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Résumé Au cours des deux dernières décennies, les applications temps réel
ont montré des améliorations colossales dans la génération de rendus pho-
toréalistes. Cela est principalement dû à la disponibilité de modèles 3D avec
une quantité croissante de détails. L'approche traditionnelle pour représen-
ter et visualiser des objets 3D hautement détaillés est de les décomposer en
un maillage basse fréquence et une carte de déplacement encodant les détails.
La tessellation matérielle est le support idéal pour implémenter un rendu e�-
cace de cette représentation. Dans ce contexte, nous proposons une méthode
générale pour la génération et le rendu de maillages multi-résolutions com-
patibles avec la tessellation matérielle. Tout d'abord, nous introduisons une
métrique dépendant de la vue capturant à la fois les distorsions géométriques et
paramétriques, permettant de sélectionner la le niveau de résolution approprié
au moment du rendu. Deuxièmement, nous présentons une nouvelle représen-
tation hiérarchique permettant d'une part des transitions temporelles et spa-
tiales continues entre les niveaux et d'autre part une tessellation matérielle non
uniforme. En�n, nous élaborons un processus de simpli�cation pour générer
notre représentation hiérarchique tout en minimisant notre métrique d'erreur.
Notre méthode conduit à d'énormes améliorations tant en termes du nombre de
triangles a�ché qu'en temps de rendu par rapport aux méthodes alternatives.

Title Level-Of-Details Rendering with Hardware Tessellation

Abstract In the last two decades, real-time applications have exhibited
colossal improvements in the generation of photo-realistic images. This is
mainly due to the availability of 3D models with an increasing amount of de-
tails. Currently, the traditional approach to represent and visualize highly
detailed 3D objects is to decompose them into a low-frequency mesh and a
displacement map encoding the details. The hardware tessellation is the ideal
support to implement an e�cient rendering of this representation. In this con-
text, we propose a general framework for the generation and the rendering of
multi-resolution feature-aware meshes compatible with hardware tessellation.
First, we introduce a view-dependent metric capturing both geometric and
parametric distortions, allowing to select the appropriate resolution at render-
time. Second, we present a novel hierarchical representation enabling on the
one hand smooth temporal and spatial transitions between levels and on the
other hand a non-uniform hardware tessellation. Last, we devise a simpli�ca-
tion process to generate our hierarchical representation while minimizing our
error metric. Our framework leads to huge improvements both in terms of
triangle count and rendering time in comparison to alternative methods.

Keywords Real-time rendering, Hardware tessellation, Level of detail, Dis-
placement mapping
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Introduction

Figure 1 � Image synthesis � Top left: an architectural design. Top right: rendered
car from Lumiscaphe. Bottom left: real-world image mixed with a digital one from
�Ghost in the Shell�. Bottom right: image from the game �Horizon Zero Dawn�.

This thesis falls in the scope of 3D images synthesis that aims at generat-
ing digital images from virtual worlds through computer algorithms. Image
synthesis is central in numerous application domains such as digital enter-
tainment, training simulation, scienti�c visualization, advertisement, medical
imaging, etc. (Figure 1). For most of these applications, one of the goals
is to produce so called photo-realistic rendering. Two conditions need to be
met to achieve this goal. First, rendering algorithms have to be developed to
reproduce the physical laws of light transports and light-matter interactions
with the highest accuracy possible. Second, the digital scenes must closely
reproduce the complexity of real-world environments, thus requiring a great
amount of details. These two aspects are essential in the �lm industry for
special visual e�ects where real-world images are mixed with digital ones, or
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(a) O�ine rendering (b) Real-time rendering

Figure 2 � O�ine rendering versus real-time rendering � (a) An image taken from
the movie �The Good Dinosaur�. (b) An image taken from the video game �Un-
charted 4�. Contrary to real-time renderings, o�ine renderings are very di�cult to
di�erentiate from real world images.

in architecture and the automobile industry to preview and investigate pos-
sible designs. In this context, an enormous amount of details is necessary to
represent as realistic as possible 3D models. Moreover, the release of displays
with high density of pixels also motivates the use of highly detailed models to
leverage the full bene�ts of such displays.

Rendering algorithms can be classi�ed into two main categories: o�ine
algorithms and real-time algorithms. The former are subject to little time
constraints; they are used for �lms and animation movies. O�ine rendering
applications have thus the option to use expensive algorithms. They generally
use global illumination techniques combined with highly detailed models to ob-
tain images that are almost not di�erentiable from photographs (Figure 2(a)).
This is achieved at the price of a long computation time; the rendering of a
single image can take hours or even days.

Real-time rendering, on the other hand, is concerned with generating im-
ages in a very small amount of time. This is essential for interactive applica-
tions such as video games, interactive simulations, VR applications, etc. to
o�er a smooth experience to the user. Each image has to be computed in less
than 30ms to achieve a comfortable frame rate. Images rendered in real-time
are thus still easy to di�erentiate from real ones (Figure 2(b)). This is due to
the use of both coarser models and approximated light transport algorithms
that run much faster than o�ine algorithms.

To achieve such performance, all real-time rendering engines entirely rely
on dedicated Graphics Processing Units (GPUs). Modern GPUs are massive
parallel processors composed of thousands of cores. They are speci�cally dedi-
cated to the real-time rendering of a speci�c representation of 3D models: the
triangle mesh combined with textures (Figure 3). The triangle mesh represents
the general shape of the model, while the textures encode the �ner details and
surface attributes such as colors, normals, and lighting properties. Such mod-
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Introduction

Figure 3 � �Blood and Fire� 3D model courtesy of Rico Cilliers � A 3D model
composed of a triangle mesh (left) with albedo, normals, emission, and ambient
occlusion textures (right).

els can either be created by artists using 3D modeling or sculpting software, or
obtained by scanning real world objects. In both cases, the number of triangles
per object have been constantly increasing in the past years to represent even
more detailed objects. In addition, 3D scenes have also become more and more
complex, and can be composed of several thousand objects. This results in a
very large amount of triangles that raises memory, performance and �ltering
issues.

A variety of methods have been proposed to address these problems. First,
only objects that are visible in the �nal image need to be rendered. So objects
outside the �eld of view of the camera are discarded. For the same reason,
large objects that cross the boundaries of the �eld of view are often cut along
these boundaries in a process called clipping, and the parts outside the �eld
of view are discarded. For opaque and solid objects, which is the case of most
objects in a typical video-game scene, back-facing triangles with respect to
the current viewpoint cannot be visible and are thus safely discarded. The
notion of culling can be extended to occlusions of one object by others, this is
called occlusion culling. This is generally done by pre-computing some form of
hierarchy of potentially visible sets of objects, and then this hierarchy is used
at runtime to identify what is visible and what is not. Clipping and culling
are very popular mechanisms to greatly reduce the complexity of a scene and
thus to speed up the rendering. However, when using highly detailed meshes,
these mechanisms are not su�cient. For example, a single mesh can contain
several millions of triangles and if it is far away, it can be projected on a dozen

Level of Detail Rendering with Hardware Tessellation 3



Figure 4 � Level of details in �The Witcher 3� � The resolution of the trees is adapted
according to the view distance to reduce the complexity of the scene.

of pixels, resulting in a particularly ine�cient rendering.

Level of details (LODs) rendering aims at reducing drastically the number of
visible triangles in a scene. The key idea of level of details is to adapt the reso-
lution of the object according to the view-point. Distant objects �ll less space
on the screen than close ones, and thus need fewer polygons to be accurately
rendered (Figure 4). Based on these observations, a multi-resolution repre-
sentation is pre-computed for each object and at render time, the appropriate
resolution is used according to a view-dependent criterion.

The simplest LOD approach for 3D models consists in a �xed set of meshes
with a decreasing number of polygons. At render time, the mesh with lowest-
resolution satisfying the view-dependent criterion is displayed. The lack of
transition when changing from one level to another leads to visible popping
artifacts: the 3D object becomes suddenly more detailed. The famous Pro-
gressive Mesh technique [Hoppe, 1996], addresses this issue by proposing a
continuous-resolution representation. It consists in a coarse mesh and a set of
operations that indicates how to re�ne the coarse mesh back into the original
one. In addition to be more compact than discrete LODs, it enables �ne-grain
control of the vertex density with smooth temporal transitions. However, a
fundamental issue with progressive meshes is that it cannot leverage the full
power of massive parallel GPU architectures due to the dependence of the
operations with each other.

These LOD representations are generally generated using a polygon reduc-
tion algorithm. The goal of such algorithms is to reduce the number of polygons
of the mesh while preserving as best as possible its visual appearance. To this

4 Thibaud Lambert



Introduction

Figure 5 � Rendered image from Unigine Heaven � The geometry of the 3D scene
(left) is ampli�ed using displacement mapping with hardware tessellation (right).

end, they need to measure throughout the simpli�cation the di�erences with
the original mesh. This error metric is at the heart of simpli�cation meth-
ods, as it will de�ne the order in which the simpli�cation operations will be
applied, but also drive the local optimizations to relocate appropriately the
vertices throughout the simpli�cation. A good error metric will better pre-
serve important features of the mesh, and will thus allow to reduce further the
scene complexity for the same visual quality.

Selecting the appropriate level to reduce as much as possible the com-
plexity of the scene while preserving its visual appearance is also a central
but challenging task. Indeed, the visual appearance of a 3D model depends
on numerous parameters: not only its geometry, but also its material, the
illumination environment, the camera viewpoint, the display, the human vi-
sual system, the lighting condition in the room, etc. These parameters have
complex interactions with each other and it is therefore di�cult to take into
account all of them at once. Moreover, the evaluation of such a metric must
be extremely fast to be used in a real-time applications. As a result, existing
methods are only based on the view distance and the geometry of the object,
letting plenty of room for signi�cant improvements.

An alternative method to represent highly detailed meshes is to use displace-
ment maps. The highly detailed mesh is decomposed during a pre-process into
a coarse surface and a 2D map encoding the details, i.e., the relief, of the 3D
model. Such a map is called a displacement map. More precisely, the displace-
ment map is an o�set function describing how to deform the coarse surface to
reproduce the original mesh. This representation can be e�ciently rendered
using the hardware tessellation engine of modern GPU which enables a dy-
namic control of the mesh resolution. Each face, called in this case a patch, of
the input coarse mesh is subdivided at a given resolution according to a �xed
and uniform subdivision pattern. Then, the generated vertices are moved to
the desired 3D location using the displacement map.

The speci�cities of hardware tessellation imply new challenges. First, a

Level of Detail Rendering with Hardware Tessellation 5



recurrent challenge when rendering displacement maps with hardware tessella-
tion is to ensure continuous temporal transitions. The goal is to solve popping
artifacts without introducing swimming artifacts, i.e., visible �uctuations of
the reconstructed surface due to the undersampling of the displacement map.

Displacement mapping with hardware tessellation o�ers a much more com-
pact representation than progressive mesh, thanks to the tessellation pattern
storing implicitly the topology. Unfortunately, this compact representation
comes at the price of less �exibility. For the same amount of triangles, it intro-
duces generally a higher error than �ne-grained approaches such as the progres-
sive mesh. The second challenge is then how to enable feature-aware hardware
tessellation. This problem is particularly di�cult due to the �xed hardware
tessellation pattern, which prevents the use of existing feature-preserving mesh
simpli�cation algorithms.

Contributions

In this thesis, we tackle the following challenges:

• How to best exploit GPU tessellation to more �nely control the reparti-
tion of tessellated vertices and best preserve the features of the detailed
mesh?

• How to generate high quality LOD compatible with GPU tessellation?

• How to achieve smooth temporal transitions between the LOD while
avoiding geometry �uctuations?

• How to quickly select the best LOD to ensure high visual quality with a
minimal number of polygon?

To address these challenges, we present a general framework (Figure 6) for
the generation and the rendering of feature-aware LODs compatible with hard-
ware tessellation. From an input detailed mesh and a corresponding decom-
position into patches, our methods produces a hierarchy of LOD compatible
with hardware tessellation, and a view-dependent metric measuring, for each
patch and each level of the hierarchy, its view-dependent error with respect
to the input mesh. This representation is then used in a custom controllable
non-uniform tessellation pass avoiding swimming artifacts and providing sig-
ni�cant performances gains compared to alternative methods. More precisely,
we make the following contributions:

Geometric and attributes view-dependent metric Our �rst contribu-
tion is a patch-based view-dependent metric which estimates both the geomet-
ric and attributes distance between the LOD and the reference detailed mesh.

6 Thibaud Lambert



Introduction

reference

level 0 level 1 level 2

(a) LOD generation

coarse

view-dependent error metric

Level selection

Tessellation Control Shader

Vertex Shader

Tessellator

Tessellation Evaluation Shader

(b) GPU evaluation

mesh mesh

vertex attributes

Figure 6 � Full processing pipeline � (a) as a pre-process, the LOD is generated
from the reference mesh by decimation and, for each patch, at each level, its approx-
imation error with respect to the reference surface is summarized into a compact
view-dependent metric, (b) these are then used during hardware tessellation to se-
lect the most appropriate patch level according to the current viewing distance and
direction.

It is accomplished by considering di�erence vectors matching points with the
same texture coordinates on the LOD and reference surface. We show that
the error induced by these vectors can be tightly and conservatively summa-
rized by a simple representation, which enables a fast GPU evaluation of the
approximation error along any view directions (Chapter 2).

Controllable custom tessellation Then, we introduce a novel interpola-
tion scheme between tessellation levels that enables controllable custom tes-
sellation while avoiding swimming artifacts. It allows to �nely control the
location of the topological changes between levels, paving the way for non-
uniform tessellation. Our method only requires the storage of an additional
index per vertex to link vertices from coarse to �ne levels (Chapter 3).

Feature-preserving simpli�cation To exploit the �exibility introduced by
our representation, we design a feature-preserving mesh simpli�cation algo-
rithm. Starting from a base mesh tessellated and displaced at the �nest level,
our algorithm progressively decimates the mesh while matching the hardware
tessellation pattern at successive levels. We devise a novel simpli�cation heuris-
tic based on our new error metric to optimize simultaneously the positions and
texture coordinates of the relocated vertices (Chapter 4).

Level of Detail Rendering with Hardware Tessellation 7
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Chapter 1

Related Work

Whether it is for collision detection, �nite element analysis, or real-time ren-
dering, simpli�ed meshes are used to speed up computation while still provid-
ing accurate enough results. In this context, the user needs a way to control
the error introduced by the simpli�cation process to maintain some desired
level of accuracy of the subsequent computation. For real-time rendering, the
development of quantitative measures of the simpli�cation error is a crucial
ingredient of LOD methods. Those measures play an important role through-
out the whole process, whether it is for the generation, the evaluation or the
rendering of LODs.

We start by presenting the Graphics Pipeline. Next, we present the metrics
that have been proposed to measure the di�erences between two meshes (Sec-
tion 1.2). We then compare the di�erent LOD representations and generation
methods for level of details (Section 1.3). Finally we present an alternative rep-
resentation � the displacement maps � for representing highly detailed meshes,
and show that it can be e�ciently rendered with hardware tessellation (Sec-
tion 1.4).

1.1 Graphics Pipeline

The graphics pipeline on current GPUs is accessible using a graphics API
such as OpenGL (cross-platform) or DirectX (Windows only). In the following,
we will use the OpenGL nomenclature. It consists of programmable shader
stages and �xed function stages (Figure 1.1) allowing to transform a 3D scene
composed of polygonal meshes into a pixel image. In the following, we will
explain the role of each stage except the three hardware tessellation stages
which are detailed latter.

Inputs The typical representation for 3D objects is to use a set of polygons,
called a mesh. A mesh is composed of the mesh geometry, represented by the

9



1.1. Graphics Pipeline

Inputs

Framebu�er

Per vertex

Vertex
Shader

Per primitive

Geometry
Shader

Per fragment

Fragment
Shader

Tessellator

Primitive
Assembly,

Rasterization

Per-Sample
Operations

Tessellation
Control
Shader

Per control

point

Tessellation
Evaluation
Shader

Per generated

vertex

Hardware Tessellation

Figure 1.1 � OpenGL Graphics pipeline � The programmable stages are in blue and
the �xed stages are in red.

vertices, and the mesh connectivity, represented by the edges or faces that
connect the vertices. The graphics pipeline is speci�cally designed for triangle,
and thus even if quads are used, there will be an additional triangularization
step.

In addition to the geometry, polygonal meshes can have a material, prop-
erties describing the visual appearance of the object, represented using some
form of attributes attached to the surfaces. Color, normals, and lighting prop-
erties are example of such attributes. This attributes can be speci�ed per
faces, per vertex or to a �ner scale using texture. To represent highly complex
appearance, the texture approach is the most adapted as it allows to store at-
tributes with high frequency variation without the connectivity and geometry
overhead. Thus the attributes are generally decoupled from the geometry and
stored into a 2D textures Cohen et al. [1998]. Then the only remaining per
vertex attributes is the textures coordinates used to fetch the other attributes.

Vertex Shader Once the mesh data sent to the pipeline, the Vertex Shader
is ran on each input vertex. It typically performs per-vertex operation such as
transformations, animations, or skinning.

Geometry shader The Geometry shader is an optional stage allowing var-
ious geometric manipulations. It takes as input a primitive (point, line, trian-
gle, ...) and outputs zero or more primitives. The Geometry Shader is usually
used for doing computational tasks on the GPU and get the data back through
a Transform Feedback bu�er. While the Geometry shader can also be used
to amplify the resolution of a model, it is not as e�cient as the tessellation

10 Thibaud Lambert



1. Related Work

mechanism.

Primitive Assembly and Rasterization The purpose of the Primitive
Assembly is to group the vertices into a sequence of individual base primitives.
This is done using the list of indices speci�ed in input. Then the rasterization
transforms these primitives into a pixel image. Each primitive is split into
discrete elements called fragments: A fragment is generated for each pixel
covered by the primitive.

Fragment shader Fragments generated by the rasterization are then pro-
cessed by the Fragment Shader. The input of the fragment shader are com-
puted by interpolation of the primitives attributes. Each fragment shader
invocation outputs a depth value and zero or more color values. The color
output of the fragment is usually computed according to the light, normal,
and textures. Finally, the fragments are written to the frame bu�er after
per-fragment operations such as depth test and blending steps.

1.2 Mesh Comparison Error Metrics

Error metrics are the key ingredient of level of detail methods. First at
rendering time, the goal is to choose the level of detail with the minimum
number of triangles without impacting the visual appearance. To accomplish
this, it is necessary to de�ne for each model some form of measure of the error
introduced by each coarser level. Then to reduce the complexity of our 3D
scene, we need to be able to evaluate the screen-space error of a particular
LOD when viewed from a given viewpoint.

Second, during the generation of the coarser levels of detail, the input geom-
etry needs to be simpli�ed while minimizing some error metrics that quantify
the di�erences introduced during the simpli�cation. Many simpli�cation al-
gorithms consist in choosing the best simpli�cation operation to apply among
a large number of available choices. The best operation is thus de�ned with
respect to those error metrics. The more accurate the error metric, the better
will be the choices throughout the simpli�cation process. Some simpli�cation
operations also require a placement strategy of the simpli�ed vertices, this
optimization can also be guided by those error metrics, thus proposing bet-
ter choice available to simpli�cation process and resulting in better quality
meshes.

Finally, some simpli�cation approaches use local metrics or heuristics to
guide the simpli�cation process and therefore have no clue about the global
error introduced during the simpli�cation. It is thus useful to have tools,
such as Metro [Cignoni et al., 1996], to evaluate the global simpli�cation error
afterwards. Metro allows to compare the di�erence between a pair of meshes
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by computing the maximum and mean geometric error. It has been used in
several research papers to compare di�erent simpli�cation methods.

1.2.1 Geometry-Based Metrics

The simpli�cation of a polygonal mesh reduces the number of its faces,
changing as a result the shape of the surface. Preserving this shape helps
the object to cover the correct pixels on screen and to maintain an accurate
silhouette. Finding the distance between two surfaces let us measure the ge-
ometrical di�erences, and thus the modi�cations of the shape introduced by
the simpli�cation.

The Hausdor� distance is certainly the most common geometric error metric
when it comes to comparing two surfaces. It de�nes the distance between two
point sets, but as a surface can be seen as a continuous set of points, it can
also be applied to surfaces.

In the context of geometry processing, the Hausdor� distance measures the
maximum distance between two surfaces. Let S1 and S2 be two surfaces, and
x be a point belonging to S1. Then the distance d from x to S2 is expressed
by the following equation:

d(x,S2) = inf
y∈S2
‖x− y‖ . (1.1)

Thus the distance h from S1 to S2 is de�ned by the relation:

h(S1,S2) = sup
x∈S1

d(x,S2) = sup
x∈S1

inf
y∈S2
‖x− y‖ . (1.2)

The equation (1.2) is called the one-sided Hausdor� distance. This is not
a symmetric distance as in general h(S1,S2) 6= h(S2,S1). Every point of S1

have been matched with a point of S2, but there may be unmatched points of
S2 with potentially a greater distance to S1. The Hausdor� distance H is the
two-sided distance between the two surfaces and is de�ned as:

H(S1,S2) = max(h(S1,S2), h(S2,S1)) . (1.3)

It is worthy to mention that if H(S1,S2) = 0, then the two surfaces S1 and
S2 are geometrically the same. The Hausdor� distance provides the tightest
error bound on the maximum distance between two surfaces. This is useful
for applications such as medical or scienti�c visualization, because it allows to
guarantee that the error is never superior to a given tolerance.

In other applications, the average error may be a more reasonable choice
as it provides a better indication of the error across the entire surface. In a
similar vein, we de�ne the one-sided mean error m as:
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m(S1,S2) =

∫
S1

inf
y∈S2
‖x− y‖dx , (1.4)

and the symmetric mean error M as:

M(S1,S2) =
1

2
(m(S1,S2) + m(S2,S1)) . (1.5)

Only minimizing the mean average error may create few location with high
error. Reciprocally, minimizing the maximum error can lead to a large increase
of the average error. Ideally, simpli�cation methods should �nd some form of
compromise between the two.

