time.

Note that while this model is commonly used in the literature, there are excep-
tions. For example Juřík et al., 2014 consider routing under a time-constraint and
Kluge et al., 2013 consider time-dependent routing. The model used by Juřík et al.,
2014 is reduced to (4.5) by setting the time constraint to +∞. The model by Kluge
et al., 2013 does not comply with (4.5).

To account for imperfections of current consumption (or pollutant emission) mod-
els let us also introduce an eco-routing model that has cost functions augmented
with random errors. Let ĉe be an estimate of cost ce defined as

ĉe = ce + δe (4.6)
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FIGURE 4.2: Experiment toolchain (simplified; originally printed in
Kubička et al., 2016b).

where δe ∈ R is an unknown estimation error. It is considered a random variable
with distribution specific to every edge e. No assumptions need to be made about
the random variable: it can have any mean, moments, variance and any distribution
shape. The estimated cost of some path p in G, denoted F̂ , is then

F̂ (p) =
∑
e∈p

ce +
∑
e∈p

δe (4.7)

and the estimated eco-route p̂e can be defined as the solution to

p̂e(o, d) = argmin
p∈P

F̂ (p)

s.t. e1 = o
en = d

(4.8)

4.2.1 Eco-routing performance

Eco-routing performance is defined in this section as a quantity that summarizes the
ability of an eco-routing method to save costs. Let pref(o, d) : V ×V → P be reference
paths to which costs on eco-routes are compared. The reference paths considered in
this work are shortest and fastest paths. Let Vod be a set of pairs (o, d), where o ∈ V
is origin and d ∈ V is destination. The performance P of eco-routing pe with respect
to pref on the set of trips Vod is defined as

P = 1−

∑
(o,d)∈Vod

F (pe(o, d))∑
(o,d)∈Vod

F (pref(o, d))
(4.9)

where the numerator is the sum of costs on eco-routes between all origin-destination
pairs in the road network graph, and the denominator is an analogous sum of costs
on the reference paths. It summarizes the ability of the eco-routing method to lower
costs with respect to the reference paths.

Consider also a performance for the problem (4.8). Distinct formulation is needed
as this model uses path cost function F̂ rather than F . Let the estimated performance
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P̂ be defined as

P = 1−

∑
(o,d)∈Vod

F̂ (p̂e(o, d))∑
(o,d)∈Vod

F̂ (pref(o, d))
(4.10)

The important thing to notice with P̂ is that F̂ uses internally costs ĉe, which are also
used by p̂e for eco-routing. In another words, the same costs are used for routing and
evaluation of the eco-routing method. These costs have perfectly correlated errors
in both cases. Most methods in published literature were evaluated in this way. The
Section 4.4 discusses in detail the drawbacks of this methodology.

The performance as defined is not the mean savings. The mean savings are
always reported together with performance in this work. The evaluation of eco-
routing methods is, however, based on a comparison of their performances and not
the mean savings. This is because the performance summarizes the actual savings
on all trips from the set of origin-destination pairs Vod, while the mean savings only
describe their central tendency.

Note that performance is also evaluated on time-dependent methods in this work.
The given definitions of performance do not consider their departure time. It does
not need to be considered as another variable since all experiments were conducted
at the same (known) departure time.

4.3 Performance of current methods

We have studied the performance of current eco-routing methods in Kubička et al.,
2016b. This section presents an updated version of the experiment from this paper.
It is based on LuST traffic scenario version 2. The original results are based on LuST
1.1. For more information on LuST see Chapter 7.

The toolchain used to conduct the experiment is depicted diagrammatically in
Figure 4.2. The methodology is discussed in detail in Chapter 7. The experiments
were conducted within a traffic simulation of a real European city (Luxembourg).
The departure time was set to midnight.

Three time-independent unconstrained eco-routing methods were studied. Their
implementation is discussed in Section 8.1. The routing was done with Dijkstra’s al-
gorithm. Two methods used consumption models proposed in the literature (Barth
et al., 2007, Juřík et al., 2014). The third method used the mean energy consumption
(abbrev. MEC). It assigns a cost to each edge according to the mean observed con-
sumption there. Note that all three consumption models were tested in two variants:
with an electric vehicle and with a conventional vehicle. Microscopic consumption
estimation models of these vehicles were used to compute reference consumption.
They are introduced in Section 7.2.

The goal is to evaluate performances P and P̂ . A set of 60,478 origin-destination
pairs was extracted from scenario’s trip origins and destinations. This constitutes
the set Vod on which the performance is evaluated. Eight paths were computed be-
tween each origin and destination: three eco-routes according to Barth et al., 2007,
Juřík et al., 2014 and MEC model for both electric and conventional vehicles plus
shortest and fastest paths as references. A vehicle traveling on each of these paths
was tried in the simulation. Vehicle speed profiles were collected and used to es-
timate consumption with the reference consumption models. Note that the study
considers energy consumption even the conventional vehicle consumes fuel rather
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FIGURE 4.3: Distribution of savings relative to fastest paths.
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TABLE 4.1: Routing results.

wrt fastest wrt shortest
EV† (%) ICEV‡ (%) EV† (%) ICEV‡ (%)

P
Barth et al., 2007 26.7 20.1 -8.0 -3.2
Juřík et al., 2014 29.7 18.8 -3.5 -4.9

MEC model 34.5 24.7 3.6 2.8

P̂

Barth et al., 2007 7.2 7.3 2.0 2.3
Juřík et al., 2014 50.9 53.4 2.2 2.7

MEC model 30.3 18.7 4.9 3.9

Probability of
failure

Barth et al., 2007 8.7 8.6 5.2 6.1
Juřík et al., 2014 24.5 30.4 30.0 36.9

MEC model 6.4 4.3 7.6 5.9

Eco-route
same as
reference

Barth et al., 2007 28.6 29.8 40.6 35.8
Juřík et al., 2014 9.4 8.7 37.6 32.2

MEC model 15.5 22.1 25.0 29.8

Mean savings
Barth et al., 2007 13.9 ± 0.18 11.1 ± 0.15 -5.6 ± 0.18 -2.2 ± 0.10
Juřík et al., 2014 13.7 ± 0.21 8.2 ± 0.17 -3.6 ± 0.07 -4.7 ± 0.07

MEC model 19.3 ± 0.19 14.6 ± 0.15 2.9 ± 0.06 2.4 ± 0.05

Mean travel
time delay

Barth et al., 2007 9.7 ± 0.14 8.9 ± 0.13 -5.9 ± 0.10 -6.4 ± 0.10
Juřík et al., 2014 28.0 ± 0.25 29.4 ± 0.26 8.4 ± 0.16 9.6 ± 0.17

MEC model 14.2 ± 0.18 11.4 ± 0.16 -2.5 ± 0.12 -4.9 ± 0.10
†

electric vehicle
‡

internal combustion engine (conventional) vehicle

than energy. Fuel consumption can be computed from energy consumption on the
basis of fuel’s lower heating value.

Each of the 60,478 resulting records contains the true2 consumption on the eco-
routes and the true consumption on the fastest and shortest paths. This allows gen-
erating a set of 60,478 observed savings for each eco-routing method. The computa-
tion took an equivalent of 1154 hours of computing time distributed on a computing
cluster.

The observed distributions of savings are shown in figures 4.3 and 4.4. For some
fixed origin, destination and time of departure let Ee be the consumption on the
eco-route, Es the consumption on the shortest path and Ef the consumption on the
fastest path. The Figure 4.3 shows the distribution of observed savings on the eco-
routes with respect to the fastest paths (the distribution of the ratios Ee/Ef ). The
Figure 4.4 shows the distribution of observed savings with respect to the shortest
paths (the distribution of the ratios Ee/Es). There are three curves in each plot, one
for each method. The area under the curves below 1.0 on the horizontal axis are
the cases when the eco-routing method saved some energy while the area under
the curve above 1.0 on the horizontal axis are the cases when the eco-route required
more energy than the reference path. These are the cases in which the eco-routing
method failed with respect to the reference. An exceptionally high probability of the
eco-route being identical to the shortest (or fastest) path was observed in the results.
This appears as a discontinuity in the distributions in Figures 4.3 and 4.4. It was
removed from the plots and reported in Table 4.1 where the results are summarized.

Correlations between observed and estimated consumptions are shown in Figure
4.5. Results for the electric vehicle are in Figure 4.5a, for the conventional vehicle in
Figure 4.5b. Each dot represents a single trip. The results are color-coded. The red
dots are for Barth et al., 2007, the green dots are for MEC model, and the blue dots

2The consumption estimated by the reference models is considered to be the true consumption.
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FIGURE 4.5: Correlation of estimated and reference consumptions.

are for Juřík et al., 2014. The reference consumption on the eco-route Ee (computed
with the reference consumption models) is on the horizontal axis while the estimated
consumption Êe is on the vertical axis. Perfect estimation would be achieved if all
dots were aligned on the black diagonal line. The dots above are the cases when the
consumption was overestimated, and the dots below it are the cases when it was
underestimated.

The results are summarized in Table 4.1. All fields are relative quantities (in
percent) with eco-routes being compared either to the shortest paths or the fastest
paths. Both reference consumption models (electric vehicle and conventional vehi-
cle; presented in Section 7.2) are shown. Hence, the last four columns in the table
are from left to right the results (1) for the electric vehicle with eco-routes compared
to the fastest paths; (2) for the conventional vehicle with eco-routes compared to
the fastest paths; (3) for the electric vehicle with eco-routes compared to the short-
est paths; (4) for the conventional vehicle with eco-routes compared to the shortest
paths. The 95% confidence intervals are listed for the mean values given in the table.
The table has six sections:

1. P and P̂ is the performance and estimated performance, respectively. The P is
the relative amount of energy saved on a typical trip, while P̂ is the estimate
of P when the same consumption model was used for the eco-routing and to
estimate the savings on the eco-route (see its definition given in Section 4.2.1).
Negative values indicate losses rather than savings.

2. “Probability of failure” is the sample probability that the eco-route is less eco-
nomical than the fastest (resp. shortest) path and that it requires longer travel
time than the fastest (resp. shortest) path.

3. “Eco-route same as reference” is the portion of cases for which the eco-route is
identical to the fastest (resp. shortest) path.

4. “Mean savings” is the average reduction of energy consumption on the eco-
route when compared to the fastest (resp. shortest) path.
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TABLE 4.2: Eco-routing evaluation techniques in literature.

Method Evaluation

Methods

Andersen et al., 2013 demonstration
Boriboonsomsin et al., 2012 macroscopic
De Nunzio et al., 2016 macroscopic
Juřík et al., 2014 demonstration
Kluge et al., 2013 macroscopic
Nie and Li, 2013 macroscopic
Yao and Song, 2013 macroscopic

Case studies

Ahn and Rakha, 2008 field trial
Ahn and Rakha, 2013 microscopic
Ericsson et al., 2006 macroscopic
Kubička et al., 2016b microscopic
Minett et al., 2011 field trial

5. “Mean travel time delay” is the average increase in travel time on the eco-route
when compared to the fastest (resp. shortest) path.

The MEC-based eco-routing shows the highest performance P in all categories.
While all three methods manage to save energy (or fuel) when compared to the
fastest paths, the MEC-based eco-routing is the only one which manages the same
when compared to the shortest paths. The other methods show performance inferior
to shortest paths. The performance is in five out of six cases higher for the electric
vehicle. This is likely because the electric vehicle has simpler powertrain than the
conventional vehicle (fixed gearing, electric motor instead of the internal combus-
tion engine). The probability of failure is less than 9% in all cases for MEC-based
eco-routing and Barth et al., 2007. However, Juřík et al., 2014 shows the probabili-
ties of failure between 24% and 37% depending on the case. This corresponds with
distributions in Figures 4.3 and 4.4 where Juřík et al., 2014 shows heaviest right tails
among the three methods in all four cases. The mean travel time delay is higher
when comparing it to the fastest paths, which is to be expected. With respect to the
shortest paths, the method by Barth et al., 2007 and MEC-based eco-routing show
negative mean travel time delays. This implies that the eco-routes save travel time
on average when compared to the shortest paths.

The Juřík et al., 2014 is the most practical method. There is no need to fit any
coefficients. The Barth et al., 2007 requires a set of prerecorded trips. The MEC
model requires a large amount of data from identical vehicles, which makes the
feasibility of its deployment in a real-world application doubtful. To summarize,
there seems to be inverse proportionality between the feasibility of the method and
its performance since the less feasible methods have shown higher performance.

4.4 Conditions under which methods overestimate own per-
formance

The methodology used to evaluate several published eco-routing methods is ques-
tioned in this section. The methodologies used in the literature are listed in Table
4.2. There are four approaches:

• Demonstrations are used to show savings in a few specific instances. Authors
run their eco-routing method for a trip with chosen origin and destination and
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then report savings by comparing the consumption (or pollutant emission) es-
timates on the eco-route to consumption (or pollutant emission) estimates on
the shortest path or the fastest path. The same consumption (or pollutant emis-
sion) model is used for both eco-routing and the evaluation.

• Field trials are sometimes used to estimate savings in real traffic. Only lim-
ited campaigns were conducted in past as large-scale field trials are cost pro-
hibitive.

• Macroscopic evaluation is technically similar to the demonstration with the dif-
ference that the savings are estimated for a large number of trips, each with
a unique origin and destination. This allows to approximate eco-routing per-
formance for the method under study. The same consumption (or pollutant
emission) model is used for both eco-routing and the evaluation.

• Microscopic evaluation is the method used in this work. It is done in a mi-
croscopic traffic simulator and with a microscopic consumption (or pollutant
emission) estimation model for evaluation. The eco-routes and reference (short-
est or fastest) paths are computed for a large number of trips, similarly like in
a macroscopic evaluation. All identified paths are then tried in a microscopic
simulation. Resulting speed profiles are used to estimate the “true” consump-
tion on these paths with a microscopic reference consumption (or pollutant
emission) model. They are used to obtain a reliable approximation of the per-
formance.

Note that all eco-routing methods in Table 4.2 in section “methods” use either
demonstration or macroscopic evaluation. The key observation is that these publi-
cations propose some consumption (or pollutant emission) model F̂ and then use it
both for eco-routing and its evaluation. Such evaluation can never result in nega-
tive savings. Negative savings would be observed for a given trip if the consump-
tion (or pollutant emissions) would be higher on the eco-route than on the reference
(shortest or fastest) path. This can never happen in demonstrations and macroscopic
evaluations because the same model is used for eco-routing and the evaluation. The
cost estimation errors are perfectly correlated for the two tasks. If the reference path
would have lower cost, then it would have to be the eco-route as well, as follows
from the definition of eco-routing.

The P̂ models this: it is defined such that it uses cost F̂ to estimate performance
while in the same time it considers eco-routes based on eco-routing model (4.8) that
minimize the same cost F̂ . It is argued below that due to this the estimated perfor-
mance P̂ might also be higher than the actual performance P , under some condi-
tions.

From the cost function (4.7) it follows that the difference between F̂ and F is a
sum of random errors

F̂ (p)− F (p) =
∑
e∈p

δe (4.11)

which does not necessarily converge to zero in the long run. Let us denote average
of this error on eco-routes as χ and on reference paths as ψ. Let us also denote Pe
the set of studied eco-routes as Pe = {(o, d) ∈ E × E : p̂e(o, d)}. Similarly let Pref be
the set of all reference paths in the road network, Pref = {(o, d) ∈ E × E : pref(o, d)}.
Then,

χ =
1

||Pe||
∑
p̂e∈Pe

∑
e∈p̂e

δe (4.12)
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ψ =
1

||Pref||
∑

pref∈Pref

∑
e∈pref

δe (4.13)

where ||Pe|| and ||Pref|| are cardinalities of the sets Pe and Pref respectively.

Theorem 1. P̂ > P if χ < ψ, χ < 0, ψ 6= 0

Proof. Consider the relationship between P and P̂ . Let us suppose P = P̂ , then∑
o∈E

∑
d∈E

F (p̂e(o, d))∑
o∈E

∑
d∈E

F (pref(o, d))
=

∑
o∈E

∑
d∈E

F̂ (p̂e(o, d))∑
o∈E

∑
d∈E

F̂ (pref(o, d))
(4.14)

which can be rewritten in form

Fe
Fref

=
Fe +Kχ

Fref +Kψ
(4.15)

where K = ||Pe|| = ||Pref|| and Fe, Fref read

Fe =
∑
o∈E

∑
d∈E

F (p̂e(o, d)) (4.16)

Fref =
∑
o∈E

∑
d∈E

F (pref(o, d)) (4.17)

Provided that ψ 6= 0, it follows from (4.15) that P = P̂ if and only if

Fe
Fref

=
χ

ψ
(4.18)

Both Fe and Fref are positive. In terms of pollutant emissions, there cannot be
negative emissions. In terms of consumption, only the kinetic and the potential en-
ergy changes can contribute negatively to consumption. The kinetic energy is zero
when the vehicle departs from the origin, and when it arrives at the destination,
hence it cannot render consumption negative for the whole trip. The potential en-
ergy can make the consumption negative only if the origin is at a higher altitude
than the destination. The path consumption is lower-bounded by the potential en-
ergy difference between the origin and the destination. The potential energy is an
odd function of altitude. Since both Fe and Fref sum over all (o, d) origin-destination
pairs there is for any path from o to d the opposite path from d to o. It follows that if
consumption for a path from o to d is at least, say, c, then for a path from d to o it is
at least −c. Note that it does not matter which path the vehicle takes. Consequently,
the sum over all such paths is necessarily nonnegative. The only case when Fe or
Fref is zero is when F̂ ≡ 0, which can be rejected.

Consider Fe 6 Fref which implies that eco-routing performance P is positive
(some amount of energy is saved on a typical trip), or zero. It follows that Fe/Fref ∈
(0, 1]. Recall that χ < ψ, ψ 6= 0. Consequently, there can be three cases according to
the sign of χ and ψ.

χ < 0, ψ > 0 =⇒ χ

ψ
< 0 =⇒ Fe

Fref
>
χ

ψ
(4.19)

χ < 0, ψ < 0 =⇒ χ

ψ
> 1 =⇒ Fe

Fref
<
χ

ψ
(4.20)
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χ > 0, ψ > 0 =⇒ χ

ψ
∈ [0, 1] (4.21)

Immediate result is that P̂ 6= P in cases (4.19), (4.20). Only when χ is positive (4.21)
it is possible to have the equality. This case is ruled out by the conditions of the
theorem.

With χ < 0 the performance is necessarily overestimated. In case (4.19) it suffices
to convert to the form of (4.15) and substitute back. We obtain P̂ > P . In case (4.20)
we can follow the same steps, but when converting to the form of (4.15) we are forced
to multiply both sides by ψ, which is negative. The inequality gets switched, and the
same result follows: P̂ > P . This concludes our proof for the case when Fe 6 Fref.

Let us now consider Fe > Fref. Then the performance P is negative. It follows
that one can expect to actually lose energy on a typical trip. Observe that Fe +
χ 6 Fref + ψ. This can be shown by contradiction. Assume Fe + χ > Fref + ψ.
Then there must be at least one (o, d), o ∈ E, d ∈ E pair for which F̂ (p̂e(o, d)) >
F̂ (pref(o, d)). It comes from definition of model (4.8) that this can never be the case,
which contradicts the assumption. Consequently, Fe+χ 6 Fref +ψ. However, in the
same time Fe > Fref. In other words

Fe
Fref

>
Fe + χ

Fref + ψ
(4.22)

which yields P̂ > P : estimated performance P̂ is necessarily higher than reference
performance P when P is negative.

The Theorem 1 shows that the estimated performance P̂ is artificially high if its
conditions are satisfied. These conditions are not unrealistic:

• Condition χ < ψ: the average cost estimation error on eco-routes, χ, must
be less than average cost estimation error on the reference paths, ψ. There is
no apparent reason why commonly used reference paths (shortest and fastest
paths) should have lower than typical (in an average sense) cost estimation
error. On the other hand, there is such a reason for χ as it is based on eco-
routes: the cost F̂ on eco-routes is minimized by the eco-routing model (4.8).
Both actual path cost and the path cost estimation error are partially minimized
as can be seen from Equation (4.7). Hence, it is reasonable to assume that this
condition is easily satisfied. It is nevertheless possible to find a set of reference
paths Pref such that χ > ψ. Such is for example the set that minimizes ψ, or the
set Pref ≡ Pe.

• Condition χ < 0: As shown in the proof, P̂ = P is satisfiable if χ is non-
negative. Hence, the consumption (or pollutant emission) model F̂ must not
overestimate significantly for the Theorem 1 to apply. Slight tendency to over-
estimate can be tolerated (the ψ can be positive). It is reasonable to assume
that this condition is easily satisfied unless models that deliberately overesti-
mate are considered.

• Condition ψ 6= 0: This is required in Equation (4.18) as it is not defined for
ψ = 0. The likelihood of the average cost estimation error on reference paths ψ
being exactly zero is infinitesimal.

The studies that avoid these issues are by Ahn and Rakha, 2013 and Kubička et
al., 2016b. Both study eco-routing in a microscopic simulation with the evaluation
based on independent microscopic consumption models. Conducting such evalu-
ation is technically demanding. It requires microscopic traffic simulation software,
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sufficiently-sized traffic scenario and the simulation itself is computationally heavy.
For example, Kubička et al., 2016b report that their simulation took an equivalent of
559 hours of computation time. A technically easier way to estimate performance
might be to use a macroscopic model for evaluation that produces errors uncorre-
lated with the model used in eco-routing. The performance estimate is likely to be
less reliable, but it is free of the type of bias discussed above.

4.5 Summary

This chapter defines the eco-routing problem and the eco-routing performance. Two
published eco-routing methods together with one idealized method are studied to
establish a baseline to which the eco-routing method proposed in this work is later
compared. Then, an argument is made against eco-routing evaluation methodology
commonly used in the literature.

The eco-routing problem is defined in Section 4.1. It supports both constraints
and multiple time-dependent costs. The definition is general enough to apply to all
eco-routing variants in published literature and further allows variants that were
not yet considered. For example, it allows imposing limits on pollutant emissions
while minimizing vehicle consumption or to consider only paths that do not require
battery recharging (resp. refueling) before reaching the destination. The model also
allows to limit or completely disallow passing through certain areas at certain times.
For example, routing close to schools at the time when the children are there can be
disallowed for heavy polluting vehicles.

The Section 4.2 discusses eco-routing models used in published literature and
formally defines eco-routing performance. It summarizes the ability of an eco-routing
method to lower costs. The cost can be any of fuel consumption, energy consump-
tion, or pollutant emissions. The reference path is the path to which the eco-route is
compared to. In this work, the reference path is either the shortest path or the fastest
path.

The performance of three eco-routing methods (two of them published; Barth
et al., 2007; Juřík et al., 2014) is studied in Section 4.3. This is an updated version
of work we published during the preparation of this thesis (Kubička et al., 2016b).
An eco-routing framework that is presented in Chapter 7 is used to evaluate per-
formance of these methods. The performance of the two published methods was
negative when comparing the eco-routes to shortest paths. This implies that short-
est path routing is superior eco-router to the methods by Barth et al., 2007 and Juřík
et al., 2014.