1.2.2 Attribute Error Metrics

Blindly minimizing geometric errors is usually not su�cient to preserve the
visual aspect of a model. Indeed, in addition to the shape, the simpli�cation
process should preserve the attributes attached to the surfaces. In our context
of rendering such attributes include color, normals, texture coordinates, etc,
and are used for shading purpose. Attributes stored per vertex will be a�ected
by the simpli�cation, thus measuring the attributes error between reference
and simpli�ed meshes is essential to carry out more meaningful a representative
simpli�cation error.

Roy et al. [2004] propose a mesh comparison method to compute the local
di�erences between the attributes of two meshes. They de�ne the attribute
deviation da between the surface S2 and a point p belonging to the surface S1

as the di�erence of the value of the attributes a between p and the nearest
point p′ on the surface S2:

da(p,S2) = ‖ai(p)− ai(p′)‖ (1.6)

If the nearest point p′ is not unique, i.e., there are several points on the
surface S2 having the same distance to the point p, the attribute deviation
is the minimum deviation between p and those candidates. Note that this
attribute deviation measure is not symmetric, the nearest point to p′ on the
surface S1 is not necessarily p and so da(p,S2) is not necessarily equal to
da(p′,S1).

This metric captures only the e�ective attribute deviation, and ignores
the geometric deviation, as shown in Figure 1.2 (f) and (h). It can thus be
used to detect precisely regions with high attribute distortions. However, it is
di�cult to combine this attribute deviation with another geometric error as
these two measures have di�erent units and scales. In addition, the point-to-
point mapping constructed by the attribute deviation is neither continuous nor
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(a) Original mesh (b) Simpli�ed (low
deviation)

(c) Simpli�ed (high
deviation)

(d) Geometric deviation

(e) Cohen's deviation
for (b)

(f) Roy's deviation for
(b)

(g) Cohen's deviation
for (c)

(h) Roy's deviation for
(c)

0.0 Max Dev

Figure 1.2 � Comparison between Cohen's texture coordinates deviation ((e) and
(g)) and Roy's attribute deviation ((f) and (h)). Roy et al. [2004]

bijective. Thus to capture all the di�erences, the attribute deviation should
be computed in both directions (from S1 to S2 and from S2 to S1). However
in that case, it does not provide a single mapping but rather relies on two
potentially con�icting mappings.

Cohen et al. [1998] assume that the attributes are decoupled from the ge-
ometry and stored into 2D textures. This way, they reduce the problem of
measuring the attribute deviation to measuring the texture coordinates devi-
ation. Using correspondences de�ned by the common parametrization, they
de�ne the texture coordinate deviation for a single point as the distance be-
tween this point and the point with the same texture coordinates on the other
surface. The deviation between two surfaces S1 and S2 is then de�ne as:

dtex(S1,S2) = sup
(u,v)

‖M1(u, v)−M2(u, v)‖ (1.7)

whereM1 : (u, v)→ (x, y, z) for S1 andM2 for S2 are the functions which
associate to every texture coordinates their corresponding 3D position.
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As illustrated in Figure 1.2, this texture coordinate deviation has for main
advantage to capture at the same time the geometric and the parametric dis-
tortion between two models. Indeed, this formulation naturally combines the
geometry and the parametrization without unit nor scaling problems.

1.2.3 Perceptual Metrics

As explained above, error metrics can be used to select the appropriate LOD
such that the visual di�erences between the simpli�ed model and the original
one are not visible. All the error metrics presented so far compute some form
of objective distances in object or attribute space to quantify the di�erence
between the two meshes, but they may not match well the perceived visual
di�erence. Thus several approaches strive to quantify the perceptual di�erence
using a variety of known properties of the human visual system.

Since the goal of rendering is to produce an image, it makes sense to use
image quality metrics to evaluate the visual error introduced by simpli�cation
algorithms. To do so, many approaches compare a pair of images obtained by
rendering the simpli�ed and original mesh from a given view point to drive the
simpli�cation process [Lindstrom and Turk, 2000; Lindstrom, 2000; Luebke
and Hallen, 2001; Williams et al., 2003; Qu and Meyer, 2008]. Reddy [1997],
Dumont et al. [2003], Zhu et al. [2010] analyze pre-rendered images at pre-
processing time to then drive the selection of the appropriate LOD at render
time. The main advantage of this type of approaches is that they can take
advantage of the vast literature on perceptual metrics in image processing,
and more importantly it takes implicitly into account mesh attributes (colors,
normals, ...), and the illumination environment.

However, image-based approaches su�er from several limitations. First,
rendering multiple images many times throughout the simpli�cation process is
very expensive and slows down considerably the computation. Second, image-
based measures depend on a very large set of rendering parameters (lights,
view-points, shading models, etc). Yet, for interactive applications, the error
metric should be as independent of these parameters as possible. Indeed those
can greatly vary for interactive applications, and measuring the error for all
possible combinations of all possible values is not feasible. Finally, when us-
ing animated meshes, there is no guarantee that the actual visual quality is
correlated with the measured static image quality.

Other approaches rely directly on the perceptual analysis of 3D information.
Lee et al. [2005], Song et al. [2014] respectively use multi-scale curvature-based
analysis or spectral processing to �nd salient regions, visually interesting re-
gions, on a mesh. [Lavoué, 2011; Wang et al., 2012; Torkhani et al., 2014; Dong
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et al., 2014] provide perceptual measures also based on curvature. However,
all these approaches do not take into account surface attributes.

1.2.4 Summary

To choose the most adapted level of details, the ideal error metric should
quantify with maximal accuracy the geometric and attribute error introduced
by a given LOD for a given viewing distance and direction. Perceptual image-
based approaches are appealing at �rst glance as they evaluate directly the �nal
result of the rendering and thus indirectly take into account all these factors.
However, they are limited to static meshes, depends on other parameters that
are di�cult to track in real-world applications, and it is di�cult to summarize
in a compact representation these metrics. In addition, it is di�cult to use
them to guide the simpli�cation process, due to their expensive computation.

Other approaches compute an error for a single aspect of the model (ge-
ometry or attributes). They are often convenient to formulate optimization
problems and thus easy to use to guide the simpli�cation. Combining a ge-
ometric and an attribute error metric to obtain an estimation of the visual
simpli�cation error is possible, but requires arbitrary weights. Those weights
are often chosen empirically and thus do not provide a generic and elegant way
to measure the simpli�cation error.

Conversely, texture coordinate deviation, as proposed by Cohen et al.
[1998], elegantly combines the geometric and attribute errors. Minimizing
this error will guarantee that the object covers the correct pixels on screen
and that each pixel has the right attributes. We propose an extension of this
metric to take into account the view direction in Chapter 2.
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Figure 1.3 � Discrete Level of details � (a) Models of the Standford Dragon at
di�erent resolutions. (b) According to the view distance, it possible to use a coarser
version of the model without a�ecting the visual appearance.

1.3 Level of Details

To achieve real-time performances, highly detailed geometric models are usu-
ally rendered using level-of-details (LOD) [Luebke et al., 2002]. The initial de-
tailed model is iteratively simpli�ed during a preprocessing stage, and stored
in a compact hierarchical representation. At render time, according to a view-
dependent criterion, the appropriate level in the hierarchy is selected. Choos-
ing this criterion properly greatly reduces the complexity of the scene while
preserving the visual appearance.

In the previous section, we have seen di�erent approaches to evaluate the
error introduced by a given LOD. We now discuss the bene�ts and limita-
tions of the existing LOD representations (Section 1.3.1), and then present the
di�erent simpli�cation algorithms proposed to generate LOD (Section 1.3.2).
Finally, we review the metrics used to guide the simpli�cation process (Sec-
tion 1.3.3).

1.3.1 LOD Representation

The simplest approach to store and represent LOD consists in storing several
meshes at di�erent resolutions to represent the same object (Figure 1.3(a)).
We call this approach DLOD for discrete level of detail. These meshes are
precomputed using any polygon reduction technique. At render time, the
appropriate version of the object is displayed according to a view-dependent
criterion (Figure 1.3(b)). There is no transition mechanism between the dif-
ferent levels. As the view changes, the meshes are simply swapped to satisfy
the view error criterion. This approach is still widely used in the game indus-
try because it is simple, and more importantly because it is GPU e�cient and
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Figure 1.4 � Example of an edge collapse and its inverse operation: vertex split.

easily �t in any rendering pipeline.
However, the lack of any transition between levels lead to highly visible

popping artifacts unless the view error criterion is chosen such that there is no
visual di�erences when the changes occur. In practice, however, such criterion
does not allow enough simpli�cation of the scene and thus does not su�ciently
accelerate the rendering. In addition, DLOD o�ers a poor control over the
model resolution as it is limited to few precomputed meshes. Indeed, it does
not support selective re�nement, i.e., addition of details only in desired areas
of the model. For large models, only a small part of the mesh can be close to
the view. Selective re�nement allows to re�ne only those areas, leaving the rest
of the model at a low resolution and thus improving even more the rendering
performance.

To overcome these limitations, Hoppe [1996] designed a continuous-hierarchical
representation for level of details called Progressive Meshes (PM). The input
detailed mesh Mn is simpli�ed using a series of n reversible operations into
a coarse mesh M0. Using the inverse operations, the coarse mesh M0 can
be re�ned into a series of meshes M1,M2,... and up to the original mesh
Mn. Therefore, rather than storing a discrete set of LOD, he store the coarse
mesh M0 and the set of n operations that indicates how to re�nes M0 back
into the original meshMn, providing a quite e�cient, lossless, and continuous
representation.

Progressive meshes use two operations: edge collapse and vertex split. Edge
collapse has been proposed by Hoppe et al. [1993] and is one of the most used
simpli�cation operator. As illustrated in Figure 1.4, this operator collapses an
edge e = (pe0,p

e
1) into a single vertex p. This yields the suppression of the

edge e and of the two adjacent faces f e0 and f e1 if they exists. The inverse
operation of a edge collapse is called vertex split. It splits a vertex p in two
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vertices pe0,p
e
1 and adds the edge (pe0,p

e
1) and the two faces f e0 and f e1 .

A nice property of the edge collapse and the vertex split is that they natu-
rally enable smooth visual transition between two successive levels of details,
thus avoiding all the popping artifacts of the discrete LOD techniques. Smooth
transitions are achieved by doing a linear interpolation over time from the split
vertex position to the �nal positions of the two generated vertices.

The PM representation also supports real-time selective re�nement [Xia and
Varshney, 1996; Hoppe, 1997; El-Sana and Varshney, 1999], i.e., adding de-
tails only in desired areas of the model. There are, however, constraints on
the order in which the vertex split operations can be applied: the candidate
vertex for this split must exist, and other neighbor preconditions have to be
satis�ed. From those constraints, they establish a hierarchy describing the
dependencies between the vertex split operations. Depending on the choice
of those constraints, the hierarchy will have a di�erent structure: a tree [Xia
and Varshney, 1996], a binary tree [El-Sana and Varshney, 1999], or a forest
[Hoppe, 1997]. Each front in those structures corresponds to a di�erent pos-
sible level of details. Then by modifying progressively this front it is possible
to re�ne or simplify the mesh in the desired areas.

Liang Hu et al. [2010] present di�erent dependency conditions enabling an
e�cient implementation of Progressive Mesh entirely on programmable graph-
ics hardware. However their implementation is limited to halfedge collapses
and do not support smooth temporal transitions.

1.3.2 Level of details generation

The typical way to generate LOD is to use some polygon reduction technique
to create a hierarchy of meshes with decreasing number of polygons. Polygon
reduction is an optimization process reducing the number of polygons while
preserving as much as possible the visual appearance. To do so, it tries to
preserve the overall shape, the volume and the boundaries of the model. Poly-
gon reduction approaches vary widely in their support of attributes. Some
reduction methods, especially the earliest ones, o�er no support of the at-
tributes, and are based on purely geometric error metrics. Other algorithms
use some form of interpolation to carry the attributes of the original model to
the simpli�ed one without taking them into account during the course of the
optimization. Most sophisticated methods try to estimate the attribute error
introduced by the reduction, and combine it with the geometric error to guide
the optimization.

Polygon reduction techniques can be further separated into two categories:
local and global ones. The techniques that belong to the �rst category rely
on local simpli�cation operators such as edge collapses which are iteratively
applied to reduce the number of polygons. The global approaches, on the other
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hand, operate over large regions or even the entire mesh, and simplify a large
number of primitives in a single step.

Global reduction techniques comprise a large variety of approaches. For ex-
ample, vertex clustering merges all the vertices within a given cell, or cluster,
into a single representative vertex. The representative vertex is chosen from
one of the collapsed vertices, or computed as some form of average over all the
vertices within the cell. The clustering is based on geometric proximity, it can
be done using a rectilinear grid [Rossignac and Borrel, 1993], an octree [Luebke
and Erikson, 1997], �oating-cells [Low and Tan, 1997], or Centroidal Voronoi
Diagrams [Valette and Chassery, 2004]. The level of simpli�cation depends on
the cell resolution: larger cells yield high simpli�cation rates at low computa-
tion costs. Other approaches embed the mesh in a volumetric grid, then apply
simpli�cation operators in the volumetric domain, and �nally reconstruct a tri-
angle mesh using iso-surface extraction [He et al., 1996; Nooruddin and Turk,
2003]. However, global approaches su�er generally from a major shortcoming:
As the reduction happens in a single step, they cannot provide a continuous
representation across levels.

Local algorithms start from the original mesh and iteratively apply simpli�-
cation operators until a certain stopping condition is met. They thus naturally
enable continuous transitions for LOD.

For most operators, applying them in di�erent orders lead to di�erent re-
sults. Finding the best order in which the operations need to be applied to
minimize the di�erences between the resulting and the original mesh is likely a
NP-hard problem. As �nding the optimal solution is not feasible in a reason-
able time, most approaches have opted for greedy algorithms. Based on some
heuristics, these approaches make the locally optimal choice at each step. Al-
though it is not guaranteed to produce the best solution, it may result in a
good approximation of the optimal solution in a reasonable amount of time.

The pseudocode of Algorithm 1 illustrates the general principle of such ap-
proaches. Using some error metric, the algorithm computes the cost of each
possible operation, and stores them in a priority queue. Then, as long as the
queue is not empty or the stopping condition is not met, the operation with
minimum cost is pulled from the queue and applied to the mesh. Applying an
operation a�ects the geometry and the connectivity of the mesh, thereby the
costs of adjacent operations need to be updated.

Simpli�cation algorithms can have di�erent stopping conditions. The user
can provide a �delity criterion with respect to the input mesh that the simpli-
�ed mesh must satisfy. The simpli�cation algorithm attempts to minimize the
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Algorithm 1 Greedy simpli�cation algorithm

1: Input: Original meshM, Stopping criterion crit
2: H ← Empty heap
3: for each possible operation op do
4: c← Compute cost of op
5: Insert (c,op) in H
6: end for
7: while H not empty andM satis�es crit do
8: op← Minimum of H
9: Remove op from H
10: Apply op onM
11: for each neighbor operation opi do
12: ci ← Compute cost of opi
13: Update (ci,opi) in H
14: end for
15: end while

number of triangles while respecting the �delity constraint. The �delity crite-
rion is usually de�ned as a measure of the di�erences between the simpli�ed
mesh and the original model. This strategy is better suited for applications in
which the visual �delity is the central component.

Otherwise the stopping condition can be de�ned as a triangle-budget. In
this case, the algorithm tries to minimize the error metric while not exceeding
the target number of triangles. Since this method generates a �xed number
of triangles, it is easier to obtain a �xed frame rate. It is thus best suited for
interactive applications and often used for real-time LOD.

The simpli�cation operators and the error metrics are the main components
of simpli�cation algorithms. In general, the choice of the error metric is highly
dependent on the operators. Next, we present the di�erent operators used for
mesh simpli�cation. Each of these operators simpli�es the geometry and the
connectivity in a local region, removing a small number of primitives (vertex,
edge or face). Most of them are designed speci�cally for triangle meshes. It is
thus often required to triangulate the input mesh in a preprocessing step, if it
is not composed exclusively of triangles.

Vertex Removal

The most straightforward operator when simplifying geometry is the vertex
removal operator [Schroeder et al., 1992; Soucy and Laurendeau, 1996; Klein
et al., 1996]. It consists in removing a single vertex and its adjacent faces, and
then triangulating the resulting hole (Figure 1.5 (a)). Each vertex removal
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Figure 1.5 � Local simpli�cation operators � (a) Vertex removal: The vertex p0 is
removed and the resulting hole is triangulated. (b) Halfedge collapse: The halfedge
(p0,p1) is collapsed to p1 (c) Edge collapse: The two vertices p0 and p1 are merge
into a new vertex p. (d) Face collapse: The three vertices of the face f are collapsed
into the new vertex p. The same result can be obtain by collapsing a second edge
from (c).

operation reduces the complexity of a mesh by one vertex and two faces. Apart
from the removal order, the triangulation of the holes is the only way to a�ect
the geometric quality of the simpli�ed mesh. Therefore it is important to create
triangles with good aspect ratios and that approximate the original surface as
closely as possible.

Edge Collapse

As presented in Section 1.3.1, edge collapse merges the two extremities of
an edge into a single vertex, removing one vertex and two faces. The position
of the resulting vertex is usually chosen as the position minimizing the cost
metric. Although the edge collapse operator is simple to implement, it can
introduce mesh foldover or nonmanifold edges. Figure 1.6(a) shows an example
of contraction introducing a foldover. When contracting the edge (pe0, p

e
1), the

orientation of the face f gets �ipped. This can results in visual artifacts, such
as lighting and textures discontinuities. Therefore edge collapse operations
introducing foldover are removed from the priority queue or get prohibitive
costs. To detect foldover, it is necessary to keep track of the normals before
and after the contraction. If there is a large variation of the normal direction,
usually greater than 90◦, then a foldover has occurred.

Nonmanifold edges are edges with three or more adjacent triangles. They
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Figure 1.6 � Invalid edge collapse operations � (a) When contracting the edge
(pe0,p

e
1), a foldover appears: The face f �ips direction. (b) The contraction of pe0

and pe1 leads to a nonmanifold edge e.

appear when contracting an edge whose extremities share three or more neigh-
boring vertices (as shown in Figure 1.6(b)). Since many algorithms rely on
manifold connectivity, it is crucial to avoid introducing such edges.

Halfedge Collapse

Halfedge collapse consists in collapsing the edge to one of its end points.
It can be seen as a simpler version of edge collapse. It generally gives poor
quality results compared to edge collapse since the locally simpli�ed geometry
is not optimized.

Vertex-Pair Collapse

The vertex-pair collapse is an extension of the edge collapse operation to
unconnected vertices [Garland and Heckbert, 1997]. Although no face are
removed when merging two unconnected vertices, it allows to close holes and
gaps. This is especially useful to simplify meshes with a lot of unconnected
components or holes when the topology is less important than the overall
shape. Typical examples include foliage.

A mesh with n vertices can accept potentially n2 vertex-pair contractions.
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It is generally too costly to consider all existing vertex-pair contractions. Most
of the simpli�cation algorithms using vertex-pair collapses therefore limit them
to a subset of pairs that are close in space.

Triangle Collapse

Similar to edge collapse, the triangle collapse operator [Hamann, 1994; Gieng
et al., 1997] simpli�es a mesh by collapsing the three vertices of a triangle to a
single vertex. The position of the new vertex is also the result of some form of
optimization. A triangle collapse is equivalent to two edge collapses (as shown
on Figure 1.5) and thereby provides little practical bene�ts compared to edge
collapse.

Edge Flip

Although edge �ip is not technically a simpli�cation operator, it is often used
in combination of those to improve the mesh quality. It consists in replacing
the two triangles adjacent to an edge with two new triangles. In addition to
potentially improve the mesh quality, edge �ips can be used to solve foldover
introduced by edge collapses. However, edge �ips are usually not compatible
with continuous LOD, as, e.g., Progressive Meshes.

1.3.3 Metrics for Mesh Simpli�cation

Mesh simpli�cations are driven by error metrics. In general, those metrics try
to estimate the error introduced by a single simpli�cation operation. They
are involved in two kinds of optimizations during the simpli�cation. The �rst
one is the cost used for ordering the simpli�cation operations. The second use
case is to drive the optimization of the locally simpli�ed geometry, such as the
position of the new vertex after an edge collapse. These two optimizations
are tightly related, and most of the time they share a great deal of code. For
instance, the cost is often de�ned as the residual of the geometric optimization,
whereas the latter strive to minimize this residual. We now present several of
those metrics.

Distance to average plane

In the context of vertex removal, Schroeder et al. [1992] estimate the geo-
metric deviation through the distance between the vertex to be removed and
the average plane of the adjacent faces. The average plane is computed using
the normals ni, centers ci, and areas Ai of the adjacent faces T :
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n =normalize

(∑
i∈T

niAi

)
,

c =

∑
i∈T ciAi∑
i∈T Ai

The distance of the vertex p to the average plane is then:

Eavg(p) = |nT (p− c)| (1.8)

This error criterion only considers the deviation from the actual surface
and not from the input mesh. Therefore, it is di�cult to have any estimation
on the error accumulated during the overall simpli�cation.

Surface to surface distance

Soucy and Laurendeau [1996], Klein et al. [1996] and Hu et al. [2017] estimate
the surface-to-surface distance by maintaining a mapping between the original
mesh and the simpli�ed one. Each deleted vertex is linked to the closest
face of the simpli�ed mesh. Soucy and Laurendeau [1996] de�ne the cost of
a vertex removal as the maximum distance from either a deleted neighbor
vertex or the vertex itself to the retriangulated surface. This criterion returns
an underestimation of the Hausdor� distance because the L∞ surface to surface
distance might not be located on a vertex of the original mesh. Klein et al.
[1996] use this mapping to compute the actual Hausdor� distance. Hu et al.
[2017] estimate the Hausdor� distance using a uniform sampling per face with
additional samples on edges and vertices.

For all those approaches, the computation time is, however, proportional
to the number of deleted vertices. The more the simpli�cation proceeds, the
higher the complexity of each cost estimation increases.

Maximum Supporting Plane Distance

Ronfard and Rossignac [1996] point out that every vertex is at the intersec-
tion of all the planes de�ned by its adjacent faces. Following this observation,
they associate a set of planes P with each vertex, and de�ne the error for a
vertex p as the maximum distance from p to the planes in its set. Let (n, d)
be a plane in P where n is the unit normal of the plane, and d is the o�set
from the origin. Then vertices belonging to the plane satisfy the equation
nTp + d = 0. This gives the following formulation for the error metric:

Espd(p) = max
(n,d)∈P

(nTp + d)2 . (1.9)
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(a) (b) (c)

Figure 1.7 � Quadric Error Metric [Garland and Heckbert, 1997] � (a) Original
bunny model with 69,451 triangles. (b) Quadric error displayed as an ellipsoid for
each vertex. (c) A simpli�ed version using only 1,000 triangles.

Those sets are initialized from the adjacent faces of each vertex, therefore
the initial error at each vertex is null. When an edge is collapsed, the two
sets are merged. This measure provides an e�cient heuristic for ordering edge
collapse operations, but the set of planes need to be tracked explicitly during
the simpli�cation. In addition, this method does not provide any guarantees
about the maximum and the average geometric deviation introduced by the
simpli�cation.

Quadric Error Metric

Based on the same observation than Ronfard and Rossignac [1996], Garland
and Heckbert [1997] de�ne their error as the sum of squared distances of p to
all planes of the set P :

EQEM(p) =
∑

t=(n,d)∈P

(nTp + d)2

=
∑

t=(n,d)∈P

(pTnnTp + 2dnTp + d2)

=
∑

t=(n,d)∈P

eQEM(p, t) , (1.10)

where eQEM is the error for a single plane.

eQEM is a quadratic form: pTAp + 2bTp + c (Figure 1.7). Using homo-
geneous coordinates, this quadric form can be represented by a single 4 × 4
symmetric matrix Q(n,d):
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EQEM(h) =hT

 ∑
(n,d)∈P

Q(n,d)

h = hTQh , (1.11)

with Q(n,d) =

[
A b
bT c

]
=

 nnT dn

dnT d2

 .

Here h is the homogeneous vector
[
pT 1

]T
. This formulation is very

convenient because it shows that we need a single matrix Q to �nd the sum of
the squared distance of an entire set of planes. Following this observation, they
implicitly keep track of the set of planes by storing such a matrix Q for each
vertex. When contracting two vertices p1 and p2, the quadric associated to the
new vertex is simply de�ned as the sum of the two quadrics of the collapsed
vertices Q = Q1 + Q2. This may introduce some imprecision into the error
measurement because a plane may be counted multiple times. However they
advocate against a more complicated method correcting this problem, as it
will provide little bene�t.

Since the error function EQEM is quadratic, �nding its minimum is a linear
problem. The new vertex position p which minimize EQEM is the point for

which all the derivatives vanish:
∂EQEM

∂x
=

∂EQEM

∂y
=

∂EQEM

∂z
= 0. This yields to

the following linear system:

Q11 p = −q12

with Q =

[
Q11 q12

q12
T q22

]
(1.12)

The main computational cost in solving this minimization is to invert the
3× 3 matrix Q11. If the planes composing the quadric are almost parallel, the
matrix may not be invertible. Even if the matrix is numerically invertible, the
solution might be far away from the neighborhood. In these cases, they use a
fall-back strategy such as selecting one of the two end points or the midpoint
of the collapsed edge.

The mesh boundaries are preserved by the mean of additional proxy planes.
For each boundary edge, they add to the endpoints a plane orthogonal to the
adjacent face, weighted by a large factor.

Salinas et al. [2015] use a similar idea to make the greedy decimation aware
of the general structure of the mesh. A set of planar proxies detected in a
preprocessing step are converted and added to the quadrics in order to guide
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Figure 1.8 � Structure-aware mesh decimation [Salinas et al., 2015] � A set of planar
proxies are converted and added to the quadrics in order to guide the simpli�cation.
This results in a better preservation of the structure of the mesh.

the simpli�cation (Figure 1.8). However, this is not enough on its own to
guarantee that the simpli�cation converges towards the coarse-scale structures.
Additional structure-preserving rules, prohibiting some edge collapses, need to
be added to recover and preserve the structures de�ned by the proxies.

Quadric Error Metric with attributes

Several approaches have been proposed to extend the quadric error metric
to support surfaces with attributes. Garland and Heckbert [1998] extend the
quadric to a n-dimensional space. The method remains exactly the same.
They construct a quadric to measure the squared distance of any point in
Rn to a plane. For a triangle (p̃0, p̃1, p̃2), vertices would have the form p̃ =[
x y z a0 a1 ... am

]T
, with a0, a1, ..., am the attributes of the surface.

Then to characterize the plane of the triangle (p̃0, p̃1, p̃2), we need to compute
two orthogonal vectors lying in this plane. Denoting p̃ij the vector p̃j − p̃i,
these two vectors are obtained using the following equations:

v1 =
p̃01

‖p̃01‖
, (1.13)

v2 =
p̃02 − (v1

T p̃02)v1

‖p̃02 − (v1
T p̃02)v1‖

. (1.14)

Let p̃ be a point in Rn. We can compute enQEM the squared distance to the

plane t̃ de�ned by v1 and v2 as:

enQEM(p̃, t̃) = ‖p̃− p̃0‖2 − ((p̃− p̃0)Tv1)2 − ((p̃− p̃0)Tv2)2 . (1.15)

As before, we can rewrite it as a quadric form:
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enQEM(p̃, t̃) =p̃TAp̃ + 2bT p̃ + c (1.16)

where A =I− v1
Tv1 − v2

Tv2 ,

b =(p̃T0v1)v1 + (p̃T0v2)v2 − p̃0 ,

c =p̃T0 p̃0 + (p̃T0v1)2 + (p̃T0v2)2 .

This generalized quadric has the same structure as the previous 3-dimensional
quadric but here A is a n × n matrix and b is an n-vector. The generalized
quadric error is then de�ned as:

En
QEM(p̃) =

∑
t̃∈P

enQEM(p̃, t̃) . (1.17)

The optimal placement p̃ minimizing En
QEM(p̃) is computed by proceeding ex-

actly as for the standard QEM. It is worthwhile to mention that the size of
the quadric matrix grows quadratically with the number of attributes. Conse-
quently, handling too many properties can lead to an important memory cost
as well as an increased computational time.

One important constraint of this approach is that the scale of the attributes
matter. Hence, to obtain consistent results, the 3D model has to be scaled so
that the positions and the various attributes have the same scale. The scale
of each attribute determines how it will be preserved to the detriment of the
other attributes.

Hoppe [1999] proposed a di�erent approach to simplify meshes with at-
tributes. He de�nes the error metric as the standard quadric error eQEM(p, t)
and a sum of attribute errors eâj(p̃, aj):

Ea
QEM(p̃) =

∑
t∈P

eaQEM(p̃, t) , (1.18)

with eaQEM(p̃, t) = eQEM(p, t) +
m∑
j=1

eâj(p, aj) , (1.19)

where p̃ = (pT , a0, a1, ..., am), and eâj is the error for the j-th attribute.
The geometric error eQEM(p, t) is the squared distance from p to its projection
p′ on the plane.

The attribute error eâj(p̃, aj) is the squared deviation between aj and the
value a′j linearly interpolated from the vertices of the face at that projected
point p′. The attributes are interpolated using a linear function âj(p) =
gTj p + dj such that it interpolates the three face vertices and it is constant in
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the direction orthogonal to the face nTf gj = 0. The attribute error eâj(p̃, aj)
is thus de�ned as:

eâj(p̃, aj) =(âj(p)− aj)2

=(gTj p + dj − aj)2 . (1.20)

This gives the following sparse linear system:


nnT +

∑
j gjg

T
j −g1 · · · − gm

−g1
...
−gm

I

 p̃ = −


dn +

∑
j djgj

−d1
...
−dm

 . (1.21)

Here again the scale of attributes matters. They use a set of weight λj
to scale the attribute errors relative to the geometric error. Compared to
the n-dimensional quadric, the matrix A is relatively sparse and therefore less
expensive in memory for an important number of attributes.

Lindstrom-Turk Metric

Lindstrom and Turk [1998] propose a very di�erent approach in the sense
that it does not retain any information about the original model during the
course of the simpli�cation. After each edge collapse, their goal is to �nd the
optimal position of the new vertex by minimizing several geometric properties.
More precisely, they combine several linear equality constraints so that the
original volume and shape of the model is locally preserved.

Let Te be the set of triangles adjacent to at least one endpoint of the edge
e and p the resulting vertex of the contraction of e. The di�erence of volume
before and after the contraction can be characterized by the set of tetrahedrons
formed by a triangle t = (pt0,p

t
1,p

t
2) of Te and p (Figure 1.9). The signed

volume of a tetrahedron is considered positive if p is above the plane of t and
negative if p is below this plane. Then, by summing the contribution of each
tetrahedron, we can compute the change of volume between the two surfaces.
To preserve the volume, this sum needs to be equal to zero:∑

t∈Te

Vol(p,pt0,p
t
1,p

t
2) = 0 (1.22)

The equation (1.22) can be rewritten as the following linear constraint:(∑
t∈Te

nTt

)
p =

∑
t∈Te

∣∣pt0 pt1 pt2
∣∣ (1.23)
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Figure 1.9 � Lindstrom-Turk Metric [Lindstrom and Turk, 1998] � Example of
tetrahedral volumes associated with triangles t2, t3 and t8.

where nt is the normal of triangle t with magnitude equaled to twice the
area of t. Equation 1.23 only restricts v to a plane. The remaining constraints
are de�ned as the minimization of the unsigned volume of each individual
tetrahedron. These constraints attempt to minimize the distance between the
two surfaces and lead to the following objective function:

ELT(p) =
∑
t∈Te

Vol(p,pt0,p
t
1,p

t
2)2

=
∑
t∈Te

(nTt p−
∣∣pt0 pt1 pt2

∣∣)2 (1.24)

If the triangles of Te are coplanar, then equation (1.24) yields an in�nite
plane of solution and is redundant with the previous constraint. In this case,
an additional term is added to optimize the aspect ratio of the remaining
triangles.

In addition to these constraints, they propose a set of constraints specif-
ically dedicated to boundaries. These constraints are similar to the volume
preservation and optimization detailed before but with the area enclosed by
the mesh boundary. Finally, the cost associated to each edge collapse operation
is de�ned using the objective functions from the minimization.

As all constraints are derived directly from the current surface, no infor-
mation needs to be stored or maintained through the simpli�cation. This
method is therefore memory e�cient and enables the simpli�cation of very
large polygonal models at a fast rate.
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1.3.4 Summary

Iterative decimation methods simplify a mesh while preserving as mush as
possible the features of the mesh. To do so, we saw that numerous metrics
have been developed to guide the simpli�cation process. They are used for
ordering the simpli�cation operations but also, in the case of edge collapses,
to compute the position of the new vertices. Although all of them aim to
minimize the Hausdor� distance, they all have to rely on some heuristics to
achieve reasonable performance. A vast majority of them does not take into
account the attributes of the mesh. Those supporting attributes, all depend
on arbitrary weights to combine the geometric and the attribute errors, and
thus do not provide a generic and elegant metric to optimize simultaneously
the position and attributes of the mesh.

The output of an iterative decimation can be stored as a compact and
continuous representation. In particular, in the context of edge collapse, we
saw that Progressive Meshes support selective re�nement, allowing to re�ne
the mesh only in desired areas of the model. However even parallel GPU
implementations of Progressive Mesh cannot leverage the full power of modern
graphics hardware. We show a novel LOD representation adapted to modern
GPUs in Chapter 3 and a way to generate it in Chapter 4.
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1.4 Displacement Mapping

1.4.1 De�nition

Another approach to render highly detailed 3D models is to decompose the
model into a low-frequency mesh, often called control mesh, and an o�set func-
tion de�ned over the surface of this mesh (Figure 1.10). The o�set function
is usually discretized and stored in a texture called a displacement map. It
can be computed using a ray casting process [Lee et al., 2000]: the displace-
ment map is sampled by shooting rays from the control mesh along the surface
normals until they intersect the original mesh. Displacement mapping [Cook,
1984] thus refers to the methods of perturbing the coarse surface by the dis-
placement map to reconstruct the original model. It o�ers a more compact
representation than Progressive Meshes, as the connectivity of detailed mesh is
not stored. In addition, it enable low-cost animations. Animations are applied
to the control mesh and then the detailed surface is reconstructed using the
displacement map.

Each texel of the displacement map encodes a displacement. If those dis-
placements are scalar, then the map is called a scalar displacement map or a
height map. A height map can be seen as a gray-scale texture. The scalar-
displaced surface Sh generated from a height map is de�ned in the parametric
space as:

Sh(u, v) = P(u, v) +H(u, v)N (u, v) (1.25)

Sh(u, v) is reconstructed by displacing the points of the coarse surface
P(u, v) along the surface normal N (u, v) by the o�set H(u, v) fetched from
the height map.

Displacements can also be stored as 3D vectors. In this case, the map
is called a vector displacement map. The vector-displaced surface Sv can be
formulated as follows:

Figure 1.10 � Displacement Mapping � A detailed mesh (right) decomposed into a
low-frequency mesh (middle) and a o�set function (left) de�ned over the surface of
this mesh.
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Sv(u, v) = P(u, v) +R(u, v)D(u, v) (1.26)

where D(u, v) is the displacement vector in the local frame of the face and
R(u, v) is the 3×3 matrix transforming vectors from the local tangential frame
to the object space. Vector displacements enable the representation of more
complex shapes such as folds, which are impossible to reproduce with a single
height map. Moreover, the tangential components of the displacement vectors
allows potentially to slightly redistribute the samples to better capture the
features of the original model.

Displacement mapping was originally proposed for o�ine rendering pipelines
such as RenderMan [Apodaca and Gritz, 1999]. In this context, the surface is
tessellated such that the generated triangles are smaller than a pixel, then new
generated vertices are moved using the displacement map to reconstruct the
details surface [Cook et al., 1987]. This produces very accurate results at the
cost of a long computational time. Although such an approach was not suitable
for real-time rendering before the introduction of the hardware tessellation,
di�erent methods have been proposed to exploit displacement maps in real-
time. We start by presenting those methods in Section 1.4.2 and then review
displacement mapping methods using hardware tessellation in Section 1.4.3

1.4.2 Pre-Hardware Tessellation

There is two kind of approaches using displacement maps in real-time: per
vertex or per fragment displacement mapping In per fragment displacement
mapping, the vertex shader transforms only the coarse mesh, and the height
map is taken into account when fragment are processed. To ensure all necessary
fragment are generated, the coarse mesh must be a bounding mesh of the
detailed model. In the fragment shader, it is to late to change the geometry,
thus the visibility problem needs to be manually solved for each fragment.
This can be done by �nding the textures coordinates of the visible point which
will be used to fetch color and normal data. However �nding rapidly those
coordinates is a di�cult problem.

Parallax mapping [Kaneko et al., 2001; Welsh and Corporation, 2004; Tatarchuk,
2005] aims to tackle this problem by fetching the height map only once to ob-
tain more accurate texture coordinates according to the value of the height
map and the view angle. This method does not compute the actual visible
point but rather gives an illusion of depth due to parallax e�ects as the view
changes. Iterative parallax mapping [Premecz, 2006] attempts to improve the
solution by iteratively exploring the height �eld, in a ray marching manner.
Other approaches iteratively explore the height �eld to �nd the visible point
using a binary search [Yerex and Jagersand, 2004], a linear search [McGuire

34 Thibaud Lambert



1. Related Work

and McGuire, 2005; Tatarchuk, 2006], some kind of pre-computed data encod-
ing the empty spaces which is then used to �nd safe step in the ray marching
[Kolb and Rezk-Salama, Kolb and Rezk-Salama; Oh et al., 2006; Donnelly,
2005], or a combinations of previous approaches [Policarpo et al., 2005]. All
those methods can be classify in two categories : safe or unsafe algorithms.
The former �nd the correct visible point in all cases but unfortunately are
very costly. The latter are usually much faster but are not guarantee to re-
turn the correct solution. For a comprehensive survey on this techniques see
[Szirmay-Kalos and Umenho�er, 2006].

Per vertex displacement mapping can be done either in the vertex shader
or in the geometry shader. The o�set is fetched from the displacement map
using the vertex texture coordinates, and then it is simply applied to the given
vertex. The challenge here is how to generate the appropriate re�ned geometry.
Re�ning the mesh on the CPU and transmitting the data to the GPU at each
frame would be to costly. The ideal approach would be to use only a coarse
mesh at the CPU level and then to re�ne on-the-�y the mesh on the GPU.

In the �eld of fast mesh re�nement, a large amount of work has been done to
generate subdivision surfaces [Catmull and Clark, 1998; Doo and Sabin, 1998;
Loop, 1987; Kobbelt, 2000], which are the standard modeling primitives in the
animation industry. Given a coarse polygonal mesh, subdivision surfaces de�ne
a smooth surface computed as the limit of a recursive subdivision scheme. The
desired re�nement level is obtained by iteratively subdividing the mesh until
a certain criterion is met, creating at each step a smoother mesh containing
more polygons. This re�nement scheme has become very attractive for real-
time rendering in authoring tools and video games. Displacement maps can
be applied on top of subdivision surfaces, adding high frequency details to the
smooth surfaces.

A number of approaches have been proposed to render subdivision surfaces
on GPU. Most straightforward implementations [Bunnell, 2005; Shiue et al.,
2005; Patney et al., 2009; Weber et al., 2015] iteratively apply the subdivi-
sion rules using a GPU compute kernel updating a dense mesh stored in GPU
memory. The resulting mesh is then rendered in a second pass. However this
approach involves numerous memory transfers between the GPU multiproces-
sors and the global memory.

The geometry shader [Blythe, 2006] can create new vertices, and triangles
from a single primitive. It could then be used to amplify the mesh resolution
on-the-�y. The coarse mesh is sent as input to the rendering pipeline. The
vertex shader transforms the coarse geometry and then the geometry shader
tessellates it as required and applies the displacement map. However, the
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amount of data output by the geometry shader is limited and thus the num-
ber of vertices that can be generated by a single geometry invocation is also
limited. This can be overcome if the data is fed back to geometry shader
again to perform further subdivision, however it does not achieve reasonable
performance for large subdivision in real-time.

Vlachos et al. [2001] suggested to add a stage into the graphics pipeline lo-
cated just after the vertex shader. This stage replaces each triangle of the orig-
inal mesh by a �curved PN-triangle� providing a smooth surface with smaller
triangles. Such tessellation unit has been implemented in the ATI Radeon
8500 in 2001, but it did not allow to control the position of the resulting
vertices, making it not compatible with techniques such as displacement map-
ping. Boubekeur and Schlick [2005] proposed to use instantiation of generic
re�nement patterns to create additional vertices. They use a single re�ne-
ment pattern for each resolution level. Each vertices of the re�nement pattern
is described using barycentric coordinates. At render time, for each face of
the coarse mesh, the re�nement pattern at the desired level is instantiated.
The positions of the new vertices are interpolated from their barycentric co-
ordinates, the attributes of the coarse face and the displacement map. The
re�nement patterns are kept in GPU memory. The amount of data transmit-
ted between the CPU and GPU thus becomes independent of the re�nement
level, as only the coarse mesh need to be transmitted at runtime. Boubekeur
and Schlick [2008] extended this methods to support di�erent re�nement levels
for adjacent faces by adding patterns to handle all con�gurations of adjacent
re�nement levels. Then at run-time, the appropriate patterns are chosen to
obtain a spatially-continuous and adaptive subdivision. The hardware tessel-
lation is based on a similar approach but dedicated steps have been added to
the graphics pipeline.

1.4.3 Hardware Tessellation

Since DirectX 11 [MICROSOFT, 2009] and OpenGL 4.0 [Segal and Akeley,
2010], GPUs expose a dedicated unit to amplify the polygonal density of the
mesh on the �y: the hardware tessellation [Moreton, 2001] (Figure 1.11). For
a comprehensive survey on hardware tessellation see [Nieÿner et al., 2016]. In
this context, a coarse representation de�ned as a set of patches is used. At
runtime the resolution of the model is controlled on a per patch basis, enabling
patch-grain LOD control with smooth spatial and temporal transitions. This
makes hardware tessellation the ideal support to implement for displacement
mapping as well as to render subdivision surfaces.

To use hardware tessellation, the pipeline takes as input a control mesh
composed of patches. Its vertices are the control points of the patch, and will
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(a) (b) (c)

Figure 1.11 � Example of hardware tessellation � (a) A Coarse mesh for aster-
oid. (b) Tessellated mesh at factor 32 for every patch with no displacement. (c)

Tessellated mesh with displacement.

(a) (b) (c)

Figure 1.12 � Triangle Hardware Tessellation Pattern � Example of the prede�ned
tessellation pattern output by the Tessellator for di�erent uniform factors. From left
to right: 2 ,4 ,6.

later be used to compute the �nal position of the generated vertices. The patch
control points are processed normally by the Vertex Shader. Since the control
mesh has fewer vertices than the original mesh, it enables low-cost animations
in the vertex shader. The tessellation process is divided into two programmable
stages: the Tessellation Control Shader (TCS) and the Tessellation Evaluation
Shader (TES) and a �xed function stage: the Tessellator. These new steps are
located between the vertex shader and the geometry shader (Figure 1.1).

The Tessellation Control Shader (TCS) controls how each patch gets tes-
sellated by computing per-path tessellation factors. Using two mechanisms
which are discussed in more detail later, it enables smooth spacial and tempo-
ral transitions.

The following stage is the Tessellator. It is a �xed-function stage which
subdivides the patches according to a prede�ned and uniform subdivision pat-
tern. It generates the topology and the new vertices from the factors set in the
TCS. Examples of tessellation patterns are shown in Figure 1.12 for triangle
patches.

The Tessellation Evaluation Shader is then invoked for each generated ver-
tex. It outputs their �nal position and other per-vertex attributes. New
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vertices are described in terms of tessellation coordinates which are the lo-
cation of the new vertex within the patch. It corresponds to the barycentric
coordinates for triangles and standard bilinear coordinates for quads. From
these coordinates and the control points, the attributes of each vertex have to
be interpolated. It is at this stage that o�sets are applied for displacement
mapping, or limit positions are computed for subdivision surfaces. Then the
pipeline continues normally with, optionally the Geometry Shader, and the
rasterization of the generated primitives.