While the evaluation of current eco-routing methods has shown negative sav-
ings, it is rare to see such a result reported in the published literature. A close look at
the evaluation methodologies used in the literature was conducted in Section 4.4. It
revealed that the prevalent method is not capable of observing negative savings by
design. The problem is that the same consumption (or pollutant emission) model is
used for both routing and evaluation. Not only that such evaluation will necessarily
result in nonnegative savings, but it is also shown in Theorem 1 to be prone to result
in inflated eco-routing performance figures.
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Chapter 5

Energy consumption and travel
time modeling

This chapter introduces a novel vehicle consumption model and a travel time model.
The consumption model is derived from a standard estimation model and adapted
for the needs of eco-routing applications. The standard formulation of this model
is reviewed in Section 5.1. Then, the model is reformulated to a form suitable for
eco-routing in Section 5.2. The model is solved in Section 5.3 for a special case of
a vehicle with lossless powertrain and perfect recuperation. It is used in Section
5.4 to derive a closed-form solution for a realistic vehicle. A travel time predictor
is proposed in Section 5.5. It is a simple model designed specifically to take into
account known traffic light periods. Pollutant emission models are not discussed
in this chapter. While they are essential for some eco-routing applications, they are
discussed in this work only to the point of how they can be incorporated into the
proposed eco-routing system.

The Section 5.1 is based mainly on Guzzella and Sciarretta, 2005. The content
of sections 5.2 to 5.5 is original. We have published the closed-form solution of the
longitudinal consumption for the lossless vehicle (the Section 5.3) during the prepa-
ration of this work, see Kubička et al., 2016a.

5.1 The longitudinal model of consumption

The longitudinal model is commonly used vehicle consumption estimation model
(see Guzzella and Sciarretta, 2005). This model ignores vehicle heading and losses
associated with it. It takes instantaneous vehicle speed and road slope as inputs to
estimate instantaneous propelling power. It is derived from Newton’s second law of
motion. Consider Fw to be the propelling force on wheels, Fres the equivalent force
with which the environment acts on the vehicle, m vehicle mass, v its instantaneous
speed and a its instantaneous acceleration. Then,

Fw − Fres = ma (5.1)

The instantaneous propelling power Pw and energy consumption Ew during a trip
of duration T read

Pw = (ma+ Fres)v (5.2)

Ew =

T∫
0

Pwdt (5.3)
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The Ew is the energy spent on vehicle’s propulsion, it does not account for its inter-
nal losses due to friction or heating, for example. A vehicle with no such losses is
considered an “ideal vehicle” in this work. It is discussed in Section 5.3.

The force Fres has various sources. The aerodynamic drag, rolling friction, road
slope and other factors contribute to it. Note that Fres can be negative in some cir-
cumstances, in which case it helps vehicle movement. It can be modeled analytically.
The standard formulation is a second order polynomial of instantaneous speed plus
losses dependent on road slope

Fres = cav
2 + cbv + cc +mg sin(α) (5.4)

where ca, cb, cc are the coasting coefficients, the g is the gravitational acceleration con-
stant and the α is road slope (assumed constant). The climbing losses are expressed
as a change in vehicle’s potential energy. This is derived from Newton’s laws of
motion. The coasting coefficients can be functions of many variables, depending on
how detailed the model is. For example, the aerodynamic drag depends on vehicle
shape and air pressure. Rolling friction depends on road pavement, tire pressuriza-
tion, precipitation and other factors. They are assumed constant in this work, as it
is often done in the literature (Guzzella and Sciarretta, 2005). They can be identified
experimentally by letting the vehicle slow down in coasting mode on a flat road (see
Section 5.1.1).

The vehicle’s energy consumption depends on how efficient the powertrain is.
The energy on wheels Ew does not account for internal losses in the powertrain
(e.g., the energy dissipated as heat). Consider P to be the power draw from vehicle’s
energy source and ηt(t) to be the instantaneous traction efficiency defined as

Pw = ηtP (5.5)

Then, ηt ∈ [0, 1] as long as both Pw and P remain positive and Pw < P (which is
always the case for a realistic powertrains). The trouble is that when the vehicle is
in the braking mode the Pw is negative as the power transfer is reversed: the vehicle
receives power. The ηt is not well defined in this situation. It can be either undefined
or larger than one depending on powertrain’s ability to recuperate. Consider then
also a recuperation efficiency ηr(t) to be the reciprocal of ηt(t)

P = ηrPw (5.6)

The commonly used formulation of consumption splits the consumption to the times
when the vehicle is in traction mode and the times when it is braking (Guzzella and
Sciarretta, 2005)

E =

∫
Pw>0

Pw
1

ηt
dt+

∫
Pw<0

Pwηrdt (5.7)

This formulation has a clear physical meaning and is well defined for (P, Pw) ∈ R2

and (ηt, ηr) ∈ [0, 1]2. Notice that if the vehicle is unable to recuperate then this can be
modeled with ηr ≡ 0. Also note that this form becomes equivalent to Ew for ηt ≡ 1
and ηr ≡ 1.

There are two ways how (5.7) can be used for eco-routing. Either it is used di-
rectly on a synthesized shape of the speed profile v(t), or reformulated in a closed
form. The latter approach is preferred in this work as it exposes what properties of
the speed profile are important and how they can be summarized. Indeed, the so-
lution identified in Section 5.3 requires only initial and final speeds (to account for
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FIGURE 5.1: Coasting speed on different road slopes.

the change in vehicle’s kinetic energy), initial and final altitudes (to account for the
change in potential energy) and the first three central moments of the speed profile.
Other parameters can be assumed to be known constants.

5.1.1 Traction versus braking mode

The threshold between the traction and braking modes depends on instantaneous
speed and road slope. This section discusses in detail where this threshold is and
what affects it. The vehicle is said to be in one of three modes: traction, braking, or
coasting. Which mode the vehicle resides in depends on Pw. For Pw > 0 the vehicle
is in the traction mode: it is giving away power. For Pw < 0 the vehicle is in braking
mode: it is receiving power. The received power can be recuperated or turned to
heat in friction brakes. For Pw = 0, the vehicle is in coasting mode. Typically, the
vehicle slows down and reaches the full stop in a finite amount of time. However, it
is also possible that the vehicle will accelerate due to gravitational pull if the road is
sloped.

The coasting acceleration can be obtained by solving (5.1) for acceleration with
Fw = 0 (which implies Pw = 0)

ac = −Fres

m
(5.8)

where ac is the coasting acceleration. The equation is a nonlinear Ricatti differential
equation. In its full form

m
dvc
dt

= −cav2
c − cbvc − cc +mg sin(α) (5.9)

where vc is coasting speed. Assuming that the road slope α is constant the equation
can be solved by direct integration for coasting speed vc > 0

vc(t) =
1

2a

[
tan

(
arctan

(
b+ 2avc(0)

∆

)
+

∆

2
t

)
∆− b

]
(5.10)
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where a = − ca
m , b = − cb

m , c = − cc+mg sin(α)
m and ∆ =

√
−b2 + 4ac.

The solution (5.10) is plotted in Figure 5.1. It shows a vehicle in coasting mode for
initial speeds from the set {10, 30, 50, . . . , 190} km/h on roads with various slopes.
The vehicle-specific constants were taken from Table 7.2: ca = 0.4212 N/(m/s)2,
cb = 0.774 N/(m/s), cc = 113.5 N, m = 1190 kg. Note that a vehicle going downhill
(Figure 5.1b) will accelerate until an equilibrium state where Fres = 0 is reached.

5.2 The longitudinal model adapted for eco-routing

This section proposes a reformulation of (5.7) suitable for prediction. The (5.7) is a
functional of vehicle speed v(t) and road slope α(t). It is useful for consumption
estimation, but not for prediction since the kind of information that is required is
not available at the trip planning stage. The instantaneous efficiencies ηt and ηr are
replaced with overall efficiencies ηt and ηr and taken out of the integrals. The inte-
grals of instantaneous power are rewritten as energy on wheels Ew and as braking
energy Eb.

Let Eb be braking energy defined as the total energy returned to the vehicle.

Eb =

∫
Pw<0

Pwdt (5.11)

Let ηt be overall traction efficiency defined as the mean of the reciprocal of ηt weighted
with the power on wheels Pw

ηt =

∫
Pw>0

Pwdt∫
Pw>0

Pw
1
ηt

dt
(5.12)

and let ηr be overall recuperating efficiency defined as the mean of ηr weighted with
the power on wheels Pw.

ηr =

∫
Pw<0

Pwηrdt∫
Pw<0

Pwdt
(5.13)

Notice that with these definitions the ηt and ηr can be substituted into (5.7) such that
the instantaneous efficiencies ηt and ηr can be taken out of the integrands.

Lemma 1. With given definitions of Eb, ηt and ηr the (5.7) can be rewritten as

E =
1

ηt
Ew +

(
ηr −

1

ηt

)
Eb (5.14)

Proof. With definitions of ηt in Equation (5.5) and ηr in Equation (5.6) the Equation
(5.7) can be rewritten with overall instead of instantaneous efficiencies. This allows
for their extraction out of the integrals.

E =
1

ηt

∫
Pw>0

Pwdt+ ηr

∫
Pw<0

Pwdt (5.15)

With the definition of Ew in Equation (5.3) and Eb in (5.11) we can rewrite the left
integral as Ew − Eb and the right integral as Eb. The Equation (5.14) ensues.
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5.3 Ideal vehicle

By an ideal vehicle is considered a vehicle compliant to (5.7) with lossless powertrain
(ηt ≡ 1) and perfect recuperation (ηr ≡ 1). Such vehicle has consumption equal to
the energy on wheels Ew. All of the energy exchange between the vehicle and the
environment is due to the power Fw. There are no losses due to heating, friction or
on-board instrumentation.

Theorem 2. The integral Equation (5.3) for Ew can be solved as

Ew =
1

2
mv2(T )− 1

2
mv2(0) +mg∆h+ ccD+

cb
D2

T
+ ca

D3

T 2
+ σ2(cbT + 3caD) + bσ3caT

(5.16)

where v(T ) is final speed, v(0) is initial speed, ∆h is the difference between the initial and
final altitude, σ2 is speed profile variance, and b is speed profile skew.

Proof. Let us first fully expand (5.16) with (5.1), (5.2) and (5.4).

Ew =

T∫
0

(mav + ccv + cbv
2 + cav

3 +mgv sin(α)) dt (5.17)

Now we solve individual terms in the integrand separately. Observe that dv = adt.
This can be used to solve the first term as

T∫
0

mav dt =
1

2
mv2(T )− 1

2
mv2(0) (5.18)

which is vehicle’s final kinetic energy minus vehicle’s initial kinetic energy. Further,
the term that accounts for climbing losses can be solved using sin(α)ds = dh where
dh is altitude differential as

T∫
0

mgv sin(α) dt = mg

D∫
0

dh = mg∆h (5.19)

which is the final potential energy minus initial potential energy. In order to solve
the first-order speed dependent term we can use ds = vdt, where ds is a position
differential

T∫
0

ccv dt = ccD (5.20)

The solution to remaining terms requires the introduction of further notation.
Let us denote µi the i-th central moment of the speed v(t) and µ′i its i-th raw mo-
ment. First raw moment µ′1 of the speed profile is the mean speed, which is equal
to traveled distance D divided by travel time T . Second central moment µ2 is speed
profile variance (denoted σ2). Third central moment µ3 divided by σ3 is Pearson’s
moment coefficient of skewness (denoted b)

µ′1 =
D

T
(5.21)
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µ2 = σ2 (5.22)

µ3 = bσ3 (5.23)

Higher raw moments can be expressed in terms of central moments using inverse
binomial transformation (Papoulis and Pillai, 1985). Second and third raw moments
are

µ′2 = µ2 + µ′21 (5.24)

µ′3 = µ3 + 3µ2µ
′
1 + µ′31 (5.25)

Note that µ′2 is the mean squared speed and µ′3 is the mean cubed speed. The terms
with v2 and v3 in (5.17) can be solved using (5.24) and (5.25)

T∫
0

cbv
2 dt = cbT (µ2 + µ′21 ) (5.26)

T∫
0

cav
3 dt = caT (µ3 + 3µ′1µ2 + µ′31 ) (5.27)

By combining results in (5.18), (5.20), (5.19), (5.26) and (5.27) with (5.17) we obtain
closed form formulation of the consumption model. We can further substitute the
moment terms with travel distance D, travel time T , speed profile variance σ2 and
skewness coefficient b using (5.21), (5.22) and (5.23). The Equation (5.16) ensues.

The solution in Theorem 2 depends on five unknowns: initial speed v(0), final
speed v(T ), travel time T , speed profile variance σ2 and its skew b. Parameters ∆h,
D and the vehicle-specific coefficients m, ca, cb and cc are supposed to be known
constants. The initial and final speeds v(0), v(T ) are zero if the vehicle starts and
ends its trip in a stationary state.

Note the difference between Ew in (5.3) and in (5.16). The classical formulation
in (5.3) depends on speed and road slope, both are continuous functions of time.
The formulation in (5.16) requires only basic statistics about the speed profile and
a few other parameters while being equal to (5.3). The solution does not rely on
any assumptions. Specifically, it does not make any assumption about the speed
profile. The speed profile v(t) is not necessarily stochastic (partially unknown; with
noise term) even if some of the parameters are speed profile statistics. The solution
is exact with respect to (5.3). The speed profile statistics used in the solution come
from their formal definitions.

5.4 Willans vehicle

The Equation (5.14) puts in relation the ideal vehicle and realistic vehicles. A solu-
tion for braking energy Eb is needed to solve (5.14). However, finding a solution for
Eb that would offer similar advantages as the solution to Ew is difficult. A straight-
forward approach is to rewrite the braking energy as Eb = P bTb, where P b is mean
braking power and Tb the total time the vehicle spent in the braking mode. This ap-
proach is feasible, but not necessarily practical. Both the time spent in braking mode
and mean braking power depends on the instantaneous travel speed, the driver, be-
havior of other drivers on the road, and traffic density.

A convenient solution might be to consider a specific powertrain model with
which the energy consumption E (Equation 5.14) does not depend on Eb. Such is
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the powertrain whose output power is an affine function of input power. Formally,

Pw = Pe− P0 (5.28)

where e and P0 are powertrain-specific parameters. A similar approach to power-
train modeling was proposed by Willans (Guzzella and Sciarretta, 2005) in a different
context. It is a successful model that is sometimes used instead of nonlinear engine
efficiency maps. There are differences with respect to Willans’s proposal, however.
Willans considers e and P0 to be functions of instantaneous motor shaft rotational
velocity, but here they are assumed constant. It might be possible to consider it since
the instantaneous motor shaft rotational velocity depends on instantaneous vehicle
speed, but a multiple-gear transmission would make it difficult, especially if the ve-
hicle has a manual transmission. Another difference is that the powertrain output
power is considered to be the power on wheels Pw, while Willans allows for the
power received during braking to be redirected to friction brakes (they are consid-
ered outside of the powertrain).

Proposition 1. The Willans’s powertrain model (5.28) simplifies the consumption model
(5.14) to

E =
1

e
Ew +

P0

e
T (5.29)

Proof. Note that (5.29) can be obtained by direct integration of (5.28). However, we
also need to show that this solution is compliant with the consumption model (5.14).
Let us first solve (5.28) for P as a function of Pw and divide both sides by Pw. We
obtain

P

Pw
=
Pw + P0

Pwe
(5.30)

where the left hand side is, by definition, the instantaneous recuperation efficiency
ηr. The instantaneous traction efficiency ηt is its reciprocal. If we plug these for-
mulations of ηt and ηr to equations (5.12) and (5.13) for overall efficiencies ηt, ηr we
obtain

ηt =
(Ew − Eb)e

(Ew − Eb) + P0(T − Tb)
(5.31)

ηr =
Eb + P0Tb

Ebe
(5.32)

where Tb is the travel time spent in braking mode (when Pw < 0). Now we can
plug the right-hand sides to (5.14) in the place of ηt and ηr and simplify. We obtain
(5.29).

Fully expanded solution (5.14) with powertrain model (5.28) reads

E =
1

e

(
1

2
mv2(T )− 1

2
mv2(0) +mg∆h+ ccD+

cb
D2

T
+ ca

D3

T 2
+ σ2(cbT + 3caD) + T (bσ3cT + P0)

) (5.33)

Unlike the efficiencies ηt, ηr in Equation (5.7), the efficiency e in (5.28) is not well
defined for P = 0. This is a problem especially for vehicles that cannot recuperate.
When braking with such a vehicle the Pw < 0 while P = 0 which implies e = −∞.
The e can be also greater than one, contrary to the intuition. The e in the braking
mode is the reciprocal of efficiency, this can be observed by comparing (5.7) and
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(5.29). It follows that e > 1 during braking. Despite these issues the consumption
(5.29) is always well defined. This is because e is assumed to be a known constant.

5.4.1 More advanced powertrain model

There are more complex powertrain models than (5.28) that can be considered. For
example, consider a powertrain model that accounts for speed dependent losses
such as

Pw = Pe− P0 − β1v − β2v
2 − β3v

3 − β4v
4 (5.34)

where v is instantaneous vehicle speed and β1 . . . β4 are regression coefficients. The
solution to this model can be obtained analogically to the previous case. The overall
efficiencies ηt and ηr read

ηt =
(Ew − Eb)e

(Ew − Eb) + P0(T − Tb) +
∫

Pw≥0

(β1v + β2v2 + β3v3 + β4v4)dt
(5.35)

ηr =

Eb + P0Tb +
∫

Pw<0

(β1v + β2v
2 + β3v

3 + β4v
4)dt

Ebe
(5.36)

which can be plugged in (5.14) and simplified. The solution for energy consumption
E the reads.

E =
Ew
e

+
D

e

(
β1 + 3β3 + σ2 + 4β4bσ

3
)

+

T

e

(
P0 + β2σ

2 + β3bσ
3 + β4κσ

4
)

+

D2

eT

(
β2 + 6β4σ

2
)

+
D3

eT 2
β3 +

D4

eT 3
β4

(5.37)

where κ is a new parameter: speed profile kurtosis. It appears because (5.34) in-
cludes the fourth power of vehicle speed.

The powertrain model (5.34) might perspectively be used instead of (5.28). It is
nevertheless just an example meant to show that more complex powertrain models
can be considered. It is not studied further in this work.

5.5 Travel time

A travel time model is proposed in this section. As was discussed in the introduction
a travel time model is required for time-dependent eco-routing applications. The
model proposed here is a simple travel time predictor that makes use of known
traffic light periods in the simulations. It predicts travel time on a given road in the
road network at a given time of arrival there.

The model proposed below is based on assumptions that are not backed by ev-
idence: it is a conjecture. The main assumption is that one of the three following
cases must occur:

1. the vehicle will pass without stopping

2. the vehicle will be forced to a full-stop on a red traffic light

3. the vehicle will get caught in a traffic jam

The second case is introduced to the model because the travel time is difficult to
predict by simple averaging if there is a traffic light at a downstream intersection. In
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that case, the waiting time depends on the phase of the traffic light at the time when
the vehicle arrives at it. If the road is not congested, then the vehicle will leave the
road within the next green period. If the road is congested, then the vehicle will not
be able to leave the next period. The third case is introduced to account for this. The
travel time does not depend so strongly on the traffic light state if there is a queue
so long that the vehicle won’t be able to leave the road during the first green period.

The model is described in Proposition 2. It is based on a k-NN (k nearest neigh-
bors) predictor. The k-NN is used for regression, not classification. It uses a set with
a collection of previously observed travel times stored as pairs (ti, τi), where ti is i-th
time of day when the observation was made, and τi is i-th observed travel time. The
query for travel time at some time of day tq that is not in the set is predicted as the
average of k closest historical observations to the time of day tq. This is the principle
of the k-NN regression.

Proposition 2. Let Se be a set of pairs (ti, τi) of observed travel times τi at times ti on a
road e. Let Ge be a subset of Se with those observations that originated from vehicles that did
not stop on the road e. Let µ ∈ R, κS ∈ N+, κG ∈ N+, and ϑ ∈ R be known coefficients. Let
τS(t) be a k-NN predictor trained on the set S, with k = κS. Let τG(t) be a k-NN predictor
trained on the set G with k = κG. Let ttg(t) be the remaining time to green on a downstream
intersection, if there is a red traffic light at time t. If there is no traffic light or the traffic light
is green at time t, let ttg(t) = 0. The travel time τe(t), where t is time of arrival to road e, is
then

τe(t) =


τS(t) if τS(t) > ϑ

τG(t) if ttg(t+ τG(t)) = 0 and τS(t) < ϑ

τG(t) + µ+ ttg(t+ τG(t)) otherwise
(5.38)

Every road in the road network has its own travel time model with a specific set
of coefficients ϑ, µ, κG, κS and sets Se, Ge. The roads are implicitly assumed to have
a traffic light. If that is not the case, then the part that considers traffic lights can be
disabled by considering ϑ = 0. The parameter ϑ is a threshold on travel time above
which the road is considered congested. The parameter µ is intended as a correction
for bias when the vehicle is forced to stop on a red traffic light. The parameters κS,
κG are search radii of the two k-NN regressors. The three lines correspond to the
three cases enumerated above:

1. Case 1: the vehicle will pass without stopping. (line 2 in the Equation (5.38)) If
the road is not congested (τS(t) < ϑ) and the predicted state of the traffic light
when arriving at it is green, then the predicted travel time is the average of
previously observed travel times when the vehicles passed without stopping
at a similar time of day.

2. Case 2: the vehicle will be forced to a full stop on a red traffic light. (line 3 in the
Equation (5.38)) If the road is not congested (τS(t) < ϑ) and the predicted state
of the traffic light when arriving at it is red, then the predicted travel time
is the average of previously observed travel times when the vehicles passed
without stopping at a similar time of day plus predicted waiting time plus a
small constant µ that accounts for delays during slow-down and subsequent
acceleration.

3. Case 3: the vehicle will get caught in congestion. (line 1 in the Equation (5.38)) The
road is considered congested when τS(t) > ϑ. The predicted travel time is then
the average of previously observed travel times at a similar time of day.
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This model is designed for roads that lead to signalized intersections. If the in-
tersection in question is not signalized, then setting ϑ = 0 will disable the part of
the model that reacts to traffic light states. The parameters µ and κG will then be
irrelevant. The only parameter that would remain relevant is κS.

Validation of this model is discussed in Section 8.2. A specific set of parameters is
identified for each road in the road network. This results in a large number of unique
models. Each model is cross-validated to obtain a robust estimate of the prediction
error.

5.6 Summary

The consumption and travel time models are introduced in this chapter. Its scope
is limited to their derivation and description. The models are later identified and
validated in Chapter 8, and used for eco-routing in Chapter 9.

The standard formulation of the longitudinal consumption model is reviewed
in Section 5.1. The model is given in Equation (5.7). It is derived from Newton’s
second law of motion, under an assumption that the vehicle movement is limited to
one direction. It estimates the instantaneous power required by the powertrain and
integrates it to obtain the overall energy consumption. The instantaneous power
is based, among other things, on vehicle’s instantaneous speed. Hence the speed
profile v(t) must be provided to the model to estimate consumption.

The Section 5.2 introduces a closed-form reformulation of the standard longitudi-
nal model (5.7). It is argued in this section that (5.7) is not well suited for eco-routing
as it requires information that is typically not available when planning the trip. This
motivates the closed-form reformulation of the longitudinal model. It is given in
equation (5.14). It relies on energy consumption of an idealized vehicle (the energy
on wheels, Ew), on energy that was returned to the vehicle (the braking energy, Eb)
and on overall powertrain efficiencies (overall traction efficiency ηt and overall re-
cuperation efficiency ηr).