Although the hardware tessellation is the ideal mechanism to render dis-
placement maps, it has several shortcomings. After presenting the di�erent
challenges when using hardware tessellation with displacement maps, we dis-
cuss alternative representations trying to solve these issues.

Generating the control mesh

The control mesh and the displacement map can be directly generated us-
ing multi-resolution authoring tools such as Mudbox or ZBrush. The control
mesh can also be obtained as the result of a simpli�cation algorithm. In the
case of hardware tessellation, the goal is slightly di�erent than usual mesh
simpli�cation. In addition to approximate well the original surface, the con-
trol mesh need to have a uniform distribution of feature across its patches to
achieve maximum performance. Indeed, Yuan et al. [2016] have shown that
the variation of the tessellation level on di�erent patches has an impact on the
rendering time. They thus propose to count the number of features per tri-
angles throughout the simpli�cation. They de�ne a feature vertex as a vertex
whose Gaussian curvature is larger than a prede�ned threshold. Then, when
collapsing an edge, if the number of feature vertices for a triangle exceeds a
pre-de�ned threshold, they cancel the operation. The simpli�cation process
continues until all triangles have reached the maximum number of features or
the desired number of triangles is achieved.

Tessellation level selection

Selecting the appropriate factors to reach maximum e�ciency without in-
troducing visual artifacts remains also an open question. Previous approaches
only consider either the projected patch size [Cantlay, 2001] � fully neglecting
its actual content after tessellation � or isotropic metrics, such as the Haus-
dor� distance between each LOD and the detailed mesh [Schafer et al., 2013],
which overestimates the error along some view directions and does not take
into account the surface attributes.
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Figure 1.13 � Schematic comparison of scalar (a) and vectorial (b) displacement
mapping for the same geometry (gray curve) at two successive integer levels (in red)
and a fractional level (in blue). Vectorial displacement better represents the input
signal, and enables folds. Yet both approaches su�er from swimming artifacts when
the pattern continuously changes with fractional tessellation (middle column); the
surface appears to �uctuate due to the undersampling of the displacement map.

Temporal continuity

The temporal continuity is achieved through fractional tessellation factor
(Figure 1.14 (a)). To transition between two levels, new vertices appear from
existing ones and move progressively to their �nal positions. The hardware
tessellation exposes two modes of transition: between odd levels, or between
even ones. Figure 1.14 (a) shows a transition between even levels 4 and 6. The
tessellation pattern progressively changes to transition between two tessellation
levels. However continuously changing the sampling pattern creates swimming
artifacts when a displacement map is used (Figure 1.13). The surface appears
to �uctuate due to the undersampling of the displacement map. As shown in
Figure 1.13, both scalar and vectorial displacements su�er from this issue.

Spacial continuity

The spacial continuity is achieved because patch tessellation density is con-
trolled by several tessellation factors. The outer tessellation factors control
how the patch gets subdivided on its borders, and the inner tessellation fac-
tors control the interior of the patch. For a triangle patch, there are three
outer tessellation factors, one for each edge, and one inner tessellation factor.
Figure 1.14 (b) shows a patch with di�erent outer tessellation factors. The
Tessellator will automatically connect seamlessly the borders and the interior
of the patch regardless of the selected factors. Thus to guarantee the spacial
continuity, it is only necessary to ensure that edges shared by two patches are
set to the same factor.
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(b)(a)

Figure 1.14 � Fractional Hardware Tessellation � (a) Transition between even levels
with a fractional factor of 4.9. (b) tessellation pattern with di�erent outer tessella-
tion factors.

However, owing to texture coordinate discontinuities introduced when com-
puting the 2D parametrization by unfolding the mesh, cracks can occur along
seams when using displacement maps. 3D Points on seams corresponds to
several points in texture space, the displacement values interpolated at these
points can di�er because of the di�erent sampling rates on both side of the
seam or texture misalignment. Bilinear texture interpolation or mipmapping
amplify even more this problem. Such a problem is not speci�c to displace-
ment maps, color and normal maps su�er also from these discontinuities. In
the case of displacement mapping, however, a tiny di�erence leads to highly
visible cracks in the rendered surface.

Feature adaptive tessellation

A more fundamental issue of hardware tessellation is that patches are uni-
formly subdivided according to a prede�ned pattern. This is especially prob-
lematic with standard scalar displacement along vertex normals (Figure 1.13(a)).
For a single level, vectorial displacement can mitigate this issue because ver-
tices can be moved to (almost) arbitrary locations [Jang and Han, 2012], which
is essential to faithfully reproduce features and folds (Figure 1.13(b)). How-
ever, once the vectorial displacements have been computed for the �nest level,
vertices cannot be spatially redistributed to construct the coarser ones since
the subdivision mechanism is �xed and uniform. Conversely, if starting from
the coarser level, it is not possible to control topologically where new vertices
will be added. This severely limits the ability to construct feature-aware LOD.
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Figure 1.15 � Analytic displacement applied on top of Catmull-Clark subdivision
surfaces using hardware tessellation Nieÿner and Loop [2013]. The normals are di-
rectly derived from the displacement function allowing a fast and accurate shading.
The models are courtesy of the Blender Foundation and Bay Raitt, respectively.

1.4.3.1 Analytic displacement

To obtain a faithful visual aspect of the model, it is crucial to retrieve the
normals of the detailed surface at a fragment scale to achieve accurate shading.
In the case of scalar displacement, these normals can be computed from the
displacement map using bump mapping [Blinn, 1978]. However, this method
requires several look-up in the displacement map to compute the normals.
The most common method is rather to use normal mapping, i.e., to use an
additional map to retrieve the normals of the detailed surface. In addition
to be more e�cient that bump mapping, it allows to add micro scale details
independently of the displacement map. It is however complicated to modify in
real time the displacement when using normal mapping, as it will be necessary
to re-compute on-the-�y the normal maps. Furthermore, to allow deformation
of the base surface, the normals need to be stored in tangent space. The
computation of tangent frames globally consistent across the mesh edges is
costly and di�cult.

Nieÿner and Loop [2013] propose to store the displacements as a smooth
analytic function. The normals can thus be directly derived from this repre-
sentation. Therefore, it is no longer necessary to use a normals map, which
avoids all the normal mapping problems. More precisely, their displacement
surface Sa is de�ned as:

Sa(u, v) = C(u, v) +Ns(u, v)D(u, v) (1.27)

where C(u, v) is a base Catmull-Clark limit surface de�ned by the coarse
base mesh, Ns(u, v) is its corresponding smooth normal �eld, and D(u, v) is a
scalar-valued displacement function. Their method is not speci�c to Catmull-
Clark subdivision surface and could be extended to other subdivision schemes
as long as the limit surface is C2 continuous, except at a limited number of
extraordinary vertices where it is still C1. The displacement function D(u, v)
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. . .

Figure 1.16 � Example of the tile-based texture format used to stored displacement
data Nieÿner and Loop [2013]. The displacement data (blue) and overlap (red) of
two tiles (green outline) are stored in tightly packed representation. Each tile is
composed of three mip levels.

is then de�ned as a scalar-valued biquadratic B-spline with a Doo-Sabin sub-
division surface structure [Doo and Sabin, 1998], which is C1 continuous with
vanishing �rst derivative at extraordinary vertices. Therefore, the displaced
surface Sa(u, v) is also C1 continuous, allowing direct evaluation of the surface
normals everywhere.

The coe�cients of the biquadratic B-spline are stored in the displacement
maps in a tile-based format similar to Ptex Burley and Lacewell [2008]. It
stores a separate texture per quad patch of the coarse mesh. These small
textures are tightly packed in a single map, leading to a compact representation
adapted for the GPU.

To avoid introducing cracks along the tile boundaries, each tile is stored in
an axis-aligned fashion with a one-texel overlap corresponding to adjacent tiles.
This overlap enables coherent �ltering on both sides of the seams. To avoid
problems at extraordinary vertices, where not exactly four tiles meet, they
force the tile corners to have the same values, avoiding any �ltering problem
at the cost of limiting the modeling �exibility.

Nieÿner and Loop [2013] tackle the swimming artifacts problem as a signal
sampling problem. The displacement map can be seen as a high frequency sig-
nal, then swimming artifacts correspond to aliasing artifacts, i.e., the sampling
rate is too small compared to the signal frequency. Aliasing is a well-known
problem in computer graphics that can be solved using pre-�ltering [Williams,
1983]. Mipmapping consists in a sequence of images representing the same
image but the dimensions of successive images are each time divided by two.
Each image of the sequence is thus a pre�ltered version of the original image
at lower resolutions.

Nieÿner et al. thus precompute a mipmap for each patch. An overview of
their storage scheme is illustrated in Figure 1.16. At runtime, they use the
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(b)(a)

Figure 1.17 � A continuous signal (gray line) is stored in a texture (black rectangle).
The displaced surface (red line) is reconstructed for two di�erent mip levels. The
displaced surface (a) represents well the input signal, but at lower resolution (b) the
displaced surface is completely smooth and thus fail to represent the signal.

appropriate mipmap level based on the tessellation density to avoid under-
sampling artifacts. In addition to avoid popping artifacts when changing the
mipmap level, they linearly interpolate the resulting displacements between
the two mipmap levels.

Although analytic displacement enables an accurate shading of the displaced
surface, it is restricted to subdivision surfaces with smooth scalar displace-
ments and therefore it can not represent sharp edges. This severely limits
the range of models that can be represented. In addition, the manipulation of
biquadratic B-spline is more costly than regular scalar or vector displacements.

Whereas the use of mip-mapping certainly avoids typical artifacts that
appears when using a displacement map, this severely deteriorate the LOD
quality. Mip-mapping tends to over smooth the displacement, increasing the
distance between the reconstructed surface and the original one (Figure 1.17).
The original surface could most often be better represented if the samples were
spatially redistributed to construct feature-aware LOD.

1.4.3.2 Indirect scalar mapping

Vectorial displacements allow to reconstruct more accurately the original
surface by sampling the features of the mesh as shown in Figure 1.18(b).
However when deforming the base surface, the displacement vectors may in-
tersect each other, leading to visible unbearable artifacts (Figure 1.18(e)).
The greater are the vector displacement, the higher are the chances that this
problem happens. This makes it di�cult to use for anything other than static
meshes or rigidly transformed surfaces.

Conversely, scalar displacements mitigate this problem because the vertices
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(a) (b) (c)

(d) (e) (f)

I(u, v)

I(u, v)

(u, v)(u, v)

(u, v)(u, v)

Figure 1.18 � Comparison of scalar (left), vector (middle) and indirect scalar (right)
displacements Jang and Han [2013]. Scalar displacements (a) fail to represent the
feature of the mesh, on the contrary the vector (b) and indirect scalar (c) displace-
ments reconstruct accurately the original surface by sampling the features of the
mesh. However, when the base surface is deformed, the vector displacements (e)
introduce self-intersections, while scalar (d) and indirect scalar (f) displacements
remain artifacts free.

are always displaced along the normals (Figure 1.18(d)). However, as the
sampling is uniform and the vertices can not be redistributed, it often fails to
reconstruct the features of the model (Figure 1.18(a)).

To reduce the apparition of self-intersections while accurately representing
the features of the model, Jang and Han [2013] decomposed the vectorial dis-
placement map into a height map and an indirect scalar map. The indirect
scalar map redistributes the vertices in parametric space, which are then dis-
placed along the surface normals using the height map and their new paramet-
ric coordinates. The surface reconstructed using indirect scalar displacement
mapping is de�ned as:

Si(u, v) = P(I(u, v)) +H(u, v)N (I(u, v)) (1.28)

Si is reconstructed by displacing the point of the base surface P along the
surface normal N by the o�set H fetched from the height map. The indi-
rect scalar map I is used to redistribute non-uniformly the samples on the
base surface. The surface features are accurately reconstructed by optimizing
the indirect scalar map such that the surface features are well sampled (Fig-
ure 1.18(c)). In addition, the displacement occurs along the normal, making
this method more suitable for surface deformations (Figure 1.18(f)). However,
it still does not allow a spatial redistribution of all vertices for the coarser levels
once the indirection map has been computed for the �nest one.

1.4.3.3 Multi-resolution attributes

Schafer et al. [2013] avoid texture-related artifacts by using a data structure
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corner

edge

face

start indices

T=1 T=2 T=3

Figure 1.19 � Attributes vertices located on the corners, the edges or the face of a
patch are stored separately in a compact 1D array, providing a seamless representa-
tion [Schafer et al., 2013].

that follows the hardware tessellation pattern. Instead of storing the spatially
varying attributes (e.g., displacements) into texture, they proposed to store
the attributes as vertex attributes in a compact 1D array. This provides a
bijective mapping between the vertices generated by the Tessellator and their
attributes. This one-to-one mapping guarantees coherent evaluations along
patch boundaries, thus preventing cracks and discontinuities. Moreover, it
overcomes under-sampling artifacts appearing when sampling attributes from
textures. It also provide a more compact storage than texture, thanks to the
bijective mapping.

Taking advantage of the �xed tessellation pattern, they store attributes for
each generated vertices for di�erent tessellation factors. Vertex attributes are
stored separately for vertices located on the corners, the edges or the interior
of the patch, as illustrated on Figure 1.19 for a single triangle. For multi-
resolution attributes, they store the data corresponding to the di�erent levels
of tessellation one after another. They choose to store attributes only for
power-of-two tessellation factor similarly to texture mipmapping.

For edges and corners, they store attributes only once for all adjacent
patches, and pack all attribute data in a single bu�er. Vertices located on
patch boundaries thus share the same attributes, resulting in consistent eval-
uation on both sides of the boundaries. To recover the right patch data at
run-time, they store an additional lookup table containing for each patch the
indices to the �rst attributes of the face, edges and corners. To handle di�er-
ent face orientations, they use signed indices to indicate the read direction for
edges.
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(a) (b) (c) (d)

Figure 1.20 � Indexing scheme of Schafer et al. [2013]. A unique index (d) is com-
puted from the barycentric coordinates by determining the ring (a), the edge (b),
and the vertex index (c).

To fetch the attributes during the rendering step, in addition to the lookup
indices, another index is required to identify each vertex inside the patch.
Current GPUs do not expose such an index, but Schäfer et al. deduce it from
the fractional barycentric coordinates of the generated vertices.

In the following, we describe their index computation for triangle patterns,
they also derive a similar index computation for quad patterns, but it will not
be detailed here. For a triangle patch at tessellation factor t, the tessellation
pattern consists of bt/2c + 1 concentric topological rings. Edges on each ring
are composed of t− 2R segments. Thus each vertex can be uniquely identi�ed
by the triplet (R,E, V ) (Figure 1.20 (a,b,c)), where R ∈ [0, bt/2c] is the ring
index, E ∈ [0, 2] the edge index, V ∈ [0, t− 2R] the position of the vertex on
that edge. These three indices (R,E, V ) are computed from the barycentric
coordinates. The ring, edge, vertex (R,E, V ) indices are then used to compute
a linear index as illustrate on Figure 1.20 (d).

They show that nearest neighbor, bilinear and trilinear �ltering can be eas-
ily applied using the (R,E, V ) indices. Those interpolations allow to support
arbitrary tessellation factors while storing attributes for power-of-two tessel-
lation factors only. However, in the case of displacement attributes, using
arbitrary levels still leads to swimming artifacts. To avoid them, they limite
the tessellation level to power-of-two factors. Note that such a constraint guar-
antees that vertices of a given level will also be present with the exact same
barycentric coordinates at the next level. Indeed, when using only power-
of-two factors, increasing the level adds new vertices in the middle of each
edges of the previous level. Therefore, unlike when using fractional factors,
sampling positions of existing vertices do not vary. It thus bypass completely
the undersampling problem at the cost of discarding the fractional tessellation
transition mechanism and the bene�ts of �ner-grain patterns (odd or even).
The transition between levels is achieved by a simple linear blend of the two
nearest power-of-two levels.
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This representation proposed by Schafer et al. [2013] partially solves the
feature preserving problem. Their representation provides a one-to-one map-
ping between the generated vertices and their attributes, it is thus possible to
spatially redistribute all the vertices at every levels. To preserve artifacts-free
temporal transition, existing vertices should not move too far from their pre-
vious positions between levels or it will produce severe swimming artifacts. As
new vertices cannot be added at arbitrary topological positions, this severely
limits the possibilities of redistribution.

1.4.4 Summary

Hardware tessellation allows fast and e�cient rendering of detailed meshes.
To this purpose, the detailed mesh is decomposed into a control mesh and a
displacement map. Several solutions have been proposed to solve the visual
artifacts that may appear due to the undersampling of the displacement map.
Nieÿner and Loop [2013] combine a tile-based format with mip-mapping, guar-
anteeing coherent access along patch boundaries and solving the problem of
undersampling. Schafer et al. [2013] store the displacements in a per vertex
basis avoiding all the texture-related problems.

The storage proposed by Schafer et al. allows in addition to control pre-
cisely the position of all generated vertices for all levels. However, optimiz-
ing independently each level, without taking into account how the transitions
between levels are done, will reintroduce swimming artifacts. Indeed, their
approach is still limited by the possibility to control topologically where new
vertices will be added. Thus the ability to construct feature-aware LOD re-
mains an open challenge.
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Chapter 2

View-Dependent LOD selection

In the previous chapter, we have seen that the hardware tessellation allows to
subdivide each patch at di�erent tessellation factors. Selecting the appropriate
factors to reach the maximum e�ciency without introducing visual artifacts
is a challenging task. Indeed, the visual appearance of a model depends on
numerous parameters: its geometry, its material, the illumination environment
and the view characteristics. These parameters have highly complex interac-
tions with each other and it is too complicated to take into consideration all of
them at the same time. Our metric for LOD selection focus on measuring the
geometrical error and the attribute deviation depending on the view distance
and direction.

In this chapter, we describe how we compute (Section 2.1) and summarize
(Section 2.2), for each patch and at each level of the LOD, the error relative to
the reference mesh in a view-dependent fashion so that adequate tessellation
factors can be e�ciently determined at render time (Section 2.4).

Our metric takes as input a detailed reference mesh and a hierarchy of
LOD. We require that these meshes are consistently parametrized. As in most
modern rendering pipelines, we further assume that all spatially varying at-
tributes, such as normals and colors, are stored within texture maps. This
way, attribute distortions are conservatively measured by the parametric dis-
tortions even though they are not strictly equivalent. For example, important
parametric distortions may not be visible for models with low variations of
attributes.

2.1 Mapping and Di�erence Vectors

We �rst focus on establishing a view dependent error metric for a single patch
at a given level. For now, we only consider the impact of the view direction;
the scaling factors due to the perspective projection and pixel resolution are
taken into account at render time (Section 2.4). Our error metric is based on
the bijection o�ered by the parametrization shared between the LOD and the
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Figure 2.1 �Ms andMr allow to de�ne the di�erence function V between the refer-
ence mesh (in red) and the simpli�ed mesh (in black) using their shared parametriza-
tion. As illustrated with the di�erence vector vk = V(uk, vk), this mapping generally
di�ers signi�cantly from the orthogonal projection of one mesh on the other. Also
note how the error varies according to the view direction; for instance, it is much
larger when seen from d0 than from d1.

reference mesh. In the following, (pi, ui, vi) (resp. (qj, uj, vj)) refers to the 3D
position and texture coordinates of the ith (resp. jth) vertex of the reference
(resp. simpli�ed) mesh. LetMs : (u, v)→ (x, y, z) for the simpli�ed patch and
Mr for the reference mesh be the functions which associate to every texture
coordinates their corresponding 3D position. In particular, pi = Mr(ui, vi)
and qj = Ms(uj, vj) (Figure 2.1). Taking the di�erence between the two
surfaces in parametric space yields the vector-valued function

V(u, v) =Ms(u, v)−Mr(u, v) , (2.1)

de�ning for every point a so called di�erence vector.
For a given unit view direction d, the error introduced by a single vector v =

V(u, v) is equal to the norm of its projection on screen, i.e., sin(angle(d,v)) ‖v‖
which can be written as ‖v × d‖. As depicted in Figure 2.3(a), if the view di-
rection is aligned with the di�erence vector, the error vanishes. In contrast,
the error becomes maximal when the view direction is orthogonal to the dif-
ference vector. For a patch and a direction d, it is thus possible to compute a
conservative error E(d) (Figure 2.3(b)), that is equal to the maximum error
introduced by all vectors for this direction:

E(d) = sup
(u,v)

‖V(u, v)× d‖ . (2.2)

As Ms and Mr are continuous piecewise linear functions and as V is a
linear combination of those, it is also continuous and piecewise linear. In
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u

v

Figure 2.2 � To evaluate E, the vectors originating from the vertices (red and black
circle) of the two meshes and from all edge intersections (blue circle) in parametric
space have to be considered.

addition, in equation (2.2), the cross product performs a linear combination of
the components of V(u, v), and the norm transforms this continuous piecewise
linear function into a continuous piecewise monotone function. Therefore, as
we are only interested in maximum error values, we can evaluate E only for a
discrete set of di�erence vectors vk ∈ V corresponding to the bounds of each
linear piece:

E(d) = max
vk∈V

‖vk × d‖ . (2.3)

In 2D, the linear pieces are segments bounded by the union of the vertices of
the reference and simpli�ed meshes. As illustrated in Figure 2.1, the di�erence
vectors thus match the vertices qj of the simpli�ed mesh with their image on
the reference meshMr(uj, vj), and reciprocally the vertices pi of the reference
mesh with their image on the simpli�ed meshMs(ui, vi).