The solution to (5.14) for an idealized vehicle is given in Section 5.3. The ideal
vehicle is a vehicle with a lossless powertrain (there are no losses due to heating and
friction, for example) and an ability to recuperate all energy returned to the vehi-
cle when braking. Energy consumption of such vehicle is introduced as the energy
on wheels and denoted Ew. The solution is an algebraic equation that depends on
statistics of v(t) (its first three moments), initial speed, final speed, initial altitude,
final altitude and other (known) parameters. The initial and final speed parameters
account for the change in vehicle’s kinetic energy. The initial and final altitude pa-
rameters account for the change in vehicle’s potential energy. The strength of this so-
lution is twofold. Firstly, it manages to reduce the dimensionality of the input from
arbitrary-dimension time series to a closed set of parameters. Secondly, it bridges
the gap between classical consumption estimation model (based on known speed
profiles) and the needs of a prediction model (based on statistical information).

The limitation of the solution given in Section 5.3 is that it applies only to the
ideal vehicle. More realistic powertrains are considered in Section 5.4. It is argued
that while there is a convenient solution for the energy on wheels Ew, finding a sim-
ilar solution for Eb is difficult. A powertrain efficiency model whose output power
is an affine function of its input power is proposed as it enables a solution to energy
consumption E that does not depend on Eb.
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A time-dependent travel time model is proposed in Section 5.5. It is a simple
model designed to leverage the knowledge of traffic light states in the used simu-
lation framework (presented in Chapter 7). It was incorporated here because such
information is likely to be available in future smart cities. The travel time model is
evaluated in Chapter 8 and used in Chapter 9 when time-dependent eco-routing is
studied.
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Chapter 6

Routing

As evidenced by the literature review in Chapter 3 the eco-routing has been treated
mostly as a minimum path problem. This approach offers an intuitive formulation of
eco-routing, and moreover, efficient methods for its computation are available (e.g.,
Dijkstra’s algorithm and its derivates). The main strength of these algorithms is that
they are fast and optimal. However, an evaluation of three eco-routing methods in
Chapter 4 have shown poor results. Two have shown inferior performance with
respect to the shortest path router. The third studied method has shown mild sav-
ings but is likely to be too cost-prohibitive for a successful real-world deployment.
Main reasons for this performance regression are discussed in the introduction. In
summary:

• Current methods often assume that the energy consumption, pollutant emis-
sions and travel time do not change in time. While this assumption is known
to be false, it seems essential to sustain computational tractability.

• Current methods ignore uncertainty in predicted energy consumption, pollu-
tant emissions and travel time. The situation in the road network is continually
evolving and predicting its state in future is arguably difficult. For this reason,
an eco-routing method should be able to adapt to the evolving situation by
updating its solution whenever necessary.

• Most published methods do not offer any prospect for routing in road network
graphs with negative costs (an exception is De Nunzio et al., 2016). Negative
costs may arise when routing for a vehicle that can recuperate energy. The
energy consumption can be negative when the vehicle goes downhill or on
short roads when the vehicle slows down. Dijkstra’s algorithm, a commonly
used algorithm in eco-routing context, assumes the costs are nonnegative. The
Bellman-Ford (Bellman, 1958) algorithm can be used instead to route on graphs
with negative costs. Both Dijkstra’s method and Bellman-Ford method can be
considered fast since their runtime is polynomially bounded. However, while
Dijkstra’s method visits only those nodes that can potentially be on the shortest
path, Bellman-Ford operates on every node in the graph. Hence the compu-
tational effort associated with Dijkstra’s method is dominated by trip prop-
erties while the road network size dominates the computational effort associ-
ated with the Bellman-Ford algorithm. This property makes routing with the
Bellman-Ford algorithm on large road network graphs impractical. Another
problem with routing in a graph with negative costs is that negative cycles can
appear due to uncertainties in the routing costs: there might be cycles in the
road network graph whose sum of costs is negative. Routing in such graphs is
not possible, as the vehicle can gain any amount of energy simply by running
along these cycles sufficiently many times.
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(A) the road network graph G (B) corresponding Tod tree

FIGURE 6.1: A Tod tree example.

The method proposed in this chapter favors simplistic routing based on a list of
all possible paths over sophisticated optimal routing algorithms such as Dijkstra’s
or Bellman-Ford algorithm. The motivation for this is that these algorithms are too
restrictive, too rigid in their assumptions. It is argued in the introduction that find-
ing optimal paths gives a little advantage when there is sizable uncertainty in the
associated costs that are to be minimized. An approximative solution based on a
naive approach to routing is studied instead. It is based on a hypothesis that while
there can be many paths to consider, there is usually only a limited set of candidate
eco-routes. Then a sufficiently small tree can be identified, and powerful eco-routing
ensues.

6.1 Routing in path trees

Let us consider a naive approach to routing. As a reminder, P was introduced in
Chapter 4 as a set of all simple paths in the road network graphG = (V,E). Consider
a subset of P such that it contains only paths that start at some chosen origin o and
end at some chosen destination d. The key notion required to understand the content
of this section is that paths in this subset can be stored efficiently in a tree1 since all
paths in this subset share the same origin. An algorithm that solves the eco-routing
problem (4.4) posed in Chapter 4 using such a tree is proposed below. The discussion
about practical considerations about its computational tractability is postponed to
later sections.

Let a tree Tod = (V ′, E′) be a connected graph without cycles that contains a
collection of roads that start at o ∈ V and end at d ∈ V (hence the suffix “od”). Each
node n′ ∈ V ′ refers to a node n ∈ V . Let us define this relationship with a surjective
function REF(·) that constitutes a mapping from the set V ′ to the set V . Let also all
edges e′ = (n′1, n

′
2) ∈ E′ satisfy condition (REF(n′1), REF(n′2)) ∈ E. This ensures that

the tree Tod contains only paths contiguous in G. Finally, let the root of the tree refer
to the origin o and all leafs refer to the destination d, formally let REF(nr) = o for the
tree root nr and REF(nl) = d for all nl in the set of all leafs of the tree.

To illustrate the relationship between the road network graph G and the tree Tod
see the example given in Figure 6.1. The Figure 6.1a shows the graph G with V =
{o, d, v, w} and E = {(o, w), (o, d), (o, v), (w, d), (v, w), (v, d)}. This graph contains
four paths {(o, w, d), (o, v, w, d), (o, d), (o, v, d)} from o to d. The Figure 6.1b shows
the corresponding tree with the four paths.

Let us assume that the tree Tod is full: it contains all simple paths between the
origin o and destination d. The solution to the eco-routing problem (4.4) posed in
Chapter 4 can then be identified using Algorithm 1. It is an exhaustive search in

1tree: a connected graph without cycles
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Algorithm 1 pe(Tod, td)
1: if ||V ′|| = 0 then
2: return ∅
3: end if
4: min←∞
5: argmin← ∅
6: o← root node of Tod
7: F [o]← 0
8: t[o]← td
9: q ← new QUEUE()

10: q.ENQUEUE(o)
11: while q not empty do
12: u← q.DEQUEUE()
13: for all child nodes v of u do
14: e← (REF(u),REF(v))
15: t[v]← t[u] + τe(t[u])
16: F [v]← F [u] + ce(t[u])
17: if C − F [v] > 0 then
18: if v is not a leaf node of Tod then
19: q.ENQUEUE(v)
20: else if ωTF [v] < min then
21: min← ωTF [v]
22: argmin← v
23: end if
24: end if
25: end for
26: end while
27: return argmin

the tree for the path from the root to a leaf that minimizes the weighted cost ωTF
while satisfying the constraints. The variables "min" and "argmin" keep the partial
solution during the computation: "argmin" contains the minimal path found insofar
and "min" contains the cost associated with this path. The F is an array of costs
from origin to every node in G (defined in Section 4.1). The array t contains times
of arrival at the nodes in the tree. The q represents a queue. This version of the
algorithm uses a standard queue with operations ENQUEUE and DEQUEUE. A stack
can be used instead of a queue. It would have the advantage that it can return
partial results while still computing. The algorithm returns a leaf node of the tree.
This output is sufficient to identify the path pe. The path can be extracted from the
tree by listing the sequence of nodes from tree root to the returned leaf node. This
sequence is unique and can be retrieved in reversed order by walking backward
from the returned node up to the origin.

Theorem 3. (proof of correctness) Algorithm 1 solves the eco-routing problem (4.4) for a set
of paths P represented by a tree Tod = (V ′, E′) at a departure time td.

Proof. By induction on the tree Tod we prove that:

(a) For every reachable v ∈ V ′ the t[v] is predicted time of arrival at v and F [v] is
predicted cost for the path from the tree root to node v.



78 Chapter 6. Routing

(b) The algorithm finds a path with minimal cost that satisfies given constraints. If
such path does not exist, then the algorithm returns an empty set.

For ||V ′|| = 0 (the || · || denotes set cardinality) we have an empty tree and the
algorithm returns immediately. For ||V ′|| = 1 we have a base case when there is no
edge. The algorithm returns immediately as there is no path in the tree, with the F [o]
set to zero and t[o] set to td, for o ∈ V ′. Hence the base case satisfies both (a) and (b).

The inductive step, embodied by line 19, adds the node v to the queue, which
guarantees that it will be processed later. Since there are no cycles in Tod, the in-
duction step is invoked strictly on the children of the currently processed node. It
follows that each node will be processed at most once. Both the time of arrival at v
(the t[v]) and the vector of costs of a path from the tree root to v (the F [v]) are com-
puted before the v is considered to be added to the queue. Since there are no cycles
in the tree, we can predict the time of arrival at v by adding the time of arrival at u
with the travel time from u to v. This step is done on line 15. Additionally, because
the costs in the vector F are additive (Equation (4.1) imposes this), we can predict
the costs of traveling from the root to v (the F [v]) by adding the costs F [u] of the
parent node u with the costs for travel from u to v. This step is done on line 16. By
induction hypothesis, the F [v] and t[v] are correct if F [u] and t[u] are correct. This
was shown in the base case, hence (a) holds.

It remains to show that (b) holds in the induction step. Line 17 requires current
node v to satisfy time and energy constraints to be enqueued for later processing. If
the constraints imposed by C are not satisfied, then the node will be ignored. The
constraint that imposes that the identified path starts at the origin o and end in the
destination d is satisfied implicitly by the definition of the Tod tree. It follows that no
path that does not respect the constraints can ever be returned as a solution. If the
current node v satisfies the constraints and if it is a leaf node (tested on line 18), then
we check the weighted cost ωTF [v]. If it is smaller than the cost of any previously
discovered path, then we assign this node to the "argmin" variable. This technique
guarantees that the minimum cost path that satisfies the constraints is identified after
searching the whole tree. An empty set is returned if no path that would meet the
constraints was found. Hence, (b) holds as well. This concludes the proof.

Assuming the Algorithm 1 is computationally tractable (which is a concern yet
to be addressed), it solves the problem (4.4) without suffering from any of the tree
drawbacks discussed above. The first one is that current methods often assume that
the energy consumption, pollutant emissions and travel time do not change in time.
Note how time is treated in the Algorithm 1. Predicted arrival time at each node is
stored in the array t and used to predict the costs F . The time discretization is not
needed at all. This method supports arbitrarily fast changes of road network states.
It can, in particular, find paths that minimize the consumption cost imposed by stops
on red traffic lights. The second drawback is that current methods ignore uncertainty
in predicted energy consumption, pollutant emissions and travel time. This problem
can be addressed by running the Algorithm 1 whenever a new information that
might change the solution becomes available. The advantage of the Algorithm 1 is
that it can be run on a subtree rooted at the node that corresponds to the current
position of the vehicle. This reduces the computational effort required to update the
solution as the vehicle progresses to its destination. The third drawback is that most
published methods do not offer any prospect for routing in road network graphs
with negative costs. The negative costs are not a problem when routing in path trees
using the Algorithm 1, as it assigns a cost to every path in the tree separately.
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While the proposed approach resolves the drawbacks of the current methods,
other problems arise. Specifically, the computational effort associated with the build-
ing of the tree is prohibitive: a full tree can be computed in a reasonable time only for
unrealistically small road network graphs. Methods to build such a tree are studied
in following sections.

6.2 Computing path trees using an exhaustive search

Computing a full Tod tree is tractable only on small road network graphs G. In the
case when G is a complete graph there is

||V ||−2∑
k=0

(||V || − 2

k

)
k! (6.1)

paths between any pair of two nodes (|| · || denotes set cardinality). The situation is
not as bad in practice as road network graphs tend to be sparse, but the superpoly-
nomial rate of growth stays an issue. The disproportion of the size between the Tod
tree and the road network graph is apparent even in the example in Figure 6.1: while
the G has only four nodes the Tod tree has eight nodes.

A method that performs an exhaustive search to compute the Tod tree is given
in Algorithm 2. The first three lines initialize an empty queue (line 1), create a tree
with a single node (line 2) and add this node to the queue (line 3). The root of the
tree refers to the origin o. The nodes in the queue are processed one by one in the
loop on lines 4 to 15. The node is taken out of the queue and assigned to u on line 5.
A path in the road network graph G that corresponds to the path from the tree root
to u is then assigned to p on line 6 using a helper function named EXTRACT_PATH.
Possible expansion of the tree is then considered. The connectivity of the roads in
the road network is examined by listing nodes connected to u. For every connecting
road v the algorithm first checks if the path p remains simple if it is extended with v.
This check is implemented on line 8 by verifying that v /∈ p. A new node is added to
the tree if the condition is met. This is implemented by line 9. It adds a child node v′

to node u and sets REF(v′) = v. The argument v is provided to ADD_CHILD to set the
reference. The v′ is put in the queue if the node v is not the destination d (checked on
line 10). After the main loop on lines 4 to 15 is finished the tree might contain paths
that do not end in the destination d. They are removed with the routine CLEANUP

on line 16.
The computational effort required to obtain a solution with the Algorithm 2 is

extensive. TheO((||V ||−2)!) asymptotically bounds its runtime and space complex-
ity. To illustrate this consider an example: let there be an origin o, destination d and
some intermediate node x. If there is n paths from o to x then all paths from x to d are
repeated n times as n subtrees at different parts of the tree. It is this behavior that
leads to the factorial in the computational complexity given above. Nevertheless,
the given asymptotical bound assumes the graph is complete, which is typically not
the case with road networks graphs. The sparseness reduces the complexity. Also,
the interesting paths are only those that can be eco-routes: many paths can never
be eco-routes and can be pruned. A number of pruning techniques to reduce the
search space can be adopted in the context of eco-routing. Two techniques are dis-
cussed below: pruning based on travel time constraints and pruning based on path
dominance.
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Algorithm 2 Tod(G, o, d)

1: q ← QUEUE()
2: Tod ← TREE(root = o)
3: q.ENQUEUE(root node of Tod)
4: while q not empty do
5: u← q.DEQUEUE()
6: p← EXTRACT_PATH(u)
7: for all child v of REF(u) do
8: if v /∈ p then
9: v′ ← u.ADD_CHILD(v)

10: if v 6= d then
11: q.ENQUEUE(v′)
12: end if
13: end if
14: end for
15: end while
16: CLEANUP(Tod)
17: return Tod

6.2.1 Time-constraint based pruning

A time constraint can be leveraged to reduce the search space of the Algorithm 2.
This idea was first considered in eco-routing context by Juřík et al., 2014. The au-
thors posed the eco-routing problem as a trade-off between two resources: energy
consumption and travel time. They proposed an algorithm that solves the time-
constrained optimal eco-routing problem. The time constraint based pruning is one
of the techniques used by the authors. It can be adopted for path tree computation.

The road network graph can be reduced to a subgraph with only those nodes
that are reachable under given time constraint. Let us denote tc ∈ R the limit on
maximum travel time (the time constraint), origin o ∈ V , destination d ∈ V and let
τmin(m,n) where m,n ∈ V be minimum travel time from m to n. The pruning can
be done by taking an induced subgraph of G: a subgraph with a subset of the nodes
of G together with any edges whose endpoints are both in this subset. The subset is
defined as

{n ∈ V : τmin(o, n) + τmin(n, d) 6 tc} (6.2)

While this reduces the graph size, it does not necessarily remove all paths which do
not satisfy the time constraint. Consider a path p from origin o to n ∈ V and let
τ ′min(p) be the low-bound on travel time on the path p This path can constitute part
of the solution if and only if

τ ′min(p) + τmin(n, d) 6 tc, (6.3)

which leads to another, more effective way to prune travel times: when only paths
that satisfy the condition (6.3) are considered. The difference between τ ′min(p) and
τmin(o, n) is that the former is a minimum travel time on a specific path while the lat-
ter is a minimum travel time on the path that minimizes travel time itself. It follows
that τmin(o, n) 6 τ ′min(p), which explains the claim above that pruning specific paths
is more effective than reducing the graph.

The first method (reducing the graph) can be a preprocessing step: the Algorithm
2 can be run on the induced subgraph directly. In the latter case, the method must
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be implemented inside the Algorithm 2: the condition on line 8 must additionally
verify that (6.3) is met.

The time constraint based pruning can be effective when a stringent time con-
straint is imposed but will have little effect on the size of the search space if the
constraint is lenient. Nevertheless, it can be used to remove overly long paths from
the search space even when time-constraints are not considered. This comes at the
expense of losing optimality when using the resulting Tod tree for routing.

6.2.2 Path dominance based pruning

Consider two distinct paths p1, p2 in G from origin to some node n ∈ V . In some
cases, one path can always have a lower cost than the other. Formally,

∀t ∈ R : ωTF (p1, t) 6 ωTF (p2, t) (6.4)

In this case the path p1 dominates the path p2 in the sense that the routing algorithm
would always choose the path p1 over p2 (path p2 is said to be dominated by p1).
Moreover, all paths from the origin to the destination that pass through the node n
and take the subpath p1 necessarily dominate all such paths that take the subpath p2

to n. This is because the path cost F is additive (implied by (4.1) in Section 4.1). This
gives rise to a pruning technique that aims to reduce the search space by removing
dominated paths from the solution.

The derivation of this criterion depends on how exactly is the eco-routing prob-
lem posed. Consider, as an example, that the routing cost is the energy consumption
alone. The general definition of energy E =

∫
Pdt can be rewritten as E = PT ,

where P is the average power and T is the travel time. Expanding the (6.4) with it
yields a simple criterion:

P 1

P 2

6
T2

T1
(6.5)

where P 2 > 0 and T 1 > 0. The P 1 and P 2 are the average powers drawn by the
powertrain on paths p1 and p2. Similarly, the T1 and T2 are travel times on the two
paths. None of these quantities are known, but their bounds can be used to derive
the criterion. Let τ ′min(p) be travel time low-bound on a path p (like in the previous
section) and let Pmax and Pmin be bounds on powertrain’s power draw. Then

Pmax

Pmin
6
τmin(p2)

τmin(p1)
=⇒ ∀t ∈ R : ωTF (p1, t) 6 ωTF (p2, t) (6.6)

which is a condition easily verifiable with information about the powertrain and
about speed limits in the road network (speed limits are used to construct the travel
time low-bound).

Note that the applicability of this criterion is conditioned to the case when Pmin >
0. The condition is met by conventional vehicles with internal combustion engines
and no ability to recuperate, but not by vehicles that can recuperate. In that case,
it is theoretically possible to obtain P 6 0 which implies Pmin < 0. While the trips
that leave the vehicle with more energy than what it had when started are rare (and
typically short, downhill), the possibility has to be considered if the goal is to build
a Tod tree with a guarantee that no candidate eco-routes are missed. The solution
for the case P 6 0 is the same, except for the relation sign in the premise for the
implication in (6.6) that must be inverted.
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The strength of this pruning criterion depends on how the Pmin and Pmax pa-
rameters are chosen. It is not likely to reduce the search space sufficiently to make
Algorithm 2 computationally tractable in practice. Vehicles can draw a wide range of
powers from their power source. Further, the criterion makes use of average power
draw meaning that the chosen boundaries are likely to be far from typically observed
mean powers drawn by the powertrain. Nevertheless, if the goal is to approximate
the tree, then this approach has advantages. Mainly, the ration Pmax/Pmin can be re-
placed with a parameter that allows striking the trade-off between pruning strength
and the computational effort required to compute the approximated solution. It can
be derived, for example, from a distribution of mean powertrain power draw such
that the range between Pmin and Pmax covers 98% of observed average powertrain
power draws (by choosing 99th and 1st percentiles as Pmax and Pmin, respectively).

Incorporation of such pruning in the Algorithm 2 is more involved than with
pruning by time-constraint. The algorithm must be adapted upon discovery of a
new subpath (when a node is added to the tree; on line 9). Let the new subpath
end in some node v ∈ V (note: this notation corresponds to the notation used in the
algorithm). Then all other subpaths found insofar from the origin o to the node v
must be checked for dominance with the newly found subpath. If the newly found
subpath is dominated by some other path, then the node v′ (as denoted in Algorithm
2) should be removed from the tree. If some other, previously found subpath is
found to be dominated by the newly found subpath, then all paths spanning from
the dominated subpath (its whole subtree) must be moved under the newly added
subpath, and the dominated subpath must be removed from the tree. This requires
support for operations that can remove nodes, and that can move subtrees. This
makes an efficient implementation of the tree datastructure more involved.

6.3 Computing path trees using a randomized search

Computing a path tree with an exhaustive search remains a computationally inten-
sive task even when the pruning techniques are used to reduce the search space. The
resulting trees tend to be large and filled with paths that are unlikely candidates to
be eco-routes. A different approach is discussed in this section: an approach that
aims to discover a small2 set of the most likely eco-routes. This is in contrast with
the previous approach that adds to the tree every path it finds for which it cannot
prove that it can never be an eco-route. The resulting path trees are small, which
makes the routing on them cheap in terms of computational effort. It also makes
the routing suboptimal as only a subset of the search space is considered. As was
argued in the introduction, routing optimality has low added value in eco-routing
context due to sizable uncertainties in path costs.

One way to guess the most likely eco-routes between some origin and destination
is to identify the k minimal paths (using k-Dijkstra’s algorithm, for example), for
some positive integer k. This approach identifies a set of k paths between some
origin and destination with lowest costs. They can be stored in the Tod path tree
and used for routing. However, this approach is not likely to identify such a set of
paths that would result in a successful eco-routing. The reason is that the k minimal
paths tend to be similar. Consider two specific paths: the minimal path and the
second minimal path. The second minimal path is likely to be the first minimal
path with a small perturbation since such two paths are likely to have similarly low

2Small in comparison to the total number of simple paths there can typically be. The tree can still
hold hundreds of thousands of paths.
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Algorithm 3 Tod(G,X , o, d)

1: Tod ← TREE()
2: while not STOP_CONDITION(Tod) do
3: for all e in E do
4: ce[e]← Xe
5: end for
6: r ← DIJKSTRA(G, ce, o, d) b
7: if r /∈ Tod then
8: Tod.ADD(r)
9: end if

10: end while

costs. This often leads to a set of highly overlapping paths. If the tree is made from
such overlapping paths and the original cost estimates on these paths will turn out
to be very wrong, then the router will have a difficulty to find a viable alternative.
Consequently, it is beneficial to have a tree with paths that provide the router with
different options and not variations of the same path. This motivates a stochastic
approach that admits that the routing costs are uncertain.

Consider the routing costs on the roads in the road network to be random vari-
ables with arbitrary but known distributions. A random eco-route can be identified
by drawing a random cost for every road in the road network and then finding a
minimal path between given origin and destination. A collection of eco-routes can
then be identified by repeating this process sufficiently many times. The Algorithm
3 implements this. It first initializes an empty tree Tod and then searches for new
eco-routes until some stop condition is satisfied. Each iteration identifies one eco-
route. It consists of three steps: (1) draw a random cost Xe for every edge e in the
road network graph G and store it to the field ce (defined in the Section 4.1); (2) find
minimal path r between o and d in graph G with costs ce using Dijkstra’s algorithm;
(3) if r not in the Tod path tree, then insert it with ADD function.

This approach to path tree computation has interesting properties. Each identi-
fied path is by definition the optimal eco-route in some traffic state. It follows that
the pruning techniques discussed above are no longer needed: they are designed
to prove that a path can never be an eco-route. Note also that it does not have the
implicit tendency to identify paths that are likely overlapping, as it is the case with
the k minimal paths approach discussed above. The algorithm runtime depends on
the choice of the stop condition. The stop condition used in this work is always a
simple limit on the number of paths in the tree. In this case, the asymptotic bound
on the runtime is polynomial: it is a multiple of the asymptotic runtime of Dijkstra’s
algorithm. Other stop conditions are possible. For example, one can construct a stop
condition such that the algorithm stops when the probability of finding new paths
drops below some threshold.

Consider, for example, that the routing cost is the vehicle energy consumption.
The Algorithm 3 then requires the knowledge of consumption probability distribu-
tion function on every road in the road network. Collecting large enough dataset to
approximate these distributions sufficiently well might be cost-prohibitive in prac-
tice. Nevertheless, these distributions can be approximated with considerable flex-
ibility. If there is no information available for a given road, then it can be approxi-
mated using the Normal distribution with large enough variance to cover all plau-
sible cases. While this approach does not require any information about the road in
question, it is clear that better eco-routes can be identified with tighter distributions.
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FIGURE 6.2: The path tree made of TREE_NODE instances that corre-
sponds to the tree in example in Figure 6.1.

The consumption model proposed in Section 5.4 can be used to approximate it if
there are enough recorded trips on the road in question. The five parameters of this
model are then treated as random variables with their own distributions. This ap-
proach has the advantage that approximate consumption distributions can be con-
structed from information that does not depend on the specific vehicle: only the
distributions of initial speeds, final speeds, mean travel times, speed profile vari-
ances and speed profile skews are required. Prospectively these distributions can
also be constructed using more advanced models. For example, there is a limit on
minimum travel time that can be derived from road length and speed limit. This can
be reflected in the travel time distribution.

6.4 High performance path tree

Previous sections considered the path tree to be an abstract data type. This section
discusses its implementation. The path tree is at the core of the routing method
described in this chapter. Its efficient implementation is therefore essential.

The intersections in a typical road network rarely connect to more than a few
roads. In the context of the road network graph G, the number of connecting roads
is the out-degree of the node that represents the current road. The path tree is a
collection of paths from the same origin. Since these paths are required to be con-
tiguous in G, the out-degree limits the number of children any tree node can have.
This property makes the tree sparse which means that the adjacency list is a more
suitable representation that the adjacency matrix. The proposed implementation
uses an approach similar to the adjacency list. It implements the tree as a collection
of nodes, where every node contains references to its parent and children. There is
exactly one parent (except the root node which has no parent) and any number of
children. Every node also carries one attribute: the reference to the road network
graph G. It implements the REF function defined in Section 6.1. Let the tree nodes be
represented with a datastructure called TREE_NODE. Let the references to the parent
and the children be pointers to other TREE_NODE instances and the reference to the
road network graph be a pointer to a node in G.

Consider the example given in Section 6.1 in Figure 6.1. The corresponding path
tree made of the TREE_NODE instances is shown in Figure 6.2. The boxes are the
TREE_NODE instances. The reference to the node in the road network graph is shown
in the upper part. The lower parts show the slots to connect the children. The edges
represent the links between TREE_NODE instances in memory.
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6.4.1 Design challenges

The basic operation on the tree is to add a node. The Algorithm 2 uses operation
ADD_CHILD to do this. The Algorithm 3 uses operation ADD that adds a whole path
to the tree. It can be broken into a sequence of calls to ADD_CHILD. The ADD_CHILD

operation needs to (1) allocate some memory for the node, (2) set its reference to
the road network graph G and (3) connect to the parent. The parent must be linked
with the child in both ways (parent to child and child to parent) since the tree is an
undirected graph. A node can have only one parent and an unlimited number of
children. Being able to handle tree nodes with a varying number of children is one
of the issues that must be considered when designing the path tree datastructure.
This topic is treated in Section 6.4.2.

Implementing support for path dominance pruning (Section 6.2.2) requires sup-
port for three operations: (1) remove a node, (2) move a node; and (3) query all tree
nodes that refer to a given node in the road network graph G. Only leaf nodes can
be removed. If the node is not a leaf, then there is a subtree rooted at this node
which must be removed first. Node moving is easy as it suffices to disconnect the
node from its parent and reconnect it with the new parent. Any subtree under the
moved node will be moved implicitly with it. As for the third operation, the list of
nodes that refer to the same chosen node in the road network graph determines a
set of paths on which the path dominance is evaluated. The naive way to produce it
would require scanning the whole tree. It is desirable to have a more efficient way
to do so. It is proposed in Section 6.4.3

Implementation considerations are not limited to the four methods discussed
above. The properties and limitations of modern computers also have to be taken
into account. Specifically, following criteria should be respected in the implementa-
tion:

• Obey locality principle. The processors are typically much faster than memories.
Computer cache mitigates the impact of slow memory access by storing re-
cently accessed parts of memory locally in the processor. This is motivated by
the locality principle: that recently accessed parts of memory are likely to be
reaccessed. If the related information is kept in the same parts of the memory,
then the computational overhead is lower due to faster memory access.

• Avoid memory reallocation. Changing the size of allocated memory using REAL-
LOC system call can result in the data being moved to a different part of the
address space. It would make any pointers pointing inside that memory area
invalid.

• Keep TREE_NODE memory footprint small. The tree can potentially be a huge
datastructure. The size of the TREE_NODE datastructure will have a strong
effect on the tree size as it is a collection of TREE_NODE instances.

There are conflicting goals. The TREE_NODE datastructure should be as small as
possible, but it also should be able to connect to any number of child nodes. The
memory reallocation should be avoided, but a datastructure of a variable size is to
be managed. The locality principle should be obeyed, but arranging tree nodes that
refer to the same node inG together is also preferred as it would allow implementing
fast lookups of these node groups. The design proposed below aims to strike a trade-
off between all these considerations.
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FIGURE 6.3: Three ways to build a complex tree node (in the dashed
circle) from TREE_NODE datastructures.

6.4.2 Tree nodes without limitations on the number of connected children

Allowing tree nodes to have an unlimited number of connected child nodes is the
first design challenge mentioned in the previous section. A naive way to deal with
it would be to equip each TREE_NODE datastructure with a fixed-length array that
would carry the references to the children, where the size of the array is the maxi-
mum out-degree of nodes in the road network graph. This guarantees the array is
always large enough. It is not effective, however, as these arrays can be expected to
be largely unused. The ineffectivity can be fixed by using dynamical arrays instead
of fixed-sized arrays. But this would bring other issues. Mainly, memory allocation
and subsequent reallocations would introduce time delays. The approach proposed
here is designed to allow connecting any number of children to a tree node, but
which does not require explicit memory allocation.

Consider a TREE_NODE datastructure that can carry references to two children.
Then two or more TREE_NODE datastructures can be combined to create a tree node
with any number of children. Let us call such nodes complex nodes. Consider the ex-
ample in Figure 6.3. It shows three ways how a complex node with four children can
be built from three instances of TREE_NODE datastructures, each with two children.

There must be a way to distinguish complex nodes from the other nodes in order
to use this approach. Each node carries a reference to the node in the road network
graph that it represents. If this reference is identical between two mutually con-
nected TREE_NODE instances, then both instances can be considered to belong to the
same complex node. The limitation of this approach is that it will not work on road
network graphs with edges that start and end on the same node. This corresponds
to road networks with roads that start and end in the same intersection.

Efficient adding and removing of children nodes can be realized with the com-
plex nodes. As shown in Figure 6.3 there are multiple ways to build a tree node
from multiple TREE_NODE instances. Hence there are multiple options to construct
the complex nodes. Consider the case in Figure 6.3a, where the complex node is
linked via first child pointers. Connecting and disconnecting child nodes can then
be implemented as follows:

• Connect a child. If there is a free slot to connect the child through, then connect
there and return. If not, then the tree node needs to be expanded to create a
new free slot for the child. The expansion is indicated in Figure 6.4a.



6.4. High performance path tree 87

A

B C

A

A

B

C

D

?

D

(A) Connecting a tree node when both slots are full.

A

B C

A

A

B

C

D

(B) Removing the connection.

FIGURE 6.4: Connecting children to complex nodes.

• Disconnecting a child. If the node is complex, then disconnect the child and re-
move the free slot. The slot can be freed by removing the TREE_NODE instance
through which the child was connected. This is shown in Figure 6.4b.

The proposed approach keeps the child slots of the complex tree nodes always fully
occupied. Hence, there is no need to scan the complex node when connecting a child
since there can never be any free slots. This enables implementation of the connect-
ing (resp. disconnecting) process that runs in a constant time. Also, note that the
proposed approach implicitly turns simple nodes to complex nodes when connect-
ing children and complex nodes to simple nodes when disconnecting children.

To summarize, a tree node is either simple or complex. The simple nodes and
can connect to at most two children. They are represented by the TREE_NODE datas-
tructure. The complex nodes are made of multiple TREE_NODE instances. They can
connect to n children through exactly (n−1) TREE_NODE instances. The TREE_NODE

instances that belong to the same complex node are uniquely identified by their ref-
erence to the road network graph: they all refer to the same node in G. Child nodes
can be connected (respectively disconnected) efficiently in a constant time in this
way.

Note that it is possible to consider more than two slots in the TREE_NODE datas-
tructure, but then the mechanics of efficient child connection (respectively discon-
nection) would be more complex. It is yet to be determined whether there is any
potential in TREE_NODE datastructure with more than two child slots.

6.4.3 Grouping tree nodes by their reference to the road network

The second design challenge mentioned in the previous section is the need to be able
to produce a list of all tree nodes that refer to the same node in the road network
graph G. This list is used every time a new partial path is found for path dominance
testing since all other paths in the tree that lead to the same node are compared to
the newly found path. An efficient implementation is therefore essential. The naive
implementation would have to scan the whole tree, which is time-consuming. Since
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FIGURE 6.5: The node supplementary array (NSA) with a page ring
that holds the tree nodes grouped by their reference.

the tree is linked together via its parent/child references (pointers), the position of
the nodes in the memory is not limited. Hence, tree nodes with the same reference
can be grouped in the memory. Producing lists of all tree nodes with the same ref-
erence is then a matter of referencing to the right group of tree nodes, which can be
implemented in a constant time.

Consider the arrangement in Figure 6.5. It shows an array called NSA with ele-
ments that point to doubly-linked lists of objects called a page. The NSA array has a
fixed size with the number of elements that correspond to the cardinality of the set
of nodes V in the road network graph G. The pages are datastructures that hold the
TREE_NODE instances. They have a fixed size and can, therefore, hold only a limited
number of TREE_NODE instances. This limitation can be overcome by arranging the
pages in circular doubly-linked lists. Let us call this list a page ring. If there is a bijec-
tive mapping from V to the NSA, then it can be used to retrieve the page ring that
contains all TREE_NODE instances in the tree with the desired reference to G. One
such bijective mapping is with the elements in the NSA organized in the same order
as the nodes in V . This particular mapping allows looking up the page ring with
nodes that refer to n-th node in V simply by taking the n-th element in the NSA.

Consider the page structure outlined in Figure 6.6. It has three parts: header,
padding, and payload. The header contains information about the page, the payload
is an array of TREE_NODE instances, and the padding is used to offset the size of the
datastructure to have exactly 4096 bytes. The indicated offsets in the memory (left
side; Figure 6.6) assume the computer uses 64-bit memory addressing.

Let the pages be aligned with system page frames: then they take exactly 4096
bytes (typically) and start at an address that is divisible by 4096 without any remain-
der (such addresses end with 0x000)3. Allocating the area that corresponds to system
page frames is faster than general allocation. Moreover, the knowledge of the lower
twelve bits of the page base address (it is 0x000) allows converting any pointer to a
TREE_NODE instance into a pointer to the page where it resides by setting the lower
twelve bits of the address to zero.

There are four fields in the page header: reference to the road network graph
G, the pointers to the previous and next pages, and the number of occupied TREE_-
NODE instances within the page. The tree nodes within one page necessarily refer to
the same node in the road network graph G. It would be redundant if every TREE_-
NODE instance in the page would carry the same reference. Hence, it can be taken
out of the TREE_NODE datastructure and placed in the page header (as shown in
Figure 6.6). This trick lowers the memory footprint of each TREE_NODE instance,
and allows to store 169 TREE_NODE instances in the page. The TREE_NODE then

3Such allocation can be made with POSIX system call POSIX_MEMALIGN.
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FIGURE 6.6: The memory organization of a page.

consists of three pointers: (1) reference to the parent, (2) reference to the first child,
(3) reference to the second child.

6.4.4 Memory management

The design of path tree’s memory management affects to two main operations: al-
locating a TREE_NODE instance and freeing a TREE_NODE instance. The proposed
implementation avoids system calls that relate to memory management, if possible.
It pre-allocates some memory during initialization. Assuming there is some preal-
located memory available, then the proposed design achieves optimal performance:
both operations are done in a constant time.

The path tree datastructure is stored in pages (as discussed above), except for the
fixed-sized NSA array. TREE_NODE allocation (respectively TREE_NODE freeing) can
trigger page allocation (respectively page freeing). Node allocation triggers a new
page allocation when there is no more space for the new tree node in the current
page. Page freeing is triggered when it becomes empty after node removal.

The implementation keeps some free pages at hand instead of allocating and
freeing individual pages. Specifically, some pages are preallocated during initializa-
tion and placed in a linked list. The fields in page headers that are used to keep the
page in the page ring can be used for that. A page is taken from this list of free pages
whenever needed. If there is no page left in the list, then multiple pages are preallo-
cated again. Freed pages are not returned to the operating system but pushed back
to the list of free pages. They are put on top of the list because the next time a page
is needed the recently freed page is likely to be still present in the processor cache.

Node allocation is about finding a free place in the right page ring. It is advan-
tageous to identify the page where the node should be inserted quickly. The NSA
array can be used to identify the right page ring in constant time, but finding an
empty slot might require scanning the ring. This operation can be avoided if all
pages are kept full except for the page to which the field in the NSA points. Let us
call the single non-full page in the ring the top page. Node allocation is then easy: it
is a matter of incrementing the occupancy counter in the top page. If the top page
becomes full after the node is added there, then a new page should be allocated. This
page then becomes the new top page.

Keeping the ring full except for the top page is not trivial as any node in the ring
might be removed. This is why node freeing is more complicated: it has to remove
the node such that the pages in the page ring remain fully occupied, except for the
top page. The process goes as follows. First, it is necessary to check if the top page
in the ring is empty (its occupancy counter value is zero). If that is the case, the page
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should be removed from the ring and freed. Then, it is necessary to swap the to-be-
deleted tree node with the tree node on top of the top page. The swapping can be
done in a constant time by updating the linkage of the TREE_NODE instances with
their parents and children. The node freeing is easy after the swapping: it is a matter
of decrementing the occupation counter of the top page. Note that this implies that
the swapping routine moves the position of an unknown node in memory. This
operation does not impact the coherency of the tree as the swapping routine updates
all relevant links carefully, but any pointer to the moved TREE_NODE instance from
outside of the tree will become invalid. This is an important issue that motivates the
support for path queues as discussed in the next section.

6.4.5 Queue support

The Algorithm 1 uses a queue to store tree nodes for later processing. It is a datas-
tructure separate from the path tree: a list of references to path tree nodes. These
references are addresses in memory where the TREE_NODE instances reside. As dis-
cussed in the Section 6.4.4, the tree nodes can change their position in memory any-
time a node is deleted. Consequently, the references from the queue to the tree can
become invalid without notification. It motivates an implementation of a queue that
is embedded in the path tree. The path tree and the queue can co-operate to keep all
references valid, and it can also reuse path tree’s memory management.

Consider a queue stored in pages that have the same structure as the pages used
in the path tree, except that its payload is not a collection of TREE_NODE instances
but a collection of pointers to TREE_NODE instances. Multiple pages can be linked to-
gether in a linked list. The queue can then be implemented by pushing (respectively
popping) references to tree nodes to (respectively from) the top of the first page in
the linked list. The path tree pages have four fields in the header: the pointer to the
next and previous pages, the reference to the road network graph G and the occu-
pancy counter. The pointer to the next page and the occupancy counter can be used
to implement the queue. The value of the field with reference to G can be set to zero
to indicate that this page is used for the queue.

An efficient approach to making sure that the references inside of the queue are
always up-to-date with the tree is to trick the swapper routine (Section 6.4.4) to think
that there is a fake child node which is, in fact, the back-referencing pointer in the
queue. Consider some tree node that is referenced from the queue, and that is about
to be moved. The swapper will check whether the node has any children and if so,
update their pointers to the parent node to its new position. If the first field in the
TREE_NODE datastructure is the pointer to the parent node, then this operation is the
same as updating a single remote pointer (since the rest of the TREE_NODE instance
will remain untouched). The nodes in the queue can’t have any children because the
Algorithm 1 did not yet process them. Hence, there is always a space to add the fake
child node. In summary: with this method the swapper routine will always update
entries in the queue, considering them to be another TREE_NODE instance, while
they are are in fact only pointers. The described method keeps the queue references
valid at no extra cost in terms of larger memory footprint or prolonged computation
time.
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6.5 Summary

This chapter is concerned with a routing algorithm suitable for eco-routing applica-
tions. The proposed concept requires a preprocessing step that identifies a collection
of candidate eco-routes. Rather than routing on the road network graph as it is usu-
ally done, the routing is conducted on this collection. The method proposed in this
chapter favors simplistic routing over sophisticated optimal routing algorithms such
as Dijkstra’s or Bellman-Ford algorithm. The motivation for this is that these algo-
rithms are too restrictive, too rigid in their assumptions. An approximative solution
based on a naive approach to routing is studied. It is based on a hypothesis that
while there are usually many possible paths to take, there is only a small subset of
them that can be eco-routes in some realistic conditions.

The routing algorithm is described in Section 6.1. It takes as an input a collection
of candidate eco-routes between the same origin and destination bundled in a tree
datastructure. The routing is an exhaustive search for the path that minimizes a
given cost function and satisfies all constraints. It is usually not computationally
feasible to consider all simple paths between a given origin and destination. Hence,
the tree can contain only their subset. It can be a handful of paths or hundreds of
thousands of paths, it is still a small amount in comparison to the number of paths
found between most origins and destinations.

The tree computation can be a computationally intensive operation. It can, how-
ever, be prepared once and used later multiple times. Computing the routing solu-
tion is then comparatively cheap. This motivates a routing system where the path
tree computation is decoupled from the routing: the path tree can be computed in
advance for repeated trips, then sent to the navigation assistant and used whenever
required. Two approaches to path tree computation are studied: exhaustive search
(Section 6.2), or randomized search (Section 6.3). Both generate path trees with a
subset of paths between given origin and destination. The randomized method di-
rectly identifies the prospective eco-routes, the exhaustive search considers every
path for which the pruning criteria failed to show that it cannot be an eco-route.

Note that path trees can be constructed in other ways as well. They can be con-
sidered to be pre-computed options the routing algorithm can choose from. One
possible way to construct such a tree is to take eco-routes based on various pro-
posed energy consumption models in the literature. The routing algorithm would
then choose the eco-route that minimizes the consumption given the current condi-
tions in the road network.
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Chapter 7

Simulation framework for
eco-routing

The evaluation of an eco-routing method requires field trials. Evaluating it in this
way is nevertheless cost prohibitive, as evidenced by the limitations of field trials
conducted in the past (see Chapter 3). This motivates evaluation in simulation as
it can approximate results of large-scale field trials. Such simulation framework is
presented in this chapter. A specialized simulation software is used to run a traffic
simulation of a real European city. Two microscopic vehicle consumption estima-
tion models that were validated on real vehicles are used as references. Note that
while the simulations were designed to be as realistic as possible, they only indi-
cate whether the studied method is likely to succeed in deployment. The ultimate
eco-routing evaluation is still with field trials.

There is only one relevant eco-routing simulator available: the INTEGRATION
framework. Ahn and Rakha, 2013 conducted a case study with this software. It
was not used in this work because a suitable traffic scenario to use with it was not
available at the time of writing. Another traffic simulator for which such scenario
is available was adopted. This simulator was not designed to be used in context of
eco-routing. All the experiments conducted in the context of this work were imple-
mented as separate programs that connect remotely to the simulator. The experi-
ments were implemented in Python 2.7 except for some computationally intensive
subroutines that were implemented in C.

7.1 Resources and software

SUMO (Simulation of Urban MObility) simulator by Krajzewicz et al., 2012 in ver-
sion 0.28.0 was used to conduct the traffic simulations. LuST 2.1 (Luxembourg
SUMO Traffic) scenario by Codeca et al., 2015 was used to simulate realistic traffic in

TABLE 7.1: Luxembourg traffic scenario summary†.

simulation area 155.95 km2

simulation time span 24 hours
number of vehicles 284,184
total length of roads 929.5 km
number of intersections‡ 4,477
peak traffic ≈ 4,800 active vehicles
†Data from Codeca et al., 2015
‡Includes 203 signalized intersections
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FIGURE 7.1: Luxembourg traffic scenario (Codeca et al., 2015).

a mid-sized European city. Road elevation data were extracted from EU Digital Ele-
vation Model by European Environment Agency. All these resources were available
under open licenses at the time of writing.

The SUMO software is a microscopic urban mobility simulator: it simulates the
movement of individual vehicles in a road network. The vehicles follow their paths
to the destination, interact with other vehicles and with the environment. Each ve-
hicle has non-zero physical dimension and occupies correspondingly large space
somewhere in the road network. Vehicles are not allowed to occupy intersecting
space; this is detected by the simulator and reported as collisions. The roads in the
road network have one or more lanes. The vehicles respect the right-of-way prior-
ity on intersections, or traffic light state if there is one. The traffic lights have static
programming. The simulation allows adding pedestrians into the road network, but
there is no support for them in LuST 2.1.

The SUMO road networks have a complex multi-layered design. The roads are
called “edges”, the intersections are “junctions”. The edges are collections of “lanes”.
Each lane has own shape and can connect to different roads in the downstream in-
tersection. Each junction features an underlying graph that contains both “internal
edges” and “internal junctions”. The internal junctions are used to model priority
relationships between vehicles coming from different roads. The internal edges are
collections of “internal lanes”. They are used to model trajectories of passing vehi-
cles.

The LuST traffic scenario has layout and mobility patterns of the Luxembourg
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TABLE 7.2: The reference consumption models.