In 3D, the functionsMs andMr are also linear on each triangular face of
their respective domain. Thus the function V is linear on each polygonal face
formed by the intersection of the two meshes in parametric space, as depicted
on the Figure 2.2. Consequently, to evaluate E, we need to consider the vectors
originating from the vertices of the two meshes and from all edge intersections
in parametric space. For a given point pi on the reference mesh (resp. qj on
the simpli�ed mesh), we thus need to e�ciently �nd the point Ms(ui, vi) on
the simpli�ed mesh with the same texture coordinates (resp. Mr(uj, vj) on the
reference mesh). To accelerate this search, we use two 2D AABB-trees built
in parametric space over the triangles of the reference and simpli�ed meshes.
These 2D AABB-trees are used to �nd the triangle containing the desired
texture coordinates. From the triangle and the point texture coordinates, we
compute its barycentric coordinates, and then deduce its 3D position. We also
need to consider the di�erence vectors occurring at edge-edge intersections
in the 2D parametric space. To this end, we implemented a edge-to-edge
intersection technique, based on a 2D AABB-tree in parametric space on the
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edges.
Owing to the large number of di�erence vectors (in the order of 104 for a

single patch), the de�nition of E(d) as in equation (2.3) is not suitable for fast
evaluation. One can notice however that only a fraction of them are actually
contributing to the maximum error, those belonging to the convex hull of
the vector set (centered at the same origin); the other ones can be discarded.
Although the number of vectors is much smaller after this pruning (from dozens
to a few hundreds) it is still impractical for real-time GPU evaluation: a more
compact representation is required.

2.2 Approximate Error Metric

To evaluate E e�ciently, we need to �nd an approximation Ẽ(d) ≈ E(d)
which is fast to evaluate and can be stored with a low memory footprint. The
approximation Ẽ has to minimize the mean squared distance to E over all
directions: min

∫
(Ẽ(d) − E(d))2dd. Following the previous remark on the

convex-hull reduction, a natural idea would be to further summarize the set
of di�erence vectors by a simpler enclosing primitive such as, for instance, an
ellipsoid as detailed in Section 2.2.1. In Section 2.2.2 we will present a more
pragmatic approach that consists in directly approximating the error function
E instead of approximating the di�erence vectors.

2.2.1 Bounding Ellipsoid

To summarize our set of di�erence vectors by a bounding ellipsoid, we have
to solve two di�erent issues: how to evaluate the error represented by an
ellipsoid in a given direction and how to �nd the enclosing ellipsoid that best
approximates E for all view directions.

Ellipsoid Evaluation

First, let us focus on how to evaluate the error represented by an enclosing
ellipsoid for a given direction d. An arbitrarily oriented ellipsoid centered at
c, is de�ned by the following implicit equation:

(x− c)TA(x− c) = 1 , (2.4)

whereA is a positive de�nite matrix. The eigenvectors ofA de�ne the principal
axes of the ellipsoid. The eigenvalues of A are the inverse of the square of the
semi-axes length.

To estimate our error, we need to project it along the view direction. This
can be done by computing a basis Kd orthogonal to the view direction d and
then projecting the ellipsoid on this basis using the inverse matrix A−1. Please
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note that the orthogonal projection of an ellipsoid on a 2D plane is always an
ellipse. The new ellipse is de�ned by the 2× 2 matrix Ad obtained as follows:
A−1

d = KT
dA
−1Kd. To obtain our conservative error for the current view

direction, we need to �nd the length of the longest semi-axis of the projected
ellipse. As for ellipsoids, the length of the semi-axis of an ellipse is proportional
to the corresponding matrix eigenvalues. Putting all together, we arrive at the
following formula:

Ẽell(d) =
√
λmax(A

−1
d ) (2.5)

where λmax extracts the longest eigen value. Although the control tessellation
shader is not the bottleneck of the rendering pipeline, equation (2.5) is not
cheap to evaluate. To speedup a little the evaluation, the matrix A−1 can be
stored rather than A.

Minimum Volume Enclosing Ellipsoid

Due to eigenvalue extraction and maximum operation, �nding the best ellipsoid
that enclose our vector set is a di�cult problem. To �nd the enclosing ellipsoid
that best approximates E for all view directions, a simple heuristic is to choose
the bounding ellipsoid of minimum volume. The volume of an ellipsoid can be
expressed using the determinant of A:

V ol =
4

3
π
∣∣A−1

∣∣ 12 (2.6)

Thus to minimize the volume of the ellipsoid, we must minimize the deter-
minant of A−1. This give us the following formulation for the problem of the
minimum volume ellipsoid problem enclosing all the di�erence vectors vk:

minimize
∣∣A−1

∣∣ (2.7)

subject to ∀vk, (vk − c)TA(vk − c) ≤ 1

∀z 6= 0, zTAz > 0 .

The second constraint guarantee that A is a positive semi-de�nite matrix.
This is not a convex optimization problem. However it is possible to obtain one
by a change of variable. Then by solving the dual problem, a solution up to a
relative accuracy of ε can be obtained in polynomial time [Khachiyan, 1996].
Our implementation of computing the minimum volume enclosing ellipsoid is
based on [MOSHTAGH, 2005].

A plot of the minimum volume enclosing ellipsoid approximation Ẽmve is
depicted on Figure 2.3(d). The minimum volume bounding ellipsoid is not
necessarily the one that best approximates our set of vectors. In some cases,
the optimization leads to ellipsoids with semi-axes of very di�erent lengths in
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order to minimize the volume. This lead to huge overestimation of the error
along directions orthogonal to the longest semi-axis.

We have tested other heuristics based on principal component analysis, or
the distance to the error vectors convex hull, but none of them were satisfac-
tory.

Enclosing Ellipsoid using a SQP solver

A more sophisticated approach to �nd the ellipsoid, strive to directly �t the
error function E. For this purpose, we �rst discretize the problem by tak-
ing a very large set of directions di uniformly distributed on a sphere. In
our experiments, we used 104 directions generated with a Spherical Fibonacci
mapping [Keinert et al., 2015], which yields a nearly uniform distribution on
the unit hemisphere.

Then to �nd the six coe�cients of A, we minimize in a least-square sense
the di�erence between Ẽsqp(di) and E(di) for all directions. To guarantee
a conservative approximation, we add inequality constraints ensuring that for
any direction, Ẽsqp is greater or equal to E. This lead to the following nonlinear
problem:

minimize
∑
i

(
Ẽsqp(di)− E(di)

)2

(2.8)

subject to Ẽsqp(di) ≥ E(di) .

Starting from the minimum volume solution, we perform a nonlinear min-
imization of equation (2.8) using a Successive Quadratic Programming solver
(SQP) (Figure 2.3(e)). Although it gives good result, the minimization is com-
putationally expensive due to the nonlinearity of the problem, which makes the
solver slow to converge in some cases. The nonlinearity of the problem is di-
rectly linked to the maximum eigenvalue extraction of the ellipsoid evaluation
of equation (2.5).

2.2.2 Spherical Harmonic Approximation of E

Evaluating the error represented by an ellipsoid in a direction d involves a
somewhat expensive eigenvalue extraction after a projection on a 2D plane.
For the same reason, �nding the enclosing ellipsoid that best approximate E
for all view directions is a di�cult task.

Keeping the same approach to directly approximating the error function E
instead of approximating the di�erence vectors, we propose to use a di�erent
representation which allows at the same time a linearization of equation (2.8)
and a faster evaluation at run-time.
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vk

(a) (b) (c)

(d) (e) (f)

Figure 2.3 � Error metric visualization � we plot the error function E(d) for a single
(a) and a set (b) of di�erence vectors, as well as the isotropic approximation Eiso
(c), the minimum volume enclosing ellipsoid Ẽell(d) (d), the enclosing ellipsoid with
SQP optimization Ẽsqp(d) (e) and our conservative error metric Ẽ(d) (f).

To �nd such a representation, let us make a few observations. First, we can
observe in equation (2.3) that the error function E(d) is centrally symmetric:
E(d) = E(−d). Second, in the case of a single di�erence vector v = (vx, vy, vz)
and a direction d = (x, y, z), equation (2.2) becomes:

E(d) = ‖v × d‖

=
√

(vyz − vzy)2 + (vzx− vxz)2 + (vxy − vyx)2 ,

which is the square-root of a quadratic trivariate polynomial limited to the
second-order terms. A natural choice to approximate E(d) thus consists in
seeking for functions Ẽ of the same form (see Figure 2.3 (a)), but with gener-
alized coe�cients:

Ẽ(d) =
√
a1x2 + a2y2 + a3z2 + a4xy + a5xy + a6yz . (2.9)

We observe that since the vector d = (x, y, z) is unitary, the function space
of the squared of Ẽ is equivalent to the one de�ned by the constant and the
�ve second-order basis functions of real spherical harmonics. Like E(d), the
function Ẽ(d) is by construction centrally symmetric. It only requires the
storage of six scalar coe�cients, and involves very few arithmetic operations
to be evaluated compared to the ellipsoid approximation.
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To compute the best coe�cients for Ẽ(d), similarly to the SQP enclosing
ellipsoid, we discretize the problem by taking a very large set of directions
di uniformly distributed on a hemisphere. Then, in order to linearize the
problem, we minimize in the least-square sense the distance between the square
of our metric Ẽ(di)

2 and the square error E(di)
2 for all directions. Moreover,

we guarantee a conservative approximation by adding inequality constraints
ensuring that for any direction, Ẽ is larger or equal to E. This boils down to
a convex quadratic problem, which can be formally summarized as follows:

minimize
∑
i

(
Ẽ(di)

2 − E(di)
2
)2

(2.10)

subject to Ẽ(di)
2 ≥ E(di)

2 ∀di .

This equation is e�ciently solved using a QP solver. The approximation Ẽ can
represent a single minimum (Figure 2.3(f)), thus when the error is small for
multiple view directions, it can su�er some overestimations. On the contrary,
the ellipsoid representations Ẽsqp and Ẽmve (Figure 2.3(d) and (e)) can rep-
resent two minimum. We present a quantitative comparison in the following
section.

2.3 Accuracy Evaluations

To evaluate the accuracy of these approximations, we consider both the average
error A and maximum error M with respect to E over all directions on the
unit sphere Ω, normalized by the maximal value of E:

M = sup
d

(Ẽ(d)− E(d))/ sup
d
E(d)

A =
1

4π

∫
Ω

(Ẽ(d)− E(d))/ sup
d
E(d) .

For comparison purpose, we also compute these indicators with an isotropic
version of our error metric (Figure 2.3(c)), de�ned as:

Eiso = sup
d
E(d) = max

k
‖vk‖ .

The normalization by the maximal value of E compensates for large variations
of the magnitude of E across levels, patches and meshes. These measures are
summarized in Figure 2.4 for four di�erent meshes depicted in Figure 4.6. In
these plots, for each level we take the maximum of M and average of A over
all patches of the given mesh.

Our conservative metric Ẽ clearly outperforms the isotropic approximation.
In the worst case, it overestimates the actual LOD deviation by about 30%,
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Figure 2.4 � Error metric comparison � for each 3D, at each tessellation factor, the
maximum (a) and mean (b) error of three approximate error metrics have been
computed and averaged over all patches generated using the simpli�cation algorithm
described in Chapter 4.

while the isotropic error overestimation ranges from 50 to 90% (Figure 2.4a).
The approximation provided by the ellipsoids of minimal volume is somewhat
in-between, but is less stable across meshes. Our metric Ẽ and the sqp opti-
mization of the ellipsoid Ẽsqp give similar results. The latter performs slightly
better with respect to the mean error, but our metric is slightly better regard-
ing the maximum error. Our metric can su�er some overestimation because
the quadratic polynomial fails to represent well multiple minima, which can
happen when the error is small for multiple view directions. On the contrary,
the ellipsoid representation can represent two minima, which explains why the
enclosing ellipsoid with SQP optimization is better on average (Figure 2.5a and
b). Yet the average error is very small, about 5% for both metrics, compared to
15-20% with the isotropic metric and 5-10% with the minimum volume ellip-
soids (Figure 2.4b). This is especially noticeable for height-�eld models such as
the �Glacier Peak� terrain, for which an almost unique direction is favored (the
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E(d) Ẽsqp(d) Ẽ(d)

(a)

(b)

(c)

Figure 2.5 � Error metric visualization for di�erent patches � we plot the error
function E(d), the enclosing ellipsoid with SQP optimization Ẽsqp(d) and our con-
servative error metric Ẽ(d) for one patch of the Bricks (a), Seashell (b) and Glacier
Peak (c) models.

direction of elevation) at every level. In such cases, both our approximation
and the enclosing ellipsoid with SQP optimization represent perfectly the error
function E(d) (Figure 2.5c). This demonstrates that our approximation is very
accurate in most cases, and that a more sophisticated approximation like the
SQP optimization leads to very small gains and considering its computational
overhead, using such an approach thus �nds little justi�cation.

2.4 LOD Selection

Once the coe�cients of the error metric Ẽ have been computed for all patches
at all levels, they are stored in a 1D texture bu�er indexed by the patch
primitive ID. For power-of-two levels, this implies a negligible memory cost of
6 levels × 6 coe�cients × 4 bytes = 144 bytes per patch.

Our rendering pipeline then follows the standard hardware tessellation
steps. For each patch, the tessellation level is computed in the tessellation
control shader according to the current camera position and orientation. To
guarantee that adjacent patches are seamlessly connected, we �rst compute a
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tessellation level for each patch-border, and then assign the maximum level
computed on the boundaries to the patch interior. For a patch-border, we
evaluate our metric for the two adjacent patches. More precisely, the direction
of evaluation d is computed as the normalized di�erence between the camera
and edge center position. Our metric is thus evaluated six times for a patch:
one time for each adjacent patch and three times for the patch at each patch-
border center. Evaluating the patch error at each boundary center, has the
advantage of approximating the variation of the view direction over the patch.

Since our metric is de�ned in object space, we apply the camera rota-
tion and object transformation to the direction d. Then, starting from the
lowest tessellation level, we iteratively fetch the coe�cients of the quadratic
polynomial using the primitive ID of the patch, and we evaluate the metric
using equation (2.9) until the error is inferior to a user-de�ned pixel bound.
To take into account perspective distortions, and hence the viewing distance,
we project the error centered on the edge orthogonally to the view direction,
making the assumption that the scaling factor and view-direction are locally
constant, this is equivalent to a �rst-order approximation of perspective pro-
jection.

Let us call l + 1 the lowest level satisfying the user-de�ned pixel bound
ebound. To support smooth transition we have to compute an additional frac-
tional factor α ∈]0, 1] to transition progressively between the levels l + 1 and
l. α is computed by linearly interpolate between the pixel error el+1 of level
l + 1 and the pixel error el of level l:

α =
el − ebound
el − el+1

. (2.11)

The fractional factor α is used later to provide smooth transition between the
level l and l + 1 as detailed in Section 3.2.

2.5 Results

Figure 2.6 illustrates the view-dependent nature of our selection metric, it re-
ports the number of rendered triangles when rotating around a single instance
of the previous 3D objects. Highest rate variations are observed for the �Bricks�
and �Glacier Peak� models that both exhibit a privileged displacement direc-
tion: the error introduced by the simpli�cation is thus strongly anisotropic,
which is especially well captured by our metric. In both cases, the number
of rendered triangles is maximal for grazing view directions, and minimal for
nearly orthogonal view directions (between 0.5 and 1.5s). Note that unlike the
�Bricks� model, the �Glacier Peak� model is an extreme case where the x and
y coordinates of the input reference mesh matches with the uv-coordinates.
Even though the other two 3D models are closed meshes, relatively high trian-
gle count variations (roughly ×2) are still observed as the amount of geometric
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Figure 2.6 � Average number of triangles per patch along prede�ned view paths for
our four reference models and for both the isotropic and our view-dependent error
selection metric.

details is not evenly distributed among the di�erent patches. Compared to the
isotropic selection metric, the gain in triangle count range from 0% for some
rare view directions up to 66%. Comparing the plots of the two metrics, we
can estimate whether the variation in triangle count comes from the change of
distance or orientation during the rotation. The plot of the isotropic metric
for the �Seashell� model is �atter than for the others because we selected a
more distant point of view: the relative distance of the patch to the camera is
thus more constant during the rotation.

2.6 Discussions

Visibility From a given view direction, only a subpart of the model is gen-
erally visible due to self-occlusions. This is particularly true for patches with
extreme folds but also when looking at a patch at a grazing angle. To take
this into consideration, we could extend our error E by adding a visibility term
δvis(vk,d) to �lter vectors vk that are not visible from the view direction d.

E(d) = max
vk∈V

(‖vk × d‖ δvis(vk, d)) . (2.12)
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However, this visibility term is not trivial to de�ne for a vector: a vector can
be partially visible. A simple approach would be to take into account only
the visible part of the vector. In that case, we can de�ne δvis(vk,d) as a
scalar function in the range [0, 1]. δvis(vk,d) will be equal to 1 for fully visible
vectors and 0 for entirely hidden vectors. For partially visible vectors, it will
be proportional to the part of the vector that is visible.

Taking into account the visibility breaks the central symmetry of E. There-
fore, Ẽ will no longer be suitable for approximating such an error function.
This may be solved by adding more coe�cients to our approximation, for ex-
ample the three �rst-order basis functions of real harmonics. However, a full
analysis of E would be required to determine the appropriate basis functions
for the approximation.

Shadows In the context of displaying highly detailed models, shadows play
a crucial part for enhancing the realism. Although it is not our main focus, it is
important to keep in mind how the tessellation interacts with other parts of the
rendering process. As the shadow computation is based on the geometry of the
models, choosing a too coarse LOD can lead to very inaccurate shadows. The
two most common shadow computation techniques used for real-time rendering
are shadow mapping [Williams, 1978] and shadow volumes [Crow, 1977].

The key idea behind shadow mapping is simple: everything that is visible
from the light's point of view is lit and the rest is in the shadow. The shadow
mapping algorithm involves two major steps. First, the scene is rendered from
the light view, storing the depth of every visible surface. Then the scene is
rendered from the regular viewpoint and for each fragment, by comparing the
distance between the corresponding 3D point and the light position to the
depth previously computed, we can determine whether it is lit or not. For the
test to be coherent, it is crucial that the two rendering passes are done with
the same geometry. Implying that the same tessellation level have to be set
for the two passes. Taking into account only the view position and direction
can lead to choose coarse LOD for occluders and thus to coarse shadows. To
solve this problem, a simple approach would be to take also into account the
position and the direction of the light into the LOD selection process. However
for complex scenes with several lights, this could lead to over-tessellation and
performance issues.

In the case of shadow volumes, the idea is to extend the silhouette of an
object from the light source. Then when an object is inside these volumes, it is
therefore in shadow. Changing the level between the silhouette extrusion and
the actual rendering would cause shadow artifacts on silhouettes. Then as for
shadow mappings, we need to use the same tessellation level for the two steps
and thus have the same trade-o� between shadow resolution and performance.
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Chapter 3

Controllable fractional tessellation

In the previous chapter, we have seen how to choose the appropriate LOD
to achieve the best performance without impacting the visual quality. This
chapter focuses on rendering the LOD once the tessellation level have been
selected. We present our �exible LOD blending scheme, which extends the
GPU fractional tessellation in two ways. First, it avoids swimming artifacts
by applying fractional interpolation on the displaced surface rather than in
the parametric domain. Second, during the transition between two levels, any
vertex of the �ne level can be smoothly introduced from any nearby vertex of
the coarse one. In contrast to standard fractional tessellation, this relationship
needs to be stored explicitly inside a custom representation, as described in
Section 3.1. Furthermore, our approach completely bypasses both the frac-
tional and adaptive tessellation mechanisms built in the GPU: it makes only
use of integer tessellation with equal factors for patch interior and boundaries.
Both mechanisms are reintroduced in a custom and controllable manner, as
detailed in Section 3.2 and Section 3.3 respectively.

3.1 Representation and storage

Our framework is based on a hierarchical representation of the LODs that is
stored using Schäfer et al.'s linear indexing [Schafer et al., 2013]. To fetch any
attribute attached to a vertex dynamically generated by the hardware tessel-
lation, a unique index is required to identify each vertex. Current GPUs do
not expose such an index, Schäfer et al. showed that it can be inferred from
the patch index and the fractional barycentric coordinates of the generated
vertices. Within a given patch of index ip at a level l, each generated vertex is
identi�ed by a unique index iv ∈ [0, N(l)[, where N(l) is the number of vertices
per patch at level l.

We devise a simpler indexing scheme than the one proposed by Schafer
et al. [2013]. By looking at the tessellation patterns (Figure 3.1), one can
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Figure 3.1 � Indexing scheme � A triangle patch at factor 6 with indices and the
three patch pieces unfolded.

Algorithm 2 iv computation

1: Input: barycentric coordinates c, tessellation factor f
2: (cmin, j) = min(c) . Find minimum coordinate and its index
3: c = σj+1(c) . Apply cyclic permutation σ on the coordinate

4: (x, y) = round

((
1 1 −2
0 1 −1

)
cf

)
. Change coordinate basis

5: iring = y + x((j + 1) % 3) . Compute index on the ring
6: if x 6= 0 then
7: iring = iring % 3u . Special case of the center vertex
8: end if
9: ioffset = 3(f

2
(f

2
+ 1)− x

2
(x

2
+ 1)) . Compute o�set for other rings

10: return iv = iring + ioffset

notice that they are composed of concentric rings. The key idea behind our
indexing scheme is to �nd the index of the ring and the position of the ver-
tex along it. To do so, the triangular patch is divided into three parts: each
part can easily be identi�ed by looking at the smallest barycentric coordinate.
Then we apply a transformation matrix to unfold this part on a regular grid
as shown in Figure 3.1. The x coordinate in the grid basis informs us about
the index of the ring, with the center of the patch having index 0. From the
y coordinate, we can compute the o�set of the vertex inside the ring. From
the combination of these informations, we can deduce the �nal index iv. The
precise computation is detailed in Algorithm 2.

Any vertex of the tessellated mesh can thus be uniquely identi�ed through
the triplet (l, ip, iv). In our work, this indexing serves two purposes. First,
this index is used to establish the relationship between vertices of adjacent
levels as explained in the following section. Second, it permits to precisely
assign any attribute (e.g., the displacement vectors) to the generated vertices
by compactly storing them into a global 1D array. In our implementation, this
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level l

level l + 1 level l + α

Figure 3.2 � Transition between two successive levels l and l+1. At the intermediate
level l + α, the vertex positions are obtained by linear interpolation between their
parent positions at level l and their �nal positions at level l + 1. The top-left �gure
depicts the respective hierarchical representation for the thicker subset of triangles.

linearization follows the lexicographic order of the triplet.