EV† ICEV‡

referenced vehicle FAM F-City∗ Renault Scénic
maximum power 150 kWh 150 kWh
transmission type fixed 6-gear automatic
transmission efficiency 95% 95.06%
auxiliary losses 200 W 500 W
vehicle mass 1190 kg 1588 kg
tire radius 28.48 cm 31.73 cm
coefficient cc 113.5 N 110.45 N
coefficient cb 0.7740 N/(m/s) 1.5175 N/(m/s)
coefficient ca 0.4212 N/(m/s)2 0.5119 N/(m/s)2

†
Electric vehicle
‡

Internal combustion engine vehicle (conventional vehicle)
∗

Adapted for higher maximum power, see Section 7.2

city road network. Figure 7.1 shows a render of the road network. Its main proper-
ties are summarized in Table 7.1. It covers an area of 155.95 km2 with 929.5 km of
roads and 4,477 intersections (Codeca et al., 2015). The simulation spans 24 hours.
Different road types are available: there are highways, arterials and local roads. The
traffic is generated synthetically and matched to observed traffic patterns in Luxem-
bourg (not publicly accessible). The native traffic in the scenario consists of 284,184
vehicles. The peak traffic consists of about 4,800 vehicles simultaneously active in
the simulation.

The EU Digital Elevation Model is an elevation map of the European continent.
It is a numerical model with a grid of sampled elevations 25 meters apart. A sec-
tion that entails the Luxembourg city was extracted from it. The elevations between
the samples were interpolated with the bicubic interpolation. The model is used to
approximate road slopes in the road network. They are assumed constant, based
on altitude difference between the upstream and downstream intersections. This is
because more precise information is not available: while the terrain shape is known
the roads do not necessarily follow it (as is the case, for example, with bridges).

7.2 Reference microscopic consumption estimation models

Two reference microscopic consumption estimation models are discussed in this sec-
tion. They are used as a golden standard when validating energy consumption mod-
els and when evaluating eco-routing performance. They are standard longitudinal
models with a nonlinear engine (resp. motor) efficiency maps. Both models were
validated on real vehicles: one is electric, the other conventional. Their properties
are summarized in Table 7.2

The electric vehicle energy consumption model is based on FAM F-City. It is a
small 50 kW electric vehicle. The model is described and validated in Dib et al., 2012.
It was provided by the authors of that study. The 50 kW power is not sufficient to
support the dynamics of the vehicles in the simulations. For this reason, the motor
parameters were rescaled by the factor of 3 to simulate a 150 kW motor. Its efficiency
map is in Figure 7.2a. The efficiency is assumed constant at 90.9%. The recuperating
power is limited to 20 kW.

The conventional vehicle energy consumption model is based on a hatchback
version of Renault Scénic. The authors Dib et al., 2012 provided this model too. It
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FIGURE 7.2: Powertrain efficiency maps for the reference vehicles.
The efficiency is the ratio of powertrain’s output to input power.

has a 150 kW internal combustion engine. Its efficiency map is in Figure 7.2b. The 6-
gear transmission is automatic. The gear switching law does not depend on torque,
only on instantaneous speed.

7.3 Low-level algorithms and datastructures

One of the basic requirements in eco-routing is to have a road network graph to
route on. An implementation of a data structure that can hold the graph together
with a set of basic operations on it is essential. The road networks tend to be exten-
sive and so the datastructure need to be able to handle large graphs efficiently. The
nodes in the road network graph relate to roads (as described in Section 4.1). In-
formation about roads such as road length and the altitude difference is often used
by eco-routing methods when computing routing costs. Hence, the datastructure
must be able to store road-related information (metadata) for each node. Also, the
computational overhead of queries for connected nodes in the graph has a strong
impact on the computational overhead of routing algorithms. Having an efficient
implementation for these queries is imperative. Also, an ability to store the graph
for later use is practical as compiling a road network graph from map resources can
be time-consuming. A datastructure with properties mentioned above is discussed
below.

Another low-level functionality required to have is an optimal algorithm for find-
ing minimal paths. This is addressed with an implementation of Dijkstra’s algorithm
presented below. It is used when computing path trees (in Algorithm 3) and by the
baseline eco-routing methods (Section 4.3).

These low-level routines and datastructures were implemented in C, while all
the experiments conducted in the context of this thesis were implemented in Python.
The low-level functionality is accessed from Python using its “ctypes” interface.

7.3.1 The road network graph

There are two main approaches to represent directed graphs: using either adjacency
matrix or adjacency list. The adjacency matrix is a square matrix used to represent
connections between nodes in a finite graph. Consider aij to be an element on i-th
row and j-th column of the adjacency matrix. There is a connection from i to j if
aij 6= 0. The adjacency list is a set of ordered pairs where each pair represents one
edge: the first element is the origin node; the second element is the destination node.
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This work uses the adjacency list approach. This representation is more compact for
sparse graphs, and it also enables faster retrieval of neighboring nodes.

Each node in the set of nodes represents exactly one road between two inter-
sections. This is in accordance with the definition given in Section 4.1. Each node
carries information about the road it represents: its name, length, shape, speed limit
and altitude difference between the two intersections it connects. This information
can be used for various purposes from visualization to eco-routing. In particular, the
information is used in the context of eco-routing to compute routing costs.

The basic operation on a graph is to query its connectivity: to retrieve successors
and predecessors of a given node. Both are needed when routing with the Dijkstra’s
algorithm: retrieving a list of successor nodes when searching for a minimal path
and retrieving a list of predecessor nodes when reconstructing it after the routing
finished. The Dijkstra’s algorithm makes many queries for successor nodes, so it is
imperative to implement it in such a way that induces low computational overhead
per query. The implementation used here makes use of a list of edges sorted by edge
origin. This arrangement makes all edges originating from the same node adjacent
in the list. Then, every node has assigned offset to the first edge in the list of edges
that originates from the node. This allows producing a list of successor nodes in a
time proportional to the number of connected nodes.

The whole road network graph was compiled once and saved to a file for later
use. It is built from SUMO road network description file that comes with LuST
scenario and from the EU-DEM elevation model. It is a complex structure whose
compilation takes some time. Being able to compile it once and store it to a file for
later use makes it easier to handle and allows faster loading. The used implementa-
tion compiles it such that the file can be directly mapped to system memory (this is
facilitated by POSIX system call mmap). This allows fast loading of the road network
graph as the file is just mapped to the address space of the process. Actual data
are loaded lazily when needed (accessing data that are mapped to memory but not
present in memory will cause a page fault which will prompt the OS to load it).

7.3.2 Dijkstra’s algorithm implementation and its variants

Two variants of the Dijkstra’s algorithm were used. A standard implementation
was used to identify eco-routes in the classical time-independent eco-routing. The
second variant is its adaptation designed to speed up the Algorithm 3.

The standard implementation uses a set of routing costs that are provided to
the algorithm together with the road network graph. It uses a priority queue im-
plemented as a standard heap datastructure. A lower asymptotic run time could be
achieved with other types of priority queues, but this implementation does not make
use of it. This is motivated by results reported by Chen et al., 2007 who observed
that the used implementation yields lower runtime on road network graphs.

The second variant is used to render the Algorithm 3 faster. As written, the
Algorithm 3 first draws a random cost for every edge in the road network graph
and then runs the Dijkstra’s algorithm on this graph. The adapted version of the
Dijkstra’s algorithm draws random costs lazily as needed, thus avoiding the need to
preload it for the whole graph.

7.3.3 Drawing a random cost from arbitrary distribution

The Algorithm 3 draws a random cost for every road in the road network graph in-
dividually on line 4. Two things are required to be able to do that: (1) to know the
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TABLE 7.3: Collected information for every passing vehicle on every
road in the road network.

property group property unit

road name -
next road name -
vehicle name -
traveled distance m
altitude difference m

speed profile

speed profile variance (m/s)2

speed profile skew -
initial speed m/s
final speed m/s

timing
arrival time s
travel time s
waiting time s

EV

consumption J
energy on. wheels. J
braking energy J
traction efficiency %
recuperation efficiency %
peak power W

ICEV

consumption J
energy on. wheels J
braking energy J
traction efficiency %
peak power W

underlying distribution and (2) to have a method to draw at random from it. Inverse
transform sampling method was used to draw random costs from arbitrary distri-
butions. It takes a random number u drawn from the uniform distribution between
0 and 1 and then returns u-th quantile of the distribution to draw from (Devroye,
1986). The quantile computation requires computing the cumulative distribution
function and then inverting it. The uniformly distributed random number between
0 and 1 was obtained by reading random numbers from operating system’s pseudo-
random number generator1 and by normalizing them.

The inverted cumulative distribution functions were precomputed for every node
in the road network graph to lower computational overhead induced by inverse
transform sampling. The consumption on individual roads in the native traffic
dataset (Section 7.4) was used to approximate the distributions. They were inverted,
resampled using linear interpolation, and stored as a sequence of 101 samples be-
tween 0 and 1.

7.4 Collecting and processing native traffic data

Historical observations are needed to build the consumption and travel time models
proposed in Chapter 5. The LuST scenario includes 284,184 vehicles in a 24-hour
time frame. The data from their travels can be used in place of actual historical
observations.

The trips are collected by running SUMO with LuST scenario such that simu-
lation state is dumped to a file at every simulation step. The simulator allows this

1/dev/urandom
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through its “full-output” functionality. The state of every vehicle, every traffic light,
and every road is reported. This is processed with a script that tracks position and
speed of every vehicle. The script collects this information for the duration of life of
the vehicles in the simulation. When a vehicle finishes its trip the script processes the
collected record. It cuts the recorded sequences of position and speed to slices that
correspond to individual roads where the vehicle have been. It then dumps a record
with road name, vehicle name and other properties listed in Table 7.3 for each slice
(meaning for each road where the vehicle have been traveling). Various variables
are reported. It contains all information needed to build both travel time and con-
sumption models and to run consistency checks. The records are saved to a file for
later use. The file is sorted by road name, which implicitly groups information about
the same roads to the same part of the file. An indexation table in a separate file is
used to enable fast searching in the data. The script also dumps a file with recorded
traffic light states for the full duration of the simulation. This file is compressed with
run-length code to minimize the size of the resulting file.

The scenario uses one-second time discretization. This is too sparse: much infor-
mation would be lost if the speed profile is sliced directly. A whole second worth
of data would be lost every time the vehicle passes from one SUMO road network
edge to another, which happens on the average every seven seconds. There are
many short edges in SUMO road network that can be missed when sampling posi-
tion once per second. Careful slicing is necessary to ensure the integrity of extracted
information. The vehicle speed and road slope records were resampled with a sam-
pling period of 0.01 second. Linear interpolation was used. Cubic interpolation was
also considered, but it tends to overshoot to negative speeds when a vehicle goes to
full-stop. The vehicle path is reconstructed from the observed sequence of its posi-
tions by searching for the shortest path between every two consecutive observation
(they are one second apart of each other). This fills the gaps between observed posi-
tions. The integrity of the reconstructed path is checked by comparing the length of
the reconstructed path with the traveled distance. The slicing is done according to
crossing times between edges in the reconstructed path. There is a number of tests
implemented to ensure the integrity of the result. Most notably, the consumption on
every slice is added and compared to the consumption of the whole trip. The record
is scraped if any inconsistency is found.

The SUMO road network distinguishes individual road lanes. This is modeled
as a complex multi-layered road network graph. Such road network graph allows
modeling the dependency of the energy consumption on the lane the vehicle takes:
different lanes can have different occupancy, lead to different roads and have a dif-
ferent semaphore controlling them. A simpler approach that preserves the ability
of the model to take these differences into account is used instead. As discussed in
Chapter 4 roads in the road network are represented by nodes of the road network
graph. The edges represent a directed connection between two roads. Each edge
has some cost assigned. This is a cost for the road from which this edge spans con-
strained to vehicles that continue to the road to which the edge leads. This allows
assigning varying costs to the same road depending on where the vehicle goes next.
The complex lane-level road network graph is not needed.

The raw simulation output is massive: it has over 700 GB. The simulation nor-
mally takes about 30 minutes to complete. However, when the full-output func-
tionality is enabled the simulation takes over 30 hours. This is because of the delay
in slow I/O operations. This delay can be avoided by redirecting the “full-output”
data to a named pipe: a special file in the file system typically used for interprocess
communication. The data written to a pipe are stored in a memory buffer and not
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FIGURE 7.3: Inequality of traffic data distribution between edges:
70% of all records were collected on top 20% most used roads.

in a slow nonvolatile memory. Another process can open this file and read the data
written there. This allows passing the data directly to the script that process them in
parallel as they come. Some computation speedup can also be achieved by editing
SUMO’s source code. There is information in the full-output that is not used. The
code responsible for writing this information can be commented out2.

The processing script takes dozens of hours to finish. This is because of the fine-
grained resampling of the collected data, path reconstruction and consumption esti-
mation with the reference models. Especially the reference consumption models are
slow to compute as they numerically integrate the estimated instantaneous power
draw. The program was parallelized to allows it to scale to multiple processors. This
reduces the computation time as it runs in several instances in parallel on different
machines. Simple master-slave architecture is used: there is one process that sends
jobs to slave processes when they are free. Each job handles a single recorded trip.
When they finish, they send back the result and wait for the next job.

The resulting dataset contains 9,454,529 records. The distribution of the data on
the roads in the road network is uneven. As can be seen in Figure 7.3 about 70% of
all records were collected on 20% of most used roads.

7.5 Evaluating paths in a simulation

This section discusses the used method to compute the reference consumption. The
reference consumption can be compared to the predicted consumption to validate
the proposed consumption models. It is also used to evaluate performance as of the
eco-routing methods studied in this work.

The eco-routing experiments are conducted within the LuST traffic scenario in
the SUMO simulator (Section 7.1). It allows recording both speed and position of
vehicles as they progress on their paths. This information is used to compute energy
consumption with the reference consumption models (Section 7.2). The experiments
were implemented in Python. The simulator is remotely controlled via SUMO’s
TraCI interface.

2See the file src/microsim/output/MSFullExport.cpp in SUMO’s source tree
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FIGURE 7.4: Simulation workflow.

A considerable number of independent simulations must be conducted to be able
to evaluate eco-routing performance accurately. The program that conducts them
was parallelized and run on a computer cluster to reduce the required computation
time. One master process is used to assign jobs to multiple slave processes. The
slave processes conduct the simulations and return the reference consumption to
the master process. Each slave process runs an independent instance of the SUMO
simulator.

Two algorithms are used to evaluate the paths: one for fixed paths and another
for paths that can change. The former is used when the path is determined in ad-
vance and cannot change after the vehicle departed. This was used to evaluate the
performance of the baseline eco-routing methods (Section 4.3) and when evaluat-
ing eco-routing based on model 6 (see Section 9.1). The latter algorithm is used to
simulate the adaptive routing studied in Section 9.3.
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7.5.1 Fixed paths

The steps involved in the simulation of fixed paths are depicted diagrammatically
in Figure 7.4. The process starts by initializing a new SUMO instance with the LuST
scenario. The simulation is initialized to a previously saved state at the desired de-
parture time. Then a probe vehicle is added to the simulation, and its path is set.
The vehicle appears at the origin. This concludes the initialization. The program
then steps through the simulation, saving probe’s instantaneous speed and position
at each step. The simulation is terminated when it reaches the destination. The col-
lected data are then validated: the program verifies that the recorded path is correct,
complete and consistent. If the validation fails, the program indicates an exception
and returns. If the validation succeeds, the energy consumption of both reference
vehicles is computed from the collected data and returned.

7.5.2 Adaptive paths

The process is similar with adaptive paths. It is also depicted in Figure 7.4. The only
difference is in the part when the vehicle is in the simulation. The program re-runs
the routing algorithm (Algorithm 1) from the current position of the vehicle at every
simulation step. If the eco-routing solution changes the probe’s path is updated in
the simulation.

7.6 Summary

The evaluation of an eco-routing method requires cost-prohibitive field trials. This
chapter proposes a simulation framework to replace them. The simulations don’t
provide hard evidence by definition, but they are indicative and comparatively cheap
to conduct compared to actual field trials. It was used to evaluate energy consump-
tion minimizing eco-routing methods. Pollutant emission minimizing methods can
be evaluated analogically, if needed.

Conducting simulated eco-routing experiments requires a traffic simulator and a
traffic scenario. The scenario should be comprehensive, so the vehicles in it are sub-
ject to disturbances typically observed in real traffic such as interaction with other
vehicles, dealing with various levels of congestion, interacting with traffic lights,
right-of-way priorities on intersections, stop signs, and so on. The used simulator is
SUMO 0.28.0 (Krajzewicz et al., 2012), the used traffic scenario is LuST 2.1. (Luxem-
bourg SUMO traffic, Codeca et al., 2015). They are discussed in Section 7.1. Both are
available under an open-source license at the time of writing. The SUMO simulator
simulates individual vehicles in the scenario, updating their position and speed at
one-second time intervals. The LuST scenario is based on the road network and traf-
fic patterns of Luxembourg (a mid-sized European city). It simulates over 200,000
vehicles in a road network that contains local roads, arterial roads, and a highway.

The output of the studied consumption models is compared to energy consump-
tion estimated by two reference consumption models. They are introduced in Sec-
tion 7.2. Two such models are considered: one is for an electric vehicle, the other
for a conventional vehicle. The electric vehicle is represented by FAM F-City, the
conventional vehicle by Renault Scénic. Both are standard consumption estimation
models that integrate estimated instantaneous power draw from vehicle’s source of
energy. They use experimentally derived numerical powertrain efficiency maps to
approximate the power draw. Both models were developed and validated by a third
party.
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The road network graph and the routing algorithms were implemented in-house,
they are discussed in Section 7.3. These low-level functions were implemented in C.
The rest of the framework was implemented in Python. The road network graph
was compiled from SUMO road network definition file and an elevation model of
the area. The road network definition file is part of LuST 2.1; the altitude data were
imported from EU-DEM (EU Digital Elevation Model).

Historical observations on individual roads are required by consumption models
used in this work. They are typically used to identify their coefficients. The traffic
scenario contains over 200,000 simulated vehicles that constitute its native traffic.
Their speed profiles are recorded and processed in order to generate the data needed
by the consumption models. This is discussed in Section 7.4.

Actual simulations are conducted on individual paths: a probe vehicle is intro-
duced to the simulation and its progress is recorded until it reaches the destination.
The process that does this is described in Section 7.5. The collected information is
used to compute the reference consumption (with a reference consumption model).
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Chapter 8

Model identification & validation

The models proposed in Chapter 5 are identified and validated in this chapter. The
identification amounts to the identification of coefficients of the studied models. The
validation amounts to the estimation of their accuracy.

Baseline consumption models for eco-routing are studied in Section 8.1. The
travel time model that was proposed in Section 5.5 is identified and validated in
Section 8.2. The consumption model that was proposed in Section 5.4 is identified
and validated in Section 8.3. We have published a study similar to what is in the
Section 8.3, except that the study considers ideal vehicle instead; see Kubička et al.,
2016a.

The identification of the models discussed in this chapter requires a collection
of records with both dependent and independent variables of these models. The
native traffic dataset (Section 7.4) contains such records. In order to be able to do
both identification and validation reliably, the models are cross-validated with 2-
fold cross-validation repeated five times (sometimes referred to as “5x2cv”). This es-
timator was proposed in Dietterich, 1998. The 2-fold cross-validation is a technique
that partitions the set of all observations randomly to two subsets. Then, in a first
run, the first half is used for identification and the other half to estimate model’s
accuracy with the identified coefficients. In a second run, the roles invert as the
first subset is used for evaluation and the second subset for identification. Hence,
2-fold cross-validation returns two estimates of accuracy. This process is repeated
five times (there are five random partitions), giving out ten estimates of accuracy.
Their mean value is reported as the model’s estimation (prediction) accuracy. The
95% confidence intervals are also reported where appropriate. They equal to two
standard deviations of the ten results returned by the cross-validation method. The
5x2cv method has been chosen for its low estimation variance and because it directly
measures the variation of the results due to the choice of the training set.

Three validation metrics are considered: RMSE, IQR, and r2. The RMSE (root-
mean-square error) is a scale-dependent measure of accuracy. Let θ be a set of ob-
served values and θ̂ be a set of estimated (resp. predicted) values. The RMSE is
defined in this text as

RMSE =

√
E[(θ̂ − θ)2]. (8.1)

where E[·] is the expectation operator. It combines information about the average
error with information about the variability of errors. It also punishes more heavily
larger errors which makes it sensitive to outliers.

The IQR (inter-quartile range) is used as the outlier-insensitive complement to
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TABLE 8.1: β coefficients for (8.5).

EV† ICEV‡

β0 -0.7123 0.9580
β1 -2.2703· 10−2 -6.3418· 10−2

β2 -3.2109· 10−3 -1.1529· 10−3

β3 1.0617· 10−4 7.0035· 10−5

β4 -5.8308· 10−7 -4.1114 · 10−7

β5 2.3320 1.6148
†

electric vehicle
‡

conventional vehicle

RMSE. It is a robust metric of variability defined in this text as a measure of vari-
ability of residuals1: as the difference between 75-th and 25-th percentiles of the
residuals (θ̂ − θ), formally

IQR = Q3 −Q1 (8.2)

where Q3 is the third quartile (75-th percentile) and Q1 is the first quartile (25-th
percentile) of the residuals. Unlike RMSE, it does not combine information about
the average error and its variability: it measures only the variability.

The r2 is a coefficient of determination. It measures how well are the observa-
tions replicated by the model based on the proportion of total variation in outcomes
explained by the model. Its definition considered in this text reads

r2 =
E[(θ̂ − θ)2]

E[(θ − E[θ])2]
(8.3)

It indicates how much of the variability between the two variables has been ac-
counted for with the proposed model. It is used as a scale independent complement
to the other metrics.

8.1 Baseline energy consumption models

The consumption models proposed in Chapter 5 are compared to three baseline
models. Two of these models were proposed in the literature. They were chosen
such that they are representative of the main approaches used today: one model is
based on longitudinal consumption model, the other on regression analysis. The
third baseline model assigns each edge in the road network the mean energy con-
sumption observed there. It is called “MEC” in this work as short version of “Mean
Energy Consumption”. It is an interesting theoretical model to study.

The first baseline model was proposed in Barth et al., 2007 and revisited in Bori-
boonsomsin et al., 2012. The authors use Comprehensive Modal Emission Model
(CMEM) to estimate both fuel consumption and pollutant emissions. The CMEM is
a microscopic emission and fuel intake model (validated in Barth et al., 2001). The
authors approximate the fuel consumption (denoted f ) in grams per mile as

ln(f) = β0 + β1v̄ + β2v̄
2 + β3v̄

3 + β4v̄
4 + β5α (8.4)

1A note on the difference between errors and residuals: the error is the difference between an ob-
served value and the unobservable true value. The residual is an observable estimate of the unobserv-
able statistical error.
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where ln(·) denotes natural logarithm, β0 . . . β5 are coefficients, v̄ is the average
speed and α is the road grade. The reasoning behind the choice of the terms in (8.4)
is not clearly explained to the reader. An adapted version of this model is considered
in this study: it considers energy consumption Eb/l in Watt-hours per meter instead
of fuel consumption in grams per mile as the independent variable. The solution for
Eb reads

Eb = leβ0+β1v̄+β2v̄2+β3v̄3+β4v̄4+β5α (8.5)

The authors obtained the β-coefficients using multivariate nonlinear regression
on a large set of recorded trips. Table 8.1 lists the regression coefficients used in this
study. The β-coefficients were identified for the two reference vehicles (Section 7.2).
The identification process has, however, proven difficult as it did not converge when
performing nonlinear regression on (8.5). The identification was done instead with
the least-squares method on a linearized model.

The second model was proposed in Juřík et al., 2014. It is based the longitudinal
model (Section 5.1). The authors consider losses incurred by altitude changes, fric-
tion, and aerodynamic drag. Powertrain efficiency and heating in friction brakes is
neglected. Their model reads

Ej =

{
Ejr + (γ − 1)Ejp if Ejp ≤ 0

Ejr if Ejp > 0
(8.6)

where Ejr models rolling friction and aerodynamic losses, Ejp is the change in vehi-
cle’s potential energy and γ is a constant representing recuperation efficiency of the
vehicle. The Ejr and Ejp are given as

Ejr =
ρ

2
AfCdv̄

2l +mgµrl cos(α) (8.7)

Ejp = mgl sin(α) (8.8)

where v̄ is the average speed, and l is the road length. Constants ρ, Af , Cd, m, µr are
vehicle-specific and g is the gravitational acceleration constant. It was necessary to
adapt this model as the description of the reference vehicles (Section 7.2) does not
match the one used by the authors. Equation (8.7) is replaced with

Ejr = (cav̄
2 + cbv̄ + cc)l (8.9)

where ca, cb and cc are coast-down coefficients described in Section 5.1.1 and given
in Table 7.2.

The third model is the mean energy consumption (MEC) model. As the name
suggests, it assigns each edge in the road network graph a cost that is the mean
observed consumption there. The native traffic dataset contains recorded consump-
tion for every passing vehicle on every edge in the road network graph. It suffices
to gather all recorded consumptions for each edge and to take their averages as the
costs. There are two sets of costs: one for the electric vehicle and another one for the
conventional vehicle. They were computed on the same recorded trips, only with
different vehicle models. The interest in this model is more theoretical than prac-
tical. Its implementation uses recorded trips of all vehicles in the simulation (over
200,000 vehicles). The mean consumptions are then as close to their respective popu-
lation means as possible, given the limited road network capacity. However difficult
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FIGURE 8.1: Relation between consumptions according to the three
baseline models (vert. axis) and the consumption model of the electric

vehicle (horiz. axis).
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FIGURE 8.2: Relation between consumptions according to the three
baseline models (vert. axis) and the consumption model of the con-

ventional vehicle (horiz. axis).

it might be to use such data-intensive model in a real-world, it is still interesting be-
cause it is an unbiased estimator of consumption. The eco-routing with this model
shows the potential of time-independent eco-routing. It was proposed in the litera-
ture by Andersen et al., 2013. The authors possess a large collection of recorded trips
in Denmark. Their data come from GPS receivers and on-board diagnostic inter-
faces. They simply assign each road in Denmark the average consumption observed
there. Even the MEC is formally identical to Andersen et al., 2013, they are consid-
ered distinct in this work. The MEC would not perform as well in practice as it does
in simulations where it can use records from all vehicles in the road network and
where all vehicles are assumed to have identical properties.

The validation of the three baseline models was done on the same dataset as
the proposed models to ensure their comparability. The accuracy was evaluated on
individual edges in the road network graph, not on complete trips. The consump-
tions estimated with the baseline models were compared to the “true” (reference)
consumptions.

Table 8.2 lists the results. Each line describes one baseline model. Both reference
vehicles are considered. The results for the electric vehicle are listed in columns 2,
3 and 4. The results for the conventional vehicle are listed in the last three columns
(columns 5, 6 and 7). The RMSE, IQR and r2 is listed for each. The RMSE and
IQR are in Watt-hours, r2 is unit-less. Figures 8.1 and 8.2 show scatter plots that re-
veal relationships between estimated consumptions using the three baseline models
and their references. Figure 8.1 considers the electric vehicle; Figure 8.2 considers
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TABLE 8.2: Baseline models: results.

EV† ICEV‡

RMSE
♣

IQR
♣

r2 RMSE
♣

IQR
♣

r2

Barth et al., 2007 60.60 30.79 0.695 162.75 87.72 0.838
Juřík et al., 2014 47.71 27.53 0.811 358.23 130.60 0.217

MEC 24.83 12.54 0.949 73.63 41.62 0.967
† Electric vehicle
‡ Conventional vehicle
♣ Units: Wh

the conventional vehicle. In the ideal case, all the samples (depicted with crosses)
would be on the diagonal from bottom left corner to the top right corner. This sit-
uation would indicate perfect estimation. Each figure shows 100 randomly selected
samples. The figures have a square shape, and their axes share the same scale to
make comparison visually easy.

The first model (proposed by Barth et al., 2007) has shown RMSE of 60.6 Wh and
r2 of 0.7 for the electric vehicle and RMSE of 162.8 Wh and r2 of 0.84. The second
model (proposed by Juřík et al., 2014) can be expected to show high RMSE as it ne-
glects powertrain inefficiency and RMSE is scale-dependent. Such behavior is not
necessarily a problem for eco-routing as long as the estimates correlate positively
with the observed consumptions. It is the case for the electric vehicle (the r2 is 0.81),
but not for the conventional vehicle (the r2 is 0.21). Specifically for the conventional
vehicle, the results are worst between the baseline models. That is not entirely sur-
prising as the model was designed primarily for electric vehicles. The MEC shows
the highest accuracy. The RMSE is 24.8 Wh and r2 is 0.95 for the electric vehicle. For
the conventional vehicle, the RMSE is 73.6 Wh, and r2 is 0.97.

8.2 Travel time

There are four coefficients in the travel time model (5.38) to be identified: µ, ϑ, κG
and κS. The µ and ϑ are real-valued, the κ-coefficients are positive integers.

There are 9,770 edges in the road network graph, the tuple (µ, ϑ, κG, κS) needs to
be identified for every edge. The sets Se and Ge for each edge were extracted from
the native traffic dataset, except for 267 edges for which there was not enough data.
The travel time on these roads was approximated as the road length divided by the
speed limit. The function ttg was implemented with pre-recorded traffic light states.
8,268 edges out of the 9,770 represent roads without traffic lights. The parameter ϑ is
set to zero in these cases. It reduces the model to a k-NN regressor as the parameters
κG and µ lose their influence.

The travel time models were identified through minimization of RMSE. It is a
challenging task since two of the four coefficients are integers. The model is also not
linear, convex or smooth. Gradient-based numerical solvers cannot be used since
numerically computed gradients are not reliable. This unreliability is due to uncer-
tainty in the RMSE estimates that are minimized: they are estimated with the 5x2cv
cross-validation method whose outcome depends on a randomized shuffling of the
training dataset.

The identified models are approximate as finding the optimal solution was com-
putationally too demanding to be finished in acceptable time. Based on experimen-
tation I have preselected a set with 42 candidate combinations of coefficients κS, κG
and minimized µ and ϑ for each combination. The basinhopping method (Wales,
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FIGURE 8.3: Histogram of the RMSE and IQR of the proposed travel time
models compared to the mean travel time model. Results for signalized in-

tersections.
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FIGURE 8.4: Histogram of the RMSE and IQR of the proposed travel time
models compared to the mean travel time model. Results for right-of-way

intersections.

2003) together with the Powell solver (Powell, 1964) was used to do the minimiza-
tion. The Powell’method is an algorithm for finding a local minimum of a function.
It does not use the gradient of the minimized function to search for the local mini-
mum. It was chosen for this property over more standard methods. The basinhop-
ping method is used to overcome local minima. It runs the Powell solver several
times, always with some random perturbation on the initial guesses of the two pa-
rameters µ and ϑ and returns the lowest local minimum found.

The results of cross-validation for all 9,770 models are summarized in figures 8.3
and 8.4. The Figure 8.3 shows results for roads with traffic lights, Figure 8.4 shows
results for roads without traffic lights. The subfigures show histograms of ratios
of RMSE (resp. IQR) compared to the RMSE (resp. IQR) of the mean travel time.
The results show a considerable reduction of both RMSE and IQR on the roads with
traffic lights. The RMSE was reduced by a factor 1.68 and IQR by a factor 4.34 on
average. The results on the roads without traffic lights show that the proposed travel
time model does not offer any advantage over the mean travel time model.

A specific example of how the model predicts the travel time is in Figure 8.5.
The dots in subfigure 8.5a are observations, crosses are predictions. Subfigure 8.5b
shows prediction residuals. Most of the residuals are below ten seconds but note
the outliers that are on the level of ±60 seconds. These errors happen when the
vehicle reaches the traffic light close to the time when it was changing its color. This
behavior justifies the use of the IQR metric: it is not susceptible to these outliers.
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FIGURE 8.5: An example of sampled vs. predicted travel times on a
road -30256#0 when continuing to -30256#1 (SUMO road names).

8.3 The consumption model

The assumption of the proposed consumption model is that the powertrain’s output
power is an affine function of its input power. It was proposed in Section 5.4 as a
way to solve the longitudinal consumption model (5.14) without the dependency on
braking energy (which is argued hard to predict).

Six variants of this model are considered. They are listed in Table 8.3. The differ-
ence between them is in the parameters provided to (5.29). It has five independent
variables: travel time T , speed variance σ2, speed skew b, initial speed v(0) and
final speed v(T ). A model for travel time prediction was proposed in Section 5.5.
There is no model proposed for the other parameters. Two generic ways to model
them are considered: the parameter is either set to zero or set to the average of past
observations.

The last five columns in the Table 8.3 define what kind of values are supplied in
place of the parameters. The “X” indicates that the observed value was provided to
the model. The “∼” indicates that the parameter was replaced with a mean value.
The “–” indicates that the parameter was replaced with a zero; the “?” indicates that
predicted travel time based on model (5.38) was used. The six models were chosen
such that each model is interesting in its own right. The first model “model 1” uses
observed values for its parameters. This approach is useful only for estimation, not
for prediction, but it allows to quantify the error introduced by the powertrain as-
sumption itself. The other models confound modeling errors together with errors in
the parameters. The models 2 to 6 consider errors introduced by various relaxations
on the five parameters. The second model “model 2” considers predicted travel
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TABLE 8.3: Consumption model variants.

T σ2 b v(0) v(T )

model 1 X X X X X
model 2 ? X X X X
model 3 ? ∼ ∼ X X
model 4 ? – – – –
model 5 ∼ ∼ ∼ ∼ ∼
model 6 ∼ – – – –

Keys: Xcorrect value, ∼ full-day average,
– zero, ? predicted with (5.38)

time instead of the observed travel time. This allows quantifying how the model
performs with the proposed travel time model: how the errors in travel time affect
its accuracy. The third model “model 3” further considers the speed variance and
skew to be constants equal to the average of historically observed values. The fourth
model “model 4” considers all parameters to be zeros except travel time. The fifth
model “model 5” considers all parameters to be historically observed averages. The
sixth model “model 6” considers the travel time to be the historically observed aver-
age and other parameters to be zeros. The models 1-3 cannot be used in eco-routing
since they use information that is not available when planning the trip. The models
4-6 can be used in eco-routing. The model 4 is time-dependent; models 5 and 6 are
time-independent.

The native traffic dataset was used to identify and cross-validate these models,
similarly like it was done with the baseline models. Note that the results are likely
sensitive to the specific topology of the road network in Luxembourg. For this rea-
son, the accuracy of the six models should not be regarded as absolute but relative
to the results reported for the baseline models (Table 8.2).

The identification of the six models requires identifying coefficients P0 and e for
each. The P0 represents the power draw that does not depend on vehicle’s instan-
taneous speed. The e is powertrain efficiency. Guzzella and Sciarretta, 2005 discuss
two approaches to their identification for the original Willans’s model. Willans con-
siders P0 and e to be functions of shaft angular velocity. Under the assumption that
they are constant the standard approach is to fit a line between observed and esti-
mated consumptions. A different approach is proposed here. The Equation (5.29)
has two independent variables: the energy on wheels Ew and the travel time T . The
coefficients P0 and e can be identified by fitting a plane c1Ew + c2T = E. Then
e = 1/c1 and P0 = c2/c1 . Since this is a linear equation, the identification of c1 and
c2 can be accomplished with the linear least-squares method.

The model (5.29) for the conventional (internal combustion engine) vehicle can
output negative energy consumption. This is something the powertrain is not capa-
ble of as it cannot recuperate energy. To improve model accuracy, the used consump-
tion model is max(?, 0.0), where ? is the energy consumption according to (5.29).
This approach can always be adopted when the powertrain under consideration is
unable to recuperate. The effect is that any negative consumption is trimmed to zero.

Table 8.4 lists identified coefficients and cross-validation results. All six varia-
tions of the proposed consumption model (see Table 8.3) are considered for both
reference vehicles. First six lines are the results for the electric vehicle, last six lines
for the conventional vehicle. The parameters P0 and ewere identified for each model
separately. Their values are listed in columns 3 and 4. The cross-validation results
are in the last three columns: RMSE, IQR and r2. They list the mean observed values
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FIGURE 8.6: Scatter plots for the six versions of the proposed con-
sumption model compared to the reference consumption of the elec-

tric vehicle.
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Ê
(W

h)

(B) model 2

0 150 300 450 600
E (Wh)

0

150

300

450

600

Ê
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FIGURE 8.7: Scatter plots for the six versions of the proposed con-
sumption model compared to the reference consumption of the con-

ventional vehicle.
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TABLE 8.4: The proposed consumption model: results.

e (-) P0(W) RMSE (Wh) IQR (Wh) r2 (-)

EV†

model 1 0.889 2104.63 17.03 ± 0.11 7.49 ± 0.03 0.976 ± 0.0001
model 2 0.884 2263.09 23.67 ± 0.65 9.48 ± 0.02 0.954 ± 0.002
model 3 0.886 2308.95 23.99 ± 0.58 9.57 ± 0.03 0.952 ± 0.002
model 4 0.875 2111.75 27.91 ± 0.64 16.84 ± 0.02 0.936 ± 0.003
model 5 0.880 2344.17 26.61 ± 0.05 16.14 ± 0.01 0.941 ± 0.0001
model 6 0.829 1895.74 28.62 ± 0.11 16.82 ± 0.01 0.932 ± 0.0002

ICEV‡

model 1 0.337 6534.49 74.25 ± 0.44 47.82 ± 0.06 0.967 ± 0.0001
model 2 0.338 6922.07 95.2 ± 1.8 52.86 ± 0.18 0.945 ± 0.002
model 3 0.339 6984.72 95.76 ± 2.15 52.86 ± 0.19 0.944 ± 0.002
model 4 0.330 6486.55 98.99 ± 0.51 65.6 ± 0.06 0.941 ± 0.0001
model 5 0.336 7187.53 90.44 ± 0.13 63.77 ± 0.14 0.950 ± 0.0003
model 6 0.311 6144.69 90.24 ± 0.28 60.71 ± 0.08 0.951 ± 0.0002

† Electric vehicle
‡ Conventional vehicle

together with a confidence interval. The values of P0 are in Watts, RMSE and IQR
are in Watt-hours, e and r2 are unit-less. The reported RMSE, IQR and r2 values can
be directly compared to the values reported for the baseline models (See Table 8.2).

Figures 8.6 and 8.7 show scatter plots that reveal relationships between estimated
consumptions using models 1-6 and the reference consumption. Figure 8.6 consid-
ers the electric vehicle; Figure 8.7 considers the conventional vehicle. All samples
(depicted with crosses) would be on the diagonal from bottom left corner to the top
right corner in the ideal case. This would indicate perfect estimation (resp. predic-
tion). Each figure shows 100 randomly selected samples. The figures have a square
shape, and their axes share the same scale to make comparison visually easy. They
can be compared to the scatter plots for the baseline models in figures 8.1 and 8.2.

The powertrain efficiency e for the electric vehicle is about 88% (except for model
6), and its speed independent losses P0 are about 2.2 kW (also except for model
6). On the other hand, the efficiency of the conventional vehicle is lower (about
33%) and its static losses are higher with P0 close to 6.5 kW, in most cases. These
results correspond to the properties of the two vehicles: the electric vehicle is light,
simple and efficient; the conventional vehicle is heavy, complex and inefficient. The
cross-validation results have shown superior accuracy with respect to the baseline
models proposed in Barth et al., 2007 and Juřík et al., 2014. These models require
only the knowledge of the mean speed. The model 6 uses the same information
and outperforms both by a considerable margin. The results are not so strong when
compared to the MEC model, however. Only the models 1, 2 and 3 for the electric
vehicle outperform it.

The model 1 is provided the correct (observed) parameters. Hence while this
model can be used for consumption estimation, it cannot be used for prediction in
eco-routing. It is nevertheless an interesting model as it allows to quantify the er-
ror introduced by the powertrain assumption alone (see Section 5.4). The results
for the electric vehicle have shown superior accuracy with respect to all three base-
line models. The results for the conventional vehicle have shown superior accuracy
with respect to Barth et al., 2007 and Juřík et al., 2014 and comparable accuracy to
the MEC model. As discussed in Section 5.4, the assumption is better suited for the
electric vehicle than for the conventional vehicle. The results support that: the coef-
ficient of determination is higher for the electric vehicle. Note also that the estimated
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efficiency e of the electric vehicle is 88.9% while the actual powertrain efficiency is
86.3% (90.9% motor efficiency multiplied with 95% transmission efficiency). There
is a discrepancy, but it is to be expected. As discussed in Section 5.4 the efficiency
when braking becomes the reciprocal of the traction efficiency and hence larger than
one. The effect is that the estimate of e is artificially higher than vehicle’s average
traction efficiency.

The model 2 considers travel time predicted with (5.38); the other parameters are
observations like in model 1. It injects the error from travel time predictor to the
consumption model which allows quantifying the related penalty in model accu-
racy. The model 3 additionally considers the parameters σ2 and b to be the average
of previously observed values. It allows quantifying the additional penalty in model
accuracy due to average σ2 and b. Both models are like model 1 useful for estima-
tion, but not for prediction. For the electric vehicle, both models show superior
performance with respect to all three baselines. For the conventional vehicle, their
performance is inferior with respect to the MEC model. The results show a consider-
able gap in accuracy between models 1 and 2 (from 17.03 ± 0.11 Wh to 23.67 ± 0.65
Wh for the electric vehicle), but only a small difference in accuracy between mod-
els 2 and 3 (they are within the margin of their confidence intervals). These results
indicate that the error introduced by the travel time prediction has a considerable
effect on consumption prediction accuracy. On the other hand, the replacement of
the σ2 and b parameters with their averages did not result in significant reduction of
accuracy.

The model 4 differs with respect to models 1, 2 and 3 in that it can be used for
eco-routing. The travel time parameter is predicted with the proposed travel time
model, and the other parameters are zeros. The results show a reduction of accuracy
between the models 3 and 4 (from 23.99± 0.58 Wh to 27.91± 0.64 Wh for the electric
vehicle). This is likely because the difference in vehicle’s kinetic energy is no longer
accounted for.

The models 5 and 6 are time-independent. Unlike the other models, all of their
parameters are either average values or constants. The model 5 takes average value
in place of all parameters. The model 6 requires average travel time; its other pa-
rameters are assumed to be zero. These models are interesting because they can be
used as drop-in replacements for consumption models in existing eco-routing appli-
cations. The model 6 uses the same information as Barth et al., 2007 and Juřík et al.,
2014: the average travel time2. The model has shown considerably better accuracy
with respect to both: the observed RMSE of the model 6 (for the electric vehicle) is
28.62 ± 0.11 Wh, while the two baseline models reached at 60.60 Wh and 47.71 Wh
respectively. The accuracy of model 6 is nevertheless inferior to the MEC model as it
has shown RMSE of 24.83 Wh. In the case of the electric vehicle, the model 5 is more
accurate with observed RMSE lower by 2 Wh with respect to the model 6. There is no
significant difference in accuracies of the two models in the case of the conventional
vehicle: the differences are within the margins imposed by the confidence intervals.

8.4 Summary

This chapter is about identification and validation of baseline consumption models,
the travel time model, and the consumption model proposed in Section 5.4. Identi-
fication amounts to the identification of the coefficients of the studied models. The

2Note: both Barth et al., 2007 and Juřík et al., 2014 use average speed, which is inversely propor-
tional to average travel time via road length (a known variable).
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data required to identify them come from the native traffic dataset discussed in Sec-
tion 7.4. Validation amounts to the estimation of prediction accuracy of the studied
models. The used metrics of accuracy and goodness-of-fit are RMSE (root-mean-
square-error), IQR (inter-quartile range) and r2 (coefficient of determination). The
cross-validation was done with 2-fold cross-validation repeated five times.

The baseline models are introduced, identified and validated in Section 8.1. The
consumption models published by Barth et al., 2007 and Juřík et al., 2014 are consid-
ered as baselines. Additionally, an energy consumption model whose consumption
estimates are sample mean values is considered as a complement to the two base-
lines models. It is named “MEC” (Mean Energy Consumption) in this work. The
Barth et al., 2007 and Juřík et al., 2014 were chosen as representatives of the main two
approaches to energy consumption modeling used in eco-routing literature. Barth
et al., 2007 proposes a consumption model based on regression analysis and Juřík
et al., 2014 proposes a model derived from the longitudinal consumption model (in-
troduced in Chapter 5).

The travel time model that was proposed in Section 5.5 is identified and evalu-
ated in Section 8.2. There are four coefficients in the travel time model (5.38) to be
identified: µ, ϑ, κG and κS. The µ and ϑ are real-valued, the κ-coefficients are posi-
tive integers. A unique set of coefficients was identified for every edge in the road
network graph. The results show a considerable reduction of both RMSE and IQR
on the roads with traffic lights. The RMSE was reduced by a factor 1.68 and IQR by
a factor 4.34 on average. The results for the roads without traffic lights show that the
proposed travel time model does not offer any advantage over the mean travel time
model.

The consumption model that was proposed in Section 5.4 is identified and eval-
uated in Section 8.3. Six variants were studied. They are named "model 1" to "model
6". The difference between them is in the independent variables provided to the
consumption model. The model 1 uses observed values. The model 2 uses predicted
travel time (using model (5.38)) instead of the observed travel time. The model 3
uses predicted travel time and average values in place of parameters σ2 and b. The
model 4 uses the predicted travel time while all other independent variables are
set to zero. The model 5 uses average values in place of all independent variables.
The model 6 uses average travel time and assumes all other variables are zero. The
models 1, 2, 3 and 4 are time-dependent, models 5 and 6 are time-independent. The
models 1 to 3 use observed values and cannot, therefore, be used before the trip was
recorded. This prevents them from being used in eco-routing. Models 4 to 6 does
not rely on observations and can be used in eco-routing. All six model variations
have shown superior accuracy on both reference vehicles with respect to Barth et al.,
2007 and Juřík et al., 2014. Especially the model 6 uses the same information as these
baseline models and shows considerably improved accuracy. The accuracy is, how-
ever, inferior with respect to the mean energy consumption (MEC) model for most
variations of the consumption model. Only models 1, 2 and 3 used on the electric
vehicle have shown superior performance with respect to MEC. In case of the con-
ventional vehicle, the accuracy of model 1 is comparable to the accuracy of MEC, the
models 2 to 6 have shown worse accuracies.
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Chapter 9

Simulations and results

Results of simulated eco-routing experiments are presented in this chapter. Three
eco-routing methods are studied, all aim to minimize a single cost (energy consump-
tion) without constraints. While the eco-routing methods proposed in this work sup-
port multiple costs and constraints, the used setup allows direct comparison to the
baseline methods presented in Section 4.3. Eco-routing with the consumption model
6 (see Table 8.3) is studied in Section 9.1. This is a time-independent eco-routing with
a consumption model that uses the same information as baseline models by Barth
et al., 2007 and Juřík et al., 2014. Computational effort associated with the compu-
tation of path trees is studied in Section 9.2. It is a precursor to Section 9.3 which
studies time-dependent adaptive eco-routing. Two variants are considered: with
and without rerouting. Finally, the Section 9.4 gives an example how the versatility
of the proposed eco-routing method can be leveraged to improve performance and
to limit failures.