We now detail how rendering a discrete tessellation level. For each ver-
tex we store in this 1D array a displacement vector and texture coordinates.
At render-time, in the evaluation shader, we �rst compute the index from
the barycentric coordinates, and fetch those attributes. The �nal position
of the vertex is obtained by interpolating the position of three path corners
and adding the fetched displacement. The displacement is expressed in tan-
gent space to allow animation and deformation of the control mesh. Other
attributes such as normals and colors are stored in texture and fetch using the
texture coordinates in the fragment shader for high quality per-pixel shading.

3.2 Continuous LOD

To support smooth temporal transition between levels, we need to store an
additional index per vertex in the 1D bu�er. This index is used to establish
the relationship between vertices of adjacent levels. Namely, each vertex V =
(l+1, ip, iv) is associated to a parent vertex V

′ = (l, ip, i
′
v) of the coarser level by

storing its index i′v as an additional attribute, that we call the blending index.
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This leads to a hierarchical representation of the LOD depicted in Figure 3.2.
We now detail how vertices are interpolated during a transition from level l to
the next level l + 1.

Our hierarchical representation is directly amenable for fractional-like tessel-
lation. For the sake of simplicity, let us consider a single patch. To interpolate
between two subsequent levels l and l+ 1 at a fraction α ∈]0, 1], the idea is to
smoothly move each vertex of level l+1 towards its parent vertex of the coarser
level l as α vanishes. This behavior is depicted in Figure 3.2. More precisely,
a patch at a fractional level l+α is �rst instantiated at the level l+ 1 through
integer hardware tessellation, e.g., for levels restricted to power-of-two factors,
it corresponds to a tessellation factor of 2l+1. Then, for each generated vertex,
its own and parent attributes are fetched and linearly interpolated according
to the parameter α. However, in order to avoid swimming artifacts, we do
not directly interpolate displacement attributes. Instead, we interpolate the
object space positions pi and pi′ of the current vertex i and parent vertex i′

respectively.

Unlike pi which is easily computed, pi′ is more challenging to obtain as we
do not have direct access to its barycentric coordinates. Recovering them from
the blending index i′ would involve numerous prohibitive integer divisions and
modulo. Thus, since the tessellation patterns are �xed, we propose to simply
precompute and store them once and for all, at every needed tessellation factor.
This array requires only 4291 entries in total for power-of-two factors, which
is very lightweight and does not impact performance.

This representation and blending scheme are very versatile but, since the
tessellation pattern of each level is �xed, the hierarchy de�ned by the blending
indices must satisfy some constraints. First, when α vanishes, the degenerated
pattern of the higher level l+ 1 must exactly match the pattern of the coarser
level l. This hard constraint forces the intermediate levels to match even or
odd tessellation factors. In practice storing the displacement attributes for all
even or odd factors would be too expensive anyway, and we thus store and
interpolate between power-of-two levels only. (For the sake of clarity, some of
the illustrations of this manuscript have been made using even-levels though.)
To prevent dependencies across adjacent patches, we also forbid vertices of
a given patch to be paired with vertices of a di�erent one, which explains
why storing the in-patch vertex index i′v as blending index is su�cient. As a
consequence, vertices generated along patch-borders can only be parented with
analogous vertices. Finally, to prevent swimming artifacts during morphing,
vertices should be paired to geometrically close ones. All these constraints
have to be considered during the LOD generation as described in Chapter 4.
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Figure 3.3 � Adaptive LOD along patch-borders. Left: with our LOD representation,
the hardware adaptive tessellation produces invalid geometry along patch boundaries
(in red) whose level di�ers from the interior level. Right: our manual stitching
technique solves this problem with a negligible overhead.

3.3 Adaptive LOD

As explained in Section 1.4.3, adjacent patches can be tessellated at di�erent
resolutions, so we need to de�ne how they can be seamlessly connected. A
naive approach would be to assign a common tessellation factor to the shared
patch-borders, and let the hardware tessellator connects the interior vertices
and boundary vertices for us. As illustrated in Figure 3.4(a-d), since we do not
necessarily pair boundary vertices in the same way the tessellator does, edges
connecting the interior with the boundary can suddenly �ip when its interior
factor changes. This not only introduces popping artifacts, but more impor-
tantly it creates invalid geometry in saddle-like area as shown in Figure 3.3.

Our solution still de�nes a common fractional factor for the shared patch-
borders, but we accomplish the stitching manually using our hierarchical rep-
resentation as illustrated in Figure 3.4(e-f). Patch boundaries are subdivided
at the same rate as the patch interior, thus completely bypassing the hardware
adaptive tessellation. Let us assume that the current patch boundary is sub-
divided at level l+ 1 (e.g., 6 in Figure 3.4), and that the target fractional level
for the boundary is l− 1 + β (e.g., 3.8 in Figure 3.4). To reach this fractional
level, we apply the blending scheme presented in the previous section between
the parent and grand-parent of each boundary vertex. This mechanism can
be applied recursively to handle resolution di�erences of more than one levels,
even though this is very unlikely to happen especially when using power-of-two
levels.

Interior vertices may have ancestors that lie on a patch boundary, hence
having a di�erent tessellation factor. Let us assume that the fractional levels
of the patch interior and border are l + α, and l − 1 + β respectively. If
β > 1 then the actual integer subdivision levels for both the interior and
border are the same. Such a vertex will be positioned at a ratio α between its
initial position pi and its parent position pi′ , which is the desired behavior.
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Figure 3.4 � Transition of a patch-border from factor 6 to 3.8 while the interior factor
remains constant at 6. (a) The hardware tessellator wants to contract the orange
strip to obtain the pattern in (b). Our simpli�cation algorithm decided to collapse
the purple strip, which implies the blending depicted in (c) with blue arrows. This
works as long as the integer boundary factor is 6, but once it changes to 4, the
blue edges are �ipped to produce the red ones (d). To solve this problem, we set the
integer boundary factor at the patch factor (i.e., 6 instead of 4); (e) we conceptually
put boundary vertices at their parent position to reach factor 4 (blue arrows), and
(f) we apply our blending mechanism with the grand-parent to achieve 3.8 fractional
tessellation (green arrows).

However, as soon as β becomes smaller than one, the previous mechanism will
suddenly put this vertex on the patch-border at a position pβ corresponding
to the ratio β between its two subsequent ancestors (pi′ and pi′′). Instead, to
avoid popping artifacts, such a vertex must be progressively moved towards
the patch border. This is easily accomplished by computing its actual position
as the ratio α between its initial position pi and target position pβ (leading to
red point).

3.4 Results

We have seen that our custom controllable fractional tessellation provide both
spatial and temporal smooth transition. Figure 3.6 shows two examples ren-
dered using our custom controllable fractional tessellation. Patches with dif-

68 Thibaud Lambert



3. Controllable fractional tessellation
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Figure 3.5 � Blending scheme for a patch interior vertex collapsing on a vertex
locating on a patch boundary.

Figure 3.6 � Two models render using our custom controllable fractional tessellation.
Adjacent patches with di�erent tessellation factors are seamlessly connected.

ferent tessellation levels are seamlessly connected. In addition, thanks to our
hierarchical representation, we are able to propose di�erent transition between
levels. More precisely, we can control the topological changes that happen
during a transition, allowing to redistribute vertices in the areas of interest of
the model. The next chapter present how to generate the hierarchical repre-
sentation. More results are presented in this chapter.

3.5 Discussion

Memory consumption Regardless of the LOD rendering technique, the
3D positions of the detailed mesh (i.e., at level 64) and of the intermediate
LODs need to be stored. As motivated in Schafer et al. [2013], storing those
into 2D mip-mapped textures is not optimal due to empty regions in texture
atlases, and the need for oversampling to guarantee an injective mapping from
tessellated vertices to texel. In contrast, storing them per vertex is memory
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optimal. The memory overhead of our approach comes from one integer index
per vertex for the blending, and two UV-coordinates to apply textures. In our
prototype implementation, each scalar attribute is simply stored as a 32 bits
�oat or integer value, leading to a total of 24 Bytes per vertex: 3 �oats for
displacement, 2 �oats for texture coordinates, and one integer for the blending
index. Neglecting per-patch attributes, this implies a cost of 24×N Bytes to
store theN vertices of the �nest level. For intermediate power-of-two levels, the
number of vertices is divided by four. To store all attributes for all power-of-
two levels, it implies a cost of about 32×N Bytes. Our approach thus remains
very memory e�cient since simply storing the detailed textured mesh as a
traditional indexed-triangle-list without LOD would already requires 44 × N
Bytes because of the storage of the connectivity, and previous progressive LOD
rendering systems based on vertex-splits require at least 69×N bytes [Liang
Hu et al., 2010].

Moreover, our storage requirement could be signi�cantly reduced in two
ways. First, the blending indices can be stored as 12 bits integers for tessel-
lation factors up to 64 (which is the limit of current GPUs), and the texture
coordinates could be heavily compressed by expressing them relatively to the
interpolated patch UVs, for instance using 16 bits �xed-point precision scalars.
Likewise, displacement vectors could likely be compressed the same way with-
out impact on the visual quality. Second, one could limit the maximum tessel-
lation factor on a per patch basis, similarly to the work of Schafer et al. [2013],
thus saving the �ner level storage for patches of lower geometric complexity.

Power-of-two factors Similarly to Schäfer et al.'s method for swimming-
free displacement mapping, the main limitation of our approach is its practical
restriction to power-of-two factors. Even though our approach can handle
a �ner granularity up to even-factors, the memory required to store all the
levels becomes prohibitively expensive. For power-of-two factors, the required
memory is approximatively doubled compared to the original mesh, whereas it
is squared in the case of even-factors. We argue that this limitation is largely
compensated by LODs of much higher geometric quality allowing to use lower
tessellation factors for the same visual quality.

In addition, the transition between two even-factor levels is very unlikely
to reduce the visual error unless all the vertices are slightly redistributed.
Yet, in this case, temporal artifacts will be reintroduced since all vertices will
constantly and very rapidly move back and forth. On the other hand, we
agree that even-factor levels are very useful when over-tessellating the mesh
such that the projected tessellated triangles are below one pixel: swimming
artifacts are e�ectively avoided, but at a prohibitive rendering cost.

Indexing The indices computed from barycentric coordinates are used to
fetch attributes from a 1D texture. Achieving coherent access in this bu�er
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can provide an important performance boost. To obtain coherent access, the
indexing scheme has to match the scheduling of the vertices generating by
the tessellator. Using the transform feedback bu�er of the geometry shader,
we recovered the scheduling of the vertices for one patch. Unfortunately, our
indexing scheme does not match perfectly with this scheduling. We experi-
ment an alternative indexing scheme matching this scheduling, however, the
computation was too costly and it runs slower than our indexing scheme.

Ideally, this index could be directly provided by the driver. If future hard-
ware would expose such index, it would remove completely the overhead of the
index computation and enable coherent access to fetch attribute data, improv-
ing the performance and simplifying the evaluation shader implementation.
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Chapter 4

Strip-based Mesh Simpli�cation

To exploit the �exibility of our representation presented in the previous chap-
ter, we devise a feature-aware simpli�cation algorithm that computes the �nal
position of the vertices at every level, and the blending indices required to
smoothly transition between those. Our general objective is to distribute the
vertices of each level to best represent the most signi�cant features of the in-
put geometry. Whereas this is a well studied topic in the literature [Botsch
et al., 2010], our context implies two speci�c problems. First, at each level,
the simpli�ed geometry must coincide with the prede�ned tessellation pattern.
Second, as seen in Section 3.2, we need to �nd a continuous mapping between
two subsequent levels which guarantees that the collapsed topology of the mesh
at level l + 1 matches the topology at level l when the transition starts.

The �rst problem could be addressed by applying surface �tting meth-
ods [Kobbelt et al., 1999; Yeh et al., 2011; Nivoliers et al., 2014] on each level.
However, �nding a consistent match between the levels as requested by the sec-
ond criterion would then be extremely di�cult, and even impossible without
adding explicit dependencies between the levels during their optimization. In
contrast, this second problem is naturally overcome using any of the iterative
mesh decimation algorithms we discussed in Section 1.3.2. In this case the
matching can be directly established during edge-collapse. On the other hand,
it becomes extremely di�cult to make the decimation process to converge to
a prede�ned mesh connectivity.

Actually, for both approaches, the core of the problem can be reduced into
the problem of deciding whether a given graph is a minor of another, which
is NP-complete. If the given graph is �xed, it can be solved in polynomial
time [Kawarabayashi et al., 2012], yet with a constant that depends super-
exponentially on the size of the graph. This problem is thus intractable in the
general case. However, we are not dealing with arbitrary graphs and we know
at least one solution: the default transition of the hardware tessellation engine
(Figure 4.1). We show in the following how to construct many others.

We also argue that both problems need to be solved at the same time, and
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4.1. Algorithm overview

Algorithm 3 Strip-based mesh simpli�cation

1: Input: tessellated coarse mesh at factor f ← fmax

+ reference mesh
2: loop
3: if f is power-of-two then . desired tessellation level
4: Re�t current mesh to the reference mesh. . 4.7
5: Compute Ẽ for each patch. . 2.2
6: Store attributes for the current level.
7: end if
8: if f = fmin then break.
9: for each patch corner do
10: Update Ẽ for each adjacent patch.
11: Find the strip minimizing . 4.4

the edge selection cost Cedge. . 4.6
12: Contract the edges of the strip. . 4.5
13: end for
14: f ← f − 2
15: end loop

we thus follow the principle of edge-collapse decimation algorithms, and extend
them to a strip-based �avor which produces at every step a mesh compatible
with hardware tessellation.

4.1 Algorithm overview

Our simpli�cation procedure is sketched in Algorithm 3. Our method takes
as input a detailed reference mesh and a corresponding decomposition into
fully tessellated patches, called level 0, matching the �xed hardware tessellation
pattern. Depending on the production pipeline, the level 0 can be obtained by
di�erent means; one option is to start from a coarse decomposition into patches
uniformly tessellated in the parametric space, and to sample the reference mesh
or a displacement map, as detailed in Section 4.2.

From those two input meshes, our method produces a hierarchy of LOD
compatible with hardware tessellation that minimize our view-dependent error
with respect to the reference mesh.

Starting from the level 0, the next level is constructed by collapsing a set of
adequate strips of edges. We properly de�nes the set of feasible contractions in
Section 4.3, and we show how to quickly explore it to �nd the best contractions
in Section 4.4. We take advantage of our error metric to better drive the edge-
collapses (Sections 4.5 and 4.6) and to design a global optimization procedure
that re�ts the vertex positions of the simpli�ed mesh to the reference surface
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4. Strip-based Mesh Simpli�cation

Figure 4.1 � Fractional tessellation patterns at factors 6, 4.9 and 4. Colored lines
highlight the three strips which are collapsed/split during the transition.

(Section 4.7).

4.2 Level 0 initialization

To ensure that the �rst level in the LOD hierarchy matches the �xed hardware
tessellation pattern, we take as input the detailed reference mesh and a coarse
decomposition into triangular patches sharing the same parametrization. The
decomposition is either obtained from the modeling process itself, or a poste-
riori using any decimation algorithm that preserves the texture coordinates.

The initial level 0 is then generated by instantiating each patch of the
coarse mesh at the highest tessellation factor (fmax = 64 for current GPU)
with texture coordinates linearly interpolated from the patch corners. The
�rst re�tting process (step 4 of Algorithm 3) will take care of computing the
respective 3D positions. Better starting points could be obtained by non-
uniformly spreading the vertices in the parametric space [Yuan et al., 2016],
but we did not investigated such an approach.

4.3 Feasible contractions

For triangular patches, the default transition of the tessellation engine con-
sists in collapsing three �straight� strips as shown in Figure 4.1. We extend
this notion of strip to give more �exibility to the transitions. To e�ectively
transition between even tessellation levels, we �rst observe that 3f edges need
to be collapsed, including two edge-collapses per patch boundary. To preserve
the regularity of the pattern, pairs of collapsed boundary edges have to be
connected through strips of collapsed edges, with one strip per patch bound-
ary. To make the de�nition of such strips tractable, we restrict them to have
equal length and to connect a pair of �opposite� half patch boundaries. An
example is given in Figure 4.2(a). In other words, each patch boundary is
associated to one strip of f + 1 graph nodes connecting half-parts of its two
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Figure 4.2 � (a) A strip (in green) is a continuous list of edges joining two �opposite�
half-patch-borders (thick purple and orange lines). (b) Unfolding the patch into a
uniform grid, a strip can be seen as a path in the DAG constructed over the patch
edges. (c) This implicit graph can be easily traversed walking on a half-edge data
structure. (d) Strips extend to x-strips when they crosses multiple patches since
they have to be connected on patch boundaries. Closed x-strips form rings (in red).

adjacent patch boundaries. For a given boundary, its set of possible associated
strips is easily de�ned after a reparametrization of the triangle such that its
vertices lie on a uniform grid with the boundary and half-boundaries aligned
on the vertical and horizontal axes respectively, as depicted in Figure 4.2(b).
Since the length of a strip is �xed, the only possibility is to perform one edge-
collapse per horizontal line direction. Each horizontal edge being connected
by two adjacent triangles, this operation produces a continuous strip, with the
additional requirement that collapsed edges form a continuous strip.

The set of possible strips going from one half-boundary to the opposite one
are best de�ned as a directed acyclic graph (DAG) whose nodes are the edges of
the mesh. In this dual representation, one strip corresponds to one path from a
half-boundary to another. In practice, this graph does not have to be explicitly
constructed. As illustrated in Figure 4.2(c), using an half-edge data structure,
a given node h has at most two children that are reached using the following
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4. Strip-based Mesh Simpli�cation

operator compositions: op(next(op(prev(h)))) and op(prev(op(next(h)))). If
the intermediate edge reached by prev(h) or next(h) is a patch-border, then
the respective child does not exist.

Discussions In order to easily track the set of feasible contractions, we re-
strict this set to strip collapses. As a result, our algorithm ignores a few possible
contractions that could potentially lead to even more accurate LODs. The en-
tire space of solutions could be explored using edge-collapses and a brute-force
backtracking algorithm to handle con�gurations that do not match the target
pattern. However, as the problem is NP-complete, this approach is only fea-
sible for very coarse levels. A potential direction to explore would be to start
from a feasible strip obtained using our algorithm and apply path mutations
in the spirit of Thorpe [1984]: small modi�cations can be applied to a feasible
strip to explore step by step the space of all possible contractions. Although,
it will not give the optimal solution, it would allow to �nd a local optimal solu-
tion. The challenge is then to de�ne the set of possible modi�cations allowing
to pass from one solution to another.

4.4 Strip collapse

Our LOD simpli�cation algorithm consists in �nding the strips that minimize
some feature-preserving error metric. We de�ne the error of a strip as the sum
of the error of each edge-collapse. Any cost function can be used, and we will
present in Section 4.6 one based on our view-dependent error metric that we
presented in Chapter 2.

Usually the coarse mesh is composed of several adjacent patches and we
need to ensure the coherence between them. As illustrated in Figure 4.2(d),
strips ending along the same half-patch-border must be connected, or cracks
will appear. This creates extended-strips (x-strips) that must be considered
as a whole during the error minimization. Each x-strip can be associated to a
unique vertex of the coarse mesh, and vice versa. Its length is then proportional
to the valence of the coarse mesh vertex. If the vertex lies on an open boundary
then the two extremities are not constrained. Otherwise, the x-strip must form
a closed ring (e.g., the red line in Figure 4.2(d)).

Using the aforementioned dual representation of the feasible strips, �nding
the best x-strip associated to a given vertex of the coarse mesh boils down to
a shortest path search. For an open x-strip, both starting and ending nodes
can be freely chosen. This case can be solved in a single pass by connecting all
starting and ending nodes to two virtual nodes, and computing the shortest
path between those. For a closed x-strip, the ending node must coincide with
the starting node. In this case, we pick one arbitrary patch boundary and run
a shortest path algorithm for each of the f/2 possible starting/ending nodes
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Reference

Uniform
hardware
tessellation

Strip-collapse
with �xed
pattern

Strip-collapse
Quadric error

Figure 4.3 � Starting from the same 8 patches and displacement map, comparison
of the LOD representation generated by three approaches for the factors 32, 16, 8
and 4 (from left to right). Top: Uniform hardware tessellation. Middle: Mesh
decimation constrained to choose the same strips as the tessellation pattern. Bot-
tom: Our method, i.e., mesh decimation collapsing the strips that minimize an
error metric. For each level, our approach better preserves the input geometry by
spatially redistributing the polygonal size and density.

lying on the corresponding half-patch-border. Since we are dealing with a
directed acyclic graph, each search is e�ciently accomplished using a variant
of Dijkstra algorithm with linear complexity [Cormen et al., 1990]. It is also
possible to compute in a single pass the best ring, using some form of advancing
front techniques (see Algorithm 5 in Annex for more details).

Once an optimal x-strip has been found, each of its edges is collapsed to a
single vertex positioned at the minimum of the error metric.

In Figure 4.3 we compare our strip-based decimation algorithm with regu-
lar uniform hardware tessellation and a variant of our strip-based decimation
algorithm which is constrained to choose the straight strips of the tessella-
tion pattern. At every level, our approach better represents the features of
the input geometry by simplifying �at areas while preserving regions of higher
curvature, such as the top of the �crater�.

Discussions There are fundamental di�erences between our strip-based sim-
pli�cation algorithm and classical edge-collapse decimation. The latter con-
tracts one edge after the other, selecting the one with the smallest error every
time. After each collapse, the error of surrounding edges must be recomputed,
and a partially sorted list of edges must be updated. In our case, edge-collapses
de�ning a strip are generally not independent: Depending on the metric, the
cost and the placement of the vertices may be a�ected by adjacent collapses.
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4. Strip-based Mesh Simpli�cation

If that is the case, then both the selected strip and result of the contractions
will depend on the arbitrary choice of the contraction order along the strip.
Otherwise, the in�uence between strips is marginal, and the order in which
strips are selected and collapsed has a minor impact on the �nal result This is
because the three strips of a patch travel in a di�erent direction of contraction,
and each strip crosses the two others only once.