The summary of the results is in Table 9.1 at the end of this chapter. It is an ex-
tension of Table 4.1. All results are relative quantities (in percent) with eco-routes
being compared either to the shortest paths or the fastest paths. Current literature
allows both options. Both reference consumption models (electric vehicle and con-
ventional vehicle; presented in Section 7.2) are considered. The last four columns in
the table are from left to right the results (1) for the electric vehicle with eco-routes
compared to the fastest paths; (2) for the conventional vehicle with eco-routes com-
pared to the fastest paths; (3) for the electric vehicle with eco-routes compared to
the shortest paths; (4) for the conventional vehicle with eco-routes compared to the
shortest paths. The 95% confidence intervals are listed for the mean values given in
the table. The table has six sections. Their meaning was first explained in Section
4.3. To reiterate:

1. P and P̂ is the performance and estimated performance, respectively. The
P is the relative amount of energy saved on a typical trip, P̂ is the estimate
of P when the same consumption model is used for both eco-routing and its
evaluation (see its definition given in Section 4.2.1). Negative values indicate
losses rather than savings.

2. “Probability of failure” is the sample probability that the eco-route is less eco-
nomical than the fastest (resp. shortest) path and that it requires longer travel
time than the fastest (resp. shortest) path.

3. “Eco-route same as reference” is the portion of cases for which the eco-route is
identical to the fastest (resp. shortest) path.

4. “Mean savings” is the average reduction of energy consumption on the eco-
route when compared to the fastest (resp. shortest) path.
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5. “Mean travel time delay” is the average increase in travel time on the eco-route
when compared to the fastest (resp. shortest) path.

9.1 Eco-routing with model 6

Eco-routing with the model 6 (see Table 8.3) is studied in this section. This model
is time-independent (like the baseline models). It requires only information about
mean travel time on the roads in the road network. The model 6 is studied in Chapter
8, where it is cross-validated and compared to the baselines. The results have shown
lower RMSE than models by Barth et al., 2007 and Juřík et al., 2014, and higher than
the MEC model.

The goal is to evaluate this eco-routing method in terms of its performance P .
The methodology is the same as with the baseline models. The framework proposed
in Chapter 7 is used to conduct this experiment. The model 6 was used to assign a
cost (energy consumption) to every node in the road network graph. Its only un-
known parameter is the average travel time. This information was extracted from
the native traffic dataset (discussed in Section 7.4). The eco-routes were computed
for the same set Vod with 60,478 origin-destination pairs that were used for the eval-
uation of the baseline methods. The Dijkstra’s algorithm was used for the routing.
Negative costs were replaced with zeros. Every eco-route from the set of 60,478 was
tried in the simulation that started at the same time (at midnight) from the same ini-
tial state. The simulation provided necessary information to compute the reference
consumptions with the two reference consumption models (see Section 7.2). This al-
lows comparing consumption on eco-routes to consumption on shortest and fastest
paths.

The results are in figures 9.1, 9.2, 9.3, and in Table 9.1. The distributions of sav-
ings are shown in figures 9.1 and 9.2. It can be compared to the distributions of
savings for the baseline methods in figures 4.3 and 4.4. For some fixed origin, des-
tination and time of departure let Ee be the energy consumption on the eco-route,
Es the energy consumption on the shortest path and energy Ef the consumption on
the fastest path. The Figure 9.1 shows the distribution of savings on eco-routes with
respect to fastest paths (the distribution of the ratios Ee/Ef ). The Figure 9.2 shows
the distribution of savings with respect to the shortest paths (the distribution of the
ratios Ee/Es). The area under the curve below 1.0 on the horizontal axis represents
the cases for which the eco-routing method saved some energy while the area under
the curve above 1.0 on the horizontal axis represents the cases for which the eco-
route required more energy than the reference path. These are the cases in which
the eco-routing method failed to save energy. An exceptionally high probability of
the eco-route being identical to the shortest (resp. fastest) path was observed. This
appears as a discontinuity in the distributions in figures 9.1 and 9.2. It was removed
from the plots and reported instead in Table 9.1 where the results are summarized.
The Figure 9.3 shows the correlation between the observed (reference) energy con-
sumptions and the consumptions estimated with the model 6. Results for the electric
vehicle are in Figure 9.3a, for the conventional vehicle in Figure 9.3b. It can be com-
pared to the results for the baseline models in Figure 4.5. Each sample represents a
single trip. The reference consumption on the eco-route (denoted Ee) is on the hori-
zontal axis while the estimated consumption (denoted Êe) is on the vertical axis. The
perfect estimation would be achieved with all samples aligned on the black diagonal
line. The samples above it are the cases when the consumption was overestimated,
and the samples below it are the cases when it was underestimated.
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FIGURE 9.1: Eco-routing with model 6: distribution of savings rela-
tive to fastest paths.
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FIGURE 9.2: Eco-routing with model 6: distribution of savings rela-
tive to shortest paths.
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FIGURE 9.3: Eco-routing with model 6: correlation of estimated and
reference energy consumptions.

The results in Table 9.1 show that eco-routing with the model 6 performs bet-
ter than Barth et al., 2007 and Juřík et al., 2014, but fails to perform better than
eco-routing with the MEC model and, perhaps more importantly, simple shortest-
distance routing. This motivates the time-dependent adaptive routing studied in the
following sections.

9.2 The path tree

The time-dependent adaptive eco-routing method proposed in Chapter 6 uses a pre-
computed path tree with candidate eco-routes to choose from. The path tree compu-
tation time and its other properties are studied in this section. The goal is to assess
the feasibility of this approach. Note that the path tree computation can be done
offline, it is not a time-critical part of the system. The acceptable computation times
can, therefore, reach to hundreds of seconds.

The tree is computed with the Algorithm 3; it is described in Section 6.3. The im-
plementation of the path tree datastructure is discussed in Section 6.4. The algorithm
draws a random cost for every node in the road network graph from known energy
consumption distributions. The methodology for obtaining these distributions is de-
scribed in Section 7.3.3. The Algorithm 3 uses internally the Dijkstra’s algorithm to
find random eco-routes, its implementation is discussed in Section 7.3.2. The Algo-
rithm 3 does not specify the stop condition to be used. A simple limit on the number
of iterations of the main loop in the Algorithm 3 is used in this experiment as a stop
condition.

The tree computation with the exhaustive search (Algorithm 2) is not studied
here as it is not used in the eco-routing experiments considered in this chapter. The
randomized search is preferred over the exhaustive search. The computation time
with the exhaustive search varied significantly between studied cases. This makes
the choice of coefficients for pruning criteria difficult. The same setting can yield
trees with a handful paths or trees with millions of paths. The randomized search
allows better control over the tree size and computation time.
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FIGURE 9.4: Number of paths in the path tree against the number of
iterations.
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FIGURE 9.5: Path tree computation time against the number of itera-
tions.

The experiment is designed as follows. First, a 300 random origin-destination
pairs were selected. Then a tree was built for every origin-destination pair and for
every limit on the number of iterations from the set {100, 200, . . . 2000}, which con-
stitutes different stop conditions. The computation time, the number of found paths
and the number of iterations before the shortest path is discovered is recorded for
every created tree. The experiment was conducted in a single thread on a 64-bit
personal computer running a Linux-based operating system. It had 16 GB of RAM
and a four-core processor clocked at frequencies up to 2.2Ghz. The computer did
not run out of memory during computation, meaning there are no delays in compu-
tation time due to memory swapping. The program that ran the experiment could
have used the full capacity of a single core since the other three other cores did not
saturate from running the other processes.

The results are in figures 9.4 and 9.5. They are violin plots which show for differ-
ent stop conditions (different number of iterations) on the horizontal axis the number
of identified paths (Figure 9.4) and the computation time (Figure 9.5). Similarly like
box plots, the violin plots show for each category the median and the extrema. Addi-
tionally, they show the approximated probability density distributions overlaid over
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FIGURE 9.6: Trip length against the number of discovered paths.

the box plots. The distributions were approximated using kernel density estimation.
The number of found paths is the number of candidate eco-routes stored in the

resulting path tree. It grows at varying paces depending on the road network and
positions of the origin and destination, as can be seen in Figure 9.61. In the worst
observed case, there were 1850 paths after 2000 iterations, meaning that in 92.5% of
iterations a new path was discovered and added to the tree. On the other hand, the
distributions in the violin plot show that this was rare. The median grows at much
slower pace with 50 paths after 100 iterations and 300 paths after 2000 iterations. The
distributions show that for most origin-destination pairs used in this experiment
there is only a handful of discovered paths (the distributions are heavier towards
the bottom). This does not imply a generalization in the sense that there is typically
only a few candidate eco-routes to be considered for any origin-destination pair. The
Figure 9.6 reveals that trip distance is a confounding factor: for paths shorter than
4 km there is usually only a handful of discovered paths, but that number grows
steeply on longer distances.

The computation times in Figure 9.5 did not go above 9 seconds even in the
worst case for the maximal considered number of iterations. For 100 iterations the
computation took between 0.3 and 0.6 seconds, for 2000 iterations the computation
took between 0.8 and 8.9 seconds. The median of the computation time starts at
0.5 seconds at 100 iterations and grows to 3.8 seconds at 2000 iterations. Note that
the minimum computation times grow only slowly with the growing number of
iterations in comparison to the maximum computation times. This is likely because
in the cases when the origin and destination are close to each other the Dijkstra’s
routing algorithm needs less time to compute. Additionally, the number of found
paths is often low in these cases, meaning that the randomly discovered paths are
likely to be already in the tree.

The computation times depend on used hardware and availability of its resources
(memory and computational power). Nevertheless, the results in Figure 9.5 show
that path tree computation with the Algorithm 3 is time-feasible for intra-urban
travels with length up to 12km. It remains to be seen whether the paths stored in

1The data in Figure 9.6 are based on a separate run of the experiment with the limit on the number
of iterations extended to 10000.
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FIGURE 9.7: Portion of found shortest paths against the number of
iterations.

the these trees are relevant for eco-routing. One way to assess the candidate eco-
routes in the path trees is to see whether they contain the shortest paths. Numerous
studies have observed that eco-routes tend to minimize travel distance (Ahn and
Rakha, 2007; Ericsson et al., 2006; Kubička et al., 2016b) which implies that shortest
paths are likely candidates to be eco-routes. The portion of the 300 trees (for 300
origin-destination pairs) that contain the shortest path is shown in Figure 9.7 against
the number of iterations2. It shows that the shortest path was the first discovered
path in 20% of the cases and that in almost 40% of the cases the shortest path was
identified within the first ten iterations. About 10% of the trees did not contain the
shortest path even after 10000 iterations.

9.3 Time-dependent eco-routing with rerouting

Eco-routing with the energy consumption model 4 (see Table 8.3) is studied in this
section. This model is time-dependent and therefore enables time-dependent eco-
routing. The only unknown parameter of the model 4 is the predicted travel time at
the expected time of arrival to the road for which the energy consumption is to be
predicted. The travel time model (5.38) is used for that. The routing is done with the
Algorithm 1 using a path tree computed with the Algorithm 3.

9.3.1 The choice of a stop condition

The Algorithm 3 does not specify the stop condition to use. As in the previous
section, the condition considered here is a simple limit on the number of iterations
of the main loop in the Algorithm 3. The choice of this limit is studied in this section.

Consider following limits: 100, 500, 900, 1300, 1700 iterations. Let us evaluate
the eco-routing method with model 4 for each limit. Considering a full set Vod (de-
fined in Section 4.2.1) with 60,478 origin-destination pairs for all five limits would

2The data in Figure 9.7 are based on a separate run of the experiment with the limit on the number
of iterations extended to 10000.
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FIGURE 9.8: Mean savings against the number of iterations for tree
computation. The error bars show the 95% confidence interval.

be computationally too costly. Consider a subset of Vod with 4,000 random origin-
destination pairs instead. It is the same experiment like the one described below,
except that a subset of the 60,478 origin-destination pairs is considered.

The results in Figure 9.8a are for the electric vehicle and in Figure 9.8b for the con-
ventional vehicle. The evaluation was done, exceptionally, in terms of mean savings
instead of performance, as it allows to construct 95% confidence intervals around
the means. This is because the results were computed on a reduced set of origin-
destination pairs. The mean savings are based on a comparison to fastest paths. The
900 iterations have shown best results in both cases, although given that the confi-
dence intervals overlap it is not unlikely that this is not the optimal choice between
the five studied cases. In general, the savings do not show strong sensitivity to the
choice of the stop condition, although it tends to decrease with higher limits on the
number of iterations. This is interesting because it suggests that larger path trees
with more options for the router lead to worse results.

9.3.2 Time-dependent eco-routing evaluation

The goal of this experiment is to evaluate time-dependent eco-routing performance
P . Two variants are considered: with rerouting enabled and disabled. The eco-
route is computed once (before departure) if rerouting is disabled. If it is enabled,
the original eco-route is continually updated on-the-go based on the progress of the
vehicle.

The experiment was conducted on the same set Vod with 60,478 origin-destination
pairs used for the evaluation of the baseline methods and of the eco-routing with the
model 6. A path tree with the stop condition set to 900 iterations was computed for
each origin-destination pair. Then, the Algorithm 1 was used to identify the eco-
routes. Each eco-route was then tried in the simulation. The methodology for eval-
uation of eco-routes in the simulation is discussed in Section 7.5. The used imple-
mentation of rerouting is also described in that section. Every simulation started at
the same time (at midnight) from the same initial state. It provided necessary infor-
mation to compute the reference consumptions with the two reference consumption
models (see Section 7.2). The experiment was designed to provide results directly
comparable to the baseline methods and eco-routing with consumption model 6.
There is one exception, however. The estimated performance P̂ is not reported as it
cannot be evaluated due to changing eco-routing solution with rerouting enabled.
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FIGURE 9.9: Distribution of savings relative to fastest paths.
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FIGURE 9.10: Distribution of savings relative to shortest paths.
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FIGURE 9.11: Correlation of estimated and reference consumption.

The results are in figures 9.9, 9.10, 9.11, and in Table 9.1 under rows “model 4”
and “model 4 + rerout.”. The distributions of savings are shown in figures 9.9 and
9.10. It can be compared to the distributions of savings for the baseline methods
in figures 4.3 and 4.4. For some fixed origin, destination and time of departure let
Ee be the energy consumption on the eco-route, Es the energy consumption on the
shortest path and energy Ef the consumption on the fastest path. The Figure 9.9
shows the distribution of savings of the eco-routes with respect to the fastest paths
(the distribution of the ratios Ee/Ef ). The Figure 9.10 shows the distribution of sav-
ings with respect to the shortest paths (the distribution of the ratiosEe/Es). The area
under the curve below 1.0 on the horizontal axis represents the cases for which the
eco-routing method saved some energy while the area under the curve above 1.0 on
the horizontal axis represents the cases for which the eco-route required more energy
than the reference path. These are the cases in which the eco-routing method failed
to save energy. An exceptionally high probability of the eco-route being identical to
the reference path (shortest or fastest path) was observed. This appears as a discon-
tinuity in the distributions in figures 9.9 and 9.10. It was removed from the plots
and reported instead in Table 9.1 where the results are summarized. The Figure 9.11
shows the correlation between the observed (reference) energy consumptions and
the consumptions estimated with the model 6. Results for the electric vehicle are in
Figure 9.11a, for the conventional vehicle in Figure 9.11b. It can be compared to the
results for the baseline models in Figure 4.5. Each sample represents a single trip.
The reference consumption on the eco-route (denoted Ee) is on the horizontal axis
while the estimated consumption (denoted Êe) is on the vertical axis. The perfect
estimation would be achieved with all samples aligned on the black diagonal line.
The samples above it are the cases when the consumption was overestimated, and
the samples below it are the cases when it was underestimated.

In terms of performance, the time-dependent eco-routing with model 4 shows
improvement over time-independent eco-routing with model 6. With performance
based on comparison to the fastest paths, the performance P is 32.1% and 32.4%
for the electric vehicle with rerouting disabled and enabled, respectively. In case of
the conventional vehicle, the P is 23.0% and 23.5%, respectively. The performance
figures are considerably lower when comparing to shortest paths, however. The
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performance is 0.3% and 0.8% for the electric vehicle with rerouting disabled and
enabled, respectively. For the conventional vehicle, the P is 0.7% and 1.4% with
rerouting disabled and enabled, respectively. The mean travel time delay ranges
from 7.8% to 11.3% when comparing to the fastest paths and from -7.8% to -4.9%
when comparing to the shortest paths. This implies that the eco-routing method
delivers savings in travel time when compared to the shortest paths. The probability
of failure is lower than 9% in all cases, and rerouting has consistently lowered the
probability of failure. Eco-routes were identical to fastest paths in 14.5% to 16.6%
of cases and identical to shortest paths in 19.5% to 30.8% of cases. The confidence
intervals associated with mean savings and mean travel time delays do not overlap
across all cases.

TABLE 9.1: Routing results.

wrt fastest wrt shortest
EV† (%) ICEV‡ (%) EV† (%) ICEV‡ (%)

P

model 6 31.4 21.9 -0.9 -0.9
model 4 32.1 23.0 0.3 0.7
model 4 + rerout. 32.4 23.5 0.8 1.4
Barth et al., 2007 26.7 20.1 -8.0 -3.2
Juřík et al., 2014 29.7 18.8 -3.5 -4.9
MEC model 34.5 24.7 3.6 2.8

P̂

model 6 24.7 15.7 4.1 6.4
model 4 24.7 18.0 5.5 8.3
model 4 + rerout. - - - -
Barth et al., 2007 7.2 7.3 2.0 2.3
Juřík et al., 2014 50.9 53.4 2.2 2.7
MEC model 30.3 18.7 4.9 3.9

Probability of
failure

model 6 9.6 6.3 8.2 9.0
model 4 9.5 10.2 7.7 9.4
model 4 + rerout. 7.5 7.3 4.6 5.6
Barth et al., 2007 8.7 8.6 5.2 6.1
Juřík et al., 2014 24.5 30.4 30.0 36.9
MEC model 6.4 4.3 7.6 5.9

Eco-route
same as
reference

model 6 22.8 31.9 29.6 22.5
model 4 16.6 16.4 30.8 23.6
model 4 + rerout. 14.5 14.5 25.4 19.5
Barth et al., 2007 28.6 29.8 40.6 35.8
Juřík et al., 2014 9.4 8.7 37.6 32.2
MEC model 15.5 22.1 25.0 29.8

Mean savings

model 6 15.7 ± 0.19 11.7 ± 0.15 -1.5 ± 0.07 -1.2 ± 0.06
model 4 16.4 ± 0.19 12.6 ± 0.15 -0.4 ± 0.07 0.2 ± 0.05
model 4 + rerout. 16.8 ± 0.19 13.2 ± 0.15 0.1 ± 0.07 0.9 ± 0.05
Barth et al., 2007 13.9 ± 0.18 11.1 ± 0.15 -5.6 ± 0.18 -2.2 ± 0.10
Juřík et al., 2014 13.7 ± 0.21 8.2 ± 0.17 -3.6 ± 0.07 -4.7 ± 0.07
MEC model 19.3 ± 0.19 14.6 ± 0.15 2.9 ± 0.06 2.4 ± 0.05

Mean travel
time delay

model 6 10.9 ± 0.16 8.1 ± 0.14 -5.2 ± 0.11 -7.4 ± 0.10
model 4 11.3 ± 0.17 9.9 ± 0.15 -4.9 ± 0.10 -6.0 ± 0.10
model 4 + rerout. 9.3 ± 0.16 7.8 ± 0.15 -6.6 ± 0.10 -7.8 ± 0.10
Barth et al., 2007 9.7 ± 0.14 8.9 ± 0.13 -5.9 ± 0.10 -6.4 ± 0.10
Juřík et al., 2014 28.0 ± 0.25 29.4 ± 0.26 8.4 ± 0.16 9.6 ± 0.17
MEC model 14.2 ± 0.18 11.4 ± 0.16 -2.5 ± 0.12 -4.9 ± 0.10

†
electric vehicle
‡

internal combustion engine (conventional) vehicle
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TABLE 9.2: Results for the the eco-routing method with bias towards
shorter paths.

EV† (%) ICEV‡ (%)

Performance P (wrt fastest) 32.8 24.1
Performance P (wrt shortest) 1.0 1.9
Probability of failure (wrt shortest) 1.2 2.4
Eco-route same as reference (wrt shortest) 69.4 40.0
†

electric vehicle
‡

internal combustion engine (conventional) vehicle

9.4 An example with multiple costs

The results show that the proposed eco-routing method often succeeds in identifying
the eco-routes that perform better than shortest paths. The problem is that they
almost as often fail to do so. If the eco-routing method were to choose the shortest
path in the cases when it failed to save energy, then the performance with the time-
dependent eco-routing would improve to 2.26% in the case of the electric vehicle and
to 2.64% in the case of the conventional vehicle. Consider then, as an example, an
eco-routing method biased towards shorter paths. It was reported in the literature
that shorter paths are more likely to be eco-routes. Given the uncertainty in the
routing costs, the bias might help to reduce the probability of failure and, possibly,
even improve performance.

To be specific, consider an eco-routing method with two costs: the energy con-
sumption and the travel distance. Let the energy consumption have unitary weight,
and the travel distance have the weight of 15000/lmin, where 15000 is arbitrarily
chosen constant and lmin is the length of the shortest path between the origin and
destination. The routing cost of a path under consideration is then the energy con-
sumption with model 4 plus ratio l/lmin multiplied by 15000. The net effect is that for
every extra 1% in path’s length with respect to the shortest path a constant amount
(equal to 150 Wh) is added to the consumption. Note that this is a contrived exam-
ple. Its sole purpose is to show how the versatility of the proposed routing method
can be used to improve results in novel ways.

An extract from the results is in Table 9.2. It is based on an adapted version of
the time-dependent eco-routing method with the model 4 discussed above. It shows
that this method identifies the shortest paths as eco-routes more often than the orig-
inal, which is to be expected since the method is artificially biased to prefer shorter
paths. Nevertheless, the probability of failure was reduced from 4.6% to 1.23% in
case of the electric vehicle and from 5.6% to 2.36% in case of the conventional vehi-
cle with respect to the shortest paths. Additionally, the performance improved from
0.8% to 1.0% in case of the electric vehicle and from 1.4% to 1.9% in the case of the
conventional vehicle with respect to the shortest paths. The performance with re-
spect to fastest paths also improved, for the electric vehicle from 32.4% to 32.8% and
for the electric vehicle from 23.5% to 24.1%.