In our implementation, x-strips are processed in an arbitrary order. The
dependence between edge-collapses within a strip are thus not taken into ac-
count, leading to a suboptimal solution. Considering the dependences between
collapses is not possible with a Dijkstra variant algorithm. Owing to the inter-
dependences, the whole path have to be considered to compute its cost, in-
creasing considerably the complexity of our problem. As stated in the previous
section, path mutations could improve our solution as it will allow, once an
initial solution obtained, to �nd a local optimal solution taking into account
edge-collapse dependences.

We experiment di�erent order of contraction for edge within a x-strip such
as increasing or decreasing cost order, but the results were not conclusive.
Therefore, once the x-strip has been selected, the order of edge contractions is
only of minor importance.

4.5 Vertex placement strategy

In this section we revisit the local vertex placement strategy applied during the
contraction of an edge (step 12 in Algorithm 3) based on our view-dependent
metric we developed. Our view-dependent metric heavily relies on the tex-
ture coordinates of the simpli�ed mesh, it is thus crucial to preserve a good
parametrization during the edge-collapse simpli�cation.

To this end, we propose a new placement strategy which optimizes jointly
the position and texture coordinates of the merged vertices. Our approach
borrows the unsigned volume optimization constraint of Lindstrom and Turk
[1998] but expresses it in a mixed texture and position space. Our construction
is depicted in Figure 4.4. For each face Tk = (k0, k1, k2) adjacent to the col-
lapsed vertices pe0 and pe1, we derive three volume minimization objectives, one
for each position component, by constructing tetrahedrons from the position
component and the two uv-coordinates of the vertices.

Let p̃ = (x, y, z, u, v) be the unknown position and texture coordinates of
the merged vertex. For the x component, the unsigned volume objective can
be written as:

fx(p̃) =
∑
Tk

[u v x]nuvxTk
−

∣∣∣∣∣∣
uk0 uk1 uk2
vk0 vk1 vk2
xk0 xk1 xk2

∣∣∣∣∣∣
2

(4.1)
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Figure 4.4 � Construction of our vertex placement metric � the two vertices p̃e0 and
p̃e1 are collapsed into the merged vertex p̃. For each of the three position components,
here x, each adjacent face Tk = (k0, k1, k2) is connected to p̃ to form tetrahedrons in
the (u, v, x) space (one of them is highlighted in blue). Their unsigned volumes are
minimized in the least-square sense to �nd both the 3D position and uv-coordinates
of p̃.

where nuvxTk
is the unnormalized normal of triangle Tk obtained as the cross

product of two edges in the (u, v, x) space.

nuvxTk
=

∣∣∣∣∣∣
uk1 − uk0
vk1 − vk0
xk1 − xk0

∣∣∣∣∣∣×
∣∣∣∣∣∣
uk2 − uk0
vk2 − vk0
xk2 − xk0

∣∣∣∣∣∣ . (4.2)

Deriving similar objectives for the y and z components and summing them,
we de�ne the following objective function:

f(p̃) = fx(p̃) + fy(p̃) + fz(p̃) . (4.3)

The objective f(p̃) is scale-independent but yields a plane of solution when
all the adjacent faces become coplanar in the �ve dimensional space. We thus
add a regularization term attracting the new vertex towards the center of the
collapsed edge, the full objective function is:

F (p̃) = f(Sp̃) + ε

∥∥∥∥p̃− p̃e0 + p̃e1
2

∥∥∥∥2

S

(4.4)

where ‖x‖2
S = xTSx

To make this term scale-independent, we normalize the positions and tex-
ture coordinates by a scaling matrix S constructed from the length of the
diagonal of the bounding box enclosing the adjacent faces in 3D space and
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(a) (b)

Figure 4.5 � Edge-collapses involving a patch boundary (green) � the position of the
merged vertex is either constrained (a) on the collapsed-edge (red), or (b) on the
two adjacent boundary edges (blue).

parametric space respectively. This non-uniform scaling further allows us to
set the ε factor once and for all, irrespectively of the input mesh. To this end,
we analyzed the numerical conditioning of this energy without the regulariza-
tion term for typical mesh con�gurations, and empirically we found that taking
ε = 10−4 is a good trade-o� between the placement �exibility and numerical
stability.

Associated to this new placement strategy, the natural cost for collapsing
the corresponding edge is the residual of f(p̃) (equation (4.3)) without the
aforementioned regularization and rescaling. To the best of our knowledge, this
is the �rst edge-collapse cost function taking into account both the geometric
and parametric distortions in a scale invariant manner.

Patch boundaries. The GPU tessellation requires that vertices of the patch
boundaries remain on the boundary edge, otherwise artifacts may appear when
a boundary edge receives a di�erent tessellation level than the patch interior.
However an edge-collapse can a�ect a patch boundary in two situations (red
edges in Figure 4.5): (1) when contracting an edge belonging to the boundary,
and (2) when collapsing an edge that joins a vertex on the boundary and a
vertex on the patch interior. In both cases, the texture coordinates of the
merged vertex needs to be a linear interpolation of two vertices on the bound-
ary. There is only one possibility in the former con�guration, but two in the
latter as depicted by the blue edges in Figure 4.5b. In this case, we evaluate
the solution for both edges, and keep the one with minimal residual. Moreover,
to handle degenerated cases in this particular con�guration, we use a modi�ed
regularization term in equation (4.3) that attracts the merged vertex toward
the edge extremity which is on the patch boundary.

In practice, to constrain the texture coordinates on an edge, the unknowns
u and v are replaced by a new unknown α such that:

[u, v] = α[ue0, v
e
0] + (1− α)[ue1, v

e
1] with 0 ≤ α ≤ 1.

With such a formulation, the objective function of equation 4.3 leads to a
quadratic problem that can be solved similarly for patch boundaries, open
mesh boundaries and texture coordinate discontinuities.
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Discussions. This objective function shares strong similarities with our view-
dependent metric derived in Chapter 2: for a single position component, mini-
mizing the unsigned volumes of the attached tetrahedrons corresponds to min-
imizing the continuous integral of the di�erence function V computed between
the two meshes before and after the contraction. Even though the di�erence
vectors are not taken relative to the reference mesh, it establishes an indirect
relation with our error metric E.

4.6 Edge-collapse Selection Strategy

All edge-collapse simpli�cation algorithms use an edge selection strategy to
prioritize contractions. The cost-function that we just de�ned in Section 4.5
is already a great improvement over prior work, but it remains very local and
it is only indirectly related to our patch-based metric E. To get closer to the
minimization of E, we propose to modify this strategy to favor edge-collapses
that do not increase E from any view direction, and thus results in a better
distribution of the error over the entire patch (step 11 of Algorithm 3).

Each contraction modi�es the di�erence vectors in the one-ring neighbor-
hood of the collapsed-edge. As explained in Section 2.1, we can e�ciently
extract these di�erence vectors using two 2D AABB-trees built in parametric
space over the reference and simpli�ed meshes. As the reference mesh is con-
stant, its associated AABB-tree only needs to be computed once and is used
thorough the simpli�cation process. The simpli�ed mesh AABB-tree, however,
would need to be updated after each edge-collapse. In our implementation, this
AABB-tree is used only once to initialize, for each face of the simpli�ed mesh,
the list of the reference mesh vertices that map to this face. This list is then
quickly updated after each edge-collapse by re-assigning the di�erence vectors
in the one-ring neighborhood of the collapsed-edge to the new adjacent faces
of the merged vertex. Since the computation of edge intersections is a costly
operation, di�erence vectors originating from such edge-edge intersections are
ignored.

The natural solution to evaluate whether the error metric would be in-
creased by this contraction would be to compute the view-dependent metric
before and after each tentative edge-collapse, but repeatedly solving the con-
vex quadratic problem of equation (2.10) for each edge would be prohibitively
expensive. We thus propose the following faster alternative.

First, before each strip-collapse, we ensure that the coe�cients of our an-
alytic error metric Ẽcurr is up-to-date for each considered patch using equa-
tion (2.10) (step 10 of Algorithm 3). Since the number of strip-collapses is
orders of magnitude smaller than the number of edge-collapses, this is a rea-
sonable compromise. Then, for each tentative edge-collapse, following equa-
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tion (2.3), we de�ne the error

Ecol(d) = max
vk∈Vedge

‖vk × d‖

introduced by the di�erence vectors Vedge a�ected by this contraction. To
speed up the computation, the set Vedge is again reduced to its convex hull,
as in Section 2.2. Finally, we compare Ecol with Ẽcurr for a reasonably small
set of directions D, and average the positive di�erences, yielding the following
cost function:

Cedge =
1

|D|
∑
d∈D

max(0, Ecol(d)− Ẽcurr(d)). (4.5)

Negative di�erences must be ignored because they only imply that the corre-
sponding vectors are not contributing to the error in this direction, not that the
error E would decrease. In our experiments we used 200 uniformly distributed
directions.

Then, in step 11 of Algorithm 3, we search for the strip in the binary DAG
whose sum of edge costs is the lowest. At each node of the graph, if the two
possible paths have the same cost, which is often the case when contractions
do not increase the error in any direction (i.e., Cedge = 0), we fallback on the
standard edge selection cost of the respective simpli�cation algorithm (i.e.,
f(p̃) of equation (4.3) in the case of our placement strategy). In practice this
implies that both costs need to be computed and propagated.

4.7 Re�tting

In this section, we detail our global re�tting step that is applied after reach-
ing each power-of-two levels (step 4 in Algorithm 3). During edge-collapses,
merged vertices are optimized one after the other, making impossible to reach
any local minimal of any global error. The goal of this additional optimization
step is thus reach such a local minimum by re�tting the vertex positions of
the simpli�ed mesh to the input mesh. This re�tting step also compensates
for the fact that all local placement strategies (including ours) does not retain
any precise information from the initial input mesh. Moreover, since our local
placement strategy does not include any volume-preservation term, the model
can locally shrink or grow during the simpli�cation. This e�ect is annihilated
by this re�tting step. As a matter of fact, we deliberately designed our local
placement strategy without any volume-preservation term because we planed
in advance to include such a global re�tting step. Moreover, it would not have
been possible to include such a term without strong scale dependence issues.

Taking advantage of our view-dependent error metric, our goal here is to
globally optimize the vertex positions such as to reduce the error E(d) for all
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patches and any view direction d. Since it would be intractable to directly
minimize our metric E, we devise a related but simpler optimization problem.
Let us �rst observe that the error E is highly related to the magnitudes of the
di�erence vectors. Therefore, reducing them should also reduce E. To this end,
we assume that the texture coordinates (uj, uj) of the vertices of the current
simpli�ed mesh are �xed, and we seek to �nd their respective 3D positions qj
that minimize the length of the di�erence vectors vk of V , i.e., that minimize
the average distance between the simpli�ed and reference meshes in the least-
square sense. This can be formulated as the following weighted least-square
optimization problem:

min
∑
vk∈V

wk ‖vk‖2 , (4.6)

where, for now, wk = 1, and V is the set of all di�erence vectors linking the
reference and simpli�ed meshes. For a given vertex (pi, ui, vi) of the reference
mesh, the respective di�erence vector V(ui, vi) going to the point Ms(ui, vi)
of the simpli�ed mesh can be expressed using barycentric coordinates as:

V(ui, vi) = Ms(ui, vi)− pi

=
∑
j∈Ti

λjqj − pi .

The barycentric coordinates λ are computed in parametric space by �nding
the triangle Ti of the simpli�ed mesh that contains the point (ui, vi), such
that (ui, vi) =

∑
j∈Ti λj(uj, vj). Reciprocally, for a vertex (qj, uj, vj) of the

simpli�ed mesh, we get:

V(uj, vj) = qj −
∑
i∈Tj

λipi .

Using the same logic for the di�erence vectors corresponding to the edge in-
tersections, we end up with a very sparse linear system where the components
x, y, z of the unknown qj are independent:

min ‖CQ−P‖2
w , (4.7)

where Q is the matrix of the unknown qj, P the matrix of the corresponding
position pi on the reference mesh, and C the matrix doing the matching. In
our implementation, we solve this system through the normal equation and the
direct sparse Cholesky solver of the Eigen library [Guennebaud et al., 2016].

The error E can be further reduced by observing that E is mostly in�uenced
by the longest di�erence vectors, whereas reducing the length of the shorter
vectors, that are unlikely to take part in the convex hull of V , would leave
the global error unchanged. In order to take into account this behavior while
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Algorithm 4 Re�tting step

1: Input: Reference mesh R, MeshM
2: V ← Compute di�erence vectors between R andM
3: (C,P)← Construct linear system from V
4: W0 ← Identity
5: loop . t is the iteration number
6: Qt ← (CTWtC)−1 −CTWtP
7: Vt ← CQ−P
8: et ← Evaluate integral of Ẽ for Vt over the mesh
9: if et−1 ≤ et then
10: break
11: end if
12: Wt+1 ← Comnpute weights from Vt . equation (4.8)
13: end loop
14: Apply Qt−1 onM

keeping a simple and fast optimization procedure, we extend the above least-
square optimization by iteratively re-weighting the di�erence vectors according
to their ratio to the largest vector:

wk = γ +
‖vk‖

supvi∈V ‖vi‖
, (4.8)

where γ is a small constant to avoid close to zero weights for small vectors (γ =
0.02 in all our experiments). In practice, after a �rst re�tting iteration with
unit weights, we apply a few passes of weighted re�tting until the mean error
over all directions stops decreasing (Algorithm 4). Note that, at each iteration,
we only need to recompute the weights; the above barycentric coordinates only
need to be computed once.

This iteratively re-weighted re�tting process is applied each time a tessella-
tion level is stored (step 4 in Algorithm 3). To avoid cracks between adjacent
patches tessellated at di�erent levels, the position and texture coordinates of
the patch corners cannot change during the simpli�cation. Consequently, they
are only optimized during the initial re�tting step of the level 0 and considered
�xed during the subsequent ones.

As the re�tting is applied for power-of-two levels only (steps 4 of Algo-
rithm 3), it is reasonable to compute edge-edge intersections. Furthermore,
since the computation of the error metric Ẽ (steps 5 of Algorithm 3) exploits
the same set of di�erence vectors, it can thus be established only once for both.
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Asteroid Bricks Seashell Glacier Peak

reference
mesh

# triangles 491k 786k 1474k 786k
# patches 20 32 60 32

Figure 4.6 � Test scenes used for the evaluation.

mesh Total
VolUV Edge-edge

Re�tting Cedge
+Ẽ intersec.

Asteroid 219 10 2 6 158
Bricks 504 17 6 10 294
Seashell 1227 35 18 21 663

Glacier Peak 475 17 6 9 275

Table 4.1 � Pre-computation time (in seconds) of our full LOD generation method
and its main components.

4.8 Results

We evaluated the performance of our method on a Intel i7-4790K @ 4GHz CPU
with a Nvidia Geforce 980 GTX. In our experiments, the target tolerance error
for the LOD selection has been set to 1 pixel for a window resolution of 1920
× 1140 pixels.

4.8.1 Pre-computation times

The pre-computation times of our LOD generation procedure is reported in Ta-
ble 4.1 for the same four meshes with the breakdown for the main components
of our algorithm. Our new vertex placement strategy is referenced as VolUV,
for Volumetric UV optimization. The column VolUV represents the cost of
the overall generation process if the edge-edge intersections, re�tting, and our
edge-collapse cost (equation (4.5)) are omitted. It includes the initialization
and propagation of the vertex-to-mesh mappings as well as the resolution of
the QP problems to compute Ẽ. This part of the algorithm is rather fast, and
the LS re�tting step and the computation of the edge-edge intersections add
only a small overhead to the generation process. In contrast, our edge selection
cost Cedge greatly dominates the overall cost. However, our Cedge implemen-
tation is not optimized at all, and we believe that its cost could be reduced
by one or two orders of magnitude by computing this cost in parallel for each
edge, and exploiting SIMD instruction sets to evaluate Ecol over hundreds of
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Our method

Uniform hw. tess.

Level 32 Level 16 Level 8

Figure 4.7 � Comparison on the �Snowdrifts� test scene (8 patches). Uniform hard-
ware tessellation (top) fails at representing accurately sharp features and areas of
high curvature, such as the top and deep part of the drifts, which produces tessella-
tion artifacts. Our method (bottom) better preserves those regions by adapting the
triangle size and aligning their edges with those features.

directions.

4.8.2 Comparison to regular hardware tessellation

The quality of our generated LODs and its superiority to both standard dis-
placement maps and strip-collapse algorithm constrained to follow the �xed
tessellation patterns have already been demonstrated in Figure 4.3. Even
though the later variant slightly improves upon displacement maps by reposi-
tioning the vertices of the coarser level according to the quadratic error metric,
this �gure shows that most of the gains of our approach actually come from
its non-uniformity in choosing optimal strips. Figure 4.7 shows a more com-
plicated example with folds and sharp edges. Even at the factor 32, standard
tessellation introduces strong oscillations in the concave region of the drifts.
Those become prominently visible at factor 16, even with a normal-map-based
shading. At level 16, sharp features are already signi�cantly degraded by the
uniform sampling of the displacement map, whereas our approach manages to
properly align triangle edges with sharp features. As a result, our approach
remains very close to the reference image, even at a factor 8 for which 98.5%
of the vertices have been removed.

Figure 4.8 further shows that these well-represented features remain very
stable during the continuous transition between LODs. It also illustrates that,
when transitioning between two subsequent levels with power-of-two tessella-
tion, we obtain a very di�erent behavior than standard fractional tessellation
as many more strips split or collapse simultaneously.

Figure 4.9 provides comparisons on larger scale models for equivalent tes-
sellation factors. In both cases, triangle edges are better aligned with features
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Figure 4.8 � Zoom-out sequence generated by our controllable fractional tessellation.
Observe how the sharp features are well preserved during the continuous simpli�-
cation. The bottom patch transitions from integer factors 32 to 16, whereas the
top patch stays at an integer factor 16 but nearly approaches the next power-of-two
factor 8 at the last frame.

thus avoiding distorted sharp edges and shading artifacts produced by invalid
geometry.

4.8.3 Quantitative Evaluation

The impact of our re�tting step, vertex placement strategy and selection
strategy are evaluated in Figure 4.10 using the integral of our error metric E
over the mesh as an objective comparison criterion. For this experiment, we
compare our new placement strategy (yellow curves), the QEM-based (purple
curves) and LTM-based (green curves) vertex placement strategies relatively
to the LOD produced by the classic hardware tessellation pipeline (i.e., by
sampling mipmapped displacement maps). Since we require the interpolation
of texture coordinates, we use a QEM variant that constraints the vertex place-
ment on the collapsed-edge with linear texture coordinates interpolation, and
used a simple Shepard interpolation [Shepard, 1968] of the neighboring vertex
texture coordinates for the LTM. To ensure a fair comparison, all the methods
start with the same initial tessellated mesh (level 0) obtained by sampling an
intermediate displacement map. This explains why, without re�tting, they all
exhibit the exact same error for the highest tessellation factor.

It can be seen that our new vertex placement strategy alone, i.e., with-
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Figure 4.9 � �Toad army� � Left: Image andRight: close-up views (same tessellation
but di�erent viewpoint). Uniform hardware tessellation (top) degrades or misses
major geometric features of the displacement map, such as the shoulder crest and
the sculpted stump, whereas our LOD mechanism (bottom) represents and simpli�es
them faithfully.

out the previously described global re�tting step, already outperforms both
the QEM and LTM strategies. As expected, for all placement strategies, the
re�tting step has a huge impact on the quality of the produced LOD. The
higher accuracy of the texture coordinates computed with our method com-
bined with the re�tting step leads us to substantial improvements over the
classic hardware tessellation. Our cost strategy, applied in conjunction with
the two previous extensions, hence called Full, allows to further reduce the
view-dependent error by up to 60% compared to the regular hardware tessel-
lation.

4.8.4 View-Dependent Metric Performance

Figure 4.11 compares the performance of our selection metric Ẽ with the
isotropic version Eiso on the four test scenes of Figure 4.6 for three LOD gen-

Level of Detail Rendering with Hardware Tessellation 89



4.8. Results

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QEM+LS

QEM

LTM+LS

LTM

VolUV+LS

VolUV

Full

HwTess

R
el
a
ti
v
e
E
rr
o
r

Tessellation factor

4 8 16 32 642

Figure 4.10 � Simpli�cation algorithms comparison � the error is expressed relatively
to the mesh produced by the regular hardware tessellation (HwTess) and averaged
over all patches of the four 3D models shown in Figure 4.6. We compare the QEM-
and LTM-based vertex placement strategies with our new Volumetric UV optimiza-
tion with and without least-square re�tting, and eventually its full combination with
our novel edge selection cost.

eration approaches: the regular hardware tessellation with mip-mapped dis-
placement maps, a QEM-based simpli�cation method, and our full algorithm.
On all test scenes, instantiated 400 times on a uniform 20 × 20 2D grid with
random orientations, for a given LOD generation method, our view-dependent
selection metric reduces the number of polygons generated by the tessellator
by an average of 10% to 35% at equal visual quality. When comparing the
LOD generation techniques with each others, our method reduces drastically
the number of required triangles compared to previous work, accelerating the
rendering time by a factor ranging from 2 to 3 on average.
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Figure 4.11 � Rendering performance comparison � for a given viewpoint, we measure
the number of triangles (a) after level selection using our view-dependent metric Ẽ
and the isotropic version Eiso, as well as the associated rendering time (b). We
compare these indicators for three LOD generation methods on the four test meshes
of Figure 4.6 instantiated 400 times on a 2D grid with random orientations.
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Conclusion

Summary

In this thesis, we proposed a general framework for the generation and ren-
dering of non-uniform LODs compatible with the hardware tessellation engine
and made the following contributions.

First, we introduced a patch-based view-dependent metric capturing both
geometric and parametric distortions. This metric can serve multiple pur-
poses. First, it can directly be used to compare simpli�cations algorithms in
an objective manner. More importantly, we showed how to take insights from
this metric to design better simpli�cations algorithms. Finally, we demon-
strated how to accurately and compactly summarize this metric over a given
patch to drive the selection of appropriate LOD at rendering time. It provides
signi�cant gains compared to an isotropic metric.

Second, we presented a novel hierarchical representation of multi-resolution
meshes for hardware tessellation that allows us to �nely control the topologi-
cal locations of vertex splits and merges, relaxing the regularity of fractional
tessellation, while retaining the e�ciency of the respective GPU's units. To
exploit the �exibility introduced by our novel representation, we presented
a dedicated mesh decimation scheme that matches the hardware tessellation
pattern at successive levels.

Last, we built upon the insights gained by our metric to revisit iterative
simpli�cation algorithms. In particular, we proposed the �rst vertex place-
ment strategy that optimizes for both geometric and parametric distortions
in a scale independent manner. We then showed that performing global opti-
mization steps on the whole simpli�ed mesh can greatly improve the quality of
the LOD with little additional pre-computation time. Last but not least, we
also described how to use our error metric to schedule the local simpli�cation
operations to minimise even further the overall simpli�cation error.

Our framework enables for the �rst time the rendering of feature-aware LOD
with hardware tessellation, leading to huge improvements both in terms of
triangle count and rendering time in comparison to alternative methods. This
framework opens the door to many opportunities of improvements.
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For example, both our new vertex-placement strategy and re�tting pro-
cedures could be integrated within classical edge-collapse simpli�cation algo-
rithms. The integration of the former is straightforward, and re�tting passes
could be triggered on a regular basis during the simpli�cation. If this combi-
nation is as successful as in our hardware tessellation tessellation context, this
would lead to a highly competitive tool for the decimation of parametrized
meshes.

Perspectives

We present in this section four directions for future work that could overcome
some of the limitations of our framework or leads to additional performance
gains.

Animation In Section 1.4.3.2, we observed that vector displacement map-
ping tends to produce more artifacts after deforming the base mesh than scalar
displacements. Since our method is likely to create large tangential displace-
ments to reposition vertices on the mesh features, it su�ers from the same limi-
tation. It could be mitigated using some form of indirect scalar representation.
Rather than storing a vector for each vertex, we could store, with the same
memory cost, the two new barycentric coordinates and a scalar displacement
along the normal. However, converting an arbitrary vector in this representa-
tion is not a trivial task. First, such a conversion is neither guaranteed to exist
nor to be unique. Second, the conversion can produce barycentric coordinates
of vertices outside the patch, leading to even stronger artifacts when the base
surface is animated.

Our view-dependent error E changes through the animation. It has been
designed with rigidly deformed objects in mind. For reasonably small defor-
mations, transforming our view-depend metric by a local rigid approximation
on a patch-basis is likely to behave well. Handling large deformations, how-
ever, remains an open problem. It is di�cult to apply directly the deformation
induced by the animation to our approximation Ẽ. Indeed, the deformation is
generally not constant over a patch and all the di�erence vectors are a�ected
di�erently. It is thus impossible to precisely know how our error Ẽ will be
a�ected by the deformation. A possible approach would be to compute sev-
eral errors Ẽ for di�erent key-frames and interpolate between them during the
animation.

Input In order to have a full automatic pipeline capable of generating LOD
compatible with hardware tessellation from any input mesh with a parametriza-
tion, we need to decompose the input mesh into a set of patches. This can easily
be done by any simpli�cation algorithm that maintains a good parametrization
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through the simpli�cation. For example, our VolUV method in combination
with our re�tting process can be used. However, the stake is to create patches
of similar complexity [Yuan et al., 2016]. In addition, to minimize our metric,
it would be interesting to construct patches where details can be represented
by relatively collinear displacements.

Once the decomposition into patches is obtained, the input mesh for our
decimation algorithm is generated by uniformly sampling for each patch the
parametric domain according to the �nest tessellation pattern. The �rst re-
�tting step takes care of computing the corresponding 3D positions. For the
�nest level, the quality gain of our method in comparison to the regular tes-
sellation is thus only due to our re�tting step. Therefore, better algorithms
still need to be investigated to generate the initial �ner level. We believe that
a better redistribution of the samples in the parametric space would increase
even more the quality of the �nest level. As the �nest level is the level with the
large number of triangles, it could at run-time reduce greatly the number of
triangles and provide signi�cant performance gains. On top of that, as we use
a decimation algorithm to generate the subsequent levels, increasing the qual-
ity of the �nest level will impact the quality of the coarser ones, thus leading
to potentially even more performance gains.

Tessellation Pattern The hardware tessellation pattern has been designed
with uniform sampling and regular-shaped triangles in mind. It is thus well
suited for representing subdivision surfaces and displacement mapping. How-
ever, in the context of feature-aware LOD, we had to devise a dedicated mesh
decimation scheme based on the contraction of strips to match the hardware
tessellation pattern at successive levels. Although it provides impressive re-
sults, it is still much less �exible than standard edge-collapse algorithms.

Therefore, it would be interesting to investigate alternative tessellation
patterns more adapted to the rendering of feature-aware LODs. The idea
would be to design a pattern allowing more �exibility during the transitions. In
addition to retaining the continuous spatial and temporal transitions between
levels, such a pattern needs to have the following properties:

• We have to be able to e�ciently enumerate all the possible sets of con-
tractions to pass from one level to another.

• This set of contractions has to be as diverse as possible to enable a �ner
control of topological changes.

This would allow to exploit all the �exibility introduced by our representation,
and thus to provide �ner-grain LOD compatible with hardware tessellation.

Geometry �ltering As the tessellation factor decreased, geometric details
are removed from the surface. To keep the contribution of those details in
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the �nal pixel values, we need to use a normal map. This is, however, not
su�cient to achieve accurate shading. Indeed, simplifying the geometry also
a�ects shadows (as discussed in Section 2.6) and self-occlusions. The latter is
problematic since parts of the model which normally would have been hidden,
will contribute to the value of some pixels. To achieve an accurate shading, it is
thus necessary to integrate the removed details contribution into the re�ectance
properties of the surface. Several approaches [Olano and Baker, 2010; Dupuy
et al., 2013] have already studied this issues at a micro-scale, however, at a
macro-scale geometry �ltering remains an open problem.
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Appendix A

Optimal x-strip algorithm
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Algorithm 5 Find optimal x-strip

1: Input: MeshM, Patch corner c
2: B ← Find a half-patch boundary of c . An open one if it exists
3: for each halfedge hb on B do
4: Insert hb in P . P is the list of remaining vertex to process
5: for each halfedge hp in adjacent patch of c do . Initilization
6: D[hb, hp]← 0 . Distance from hb to hp
7: prev[hb, hp]← unde�ned . Previous halfedge in optimal path
8: end for
9: end for
10: while P not empty do
11: h← Pop a halfedge of P
12: if h is on open boundary then
13: N← halfedge of B . Connects manually the two open boundaries
14: else
15: N← following halfedge of h . As explained in Section 4.3
16: end if
17: for each vertex n of N do
18: if prev[any, n] = unde�ned then . Has this node been visited?
19: Insert n in P
20: for each halfedge hb on B do
21: D[hb, n]← D[hb, h]+ cost of h
22: prev[hb, n]← h
23: end for
24: else
25: for each halfedge hb on B do
26: if D[hb, n] > D[hb, h]+ cost of h then
27: D[hb, n]← D[hb, h]+ cost of h
28: prev[hb, n]← h
29: end if
30: end for
31: end if
32: end for
33: end while
34: cost←∞
35: ring← unde�ned
36: for each halfedge hb on B do . Extracts optimal ring
37: if D[hb, hb] < cost then
38: cost← D[hb, hb]
39: ring← Get ring of hb . Using prev information
40: end if
41: end for
42: return ring
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Rendu de niveaux de détails avec la Tessellation Matérielle

Thibaud Lambert

Cette thèse s’inscrit dans le cadre de la synthèse d’images 3D qui vise à générer des images de
synthèse à partir de mondes virtuel à travers des algorithmes informatiques. La synthèse d’images
est essentielle dans de nombreux domaines d’application tels que le divertissement, la simulation, la
visualisation scientifique, la publicité, l’imagerie médicale, etc. Pour la plupart de ces applications, l’un
des objectifs est de produire ce que l’on appelle des rendus photo-réalistes. Deux conditions doivent être
remplies pour atteindre cet objectif. Tout d’abord, des algorithmes de rendu doivent être développés
pour reproduire les lois physiques du transport de la lumière et des interactions lumière-matière avec
la plus grande précision possible. Deuxièmement, les scènes numériques doivent reproduire fidèlement
la complexité des environnements réels, ce qui nécessite une grande quantité de détails. Ces deux
aspects sont essentiels dans l’industrie cinématographique pour les effets spéciaux où des images du
monde réel sont mélangées avec des images numériques, ou dans l’architecture et l’industrie automobile
pour prévisualiser et étudier des design possibles. Dans ce contexte, une quantité énorme de détails est
nécessaire pour représenter des modèles 3D aussi réalistes que possible. De plus, l’apparition d’affichages
avec une densité élevée de pixels motive également l’utilisation de modèles très détaillés pour exploiter
tous les avantages de ces affichages.

Les algorithmes de rendu peuvent être classés en deux catégories : les algorithmes hors ligne et les
algorithmes temps réel. Les premiers sont soumis à de faibles contraintes de temps; ils sont utilisés pour
les films et les films d’animation. Les applications de rendu hors ligne ont donc la possibilité d’utiliser des
algorithmes coûteux. Ils utilisent généralement des techniques d’illumination globales combinées à des
modèles très détaillés pour obtenir des images qui ne sont presque pas différentiables des photographies.
Ceci est réalisé au prix d’un long temps de calcul; le rendu d’une seule image peut prendre des heures
voire des jours.

D’un autre côté, le rendu temps réel a pour but de générer des images en très peu de temps. Ceci
est essentiel pour les applications interactives telles que les jeux vidéo, les simulations interactives, les
applications de RV, etc. pour offrir une expérience fluide à l’utilisateur. Chaque image doit être calculée
en moins de 30 ms pour atteindre un nombre d’image par seconde confortable. Les images rendues
en temps réel sont donc encore faciles à différencier des images réelles. Cela est dû à l’utilisation de
modèles plus grossiers et d’algorithmes de transport de la lumière approchés qui fonctionnent beaucoup
plus rapidement que les algorithmes hors ligne.

Pour atteindre ces performances, tous les moteurs de rendu en temps réel reposent entièrement sur des
unités de calcul graphique (GPU) dédiées. Les GPU modernes sont des processeurs parallèles massifs
composés de milliers de cœurs. Ils sont spécifiquement dédiés au rendu temps réel d’une représentation
spécifique de modèles 3D: le maillage triangulaire associé à des textures. Le maillage triangulaire
représente la forme générale du modèle, tandis que les textures encodent les détails les plus fins et
les attributs de surface tels que les couleurs, les normales et les propriétés d’éclairage. Ces modèles
peuvent être créés par des artistes utilisant des logiciels de modélisation ou de sculpture 3D, ou obtenus
en scannant des objets du monde réel. Dans les deux cas, le nombre de triangles par objet n’a cessé
d’augmenter ces dernières années pour représenter des objets encore plus détaillés. De plus, les scènes 3D
sont devenues de plus en plus complexes et peuvent être composées de plusieurs milliers d’objets. Cela se
traduit par une très grande quantité de triangles qui soulève des problèmes de mémoire, de performance
et de filtrage.

Diverses méthodes ont été proposées pour résoudre ces problèmes. D’abord, seuls les objets visibles
dans l’image finale doivent être rendus. Les objets situés en dehors du champ de vision de la caméra
sont donc ignorés. Pour la même raison, les grands objets qui traversent les limites du champ de vision
sont souvent coupés le long de ces limites dans un processus appelé ”clipping”, et les parties en dehors
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du champ de vision sont écartées. Pour les objets opaques et solides, ce qui est le cas de la plupart
des objets d’une scène de jeu vidéo typique, les triangles orientés vers l’arrière par rapport au point de
vue actuel ne peuvent pas être visibles et sont ainsi écartés en toute sécurité. La notion de ”culling”
peut être étendue aux occlusions d’un objet par d’autres, c’est ce qu’on appelle ”occlusion culling”. Ceci
est généralement effectué en pré-calculant une forme de hiérarchie de groupes d’objets potentiellement
visibles, puis cette hiérarchie est utilisée au moment de l’exécution pour identifier ce qui est visible
et ce qui ne l’est pas. Le ”culling” et le clipping sont des mécanismes très populaires pour réduire
considérablement la complexité d’une scène et ainsi accélérer le rendu. Cependant, lors de l’utilisation
de maillages très détaillés, ces mécanismes ne sont pas suffisants. Par exemple, un seul maillage peut
contenir plusieurs millions de triangles et s’il est éloigné, il peut être projeté sur une douzaine de pixels,
ce qui rend le rendu particulièrement inefficace.

Le rendu de niveaux de détail (LOD) vise à réduire de manière drastique le nombre de triangles
visibles dans une scène. L’idée clé des niveaux de détail est d’adapter la résolution de l’objet en fonction
du point de vue. Les objets éloignés remplissent moins d’espace sur l’écran que les objets proches et
nécessitent donc moins de polygones pour être rendus avec précision. Sur la base de ces observations, une
représentation multi-résolution est pré-calculée pour chaque objet et au moment du rendu, la résolution
appropriée est utilisée selon un critère dépendant de la vue.

L’approche LOD la plus simple pour les modèles 3D consiste en un ensemble fixe de maillages avec
un nombre décroissant de polygones. Au moment du rendu, le maillage avec la résolution la plus basse
satisfaisant un critère dépendant de la vue est affiché. L’absence de transition lors du passage d’un
niveau à un autre conduit à des artefacts visibles: l’objet 3D devient soudainement plus détaillé. La
fameuse technique ”Progressive Mesh” aborde ce problème en proposant une représentation à résolution
continue. Il consiste en un maillage grossier et un ensemble d’opérations qui indique comment raffiner
le maillage grossier dans le maillage original. En plus d’être plus compact que les LOD discrets, il
permet un contrôle précis de la densité des vertex avec des transitions temporelles lisses. Cependant, un
problème fondamental avec les maillages progressifs est qu’il ne peut pas tirer parti de toute la puissance
des architectures GPU massivement parallèles en raison de la dépendance des opérations les unes avec
les autres.

Ces représentations LOD sont généralement générées en utilisant un algorithme de réduction de
polygone. Le but de tels algorithmes est de réduire le nombre de polygones du maillage tout en préservant
le mieux possible son aspect visuel. À cette fin, ils doivent mesurer tout au long de la simplification les
différences avec le maillage d’origine. Cette métrique d’erreur est au cœur des méthodes de simplification,
car elle définira l’ordre dans lequel les opérations de simplification seront appliquées, mais conduira
également les optimisations locales à relocaliser de manière appropriée les sommets tout au long de
la simplification. Une bonne métrique d’erreur préservera mieux les caractéristiques importantes du
maillage et permettra ainsi de réduire davantage la complexité de la scène pour une même qualité
visuelle.

Choisir le niveau approprié pour réduire autant que possible la complexité de la scène tout en
préservant son aspect visuel est également une tâche centrale mais difficile. En effet, l’aspect visuel
d’un modèle 3D dépend de nombreux paramètres: non seulement sa géométrie, mais aussi son matériau,
l’environnement d’éclairage, le point de vue de la caméra, l’affichage, le système visuel humain, les con-
ditions d’éclairage de la pièce, etc. Ces paramètres ont des interactions complexes entre eux et il est
donc difficile de les prendre en compte tous en même temps. De plus, l’évaluation d’une telle métrique
doit être extrêmement rapide pour être utilisée dans des applications en temps réel. En conséquence, les
méthodes existantes sont uniquement basées sur la distance de vue et la géométrie de l’objet, laissant
beaucoup de place pour des améliorations significatives.

Une méthode alternative pour représenter des maillages hautement détaillés consiste à utiliser des
cartes de déplacement. Le maillage très détaillé est décomposé au cours d’un pré-traitement en une
surface grossière et une carte 2D codant les détails, c’est-à-dire le relief, du modèle 3D. Une telle carte
s’appelle une carte de déplacement. Plus précisément, la carte de déplacement est une fonction de
décalage décrivant comment déformer la surface grossière pour reproduire le maillage d’origine. Cette
représentation peut être rendue efficacement en utilisant le moteur de pavage matériel du GPU moderne
qui permet un contrôle dynamique de la résolution du maillage. Chaque face, appelée dans ce cas un
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patch, du maillage grossier d’entrée est subdivisée à une résolution donnée selon un schéma de subdivision
fixe et uniforme. Ensuite, les sommets générés sont déplacés vers l’emplacement 3D souhaité en utilisant
la carte de déplacement.

Les spécificités de la tessellation matérielle impliquent de nouveaux défis. Tout d’abord, un défi
récurrent lors du rendu des cartes de déplacement avec la tessellation matérielle est d’assurer des tran-
sitions temporelles continues. L’objectif est de résoudre les artefacts de ”popping” sans introduire
d’artefacts de ”swimming”, c’est-à-dire des fluctuations visibles de la surface reconstruite en raison
du sous-échantillonnage de la carte de déplacement.

Les cartes de déplacement avec la tessellation matérielle offre une représentation beaucoup plus
compacte que le maillage progressif, grâce au motif de tessellation stockant implicitement la topologie.
Malheureusement, cette représentation compacte vient au prix de moins de flexibilité. Pour la même
quantité de triangles, il introduit généralement une erreur plus élevée que les approches offrant un
contrôle plus fin telles que le maillage progressif. Le deuxième défi est alors de savoir comment activer la
tessellation matérielle. Ce problème est particulièrement difficile en raison du modèle de pavage matériel
fixe, qui empêche l’utilisation d’algorithmes de simplification de maillage préservant des caractéristiques
existants.

Dans cette thèse, nous abordons les défis suivants:

• Comment exploiter au mieux la tessellation GPU pour contrôler plus finement la répartition des
sommets tessellés et préserver au mieux les caractéristiques du maillage détaillé?

• Comment générer des LOD de haute qualité compatibles avec la tessellation GPU?

• Comment réaliser des transitions temporelles lisses entre les LOD tout en évitant les fluctuations
de la surface?

• Comment sélectionner rapidement le meilleur LOD pour assurer une haute qualité visuelle avec un
nombre minimal de polygones?

Pour répondre à ces défis, nous présentons une méthode générale pour la génération et le rendu
de LOD compatibles avec la tessellation matérielle. A partir d’un maillage détaillé d’entrée et d’une
décomposition correspondante en patchs, nos méthodes produisent une hiérarchie de LOD compatible
avec la tessellation matérielle, et une métrique dépendante de la vue mesure, pour chaque patch et chaque
niveau de la hiérarchie, son erreur dépendant de la vue. le maillage d’entrée. Cette représentation est
ensuite utilisée dans une passe de tessellation non uniforme, contrôlable et personnalisée, évitant les
artefacts d’ondulation et fournissant des gains de performances significatifs par rapport aux méthodes
alternatives. Plus précisément, nous apportons les contributions suivantes:

Métrique dépendante de la vue Notre première contribution est une métrique dépendante de la
vue par patch qui estime à la fois la distance géométrique et la distance entre les attributs des niveaux de
détails et du maillage détaillé de référence. Ceci est accompli en considérant des vecteurs de différence des
points avec les mêmes coordonnées de texture sur la surface du niveau de détail et la surface de référence.
L’erreur induite par ces vecteurs peut être résumée de manière conservative par une représentation simple,
ce qui permet une évaluation rapide par GPU de l’erreur d’approximation dans toutes les directions de
vue. Cette métrique peut remplir plusieurs objectifs. Premièrement, il peut directement être utilisé pour
comparer des algorithmes de simplification de manière objective. Plus important encore, nous avons
montré comment tirer parti de cette métrique pour concevoir de meilleurs algorithmes de simplification.
Enfin, nous avons démontré comment résumer de manière précise et compacte cette métrique sur un
patch donné afin de déterminer le niveau de détail approprié au moment du rendu. Elle fournit des gains
significatifs par rapport à une métrique isotrope.

Tessellation personnalisée contrôlable Ensuite, nous présentons un nouveau schéma d’interpolation
entre les niveaux de tessellation qui permet une tessellation personnalisée contrôlable tout en évitant les
artefacts swimming. Notre méthode nécessite seulement le stockage d’un index supplémentaire par som-
met pour relier les sommets des niveaux grossiers aux niveaux fins. Il nous permet de contrôler finement
les emplacements topologiques des divisions et des contractions de vertex, en relâchant la régularité de
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la tessellation fractionnaire, tout en conservant l’efficacité des unités respectives du GPU, ouvrant ainsi
la voie à une tessellation non uniforme.

Simplification compatible avec la tessellation matérielle Pour exploiter la flexibilité introduite
par notre représentation, nous proposons un algorithme de simplification itératifs compatible avec la
tessellation matérielle. Partant d’un maillage de base subdivisé et déplacé au niveau le plus fin, notre
algorithme décime progressivement le maillage tout en retombant successivement sur le motif de la tes-
sellation matérielle pour les différents niveaux. Nous proposons en plus une heuristique de simplification
basée sur notre nouvelle métrique d’erreur pour optimiser simultanément les positions et les coordonnées
de texture des sommets relocalisés. En particulier, nous avons proposé la première stratégie de place-
ment de sommets qui optimise à la fois les distorsions géométriques et paramétriques indépendamment
de l’échelle. Nous avons ensuite montré que l’ajout d’une étape d’optimisation globale sur l’ensemble du
maillage simplifié peut grandement améliorer la qualité des niveaux de détail. Dernier point, mais non
des moindres, nous avons également décrit comment utiliser notre métrique d’erreur pour planifier les
opérations de simplification afin de minimiser encore plus l’erreur globale.

Notre méthode permet pour la première fois le rendu de niveaux de détails avec la tessellation
matérielle, conduisant à d’énormes améliorations en termes de nombre de triangles et de temps de
rendu par rapport aux méthodes alternatives. Ce cadre ouvre la porte à de nombreuses opportunités
d’améliorations.

Par exemple, notre nouvelle stratégie de placement de sommets et nos procédures d’optimisation
globale pourraient être intégrées dans des algorithmes classiques de simplification itératifs. L’intégration
de la première est simple, et des optimisations globales pourraient être déclenchées régulièrement lors de
la simplification. Si cette combinaison est aussi efficace que dans le contexte de la tessellation matérielle,
cela conduirait à un outil hautement compétitif pour la décimation de maillages paramétrés.
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