9.5 Summary

Results of simulated eco-routing experiments are presented in this chapter. Three
eco-routing methods are studied, all aim to minimize vehicle energy consumption.
Two variants of the consumption model called “model 6” and “model 4” are con-
sidered. The consumption model was proposed in Section 5.4, the two variants are
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introduced in Table 8.3. The model 6 is time-independent while the model 4 is time-
dependent. No constraints are imposed on the eco-routing solution. Multiple costs
are also not considered. While the proposed eco-routing method supports both, the
goal is to evaluate eco-routing performance such that it is comparable to the baseline
methods discussed in Section 4.3.

Eco-routing with consumption model 6 is studied in Section 9.1. This is basic
time-independent eco-routing with a consumption model that uses same informa-
tion as baseline models by Barth et al., 2007 and Juřík et al., 2014. The eco-routing
with the model 6 performs better than Barth et al., 2007 and Juřík et al., 2014, but
fails to perform better than the MEC model and, perhaps more importantly, simple
shortest-distance routing.

The Algorithm 3 is used to build path trees. Its computation time and the number
of identified paths is studied for various stop conditions in Section 9.2. The stop
condition considered in this experiment is a limit on the number of iterations of the
main loop in the Algorithm 3. Limits ranging from 100 iterations to 2000 iterations
are considered. The observed computation times were shorter than nine seconds
across all cases. The median of the computation time starts at 0.5 seconds at 100
iterations and grows to 3.8 seconds at 2000 iterations. The number of found paths
grows at varying paces depending on the positions of the origin and destination. The
worst observed case contains 1850 paths after 2000 iterations, meaning that in 92.5%
of iterations a new path was discovered and added to the tree. On the other hand,
the distributions in Figure 9.4 show that this was rare. The median grows at much
slower pace with 50 paths found after 100 iterations and 300 paths found after 2000
iterations. It is nevertheless argued that this does not imply that there is typically
only a few candidate eco-routes to be considered for any origin-destination pair. Trip
distance is a confounding factor as can be seen in Figure 9.6. It is also argued in this
section that a way to assess the candidate eco-routes in path trees is to see whether
they contain the shortest paths. Figure 9.7 shows the portion of trees that contained
the shortest path with respect to the number of iterations. It shows that the shortest
path was the first discovered path in 20% of the cases and that in almost 40% of the
cases the shortest path was identified within the first ten iterations. About 10% of
path trees did not contain the shortest path even after 10000 iterations.

The Section 9.3 studies two eco-routing methods with the consumption model 4.
These are time-dependent eco-routing methods based on path trees. The first vari-
ant does not support rerouting while the second variant does. These eco-routing
methods were evaluated on the same set of origin-destination pairs as the baseline
models and the eco-routing method based on model 6 (Section 9.1) to ensure compa-
rability. The results are summarized in Table 9.1. In terms of performance, the time-
dependent eco-routing with model 4 shows improvement over time-independent
eco-routing with the model 6. Similarly, eco-routing with rerouting enabled per-
formed consistently better than eco-routing with rerouting disabled. The perfor-
mance ranges from 23.0% to 32.4% when comparing to the fastest paths. The perfor-
mance figures are considerably lower when comparing to shortest paths, however.
In this case, the performance ranges between 0.3% and 1.4%. The mean travel time
delay ranges from 7.8% to 11.3% when compared to the fastest paths and from -7.8%
to -4.9% when compared to the shortest paths. This suggests that the eco-routing
method delivers savings in travel time when compared to the shortest paths. The
probability of failure is lower than 9% in all cases; rerouting has lowered the proba-
bility of failure. Eco-routes were identical to fastest paths in 14.5% to 30.8% of cases.

Finally, the Section 9.4 gives an example how the versatility of the proposed eco-
routing method can be leveraged to improve results in novel ways. An eco-routing
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method biased towards shorter paths is proposed. The evaluation shows improved
performance with respect to both shortest and fastest paths and reduced probability
of failure.
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Chapter 10

Conclusions

The conclusions are summarized in four sections: (1) key findings about the cur-
rent literature; (2) advances in consumption modeling; (3) the proposed eco-routing
method; and (4) map-matching method selection. The first section discusses the per-
formance of current methods and limits of a commonly used eco-routing evaluation
methodology. The second section discusses the consumption model proposed in this
work. The third section discusses the eco-routing method proposed in this work.
The fourth section provides a selection guide for map-matching methods used in
the context of eco-routing navigation systems.

10.1 Key findings about current literature

Two eco-routing methods published in literature were studied in detail to provide
baselines for comparison with the proposed method. They were proposed in Barth
et al., 2007 and Juřík et al., 2014. They are time-independent energy consumption
minimizing methods. Both use a different approach to energy consumption mod-
eling. The model proposed in Barth et al., 2007 uses regression analysis, the model
proposed in Juřík et al., 2014 uses a consumption model derived from the micro-
scopic longitudinal consumption model.

The performance of these methods depend on the environment where they were
tested and on the set of paths to which the eco-routes are compared to. High savings
were observed when eco-routes are compared to the fastest paths. The performance
figures are, however, much lower when the performance is based on a comparison
of eco-routes to shortest paths. In this case both Barth et al., 2007 and Juřík et al., 2014
fail to deliver any savings. Instead, their eco-routes offer losses on an average trip.
This result implies that a simple shortest path routing is superior to both methods in
the tested scenario. Also, a high number of cases in which the eco-routing methods
failed to save both energy and travel time were observed. Especially the method by
Juřík et al., 2014 have failed in 24.5% to 36.9% of cases. It is hard to imagine that
real drivers would accept such a rate of failures. The conclusion is that it might be
better to use a simple shortest path routing rather than the evaluated methods for
eco-routing. This motivates the constrained time-dependent adaptive eco-routing
method proposed in this work. Such method is, in theory, capable of navigating
the vehicle through sequences of green lights on signalized intersections, to avoid
congestion, and to update the solution when it becomes invalid.

While the evaluation of current eco-routing methods has shown negative sav-
ings, it is rare to see such a result reported in the published literature. A close look
at the evaluation methodologies used in the literature revealed that the prevalent
method is not capable of observing negative savings by design. The problem is that
the same consumption (or pollutant emission) model is used for both routing and
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evaluation. Not only that such evaluation will necessarily result in nonnegative sav-
ings, but it is also shown in Theorem 1 to be prone to result in inflated eco-routing
performance figures. The conclusion is that the performances and savings reported
in the literature should be regarded with caution. These findings underline the need
for a reliable eco-routing evaluation framework. Such framework is presented in
this work.

Note that these results are not generalizable: both methods are likely to show
positive performance in other environments. It is likely that the used intra-urban
scenario is challenging for eco-routing as it offers many similar paths to the destina-
tion with plenty perturbation sources along the way.

10.2 Advances in energy consumption modeling

A novel energy consumption model is proposed in Chapter 5. It is a macroscopic
model derived from standard longitudinal energy consumption model. The longi-
tudinal model is a microscopic model that requires recorded vehicle speed profile
to estimate consumption. It is argued in this work that such model is not suitable
for eco-routing because speed profiles are not available when planning the trip. In
this work, the standard model is first reformulated in closed form as a function of
energy consumption of an ideal vehicle and of energy that was returned to the ve-
hicle when braking. Then a closed form solution to the energy consumption of the
ideal vehicle is derived and used to solve the energy consumption of a more realistic
vehicle under an assumption that powertrain’s output power is an affine function of
its input power. The resulting model requires five unknown parameters: initial and
final speed to account for the change in vehicle’s kinetic energy, travel time, speed
profile variance and speed profile skew coefficient.

Six variants of this consumption model were studied. They differ in the five
parameters provided to it: from a model to which all parameters were provided
as they were observed to a model where only average travel time was provided,
and other parameters were set to zero. Such is, specifically, model 6. It is directly
comparable to the models by Barth et al., 2007 and Juřík et al., 2014. Their only
parameter is mean speed which is inversely proportional via road length to travel
time. Hence, they use the same information as model 6. Despite that, the model 6
outperforms both by a considerable margin. In the case of the electric vehicle, the
model 6 have shown RMSE of 28.6 Wh, while Barth et al., 2007 and Juřík et al., 2014
have shown 60.6 Wh and 47.7 Wh, respectively. The (idealistic) MEC model has
shown RMSE 24.83 Wh. To compare, the RMSE of model 6, model by Juřík et al.,
2014, and model by Barth et al., 2007 is 115%, 192%, and 244% respectively of the
RMSE of the MEC model. The accuracy of model 6 is much closer to the accuracy of
the MEC model than the other models. Unlike MEC model, however, the model 6
can be used in practice.

The proposed model is interesting due to the formal way in which it was derived
from the longitudinal model. The cited eco-routing methods that use consumption
models derived from the longitudinal model (such as De Nunzio et al., 2016; Juřík
et al., 2014) assume that the vehicle speed profile is a constant function equal to vehi-
cle’s mean speed. The model presented here does not need such drastic assumption.
It is carefully developed from the longitudinal model. The key contribution is the
closed-form solution for the ideal vehicle as it does not rely on any assumptions.
The solution for more realistic vehicles is based on it. This model opens a new di-
rection of research as it provides a solution to the longitudinal model in closed form
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without unrealistic assumptions as it was done in the literature so far. It exposes
the properties of speed profiles that matter most. The only assumption it makes is
about powertrain efficiency. It is difficult to avoid due to a nonlinear instantaneous
efficiency of commonly used powertrains.

Performance of time-independent eco-routing with the model 6 is nevertheless
negative with respect to shortest paths. This is a similar result to what was observed
for the methods by Barth et al., 2007 and Juřík et al., 2014. Despite the improved
accuracy of the model 6, it is still better to use shortest path routing. The eco-routing
with the MEC model is the only time-independent eco-router that was able to deliver
savings with respect to shortest paths in the experiments conducted in this work. It
also outperformed time-dependent eco-routing proposed in this work. While the
MEC is a theoretical model, it shows that there is potential in time-independent eco-
routing. The question that remains is how realistic it is to harness this potential.

10.3 The proposed eco-routing method

The eco-routing has been treated in literature mostly as a minimum path problem.
This approach offers an intuitive formulation of eco-routing, and moreover, efficient
methods for its computation are available (such as Dijkstra’s or Bellman-Ford algo-
rithms). Their main strength is that they are fast and optimal. However, they are
also limiting. Constrained eco-routing, time-dependent eco-routing nor adaptive
eco-routing is supported by them. There are proposed algorithms for each of these
three types of eco-routing, but to author’s best knowledge, there is no published
eco-routing method that would allow the combination: constrained time-dependent,
adaptive eco-routing. This work proposes and evaluates such an eco-routing system.

The method proposed in this work favors simplistic routing over sophisticated
optimal routing algorithms such as Dijkstra’s or Bellman-Ford algorithm. The moti-
vation for this is that these algorithms are too restrictive, too rigid in their assump-
tions. It is argued here that using optimal routing algorithms gives a little advantage
when there is a sizable uncertainty in the associated costs in the routing graph. An
approximative solution based on a naive approach to routing is studied instead. It
is based on a hypothesis that while there are usually many possible paths to take
to a destination, there is only a small subset of them that can be eco-routes in some
realistic conditions.

The proposed eco-routing method consists of two steps: preprocessing and rout-
ing. The preprocessing amounts to the computation of a path tree, which is a col-
lection of candidate eco-routes between given origin and destination. The routing
is then conducted on the paths in the path tree at a later time. It is unrealistic to
compute a tree with all paths between a given origin and destination for all but the
trivial cases. Nevertheless, not all paths can be eco-routes. Two algorithms to com-
pute path trees were proposed: the algorithms 2 and 3. The Algorithm 2 conducts
an exhaustive search and prunes only those paths for which it can prove that they
can never be eco-routes. The Algorithm 3 conducts a repeated randomized searches
for eco-routes. The routing is done by the Algorithm 1. It takes the path tree on in-
put and searches for the path that minimizes given cost function. This function can
combine multiple costs such as travel time, energy consumption, travel distance and
pollutant emissions. It also supports fully time-dependent eco-routing and multiple
constraints. The routing algorithm is optimal in the sense that it finds the path that
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minimizes given cost function on the given tree. The tree, however, typically con-
tains only a subset of paths between given origin and destination. Consequently, the
eco-routing solution is not guaranteed optimal.

The Algorithm 3 was used to compute path trees used in presented experiments
as it allows to control the tree size and computation time easily. The path tree com-
putation times were shorter than 9 seconds in the worst observed case with 2000
iterations of the main loop in Algorithm 3. These are acceptable results since the tree
computation times are not critical. The number of discovered paths was typically
low with a median of 300 paths after 2000 iterations. In the worst observed case,
there were 1850 discovered paths after 2000 iterations. In 20% of the observed cases
the shortest path the first discovered path and in 40% of cases, it was discovered in
first ten iterations. This is indicative of the quality of identified eco-routes since nu-
merous authors reported that shortest paths are viable candidates to be eco-routes.
On the other hand, in 10% of the cases, the shortest path was not discovered even
after 10000 iterations. Consequently, the path tree computation is computationally
feasible for the intra-urban trips similar to those simulated in the presented frame-
work. The length of these trips is between 1km and 12km. Whether the path tree
computation is feasible on longer trips remains a question. It was observed that the
number of discovered paths grows quickly on trips that are longer than 4km. On the
other hand, the results did not show reduced eco-routing performance on the longer
trips.

The routing was done with consumption model 4 and a travel time model (5.38)
that takes into account information about known traffic light periods. The model 4
is a variant similar to model 6 (discussed in the previous section), except that the
used travel time is predicted with the travel time model instead of using a simple
average of previously observed travel times. Both travel time model and consump-
tion model are time-dependent. Since the Algorithm 1 is used for routing, the eco-
routing method is also time-dependent. Two variants were studied: with rerouting
disabled and enabled. In the case when it is enabled the eco-routing solution is adap-
tive. The rerouting is implemented such that the eco-routing solution is updated at
every simulation step using the Algorithm 1. It is always run on a subtree rooted
at the node that corresponds to the current position of the vehicle in the tree. The
vehicle’s energy consumption was the only considered cost, and the routing was
not constrained. This setup allowed direct comparison of the results of the baseline
methods.

The simulation results have shown high performance when comparing eco-routes
to the fastest paths and moderate performance when comparing eco-routes to short-
est paths. The best observed performance was 32.4% with respect to fastest paths
and 1.4% with respect to shortest paths. Both were observed with time-dependent
adaptive eco-routing with model 4. The rerouting improved performance marginally,
but consistently. The distributions of energy savings reveal that for many trips the
method was able to find paths that offer savings with respect to the shortest path,
but it failed to do so in many other cases. If the eco-routing method were to choose
the shortest path in the cases when it failed, then the performance with respect to
shortest paths would be in the range from 2.26% to 2.64%, depending on vehicle
type. This shows that there is potential for improvement, albeit limited.

The results show that the proposed eco-routing method can compete with the
traditional eco-routing as is, but it is also more flexible by allowing constrained,
time-dependent and adaptive eco-routing. This allows for richer applications such
as time-constrained eco-routing, or eco-routing that avoids schools at the times when
the kids are there, for example. Applications that would be difficult to realize with
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the standard approach become possible with the proposed method. An eco-routing
method that is artificially biased to prefer shorter paths is an example of the versatil-
ity of the proposed method. The motivation for this is based on an observation that
shorter paths are likelier to be eco-routes. It is shown to lower the probability of fail-
ure and to improve performance with respect to both shortest and fastest paths. It
managed to save either energy or travel time with respect to shortest paths in 98.8%
of studied trips in case of the electric vehicle and in 97.6% of studied trips in case of
the conventional vehicle.

The shortest path routing has shown to be a surprisingly difficult eco-router to
outperform. However, shortest paths are slow compared to fastest paths. The eco-
routing method proposed in this work did not show an ability to outperform sim-
ple shortest path router significantly in terms of energy, but it has shown an ability
to save slightly more energy than shortest path router while saving a considerable
amount of travel time with respect to shortest paths.

The simulation framework developed to conduct these experiments is designed
to be as realistic as possible. It uses microscopic traffic simulator of a whole city
and microscopic consumption models based on real vehicles as references. How-
ever, these are still simulations which mean that the results are indicative. The ul-
timate validation would be achieved with extensive field tests, which can be cost
prohibitive.

10.4 Map-matching method selection

Different map-matching methods are suitable for different map-matching applica-
tions. There is no universal method that would suit the needs of all. The trade-offs
that must be made when selecting a map-matching method are discussed in this sec-
tion. The interest in the context of eco-routing is twofold: for matching pre-recorded
trips and for navigation. This section is an extract from Kubička et al., 2017.

The matching of pre-recorded trips requires an offline map-matching method.
Higher computational effort can be tolerated as the trajectories are post-processed
after they were collected. The most advanced method regarding matching accuracy
is reportedly the path inference filter (Hunter et al., 2014). However, its computa-
tional demand might be too prohibitive. The method by Newson and Krumm, 2009
offers good matching accuracy while its computational demand is comparatively
low. Another option is the geometric method by Wei et al., 2013a, especially when
used in conjunction with fast Fréchet distance approximation method developed by
Driemel et al., 2012. If a massive set of trajectories must be processed and matching
accuracy is not critical, then the method by Marchal et al., 2005 can be considered. If
the application makes use of sparsely sampled trajectories, then low-sampling rate
methods (Lou et al., 2009; Raymond et al., 2012; Zheng and Quddus, 2011; Chen
et al., 2011b) can be of interest. These methods are likely to be outperformed by the
path inference filter, but they are often easier to implement.

The navigational applications require online, high sampling rate map-matching
methods. The computational effort must be kept low as the system is required
to respond in real time. When integrity monitoring is needed, then the method
by Toledo-Moreo et al., 2010 should be considered. This method has shown high
matching accuracy on lane-level while providing continuous integrity monitoring
of the map-matching output. Methods based on fuzzy logic, such as the method by
Quddus et al., 2006, have reportedly excellent matching accuracy but require expert
knowledge for their tuning. The methods based on a multiple hypothesis technique
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(Pyo et al., 2001; Kubička et al., 2014) might be able to offer an interesting trade-
off between computational demand and matching accuracy. The Hidden Markov
model based methods and geometric methods are not well suited as they require
considerable computational resources. The sliding window technique can be used
to remedy this issue: only a last few samples are used to map-match the current
matching point. When the demand on computational effort is not stringent, then the
method by Hummel, 2006 should also be considered as it has outlook to be robust
against positioning errors.
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List of Abbreviations

CMEM Comprehensive Modal Emission Model
CRF Conditional Random Fields
EU-DEM European Union - Digital Elevation Model
EV Electric Vehicle
GNSS Global Navigation Satellite System
GPS Global Positioning System
HPL Horizontal Protection Level
ICEV Internal Combustion Engine Vehicle
IQR Inter-Quartile Range
k-NN k-Nearest Neighbors
LPPL Lane Position Protection Level
LuST Luxembourg SUMO Traffic
MAD Median Absolute Deviation
MEC Mean Energy Consumption
MHT Multiple Hypothesis Technique
NIS Normalized Innovation Squared
NSA Node Supplementary Array
PMF Probability Mass Function
RAIM Receiver Autonomous Integrity Monitoring
RMSE Root-Mean-Square error
SUMO Simulator of Urban MObility
VSP Vehicle-Specific Power
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Titre : Systèmes eco-routing adaptatifs de navigation dépendant du temps avec des contraintes 

Mots clés : éco-routage, map-matching, systèmes de navigation, transport vert 

Résumé : L'éco-routage est une méthode de 
navigation du véhicule qui sélectionne les trajets vers 
une destination minisant la consommation de 
carburant, la consommation d'énergie ou les 
émissions de polluants. C'est l'une des techniques qui 
tentent de réduire les coûts d'exploitation et 
l'empreinte environnementale du véhicule. Ce travail 
passe en revue les méthodes actuelles d'éco-routage et 
propose une nouvelle méthode pour pallier leurs 
insuffisances.  
La plupart des méthodes actuelles attribuent à chaque 
route du réseau routier un coût constant qui représente 
la consommation du véhicule ou la quantité de 
polluants émis. Un algorithme de routage optimal est 
ensuite utilisé pour trouver le chemin qui minimise la 
somme de ces coûts. Différentes extensions sont 
considérées dans la littérature. L'éco-routage contraint 
permet d'imposer des limites sur le temps de trajet, la 
consommation d'énergie et les émissions de polluants. 
L'éco-routage dépendant du temps permet le routage 
sur un graphique avec des coûts qui sont fonction du 
temps. L'éco-routage adaptatif permet de mettre à jour 
la solution d'éco-routage au cas où elle deviendrait 
invalide  

en raison d'un développement inattendu sur la route. 
Il existe des méthodes d'éco-routage optimales 
publiées qui résolvent l'éco-routage dépendant du 
temps ou l'éco-routage contraint ou l'éco-routage 
adaptatif. Chacun vient avec des frais généraux de 
calcul considérablement plus élevés par rapport à 
l'éco-routage standard et, à la connaissance de 
l'auteur, aucune méthode publiée ne prend en charge 
la combinaison des trois: éco-routage adaptatif 
dépendant du temps contraint. 
On soutient dans ce travail que les coûts 
d'acheminement sont incertains en raison de leur 
dépendance au trafic immédiat autour du véhicule, du 
comportement du conducteur et d'autres 
perturbations. Il est en outre soutenu que puisque ces 
coûts sont incertains, il y a peu d'avantages à utiliser 
un routage optimal car 
l'optimalité de la solution ne tient que tant que les 
coûts de routage sont corrects. Au lieu de cela, une 
méthode d'approximation est proposée dans ce travail. 
La charge de calcul est plus faible car la solution n'est 
pas requise pour être optimale. Cela permet l'éco-
routage adaptatif dépendant du temps contraint. 
 

 

 

Title : Constrained Time-Dependent Adaptive Eco-Routing Navigation System 

Keywords : eco-routing, map-matching, navigation systems, green transportation 

Abstract : Eco-routing is a vehicle navigation 
method that selects those paths to a destination that 
minimize fuel consumption, energy consumption or 
pollutant emissions. It is one of the techniques that 
attempt to lower vehicle's operational cost and 
environmental footprint. This work reviews the 
current eco-routing methods and proposes a new 
method designed to overcome their shortcomings. 
Most current methods assign every road in the road 
network some constant cost that represents either 
vehicle's consumption there or the amount of emitted 
pollutants. An optimal routing algorithm is then used 
to find the path that minimizes the sum of these costs. 
Various extensions are considered in the literature. 
Constrained eco-routing allows imposing limits on 
travel time, energy consumption, and pollutant 
emissions. Time-dependent eco-routing allows 
routing on a graph with costs that are functions of 
time. Adaptive eco-routing allows updating the eco-
routing solution in case it becomes invalid due to 
some unexpected development on the road. 

There exist published optimal eco-routing methods 
that solve either the time-dependent eco-routing, or 
constrained eco-routing, or adaptive eco-routing. 
Each comes with considerably higher computational 
overhead with respect to the standard eco-routing 
and, to author's best knowledge, no published method 
supports the combination of all three: constrained 
time-dependent adaptive eco-routing. 
It is argued in this work that the routing costs are 
uncertain because of their dependence on immediate 
traffic around the vehicle, on driver's behavior, and 
other perturbations. It is further argued that since 
these costs are uncertain, there is little benefit in 
using optimal routing because the optimality of the 
solution holds only as long as the routing costs are 
correct. Instead, an approximation method is 
proposed in this work. The computational overhead 
is lower since the solution is not required to be 
optimal. This enables the constrained time-dependent 
adaptive eco-routing. 
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